Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/common.py +63 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/conftest.py +100 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_assign.py +84 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_copy.py +64 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_fillna.py +932 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_first_valid_index.py +78 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_map.py +216 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_quantile.py +972 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_to_records.py +523 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_tz_localize.py +68 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_alter_axes.py +30 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_arithmetic.py +2136 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_block_internals.py +457 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_constructors.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_cumulative.py +81 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_iteration.py +160 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_logical_ops.py +218 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_nonunique_indexes.py +337 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_npfuncs.py +89 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_query_eval.py +1425 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_reductions.py +2157 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_stack_unstack.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_ufunc.py +311 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_unary.py +204 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/conftest.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_all_methods.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_api.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_apply.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_apply_mutate.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_bin_groupby.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_categorical.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_counting.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_cumulative.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_filters.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_groupby.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_groupby_dropna.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_groupby_subclass.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_grouping.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_index_as_string.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_indexing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_libgroupby.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_missing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_numba.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_numeric_only.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_pipe.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_raises.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_reductions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_timegrouper.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/common.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import TYPE_CHECKING
|
4 |
+
|
5 |
+
from pandas import (
|
6 |
+
DataFrame,
|
7 |
+
concat,
|
8 |
+
)
|
9 |
+
|
10 |
+
if TYPE_CHECKING:
|
11 |
+
from pandas._typing import AxisInt
|
12 |
+
|
13 |
+
|
14 |
+
def _check_mixed_float(df, dtype=None):
|
15 |
+
# float16 are most likely to be upcasted to float32
|
16 |
+
dtypes = {"A": "float32", "B": "float32", "C": "float16", "D": "float64"}
|
17 |
+
if isinstance(dtype, str):
|
18 |
+
dtypes = {k: dtype for k, v in dtypes.items()}
|
19 |
+
elif isinstance(dtype, dict):
|
20 |
+
dtypes.update(dtype)
|
21 |
+
if dtypes.get("A"):
|
22 |
+
assert df.dtypes["A"] == dtypes["A"]
|
23 |
+
if dtypes.get("B"):
|
24 |
+
assert df.dtypes["B"] == dtypes["B"]
|
25 |
+
if dtypes.get("C"):
|
26 |
+
assert df.dtypes["C"] == dtypes["C"]
|
27 |
+
if dtypes.get("D"):
|
28 |
+
assert df.dtypes["D"] == dtypes["D"]
|
29 |
+
|
30 |
+
|
31 |
+
def _check_mixed_int(df, dtype=None):
|
32 |
+
dtypes = {"A": "int32", "B": "uint64", "C": "uint8", "D": "int64"}
|
33 |
+
if isinstance(dtype, str):
|
34 |
+
dtypes = {k: dtype for k, v in dtypes.items()}
|
35 |
+
elif isinstance(dtype, dict):
|
36 |
+
dtypes.update(dtype)
|
37 |
+
if dtypes.get("A"):
|
38 |
+
assert df.dtypes["A"] == dtypes["A"]
|
39 |
+
if dtypes.get("B"):
|
40 |
+
assert df.dtypes["B"] == dtypes["B"]
|
41 |
+
if dtypes.get("C"):
|
42 |
+
assert df.dtypes["C"] == dtypes["C"]
|
43 |
+
if dtypes.get("D"):
|
44 |
+
assert df.dtypes["D"] == dtypes["D"]
|
45 |
+
|
46 |
+
|
47 |
+
def zip_frames(frames: list[DataFrame], axis: AxisInt = 1) -> DataFrame:
|
48 |
+
"""
|
49 |
+
take a list of frames, zip them together under the
|
50 |
+
assumption that these all have the first frames' index/columns.
|
51 |
+
|
52 |
+
Returns
|
53 |
+
-------
|
54 |
+
new_frame : DataFrame
|
55 |
+
"""
|
56 |
+
if axis == 1:
|
57 |
+
columns = frames[0].columns
|
58 |
+
zipped = [f.loc[:, c] for c in columns for f in frames]
|
59 |
+
return concat(zipped, axis=1)
|
60 |
+
else:
|
61 |
+
index = frames[0].index
|
62 |
+
zipped = [f.loc[i, :] for i in index for f in frames]
|
63 |
+
return DataFrame(zipped)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/conftest.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
DataFrame,
|
6 |
+
Index,
|
7 |
+
NaT,
|
8 |
+
date_range,
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
@pytest.fixture
|
13 |
+
def datetime_frame() -> DataFrame:
|
14 |
+
"""
|
15 |
+
Fixture for DataFrame of floats with DatetimeIndex
|
16 |
+
|
17 |
+
Columns are ['A', 'B', 'C', 'D']
|
18 |
+
"""
|
19 |
+
return DataFrame(
|
20 |
+
np.random.default_rng(2).standard_normal((100, 4)),
|
21 |
+
columns=Index(list("ABCD"), dtype=object),
|
22 |
+
index=date_range("2000-01-01", periods=100, freq="B"),
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
@pytest.fixture
|
27 |
+
def float_string_frame():
|
28 |
+
"""
|
29 |
+
Fixture for DataFrame of floats and strings with index of unique strings
|
30 |
+
|
31 |
+
Columns are ['A', 'B', 'C', 'D', 'foo'].
|
32 |
+
"""
|
33 |
+
df = DataFrame(
|
34 |
+
np.random.default_rng(2).standard_normal((30, 4)),
|
35 |
+
index=Index([f"foo_{i}" for i in range(30)], dtype=object),
|
36 |
+
columns=Index(list("ABCD"), dtype=object),
|
37 |
+
)
|
38 |
+
df["foo"] = "bar"
|
39 |
+
return df
|
40 |
+
|
41 |
+
|
42 |
+
@pytest.fixture
|
43 |
+
def mixed_float_frame():
|
44 |
+
"""
|
45 |
+
Fixture for DataFrame of different float types with index of unique strings
|
46 |
+
|
47 |
+
Columns are ['A', 'B', 'C', 'D'].
|
48 |
+
"""
|
49 |
+
df = DataFrame(
|
50 |
+
{
|
51 |
+
col: np.random.default_rng(2).random(30, dtype=dtype)
|
52 |
+
for col, dtype in zip(
|
53 |
+
list("ABCD"), ["float32", "float32", "float32", "float64"]
|
54 |
+
)
|
55 |
+
},
|
56 |
+
index=Index([f"foo_{i}" for i in range(30)], dtype=object),
|
57 |
+
)
|
58 |
+
# not supported by numpy random
|
59 |
+
df["C"] = df["C"].astype("float16")
|
60 |
+
return df
|
61 |
+
|
62 |
+
|
63 |
+
@pytest.fixture
|
64 |
+
def mixed_int_frame():
|
65 |
+
"""
|
66 |
+
Fixture for DataFrame of different int types with index of unique strings
|
67 |
+
|
68 |
+
Columns are ['A', 'B', 'C', 'D'].
|
69 |
+
"""
|
70 |
+
return DataFrame(
|
71 |
+
{
|
72 |
+
col: np.ones(30, dtype=dtype)
|
73 |
+
for col, dtype in zip(list("ABCD"), ["int32", "uint64", "uint8", "int64"])
|
74 |
+
},
|
75 |
+
index=Index([f"foo_{i}" for i in range(30)], dtype=object),
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
@pytest.fixture
|
80 |
+
def timezone_frame():
|
81 |
+
"""
|
82 |
+
Fixture for DataFrame of date_range Series with different time zones
|
83 |
+
|
84 |
+
Columns are ['A', 'B', 'C']; some entries are missing
|
85 |
+
|
86 |
+
A B C
|
87 |
+
0 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00+01:00
|
88 |
+
1 2013-01-02 NaT NaT
|
89 |
+
2 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-03 00:00:00+01:00
|
90 |
+
"""
|
91 |
+
df = DataFrame(
|
92 |
+
{
|
93 |
+
"A": date_range("20130101", periods=3),
|
94 |
+
"B": date_range("20130101", periods=3, tz="US/Eastern"),
|
95 |
+
"C": date_range("20130101", periods=3, tz="CET"),
|
96 |
+
}
|
97 |
+
)
|
98 |
+
df.iloc[1, 1] = NaT
|
99 |
+
df.iloc[1, 2] = NaT
|
100 |
+
return df
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_assign.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import DataFrame
|
4 |
+
import pandas._testing as tm
|
5 |
+
|
6 |
+
|
7 |
+
class TestAssign:
|
8 |
+
def test_assign(self):
|
9 |
+
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
|
10 |
+
original = df.copy()
|
11 |
+
result = df.assign(C=df.B / df.A)
|
12 |
+
expected = df.copy()
|
13 |
+
expected["C"] = [4, 2.5, 2]
|
14 |
+
tm.assert_frame_equal(result, expected)
|
15 |
+
|
16 |
+
# lambda syntax
|
17 |
+
result = df.assign(C=lambda x: x.B / x.A)
|
18 |
+
tm.assert_frame_equal(result, expected)
|
19 |
+
|
20 |
+
# original is unmodified
|
21 |
+
tm.assert_frame_equal(df, original)
|
22 |
+
|
23 |
+
# Non-Series array-like
|
24 |
+
result = df.assign(C=[4, 2.5, 2])
|
25 |
+
tm.assert_frame_equal(result, expected)
|
26 |
+
# original is unmodified
|
27 |
+
tm.assert_frame_equal(df, original)
|
28 |
+
|
29 |
+
result = df.assign(B=df.B / df.A)
|
30 |
+
expected = expected.drop("B", axis=1).rename(columns={"C": "B"})
|
31 |
+
tm.assert_frame_equal(result, expected)
|
32 |
+
|
33 |
+
# overwrite
|
34 |
+
result = df.assign(A=df.A + df.B)
|
35 |
+
expected = df.copy()
|
36 |
+
expected["A"] = [5, 7, 9]
|
37 |
+
tm.assert_frame_equal(result, expected)
|
38 |
+
|
39 |
+
# lambda
|
40 |
+
result = df.assign(A=lambda x: x.A + x.B)
|
41 |
+
tm.assert_frame_equal(result, expected)
|
42 |
+
|
43 |
+
def test_assign_multiple(self):
|
44 |
+
df = DataFrame([[1, 4], [2, 5], [3, 6]], columns=["A", "B"])
|
45 |
+
result = df.assign(C=[7, 8, 9], D=df.A, E=lambda x: x.B)
|
46 |
+
expected = DataFrame(
|
47 |
+
[[1, 4, 7, 1, 4], [2, 5, 8, 2, 5], [3, 6, 9, 3, 6]], columns=list("ABCDE")
|
48 |
+
)
|
49 |
+
tm.assert_frame_equal(result, expected)
|
50 |
+
|
51 |
+
def test_assign_order(self):
|
52 |
+
# GH 9818
|
53 |
+
df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"])
|
54 |
+
result = df.assign(D=df.A + df.B, C=df.A - df.B)
|
55 |
+
|
56 |
+
expected = DataFrame([[1, 2, 3, -1], [3, 4, 7, -1]], columns=list("ABDC"))
|
57 |
+
tm.assert_frame_equal(result, expected)
|
58 |
+
result = df.assign(C=df.A - df.B, D=df.A + df.B)
|
59 |
+
|
60 |
+
expected = DataFrame([[1, 2, -1, 3], [3, 4, -1, 7]], columns=list("ABCD"))
|
61 |
+
|
62 |
+
tm.assert_frame_equal(result, expected)
|
63 |
+
|
64 |
+
def test_assign_bad(self):
|
65 |
+
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
|
66 |
+
|
67 |
+
# non-keyword argument
|
68 |
+
msg = r"assign\(\) takes 1 positional argument but 2 were given"
|
69 |
+
with pytest.raises(TypeError, match=msg):
|
70 |
+
df.assign(lambda x: x.A)
|
71 |
+
msg = "'DataFrame' object has no attribute 'C'"
|
72 |
+
with pytest.raises(AttributeError, match=msg):
|
73 |
+
df.assign(C=df.A, D=df.A + df.C)
|
74 |
+
|
75 |
+
def test_assign_dependent(self):
|
76 |
+
df = DataFrame({"A": [1, 2], "B": [3, 4]})
|
77 |
+
|
78 |
+
result = df.assign(C=df.A, D=lambda x: x["A"] + x["C"])
|
79 |
+
expected = DataFrame([[1, 3, 1, 2], [2, 4, 2, 4]], columns=list("ABCD"))
|
80 |
+
tm.assert_frame_equal(result, expected)
|
81 |
+
|
82 |
+
result = df.assign(C=lambda df: df.A, D=lambda df: df["A"] + df["C"])
|
83 |
+
expected = DataFrame([[1, 3, 1, 2], [2, 4, 2, 4]], columns=list("ABCD"))
|
84 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_copy.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas.util._test_decorators as td
|
5 |
+
|
6 |
+
from pandas import DataFrame
|
7 |
+
import pandas._testing as tm
|
8 |
+
|
9 |
+
|
10 |
+
class TestCopy:
|
11 |
+
@pytest.mark.parametrize("attr", ["index", "columns"])
|
12 |
+
def test_copy_index_name_checking(self, float_frame, attr):
|
13 |
+
# don't want to be able to modify the index stored elsewhere after
|
14 |
+
# making a copy
|
15 |
+
ind = getattr(float_frame, attr)
|
16 |
+
ind.name = None
|
17 |
+
cp = float_frame.copy()
|
18 |
+
getattr(cp, attr).name = "foo"
|
19 |
+
assert getattr(float_frame, attr).name is None
|
20 |
+
|
21 |
+
@td.skip_copy_on_write_invalid_test
|
22 |
+
def test_copy_cache(self):
|
23 |
+
# GH#31784 _item_cache not cleared on copy causes incorrect reads after updates
|
24 |
+
df = DataFrame({"a": [1]})
|
25 |
+
|
26 |
+
df["x"] = [0]
|
27 |
+
df["a"]
|
28 |
+
|
29 |
+
df.copy()
|
30 |
+
|
31 |
+
df["a"].values[0] = -1
|
32 |
+
|
33 |
+
tm.assert_frame_equal(df, DataFrame({"a": [-1], "x": [0]}))
|
34 |
+
|
35 |
+
df["y"] = [0]
|
36 |
+
|
37 |
+
assert df["a"].values[0] == -1
|
38 |
+
tm.assert_frame_equal(df, DataFrame({"a": [-1], "x": [0], "y": [0]}))
|
39 |
+
|
40 |
+
def test_copy(self, float_frame, float_string_frame):
|
41 |
+
cop = float_frame.copy()
|
42 |
+
cop["E"] = cop["A"]
|
43 |
+
assert "E" not in float_frame
|
44 |
+
|
45 |
+
# copy objects
|
46 |
+
copy = float_string_frame.copy()
|
47 |
+
assert copy._mgr is not float_string_frame._mgr
|
48 |
+
|
49 |
+
@td.skip_array_manager_invalid_test
|
50 |
+
def test_copy_consolidates(self):
|
51 |
+
# GH#42477
|
52 |
+
df = DataFrame(
|
53 |
+
{
|
54 |
+
"a": np.random.default_rng(2).integers(0, 100, size=55),
|
55 |
+
"b": np.random.default_rng(2).integers(0, 100, size=55),
|
56 |
+
}
|
57 |
+
)
|
58 |
+
|
59 |
+
for i in range(10):
|
60 |
+
df.loc[:, f"n_{i}"] = np.random.default_rng(2).integers(0, 100, size=55)
|
61 |
+
|
62 |
+
assert len(df._mgr.blocks) == 11
|
63 |
+
result = df.copy()
|
64 |
+
assert len(result._mgr.blocks) == 1
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_fillna.py
ADDED
@@ -0,0 +1,932 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas._config import using_pyarrow_string_dtype
|
5 |
+
|
6 |
+
import pandas.util._test_decorators as td
|
7 |
+
|
8 |
+
from pandas import (
|
9 |
+
Categorical,
|
10 |
+
DataFrame,
|
11 |
+
DatetimeIndex,
|
12 |
+
NaT,
|
13 |
+
PeriodIndex,
|
14 |
+
Series,
|
15 |
+
TimedeltaIndex,
|
16 |
+
Timestamp,
|
17 |
+
date_range,
|
18 |
+
to_datetime,
|
19 |
+
)
|
20 |
+
import pandas._testing as tm
|
21 |
+
from pandas.tests.frame.common import _check_mixed_float
|
22 |
+
|
23 |
+
|
24 |
+
class TestFillNA:
|
25 |
+
def test_fillna_dict_inplace_nonunique_columns(
|
26 |
+
self, using_copy_on_write, warn_copy_on_write
|
27 |
+
):
|
28 |
+
df = DataFrame(
|
29 |
+
{"A": [np.nan] * 3, "B": [NaT, Timestamp(1), NaT], "C": [np.nan, "foo", 2]}
|
30 |
+
)
|
31 |
+
df.columns = ["A", "A", "A"]
|
32 |
+
orig = df[:]
|
33 |
+
|
34 |
+
# TODO(CoW-warn) better warning message
|
35 |
+
with tm.assert_cow_warning(warn_copy_on_write):
|
36 |
+
df.fillna({"A": 2}, inplace=True)
|
37 |
+
# The first and third columns can be set inplace, while the second cannot.
|
38 |
+
|
39 |
+
expected = DataFrame(
|
40 |
+
{"A": [2.0] * 3, "B": [2, Timestamp(1), 2], "C": [2, "foo", 2]}
|
41 |
+
)
|
42 |
+
expected.columns = ["A", "A", "A"]
|
43 |
+
tm.assert_frame_equal(df, expected)
|
44 |
+
|
45 |
+
# TODO: what's the expected/desired behavior with CoW?
|
46 |
+
if not using_copy_on_write:
|
47 |
+
assert tm.shares_memory(df.iloc[:, 0], orig.iloc[:, 0])
|
48 |
+
assert not tm.shares_memory(df.iloc[:, 1], orig.iloc[:, 1])
|
49 |
+
if not using_copy_on_write:
|
50 |
+
assert tm.shares_memory(df.iloc[:, 2], orig.iloc[:, 2])
|
51 |
+
|
52 |
+
@td.skip_array_manager_not_yet_implemented
|
53 |
+
def test_fillna_on_column_view(self, using_copy_on_write):
|
54 |
+
# GH#46149 avoid unnecessary copies
|
55 |
+
arr = np.full((40, 50), np.nan)
|
56 |
+
df = DataFrame(arr, copy=False)
|
57 |
+
|
58 |
+
if using_copy_on_write:
|
59 |
+
with tm.raises_chained_assignment_error():
|
60 |
+
df[0].fillna(-1, inplace=True)
|
61 |
+
assert np.isnan(arr[:, 0]).all()
|
62 |
+
else:
|
63 |
+
with tm.assert_produces_warning(FutureWarning, match="inplace method"):
|
64 |
+
df[0].fillna(-1, inplace=True)
|
65 |
+
assert (arr[:, 0] == -1).all()
|
66 |
+
|
67 |
+
# i.e. we didn't create a new 49-column block
|
68 |
+
assert len(df._mgr.arrays) == 1
|
69 |
+
assert np.shares_memory(df.values, arr)
|
70 |
+
|
71 |
+
def test_fillna_datetime(self, datetime_frame):
|
72 |
+
tf = datetime_frame
|
73 |
+
tf.loc[tf.index[:5], "A"] = np.nan
|
74 |
+
tf.loc[tf.index[-5:], "A"] = np.nan
|
75 |
+
|
76 |
+
zero_filled = datetime_frame.fillna(0)
|
77 |
+
assert (zero_filled.loc[zero_filled.index[:5], "A"] == 0).all()
|
78 |
+
|
79 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
80 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
81 |
+
padded = datetime_frame.fillna(method="pad")
|
82 |
+
assert np.isnan(padded.loc[padded.index[:5], "A"]).all()
|
83 |
+
assert (
|
84 |
+
padded.loc[padded.index[-5:], "A"] == padded.loc[padded.index[-5], "A"]
|
85 |
+
).all()
|
86 |
+
|
87 |
+
msg = "Must specify a fill 'value' or 'method'"
|
88 |
+
with pytest.raises(ValueError, match=msg):
|
89 |
+
datetime_frame.fillna()
|
90 |
+
msg = "Cannot specify both 'value' and 'method'"
|
91 |
+
with pytest.raises(ValueError, match=msg):
|
92 |
+
datetime_frame.fillna(5, method="ffill")
|
93 |
+
|
94 |
+
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't fill 0 in string")
|
95 |
+
def test_fillna_mixed_type(self, float_string_frame):
|
96 |
+
mf = float_string_frame
|
97 |
+
mf.loc[mf.index[5:20], "foo"] = np.nan
|
98 |
+
mf.loc[mf.index[-10:], "A"] = np.nan
|
99 |
+
# TODO: make stronger assertion here, GH 25640
|
100 |
+
mf.fillna(value=0)
|
101 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
102 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
103 |
+
mf.fillna(method="pad")
|
104 |
+
|
105 |
+
def test_fillna_mixed_float(self, mixed_float_frame):
|
106 |
+
# mixed numeric (but no float16)
|
107 |
+
mf = mixed_float_frame.reindex(columns=["A", "B", "D"])
|
108 |
+
mf.loc[mf.index[-10:], "A"] = np.nan
|
109 |
+
result = mf.fillna(value=0)
|
110 |
+
_check_mixed_float(result, dtype={"C": None})
|
111 |
+
|
112 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
113 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
114 |
+
result = mf.fillna(method="pad")
|
115 |
+
_check_mixed_float(result, dtype={"C": None})
|
116 |
+
|
117 |
+
def test_fillna_empty(self, using_copy_on_write):
|
118 |
+
if using_copy_on_write:
|
119 |
+
pytest.skip("condition is unnecessary complex and is deprecated anyway")
|
120 |
+
# empty frame (GH#2778)
|
121 |
+
df = DataFrame(columns=["x"])
|
122 |
+
for m in ["pad", "backfill"]:
|
123 |
+
msg = "Series.fillna with 'method' is deprecated"
|
124 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
125 |
+
df.x.fillna(method=m, inplace=True)
|
126 |
+
df.x.fillna(method=m)
|
127 |
+
|
128 |
+
def test_fillna_different_dtype(self, using_infer_string):
|
129 |
+
# with different dtype (GH#3386)
|
130 |
+
df = DataFrame(
|
131 |
+
[["a", "a", np.nan, "a"], ["b", "b", np.nan, "b"], ["c", "c", np.nan, "c"]]
|
132 |
+
)
|
133 |
+
|
134 |
+
if using_infer_string:
|
135 |
+
with tm.assert_produces_warning(FutureWarning, match="Downcasting"):
|
136 |
+
result = df.fillna({2: "foo"})
|
137 |
+
else:
|
138 |
+
result = df.fillna({2: "foo"})
|
139 |
+
expected = DataFrame(
|
140 |
+
[["a", "a", "foo", "a"], ["b", "b", "foo", "b"], ["c", "c", "foo", "c"]]
|
141 |
+
)
|
142 |
+
tm.assert_frame_equal(result, expected)
|
143 |
+
|
144 |
+
if using_infer_string:
|
145 |
+
with tm.assert_produces_warning(FutureWarning, match="Downcasting"):
|
146 |
+
return_value = df.fillna({2: "foo"}, inplace=True)
|
147 |
+
else:
|
148 |
+
return_value = df.fillna({2: "foo"}, inplace=True)
|
149 |
+
tm.assert_frame_equal(df, expected)
|
150 |
+
assert return_value is None
|
151 |
+
|
152 |
+
def test_fillna_limit_and_value(self):
|
153 |
+
# limit and value
|
154 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 3)))
|
155 |
+
df.iloc[2:7, 0] = np.nan
|
156 |
+
df.iloc[3:5, 2] = np.nan
|
157 |
+
|
158 |
+
expected = df.copy()
|
159 |
+
expected.iloc[2, 0] = 999
|
160 |
+
expected.iloc[3, 2] = 999
|
161 |
+
result = df.fillna(999, limit=1)
|
162 |
+
tm.assert_frame_equal(result, expected)
|
163 |
+
|
164 |
+
def test_fillna_datelike(self):
|
165 |
+
# with datelike
|
166 |
+
# GH#6344
|
167 |
+
df = DataFrame(
|
168 |
+
{
|
169 |
+
"Date": [NaT, Timestamp("2014-1-1")],
|
170 |
+
"Date2": [Timestamp("2013-1-1"), NaT],
|
171 |
+
}
|
172 |
+
)
|
173 |
+
|
174 |
+
expected = df.copy()
|
175 |
+
expected["Date"] = expected["Date"].fillna(df.loc[df.index[0], "Date2"])
|
176 |
+
result = df.fillna(value={"Date": df["Date2"]})
|
177 |
+
tm.assert_frame_equal(result, expected)
|
178 |
+
|
179 |
+
def test_fillna_tzaware(self):
|
180 |
+
# with timezone
|
181 |
+
# GH#15855
|
182 |
+
df = DataFrame({"A": [Timestamp("2012-11-11 00:00:00+01:00"), NaT]})
|
183 |
+
exp = DataFrame(
|
184 |
+
{
|
185 |
+
"A": [
|
186 |
+
Timestamp("2012-11-11 00:00:00+01:00"),
|
187 |
+
Timestamp("2012-11-11 00:00:00+01:00"),
|
188 |
+
]
|
189 |
+
}
|
190 |
+
)
|
191 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
192 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
193 |
+
res = df.fillna(method="pad")
|
194 |
+
tm.assert_frame_equal(res, exp)
|
195 |
+
|
196 |
+
df = DataFrame({"A": [NaT, Timestamp("2012-11-11 00:00:00+01:00")]})
|
197 |
+
exp = DataFrame(
|
198 |
+
{
|
199 |
+
"A": [
|
200 |
+
Timestamp("2012-11-11 00:00:00+01:00"),
|
201 |
+
Timestamp("2012-11-11 00:00:00+01:00"),
|
202 |
+
]
|
203 |
+
}
|
204 |
+
)
|
205 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
206 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
207 |
+
res = df.fillna(method="bfill")
|
208 |
+
tm.assert_frame_equal(res, exp)
|
209 |
+
|
210 |
+
def test_fillna_tzaware_different_column(self):
|
211 |
+
# with timezone in another column
|
212 |
+
# GH#15522
|
213 |
+
df = DataFrame(
|
214 |
+
{
|
215 |
+
"A": date_range("20130101", periods=4, tz="US/Eastern"),
|
216 |
+
"B": [1, 2, np.nan, np.nan],
|
217 |
+
}
|
218 |
+
)
|
219 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
220 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
221 |
+
result = df.fillna(method="pad")
|
222 |
+
expected = DataFrame(
|
223 |
+
{
|
224 |
+
"A": date_range("20130101", periods=4, tz="US/Eastern"),
|
225 |
+
"B": [1.0, 2.0, 2.0, 2.0],
|
226 |
+
}
|
227 |
+
)
|
228 |
+
tm.assert_frame_equal(result, expected)
|
229 |
+
|
230 |
+
def test_na_actions_categorical(self):
|
231 |
+
cat = Categorical([1, 2, 3, np.nan], categories=[1, 2, 3])
|
232 |
+
vals = ["a", "b", np.nan, "d"]
|
233 |
+
df = DataFrame({"cats": cat, "vals": vals})
|
234 |
+
cat2 = Categorical([1, 2, 3, 3], categories=[1, 2, 3])
|
235 |
+
vals2 = ["a", "b", "b", "d"]
|
236 |
+
df_exp_fill = DataFrame({"cats": cat2, "vals": vals2})
|
237 |
+
cat3 = Categorical([1, 2, 3], categories=[1, 2, 3])
|
238 |
+
vals3 = ["a", "b", np.nan]
|
239 |
+
df_exp_drop_cats = DataFrame({"cats": cat3, "vals": vals3})
|
240 |
+
cat4 = Categorical([1, 2], categories=[1, 2, 3])
|
241 |
+
vals4 = ["a", "b"]
|
242 |
+
df_exp_drop_all = DataFrame({"cats": cat4, "vals": vals4})
|
243 |
+
|
244 |
+
# fillna
|
245 |
+
res = df.fillna(value={"cats": 3, "vals": "b"})
|
246 |
+
tm.assert_frame_equal(res, df_exp_fill)
|
247 |
+
|
248 |
+
msg = "Cannot setitem on a Categorical with a new category"
|
249 |
+
with pytest.raises(TypeError, match=msg):
|
250 |
+
df.fillna(value={"cats": 4, "vals": "c"})
|
251 |
+
|
252 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
253 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
254 |
+
res = df.fillna(method="pad")
|
255 |
+
tm.assert_frame_equal(res, df_exp_fill)
|
256 |
+
|
257 |
+
# dropna
|
258 |
+
res = df.dropna(subset=["cats"])
|
259 |
+
tm.assert_frame_equal(res, df_exp_drop_cats)
|
260 |
+
|
261 |
+
res = df.dropna()
|
262 |
+
tm.assert_frame_equal(res, df_exp_drop_all)
|
263 |
+
|
264 |
+
# make sure that fillna takes missing values into account
|
265 |
+
c = Categorical([np.nan, "b", np.nan], categories=["a", "b"])
|
266 |
+
df = DataFrame({"cats": c, "vals": [1, 2, 3]})
|
267 |
+
|
268 |
+
cat_exp = Categorical(["a", "b", "a"], categories=["a", "b"])
|
269 |
+
df_exp = DataFrame({"cats": cat_exp, "vals": [1, 2, 3]})
|
270 |
+
|
271 |
+
res = df.fillna("a")
|
272 |
+
tm.assert_frame_equal(res, df_exp)
|
273 |
+
|
274 |
+
def test_fillna_categorical_nan(self):
|
275 |
+
# GH#14021
|
276 |
+
# np.nan should always be a valid filler
|
277 |
+
cat = Categorical([np.nan, 2, np.nan])
|
278 |
+
val = Categorical([np.nan, np.nan, np.nan])
|
279 |
+
df = DataFrame({"cats": cat, "vals": val})
|
280 |
+
|
281 |
+
# GH#32950 df.median() is poorly behaved because there is no
|
282 |
+
# Categorical.median
|
283 |
+
median = Series({"cats": 2.0, "vals": np.nan})
|
284 |
+
|
285 |
+
res = df.fillna(median)
|
286 |
+
v_exp = [np.nan, np.nan, np.nan]
|
287 |
+
df_exp = DataFrame({"cats": [2, 2, 2], "vals": v_exp}, dtype="category")
|
288 |
+
tm.assert_frame_equal(res, df_exp)
|
289 |
+
|
290 |
+
result = df.cats.fillna(np.nan)
|
291 |
+
tm.assert_series_equal(result, df.cats)
|
292 |
+
|
293 |
+
result = df.vals.fillna(np.nan)
|
294 |
+
tm.assert_series_equal(result, df.vals)
|
295 |
+
|
296 |
+
idx = DatetimeIndex(
|
297 |
+
["2011-01-01 09:00", "2016-01-01 23:45", "2011-01-01 09:00", NaT, NaT]
|
298 |
+
)
|
299 |
+
df = DataFrame({"a": Categorical(idx)})
|
300 |
+
tm.assert_frame_equal(df.fillna(value=NaT), df)
|
301 |
+
|
302 |
+
idx = PeriodIndex(["2011-01", "2011-01", "2011-01", NaT, NaT], freq="M")
|
303 |
+
df = DataFrame({"a": Categorical(idx)})
|
304 |
+
tm.assert_frame_equal(df.fillna(value=NaT), df)
|
305 |
+
|
306 |
+
idx = TimedeltaIndex(["1 days", "2 days", "1 days", NaT, NaT])
|
307 |
+
df = DataFrame({"a": Categorical(idx)})
|
308 |
+
tm.assert_frame_equal(df.fillna(value=NaT), df)
|
309 |
+
|
310 |
+
def test_fillna_downcast(self):
|
311 |
+
# GH#15277
|
312 |
+
# infer int64 from float64
|
313 |
+
df = DataFrame({"a": [1.0, np.nan]})
|
314 |
+
msg = "The 'downcast' keyword in fillna is deprecated"
|
315 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
316 |
+
result = df.fillna(0, downcast="infer")
|
317 |
+
expected = DataFrame({"a": [1, 0]})
|
318 |
+
tm.assert_frame_equal(result, expected)
|
319 |
+
|
320 |
+
# infer int64 from float64 when fillna value is a dict
|
321 |
+
df = DataFrame({"a": [1.0, np.nan]})
|
322 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
323 |
+
result = df.fillna({"a": 0}, downcast="infer")
|
324 |
+
expected = DataFrame({"a": [1, 0]})
|
325 |
+
tm.assert_frame_equal(result, expected)
|
326 |
+
|
327 |
+
def test_fillna_downcast_false(self, frame_or_series):
|
328 |
+
# GH#45603 preserve object dtype with downcast=False
|
329 |
+
obj = frame_or_series([1, 2, 3], dtype="object")
|
330 |
+
msg = "The 'downcast' keyword in fillna"
|
331 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
332 |
+
result = obj.fillna("", downcast=False)
|
333 |
+
tm.assert_equal(result, obj)
|
334 |
+
|
335 |
+
def test_fillna_downcast_noop(self, frame_or_series):
|
336 |
+
# GH#45423
|
337 |
+
# Two relevant paths:
|
338 |
+
# 1) not _can_hold_na (e.g. integer)
|
339 |
+
# 2) _can_hold_na + noop + not can_hold_element
|
340 |
+
|
341 |
+
obj = frame_or_series([1, 2, 3], dtype=np.int64)
|
342 |
+
|
343 |
+
msg = "The 'downcast' keyword in fillna"
|
344 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
345 |
+
# GH#40988
|
346 |
+
res = obj.fillna("foo", downcast=np.dtype(np.int32))
|
347 |
+
expected = obj.astype(np.int32)
|
348 |
+
tm.assert_equal(res, expected)
|
349 |
+
|
350 |
+
obj2 = obj.astype(np.float64)
|
351 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
352 |
+
res2 = obj2.fillna("foo", downcast="infer")
|
353 |
+
expected2 = obj # get back int64
|
354 |
+
tm.assert_equal(res2, expected2)
|
355 |
+
|
356 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
357 |
+
# GH#40988
|
358 |
+
res3 = obj2.fillna("foo", downcast=np.dtype(np.int32))
|
359 |
+
tm.assert_equal(res3, expected)
|
360 |
+
|
361 |
+
@pytest.mark.parametrize("columns", [["A", "A", "B"], ["A", "A"]])
|
362 |
+
def test_fillna_dictlike_value_duplicate_colnames(self, columns):
|
363 |
+
# GH#43476
|
364 |
+
df = DataFrame(np.nan, index=[0, 1], columns=columns)
|
365 |
+
with tm.assert_produces_warning(None):
|
366 |
+
result = df.fillna({"A": 0})
|
367 |
+
|
368 |
+
expected = df.copy()
|
369 |
+
expected["A"] = 0.0
|
370 |
+
tm.assert_frame_equal(result, expected)
|
371 |
+
|
372 |
+
def test_fillna_dtype_conversion(self, using_infer_string):
|
373 |
+
# make sure that fillna on an empty frame works
|
374 |
+
df = DataFrame(index=["A", "B", "C"], columns=[1, 2, 3, 4, 5])
|
375 |
+
result = df.dtypes
|
376 |
+
expected = Series([np.dtype("object")] * 5, index=[1, 2, 3, 4, 5])
|
377 |
+
tm.assert_series_equal(result, expected)
|
378 |
+
|
379 |
+
msg = "Downcasting object dtype arrays"
|
380 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
381 |
+
result = df.fillna(1)
|
382 |
+
expected = DataFrame(1, index=["A", "B", "C"], columns=[1, 2, 3, 4, 5])
|
383 |
+
tm.assert_frame_equal(result, expected)
|
384 |
+
|
385 |
+
# empty block
|
386 |
+
df = DataFrame(index=range(3), columns=["A", "B"], dtype="float64")
|
387 |
+
if using_infer_string:
|
388 |
+
with tm.assert_produces_warning(FutureWarning, match="Downcasting"):
|
389 |
+
result = df.fillna("nan")
|
390 |
+
else:
|
391 |
+
result = df.fillna("nan")
|
392 |
+
expected = DataFrame("nan", index=range(3), columns=["A", "B"])
|
393 |
+
tm.assert_frame_equal(result, expected)
|
394 |
+
|
395 |
+
@pytest.mark.parametrize("val", ["", 1, np.nan, 1.0])
|
396 |
+
def test_fillna_dtype_conversion_equiv_replace(self, val):
|
397 |
+
df = DataFrame({"A": [1, np.nan], "B": [1.0, 2.0]})
|
398 |
+
expected = df.replace(np.nan, val)
|
399 |
+
result = df.fillna(val)
|
400 |
+
tm.assert_frame_equal(result, expected)
|
401 |
+
|
402 |
+
def test_fillna_datetime_columns(self):
|
403 |
+
# GH#7095
|
404 |
+
df = DataFrame(
|
405 |
+
{
|
406 |
+
"A": [-1, -2, np.nan],
|
407 |
+
"B": date_range("20130101", periods=3),
|
408 |
+
"C": ["foo", "bar", None],
|
409 |
+
"D": ["foo2", "bar2", None],
|
410 |
+
},
|
411 |
+
index=date_range("20130110", periods=3),
|
412 |
+
)
|
413 |
+
result = df.fillna("?")
|
414 |
+
expected = DataFrame(
|
415 |
+
{
|
416 |
+
"A": [-1, -2, "?"],
|
417 |
+
"B": date_range("20130101", periods=3),
|
418 |
+
"C": ["foo", "bar", "?"],
|
419 |
+
"D": ["foo2", "bar2", "?"],
|
420 |
+
},
|
421 |
+
index=date_range("20130110", periods=3),
|
422 |
+
)
|
423 |
+
tm.assert_frame_equal(result, expected)
|
424 |
+
|
425 |
+
df = DataFrame(
|
426 |
+
{
|
427 |
+
"A": [-1, -2, np.nan],
|
428 |
+
"B": [Timestamp("2013-01-01"), Timestamp("2013-01-02"), NaT],
|
429 |
+
"C": ["foo", "bar", None],
|
430 |
+
"D": ["foo2", "bar2", None],
|
431 |
+
},
|
432 |
+
index=date_range("20130110", periods=3),
|
433 |
+
)
|
434 |
+
result = df.fillna("?")
|
435 |
+
expected = DataFrame(
|
436 |
+
{
|
437 |
+
"A": [-1, -2, "?"],
|
438 |
+
"B": [Timestamp("2013-01-01"), Timestamp("2013-01-02"), "?"],
|
439 |
+
"C": ["foo", "bar", "?"],
|
440 |
+
"D": ["foo2", "bar2", "?"],
|
441 |
+
},
|
442 |
+
index=date_range("20130110", periods=3),
|
443 |
+
)
|
444 |
+
tm.assert_frame_equal(result, expected)
|
445 |
+
|
446 |
+
def test_ffill(self, datetime_frame):
|
447 |
+
datetime_frame.loc[datetime_frame.index[:5], "A"] = np.nan
|
448 |
+
datetime_frame.loc[datetime_frame.index[-5:], "A"] = np.nan
|
449 |
+
|
450 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
451 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
452 |
+
alt = datetime_frame.fillna(method="ffill")
|
453 |
+
tm.assert_frame_equal(datetime_frame.ffill(), alt)
|
454 |
+
|
455 |
+
def test_bfill(self, datetime_frame):
|
456 |
+
datetime_frame.loc[datetime_frame.index[:5], "A"] = np.nan
|
457 |
+
datetime_frame.loc[datetime_frame.index[-5:], "A"] = np.nan
|
458 |
+
|
459 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
460 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
461 |
+
alt = datetime_frame.fillna(method="bfill")
|
462 |
+
|
463 |
+
tm.assert_frame_equal(datetime_frame.bfill(), alt)
|
464 |
+
|
465 |
+
def test_frame_pad_backfill_limit(self):
|
466 |
+
index = np.arange(10)
|
467 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)), index=index)
|
468 |
+
|
469 |
+
result = df[:2].reindex(index, method="pad", limit=5)
|
470 |
+
|
471 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
472 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
473 |
+
expected = df[:2].reindex(index).fillna(method="pad")
|
474 |
+
expected.iloc[-3:] = np.nan
|
475 |
+
tm.assert_frame_equal(result, expected)
|
476 |
+
|
477 |
+
result = df[-2:].reindex(index, method="backfill", limit=5)
|
478 |
+
|
479 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
480 |
+
expected = df[-2:].reindex(index).fillna(method="backfill")
|
481 |
+
expected.iloc[:3] = np.nan
|
482 |
+
tm.assert_frame_equal(result, expected)
|
483 |
+
|
484 |
+
def test_frame_fillna_limit(self):
|
485 |
+
index = np.arange(10)
|
486 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)), index=index)
|
487 |
+
|
488 |
+
result = df[:2].reindex(index)
|
489 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
490 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
491 |
+
result = result.fillna(method="pad", limit=5)
|
492 |
+
|
493 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
494 |
+
expected = df[:2].reindex(index).fillna(method="pad")
|
495 |
+
expected.iloc[-3:] = np.nan
|
496 |
+
tm.assert_frame_equal(result, expected)
|
497 |
+
|
498 |
+
result = df[-2:].reindex(index)
|
499 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
500 |
+
result = result.fillna(method="backfill", limit=5)
|
501 |
+
|
502 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
503 |
+
expected = df[-2:].reindex(index).fillna(method="backfill")
|
504 |
+
expected.iloc[:3] = np.nan
|
505 |
+
tm.assert_frame_equal(result, expected)
|
506 |
+
|
507 |
+
def test_fillna_skip_certain_blocks(self):
|
508 |
+
# don't try to fill boolean, int blocks
|
509 |
+
|
510 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)).astype(int))
|
511 |
+
|
512 |
+
# it works!
|
513 |
+
df.fillna(np.nan)
|
514 |
+
|
515 |
+
@pytest.mark.parametrize("type", [int, float])
|
516 |
+
def test_fillna_positive_limit(self, type):
|
517 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4))).astype(type)
|
518 |
+
|
519 |
+
msg = "Limit must be greater than 0"
|
520 |
+
with pytest.raises(ValueError, match=msg):
|
521 |
+
df.fillna(0, limit=-5)
|
522 |
+
|
523 |
+
@pytest.mark.parametrize("type", [int, float])
|
524 |
+
def test_fillna_integer_limit(self, type):
|
525 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4))).astype(type)
|
526 |
+
|
527 |
+
msg = "Limit must be an integer"
|
528 |
+
with pytest.raises(ValueError, match=msg):
|
529 |
+
df.fillna(0, limit=0.5)
|
530 |
+
|
531 |
+
def test_fillna_inplace(self):
|
532 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))
|
533 |
+
df.loc[:4, 1] = np.nan
|
534 |
+
df.loc[-4:, 3] = np.nan
|
535 |
+
|
536 |
+
expected = df.fillna(value=0)
|
537 |
+
assert expected is not df
|
538 |
+
|
539 |
+
df.fillna(value=0, inplace=True)
|
540 |
+
tm.assert_frame_equal(df, expected)
|
541 |
+
|
542 |
+
expected = df.fillna(value={0: 0}, inplace=True)
|
543 |
+
assert expected is None
|
544 |
+
|
545 |
+
df.loc[:4, 1] = np.nan
|
546 |
+
df.loc[-4:, 3] = np.nan
|
547 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
548 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
549 |
+
expected = df.fillna(method="ffill")
|
550 |
+
assert expected is not df
|
551 |
+
|
552 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
553 |
+
df.fillna(method="ffill", inplace=True)
|
554 |
+
tm.assert_frame_equal(df, expected)
|
555 |
+
|
556 |
+
def test_fillna_dict_series(self):
|
557 |
+
df = DataFrame(
|
558 |
+
{
|
559 |
+
"a": [np.nan, 1, 2, np.nan, np.nan],
|
560 |
+
"b": [1, 2, 3, np.nan, np.nan],
|
561 |
+
"c": [np.nan, 1, 2, 3, 4],
|
562 |
+
}
|
563 |
+
)
|
564 |
+
|
565 |
+
result = df.fillna({"a": 0, "b": 5})
|
566 |
+
|
567 |
+
expected = df.copy()
|
568 |
+
expected["a"] = expected["a"].fillna(0)
|
569 |
+
expected["b"] = expected["b"].fillna(5)
|
570 |
+
tm.assert_frame_equal(result, expected)
|
571 |
+
|
572 |
+
# it works
|
573 |
+
result = df.fillna({"a": 0, "b": 5, "d": 7})
|
574 |
+
|
575 |
+
# Series treated same as dict
|
576 |
+
result = df.fillna(df.max())
|
577 |
+
expected = df.fillna(df.max().to_dict())
|
578 |
+
tm.assert_frame_equal(result, expected)
|
579 |
+
|
580 |
+
# disable this for now
|
581 |
+
with pytest.raises(NotImplementedError, match="column by column"):
|
582 |
+
df.fillna(df.max(1), axis=1)
|
583 |
+
|
584 |
+
def test_fillna_dataframe(self):
|
585 |
+
# GH#8377
|
586 |
+
df = DataFrame(
|
587 |
+
{
|
588 |
+
"a": [np.nan, 1, 2, np.nan, np.nan],
|
589 |
+
"b": [1, 2, 3, np.nan, np.nan],
|
590 |
+
"c": [np.nan, 1, 2, 3, 4],
|
591 |
+
},
|
592 |
+
index=list("VWXYZ"),
|
593 |
+
)
|
594 |
+
|
595 |
+
# df2 may have different index and columns
|
596 |
+
df2 = DataFrame(
|
597 |
+
{
|
598 |
+
"a": [np.nan, 10, 20, 30, 40],
|
599 |
+
"b": [50, 60, 70, 80, 90],
|
600 |
+
"foo": ["bar"] * 5,
|
601 |
+
},
|
602 |
+
index=list("VWXuZ"),
|
603 |
+
)
|
604 |
+
|
605 |
+
result = df.fillna(df2)
|
606 |
+
|
607 |
+
# only those columns and indices which are shared get filled
|
608 |
+
expected = DataFrame(
|
609 |
+
{
|
610 |
+
"a": [np.nan, 1, 2, np.nan, 40],
|
611 |
+
"b": [1, 2, 3, np.nan, 90],
|
612 |
+
"c": [np.nan, 1, 2, 3, 4],
|
613 |
+
},
|
614 |
+
index=list("VWXYZ"),
|
615 |
+
)
|
616 |
+
|
617 |
+
tm.assert_frame_equal(result, expected)
|
618 |
+
|
619 |
+
def test_fillna_columns(self):
|
620 |
+
arr = np.random.default_rng(2).standard_normal((10, 10))
|
621 |
+
arr[:, ::2] = np.nan
|
622 |
+
df = DataFrame(arr)
|
623 |
+
|
624 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
625 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
626 |
+
result = df.fillna(method="ffill", axis=1)
|
627 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
628 |
+
expected = df.T.fillna(method="pad").T
|
629 |
+
tm.assert_frame_equal(result, expected)
|
630 |
+
|
631 |
+
df.insert(6, "foo", 5)
|
632 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
633 |
+
result = df.fillna(method="ffill", axis=1)
|
634 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
635 |
+
expected = df.astype(float).fillna(method="ffill", axis=1)
|
636 |
+
tm.assert_frame_equal(result, expected)
|
637 |
+
|
638 |
+
def test_fillna_invalid_method(self, float_frame):
|
639 |
+
with pytest.raises(ValueError, match="ffil"):
|
640 |
+
float_frame.fillna(method="ffil")
|
641 |
+
|
642 |
+
def test_fillna_invalid_value(self, float_frame):
|
643 |
+
# list
|
644 |
+
msg = '"value" parameter must be a scalar or dict, but you passed a "{}"'
|
645 |
+
with pytest.raises(TypeError, match=msg.format("list")):
|
646 |
+
float_frame.fillna([1, 2])
|
647 |
+
# tuple
|
648 |
+
with pytest.raises(TypeError, match=msg.format("tuple")):
|
649 |
+
float_frame.fillna((1, 2))
|
650 |
+
# frame with series
|
651 |
+
msg = (
|
652 |
+
'"value" parameter must be a scalar, dict or Series, but you '
|
653 |
+
'passed a "DataFrame"'
|
654 |
+
)
|
655 |
+
with pytest.raises(TypeError, match=msg):
|
656 |
+
float_frame.iloc[:, 0].fillna(float_frame)
|
657 |
+
|
658 |
+
def test_fillna_col_reordering(self):
|
659 |
+
cols = ["COL." + str(i) for i in range(5, 0, -1)]
|
660 |
+
data = np.random.default_rng(2).random((20, 5))
|
661 |
+
df = DataFrame(index=range(20), columns=cols, data=data)
|
662 |
+
msg = "DataFrame.fillna with 'method' is deprecated"
|
663 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
664 |
+
filled = df.fillna(method="ffill")
|
665 |
+
assert df.columns.tolist() == filled.columns.tolist()
|
666 |
+
|
667 |
+
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't fill 0 in string")
|
668 |
+
def test_fill_corner(self, float_frame, float_string_frame):
|
669 |
+
mf = float_string_frame
|
670 |
+
mf.loc[mf.index[5:20], "foo"] = np.nan
|
671 |
+
mf.loc[mf.index[-10:], "A"] = np.nan
|
672 |
+
|
673 |
+
filled = float_string_frame.fillna(value=0)
|
674 |
+
assert (filled.loc[filled.index[5:20], "foo"] == 0).all()
|
675 |
+
del float_string_frame["foo"]
|
676 |
+
|
677 |
+
float_frame.reindex(columns=[]).fillna(value=0)
|
678 |
+
|
679 |
+
def test_fillna_downcast_dict(self):
|
680 |
+
# GH#40809
|
681 |
+
df = DataFrame({"col1": [1, np.nan]})
|
682 |
+
|
683 |
+
msg = "The 'downcast' keyword in fillna"
|
684 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
685 |
+
result = df.fillna({"col1": 2}, downcast={"col1": "int64"})
|
686 |
+
expected = DataFrame({"col1": [1, 2]})
|
687 |
+
tm.assert_frame_equal(result, expected)
|
688 |
+
|
689 |
+
def test_fillna_with_columns_and_limit(self):
|
690 |
+
# GH40989
|
691 |
+
df = DataFrame(
|
692 |
+
[
|
693 |
+
[np.nan, 2, np.nan, 0],
|
694 |
+
[3, 4, np.nan, 1],
|
695 |
+
[np.nan, np.nan, np.nan, 5],
|
696 |
+
[np.nan, 3, np.nan, 4],
|
697 |
+
],
|
698 |
+
columns=list("ABCD"),
|
699 |
+
)
|
700 |
+
result = df.fillna(axis=1, value=100, limit=1)
|
701 |
+
result2 = df.fillna(axis=1, value=100, limit=2)
|
702 |
+
|
703 |
+
expected = DataFrame(
|
704 |
+
{
|
705 |
+
"A": Series([100, 3, 100, 100], dtype="float64"),
|
706 |
+
"B": [2, 4, np.nan, 3],
|
707 |
+
"C": [np.nan, 100, np.nan, np.nan],
|
708 |
+
"D": Series([0, 1, 5, 4], dtype="float64"),
|
709 |
+
},
|
710 |
+
index=[0, 1, 2, 3],
|
711 |
+
)
|
712 |
+
expected2 = DataFrame(
|
713 |
+
{
|
714 |
+
"A": Series([100, 3, 100, 100], dtype="float64"),
|
715 |
+
"B": Series([2, 4, 100, 3], dtype="float64"),
|
716 |
+
"C": [100, 100, np.nan, 100],
|
717 |
+
"D": Series([0, 1, 5, 4], dtype="float64"),
|
718 |
+
},
|
719 |
+
index=[0, 1, 2, 3],
|
720 |
+
)
|
721 |
+
|
722 |
+
tm.assert_frame_equal(result, expected)
|
723 |
+
tm.assert_frame_equal(result2, expected2)
|
724 |
+
|
725 |
+
def test_fillna_datetime_inplace(self):
|
726 |
+
# GH#48863
|
727 |
+
df = DataFrame(
|
728 |
+
{
|
729 |
+
"date1": to_datetime(["2018-05-30", None]),
|
730 |
+
"date2": to_datetime(["2018-09-30", None]),
|
731 |
+
}
|
732 |
+
)
|
733 |
+
expected = df.copy()
|
734 |
+
df.fillna(np.nan, inplace=True)
|
735 |
+
tm.assert_frame_equal(df, expected)
|
736 |
+
|
737 |
+
def test_fillna_inplace_with_columns_limit_and_value(self):
|
738 |
+
# GH40989
|
739 |
+
df = DataFrame(
|
740 |
+
[
|
741 |
+
[np.nan, 2, np.nan, 0],
|
742 |
+
[3, 4, np.nan, 1],
|
743 |
+
[np.nan, np.nan, np.nan, 5],
|
744 |
+
[np.nan, 3, np.nan, 4],
|
745 |
+
],
|
746 |
+
columns=list("ABCD"),
|
747 |
+
)
|
748 |
+
|
749 |
+
expected = df.fillna(axis=1, value=100, limit=1)
|
750 |
+
assert expected is not df
|
751 |
+
|
752 |
+
df.fillna(axis=1, value=100, limit=1, inplace=True)
|
753 |
+
tm.assert_frame_equal(df, expected)
|
754 |
+
|
755 |
+
@td.skip_array_manager_invalid_test
|
756 |
+
@pytest.mark.parametrize("val", [-1, {"x": -1, "y": -1}])
|
757 |
+
def test_inplace_dict_update_view(
|
758 |
+
self, val, using_copy_on_write, warn_copy_on_write
|
759 |
+
):
|
760 |
+
# GH#47188
|
761 |
+
df = DataFrame({"x": [np.nan, 2], "y": [np.nan, 2]})
|
762 |
+
df_orig = df.copy()
|
763 |
+
result_view = df[:]
|
764 |
+
with tm.assert_cow_warning(warn_copy_on_write):
|
765 |
+
df.fillna(val, inplace=True)
|
766 |
+
expected = DataFrame({"x": [-1, 2.0], "y": [-1.0, 2]})
|
767 |
+
tm.assert_frame_equal(df, expected)
|
768 |
+
if using_copy_on_write:
|
769 |
+
tm.assert_frame_equal(result_view, df_orig)
|
770 |
+
else:
|
771 |
+
tm.assert_frame_equal(result_view, expected)
|
772 |
+
|
773 |
+
def test_single_block_df_with_horizontal_axis(self):
|
774 |
+
# GH 47713
|
775 |
+
df = DataFrame(
|
776 |
+
{
|
777 |
+
"col1": [5, 0, np.nan, 10, np.nan],
|
778 |
+
"col2": [7, np.nan, np.nan, 5, 3],
|
779 |
+
"col3": [12, np.nan, 1, 2, 0],
|
780 |
+
"col4": [np.nan, 1, 1, np.nan, 18],
|
781 |
+
}
|
782 |
+
)
|
783 |
+
result = df.fillna(50, limit=1, axis=1)
|
784 |
+
expected = DataFrame(
|
785 |
+
[
|
786 |
+
[5.0, 7.0, 12.0, 50.0],
|
787 |
+
[0.0, 50.0, np.nan, 1.0],
|
788 |
+
[50.0, np.nan, 1.0, 1.0],
|
789 |
+
[10.0, 5.0, 2.0, 50.0],
|
790 |
+
[50.0, 3.0, 0.0, 18.0],
|
791 |
+
],
|
792 |
+
columns=["col1", "col2", "col3", "col4"],
|
793 |
+
)
|
794 |
+
tm.assert_frame_equal(result, expected)
|
795 |
+
|
796 |
+
def test_fillna_with_multi_index_frame(self):
|
797 |
+
# GH 47649
|
798 |
+
pdf = DataFrame(
|
799 |
+
{
|
800 |
+
("x", "a"): [np.nan, 2.0, 3.0],
|
801 |
+
("x", "b"): [1.0, 2.0, np.nan],
|
802 |
+
("y", "c"): [1.0, 2.0, np.nan],
|
803 |
+
}
|
804 |
+
)
|
805 |
+
expected = DataFrame(
|
806 |
+
{
|
807 |
+
("x", "a"): [-1.0, 2.0, 3.0],
|
808 |
+
("x", "b"): [1.0, 2.0, -1.0],
|
809 |
+
("y", "c"): [1.0, 2.0, np.nan],
|
810 |
+
}
|
811 |
+
)
|
812 |
+
tm.assert_frame_equal(pdf.fillna({"x": -1}), expected)
|
813 |
+
tm.assert_frame_equal(pdf.fillna({"x": -1, ("x", "b"): -2}), expected)
|
814 |
+
|
815 |
+
expected = DataFrame(
|
816 |
+
{
|
817 |
+
("x", "a"): [-1.0, 2.0, 3.0],
|
818 |
+
("x", "b"): [1.0, 2.0, -2.0],
|
819 |
+
("y", "c"): [1.0, 2.0, np.nan],
|
820 |
+
}
|
821 |
+
)
|
822 |
+
tm.assert_frame_equal(pdf.fillna({("x", "b"): -2, "x": -1}), expected)
|
823 |
+
|
824 |
+
|
825 |
+
def test_fillna_nonconsolidated_frame():
|
826 |
+
# https://github.com/pandas-dev/pandas/issues/36495
|
827 |
+
df = DataFrame(
|
828 |
+
[
|
829 |
+
[1, 1, 1, 1.0],
|
830 |
+
[2, 2, 2, 2.0],
|
831 |
+
[3, 3, 3, 3.0],
|
832 |
+
],
|
833 |
+
columns=["i1", "i2", "i3", "f1"],
|
834 |
+
)
|
835 |
+
df_nonconsol = df.pivot(index="i1", columns="i2")
|
836 |
+
result = df_nonconsol.fillna(0)
|
837 |
+
assert result.isna().sum().sum() == 0
|
838 |
+
|
839 |
+
|
840 |
+
def test_fillna_nones_inplace():
|
841 |
+
# GH 48480
|
842 |
+
df = DataFrame(
|
843 |
+
[[None, None], [None, None]],
|
844 |
+
columns=["A", "B"],
|
845 |
+
)
|
846 |
+
msg = "Downcasting object dtype arrays"
|
847 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
848 |
+
df.fillna(value={"A": 1, "B": 2}, inplace=True)
|
849 |
+
|
850 |
+
expected = DataFrame([[1, 2], [1, 2]], columns=["A", "B"])
|
851 |
+
tm.assert_frame_equal(df, expected)
|
852 |
+
|
853 |
+
|
854 |
+
@pytest.mark.parametrize("func", ["pad", "backfill"])
|
855 |
+
def test_pad_backfill_deprecated(func):
|
856 |
+
# GH#33396
|
857 |
+
df = DataFrame({"a": [1, 2, 3]})
|
858 |
+
with tm.assert_produces_warning(FutureWarning):
|
859 |
+
getattr(df, func)()
|
860 |
+
|
861 |
+
|
862 |
+
@pytest.mark.parametrize(
|
863 |
+
"data, expected_data, method, kwargs",
|
864 |
+
(
|
865 |
+
(
|
866 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
867 |
+
[np.nan, np.nan, 3.0, 3.0, 3.0, 3.0, 7.0, np.nan, np.nan],
|
868 |
+
"ffill",
|
869 |
+
{"limit_area": "inside"},
|
870 |
+
),
|
871 |
+
(
|
872 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
873 |
+
[np.nan, np.nan, 3.0, 3.0, np.nan, np.nan, 7.0, np.nan, np.nan],
|
874 |
+
"ffill",
|
875 |
+
{"limit_area": "inside", "limit": 1},
|
876 |
+
),
|
877 |
+
(
|
878 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
879 |
+
[np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, 7.0],
|
880 |
+
"ffill",
|
881 |
+
{"limit_area": "outside"},
|
882 |
+
),
|
883 |
+
(
|
884 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
885 |
+
[np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan],
|
886 |
+
"ffill",
|
887 |
+
{"limit_area": "outside", "limit": 1},
|
888 |
+
),
|
889 |
+
(
|
890 |
+
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
|
891 |
+
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
|
892 |
+
"ffill",
|
893 |
+
{"limit_area": "outside", "limit": 1},
|
894 |
+
),
|
895 |
+
(
|
896 |
+
range(5),
|
897 |
+
range(5),
|
898 |
+
"ffill",
|
899 |
+
{"limit_area": "outside", "limit": 1},
|
900 |
+
),
|
901 |
+
(
|
902 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
903 |
+
[np.nan, np.nan, 3.0, 7.0, 7.0, 7.0, 7.0, np.nan, np.nan],
|
904 |
+
"bfill",
|
905 |
+
{"limit_area": "inside"},
|
906 |
+
),
|
907 |
+
(
|
908 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
909 |
+
[np.nan, np.nan, 3.0, np.nan, np.nan, 7.0, 7.0, np.nan, np.nan],
|
910 |
+
"bfill",
|
911 |
+
{"limit_area": "inside", "limit": 1},
|
912 |
+
),
|
913 |
+
(
|
914 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
915 |
+
[3.0, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan],
|
916 |
+
"bfill",
|
917 |
+
{"limit_area": "outside"},
|
918 |
+
),
|
919 |
+
(
|
920 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
921 |
+
[np.nan, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan],
|
922 |
+
"bfill",
|
923 |
+
{"limit_area": "outside", "limit": 1},
|
924 |
+
),
|
925 |
+
),
|
926 |
+
)
|
927 |
+
def test_ffill_bfill_limit_area(data, expected_data, method, kwargs):
|
928 |
+
# GH#56492
|
929 |
+
df = DataFrame(data)
|
930 |
+
expected = DataFrame(expected_data)
|
931 |
+
result = getattr(df, method)(**kwargs)
|
932 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_first_valid_index.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Includes test for last_valid_index.
|
3 |
+
"""
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from pandas import (
|
8 |
+
DataFrame,
|
9 |
+
Index,
|
10 |
+
Series,
|
11 |
+
date_range,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
class TestFirstValidIndex:
|
16 |
+
def test_first_valid_index_single_nan(self, frame_or_series):
|
17 |
+
# GH#9752 Series/DataFrame should both return None, not raise
|
18 |
+
obj = frame_or_series([np.nan])
|
19 |
+
|
20 |
+
assert obj.first_valid_index() is None
|
21 |
+
assert obj.iloc[:0].first_valid_index() is None
|
22 |
+
|
23 |
+
@pytest.mark.parametrize(
|
24 |
+
"empty", [DataFrame(), Series(dtype=object), Series([], index=[], dtype=object)]
|
25 |
+
)
|
26 |
+
def test_first_valid_index_empty(self, empty):
|
27 |
+
# GH#12800
|
28 |
+
assert empty.last_valid_index() is None
|
29 |
+
assert empty.first_valid_index() is None
|
30 |
+
|
31 |
+
@pytest.mark.parametrize(
|
32 |
+
"data,idx,expected_first,expected_last",
|
33 |
+
[
|
34 |
+
({"A": [1, 2, 3]}, [1, 1, 2], 1, 2),
|
35 |
+
({"A": [1, 2, 3]}, [1, 2, 2], 1, 2),
|
36 |
+
({"A": [1, 2, 3, 4]}, ["d", "d", "d", "d"], "d", "d"),
|
37 |
+
({"A": [1, np.nan, 3]}, [1, 1, 2], 1, 2),
|
38 |
+
({"A": [np.nan, np.nan, 3]}, [1, 1, 2], 2, 2),
|
39 |
+
({"A": [1, np.nan, 3]}, [1, 2, 2], 1, 2),
|
40 |
+
],
|
41 |
+
)
|
42 |
+
def test_first_last_valid_frame(self, data, idx, expected_first, expected_last):
|
43 |
+
# GH#21441
|
44 |
+
df = DataFrame(data, index=idx)
|
45 |
+
assert expected_first == df.first_valid_index()
|
46 |
+
assert expected_last == df.last_valid_index()
|
47 |
+
|
48 |
+
@pytest.mark.parametrize(
|
49 |
+
"index",
|
50 |
+
[Index([str(i) for i in range(20)]), date_range("2020-01-01", periods=20)],
|
51 |
+
)
|
52 |
+
def test_first_last_valid(self, index):
|
53 |
+
mat = np.random.default_rng(2).standard_normal(len(index))
|
54 |
+
mat[:5] = np.nan
|
55 |
+
mat[-5:] = np.nan
|
56 |
+
|
57 |
+
frame = DataFrame({"foo": mat}, index=index)
|
58 |
+
assert frame.first_valid_index() == frame.index[5]
|
59 |
+
assert frame.last_valid_index() == frame.index[-6]
|
60 |
+
|
61 |
+
ser = frame["foo"]
|
62 |
+
assert ser.first_valid_index() == frame.index[5]
|
63 |
+
assert ser.last_valid_index() == frame.index[-6]
|
64 |
+
|
65 |
+
@pytest.mark.parametrize(
|
66 |
+
"index",
|
67 |
+
[Index([str(i) for i in range(10)]), date_range("2020-01-01", periods=10)],
|
68 |
+
)
|
69 |
+
def test_first_last_valid_all_nan(self, index):
|
70 |
+
# GH#17400: no valid entries
|
71 |
+
frame = DataFrame(np.nan, columns=["foo"], index=index)
|
72 |
+
|
73 |
+
assert frame.last_valid_index() is None
|
74 |
+
assert frame.first_valid_index() is None
|
75 |
+
|
76 |
+
ser = frame["foo"]
|
77 |
+
assert ser.first_valid_index() is None
|
78 |
+
assert ser.last_valid_index() is None
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_map.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
from pandas import (
|
8 |
+
DataFrame,
|
9 |
+
Series,
|
10 |
+
Timestamp,
|
11 |
+
date_range,
|
12 |
+
)
|
13 |
+
import pandas._testing as tm
|
14 |
+
|
15 |
+
from pandas.tseries.offsets import BDay
|
16 |
+
|
17 |
+
|
18 |
+
def test_map(float_frame):
|
19 |
+
result = float_frame.map(lambda x: x * 2)
|
20 |
+
tm.assert_frame_equal(result, float_frame * 2)
|
21 |
+
float_frame.map(type)
|
22 |
+
|
23 |
+
# GH 465: function returning tuples
|
24 |
+
result = float_frame.map(lambda x: (x, x))["A"].iloc[0]
|
25 |
+
assert isinstance(result, tuple)
|
26 |
+
|
27 |
+
|
28 |
+
@pytest.mark.parametrize("val", [1, 1.0])
|
29 |
+
def test_map_float_object_conversion(val):
|
30 |
+
# GH 2909: object conversion to float in constructor?
|
31 |
+
df = DataFrame(data=[val, "a"])
|
32 |
+
result = df.map(lambda x: x).dtypes[0]
|
33 |
+
assert result == object
|
34 |
+
|
35 |
+
|
36 |
+
@pytest.mark.parametrize("na_action", [None, "ignore"])
|
37 |
+
def test_map_keeps_dtype(na_action):
|
38 |
+
# GH52219
|
39 |
+
arr = Series(["a", np.nan, "b"])
|
40 |
+
sparse_arr = arr.astype(pd.SparseDtype(object))
|
41 |
+
df = DataFrame(data={"a": arr, "b": sparse_arr})
|
42 |
+
|
43 |
+
def func(x):
|
44 |
+
return str.upper(x) if not pd.isna(x) else x
|
45 |
+
|
46 |
+
result = df.map(func, na_action=na_action)
|
47 |
+
|
48 |
+
expected_sparse = pd.array(["A", np.nan, "B"], dtype=pd.SparseDtype(object))
|
49 |
+
expected_arr = expected_sparse.astype(object)
|
50 |
+
expected = DataFrame({"a": expected_arr, "b": expected_sparse})
|
51 |
+
|
52 |
+
tm.assert_frame_equal(result, expected)
|
53 |
+
|
54 |
+
result_empty = df.iloc[:0, :].map(func, na_action=na_action)
|
55 |
+
expected_empty = expected.iloc[:0, :]
|
56 |
+
tm.assert_frame_equal(result_empty, expected_empty)
|
57 |
+
|
58 |
+
|
59 |
+
def test_map_str():
|
60 |
+
# GH 2786
|
61 |
+
df = DataFrame(np.random.default_rng(2).random((3, 4)))
|
62 |
+
df2 = df.copy()
|
63 |
+
cols = ["a", "a", "a", "a"]
|
64 |
+
df.columns = cols
|
65 |
+
|
66 |
+
expected = df2.map(str)
|
67 |
+
expected.columns = cols
|
68 |
+
result = df.map(str)
|
69 |
+
tm.assert_frame_equal(result, expected)
|
70 |
+
|
71 |
+
|
72 |
+
@pytest.mark.parametrize(
|
73 |
+
"col, val",
|
74 |
+
[["datetime", Timestamp("20130101")], ["timedelta", pd.Timedelta("1 min")]],
|
75 |
+
)
|
76 |
+
def test_map_datetimelike(col, val):
|
77 |
+
# datetime/timedelta
|
78 |
+
df = DataFrame(np.random.default_rng(2).random((3, 4)))
|
79 |
+
df[col] = val
|
80 |
+
result = df.map(str)
|
81 |
+
assert result.loc[0, col] == str(df.loc[0, col])
|
82 |
+
|
83 |
+
|
84 |
+
@pytest.mark.parametrize(
|
85 |
+
"expected",
|
86 |
+
[
|
87 |
+
DataFrame(),
|
88 |
+
DataFrame(columns=list("ABC")),
|
89 |
+
DataFrame(index=list("ABC")),
|
90 |
+
DataFrame({"A": [], "B": [], "C": []}),
|
91 |
+
],
|
92 |
+
)
|
93 |
+
@pytest.mark.parametrize("func", [round, lambda x: x])
|
94 |
+
def test_map_empty(expected, func):
|
95 |
+
# GH 8222
|
96 |
+
result = expected.map(func)
|
97 |
+
tm.assert_frame_equal(result, expected)
|
98 |
+
|
99 |
+
|
100 |
+
def test_map_kwargs():
|
101 |
+
# GH 40652
|
102 |
+
result = DataFrame([[1, 2], [3, 4]]).map(lambda x, y: x + y, y=2)
|
103 |
+
expected = DataFrame([[3, 4], [5, 6]])
|
104 |
+
tm.assert_frame_equal(result, expected)
|
105 |
+
|
106 |
+
|
107 |
+
def test_map_na_ignore(float_frame):
|
108 |
+
# GH 23803
|
109 |
+
strlen_frame = float_frame.map(lambda x: len(str(x)))
|
110 |
+
float_frame_with_na = float_frame.copy()
|
111 |
+
mask = np.random.default_rng(2).integers(0, 2, size=float_frame.shape, dtype=bool)
|
112 |
+
float_frame_with_na[mask] = pd.NA
|
113 |
+
strlen_frame_na_ignore = float_frame_with_na.map(
|
114 |
+
lambda x: len(str(x)), na_action="ignore"
|
115 |
+
)
|
116 |
+
# Set float64 type to avoid upcast when setting NA below
|
117 |
+
strlen_frame_with_na = strlen_frame.copy().astype("float64")
|
118 |
+
strlen_frame_with_na[mask] = pd.NA
|
119 |
+
tm.assert_frame_equal(strlen_frame_na_ignore, strlen_frame_with_na)
|
120 |
+
|
121 |
+
|
122 |
+
def test_map_box_timestamps():
|
123 |
+
# GH 2689, GH 2627
|
124 |
+
ser = Series(date_range("1/1/2000", periods=10))
|
125 |
+
|
126 |
+
def func(x):
|
127 |
+
return (x.hour, x.day, x.month)
|
128 |
+
|
129 |
+
# it works!
|
130 |
+
DataFrame(ser).map(func)
|
131 |
+
|
132 |
+
|
133 |
+
def test_map_box():
|
134 |
+
# ufunc will not be boxed. Same test cases as the test_map_box
|
135 |
+
df = DataFrame(
|
136 |
+
{
|
137 |
+
"a": [Timestamp("2011-01-01"), Timestamp("2011-01-02")],
|
138 |
+
"b": [
|
139 |
+
Timestamp("2011-01-01", tz="US/Eastern"),
|
140 |
+
Timestamp("2011-01-02", tz="US/Eastern"),
|
141 |
+
],
|
142 |
+
"c": [pd.Timedelta("1 days"), pd.Timedelta("2 days")],
|
143 |
+
"d": [
|
144 |
+
pd.Period("2011-01-01", freq="M"),
|
145 |
+
pd.Period("2011-01-02", freq="M"),
|
146 |
+
],
|
147 |
+
}
|
148 |
+
)
|
149 |
+
|
150 |
+
result = df.map(lambda x: type(x).__name__)
|
151 |
+
expected = DataFrame(
|
152 |
+
{
|
153 |
+
"a": ["Timestamp", "Timestamp"],
|
154 |
+
"b": ["Timestamp", "Timestamp"],
|
155 |
+
"c": ["Timedelta", "Timedelta"],
|
156 |
+
"d": ["Period", "Period"],
|
157 |
+
}
|
158 |
+
)
|
159 |
+
tm.assert_frame_equal(result, expected)
|
160 |
+
|
161 |
+
|
162 |
+
def test_frame_map_dont_convert_datetime64():
|
163 |
+
df = DataFrame({"x1": [datetime(1996, 1, 1)]})
|
164 |
+
|
165 |
+
df = df.map(lambda x: x + BDay())
|
166 |
+
df = df.map(lambda x: x + BDay())
|
167 |
+
|
168 |
+
result = df.x1.dtype
|
169 |
+
assert result == "M8[ns]"
|
170 |
+
|
171 |
+
|
172 |
+
def test_map_function_runs_once():
|
173 |
+
df = DataFrame({"a": [1, 2, 3]})
|
174 |
+
values = [] # Save values function is applied to
|
175 |
+
|
176 |
+
def reducing_function(val):
|
177 |
+
values.append(val)
|
178 |
+
|
179 |
+
def non_reducing_function(val):
|
180 |
+
values.append(val)
|
181 |
+
return val
|
182 |
+
|
183 |
+
for func in [reducing_function, non_reducing_function]:
|
184 |
+
del values[:]
|
185 |
+
|
186 |
+
df.map(func)
|
187 |
+
assert values == df.a.to_list()
|
188 |
+
|
189 |
+
|
190 |
+
def test_map_type():
|
191 |
+
# GH 46719
|
192 |
+
df = DataFrame(
|
193 |
+
{"col1": [3, "string", float], "col2": [0.25, datetime(2020, 1, 1), np.nan]},
|
194 |
+
index=["a", "b", "c"],
|
195 |
+
)
|
196 |
+
|
197 |
+
result = df.map(type)
|
198 |
+
expected = DataFrame(
|
199 |
+
{"col1": [int, str, type], "col2": [float, datetime, float]},
|
200 |
+
index=["a", "b", "c"],
|
201 |
+
)
|
202 |
+
tm.assert_frame_equal(result, expected)
|
203 |
+
|
204 |
+
|
205 |
+
def test_map_invalid_na_action(float_frame):
|
206 |
+
# GH 23803
|
207 |
+
with pytest.raises(ValueError, match="na_action must be .*Got 'abc'"):
|
208 |
+
float_frame.map(lambda x: len(str(x)), na_action="abc")
|
209 |
+
|
210 |
+
|
211 |
+
def test_applymap_deprecated():
|
212 |
+
# GH52353
|
213 |
+
df = DataFrame({"a": [1, 2, 3]})
|
214 |
+
msg = "DataFrame.applymap has been deprecated. Use DataFrame.map instead."
|
215 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
216 |
+
df.applymap(lambda x: x)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_quantile.py
ADDED
@@ -0,0 +1,972 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import (
|
6 |
+
DataFrame,
|
7 |
+
Index,
|
8 |
+
Series,
|
9 |
+
Timestamp,
|
10 |
+
)
|
11 |
+
import pandas._testing as tm
|
12 |
+
|
13 |
+
|
14 |
+
@pytest.fixture(
|
15 |
+
params=[["linear", "single"], ["nearest", "table"]], ids=lambda x: "-".join(x)
|
16 |
+
)
|
17 |
+
def interp_method(request):
|
18 |
+
"""(interpolation, method) arguments for quantile"""
|
19 |
+
return request.param
|
20 |
+
|
21 |
+
|
22 |
+
class TestDataFrameQuantile:
|
23 |
+
@pytest.mark.parametrize(
|
24 |
+
"df,expected",
|
25 |
+
[
|
26 |
+
[
|
27 |
+
DataFrame(
|
28 |
+
{
|
29 |
+
0: Series(pd.arrays.SparseArray([1, 2])),
|
30 |
+
1: Series(pd.arrays.SparseArray([3, 4])),
|
31 |
+
}
|
32 |
+
),
|
33 |
+
Series([1.5, 3.5], name=0.5),
|
34 |
+
],
|
35 |
+
[
|
36 |
+
DataFrame(Series([0.0, None, 1.0, 2.0], dtype="Sparse[float]")),
|
37 |
+
Series([1.0], name=0.5),
|
38 |
+
],
|
39 |
+
],
|
40 |
+
)
|
41 |
+
def test_quantile_sparse(self, df, expected):
|
42 |
+
# GH#17198
|
43 |
+
# GH#24600
|
44 |
+
result = df.quantile()
|
45 |
+
expected = expected.astype("Sparse[float]")
|
46 |
+
tm.assert_series_equal(result, expected)
|
47 |
+
|
48 |
+
def test_quantile(
|
49 |
+
self, datetime_frame, interp_method, using_array_manager, request
|
50 |
+
):
|
51 |
+
interpolation, method = interp_method
|
52 |
+
df = datetime_frame
|
53 |
+
result = df.quantile(
|
54 |
+
0.1, axis=0, numeric_only=True, interpolation=interpolation, method=method
|
55 |
+
)
|
56 |
+
expected = Series(
|
57 |
+
[np.percentile(df[col], 10) for col in df.columns],
|
58 |
+
index=df.columns,
|
59 |
+
name=0.1,
|
60 |
+
)
|
61 |
+
if interpolation == "linear":
|
62 |
+
# np.percentile values only comparable to linear interpolation
|
63 |
+
tm.assert_series_equal(result, expected)
|
64 |
+
else:
|
65 |
+
tm.assert_index_equal(result.index, expected.index)
|
66 |
+
request.applymarker(
|
67 |
+
pytest.mark.xfail(
|
68 |
+
using_array_manager, reason="Name set incorrectly for arraymanager"
|
69 |
+
)
|
70 |
+
)
|
71 |
+
assert result.name == expected.name
|
72 |
+
|
73 |
+
result = df.quantile(
|
74 |
+
0.9, axis=1, numeric_only=True, interpolation=interpolation, method=method
|
75 |
+
)
|
76 |
+
expected = Series(
|
77 |
+
[np.percentile(df.loc[date], 90) for date in df.index],
|
78 |
+
index=df.index,
|
79 |
+
name=0.9,
|
80 |
+
)
|
81 |
+
if interpolation == "linear":
|
82 |
+
# np.percentile values only comparable to linear interpolation
|
83 |
+
tm.assert_series_equal(result, expected)
|
84 |
+
else:
|
85 |
+
tm.assert_index_equal(result.index, expected.index)
|
86 |
+
request.applymarker(
|
87 |
+
pytest.mark.xfail(
|
88 |
+
using_array_manager, reason="Name set incorrectly for arraymanager"
|
89 |
+
)
|
90 |
+
)
|
91 |
+
assert result.name == expected.name
|
92 |
+
|
93 |
+
def test_empty(self, interp_method):
|
94 |
+
interpolation, method = interp_method
|
95 |
+
q = DataFrame({"x": [], "y": []}).quantile(
|
96 |
+
0.1, axis=0, numeric_only=True, interpolation=interpolation, method=method
|
97 |
+
)
|
98 |
+
assert np.isnan(q["x"]) and np.isnan(q["y"])
|
99 |
+
|
100 |
+
def test_non_numeric_exclusion(self, interp_method, request, using_array_manager):
|
101 |
+
interpolation, method = interp_method
|
102 |
+
df = DataFrame({"col1": ["A", "A", "B", "B"], "col2": [1, 2, 3, 4]})
|
103 |
+
rs = df.quantile(
|
104 |
+
0.5, numeric_only=True, interpolation=interpolation, method=method
|
105 |
+
)
|
106 |
+
xp = df.median(numeric_only=True).rename(0.5)
|
107 |
+
if interpolation == "nearest":
|
108 |
+
xp = (xp + 0.5).astype(np.int64)
|
109 |
+
if method == "table" and using_array_manager:
|
110 |
+
request.applymarker(pytest.mark.xfail(reason="Axis name incorrectly set."))
|
111 |
+
tm.assert_series_equal(rs, xp)
|
112 |
+
|
113 |
+
def test_axis(self, interp_method, request, using_array_manager):
|
114 |
+
# axis
|
115 |
+
interpolation, method = interp_method
|
116 |
+
df = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}, index=[1, 2, 3])
|
117 |
+
result = df.quantile(0.5, axis=1, interpolation=interpolation, method=method)
|
118 |
+
expected = Series([1.5, 2.5, 3.5], index=[1, 2, 3], name=0.5)
|
119 |
+
if interpolation == "nearest":
|
120 |
+
expected = expected.astype(np.int64)
|
121 |
+
if method == "table" and using_array_manager:
|
122 |
+
request.applymarker(pytest.mark.xfail(reason="Axis name incorrectly set."))
|
123 |
+
tm.assert_series_equal(result, expected)
|
124 |
+
|
125 |
+
result = df.quantile(
|
126 |
+
[0.5, 0.75], axis=1, interpolation=interpolation, method=method
|
127 |
+
)
|
128 |
+
expected = DataFrame(
|
129 |
+
{1: [1.5, 1.75], 2: [2.5, 2.75], 3: [3.5, 3.75]}, index=[0.5, 0.75]
|
130 |
+
)
|
131 |
+
if interpolation == "nearest":
|
132 |
+
expected.iloc[0, :] -= 0.5
|
133 |
+
expected.iloc[1, :] += 0.25
|
134 |
+
expected = expected.astype(np.int64)
|
135 |
+
tm.assert_frame_equal(result, expected, check_index_type=True)
|
136 |
+
|
137 |
+
def test_axis_numeric_only_true(self, interp_method, request, using_array_manager):
|
138 |
+
# We may want to break API in the future to change this
|
139 |
+
# so that we exclude non-numeric along the same axis
|
140 |
+
# See GH #7312
|
141 |
+
interpolation, method = interp_method
|
142 |
+
df = DataFrame([[1, 2, 3], ["a", "b", 4]])
|
143 |
+
result = df.quantile(
|
144 |
+
0.5, axis=1, numeric_only=True, interpolation=interpolation, method=method
|
145 |
+
)
|
146 |
+
expected = Series([3.0, 4.0], index=[0, 1], name=0.5)
|
147 |
+
if interpolation == "nearest":
|
148 |
+
expected = expected.astype(np.int64)
|
149 |
+
if method == "table" and using_array_manager:
|
150 |
+
request.applymarker(pytest.mark.xfail(reason="Axis name incorrectly set."))
|
151 |
+
tm.assert_series_equal(result, expected)
|
152 |
+
|
153 |
+
def test_quantile_date_range(self, interp_method, request, using_array_manager):
|
154 |
+
# GH 2460
|
155 |
+
interpolation, method = interp_method
|
156 |
+
dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific")
|
157 |
+
ser = Series(dti)
|
158 |
+
df = DataFrame(ser)
|
159 |
+
|
160 |
+
result = df.quantile(
|
161 |
+
numeric_only=False, interpolation=interpolation, method=method
|
162 |
+
)
|
163 |
+
expected = Series(
|
164 |
+
["2016-01-02 00:00:00"], name=0.5, dtype="datetime64[ns, US/Pacific]"
|
165 |
+
)
|
166 |
+
if method == "table" and using_array_manager:
|
167 |
+
request.applymarker(pytest.mark.xfail(reason="Axis name incorrectly set."))
|
168 |
+
|
169 |
+
tm.assert_series_equal(result, expected)
|
170 |
+
|
171 |
+
def test_quantile_axis_mixed(self, interp_method, request, using_array_manager):
|
172 |
+
# mixed on axis=1
|
173 |
+
interpolation, method = interp_method
|
174 |
+
df = DataFrame(
|
175 |
+
{
|
176 |
+
"A": [1, 2, 3],
|
177 |
+
"B": [2.0, 3.0, 4.0],
|
178 |
+
"C": pd.date_range("20130101", periods=3),
|
179 |
+
"D": ["foo", "bar", "baz"],
|
180 |
+
}
|
181 |
+
)
|
182 |
+
result = df.quantile(
|
183 |
+
0.5, axis=1, numeric_only=True, interpolation=interpolation, method=method
|
184 |
+
)
|
185 |
+
expected = Series([1.5, 2.5, 3.5], name=0.5)
|
186 |
+
if interpolation == "nearest":
|
187 |
+
expected -= 0.5
|
188 |
+
if method == "table" and using_array_manager:
|
189 |
+
request.applymarker(pytest.mark.xfail(reason="Axis name incorrectly set."))
|
190 |
+
tm.assert_series_equal(result, expected)
|
191 |
+
|
192 |
+
# must raise
|
193 |
+
msg = "'<' not supported between instances of 'Timestamp' and 'float'"
|
194 |
+
with pytest.raises(TypeError, match=msg):
|
195 |
+
df.quantile(0.5, axis=1, numeric_only=False)
|
196 |
+
|
197 |
+
def test_quantile_axis_parameter(self, interp_method, request, using_array_manager):
|
198 |
+
# GH 9543/9544
|
199 |
+
interpolation, method = interp_method
|
200 |
+
if method == "table" and using_array_manager:
|
201 |
+
request.applymarker(pytest.mark.xfail(reason="Axis name incorrectly set."))
|
202 |
+
df = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}, index=[1, 2, 3])
|
203 |
+
|
204 |
+
result = df.quantile(0.5, axis=0, interpolation=interpolation, method=method)
|
205 |
+
|
206 |
+
expected = Series([2.0, 3.0], index=["A", "B"], name=0.5)
|
207 |
+
if interpolation == "nearest":
|
208 |
+
expected = expected.astype(np.int64)
|
209 |
+
tm.assert_series_equal(result, expected)
|
210 |
+
|
211 |
+
expected = df.quantile(
|
212 |
+
0.5, axis="index", interpolation=interpolation, method=method
|
213 |
+
)
|
214 |
+
if interpolation == "nearest":
|
215 |
+
expected = expected.astype(np.int64)
|
216 |
+
tm.assert_series_equal(result, expected)
|
217 |
+
|
218 |
+
result = df.quantile(0.5, axis=1, interpolation=interpolation, method=method)
|
219 |
+
|
220 |
+
expected = Series([1.5, 2.5, 3.5], index=[1, 2, 3], name=0.5)
|
221 |
+
if interpolation == "nearest":
|
222 |
+
expected = expected.astype(np.int64)
|
223 |
+
tm.assert_series_equal(result, expected)
|
224 |
+
|
225 |
+
result = df.quantile(
|
226 |
+
0.5, axis="columns", interpolation=interpolation, method=method
|
227 |
+
)
|
228 |
+
tm.assert_series_equal(result, expected)
|
229 |
+
|
230 |
+
msg = "No axis named -1 for object type DataFrame"
|
231 |
+
with pytest.raises(ValueError, match=msg):
|
232 |
+
df.quantile(0.1, axis=-1, interpolation=interpolation, method=method)
|
233 |
+
msg = "No axis named column for object type DataFrame"
|
234 |
+
with pytest.raises(ValueError, match=msg):
|
235 |
+
df.quantile(0.1, axis="column")
|
236 |
+
|
237 |
+
def test_quantile_interpolation(self):
|
238 |
+
# see gh-10174
|
239 |
+
|
240 |
+
# interpolation method other than default linear
|
241 |
+
df = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}, index=[1, 2, 3])
|
242 |
+
result = df.quantile(0.5, axis=1, interpolation="nearest")
|
243 |
+
expected = Series([1, 2, 3], index=[1, 2, 3], name=0.5)
|
244 |
+
tm.assert_series_equal(result, expected)
|
245 |
+
|
246 |
+
# cross-check interpolation=nearest results in original dtype
|
247 |
+
exp = np.percentile(
|
248 |
+
np.array([[1, 2, 3], [2, 3, 4]]),
|
249 |
+
0.5,
|
250 |
+
axis=0,
|
251 |
+
method="nearest",
|
252 |
+
)
|
253 |
+
expected = Series(exp, index=[1, 2, 3], name=0.5, dtype="int64")
|
254 |
+
tm.assert_series_equal(result, expected)
|
255 |
+
|
256 |
+
# float
|
257 |
+
df = DataFrame({"A": [1.0, 2.0, 3.0], "B": [2.0, 3.0, 4.0]}, index=[1, 2, 3])
|
258 |
+
result = df.quantile(0.5, axis=1, interpolation="nearest")
|
259 |
+
expected = Series([1.0, 2.0, 3.0], index=[1, 2, 3], name=0.5)
|
260 |
+
tm.assert_series_equal(result, expected)
|
261 |
+
exp = np.percentile(
|
262 |
+
np.array([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]]),
|
263 |
+
0.5,
|
264 |
+
axis=0,
|
265 |
+
method="nearest",
|
266 |
+
)
|
267 |
+
expected = Series(exp, index=[1, 2, 3], name=0.5, dtype="float64")
|
268 |
+
tm.assert_series_equal(result, expected)
|
269 |
+
|
270 |
+
# axis
|
271 |
+
result = df.quantile([0.5, 0.75], axis=1, interpolation="lower")
|
272 |
+
expected = DataFrame(
|
273 |
+
{1: [1.0, 1.0], 2: [2.0, 2.0], 3: [3.0, 3.0]}, index=[0.5, 0.75]
|
274 |
+
)
|
275 |
+
tm.assert_frame_equal(result, expected)
|
276 |
+
|
277 |
+
# test degenerate case
|
278 |
+
df = DataFrame({"x": [], "y": []})
|
279 |
+
q = df.quantile(0.1, axis=0, interpolation="higher")
|
280 |
+
assert np.isnan(q["x"]) and np.isnan(q["y"])
|
281 |
+
|
282 |
+
# multi
|
283 |
+
df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]], columns=["a", "b", "c"])
|
284 |
+
result = df.quantile([0.25, 0.5], interpolation="midpoint")
|
285 |
+
|
286 |
+
# https://github.com/numpy/numpy/issues/7163
|
287 |
+
expected = DataFrame(
|
288 |
+
[[1.5, 1.5, 1.5], [2.0, 2.0, 2.0]],
|
289 |
+
index=[0.25, 0.5],
|
290 |
+
columns=["a", "b", "c"],
|
291 |
+
)
|
292 |
+
tm.assert_frame_equal(result, expected)
|
293 |
+
|
294 |
+
def test_quantile_interpolation_datetime(self, datetime_frame):
|
295 |
+
# see gh-10174
|
296 |
+
|
297 |
+
# interpolation = linear (default case)
|
298 |
+
df = datetime_frame
|
299 |
+
q = df.quantile(0.1, axis=0, numeric_only=True, interpolation="linear")
|
300 |
+
assert q["A"] == np.percentile(df["A"], 10)
|
301 |
+
|
302 |
+
def test_quantile_interpolation_int(self, int_frame):
|
303 |
+
# see gh-10174
|
304 |
+
|
305 |
+
df = int_frame
|
306 |
+
# interpolation = linear (default case)
|
307 |
+
q = df.quantile(0.1)
|
308 |
+
assert q["A"] == np.percentile(df["A"], 10)
|
309 |
+
|
310 |
+
# test with and without interpolation keyword
|
311 |
+
q1 = df.quantile(0.1, axis=0, interpolation="linear")
|
312 |
+
assert q1["A"] == np.percentile(df["A"], 10)
|
313 |
+
tm.assert_series_equal(q, q1)
|
314 |
+
|
315 |
+
def test_quantile_multi(self, interp_method, request, using_array_manager):
|
316 |
+
interpolation, method = interp_method
|
317 |
+
df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]], columns=["a", "b", "c"])
|
318 |
+
result = df.quantile([0.25, 0.5], interpolation=interpolation, method=method)
|
319 |
+
expected = DataFrame(
|
320 |
+
[[1.5, 1.5, 1.5], [2.0, 2.0, 2.0]],
|
321 |
+
index=[0.25, 0.5],
|
322 |
+
columns=["a", "b", "c"],
|
323 |
+
)
|
324 |
+
if interpolation == "nearest":
|
325 |
+
expected = expected.astype(np.int64)
|
326 |
+
if method == "table" and using_array_manager:
|
327 |
+
request.applymarker(pytest.mark.xfail(reason="Axis name incorrectly set."))
|
328 |
+
tm.assert_frame_equal(result, expected)
|
329 |
+
|
330 |
+
def test_quantile_multi_axis_1(self, interp_method, request, using_array_manager):
|
331 |
+
interpolation, method = interp_method
|
332 |
+
df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]], columns=["a", "b", "c"])
|
333 |
+
result = df.quantile(
|
334 |
+
[0.25, 0.5], axis=1, interpolation=interpolation, method=method
|
335 |
+
)
|
336 |
+
expected = DataFrame(
|
337 |
+
[[1.0, 2.0, 3.0]] * 2, index=[0.25, 0.5], columns=[0, 1, 2]
|
338 |
+
)
|
339 |
+
if interpolation == "nearest":
|
340 |
+
expected = expected.astype(np.int64)
|
341 |
+
if method == "table" and using_array_manager:
|
342 |
+
request.applymarker(pytest.mark.xfail(reason="Axis name incorrectly set."))
|
343 |
+
tm.assert_frame_equal(result, expected)
|
344 |
+
|
345 |
+
def test_quantile_multi_empty(self, interp_method):
|
346 |
+
interpolation, method = interp_method
|
347 |
+
result = DataFrame({"x": [], "y": []}).quantile(
|
348 |
+
[0.1, 0.9], axis=0, interpolation=interpolation, method=method
|
349 |
+
)
|
350 |
+
expected = DataFrame(
|
351 |
+
{"x": [np.nan, np.nan], "y": [np.nan, np.nan]}, index=[0.1, 0.9]
|
352 |
+
)
|
353 |
+
tm.assert_frame_equal(result, expected)
|
354 |
+
|
355 |
+
def test_quantile_datetime(self, unit):
|
356 |
+
dti = pd.to_datetime(["2010", "2011"]).as_unit(unit)
|
357 |
+
df = DataFrame({"a": dti, "b": [0, 5]})
|
358 |
+
|
359 |
+
# exclude datetime
|
360 |
+
result = df.quantile(0.5, numeric_only=True)
|
361 |
+
expected = Series([2.5], index=["b"], name=0.5)
|
362 |
+
tm.assert_series_equal(result, expected)
|
363 |
+
|
364 |
+
# datetime
|
365 |
+
result = df.quantile(0.5, numeric_only=False)
|
366 |
+
expected = Series(
|
367 |
+
[Timestamp("2010-07-02 12:00:00"), 2.5], index=["a", "b"], name=0.5
|
368 |
+
)
|
369 |
+
tm.assert_series_equal(result, expected)
|
370 |
+
|
371 |
+
# datetime w/ multi
|
372 |
+
result = df.quantile([0.5], numeric_only=False)
|
373 |
+
expected = DataFrame(
|
374 |
+
{"a": Timestamp("2010-07-02 12:00:00").as_unit(unit), "b": 2.5},
|
375 |
+
index=[0.5],
|
376 |
+
)
|
377 |
+
tm.assert_frame_equal(result, expected)
|
378 |
+
|
379 |
+
# axis = 1
|
380 |
+
df["c"] = pd.to_datetime(["2011", "2012"]).as_unit(unit)
|
381 |
+
result = df[["a", "c"]].quantile(0.5, axis=1, numeric_only=False)
|
382 |
+
expected = Series(
|
383 |
+
[Timestamp("2010-07-02 12:00:00"), Timestamp("2011-07-02 12:00:00")],
|
384 |
+
index=[0, 1],
|
385 |
+
name=0.5,
|
386 |
+
dtype=f"M8[{unit}]",
|
387 |
+
)
|
388 |
+
tm.assert_series_equal(result, expected)
|
389 |
+
|
390 |
+
result = df[["a", "c"]].quantile([0.5], axis=1, numeric_only=False)
|
391 |
+
expected = DataFrame(
|
392 |
+
[[Timestamp("2010-07-02 12:00:00"), Timestamp("2011-07-02 12:00:00")]],
|
393 |
+
index=[0.5],
|
394 |
+
columns=[0, 1],
|
395 |
+
dtype=f"M8[{unit}]",
|
396 |
+
)
|
397 |
+
tm.assert_frame_equal(result, expected)
|
398 |
+
|
399 |
+
# empty when numeric_only=True
|
400 |
+
result = df[["a", "c"]].quantile(0.5, numeric_only=True)
|
401 |
+
expected = Series([], index=[], dtype=np.float64, name=0.5)
|
402 |
+
tm.assert_series_equal(result, expected)
|
403 |
+
|
404 |
+
result = df[["a", "c"]].quantile([0.5], numeric_only=True)
|
405 |
+
expected = DataFrame(index=[0.5], columns=[])
|
406 |
+
tm.assert_frame_equal(result, expected)
|
407 |
+
|
408 |
+
@pytest.mark.parametrize(
|
409 |
+
"dtype",
|
410 |
+
[
|
411 |
+
"datetime64[ns]",
|
412 |
+
"datetime64[ns, US/Pacific]",
|
413 |
+
"timedelta64[ns]",
|
414 |
+
"Period[D]",
|
415 |
+
],
|
416 |
+
)
|
417 |
+
def test_quantile_dt64_empty(self, dtype, interp_method):
|
418 |
+
# GH#41544
|
419 |
+
interpolation, method = interp_method
|
420 |
+
df = DataFrame(columns=["a", "b"], dtype=dtype)
|
421 |
+
|
422 |
+
res = df.quantile(
|
423 |
+
0.5, axis=1, numeric_only=False, interpolation=interpolation, method=method
|
424 |
+
)
|
425 |
+
expected = Series([], index=[], name=0.5, dtype=dtype)
|
426 |
+
tm.assert_series_equal(res, expected)
|
427 |
+
|
428 |
+
# no columns in result, so no dtype preservation
|
429 |
+
res = df.quantile(
|
430 |
+
[0.5],
|
431 |
+
axis=1,
|
432 |
+
numeric_only=False,
|
433 |
+
interpolation=interpolation,
|
434 |
+
method=method,
|
435 |
+
)
|
436 |
+
expected = DataFrame(index=[0.5], columns=[])
|
437 |
+
tm.assert_frame_equal(res, expected)
|
438 |
+
|
439 |
+
@pytest.mark.parametrize("invalid", [-1, 2, [0.5, -1], [0.5, 2]])
|
440 |
+
def test_quantile_invalid(self, invalid, datetime_frame, interp_method):
|
441 |
+
msg = "percentiles should all be in the interval \\[0, 1\\]"
|
442 |
+
interpolation, method = interp_method
|
443 |
+
with pytest.raises(ValueError, match=msg):
|
444 |
+
datetime_frame.quantile(invalid, interpolation=interpolation, method=method)
|
445 |
+
|
446 |
+
def test_quantile_box(self, interp_method, request, using_array_manager):
|
447 |
+
interpolation, method = interp_method
|
448 |
+
if method == "table" and using_array_manager:
|
449 |
+
request.applymarker(pytest.mark.xfail(reason="Axis name incorrectly set."))
|
450 |
+
df = DataFrame(
|
451 |
+
{
|
452 |
+
"A": [
|
453 |
+
Timestamp("2011-01-01"),
|
454 |
+
Timestamp("2011-01-02"),
|
455 |
+
Timestamp("2011-01-03"),
|
456 |
+
],
|
457 |
+
"B": [
|
458 |
+
Timestamp("2011-01-01", tz="US/Eastern"),
|
459 |
+
Timestamp("2011-01-02", tz="US/Eastern"),
|
460 |
+
Timestamp("2011-01-03", tz="US/Eastern"),
|
461 |
+
],
|
462 |
+
"C": [
|
463 |
+
pd.Timedelta("1 days"),
|
464 |
+
pd.Timedelta("2 days"),
|
465 |
+
pd.Timedelta("3 days"),
|
466 |
+
],
|
467 |
+
}
|
468 |
+
)
|
469 |
+
|
470 |
+
res = df.quantile(
|
471 |
+
0.5, numeric_only=False, interpolation=interpolation, method=method
|
472 |
+
)
|
473 |
+
|
474 |
+
exp = Series(
|
475 |
+
[
|
476 |
+
Timestamp("2011-01-02"),
|
477 |
+
Timestamp("2011-01-02", tz="US/Eastern"),
|
478 |
+
pd.Timedelta("2 days"),
|
479 |
+
],
|
480 |
+
name=0.5,
|
481 |
+
index=["A", "B", "C"],
|
482 |
+
)
|
483 |
+
tm.assert_series_equal(res, exp)
|
484 |
+
|
485 |
+
res = df.quantile(
|
486 |
+
[0.5], numeric_only=False, interpolation=interpolation, method=method
|
487 |
+
)
|
488 |
+
exp = DataFrame(
|
489 |
+
[
|
490 |
+
[
|
491 |
+
Timestamp("2011-01-02"),
|
492 |
+
Timestamp("2011-01-02", tz="US/Eastern"),
|
493 |
+
pd.Timedelta("2 days"),
|
494 |
+
]
|
495 |
+
],
|
496 |
+
index=[0.5],
|
497 |
+
columns=["A", "B", "C"],
|
498 |
+
)
|
499 |
+
tm.assert_frame_equal(res, exp)
|
500 |
+
|
501 |
+
def test_quantile_box_nat(self):
|
502 |
+
# DatetimeLikeBlock may be consolidated and contain NaT in different loc
|
503 |
+
df = DataFrame(
|
504 |
+
{
|
505 |
+
"A": [
|
506 |
+
Timestamp("2011-01-01"),
|
507 |
+
pd.NaT,
|
508 |
+
Timestamp("2011-01-02"),
|
509 |
+
Timestamp("2011-01-03"),
|
510 |
+
],
|
511 |
+
"a": [
|
512 |
+
Timestamp("2011-01-01"),
|
513 |
+
Timestamp("2011-01-02"),
|
514 |
+
pd.NaT,
|
515 |
+
Timestamp("2011-01-03"),
|
516 |
+
],
|
517 |
+
"B": [
|
518 |
+
Timestamp("2011-01-01", tz="US/Eastern"),
|
519 |
+
pd.NaT,
|
520 |
+
Timestamp("2011-01-02", tz="US/Eastern"),
|
521 |
+
Timestamp("2011-01-03", tz="US/Eastern"),
|
522 |
+
],
|
523 |
+
"b": [
|
524 |
+
Timestamp("2011-01-01", tz="US/Eastern"),
|
525 |
+
Timestamp("2011-01-02", tz="US/Eastern"),
|
526 |
+
pd.NaT,
|
527 |
+
Timestamp("2011-01-03", tz="US/Eastern"),
|
528 |
+
],
|
529 |
+
"C": [
|
530 |
+
pd.Timedelta("1 days"),
|
531 |
+
pd.Timedelta("2 days"),
|
532 |
+
pd.Timedelta("3 days"),
|
533 |
+
pd.NaT,
|
534 |
+
],
|
535 |
+
"c": [
|
536 |
+
pd.NaT,
|
537 |
+
pd.Timedelta("1 days"),
|
538 |
+
pd.Timedelta("2 days"),
|
539 |
+
pd.Timedelta("3 days"),
|
540 |
+
],
|
541 |
+
},
|
542 |
+
columns=list("AaBbCc"),
|
543 |
+
)
|
544 |
+
|
545 |
+
res = df.quantile(0.5, numeric_only=False)
|
546 |
+
exp = Series(
|
547 |
+
[
|
548 |
+
Timestamp("2011-01-02"),
|
549 |
+
Timestamp("2011-01-02"),
|
550 |
+
Timestamp("2011-01-02", tz="US/Eastern"),
|
551 |
+
Timestamp("2011-01-02", tz="US/Eastern"),
|
552 |
+
pd.Timedelta("2 days"),
|
553 |
+
pd.Timedelta("2 days"),
|
554 |
+
],
|
555 |
+
name=0.5,
|
556 |
+
index=list("AaBbCc"),
|
557 |
+
)
|
558 |
+
tm.assert_series_equal(res, exp)
|
559 |
+
|
560 |
+
res = df.quantile([0.5], numeric_only=False)
|
561 |
+
exp = DataFrame(
|
562 |
+
[
|
563 |
+
[
|
564 |
+
Timestamp("2011-01-02"),
|
565 |
+
Timestamp("2011-01-02"),
|
566 |
+
Timestamp("2011-01-02", tz="US/Eastern"),
|
567 |
+
Timestamp("2011-01-02", tz="US/Eastern"),
|
568 |
+
pd.Timedelta("2 days"),
|
569 |
+
pd.Timedelta("2 days"),
|
570 |
+
]
|
571 |
+
],
|
572 |
+
index=[0.5],
|
573 |
+
columns=list("AaBbCc"),
|
574 |
+
)
|
575 |
+
tm.assert_frame_equal(res, exp)
|
576 |
+
|
577 |
+
def test_quantile_nan(self, interp_method, request, using_array_manager):
|
578 |
+
interpolation, method = interp_method
|
579 |
+
if method == "table" and using_array_manager:
|
580 |
+
request.applymarker(pytest.mark.xfail(reason="Axis name incorrectly set."))
|
581 |
+
# GH 14357 - float block where some cols have missing values
|
582 |
+
df = DataFrame({"a": np.arange(1, 6.0), "b": np.arange(1, 6.0)})
|
583 |
+
df.iloc[-1, 1] = np.nan
|
584 |
+
|
585 |
+
res = df.quantile(0.5, interpolation=interpolation, method=method)
|
586 |
+
exp = Series(
|
587 |
+
[3.0, 2.5 if interpolation == "linear" else 3.0], index=["a", "b"], name=0.5
|
588 |
+
)
|
589 |
+
tm.assert_series_equal(res, exp)
|
590 |
+
|
591 |
+
res = df.quantile([0.5, 0.75], interpolation=interpolation, method=method)
|
592 |
+
exp = DataFrame(
|
593 |
+
{
|
594 |
+
"a": [3.0, 4.0],
|
595 |
+
"b": [2.5, 3.25] if interpolation == "linear" else [3.0, 4.0],
|
596 |
+
},
|
597 |
+
index=[0.5, 0.75],
|
598 |
+
)
|
599 |
+
tm.assert_frame_equal(res, exp)
|
600 |
+
|
601 |
+
res = df.quantile(0.5, axis=1, interpolation=interpolation, method=method)
|
602 |
+
exp = Series(np.arange(1.0, 6.0), name=0.5)
|
603 |
+
tm.assert_series_equal(res, exp)
|
604 |
+
|
605 |
+
res = df.quantile(
|
606 |
+
[0.5, 0.75], axis=1, interpolation=interpolation, method=method
|
607 |
+
)
|
608 |
+
exp = DataFrame([np.arange(1.0, 6.0)] * 2, index=[0.5, 0.75])
|
609 |
+
if interpolation == "nearest":
|
610 |
+
exp.iloc[1, -1] = np.nan
|
611 |
+
tm.assert_frame_equal(res, exp)
|
612 |
+
|
613 |
+
# full-nan column
|
614 |
+
df["b"] = np.nan
|
615 |
+
|
616 |
+
res = df.quantile(0.5, interpolation=interpolation, method=method)
|
617 |
+
exp = Series([3.0, np.nan], index=["a", "b"], name=0.5)
|
618 |
+
tm.assert_series_equal(res, exp)
|
619 |
+
|
620 |
+
res = df.quantile([0.5, 0.75], interpolation=interpolation, method=method)
|
621 |
+
exp = DataFrame({"a": [3.0, 4.0], "b": [np.nan, np.nan]}, index=[0.5, 0.75])
|
622 |
+
tm.assert_frame_equal(res, exp)
|
623 |
+
|
624 |
+
def test_quantile_nat(self, interp_method, request, using_array_manager, unit):
|
625 |
+
interpolation, method = interp_method
|
626 |
+
if method == "table" and using_array_manager:
|
627 |
+
request.applymarker(pytest.mark.xfail(reason="Axis name incorrectly set."))
|
628 |
+
# full NaT column
|
629 |
+
df = DataFrame({"a": [pd.NaT, pd.NaT, pd.NaT]}, dtype=f"M8[{unit}]")
|
630 |
+
|
631 |
+
res = df.quantile(
|
632 |
+
0.5, numeric_only=False, interpolation=interpolation, method=method
|
633 |
+
)
|
634 |
+
exp = Series([pd.NaT], index=["a"], name=0.5, dtype=f"M8[{unit}]")
|
635 |
+
tm.assert_series_equal(res, exp)
|
636 |
+
|
637 |
+
res = df.quantile(
|
638 |
+
[0.5], numeric_only=False, interpolation=interpolation, method=method
|
639 |
+
)
|
640 |
+
exp = DataFrame({"a": [pd.NaT]}, index=[0.5], dtype=f"M8[{unit}]")
|
641 |
+
tm.assert_frame_equal(res, exp)
|
642 |
+
|
643 |
+
# mixed non-null / full null column
|
644 |
+
df = DataFrame(
|
645 |
+
{
|
646 |
+
"a": [
|
647 |
+
Timestamp("2012-01-01"),
|
648 |
+
Timestamp("2012-01-02"),
|
649 |
+
Timestamp("2012-01-03"),
|
650 |
+
],
|
651 |
+
"b": [pd.NaT, pd.NaT, pd.NaT],
|
652 |
+
},
|
653 |
+
dtype=f"M8[{unit}]",
|
654 |
+
)
|
655 |
+
|
656 |
+
res = df.quantile(
|
657 |
+
0.5, numeric_only=False, interpolation=interpolation, method=method
|
658 |
+
)
|
659 |
+
exp = Series(
|
660 |
+
[Timestamp("2012-01-02"), pd.NaT],
|
661 |
+
index=["a", "b"],
|
662 |
+
name=0.5,
|
663 |
+
dtype=f"M8[{unit}]",
|
664 |
+
)
|
665 |
+
tm.assert_series_equal(res, exp)
|
666 |
+
|
667 |
+
res = df.quantile(
|
668 |
+
[0.5], numeric_only=False, interpolation=interpolation, method=method
|
669 |
+
)
|
670 |
+
exp = DataFrame(
|
671 |
+
[[Timestamp("2012-01-02"), pd.NaT]],
|
672 |
+
index=[0.5],
|
673 |
+
columns=["a", "b"],
|
674 |
+
dtype=f"M8[{unit}]",
|
675 |
+
)
|
676 |
+
tm.assert_frame_equal(res, exp)
|
677 |
+
|
678 |
+
def test_quantile_empty_no_rows_floats(self, interp_method):
|
679 |
+
interpolation, method = interp_method
|
680 |
+
|
681 |
+
df = DataFrame(columns=["a", "b"], dtype="float64")
|
682 |
+
|
683 |
+
res = df.quantile(0.5, interpolation=interpolation, method=method)
|
684 |
+
exp = Series([np.nan, np.nan], index=["a", "b"], name=0.5)
|
685 |
+
tm.assert_series_equal(res, exp)
|
686 |
+
|
687 |
+
res = df.quantile([0.5], interpolation=interpolation, method=method)
|
688 |
+
exp = DataFrame([[np.nan, np.nan]], columns=["a", "b"], index=[0.5])
|
689 |
+
tm.assert_frame_equal(res, exp)
|
690 |
+
|
691 |
+
res = df.quantile(0.5, axis=1, interpolation=interpolation, method=method)
|
692 |
+
exp = Series([], index=[], dtype="float64", name=0.5)
|
693 |
+
tm.assert_series_equal(res, exp)
|
694 |
+
|
695 |
+
res = df.quantile([0.5], axis=1, interpolation=interpolation, method=method)
|
696 |
+
exp = DataFrame(columns=[], index=[0.5])
|
697 |
+
tm.assert_frame_equal(res, exp)
|
698 |
+
|
699 |
+
def test_quantile_empty_no_rows_ints(self, interp_method):
|
700 |
+
interpolation, method = interp_method
|
701 |
+
df = DataFrame(columns=["a", "b"], dtype="int64")
|
702 |
+
|
703 |
+
res = df.quantile(0.5, interpolation=interpolation, method=method)
|
704 |
+
exp = Series([np.nan, np.nan], index=["a", "b"], name=0.5)
|
705 |
+
tm.assert_series_equal(res, exp)
|
706 |
+
|
707 |
+
def test_quantile_empty_no_rows_dt64(self, interp_method):
|
708 |
+
interpolation, method = interp_method
|
709 |
+
# datetimes
|
710 |
+
df = DataFrame(columns=["a", "b"], dtype="datetime64[ns]")
|
711 |
+
|
712 |
+
res = df.quantile(
|
713 |
+
0.5, numeric_only=False, interpolation=interpolation, method=method
|
714 |
+
)
|
715 |
+
exp = Series(
|
716 |
+
[pd.NaT, pd.NaT], index=["a", "b"], dtype="datetime64[ns]", name=0.5
|
717 |
+
)
|
718 |
+
tm.assert_series_equal(res, exp)
|
719 |
+
|
720 |
+
# Mixed dt64/dt64tz
|
721 |
+
df["a"] = df["a"].dt.tz_localize("US/Central")
|
722 |
+
res = df.quantile(
|
723 |
+
0.5, numeric_only=False, interpolation=interpolation, method=method
|
724 |
+
)
|
725 |
+
exp = exp.astype(object)
|
726 |
+
if interpolation == "nearest":
|
727 |
+
# GH#18463 TODO: would we prefer NaTs here?
|
728 |
+
msg = "The 'downcast' keyword in fillna is deprecated"
|
729 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
730 |
+
exp = exp.fillna(np.nan, downcast=False)
|
731 |
+
tm.assert_series_equal(res, exp)
|
732 |
+
|
733 |
+
# both dt64tz
|
734 |
+
df["b"] = df["b"].dt.tz_localize("US/Central")
|
735 |
+
res = df.quantile(
|
736 |
+
0.5, numeric_only=False, interpolation=interpolation, method=method
|
737 |
+
)
|
738 |
+
exp = exp.astype(df["b"].dtype)
|
739 |
+
tm.assert_series_equal(res, exp)
|
740 |
+
|
741 |
+
def test_quantile_empty_no_columns(self, interp_method):
|
742 |
+
# GH#23925 _get_numeric_data may drop all columns
|
743 |
+
interpolation, method = interp_method
|
744 |
+
df = DataFrame(pd.date_range("1/1/18", periods=5))
|
745 |
+
df.columns.name = "captain tightpants"
|
746 |
+
result = df.quantile(
|
747 |
+
0.5, numeric_only=True, interpolation=interpolation, method=method
|
748 |
+
)
|
749 |
+
expected = Series([], index=[], name=0.5, dtype=np.float64)
|
750 |
+
expected.index.name = "captain tightpants"
|
751 |
+
tm.assert_series_equal(result, expected)
|
752 |
+
|
753 |
+
result = df.quantile(
|
754 |
+
[0.5], numeric_only=True, interpolation=interpolation, method=method
|
755 |
+
)
|
756 |
+
expected = DataFrame([], index=[0.5], columns=[])
|
757 |
+
expected.columns.name = "captain tightpants"
|
758 |
+
tm.assert_frame_equal(result, expected)
|
759 |
+
|
760 |
+
def test_quantile_item_cache(
|
761 |
+
self, using_array_manager, interp_method, using_copy_on_write
|
762 |
+
):
|
763 |
+
# previous behavior incorrect retained an invalid _item_cache entry
|
764 |
+
interpolation, method = interp_method
|
765 |
+
df = DataFrame(
|
766 |
+
np.random.default_rng(2).standard_normal((4, 3)), columns=["A", "B", "C"]
|
767 |
+
)
|
768 |
+
df["D"] = df["A"] * 2
|
769 |
+
ser = df["A"]
|
770 |
+
if not using_array_manager:
|
771 |
+
assert len(df._mgr.blocks) == 2
|
772 |
+
|
773 |
+
df.quantile(numeric_only=False, interpolation=interpolation, method=method)
|
774 |
+
|
775 |
+
if using_copy_on_write:
|
776 |
+
ser.iloc[0] = 99
|
777 |
+
assert df.iloc[0, 0] == df["A"][0]
|
778 |
+
assert df.iloc[0, 0] != 99
|
779 |
+
else:
|
780 |
+
ser.values[0] = 99
|
781 |
+
assert df.iloc[0, 0] == df["A"][0]
|
782 |
+
assert df.iloc[0, 0] == 99
|
783 |
+
|
784 |
+
def test_invalid_method(self):
|
785 |
+
with pytest.raises(ValueError, match="Invalid method: foo"):
|
786 |
+
DataFrame(range(1)).quantile(0.5, method="foo")
|
787 |
+
|
788 |
+
def test_table_invalid_interpolation(self):
|
789 |
+
with pytest.raises(ValueError, match="Invalid interpolation: foo"):
|
790 |
+
DataFrame(range(1)).quantile(0.5, method="table", interpolation="foo")
|
791 |
+
|
792 |
+
|
793 |
+
class TestQuantileExtensionDtype:
|
794 |
+
# TODO: tests for axis=1?
|
795 |
+
# TODO: empty case?
|
796 |
+
|
797 |
+
@pytest.fixture(
|
798 |
+
params=[
|
799 |
+
pytest.param(
|
800 |
+
pd.IntervalIndex.from_breaks(range(10)),
|
801 |
+
marks=pytest.mark.xfail(reason="raises when trying to add Intervals"),
|
802 |
+
),
|
803 |
+
pd.period_range("2016-01-01", periods=9, freq="D"),
|
804 |
+
pd.date_range("2016-01-01", periods=9, tz="US/Pacific"),
|
805 |
+
pd.timedelta_range("1 Day", periods=9),
|
806 |
+
pd.array(np.arange(9), dtype="Int64"),
|
807 |
+
pd.array(np.arange(9), dtype="Float64"),
|
808 |
+
],
|
809 |
+
ids=lambda x: str(x.dtype),
|
810 |
+
)
|
811 |
+
def index(self, request):
|
812 |
+
# NB: not actually an Index object
|
813 |
+
idx = request.param
|
814 |
+
idx.name = "A"
|
815 |
+
return idx
|
816 |
+
|
817 |
+
@pytest.fixture
|
818 |
+
def obj(self, index, frame_or_series):
|
819 |
+
# bc index is not always an Index (yet), we need to re-patch .name
|
820 |
+
obj = frame_or_series(index).copy()
|
821 |
+
|
822 |
+
if frame_or_series is Series:
|
823 |
+
obj.name = "A"
|
824 |
+
else:
|
825 |
+
obj.columns = ["A"]
|
826 |
+
return obj
|
827 |
+
|
828 |
+
def compute_quantile(self, obj, qs):
|
829 |
+
if isinstance(obj, Series):
|
830 |
+
result = obj.quantile(qs)
|
831 |
+
else:
|
832 |
+
result = obj.quantile(qs, numeric_only=False)
|
833 |
+
return result
|
834 |
+
|
835 |
+
def test_quantile_ea(self, request, obj, index):
|
836 |
+
# result should be invariant to shuffling
|
837 |
+
indexer = np.arange(len(index), dtype=np.intp)
|
838 |
+
np.random.default_rng(2).shuffle(indexer)
|
839 |
+
obj = obj.iloc[indexer]
|
840 |
+
|
841 |
+
qs = [0.5, 0, 1]
|
842 |
+
result = self.compute_quantile(obj, qs)
|
843 |
+
|
844 |
+
exp_dtype = index.dtype
|
845 |
+
if index.dtype == "Int64":
|
846 |
+
# match non-nullable casting behavior
|
847 |
+
exp_dtype = "Float64"
|
848 |
+
|
849 |
+
# expected here assumes len(index) == 9
|
850 |
+
expected = Series(
|
851 |
+
[index[4], index[0], index[-1]], dtype=exp_dtype, index=qs, name="A"
|
852 |
+
)
|
853 |
+
expected = type(obj)(expected)
|
854 |
+
|
855 |
+
tm.assert_equal(result, expected)
|
856 |
+
|
857 |
+
def test_quantile_ea_with_na(self, obj, index):
|
858 |
+
obj.iloc[0] = index._na_value
|
859 |
+
obj.iloc[-1] = index._na_value
|
860 |
+
|
861 |
+
# result should be invariant to shuffling
|
862 |
+
indexer = np.arange(len(index), dtype=np.intp)
|
863 |
+
np.random.default_rng(2).shuffle(indexer)
|
864 |
+
obj = obj.iloc[indexer]
|
865 |
+
|
866 |
+
qs = [0.5, 0, 1]
|
867 |
+
result = self.compute_quantile(obj, qs)
|
868 |
+
|
869 |
+
# expected here assumes len(index) == 9
|
870 |
+
expected = Series(
|
871 |
+
[index[4], index[1], index[-2]], dtype=index.dtype, index=qs, name="A"
|
872 |
+
)
|
873 |
+
expected = type(obj)(expected)
|
874 |
+
tm.assert_equal(result, expected)
|
875 |
+
|
876 |
+
def test_quantile_ea_all_na(self, request, obj, index):
|
877 |
+
obj.iloc[:] = index._na_value
|
878 |
+
# Check dtypes were preserved; this was once a problem see GH#39763
|
879 |
+
assert np.all(obj.dtypes == index.dtype)
|
880 |
+
|
881 |
+
# result should be invariant to shuffling
|
882 |
+
indexer = np.arange(len(index), dtype=np.intp)
|
883 |
+
np.random.default_rng(2).shuffle(indexer)
|
884 |
+
obj = obj.iloc[indexer]
|
885 |
+
|
886 |
+
qs = [0.5, 0, 1]
|
887 |
+
result = self.compute_quantile(obj, qs)
|
888 |
+
|
889 |
+
expected = index.take([-1, -1, -1], allow_fill=True, fill_value=index._na_value)
|
890 |
+
expected = Series(expected, index=qs, name="A")
|
891 |
+
expected = type(obj)(expected)
|
892 |
+
tm.assert_equal(result, expected)
|
893 |
+
|
894 |
+
def test_quantile_ea_scalar(self, request, obj, index):
|
895 |
+
# scalar qs
|
896 |
+
|
897 |
+
# result should be invariant to shuffling
|
898 |
+
indexer = np.arange(len(index), dtype=np.intp)
|
899 |
+
np.random.default_rng(2).shuffle(indexer)
|
900 |
+
obj = obj.iloc[indexer]
|
901 |
+
|
902 |
+
qs = 0.5
|
903 |
+
result = self.compute_quantile(obj, qs)
|
904 |
+
|
905 |
+
exp_dtype = index.dtype
|
906 |
+
if index.dtype == "Int64":
|
907 |
+
exp_dtype = "Float64"
|
908 |
+
|
909 |
+
expected = Series({"A": index[4]}, dtype=exp_dtype, name=0.5)
|
910 |
+
if isinstance(obj, Series):
|
911 |
+
expected = expected["A"]
|
912 |
+
assert result == expected
|
913 |
+
else:
|
914 |
+
tm.assert_series_equal(result, expected)
|
915 |
+
|
916 |
+
@pytest.mark.parametrize(
|
917 |
+
"dtype, expected_data, expected_index, axis",
|
918 |
+
[
|
919 |
+
["float64", [], [], 1],
|
920 |
+
["int64", [], [], 1],
|
921 |
+
["float64", [np.nan, np.nan], ["a", "b"], 0],
|
922 |
+
["int64", [np.nan, np.nan], ["a", "b"], 0],
|
923 |
+
],
|
924 |
+
)
|
925 |
+
def test_empty_numeric(self, dtype, expected_data, expected_index, axis):
|
926 |
+
# GH 14564
|
927 |
+
df = DataFrame(columns=["a", "b"], dtype=dtype)
|
928 |
+
result = df.quantile(0.5, axis=axis)
|
929 |
+
expected = Series(
|
930 |
+
expected_data, name=0.5, index=Index(expected_index), dtype="float64"
|
931 |
+
)
|
932 |
+
tm.assert_series_equal(result, expected)
|
933 |
+
|
934 |
+
@pytest.mark.parametrize(
|
935 |
+
"dtype, expected_data, expected_index, axis, expected_dtype",
|
936 |
+
[
|
937 |
+
["datetime64[ns]", [], [], 1, "datetime64[ns]"],
|
938 |
+
["datetime64[ns]", [pd.NaT, pd.NaT], ["a", "b"], 0, "datetime64[ns]"],
|
939 |
+
],
|
940 |
+
)
|
941 |
+
def test_empty_datelike(
|
942 |
+
self, dtype, expected_data, expected_index, axis, expected_dtype
|
943 |
+
):
|
944 |
+
# GH 14564
|
945 |
+
df = DataFrame(columns=["a", "b"], dtype=dtype)
|
946 |
+
result = df.quantile(0.5, axis=axis, numeric_only=False)
|
947 |
+
expected = Series(
|
948 |
+
expected_data, name=0.5, index=Index(expected_index), dtype=expected_dtype
|
949 |
+
)
|
950 |
+
tm.assert_series_equal(result, expected)
|
951 |
+
|
952 |
+
@pytest.mark.parametrize(
|
953 |
+
"expected_data, expected_index, axis",
|
954 |
+
[
|
955 |
+
[[np.nan, np.nan], range(2), 1],
|
956 |
+
[[], [], 0],
|
957 |
+
],
|
958 |
+
)
|
959 |
+
def test_datelike_numeric_only(self, expected_data, expected_index, axis):
|
960 |
+
# GH 14564
|
961 |
+
df = DataFrame(
|
962 |
+
{
|
963 |
+
"a": pd.to_datetime(["2010", "2011"]),
|
964 |
+
"b": [0, 5],
|
965 |
+
"c": pd.to_datetime(["2011", "2012"]),
|
966 |
+
}
|
967 |
+
)
|
968 |
+
result = df[["a", "c"]].quantile(0.5, axis=axis, numeric_only=True)
|
969 |
+
expected = Series(
|
970 |
+
expected_data, name=0.5, index=Index(expected_index), dtype=np.float64
|
971 |
+
)
|
972 |
+
tm.assert_series_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_to_records.py
ADDED
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import abc
|
2 |
+
import email
|
3 |
+
from email.parser import Parser
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pytest
|
7 |
+
|
8 |
+
from pandas import (
|
9 |
+
CategoricalDtype,
|
10 |
+
DataFrame,
|
11 |
+
MultiIndex,
|
12 |
+
Series,
|
13 |
+
Timestamp,
|
14 |
+
date_range,
|
15 |
+
)
|
16 |
+
import pandas._testing as tm
|
17 |
+
|
18 |
+
|
19 |
+
class TestDataFrameToRecords:
|
20 |
+
def test_to_records_timeseries(self):
|
21 |
+
index = date_range("1/1/2000", periods=10)
|
22 |
+
df = DataFrame(
|
23 |
+
np.random.default_rng(2).standard_normal((10, 3)),
|
24 |
+
index=index,
|
25 |
+
columns=["a", "b", "c"],
|
26 |
+
)
|
27 |
+
|
28 |
+
result = df.to_records()
|
29 |
+
assert result["index"].dtype == "M8[ns]"
|
30 |
+
|
31 |
+
result = df.to_records(index=False)
|
32 |
+
|
33 |
+
def test_to_records_dt64(self):
|
34 |
+
df = DataFrame(
|
35 |
+
[["one", "two", "three"], ["four", "five", "six"]],
|
36 |
+
index=date_range("2012-01-01", "2012-01-02"),
|
37 |
+
)
|
38 |
+
|
39 |
+
expected = df.index.values[0]
|
40 |
+
result = df.to_records()["index"][0]
|
41 |
+
assert expected == result
|
42 |
+
|
43 |
+
def test_to_records_dt64tz_column(self):
|
44 |
+
# GH#32535 dont less tz in to_records
|
45 |
+
df = DataFrame({"A": date_range("2012-01-01", "2012-01-02", tz="US/Eastern")})
|
46 |
+
|
47 |
+
result = df.to_records()
|
48 |
+
|
49 |
+
assert result.dtype["A"] == object
|
50 |
+
val = result[0][1]
|
51 |
+
assert isinstance(val, Timestamp)
|
52 |
+
assert val == df.loc[0, "A"]
|
53 |
+
|
54 |
+
def test_to_records_with_multindex(self):
|
55 |
+
# GH#3189
|
56 |
+
index = [
|
57 |
+
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
|
58 |
+
["one", "two", "one", "two", "one", "two", "one", "two"],
|
59 |
+
]
|
60 |
+
data = np.zeros((8, 4))
|
61 |
+
df = DataFrame(data, index=index)
|
62 |
+
r = df.to_records(index=True)["level_0"]
|
63 |
+
assert "bar" in r
|
64 |
+
assert "one" not in r
|
65 |
+
|
66 |
+
def test_to_records_with_Mapping_type(self):
|
67 |
+
abc.Mapping.register(email.message.Message)
|
68 |
+
|
69 |
+
headers = Parser().parsestr(
|
70 |
+
"From: <[email protected]>\n"
|
71 |
+
"To: <[email protected]>\n"
|
72 |
+
"Subject: Test message\n"
|
73 |
+
"\n"
|
74 |
+
"Body would go here\n"
|
75 |
+
)
|
76 |
+
|
77 |
+
frame = DataFrame.from_records([headers])
|
78 |
+
all(x in frame for x in ["Type", "Subject", "From"])
|
79 |
+
|
80 |
+
def test_to_records_floats(self):
|
81 |
+
df = DataFrame(np.random.default_rng(2).random((10, 10)))
|
82 |
+
df.to_records()
|
83 |
+
|
84 |
+
def test_to_records_index_name(self):
|
85 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((3, 3)))
|
86 |
+
df.index.name = "X"
|
87 |
+
rs = df.to_records()
|
88 |
+
assert "X" in rs.dtype.fields
|
89 |
+
|
90 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((3, 3)))
|
91 |
+
rs = df.to_records()
|
92 |
+
assert "index" in rs.dtype.fields
|
93 |
+
|
94 |
+
df.index = MultiIndex.from_tuples([("a", "x"), ("a", "y"), ("b", "z")])
|
95 |
+
df.index.names = ["A", None]
|
96 |
+
result = df.to_records()
|
97 |
+
expected = np.rec.fromarrays(
|
98 |
+
[np.array(["a", "a", "b"]), np.array(["x", "y", "z"])]
|
99 |
+
+ [np.asarray(df.iloc[:, i]) for i in range(3)],
|
100 |
+
dtype={
|
101 |
+
"names": ["A", "level_1", "0", "1", "2"],
|
102 |
+
"formats": [
|
103 |
+
"O",
|
104 |
+
"O",
|
105 |
+
f"{tm.ENDIAN}f8",
|
106 |
+
f"{tm.ENDIAN}f8",
|
107 |
+
f"{tm.ENDIAN}f8",
|
108 |
+
],
|
109 |
+
},
|
110 |
+
)
|
111 |
+
tm.assert_numpy_array_equal(result, expected)
|
112 |
+
|
113 |
+
def test_to_records_with_unicode_index(self):
|
114 |
+
# GH#13172
|
115 |
+
# unicode_literals conflict with to_records
|
116 |
+
result = DataFrame([{"a": "x", "b": "y"}]).set_index("a").to_records()
|
117 |
+
expected = np.rec.array([("x", "y")], dtype=[("a", "O"), ("b", "O")])
|
118 |
+
tm.assert_almost_equal(result, expected)
|
119 |
+
|
120 |
+
def test_to_records_index_dtype(self):
|
121 |
+
# GH 47263: consistent data types for Index and MultiIndex
|
122 |
+
df = DataFrame(
|
123 |
+
{
|
124 |
+
1: date_range("2022-01-01", periods=2),
|
125 |
+
2: date_range("2022-01-01", periods=2),
|
126 |
+
3: date_range("2022-01-01", periods=2),
|
127 |
+
}
|
128 |
+
)
|
129 |
+
|
130 |
+
expected = np.rec.array(
|
131 |
+
[
|
132 |
+
("2022-01-01", "2022-01-01", "2022-01-01"),
|
133 |
+
("2022-01-02", "2022-01-02", "2022-01-02"),
|
134 |
+
],
|
135 |
+
dtype=[
|
136 |
+
("1", f"{tm.ENDIAN}M8[ns]"),
|
137 |
+
("2", f"{tm.ENDIAN}M8[ns]"),
|
138 |
+
("3", f"{tm.ENDIAN}M8[ns]"),
|
139 |
+
],
|
140 |
+
)
|
141 |
+
|
142 |
+
result = df.to_records(index=False)
|
143 |
+
tm.assert_almost_equal(result, expected)
|
144 |
+
|
145 |
+
result = df.set_index(1).to_records(index=True)
|
146 |
+
tm.assert_almost_equal(result, expected)
|
147 |
+
|
148 |
+
result = df.set_index([1, 2]).to_records(index=True)
|
149 |
+
tm.assert_almost_equal(result, expected)
|
150 |
+
|
151 |
+
def test_to_records_with_unicode_column_names(self):
|
152 |
+
# xref issue: https://github.com/numpy/numpy/issues/2407
|
153 |
+
# Issue GH#11879. to_records used to raise an exception when used
|
154 |
+
# with column names containing non-ascii characters in Python 2
|
155 |
+
result = DataFrame(data={"accented_name_é": [1.0]}).to_records()
|
156 |
+
|
157 |
+
# Note that numpy allows for unicode field names but dtypes need
|
158 |
+
# to be specified using dictionary instead of list of tuples.
|
159 |
+
expected = np.rec.array(
|
160 |
+
[(0, 1.0)],
|
161 |
+
dtype={"names": ["index", "accented_name_é"], "formats": ["=i8", "=f8"]},
|
162 |
+
)
|
163 |
+
tm.assert_almost_equal(result, expected)
|
164 |
+
|
165 |
+
def test_to_records_with_categorical(self):
|
166 |
+
# GH#8626
|
167 |
+
|
168 |
+
# dict creation
|
169 |
+
df = DataFrame({"A": list("abc")}, dtype="category")
|
170 |
+
expected = Series(list("abc"), dtype="category", name="A")
|
171 |
+
tm.assert_series_equal(df["A"], expected)
|
172 |
+
|
173 |
+
# list-like creation
|
174 |
+
df = DataFrame(list("abc"), dtype="category")
|
175 |
+
expected = Series(list("abc"), dtype="category", name=0)
|
176 |
+
tm.assert_series_equal(df[0], expected)
|
177 |
+
|
178 |
+
# to record array
|
179 |
+
# this coerces
|
180 |
+
result = df.to_records()
|
181 |
+
expected = np.rec.array(
|
182 |
+
[(0, "a"), (1, "b"), (2, "c")], dtype=[("index", "=i8"), ("0", "O")]
|
183 |
+
)
|
184 |
+
tm.assert_almost_equal(result, expected)
|
185 |
+
|
186 |
+
@pytest.mark.parametrize(
|
187 |
+
"kwargs,expected",
|
188 |
+
[
|
189 |
+
# No dtypes --> default to array dtypes.
|
190 |
+
(
|
191 |
+
{},
|
192 |
+
np.rec.array(
|
193 |
+
[(0, 1, 0.2, "a"), (1, 2, 1.5, "bc")],
|
194 |
+
dtype=[
|
195 |
+
("index", f"{tm.ENDIAN}i8"),
|
196 |
+
("A", f"{tm.ENDIAN}i8"),
|
197 |
+
("B", f"{tm.ENDIAN}f8"),
|
198 |
+
("C", "O"),
|
199 |
+
],
|
200 |
+
),
|
201 |
+
),
|
202 |
+
# Should have no effect in this case.
|
203 |
+
(
|
204 |
+
{"index": True},
|
205 |
+
np.rec.array(
|
206 |
+
[(0, 1, 0.2, "a"), (1, 2, 1.5, "bc")],
|
207 |
+
dtype=[
|
208 |
+
("index", f"{tm.ENDIAN}i8"),
|
209 |
+
("A", f"{tm.ENDIAN}i8"),
|
210 |
+
("B", f"{tm.ENDIAN}f8"),
|
211 |
+
("C", "O"),
|
212 |
+
],
|
213 |
+
),
|
214 |
+
),
|
215 |
+
# Column dtype applied across the board. Index unaffected.
|
216 |
+
(
|
217 |
+
{"column_dtypes": f"{tm.ENDIAN}U4"},
|
218 |
+
np.rec.array(
|
219 |
+
[("0", "1", "0.2", "a"), ("1", "2", "1.5", "bc")],
|
220 |
+
dtype=[
|
221 |
+
("index", f"{tm.ENDIAN}i8"),
|
222 |
+
("A", f"{tm.ENDIAN}U4"),
|
223 |
+
("B", f"{tm.ENDIAN}U4"),
|
224 |
+
("C", f"{tm.ENDIAN}U4"),
|
225 |
+
],
|
226 |
+
),
|
227 |
+
),
|
228 |
+
# Index dtype applied across the board. Columns unaffected.
|
229 |
+
(
|
230 |
+
{"index_dtypes": f"{tm.ENDIAN}U1"},
|
231 |
+
np.rec.array(
|
232 |
+
[("0", 1, 0.2, "a"), ("1", 2, 1.5, "bc")],
|
233 |
+
dtype=[
|
234 |
+
("index", f"{tm.ENDIAN}U1"),
|
235 |
+
("A", f"{tm.ENDIAN}i8"),
|
236 |
+
("B", f"{tm.ENDIAN}f8"),
|
237 |
+
("C", "O"),
|
238 |
+
],
|
239 |
+
),
|
240 |
+
),
|
241 |
+
# Pass in a type instance.
|
242 |
+
(
|
243 |
+
{"column_dtypes": str},
|
244 |
+
np.rec.array(
|
245 |
+
[("0", "1", "0.2", "a"), ("1", "2", "1.5", "bc")],
|
246 |
+
dtype=[
|
247 |
+
("index", f"{tm.ENDIAN}i8"),
|
248 |
+
("A", f"{tm.ENDIAN}U"),
|
249 |
+
("B", f"{tm.ENDIAN}U"),
|
250 |
+
("C", f"{tm.ENDIAN}U"),
|
251 |
+
],
|
252 |
+
),
|
253 |
+
),
|
254 |
+
# Pass in a dtype instance.
|
255 |
+
(
|
256 |
+
{"column_dtypes": np.dtype(np.str_)},
|
257 |
+
np.rec.array(
|
258 |
+
[("0", "1", "0.2", "a"), ("1", "2", "1.5", "bc")],
|
259 |
+
dtype=[
|
260 |
+
("index", f"{tm.ENDIAN}i8"),
|
261 |
+
("A", f"{tm.ENDIAN}U"),
|
262 |
+
("B", f"{tm.ENDIAN}U"),
|
263 |
+
("C", f"{tm.ENDIAN}U"),
|
264 |
+
],
|
265 |
+
),
|
266 |
+
),
|
267 |
+
# Pass in a dictionary (name-only).
|
268 |
+
(
|
269 |
+
{
|
270 |
+
"column_dtypes": {
|
271 |
+
"A": np.int8,
|
272 |
+
"B": np.float32,
|
273 |
+
"C": f"{tm.ENDIAN}U2",
|
274 |
+
}
|
275 |
+
},
|
276 |
+
np.rec.array(
|
277 |
+
[("0", "1", "0.2", "a"), ("1", "2", "1.5", "bc")],
|
278 |
+
dtype=[
|
279 |
+
("index", f"{tm.ENDIAN}i8"),
|
280 |
+
("A", "i1"),
|
281 |
+
("B", f"{tm.ENDIAN}f4"),
|
282 |
+
("C", f"{tm.ENDIAN}U2"),
|
283 |
+
],
|
284 |
+
),
|
285 |
+
),
|
286 |
+
# Pass in a dictionary (indices-only).
|
287 |
+
(
|
288 |
+
{"index_dtypes": {0: "int16"}},
|
289 |
+
np.rec.array(
|
290 |
+
[(0, 1, 0.2, "a"), (1, 2, 1.5, "bc")],
|
291 |
+
dtype=[
|
292 |
+
("index", "i2"),
|
293 |
+
("A", f"{tm.ENDIAN}i8"),
|
294 |
+
("B", f"{tm.ENDIAN}f8"),
|
295 |
+
("C", "O"),
|
296 |
+
],
|
297 |
+
),
|
298 |
+
),
|
299 |
+
# Ignore index mappings if index is not True.
|
300 |
+
(
|
301 |
+
{"index": False, "index_dtypes": f"{tm.ENDIAN}U2"},
|
302 |
+
np.rec.array(
|
303 |
+
[(1, 0.2, "a"), (2, 1.5, "bc")],
|
304 |
+
dtype=[
|
305 |
+
("A", f"{tm.ENDIAN}i8"),
|
306 |
+
("B", f"{tm.ENDIAN}f8"),
|
307 |
+
("C", "O"),
|
308 |
+
],
|
309 |
+
),
|
310 |
+
),
|
311 |
+
# Non-existent names / indices in mapping should not error.
|
312 |
+
(
|
313 |
+
{"index_dtypes": {0: "int16", "not-there": "float32"}},
|
314 |
+
np.rec.array(
|
315 |
+
[(0, 1, 0.2, "a"), (1, 2, 1.5, "bc")],
|
316 |
+
dtype=[
|
317 |
+
("index", "i2"),
|
318 |
+
("A", f"{tm.ENDIAN}i8"),
|
319 |
+
("B", f"{tm.ENDIAN}f8"),
|
320 |
+
("C", "O"),
|
321 |
+
],
|
322 |
+
),
|
323 |
+
),
|
324 |
+
# Names / indices not in mapping default to array dtype.
|
325 |
+
(
|
326 |
+
{"column_dtypes": {"A": np.int8, "B": np.float32}},
|
327 |
+
np.rec.array(
|
328 |
+
[("0", "1", "0.2", "a"), ("1", "2", "1.5", "bc")],
|
329 |
+
dtype=[
|
330 |
+
("index", f"{tm.ENDIAN}i8"),
|
331 |
+
("A", "i1"),
|
332 |
+
("B", f"{tm.ENDIAN}f4"),
|
333 |
+
("C", "O"),
|
334 |
+
],
|
335 |
+
),
|
336 |
+
),
|
337 |
+
# Names / indices not in dtype mapping default to array dtype.
|
338 |
+
(
|
339 |
+
{"column_dtypes": {"A": np.dtype("int8"), "B": np.dtype("float32")}},
|
340 |
+
np.rec.array(
|
341 |
+
[("0", "1", "0.2", "a"), ("1", "2", "1.5", "bc")],
|
342 |
+
dtype=[
|
343 |
+
("index", f"{tm.ENDIAN}i8"),
|
344 |
+
("A", "i1"),
|
345 |
+
("B", f"{tm.ENDIAN}f4"),
|
346 |
+
("C", "O"),
|
347 |
+
],
|
348 |
+
),
|
349 |
+
),
|
350 |
+
# Mixture of everything.
|
351 |
+
(
|
352 |
+
{
|
353 |
+
"column_dtypes": {"A": np.int8, "B": np.float32},
|
354 |
+
"index_dtypes": f"{tm.ENDIAN}U2",
|
355 |
+
},
|
356 |
+
np.rec.array(
|
357 |
+
[("0", "1", "0.2", "a"), ("1", "2", "1.5", "bc")],
|
358 |
+
dtype=[
|
359 |
+
("index", f"{tm.ENDIAN}U2"),
|
360 |
+
("A", "i1"),
|
361 |
+
("B", f"{tm.ENDIAN}f4"),
|
362 |
+
("C", "O"),
|
363 |
+
],
|
364 |
+
),
|
365 |
+
),
|
366 |
+
# Invalid dype values.
|
367 |
+
(
|
368 |
+
{"index": False, "column_dtypes": []},
|
369 |
+
(ValueError, "Invalid dtype \\[\\] specified for column A"),
|
370 |
+
),
|
371 |
+
(
|
372 |
+
{"index": False, "column_dtypes": {"A": "int32", "B": 5}},
|
373 |
+
(ValueError, "Invalid dtype 5 specified for column B"),
|
374 |
+
),
|
375 |
+
# Numpy can't handle EA types, so check error is raised
|
376 |
+
(
|
377 |
+
{
|
378 |
+
"index": False,
|
379 |
+
"column_dtypes": {"A": "int32", "B": CategoricalDtype(["a", "b"])},
|
380 |
+
},
|
381 |
+
(ValueError, "Invalid dtype category specified for column B"),
|
382 |
+
),
|
383 |
+
# Check that bad types raise
|
384 |
+
(
|
385 |
+
{"index": False, "column_dtypes": {"A": "int32", "B": "foo"}},
|
386 |
+
(TypeError, "data type [\"']foo[\"'] not understood"),
|
387 |
+
),
|
388 |
+
],
|
389 |
+
)
|
390 |
+
def test_to_records_dtype(self, kwargs, expected):
|
391 |
+
# see GH#18146
|
392 |
+
df = DataFrame({"A": [1, 2], "B": [0.2, 1.5], "C": ["a", "bc"]})
|
393 |
+
|
394 |
+
if not isinstance(expected, np.rec.recarray):
|
395 |
+
with pytest.raises(expected[0], match=expected[1]):
|
396 |
+
df.to_records(**kwargs)
|
397 |
+
else:
|
398 |
+
result = df.to_records(**kwargs)
|
399 |
+
tm.assert_almost_equal(result, expected)
|
400 |
+
|
401 |
+
@pytest.mark.parametrize(
|
402 |
+
"df,kwargs,expected",
|
403 |
+
[
|
404 |
+
# MultiIndex in the index.
|
405 |
+
(
|
406 |
+
DataFrame(
|
407 |
+
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=list("abc")
|
408 |
+
).set_index(["a", "b"]),
|
409 |
+
{"column_dtypes": "float64", "index_dtypes": {0: "int32", 1: "int8"}},
|
410 |
+
np.rec.array(
|
411 |
+
[(1, 2, 3.0), (4, 5, 6.0), (7, 8, 9.0)],
|
412 |
+
dtype=[
|
413 |
+
("a", f"{tm.ENDIAN}i4"),
|
414 |
+
("b", "i1"),
|
415 |
+
("c", f"{tm.ENDIAN}f8"),
|
416 |
+
],
|
417 |
+
),
|
418 |
+
),
|
419 |
+
# MultiIndex in the columns.
|
420 |
+
(
|
421 |
+
DataFrame(
|
422 |
+
[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
|
423 |
+
columns=MultiIndex.from_tuples(
|
424 |
+
[("a", "d"), ("b", "e"), ("c", "f")]
|
425 |
+
),
|
426 |
+
),
|
427 |
+
{
|
428 |
+
"column_dtypes": {0: f"{tm.ENDIAN}U1", 2: "float32"},
|
429 |
+
"index_dtypes": "float32",
|
430 |
+
},
|
431 |
+
np.rec.array(
|
432 |
+
[(0.0, "1", 2, 3.0), (1.0, "4", 5, 6.0), (2.0, "7", 8, 9.0)],
|
433 |
+
dtype=[
|
434 |
+
("index", f"{tm.ENDIAN}f4"),
|
435 |
+
("('a', 'd')", f"{tm.ENDIAN}U1"),
|
436 |
+
("('b', 'e')", f"{tm.ENDIAN}i8"),
|
437 |
+
("('c', 'f')", f"{tm.ENDIAN}f4"),
|
438 |
+
],
|
439 |
+
),
|
440 |
+
),
|
441 |
+
# MultiIndex in both the columns and index.
|
442 |
+
(
|
443 |
+
DataFrame(
|
444 |
+
[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
|
445 |
+
columns=MultiIndex.from_tuples(
|
446 |
+
[("a", "d"), ("b", "e"), ("c", "f")], names=list("ab")
|
447 |
+
),
|
448 |
+
index=MultiIndex.from_tuples(
|
449 |
+
[("d", -4), ("d", -5), ("f", -6)], names=list("cd")
|
450 |
+
),
|
451 |
+
),
|
452 |
+
{
|
453 |
+
"column_dtypes": "float64",
|
454 |
+
"index_dtypes": {0: f"{tm.ENDIAN}U2", 1: "int8"},
|
455 |
+
},
|
456 |
+
np.rec.array(
|
457 |
+
[
|
458 |
+
("d", -4, 1.0, 2.0, 3.0),
|
459 |
+
("d", -5, 4.0, 5.0, 6.0),
|
460 |
+
("f", -6, 7, 8, 9.0),
|
461 |
+
],
|
462 |
+
dtype=[
|
463 |
+
("c", f"{tm.ENDIAN}U2"),
|
464 |
+
("d", "i1"),
|
465 |
+
("('a', 'd')", f"{tm.ENDIAN}f8"),
|
466 |
+
("('b', 'e')", f"{tm.ENDIAN}f8"),
|
467 |
+
("('c', 'f')", f"{tm.ENDIAN}f8"),
|
468 |
+
],
|
469 |
+
),
|
470 |
+
),
|
471 |
+
],
|
472 |
+
)
|
473 |
+
def test_to_records_dtype_mi(self, df, kwargs, expected):
|
474 |
+
# see GH#18146
|
475 |
+
result = df.to_records(**kwargs)
|
476 |
+
tm.assert_almost_equal(result, expected)
|
477 |
+
|
478 |
+
def test_to_records_dict_like(self):
|
479 |
+
# see GH#18146
|
480 |
+
class DictLike:
|
481 |
+
def __init__(self, **kwargs) -> None:
|
482 |
+
self.d = kwargs.copy()
|
483 |
+
|
484 |
+
def __getitem__(self, key):
|
485 |
+
return self.d.__getitem__(key)
|
486 |
+
|
487 |
+
def __contains__(self, key) -> bool:
|
488 |
+
return key in self.d
|
489 |
+
|
490 |
+
def keys(self):
|
491 |
+
return self.d.keys()
|
492 |
+
|
493 |
+
df = DataFrame({"A": [1, 2], "B": [0.2, 1.5], "C": ["a", "bc"]})
|
494 |
+
|
495 |
+
dtype_mappings = {
|
496 |
+
"column_dtypes": DictLike(A=np.int8, B=np.float32),
|
497 |
+
"index_dtypes": f"{tm.ENDIAN}U2",
|
498 |
+
}
|
499 |
+
|
500 |
+
result = df.to_records(**dtype_mappings)
|
501 |
+
expected = np.rec.array(
|
502 |
+
[("0", "1", "0.2", "a"), ("1", "2", "1.5", "bc")],
|
503 |
+
dtype=[
|
504 |
+
("index", f"{tm.ENDIAN}U2"),
|
505 |
+
("A", "i1"),
|
506 |
+
("B", f"{tm.ENDIAN}f4"),
|
507 |
+
("C", "O"),
|
508 |
+
],
|
509 |
+
)
|
510 |
+
tm.assert_almost_equal(result, expected)
|
511 |
+
|
512 |
+
@pytest.mark.parametrize("tz", ["UTC", "GMT", "US/Eastern"])
|
513 |
+
def test_to_records_datetimeindex_with_tz(self, tz):
|
514 |
+
# GH#13937
|
515 |
+
dr = date_range("2016-01-01", periods=10, freq="s", tz=tz)
|
516 |
+
|
517 |
+
df = DataFrame({"datetime": dr}, index=dr)
|
518 |
+
|
519 |
+
expected = df.to_records()
|
520 |
+
result = df.tz_convert("UTC").to_records()
|
521 |
+
|
522 |
+
# both converted to UTC, so they are equal
|
523 |
+
tm.assert_numpy_array_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/methods/test_tz_localize.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import timezone
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
DataFrame,
|
8 |
+
Series,
|
9 |
+
date_range,
|
10 |
+
)
|
11 |
+
import pandas._testing as tm
|
12 |
+
|
13 |
+
|
14 |
+
class TestTZLocalize:
|
15 |
+
# See also:
|
16 |
+
# test_tz_convert_and_localize in test_tz_convert
|
17 |
+
|
18 |
+
def test_tz_localize(self, frame_or_series):
|
19 |
+
rng = date_range("1/1/2011", periods=100, freq="h")
|
20 |
+
|
21 |
+
obj = DataFrame({"a": 1}, index=rng)
|
22 |
+
obj = tm.get_obj(obj, frame_or_series)
|
23 |
+
|
24 |
+
result = obj.tz_localize("utc")
|
25 |
+
expected = DataFrame({"a": 1}, rng.tz_localize("UTC"))
|
26 |
+
expected = tm.get_obj(expected, frame_or_series)
|
27 |
+
|
28 |
+
assert result.index.tz is timezone.utc
|
29 |
+
tm.assert_equal(result, expected)
|
30 |
+
|
31 |
+
def test_tz_localize_axis1(self):
|
32 |
+
rng = date_range("1/1/2011", periods=100, freq="h")
|
33 |
+
|
34 |
+
df = DataFrame({"a": 1}, index=rng)
|
35 |
+
|
36 |
+
df = df.T
|
37 |
+
result = df.tz_localize("utc", axis=1)
|
38 |
+
assert result.columns.tz is timezone.utc
|
39 |
+
|
40 |
+
expected = DataFrame({"a": 1}, rng.tz_localize("UTC"))
|
41 |
+
|
42 |
+
tm.assert_frame_equal(result, expected.T)
|
43 |
+
|
44 |
+
def test_tz_localize_naive(self, frame_or_series):
|
45 |
+
# Can't localize if already tz-aware
|
46 |
+
rng = date_range("1/1/2011", periods=100, freq="h", tz="utc")
|
47 |
+
ts = Series(1, index=rng)
|
48 |
+
ts = frame_or_series(ts)
|
49 |
+
|
50 |
+
with pytest.raises(TypeError, match="Already tz-aware"):
|
51 |
+
ts.tz_localize("US/Eastern")
|
52 |
+
|
53 |
+
@pytest.mark.parametrize("copy", [True, False])
|
54 |
+
def test_tz_localize_copy_inplace_mutate(self, copy, frame_or_series):
|
55 |
+
# GH#6326
|
56 |
+
obj = frame_or_series(
|
57 |
+
np.arange(0, 5), index=date_range("20131027", periods=5, freq="1h", tz=None)
|
58 |
+
)
|
59 |
+
orig = obj.copy()
|
60 |
+
result = obj.tz_localize("UTC", copy=copy)
|
61 |
+
expected = frame_or_series(
|
62 |
+
np.arange(0, 5),
|
63 |
+
index=date_range("20131027", periods=5, freq="1h", tz="UTC"),
|
64 |
+
)
|
65 |
+
tm.assert_equal(result, expected)
|
66 |
+
tm.assert_equal(obj, orig)
|
67 |
+
assert result.index is not obj.index
|
68 |
+
assert result is not obj
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_alter_axes.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
import pytz
|
4 |
+
|
5 |
+
from pandas import DataFrame
|
6 |
+
import pandas._testing as tm
|
7 |
+
|
8 |
+
|
9 |
+
class TestDataFrameAlterAxes:
|
10 |
+
# Tests for setting index/columns attributes directly (i.e. __setattr__)
|
11 |
+
|
12 |
+
def test_set_axis_setattr_index(self):
|
13 |
+
# GH 6785
|
14 |
+
# set the index manually
|
15 |
+
|
16 |
+
df = DataFrame([{"ts": datetime(2014, 4, 1, tzinfo=pytz.utc), "foo": 1}])
|
17 |
+
expected = df.set_index("ts")
|
18 |
+
df.index = df["ts"]
|
19 |
+
df.pop("ts")
|
20 |
+
tm.assert_frame_equal(df, expected)
|
21 |
+
|
22 |
+
# Renaming
|
23 |
+
|
24 |
+
def test_assign_columns(self, float_frame):
|
25 |
+
float_frame["hi"] = "there"
|
26 |
+
|
27 |
+
df = float_frame.copy()
|
28 |
+
df.columns = ["foo", "bar", "baz", "quux", "foo2"]
|
29 |
+
tm.assert_series_equal(float_frame["C"], df["baz"], check_names=False)
|
30 |
+
tm.assert_series_equal(float_frame["hi"], df["foo2"], check_names=False)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_arithmetic.py
ADDED
@@ -0,0 +1,2136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import deque
|
2 |
+
from datetime import (
|
3 |
+
datetime,
|
4 |
+
timezone,
|
5 |
+
)
|
6 |
+
from enum import Enum
|
7 |
+
import functools
|
8 |
+
import operator
|
9 |
+
import re
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import pytest
|
13 |
+
|
14 |
+
from pandas._config import using_pyarrow_string_dtype
|
15 |
+
|
16 |
+
import pandas.util._test_decorators as td
|
17 |
+
|
18 |
+
import pandas as pd
|
19 |
+
from pandas import (
|
20 |
+
DataFrame,
|
21 |
+
Index,
|
22 |
+
MultiIndex,
|
23 |
+
Series,
|
24 |
+
)
|
25 |
+
import pandas._testing as tm
|
26 |
+
from pandas.core.computation import expressions as expr
|
27 |
+
from pandas.tests.frame.common import (
|
28 |
+
_check_mixed_float,
|
29 |
+
_check_mixed_int,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
@pytest.fixture
|
34 |
+
def simple_frame():
|
35 |
+
"""
|
36 |
+
Fixture for simple 3x3 DataFrame
|
37 |
+
|
38 |
+
Columns are ['one', 'two', 'three'], index is ['a', 'b', 'c'].
|
39 |
+
|
40 |
+
one two three
|
41 |
+
a 1.0 2.0 3.0
|
42 |
+
b 4.0 5.0 6.0
|
43 |
+
c 7.0 8.0 9.0
|
44 |
+
"""
|
45 |
+
arr = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])
|
46 |
+
|
47 |
+
return DataFrame(arr, columns=["one", "two", "three"], index=["a", "b", "c"])
|
48 |
+
|
49 |
+
|
50 |
+
@pytest.fixture(autouse=True, params=[0, 100], ids=["numexpr", "python"])
|
51 |
+
def switch_numexpr_min_elements(request, monkeypatch):
|
52 |
+
with monkeypatch.context() as m:
|
53 |
+
m.setattr(expr, "_MIN_ELEMENTS", request.param)
|
54 |
+
yield request.param
|
55 |
+
|
56 |
+
|
57 |
+
class DummyElement:
|
58 |
+
def __init__(self, value, dtype) -> None:
|
59 |
+
self.value = value
|
60 |
+
self.dtype = np.dtype(dtype)
|
61 |
+
|
62 |
+
def __array__(self, dtype=None, copy=None):
|
63 |
+
return np.array(self.value, dtype=self.dtype)
|
64 |
+
|
65 |
+
def __str__(self) -> str:
|
66 |
+
return f"DummyElement({self.value}, {self.dtype})"
|
67 |
+
|
68 |
+
def __repr__(self) -> str:
|
69 |
+
return str(self)
|
70 |
+
|
71 |
+
def astype(self, dtype, copy=False):
|
72 |
+
self.dtype = dtype
|
73 |
+
return self
|
74 |
+
|
75 |
+
def view(self, dtype):
|
76 |
+
return type(self)(self.value.view(dtype), dtype)
|
77 |
+
|
78 |
+
def any(self, axis=None):
|
79 |
+
return bool(self.value)
|
80 |
+
|
81 |
+
|
82 |
+
# -------------------------------------------------------------------
|
83 |
+
# Comparisons
|
84 |
+
|
85 |
+
|
86 |
+
class TestFrameComparisons:
|
87 |
+
# Specifically _not_ flex-comparisons
|
88 |
+
|
89 |
+
def test_comparison_with_categorical_dtype(self):
|
90 |
+
# GH#12564
|
91 |
+
|
92 |
+
df = DataFrame({"A": ["foo", "bar", "baz"]})
|
93 |
+
exp = DataFrame({"A": [True, False, False]})
|
94 |
+
|
95 |
+
res = df == "foo"
|
96 |
+
tm.assert_frame_equal(res, exp)
|
97 |
+
|
98 |
+
# casting to categorical shouldn't affect the result
|
99 |
+
df["A"] = df["A"].astype("category")
|
100 |
+
|
101 |
+
res = df == "foo"
|
102 |
+
tm.assert_frame_equal(res, exp)
|
103 |
+
|
104 |
+
def test_frame_in_list(self):
|
105 |
+
# GH#12689 this should raise at the DataFrame level, not blocks
|
106 |
+
df = DataFrame(
|
107 |
+
np.random.default_rng(2).standard_normal((6, 4)), columns=list("ABCD")
|
108 |
+
)
|
109 |
+
msg = "The truth value of a DataFrame is ambiguous"
|
110 |
+
with pytest.raises(ValueError, match=msg):
|
111 |
+
df in [None]
|
112 |
+
|
113 |
+
@pytest.mark.parametrize(
|
114 |
+
"arg, arg2",
|
115 |
+
[
|
116 |
+
[
|
117 |
+
{
|
118 |
+
"a": np.random.default_rng(2).integers(10, size=10),
|
119 |
+
"b": pd.date_range("20010101", periods=10),
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"a": np.random.default_rng(2).integers(10, size=10),
|
123 |
+
"b": np.random.default_rng(2).integers(10, size=10),
|
124 |
+
},
|
125 |
+
],
|
126 |
+
[
|
127 |
+
{
|
128 |
+
"a": np.random.default_rng(2).integers(10, size=10),
|
129 |
+
"b": np.random.default_rng(2).integers(10, size=10),
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"a": np.random.default_rng(2).integers(10, size=10),
|
133 |
+
"b": pd.date_range("20010101", periods=10),
|
134 |
+
},
|
135 |
+
],
|
136 |
+
[
|
137 |
+
{
|
138 |
+
"a": pd.date_range("20010101", periods=10),
|
139 |
+
"b": pd.date_range("20010101", periods=10),
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"a": np.random.default_rng(2).integers(10, size=10),
|
143 |
+
"b": np.random.default_rng(2).integers(10, size=10),
|
144 |
+
},
|
145 |
+
],
|
146 |
+
[
|
147 |
+
{
|
148 |
+
"a": np.random.default_rng(2).integers(10, size=10),
|
149 |
+
"b": pd.date_range("20010101", periods=10),
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"a": pd.date_range("20010101", periods=10),
|
153 |
+
"b": pd.date_range("20010101", periods=10),
|
154 |
+
},
|
155 |
+
],
|
156 |
+
],
|
157 |
+
)
|
158 |
+
def test_comparison_invalid(self, arg, arg2):
|
159 |
+
# GH4968
|
160 |
+
# invalid date/int comparisons
|
161 |
+
x = DataFrame(arg)
|
162 |
+
y = DataFrame(arg2)
|
163 |
+
# we expect the result to match Series comparisons for
|
164 |
+
# == and !=, inequalities should raise
|
165 |
+
result = x == y
|
166 |
+
expected = DataFrame(
|
167 |
+
{col: x[col] == y[col] for col in x.columns},
|
168 |
+
index=x.index,
|
169 |
+
columns=x.columns,
|
170 |
+
)
|
171 |
+
tm.assert_frame_equal(result, expected)
|
172 |
+
|
173 |
+
result = x != y
|
174 |
+
expected = DataFrame(
|
175 |
+
{col: x[col] != y[col] for col in x.columns},
|
176 |
+
index=x.index,
|
177 |
+
columns=x.columns,
|
178 |
+
)
|
179 |
+
tm.assert_frame_equal(result, expected)
|
180 |
+
|
181 |
+
msgs = [
|
182 |
+
r"Invalid comparison between dtype=datetime64\[ns\] and ndarray",
|
183 |
+
"invalid type promotion",
|
184 |
+
(
|
185 |
+
# npdev 1.20.0
|
186 |
+
r"The DTypes <class 'numpy.dtype\[.*\]'> and "
|
187 |
+
r"<class 'numpy.dtype\[.*\]'> do not have a common DType."
|
188 |
+
),
|
189 |
+
]
|
190 |
+
msg = "|".join(msgs)
|
191 |
+
with pytest.raises(TypeError, match=msg):
|
192 |
+
x >= y
|
193 |
+
with pytest.raises(TypeError, match=msg):
|
194 |
+
x > y
|
195 |
+
with pytest.raises(TypeError, match=msg):
|
196 |
+
x < y
|
197 |
+
with pytest.raises(TypeError, match=msg):
|
198 |
+
x <= y
|
199 |
+
|
200 |
+
@pytest.mark.parametrize(
|
201 |
+
"left, right",
|
202 |
+
[
|
203 |
+
("gt", "lt"),
|
204 |
+
("lt", "gt"),
|
205 |
+
("ge", "le"),
|
206 |
+
("le", "ge"),
|
207 |
+
("eq", "eq"),
|
208 |
+
("ne", "ne"),
|
209 |
+
],
|
210 |
+
)
|
211 |
+
def test_timestamp_compare(self, left, right):
|
212 |
+
# make sure we can compare Timestamps on the right AND left hand side
|
213 |
+
# GH#4982
|
214 |
+
df = DataFrame(
|
215 |
+
{
|
216 |
+
"dates1": pd.date_range("20010101", periods=10),
|
217 |
+
"dates2": pd.date_range("20010102", periods=10),
|
218 |
+
"intcol": np.random.default_rng(2).integers(1000000000, size=10),
|
219 |
+
"floatcol": np.random.default_rng(2).standard_normal(10),
|
220 |
+
"stringcol": [chr(100 + i) for i in range(10)],
|
221 |
+
}
|
222 |
+
)
|
223 |
+
df.loc[np.random.default_rng(2).random(len(df)) > 0.5, "dates2"] = pd.NaT
|
224 |
+
left_f = getattr(operator, left)
|
225 |
+
right_f = getattr(operator, right)
|
226 |
+
|
227 |
+
# no nats
|
228 |
+
if left in ["eq", "ne"]:
|
229 |
+
expected = left_f(df, pd.Timestamp("20010109"))
|
230 |
+
result = right_f(pd.Timestamp("20010109"), df)
|
231 |
+
tm.assert_frame_equal(result, expected)
|
232 |
+
else:
|
233 |
+
msg = (
|
234 |
+
"'(<|>)=?' not supported between "
|
235 |
+
"instances of 'numpy.ndarray' and 'Timestamp'"
|
236 |
+
)
|
237 |
+
with pytest.raises(TypeError, match=msg):
|
238 |
+
left_f(df, pd.Timestamp("20010109"))
|
239 |
+
with pytest.raises(TypeError, match=msg):
|
240 |
+
right_f(pd.Timestamp("20010109"), df)
|
241 |
+
# nats
|
242 |
+
if left in ["eq", "ne"]:
|
243 |
+
expected = left_f(df, pd.Timestamp("nat"))
|
244 |
+
result = right_f(pd.Timestamp("nat"), df)
|
245 |
+
tm.assert_frame_equal(result, expected)
|
246 |
+
else:
|
247 |
+
msg = (
|
248 |
+
"'(<|>)=?' not supported between "
|
249 |
+
"instances of 'numpy.ndarray' and 'NaTType'"
|
250 |
+
)
|
251 |
+
with pytest.raises(TypeError, match=msg):
|
252 |
+
left_f(df, pd.Timestamp("nat"))
|
253 |
+
with pytest.raises(TypeError, match=msg):
|
254 |
+
right_f(pd.Timestamp("nat"), df)
|
255 |
+
|
256 |
+
@pytest.mark.xfail(
|
257 |
+
using_pyarrow_string_dtype(), reason="can't compare string and int"
|
258 |
+
)
|
259 |
+
def test_mixed_comparison(self):
|
260 |
+
# GH#13128, GH#22163 != datetime64 vs non-dt64 should be False,
|
261 |
+
# not raise TypeError
|
262 |
+
# (this appears to be fixed before GH#22163, not sure when)
|
263 |
+
df = DataFrame([["1989-08-01", 1], ["1989-08-01", 2]])
|
264 |
+
other = DataFrame([["a", "b"], ["c", "d"]])
|
265 |
+
|
266 |
+
result = df == other
|
267 |
+
assert not result.any().any()
|
268 |
+
|
269 |
+
result = df != other
|
270 |
+
assert result.all().all()
|
271 |
+
|
272 |
+
def test_df_boolean_comparison_error(self):
|
273 |
+
# GH#4576, GH#22880
|
274 |
+
# comparing DataFrame against list/tuple with len(obj) matching
|
275 |
+
# len(df.columns) is supported as of GH#22800
|
276 |
+
df = DataFrame(np.arange(6).reshape((3, 2)))
|
277 |
+
|
278 |
+
expected = DataFrame([[False, False], [True, False], [False, False]])
|
279 |
+
|
280 |
+
result = df == (2, 2)
|
281 |
+
tm.assert_frame_equal(result, expected)
|
282 |
+
|
283 |
+
result = df == [2, 2]
|
284 |
+
tm.assert_frame_equal(result, expected)
|
285 |
+
|
286 |
+
def test_df_float_none_comparison(self):
|
287 |
+
df = DataFrame(
|
288 |
+
np.random.default_rng(2).standard_normal((8, 3)),
|
289 |
+
index=range(8),
|
290 |
+
columns=["A", "B", "C"],
|
291 |
+
)
|
292 |
+
|
293 |
+
result = df.__eq__(None)
|
294 |
+
assert not result.any().any()
|
295 |
+
|
296 |
+
def test_df_string_comparison(self):
|
297 |
+
df = DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}])
|
298 |
+
mask_a = df.a > 1
|
299 |
+
tm.assert_frame_equal(df[mask_a], df.loc[1:1, :])
|
300 |
+
tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :])
|
301 |
+
|
302 |
+
mask_b = df.b == "foo"
|
303 |
+
tm.assert_frame_equal(df[mask_b], df.loc[0:0, :])
|
304 |
+
tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :])
|
305 |
+
|
306 |
+
|
307 |
+
class TestFrameFlexComparisons:
|
308 |
+
# TODO: test_bool_flex_frame needs a better name
|
309 |
+
@pytest.mark.parametrize("op", ["eq", "ne", "gt", "lt", "ge", "le"])
|
310 |
+
def test_bool_flex_frame(self, op):
|
311 |
+
data = np.random.default_rng(2).standard_normal((5, 3))
|
312 |
+
other_data = np.random.default_rng(2).standard_normal((5, 3))
|
313 |
+
df = DataFrame(data)
|
314 |
+
other = DataFrame(other_data)
|
315 |
+
ndim_5 = np.ones(df.shape + (1, 3))
|
316 |
+
|
317 |
+
# DataFrame
|
318 |
+
assert df.eq(df).values.all()
|
319 |
+
assert not df.ne(df).values.any()
|
320 |
+
f = getattr(df, op)
|
321 |
+
o = getattr(operator, op)
|
322 |
+
# No NAs
|
323 |
+
tm.assert_frame_equal(f(other), o(df, other))
|
324 |
+
# Unaligned
|
325 |
+
part_o = other.loc[3:, 1:].copy()
|
326 |
+
rs = f(part_o)
|
327 |
+
xp = o(df, part_o.reindex(index=df.index, columns=df.columns))
|
328 |
+
tm.assert_frame_equal(rs, xp)
|
329 |
+
# ndarray
|
330 |
+
tm.assert_frame_equal(f(other.values), o(df, other.values))
|
331 |
+
# scalar
|
332 |
+
tm.assert_frame_equal(f(0), o(df, 0))
|
333 |
+
# NAs
|
334 |
+
msg = "Unable to coerce to Series/DataFrame"
|
335 |
+
tm.assert_frame_equal(f(np.nan), o(df, np.nan))
|
336 |
+
with pytest.raises(ValueError, match=msg):
|
337 |
+
f(ndim_5)
|
338 |
+
|
339 |
+
@pytest.mark.parametrize("box", [np.array, Series])
|
340 |
+
def test_bool_flex_series(self, box):
|
341 |
+
# Series
|
342 |
+
# list/tuple
|
343 |
+
data = np.random.default_rng(2).standard_normal((5, 3))
|
344 |
+
df = DataFrame(data)
|
345 |
+
idx_ser = box(np.random.default_rng(2).standard_normal(5))
|
346 |
+
col_ser = box(np.random.default_rng(2).standard_normal(3))
|
347 |
+
|
348 |
+
idx_eq = df.eq(idx_ser, axis=0)
|
349 |
+
col_eq = df.eq(col_ser)
|
350 |
+
idx_ne = df.ne(idx_ser, axis=0)
|
351 |
+
col_ne = df.ne(col_ser)
|
352 |
+
tm.assert_frame_equal(col_eq, df == Series(col_ser))
|
353 |
+
tm.assert_frame_equal(col_eq, -col_ne)
|
354 |
+
tm.assert_frame_equal(idx_eq, -idx_ne)
|
355 |
+
tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T)
|
356 |
+
tm.assert_frame_equal(col_eq, df.eq(list(col_ser)))
|
357 |
+
tm.assert_frame_equal(idx_eq, df.eq(Series(idx_ser), axis=0))
|
358 |
+
tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0))
|
359 |
+
|
360 |
+
idx_gt = df.gt(idx_ser, axis=0)
|
361 |
+
col_gt = df.gt(col_ser)
|
362 |
+
idx_le = df.le(idx_ser, axis=0)
|
363 |
+
col_le = df.le(col_ser)
|
364 |
+
|
365 |
+
tm.assert_frame_equal(col_gt, df > Series(col_ser))
|
366 |
+
tm.assert_frame_equal(col_gt, -col_le)
|
367 |
+
tm.assert_frame_equal(idx_gt, -idx_le)
|
368 |
+
tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T)
|
369 |
+
|
370 |
+
idx_ge = df.ge(idx_ser, axis=0)
|
371 |
+
col_ge = df.ge(col_ser)
|
372 |
+
idx_lt = df.lt(idx_ser, axis=0)
|
373 |
+
col_lt = df.lt(col_ser)
|
374 |
+
tm.assert_frame_equal(col_ge, df >= Series(col_ser))
|
375 |
+
tm.assert_frame_equal(col_ge, -col_lt)
|
376 |
+
tm.assert_frame_equal(idx_ge, -idx_lt)
|
377 |
+
tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T)
|
378 |
+
|
379 |
+
idx_ser = Series(np.random.default_rng(2).standard_normal(5))
|
380 |
+
col_ser = Series(np.random.default_rng(2).standard_normal(3))
|
381 |
+
|
382 |
+
def test_bool_flex_frame_na(self):
|
383 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
384 |
+
# NA
|
385 |
+
df.loc[0, 0] = np.nan
|
386 |
+
rs = df.eq(df)
|
387 |
+
assert not rs.loc[0, 0]
|
388 |
+
rs = df.ne(df)
|
389 |
+
assert rs.loc[0, 0]
|
390 |
+
rs = df.gt(df)
|
391 |
+
assert not rs.loc[0, 0]
|
392 |
+
rs = df.lt(df)
|
393 |
+
assert not rs.loc[0, 0]
|
394 |
+
rs = df.ge(df)
|
395 |
+
assert not rs.loc[0, 0]
|
396 |
+
rs = df.le(df)
|
397 |
+
assert not rs.loc[0, 0]
|
398 |
+
|
399 |
+
def test_bool_flex_frame_complex_dtype(self):
|
400 |
+
# complex
|
401 |
+
arr = np.array([np.nan, 1, 6, np.nan])
|
402 |
+
arr2 = np.array([2j, np.nan, 7, None])
|
403 |
+
df = DataFrame({"a": arr})
|
404 |
+
df2 = DataFrame({"a": arr2})
|
405 |
+
|
406 |
+
msg = "|".join(
|
407 |
+
[
|
408 |
+
"'>' not supported between instances of '.*' and 'complex'",
|
409 |
+
r"unorderable types: .*complex\(\)", # PY35
|
410 |
+
]
|
411 |
+
)
|
412 |
+
with pytest.raises(TypeError, match=msg):
|
413 |
+
# inequalities are not well-defined for complex numbers
|
414 |
+
df.gt(df2)
|
415 |
+
with pytest.raises(TypeError, match=msg):
|
416 |
+
# regression test that we get the same behavior for Series
|
417 |
+
df["a"].gt(df2["a"])
|
418 |
+
with pytest.raises(TypeError, match=msg):
|
419 |
+
# Check that we match numpy behavior here
|
420 |
+
df.values > df2.values
|
421 |
+
|
422 |
+
rs = df.ne(df2)
|
423 |
+
assert rs.values.all()
|
424 |
+
|
425 |
+
arr3 = np.array([2j, np.nan, None])
|
426 |
+
df3 = DataFrame({"a": arr3})
|
427 |
+
|
428 |
+
with pytest.raises(TypeError, match=msg):
|
429 |
+
# inequalities are not well-defined for complex numbers
|
430 |
+
df3.gt(2j)
|
431 |
+
with pytest.raises(TypeError, match=msg):
|
432 |
+
# regression test that we get the same behavior for Series
|
433 |
+
df3["a"].gt(2j)
|
434 |
+
with pytest.raises(TypeError, match=msg):
|
435 |
+
# Check that we match numpy behavior here
|
436 |
+
df3.values > 2j
|
437 |
+
|
438 |
+
def test_bool_flex_frame_object_dtype(self):
|
439 |
+
# corner, dtype=object
|
440 |
+
df1 = DataFrame({"col": ["foo", np.nan, "bar"]}, dtype=object)
|
441 |
+
df2 = DataFrame({"col": ["foo", datetime.now(), "bar"]}, dtype=object)
|
442 |
+
result = df1.ne(df2)
|
443 |
+
exp = DataFrame({"col": [False, True, False]})
|
444 |
+
tm.assert_frame_equal(result, exp)
|
445 |
+
|
446 |
+
def test_flex_comparison_nat(self):
|
447 |
+
# GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT,
|
448 |
+
# and _definitely_ not be NaN
|
449 |
+
df = DataFrame([pd.NaT])
|
450 |
+
|
451 |
+
result = df == pd.NaT
|
452 |
+
# result.iloc[0, 0] is a np.bool_ object
|
453 |
+
assert result.iloc[0, 0].item() is False
|
454 |
+
|
455 |
+
result = df.eq(pd.NaT)
|
456 |
+
assert result.iloc[0, 0].item() is False
|
457 |
+
|
458 |
+
result = df != pd.NaT
|
459 |
+
assert result.iloc[0, 0].item() is True
|
460 |
+
|
461 |
+
result = df.ne(pd.NaT)
|
462 |
+
assert result.iloc[0, 0].item() is True
|
463 |
+
|
464 |
+
@pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"])
|
465 |
+
def test_df_flex_cmp_constant_return_types(self, opname):
|
466 |
+
# GH 15077, non-empty DataFrame
|
467 |
+
df = DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]})
|
468 |
+
const = 2
|
469 |
+
|
470 |
+
result = getattr(df, opname)(const).dtypes.value_counts()
|
471 |
+
tm.assert_series_equal(
|
472 |
+
result, Series([2], index=[np.dtype(bool)], name="count")
|
473 |
+
)
|
474 |
+
|
475 |
+
@pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"])
|
476 |
+
def test_df_flex_cmp_constant_return_types_empty(self, opname):
|
477 |
+
# GH 15077 empty DataFrame
|
478 |
+
df = DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]})
|
479 |
+
const = 2
|
480 |
+
|
481 |
+
empty = df.iloc[:0]
|
482 |
+
result = getattr(empty, opname)(const).dtypes.value_counts()
|
483 |
+
tm.assert_series_equal(
|
484 |
+
result, Series([2], index=[np.dtype(bool)], name="count")
|
485 |
+
)
|
486 |
+
|
487 |
+
def test_df_flex_cmp_ea_dtype_with_ndarray_series(self):
|
488 |
+
ii = pd.IntervalIndex.from_breaks([1, 2, 3])
|
489 |
+
df = DataFrame({"A": ii, "B": ii})
|
490 |
+
|
491 |
+
ser = Series([0, 0])
|
492 |
+
res = df.eq(ser, axis=0)
|
493 |
+
|
494 |
+
expected = DataFrame({"A": [False, False], "B": [False, False]})
|
495 |
+
tm.assert_frame_equal(res, expected)
|
496 |
+
|
497 |
+
ser2 = Series([1, 2], index=["A", "B"])
|
498 |
+
res2 = df.eq(ser2, axis=1)
|
499 |
+
tm.assert_frame_equal(res2, expected)
|
500 |
+
|
501 |
+
|
502 |
+
# -------------------------------------------------------------------
|
503 |
+
# Arithmetic
|
504 |
+
|
505 |
+
|
506 |
+
class TestFrameFlexArithmetic:
|
507 |
+
def test_floordiv_axis0(self):
|
508 |
+
# make sure we df.floordiv(ser, axis=0) matches column-wise result
|
509 |
+
arr = np.arange(3)
|
510 |
+
ser = Series(arr)
|
511 |
+
df = DataFrame({"A": ser, "B": ser})
|
512 |
+
|
513 |
+
result = df.floordiv(ser, axis=0)
|
514 |
+
|
515 |
+
expected = DataFrame({col: df[col] // ser for col in df.columns})
|
516 |
+
|
517 |
+
tm.assert_frame_equal(result, expected)
|
518 |
+
|
519 |
+
result2 = df.floordiv(ser.values, axis=0)
|
520 |
+
tm.assert_frame_equal(result2, expected)
|
521 |
+
|
522 |
+
def test_df_add_td64_columnwise(self):
|
523 |
+
# GH 22534 Check that column-wise addition broadcasts correctly
|
524 |
+
dti = pd.date_range("2016-01-01", periods=10)
|
525 |
+
tdi = pd.timedelta_range("1", periods=10)
|
526 |
+
tser = Series(tdi)
|
527 |
+
df = DataFrame({0: dti, 1: tdi})
|
528 |
+
|
529 |
+
result = df.add(tser, axis=0)
|
530 |
+
expected = DataFrame({0: dti + tdi, 1: tdi + tdi})
|
531 |
+
tm.assert_frame_equal(result, expected)
|
532 |
+
|
533 |
+
def test_df_add_flex_filled_mixed_dtypes(self):
|
534 |
+
# GH 19611
|
535 |
+
dti = pd.date_range("2016-01-01", periods=3)
|
536 |
+
ser = Series(["1 Day", "NaT", "2 Days"], dtype="timedelta64[ns]")
|
537 |
+
df = DataFrame({"A": dti, "B": ser})
|
538 |
+
other = DataFrame({"A": ser, "B": ser})
|
539 |
+
fill = pd.Timedelta(days=1).to_timedelta64()
|
540 |
+
result = df.add(other, fill_value=fill)
|
541 |
+
|
542 |
+
expected = DataFrame(
|
543 |
+
{
|
544 |
+
"A": Series(
|
545 |
+
["2016-01-02", "2016-01-03", "2016-01-05"], dtype="datetime64[ns]"
|
546 |
+
),
|
547 |
+
"B": ser * 2,
|
548 |
+
}
|
549 |
+
)
|
550 |
+
tm.assert_frame_equal(result, expected)
|
551 |
+
|
552 |
+
def test_arith_flex_frame(
|
553 |
+
self, all_arithmetic_operators, float_frame, mixed_float_frame
|
554 |
+
):
|
555 |
+
# one instance of parametrized fixture
|
556 |
+
op = all_arithmetic_operators
|
557 |
+
|
558 |
+
def f(x, y):
|
559 |
+
# r-versions not in operator-stdlib; get op without "r" and invert
|
560 |
+
if op.startswith("__r"):
|
561 |
+
return getattr(operator, op.replace("__r", "__"))(y, x)
|
562 |
+
return getattr(operator, op)(x, y)
|
563 |
+
|
564 |
+
result = getattr(float_frame, op)(2 * float_frame)
|
565 |
+
expected = f(float_frame, 2 * float_frame)
|
566 |
+
tm.assert_frame_equal(result, expected)
|
567 |
+
|
568 |
+
# vs mix float
|
569 |
+
result = getattr(mixed_float_frame, op)(2 * mixed_float_frame)
|
570 |
+
expected = f(mixed_float_frame, 2 * mixed_float_frame)
|
571 |
+
tm.assert_frame_equal(result, expected)
|
572 |
+
_check_mixed_float(result, dtype={"C": None})
|
573 |
+
|
574 |
+
@pytest.mark.parametrize("op", ["__add__", "__sub__", "__mul__"])
|
575 |
+
def test_arith_flex_frame_mixed(
|
576 |
+
self,
|
577 |
+
op,
|
578 |
+
int_frame,
|
579 |
+
mixed_int_frame,
|
580 |
+
mixed_float_frame,
|
581 |
+
switch_numexpr_min_elements,
|
582 |
+
):
|
583 |
+
f = getattr(operator, op)
|
584 |
+
|
585 |
+
# vs mix int
|
586 |
+
result = getattr(mixed_int_frame, op)(2 + mixed_int_frame)
|
587 |
+
expected = f(mixed_int_frame, 2 + mixed_int_frame)
|
588 |
+
|
589 |
+
# no overflow in the uint
|
590 |
+
dtype = None
|
591 |
+
if op in ["__sub__"]:
|
592 |
+
dtype = {"B": "uint64", "C": None}
|
593 |
+
elif op in ["__add__", "__mul__"]:
|
594 |
+
dtype = {"C": None}
|
595 |
+
if expr.USE_NUMEXPR and switch_numexpr_min_elements == 0:
|
596 |
+
# when using numexpr, the casting rules are slightly different:
|
597 |
+
# in the `2 + mixed_int_frame` operation, int32 column becomes
|
598 |
+
# and int64 column (not preserving dtype in operation with Python
|
599 |
+
# scalar), and then the int32/int64 combo results in int64 result
|
600 |
+
dtype["A"] = (2 + mixed_int_frame)["A"].dtype
|
601 |
+
tm.assert_frame_equal(result, expected)
|
602 |
+
_check_mixed_int(result, dtype=dtype)
|
603 |
+
|
604 |
+
# vs mix float
|
605 |
+
result = getattr(mixed_float_frame, op)(2 * mixed_float_frame)
|
606 |
+
expected = f(mixed_float_frame, 2 * mixed_float_frame)
|
607 |
+
tm.assert_frame_equal(result, expected)
|
608 |
+
_check_mixed_float(result, dtype={"C": None})
|
609 |
+
|
610 |
+
# vs plain int
|
611 |
+
result = getattr(int_frame, op)(2 * int_frame)
|
612 |
+
expected = f(int_frame, 2 * int_frame)
|
613 |
+
tm.assert_frame_equal(result, expected)
|
614 |
+
|
615 |
+
@pytest.mark.parametrize("dim", range(3, 6))
|
616 |
+
def test_arith_flex_frame_raise(self, all_arithmetic_operators, float_frame, dim):
|
617 |
+
# one instance of parametrized fixture
|
618 |
+
op = all_arithmetic_operators
|
619 |
+
|
620 |
+
# Check that arrays with dim >= 3 raise
|
621 |
+
arr = np.ones((1,) * dim)
|
622 |
+
msg = "Unable to coerce to Series/DataFrame"
|
623 |
+
with pytest.raises(ValueError, match=msg):
|
624 |
+
getattr(float_frame, op)(arr)
|
625 |
+
|
626 |
+
def test_arith_flex_frame_corner(self, float_frame):
|
627 |
+
const_add = float_frame.add(1)
|
628 |
+
tm.assert_frame_equal(const_add, float_frame + 1)
|
629 |
+
|
630 |
+
# corner cases
|
631 |
+
result = float_frame.add(float_frame[:0])
|
632 |
+
expected = float_frame.sort_index() * np.nan
|
633 |
+
tm.assert_frame_equal(result, expected)
|
634 |
+
|
635 |
+
result = float_frame[:0].add(float_frame)
|
636 |
+
expected = float_frame.sort_index() * np.nan
|
637 |
+
tm.assert_frame_equal(result, expected)
|
638 |
+
|
639 |
+
with pytest.raises(NotImplementedError, match="fill_value"):
|
640 |
+
float_frame.add(float_frame.iloc[0], fill_value=3)
|
641 |
+
|
642 |
+
with pytest.raises(NotImplementedError, match="fill_value"):
|
643 |
+
float_frame.add(float_frame.iloc[0], axis="index", fill_value=3)
|
644 |
+
|
645 |
+
@pytest.mark.parametrize("op", ["add", "sub", "mul", "mod"])
|
646 |
+
def test_arith_flex_series_ops(self, simple_frame, op):
|
647 |
+
# after arithmetic refactor, add truediv here
|
648 |
+
df = simple_frame
|
649 |
+
|
650 |
+
row = df.xs("a")
|
651 |
+
col = df["two"]
|
652 |
+
f = getattr(df, op)
|
653 |
+
op = getattr(operator, op)
|
654 |
+
tm.assert_frame_equal(f(row), op(df, row))
|
655 |
+
tm.assert_frame_equal(f(col, axis=0), op(df.T, col).T)
|
656 |
+
|
657 |
+
def test_arith_flex_series(self, simple_frame):
|
658 |
+
df = simple_frame
|
659 |
+
|
660 |
+
row = df.xs("a")
|
661 |
+
col = df["two"]
|
662 |
+
# special case for some reason
|
663 |
+
tm.assert_frame_equal(df.add(row, axis=None), df + row)
|
664 |
+
|
665 |
+
# cases which will be refactored after big arithmetic refactor
|
666 |
+
tm.assert_frame_equal(df.div(row), df / row)
|
667 |
+
tm.assert_frame_equal(df.div(col, axis=0), (df.T / col).T)
|
668 |
+
|
669 |
+
@pytest.mark.parametrize("dtype", ["int64", "float64"])
|
670 |
+
def test_arith_flex_series_broadcasting(self, dtype):
|
671 |
+
# broadcasting issue in GH 7325
|
672 |
+
df = DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype=dtype)
|
673 |
+
expected = DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]])
|
674 |
+
result = df.div(df[0], axis="index")
|
675 |
+
tm.assert_frame_equal(result, expected)
|
676 |
+
|
677 |
+
def test_arith_flex_zero_len_raises(self):
|
678 |
+
# GH 19522 passing fill_value to frame flex arith methods should
|
679 |
+
# raise even in the zero-length special cases
|
680 |
+
ser_len0 = Series([], dtype=object)
|
681 |
+
df_len0 = DataFrame(columns=["A", "B"])
|
682 |
+
df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"])
|
683 |
+
|
684 |
+
with pytest.raises(NotImplementedError, match="fill_value"):
|
685 |
+
df.add(ser_len0, fill_value="E")
|
686 |
+
|
687 |
+
with pytest.raises(NotImplementedError, match="fill_value"):
|
688 |
+
df_len0.sub(df["A"], axis=None, fill_value=3)
|
689 |
+
|
690 |
+
def test_flex_add_scalar_fill_value(self):
|
691 |
+
# GH#12723
|
692 |
+
dat = np.array([0, 1, np.nan, 3, 4, 5], dtype="float")
|
693 |
+
df = DataFrame({"foo": dat}, index=range(6))
|
694 |
+
|
695 |
+
exp = df.fillna(0).add(2)
|
696 |
+
res = df.add(2, fill_value=0)
|
697 |
+
tm.assert_frame_equal(res, exp)
|
698 |
+
|
699 |
+
def test_sub_alignment_with_duplicate_index(self):
|
700 |
+
# GH#5185 dup aligning operations should work
|
701 |
+
df1 = DataFrame([1, 2, 3, 4, 5], index=[1, 2, 1, 2, 3])
|
702 |
+
df2 = DataFrame([1, 2, 3], index=[1, 2, 3])
|
703 |
+
expected = DataFrame([0, 2, 0, 2, 2], index=[1, 1, 2, 2, 3])
|
704 |
+
result = df1.sub(df2)
|
705 |
+
tm.assert_frame_equal(result, expected)
|
706 |
+
|
707 |
+
@pytest.mark.parametrize("op", ["__add__", "__mul__", "__sub__", "__truediv__"])
|
708 |
+
def test_arithmetic_with_duplicate_columns(self, op):
|
709 |
+
# operations
|
710 |
+
df = DataFrame({"A": np.arange(10), "B": np.random.default_rng(2).random(10)})
|
711 |
+
expected = getattr(df, op)(df)
|
712 |
+
expected.columns = ["A", "A"]
|
713 |
+
df.columns = ["A", "A"]
|
714 |
+
result = getattr(df, op)(df)
|
715 |
+
tm.assert_frame_equal(result, expected)
|
716 |
+
|
717 |
+
@pytest.mark.parametrize("level", [0, None])
|
718 |
+
def test_broadcast_multiindex(self, level):
|
719 |
+
# GH34388
|
720 |
+
df1 = DataFrame({"A": [0, 1, 2], "B": [1, 2, 3]})
|
721 |
+
df1.columns = df1.columns.set_names("L1")
|
722 |
+
|
723 |
+
df2 = DataFrame({("A", "C"): [0, 0, 0], ("A", "D"): [0, 0, 0]})
|
724 |
+
df2.columns = df2.columns.set_names(["L1", "L2"])
|
725 |
+
|
726 |
+
result = df1.add(df2, level=level)
|
727 |
+
expected = DataFrame({("A", "C"): [0, 1, 2], ("A", "D"): [0, 1, 2]})
|
728 |
+
expected.columns = expected.columns.set_names(["L1", "L2"])
|
729 |
+
|
730 |
+
tm.assert_frame_equal(result, expected)
|
731 |
+
|
732 |
+
def test_frame_multiindex_operations(self):
|
733 |
+
# GH 43321
|
734 |
+
df = DataFrame(
|
735 |
+
{2010: [1, 2, 3], 2020: [3, 4, 5]},
|
736 |
+
index=MultiIndex.from_product(
|
737 |
+
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"]
|
738 |
+
),
|
739 |
+
)
|
740 |
+
|
741 |
+
series = Series(
|
742 |
+
[0.4],
|
743 |
+
index=MultiIndex.from_product([["b"], ["a"]], names=["mod", "scen"]),
|
744 |
+
)
|
745 |
+
|
746 |
+
expected = DataFrame(
|
747 |
+
{2010: [1.4, 2.4, 3.4], 2020: [3.4, 4.4, 5.4]},
|
748 |
+
index=MultiIndex.from_product(
|
749 |
+
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"]
|
750 |
+
),
|
751 |
+
)
|
752 |
+
result = df.add(series, axis=0)
|
753 |
+
|
754 |
+
tm.assert_frame_equal(result, expected)
|
755 |
+
|
756 |
+
def test_frame_multiindex_operations_series_index_to_frame_index(self):
|
757 |
+
# GH 43321
|
758 |
+
df = DataFrame(
|
759 |
+
{2010: [1], 2020: [3]},
|
760 |
+
index=MultiIndex.from_product([["a"], ["b"]], names=["scen", "mod"]),
|
761 |
+
)
|
762 |
+
|
763 |
+
series = Series(
|
764 |
+
[10.0, 20.0, 30.0],
|
765 |
+
index=MultiIndex.from_product(
|
766 |
+
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"]
|
767 |
+
),
|
768 |
+
)
|
769 |
+
|
770 |
+
expected = DataFrame(
|
771 |
+
{2010: [11.0, 21, 31.0], 2020: [13.0, 23.0, 33.0]},
|
772 |
+
index=MultiIndex.from_product(
|
773 |
+
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"]
|
774 |
+
),
|
775 |
+
)
|
776 |
+
result = df.add(series, axis=0)
|
777 |
+
|
778 |
+
tm.assert_frame_equal(result, expected)
|
779 |
+
|
780 |
+
def test_frame_multiindex_operations_no_align(self):
|
781 |
+
df = DataFrame(
|
782 |
+
{2010: [1, 2, 3], 2020: [3, 4, 5]},
|
783 |
+
index=MultiIndex.from_product(
|
784 |
+
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"]
|
785 |
+
),
|
786 |
+
)
|
787 |
+
|
788 |
+
series = Series(
|
789 |
+
[0.4],
|
790 |
+
index=MultiIndex.from_product([["c"], ["a"]], names=["mod", "scen"]),
|
791 |
+
)
|
792 |
+
|
793 |
+
expected = DataFrame(
|
794 |
+
{2010: np.nan, 2020: np.nan},
|
795 |
+
index=MultiIndex.from_tuples(
|
796 |
+
[
|
797 |
+
("a", "b", 0),
|
798 |
+
("a", "b", 1),
|
799 |
+
("a", "b", 2),
|
800 |
+
("a", "c", np.nan),
|
801 |
+
],
|
802 |
+
names=["scen", "mod", "id"],
|
803 |
+
),
|
804 |
+
)
|
805 |
+
result = df.add(series, axis=0)
|
806 |
+
|
807 |
+
tm.assert_frame_equal(result, expected)
|
808 |
+
|
809 |
+
def test_frame_multiindex_operations_part_align(self):
|
810 |
+
df = DataFrame(
|
811 |
+
{2010: [1, 2, 3], 2020: [3, 4, 5]},
|
812 |
+
index=MultiIndex.from_tuples(
|
813 |
+
[
|
814 |
+
("a", "b", 0),
|
815 |
+
("a", "b", 1),
|
816 |
+
("a", "c", 2),
|
817 |
+
],
|
818 |
+
names=["scen", "mod", "id"],
|
819 |
+
),
|
820 |
+
)
|
821 |
+
|
822 |
+
series = Series(
|
823 |
+
[0.4],
|
824 |
+
index=MultiIndex.from_product([["b"], ["a"]], names=["mod", "scen"]),
|
825 |
+
)
|
826 |
+
|
827 |
+
expected = DataFrame(
|
828 |
+
{2010: [1.4, 2.4, np.nan], 2020: [3.4, 4.4, np.nan]},
|
829 |
+
index=MultiIndex.from_tuples(
|
830 |
+
[
|
831 |
+
("a", "b", 0),
|
832 |
+
("a", "b", 1),
|
833 |
+
("a", "c", 2),
|
834 |
+
],
|
835 |
+
names=["scen", "mod", "id"],
|
836 |
+
),
|
837 |
+
)
|
838 |
+
result = df.add(series, axis=0)
|
839 |
+
|
840 |
+
tm.assert_frame_equal(result, expected)
|
841 |
+
|
842 |
+
|
843 |
+
class TestFrameArithmetic:
|
844 |
+
def test_td64_op_nat_casting(self):
|
845 |
+
# Make sure we don't accidentally treat timedelta64(NaT) as datetime64
|
846 |
+
# when calling dispatch_to_series in DataFrame arithmetic
|
847 |
+
ser = Series(["NaT", "NaT"], dtype="timedelta64[ns]")
|
848 |
+
df = DataFrame([[1, 2], [3, 4]])
|
849 |
+
|
850 |
+
result = df * ser
|
851 |
+
expected = DataFrame({0: ser, 1: ser})
|
852 |
+
tm.assert_frame_equal(result, expected)
|
853 |
+
|
854 |
+
def test_df_add_2d_array_rowlike_broadcasts(self):
|
855 |
+
# GH#23000
|
856 |
+
arr = np.arange(6).reshape(3, 2)
|
857 |
+
df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"])
|
858 |
+
|
859 |
+
rowlike = arr[[1], :] # shape --> (1, ncols)
|
860 |
+
assert rowlike.shape == (1, df.shape[1])
|
861 |
+
|
862 |
+
expected = DataFrame(
|
863 |
+
[[2, 4], [4, 6], [6, 8]],
|
864 |
+
columns=df.columns,
|
865 |
+
index=df.index,
|
866 |
+
# specify dtype explicitly to avoid failing
|
867 |
+
# on 32bit builds
|
868 |
+
dtype=arr.dtype,
|
869 |
+
)
|
870 |
+
result = df + rowlike
|
871 |
+
tm.assert_frame_equal(result, expected)
|
872 |
+
result = rowlike + df
|
873 |
+
tm.assert_frame_equal(result, expected)
|
874 |
+
|
875 |
+
def test_df_add_2d_array_collike_broadcasts(self):
|
876 |
+
# GH#23000
|
877 |
+
arr = np.arange(6).reshape(3, 2)
|
878 |
+
df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"])
|
879 |
+
|
880 |
+
collike = arr[:, [1]] # shape --> (nrows, 1)
|
881 |
+
assert collike.shape == (df.shape[0], 1)
|
882 |
+
|
883 |
+
expected = DataFrame(
|
884 |
+
[[1, 2], [5, 6], [9, 10]],
|
885 |
+
columns=df.columns,
|
886 |
+
index=df.index,
|
887 |
+
# specify dtype explicitly to avoid failing
|
888 |
+
# on 32bit builds
|
889 |
+
dtype=arr.dtype,
|
890 |
+
)
|
891 |
+
result = df + collike
|
892 |
+
tm.assert_frame_equal(result, expected)
|
893 |
+
result = collike + df
|
894 |
+
tm.assert_frame_equal(result, expected)
|
895 |
+
|
896 |
+
def test_df_arith_2d_array_rowlike_broadcasts(
|
897 |
+
self, request, all_arithmetic_operators, using_array_manager
|
898 |
+
):
|
899 |
+
# GH#23000
|
900 |
+
opname = all_arithmetic_operators
|
901 |
+
|
902 |
+
if using_array_manager and opname in ("__rmod__", "__rfloordiv__"):
|
903 |
+
# TODO(ArrayManager) decide on dtypes
|
904 |
+
td.mark_array_manager_not_yet_implemented(request)
|
905 |
+
|
906 |
+
arr = np.arange(6).reshape(3, 2)
|
907 |
+
df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"])
|
908 |
+
|
909 |
+
rowlike = arr[[1], :] # shape --> (1, ncols)
|
910 |
+
assert rowlike.shape == (1, df.shape[1])
|
911 |
+
|
912 |
+
exvals = [
|
913 |
+
getattr(df.loc["A"], opname)(rowlike.squeeze()),
|
914 |
+
getattr(df.loc["B"], opname)(rowlike.squeeze()),
|
915 |
+
getattr(df.loc["C"], opname)(rowlike.squeeze()),
|
916 |
+
]
|
917 |
+
|
918 |
+
expected = DataFrame(exvals, columns=df.columns, index=df.index)
|
919 |
+
|
920 |
+
result = getattr(df, opname)(rowlike)
|
921 |
+
tm.assert_frame_equal(result, expected)
|
922 |
+
|
923 |
+
def test_df_arith_2d_array_collike_broadcasts(
|
924 |
+
self, request, all_arithmetic_operators, using_array_manager
|
925 |
+
):
|
926 |
+
# GH#23000
|
927 |
+
opname = all_arithmetic_operators
|
928 |
+
|
929 |
+
if using_array_manager and opname in ("__rmod__", "__rfloordiv__"):
|
930 |
+
# TODO(ArrayManager) decide on dtypes
|
931 |
+
td.mark_array_manager_not_yet_implemented(request)
|
932 |
+
|
933 |
+
arr = np.arange(6).reshape(3, 2)
|
934 |
+
df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"])
|
935 |
+
|
936 |
+
collike = arr[:, [1]] # shape --> (nrows, 1)
|
937 |
+
assert collike.shape == (df.shape[0], 1)
|
938 |
+
|
939 |
+
exvals = {
|
940 |
+
True: getattr(df[True], opname)(collike.squeeze()),
|
941 |
+
False: getattr(df[False], opname)(collike.squeeze()),
|
942 |
+
}
|
943 |
+
|
944 |
+
dtype = None
|
945 |
+
if opname in ["__rmod__", "__rfloordiv__"]:
|
946 |
+
# Series ops may return mixed int/float dtypes in cases where
|
947 |
+
# DataFrame op will return all-float. So we upcast `expected`
|
948 |
+
dtype = np.common_type(*(x.values for x in exvals.values()))
|
949 |
+
|
950 |
+
expected = DataFrame(exvals, columns=df.columns, index=df.index, dtype=dtype)
|
951 |
+
|
952 |
+
result = getattr(df, opname)(collike)
|
953 |
+
tm.assert_frame_equal(result, expected)
|
954 |
+
|
955 |
+
def test_df_bool_mul_int(self):
|
956 |
+
# GH 22047, GH 22163 multiplication by 1 should result in int dtype,
|
957 |
+
# not object dtype
|
958 |
+
df = DataFrame([[False, True], [False, False]])
|
959 |
+
result = df * 1
|
960 |
+
|
961 |
+
# On appveyor this comes back as np.int32 instead of np.int64,
|
962 |
+
# so we check dtype.kind instead of just dtype
|
963 |
+
kinds = result.dtypes.apply(lambda x: x.kind)
|
964 |
+
assert (kinds == "i").all()
|
965 |
+
|
966 |
+
result = 1 * df
|
967 |
+
kinds = result.dtypes.apply(lambda x: x.kind)
|
968 |
+
assert (kinds == "i").all()
|
969 |
+
|
970 |
+
def test_arith_mixed(self):
|
971 |
+
left = DataFrame({"A": ["a", "b", "c"], "B": [1, 2, 3]})
|
972 |
+
|
973 |
+
result = left + left
|
974 |
+
expected = DataFrame({"A": ["aa", "bb", "cc"], "B": [2, 4, 6]})
|
975 |
+
tm.assert_frame_equal(result, expected)
|
976 |
+
|
977 |
+
@pytest.mark.parametrize("col", ["A", "B"])
|
978 |
+
def test_arith_getitem_commute(self, all_arithmetic_functions, col):
|
979 |
+
df = DataFrame({"A": [1.1, 3.3], "B": [2.5, -3.9]})
|
980 |
+
result = all_arithmetic_functions(df, 1)[col]
|
981 |
+
expected = all_arithmetic_functions(df[col], 1)
|
982 |
+
tm.assert_series_equal(result, expected)
|
983 |
+
|
984 |
+
@pytest.mark.parametrize(
|
985 |
+
"values", [[1, 2], (1, 2), np.array([1, 2]), range(1, 3), deque([1, 2])]
|
986 |
+
)
|
987 |
+
def test_arith_alignment_non_pandas_object(self, values):
|
988 |
+
# GH#17901
|
989 |
+
df = DataFrame({"A": [1, 1], "B": [1, 1]})
|
990 |
+
expected = DataFrame({"A": [2, 2], "B": [3, 3]})
|
991 |
+
result = df + values
|
992 |
+
tm.assert_frame_equal(result, expected)
|
993 |
+
|
994 |
+
def test_arith_non_pandas_object(self):
|
995 |
+
df = DataFrame(
|
996 |
+
np.arange(1, 10, dtype="f8").reshape(3, 3),
|
997 |
+
columns=["one", "two", "three"],
|
998 |
+
index=["a", "b", "c"],
|
999 |
+
)
|
1000 |
+
|
1001 |
+
val1 = df.xs("a").values
|
1002 |
+
added = DataFrame(df.values + val1, index=df.index, columns=df.columns)
|
1003 |
+
tm.assert_frame_equal(df + val1, added)
|
1004 |
+
|
1005 |
+
added = DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns)
|
1006 |
+
tm.assert_frame_equal(df.add(val1, axis=0), added)
|
1007 |
+
|
1008 |
+
val2 = list(df["two"])
|
1009 |
+
|
1010 |
+
added = DataFrame(df.values + val2, index=df.index, columns=df.columns)
|
1011 |
+
tm.assert_frame_equal(df + val2, added)
|
1012 |
+
|
1013 |
+
added = DataFrame((df.values.T + val2).T, index=df.index, columns=df.columns)
|
1014 |
+
tm.assert_frame_equal(df.add(val2, axis="index"), added)
|
1015 |
+
|
1016 |
+
val3 = np.random.default_rng(2).random(df.shape)
|
1017 |
+
added = DataFrame(df.values + val3, index=df.index, columns=df.columns)
|
1018 |
+
tm.assert_frame_equal(df.add(val3), added)
|
1019 |
+
|
1020 |
+
def test_operations_with_interval_categories_index(self, all_arithmetic_operators):
|
1021 |
+
# GH#27415
|
1022 |
+
op = all_arithmetic_operators
|
1023 |
+
ind = pd.CategoricalIndex(pd.interval_range(start=0.0, end=2.0))
|
1024 |
+
data = [1, 2]
|
1025 |
+
df = DataFrame([data], columns=ind)
|
1026 |
+
num = 10
|
1027 |
+
result = getattr(df, op)(num)
|
1028 |
+
expected = DataFrame([[getattr(n, op)(num) for n in data]], columns=ind)
|
1029 |
+
tm.assert_frame_equal(result, expected)
|
1030 |
+
|
1031 |
+
def test_frame_with_frame_reindex(self):
|
1032 |
+
# GH#31623
|
1033 |
+
df = DataFrame(
|
1034 |
+
{
|
1035 |
+
"foo": [pd.Timestamp("2019"), pd.Timestamp("2020")],
|
1036 |
+
"bar": [pd.Timestamp("2018"), pd.Timestamp("2021")],
|
1037 |
+
},
|
1038 |
+
columns=["foo", "bar"],
|
1039 |
+
dtype="M8[ns]",
|
1040 |
+
)
|
1041 |
+
df2 = df[["foo"]]
|
1042 |
+
|
1043 |
+
result = df - df2
|
1044 |
+
|
1045 |
+
expected = DataFrame(
|
1046 |
+
{"foo": [pd.Timedelta(0), pd.Timedelta(0)], "bar": [np.nan, np.nan]},
|
1047 |
+
columns=["bar", "foo"],
|
1048 |
+
)
|
1049 |
+
tm.assert_frame_equal(result, expected)
|
1050 |
+
|
1051 |
+
@pytest.mark.parametrize(
|
1052 |
+
"value, dtype",
|
1053 |
+
[
|
1054 |
+
(1, "i8"),
|
1055 |
+
(1.0, "f8"),
|
1056 |
+
(2**63, "f8"),
|
1057 |
+
(1j, "complex128"),
|
1058 |
+
(2**63, "complex128"),
|
1059 |
+
(True, "bool"),
|
1060 |
+
(np.timedelta64(20, "ns"), "<m8[ns]"),
|
1061 |
+
(np.datetime64(20, "ns"), "<M8[ns]"),
|
1062 |
+
],
|
1063 |
+
)
|
1064 |
+
@pytest.mark.parametrize(
|
1065 |
+
"op",
|
1066 |
+
[
|
1067 |
+
operator.add,
|
1068 |
+
operator.sub,
|
1069 |
+
operator.mul,
|
1070 |
+
operator.truediv,
|
1071 |
+
operator.mod,
|
1072 |
+
operator.pow,
|
1073 |
+
],
|
1074 |
+
ids=lambda x: x.__name__,
|
1075 |
+
)
|
1076 |
+
def test_binop_other(self, op, value, dtype, switch_numexpr_min_elements):
|
1077 |
+
skip = {
|
1078 |
+
(operator.truediv, "bool"),
|
1079 |
+
(operator.pow, "bool"),
|
1080 |
+
(operator.add, "bool"),
|
1081 |
+
(operator.mul, "bool"),
|
1082 |
+
}
|
1083 |
+
|
1084 |
+
elem = DummyElement(value, dtype)
|
1085 |
+
df = DataFrame({"A": [elem.value, elem.value]}, dtype=elem.dtype)
|
1086 |
+
|
1087 |
+
invalid = {
|
1088 |
+
(operator.pow, "<M8[ns]"),
|
1089 |
+
(operator.mod, "<M8[ns]"),
|
1090 |
+
(operator.truediv, "<M8[ns]"),
|
1091 |
+
(operator.mul, "<M8[ns]"),
|
1092 |
+
(operator.add, "<M8[ns]"),
|
1093 |
+
(operator.pow, "<m8[ns]"),
|
1094 |
+
(operator.mul, "<m8[ns]"),
|
1095 |
+
(operator.sub, "bool"),
|
1096 |
+
(operator.mod, "complex128"),
|
1097 |
+
}
|
1098 |
+
|
1099 |
+
if (op, dtype) in invalid:
|
1100 |
+
warn = None
|
1101 |
+
if (dtype == "<M8[ns]" and op == operator.add) or (
|
1102 |
+
dtype == "<m8[ns]" and op == operator.mul
|
1103 |
+
):
|
1104 |
+
msg = None
|
1105 |
+
elif dtype == "complex128":
|
1106 |
+
msg = "ufunc 'remainder' not supported for the input types"
|
1107 |
+
elif op is operator.sub:
|
1108 |
+
msg = "numpy boolean subtract, the `-` operator, is "
|
1109 |
+
if (
|
1110 |
+
dtype == "bool"
|
1111 |
+
and expr.USE_NUMEXPR
|
1112 |
+
and switch_numexpr_min_elements == 0
|
1113 |
+
):
|
1114 |
+
warn = UserWarning # "evaluating in Python space because ..."
|
1115 |
+
else:
|
1116 |
+
msg = (
|
1117 |
+
f"cannot perform __{op.__name__}__ with this "
|
1118 |
+
"index type: (DatetimeArray|TimedeltaArray)"
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
with pytest.raises(TypeError, match=msg):
|
1122 |
+
with tm.assert_produces_warning(warn):
|
1123 |
+
op(df, elem.value)
|
1124 |
+
|
1125 |
+
elif (op, dtype) in skip:
|
1126 |
+
if op in [operator.add, operator.mul]:
|
1127 |
+
if expr.USE_NUMEXPR and switch_numexpr_min_elements == 0:
|
1128 |
+
# "evaluating in Python space because ..."
|
1129 |
+
warn = UserWarning
|
1130 |
+
else:
|
1131 |
+
warn = None
|
1132 |
+
with tm.assert_produces_warning(warn):
|
1133 |
+
op(df, elem.value)
|
1134 |
+
|
1135 |
+
else:
|
1136 |
+
msg = "operator '.*' not implemented for .* dtypes"
|
1137 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1138 |
+
op(df, elem.value)
|
1139 |
+
|
1140 |
+
else:
|
1141 |
+
with tm.assert_produces_warning(None):
|
1142 |
+
result = op(df, elem.value).dtypes
|
1143 |
+
expected = op(df, value).dtypes
|
1144 |
+
tm.assert_series_equal(result, expected)
|
1145 |
+
|
1146 |
+
def test_arithmetic_midx_cols_different_dtypes(self):
|
1147 |
+
# GH#49769
|
1148 |
+
midx = MultiIndex.from_arrays([Series([1, 2]), Series([3, 4])])
|
1149 |
+
midx2 = MultiIndex.from_arrays([Series([1, 2], dtype="Int8"), Series([3, 4])])
|
1150 |
+
left = DataFrame([[1, 2], [3, 4]], columns=midx)
|
1151 |
+
right = DataFrame([[1, 2], [3, 4]], columns=midx2)
|
1152 |
+
result = left - right
|
1153 |
+
expected = DataFrame([[0, 0], [0, 0]], columns=midx)
|
1154 |
+
tm.assert_frame_equal(result, expected)
|
1155 |
+
|
1156 |
+
def test_arithmetic_midx_cols_different_dtypes_different_order(self):
|
1157 |
+
# GH#49769
|
1158 |
+
midx = MultiIndex.from_arrays([Series([1, 2]), Series([3, 4])])
|
1159 |
+
midx2 = MultiIndex.from_arrays([Series([2, 1], dtype="Int8"), Series([4, 3])])
|
1160 |
+
left = DataFrame([[1, 2], [3, 4]], columns=midx)
|
1161 |
+
right = DataFrame([[1, 2], [3, 4]], columns=midx2)
|
1162 |
+
result = left - right
|
1163 |
+
expected = DataFrame([[-1, 1], [-1, 1]], columns=midx)
|
1164 |
+
tm.assert_frame_equal(result, expected)
|
1165 |
+
|
1166 |
+
|
1167 |
+
def test_frame_with_zero_len_series_corner_cases():
|
1168 |
+
# GH#28600
|
1169 |
+
# easy all-float case
|
1170 |
+
df = DataFrame(
|
1171 |
+
np.random.default_rng(2).standard_normal(6).reshape(3, 2), columns=["A", "B"]
|
1172 |
+
)
|
1173 |
+
ser = Series(dtype=np.float64)
|
1174 |
+
|
1175 |
+
result = df + ser
|
1176 |
+
expected = DataFrame(df.values * np.nan, columns=df.columns)
|
1177 |
+
tm.assert_frame_equal(result, expected)
|
1178 |
+
|
1179 |
+
with pytest.raises(ValueError, match="not aligned"):
|
1180 |
+
# Automatic alignment for comparisons deprecated GH#36795, enforced 2.0
|
1181 |
+
df == ser
|
1182 |
+
|
1183 |
+
# non-float case should not raise TypeError on comparison
|
1184 |
+
df2 = DataFrame(df.values.view("M8[ns]"), columns=df.columns)
|
1185 |
+
with pytest.raises(ValueError, match="not aligned"):
|
1186 |
+
# Automatic alignment for comparisons deprecated
|
1187 |
+
df2 == ser
|
1188 |
+
|
1189 |
+
|
1190 |
+
def test_zero_len_frame_with_series_corner_cases():
|
1191 |
+
# GH#28600
|
1192 |
+
df = DataFrame(columns=["A", "B"], dtype=np.float64)
|
1193 |
+
ser = Series([1, 2], index=["A", "B"])
|
1194 |
+
|
1195 |
+
result = df + ser
|
1196 |
+
expected = df
|
1197 |
+
tm.assert_frame_equal(result, expected)
|
1198 |
+
|
1199 |
+
|
1200 |
+
def test_frame_single_columns_object_sum_axis_1():
|
1201 |
+
# GH 13758
|
1202 |
+
data = {
|
1203 |
+
"One": Series(["A", 1.2, np.nan]),
|
1204 |
+
}
|
1205 |
+
df = DataFrame(data)
|
1206 |
+
result = df.sum(axis=1)
|
1207 |
+
expected = Series(["A", 1.2, 0])
|
1208 |
+
tm.assert_series_equal(result, expected)
|
1209 |
+
|
1210 |
+
|
1211 |
+
# -------------------------------------------------------------------
|
1212 |
+
# Unsorted
|
1213 |
+
# These arithmetic tests were previously in other files, eventually
|
1214 |
+
# should be parametrized and put into tests.arithmetic
|
1215 |
+
|
1216 |
+
|
1217 |
+
class TestFrameArithmeticUnsorted:
|
1218 |
+
def test_frame_add_tz_mismatch_converts_to_utc(self):
|
1219 |
+
rng = pd.date_range("1/1/2011", periods=10, freq="h", tz="US/Eastern")
|
1220 |
+
df = DataFrame(
|
1221 |
+
np.random.default_rng(2).standard_normal(len(rng)), index=rng, columns=["a"]
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
df_moscow = df.tz_convert("Europe/Moscow")
|
1225 |
+
result = df + df_moscow
|
1226 |
+
assert result.index.tz is timezone.utc
|
1227 |
+
|
1228 |
+
result = df_moscow + df
|
1229 |
+
assert result.index.tz is timezone.utc
|
1230 |
+
|
1231 |
+
def test_align_frame(self):
|
1232 |
+
rng = pd.period_range("1/1/2000", "1/1/2010", freq="Y")
|
1233 |
+
ts = DataFrame(
|
1234 |
+
np.random.default_rng(2).standard_normal((len(rng), 3)), index=rng
|
1235 |
+
)
|
1236 |
+
|
1237 |
+
result = ts + ts[::2]
|
1238 |
+
expected = ts + ts
|
1239 |
+
expected.iloc[1::2] = np.nan
|
1240 |
+
tm.assert_frame_equal(result, expected)
|
1241 |
+
|
1242 |
+
half = ts[::2]
|
1243 |
+
result = ts + half.take(np.random.default_rng(2).permutation(len(half)))
|
1244 |
+
tm.assert_frame_equal(result, expected)
|
1245 |
+
|
1246 |
+
@pytest.mark.parametrize(
|
1247 |
+
"op", [operator.add, operator.sub, operator.mul, operator.truediv]
|
1248 |
+
)
|
1249 |
+
def test_operators_none_as_na(self, op):
|
1250 |
+
df = DataFrame(
|
1251 |
+
{"col1": [2, 5.0, 123, None], "col2": [1, 2, 3, 4]}, dtype=object
|
1252 |
+
)
|
1253 |
+
|
1254 |
+
# since filling converts dtypes from object, changed expected to be
|
1255 |
+
# object
|
1256 |
+
msg = "Downcasting object dtype arrays"
|
1257 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1258 |
+
filled = df.fillna(np.nan)
|
1259 |
+
result = op(df, 3)
|
1260 |
+
expected = op(filled, 3).astype(object)
|
1261 |
+
expected[pd.isna(expected)] = np.nan
|
1262 |
+
tm.assert_frame_equal(result, expected)
|
1263 |
+
|
1264 |
+
result = op(df, df)
|
1265 |
+
expected = op(filled, filled).astype(object)
|
1266 |
+
expected[pd.isna(expected)] = np.nan
|
1267 |
+
tm.assert_frame_equal(result, expected)
|
1268 |
+
|
1269 |
+
msg = "Downcasting object dtype arrays"
|
1270 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1271 |
+
result = op(df, df.fillna(7))
|
1272 |
+
tm.assert_frame_equal(result, expected)
|
1273 |
+
|
1274 |
+
msg = "Downcasting object dtype arrays"
|
1275 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1276 |
+
result = op(df.fillna(7), df)
|
1277 |
+
tm.assert_frame_equal(result, expected)
|
1278 |
+
|
1279 |
+
@pytest.mark.parametrize("op,res", [("__eq__", False), ("__ne__", True)])
|
1280 |
+
# TODO: not sure what's correct here.
|
1281 |
+
@pytest.mark.filterwarnings("ignore:elementwise:FutureWarning")
|
1282 |
+
def test_logical_typeerror_with_non_valid(self, op, res, float_frame):
|
1283 |
+
# we are comparing floats vs a string
|
1284 |
+
result = getattr(float_frame, op)("foo")
|
1285 |
+
assert bool(result.all().all()) is res
|
1286 |
+
|
1287 |
+
@pytest.mark.parametrize("op", ["add", "sub", "mul", "div", "truediv"])
|
1288 |
+
def test_binary_ops_align(self, op):
|
1289 |
+
# test aligning binary ops
|
1290 |
+
|
1291 |
+
# GH 6681
|
1292 |
+
index = MultiIndex.from_product(
|
1293 |
+
[list("abc"), ["one", "two", "three"], [1, 2, 3]],
|
1294 |
+
names=["first", "second", "third"],
|
1295 |
+
)
|
1296 |
+
|
1297 |
+
df = DataFrame(
|
1298 |
+
np.arange(27 * 3).reshape(27, 3),
|
1299 |
+
index=index,
|
1300 |
+
columns=["value1", "value2", "value3"],
|
1301 |
+
).sort_index()
|
1302 |
+
|
1303 |
+
idx = pd.IndexSlice
|
1304 |
+
opa = getattr(operator, op, None)
|
1305 |
+
if opa is None:
|
1306 |
+
return
|
1307 |
+
|
1308 |
+
x = Series([1.0, 10.0, 100.0], [1, 2, 3])
|
1309 |
+
result = getattr(df, op)(x, level="third", axis=0)
|
1310 |
+
|
1311 |
+
expected = pd.concat(
|
1312 |
+
[opa(df.loc[idx[:, :, i], :], v) for i, v in x.items()]
|
1313 |
+
).sort_index()
|
1314 |
+
tm.assert_frame_equal(result, expected)
|
1315 |
+
|
1316 |
+
x = Series([1.0, 10.0], ["two", "three"])
|
1317 |
+
result = getattr(df, op)(x, level="second", axis=0)
|
1318 |
+
|
1319 |
+
expected = (
|
1320 |
+
pd.concat([opa(df.loc[idx[:, i], :], v) for i, v in x.items()])
|
1321 |
+
.reindex_like(df)
|
1322 |
+
.sort_index()
|
1323 |
+
)
|
1324 |
+
tm.assert_frame_equal(result, expected)
|
1325 |
+
|
1326 |
+
def test_binary_ops_align_series_dataframe(self):
|
1327 |
+
# GH9463 (alignment level of dataframe with series)
|
1328 |
+
|
1329 |
+
midx = MultiIndex.from_product([["A", "B"], ["a", "b"]])
|
1330 |
+
df = DataFrame(np.ones((2, 4), dtype="int64"), columns=midx)
|
1331 |
+
s = Series({"a": 1, "b": 2})
|
1332 |
+
|
1333 |
+
df2 = df.copy()
|
1334 |
+
df2.columns.names = ["lvl0", "lvl1"]
|
1335 |
+
s2 = s.copy()
|
1336 |
+
s2.index.name = "lvl1"
|
1337 |
+
|
1338 |
+
# different cases of integer/string level names:
|
1339 |
+
res1 = df.mul(s, axis=1, level=1)
|
1340 |
+
res2 = df.mul(s2, axis=1, level=1)
|
1341 |
+
res3 = df2.mul(s, axis=1, level=1)
|
1342 |
+
res4 = df2.mul(s2, axis=1, level=1)
|
1343 |
+
res5 = df2.mul(s, axis=1, level="lvl1")
|
1344 |
+
res6 = df2.mul(s2, axis=1, level="lvl1")
|
1345 |
+
|
1346 |
+
exp = DataFrame(
|
1347 |
+
np.array([[1, 2, 1, 2], [1, 2, 1, 2]], dtype="int64"), columns=midx
|
1348 |
+
)
|
1349 |
+
|
1350 |
+
for res in [res1, res2]:
|
1351 |
+
tm.assert_frame_equal(res, exp)
|
1352 |
+
|
1353 |
+
exp.columns.names = ["lvl0", "lvl1"]
|
1354 |
+
for res in [res3, res4, res5, res6]:
|
1355 |
+
tm.assert_frame_equal(res, exp)
|
1356 |
+
|
1357 |
+
def test_add_with_dti_mismatched_tzs(self):
|
1358 |
+
base = pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], tz="UTC")
|
1359 |
+
idx1 = base.tz_convert("Asia/Tokyo")[:2]
|
1360 |
+
idx2 = base.tz_convert("US/Eastern")[1:]
|
1361 |
+
|
1362 |
+
df1 = DataFrame({"A": [1, 2]}, index=idx1)
|
1363 |
+
df2 = DataFrame({"A": [1, 1]}, index=idx2)
|
1364 |
+
exp = DataFrame({"A": [np.nan, 3, np.nan]}, index=base)
|
1365 |
+
tm.assert_frame_equal(df1 + df2, exp)
|
1366 |
+
|
1367 |
+
def test_combineFrame(self, float_frame, mixed_float_frame, mixed_int_frame):
|
1368 |
+
frame_copy = float_frame.reindex(float_frame.index[::2])
|
1369 |
+
|
1370 |
+
del frame_copy["D"]
|
1371 |
+
# adding NAs to first 5 values of column "C"
|
1372 |
+
frame_copy.loc[: frame_copy.index[4], "C"] = np.nan
|
1373 |
+
|
1374 |
+
added = float_frame + frame_copy
|
1375 |
+
|
1376 |
+
indexer = added["A"].dropna().index
|
1377 |
+
exp = (float_frame["A"] * 2).copy()
|
1378 |
+
|
1379 |
+
tm.assert_series_equal(added["A"].dropna(), exp.loc[indexer])
|
1380 |
+
|
1381 |
+
exp.loc[~exp.index.isin(indexer)] = np.nan
|
1382 |
+
tm.assert_series_equal(added["A"], exp.loc[added["A"].index])
|
1383 |
+
|
1384 |
+
assert np.isnan(added["C"].reindex(frame_copy.index)[:5]).all()
|
1385 |
+
|
1386 |
+
# assert(False)
|
1387 |
+
|
1388 |
+
assert np.isnan(added["D"]).all()
|
1389 |
+
|
1390 |
+
self_added = float_frame + float_frame
|
1391 |
+
tm.assert_index_equal(self_added.index, float_frame.index)
|
1392 |
+
|
1393 |
+
added_rev = frame_copy + float_frame
|
1394 |
+
assert np.isnan(added["D"]).all()
|
1395 |
+
assert np.isnan(added_rev["D"]).all()
|
1396 |
+
|
1397 |
+
# corner cases
|
1398 |
+
|
1399 |
+
# empty
|
1400 |
+
plus_empty = float_frame + DataFrame()
|
1401 |
+
assert np.isnan(plus_empty.values).all()
|
1402 |
+
|
1403 |
+
empty_plus = DataFrame() + float_frame
|
1404 |
+
assert np.isnan(empty_plus.values).all()
|
1405 |
+
|
1406 |
+
empty_empty = DataFrame() + DataFrame()
|
1407 |
+
assert empty_empty.empty
|
1408 |
+
|
1409 |
+
# out of order
|
1410 |
+
reverse = float_frame.reindex(columns=float_frame.columns[::-1])
|
1411 |
+
|
1412 |
+
tm.assert_frame_equal(reverse + float_frame, float_frame * 2)
|
1413 |
+
|
1414 |
+
# mix vs float64, upcast
|
1415 |
+
added = float_frame + mixed_float_frame
|
1416 |
+
_check_mixed_float(added, dtype="float64")
|
1417 |
+
added = mixed_float_frame + float_frame
|
1418 |
+
_check_mixed_float(added, dtype="float64")
|
1419 |
+
|
1420 |
+
# mix vs mix
|
1421 |
+
added = mixed_float_frame + mixed_float_frame
|
1422 |
+
_check_mixed_float(added, dtype={"C": None})
|
1423 |
+
|
1424 |
+
# with int
|
1425 |
+
added = float_frame + mixed_int_frame
|
1426 |
+
_check_mixed_float(added, dtype="float64")
|
1427 |
+
|
1428 |
+
def test_combine_series(self, float_frame, mixed_float_frame, mixed_int_frame):
|
1429 |
+
# Series
|
1430 |
+
series = float_frame.xs(float_frame.index[0])
|
1431 |
+
|
1432 |
+
added = float_frame + series
|
1433 |
+
|
1434 |
+
for key, s in added.items():
|
1435 |
+
tm.assert_series_equal(s, float_frame[key] + series[key])
|
1436 |
+
|
1437 |
+
larger_series = series.to_dict()
|
1438 |
+
larger_series["E"] = 1
|
1439 |
+
larger_series = Series(larger_series)
|
1440 |
+
larger_added = float_frame + larger_series
|
1441 |
+
|
1442 |
+
for key, s in float_frame.items():
|
1443 |
+
tm.assert_series_equal(larger_added[key], s + series[key])
|
1444 |
+
assert "E" in larger_added
|
1445 |
+
assert np.isnan(larger_added["E"]).all()
|
1446 |
+
|
1447 |
+
# no upcast needed
|
1448 |
+
added = mixed_float_frame + series
|
1449 |
+
assert np.all(added.dtypes == series.dtype)
|
1450 |
+
|
1451 |
+
# vs mix (upcast) as needed
|
1452 |
+
added = mixed_float_frame + series.astype("float32")
|
1453 |
+
_check_mixed_float(added, dtype={"C": None})
|
1454 |
+
added = mixed_float_frame + series.astype("float16")
|
1455 |
+
_check_mixed_float(added, dtype={"C": None})
|
1456 |
+
|
1457 |
+
# these used to raise with numexpr as we are adding an int64 to an
|
1458 |
+
# uint64....weird vs int
|
1459 |
+
added = mixed_int_frame + (100 * series).astype("int64")
|
1460 |
+
_check_mixed_int(
|
1461 |
+
added, dtype={"A": "int64", "B": "float64", "C": "int64", "D": "int64"}
|
1462 |
+
)
|
1463 |
+
added = mixed_int_frame + (100 * series).astype("int32")
|
1464 |
+
_check_mixed_int(
|
1465 |
+
added, dtype={"A": "int32", "B": "float64", "C": "int32", "D": "int64"}
|
1466 |
+
)
|
1467 |
+
|
1468 |
+
def test_combine_timeseries(self, datetime_frame):
|
1469 |
+
# TimeSeries
|
1470 |
+
ts = datetime_frame["A"]
|
1471 |
+
|
1472 |
+
# 10890
|
1473 |
+
# we no longer allow auto timeseries broadcasting
|
1474 |
+
# and require explicit broadcasting
|
1475 |
+
added = datetime_frame.add(ts, axis="index")
|
1476 |
+
|
1477 |
+
for key, col in datetime_frame.items():
|
1478 |
+
result = col + ts
|
1479 |
+
tm.assert_series_equal(added[key], result, check_names=False)
|
1480 |
+
assert added[key].name == key
|
1481 |
+
if col.name == ts.name:
|
1482 |
+
assert result.name == "A"
|
1483 |
+
else:
|
1484 |
+
assert result.name is None
|
1485 |
+
|
1486 |
+
smaller_frame = datetime_frame[:-5]
|
1487 |
+
smaller_added = smaller_frame.add(ts, axis="index")
|
1488 |
+
|
1489 |
+
tm.assert_index_equal(smaller_added.index, datetime_frame.index)
|
1490 |
+
|
1491 |
+
smaller_ts = ts[:-5]
|
1492 |
+
smaller_added2 = datetime_frame.add(smaller_ts, axis="index")
|
1493 |
+
tm.assert_frame_equal(smaller_added, smaller_added2)
|
1494 |
+
|
1495 |
+
# length 0, result is all-nan
|
1496 |
+
result = datetime_frame.add(ts[:0], axis="index")
|
1497 |
+
expected = DataFrame(
|
1498 |
+
np.nan, index=datetime_frame.index, columns=datetime_frame.columns
|
1499 |
+
)
|
1500 |
+
tm.assert_frame_equal(result, expected)
|
1501 |
+
|
1502 |
+
# Frame is all-nan
|
1503 |
+
result = datetime_frame[:0].add(ts, axis="index")
|
1504 |
+
expected = DataFrame(
|
1505 |
+
np.nan, index=datetime_frame.index, columns=datetime_frame.columns
|
1506 |
+
)
|
1507 |
+
tm.assert_frame_equal(result, expected)
|
1508 |
+
|
1509 |
+
# empty but with non-empty index
|
1510 |
+
frame = datetime_frame[:1].reindex(columns=[])
|
1511 |
+
result = frame.mul(ts, axis="index")
|
1512 |
+
assert len(result) == len(ts)
|
1513 |
+
|
1514 |
+
def test_combineFunc(self, float_frame, mixed_float_frame):
|
1515 |
+
result = float_frame * 2
|
1516 |
+
tm.assert_numpy_array_equal(result.values, float_frame.values * 2)
|
1517 |
+
|
1518 |
+
# vs mix
|
1519 |
+
result = mixed_float_frame * 2
|
1520 |
+
for c, s in result.items():
|
1521 |
+
tm.assert_numpy_array_equal(s.values, mixed_float_frame[c].values * 2)
|
1522 |
+
_check_mixed_float(result, dtype={"C": None})
|
1523 |
+
|
1524 |
+
result = DataFrame() * 2
|
1525 |
+
assert result.index.equals(DataFrame().index)
|
1526 |
+
assert len(result.columns) == 0
|
1527 |
+
|
1528 |
+
@pytest.mark.parametrize(
|
1529 |
+
"func",
|
1530 |
+
[operator.eq, operator.ne, operator.lt, operator.gt, operator.ge, operator.le],
|
1531 |
+
)
|
1532 |
+
def test_comparisons(self, simple_frame, float_frame, func):
|
1533 |
+
df1 = DataFrame(
|
1534 |
+
np.random.default_rng(2).standard_normal((30, 4)),
|
1535 |
+
columns=Index(list("ABCD"), dtype=object),
|
1536 |
+
index=pd.date_range("2000-01-01", periods=30, freq="B"),
|
1537 |
+
)
|
1538 |
+
df2 = df1.copy()
|
1539 |
+
|
1540 |
+
row = simple_frame.xs("a")
|
1541 |
+
ndim_5 = np.ones(df1.shape + (1, 1, 1))
|
1542 |
+
|
1543 |
+
result = func(df1, df2)
|
1544 |
+
tm.assert_numpy_array_equal(result.values, func(df1.values, df2.values))
|
1545 |
+
|
1546 |
+
msg = (
|
1547 |
+
"Unable to coerce to Series/DataFrame, "
|
1548 |
+
"dimension must be <= 2: (30, 4, 1, 1, 1)"
|
1549 |
+
)
|
1550 |
+
with pytest.raises(ValueError, match=re.escape(msg)):
|
1551 |
+
func(df1, ndim_5)
|
1552 |
+
|
1553 |
+
result2 = func(simple_frame, row)
|
1554 |
+
tm.assert_numpy_array_equal(
|
1555 |
+
result2.values, func(simple_frame.values, row.values)
|
1556 |
+
)
|
1557 |
+
|
1558 |
+
result3 = func(float_frame, 0)
|
1559 |
+
tm.assert_numpy_array_equal(result3.values, func(float_frame.values, 0))
|
1560 |
+
|
1561 |
+
msg = (
|
1562 |
+
r"Can only compare identically-labeled \(both index and columns\) "
|
1563 |
+
"DataFrame objects"
|
1564 |
+
)
|
1565 |
+
with pytest.raises(ValueError, match=msg):
|
1566 |
+
func(simple_frame, simple_frame[:2])
|
1567 |
+
|
1568 |
+
def test_strings_to_numbers_comparisons_raises(self, compare_operators_no_eq_ne):
|
1569 |
+
# GH 11565
|
1570 |
+
df = DataFrame(
|
1571 |
+
{x: {"x": "foo", "y": "bar", "z": "baz"} for x in ["a", "b", "c"]}
|
1572 |
+
)
|
1573 |
+
|
1574 |
+
f = getattr(operator, compare_operators_no_eq_ne)
|
1575 |
+
msg = "'[<>]=?' not supported between instances of 'str' and 'int'"
|
1576 |
+
with pytest.raises(TypeError, match=msg):
|
1577 |
+
f(df, 0)
|
1578 |
+
|
1579 |
+
def test_comparison_protected_from_errstate(self):
|
1580 |
+
missing_df = DataFrame(
|
1581 |
+
np.ones((10, 4), dtype=np.float64),
|
1582 |
+
columns=Index(list("ABCD"), dtype=object),
|
1583 |
+
)
|
1584 |
+
missing_df.loc[missing_df.index[0], "A"] = np.nan
|
1585 |
+
with np.errstate(invalid="ignore"):
|
1586 |
+
expected = missing_df.values < 0
|
1587 |
+
with np.errstate(invalid="raise"):
|
1588 |
+
result = (missing_df < 0).values
|
1589 |
+
tm.assert_numpy_array_equal(result, expected)
|
1590 |
+
|
1591 |
+
def test_boolean_comparison(self):
|
1592 |
+
# GH 4576
|
1593 |
+
# boolean comparisons with a tuple/list give unexpected results
|
1594 |
+
df = DataFrame(np.arange(6).reshape((3, 2)))
|
1595 |
+
b = np.array([2, 2])
|
1596 |
+
b_r = np.atleast_2d([2, 2])
|
1597 |
+
b_c = b_r.T
|
1598 |
+
lst = [2, 2, 2]
|
1599 |
+
tup = tuple(lst)
|
1600 |
+
|
1601 |
+
# gt
|
1602 |
+
expected = DataFrame([[False, False], [False, True], [True, True]])
|
1603 |
+
result = df > b
|
1604 |
+
tm.assert_frame_equal(result, expected)
|
1605 |
+
|
1606 |
+
result = df.values > b
|
1607 |
+
tm.assert_numpy_array_equal(result, expected.values)
|
1608 |
+
|
1609 |
+
msg1d = "Unable to coerce to Series, length must be 2: given 3"
|
1610 |
+
msg2d = "Unable to coerce to DataFrame, shape must be"
|
1611 |
+
msg2db = "operands could not be broadcast together with shapes"
|
1612 |
+
with pytest.raises(ValueError, match=msg1d):
|
1613 |
+
# wrong shape
|
1614 |
+
df > lst
|
1615 |
+
|
1616 |
+
with pytest.raises(ValueError, match=msg1d):
|
1617 |
+
# wrong shape
|
1618 |
+
df > tup
|
1619 |
+
|
1620 |
+
# broadcasts like ndarray (GH#23000)
|
1621 |
+
result = df > b_r
|
1622 |
+
tm.assert_frame_equal(result, expected)
|
1623 |
+
|
1624 |
+
result = df.values > b_r
|
1625 |
+
tm.assert_numpy_array_equal(result, expected.values)
|
1626 |
+
|
1627 |
+
with pytest.raises(ValueError, match=msg2d):
|
1628 |
+
df > b_c
|
1629 |
+
|
1630 |
+
with pytest.raises(ValueError, match=msg2db):
|
1631 |
+
df.values > b_c
|
1632 |
+
|
1633 |
+
# ==
|
1634 |
+
expected = DataFrame([[False, False], [True, False], [False, False]])
|
1635 |
+
result = df == b
|
1636 |
+
tm.assert_frame_equal(result, expected)
|
1637 |
+
|
1638 |
+
with pytest.raises(ValueError, match=msg1d):
|
1639 |
+
df == lst
|
1640 |
+
|
1641 |
+
with pytest.raises(ValueError, match=msg1d):
|
1642 |
+
df == tup
|
1643 |
+
|
1644 |
+
# broadcasts like ndarray (GH#23000)
|
1645 |
+
result = df == b_r
|
1646 |
+
tm.assert_frame_equal(result, expected)
|
1647 |
+
|
1648 |
+
result = df.values == b_r
|
1649 |
+
tm.assert_numpy_array_equal(result, expected.values)
|
1650 |
+
|
1651 |
+
with pytest.raises(ValueError, match=msg2d):
|
1652 |
+
df == b_c
|
1653 |
+
|
1654 |
+
assert df.values.shape != b_c.shape
|
1655 |
+
|
1656 |
+
# with alignment
|
1657 |
+
df = DataFrame(
|
1658 |
+
np.arange(6).reshape((3, 2)), columns=list("AB"), index=list("abc")
|
1659 |
+
)
|
1660 |
+
expected.index = df.index
|
1661 |
+
expected.columns = df.columns
|
1662 |
+
|
1663 |
+
with pytest.raises(ValueError, match=msg1d):
|
1664 |
+
df == lst
|
1665 |
+
|
1666 |
+
with pytest.raises(ValueError, match=msg1d):
|
1667 |
+
df == tup
|
1668 |
+
|
1669 |
+
def test_inplace_ops_alignment(self):
|
1670 |
+
# inplace ops / ops alignment
|
1671 |
+
# GH 8511
|
1672 |
+
|
1673 |
+
columns = list("abcdefg")
|
1674 |
+
X_orig = DataFrame(
|
1675 |
+
np.arange(10 * len(columns)).reshape(-1, len(columns)),
|
1676 |
+
columns=columns,
|
1677 |
+
index=range(10),
|
1678 |
+
)
|
1679 |
+
Z = 100 * X_orig.iloc[:, 1:-1].copy()
|
1680 |
+
block1 = list("bedcf")
|
1681 |
+
subs = list("bcdef")
|
1682 |
+
|
1683 |
+
# add
|
1684 |
+
X = X_orig.copy()
|
1685 |
+
result1 = (X[block1] + Z).reindex(columns=subs)
|
1686 |
+
|
1687 |
+
X[block1] += Z
|
1688 |
+
result2 = X.reindex(columns=subs)
|
1689 |
+
|
1690 |
+
X = X_orig.copy()
|
1691 |
+
result3 = (X[block1] + Z[block1]).reindex(columns=subs)
|
1692 |
+
|
1693 |
+
X[block1] += Z[block1]
|
1694 |
+
result4 = X.reindex(columns=subs)
|
1695 |
+
|
1696 |
+
tm.assert_frame_equal(result1, result2)
|
1697 |
+
tm.assert_frame_equal(result1, result3)
|
1698 |
+
tm.assert_frame_equal(result1, result4)
|
1699 |
+
|
1700 |
+
# sub
|
1701 |
+
X = X_orig.copy()
|
1702 |
+
result1 = (X[block1] - Z).reindex(columns=subs)
|
1703 |
+
|
1704 |
+
X[block1] -= Z
|
1705 |
+
result2 = X.reindex(columns=subs)
|
1706 |
+
|
1707 |
+
X = X_orig.copy()
|
1708 |
+
result3 = (X[block1] - Z[block1]).reindex(columns=subs)
|
1709 |
+
|
1710 |
+
X[block1] -= Z[block1]
|
1711 |
+
result4 = X.reindex(columns=subs)
|
1712 |
+
|
1713 |
+
tm.assert_frame_equal(result1, result2)
|
1714 |
+
tm.assert_frame_equal(result1, result3)
|
1715 |
+
tm.assert_frame_equal(result1, result4)
|
1716 |
+
|
1717 |
+
def test_inplace_ops_identity(self):
|
1718 |
+
# GH 5104
|
1719 |
+
# make sure that we are actually changing the object
|
1720 |
+
s_orig = Series([1, 2, 3])
|
1721 |
+
df_orig = DataFrame(
|
1722 |
+
np.random.default_rng(2).integers(0, 5, size=10).reshape(-1, 5)
|
1723 |
+
)
|
1724 |
+
|
1725 |
+
# no dtype change
|
1726 |
+
s = s_orig.copy()
|
1727 |
+
s2 = s
|
1728 |
+
s += 1
|
1729 |
+
tm.assert_series_equal(s, s2)
|
1730 |
+
tm.assert_series_equal(s_orig + 1, s)
|
1731 |
+
assert s is s2
|
1732 |
+
assert s._mgr is s2._mgr
|
1733 |
+
|
1734 |
+
df = df_orig.copy()
|
1735 |
+
df2 = df
|
1736 |
+
df += 1
|
1737 |
+
tm.assert_frame_equal(df, df2)
|
1738 |
+
tm.assert_frame_equal(df_orig + 1, df)
|
1739 |
+
assert df is df2
|
1740 |
+
assert df._mgr is df2._mgr
|
1741 |
+
|
1742 |
+
# dtype change
|
1743 |
+
s = s_orig.copy()
|
1744 |
+
s2 = s
|
1745 |
+
s += 1.5
|
1746 |
+
tm.assert_series_equal(s, s2)
|
1747 |
+
tm.assert_series_equal(s_orig + 1.5, s)
|
1748 |
+
|
1749 |
+
df = df_orig.copy()
|
1750 |
+
df2 = df
|
1751 |
+
df += 1.5
|
1752 |
+
tm.assert_frame_equal(df, df2)
|
1753 |
+
tm.assert_frame_equal(df_orig + 1.5, df)
|
1754 |
+
assert df is df2
|
1755 |
+
assert df._mgr is df2._mgr
|
1756 |
+
|
1757 |
+
# mixed dtype
|
1758 |
+
arr = np.random.default_rng(2).integers(0, 10, size=5)
|
1759 |
+
df_orig = DataFrame({"A": arr.copy(), "B": "foo"})
|
1760 |
+
df = df_orig.copy()
|
1761 |
+
df2 = df
|
1762 |
+
df["A"] += 1
|
1763 |
+
expected = DataFrame({"A": arr.copy() + 1, "B": "foo"})
|
1764 |
+
tm.assert_frame_equal(df, expected)
|
1765 |
+
tm.assert_frame_equal(df2, expected)
|
1766 |
+
assert df._mgr is df2._mgr
|
1767 |
+
|
1768 |
+
df = df_orig.copy()
|
1769 |
+
df2 = df
|
1770 |
+
df["A"] += 1.5
|
1771 |
+
expected = DataFrame({"A": arr.copy() + 1.5, "B": "foo"})
|
1772 |
+
tm.assert_frame_equal(df, expected)
|
1773 |
+
tm.assert_frame_equal(df2, expected)
|
1774 |
+
assert df._mgr is df2._mgr
|
1775 |
+
|
1776 |
+
@pytest.mark.parametrize(
|
1777 |
+
"op",
|
1778 |
+
[
|
1779 |
+
"add",
|
1780 |
+
"and",
|
1781 |
+
pytest.param(
|
1782 |
+
"div",
|
1783 |
+
marks=pytest.mark.xfail(
|
1784 |
+
raises=AttributeError, reason="__idiv__ not implemented"
|
1785 |
+
),
|
1786 |
+
),
|
1787 |
+
"floordiv",
|
1788 |
+
"mod",
|
1789 |
+
"mul",
|
1790 |
+
"or",
|
1791 |
+
"pow",
|
1792 |
+
"sub",
|
1793 |
+
"truediv",
|
1794 |
+
"xor",
|
1795 |
+
],
|
1796 |
+
)
|
1797 |
+
def test_inplace_ops_identity2(self, op):
|
1798 |
+
df = DataFrame({"a": [1.0, 2.0, 3.0], "b": [1, 2, 3]})
|
1799 |
+
|
1800 |
+
operand = 2
|
1801 |
+
if op in ("and", "or", "xor"):
|
1802 |
+
# cannot use floats for boolean ops
|
1803 |
+
df["a"] = [True, False, True]
|
1804 |
+
|
1805 |
+
df_copy = df.copy()
|
1806 |
+
iop = f"__i{op}__"
|
1807 |
+
op = f"__{op}__"
|
1808 |
+
|
1809 |
+
# no id change and value is correct
|
1810 |
+
getattr(df, iop)(operand)
|
1811 |
+
expected = getattr(df_copy, op)(operand)
|
1812 |
+
tm.assert_frame_equal(df, expected)
|
1813 |
+
expected = id(df)
|
1814 |
+
assert id(df) == expected
|
1815 |
+
|
1816 |
+
@pytest.mark.parametrize(
|
1817 |
+
"val",
|
1818 |
+
[
|
1819 |
+
[1, 2, 3],
|
1820 |
+
(1, 2, 3),
|
1821 |
+
np.array([1, 2, 3], dtype=np.int64),
|
1822 |
+
range(1, 4),
|
1823 |
+
],
|
1824 |
+
)
|
1825 |
+
def test_alignment_non_pandas(self, val):
|
1826 |
+
index = ["A", "B", "C"]
|
1827 |
+
columns = ["X", "Y", "Z"]
|
1828 |
+
df = DataFrame(
|
1829 |
+
np.random.default_rng(2).standard_normal((3, 3)),
|
1830 |
+
index=index,
|
1831 |
+
columns=columns,
|
1832 |
+
)
|
1833 |
+
|
1834 |
+
align = DataFrame._align_for_op
|
1835 |
+
|
1836 |
+
expected = DataFrame({"X": val, "Y": val, "Z": val}, index=df.index)
|
1837 |
+
tm.assert_frame_equal(align(df, val, axis=0)[1], expected)
|
1838 |
+
|
1839 |
+
expected = DataFrame(
|
1840 |
+
{"X": [1, 1, 1], "Y": [2, 2, 2], "Z": [3, 3, 3]}, index=df.index
|
1841 |
+
)
|
1842 |
+
tm.assert_frame_equal(align(df, val, axis=1)[1], expected)
|
1843 |
+
|
1844 |
+
@pytest.mark.parametrize("val", [[1, 2], (1, 2), np.array([1, 2]), range(1, 3)])
|
1845 |
+
def test_alignment_non_pandas_length_mismatch(self, val):
|
1846 |
+
index = ["A", "B", "C"]
|
1847 |
+
columns = ["X", "Y", "Z"]
|
1848 |
+
df = DataFrame(
|
1849 |
+
np.random.default_rng(2).standard_normal((3, 3)),
|
1850 |
+
index=index,
|
1851 |
+
columns=columns,
|
1852 |
+
)
|
1853 |
+
|
1854 |
+
align = DataFrame._align_for_op
|
1855 |
+
# length mismatch
|
1856 |
+
msg = "Unable to coerce to Series, length must be 3: given 2"
|
1857 |
+
with pytest.raises(ValueError, match=msg):
|
1858 |
+
align(df, val, axis=0)
|
1859 |
+
|
1860 |
+
with pytest.raises(ValueError, match=msg):
|
1861 |
+
align(df, val, axis=1)
|
1862 |
+
|
1863 |
+
def test_alignment_non_pandas_index_columns(self):
|
1864 |
+
index = ["A", "B", "C"]
|
1865 |
+
columns = ["X", "Y", "Z"]
|
1866 |
+
df = DataFrame(
|
1867 |
+
np.random.default_rng(2).standard_normal((3, 3)),
|
1868 |
+
index=index,
|
1869 |
+
columns=columns,
|
1870 |
+
)
|
1871 |
+
|
1872 |
+
align = DataFrame._align_for_op
|
1873 |
+
val = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
1874 |
+
tm.assert_frame_equal(
|
1875 |
+
align(df, val, axis=0)[1],
|
1876 |
+
DataFrame(val, index=df.index, columns=df.columns),
|
1877 |
+
)
|
1878 |
+
tm.assert_frame_equal(
|
1879 |
+
align(df, val, axis=1)[1],
|
1880 |
+
DataFrame(val, index=df.index, columns=df.columns),
|
1881 |
+
)
|
1882 |
+
|
1883 |
+
# shape mismatch
|
1884 |
+
msg = "Unable to coerce to DataFrame, shape must be"
|
1885 |
+
val = np.array([[1, 2, 3], [4, 5, 6]])
|
1886 |
+
with pytest.raises(ValueError, match=msg):
|
1887 |
+
align(df, val, axis=0)
|
1888 |
+
|
1889 |
+
with pytest.raises(ValueError, match=msg):
|
1890 |
+
align(df, val, axis=1)
|
1891 |
+
|
1892 |
+
val = np.zeros((3, 3, 3))
|
1893 |
+
msg = re.escape(
|
1894 |
+
"Unable to coerce to Series/DataFrame, dimension must be <= 2: (3, 3, 3)"
|
1895 |
+
)
|
1896 |
+
with pytest.raises(ValueError, match=msg):
|
1897 |
+
align(df, val, axis=0)
|
1898 |
+
with pytest.raises(ValueError, match=msg):
|
1899 |
+
align(df, val, axis=1)
|
1900 |
+
|
1901 |
+
def test_no_warning(self, all_arithmetic_operators):
|
1902 |
+
df = DataFrame({"A": [0.0, 0.0], "B": [0.0, None]})
|
1903 |
+
b = df["B"]
|
1904 |
+
with tm.assert_produces_warning(None):
|
1905 |
+
getattr(df, all_arithmetic_operators)(b)
|
1906 |
+
|
1907 |
+
def test_dunder_methods_binary(self, all_arithmetic_operators):
|
1908 |
+
# GH#??? frame.__foo__ should only accept one argument
|
1909 |
+
df = DataFrame({"A": [0.0, 0.0], "B": [0.0, None]})
|
1910 |
+
b = df["B"]
|
1911 |
+
with pytest.raises(TypeError, match="takes 2 positional arguments"):
|
1912 |
+
getattr(df, all_arithmetic_operators)(b, 0)
|
1913 |
+
|
1914 |
+
def test_align_int_fill_bug(self):
|
1915 |
+
# GH#910
|
1916 |
+
X = np.arange(10 * 10, dtype="float64").reshape(10, 10)
|
1917 |
+
Y = np.ones((10, 1), dtype=int)
|
1918 |
+
|
1919 |
+
df1 = DataFrame(X)
|
1920 |
+
df1["0.X"] = Y.squeeze()
|
1921 |
+
|
1922 |
+
df2 = df1.astype(float)
|
1923 |
+
|
1924 |
+
result = df1 - df1.mean()
|
1925 |
+
expected = df2 - df2.mean()
|
1926 |
+
tm.assert_frame_equal(result, expected)
|
1927 |
+
|
1928 |
+
|
1929 |
+
def test_pow_with_realignment():
|
1930 |
+
# GH#32685 pow has special semantics for operating with null values
|
1931 |
+
left = DataFrame({"A": [0, 1, 2]})
|
1932 |
+
right = DataFrame(index=[0, 1, 2])
|
1933 |
+
|
1934 |
+
result = left**right
|
1935 |
+
expected = DataFrame({"A": [np.nan, 1.0, np.nan]})
|
1936 |
+
tm.assert_frame_equal(result, expected)
|
1937 |
+
|
1938 |
+
|
1939 |
+
def test_dataframe_series_extension_dtypes():
|
1940 |
+
# https://github.com/pandas-dev/pandas/issues/34311
|
1941 |
+
df = DataFrame(
|
1942 |
+
np.random.default_rng(2).integers(0, 100, (10, 3)), columns=["a", "b", "c"]
|
1943 |
+
)
|
1944 |
+
ser = Series([1, 2, 3], index=["a", "b", "c"])
|
1945 |
+
|
1946 |
+
expected = df.to_numpy("int64") + ser.to_numpy("int64").reshape(-1, 3)
|
1947 |
+
expected = DataFrame(expected, columns=df.columns, dtype="Int64")
|
1948 |
+
|
1949 |
+
df_ea = df.astype("Int64")
|
1950 |
+
result = df_ea + ser
|
1951 |
+
tm.assert_frame_equal(result, expected)
|
1952 |
+
result = df_ea + ser.astype("Int64")
|
1953 |
+
tm.assert_frame_equal(result, expected)
|
1954 |
+
|
1955 |
+
|
1956 |
+
def test_dataframe_blockwise_slicelike():
|
1957 |
+
# GH#34367
|
1958 |
+
arr = np.random.default_rng(2).integers(0, 1000, (100, 10))
|
1959 |
+
df1 = DataFrame(arr)
|
1960 |
+
# Explicit cast to float to avoid implicit cast when setting nan
|
1961 |
+
df2 = df1.copy().astype({1: "float", 3: "float", 7: "float"})
|
1962 |
+
df2.iloc[0, [1, 3, 7]] = np.nan
|
1963 |
+
|
1964 |
+
# Explicit cast to float to avoid implicit cast when setting nan
|
1965 |
+
df3 = df1.copy().astype({5: "float"})
|
1966 |
+
df3.iloc[0, [5]] = np.nan
|
1967 |
+
|
1968 |
+
# Explicit cast to float to avoid implicit cast when setting nan
|
1969 |
+
df4 = df1.copy().astype({2: "float", 3: "float", 4: "float"})
|
1970 |
+
df4.iloc[0, np.arange(2, 5)] = np.nan
|
1971 |
+
# Explicit cast to float to avoid implicit cast when setting nan
|
1972 |
+
df5 = df1.copy().astype({4: "float", 5: "float", 6: "float"})
|
1973 |
+
df5.iloc[0, np.arange(4, 7)] = np.nan
|
1974 |
+
|
1975 |
+
for left, right in [(df1, df2), (df2, df3), (df4, df5)]:
|
1976 |
+
res = left + right
|
1977 |
+
|
1978 |
+
expected = DataFrame({i: left[i] + right[i] for i in left.columns})
|
1979 |
+
tm.assert_frame_equal(res, expected)
|
1980 |
+
|
1981 |
+
|
1982 |
+
@pytest.mark.parametrize(
|
1983 |
+
"df, col_dtype",
|
1984 |
+
[
|
1985 |
+
(DataFrame([[1.0, 2.0], [4.0, 5.0]], columns=list("ab")), "float64"),
|
1986 |
+
(
|
1987 |
+
DataFrame([[1.0, "b"], [4.0, "b"]], columns=list("ab")).astype(
|
1988 |
+
{"b": object}
|
1989 |
+
),
|
1990 |
+
"object",
|
1991 |
+
),
|
1992 |
+
],
|
1993 |
+
)
|
1994 |
+
def test_dataframe_operation_with_non_numeric_types(df, col_dtype):
|
1995 |
+
# GH #22663
|
1996 |
+
expected = DataFrame([[0.0, np.nan], [3.0, np.nan]], columns=list("ab"))
|
1997 |
+
expected = expected.astype({"b": col_dtype})
|
1998 |
+
result = df + Series([-1.0], index=list("a"))
|
1999 |
+
tm.assert_frame_equal(result, expected)
|
2000 |
+
|
2001 |
+
|
2002 |
+
def test_arith_reindex_with_duplicates():
|
2003 |
+
# https://github.com/pandas-dev/pandas/issues/35194
|
2004 |
+
df1 = DataFrame(data=[[0]], columns=["second"])
|
2005 |
+
df2 = DataFrame(data=[[0, 0, 0]], columns=["first", "second", "second"])
|
2006 |
+
result = df1 + df2
|
2007 |
+
expected = DataFrame([[np.nan, 0, 0]], columns=["first", "second", "second"])
|
2008 |
+
tm.assert_frame_equal(result, expected)
|
2009 |
+
|
2010 |
+
|
2011 |
+
@pytest.mark.parametrize("to_add", [[Series([1, 1])], [Series([1, 1]), Series([1, 1])]])
|
2012 |
+
def test_arith_list_of_arraylike_raise(to_add):
|
2013 |
+
# GH 36702. Raise when trying to add list of array-like to DataFrame
|
2014 |
+
df = DataFrame({"x": [1, 2], "y": [1, 2]})
|
2015 |
+
|
2016 |
+
msg = f"Unable to coerce list of {type(to_add[0])} to Series/DataFrame"
|
2017 |
+
with pytest.raises(ValueError, match=msg):
|
2018 |
+
df + to_add
|
2019 |
+
with pytest.raises(ValueError, match=msg):
|
2020 |
+
to_add + df
|
2021 |
+
|
2022 |
+
|
2023 |
+
def test_inplace_arithmetic_series_update(using_copy_on_write, warn_copy_on_write):
|
2024 |
+
# https://github.com/pandas-dev/pandas/issues/36373
|
2025 |
+
df = DataFrame({"A": [1, 2, 3]})
|
2026 |
+
df_orig = df.copy()
|
2027 |
+
series = df["A"]
|
2028 |
+
vals = series._values
|
2029 |
+
|
2030 |
+
with tm.assert_cow_warning(warn_copy_on_write):
|
2031 |
+
series += 1
|
2032 |
+
if using_copy_on_write:
|
2033 |
+
assert series._values is not vals
|
2034 |
+
tm.assert_frame_equal(df, df_orig)
|
2035 |
+
else:
|
2036 |
+
assert series._values is vals
|
2037 |
+
|
2038 |
+
expected = DataFrame({"A": [2, 3, 4]})
|
2039 |
+
tm.assert_frame_equal(df, expected)
|
2040 |
+
|
2041 |
+
|
2042 |
+
def test_arithmetic_multiindex_align():
|
2043 |
+
"""
|
2044 |
+
Regression test for: https://github.com/pandas-dev/pandas/issues/33765
|
2045 |
+
"""
|
2046 |
+
df1 = DataFrame(
|
2047 |
+
[[1]],
|
2048 |
+
index=["a"],
|
2049 |
+
columns=MultiIndex.from_product([[0], [1]], names=["a", "b"]),
|
2050 |
+
)
|
2051 |
+
df2 = DataFrame([[1]], index=["a"], columns=Index([0], name="a"))
|
2052 |
+
expected = DataFrame(
|
2053 |
+
[[0]],
|
2054 |
+
index=["a"],
|
2055 |
+
columns=MultiIndex.from_product([[0], [1]], names=["a", "b"]),
|
2056 |
+
)
|
2057 |
+
result = df1 - df2
|
2058 |
+
tm.assert_frame_equal(result, expected)
|
2059 |
+
|
2060 |
+
|
2061 |
+
def test_bool_frame_mult_float():
|
2062 |
+
# GH 18549
|
2063 |
+
df = DataFrame(True, list("ab"), list("cd"))
|
2064 |
+
result = df * 1.0
|
2065 |
+
expected = DataFrame(np.ones((2, 2)), list("ab"), list("cd"))
|
2066 |
+
tm.assert_frame_equal(result, expected)
|
2067 |
+
|
2068 |
+
|
2069 |
+
def test_frame_sub_nullable_int(any_int_ea_dtype):
|
2070 |
+
# GH 32822
|
2071 |
+
series1 = Series([1, 2, None], dtype=any_int_ea_dtype)
|
2072 |
+
series2 = Series([1, 2, 3], dtype=any_int_ea_dtype)
|
2073 |
+
expected = DataFrame([0, 0, None], dtype=any_int_ea_dtype)
|
2074 |
+
result = series1.to_frame() - series2.to_frame()
|
2075 |
+
tm.assert_frame_equal(result, expected)
|
2076 |
+
|
2077 |
+
|
2078 |
+
@pytest.mark.filterwarnings(
|
2079 |
+
"ignore:Passing a BlockManager|Passing a SingleBlockManager:DeprecationWarning"
|
2080 |
+
)
|
2081 |
+
def test_frame_op_subclass_nonclass_constructor():
|
2082 |
+
# GH#43201 subclass._constructor is a function, not the subclass itself
|
2083 |
+
|
2084 |
+
class SubclassedSeries(Series):
|
2085 |
+
@property
|
2086 |
+
def _constructor(self):
|
2087 |
+
return SubclassedSeries
|
2088 |
+
|
2089 |
+
@property
|
2090 |
+
def _constructor_expanddim(self):
|
2091 |
+
return SubclassedDataFrame
|
2092 |
+
|
2093 |
+
class SubclassedDataFrame(DataFrame):
|
2094 |
+
_metadata = ["my_extra_data"]
|
2095 |
+
|
2096 |
+
def __init__(self, my_extra_data, *args, **kwargs) -> None:
|
2097 |
+
self.my_extra_data = my_extra_data
|
2098 |
+
super().__init__(*args, **kwargs)
|
2099 |
+
|
2100 |
+
@property
|
2101 |
+
def _constructor(self):
|
2102 |
+
return functools.partial(type(self), self.my_extra_data)
|
2103 |
+
|
2104 |
+
@property
|
2105 |
+
def _constructor_sliced(self):
|
2106 |
+
return SubclassedSeries
|
2107 |
+
|
2108 |
+
sdf = SubclassedDataFrame("some_data", {"A": [1, 2, 3], "B": [4, 5, 6]})
|
2109 |
+
result = sdf * 2
|
2110 |
+
expected = SubclassedDataFrame("some_data", {"A": [2, 4, 6], "B": [8, 10, 12]})
|
2111 |
+
tm.assert_frame_equal(result, expected)
|
2112 |
+
|
2113 |
+
result = sdf + sdf
|
2114 |
+
tm.assert_frame_equal(result, expected)
|
2115 |
+
|
2116 |
+
|
2117 |
+
def test_enum_column_equality():
|
2118 |
+
Cols = Enum("Cols", "col1 col2")
|
2119 |
+
|
2120 |
+
q1 = DataFrame({Cols.col1: [1, 2, 3]})
|
2121 |
+
q2 = DataFrame({Cols.col1: [1, 2, 3]})
|
2122 |
+
|
2123 |
+
result = q1[Cols.col1] == q2[Cols.col1]
|
2124 |
+
expected = Series([True, True, True], name=Cols.col1)
|
2125 |
+
|
2126 |
+
tm.assert_series_equal(result, expected)
|
2127 |
+
|
2128 |
+
|
2129 |
+
def test_mixed_col_index_dtype():
|
2130 |
+
# GH 47382
|
2131 |
+
df1 = DataFrame(columns=list("abc"), data=1.0, index=[0])
|
2132 |
+
df2 = DataFrame(columns=list("abc"), data=0.0, index=[0])
|
2133 |
+
df1.columns = df2.columns.astype("string")
|
2134 |
+
result = df1 + df2
|
2135 |
+
expected = DataFrame(columns=list("abc"), data=1.0, index=[0])
|
2136 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_block_internals.py
ADDED
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
timedelta,
|
4 |
+
)
|
5 |
+
import itertools
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pytest
|
9 |
+
|
10 |
+
from pandas.errors import PerformanceWarning
|
11 |
+
import pandas.util._test_decorators as td
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
from pandas import (
|
15 |
+
Categorical,
|
16 |
+
DataFrame,
|
17 |
+
Series,
|
18 |
+
Timestamp,
|
19 |
+
date_range,
|
20 |
+
option_context,
|
21 |
+
)
|
22 |
+
import pandas._testing as tm
|
23 |
+
from pandas.core.internals.blocks import NumpyBlock
|
24 |
+
|
25 |
+
# Segregated collection of methods that require the BlockManager internal data
|
26 |
+
# structure
|
27 |
+
|
28 |
+
|
29 |
+
# TODO(ArrayManager) check which of those tests need to be rewritten to test the
|
30 |
+
# equivalent for ArrayManager
|
31 |
+
pytestmark = td.skip_array_manager_invalid_test
|
32 |
+
|
33 |
+
|
34 |
+
class TestDataFrameBlockInternals:
|
35 |
+
def test_setitem_invalidates_datetime_index_freq(self):
|
36 |
+
# GH#24096 altering a datetime64tz column inplace invalidates the
|
37 |
+
# `freq` attribute on the underlying DatetimeIndex
|
38 |
+
|
39 |
+
dti = date_range("20130101", periods=3, tz="US/Eastern")
|
40 |
+
ts = dti[1]
|
41 |
+
|
42 |
+
df = DataFrame({"B": dti})
|
43 |
+
assert df["B"]._values.freq is None
|
44 |
+
|
45 |
+
df.iloc[1, 0] = pd.NaT
|
46 |
+
assert df["B"]._values.freq is None
|
47 |
+
|
48 |
+
# check that the DatetimeIndex was not altered in place
|
49 |
+
assert dti.freq == "D"
|
50 |
+
assert dti[1] == ts
|
51 |
+
|
52 |
+
def test_cast_internals(self, float_frame):
|
53 |
+
msg = "Passing a BlockManager to DataFrame"
|
54 |
+
with tm.assert_produces_warning(
|
55 |
+
DeprecationWarning, match=msg, check_stacklevel=False
|
56 |
+
):
|
57 |
+
casted = DataFrame(float_frame._mgr, dtype=int)
|
58 |
+
expected = DataFrame(float_frame._series, dtype=int)
|
59 |
+
tm.assert_frame_equal(casted, expected)
|
60 |
+
|
61 |
+
with tm.assert_produces_warning(
|
62 |
+
DeprecationWarning, match=msg, check_stacklevel=False
|
63 |
+
):
|
64 |
+
casted = DataFrame(float_frame._mgr, dtype=np.int32)
|
65 |
+
expected = DataFrame(float_frame._series, dtype=np.int32)
|
66 |
+
tm.assert_frame_equal(casted, expected)
|
67 |
+
|
68 |
+
def test_consolidate(self, float_frame):
|
69 |
+
float_frame["E"] = 7.0
|
70 |
+
consolidated = float_frame._consolidate()
|
71 |
+
assert len(consolidated._mgr.blocks) == 1
|
72 |
+
|
73 |
+
# Ensure copy, do I want this?
|
74 |
+
recons = consolidated._consolidate()
|
75 |
+
assert recons is not consolidated
|
76 |
+
tm.assert_frame_equal(recons, consolidated)
|
77 |
+
|
78 |
+
float_frame["F"] = 8.0
|
79 |
+
assert len(float_frame._mgr.blocks) == 3
|
80 |
+
|
81 |
+
return_value = float_frame._consolidate_inplace()
|
82 |
+
assert return_value is None
|
83 |
+
assert len(float_frame._mgr.blocks) == 1
|
84 |
+
|
85 |
+
def test_consolidate_inplace(self, float_frame):
|
86 |
+
# triggers in-place consolidation
|
87 |
+
for letter in range(ord("A"), ord("Z")):
|
88 |
+
float_frame[chr(letter)] = chr(letter)
|
89 |
+
|
90 |
+
def test_modify_values(self, float_frame, using_copy_on_write):
|
91 |
+
if using_copy_on_write:
|
92 |
+
with pytest.raises(ValueError, match="read-only"):
|
93 |
+
float_frame.values[5] = 5
|
94 |
+
assert (float_frame.values[5] != 5).all()
|
95 |
+
return
|
96 |
+
|
97 |
+
float_frame.values[5] = 5
|
98 |
+
assert (float_frame.values[5] == 5).all()
|
99 |
+
|
100 |
+
# unconsolidated
|
101 |
+
float_frame["E"] = 7.0
|
102 |
+
col = float_frame["E"]
|
103 |
+
float_frame.values[6] = 6
|
104 |
+
# as of 2.0 .values does not consolidate, so subsequent calls to .values
|
105 |
+
# does not share data
|
106 |
+
assert not (float_frame.values[6] == 6).all()
|
107 |
+
|
108 |
+
assert (col == 7).all()
|
109 |
+
|
110 |
+
def test_boolean_set_uncons(self, float_frame):
|
111 |
+
float_frame["E"] = 7.0
|
112 |
+
|
113 |
+
expected = float_frame.values.copy()
|
114 |
+
expected[expected > 1] = 2
|
115 |
+
|
116 |
+
float_frame[float_frame > 1] = 2
|
117 |
+
tm.assert_almost_equal(expected, float_frame.values)
|
118 |
+
|
119 |
+
def test_constructor_with_convert(self):
|
120 |
+
# this is actually mostly a test of lib.maybe_convert_objects
|
121 |
+
# #2845
|
122 |
+
df = DataFrame({"A": [2**63 - 1]})
|
123 |
+
result = df["A"]
|
124 |
+
expected = Series(np.asarray([2**63 - 1], np.int64), name="A")
|
125 |
+
tm.assert_series_equal(result, expected)
|
126 |
+
|
127 |
+
df = DataFrame({"A": [2**63]})
|
128 |
+
result = df["A"]
|
129 |
+
expected = Series(np.asarray([2**63], np.uint64), name="A")
|
130 |
+
tm.assert_series_equal(result, expected)
|
131 |
+
|
132 |
+
df = DataFrame({"A": [datetime(2005, 1, 1), True]})
|
133 |
+
result = df["A"]
|
134 |
+
expected = Series(
|
135 |
+
np.asarray([datetime(2005, 1, 1), True], np.object_), name="A"
|
136 |
+
)
|
137 |
+
tm.assert_series_equal(result, expected)
|
138 |
+
|
139 |
+
df = DataFrame({"A": [None, 1]})
|
140 |
+
result = df["A"]
|
141 |
+
expected = Series(np.asarray([np.nan, 1], np.float64), name="A")
|
142 |
+
tm.assert_series_equal(result, expected)
|
143 |
+
|
144 |
+
df = DataFrame({"A": [1.0, 2]})
|
145 |
+
result = df["A"]
|
146 |
+
expected = Series(np.asarray([1.0, 2], np.float64), name="A")
|
147 |
+
tm.assert_series_equal(result, expected)
|
148 |
+
|
149 |
+
df = DataFrame({"A": [1.0 + 2.0j, 3]})
|
150 |
+
result = df["A"]
|
151 |
+
expected = Series(np.asarray([1.0 + 2.0j, 3], np.complex128), name="A")
|
152 |
+
tm.assert_series_equal(result, expected)
|
153 |
+
|
154 |
+
df = DataFrame({"A": [1.0 + 2.0j, 3.0]})
|
155 |
+
result = df["A"]
|
156 |
+
expected = Series(np.asarray([1.0 + 2.0j, 3.0], np.complex128), name="A")
|
157 |
+
tm.assert_series_equal(result, expected)
|
158 |
+
|
159 |
+
df = DataFrame({"A": [1.0 + 2.0j, True]})
|
160 |
+
result = df["A"]
|
161 |
+
expected = Series(np.asarray([1.0 + 2.0j, True], np.object_), name="A")
|
162 |
+
tm.assert_series_equal(result, expected)
|
163 |
+
|
164 |
+
df = DataFrame({"A": [1.0, None]})
|
165 |
+
result = df["A"]
|
166 |
+
expected = Series(np.asarray([1.0, np.nan], np.float64), name="A")
|
167 |
+
tm.assert_series_equal(result, expected)
|
168 |
+
|
169 |
+
df = DataFrame({"A": [1.0 + 2.0j, None]})
|
170 |
+
result = df["A"]
|
171 |
+
expected = Series(np.asarray([1.0 + 2.0j, np.nan], np.complex128), name="A")
|
172 |
+
tm.assert_series_equal(result, expected)
|
173 |
+
|
174 |
+
df = DataFrame({"A": [2.0, 1, True, None]})
|
175 |
+
result = df["A"]
|
176 |
+
expected = Series(np.asarray([2.0, 1, True, None], np.object_), name="A")
|
177 |
+
tm.assert_series_equal(result, expected)
|
178 |
+
|
179 |
+
df = DataFrame({"A": [2.0, 1, datetime(2006, 1, 1), None]})
|
180 |
+
result = df["A"]
|
181 |
+
expected = Series(
|
182 |
+
np.asarray([2.0, 1, datetime(2006, 1, 1), None], np.object_), name="A"
|
183 |
+
)
|
184 |
+
tm.assert_series_equal(result, expected)
|
185 |
+
|
186 |
+
def test_construction_with_mixed(self, float_string_frame, using_infer_string):
|
187 |
+
# test construction edge cases with mixed types
|
188 |
+
|
189 |
+
# f7u12, this does not work without extensive workaround
|
190 |
+
data = [
|
191 |
+
[datetime(2001, 1, 5), np.nan, datetime(2001, 1, 2)],
|
192 |
+
[datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 1)],
|
193 |
+
]
|
194 |
+
df = DataFrame(data)
|
195 |
+
|
196 |
+
# check dtypes
|
197 |
+
result = df.dtypes
|
198 |
+
expected = Series({"datetime64[us]": 3})
|
199 |
+
|
200 |
+
# mixed-type frames
|
201 |
+
float_string_frame["datetime"] = datetime.now()
|
202 |
+
float_string_frame["timedelta"] = timedelta(days=1, seconds=1)
|
203 |
+
assert float_string_frame["datetime"].dtype == "M8[us]"
|
204 |
+
assert float_string_frame["timedelta"].dtype == "m8[us]"
|
205 |
+
result = float_string_frame.dtypes
|
206 |
+
expected = Series(
|
207 |
+
[np.dtype("float64")] * 4
|
208 |
+
+ [
|
209 |
+
np.dtype("object") if not using_infer_string else "string",
|
210 |
+
np.dtype("datetime64[us]"),
|
211 |
+
np.dtype("timedelta64[us]"),
|
212 |
+
],
|
213 |
+
index=list("ABCD") + ["foo", "datetime", "timedelta"],
|
214 |
+
)
|
215 |
+
tm.assert_series_equal(result, expected)
|
216 |
+
|
217 |
+
def test_construction_with_conversions(self):
|
218 |
+
# convert from a numpy array of non-ns timedelta64; as of 2.0 this does
|
219 |
+
# *not* convert
|
220 |
+
arr = np.array([1, 2, 3], dtype="timedelta64[s]")
|
221 |
+
df = DataFrame(index=range(3))
|
222 |
+
df["A"] = arr
|
223 |
+
expected = DataFrame(
|
224 |
+
{"A": pd.timedelta_range("00:00:01", periods=3, freq="s")}, index=range(3)
|
225 |
+
)
|
226 |
+
tm.assert_numpy_array_equal(df["A"].to_numpy(), arr)
|
227 |
+
|
228 |
+
expected = DataFrame(
|
229 |
+
{
|
230 |
+
"dt1": Timestamp("20130101"),
|
231 |
+
"dt2": date_range("20130101", periods=3).astype("M8[s]"),
|
232 |
+
# 'dt3' : date_range('20130101 00:00:01',periods=3,freq='s'),
|
233 |
+
# FIXME: don't leave commented-out
|
234 |
+
},
|
235 |
+
index=range(3),
|
236 |
+
)
|
237 |
+
assert expected.dtypes["dt1"] == "M8[s]"
|
238 |
+
assert expected.dtypes["dt2"] == "M8[s]"
|
239 |
+
|
240 |
+
df = DataFrame(index=range(3))
|
241 |
+
df["dt1"] = np.datetime64("2013-01-01")
|
242 |
+
df["dt2"] = np.array(
|
243 |
+
["2013-01-01", "2013-01-02", "2013-01-03"], dtype="datetime64[D]"
|
244 |
+
)
|
245 |
+
|
246 |
+
# df['dt3'] = np.array(['2013-01-01 00:00:01','2013-01-01
|
247 |
+
# 00:00:02','2013-01-01 00:00:03'],dtype='datetime64[s]')
|
248 |
+
# FIXME: don't leave commented-out
|
249 |
+
|
250 |
+
tm.assert_frame_equal(df, expected)
|
251 |
+
|
252 |
+
def test_constructor_compound_dtypes(self):
|
253 |
+
# GH 5191
|
254 |
+
# compound dtypes should raise not-implementederror
|
255 |
+
|
256 |
+
def f(dtype):
|
257 |
+
data = list(itertools.repeat((datetime(2001, 1, 1), "aa", 20), 9))
|
258 |
+
return DataFrame(data=data, columns=["A", "B", "C"], dtype=dtype)
|
259 |
+
|
260 |
+
msg = "compound dtypes are not implemented in the DataFrame constructor"
|
261 |
+
with pytest.raises(NotImplementedError, match=msg):
|
262 |
+
f([("A", "datetime64[h]"), ("B", "str"), ("C", "int32")])
|
263 |
+
|
264 |
+
# pre-2.0 these used to work (though results may be unexpected)
|
265 |
+
with pytest.raises(TypeError, match="argument must be"):
|
266 |
+
f("int64")
|
267 |
+
with pytest.raises(TypeError, match="argument must be"):
|
268 |
+
f("float64")
|
269 |
+
|
270 |
+
# 10822
|
271 |
+
msg = "^Unknown datetime string format, unable to parse: aa, at position 0$"
|
272 |
+
with pytest.raises(ValueError, match=msg):
|
273 |
+
f("M8[ns]")
|
274 |
+
|
275 |
+
def test_pickle(self, float_string_frame, timezone_frame):
|
276 |
+
empty_frame = DataFrame()
|
277 |
+
|
278 |
+
unpickled = tm.round_trip_pickle(float_string_frame)
|
279 |
+
tm.assert_frame_equal(float_string_frame, unpickled)
|
280 |
+
|
281 |
+
# buglet
|
282 |
+
float_string_frame._mgr.ndim
|
283 |
+
|
284 |
+
# empty
|
285 |
+
unpickled = tm.round_trip_pickle(empty_frame)
|
286 |
+
repr(unpickled)
|
287 |
+
|
288 |
+
# tz frame
|
289 |
+
unpickled = tm.round_trip_pickle(timezone_frame)
|
290 |
+
tm.assert_frame_equal(timezone_frame, unpickled)
|
291 |
+
|
292 |
+
def test_consolidate_datetime64(self):
|
293 |
+
# numpy vstack bug
|
294 |
+
|
295 |
+
df = DataFrame(
|
296 |
+
{
|
297 |
+
"starting": pd.to_datetime(
|
298 |
+
[
|
299 |
+
"2012-06-21 00:00",
|
300 |
+
"2012-06-23 07:00",
|
301 |
+
"2012-06-23 16:30",
|
302 |
+
"2012-06-25 08:00",
|
303 |
+
"2012-06-26 12:00",
|
304 |
+
]
|
305 |
+
),
|
306 |
+
"ending": pd.to_datetime(
|
307 |
+
[
|
308 |
+
"2012-06-23 07:00",
|
309 |
+
"2012-06-23 16:30",
|
310 |
+
"2012-06-25 08:00",
|
311 |
+
"2012-06-26 12:00",
|
312 |
+
"2012-06-27 08:00",
|
313 |
+
]
|
314 |
+
),
|
315 |
+
"measure": [77, 65, 77, 0, 77],
|
316 |
+
}
|
317 |
+
)
|
318 |
+
|
319 |
+
ser_starting = df.starting
|
320 |
+
ser_starting.index = ser_starting.values
|
321 |
+
ser_starting = ser_starting.tz_localize("US/Eastern")
|
322 |
+
ser_starting = ser_starting.tz_convert("UTC")
|
323 |
+
ser_starting.index.name = "starting"
|
324 |
+
|
325 |
+
ser_ending = df.ending
|
326 |
+
ser_ending.index = ser_ending.values
|
327 |
+
ser_ending = ser_ending.tz_localize("US/Eastern")
|
328 |
+
ser_ending = ser_ending.tz_convert("UTC")
|
329 |
+
ser_ending.index.name = "ending"
|
330 |
+
|
331 |
+
df.starting = ser_starting.index
|
332 |
+
df.ending = ser_ending.index
|
333 |
+
|
334 |
+
tm.assert_index_equal(pd.DatetimeIndex(df.starting), ser_starting.index)
|
335 |
+
tm.assert_index_equal(pd.DatetimeIndex(df.ending), ser_ending.index)
|
336 |
+
|
337 |
+
def test_is_mixed_type(self, float_frame, float_string_frame):
|
338 |
+
assert not float_frame._is_mixed_type
|
339 |
+
assert float_string_frame._is_mixed_type
|
340 |
+
|
341 |
+
def test_stale_cached_series_bug_473(self, using_copy_on_write, warn_copy_on_write):
|
342 |
+
# this is chained, but ok
|
343 |
+
with option_context("chained_assignment", None):
|
344 |
+
Y = DataFrame(
|
345 |
+
np.random.default_rng(2).random((4, 4)),
|
346 |
+
index=("a", "b", "c", "d"),
|
347 |
+
columns=("e", "f", "g", "h"),
|
348 |
+
)
|
349 |
+
repr(Y)
|
350 |
+
Y["e"] = Y["e"].astype("object")
|
351 |
+
with tm.raises_chained_assignment_error():
|
352 |
+
Y["g"]["c"] = np.nan
|
353 |
+
repr(Y)
|
354 |
+
Y.sum()
|
355 |
+
Y["g"].sum()
|
356 |
+
if using_copy_on_write:
|
357 |
+
assert not pd.isna(Y["g"]["c"])
|
358 |
+
else:
|
359 |
+
assert pd.isna(Y["g"]["c"])
|
360 |
+
|
361 |
+
@pytest.mark.filterwarnings("ignore:Setting a value on a view:FutureWarning")
|
362 |
+
def test_strange_column_corruption_issue(self, using_copy_on_write):
|
363 |
+
# TODO(wesm): Unclear how exactly this is related to internal matters
|
364 |
+
df = DataFrame(index=[0, 1])
|
365 |
+
df[0] = np.nan
|
366 |
+
wasCol = {}
|
367 |
+
|
368 |
+
with tm.assert_produces_warning(
|
369 |
+
PerformanceWarning, raise_on_extra_warnings=False
|
370 |
+
):
|
371 |
+
for i, dt in enumerate(df.index):
|
372 |
+
for col in range(100, 200):
|
373 |
+
if col not in wasCol:
|
374 |
+
wasCol[col] = 1
|
375 |
+
df[col] = np.nan
|
376 |
+
if using_copy_on_write:
|
377 |
+
df.loc[dt, col] = i
|
378 |
+
else:
|
379 |
+
df[col][dt] = i
|
380 |
+
|
381 |
+
myid = 100
|
382 |
+
|
383 |
+
first = len(df.loc[pd.isna(df[myid]), [myid]])
|
384 |
+
second = len(df.loc[pd.isna(df[myid]), [myid]])
|
385 |
+
assert first == second == 0
|
386 |
+
|
387 |
+
def test_constructor_no_pandas_array(self):
|
388 |
+
# Ensure that NumpyExtensionArray isn't allowed inside Series
|
389 |
+
# See https://github.com/pandas-dev/pandas/issues/23995 for more.
|
390 |
+
arr = Series([1, 2, 3]).array
|
391 |
+
result = DataFrame({"A": arr})
|
392 |
+
expected = DataFrame({"A": [1, 2, 3]})
|
393 |
+
tm.assert_frame_equal(result, expected)
|
394 |
+
assert isinstance(result._mgr.blocks[0], NumpyBlock)
|
395 |
+
assert result._mgr.blocks[0].is_numeric
|
396 |
+
|
397 |
+
def test_add_column_with_pandas_array(self):
|
398 |
+
# GH 26390
|
399 |
+
df = DataFrame({"a": [1, 2, 3, 4], "b": ["a", "b", "c", "d"]})
|
400 |
+
df["c"] = pd.arrays.NumpyExtensionArray(np.array([1, 2, None, 3], dtype=object))
|
401 |
+
df2 = DataFrame(
|
402 |
+
{
|
403 |
+
"a": [1, 2, 3, 4],
|
404 |
+
"b": ["a", "b", "c", "d"],
|
405 |
+
"c": pd.arrays.NumpyExtensionArray(
|
406 |
+
np.array([1, 2, None, 3], dtype=object)
|
407 |
+
),
|
408 |
+
}
|
409 |
+
)
|
410 |
+
assert type(df["c"]._mgr.blocks[0]) == NumpyBlock
|
411 |
+
assert df["c"]._mgr.blocks[0].is_object
|
412 |
+
assert type(df2["c"]._mgr.blocks[0]) == NumpyBlock
|
413 |
+
assert df2["c"]._mgr.blocks[0].is_object
|
414 |
+
tm.assert_frame_equal(df, df2)
|
415 |
+
|
416 |
+
|
417 |
+
def test_update_inplace_sets_valid_block_values(using_copy_on_write):
|
418 |
+
# https://github.com/pandas-dev/pandas/issues/33457
|
419 |
+
df = DataFrame({"a": Series([1, 2, None], dtype="category")})
|
420 |
+
|
421 |
+
# inplace update of a single column
|
422 |
+
if using_copy_on_write:
|
423 |
+
with tm.raises_chained_assignment_error():
|
424 |
+
df["a"].fillna(1, inplace=True)
|
425 |
+
else:
|
426 |
+
with tm.assert_produces_warning(FutureWarning, match="inplace method"):
|
427 |
+
df["a"].fillna(1, inplace=True)
|
428 |
+
|
429 |
+
# check we haven't put a Series into any block.values
|
430 |
+
assert isinstance(df._mgr.blocks[0].values, Categorical)
|
431 |
+
|
432 |
+
if not using_copy_on_write:
|
433 |
+
# smoketest for OP bug from GH#35731
|
434 |
+
assert df.isnull().sum().sum() == 0
|
435 |
+
|
436 |
+
|
437 |
+
def test_nonconsolidated_item_cache_take():
|
438 |
+
# https://github.com/pandas-dev/pandas/issues/35521
|
439 |
+
|
440 |
+
# create non-consolidated dataframe with object dtype columns
|
441 |
+
df = DataFrame()
|
442 |
+
df["col1"] = Series(["a"], dtype=object)
|
443 |
+
df["col2"] = Series([0], dtype=object)
|
444 |
+
|
445 |
+
# access column (item cache)
|
446 |
+
df["col1"] == "A"
|
447 |
+
# take operation
|
448 |
+
# (regression was that this consolidated but didn't reset item cache,
|
449 |
+
# resulting in an invalid cache and the .at operation not working properly)
|
450 |
+
df[df["col2"] == 0]
|
451 |
+
|
452 |
+
# now setting value should update actual dataframe
|
453 |
+
df.at[0, "col1"] = "A"
|
454 |
+
|
455 |
+
expected = DataFrame({"col1": ["A"], "col2": [0]}, dtype=object)
|
456 |
+
tm.assert_frame_equal(df, expected)
|
457 |
+
assert df.at[0, "col1"] == "A"
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_constructors.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_cumulative.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Tests for DataFrame cumulative operations
|
3 |
+
|
4 |
+
See also
|
5 |
+
--------
|
6 |
+
tests.series.test_cumulative
|
7 |
+
"""
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import pytest
|
11 |
+
|
12 |
+
from pandas import (
|
13 |
+
DataFrame,
|
14 |
+
Series,
|
15 |
+
)
|
16 |
+
import pandas._testing as tm
|
17 |
+
|
18 |
+
|
19 |
+
class TestDataFrameCumulativeOps:
|
20 |
+
# ---------------------------------------------------------------------
|
21 |
+
# Cumulative Operations - cumsum, cummax, ...
|
22 |
+
|
23 |
+
def test_cumulative_ops_smoke(self):
|
24 |
+
# it works
|
25 |
+
df = DataFrame({"A": np.arange(20)}, index=np.arange(20))
|
26 |
+
df.cummax()
|
27 |
+
df.cummin()
|
28 |
+
df.cumsum()
|
29 |
+
|
30 |
+
dm = DataFrame(np.arange(20).reshape(4, 5), index=range(4), columns=range(5))
|
31 |
+
# TODO(wesm): do something with this?
|
32 |
+
dm.cumsum()
|
33 |
+
|
34 |
+
def test_cumprod_smoke(self, datetime_frame):
|
35 |
+
datetime_frame.iloc[5:10, 0] = np.nan
|
36 |
+
datetime_frame.iloc[10:15, 1] = np.nan
|
37 |
+
datetime_frame.iloc[15:, 2] = np.nan
|
38 |
+
|
39 |
+
# ints
|
40 |
+
df = datetime_frame.fillna(0).astype(int)
|
41 |
+
df.cumprod(0)
|
42 |
+
df.cumprod(1)
|
43 |
+
|
44 |
+
# ints32
|
45 |
+
df = datetime_frame.fillna(0).astype(np.int32)
|
46 |
+
df.cumprod(0)
|
47 |
+
df.cumprod(1)
|
48 |
+
|
49 |
+
@pytest.mark.parametrize("method", ["cumsum", "cumprod", "cummin", "cummax"])
|
50 |
+
def test_cumulative_ops_match_series_apply(self, datetime_frame, method):
|
51 |
+
datetime_frame.iloc[5:10, 0] = np.nan
|
52 |
+
datetime_frame.iloc[10:15, 1] = np.nan
|
53 |
+
datetime_frame.iloc[15:, 2] = np.nan
|
54 |
+
|
55 |
+
# axis = 0
|
56 |
+
result = getattr(datetime_frame, method)()
|
57 |
+
expected = datetime_frame.apply(getattr(Series, method))
|
58 |
+
tm.assert_frame_equal(result, expected)
|
59 |
+
|
60 |
+
# axis = 1
|
61 |
+
result = getattr(datetime_frame, method)(axis=1)
|
62 |
+
expected = datetime_frame.apply(getattr(Series, method), axis=1)
|
63 |
+
tm.assert_frame_equal(result, expected)
|
64 |
+
|
65 |
+
# fix issue TODO: GH ref?
|
66 |
+
assert np.shape(result) == np.shape(datetime_frame)
|
67 |
+
|
68 |
+
def test_cumsum_preserve_dtypes(self):
|
69 |
+
# GH#19296 dont incorrectly upcast to object
|
70 |
+
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3.0], "C": [True, False, False]})
|
71 |
+
|
72 |
+
result = df.cumsum()
|
73 |
+
|
74 |
+
expected = DataFrame(
|
75 |
+
{
|
76 |
+
"A": Series([1, 3, 6], dtype=np.int64),
|
77 |
+
"B": Series([1, 3, 6], dtype=np.float64),
|
78 |
+
"C": df["C"].cumsum(),
|
79 |
+
}
|
80 |
+
)
|
81 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_iteration.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas.compat import (
|
7 |
+
IS64,
|
8 |
+
is_platform_windows,
|
9 |
+
)
|
10 |
+
|
11 |
+
from pandas import (
|
12 |
+
Categorical,
|
13 |
+
DataFrame,
|
14 |
+
Series,
|
15 |
+
date_range,
|
16 |
+
)
|
17 |
+
import pandas._testing as tm
|
18 |
+
|
19 |
+
|
20 |
+
class TestIteration:
|
21 |
+
def test_keys(self, float_frame):
|
22 |
+
assert float_frame.keys() is float_frame.columns
|
23 |
+
|
24 |
+
def test_iteritems(self):
|
25 |
+
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"])
|
26 |
+
for k, v in df.items():
|
27 |
+
assert isinstance(v, DataFrame._constructor_sliced)
|
28 |
+
|
29 |
+
def test_items(self):
|
30 |
+
# GH#17213, GH#13918
|
31 |
+
cols = ["a", "b", "c"]
|
32 |
+
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=cols)
|
33 |
+
for c, (k, v) in zip(cols, df.items()):
|
34 |
+
assert c == k
|
35 |
+
assert isinstance(v, Series)
|
36 |
+
assert (df[k] == v).all()
|
37 |
+
|
38 |
+
def test_items_names(self, float_string_frame):
|
39 |
+
for k, v in float_string_frame.items():
|
40 |
+
assert v.name == k
|
41 |
+
|
42 |
+
def test_iter(self, float_frame):
|
43 |
+
assert list(float_frame) == list(float_frame.columns)
|
44 |
+
|
45 |
+
def test_iterrows(self, float_frame, float_string_frame):
|
46 |
+
for k, v in float_frame.iterrows():
|
47 |
+
exp = float_frame.loc[k]
|
48 |
+
tm.assert_series_equal(v, exp)
|
49 |
+
|
50 |
+
for k, v in float_string_frame.iterrows():
|
51 |
+
exp = float_string_frame.loc[k]
|
52 |
+
tm.assert_series_equal(v, exp)
|
53 |
+
|
54 |
+
def test_iterrows_iso8601(self):
|
55 |
+
# GH#19671
|
56 |
+
s = DataFrame(
|
57 |
+
{
|
58 |
+
"non_iso8601": ["M1701", "M1802", "M1903", "M2004"],
|
59 |
+
"iso8601": date_range("2000-01-01", periods=4, freq="ME"),
|
60 |
+
}
|
61 |
+
)
|
62 |
+
for k, v in s.iterrows():
|
63 |
+
exp = s.loc[k]
|
64 |
+
tm.assert_series_equal(v, exp)
|
65 |
+
|
66 |
+
def test_iterrows_corner(self):
|
67 |
+
# GH#12222
|
68 |
+
df = DataFrame(
|
69 |
+
{
|
70 |
+
"a": [datetime.datetime(2015, 1, 1)],
|
71 |
+
"b": [None],
|
72 |
+
"c": [None],
|
73 |
+
"d": [""],
|
74 |
+
"e": [[]],
|
75 |
+
"f": [set()],
|
76 |
+
"g": [{}],
|
77 |
+
}
|
78 |
+
)
|
79 |
+
expected = Series(
|
80 |
+
[datetime.datetime(2015, 1, 1), None, None, "", [], set(), {}],
|
81 |
+
index=list("abcdefg"),
|
82 |
+
name=0,
|
83 |
+
dtype="object",
|
84 |
+
)
|
85 |
+
_, result = next(df.iterrows())
|
86 |
+
tm.assert_series_equal(result, expected)
|
87 |
+
|
88 |
+
def test_itertuples(self, float_frame):
|
89 |
+
for i, tup in enumerate(float_frame.itertuples()):
|
90 |
+
ser = DataFrame._constructor_sliced(tup[1:])
|
91 |
+
ser.name = tup[0]
|
92 |
+
expected = float_frame.iloc[i, :].reset_index(drop=True)
|
93 |
+
tm.assert_series_equal(ser, expected)
|
94 |
+
|
95 |
+
def test_itertuples_index_false(self):
|
96 |
+
df = DataFrame(
|
97 |
+
{"floats": np.random.default_rng(2).standard_normal(5), "ints": range(5)},
|
98 |
+
columns=["floats", "ints"],
|
99 |
+
)
|
100 |
+
|
101 |
+
for tup in df.itertuples(index=False):
|
102 |
+
assert isinstance(tup[1], int)
|
103 |
+
|
104 |
+
def test_itertuples_duplicate_cols(self):
|
105 |
+
df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]})
|
106 |
+
dfaa = df[["a", "a"]]
|
107 |
+
|
108 |
+
assert list(dfaa.itertuples()) == [(0, 1, 1), (1, 2, 2), (2, 3, 3)]
|
109 |
+
|
110 |
+
# repr with int on 32-bit/windows
|
111 |
+
if not (is_platform_windows() or not IS64):
|
112 |
+
assert (
|
113 |
+
repr(list(df.itertuples(name=None)))
|
114 |
+
== "[(0, 1, 4), (1, 2, 5), (2, 3, 6)]"
|
115 |
+
)
|
116 |
+
|
117 |
+
def test_itertuples_tuple_name(self):
|
118 |
+
df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]})
|
119 |
+
tup = next(df.itertuples(name="TestName"))
|
120 |
+
assert tup._fields == ("Index", "a", "b")
|
121 |
+
assert (tup.Index, tup.a, tup.b) == tup
|
122 |
+
assert type(tup).__name__ == "TestName"
|
123 |
+
|
124 |
+
def test_itertuples_disallowed_col_labels(self):
|
125 |
+
df = DataFrame(data={"def": [1, 2, 3], "return": [4, 5, 6]})
|
126 |
+
tup2 = next(df.itertuples(name="TestName"))
|
127 |
+
assert tup2 == (0, 1, 4)
|
128 |
+
assert tup2._fields == ("Index", "_1", "_2")
|
129 |
+
|
130 |
+
@pytest.mark.parametrize("limit", [254, 255, 1024])
|
131 |
+
@pytest.mark.parametrize("index", [True, False])
|
132 |
+
def test_itertuples_py2_3_field_limit_namedtuple(self, limit, index):
|
133 |
+
# GH#28282
|
134 |
+
df = DataFrame([{f"foo_{i}": f"bar_{i}" for i in range(limit)}])
|
135 |
+
result = next(df.itertuples(index=index))
|
136 |
+
assert isinstance(result, tuple)
|
137 |
+
assert hasattr(result, "_fields")
|
138 |
+
|
139 |
+
def test_sequence_like_with_categorical(self):
|
140 |
+
# GH#7839
|
141 |
+
# make sure can iterate
|
142 |
+
df = DataFrame(
|
143 |
+
{"id": [1, 2, 3, 4, 5, 6], "raw_grade": ["a", "b", "b", "a", "a", "e"]}
|
144 |
+
)
|
145 |
+
df["grade"] = Categorical(df["raw_grade"])
|
146 |
+
|
147 |
+
# basic sequencing testing
|
148 |
+
result = list(df.grade.values)
|
149 |
+
expected = np.array(df.grade.values).tolist()
|
150 |
+
tm.assert_almost_equal(result, expected)
|
151 |
+
|
152 |
+
# iteration
|
153 |
+
for t in df.itertuples(index=False):
|
154 |
+
str(t)
|
155 |
+
|
156 |
+
for row, s in df.iterrows():
|
157 |
+
str(s)
|
158 |
+
|
159 |
+
for c, col in df.items():
|
160 |
+
str(col)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_logical_ops.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
import re
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from pandas import (
|
8 |
+
CategoricalIndex,
|
9 |
+
DataFrame,
|
10 |
+
Interval,
|
11 |
+
Series,
|
12 |
+
isnull,
|
13 |
+
)
|
14 |
+
import pandas._testing as tm
|
15 |
+
|
16 |
+
|
17 |
+
class TestDataFrameLogicalOperators:
|
18 |
+
# &, |, ^
|
19 |
+
|
20 |
+
@pytest.mark.parametrize(
|
21 |
+
"left, right, op, expected",
|
22 |
+
[
|
23 |
+
(
|
24 |
+
[True, False, np.nan],
|
25 |
+
[True, False, True],
|
26 |
+
operator.and_,
|
27 |
+
[True, False, False],
|
28 |
+
),
|
29 |
+
(
|
30 |
+
[True, False, True],
|
31 |
+
[True, False, np.nan],
|
32 |
+
operator.and_,
|
33 |
+
[True, False, False],
|
34 |
+
),
|
35 |
+
(
|
36 |
+
[True, False, np.nan],
|
37 |
+
[True, False, True],
|
38 |
+
operator.or_,
|
39 |
+
[True, False, False],
|
40 |
+
),
|
41 |
+
(
|
42 |
+
[True, False, True],
|
43 |
+
[True, False, np.nan],
|
44 |
+
operator.or_,
|
45 |
+
[True, False, True],
|
46 |
+
),
|
47 |
+
],
|
48 |
+
)
|
49 |
+
def test_logical_operators_nans(self, left, right, op, expected, frame_or_series):
|
50 |
+
# GH#13896
|
51 |
+
result = op(frame_or_series(left), frame_or_series(right))
|
52 |
+
expected = frame_or_series(expected)
|
53 |
+
|
54 |
+
tm.assert_equal(result, expected)
|
55 |
+
|
56 |
+
def test_logical_ops_empty_frame(self):
|
57 |
+
# GH#5808
|
58 |
+
# empty frames, non-mixed dtype
|
59 |
+
df = DataFrame(index=[1])
|
60 |
+
|
61 |
+
result = df & df
|
62 |
+
tm.assert_frame_equal(result, df)
|
63 |
+
|
64 |
+
result = df | df
|
65 |
+
tm.assert_frame_equal(result, df)
|
66 |
+
|
67 |
+
df2 = DataFrame(index=[1, 2])
|
68 |
+
result = df & df2
|
69 |
+
tm.assert_frame_equal(result, df2)
|
70 |
+
|
71 |
+
dfa = DataFrame(index=[1], columns=["A"])
|
72 |
+
|
73 |
+
result = dfa & dfa
|
74 |
+
expected = DataFrame(False, index=[1], columns=["A"])
|
75 |
+
tm.assert_frame_equal(result, expected)
|
76 |
+
|
77 |
+
def test_logical_ops_bool_frame(self):
|
78 |
+
# GH#5808
|
79 |
+
df1a_bool = DataFrame(True, index=[1], columns=["A"])
|
80 |
+
|
81 |
+
result = df1a_bool & df1a_bool
|
82 |
+
tm.assert_frame_equal(result, df1a_bool)
|
83 |
+
|
84 |
+
result = df1a_bool | df1a_bool
|
85 |
+
tm.assert_frame_equal(result, df1a_bool)
|
86 |
+
|
87 |
+
def test_logical_ops_int_frame(self):
|
88 |
+
# GH#5808
|
89 |
+
df1a_int = DataFrame(1, index=[1], columns=["A"])
|
90 |
+
df1a_bool = DataFrame(True, index=[1], columns=["A"])
|
91 |
+
|
92 |
+
result = df1a_int | df1a_bool
|
93 |
+
tm.assert_frame_equal(result, df1a_bool)
|
94 |
+
|
95 |
+
# Check that this matches Series behavior
|
96 |
+
res_ser = df1a_int["A"] | df1a_bool["A"]
|
97 |
+
tm.assert_series_equal(res_ser, df1a_bool["A"])
|
98 |
+
|
99 |
+
def test_logical_ops_invalid(self, using_infer_string):
|
100 |
+
# GH#5808
|
101 |
+
|
102 |
+
df1 = DataFrame(1.0, index=[1], columns=["A"])
|
103 |
+
df2 = DataFrame(True, index=[1], columns=["A"])
|
104 |
+
msg = re.escape("unsupported operand type(s) for |: 'float' and 'bool'")
|
105 |
+
with pytest.raises(TypeError, match=msg):
|
106 |
+
df1 | df2
|
107 |
+
|
108 |
+
df1 = DataFrame("foo", index=[1], columns=["A"])
|
109 |
+
df2 = DataFrame(True, index=[1], columns=["A"])
|
110 |
+
msg = re.escape("unsupported operand type(s) for |: 'str' and 'bool'")
|
111 |
+
if using_infer_string:
|
112 |
+
import pyarrow as pa
|
113 |
+
|
114 |
+
with pytest.raises(pa.lib.ArrowNotImplementedError, match="|has no kernel"):
|
115 |
+
df1 | df2
|
116 |
+
else:
|
117 |
+
with pytest.raises(TypeError, match=msg):
|
118 |
+
df1 | df2
|
119 |
+
|
120 |
+
def test_logical_operators(self):
|
121 |
+
def _check_bin_op(op):
|
122 |
+
result = op(df1, df2)
|
123 |
+
expected = DataFrame(
|
124 |
+
op(df1.values, df2.values), index=df1.index, columns=df1.columns
|
125 |
+
)
|
126 |
+
assert result.values.dtype == np.bool_
|
127 |
+
tm.assert_frame_equal(result, expected)
|
128 |
+
|
129 |
+
def _check_unary_op(op):
|
130 |
+
result = op(df1)
|
131 |
+
expected = DataFrame(op(df1.values), index=df1.index, columns=df1.columns)
|
132 |
+
assert result.values.dtype == np.bool_
|
133 |
+
tm.assert_frame_equal(result, expected)
|
134 |
+
|
135 |
+
df1 = {
|
136 |
+
"a": {"a": True, "b": False, "c": False, "d": True, "e": True},
|
137 |
+
"b": {"a": False, "b": True, "c": False, "d": False, "e": False},
|
138 |
+
"c": {"a": False, "b": False, "c": True, "d": False, "e": False},
|
139 |
+
"d": {"a": True, "b": False, "c": False, "d": True, "e": True},
|
140 |
+
"e": {"a": True, "b": False, "c": False, "d": True, "e": True},
|
141 |
+
}
|
142 |
+
|
143 |
+
df2 = {
|
144 |
+
"a": {"a": True, "b": False, "c": True, "d": False, "e": False},
|
145 |
+
"b": {"a": False, "b": True, "c": False, "d": False, "e": False},
|
146 |
+
"c": {"a": True, "b": False, "c": True, "d": False, "e": False},
|
147 |
+
"d": {"a": False, "b": False, "c": False, "d": True, "e": False},
|
148 |
+
"e": {"a": False, "b": False, "c": False, "d": False, "e": True},
|
149 |
+
}
|
150 |
+
|
151 |
+
df1 = DataFrame(df1)
|
152 |
+
df2 = DataFrame(df2)
|
153 |
+
|
154 |
+
_check_bin_op(operator.and_)
|
155 |
+
_check_bin_op(operator.or_)
|
156 |
+
_check_bin_op(operator.xor)
|
157 |
+
|
158 |
+
_check_unary_op(operator.inv) # TODO: belongs elsewhere
|
159 |
+
|
160 |
+
@pytest.mark.filterwarnings("ignore:Downcasting object dtype arrays:FutureWarning")
|
161 |
+
def test_logical_with_nas(self):
|
162 |
+
d = DataFrame({"a": [np.nan, False], "b": [True, True]})
|
163 |
+
|
164 |
+
# GH4947
|
165 |
+
# bool comparisons should return bool
|
166 |
+
result = d["a"] | d["b"]
|
167 |
+
expected = Series([False, True])
|
168 |
+
tm.assert_series_equal(result, expected)
|
169 |
+
|
170 |
+
# GH4604, automatic casting here
|
171 |
+
result = d["a"].fillna(False) | d["b"]
|
172 |
+
expected = Series([True, True])
|
173 |
+
tm.assert_series_equal(result, expected)
|
174 |
+
|
175 |
+
msg = "The 'downcast' keyword in fillna is deprecated"
|
176 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
177 |
+
result = d["a"].fillna(False, downcast=False) | d["b"]
|
178 |
+
expected = Series([True, True])
|
179 |
+
tm.assert_series_equal(result, expected)
|
180 |
+
|
181 |
+
def test_logical_ops_categorical_columns(self):
|
182 |
+
# GH#38367
|
183 |
+
intervals = [Interval(1, 2), Interval(3, 4)]
|
184 |
+
data = DataFrame(
|
185 |
+
[[1, np.nan], [2, np.nan]],
|
186 |
+
columns=CategoricalIndex(
|
187 |
+
intervals, categories=intervals + [Interval(5, 6)]
|
188 |
+
),
|
189 |
+
)
|
190 |
+
mask = DataFrame(
|
191 |
+
[[False, False], [False, False]], columns=data.columns, dtype=bool
|
192 |
+
)
|
193 |
+
result = mask | isnull(data)
|
194 |
+
expected = DataFrame(
|
195 |
+
[[False, True], [False, True]],
|
196 |
+
columns=CategoricalIndex(
|
197 |
+
intervals, categories=intervals + [Interval(5, 6)]
|
198 |
+
),
|
199 |
+
)
|
200 |
+
tm.assert_frame_equal(result, expected)
|
201 |
+
|
202 |
+
def test_int_dtype_different_index_not_bool(self):
|
203 |
+
# GH 52500
|
204 |
+
df1 = DataFrame([1, 2, 3], index=[10, 11, 23], columns=["a"])
|
205 |
+
df2 = DataFrame([10, 20, 30], index=[11, 10, 23], columns=["a"])
|
206 |
+
result = np.bitwise_xor(df1, df2)
|
207 |
+
expected = DataFrame([21, 8, 29], index=[10, 11, 23], columns=["a"])
|
208 |
+
tm.assert_frame_equal(result, expected)
|
209 |
+
|
210 |
+
result = df1 ^ df2
|
211 |
+
tm.assert_frame_equal(result, expected)
|
212 |
+
|
213 |
+
def test_different_dtypes_different_index_raises(self):
|
214 |
+
# GH 52538
|
215 |
+
df1 = DataFrame([1, 2], index=["a", "b"])
|
216 |
+
df2 = DataFrame([3, 4], index=["b", "c"])
|
217 |
+
with pytest.raises(TypeError, match="unsupported operand type"):
|
218 |
+
df1 & df2
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_nonunique_indexes.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import (
|
6 |
+
DataFrame,
|
7 |
+
Series,
|
8 |
+
date_range,
|
9 |
+
)
|
10 |
+
import pandas._testing as tm
|
11 |
+
|
12 |
+
|
13 |
+
class TestDataFrameNonuniqueIndexes:
|
14 |
+
def test_setattr_columns_vs_construct_with_columns(self):
|
15 |
+
# assignment
|
16 |
+
# GH 3687
|
17 |
+
arr = np.random.default_rng(2).standard_normal((3, 2))
|
18 |
+
idx = list(range(2))
|
19 |
+
df = DataFrame(arr, columns=["A", "A"])
|
20 |
+
df.columns = idx
|
21 |
+
expected = DataFrame(arr, columns=idx)
|
22 |
+
tm.assert_frame_equal(df, expected)
|
23 |
+
|
24 |
+
def test_setattr_columns_vs_construct_with_columns_datetimeindx(self):
|
25 |
+
idx = date_range("20130101", periods=4, freq="QE-NOV")
|
26 |
+
df = DataFrame(
|
27 |
+
[[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]], columns=["a", "a", "a", "a"]
|
28 |
+
)
|
29 |
+
df.columns = idx
|
30 |
+
expected = DataFrame([[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]], columns=idx)
|
31 |
+
tm.assert_frame_equal(df, expected)
|
32 |
+
|
33 |
+
def test_insert_with_duplicate_columns(self):
|
34 |
+
# insert
|
35 |
+
df = DataFrame(
|
36 |
+
[[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]],
|
37 |
+
columns=["foo", "bar", "foo", "hello"],
|
38 |
+
)
|
39 |
+
df["string"] = "bah"
|
40 |
+
expected = DataFrame(
|
41 |
+
[[1, 1, 1, 5, "bah"], [1, 1, 2, 5, "bah"], [2, 1, 3, 5, "bah"]],
|
42 |
+
columns=["foo", "bar", "foo", "hello", "string"],
|
43 |
+
)
|
44 |
+
tm.assert_frame_equal(df, expected)
|
45 |
+
with pytest.raises(ValueError, match="Length of value"):
|
46 |
+
df.insert(0, "AnotherColumn", range(len(df.index) - 1))
|
47 |
+
|
48 |
+
# insert same dtype
|
49 |
+
df["foo2"] = 3
|
50 |
+
expected = DataFrame(
|
51 |
+
[[1, 1, 1, 5, "bah", 3], [1, 1, 2, 5, "bah", 3], [2, 1, 3, 5, "bah", 3]],
|
52 |
+
columns=["foo", "bar", "foo", "hello", "string", "foo2"],
|
53 |
+
)
|
54 |
+
tm.assert_frame_equal(df, expected)
|
55 |
+
|
56 |
+
# set (non-dup)
|
57 |
+
df["foo2"] = 4
|
58 |
+
expected = DataFrame(
|
59 |
+
[[1, 1, 1, 5, "bah", 4], [1, 1, 2, 5, "bah", 4], [2, 1, 3, 5, "bah", 4]],
|
60 |
+
columns=["foo", "bar", "foo", "hello", "string", "foo2"],
|
61 |
+
)
|
62 |
+
tm.assert_frame_equal(df, expected)
|
63 |
+
df["foo2"] = 3
|
64 |
+
|
65 |
+
# delete (non dup)
|
66 |
+
del df["bar"]
|
67 |
+
expected = DataFrame(
|
68 |
+
[[1, 1, 5, "bah", 3], [1, 2, 5, "bah", 3], [2, 3, 5, "bah", 3]],
|
69 |
+
columns=["foo", "foo", "hello", "string", "foo2"],
|
70 |
+
)
|
71 |
+
tm.assert_frame_equal(df, expected)
|
72 |
+
|
73 |
+
# try to delete again (its not consolidated)
|
74 |
+
del df["hello"]
|
75 |
+
expected = DataFrame(
|
76 |
+
[[1, 1, "bah", 3], [1, 2, "bah", 3], [2, 3, "bah", 3]],
|
77 |
+
columns=["foo", "foo", "string", "foo2"],
|
78 |
+
)
|
79 |
+
tm.assert_frame_equal(df, expected)
|
80 |
+
|
81 |
+
# consolidate
|
82 |
+
df = df._consolidate()
|
83 |
+
expected = DataFrame(
|
84 |
+
[[1, 1, "bah", 3], [1, 2, "bah", 3], [2, 3, "bah", 3]],
|
85 |
+
columns=["foo", "foo", "string", "foo2"],
|
86 |
+
)
|
87 |
+
tm.assert_frame_equal(df, expected)
|
88 |
+
|
89 |
+
# insert
|
90 |
+
df.insert(2, "new_col", 5.0)
|
91 |
+
expected = DataFrame(
|
92 |
+
[[1, 1, 5.0, "bah", 3], [1, 2, 5.0, "bah", 3], [2, 3, 5.0, "bah", 3]],
|
93 |
+
columns=["foo", "foo", "new_col", "string", "foo2"],
|
94 |
+
)
|
95 |
+
tm.assert_frame_equal(df, expected)
|
96 |
+
|
97 |
+
# insert a dup
|
98 |
+
with pytest.raises(ValueError, match="cannot insert"):
|
99 |
+
df.insert(2, "new_col", 4.0)
|
100 |
+
|
101 |
+
df.insert(2, "new_col", 4.0, allow_duplicates=True)
|
102 |
+
expected = DataFrame(
|
103 |
+
[
|
104 |
+
[1, 1, 4.0, 5.0, "bah", 3],
|
105 |
+
[1, 2, 4.0, 5.0, "bah", 3],
|
106 |
+
[2, 3, 4.0, 5.0, "bah", 3],
|
107 |
+
],
|
108 |
+
columns=["foo", "foo", "new_col", "new_col", "string", "foo2"],
|
109 |
+
)
|
110 |
+
tm.assert_frame_equal(df, expected)
|
111 |
+
|
112 |
+
# delete (dup)
|
113 |
+
del df["foo"]
|
114 |
+
expected = DataFrame(
|
115 |
+
[[4.0, 5.0, "bah", 3], [4.0, 5.0, "bah", 3], [4.0, 5.0, "bah", 3]],
|
116 |
+
columns=["new_col", "new_col", "string", "foo2"],
|
117 |
+
)
|
118 |
+
tm.assert_frame_equal(df, expected)
|
119 |
+
|
120 |
+
def test_dup_across_dtypes(self):
|
121 |
+
# dup across dtypes
|
122 |
+
df = DataFrame(
|
123 |
+
[[1, 1, 1.0, 5], [1, 1, 2.0, 5], [2, 1, 3.0, 5]],
|
124 |
+
columns=["foo", "bar", "foo", "hello"],
|
125 |
+
)
|
126 |
+
|
127 |
+
df["foo2"] = 7.0
|
128 |
+
expected = DataFrame(
|
129 |
+
[[1, 1, 1.0, 5, 7.0], [1, 1, 2.0, 5, 7.0], [2, 1, 3.0, 5, 7.0]],
|
130 |
+
columns=["foo", "bar", "foo", "hello", "foo2"],
|
131 |
+
)
|
132 |
+
tm.assert_frame_equal(df, expected)
|
133 |
+
|
134 |
+
result = df["foo"]
|
135 |
+
expected = DataFrame([[1, 1.0], [1, 2.0], [2, 3.0]], columns=["foo", "foo"])
|
136 |
+
tm.assert_frame_equal(result, expected)
|
137 |
+
|
138 |
+
# multiple replacements
|
139 |
+
df["foo"] = "string"
|
140 |
+
expected = DataFrame(
|
141 |
+
[
|
142 |
+
["string", 1, "string", 5, 7.0],
|
143 |
+
["string", 1, "string", 5, 7.0],
|
144 |
+
["string", 1, "string", 5, 7.0],
|
145 |
+
],
|
146 |
+
columns=["foo", "bar", "foo", "hello", "foo2"],
|
147 |
+
)
|
148 |
+
tm.assert_frame_equal(df, expected)
|
149 |
+
|
150 |
+
del df["foo"]
|
151 |
+
expected = DataFrame(
|
152 |
+
[[1, 5, 7.0], [1, 5, 7.0], [1, 5, 7.0]], columns=["bar", "hello", "foo2"]
|
153 |
+
)
|
154 |
+
tm.assert_frame_equal(df, expected)
|
155 |
+
|
156 |
+
def test_column_dups_indexes(self):
|
157 |
+
# check column dups with index equal and not equal to df's index
|
158 |
+
df = DataFrame(
|
159 |
+
np.random.default_rng(2).standard_normal((5, 3)),
|
160 |
+
index=["a", "b", "c", "d", "e"],
|
161 |
+
columns=["A", "B", "A"],
|
162 |
+
)
|
163 |
+
for index in [df.index, pd.Index(list("edcba"))]:
|
164 |
+
this_df = df.copy()
|
165 |
+
expected_ser = Series(index.values, index=this_df.index)
|
166 |
+
expected_df = DataFrame(
|
167 |
+
{"A": expected_ser, "B": this_df["B"]},
|
168 |
+
columns=["A", "B", "A"],
|
169 |
+
)
|
170 |
+
this_df["A"] = index
|
171 |
+
tm.assert_frame_equal(this_df, expected_df)
|
172 |
+
|
173 |
+
def test_changing_dtypes_with_duplicate_columns(self):
|
174 |
+
# multiple assignments that change dtypes
|
175 |
+
# the location indexer is a slice
|
176 |
+
# GH 6120
|
177 |
+
df = DataFrame(
|
178 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=["that", "that"]
|
179 |
+
)
|
180 |
+
expected = DataFrame(1.0, index=range(5), columns=["that", "that"])
|
181 |
+
|
182 |
+
df["that"] = 1.0
|
183 |
+
tm.assert_frame_equal(df, expected)
|
184 |
+
|
185 |
+
df = DataFrame(
|
186 |
+
np.random.default_rng(2).random((5, 2)), columns=["that", "that"]
|
187 |
+
)
|
188 |
+
expected = DataFrame(1, index=range(5), columns=["that", "that"])
|
189 |
+
|
190 |
+
df["that"] = 1
|
191 |
+
tm.assert_frame_equal(df, expected)
|
192 |
+
|
193 |
+
def test_dup_columns_comparisons(self):
|
194 |
+
# equality
|
195 |
+
df1 = DataFrame([[1, 2], [2, np.nan], [3, 4], [4, 4]], columns=["A", "B"])
|
196 |
+
df2 = DataFrame([[0, 1], [2, 4], [2, np.nan], [4, 5]], columns=["A", "A"])
|
197 |
+
|
198 |
+
# not-comparing like-labelled
|
199 |
+
msg = (
|
200 |
+
r"Can only compare identically-labeled \(both index and columns\) "
|
201 |
+
"DataFrame objects"
|
202 |
+
)
|
203 |
+
with pytest.raises(ValueError, match=msg):
|
204 |
+
df1 == df2
|
205 |
+
|
206 |
+
df1r = df1.reindex_like(df2)
|
207 |
+
result = df1r == df2
|
208 |
+
expected = DataFrame(
|
209 |
+
[[False, True], [True, False], [False, False], [True, False]],
|
210 |
+
columns=["A", "A"],
|
211 |
+
)
|
212 |
+
tm.assert_frame_equal(result, expected)
|
213 |
+
|
214 |
+
def test_mixed_column_selection(self):
|
215 |
+
# mixed column selection
|
216 |
+
# GH 5639
|
217 |
+
dfbool = DataFrame(
|
218 |
+
{
|
219 |
+
"one": Series([True, True, False], index=["a", "b", "c"]),
|
220 |
+
"two": Series([False, False, True, False], index=["a", "b", "c", "d"]),
|
221 |
+
"three": Series([False, True, True, True], index=["a", "b", "c", "d"]),
|
222 |
+
}
|
223 |
+
)
|
224 |
+
expected = pd.concat([dfbool["one"], dfbool["three"], dfbool["one"]], axis=1)
|
225 |
+
result = dfbool[["one", "three", "one"]]
|
226 |
+
tm.assert_frame_equal(result, expected)
|
227 |
+
|
228 |
+
def test_multi_axis_dups(self):
|
229 |
+
# multi-axis dups
|
230 |
+
# GH 6121
|
231 |
+
df = DataFrame(
|
232 |
+
np.arange(25.0).reshape(5, 5),
|
233 |
+
index=["a", "b", "c", "d", "e"],
|
234 |
+
columns=["A", "B", "C", "D", "E"],
|
235 |
+
)
|
236 |
+
z = df[["A", "C", "A"]].copy()
|
237 |
+
expected = z.loc[["a", "c", "a"]]
|
238 |
+
|
239 |
+
df = DataFrame(
|
240 |
+
np.arange(25.0).reshape(5, 5),
|
241 |
+
index=["a", "b", "c", "d", "e"],
|
242 |
+
columns=["A", "B", "C", "D", "E"],
|
243 |
+
)
|
244 |
+
z = df[["A", "C", "A"]]
|
245 |
+
result = z.loc[["a", "c", "a"]]
|
246 |
+
tm.assert_frame_equal(result, expected)
|
247 |
+
|
248 |
+
def test_columns_with_dups(self):
|
249 |
+
# GH 3468 related
|
250 |
+
|
251 |
+
# basic
|
252 |
+
df = DataFrame([[1, 2]], columns=["a", "a"])
|
253 |
+
df.columns = ["a", "a.1"]
|
254 |
+
expected = DataFrame([[1, 2]], columns=["a", "a.1"])
|
255 |
+
tm.assert_frame_equal(df, expected)
|
256 |
+
|
257 |
+
df = DataFrame([[1, 2, 3]], columns=["b", "a", "a"])
|
258 |
+
df.columns = ["b", "a", "a.1"]
|
259 |
+
expected = DataFrame([[1, 2, 3]], columns=["b", "a", "a.1"])
|
260 |
+
tm.assert_frame_equal(df, expected)
|
261 |
+
|
262 |
+
def test_columns_with_dup_index(self):
|
263 |
+
# with a dup index
|
264 |
+
df = DataFrame([[1, 2]], columns=["a", "a"])
|
265 |
+
df.columns = ["b", "b"]
|
266 |
+
expected = DataFrame([[1, 2]], columns=["b", "b"])
|
267 |
+
tm.assert_frame_equal(df, expected)
|
268 |
+
|
269 |
+
def test_multi_dtype(self):
|
270 |
+
# multi-dtype
|
271 |
+
df = DataFrame(
|
272 |
+
[[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]],
|
273 |
+
columns=["a", "a", "b", "b", "d", "c", "c"],
|
274 |
+
)
|
275 |
+
df.columns = list("ABCDEFG")
|
276 |
+
expected = DataFrame(
|
277 |
+
[[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]], columns=list("ABCDEFG")
|
278 |
+
)
|
279 |
+
tm.assert_frame_equal(df, expected)
|
280 |
+
|
281 |
+
def test_multi_dtype2(self):
|
282 |
+
df = DataFrame([[1, 2, "foo", "bar"]], columns=["a", "a", "a", "a"])
|
283 |
+
df.columns = ["a", "a.1", "a.2", "a.3"]
|
284 |
+
expected = DataFrame([[1, 2, "foo", "bar"]], columns=["a", "a.1", "a.2", "a.3"])
|
285 |
+
tm.assert_frame_equal(df, expected)
|
286 |
+
|
287 |
+
def test_dups_across_blocks(self, using_array_manager):
|
288 |
+
# dups across blocks
|
289 |
+
df_float = DataFrame(
|
290 |
+
np.random.default_rng(2).standard_normal((10, 3)), dtype="float64"
|
291 |
+
)
|
292 |
+
df_int = DataFrame(
|
293 |
+
np.random.default_rng(2).standard_normal((10, 3)).astype("int64")
|
294 |
+
)
|
295 |
+
df_bool = DataFrame(True, index=df_float.index, columns=df_float.columns)
|
296 |
+
df_object = DataFrame("foo", index=df_float.index, columns=df_float.columns)
|
297 |
+
df_dt = DataFrame(
|
298 |
+
pd.Timestamp("20010101"), index=df_float.index, columns=df_float.columns
|
299 |
+
)
|
300 |
+
df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1)
|
301 |
+
|
302 |
+
if not using_array_manager:
|
303 |
+
assert len(df._mgr.blknos) == len(df.columns)
|
304 |
+
assert len(df._mgr.blklocs) == len(df.columns)
|
305 |
+
|
306 |
+
# testing iloc
|
307 |
+
for i in range(len(df.columns)):
|
308 |
+
df.iloc[:, i]
|
309 |
+
|
310 |
+
def test_dup_columns_across_dtype(self):
|
311 |
+
# dup columns across dtype GH 2079/2194
|
312 |
+
vals = [[1, -1, 2.0], [2, -2, 3.0]]
|
313 |
+
rs = DataFrame(vals, columns=["A", "A", "B"])
|
314 |
+
xp = DataFrame(vals)
|
315 |
+
xp.columns = ["A", "A", "B"]
|
316 |
+
tm.assert_frame_equal(rs, xp)
|
317 |
+
|
318 |
+
def test_set_value_by_index(self):
|
319 |
+
# See gh-12344
|
320 |
+
warn = None
|
321 |
+
msg = "will attempt to set the values inplace"
|
322 |
+
|
323 |
+
df = DataFrame(np.arange(9).reshape(3, 3).T)
|
324 |
+
df.columns = list("AAA")
|
325 |
+
expected = df.iloc[:, 2].copy()
|
326 |
+
|
327 |
+
with tm.assert_produces_warning(warn, match=msg):
|
328 |
+
df.iloc[:, 0] = 3
|
329 |
+
tm.assert_series_equal(df.iloc[:, 2], expected)
|
330 |
+
|
331 |
+
df = DataFrame(np.arange(9).reshape(3, 3).T)
|
332 |
+
df.columns = [2, float(2), str(2)]
|
333 |
+
expected = df.iloc[:, 1].copy()
|
334 |
+
|
335 |
+
with tm.assert_produces_warning(warn, match=msg):
|
336 |
+
df.iloc[:, 0] = 3
|
337 |
+
tm.assert_series_equal(df.iloc[:, 1], expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_npfuncs.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Tests for np.foo applied to DataFrame, not necessarily ufuncs.
|
3 |
+
"""
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
Categorical,
|
8 |
+
DataFrame,
|
9 |
+
)
|
10 |
+
import pandas._testing as tm
|
11 |
+
|
12 |
+
|
13 |
+
class TestAsArray:
|
14 |
+
def test_asarray_homogeneous(self):
|
15 |
+
df = DataFrame({"A": Categorical([1, 2]), "B": Categorical([1, 2])})
|
16 |
+
result = np.asarray(df)
|
17 |
+
# may change from object in the future
|
18 |
+
expected = np.array([[1, 1], [2, 2]], dtype="object")
|
19 |
+
tm.assert_numpy_array_equal(result, expected)
|
20 |
+
|
21 |
+
def test_np_sqrt(self, float_frame):
|
22 |
+
with np.errstate(all="ignore"):
|
23 |
+
result = np.sqrt(float_frame)
|
24 |
+
assert isinstance(result, type(float_frame))
|
25 |
+
assert result.index.is_(float_frame.index)
|
26 |
+
assert result.columns.is_(float_frame.columns)
|
27 |
+
|
28 |
+
tm.assert_frame_equal(result, float_frame.apply(np.sqrt))
|
29 |
+
|
30 |
+
def test_sum_deprecated_axis_behavior(self):
|
31 |
+
# GH#52042 deprecated behavior of df.sum(axis=None), which gets
|
32 |
+
# called when we do np.sum(df)
|
33 |
+
|
34 |
+
arr = np.random.default_rng(2).standard_normal((4, 3))
|
35 |
+
df = DataFrame(arr)
|
36 |
+
|
37 |
+
msg = "The behavior of DataFrame.sum with axis=None is deprecated"
|
38 |
+
with tm.assert_produces_warning(
|
39 |
+
FutureWarning, match=msg, check_stacklevel=False
|
40 |
+
):
|
41 |
+
res = np.sum(df)
|
42 |
+
|
43 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
44 |
+
expected = df.sum(axis=None)
|
45 |
+
tm.assert_series_equal(res, expected)
|
46 |
+
|
47 |
+
def test_np_ravel(self):
|
48 |
+
# GH26247
|
49 |
+
arr = np.array(
|
50 |
+
[
|
51 |
+
[0.11197053, 0.44361564, -0.92589452],
|
52 |
+
[0.05883648, -0.00948922, -0.26469934],
|
53 |
+
]
|
54 |
+
)
|
55 |
+
|
56 |
+
result = np.ravel([DataFrame(batch.reshape(1, 3)) for batch in arr])
|
57 |
+
expected = np.array(
|
58 |
+
[
|
59 |
+
0.11197053,
|
60 |
+
0.44361564,
|
61 |
+
-0.92589452,
|
62 |
+
0.05883648,
|
63 |
+
-0.00948922,
|
64 |
+
-0.26469934,
|
65 |
+
]
|
66 |
+
)
|
67 |
+
tm.assert_numpy_array_equal(result, expected)
|
68 |
+
|
69 |
+
result = np.ravel(DataFrame(arr[0].reshape(1, 3), columns=["x1", "x2", "x3"]))
|
70 |
+
expected = np.array([0.11197053, 0.44361564, -0.92589452])
|
71 |
+
tm.assert_numpy_array_equal(result, expected)
|
72 |
+
|
73 |
+
result = np.ravel(
|
74 |
+
[
|
75 |
+
DataFrame(batch.reshape(1, 3), columns=["x1", "x2", "x3"])
|
76 |
+
for batch in arr
|
77 |
+
]
|
78 |
+
)
|
79 |
+
expected = np.array(
|
80 |
+
[
|
81 |
+
0.11197053,
|
82 |
+
0.44361564,
|
83 |
+
-0.92589452,
|
84 |
+
0.05883648,
|
85 |
+
-0.00948922,
|
86 |
+
-0.26469934,
|
87 |
+
]
|
88 |
+
)
|
89 |
+
tm.assert_numpy_array_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_query_eval.py
ADDED
@@ -0,0 +1,1425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas.errors import (
|
7 |
+
NumExprClobberingError,
|
8 |
+
UndefinedVariableError,
|
9 |
+
)
|
10 |
+
import pandas.util._test_decorators as td
|
11 |
+
|
12 |
+
import pandas as pd
|
13 |
+
from pandas import (
|
14 |
+
DataFrame,
|
15 |
+
Index,
|
16 |
+
MultiIndex,
|
17 |
+
Series,
|
18 |
+
date_range,
|
19 |
+
)
|
20 |
+
import pandas._testing as tm
|
21 |
+
from pandas.core.computation.check import NUMEXPR_INSTALLED
|
22 |
+
|
23 |
+
|
24 |
+
@pytest.fixture(params=["python", "pandas"], ids=lambda x: x)
|
25 |
+
def parser(request):
|
26 |
+
return request.param
|
27 |
+
|
28 |
+
|
29 |
+
@pytest.fixture(
|
30 |
+
params=["python", pytest.param("numexpr", marks=td.skip_if_no("numexpr"))],
|
31 |
+
ids=lambda x: x,
|
32 |
+
)
|
33 |
+
def engine(request):
|
34 |
+
return request.param
|
35 |
+
|
36 |
+
|
37 |
+
def skip_if_no_pandas_parser(parser):
|
38 |
+
if parser != "pandas":
|
39 |
+
pytest.skip(f"cannot evaluate with parser={parser}")
|
40 |
+
|
41 |
+
|
42 |
+
class TestCompat:
|
43 |
+
@pytest.fixture
|
44 |
+
def df(self):
|
45 |
+
return DataFrame({"A": [1, 2, 3]})
|
46 |
+
|
47 |
+
@pytest.fixture
|
48 |
+
def expected1(self, df):
|
49 |
+
return df[df.A > 0]
|
50 |
+
|
51 |
+
@pytest.fixture
|
52 |
+
def expected2(self, df):
|
53 |
+
return df.A + 1
|
54 |
+
|
55 |
+
def test_query_default(self, df, expected1, expected2):
|
56 |
+
# GH 12749
|
57 |
+
# this should always work, whether NUMEXPR_INSTALLED or not
|
58 |
+
result = df.query("A>0")
|
59 |
+
tm.assert_frame_equal(result, expected1)
|
60 |
+
result = df.eval("A+1")
|
61 |
+
tm.assert_series_equal(result, expected2, check_names=False)
|
62 |
+
|
63 |
+
def test_query_None(self, df, expected1, expected2):
|
64 |
+
result = df.query("A>0", engine=None)
|
65 |
+
tm.assert_frame_equal(result, expected1)
|
66 |
+
result = df.eval("A+1", engine=None)
|
67 |
+
tm.assert_series_equal(result, expected2, check_names=False)
|
68 |
+
|
69 |
+
def test_query_python(self, df, expected1, expected2):
|
70 |
+
result = df.query("A>0", engine="python")
|
71 |
+
tm.assert_frame_equal(result, expected1)
|
72 |
+
result = df.eval("A+1", engine="python")
|
73 |
+
tm.assert_series_equal(result, expected2, check_names=False)
|
74 |
+
|
75 |
+
def test_query_numexpr(self, df, expected1, expected2):
|
76 |
+
if NUMEXPR_INSTALLED:
|
77 |
+
result = df.query("A>0", engine="numexpr")
|
78 |
+
tm.assert_frame_equal(result, expected1)
|
79 |
+
result = df.eval("A+1", engine="numexpr")
|
80 |
+
tm.assert_series_equal(result, expected2, check_names=False)
|
81 |
+
else:
|
82 |
+
msg = (
|
83 |
+
r"'numexpr' is not installed or an unsupported version. "
|
84 |
+
r"Cannot use engine='numexpr' for query/eval if 'numexpr' is "
|
85 |
+
r"not installed"
|
86 |
+
)
|
87 |
+
with pytest.raises(ImportError, match=msg):
|
88 |
+
df.query("A>0", engine="numexpr")
|
89 |
+
with pytest.raises(ImportError, match=msg):
|
90 |
+
df.eval("A+1", engine="numexpr")
|
91 |
+
|
92 |
+
|
93 |
+
class TestDataFrameEval:
|
94 |
+
# smaller hits python, larger hits numexpr
|
95 |
+
@pytest.mark.parametrize("n", [4, 4000])
|
96 |
+
@pytest.mark.parametrize(
|
97 |
+
"op_str,op,rop",
|
98 |
+
[
|
99 |
+
("+", "__add__", "__radd__"),
|
100 |
+
("-", "__sub__", "__rsub__"),
|
101 |
+
("*", "__mul__", "__rmul__"),
|
102 |
+
("/", "__truediv__", "__rtruediv__"),
|
103 |
+
],
|
104 |
+
)
|
105 |
+
def test_ops(self, op_str, op, rop, n):
|
106 |
+
# tst ops and reversed ops in evaluation
|
107 |
+
# GH7198
|
108 |
+
|
109 |
+
df = DataFrame(1, index=range(n), columns=list("abcd"))
|
110 |
+
df.iloc[0] = 2
|
111 |
+
m = df.mean()
|
112 |
+
|
113 |
+
base = DataFrame( # noqa: F841
|
114 |
+
np.tile(m.values, n).reshape(n, -1), columns=list("abcd")
|
115 |
+
)
|
116 |
+
|
117 |
+
expected = eval(f"base {op_str} df")
|
118 |
+
|
119 |
+
# ops as strings
|
120 |
+
result = eval(f"m {op_str} df")
|
121 |
+
tm.assert_frame_equal(result, expected)
|
122 |
+
|
123 |
+
# these are commutative
|
124 |
+
if op in ["+", "*"]:
|
125 |
+
result = getattr(df, op)(m)
|
126 |
+
tm.assert_frame_equal(result, expected)
|
127 |
+
|
128 |
+
# these are not
|
129 |
+
elif op in ["-", "/"]:
|
130 |
+
result = getattr(df, rop)(m)
|
131 |
+
tm.assert_frame_equal(result, expected)
|
132 |
+
|
133 |
+
def test_dataframe_sub_numexpr_path(self):
|
134 |
+
# GH7192: Note we need a large number of rows to ensure this
|
135 |
+
# goes through the numexpr path
|
136 |
+
df = DataFrame({"A": np.random.default_rng(2).standard_normal(25000)})
|
137 |
+
df.iloc[0:5] = np.nan
|
138 |
+
expected = 1 - np.isnan(df.iloc[0:25])
|
139 |
+
result = (1 - np.isnan(df)).iloc[0:25]
|
140 |
+
tm.assert_frame_equal(result, expected)
|
141 |
+
|
142 |
+
def test_query_non_str(self):
|
143 |
+
# GH 11485
|
144 |
+
df = DataFrame({"A": [1, 2, 3], "B": ["a", "b", "b"]})
|
145 |
+
|
146 |
+
msg = "expr must be a string to be evaluated"
|
147 |
+
with pytest.raises(ValueError, match=msg):
|
148 |
+
df.query(lambda x: x.B == "b")
|
149 |
+
|
150 |
+
with pytest.raises(ValueError, match=msg):
|
151 |
+
df.query(111)
|
152 |
+
|
153 |
+
def test_query_empty_string(self):
|
154 |
+
# GH 13139
|
155 |
+
df = DataFrame({"A": [1, 2, 3]})
|
156 |
+
|
157 |
+
msg = "expr cannot be an empty string"
|
158 |
+
with pytest.raises(ValueError, match=msg):
|
159 |
+
df.query("")
|
160 |
+
|
161 |
+
def test_eval_resolvers_as_list(self):
|
162 |
+
# GH 14095
|
163 |
+
df = DataFrame(
|
164 |
+
np.random.default_rng(2).standard_normal((10, 2)), columns=list("ab")
|
165 |
+
)
|
166 |
+
dict1 = {"a": 1}
|
167 |
+
dict2 = {"b": 2}
|
168 |
+
assert df.eval("a + b", resolvers=[dict1, dict2]) == dict1["a"] + dict2["b"]
|
169 |
+
assert pd.eval("a + b", resolvers=[dict1, dict2]) == dict1["a"] + dict2["b"]
|
170 |
+
|
171 |
+
def test_eval_resolvers_combined(self):
|
172 |
+
# GH 34966
|
173 |
+
df = DataFrame(
|
174 |
+
np.random.default_rng(2).standard_normal((10, 2)), columns=list("ab")
|
175 |
+
)
|
176 |
+
dict1 = {"c": 2}
|
177 |
+
|
178 |
+
# Both input and default index/column resolvers should be usable
|
179 |
+
result = df.eval("a + b * c", resolvers=[dict1])
|
180 |
+
|
181 |
+
expected = df["a"] + df["b"] * dict1["c"]
|
182 |
+
tm.assert_series_equal(result, expected)
|
183 |
+
|
184 |
+
def test_eval_object_dtype_binop(self):
|
185 |
+
# GH#24883
|
186 |
+
df = DataFrame({"a1": ["Y", "N"]})
|
187 |
+
res = df.eval("c = ((a1 == 'Y') & True)")
|
188 |
+
expected = DataFrame({"a1": ["Y", "N"], "c": [True, False]})
|
189 |
+
tm.assert_frame_equal(res, expected)
|
190 |
+
|
191 |
+
|
192 |
+
class TestDataFrameQueryWithMultiIndex:
|
193 |
+
def test_query_with_named_multiindex(self, parser, engine):
|
194 |
+
skip_if_no_pandas_parser(parser)
|
195 |
+
a = np.random.default_rng(2).choice(["red", "green"], size=10)
|
196 |
+
b = np.random.default_rng(2).choice(["eggs", "ham"], size=10)
|
197 |
+
index = MultiIndex.from_arrays([a, b], names=["color", "food"])
|
198 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)), index=index)
|
199 |
+
ind = Series(
|
200 |
+
df.index.get_level_values("color").values, index=index, name="color"
|
201 |
+
)
|
202 |
+
|
203 |
+
# equality
|
204 |
+
res1 = df.query('color == "red"', parser=parser, engine=engine)
|
205 |
+
res2 = df.query('"red" == color', parser=parser, engine=engine)
|
206 |
+
exp = df[ind == "red"]
|
207 |
+
tm.assert_frame_equal(res1, exp)
|
208 |
+
tm.assert_frame_equal(res2, exp)
|
209 |
+
|
210 |
+
# inequality
|
211 |
+
res1 = df.query('color != "red"', parser=parser, engine=engine)
|
212 |
+
res2 = df.query('"red" != color', parser=parser, engine=engine)
|
213 |
+
exp = df[ind != "red"]
|
214 |
+
tm.assert_frame_equal(res1, exp)
|
215 |
+
tm.assert_frame_equal(res2, exp)
|
216 |
+
|
217 |
+
# list equality (really just set membership)
|
218 |
+
res1 = df.query('color == ["red"]', parser=parser, engine=engine)
|
219 |
+
res2 = df.query('["red"] == color', parser=parser, engine=engine)
|
220 |
+
exp = df[ind.isin(["red"])]
|
221 |
+
tm.assert_frame_equal(res1, exp)
|
222 |
+
tm.assert_frame_equal(res2, exp)
|
223 |
+
|
224 |
+
res1 = df.query('color != ["red"]', parser=parser, engine=engine)
|
225 |
+
res2 = df.query('["red"] != color', parser=parser, engine=engine)
|
226 |
+
exp = df[~ind.isin(["red"])]
|
227 |
+
tm.assert_frame_equal(res1, exp)
|
228 |
+
tm.assert_frame_equal(res2, exp)
|
229 |
+
|
230 |
+
# in/not in ops
|
231 |
+
res1 = df.query('["red"] in color', parser=parser, engine=engine)
|
232 |
+
res2 = df.query('"red" in color', parser=parser, engine=engine)
|
233 |
+
exp = df[ind.isin(["red"])]
|
234 |
+
tm.assert_frame_equal(res1, exp)
|
235 |
+
tm.assert_frame_equal(res2, exp)
|
236 |
+
|
237 |
+
res1 = df.query('["red"] not in color', parser=parser, engine=engine)
|
238 |
+
res2 = df.query('"red" not in color', parser=parser, engine=engine)
|
239 |
+
exp = df[~ind.isin(["red"])]
|
240 |
+
tm.assert_frame_equal(res1, exp)
|
241 |
+
tm.assert_frame_equal(res2, exp)
|
242 |
+
|
243 |
+
def test_query_with_unnamed_multiindex(self, parser, engine):
|
244 |
+
skip_if_no_pandas_parser(parser)
|
245 |
+
a = np.random.default_rng(2).choice(["red", "green"], size=10)
|
246 |
+
b = np.random.default_rng(2).choice(["eggs", "ham"], size=10)
|
247 |
+
index = MultiIndex.from_arrays([a, b])
|
248 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)), index=index)
|
249 |
+
ind = Series(df.index.get_level_values(0).values, index=index)
|
250 |
+
|
251 |
+
res1 = df.query('ilevel_0 == "red"', parser=parser, engine=engine)
|
252 |
+
res2 = df.query('"red" == ilevel_0', parser=parser, engine=engine)
|
253 |
+
exp = df[ind == "red"]
|
254 |
+
tm.assert_frame_equal(res1, exp)
|
255 |
+
tm.assert_frame_equal(res2, exp)
|
256 |
+
|
257 |
+
# inequality
|
258 |
+
res1 = df.query('ilevel_0 != "red"', parser=parser, engine=engine)
|
259 |
+
res2 = df.query('"red" != ilevel_0', parser=parser, engine=engine)
|
260 |
+
exp = df[ind != "red"]
|
261 |
+
tm.assert_frame_equal(res1, exp)
|
262 |
+
tm.assert_frame_equal(res2, exp)
|
263 |
+
|
264 |
+
# list equality (really just set membership)
|
265 |
+
res1 = df.query('ilevel_0 == ["red"]', parser=parser, engine=engine)
|
266 |
+
res2 = df.query('["red"] == ilevel_0', parser=parser, engine=engine)
|
267 |
+
exp = df[ind.isin(["red"])]
|
268 |
+
tm.assert_frame_equal(res1, exp)
|
269 |
+
tm.assert_frame_equal(res2, exp)
|
270 |
+
|
271 |
+
res1 = df.query('ilevel_0 != ["red"]', parser=parser, engine=engine)
|
272 |
+
res2 = df.query('["red"] != ilevel_0', parser=parser, engine=engine)
|
273 |
+
exp = df[~ind.isin(["red"])]
|
274 |
+
tm.assert_frame_equal(res1, exp)
|
275 |
+
tm.assert_frame_equal(res2, exp)
|
276 |
+
|
277 |
+
# in/not in ops
|
278 |
+
res1 = df.query('["red"] in ilevel_0', parser=parser, engine=engine)
|
279 |
+
res2 = df.query('"red" in ilevel_0', parser=parser, engine=engine)
|
280 |
+
exp = df[ind.isin(["red"])]
|
281 |
+
tm.assert_frame_equal(res1, exp)
|
282 |
+
tm.assert_frame_equal(res2, exp)
|
283 |
+
|
284 |
+
res1 = df.query('["red"] not in ilevel_0', parser=parser, engine=engine)
|
285 |
+
res2 = df.query('"red" not in ilevel_0', parser=parser, engine=engine)
|
286 |
+
exp = df[~ind.isin(["red"])]
|
287 |
+
tm.assert_frame_equal(res1, exp)
|
288 |
+
tm.assert_frame_equal(res2, exp)
|
289 |
+
|
290 |
+
# ## LEVEL 1
|
291 |
+
ind = Series(df.index.get_level_values(1).values, index=index)
|
292 |
+
res1 = df.query('ilevel_1 == "eggs"', parser=parser, engine=engine)
|
293 |
+
res2 = df.query('"eggs" == ilevel_1', parser=parser, engine=engine)
|
294 |
+
exp = df[ind == "eggs"]
|
295 |
+
tm.assert_frame_equal(res1, exp)
|
296 |
+
tm.assert_frame_equal(res2, exp)
|
297 |
+
|
298 |
+
# inequality
|
299 |
+
res1 = df.query('ilevel_1 != "eggs"', parser=parser, engine=engine)
|
300 |
+
res2 = df.query('"eggs" != ilevel_1', parser=parser, engine=engine)
|
301 |
+
exp = df[ind != "eggs"]
|
302 |
+
tm.assert_frame_equal(res1, exp)
|
303 |
+
tm.assert_frame_equal(res2, exp)
|
304 |
+
|
305 |
+
# list equality (really just set membership)
|
306 |
+
res1 = df.query('ilevel_1 == ["eggs"]', parser=parser, engine=engine)
|
307 |
+
res2 = df.query('["eggs"] == ilevel_1', parser=parser, engine=engine)
|
308 |
+
exp = df[ind.isin(["eggs"])]
|
309 |
+
tm.assert_frame_equal(res1, exp)
|
310 |
+
tm.assert_frame_equal(res2, exp)
|
311 |
+
|
312 |
+
res1 = df.query('ilevel_1 != ["eggs"]', parser=parser, engine=engine)
|
313 |
+
res2 = df.query('["eggs"] != ilevel_1', parser=parser, engine=engine)
|
314 |
+
exp = df[~ind.isin(["eggs"])]
|
315 |
+
tm.assert_frame_equal(res1, exp)
|
316 |
+
tm.assert_frame_equal(res2, exp)
|
317 |
+
|
318 |
+
# in/not in ops
|
319 |
+
res1 = df.query('["eggs"] in ilevel_1', parser=parser, engine=engine)
|
320 |
+
res2 = df.query('"eggs" in ilevel_1', parser=parser, engine=engine)
|
321 |
+
exp = df[ind.isin(["eggs"])]
|
322 |
+
tm.assert_frame_equal(res1, exp)
|
323 |
+
tm.assert_frame_equal(res2, exp)
|
324 |
+
|
325 |
+
res1 = df.query('["eggs"] not in ilevel_1', parser=parser, engine=engine)
|
326 |
+
res2 = df.query('"eggs" not in ilevel_1', parser=parser, engine=engine)
|
327 |
+
exp = df[~ind.isin(["eggs"])]
|
328 |
+
tm.assert_frame_equal(res1, exp)
|
329 |
+
tm.assert_frame_equal(res2, exp)
|
330 |
+
|
331 |
+
def test_query_with_partially_named_multiindex(self, parser, engine):
|
332 |
+
skip_if_no_pandas_parser(parser)
|
333 |
+
a = np.random.default_rng(2).choice(["red", "green"], size=10)
|
334 |
+
b = np.arange(10)
|
335 |
+
index = MultiIndex.from_arrays([a, b])
|
336 |
+
index.names = [None, "rating"]
|
337 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)), index=index)
|
338 |
+
res = df.query("rating == 1", parser=parser, engine=engine)
|
339 |
+
ind = Series(
|
340 |
+
df.index.get_level_values("rating").values, index=index, name="rating"
|
341 |
+
)
|
342 |
+
exp = df[ind == 1]
|
343 |
+
tm.assert_frame_equal(res, exp)
|
344 |
+
|
345 |
+
res = df.query("rating != 1", parser=parser, engine=engine)
|
346 |
+
ind = Series(
|
347 |
+
df.index.get_level_values("rating").values, index=index, name="rating"
|
348 |
+
)
|
349 |
+
exp = df[ind != 1]
|
350 |
+
tm.assert_frame_equal(res, exp)
|
351 |
+
|
352 |
+
res = df.query('ilevel_0 == "red"', parser=parser, engine=engine)
|
353 |
+
ind = Series(df.index.get_level_values(0).values, index=index)
|
354 |
+
exp = df[ind == "red"]
|
355 |
+
tm.assert_frame_equal(res, exp)
|
356 |
+
|
357 |
+
res = df.query('ilevel_0 != "red"', parser=parser, engine=engine)
|
358 |
+
ind = Series(df.index.get_level_values(0).values, index=index)
|
359 |
+
exp = df[ind != "red"]
|
360 |
+
tm.assert_frame_equal(res, exp)
|
361 |
+
|
362 |
+
def test_query_multiindex_get_index_resolvers(self):
|
363 |
+
df = DataFrame(
|
364 |
+
np.ones((10, 3)),
|
365 |
+
index=MultiIndex.from_arrays(
|
366 |
+
[range(10) for _ in range(2)], names=["spam", "eggs"]
|
367 |
+
),
|
368 |
+
)
|
369 |
+
resolvers = df._get_index_resolvers()
|
370 |
+
|
371 |
+
def to_series(mi, level):
|
372 |
+
level_values = mi.get_level_values(level)
|
373 |
+
s = level_values.to_series()
|
374 |
+
s.index = mi
|
375 |
+
return s
|
376 |
+
|
377 |
+
col_series = df.columns.to_series()
|
378 |
+
expected = {
|
379 |
+
"index": df.index,
|
380 |
+
"columns": col_series,
|
381 |
+
"spam": to_series(df.index, "spam"),
|
382 |
+
"eggs": to_series(df.index, "eggs"),
|
383 |
+
"clevel_0": col_series,
|
384 |
+
}
|
385 |
+
for k, v in resolvers.items():
|
386 |
+
if isinstance(v, Index):
|
387 |
+
assert v.is_(expected[k])
|
388 |
+
elif isinstance(v, Series):
|
389 |
+
tm.assert_series_equal(v, expected[k])
|
390 |
+
else:
|
391 |
+
raise AssertionError("object must be a Series or Index")
|
392 |
+
|
393 |
+
|
394 |
+
@td.skip_if_no("numexpr")
|
395 |
+
class TestDataFrameQueryNumExprPandas:
|
396 |
+
@pytest.fixture
|
397 |
+
def engine(self):
|
398 |
+
return "numexpr"
|
399 |
+
|
400 |
+
@pytest.fixture
|
401 |
+
def parser(self):
|
402 |
+
return "pandas"
|
403 |
+
|
404 |
+
def test_date_query_with_attribute_access(self, engine, parser):
|
405 |
+
skip_if_no_pandas_parser(parser)
|
406 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
407 |
+
df["dates1"] = date_range("1/1/2012", periods=5)
|
408 |
+
df["dates2"] = date_range("1/1/2013", periods=5)
|
409 |
+
df["dates3"] = date_range("1/1/2014", periods=5)
|
410 |
+
res = df.query(
|
411 |
+
"@df.dates1 < 20130101 < @df.dates3", engine=engine, parser=parser
|
412 |
+
)
|
413 |
+
expec = df[(df.dates1 < "20130101") & ("20130101" < df.dates3)]
|
414 |
+
tm.assert_frame_equal(res, expec)
|
415 |
+
|
416 |
+
def test_date_query_no_attribute_access(self, engine, parser):
|
417 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
418 |
+
df["dates1"] = date_range("1/1/2012", periods=5)
|
419 |
+
df["dates2"] = date_range("1/1/2013", periods=5)
|
420 |
+
df["dates3"] = date_range("1/1/2014", periods=5)
|
421 |
+
res = df.query("dates1 < 20130101 < dates3", engine=engine, parser=parser)
|
422 |
+
expec = df[(df.dates1 < "20130101") & ("20130101" < df.dates3)]
|
423 |
+
tm.assert_frame_equal(res, expec)
|
424 |
+
|
425 |
+
def test_date_query_with_NaT(self, engine, parser):
|
426 |
+
n = 10
|
427 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3)))
|
428 |
+
df["dates1"] = date_range("1/1/2012", periods=n)
|
429 |
+
df["dates2"] = date_range("1/1/2013", periods=n)
|
430 |
+
df["dates3"] = date_range("1/1/2014", periods=n)
|
431 |
+
df.loc[np.random.default_rng(2).random(n) > 0.5, "dates1"] = pd.NaT
|
432 |
+
df.loc[np.random.default_rng(2).random(n) > 0.5, "dates3"] = pd.NaT
|
433 |
+
res = df.query("dates1 < 20130101 < dates3", engine=engine, parser=parser)
|
434 |
+
expec = df[(df.dates1 < "20130101") & ("20130101" < df.dates3)]
|
435 |
+
tm.assert_frame_equal(res, expec)
|
436 |
+
|
437 |
+
def test_date_index_query(self, engine, parser):
|
438 |
+
n = 10
|
439 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3)))
|
440 |
+
df["dates1"] = date_range("1/1/2012", periods=n)
|
441 |
+
df["dates3"] = date_range("1/1/2014", periods=n)
|
442 |
+
return_value = df.set_index("dates1", inplace=True, drop=True)
|
443 |
+
assert return_value is None
|
444 |
+
res = df.query("index < 20130101 < dates3", engine=engine, parser=parser)
|
445 |
+
expec = df[(df.index < "20130101") & ("20130101" < df.dates3)]
|
446 |
+
tm.assert_frame_equal(res, expec)
|
447 |
+
|
448 |
+
def test_date_index_query_with_NaT(self, engine, parser):
|
449 |
+
n = 10
|
450 |
+
# Cast to object to avoid implicit cast when setting entry to pd.NaT below
|
451 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3))).astype(
|
452 |
+
{0: object}
|
453 |
+
)
|
454 |
+
df["dates1"] = date_range("1/1/2012", periods=n)
|
455 |
+
df["dates3"] = date_range("1/1/2014", periods=n)
|
456 |
+
df.iloc[0, 0] = pd.NaT
|
457 |
+
return_value = df.set_index("dates1", inplace=True, drop=True)
|
458 |
+
assert return_value is None
|
459 |
+
res = df.query("index < 20130101 < dates3", engine=engine, parser=parser)
|
460 |
+
expec = df[(df.index < "20130101") & ("20130101" < df.dates3)]
|
461 |
+
tm.assert_frame_equal(res, expec)
|
462 |
+
|
463 |
+
def test_date_index_query_with_NaT_duplicates(self, engine, parser):
|
464 |
+
n = 10
|
465 |
+
d = {}
|
466 |
+
d["dates1"] = date_range("1/1/2012", periods=n)
|
467 |
+
d["dates3"] = date_range("1/1/2014", periods=n)
|
468 |
+
df = DataFrame(d)
|
469 |
+
df.loc[np.random.default_rng(2).random(n) > 0.5, "dates1"] = pd.NaT
|
470 |
+
return_value = df.set_index("dates1", inplace=True, drop=True)
|
471 |
+
assert return_value is None
|
472 |
+
res = df.query("dates1 < 20130101 < dates3", engine=engine, parser=parser)
|
473 |
+
expec = df[(df.index.to_series() < "20130101") & ("20130101" < df.dates3)]
|
474 |
+
tm.assert_frame_equal(res, expec)
|
475 |
+
|
476 |
+
def test_date_query_with_non_date(self, engine, parser):
|
477 |
+
n = 10
|
478 |
+
df = DataFrame(
|
479 |
+
{"dates": date_range("1/1/2012", periods=n), "nondate": np.arange(n)}
|
480 |
+
)
|
481 |
+
|
482 |
+
result = df.query("dates == nondate", parser=parser, engine=engine)
|
483 |
+
assert len(result) == 0
|
484 |
+
|
485 |
+
result = df.query("dates != nondate", parser=parser, engine=engine)
|
486 |
+
tm.assert_frame_equal(result, df)
|
487 |
+
|
488 |
+
msg = r"Invalid comparison between dtype=datetime64\[ns\] and ndarray"
|
489 |
+
for op in ["<", ">", "<=", ">="]:
|
490 |
+
with pytest.raises(TypeError, match=msg):
|
491 |
+
df.query(f"dates {op} nondate", parser=parser, engine=engine)
|
492 |
+
|
493 |
+
def test_query_syntax_error(self, engine, parser):
|
494 |
+
df = DataFrame({"i": range(10), "+": range(3, 13), "r": range(4, 14)})
|
495 |
+
msg = "invalid syntax"
|
496 |
+
with pytest.raises(SyntaxError, match=msg):
|
497 |
+
df.query("i - +", engine=engine, parser=parser)
|
498 |
+
|
499 |
+
def test_query_scope(self, engine, parser):
|
500 |
+
skip_if_no_pandas_parser(parser)
|
501 |
+
|
502 |
+
df = DataFrame(
|
503 |
+
np.random.default_rng(2).standard_normal((20, 2)), columns=list("ab")
|
504 |
+
)
|
505 |
+
|
506 |
+
a, b = 1, 2 # noqa: F841
|
507 |
+
res = df.query("a > b", engine=engine, parser=parser)
|
508 |
+
expected = df[df.a > df.b]
|
509 |
+
tm.assert_frame_equal(res, expected)
|
510 |
+
|
511 |
+
res = df.query("@a > b", engine=engine, parser=parser)
|
512 |
+
expected = df[a > df.b]
|
513 |
+
tm.assert_frame_equal(res, expected)
|
514 |
+
|
515 |
+
# no local variable c
|
516 |
+
with pytest.raises(
|
517 |
+
UndefinedVariableError, match="local variable 'c' is not defined"
|
518 |
+
):
|
519 |
+
df.query("@a > b > @c", engine=engine, parser=parser)
|
520 |
+
|
521 |
+
# no column named 'c'
|
522 |
+
with pytest.raises(UndefinedVariableError, match="name 'c' is not defined"):
|
523 |
+
df.query("@a > b > c", engine=engine, parser=parser)
|
524 |
+
|
525 |
+
def test_query_doesnt_pickup_local(self, engine, parser):
|
526 |
+
n = m = 10
|
527 |
+
df = DataFrame(
|
528 |
+
np.random.default_rng(2).integers(m, size=(n, 3)), columns=list("abc")
|
529 |
+
)
|
530 |
+
|
531 |
+
# we don't pick up the local 'sin'
|
532 |
+
with pytest.raises(UndefinedVariableError, match="name 'sin' is not defined"):
|
533 |
+
df.query("sin > 5", engine=engine, parser=parser)
|
534 |
+
|
535 |
+
def test_query_builtin(self, engine, parser):
|
536 |
+
n = m = 10
|
537 |
+
df = DataFrame(
|
538 |
+
np.random.default_rng(2).integers(m, size=(n, 3)), columns=list("abc")
|
539 |
+
)
|
540 |
+
|
541 |
+
df.index.name = "sin"
|
542 |
+
msg = "Variables in expression.+"
|
543 |
+
with pytest.raises(NumExprClobberingError, match=msg):
|
544 |
+
df.query("sin > 5", engine=engine, parser=parser)
|
545 |
+
|
546 |
+
def test_query(self, engine, parser):
|
547 |
+
df = DataFrame(
|
548 |
+
np.random.default_rng(2).standard_normal((10, 3)), columns=["a", "b", "c"]
|
549 |
+
)
|
550 |
+
|
551 |
+
tm.assert_frame_equal(
|
552 |
+
df.query("a < b", engine=engine, parser=parser), df[df.a < df.b]
|
553 |
+
)
|
554 |
+
tm.assert_frame_equal(
|
555 |
+
df.query("a + b > b * c", engine=engine, parser=parser),
|
556 |
+
df[df.a + df.b > df.b * df.c],
|
557 |
+
)
|
558 |
+
|
559 |
+
def test_query_index_with_name(self, engine, parser):
|
560 |
+
df = DataFrame(
|
561 |
+
np.random.default_rng(2).integers(10, size=(10, 3)),
|
562 |
+
index=Index(range(10), name="blob"),
|
563 |
+
columns=["a", "b", "c"],
|
564 |
+
)
|
565 |
+
res = df.query("(blob < 5) & (a < b)", engine=engine, parser=parser)
|
566 |
+
expec = df[(df.index < 5) & (df.a < df.b)]
|
567 |
+
tm.assert_frame_equal(res, expec)
|
568 |
+
|
569 |
+
res = df.query("blob < b", engine=engine, parser=parser)
|
570 |
+
expec = df[df.index < df.b]
|
571 |
+
|
572 |
+
tm.assert_frame_equal(res, expec)
|
573 |
+
|
574 |
+
def test_query_index_without_name(self, engine, parser):
|
575 |
+
df = DataFrame(
|
576 |
+
np.random.default_rng(2).integers(10, size=(10, 3)),
|
577 |
+
index=range(10),
|
578 |
+
columns=["a", "b", "c"],
|
579 |
+
)
|
580 |
+
|
581 |
+
# "index" should refer to the index
|
582 |
+
res = df.query("index < b", engine=engine, parser=parser)
|
583 |
+
expec = df[df.index < df.b]
|
584 |
+
tm.assert_frame_equal(res, expec)
|
585 |
+
|
586 |
+
# test against a scalar
|
587 |
+
res = df.query("index < 5", engine=engine, parser=parser)
|
588 |
+
expec = df[df.index < 5]
|
589 |
+
tm.assert_frame_equal(res, expec)
|
590 |
+
|
591 |
+
def test_nested_scope(self, engine, parser):
|
592 |
+
skip_if_no_pandas_parser(parser)
|
593 |
+
|
594 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
595 |
+
df2 = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
596 |
+
expected = df[(df > 0) & (df2 > 0)]
|
597 |
+
|
598 |
+
result = df.query("(@df > 0) & (@df2 > 0)", engine=engine, parser=parser)
|
599 |
+
tm.assert_frame_equal(result, expected)
|
600 |
+
|
601 |
+
result = pd.eval("df[df > 0 and df2 > 0]", engine=engine, parser=parser)
|
602 |
+
tm.assert_frame_equal(result, expected)
|
603 |
+
|
604 |
+
result = pd.eval(
|
605 |
+
"df[df > 0 and df2 > 0 and df[df > 0] > 0]", engine=engine, parser=parser
|
606 |
+
)
|
607 |
+
expected = df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]
|
608 |
+
tm.assert_frame_equal(result, expected)
|
609 |
+
|
610 |
+
result = pd.eval("df[(df>0) & (df2>0)]", engine=engine, parser=parser)
|
611 |
+
expected = df.query("(@df>0) & (@df2>0)", engine=engine, parser=parser)
|
612 |
+
tm.assert_frame_equal(result, expected)
|
613 |
+
|
614 |
+
def test_nested_raises_on_local_self_reference(self, engine, parser):
|
615 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
616 |
+
|
617 |
+
# can't reference ourself b/c we're a local so @ is necessary
|
618 |
+
with pytest.raises(UndefinedVariableError, match="name 'df' is not defined"):
|
619 |
+
df.query("df > 0", engine=engine, parser=parser)
|
620 |
+
|
621 |
+
def test_local_syntax(self, engine, parser):
|
622 |
+
skip_if_no_pandas_parser(parser)
|
623 |
+
|
624 |
+
df = DataFrame(
|
625 |
+
np.random.default_rng(2).standard_normal((100, 10)),
|
626 |
+
columns=list("abcdefghij"),
|
627 |
+
)
|
628 |
+
b = 1
|
629 |
+
expect = df[df.a < b]
|
630 |
+
result = df.query("a < @b", engine=engine, parser=parser)
|
631 |
+
tm.assert_frame_equal(result, expect)
|
632 |
+
|
633 |
+
expect = df[df.a < df.b]
|
634 |
+
result = df.query("a < b", engine=engine, parser=parser)
|
635 |
+
tm.assert_frame_equal(result, expect)
|
636 |
+
|
637 |
+
def test_chained_cmp_and_in(self, engine, parser):
|
638 |
+
skip_if_no_pandas_parser(parser)
|
639 |
+
cols = list("abc")
|
640 |
+
df = DataFrame(
|
641 |
+
np.random.default_rng(2).standard_normal((100, len(cols))), columns=cols
|
642 |
+
)
|
643 |
+
res = df.query(
|
644 |
+
"a < b < c and a not in b not in c", engine=engine, parser=parser
|
645 |
+
)
|
646 |
+
ind = (df.a < df.b) & (df.b < df.c) & ~df.b.isin(df.a) & ~df.c.isin(df.b)
|
647 |
+
expec = df[ind]
|
648 |
+
tm.assert_frame_equal(res, expec)
|
649 |
+
|
650 |
+
def test_local_variable_with_in(self, engine, parser):
|
651 |
+
skip_if_no_pandas_parser(parser)
|
652 |
+
a = Series(np.random.default_rng(2).integers(3, size=15), name="a")
|
653 |
+
b = Series(np.random.default_rng(2).integers(10, size=15), name="b")
|
654 |
+
df = DataFrame({"a": a, "b": b})
|
655 |
+
|
656 |
+
expected = df.loc[(df.b - 1).isin(a)]
|
657 |
+
result = df.query("b - 1 in a", engine=engine, parser=parser)
|
658 |
+
tm.assert_frame_equal(expected, result)
|
659 |
+
|
660 |
+
b = Series(np.random.default_rng(2).integers(10, size=15), name="b")
|
661 |
+
expected = df.loc[(b - 1).isin(a)]
|
662 |
+
result = df.query("@b - 1 in a", engine=engine, parser=parser)
|
663 |
+
tm.assert_frame_equal(expected, result)
|
664 |
+
|
665 |
+
def test_at_inside_string(self, engine, parser):
|
666 |
+
skip_if_no_pandas_parser(parser)
|
667 |
+
c = 1 # noqa: F841
|
668 |
+
df = DataFrame({"a": ["a", "a", "b", "b", "@c", "@c"]})
|
669 |
+
result = df.query('a == "@c"', engine=engine, parser=parser)
|
670 |
+
expected = df[df.a == "@c"]
|
671 |
+
tm.assert_frame_equal(result, expected)
|
672 |
+
|
673 |
+
def test_query_undefined_local(self):
|
674 |
+
engine, parser = self.engine, self.parser
|
675 |
+
skip_if_no_pandas_parser(parser)
|
676 |
+
|
677 |
+
df = DataFrame(np.random.default_rng(2).random((10, 2)), columns=list("ab"))
|
678 |
+
with pytest.raises(
|
679 |
+
UndefinedVariableError, match="local variable 'c' is not defined"
|
680 |
+
):
|
681 |
+
df.query("a == @c", engine=engine, parser=parser)
|
682 |
+
|
683 |
+
def test_index_resolvers_come_after_columns_with_the_same_name(
|
684 |
+
self, engine, parser
|
685 |
+
):
|
686 |
+
n = 1 # noqa: F841
|
687 |
+
a = np.r_[20:101:20]
|
688 |
+
|
689 |
+
df = DataFrame(
|
690 |
+
{"index": a, "b": np.random.default_rng(2).standard_normal(a.size)}
|
691 |
+
)
|
692 |
+
df.index.name = "index"
|
693 |
+
result = df.query("index > 5", engine=engine, parser=parser)
|
694 |
+
expected = df[df["index"] > 5]
|
695 |
+
tm.assert_frame_equal(result, expected)
|
696 |
+
|
697 |
+
df = DataFrame(
|
698 |
+
{"index": a, "b": np.random.default_rng(2).standard_normal(a.size)}
|
699 |
+
)
|
700 |
+
result = df.query("ilevel_0 > 5", engine=engine, parser=parser)
|
701 |
+
expected = df.loc[df.index[df.index > 5]]
|
702 |
+
tm.assert_frame_equal(result, expected)
|
703 |
+
|
704 |
+
df = DataFrame({"a": a, "b": np.random.default_rng(2).standard_normal(a.size)})
|
705 |
+
df.index.name = "a"
|
706 |
+
result = df.query("a > 5", engine=engine, parser=parser)
|
707 |
+
expected = df[df.a > 5]
|
708 |
+
tm.assert_frame_equal(result, expected)
|
709 |
+
|
710 |
+
result = df.query("index > 5", engine=engine, parser=parser)
|
711 |
+
expected = df.loc[df.index[df.index > 5]]
|
712 |
+
tm.assert_frame_equal(result, expected)
|
713 |
+
|
714 |
+
@pytest.mark.parametrize("op, f", [["==", operator.eq], ["!=", operator.ne]])
|
715 |
+
def test_inf(self, op, f, engine, parser):
|
716 |
+
n = 10
|
717 |
+
df = DataFrame(
|
718 |
+
{
|
719 |
+
"a": np.random.default_rng(2).random(n),
|
720 |
+
"b": np.random.default_rng(2).random(n),
|
721 |
+
}
|
722 |
+
)
|
723 |
+
df.loc[::2, 0] = np.inf
|
724 |
+
q = f"a {op} inf"
|
725 |
+
expected = df[f(df.a, np.inf)]
|
726 |
+
result = df.query(q, engine=engine, parser=parser)
|
727 |
+
tm.assert_frame_equal(result, expected)
|
728 |
+
|
729 |
+
def test_check_tz_aware_index_query(self, tz_aware_fixture):
|
730 |
+
# https://github.com/pandas-dev/pandas/issues/29463
|
731 |
+
tz = tz_aware_fixture
|
732 |
+
df_index = date_range(
|
733 |
+
start="2019-01-01", freq="1d", periods=10, tz=tz, name="time"
|
734 |
+
)
|
735 |
+
expected = DataFrame(index=df_index)
|
736 |
+
df = DataFrame(index=df_index)
|
737 |
+
result = df.query('"2018-01-03 00:00:00+00" < time')
|
738 |
+
tm.assert_frame_equal(result, expected)
|
739 |
+
|
740 |
+
expected = DataFrame(df_index)
|
741 |
+
result = df.reset_index().query('"2018-01-03 00:00:00+00" < time')
|
742 |
+
tm.assert_frame_equal(result, expected)
|
743 |
+
|
744 |
+
def test_method_calls_in_query(self, engine, parser):
|
745 |
+
# https://github.com/pandas-dev/pandas/issues/22435
|
746 |
+
n = 10
|
747 |
+
df = DataFrame(
|
748 |
+
{
|
749 |
+
"a": 2 * np.random.default_rng(2).random(n),
|
750 |
+
"b": np.random.default_rng(2).random(n),
|
751 |
+
}
|
752 |
+
)
|
753 |
+
expected = df[df["a"].astype("int") == 0]
|
754 |
+
result = df.query("a.astype('int') == 0", engine=engine, parser=parser)
|
755 |
+
tm.assert_frame_equal(result, expected)
|
756 |
+
|
757 |
+
df = DataFrame(
|
758 |
+
{
|
759 |
+
"a": np.where(
|
760 |
+
np.random.default_rng(2).random(n) < 0.5,
|
761 |
+
np.nan,
|
762 |
+
np.random.default_rng(2).standard_normal(n),
|
763 |
+
),
|
764 |
+
"b": np.random.default_rng(2).standard_normal(n),
|
765 |
+
}
|
766 |
+
)
|
767 |
+
expected = df[df["a"].notnull()]
|
768 |
+
result = df.query("a.notnull()", engine=engine, parser=parser)
|
769 |
+
tm.assert_frame_equal(result, expected)
|
770 |
+
|
771 |
+
|
772 |
+
@td.skip_if_no("numexpr")
|
773 |
+
class TestDataFrameQueryNumExprPython(TestDataFrameQueryNumExprPandas):
|
774 |
+
@pytest.fixture
|
775 |
+
def engine(self):
|
776 |
+
return "numexpr"
|
777 |
+
|
778 |
+
@pytest.fixture
|
779 |
+
def parser(self):
|
780 |
+
return "python"
|
781 |
+
|
782 |
+
def test_date_query_no_attribute_access(self, engine, parser):
|
783 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
784 |
+
df["dates1"] = date_range("1/1/2012", periods=5)
|
785 |
+
df["dates2"] = date_range("1/1/2013", periods=5)
|
786 |
+
df["dates3"] = date_range("1/1/2014", periods=5)
|
787 |
+
res = df.query(
|
788 |
+
"(dates1 < 20130101) & (20130101 < dates3)", engine=engine, parser=parser
|
789 |
+
)
|
790 |
+
expec = df[(df.dates1 < "20130101") & ("20130101" < df.dates3)]
|
791 |
+
tm.assert_frame_equal(res, expec)
|
792 |
+
|
793 |
+
def test_date_query_with_NaT(self, engine, parser):
|
794 |
+
n = 10
|
795 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3)))
|
796 |
+
df["dates1"] = date_range("1/1/2012", periods=n)
|
797 |
+
df["dates2"] = date_range("1/1/2013", periods=n)
|
798 |
+
df["dates3"] = date_range("1/1/2014", periods=n)
|
799 |
+
df.loc[np.random.default_rng(2).random(n) > 0.5, "dates1"] = pd.NaT
|
800 |
+
df.loc[np.random.default_rng(2).random(n) > 0.5, "dates3"] = pd.NaT
|
801 |
+
res = df.query(
|
802 |
+
"(dates1 < 20130101) & (20130101 < dates3)", engine=engine, parser=parser
|
803 |
+
)
|
804 |
+
expec = df[(df.dates1 < "20130101") & ("20130101" < df.dates3)]
|
805 |
+
tm.assert_frame_equal(res, expec)
|
806 |
+
|
807 |
+
def test_date_index_query(self, engine, parser):
|
808 |
+
n = 10
|
809 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3)))
|
810 |
+
df["dates1"] = date_range("1/1/2012", periods=n)
|
811 |
+
df["dates3"] = date_range("1/1/2014", periods=n)
|
812 |
+
return_value = df.set_index("dates1", inplace=True, drop=True)
|
813 |
+
assert return_value is None
|
814 |
+
res = df.query(
|
815 |
+
"(index < 20130101) & (20130101 < dates3)", engine=engine, parser=parser
|
816 |
+
)
|
817 |
+
expec = df[(df.index < "20130101") & ("20130101" < df.dates3)]
|
818 |
+
tm.assert_frame_equal(res, expec)
|
819 |
+
|
820 |
+
def test_date_index_query_with_NaT(self, engine, parser):
|
821 |
+
n = 10
|
822 |
+
# Cast to object to avoid implicit cast when setting entry to pd.NaT below
|
823 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3))).astype(
|
824 |
+
{0: object}
|
825 |
+
)
|
826 |
+
df["dates1"] = date_range("1/1/2012", periods=n)
|
827 |
+
df["dates3"] = date_range("1/1/2014", periods=n)
|
828 |
+
df.iloc[0, 0] = pd.NaT
|
829 |
+
return_value = df.set_index("dates1", inplace=True, drop=True)
|
830 |
+
assert return_value is None
|
831 |
+
res = df.query(
|
832 |
+
"(index < 20130101) & (20130101 < dates3)", engine=engine, parser=parser
|
833 |
+
)
|
834 |
+
expec = df[(df.index < "20130101") & ("20130101" < df.dates3)]
|
835 |
+
tm.assert_frame_equal(res, expec)
|
836 |
+
|
837 |
+
def test_date_index_query_with_NaT_duplicates(self, engine, parser):
|
838 |
+
n = 10
|
839 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3)))
|
840 |
+
df["dates1"] = date_range("1/1/2012", periods=n)
|
841 |
+
df["dates3"] = date_range("1/1/2014", periods=n)
|
842 |
+
df.loc[np.random.default_rng(2).random(n) > 0.5, "dates1"] = pd.NaT
|
843 |
+
return_value = df.set_index("dates1", inplace=True, drop=True)
|
844 |
+
assert return_value is None
|
845 |
+
msg = r"'BoolOp' nodes are not implemented"
|
846 |
+
with pytest.raises(NotImplementedError, match=msg):
|
847 |
+
df.query("index < 20130101 < dates3", engine=engine, parser=parser)
|
848 |
+
|
849 |
+
def test_nested_scope(self, engine, parser):
|
850 |
+
# smoke test
|
851 |
+
x = 1 # noqa: F841
|
852 |
+
result = pd.eval("x + 1", engine=engine, parser=parser)
|
853 |
+
assert result == 2
|
854 |
+
|
855 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
856 |
+
df2 = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
857 |
+
|
858 |
+
# don't have the pandas parser
|
859 |
+
msg = r"The '@' prefix is only supported by the pandas parser"
|
860 |
+
with pytest.raises(SyntaxError, match=msg):
|
861 |
+
df.query("(@df>0) & (@df2>0)", engine=engine, parser=parser)
|
862 |
+
|
863 |
+
with pytest.raises(UndefinedVariableError, match="name 'df' is not defined"):
|
864 |
+
df.query("(df>0) & (df2>0)", engine=engine, parser=parser)
|
865 |
+
|
866 |
+
expected = df[(df > 0) & (df2 > 0)]
|
867 |
+
result = pd.eval("df[(df > 0) & (df2 > 0)]", engine=engine, parser=parser)
|
868 |
+
tm.assert_frame_equal(expected, result)
|
869 |
+
|
870 |
+
expected = df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]
|
871 |
+
result = pd.eval(
|
872 |
+
"df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]", engine=engine, parser=parser
|
873 |
+
)
|
874 |
+
tm.assert_frame_equal(expected, result)
|
875 |
+
|
876 |
+
def test_query_numexpr_with_min_and_max_columns(self):
|
877 |
+
df = DataFrame({"min": [1, 2, 3], "max": [4, 5, 6]})
|
878 |
+
regex_to_match = (
|
879 |
+
r"Variables in expression \"\(min\) == \(1\)\" "
|
880 |
+
r"overlap with builtins: \('min'\)"
|
881 |
+
)
|
882 |
+
with pytest.raises(NumExprClobberingError, match=regex_to_match):
|
883 |
+
df.query("min == 1")
|
884 |
+
|
885 |
+
regex_to_match = (
|
886 |
+
r"Variables in expression \"\(max\) == \(1\)\" "
|
887 |
+
r"overlap with builtins: \('max'\)"
|
888 |
+
)
|
889 |
+
with pytest.raises(NumExprClobberingError, match=regex_to_match):
|
890 |
+
df.query("max == 1")
|
891 |
+
|
892 |
+
|
893 |
+
class TestDataFrameQueryPythonPandas(TestDataFrameQueryNumExprPandas):
|
894 |
+
@pytest.fixture
|
895 |
+
def engine(self):
|
896 |
+
return "python"
|
897 |
+
|
898 |
+
@pytest.fixture
|
899 |
+
def parser(self):
|
900 |
+
return "pandas"
|
901 |
+
|
902 |
+
def test_query_builtin(self, engine, parser):
|
903 |
+
n = m = 10
|
904 |
+
df = DataFrame(
|
905 |
+
np.random.default_rng(2).integers(m, size=(n, 3)), columns=list("abc")
|
906 |
+
)
|
907 |
+
|
908 |
+
df.index.name = "sin"
|
909 |
+
expected = df[df.index > 5]
|
910 |
+
result = df.query("sin > 5", engine=engine, parser=parser)
|
911 |
+
tm.assert_frame_equal(expected, result)
|
912 |
+
|
913 |
+
|
914 |
+
class TestDataFrameQueryPythonPython(TestDataFrameQueryNumExprPython):
|
915 |
+
@pytest.fixture
|
916 |
+
def engine(self):
|
917 |
+
return "python"
|
918 |
+
|
919 |
+
@pytest.fixture
|
920 |
+
def parser(self):
|
921 |
+
return "python"
|
922 |
+
|
923 |
+
def test_query_builtin(self, engine, parser):
|
924 |
+
n = m = 10
|
925 |
+
df = DataFrame(
|
926 |
+
np.random.default_rng(2).integers(m, size=(n, 3)), columns=list("abc")
|
927 |
+
)
|
928 |
+
|
929 |
+
df.index.name = "sin"
|
930 |
+
expected = df[df.index > 5]
|
931 |
+
result = df.query("sin > 5", engine=engine, parser=parser)
|
932 |
+
tm.assert_frame_equal(expected, result)
|
933 |
+
|
934 |
+
|
935 |
+
class TestDataFrameQueryStrings:
|
936 |
+
def test_str_query_method(self, parser, engine):
|
937 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 1)), columns=["b"])
|
938 |
+
df["strings"] = Series(list("aabbccddee"))
|
939 |
+
expect = df[df.strings == "a"]
|
940 |
+
|
941 |
+
if parser != "pandas":
|
942 |
+
col = "strings"
|
943 |
+
lst = '"a"'
|
944 |
+
|
945 |
+
lhs = [col] * 2 + [lst] * 2
|
946 |
+
rhs = lhs[::-1]
|
947 |
+
|
948 |
+
eq, ne = "==", "!="
|
949 |
+
ops = 2 * ([eq] + [ne])
|
950 |
+
msg = r"'(Not)?In' nodes are not implemented"
|
951 |
+
|
952 |
+
for lhs, op, rhs in zip(lhs, ops, rhs):
|
953 |
+
ex = f"{lhs} {op} {rhs}"
|
954 |
+
with pytest.raises(NotImplementedError, match=msg):
|
955 |
+
df.query(
|
956 |
+
ex,
|
957 |
+
engine=engine,
|
958 |
+
parser=parser,
|
959 |
+
local_dict={"strings": df.strings},
|
960 |
+
)
|
961 |
+
else:
|
962 |
+
res = df.query('"a" == strings', engine=engine, parser=parser)
|
963 |
+
tm.assert_frame_equal(res, expect)
|
964 |
+
|
965 |
+
res = df.query('strings == "a"', engine=engine, parser=parser)
|
966 |
+
tm.assert_frame_equal(res, expect)
|
967 |
+
tm.assert_frame_equal(res, df[df.strings.isin(["a"])])
|
968 |
+
|
969 |
+
expect = df[df.strings != "a"]
|
970 |
+
res = df.query('strings != "a"', engine=engine, parser=parser)
|
971 |
+
tm.assert_frame_equal(res, expect)
|
972 |
+
|
973 |
+
res = df.query('"a" != strings', engine=engine, parser=parser)
|
974 |
+
tm.assert_frame_equal(res, expect)
|
975 |
+
tm.assert_frame_equal(res, df[~df.strings.isin(["a"])])
|
976 |
+
|
977 |
+
def test_str_list_query_method(self, parser, engine):
|
978 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 1)), columns=["b"])
|
979 |
+
df["strings"] = Series(list("aabbccddee"))
|
980 |
+
expect = df[df.strings.isin(["a", "b"])]
|
981 |
+
|
982 |
+
if parser != "pandas":
|
983 |
+
col = "strings"
|
984 |
+
lst = '["a", "b"]'
|
985 |
+
|
986 |
+
lhs = [col] * 2 + [lst] * 2
|
987 |
+
rhs = lhs[::-1]
|
988 |
+
|
989 |
+
eq, ne = "==", "!="
|
990 |
+
ops = 2 * ([eq] + [ne])
|
991 |
+
msg = r"'(Not)?In' nodes are not implemented"
|
992 |
+
|
993 |
+
for lhs, op, rhs in zip(lhs, ops, rhs):
|
994 |
+
ex = f"{lhs} {op} {rhs}"
|
995 |
+
with pytest.raises(NotImplementedError, match=msg):
|
996 |
+
df.query(ex, engine=engine, parser=parser)
|
997 |
+
else:
|
998 |
+
res = df.query('strings == ["a", "b"]', engine=engine, parser=parser)
|
999 |
+
tm.assert_frame_equal(res, expect)
|
1000 |
+
|
1001 |
+
res = df.query('["a", "b"] == strings', engine=engine, parser=parser)
|
1002 |
+
tm.assert_frame_equal(res, expect)
|
1003 |
+
|
1004 |
+
expect = df[~df.strings.isin(["a", "b"])]
|
1005 |
+
|
1006 |
+
res = df.query('strings != ["a", "b"]', engine=engine, parser=parser)
|
1007 |
+
tm.assert_frame_equal(res, expect)
|
1008 |
+
|
1009 |
+
res = df.query('["a", "b"] != strings', engine=engine, parser=parser)
|
1010 |
+
tm.assert_frame_equal(res, expect)
|
1011 |
+
|
1012 |
+
def test_query_with_string_columns(self, parser, engine):
|
1013 |
+
df = DataFrame(
|
1014 |
+
{
|
1015 |
+
"a": list("aaaabbbbcccc"),
|
1016 |
+
"b": list("aabbccddeeff"),
|
1017 |
+
"c": np.random.default_rng(2).integers(5, size=12),
|
1018 |
+
"d": np.random.default_rng(2).integers(9, size=12),
|
1019 |
+
}
|
1020 |
+
)
|
1021 |
+
if parser == "pandas":
|
1022 |
+
res = df.query("a in b", parser=parser, engine=engine)
|
1023 |
+
expec = df[df.a.isin(df.b)]
|
1024 |
+
tm.assert_frame_equal(res, expec)
|
1025 |
+
|
1026 |
+
res = df.query("a in b and c < d", parser=parser, engine=engine)
|
1027 |
+
expec = df[df.a.isin(df.b) & (df.c < df.d)]
|
1028 |
+
tm.assert_frame_equal(res, expec)
|
1029 |
+
else:
|
1030 |
+
msg = r"'(Not)?In' nodes are not implemented"
|
1031 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1032 |
+
df.query("a in b", parser=parser, engine=engine)
|
1033 |
+
|
1034 |
+
msg = r"'BoolOp' nodes are not implemented"
|
1035 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1036 |
+
df.query("a in b and c < d", parser=parser, engine=engine)
|
1037 |
+
|
1038 |
+
def test_object_array_eq_ne(self, parser, engine, using_infer_string):
|
1039 |
+
df = DataFrame(
|
1040 |
+
{
|
1041 |
+
"a": list("aaaabbbbcccc"),
|
1042 |
+
"b": list("aabbccddeeff"),
|
1043 |
+
"c": np.random.default_rng(2).integers(5, size=12),
|
1044 |
+
"d": np.random.default_rng(2).integers(9, size=12),
|
1045 |
+
}
|
1046 |
+
)
|
1047 |
+
warning = RuntimeWarning if using_infer_string and engine == "numexpr" else None
|
1048 |
+
with tm.assert_produces_warning(warning):
|
1049 |
+
res = df.query("a == b", parser=parser, engine=engine)
|
1050 |
+
exp = df[df.a == df.b]
|
1051 |
+
tm.assert_frame_equal(res, exp)
|
1052 |
+
|
1053 |
+
with tm.assert_produces_warning(warning):
|
1054 |
+
res = df.query("a != b", parser=parser, engine=engine)
|
1055 |
+
exp = df[df.a != df.b]
|
1056 |
+
tm.assert_frame_equal(res, exp)
|
1057 |
+
|
1058 |
+
def test_query_with_nested_strings(self, parser, engine):
|
1059 |
+
skip_if_no_pandas_parser(parser)
|
1060 |
+
events = [
|
1061 |
+
f"page {n} {act}" for n in range(1, 4) for act in ["load", "exit"]
|
1062 |
+
] * 2
|
1063 |
+
stamps1 = date_range("2014-01-01 0:00:01", freq="30s", periods=6)
|
1064 |
+
stamps2 = date_range("2014-02-01 1:00:01", freq="30s", periods=6)
|
1065 |
+
df = DataFrame(
|
1066 |
+
{
|
1067 |
+
"id": np.arange(1, 7).repeat(2),
|
1068 |
+
"event": events,
|
1069 |
+
"timestamp": stamps1.append(stamps2),
|
1070 |
+
}
|
1071 |
+
)
|
1072 |
+
|
1073 |
+
expected = df[df.event == '"page 1 load"']
|
1074 |
+
res = df.query("""'"page 1 load"' in event""", parser=parser, engine=engine)
|
1075 |
+
tm.assert_frame_equal(expected, res)
|
1076 |
+
|
1077 |
+
def test_query_with_nested_special_character(self, parser, engine):
|
1078 |
+
skip_if_no_pandas_parser(parser)
|
1079 |
+
df = DataFrame({"a": ["a", "b", "test & test"], "b": [1, 2, 3]})
|
1080 |
+
res = df.query('a == "test & test"', parser=parser, engine=engine)
|
1081 |
+
expec = df[df.a == "test & test"]
|
1082 |
+
tm.assert_frame_equal(res, expec)
|
1083 |
+
|
1084 |
+
@pytest.mark.parametrize(
|
1085 |
+
"op, func",
|
1086 |
+
[
|
1087 |
+
["<", operator.lt],
|
1088 |
+
[">", operator.gt],
|
1089 |
+
["<=", operator.le],
|
1090 |
+
[">=", operator.ge],
|
1091 |
+
],
|
1092 |
+
)
|
1093 |
+
def test_query_lex_compare_strings(
|
1094 |
+
self, parser, engine, op, func, using_infer_string
|
1095 |
+
):
|
1096 |
+
a = Series(np.random.default_rng(2).choice(list("abcde"), 20))
|
1097 |
+
b = Series(np.arange(a.size))
|
1098 |
+
df = DataFrame({"X": a, "Y": b})
|
1099 |
+
|
1100 |
+
warning = RuntimeWarning if using_infer_string and engine == "numexpr" else None
|
1101 |
+
with tm.assert_produces_warning(warning):
|
1102 |
+
res = df.query(f'X {op} "d"', engine=engine, parser=parser)
|
1103 |
+
expected = df[func(df.X, "d")]
|
1104 |
+
tm.assert_frame_equal(res, expected)
|
1105 |
+
|
1106 |
+
def test_query_single_element_booleans(self, parser, engine):
|
1107 |
+
columns = "bid", "bidsize", "ask", "asksize"
|
1108 |
+
data = np.random.default_rng(2).integers(2, size=(1, len(columns))).astype(bool)
|
1109 |
+
df = DataFrame(data, columns=columns)
|
1110 |
+
res = df.query("bid & ask", engine=engine, parser=parser)
|
1111 |
+
expected = df[df.bid & df.ask]
|
1112 |
+
tm.assert_frame_equal(res, expected)
|
1113 |
+
|
1114 |
+
def test_query_string_scalar_variable(self, parser, engine):
|
1115 |
+
skip_if_no_pandas_parser(parser)
|
1116 |
+
df = DataFrame(
|
1117 |
+
{
|
1118 |
+
"Symbol": ["BUD US", "BUD US", "IBM US", "IBM US"],
|
1119 |
+
"Price": [109.70, 109.72, 183.30, 183.35],
|
1120 |
+
}
|
1121 |
+
)
|
1122 |
+
e = df[df.Symbol == "BUD US"]
|
1123 |
+
symb = "BUD US" # noqa: F841
|
1124 |
+
r = df.query("Symbol == @symb", parser=parser, engine=engine)
|
1125 |
+
tm.assert_frame_equal(e, r)
|
1126 |
+
|
1127 |
+
@pytest.mark.parametrize(
|
1128 |
+
"in_list",
|
1129 |
+
[
|
1130 |
+
[None, "asdf", "ghjk"],
|
1131 |
+
["asdf", None, "ghjk"],
|
1132 |
+
["asdf", "ghjk", None],
|
1133 |
+
[None, None, "asdf"],
|
1134 |
+
["asdf", None, None],
|
1135 |
+
[None, None, None],
|
1136 |
+
],
|
1137 |
+
)
|
1138 |
+
def test_query_string_null_elements(self, in_list):
|
1139 |
+
# GITHUB ISSUE #31516
|
1140 |
+
parser = "pandas"
|
1141 |
+
engine = "python"
|
1142 |
+
expected = {i: value for i, value in enumerate(in_list) if value == "asdf"}
|
1143 |
+
|
1144 |
+
df_expected = DataFrame({"a": expected}, dtype="string")
|
1145 |
+
df_expected.index = df_expected.index.astype("int64")
|
1146 |
+
df = DataFrame({"a": in_list}, dtype="string")
|
1147 |
+
res1 = df.query("a == 'asdf'", parser=parser, engine=engine)
|
1148 |
+
res2 = df[df["a"] == "asdf"]
|
1149 |
+
res3 = df.query("a <= 'asdf'", parser=parser, engine=engine)
|
1150 |
+
tm.assert_frame_equal(res1, df_expected)
|
1151 |
+
tm.assert_frame_equal(res1, res2)
|
1152 |
+
tm.assert_frame_equal(res1, res3)
|
1153 |
+
tm.assert_frame_equal(res2, res3)
|
1154 |
+
|
1155 |
+
|
1156 |
+
class TestDataFrameEvalWithFrame:
|
1157 |
+
@pytest.fixture
|
1158 |
+
def frame(self):
|
1159 |
+
return DataFrame(
|
1160 |
+
np.random.default_rng(2).standard_normal((10, 3)), columns=list("abc")
|
1161 |
+
)
|
1162 |
+
|
1163 |
+
def test_simple_expr(self, frame, parser, engine):
|
1164 |
+
res = frame.eval("a + b", engine=engine, parser=parser)
|
1165 |
+
expect = frame.a + frame.b
|
1166 |
+
tm.assert_series_equal(res, expect)
|
1167 |
+
|
1168 |
+
def test_bool_arith_expr(self, frame, parser, engine):
|
1169 |
+
res = frame.eval("a[a < 1] + b", engine=engine, parser=parser)
|
1170 |
+
expect = frame.a[frame.a < 1] + frame.b
|
1171 |
+
tm.assert_series_equal(res, expect)
|
1172 |
+
|
1173 |
+
@pytest.mark.parametrize("op", ["+", "-", "*", "/"])
|
1174 |
+
def test_invalid_type_for_operator_raises(self, parser, engine, op):
|
1175 |
+
df = DataFrame({"a": [1, 2], "b": ["c", "d"]})
|
1176 |
+
msg = r"unsupported operand type\(s\) for .+: '.+' and '.+'|Cannot"
|
1177 |
+
|
1178 |
+
with pytest.raises(TypeError, match=msg):
|
1179 |
+
df.eval(f"a {op} b", engine=engine, parser=parser)
|
1180 |
+
|
1181 |
+
|
1182 |
+
class TestDataFrameQueryBacktickQuoting:
|
1183 |
+
@pytest.fixture
|
1184 |
+
def df(self):
|
1185 |
+
"""
|
1186 |
+
Yields a dataframe with strings that may or may not need escaping
|
1187 |
+
by backticks. The last two columns cannot be escaped by backticks
|
1188 |
+
and should raise a ValueError.
|
1189 |
+
"""
|
1190 |
+
yield DataFrame(
|
1191 |
+
{
|
1192 |
+
"A": [1, 2, 3],
|
1193 |
+
"B B": [3, 2, 1],
|
1194 |
+
"C C": [4, 5, 6],
|
1195 |
+
"C C": [7, 4, 3],
|
1196 |
+
"C_C": [8, 9, 10],
|
1197 |
+
"D_D D": [11, 1, 101],
|
1198 |
+
"E.E": [6, 3, 5],
|
1199 |
+
"F-F": [8, 1, 10],
|
1200 |
+
"1e1": [2, 4, 8],
|
1201 |
+
"def": [10, 11, 2],
|
1202 |
+
"A (x)": [4, 1, 3],
|
1203 |
+
"B(x)": [1, 1, 5],
|
1204 |
+
"B (x)": [2, 7, 4],
|
1205 |
+
" &^ :!€$?(} > <++*'' ": [2, 5, 6],
|
1206 |
+
"": [10, 11, 1],
|
1207 |
+
" A": [4, 7, 9],
|
1208 |
+
" ": [1, 2, 1],
|
1209 |
+
"it's": [6, 3, 1],
|
1210 |
+
"that's": [9, 1, 8],
|
1211 |
+
"☺": [8, 7, 6],
|
1212 |
+
"foo#bar": [2, 4, 5],
|
1213 |
+
1: [5, 7, 9],
|
1214 |
+
}
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
def test_single_backtick_variable_query(self, df):
|
1218 |
+
res = df.query("1 < `B B`")
|
1219 |
+
expect = df[1 < df["B B"]]
|
1220 |
+
tm.assert_frame_equal(res, expect)
|
1221 |
+
|
1222 |
+
def test_two_backtick_variables_query(self, df):
|
1223 |
+
res = df.query("1 < `B B` and 4 < `C C`")
|
1224 |
+
expect = df[(1 < df["B B"]) & (4 < df["C C"])]
|
1225 |
+
tm.assert_frame_equal(res, expect)
|
1226 |
+
|
1227 |
+
def test_single_backtick_variable_expr(self, df):
|
1228 |
+
res = df.eval("A + `B B`")
|
1229 |
+
expect = df["A"] + df["B B"]
|
1230 |
+
tm.assert_series_equal(res, expect)
|
1231 |
+
|
1232 |
+
def test_two_backtick_variables_expr(self, df):
|
1233 |
+
res = df.eval("`B B` + `C C`")
|
1234 |
+
expect = df["B B"] + df["C C"]
|
1235 |
+
tm.assert_series_equal(res, expect)
|
1236 |
+
|
1237 |
+
def test_already_underscore_variable(self, df):
|
1238 |
+
res = df.eval("`C_C` + A")
|
1239 |
+
expect = df["C_C"] + df["A"]
|
1240 |
+
tm.assert_series_equal(res, expect)
|
1241 |
+
|
1242 |
+
def test_same_name_but_underscores(self, df):
|
1243 |
+
res = df.eval("C_C + `C C`")
|
1244 |
+
expect = df["C_C"] + df["C C"]
|
1245 |
+
tm.assert_series_equal(res, expect)
|
1246 |
+
|
1247 |
+
def test_mixed_underscores_and_spaces(self, df):
|
1248 |
+
res = df.eval("A + `D_D D`")
|
1249 |
+
expect = df["A"] + df["D_D D"]
|
1250 |
+
tm.assert_series_equal(res, expect)
|
1251 |
+
|
1252 |
+
def test_backtick_quote_name_with_no_spaces(self, df):
|
1253 |
+
res = df.eval("A + `C_C`")
|
1254 |
+
expect = df["A"] + df["C_C"]
|
1255 |
+
tm.assert_series_equal(res, expect)
|
1256 |
+
|
1257 |
+
def test_special_characters(self, df):
|
1258 |
+
res = df.eval("`E.E` + `F-F` - A")
|
1259 |
+
expect = df["E.E"] + df["F-F"] - df["A"]
|
1260 |
+
tm.assert_series_equal(res, expect)
|
1261 |
+
|
1262 |
+
def test_start_with_digit(self, df):
|
1263 |
+
res = df.eval("A + `1e1`")
|
1264 |
+
expect = df["A"] + df["1e1"]
|
1265 |
+
tm.assert_series_equal(res, expect)
|
1266 |
+
|
1267 |
+
def test_keyword(self, df):
|
1268 |
+
res = df.eval("A + `def`")
|
1269 |
+
expect = df["A"] + df["def"]
|
1270 |
+
tm.assert_series_equal(res, expect)
|
1271 |
+
|
1272 |
+
def test_unneeded_quoting(self, df):
|
1273 |
+
res = df.query("`A` > 2")
|
1274 |
+
expect = df[df["A"] > 2]
|
1275 |
+
tm.assert_frame_equal(res, expect)
|
1276 |
+
|
1277 |
+
def test_parenthesis(self, df):
|
1278 |
+
res = df.query("`A (x)` > 2")
|
1279 |
+
expect = df[df["A (x)"] > 2]
|
1280 |
+
tm.assert_frame_equal(res, expect)
|
1281 |
+
|
1282 |
+
def test_empty_string(self, df):
|
1283 |
+
res = df.query("`` > 5")
|
1284 |
+
expect = df[df[""] > 5]
|
1285 |
+
tm.assert_frame_equal(res, expect)
|
1286 |
+
|
1287 |
+
def test_multiple_spaces(self, df):
|
1288 |
+
res = df.query("`C C` > 5")
|
1289 |
+
expect = df[df["C C"] > 5]
|
1290 |
+
tm.assert_frame_equal(res, expect)
|
1291 |
+
|
1292 |
+
def test_start_with_spaces(self, df):
|
1293 |
+
res = df.eval("` A` + ` `")
|
1294 |
+
expect = df[" A"] + df[" "]
|
1295 |
+
tm.assert_series_equal(res, expect)
|
1296 |
+
|
1297 |
+
def test_lots_of_operators_string(self, df):
|
1298 |
+
res = df.query("` &^ :!€$?(} > <++*'' ` > 4")
|
1299 |
+
expect = df[df[" &^ :!€$?(} > <++*'' "] > 4]
|
1300 |
+
tm.assert_frame_equal(res, expect)
|
1301 |
+
|
1302 |
+
def test_missing_attribute(self, df):
|
1303 |
+
message = "module 'pandas' has no attribute 'thing'"
|
1304 |
+
with pytest.raises(AttributeError, match=message):
|
1305 |
+
df.eval("@pd.thing")
|
1306 |
+
|
1307 |
+
def test_failing_quote(self, df):
|
1308 |
+
msg = r"(Could not convert ).*( to a valid Python identifier.)"
|
1309 |
+
with pytest.raises(SyntaxError, match=msg):
|
1310 |
+
df.query("`it's` > `that's`")
|
1311 |
+
|
1312 |
+
def test_failing_character_outside_range(self, df):
|
1313 |
+
msg = r"(Could not convert ).*( to a valid Python identifier.)"
|
1314 |
+
with pytest.raises(SyntaxError, match=msg):
|
1315 |
+
df.query("`☺` > 4")
|
1316 |
+
|
1317 |
+
def test_failing_hashtag(self, df):
|
1318 |
+
msg = "Failed to parse backticks"
|
1319 |
+
with pytest.raises(SyntaxError, match=msg):
|
1320 |
+
df.query("`foo#bar` > 4")
|
1321 |
+
|
1322 |
+
def test_call_non_named_expression(self, df):
|
1323 |
+
"""
|
1324 |
+
Only attributes and variables ('named functions') can be called.
|
1325 |
+
.__call__() is not an allowed attribute because that would allow
|
1326 |
+
calling anything.
|
1327 |
+
https://github.com/pandas-dev/pandas/pull/32460
|
1328 |
+
"""
|
1329 |
+
|
1330 |
+
def func(*_):
|
1331 |
+
return 1
|
1332 |
+
|
1333 |
+
funcs = [func] # noqa: F841
|
1334 |
+
|
1335 |
+
df.eval("@func()")
|
1336 |
+
|
1337 |
+
with pytest.raises(TypeError, match="Only named functions are supported"):
|
1338 |
+
df.eval("@funcs[0]()")
|
1339 |
+
|
1340 |
+
with pytest.raises(TypeError, match="Only named functions are supported"):
|
1341 |
+
df.eval("@funcs[0].__call__()")
|
1342 |
+
|
1343 |
+
def test_ea_dtypes(self, any_numeric_ea_and_arrow_dtype):
|
1344 |
+
# GH#29618
|
1345 |
+
df = DataFrame(
|
1346 |
+
[[1, 2], [3, 4]], columns=["a", "b"], dtype=any_numeric_ea_and_arrow_dtype
|
1347 |
+
)
|
1348 |
+
warning = RuntimeWarning if NUMEXPR_INSTALLED else None
|
1349 |
+
with tm.assert_produces_warning(warning):
|
1350 |
+
result = df.eval("c = b - a")
|
1351 |
+
expected = DataFrame(
|
1352 |
+
[[1, 2, 1], [3, 4, 1]],
|
1353 |
+
columns=["a", "b", "c"],
|
1354 |
+
dtype=any_numeric_ea_and_arrow_dtype,
|
1355 |
+
)
|
1356 |
+
tm.assert_frame_equal(result, expected)
|
1357 |
+
|
1358 |
+
def test_ea_dtypes_and_scalar(self):
|
1359 |
+
# GH#29618
|
1360 |
+
df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"], dtype="Float64")
|
1361 |
+
warning = RuntimeWarning if NUMEXPR_INSTALLED else None
|
1362 |
+
with tm.assert_produces_warning(warning):
|
1363 |
+
result = df.eval("c = b - 1")
|
1364 |
+
expected = DataFrame(
|
1365 |
+
[[1, 2, 1], [3, 4, 3]], columns=["a", "b", "c"], dtype="Float64"
|
1366 |
+
)
|
1367 |
+
tm.assert_frame_equal(result, expected)
|
1368 |
+
|
1369 |
+
def test_ea_dtypes_and_scalar_operation(self, any_numeric_ea_and_arrow_dtype):
|
1370 |
+
# GH#29618
|
1371 |
+
df = DataFrame(
|
1372 |
+
[[1, 2], [3, 4]], columns=["a", "b"], dtype=any_numeric_ea_and_arrow_dtype
|
1373 |
+
)
|
1374 |
+
result = df.eval("c = 2 - 1")
|
1375 |
+
expected = DataFrame(
|
1376 |
+
{
|
1377 |
+
"a": Series([1, 3], dtype=any_numeric_ea_and_arrow_dtype),
|
1378 |
+
"b": Series([2, 4], dtype=any_numeric_ea_and_arrow_dtype),
|
1379 |
+
"c": Series([1, 1], dtype=result["c"].dtype),
|
1380 |
+
}
|
1381 |
+
)
|
1382 |
+
tm.assert_frame_equal(result, expected)
|
1383 |
+
|
1384 |
+
@pytest.mark.parametrize("dtype", ["int64", "Int64", "int64[pyarrow]"])
|
1385 |
+
def test_query_ea_dtypes(self, dtype):
|
1386 |
+
if dtype == "int64[pyarrow]":
|
1387 |
+
pytest.importorskip("pyarrow")
|
1388 |
+
# GH#50261
|
1389 |
+
df = DataFrame({"a": Series([1, 2], dtype=dtype)})
|
1390 |
+
ref = {2} # noqa: F841
|
1391 |
+
warning = RuntimeWarning if dtype == "Int64" and NUMEXPR_INSTALLED else None
|
1392 |
+
with tm.assert_produces_warning(warning):
|
1393 |
+
result = df.query("a in @ref")
|
1394 |
+
expected = DataFrame({"a": Series([2], dtype=dtype, index=[1])})
|
1395 |
+
tm.assert_frame_equal(result, expected)
|
1396 |
+
|
1397 |
+
@pytest.mark.parametrize("engine", ["python", "numexpr"])
|
1398 |
+
@pytest.mark.parametrize("dtype", ["int64", "Int64", "int64[pyarrow]"])
|
1399 |
+
def test_query_ea_equality_comparison(self, dtype, engine):
|
1400 |
+
# GH#50261
|
1401 |
+
warning = RuntimeWarning if engine == "numexpr" else None
|
1402 |
+
if engine == "numexpr" and not NUMEXPR_INSTALLED:
|
1403 |
+
pytest.skip("numexpr not installed")
|
1404 |
+
if dtype == "int64[pyarrow]":
|
1405 |
+
pytest.importorskip("pyarrow")
|
1406 |
+
df = DataFrame(
|
1407 |
+
{"A": Series([1, 1, 2], dtype="Int64"), "B": Series([1, 2, 2], dtype=dtype)}
|
1408 |
+
)
|
1409 |
+
with tm.assert_produces_warning(warning):
|
1410 |
+
result = df.query("A == B", engine=engine)
|
1411 |
+
expected = DataFrame(
|
1412 |
+
{
|
1413 |
+
"A": Series([1, 2], dtype="Int64", index=[0, 2]),
|
1414 |
+
"B": Series([1, 2], dtype=dtype, index=[0, 2]),
|
1415 |
+
}
|
1416 |
+
)
|
1417 |
+
tm.assert_frame_equal(result, expected)
|
1418 |
+
|
1419 |
+
def test_all_nat_in_object(self):
|
1420 |
+
# GH#57068
|
1421 |
+
now = pd.Timestamp.now("UTC") # noqa: F841
|
1422 |
+
df = DataFrame({"a": pd.to_datetime([None, None], utc=True)}, dtype=object)
|
1423 |
+
result = df.query("a > @now")
|
1424 |
+
expected = DataFrame({"a": []}, dtype=object)
|
1425 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_reductions.py
ADDED
@@ -0,0 +1,2157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import timedelta
|
2 |
+
from decimal import Decimal
|
3 |
+
import re
|
4 |
+
|
5 |
+
from dateutil.tz import tzlocal
|
6 |
+
import numpy as np
|
7 |
+
import pytest
|
8 |
+
|
9 |
+
from pandas._config import using_pyarrow_string_dtype
|
10 |
+
|
11 |
+
from pandas.compat import (
|
12 |
+
IS64,
|
13 |
+
is_platform_windows,
|
14 |
+
)
|
15 |
+
from pandas.compat.numpy import np_version_gt2
|
16 |
+
import pandas.util._test_decorators as td
|
17 |
+
|
18 |
+
import pandas as pd
|
19 |
+
from pandas import (
|
20 |
+
Categorical,
|
21 |
+
CategoricalDtype,
|
22 |
+
DataFrame,
|
23 |
+
DatetimeIndex,
|
24 |
+
Index,
|
25 |
+
PeriodIndex,
|
26 |
+
RangeIndex,
|
27 |
+
Series,
|
28 |
+
Timestamp,
|
29 |
+
date_range,
|
30 |
+
isna,
|
31 |
+
notna,
|
32 |
+
to_datetime,
|
33 |
+
to_timedelta,
|
34 |
+
)
|
35 |
+
import pandas._testing as tm
|
36 |
+
from pandas.core import (
|
37 |
+
algorithms,
|
38 |
+
nanops,
|
39 |
+
)
|
40 |
+
|
41 |
+
is_windows_np2_or_is32 = (is_platform_windows() and not np_version_gt2) or not IS64
|
42 |
+
is_windows_or_is32 = is_platform_windows() or not IS64
|
43 |
+
|
44 |
+
|
45 |
+
def make_skipna_wrapper(alternative, skipna_alternative=None):
|
46 |
+
"""
|
47 |
+
Create a function for calling on an array.
|
48 |
+
|
49 |
+
Parameters
|
50 |
+
----------
|
51 |
+
alternative : function
|
52 |
+
The function to be called on the array with no NaNs.
|
53 |
+
Only used when 'skipna_alternative' is None.
|
54 |
+
skipna_alternative : function
|
55 |
+
The function to be called on the original array
|
56 |
+
|
57 |
+
Returns
|
58 |
+
-------
|
59 |
+
function
|
60 |
+
"""
|
61 |
+
if skipna_alternative:
|
62 |
+
|
63 |
+
def skipna_wrapper(x):
|
64 |
+
return skipna_alternative(x.values)
|
65 |
+
|
66 |
+
else:
|
67 |
+
|
68 |
+
def skipna_wrapper(x):
|
69 |
+
nona = x.dropna()
|
70 |
+
if len(nona) == 0:
|
71 |
+
return np.nan
|
72 |
+
return alternative(nona)
|
73 |
+
|
74 |
+
return skipna_wrapper
|
75 |
+
|
76 |
+
|
77 |
+
def assert_stat_op_calc(
|
78 |
+
opname,
|
79 |
+
alternative,
|
80 |
+
frame,
|
81 |
+
has_skipna=True,
|
82 |
+
check_dtype=True,
|
83 |
+
check_dates=False,
|
84 |
+
rtol=1e-5,
|
85 |
+
atol=1e-8,
|
86 |
+
skipna_alternative=None,
|
87 |
+
):
|
88 |
+
"""
|
89 |
+
Check that operator opname works as advertised on frame
|
90 |
+
|
91 |
+
Parameters
|
92 |
+
----------
|
93 |
+
opname : str
|
94 |
+
Name of the operator to test on frame
|
95 |
+
alternative : function
|
96 |
+
Function that opname is tested against; i.e. "frame.opname()" should
|
97 |
+
equal "alternative(frame)".
|
98 |
+
frame : DataFrame
|
99 |
+
The object that the tests are executed on
|
100 |
+
has_skipna : bool, default True
|
101 |
+
Whether the method "opname" has the kwarg "skip_na"
|
102 |
+
check_dtype : bool, default True
|
103 |
+
Whether the dtypes of the result of "frame.opname()" and
|
104 |
+
"alternative(frame)" should be checked.
|
105 |
+
check_dates : bool, default false
|
106 |
+
Whether opname should be tested on a Datetime Series
|
107 |
+
rtol : float, default 1e-5
|
108 |
+
Relative tolerance.
|
109 |
+
atol : float, default 1e-8
|
110 |
+
Absolute tolerance.
|
111 |
+
skipna_alternative : function, default None
|
112 |
+
NaN-safe version of alternative
|
113 |
+
"""
|
114 |
+
f = getattr(frame, opname)
|
115 |
+
|
116 |
+
if check_dates:
|
117 |
+
df = DataFrame({"b": date_range("1/1/2001", periods=2)})
|
118 |
+
with tm.assert_produces_warning(None):
|
119 |
+
result = getattr(df, opname)()
|
120 |
+
assert isinstance(result, Series)
|
121 |
+
|
122 |
+
df["a"] = range(len(df))
|
123 |
+
with tm.assert_produces_warning(None):
|
124 |
+
result = getattr(df, opname)()
|
125 |
+
assert isinstance(result, Series)
|
126 |
+
assert len(result)
|
127 |
+
|
128 |
+
if has_skipna:
|
129 |
+
|
130 |
+
def wrapper(x):
|
131 |
+
return alternative(x.values)
|
132 |
+
|
133 |
+
skipna_wrapper = make_skipna_wrapper(alternative, skipna_alternative)
|
134 |
+
result0 = f(axis=0, skipna=False)
|
135 |
+
result1 = f(axis=1, skipna=False)
|
136 |
+
tm.assert_series_equal(
|
137 |
+
result0, frame.apply(wrapper), check_dtype=check_dtype, rtol=rtol, atol=atol
|
138 |
+
)
|
139 |
+
tm.assert_series_equal(
|
140 |
+
result1,
|
141 |
+
frame.apply(wrapper, axis=1),
|
142 |
+
rtol=rtol,
|
143 |
+
atol=atol,
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
skipna_wrapper = alternative
|
147 |
+
|
148 |
+
result0 = f(axis=0)
|
149 |
+
result1 = f(axis=1)
|
150 |
+
tm.assert_series_equal(
|
151 |
+
result0,
|
152 |
+
frame.apply(skipna_wrapper),
|
153 |
+
check_dtype=check_dtype,
|
154 |
+
rtol=rtol,
|
155 |
+
atol=atol,
|
156 |
+
)
|
157 |
+
|
158 |
+
if opname in ["sum", "prod"]:
|
159 |
+
expected = frame.apply(skipna_wrapper, axis=1)
|
160 |
+
tm.assert_series_equal(
|
161 |
+
result1, expected, check_dtype=False, rtol=rtol, atol=atol
|
162 |
+
)
|
163 |
+
|
164 |
+
# check dtypes
|
165 |
+
if check_dtype:
|
166 |
+
lcd_dtype = frame.values.dtype
|
167 |
+
assert lcd_dtype == result0.dtype
|
168 |
+
assert lcd_dtype == result1.dtype
|
169 |
+
|
170 |
+
# bad axis
|
171 |
+
with pytest.raises(ValueError, match="No axis named 2"):
|
172 |
+
f(axis=2)
|
173 |
+
|
174 |
+
# all NA case
|
175 |
+
if has_skipna:
|
176 |
+
all_na = frame * np.nan
|
177 |
+
r0 = getattr(all_na, opname)(axis=0)
|
178 |
+
r1 = getattr(all_na, opname)(axis=1)
|
179 |
+
if opname in ["sum", "prod"]:
|
180 |
+
unit = 1 if opname == "prod" else 0 # result for empty sum/prod
|
181 |
+
expected = Series(unit, index=r0.index, dtype=r0.dtype)
|
182 |
+
tm.assert_series_equal(r0, expected)
|
183 |
+
expected = Series(unit, index=r1.index, dtype=r1.dtype)
|
184 |
+
tm.assert_series_equal(r1, expected)
|
185 |
+
|
186 |
+
|
187 |
+
@pytest.fixture
|
188 |
+
def bool_frame_with_na():
|
189 |
+
"""
|
190 |
+
Fixture for DataFrame of booleans with index of unique strings
|
191 |
+
|
192 |
+
Columns are ['A', 'B', 'C', 'D']; some entries are missing
|
193 |
+
"""
|
194 |
+
df = DataFrame(
|
195 |
+
np.concatenate(
|
196 |
+
[np.ones((15, 4), dtype=bool), np.zeros((15, 4), dtype=bool)], axis=0
|
197 |
+
),
|
198 |
+
index=Index([f"foo_{i}" for i in range(30)], dtype=object),
|
199 |
+
columns=Index(list("ABCD"), dtype=object),
|
200 |
+
dtype=object,
|
201 |
+
)
|
202 |
+
# set some NAs
|
203 |
+
df.iloc[5:10] = np.nan
|
204 |
+
df.iloc[15:20, -2:] = np.nan
|
205 |
+
return df
|
206 |
+
|
207 |
+
|
208 |
+
@pytest.fixture
|
209 |
+
def float_frame_with_na():
|
210 |
+
"""
|
211 |
+
Fixture for DataFrame of floats with index of unique strings
|
212 |
+
|
213 |
+
Columns are ['A', 'B', 'C', 'D']; some entries are missing
|
214 |
+
"""
|
215 |
+
df = DataFrame(
|
216 |
+
np.random.default_rng(2).standard_normal((30, 4)),
|
217 |
+
index=Index([f"foo_{i}" for i in range(30)], dtype=object),
|
218 |
+
columns=Index(list("ABCD"), dtype=object),
|
219 |
+
)
|
220 |
+
# set some NAs
|
221 |
+
df.iloc[5:10] = np.nan
|
222 |
+
df.iloc[15:20, -2:] = np.nan
|
223 |
+
return df
|
224 |
+
|
225 |
+
|
226 |
+
class TestDataFrameAnalytics:
|
227 |
+
# ---------------------------------------------------------------------
|
228 |
+
# Reductions
|
229 |
+
@pytest.mark.parametrize("axis", [0, 1])
|
230 |
+
@pytest.mark.parametrize(
|
231 |
+
"opname",
|
232 |
+
[
|
233 |
+
"count",
|
234 |
+
"sum",
|
235 |
+
"mean",
|
236 |
+
"product",
|
237 |
+
"median",
|
238 |
+
"min",
|
239 |
+
"max",
|
240 |
+
"nunique",
|
241 |
+
"var",
|
242 |
+
"std",
|
243 |
+
"sem",
|
244 |
+
pytest.param("skew", marks=td.skip_if_no("scipy")),
|
245 |
+
pytest.param("kurt", marks=td.skip_if_no("scipy")),
|
246 |
+
],
|
247 |
+
)
|
248 |
+
def test_stat_op_api_float_string_frame(
|
249 |
+
self, float_string_frame, axis, opname, using_infer_string
|
250 |
+
):
|
251 |
+
if (
|
252 |
+
(opname in ("sum", "min", "max") and axis == 0)
|
253 |
+
or opname
|
254 |
+
in (
|
255 |
+
"count",
|
256 |
+
"nunique",
|
257 |
+
)
|
258 |
+
) and not (using_infer_string and opname == "sum"):
|
259 |
+
getattr(float_string_frame, opname)(axis=axis)
|
260 |
+
else:
|
261 |
+
if opname in ["var", "std", "sem", "skew", "kurt"]:
|
262 |
+
msg = "could not convert string to float: 'bar'"
|
263 |
+
elif opname == "product":
|
264 |
+
if axis == 1:
|
265 |
+
msg = "can't multiply sequence by non-int of type 'float'"
|
266 |
+
else:
|
267 |
+
msg = "can't multiply sequence by non-int of type 'str'"
|
268 |
+
elif opname == "sum":
|
269 |
+
msg = r"unsupported operand type\(s\) for \+: 'float' and 'str'"
|
270 |
+
elif opname == "mean":
|
271 |
+
if axis == 0:
|
272 |
+
# different message on different builds
|
273 |
+
msg = "|".join(
|
274 |
+
[
|
275 |
+
r"Could not convert \['.*'\] to numeric",
|
276 |
+
"Could not convert string '(bar){30}' to numeric",
|
277 |
+
]
|
278 |
+
)
|
279 |
+
else:
|
280 |
+
msg = r"unsupported operand type\(s\) for \+: 'float' and 'str'"
|
281 |
+
elif opname in ["min", "max"]:
|
282 |
+
msg = "'[><]=' not supported between instances of 'float' and 'str'"
|
283 |
+
elif opname == "median":
|
284 |
+
msg = re.compile(
|
285 |
+
r"Cannot convert \[.*\] to numeric|does not support", flags=re.S
|
286 |
+
)
|
287 |
+
if not isinstance(msg, re.Pattern):
|
288 |
+
msg = msg + "|does not support"
|
289 |
+
with pytest.raises(TypeError, match=msg):
|
290 |
+
getattr(float_string_frame, opname)(axis=axis)
|
291 |
+
if opname != "nunique":
|
292 |
+
getattr(float_string_frame, opname)(axis=axis, numeric_only=True)
|
293 |
+
|
294 |
+
@pytest.mark.parametrize("axis", [0, 1])
|
295 |
+
@pytest.mark.parametrize(
|
296 |
+
"opname",
|
297 |
+
[
|
298 |
+
"count",
|
299 |
+
"sum",
|
300 |
+
"mean",
|
301 |
+
"product",
|
302 |
+
"median",
|
303 |
+
"min",
|
304 |
+
"max",
|
305 |
+
"var",
|
306 |
+
"std",
|
307 |
+
"sem",
|
308 |
+
pytest.param("skew", marks=td.skip_if_no("scipy")),
|
309 |
+
pytest.param("kurt", marks=td.skip_if_no("scipy")),
|
310 |
+
],
|
311 |
+
)
|
312 |
+
def test_stat_op_api_float_frame(self, float_frame, axis, opname):
|
313 |
+
getattr(float_frame, opname)(axis=axis, numeric_only=False)
|
314 |
+
|
315 |
+
def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame):
|
316 |
+
def count(s):
|
317 |
+
return notna(s).sum()
|
318 |
+
|
319 |
+
def nunique(s):
|
320 |
+
return len(algorithms.unique1d(s.dropna()))
|
321 |
+
|
322 |
+
def var(x):
|
323 |
+
return np.var(x, ddof=1)
|
324 |
+
|
325 |
+
def std(x):
|
326 |
+
return np.std(x, ddof=1)
|
327 |
+
|
328 |
+
def sem(x):
|
329 |
+
return np.std(x, ddof=1) / np.sqrt(len(x))
|
330 |
+
|
331 |
+
assert_stat_op_calc(
|
332 |
+
"nunique",
|
333 |
+
nunique,
|
334 |
+
float_frame_with_na,
|
335 |
+
has_skipna=False,
|
336 |
+
check_dtype=False,
|
337 |
+
check_dates=True,
|
338 |
+
)
|
339 |
+
|
340 |
+
# GH#32571: rol needed for flaky CI builds
|
341 |
+
# mixed types (with upcasting happening)
|
342 |
+
assert_stat_op_calc(
|
343 |
+
"sum",
|
344 |
+
np.sum,
|
345 |
+
mixed_float_frame.astype("float32"),
|
346 |
+
check_dtype=False,
|
347 |
+
rtol=1e-3,
|
348 |
+
)
|
349 |
+
|
350 |
+
assert_stat_op_calc(
|
351 |
+
"sum", np.sum, float_frame_with_na, skipna_alternative=np.nansum
|
352 |
+
)
|
353 |
+
assert_stat_op_calc("mean", np.mean, float_frame_with_na, check_dates=True)
|
354 |
+
assert_stat_op_calc(
|
355 |
+
"product", np.prod, float_frame_with_na, skipna_alternative=np.nanprod
|
356 |
+
)
|
357 |
+
|
358 |
+
assert_stat_op_calc("var", var, float_frame_with_na)
|
359 |
+
assert_stat_op_calc("std", std, float_frame_with_na)
|
360 |
+
assert_stat_op_calc("sem", sem, float_frame_with_na)
|
361 |
+
|
362 |
+
assert_stat_op_calc(
|
363 |
+
"count",
|
364 |
+
count,
|
365 |
+
float_frame_with_na,
|
366 |
+
has_skipna=False,
|
367 |
+
check_dtype=False,
|
368 |
+
check_dates=True,
|
369 |
+
)
|
370 |
+
|
371 |
+
def test_stat_op_calc_skew_kurtosis(self, float_frame_with_na):
|
372 |
+
sp_stats = pytest.importorskip("scipy.stats")
|
373 |
+
|
374 |
+
def skewness(x):
|
375 |
+
if len(x) < 3:
|
376 |
+
return np.nan
|
377 |
+
return sp_stats.skew(x, bias=False)
|
378 |
+
|
379 |
+
def kurt(x):
|
380 |
+
if len(x) < 4:
|
381 |
+
return np.nan
|
382 |
+
return sp_stats.kurtosis(x, bias=False)
|
383 |
+
|
384 |
+
assert_stat_op_calc("skew", skewness, float_frame_with_na)
|
385 |
+
assert_stat_op_calc("kurt", kurt, float_frame_with_na)
|
386 |
+
|
387 |
+
def test_median(self, float_frame_with_na, int_frame):
|
388 |
+
def wrapper(x):
|
389 |
+
if isna(x).any():
|
390 |
+
return np.nan
|
391 |
+
return np.median(x)
|
392 |
+
|
393 |
+
assert_stat_op_calc("median", wrapper, float_frame_with_na, check_dates=True)
|
394 |
+
assert_stat_op_calc(
|
395 |
+
"median", wrapper, int_frame, check_dtype=False, check_dates=True
|
396 |
+
)
|
397 |
+
|
398 |
+
@pytest.mark.parametrize(
|
399 |
+
"method", ["sum", "mean", "prod", "var", "std", "skew", "min", "max"]
|
400 |
+
)
|
401 |
+
@pytest.mark.parametrize(
|
402 |
+
"df",
|
403 |
+
[
|
404 |
+
DataFrame(
|
405 |
+
{
|
406 |
+
"a": [
|
407 |
+
-0.00049987540199591344,
|
408 |
+
-0.0016467257772919831,
|
409 |
+
0.00067695870775883013,
|
410 |
+
],
|
411 |
+
"b": [-0, -0, 0.0],
|
412 |
+
"c": [
|
413 |
+
0.00031111847529610595,
|
414 |
+
0.0014902627951905339,
|
415 |
+
-0.00094099200035979691,
|
416 |
+
],
|
417 |
+
},
|
418 |
+
index=["foo", "bar", "baz"],
|
419 |
+
dtype="O",
|
420 |
+
),
|
421 |
+
DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object),
|
422 |
+
],
|
423 |
+
)
|
424 |
+
@pytest.mark.filterwarnings("ignore:Mismatched null-like values:FutureWarning")
|
425 |
+
def test_stat_operators_attempt_obj_array(self, method, df, axis):
|
426 |
+
# GH#676
|
427 |
+
assert df.values.dtype == np.object_
|
428 |
+
result = getattr(df, method)(axis=axis)
|
429 |
+
expected = getattr(df.astype("f8"), method)(axis=axis).astype(object)
|
430 |
+
if axis in [1, "columns"] and method in ["min", "max"]:
|
431 |
+
expected[expected.isna()] = None
|
432 |
+
tm.assert_series_equal(result, expected)
|
433 |
+
|
434 |
+
@pytest.mark.parametrize("op", ["mean", "std", "var", "skew", "kurt", "sem"])
|
435 |
+
def test_mixed_ops(self, op):
|
436 |
+
# GH#16116
|
437 |
+
df = DataFrame(
|
438 |
+
{
|
439 |
+
"int": [1, 2, 3, 4],
|
440 |
+
"float": [1.0, 2.0, 3.0, 4.0],
|
441 |
+
"str": ["a", "b", "c", "d"],
|
442 |
+
}
|
443 |
+
)
|
444 |
+
msg = "|".join(
|
445 |
+
[
|
446 |
+
"Could not convert",
|
447 |
+
"could not convert",
|
448 |
+
"can't multiply sequence by non-int",
|
449 |
+
"does not support",
|
450 |
+
]
|
451 |
+
)
|
452 |
+
with pytest.raises(TypeError, match=msg):
|
453 |
+
getattr(df, op)()
|
454 |
+
|
455 |
+
with pd.option_context("use_bottleneck", False):
|
456 |
+
msg = "|".join(
|
457 |
+
[
|
458 |
+
"Could not convert",
|
459 |
+
"could not convert",
|
460 |
+
"can't multiply sequence by non-int",
|
461 |
+
"does not support",
|
462 |
+
]
|
463 |
+
)
|
464 |
+
with pytest.raises(TypeError, match=msg):
|
465 |
+
getattr(df, op)()
|
466 |
+
|
467 |
+
@pytest.mark.xfail(
|
468 |
+
using_pyarrow_string_dtype(), reason="sum doesn't work for arrow strings"
|
469 |
+
)
|
470 |
+
def test_reduce_mixed_frame(self):
|
471 |
+
# GH 6806
|
472 |
+
df = DataFrame(
|
473 |
+
{
|
474 |
+
"bool_data": [True, True, False, False, False],
|
475 |
+
"int_data": [10, 20, 30, 40, 50],
|
476 |
+
"string_data": ["a", "b", "c", "d", "e"],
|
477 |
+
}
|
478 |
+
)
|
479 |
+
df.reindex(columns=["bool_data", "int_data", "string_data"])
|
480 |
+
test = df.sum(axis=0)
|
481 |
+
tm.assert_numpy_array_equal(
|
482 |
+
test.values, np.array([2, 150, "abcde"], dtype=object)
|
483 |
+
)
|
484 |
+
alt = df.T.sum(axis=1)
|
485 |
+
tm.assert_series_equal(test, alt)
|
486 |
+
|
487 |
+
def test_nunique(self):
|
488 |
+
df = DataFrame({"A": [1, 1, 1], "B": [1, 2, 3], "C": [1, np.nan, 3]})
|
489 |
+
tm.assert_series_equal(df.nunique(), Series({"A": 1, "B": 3, "C": 2}))
|
490 |
+
tm.assert_series_equal(
|
491 |
+
df.nunique(dropna=False), Series({"A": 1, "B": 3, "C": 3})
|
492 |
+
)
|
493 |
+
tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2}))
|
494 |
+
tm.assert_series_equal(
|
495 |
+
df.nunique(axis=1, dropna=False), Series({0: 1, 1: 3, 2: 2})
|
496 |
+
)
|
497 |
+
|
498 |
+
@pytest.mark.parametrize("tz", [None, "UTC"])
|
499 |
+
def test_mean_mixed_datetime_numeric(self, tz):
|
500 |
+
# https://github.com/pandas-dev/pandas/issues/24752
|
501 |
+
df = DataFrame({"A": [1, 1], "B": [Timestamp("2000", tz=tz)] * 2})
|
502 |
+
result = df.mean()
|
503 |
+
expected = Series([1.0, Timestamp("2000", tz=tz)], index=["A", "B"])
|
504 |
+
tm.assert_series_equal(result, expected)
|
505 |
+
|
506 |
+
@pytest.mark.parametrize("tz", [None, "UTC"])
|
507 |
+
def test_mean_includes_datetimes(self, tz):
|
508 |
+
# https://github.com/pandas-dev/pandas/issues/24752
|
509 |
+
# Behavior in 0.24.0rc1 was buggy.
|
510 |
+
# As of 2.0 with numeric_only=None we do *not* drop datetime columns
|
511 |
+
df = DataFrame({"A": [Timestamp("2000", tz=tz)] * 2})
|
512 |
+
result = df.mean()
|
513 |
+
|
514 |
+
expected = Series([Timestamp("2000", tz=tz)], index=["A"])
|
515 |
+
tm.assert_series_equal(result, expected)
|
516 |
+
|
517 |
+
def test_mean_mixed_string_decimal(self):
|
518 |
+
# GH 11670
|
519 |
+
# possible bug when calculating mean of DataFrame?
|
520 |
+
|
521 |
+
d = [
|
522 |
+
{"A": 2, "B": None, "C": Decimal("628.00")},
|
523 |
+
{"A": 1, "B": None, "C": Decimal("383.00")},
|
524 |
+
{"A": 3, "B": None, "C": Decimal("651.00")},
|
525 |
+
{"A": 2, "B": None, "C": Decimal("575.00")},
|
526 |
+
{"A": 4, "B": None, "C": Decimal("1114.00")},
|
527 |
+
{"A": 1, "B": "TEST", "C": Decimal("241.00")},
|
528 |
+
{"A": 2, "B": None, "C": Decimal("572.00")},
|
529 |
+
{"A": 4, "B": None, "C": Decimal("609.00")},
|
530 |
+
{"A": 3, "B": None, "C": Decimal("820.00")},
|
531 |
+
{"A": 5, "B": None, "C": Decimal("1223.00")},
|
532 |
+
]
|
533 |
+
|
534 |
+
df = DataFrame(d)
|
535 |
+
|
536 |
+
with pytest.raises(
|
537 |
+
TypeError, match="unsupported operand type|does not support"
|
538 |
+
):
|
539 |
+
df.mean()
|
540 |
+
result = df[["A", "C"]].mean()
|
541 |
+
expected = Series([2.7, 681.6], index=["A", "C"], dtype=object)
|
542 |
+
tm.assert_series_equal(result, expected)
|
543 |
+
|
544 |
+
def test_var_std(self, datetime_frame):
|
545 |
+
result = datetime_frame.std(ddof=4)
|
546 |
+
expected = datetime_frame.apply(lambda x: x.std(ddof=4))
|
547 |
+
tm.assert_almost_equal(result, expected)
|
548 |
+
|
549 |
+
result = datetime_frame.var(ddof=4)
|
550 |
+
expected = datetime_frame.apply(lambda x: x.var(ddof=4))
|
551 |
+
tm.assert_almost_equal(result, expected)
|
552 |
+
|
553 |
+
arr = np.repeat(np.random.default_rng(2).random((1, 1000)), 1000, 0)
|
554 |
+
result = nanops.nanvar(arr, axis=0)
|
555 |
+
assert not (result < 0).any()
|
556 |
+
|
557 |
+
with pd.option_context("use_bottleneck", False):
|
558 |
+
result = nanops.nanvar(arr, axis=0)
|
559 |
+
assert not (result < 0).any()
|
560 |
+
|
561 |
+
@pytest.mark.parametrize("meth", ["sem", "var", "std"])
|
562 |
+
def test_numeric_only_flag(self, meth):
|
563 |
+
# GH 9201
|
564 |
+
df1 = DataFrame(
|
565 |
+
np.random.default_rng(2).standard_normal((5, 3)),
|
566 |
+
columns=["foo", "bar", "baz"],
|
567 |
+
)
|
568 |
+
# Cast to object to avoid implicit cast when setting entry to "100" below
|
569 |
+
df1 = df1.astype({"foo": object})
|
570 |
+
# set one entry to a number in str format
|
571 |
+
df1.loc[0, "foo"] = "100"
|
572 |
+
|
573 |
+
df2 = DataFrame(
|
574 |
+
np.random.default_rng(2).standard_normal((5, 3)),
|
575 |
+
columns=["foo", "bar", "baz"],
|
576 |
+
)
|
577 |
+
# Cast to object to avoid implicit cast when setting entry to "a" below
|
578 |
+
df2 = df2.astype({"foo": object})
|
579 |
+
# set one entry to a non-number str
|
580 |
+
df2.loc[0, "foo"] = "a"
|
581 |
+
|
582 |
+
result = getattr(df1, meth)(axis=1, numeric_only=True)
|
583 |
+
expected = getattr(df1[["bar", "baz"]], meth)(axis=1)
|
584 |
+
tm.assert_series_equal(expected, result)
|
585 |
+
|
586 |
+
result = getattr(df2, meth)(axis=1, numeric_only=True)
|
587 |
+
expected = getattr(df2[["bar", "baz"]], meth)(axis=1)
|
588 |
+
tm.assert_series_equal(expected, result)
|
589 |
+
|
590 |
+
# df1 has all numbers, df2 has a letter inside
|
591 |
+
msg = r"unsupported operand type\(s\) for -: 'float' and 'str'"
|
592 |
+
with pytest.raises(TypeError, match=msg):
|
593 |
+
getattr(df1, meth)(axis=1, numeric_only=False)
|
594 |
+
msg = "could not convert string to float: 'a'"
|
595 |
+
with pytest.raises(TypeError, match=msg):
|
596 |
+
getattr(df2, meth)(axis=1, numeric_only=False)
|
597 |
+
|
598 |
+
def test_sem(self, datetime_frame):
|
599 |
+
result = datetime_frame.sem(ddof=4)
|
600 |
+
expected = datetime_frame.apply(lambda x: x.std(ddof=4) / np.sqrt(len(x)))
|
601 |
+
tm.assert_almost_equal(result, expected)
|
602 |
+
|
603 |
+
arr = np.repeat(np.random.default_rng(2).random((1, 1000)), 1000, 0)
|
604 |
+
result = nanops.nansem(arr, axis=0)
|
605 |
+
assert not (result < 0).any()
|
606 |
+
|
607 |
+
with pd.option_context("use_bottleneck", False):
|
608 |
+
result = nanops.nansem(arr, axis=0)
|
609 |
+
assert not (result < 0).any()
|
610 |
+
|
611 |
+
@pytest.mark.parametrize(
|
612 |
+
"dropna, expected",
|
613 |
+
[
|
614 |
+
(
|
615 |
+
True,
|
616 |
+
{
|
617 |
+
"A": [12],
|
618 |
+
"B": [10.0],
|
619 |
+
"C": [1.0],
|
620 |
+
"D": ["a"],
|
621 |
+
"E": Categorical(["a"], categories=["a"]),
|
622 |
+
"F": DatetimeIndex(["2000-01-02"], dtype="M8[ns]"),
|
623 |
+
"G": to_timedelta(["1 days"]),
|
624 |
+
},
|
625 |
+
),
|
626 |
+
(
|
627 |
+
False,
|
628 |
+
{
|
629 |
+
"A": [12],
|
630 |
+
"B": [10.0],
|
631 |
+
"C": [np.nan],
|
632 |
+
"D": np.array([np.nan], dtype=object),
|
633 |
+
"E": Categorical([np.nan], categories=["a"]),
|
634 |
+
"F": DatetimeIndex([pd.NaT], dtype="M8[ns]"),
|
635 |
+
"G": to_timedelta([pd.NaT]),
|
636 |
+
},
|
637 |
+
),
|
638 |
+
(
|
639 |
+
True,
|
640 |
+
{
|
641 |
+
"H": [8, 9, np.nan, np.nan],
|
642 |
+
"I": [8, 9, np.nan, np.nan],
|
643 |
+
"J": [1, np.nan, np.nan, np.nan],
|
644 |
+
"K": Categorical(["a", np.nan, np.nan, np.nan], categories=["a"]),
|
645 |
+
"L": DatetimeIndex(
|
646 |
+
["2000-01-02", "NaT", "NaT", "NaT"], dtype="M8[ns]"
|
647 |
+
),
|
648 |
+
"M": to_timedelta(["1 days", "nan", "nan", "nan"]),
|
649 |
+
"N": [0, 1, 2, 3],
|
650 |
+
},
|
651 |
+
),
|
652 |
+
(
|
653 |
+
False,
|
654 |
+
{
|
655 |
+
"H": [8, 9, np.nan, np.nan],
|
656 |
+
"I": [8, 9, np.nan, np.nan],
|
657 |
+
"J": [1, np.nan, np.nan, np.nan],
|
658 |
+
"K": Categorical([np.nan, "a", np.nan, np.nan], categories=["a"]),
|
659 |
+
"L": DatetimeIndex(
|
660 |
+
["NaT", "2000-01-02", "NaT", "NaT"], dtype="M8[ns]"
|
661 |
+
),
|
662 |
+
"M": to_timedelta(["nan", "1 days", "nan", "nan"]),
|
663 |
+
"N": [0, 1, 2, 3],
|
664 |
+
},
|
665 |
+
),
|
666 |
+
],
|
667 |
+
)
|
668 |
+
def test_mode_dropna(self, dropna, expected):
|
669 |
+
df = DataFrame(
|
670 |
+
{
|
671 |
+
"A": [12, 12, 19, 11],
|
672 |
+
"B": [10, 10, np.nan, 3],
|
673 |
+
"C": [1, np.nan, np.nan, np.nan],
|
674 |
+
"D": Series([np.nan, np.nan, "a", np.nan], dtype=object),
|
675 |
+
"E": Categorical([np.nan, np.nan, "a", np.nan]),
|
676 |
+
"F": DatetimeIndex(["NaT", "2000-01-02", "NaT", "NaT"], dtype="M8[ns]"),
|
677 |
+
"G": to_timedelta(["1 days", "nan", "nan", "nan"]),
|
678 |
+
"H": [8, 8, 9, 9],
|
679 |
+
"I": [9, 9, 8, 8],
|
680 |
+
"J": [1, 1, np.nan, np.nan],
|
681 |
+
"K": Categorical(["a", np.nan, "a", np.nan]),
|
682 |
+
"L": DatetimeIndex(
|
683 |
+
["2000-01-02", "2000-01-02", "NaT", "NaT"], dtype="M8[ns]"
|
684 |
+
),
|
685 |
+
"M": to_timedelta(["1 days", "nan", "1 days", "nan"]),
|
686 |
+
"N": np.arange(4, dtype="int64"),
|
687 |
+
}
|
688 |
+
)
|
689 |
+
|
690 |
+
result = df[sorted(expected.keys())].mode(dropna=dropna)
|
691 |
+
expected = DataFrame(expected)
|
692 |
+
tm.assert_frame_equal(result, expected)
|
693 |
+
|
694 |
+
def test_mode_sortwarning(self, using_infer_string):
|
695 |
+
# Check for the warning that is raised when the mode
|
696 |
+
# results cannot be sorted
|
697 |
+
|
698 |
+
df = DataFrame({"A": [np.nan, np.nan, "a", "a"]})
|
699 |
+
expected = DataFrame({"A": ["a", np.nan]})
|
700 |
+
|
701 |
+
warning = None if using_infer_string else UserWarning
|
702 |
+
with tm.assert_produces_warning(warning):
|
703 |
+
result = df.mode(dropna=False)
|
704 |
+
result = result.sort_values(by="A").reset_index(drop=True)
|
705 |
+
|
706 |
+
tm.assert_frame_equal(result, expected)
|
707 |
+
|
708 |
+
def test_mode_empty_df(self):
|
709 |
+
df = DataFrame([], columns=["a", "b"])
|
710 |
+
result = df.mode()
|
711 |
+
expected = DataFrame([], columns=["a", "b"], index=Index([], dtype=np.int64))
|
712 |
+
tm.assert_frame_equal(result, expected)
|
713 |
+
|
714 |
+
def test_operators_timedelta64(self):
|
715 |
+
df = DataFrame(
|
716 |
+
{
|
717 |
+
"A": date_range("2012-1-1", periods=3, freq="D"),
|
718 |
+
"B": date_range("2012-1-2", periods=3, freq="D"),
|
719 |
+
"C": Timestamp("20120101") - timedelta(minutes=5, seconds=5),
|
720 |
+
}
|
721 |
+
)
|
722 |
+
|
723 |
+
diffs = DataFrame({"A": df["A"] - df["C"], "B": df["A"] - df["B"]})
|
724 |
+
|
725 |
+
# min
|
726 |
+
result = diffs.min()
|
727 |
+
assert result.iloc[0] == diffs.loc[0, "A"]
|
728 |
+
assert result.iloc[1] == diffs.loc[0, "B"]
|
729 |
+
|
730 |
+
result = diffs.min(axis=1)
|
731 |
+
assert (result == diffs.loc[0, "B"]).all()
|
732 |
+
|
733 |
+
# max
|
734 |
+
result = diffs.max()
|
735 |
+
assert result.iloc[0] == diffs.loc[2, "A"]
|
736 |
+
assert result.iloc[1] == diffs.loc[2, "B"]
|
737 |
+
|
738 |
+
result = diffs.max(axis=1)
|
739 |
+
assert (result == diffs["A"]).all()
|
740 |
+
|
741 |
+
# abs
|
742 |
+
result = diffs.abs()
|
743 |
+
result2 = abs(diffs)
|
744 |
+
expected = DataFrame({"A": df["A"] - df["C"], "B": df["B"] - df["A"]})
|
745 |
+
tm.assert_frame_equal(result, expected)
|
746 |
+
tm.assert_frame_equal(result2, expected)
|
747 |
+
|
748 |
+
# mixed frame
|
749 |
+
mixed = diffs.copy()
|
750 |
+
mixed["C"] = "foo"
|
751 |
+
mixed["D"] = 1
|
752 |
+
mixed["E"] = 1.0
|
753 |
+
mixed["F"] = Timestamp("20130101")
|
754 |
+
|
755 |
+
# results in an object array
|
756 |
+
result = mixed.min()
|
757 |
+
expected = Series(
|
758 |
+
[
|
759 |
+
pd.Timedelta(timedelta(seconds=5 * 60 + 5)),
|
760 |
+
pd.Timedelta(timedelta(days=-1)),
|
761 |
+
"foo",
|
762 |
+
1,
|
763 |
+
1.0,
|
764 |
+
Timestamp("20130101"),
|
765 |
+
],
|
766 |
+
index=mixed.columns,
|
767 |
+
)
|
768 |
+
tm.assert_series_equal(result, expected)
|
769 |
+
|
770 |
+
# excludes non-numeric
|
771 |
+
result = mixed.min(axis=1, numeric_only=True)
|
772 |
+
expected = Series([1, 1, 1.0], index=[0, 1, 2])
|
773 |
+
tm.assert_series_equal(result, expected)
|
774 |
+
|
775 |
+
# works when only those columns are selected
|
776 |
+
result = mixed[["A", "B"]].min(1)
|
777 |
+
expected = Series([timedelta(days=-1)] * 3)
|
778 |
+
tm.assert_series_equal(result, expected)
|
779 |
+
|
780 |
+
result = mixed[["A", "B"]].min()
|
781 |
+
expected = Series(
|
782 |
+
[timedelta(seconds=5 * 60 + 5), timedelta(days=-1)], index=["A", "B"]
|
783 |
+
)
|
784 |
+
tm.assert_series_equal(result, expected)
|
785 |
+
|
786 |
+
# GH 3106
|
787 |
+
df = DataFrame(
|
788 |
+
{
|
789 |
+
"time": date_range("20130102", periods=5),
|
790 |
+
"time2": date_range("20130105", periods=5),
|
791 |
+
}
|
792 |
+
)
|
793 |
+
df["off1"] = df["time2"] - df["time"]
|
794 |
+
assert df["off1"].dtype == "timedelta64[ns]"
|
795 |
+
|
796 |
+
df["off2"] = df["time"] - df["time2"]
|
797 |
+
df._consolidate_inplace()
|
798 |
+
assert df["off1"].dtype == "timedelta64[ns]"
|
799 |
+
assert df["off2"].dtype == "timedelta64[ns]"
|
800 |
+
|
801 |
+
def test_std_timedelta64_skipna_false(self):
|
802 |
+
# GH#37392
|
803 |
+
tdi = pd.timedelta_range("1 Day", periods=10)
|
804 |
+
df = DataFrame({"A": tdi, "B": tdi}, copy=True)
|
805 |
+
df.iloc[-2, -1] = pd.NaT
|
806 |
+
|
807 |
+
result = df.std(skipna=False)
|
808 |
+
expected = Series(
|
809 |
+
[df["A"].std(), pd.NaT], index=["A", "B"], dtype="timedelta64[ns]"
|
810 |
+
)
|
811 |
+
tm.assert_series_equal(result, expected)
|
812 |
+
|
813 |
+
result = df.std(axis=1, skipna=False)
|
814 |
+
expected = Series([pd.Timedelta(0)] * 8 + [pd.NaT, pd.Timedelta(0)])
|
815 |
+
tm.assert_series_equal(result, expected)
|
816 |
+
|
817 |
+
@pytest.mark.parametrize(
|
818 |
+
"values", [["2022-01-01", "2022-01-02", pd.NaT, "2022-01-03"], 4 * [pd.NaT]]
|
819 |
+
)
|
820 |
+
def test_std_datetime64_with_nat(
|
821 |
+
self, values, skipna, using_array_manager, request, unit
|
822 |
+
):
|
823 |
+
# GH#51335
|
824 |
+
if using_array_manager and (
|
825 |
+
not skipna or all(value is pd.NaT for value in values)
|
826 |
+
):
|
827 |
+
mark = pytest.mark.xfail(
|
828 |
+
reason="GH#51446: Incorrect type inference on NaT in reduction result"
|
829 |
+
)
|
830 |
+
request.applymarker(mark)
|
831 |
+
dti = to_datetime(values).as_unit(unit)
|
832 |
+
df = DataFrame({"a": dti})
|
833 |
+
result = df.std(skipna=skipna)
|
834 |
+
if not skipna or all(value is pd.NaT for value in values):
|
835 |
+
expected = Series({"a": pd.NaT}, dtype=f"timedelta64[{unit}]")
|
836 |
+
else:
|
837 |
+
# 86400000000000ns == 1 day
|
838 |
+
expected = Series({"a": 86400000000000}, dtype=f"timedelta64[{unit}]")
|
839 |
+
tm.assert_series_equal(result, expected)
|
840 |
+
|
841 |
+
def test_sum_corner(self):
|
842 |
+
empty_frame = DataFrame()
|
843 |
+
|
844 |
+
axis0 = empty_frame.sum(0)
|
845 |
+
axis1 = empty_frame.sum(1)
|
846 |
+
assert isinstance(axis0, Series)
|
847 |
+
assert isinstance(axis1, Series)
|
848 |
+
assert len(axis0) == 0
|
849 |
+
assert len(axis1) == 0
|
850 |
+
|
851 |
+
@pytest.mark.parametrize(
|
852 |
+
"index",
|
853 |
+
[
|
854 |
+
RangeIndex(0),
|
855 |
+
DatetimeIndex([]),
|
856 |
+
Index([], dtype=np.int64),
|
857 |
+
Index([], dtype=np.float64),
|
858 |
+
DatetimeIndex([], freq="ME"),
|
859 |
+
PeriodIndex([], freq="D"),
|
860 |
+
],
|
861 |
+
)
|
862 |
+
def test_axis_1_empty(self, all_reductions, index):
|
863 |
+
df = DataFrame(columns=["a"], index=index)
|
864 |
+
result = getattr(df, all_reductions)(axis=1)
|
865 |
+
if all_reductions in ("any", "all"):
|
866 |
+
expected_dtype = "bool"
|
867 |
+
elif all_reductions == "count":
|
868 |
+
expected_dtype = "int64"
|
869 |
+
else:
|
870 |
+
expected_dtype = "object"
|
871 |
+
expected = Series([], index=index, dtype=expected_dtype)
|
872 |
+
tm.assert_series_equal(result, expected)
|
873 |
+
|
874 |
+
@pytest.mark.parametrize("method, unit", [("sum", 0), ("prod", 1)])
|
875 |
+
@pytest.mark.parametrize("numeric_only", [None, True, False])
|
876 |
+
def test_sum_prod_nanops(self, method, unit, numeric_only):
|
877 |
+
idx = ["a", "b", "c"]
|
878 |
+
df = DataFrame({"a": [unit, unit], "b": [unit, np.nan], "c": [np.nan, np.nan]})
|
879 |
+
# The default
|
880 |
+
result = getattr(df, method)(numeric_only=numeric_only)
|
881 |
+
expected = Series([unit, unit, unit], index=idx, dtype="float64")
|
882 |
+
tm.assert_series_equal(result, expected)
|
883 |
+
|
884 |
+
# min_count=1
|
885 |
+
result = getattr(df, method)(numeric_only=numeric_only, min_count=1)
|
886 |
+
expected = Series([unit, unit, np.nan], index=idx)
|
887 |
+
tm.assert_series_equal(result, expected)
|
888 |
+
|
889 |
+
# min_count=0
|
890 |
+
result = getattr(df, method)(numeric_only=numeric_only, min_count=0)
|
891 |
+
expected = Series([unit, unit, unit], index=idx, dtype="float64")
|
892 |
+
tm.assert_series_equal(result, expected)
|
893 |
+
|
894 |
+
result = getattr(df.iloc[1:], method)(numeric_only=numeric_only, min_count=1)
|
895 |
+
expected = Series([unit, np.nan, np.nan], index=idx)
|
896 |
+
tm.assert_series_equal(result, expected)
|
897 |
+
|
898 |
+
# min_count > 1
|
899 |
+
df = DataFrame({"A": [unit] * 10, "B": [unit] * 5 + [np.nan] * 5})
|
900 |
+
result = getattr(df, method)(numeric_only=numeric_only, min_count=5)
|
901 |
+
expected = Series(result, index=["A", "B"])
|
902 |
+
tm.assert_series_equal(result, expected)
|
903 |
+
|
904 |
+
result = getattr(df, method)(numeric_only=numeric_only, min_count=6)
|
905 |
+
expected = Series(result, index=["A", "B"])
|
906 |
+
tm.assert_series_equal(result, expected)
|
907 |
+
|
908 |
+
def test_sum_nanops_timedelta(self):
|
909 |
+
# prod isn't defined on timedeltas
|
910 |
+
idx = ["a", "b", "c"]
|
911 |
+
df = DataFrame({"a": [0, 0], "b": [0, np.nan], "c": [np.nan, np.nan]})
|
912 |
+
|
913 |
+
df2 = df.apply(to_timedelta)
|
914 |
+
|
915 |
+
# 0 by default
|
916 |
+
result = df2.sum()
|
917 |
+
expected = Series([0, 0, 0], dtype="m8[ns]", index=idx)
|
918 |
+
tm.assert_series_equal(result, expected)
|
919 |
+
|
920 |
+
# min_count=0
|
921 |
+
result = df2.sum(min_count=0)
|
922 |
+
tm.assert_series_equal(result, expected)
|
923 |
+
|
924 |
+
# min_count=1
|
925 |
+
result = df2.sum(min_count=1)
|
926 |
+
expected = Series([0, 0, np.nan], dtype="m8[ns]", index=idx)
|
927 |
+
tm.assert_series_equal(result, expected)
|
928 |
+
|
929 |
+
def test_sum_nanops_min_count(self):
|
930 |
+
# https://github.com/pandas-dev/pandas/issues/39738
|
931 |
+
df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
|
932 |
+
result = df.sum(min_count=10)
|
933 |
+
expected = Series([np.nan, np.nan], index=["x", "y"])
|
934 |
+
tm.assert_series_equal(result, expected)
|
935 |
+
|
936 |
+
@pytest.mark.parametrize("float_type", ["float16", "float32", "float64"])
|
937 |
+
@pytest.mark.parametrize(
|
938 |
+
"kwargs, expected_result",
|
939 |
+
[
|
940 |
+
({"axis": 1, "min_count": 2}, [3.2, 5.3, np.nan]),
|
941 |
+
({"axis": 1, "min_count": 3}, [np.nan, np.nan, np.nan]),
|
942 |
+
({"axis": 1, "skipna": False}, [3.2, 5.3, np.nan]),
|
943 |
+
],
|
944 |
+
)
|
945 |
+
def test_sum_nanops_dtype_min_count(self, float_type, kwargs, expected_result):
|
946 |
+
# GH#46947
|
947 |
+
df = DataFrame({"a": [1.0, 2.3, 4.4], "b": [2.2, 3, np.nan]}, dtype=float_type)
|
948 |
+
result = df.sum(**kwargs)
|
949 |
+
expected = Series(expected_result).astype(float_type)
|
950 |
+
tm.assert_series_equal(result, expected)
|
951 |
+
|
952 |
+
@pytest.mark.parametrize("float_type", ["float16", "float32", "float64"])
|
953 |
+
@pytest.mark.parametrize(
|
954 |
+
"kwargs, expected_result",
|
955 |
+
[
|
956 |
+
({"axis": 1, "min_count": 2}, [2.0, 4.0, np.nan]),
|
957 |
+
({"axis": 1, "min_count": 3}, [np.nan, np.nan, np.nan]),
|
958 |
+
({"axis": 1, "skipna": False}, [2.0, 4.0, np.nan]),
|
959 |
+
],
|
960 |
+
)
|
961 |
+
def test_prod_nanops_dtype_min_count(self, float_type, kwargs, expected_result):
|
962 |
+
# GH#46947
|
963 |
+
df = DataFrame(
|
964 |
+
{"a": [1.0, 2.0, 4.4], "b": [2.0, 2.0, np.nan]}, dtype=float_type
|
965 |
+
)
|
966 |
+
result = df.prod(**kwargs)
|
967 |
+
expected = Series(expected_result).astype(float_type)
|
968 |
+
tm.assert_series_equal(result, expected)
|
969 |
+
|
970 |
+
def test_sum_object(self, float_frame):
|
971 |
+
values = float_frame.values.astype(int)
|
972 |
+
frame = DataFrame(values, index=float_frame.index, columns=float_frame.columns)
|
973 |
+
deltas = frame * timedelta(1)
|
974 |
+
deltas.sum()
|
975 |
+
|
976 |
+
def test_sum_bool(self, float_frame):
|
977 |
+
# ensure this works, bug report
|
978 |
+
bools = np.isnan(float_frame)
|
979 |
+
bools.sum(1)
|
980 |
+
bools.sum(0)
|
981 |
+
|
982 |
+
def test_sum_mixed_datetime(self):
|
983 |
+
# GH#30886
|
984 |
+
df = DataFrame({"A": date_range("2000", periods=4), "B": [1, 2, 3, 4]}).reindex(
|
985 |
+
[2, 3, 4]
|
986 |
+
)
|
987 |
+
with pytest.raises(TypeError, match="does not support reduction 'sum'"):
|
988 |
+
df.sum()
|
989 |
+
|
990 |
+
def test_mean_corner(self, float_frame, float_string_frame):
|
991 |
+
# unit test when have object data
|
992 |
+
msg = "Could not convert|does not support"
|
993 |
+
with pytest.raises(TypeError, match=msg):
|
994 |
+
float_string_frame.mean(axis=0)
|
995 |
+
|
996 |
+
# xs sum mixed type, just want to know it works...
|
997 |
+
with pytest.raises(TypeError, match="unsupported operand type"):
|
998 |
+
float_string_frame.mean(axis=1)
|
999 |
+
|
1000 |
+
# take mean of boolean column
|
1001 |
+
float_frame["bool"] = float_frame["A"] > 0
|
1002 |
+
means = float_frame.mean(0)
|
1003 |
+
assert means["bool"] == float_frame["bool"].values.mean()
|
1004 |
+
|
1005 |
+
def test_mean_datetimelike(self):
|
1006 |
+
# GH#24757 check that datetimelike are excluded by default, handled
|
1007 |
+
# correctly with numeric_only=True
|
1008 |
+
# As of 2.0, datetimelike are *not* excluded with numeric_only=None
|
1009 |
+
|
1010 |
+
df = DataFrame(
|
1011 |
+
{
|
1012 |
+
"A": np.arange(3),
|
1013 |
+
"B": date_range("2016-01-01", periods=3),
|
1014 |
+
"C": pd.timedelta_range("1D", periods=3),
|
1015 |
+
"D": pd.period_range("2016", periods=3, freq="Y"),
|
1016 |
+
}
|
1017 |
+
)
|
1018 |
+
result = df.mean(numeric_only=True)
|
1019 |
+
expected = Series({"A": 1.0})
|
1020 |
+
tm.assert_series_equal(result, expected)
|
1021 |
+
|
1022 |
+
with pytest.raises(TypeError, match="mean is not implemented for PeriodArray"):
|
1023 |
+
df.mean()
|
1024 |
+
|
1025 |
+
def test_mean_datetimelike_numeric_only_false(self):
|
1026 |
+
df = DataFrame(
|
1027 |
+
{
|
1028 |
+
"A": np.arange(3),
|
1029 |
+
"B": date_range("2016-01-01", periods=3),
|
1030 |
+
"C": pd.timedelta_range("1D", periods=3),
|
1031 |
+
}
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
# datetime(tz) and timedelta work
|
1035 |
+
result = df.mean(numeric_only=False)
|
1036 |
+
expected = Series({"A": 1, "B": df.loc[1, "B"], "C": df.loc[1, "C"]})
|
1037 |
+
tm.assert_series_equal(result, expected)
|
1038 |
+
|
1039 |
+
# mean of period is not allowed
|
1040 |
+
df["D"] = pd.period_range("2016", periods=3, freq="Y")
|
1041 |
+
|
1042 |
+
with pytest.raises(TypeError, match="mean is not implemented for Period"):
|
1043 |
+
df.mean(numeric_only=False)
|
1044 |
+
|
1045 |
+
def test_mean_extensionarray_numeric_only_true(self):
|
1046 |
+
# https://github.com/pandas-dev/pandas/issues/33256
|
1047 |
+
arr = np.random.default_rng(2).integers(1000, size=(10, 5))
|
1048 |
+
df = DataFrame(arr, dtype="Int64")
|
1049 |
+
result = df.mean(numeric_only=True)
|
1050 |
+
expected = DataFrame(arr).mean().astype("Float64")
|
1051 |
+
tm.assert_series_equal(result, expected)
|
1052 |
+
|
1053 |
+
def test_stats_mixed_type(self, float_string_frame):
|
1054 |
+
with pytest.raises(TypeError, match="could not convert"):
|
1055 |
+
float_string_frame.std(1)
|
1056 |
+
with pytest.raises(TypeError, match="could not convert"):
|
1057 |
+
float_string_frame.var(1)
|
1058 |
+
with pytest.raises(TypeError, match="unsupported operand type"):
|
1059 |
+
float_string_frame.mean(1)
|
1060 |
+
with pytest.raises(TypeError, match="could not convert"):
|
1061 |
+
float_string_frame.skew(1)
|
1062 |
+
|
1063 |
+
def test_sum_bools(self):
|
1064 |
+
df = DataFrame(index=range(1), columns=range(10))
|
1065 |
+
bools = isna(df)
|
1066 |
+
assert bools.sum(axis=1)[0] == 10
|
1067 |
+
|
1068 |
+
# ----------------------------------------------------------------------
|
1069 |
+
# Index of max / min
|
1070 |
+
|
1071 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
1072 |
+
@pytest.mark.parametrize("axis", [0, 1])
|
1073 |
+
def test_idxmin(self, float_frame, int_frame, skipna, axis):
|
1074 |
+
frame = float_frame
|
1075 |
+
frame.iloc[5:10] = np.nan
|
1076 |
+
frame.iloc[15:20, -2:] = np.nan
|
1077 |
+
for df in [frame, int_frame]:
|
1078 |
+
warn = None
|
1079 |
+
if skipna is False or axis == 1:
|
1080 |
+
warn = None if df is int_frame else FutureWarning
|
1081 |
+
msg = "The behavior of DataFrame.idxmin with all-NA values"
|
1082 |
+
with tm.assert_produces_warning(warn, match=msg):
|
1083 |
+
result = df.idxmin(axis=axis, skipna=skipna)
|
1084 |
+
|
1085 |
+
msg2 = "The behavior of Series.idxmin"
|
1086 |
+
with tm.assert_produces_warning(warn, match=msg2):
|
1087 |
+
expected = df.apply(Series.idxmin, axis=axis, skipna=skipna)
|
1088 |
+
expected = expected.astype(df.index.dtype)
|
1089 |
+
tm.assert_series_equal(result, expected)
|
1090 |
+
|
1091 |
+
@pytest.mark.parametrize("axis", [0, 1])
|
1092 |
+
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
|
1093 |
+
def test_idxmin_empty(self, index, skipna, axis):
|
1094 |
+
# GH53265
|
1095 |
+
if axis == 0:
|
1096 |
+
frame = DataFrame(index=index)
|
1097 |
+
else:
|
1098 |
+
frame = DataFrame(columns=index)
|
1099 |
+
|
1100 |
+
result = frame.idxmin(axis=axis, skipna=skipna)
|
1101 |
+
expected = Series(dtype=index.dtype)
|
1102 |
+
tm.assert_series_equal(result, expected)
|
1103 |
+
|
1104 |
+
@pytest.mark.parametrize("numeric_only", [True, False])
|
1105 |
+
def test_idxmin_numeric_only(self, numeric_only):
|
1106 |
+
df = DataFrame({"a": [2, 3, 1], "b": [2, 1, 1], "c": list("xyx")})
|
1107 |
+
result = df.idxmin(numeric_only=numeric_only)
|
1108 |
+
if numeric_only:
|
1109 |
+
expected = Series([2, 1], index=["a", "b"])
|
1110 |
+
else:
|
1111 |
+
expected = Series([2, 1, 0], index=["a", "b", "c"])
|
1112 |
+
tm.assert_series_equal(result, expected)
|
1113 |
+
|
1114 |
+
def test_idxmin_axis_2(self, float_frame):
|
1115 |
+
frame = float_frame
|
1116 |
+
msg = "No axis named 2 for object type DataFrame"
|
1117 |
+
with pytest.raises(ValueError, match=msg):
|
1118 |
+
frame.idxmin(axis=2)
|
1119 |
+
|
1120 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
1121 |
+
@pytest.mark.parametrize("axis", [0, 1])
|
1122 |
+
def test_idxmax(self, float_frame, int_frame, skipna, axis):
|
1123 |
+
frame = float_frame
|
1124 |
+
frame.iloc[5:10] = np.nan
|
1125 |
+
frame.iloc[15:20, -2:] = np.nan
|
1126 |
+
for df in [frame, int_frame]:
|
1127 |
+
warn = None
|
1128 |
+
if skipna is False or axis == 1:
|
1129 |
+
warn = None if df is int_frame else FutureWarning
|
1130 |
+
msg = "The behavior of DataFrame.idxmax with all-NA values"
|
1131 |
+
with tm.assert_produces_warning(warn, match=msg):
|
1132 |
+
result = df.idxmax(axis=axis, skipna=skipna)
|
1133 |
+
|
1134 |
+
msg2 = "The behavior of Series.idxmax"
|
1135 |
+
with tm.assert_produces_warning(warn, match=msg2):
|
1136 |
+
expected = df.apply(Series.idxmax, axis=axis, skipna=skipna)
|
1137 |
+
expected = expected.astype(df.index.dtype)
|
1138 |
+
tm.assert_series_equal(result, expected)
|
1139 |
+
|
1140 |
+
@pytest.mark.parametrize("axis", [0, 1])
|
1141 |
+
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
|
1142 |
+
def test_idxmax_empty(self, index, skipna, axis):
|
1143 |
+
# GH53265
|
1144 |
+
if axis == 0:
|
1145 |
+
frame = DataFrame(index=index)
|
1146 |
+
else:
|
1147 |
+
frame = DataFrame(columns=index)
|
1148 |
+
|
1149 |
+
result = frame.idxmax(axis=axis, skipna=skipna)
|
1150 |
+
expected = Series(dtype=index.dtype)
|
1151 |
+
tm.assert_series_equal(result, expected)
|
1152 |
+
|
1153 |
+
@pytest.mark.parametrize("numeric_only", [True, False])
|
1154 |
+
def test_idxmax_numeric_only(self, numeric_only):
|
1155 |
+
df = DataFrame({"a": [2, 3, 1], "b": [2, 1, 1], "c": list("xyx")})
|
1156 |
+
result = df.idxmax(numeric_only=numeric_only)
|
1157 |
+
if numeric_only:
|
1158 |
+
expected = Series([1, 0], index=["a", "b"])
|
1159 |
+
else:
|
1160 |
+
expected = Series([1, 0, 1], index=["a", "b", "c"])
|
1161 |
+
tm.assert_series_equal(result, expected)
|
1162 |
+
|
1163 |
+
def test_idxmax_arrow_types(self):
|
1164 |
+
# GH#55368
|
1165 |
+
pytest.importorskip("pyarrow")
|
1166 |
+
|
1167 |
+
df = DataFrame({"a": [2, 3, 1], "b": [2, 1, 1]}, dtype="int64[pyarrow]")
|
1168 |
+
result = df.idxmax()
|
1169 |
+
expected = Series([1, 0], index=["a", "b"])
|
1170 |
+
tm.assert_series_equal(result, expected)
|
1171 |
+
|
1172 |
+
result = df.idxmin()
|
1173 |
+
expected = Series([2, 1], index=["a", "b"])
|
1174 |
+
tm.assert_series_equal(result, expected)
|
1175 |
+
|
1176 |
+
df = DataFrame({"a": ["b", "c", "a"]}, dtype="string[pyarrow]")
|
1177 |
+
result = df.idxmax(numeric_only=False)
|
1178 |
+
expected = Series([1], index=["a"])
|
1179 |
+
tm.assert_series_equal(result, expected)
|
1180 |
+
|
1181 |
+
result = df.idxmin(numeric_only=False)
|
1182 |
+
expected = Series([2], index=["a"])
|
1183 |
+
tm.assert_series_equal(result, expected)
|
1184 |
+
|
1185 |
+
def test_idxmax_axis_2(self, float_frame):
|
1186 |
+
frame = float_frame
|
1187 |
+
msg = "No axis named 2 for object type DataFrame"
|
1188 |
+
with pytest.raises(ValueError, match=msg):
|
1189 |
+
frame.idxmax(axis=2)
|
1190 |
+
|
1191 |
+
def test_idxmax_mixed_dtype(self):
|
1192 |
+
# don't cast to object, which would raise in nanops
|
1193 |
+
dti = date_range("2016-01-01", periods=3)
|
1194 |
+
|
1195 |
+
# Copying dti is needed for ArrayManager otherwise when we set
|
1196 |
+
# df.loc[0, 3] = pd.NaT below it edits dti
|
1197 |
+
df = DataFrame({1: [0, 2, 1], 2: range(3)[::-1], 3: dti.copy(deep=True)})
|
1198 |
+
|
1199 |
+
result = df.idxmax()
|
1200 |
+
expected = Series([1, 0, 2], index=[1, 2, 3])
|
1201 |
+
tm.assert_series_equal(result, expected)
|
1202 |
+
|
1203 |
+
result = df.idxmin()
|
1204 |
+
expected = Series([0, 2, 0], index=[1, 2, 3])
|
1205 |
+
tm.assert_series_equal(result, expected)
|
1206 |
+
|
1207 |
+
# with NaTs
|
1208 |
+
df.loc[0, 3] = pd.NaT
|
1209 |
+
result = df.idxmax()
|
1210 |
+
expected = Series([1, 0, 2], index=[1, 2, 3])
|
1211 |
+
tm.assert_series_equal(result, expected)
|
1212 |
+
|
1213 |
+
result = df.idxmin()
|
1214 |
+
expected = Series([0, 2, 1], index=[1, 2, 3])
|
1215 |
+
tm.assert_series_equal(result, expected)
|
1216 |
+
|
1217 |
+
# with multi-column dt64 block
|
1218 |
+
df[4] = dti[::-1]
|
1219 |
+
df._consolidate_inplace()
|
1220 |
+
|
1221 |
+
result = df.idxmax()
|
1222 |
+
expected = Series([1, 0, 2, 0], index=[1, 2, 3, 4])
|
1223 |
+
tm.assert_series_equal(result, expected)
|
1224 |
+
|
1225 |
+
result = df.idxmin()
|
1226 |
+
expected = Series([0, 2, 1, 2], index=[1, 2, 3, 4])
|
1227 |
+
tm.assert_series_equal(result, expected)
|
1228 |
+
|
1229 |
+
@pytest.mark.parametrize(
|
1230 |
+
"op, expected_value",
|
1231 |
+
[("idxmax", [0, 4]), ("idxmin", [0, 5])],
|
1232 |
+
)
|
1233 |
+
def test_idxmax_idxmin_convert_dtypes(self, op, expected_value):
|
1234 |
+
# GH 40346
|
1235 |
+
df = DataFrame(
|
1236 |
+
{
|
1237 |
+
"ID": [100, 100, 100, 200, 200, 200],
|
1238 |
+
"value": [0, 0, 0, 1, 2, 0],
|
1239 |
+
},
|
1240 |
+
dtype="Int64",
|
1241 |
+
)
|
1242 |
+
df = df.groupby("ID")
|
1243 |
+
|
1244 |
+
result = getattr(df, op)()
|
1245 |
+
expected = DataFrame(
|
1246 |
+
{"value": expected_value},
|
1247 |
+
index=Index([100, 200], name="ID", dtype="Int64"),
|
1248 |
+
)
|
1249 |
+
tm.assert_frame_equal(result, expected)
|
1250 |
+
|
1251 |
+
def test_idxmax_dt64_multicolumn_axis1(self):
|
1252 |
+
dti = date_range("2016-01-01", periods=3)
|
1253 |
+
df = DataFrame({3: dti, 4: dti[::-1]}, copy=True)
|
1254 |
+
df.iloc[0, 0] = pd.NaT
|
1255 |
+
|
1256 |
+
df._consolidate_inplace()
|
1257 |
+
|
1258 |
+
result = df.idxmax(axis=1)
|
1259 |
+
expected = Series([4, 3, 3])
|
1260 |
+
tm.assert_series_equal(result, expected)
|
1261 |
+
|
1262 |
+
result = df.idxmin(axis=1)
|
1263 |
+
expected = Series([4, 3, 4])
|
1264 |
+
tm.assert_series_equal(result, expected)
|
1265 |
+
|
1266 |
+
# ----------------------------------------------------------------------
|
1267 |
+
# Logical reductions
|
1268 |
+
|
1269 |
+
@pytest.mark.parametrize("opname", ["any", "all"])
|
1270 |
+
@pytest.mark.parametrize("axis", [0, 1])
|
1271 |
+
@pytest.mark.parametrize("bool_only", [False, True])
|
1272 |
+
def test_any_all_mixed_float(self, opname, axis, bool_only, float_string_frame):
|
1273 |
+
# make sure op works on mixed-type frame
|
1274 |
+
mixed = float_string_frame
|
1275 |
+
mixed["_bool_"] = np.random.default_rng(2).standard_normal(len(mixed)) > 0.5
|
1276 |
+
|
1277 |
+
getattr(mixed, opname)(axis=axis, bool_only=bool_only)
|
1278 |
+
|
1279 |
+
@pytest.mark.parametrize("opname", ["any", "all"])
|
1280 |
+
@pytest.mark.parametrize("axis", [0, 1])
|
1281 |
+
def test_any_all_bool_with_na(self, opname, axis, bool_frame_with_na):
|
1282 |
+
getattr(bool_frame_with_na, opname)(axis=axis, bool_only=False)
|
1283 |
+
|
1284 |
+
@pytest.mark.filterwarnings("ignore:Downcasting object dtype arrays:FutureWarning")
|
1285 |
+
@pytest.mark.parametrize("opname", ["any", "all"])
|
1286 |
+
def test_any_all_bool_frame(self, opname, bool_frame_with_na):
|
1287 |
+
# GH#12863: numpy gives back non-boolean data for object type
|
1288 |
+
# so fill NaNs to compare with pandas behavior
|
1289 |
+
frame = bool_frame_with_na.fillna(True)
|
1290 |
+
alternative = getattr(np, opname)
|
1291 |
+
f = getattr(frame, opname)
|
1292 |
+
|
1293 |
+
def skipna_wrapper(x):
|
1294 |
+
nona = x.dropna().values
|
1295 |
+
return alternative(nona)
|
1296 |
+
|
1297 |
+
def wrapper(x):
|
1298 |
+
return alternative(x.values)
|
1299 |
+
|
1300 |
+
result0 = f(axis=0, skipna=False)
|
1301 |
+
result1 = f(axis=1, skipna=False)
|
1302 |
+
|
1303 |
+
tm.assert_series_equal(result0, frame.apply(wrapper))
|
1304 |
+
tm.assert_series_equal(result1, frame.apply(wrapper, axis=1))
|
1305 |
+
|
1306 |
+
result0 = f(axis=0)
|
1307 |
+
result1 = f(axis=1)
|
1308 |
+
|
1309 |
+
tm.assert_series_equal(result0, frame.apply(skipna_wrapper))
|
1310 |
+
tm.assert_series_equal(
|
1311 |
+
result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False
|
1312 |
+
)
|
1313 |
+
|
1314 |
+
# bad axis
|
1315 |
+
with pytest.raises(ValueError, match="No axis named 2"):
|
1316 |
+
f(axis=2)
|
1317 |
+
|
1318 |
+
# all NA case
|
1319 |
+
all_na = frame * np.nan
|
1320 |
+
r0 = getattr(all_na, opname)(axis=0)
|
1321 |
+
r1 = getattr(all_na, opname)(axis=1)
|
1322 |
+
if opname == "any":
|
1323 |
+
assert not r0.any()
|
1324 |
+
assert not r1.any()
|
1325 |
+
else:
|
1326 |
+
assert r0.all()
|
1327 |
+
assert r1.all()
|
1328 |
+
|
1329 |
+
def test_any_all_extra(self):
|
1330 |
+
df = DataFrame(
|
1331 |
+
{
|
1332 |
+
"A": [True, False, False],
|
1333 |
+
"B": [True, True, False],
|
1334 |
+
"C": [True, True, True],
|
1335 |
+
},
|
1336 |
+
index=["a", "b", "c"],
|
1337 |
+
)
|
1338 |
+
result = df[["A", "B"]].any(axis=1)
|
1339 |
+
expected = Series([True, True, False], index=["a", "b", "c"])
|
1340 |
+
tm.assert_series_equal(result, expected)
|
1341 |
+
|
1342 |
+
result = df[["A", "B"]].any(axis=1, bool_only=True)
|
1343 |
+
tm.assert_series_equal(result, expected)
|
1344 |
+
|
1345 |
+
result = df.all(1)
|
1346 |
+
expected = Series([True, False, False], index=["a", "b", "c"])
|
1347 |
+
tm.assert_series_equal(result, expected)
|
1348 |
+
|
1349 |
+
result = df.all(1, bool_only=True)
|
1350 |
+
tm.assert_series_equal(result, expected)
|
1351 |
+
|
1352 |
+
# Axis is None
|
1353 |
+
result = df.all(axis=None).item()
|
1354 |
+
assert result is False
|
1355 |
+
|
1356 |
+
result = df.any(axis=None).item()
|
1357 |
+
assert result is True
|
1358 |
+
|
1359 |
+
result = df[["C"]].all(axis=None).item()
|
1360 |
+
assert result is True
|
1361 |
+
|
1362 |
+
@pytest.mark.parametrize("axis", [0, 1])
|
1363 |
+
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
|
1364 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
1365 |
+
def test_any_all_object_dtype(
|
1366 |
+
self, axis, bool_agg_func, skipna, using_infer_string
|
1367 |
+
):
|
1368 |
+
# GH#35450
|
1369 |
+
df = DataFrame(
|
1370 |
+
data=[
|
1371 |
+
[1, np.nan, np.nan, True],
|
1372 |
+
[np.nan, 2, np.nan, True],
|
1373 |
+
[np.nan, np.nan, np.nan, True],
|
1374 |
+
[np.nan, np.nan, "5", np.nan],
|
1375 |
+
]
|
1376 |
+
)
|
1377 |
+
if using_infer_string:
|
1378 |
+
# na in object is True while in string pyarrow numpy it's false
|
1379 |
+
val = not axis == 0 and not skipna and bool_agg_func == "all"
|
1380 |
+
else:
|
1381 |
+
val = True
|
1382 |
+
result = getattr(df, bool_agg_func)(axis=axis, skipna=skipna)
|
1383 |
+
expected = Series([True, True, val, True])
|
1384 |
+
tm.assert_series_equal(result, expected)
|
1385 |
+
|
1386 |
+
# GH#50947 deprecates this but it is not emitting a warning in some builds.
|
1387 |
+
@pytest.mark.filterwarnings(
|
1388 |
+
"ignore:'any' with datetime64 dtypes is deprecated.*:FutureWarning"
|
1389 |
+
)
|
1390 |
+
def test_any_datetime(self):
|
1391 |
+
# GH 23070
|
1392 |
+
float_data = [1, np.nan, 3, np.nan]
|
1393 |
+
datetime_data = [
|
1394 |
+
Timestamp("1960-02-15"),
|
1395 |
+
Timestamp("1960-02-16"),
|
1396 |
+
pd.NaT,
|
1397 |
+
pd.NaT,
|
1398 |
+
]
|
1399 |
+
df = DataFrame({"A": float_data, "B": datetime_data})
|
1400 |
+
|
1401 |
+
result = df.any(axis=1)
|
1402 |
+
|
1403 |
+
expected = Series([True, True, True, False])
|
1404 |
+
tm.assert_series_equal(result, expected)
|
1405 |
+
|
1406 |
+
def test_any_all_bool_only(self):
|
1407 |
+
# GH 25101
|
1408 |
+
df = DataFrame(
|
1409 |
+
{"col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [None, None, None]},
|
1410 |
+
columns=Index(["col1", "col2", "col3"], dtype=object),
|
1411 |
+
)
|
1412 |
+
|
1413 |
+
result = df.all(bool_only=True)
|
1414 |
+
expected = Series(dtype=np.bool_, index=[])
|
1415 |
+
tm.assert_series_equal(result, expected)
|
1416 |
+
|
1417 |
+
df = DataFrame(
|
1418 |
+
{
|
1419 |
+
"col1": [1, 2, 3],
|
1420 |
+
"col2": [4, 5, 6],
|
1421 |
+
"col3": [None, None, None],
|
1422 |
+
"col4": [False, False, True],
|
1423 |
+
}
|
1424 |
+
)
|
1425 |
+
|
1426 |
+
result = df.all(bool_only=True)
|
1427 |
+
expected = Series({"col4": False})
|
1428 |
+
tm.assert_series_equal(result, expected)
|
1429 |
+
|
1430 |
+
@pytest.mark.parametrize(
|
1431 |
+
"func, data, expected",
|
1432 |
+
[
|
1433 |
+
(np.any, {}, False),
|
1434 |
+
(np.all, {}, True),
|
1435 |
+
(np.any, {"A": []}, False),
|
1436 |
+
(np.all, {"A": []}, True),
|
1437 |
+
(np.any, {"A": [False, False]}, False),
|
1438 |
+
(np.all, {"A": [False, False]}, False),
|
1439 |
+
(np.any, {"A": [True, False]}, True),
|
1440 |
+
(np.all, {"A": [True, False]}, False),
|
1441 |
+
(np.any, {"A": [True, True]}, True),
|
1442 |
+
(np.all, {"A": [True, True]}, True),
|
1443 |
+
(np.any, {"A": [False], "B": [False]}, False),
|
1444 |
+
(np.all, {"A": [False], "B": [False]}, False),
|
1445 |
+
(np.any, {"A": [False, False], "B": [False, True]}, True),
|
1446 |
+
(np.all, {"A": [False, False], "B": [False, True]}, False),
|
1447 |
+
# other types
|
1448 |
+
(np.all, {"A": Series([0.0, 1.0], dtype="float")}, False),
|
1449 |
+
(np.any, {"A": Series([0.0, 1.0], dtype="float")}, True),
|
1450 |
+
(np.all, {"A": Series([0, 1], dtype=int)}, False),
|
1451 |
+
(np.any, {"A": Series([0, 1], dtype=int)}, True),
|
1452 |
+
pytest.param(np.all, {"A": Series([0, 1], dtype="M8[ns]")}, False),
|
1453 |
+
pytest.param(np.all, {"A": Series([0, 1], dtype="M8[ns, UTC]")}, False),
|
1454 |
+
pytest.param(np.any, {"A": Series([0, 1], dtype="M8[ns]")}, True),
|
1455 |
+
pytest.param(np.any, {"A": Series([0, 1], dtype="M8[ns, UTC]")}, True),
|
1456 |
+
pytest.param(np.all, {"A": Series([1, 2], dtype="M8[ns]")}, True),
|
1457 |
+
pytest.param(np.all, {"A": Series([1, 2], dtype="M8[ns, UTC]")}, True),
|
1458 |
+
pytest.param(np.any, {"A": Series([1, 2], dtype="M8[ns]")}, True),
|
1459 |
+
pytest.param(np.any, {"A": Series([1, 2], dtype="M8[ns, UTC]")}, True),
|
1460 |
+
pytest.param(np.all, {"A": Series([0, 1], dtype="m8[ns]")}, False),
|
1461 |
+
pytest.param(np.any, {"A": Series([0, 1], dtype="m8[ns]")}, True),
|
1462 |
+
pytest.param(np.all, {"A": Series([1, 2], dtype="m8[ns]")}, True),
|
1463 |
+
pytest.param(np.any, {"A": Series([1, 2], dtype="m8[ns]")}, True),
|
1464 |
+
# np.all on Categorical raises, so the reduction drops the
|
1465 |
+
# column, so all is being done on an empty Series, so is True
|
1466 |
+
(np.all, {"A": Series([0, 1], dtype="category")}, True),
|
1467 |
+
(np.any, {"A": Series([0, 1], dtype="category")}, False),
|
1468 |
+
(np.all, {"A": Series([1, 2], dtype="category")}, True),
|
1469 |
+
(np.any, {"A": Series([1, 2], dtype="category")}, False),
|
1470 |
+
# Mix GH#21484
|
1471 |
+
pytest.param(
|
1472 |
+
np.all,
|
1473 |
+
{
|
1474 |
+
"A": Series([10, 20], dtype="M8[ns]"),
|
1475 |
+
"B": Series([10, 20], dtype="m8[ns]"),
|
1476 |
+
},
|
1477 |
+
True,
|
1478 |
+
),
|
1479 |
+
],
|
1480 |
+
)
|
1481 |
+
def test_any_all_np_func(self, func, data, expected):
|
1482 |
+
# GH 19976
|
1483 |
+
data = DataFrame(data)
|
1484 |
+
|
1485 |
+
if any(isinstance(x, CategoricalDtype) for x in data.dtypes):
|
1486 |
+
with pytest.raises(
|
1487 |
+
TypeError, match="dtype category does not support reduction"
|
1488 |
+
):
|
1489 |
+
func(data)
|
1490 |
+
|
1491 |
+
# method version
|
1492 |
+
with pytest.raises(
|
1493 |
+
TypeError, match="dtype category does not support reduction"
|
1494 |
+
):
|
1495 |
+
getattr(DataFrame(data), func.__name__)(axis=None)
|
1496 |
+
else:
|
1497 |
+
msg = "'(any|all)' with datetime64 dtypes is deprecated"
|
1498 |
+
if data.dtypes.apply(lambda x: x.kind == "M").any():
|
1499 |
+
warn = FutureWarning
|
1500 |
+
else:
|
1501 |
+
warn = None
|
1502 |
+
|
1503 |
+
with tm.assert_produces_warning(warn, match=msg, check_stacklevel=False):
|
1504 |
+
# GH#34479
|
1505 |
+
result = func(data)
|
1506 |
+
assert isinstance(result, np.bool_)
|
1507 |
+
assert result.item() is expected
|
1508 |
+
|
1509 |
+
# method version
|
1510 |
+
with tm.assert_produces_warning(warn, match=msg):
|
1511 |
+
# GH#34479
|
1512 |
+
result = getattr(DataFrame(data), func.__name__)(axis=None)
|
1513 |
+
assert isinstance(result, np.bool_)
|
1514 |
+
assert result.item() is expected
|
1515 |
+
|
1516 |
+
def test_any_all_object(self):
|
1517 |
+
# GH 19976
|
1518 |
+
result = np.all(DataFrame(columns=["a", "b"])).item()
|
1519 |
+
assert result is True
|
1520 |
+
|
1521 |
+
result = np.any(DataFrame(columns=["a", "b"])).item()
|
1522 |
+
assert result is False
|
1523 |
+
|
1524 |
+
def test_any_all_object_bool_only(self):
|
1525 |
+
df = DataFrame({"A": ["foo", 2], "B": [True, False]}).astype(object)
|
1526 |
+
df._consolidate_inplace()
|
1527 |
+
df["C"] = Series([True, True])
|
1528 |
+
|
1529 |
+
# Categorical of bools is _not_ considered booly
|
1530 |
+
df["D"] = df["C"].astype("category")
|
1531 |
+
|
1532 |
+
# The underlying bug is in DataFrame._get_bool_data, so we check
|
1533 |
+
# that while we're here
|
1534 |
+
res = df._get_bool_data()
|
1535 |
+
expected = df[["C"]]
|
1536 |
+
tm.assert_frame_equal(res, expected)
|
1537 |
+
|
1538 |
+
res = df.all(bool_only=True, axis=0)
|
1539 |
+
expected = Series([True], index=["C"])
|
1540 |
+
tm.assert_series_equal(res, expected)
|
1541 |
+
|
1542 |
+
# operating on a subset of columns should not produce a _larger_ Series
|
1543 |
+
res = df[["B", "C"]].all(bool_only=True, axis=0)
|
1544 |
+
tm.assert_series_equal(res, expected)
|
1545 |
+
|
1546 |
+
assert df.all(bool_only=True, axis=None)
|
1547 |
+
|
1548 |
+
res = df.any(bool_only=True, axis=0)
|
1549 |
+
expected = Series([True], index=["C"])
|
1550 |
+
tm.assert_series_equal(res, expected)
|
1551 |
+
|
1552 |
+
# operating on a subset of columns should not produce a _larger_ Series
|
1553 |
+
res = df[["C"]].any(bool_only=True, axis=0)
|
1554 |
+
tm.assert_series_equal(res, expected)
|
1555 |
+
|
1556 |
+
assert df.any(bool_only=True, axis=None)
|
1557 |
+
|
1558 |
+
# ---------------------------------------------------------------------
|
1559 |
+
# Unsorted
|
1560 |
+
|
1561 |
+
def test_series_broadcasting(self):
|
1562 |
+
# smoke test for numpy warnings
|
1563 |
+
# GH 16378, GH 16306
|
1564 |
+
df = DataFrame([1.0, 1.0, 1.0])
|
1565 |
+
df_nan = DataFrame({"A": [np.nan, 2.0, np.nan]})
|
1566 |
+
s = Series([1, 1, 1])
|
1567 |
+
s_nan = Series([np.nan, np.nan, 1])
|
1568 |
+
|
1569 |
+
with tm.assert_produces_warning(None):
|
1570 |
+
df_nan.clip(lower=s, axis=0)
|
1571 |
+
for op in ["lt", "le", "gt", "ge", "eq", "ne"]:
|
1572 |
+
getattr(df, op)(s_nan, axis=0)
|
1573 |
+
|
1574 |
+
|
1575 |
+
class TestDataFrameReductions:
|
1576 |
+
def test_min_max_dt64_with_NaT(self):
|
1577 |
+
# Both NaT and Timestamp are in DataFrame.
|
1578 |
+
df = DataFrame({"foo": [pd.NaT, pd.NaT, Timestamp("2012-05-01")]})
|
1579 |
+
|
1580 |
+
res = df.min()
|
1581 |
+
exp = Series([Timestamp("2012-05-01")], index=["foo"])
|
1582 |
+
tm.assert_series_equal(res, exp)
|
1583 |
+
|
1584 |
+
res = df.max()
|
1585 |
+
exp = Series([Timestamp("2012-05-01")], index=["foo"])
|
1586 |
+
tm.assert_series_equal(res, exp)
|
1587 |
+
|
1588 |
+
# GH12941, only NaTs are in DataFrame.
|
1589 |
+
df = DataFrame({"foo": [pd.NaT, pd.NaT]})
|
1590 |
+
|
1591 |
+
res = df.min()
|
1592 |
+
exp = Series([pd.NaT], index=["foo"])
|
1593 |
+
tm.assert_series_equal(res, exp)
|
1594 |
+
|
1595 |
+
res = df.max()
|
1596 |
+
exp = Series([pd.NaT], index=["foo"])
|
1597 |
+
tm.assert_series_equal(res, exp)
|
1598 |
+
|
1599 |
+
def test_min_max_dt64_with_NaT_skipna_false(self, request, tz_naive_fixture):
|
1600 |
+
# GH#36907
|
1601 |
+
tz = tz_naive_fixture
|
1602 |
+
if isinstance(tz, tzlocal) and is_platform_windows():
|
1603 |
+
pytest.skip(
|
1604 |
+
"GH#37659 OSError raised within tzlocal bc Windows "
|
1605 |
+
"chokes in times before 1970-01-01"
|
1606 |
+
)
|
1607 |
+
|
1608 |
+
df = DataFrame(
|
1609 |
+
{
|
1610 |
+
"a": [
|
1611 |
+
Timestamp("2020-01-01 08:00:00", tz=tz),
|
1612 |
+
Timestamp("1920-02-01 09:00:00", tz=tz),
|
1613 |
+
],
|
1614 |
+
"b": [Timestamp("2020-02-01 08:00:00", tz=tz), pd.NaT],
|
1615 |
+
}
|
1616 |
+
)
|
1617 |
+
res = df.min(axis=1, skipna=False)
|
1618 |
+
expected = Series([df.loc[0, "a"], pd.NaT])
|
1619 |
+
assert expected.dtype == df["a"].dtype
|
1620 |
+
|
1621 |
+
tm.assert_series_equal(res, expected)
|
1622 |
+
|
1623 |
+
res = df.max(axis=1, skipna=False)
|
1624 |
+
expected = Series([df.loc[0, "b"], pd.NaT])
|
1625 |
+
assert expected.dtype == df["a"].dtype
|
1626 |
+
|
1627 |
+
tm.assert_series_equal(res, expected)
|
1628 |
+
|
1629 |
+
def test_min_max_dt64_api_consistency_with_NaT(self):
|
1630 |
+
# Calling the following sum functions returned an error for dataframes but
|
1631 |
+
# returned NaT for series. These tests check that the API is consistent in
|
1632 |
+
# min/max calls on empty Series/DataFrames. See GH:33704 for more
|
1633 |
+
# information
|
1634 |
+
df = DataFrame({"x": to_datetime([])})
|
1635 |
+
expected_dt_series = Series(to_datetime([]))
|
1636 |
+
# check axis 0
|
1637 |
+
assert (df.min(axis=0).x is pd.NaT) == (expected_dt_series.min() is pd.NaT)
|
1638 |
+
assert (df.max(axis=0).x is pd.NaT) == (expected_dt_series.max() is pd.NaT)
|
1639 |
+
|
1640 |
+
# check axis 1
|
1641 |
+
tm.assert_series_equal(df.min(axis=1), expected_dt_series)
|
1642 |
+
tm.assert_series_equal(df.max(axis=1), expected_dt_series)
|
1643 |
+
|
1644 |
+
def test_min_max_dt64_api_consistency_empty_df(self):
|
1645 |
+
# check DataFrame/Series api consistency when calling min/max on an empty
|
1646 |
+
# DataFrame/Series.
|
1647 |
+
df = DataFrame({"x": []})
|
1648 |
+
expected_float_series = Series([], dtype=float)
|
1649 |
+
# check axis 0
|
1650 |
+
assert np.isnan(df.min(axis=0).x) == np.isnan(expected_float_series.min())
|
1651 |
+
assert np.isnan(df.max(axis=0).x) == np.isnan(expected_float_series.max())
|
1652 |
+
# check axis 1
|
1653 |
+
tm.assert_series_equal(df.min(axis=1), expected_float_series)
|
1654 |
+
tm.assert_series_equal(df.min(axis=1), expected_float_series)
|
1655 |
+
|
1656 |
+
@pytest.mark.parametrize(
|
1657 |
+
"initial",
|
1658 |
+
["2018-10-08 13:36:45+00:00", "2018-10-08 13:36:45+03:00"], # Non-UTC timezone
|
1659 |
+
)
|
1660 |
+
@pytest.mark.parametrize("method", ["min", "max"])
|
1661 |
+
def test_preserve_timezone(self, initial: str, method):
|
1662 |
+
# GH 28552
|
1663 |
+
initial_dt = to_datetime(initial)
|
1664 |
+
expected = Series([initial_dt])
|
1665 |
+
df = DataFrame([expected])
|
1666 |
+
result = getattr(df, method)(axis=1)
|
1667 |
+
tm.assert_series_equal(result, expected)
|
1668 |
+
|
1669 |
+
@pytest.mark.parametrize("method", ["min", "max"])
|
1670 |
+
def test_minmax_tzaware_skipna_axis_1(self, method, skipna):
|
1671 |
+
# GH#51242
|
1672 |
+
val = to_datetime("1900-01-01", utc=True)
|
1673 |
+
df = DataFrame(
|
1674 |
+
{"a": Series([pd.NaT, pd.NaT, val]), "b": Series([pd.NaT, val, val])}
|
1675 |
+
)
|
1676 |
+
op = getattr(df, method)
|
1677 |
+
result = op(axis=1, skipna=skipna)
|
1678 |
+
if skipna:
|
1679 |
+
expected = Series([pd.NaT, val, val])
|
1680 |
+
else:
|
1681 |
+
expected = Series([pd.NaT, pd.NaT, val])
|
1682 |
+
tm.assert_series_equal(result, expected)
|
1683 |
+
|
1684 |
+
def test_frame_any_with_timedelta(self):
|
1685 |
+
# GH#17667
|
1686 |
+
df = DataFrame(
|
1687 |
+
{
|
1688 |
+
"a": Series([0, 0]),
|
1689 |
+
"t": Series([to_timedelta(0, "s"), to_timedelta(1, "ms")]),
|
1690 |
+
}
|
1691 |
+
)
|
1692 |
+
|
1693 |
+
result = df.any(axis=0)
|
1694 |
+
expected = Series(data=[False, True], index=["a", "t"])
|
1695 |
+
tm.assert_series_equal(result, expected)
|
1696 |
+
|
1697 |
+
result = df.any(axis=1)
|
1698 |
+
expected = Series(data=[False, True])
|
1699 |
+
tm.assert_series_equal(result, expected)
|
1700 |
+
|
1701 |
+
def test_reductions_skipna_none_raises(
|
1702 |
+
self, request, frame_or_series, all_reductions
|
1703 |
+
):
|
1704 |
+
if all_reductions == "count":
|
1705 |
+
request.applymarker(
|
1706 |
+
pytest.mark.xfail(reason="Count does not accept skipna")
|
1707 |
+
)
|
1708 |
+
obj = frame_or_series([1, 2, 3])
|
1709 |
+
msg = 'For argument "skipna" expected type bool, received type NoneType.'
|
1710 |
+
with pytest.raises(ValueError, match=msg):
|
1711 |
+
getattr(obj, all_reductions)(skipna=None)
|
1712 |
+
|
1713 |
+
@td.skip_array_manager_invalid_test
|
1714 |
+
def test_reduction_timestamp_smallest_unit(self):
|
1715 |
+
# GH#52524
|
1716 |
+
df = DataFrame(
|
1717 |
+
{
|
1718 |
+
"a": Series([Timestamp("2019-12-31")], dtype="datetime64[s]"),
|
1719 |
+
"b": Series(
|
1720 |
+
[Timestamp("2019-12-31 00:00:00.123")], dtype="datetime64[ms]"
|
1721 |
+
),
|
1722 |
+
}
|
1723 |
+
)
|
1724 |
+
result = df.max()
|
1725 |
+
expected = Series(
|
1726 |
+
[Timestamp("2019-12-31"), Timestamp("2019-12-31 00:00:00.123")],
|
1727 |
+
dtype="datetime64[ms]",
|
1728 |
+
index=["a", "b"],
|
1729 |
+
)
|
1730 |
+
tm.assert_series_equal(result, expected)
|
1731 |
+
|
1732 |
+
@td.skip_array_manager_not_yet_implemented
|
1733 |
+
def test_reduction_timedelta_smallest_unit(self):
|
1734 |
+
# GH#52524
|
1735 |
+
df = DataFrame(
|
1736 |
+
{
|
1737 |
+
"a": Series([pd.Timedelta("1 days")], dtype="timedelta64[s]"),
|
1738 |
+
"b": Series([pd.Timedelta("1 days")], dtype="timedelta64[ms]"),
|
1739 |
+
}
|
1740 |
+
)
|
1741 |
+
result = df.max()
|
1742 |
+
expected = Series(
|
1743 |
+
[pd.Timedelta("1 days"), pd.Timedelta("1 days")],
|
1744 |
+
dtype="timedelta64[ms]",
|
1745 |
+
index=["a", "b"],
|
1746 |
+
)
|
1747 |
+
tm.assert_series_equal(result, expected)
|
1748 |
+
|
1749 |
+
|
1750 |
+
class TestNuisanceColumns:
|
1751 |
+
@pytest.mark.parametrize("method", ["any", "all"])
|
1752 |
+
def test_any_all_categorical_dtype_nuisance_column(self, method):
|
1753 |
+
# GH#36076 DataFrame should match Series behavior
|
1754 |
+
ser = Series([0, 1], dtype="category", name="A")
|
1755 |
+
df = ser.to_frame()
|
1756 |
+
|
1757 |
+
# Double-check the Series behavior is to raise
|
1758 |
+
with pytest.raises(TypeError, match="does not support reduction"):
|
1759 |
+
getattr(ser, method)()
|
1760 |
+
|
1761 |
+
with pytest.raises(TypeError, match="does not support reduction"):
|
1762 |
+
getattr(np, method)(ser)
|
1763 |
+
|
1764 |
+
with pytest.raises(TypeError, match="does not support reduction"):
|
1765 |
+
getattr(df, method)(bool_only=False)
|
1766 |
+
|
1767 |
+
with pytest.raises(TypeError, match="does not support reduction"):
|
1768 |
+
getattr(df, method)(bool_only=None)
|
1769 |
+
|
1770 |
+
with pytest.raises(TypeError, match="does not support reduction"):
|
1771 |
+
getattr(np, method)(df, axis=0)
|
1772 |
+
|
1773 |
+
def test_median_categorical_dtype_nuisance_column(self):
|
1774 |
+
# GH#21020 DataFrame.median should match Series.median
|
1775 |
+
df = DataFrame({"A": Categorical([1, 2, 2, 2, 3])})
|
1776 |
+
ser = df["A"]
|
1777 |
+
|
1778 |
+
# Double-check the Series behavior is to raise
|
1779 |
+
with pytest.raises(TypeError, match="does not support reduction"):
|
1780 |
+
ser.median()
|
1781 |
+
|
1782 |
+
with pytest.raises(TypeError, match="does not support reduction"):
|
1783 |
+
df.median(numeric_only=False)
|
1784 |
+
|
1785 |
+
with pytest.raises(TypeError, match="does not support reduction"):
|
1786 |
+
df.median()
|
1787 |
+
|
1788 |
+
# same thing, but with an additional non-categorical column
|
1789 |
+
df["B"] = df["A"].astype(int)
|
1790 |
+
|
1791 |
+
with pytest.raises(TypeError, match="does not support reduction"):
|
1792 |
+
df.median(numeric_only=False)
|
1793 |
+
|
1794 |
+
with pytest.raises(TypeError, match="does not support reduction"):
|
1795 |
+
df.median()
|
1796 |
+
|
1797 |
+
# TODO: np.median(df, axis=0) gives np.array([2.0, 2.0]) instead
|
1798 |
+
# of expected.values
|
1799 |
+
|
1800 |
+
@pytest.mark.parametrize("method", ["min", "max"])
|
1801 |
+
def test_min_max_categorical_dtype_non_ordered_nuisance_column(self, method):
|
1802 |
+
# GH#28949 DataFrame.min should behave like Series.min
|
1803 |
+
cat = Categorical(["a", "b", "c", "b"], ordered=False)
|
1804 |
+
ser = Series(cat)
|
1805 |
+
df = ser.to_frame("A")
|
1806 |
+
|
1807 |
+
# Double-check the Series behavior
|
1808 |
+
with pytest.raises(TypeError, match="is not ordered for operation"):
|
1809 |
+
getattr(ser, method)()
|
1810 |
+
|
1811 |
+
with pytest.raises(TypeError, match="is not ordered for operation"):
|
1812 |
+
getattr(np, method)(ser)
|
1813 |
+
|
1814 |
+
with pytest.raises(TypeError, match="is not ordered for operation"):
|
1815 |
+
getattr(df, method)(numeric_only=False)
|
1816 |
+
|
1817 |
+
with pytest.raises(TypeError, match="is not ordered for operation"):
|
1818 |
+
getattr(df, method)()
|
1819 |
+
|
1820 |
+
with pytest.raises(TypeError, match="is not ordered for operation"):
|
1821 |
+
getattr(np, method)(df, axis=0)
|
1822 |
+
|
1823 |
+
# same thing, but with an additional non-categorical column
|
1824 |
+
df["B"] = df["A"].astype(object)
|
1825 |
+
with pytest.raises(TypeError, match="is not ordered for operation"):
|
1826 |
+
getattr(df, method)()
|
1827 |
+
|
1828 |
+
with pytest.raises(TypeError, match="is not ordered for operation"):
|
1829 |
+
getattr(np, method)(df, axis=0)
|
1830 |
+
|
1831 |
+
|
1832 |
+
class TestEmptyDataFrameReductions:
|
1833 |
+
@pytest.mark.parametrize(
|
1834 |
+
"opname, dtype, exp_value, exp_dtype",
|
1835 |
+
[
|
1836 |
+
("sum", np.int8, 0, np.int64),
|
1837 |
+
("prod", np.int8, 1, np.int_),
|
1838 |
+
("sum", np.int64, 0, np.int64),
|
1839 |
+
("prod", np.int64, 1, np.int64),
|
1840 |
+
("sum", np.uint8, 0, np.uint64),
|
1841 |
+
("prod", np.uint8, 1, np.uint),
|
1842 |
+
("sum", np.uint64, 0, np.uint64),
|
1843 |
+
("prod", np.uint64, 1, np.uint64),
|
1844 |
+
("sum", np.float32, 0, np.float32),
|
1845 |
+
("prod", np.float32, 1, np.float32),
|
1846 |
+
("sum", np.float64, 0, np.float64),
|
1847 |
+
],
|
1848 |
+
)
|
1849 |
+
def test_df_empty_min_count_0(self, opname, dtype, exp_value, exp_dtype):
|
1850 |
+
df = DataFrame({0: [], 1: []}, dtype=dtype)
|
1851 |
+
result = getattr(df, opname)(min_count=0)
|
1852 |
+
|
1853 |
+
expected = Series([exp_value, exp_value], dtype=exp_dtype)
|
1854 |
+
tm.assert_series_equal(result, expected)
|
1855 |
+
|
1856 |
+
@pytest.mark.parametrize(
|
1857 |
+
"opname, dtype, exp_dtype",
|
1858 |
+
[
|
1859 |
+
("sum", np.int8, np.float64),
|
1860 |
+
("prod", np.int8, np.float64),
|
1861 |
+
("sum", np.int64, np.float64),
|
1862 |
+
("prod", np.int64, np.float64),
|
1863 |
+
("sum", np.uint8, np.float64),
|
1864 |
+
("prod", np.uint8, np.float64),
|
1865 |
+
("sum", np.uint64, np.float64),
|
1866 |
+
("prod", np.uint64, np.float64),
|
1867 |
+
("sum", np.float32, np.float32),
|
1868 |
+
("prod", np.float32, np.float32),
|
1869 |
+
("sum", np.float64, np.float64),
|
1870 |
+
],
|
1871 |
+
)
|
1872 |
+
def test_df_empty_min_count_1(self, opname, dtype, exp_dtype):
|
1873 |
+
df = DataFrame({0: [], 1: []}, dtype=dtype)
|
1874 |
+
result = getattr(df, opname)(min_count=1)
|
1875 |
+
|
1876 |
+
expected = Series([np.nan, np.nan], dtype=exp_dtype)
|
1877 |
+
tm.assert_series_equal(result, expected)
|
1878 |
+
|
1879 |
+
@pytest.mark.parametrize(
|
1880 |
+
"opname, dtype, exp_value, exp_dtype",
|
1881 |
+
[
|
1882 |
+
("sum", "Int8", 0, ("Int32" if is_windows_np2_or_is32 else "Int64")),
|
1883 |
+
("prod", "Int8", 1, ("Int32" if is_windows_np2_or_is32 else "Int64")),
|
1884 |
+
("prod", "Int8", 1, ("Int32" if is_windows_np2_or_is32 else "Int64")),
|
1885 |
+
("sum", "Int64", 0, "Int64"),
|
1886 |
+
("prod", "Int64", 1, "Int64"),
|
1887 |
+
("sum", "UInt8", 0, ("UInt32" if is_windows_np2_or_is32 else "UInt64")),
|
1888 |
+
("prod", "UInt8", 1, ("UInt32" if is_windows_np2_or_is32 else "UInt64")),
|
1889 |
+
("sum", "UInt64", 0, "UInt64"),
|
1890 |
+
("prod", "UInt64", 1, "UInt64"),
|
1891 |
+
("sum", "Float32", 0, "Float32"),
|
1892 |
+
("prod", "Float32", 1, "Float32"),
|
1893 |
+
("sum", "Float64", 0, "Float64"),
|
1894 |
+
],
|
1895 |
+
)
|
1896 |
+
def test_df_empty_nullable_min_count_0(self, opname, dtype, exp_value, exp_dtype):
|
1897 |
+
df = DataFrame({0: [], 1: []}, dtype=dtype)
|
1898 |
+
result = getattr(df, opname)(min_count=0)
|
1899 |
+
|
1900 |
+
expected = Series([exp_value, exp_value], dtype=exp_dtype)
|
1901 |
+
tm.assert_series_equal(result, expected)
|
1902 |
+
|
1903 |
+
# TODO: why does min_count=1 impact the resulting Windows dtype
|
1904 |
+
# differently than min_count=0?
|
1905 |
+
@pytest.mark.parametrize(
|
1906 |
+
"opname, dtype, exp_dtype",
|
1907 |
+
[
|
1908 |
+
("sum", "Int8", ("Int32" if is_windows_or_is32 else "Int64")),
|
1909 |
+
("prod", "Int8", ("Int32" if is_windows_or_is32 else "Int64")),
|
1910 |
+
("sum", "Int64", "Int64"),
|
1911 |
+
("prod", "Int64", "Int64"),
|
1912 |
+
("sum", "UInt8", ("UInt32" if is_windows_or_is32 else "UInt64")),
|
1913 |
+
("prod", "UInt8", ("UInt32" if is_windows_or_is32 else "UInt64")),
|
1914 |
+
("sum", "UInt64", "UInt64"),
|
1915 |
+
("prod", "UInt64", "UInt64"),
|
1916 |
+
("sum", "Float32", "Float32"),
|
1917 |
+
("prod", "Float32", "Float32"),
|
1918 |
+
("sum", "Float64", "Float64"),
|
1919 |
+
],
|
1920 |
+
)
|
1921 |
+
def test_df_empty_nullable_min_count_1(self, opname, dtype, exp_dtype):
|
1922 |
+
df = DataFrame({0: [], 1: []}, dtype=dtype)
|
1923 |
+
result = getattr(df, opname)(min_count=1)
|
1924 |
+
|
1925 |
+
expected = Series([pd.NA, pd.NA], dtype=exp_dtype)
|
1926 |
+
tm.assert_series_equal(result, expected)
|
1927 |
+
|
1928 |
+
|
1929 |
+
def test_sum_timedelta64_skipna_false(using_array_manager, request):
|
1930 |
+
# GH#17235
|
1931 |
+
if using_array_manager:
|
1932 |
+
mark = pytest.mark.xfail(
|
1933 |
+
reason="Incorrect type inference on NaT in reduction result"
|
1934 |
+
)
|
1935 |
+
request.applymarker(mark)
|
1936 |
+
|
1937 |
+
arr = np.arange(8).astype(np.int64).view("m8[s]").reshape(4, 2)
|
1938 |
+
arr[-1, -1] = "Nat"
|
1939 |
+
|
1940 |
+
df = DataFrame(arr)
|
1941 |
+
assert (df.dtypes == arr.dtype).all()
|
1942 |
+
|
1943 |
+
result = df.sum(skipna=False)
|
1944 |
+
expected = Series([pd.Timedelta(seconds=12), pd.NaT], dtype="m8[s]")
|
1945 |
+
tm.assert_series_equal(result, expected)
|
1946 |
+
|
1947 |
+
result = df.sum(axis=0, skipna=False)
|
1948 |
+
tm.assert_series_equal(result, expected)
|
1949 |
+
|
1950 |
+
result = df.sum(axis=1, skipna=False)
|
1951 |
+
expected = Series(
|
1952 |
+
[
|
1953 |
+
pd.Timedelta(seconds=1),
|
1954 |
+
pd.Timedelta(seconds=5),
|
1955 |
+
pd.Timedelta(seconds=9),
|
1956 |
+
pd.NaT,
|
1957 |
+
],
|
1958 |
+
dtype="m8[s]",
|
1959 |
+
)
|
1960 |
+
tm.assert_series_equal(result, expected)
|
1961 |
+
|
1962 |
+
|
1963 |
+
@pytest.mark.xfail(
|
1964 |
+
using_pyarrow_string_dtype(), reason="sum doesn't work with arrow strings"
|
1965 |
+
)
|
1966 |
+
def test_mixed_frame_with_integer_sum():
|
1967 |
+
# https://github.com/pandas-dev/pandas/issues/34520
|
1968 |
+
df = DataFrame([["a", 1]], columns=list("ab"))
|
1969 |
+
df = df.astype({"b": "Int64"})
|
1970 |
+
result = df.sum()
|
1971 |
+
expected = Series(["a", 1], index=["a", "b"])
|
1972 |
+
tm.assert_series_equal(result, expected)
|
1973 |
+
|
1974 |
+
|
1975 |
+
@pytest.mark.parametrize("numeric_only", [True, False, None])
|
1976 |
+
@pytest.mark.parametrize("method", ["min", "max"])
|
1977 |
+
def test_minmax_extensionarray(method, numeric_only):
|
1978 |
+
# https://github.com/pandas-dev/pandas/issues/32651
|
1979 |
+
int64_info = np.iinfo("int64")
|
1980 |
+
ser = Series([int64_info.max, None, int64_info.min], dtype=pd.Int64Dtype())
|
1981 |
+
df = DataFrame({"Int64": ser})
|
1982 |
+
result = getattr(df, method)(numeric_only=numeric_only)
|
1983 |
+
expected = Series(
|
1984 |
+
[getattr(int64_info, method)],
|
1985 |
+
dtype="Int64",
|
1986 |
+
index=Index(["Int64"]),
|
1987 |
+
)
|
1988 |
+
tm.assert_series_equal(result, expected)
|
1989 |
+
|
1990 |
+
|
1991 |
+
@pytest.mark.parametrize("ts_value", [Timestamp("2000-01-01"), pd.NaT])
|
1992 |
+
def test_frame_mixed_numeric_object_with_timestamp(ts_value):
|
1993 |
+
# GH 13912
|
1994 |
+
df = DataFrame({"a": [1], "b": [1.1], "c": ["foo"], "d": [ts_value]})
|
1995 |
+
with pytest.raises(TypeError, match="does not support reduction"):
|
1996 |
+
df.sum()
|
1997 |
+
|
1998 |
+
|
1999 |
+
def test_prod_sum_min_count_mixed_object():
|
2000 |
+
# https://github.com/pandas-dev/pandas/issues/41074
|
2001 |
+
df = DataFrame([1, "a", True])
|
2002 |
+
|
2003 |
+
result = df.prod(axis=0, min_count=1, numeric_only=False)
|
2004 |
+
expected = Series(["a"], dtype=object)
|
2005 |
+
tm.assert_series_equal(result, expected)
|
2006 |
+
|
2007 |
+
msg = re.escape("unsupported operand type(s) for +: 'int' and 'str'")
|
2008 |
+
with pytest.raises(TypeError, match=msg):
|
2009 |
+
df.sum(axis=0, min_count=1, numeric_only=False)
|
2010 |
+
|
2011 |
+
|
2012 |
+
@pytest.mark.parametrize("method", ["min", "max", "mean", "median", "skew", "kurt"])
|
2013 |
+
@pytest.mark.parametrize("numeric_only", [True, False])
|
2014 |
+
@pytest.mark.parametrize("dtype", ["float64", "Float64"])
|
2015 |
+
def test_reduction_axis_none_returns_scalar(method, numeric_only, dtype):
|
2016 |
+
# GH#21597 As of 2.0, axis=None reduces over all axes.
|
2017 |
+
|
2018 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((4, 4)), dtype=dtype)
|
2019 |
+
|
2020 |
+
result = getattr(df, method)(axis=None, numeric_only=numeric_only)
|
2021 |
+
np_arr = df.to_numpy(dtype=np.float64)
|
2022 |
+
if method in {"skew", "kurt"}:
|
2023 |
+
comp_mod = pytest.importorskip("scipy.stats")
|
2024 |
+
if method == "kurt":
|
2025 |
+
method = "kurtosis"
|
2026 |
+
expected = getattr(comp_mod, method)(np_arr, bias=False, axis=None)
|
2027 |
+
tm.assert_almost_equal(result, expected)
|
2028 |
+
else:
|
2029 |
+
expected = getattr(np, method)(np_arr, axis=None)
|
2030 |
+
assert result == expected
|
2031 |
+
|
2032 |
+
|
2033 |
+
@pytest.mark.parametrize(
|
2034 |
+
"kernel",
|
2035 |
+
[
|
2036 |
+
"corr",
|
2037 |
+
"corrwith",
|
2038 |
+
"cov",
|
2039 |
+
"idxmax",
|
2040 |
+
"idxmin",
|
2041 |
+
"kurt",
|
2042 |
+
"max",
|
2043 |
+
"mean",
|
2044 |
+
"median",
|
2045 |
+
"min",
|
2046 |
+
"prod",
|
2047 |
+
"quantile",
|
2048 |
+
"sem",
|
2049 |
+
"skew",
|
2050 |
+
"std",
|
2051 |
+
"sum",
|
2052 |
+
"var",
|
2053 |
+
],
|
2054 |
+
)
|
2055 |
+
def test_fails_on_non_numeric(kernel):
|
2056 |
+
# GH#46852
|
2057 |
+
df = DataFrame({"a": [1, 2, 3], "b": object})
|
2058 |
+
args = (df,) if kernel == "corrwith" else ()
|
2059 |
+
msg = "|".join(
|
2060 |
+
[
|
2061 |
+
"not allowed for this dtype",
|
2062 |
+
"argument must be a string or a number",
|
2063 |
+
"not supported between instances of",
|
2064 |
+
"unsupported operand type",
|
2065 |
+
"argument must be a string or a real number",
|
2066 |
+
]
|
2067 |
+
)
|
2068 |
+
if kernel == "median":
|
2069 |
+
# slightly different message on different builds
|
2070 |
+
msg1 = (
|
2071 |
+
r"Cannot convert \[\[<class 'object'> <class 'object'> "
|
2072 |
+
r"<class 'object'>\]\] to numeric"
|
2073 |
+
)
|
2074 |
+
msg2 = (
|
2075 |
+
r"Cannot convert \[<class 'object'> <class 'object'> "
|
2076 |
+
r"<class 'object'>\] to numeric"
|
2077 |
+
)
|
2078 |
+
msg = "|".join([msg1, msg2])
|
2079 |
+
with pytest.raises(TypeError, match=msg):
|
2080 |
+
getattr(df, kernel)(*args)
|
2081 |
+
|
2082 |
+
|
2083 |
+
@pytest.mark.parametrize(
|
2084 |
+
"method",
|
2085 |
+
[
|
2086 |
+
"all",
|
2087 |
+
"any",
|
2088 |
+
"count",
|
2089 |
+
"idxmax",
|
2090 |
+
"idxmin",
|
2091 |
+
"kurt",
|
2092 |
+
"kurtosis",
|
2093 |
+
"max",
|
2094 |
+
"mean",
|
2095 |
+
"median",
|
2096 |
+
"min",
|
2097 |
+
"nunique",
|
2098 |
+
"prod",
|
2099 |
+
"product",
|
2100 |
+
"sem",
|
2101 |
+
"skew",
|
2102 |
+
"std",
|
2103 |
+
"sum",
|
2104 |
+
"var",
|
2105 |
+
],
|
2106 |
+
)
|
2107 |
+
@pytest.mark.parametrize("min_count", [0, 2])
|
2108 |
+
def test_numeric_ea_axis_1(method, skipna, min_count, any_numeric_ea_dtype):
|
2109 |
+
# GH 54341
|
2110 |
+
df = DataFrame(
|
2111 |
+
{
|
2112 |
+
"a": Series([0, 1, 2, 3], dtype=any_numeric_ea_dtype),
|
2113 |
+
"b": Series([0, 1, pd.NA, 3], dtype=any_numeric_ea_dtype),
|
2114 |
+
},
|
2115 |
+
)
|
2116 |
+
expected_df = DataFrame(
|
2117 |
+
{
|
2118 |
+
"a": [0.0, 1.0, 2.0, 3.0],
|
2119 |
+
"b": [0.0, 1.0, np.nan, 3.0],
|
2120 |
+
},
|
2121 |
+
)
|
2122 |
+
if method in ("count", "nunique"):
|
2123 |
+
expected_dtype = "int64"
|
2124 |
+
elif method in ("all", "any"):
|
2125 |
+
expected_dtype = "boolean"
|
2126 |
+
elif method in (
|
2127 |
+
"kurt",
|
2128 |
+
"kurtosis",
|
2129 |
+
"mean",
|
2130 |
+
"median",
|
2131 |
+
"sem",
|
2132 |
+
"skew",
|
2133 |
+
"std",
|
2134 |
+
"var",
|
2135 |
+
) and not any_numeric_ea_dtype.startswith("Float"):
|
2136 |
+
expected_dtype = "Float64"
|
2137 |
+
else:
|
2138 |
+
expected_dtype = any_numeric_ea_dtype
|
2139 |
+
|
2140 |
+
kwargs = {}
|
2141 |
+
if method not in ("count", "nunique", "quantile"):
|
2142 |
+
kwargs["skipna"] = skipna
|
2143 |
+
if method in ("prod", "product", "sum"):
|
2144 |
+
kwargs["min_count"] = min_count
|
2145 |
+
|
2146 |
+
warn = None
|
2147 |
+
msg = None
|
2148 |
+
if not skipna and method in ("idxmax", "idxmin"):
|
2149 |
+
warn = FutureWarning
|
2150 |
+
msg = f"The behavior of DataFrame.{method} with all-NA values"
|
2151 |
+
with tm.assert_produces_warning(warn, match=msg):
|
2152 |
+
result = getattr(df, method)(axis=1, **kwargs)
|
2153 |
+
with tm.assert_produces_warning(warn, match=msg):
|
2154 |
+
expected = getattr(expected_df, method)(axis=1, **kwargs)
|
2155 |
+
if method not in ("idxmax", "idxmin"):
|
2156 |
+
expected = expected.astype(expected_dtype)
|
2157 |
+
tm.assert_series_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_stack_unstack.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_ufunc.py
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
import re
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import pandas._testing as tm
|
9 |
+
from pandas.api.types import is_extension_array_dtype
|
10 |
+
|
11 |
+
dtypes = [
|
12 |
+
"int64",
|
13 |
+
"Int64",
|
14 |
+
{"A": "int64", "B": "Int64"},
|
15 |
+
]
|
16 |
+
|
17 |
+
|
18 |
+
@pytest.mark.parametrize("dtype", dtypes)
|
19 |
+
def test_unary_unary(dtype):
|
20 |
+
# unary input, unary output
|
21 |
+
values = np.array([[-1, -1], [1, 1]], dtype="int64")
|
22 |
+
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
|
23 |
+
result = np.positive(df)
|
24 |
+
expected = pd.DataFrame(
|
25 |
+
np.positive(values), index=df.index, columns=df.columns
|
26 |
+
).astype(dtype)
|
27 |
+
tm.assert_frame_equal(result, expected)
|
28 |
+
|
29 |
+
|
30 |
+
@pytest.mark.parametrize("dtype", dtypes)
|
31 |
+
def test_unary_binary(request, dtype):
|
32 |
+
# unary input, binary output
|
33 |
+
if is_extension_array_dtype(dtype) or isinstance(dtype, dict):
|
34 |
+
request.applymarker(
|
35 |
+
pytest.mark.xfail(
|
36 |
+
reason="Extension / mixed with multiple outputs not implemented."
|
37 |
+
)
|
38 |
+
)
|
39 |
+
|
40 |
+
values = np.array([[-1, -1], [1, 1]], dtype="int64")
|
41 |
+
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
|
42 |
+
result_pandas = np.modf(df)
|
43 |
+
assert isinstance(result_pandas, tuple)
|
44 |
+
assert len(result_pandas) == 2
|
45 |
+
expected_numpy = np.modf(values)
|
46 |
+
|
47 |
+
for result, b in zip(result_pandas, expected_numpy):
|
48 |
+
expected = pd.DataFrame(b, index=df.index, columns=df.columns)
|
49 |
+
tm.assert_frame_equal(result, expected)
|
50 |
+
|
51 |
+
|
52 |
+
@pytest.mark.parametrize("dtype", dtypes)
|
53 |
+
def test_binary_input_dispatch_binop(dtype):
|
54 |
+
# binop ufuncs are dispatched to our dunder methods.
|
55 |
+
values = np.array([[-1, -1], [1, 1]], dtype="int64")
|
56 |
+
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
|
57 |
+
result = np.add(df, df)
|
58 |
+
expected = pd.DataFrame(
|
59 |
+
np.add(values, values), index=df.index, columns=df.columns
|
60 |
+
).astype(dtype)
|
61 |
+
tm.assert_frame_equal(result, expected)
|
62 |
+
|
63 |
+
|
64 |
+
@pytest.mark.parametrize(
|
65 |
+
"func,arg,expected",
|
66 |
+
[
|
67 |
+
(np.add, 1, [2, 3, 4, 5]),
|
68 |
+
(
|
69 |
+
partial(np.add, where=[[False, True], [True, False]]),
|
70 |
+
np.array([[1, 1], [1, 1]]),
|
71 |
+
[0, 3, 4, 0],
|
72 |
+
),
|
73 |
+
(np.power, np.array([[1, 1], [2, 2]]), [1, 2, 9, 16]),
|
74 |
+
(np.subtract, 2, [-1, 0, 1, 2]),
|
75 |
+
(
|
76 |
+
partial(np.negative, where=np.array([[False, True], [True, False]])),
|
77 |
+
None,
|
78 |
+
[0, -2, -3, 0],
|
79 |
+
),
|
80 |
+
],
|
81 |
+
)
|
82 |
+
def test_ufunc_passes_args(func, arg, expected):
|
83 |
+
# GH#40662
|
84 |
+
arr = np.array([[1, 2], [3, 4]])
|
85 |
+
df = pd.DataFrame(arr)
|
86 |
+
result_inplace = np.zeros_like(arr)
|
87 |
+
# 1-argument ufunc
|
88 |
+
if arg is None:
|
89 |
+
result = func(df, out=result_inplace)
|
90 |
+
else:
|
91 |
+
result = func(df, arg, out=result_inplace)
|
92 |
+
|
93 |
+
expected = np.array(expected).reshape(2, 2)
|
94 |
+
tm.assert_numpy_array_equal(result_inplace, expected)
|
95 |
+
|
96 |
+
expected = pd.DataFrame(expected)
|
97 |
+
tm.assert_frame_equal(result, expected)
|
98 |
+
|
99 |
+
|
100 |
+
@pytest.mark.parametrize("dtype_a", dtypes)
|
101 |
+
@pytest.mark.parametrize("dtype_b", dtypes)
|
102 |
+
def test_binary_input_aligns_columns(request, dtype_a, dtype_b):
|
103 |
+
if (
|
104 |
+
is_extension_array_dtype(dtype_a)
|
105 |
+
or isinstance(dtype_a, dict)
|
106 |
+
or is_extension_array_dtype(dtype_b)
|
107 |
+
or isinstance(dtype_b, dict)
|
108 |
+
):
|
109 |
+
request.applymarker(
|
110 |
+
pytest.mark.xfail(
|
111 |
+
reason="Extension / mixed with multiple inputs not implemented."
|
112 |
+
)
|
113 |
+
)
|
114 |
+
|
115 |
+
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}).astype(dtype_a)
|
116 |
+
|
117 |
+
if isinstance(dtype_a, dict) and isinstance(dtype_b, dict):
|
118 |
+
dtype_b = dtype_b.copy()
|
119 |
+
dtype_b["C"] = dtype_b.pop("B")
|
120 |
+
df2 = pd.DataFrame({"A": [1, 2], "C": [3, 4]}).astype(dtype_b)
|
121 |
+
# As of 2.0, align first before applying the ufunc
|
122 |
+
result = np.heaviside(df1, df2)
|
123 |
+
expected = np.heaviside(
|
124 |
+
np.array([[1, 3, np.nan], [2, 4, np.nan]]),
|
125 |
+
np.array([[1, np.nan, 3], [2, np.nan, 4]]),
|
126 |
+
)
|
127 |
+
expected = pd.DataFrame(expected, index=[0, 1], columns=["A", "B", "C"])
|
128 |
+
tm.assert_frame_equal(result, expected)
|
129 |
+
|
130 |
+
result = np.heaviside(df1, df2.values)
|
131 |
+
expected = pd.DataFrame([[1.0, 1.0], [1.0, 1.0]], columns=["A", "B"])
|
132 |
+
tm.assert_frame_equal(result, expected)
|
133 |
+
|
134 |
+
|
135 |
+
@pytest.mark.parametrize("dtype", dtypes)
|
136 |
+
def test_binary_input_aligns_index(request, dtype):
|
137 |
+
if is_extension_array_dtype(dtype) or isinstance(dtype, dict):
|
138 |
+
request.applymarker(
|
139 |
+
pytest.mark.xfail(
|
140 |
+
reason="Extension / mixed with multiple inputs not implemented."
|
141 |
+
)
|
142 |
+
)
|
143 |
+
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "b"]).astype(dtype)
|
144 |
+
df2 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "c"]).astype(dtype)
|
145 |
+
result = np.heaviside(df1, df2)
|
146 |
+
expected = np.heaviside(
|
147 |
+
np.array([[1, 3], [3, 4], [np.nan, np.nan]]),
|
148 |
+
np.array([[1, 3], [np.nan, np.nan], [3, 4]]),
|
149 |
+
)
|
150 |
+
# TODO(FloatArray): this will be Float64Dtype.
|
151 |
+
expected = pd.DataFrame(expected, index=["a", "b", "c"], columns=["A", "B"])
|
152 |
+
tm.assert_frame_equal(result, expected)
|
153 |
+
|
154 |
+
result = np.heaviside(df1, df2.values)
|
155 |
+
expected = pd.DataFrame(
|
156 |
+
[[1.0, 1.0], [1.0, 1.0]], columns=["A", "B"], index=["a", "b"]
|
157 |
+
)
|
158 |
+
tm.assert_frame_equal(result, expected)
|
159 |
+
|
160 |
+
|
161 |
+
def test_binary_frame_series_raises():
|
162 |
+
# We don't currently implement
|
163 |
+
df = pd.DataFrame({"A": [1, 2]})
|
164 |
+
with pytest.raises(NotImplementedError, match="logaddexp"):
|
165 |
+
np.logaddexp(df, df["A"])
|
166 |
+
|
167 |
+
with pytest.raises(NotImplementedError, match="logaddexp"):
|
168 |
+
np.logaddexp(df["A"], df)
|
169 |
+
|
170 |
+
|
171 |
+
def test_unary_accumulate_axis():
|
172 |
+
# https://github.com/pandas-dev/pandas/issues/39259
|
173 |
+
df = pd.DataFrame({"a": [1, 3, 2, 4]})
|
174 |
+
result = np.maximum.accumulate(df)
|
175 |
+
expected = pd.DataFrame({"a": [1, 3, 3, 4]})
|
176 |
+
tm.assert_frame_equal(result, expected)
|
177 |
+
|
178 |
+
df = pd.DataFrame({"a": [1, 3, 2, 4], "b": [0.1, 4.0, 3.0, 2.0]})
|
179 |
+
result = np.maximum.accumulate(df)
|
180 |
+
# in theory could preserve int dtype for default axis=0
|
181 |
+
expected = pd.DataFrame({"a": [1.0, 3.0, 3.0, 4.0], "b": [0.1, 4.0, 4.0, 4.0]})
|
182 |
+
tm.assert_frame_equal(result, expected)
|
183 |
+
|
184 |
+
result = np.maximum.accumulate(df, axis=0)
|
185 |
+
tm.assert_frame_equal(result, expected)
|
186 |
+
|
187 |
+
result = np.maximum.accumulate(df, axis=1)
|
188 |
+
expected = pd.DataFrame({"a": [1.0, 3.0, 2.0, 4.0], "b": [1.0, 4.0, 3.0, 4.0]})
|
189 |
+
tm.assert_frame_equal(result, expected)
|
190 |
+
|
191 |
+
|
192 |
+
def test_frame_outer_disallowed():
|
193 |
+
df = pd.DataFrame({"A": [1, 2]})
|
194 |
+
with pytest.raises(NotImplementedError, match=""):
|
195 |
+
# deprecation enforced in 2.0
|
196 |
+
np.subtract.outer(df, df)
|
197 |
+
|
198 |
+
|
199 |
+
def test_alignment_deprecation_enforced():
|
200 |
+
# Enforced in 2.0
|
201 |
+
# https://github.com/pandas-dev/pandas/issues/39184
|
202 |
+
df1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
203 |
+
df2 = pd.DataFrame({"b": [1, 2, 3], "c": [4, 5, 6]})
|
204 |
+
s1 = pd.Series([1, 2], index=["a", "b"])
|
205 |
+
s2 = pd.Series([1, 2], index=["b", "c"])
|
206 |
+
|
207 |
+
# binary dataframe / dataframe
|
208 |
+
expected = pd.DataFrame({"a": [2, 4, 6], "b": [8, 10, 12]})
|
209 |
+
|
210 |
+
with tm.assert_produces_warning(None):
|
211 |
+
# aligned -> no warning!
|
212 |
+
result = np.add(df1, df1)
|
213 |
+
tm.assert_frame_equal(result, expected)
|
214 |
+
|
215 |
+
result = np.add(df1, df2.values)
|
216 |
+
tm.assert_frame_equal(result, expected)
|
217 |
+
|
218 |
+
result = np.add(df1, df2)
|
219 |
+
expected = pd.DataFrame({"a": [np.nan] * 3, "b": [5, 7, 9], "c": [np.nan] * 3})
|
220 |
+
tm.assert_frame_equal(result, expected)
|
221 |
+
|
222 |
+
result = np.add(df1.values, df2)
|
223 |
+
expected = pd.DataFrame({"b": [2, 4, 6], "c": [8, 10, 12]})
|
224 |
+
tm.assert_frame_equal(result, expected)
|
225 |
+
|
226 |
+
# binary dataframe / series
|
227 |
+
expected = pd.DataFrame({"a": [2, 3, 4], "b": [6, 7, 8]})
|
228 |
+
|
229 |
+
with tm.assert_produces_warning(None):
|
230 |
+
# aligned -> no warning!
|
231 |
+
result = np.add(df1, s1)
|
232 |
+
tm.assert_frame_equal(result, expected)
|
233 |
+
|
234 |
+
result = np.add(df1, s2.values)
|
235 |
+
tm.assert_frame_equal(result, expected)
|
236 |
+
|
237 |
+
expected = pd.DataFrame(
|
238 |
+
{"a": [np.nan] * 3, "b": [5.0, 6.0, 7.0], "c": [np.nan] * 3}
|
239 |
+
)
|
240 |
+
result = np.add(df1, s2)
|
241 |
+
tm.assert_frame_equal(result, expected)
|
242 |
+
|
243 |
+
msg = "Cannot apply ufunc <ufunc 'add'> to mixed DataFrame and Series inputs."
|
244 |
+
with pytest.raises(NotImplementedError, match=msg):
|
245 |
+
np.add(s2, df1)
|
246 |
+
|
247 |
+
|
248 |
+
def test_alignment_deprecation_many_inputs_enforced():
|
249 |
+
# Enforced in 2.0
|
250 |
+
# https://github.com/pandas-dev/pandas/issues/39184
|
251 |
+
# test that the deprecation also works with > 2 inputs -> using a numba
|
252 |
+
# written ufunc for this because numpy itself doesn't have such ufuncs
|
253 |
+
numba = pytest.importorskip("numba")
|
254 |
+
|
255 |
+
@numba.vectorize([numba.float64(numba.float64, numba.float64, numba.float64)])
|
256 |
+
def my_ufunc(x, y, z):
|
257 |
+
return x + y + z
|
258 |
+
|
259 |
+
df1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
260 |
+
df2 = pd.DataFrame({"b": [1, 2, 3], "c": [4, 5, 6]})
|
261 |
+
df3 = pd.DataFrame({"a": [1, 2, 3], "c": [4, 5, 6]})
|
262 |
+
|
263 |
+
result = my_ufunc(df1, df2, df3)
|
264 |
+
expected = pd.DataFrame(np.full((3, 3), np.nan), columns=["a", "b", "c"])
|
265 |
+
tm.assert_frame_equal(result, expected)
|
266 |
+
|
267 |
+
# all aligned -> no warning
|
268 |
+
with tm.assert_produces_warning(None):
|
269 |
+
result = my_ufunc(df1, df1, df1)
|
270 |
+
expected = pd.DataFrame([[3.0, 12.0], [6.0, 15.0], [9.0, 18.0]], columns=["a", "b"])
|
271 |
+
tm.assert_frame_equal(result, expected)
|
272 |
+
|
273 |
+
# mixed frame / arrays
|
274 |
+
msg = (
|
275 |
+
r"operands could not be broadcast together with shapes \(3,3\) \(3,3\) \(3,2\)"
|
276 |
+
)
|
277 |
+
with pytest.raises(ValueError, match=msg):
|
278 |
+
my_ufunc(df1, df2, df3.values)
|
279 |
+
|
280 |
+
# single frame -> no warning
|
281 |
+
with tm.assert_produces_warning(None):
|
282 |
+
result = my_ufunc(df1, df2.values, df3.values)
|
283 |
+
tm.assert_frame_equal(result, expected)
|
284 |
+
|
285 |
+
# takes indices of first frame
|
286 |
+
msg = (
|
287 |
+
r"operands could not be broadcast together with shapes \(3,2\) \(3,3\) \(3,3\)"
|
288 |
+
)
|
289 |
+
with pytest.raises(ValueError, match=msg):
|
290 |
+
my_ufunc(df1.values, df2, df3)
|
291 |
+
|
292 |
+
|
293 |
+
def test_array_ufuncs_for_many_arguments():
|
294 |
+
# GH39853
|
295 |
+
def add3(x, y, z):
|
296 |
+
return x + y + z
|
297 |
+
|
298 |
+
ufunc = np.frompyfunc(add3, 3, 1)
|
299 |
+
df = pd.DataFrame([[1, 2], [3, 4]])
|
300 |
+
|
301 |
+
result = ufunc(df, df, 1)
|
302 |
+
expected = pd.DataFrame([[3, 5], [7, 9]], dtype=object)
|
303 |
+
tm.assert_frame_equal(result, expected)
|
304 |
+
|
305 |
+
ser = pd.Series([1, 2])
|
306 |
+
msg = (
|
307 |
+
"Cannot apply ufunc <ufunc 'add3 (vectorized)'> "
|
308 |
+
"to mixed DataFrame and Series inputs."
|
309 |
+
)
|
310 |
+
with pytest.raises(NotImplementedError, match=re.escape(msg)):
|
311 |
+
ufunc(df, df, ser)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/frame/test_unary.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from decimal import Decimal
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas.compat.numpy import np_version_gte1p25
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
import pandas._testing as tm
|
10 |
+
|
11 |
+
|
12 |
+
class TestDataFrameUnaryOperators:
|
13 |
+
# __pos__, __neg__, __invert__
|
14 |
+
|
15 |
+
@pytest.mark.parametrize(
|
16 |
+
"df,expected",
|
17 |
+
[
|
18 |
+
(pd.DataFrame({"a": [-1, 1]}), pd.DataFrame({"a": [1, -1]})),
|
19 |
+
(pd.DataFrame({"a": [False, True]}), pd.DataFrame({"a": [True, False]})),
|
20 |
+
(
|
21 |
+
pd.DataFrame({"a": pd.Series(pd.to_timedelta([-1, 1]))}),
|
22 |
+
pd.DataFrame({"a": pd.Series(pd.to_timedelta([1, -1]))}),
|
23 |
+
),
|
24 |
+
],
|
25 |
+
)
|
26 |
+
def test_neg_numeric(self, df, expected):
|
27 |
+
tm.assert_frame_equal(-df, expected)
|
28 |
+
tm.assert_series_equal(-df["a"], expected["a"])
|
29 |
+
|
30 |
+
@pytest.mark.parametrize(
|
31 |
+
"df, expected",
|
32 |
+
[
|
33 |
+
(np.array([1, 2], dtype=object), np.array([-1, -2], dtype=object)),
|
34 |
+
([Decimal("1.0"), Decimal("2.0")], [Decimal("-1.0"), Decimal("-2.0")]),
|
35 |
+
],
|
36 |
+
)
|
37 |
+
def test_neg_object(self, df, expected):
|
38 |
+
# GH#21380
|
39 |
+
df = pd.DataFrame({"a": df})
|
40 |
+
expected = pd.DataFrame({"a": expected})
|
41 |
+
tm.assert_frame_equal(-df, expected)
|
42 |
+
tm.assert_series_equal(-df["a"], expected["a"])
|
43 |
+
|
44 |
+
@pytest.mark.parametrize(
|
45 |
+
"df",
|
46 |
+
[
|
47 |
+
pd.DataFrame({"a": ["a", "b"]}),
|
48 |
+
pd.DataFrame({"a": pd.to_datetime(["2017-01-22", "1970-01-01"])}),
|
49 |
+
],
|
50 |
+
)
|
51 |
+
def test_neg_raises(self, df, using_infer_string):
|
52 |
+
msg = (
|
53 |
+
"bad operand type for unary -: 'str'|"
|
54 |
+
r"bad operand type for unary -: 'DatetimeArray'"
|
55 |
+
)
|
56 |
+
if using_infer_string and df.dtypes.iloc[0] == "string":
|
57 |
+
import pyarrow as pa
|
58 |
+
|
59 |
+
msg = "has no kernel"
|
60 |
+
with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg):
|
61 |
+
(-df)
|
62 |
+
with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg):
|
63 |
+
(-df["a"])
|
64 |
+
|
65 |
+
else:
|
66 |
+
with pytest.raises(TypeError, match=msg):
|
67 |
+
(-df)
|
68 |
+
with pytest.raises(TypeError, match=msg):
|
69 |
+
(-df["a"])
|
70 |
+
|
71 |
+
def test_invert(self, float_frame):
|
72 |
+
df = float_frame
|
73 |
+
|
74 |
+
tm.assert_frame_equal(-(df < 0), ~(df < 0))
|
75 |
+
|
76 |
+
def test_invert_mixed(self):
|
77 |
+
shape = (10, 5)
|
78 |
+
df = pd.concat(
|
79 |
+
[
|
80 |
+
pd.DataFrame(np.zeros(shape, dtype="bool")),
|
81 |
+
pd.DataFrame(np.zeros(shape, dtype=int)),
|
82 |
+
],
|
83 |
+
axis=1,
|
84 |
+
ignore_index=True,
|
85 |
+
)
|
86 |
+
result = ~df
|
87 |
+
expected = pd.concat(
|
88 |
+
[
|
89 |
+
pd.DataFrame(np.ones(shape, dtype="bool")),
|
90 |
+
pd.DataFrame(-np.ones(shape, dtype=int)),
|
91 |
+
],
|
92 |
+
axis=1,
|
93 |
+
ignore_index=True,
|
94 |
+
)
|
95 |
+
tm.assert_frame_equal(result, expected)
|
96 |
+
|
97 |
+
def test_invert_empty_not_input(self):
|
98 |
+
# GH#51032
|
99 |
+
df = pd.DataFrame()
|
100 |
+
result = ~df
|
101 |
+
tm.assert_frame_equal(df, result)
|
102 |
+
assert df is not result
|
103 |
+
|
104 |
+
@pytest.mark.parametrize(
|
105 |
+
"df",
|
106 |
+
[
|
107 |
+
pd.DataFrame({"a": [-1, 1]}),
|
108 |
+
pd.DataFrame({"a": [False, True]}),
|
109 |
+
pd.DataFrame({"a": pd.Series(pd.to_timedelta([-1, 1]))}),
|
110 |
+
],
|
111 |
+
)
|
112 |
+
def test_pos_numeric(self, df):
|
113 |
+
# GH#16073
|
114 |
+
tm.assert_frame_equal(+df, df)
|
115 |
+
tm.assert_series_equal(+df["a"], df["a"])
|
116 |
+
|
117 |
+
@pytest.mark.parametrize(
|
118 |
+
"df",
|
119 |
+
[
|
120 |
+
pd.DataFrame({"a": np.array([-1, 2], dtype=object)}),
|
121 |
+
pd.DataFrame({"a": [Decimal("-1.0"), Decimal("2.0")]}),
|
122 |
+
],
|
123 |
+
)
|
124 |
+
def test_pos_object(self, df):
|
125 |
+
# GH#21380
|
126 |
+
tm.assert_frame_equal(+df, df)
|
127 |
+
tm.assert_series_equal(+df["a"], df["a"])
|
128 |
+
|
129 |
+
@pytest.mark.parametrize(
|
130 |
+
"df",
|
131 |
+
[
|
132 |
+
pytest.param(
|
133 |
+
pd.DataFrame({"a": ["a", "b"]}),
|
134 |
+
# filterwarnings removable once min numpy version is 1.25
|
135 |
+
marks=[
|
136 |
+
pytest.mark.filterwarnings("ignore:Applying:DeprecationWarning")
|
137 |
+
],
|
138 |
+
),
|
139 |
+
],
|
140 |
+
)
|
141 |
+
def test_pos_object_raises(self, df):
|
142 |
+
# GH#21380
|
143 |
+
if np_version_gte1p25:
|
144 |
+
with pytest.raises(
|
145 |
+
TypeError, match=r"^bad operand type for unary \+: \'str\'$"
|
146 |
+
):
|
147 |
+
tm.assert_frame_equal(+df, df)
|
148 |
+
else:
|
149 |
+
tm.assert_series_equal(+df["a"], df["a"])
|
150 |
+
|
151 |
+
@pytest.mark.parametrize(
|
152 |
+
"df", [pd.DataFrame({"a": pd.to_datetime(["2017-01-22", "1970-01-01"])})]
|
153 |
+
)
|
154 |
+
def test_pos_raises(self, df):
|
155 |
+
msg = r"bad operand type for unary \+: 'DatetimeArray'"
|
156 |
+
with pytest.raises(TypeError, match=msg):
|
157 |
+
(+df)
|
158 |
+
with pytest.raises(TypeError, match=msg):
|
159 |
+
(+df["a"])
|
160 |
+
|
161 |
+
def test_unary_nullable(self):
|
162 |
+
df = pd.DataFrame(
|
163 |
+
{
|
164 |
+
"a": pd.array([1, -2, 3, pd.NA], dtype="Int64"),
|
165 |
+
"b": pd.array([4.0, -5.0, 6.0, pd.NA], dtype="Float32"),
|
166 |
+
"c": pd.array([True, False, False, pd.NA], dtype="boolean"),
|
167 |
+
# include numpy bool to make sure bool-vs-boolean behavior
|
168 |
+
# is consistent in non-NA locations
|
169 |
+
"d": np.array([True, False, False, True]),
|
170 |
+
}
|
171 |
+
)
|
172 |
+
|
173 |
+
result = +df
|
174 |
+
res_ufunc = np.positive(df)
|
175 |
+
expected = df
|
176 |
+
# TODO: assert that we have copies?
|
177 |
+
tm.assert_frame_equal(result, expected)
|
178 |
+
tm.assert_frame_equal(res_ufunc, expected)
|
179 |
+
|
180 |
+
result = -df
|
181 |
+
res_ufunc = np.negative(df)
|
182 |
+
expected = pd.DataFrame(
|
183 |
+
{
|
184 |
+
"a": pd.array([-1, 2, -3, pd.NA], dtype="Int64"),
|
185 |
+
"b": pd.array([-4.0, 5.0, -6.0, pd.NA], dtype="Float32"),
|
186 |
+
"c": pd.array([False, True, True, pd.NA], dtype="boolean"),
|
187 |
+
"d": np.array([False, True, True, False]),
|
188 |
+
}
|
189 |
+
)
|
190 |
+
tm.assert_frame_equal(result, expected)
|
191 |
+
tm.assert_frame_equal(res_ufunc, expected)
|
192 |
+
|
193 |
+
result = abs(df)
|
194 |
+
res_ufunc = np.abs(df)
|
195 |
+
expected = pd.DataFrame(
|
196 |
+
{
|
197 |
+
"a": pd.array([1, 2, 3, pd.NA], dtype="Int64"),
|
198 |
+
"b": pd.array([4.0, 5.0, 6.0, pd.NA], dtype="Float32"),
|
199 |
+
"c": pd.array([True, False, False, pd.NA], dtype="boolean"),
|
200 |
+
"d": np.array([True, False, False, True]),
|
201 |
+
}
|
202 |
+
)
|
203 |
+
tm.assert_frame_equal(result, expected)
|
204 |
+
tm.assert_frame_equal(res_ufunc, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (858 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (4.25 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_all_methods.cpython-310.pyc
ADDED
Binary file (2.87 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_api.cpython-310.pyc
ADDED
Binary file (5.07 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_apply.cpython-310.pyc
ADDED
Binary file (52.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_apply_mutate.cpython-310.pyc
ADDED
Binary file (5.09 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_bin_groupby.cpython-310.pyc
ADDED
Binary file (1.96 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_categorical.cpython-310.pyc
ADDED
Binary file (50.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_counting.cpython-310.pyc
ADDED
Binary file (14.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_cumulative.cpython-310.pyc
ADDED
Binary file (9.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_filters.cpython-310.pyc
ADDED
Binary file (22.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_groupby.cpython-310.pyc
ADDED
Binary file (95.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_groupby_dropna.cpython-310.pyc
ADDED
Binary file (16.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_groupby_subclass.cpython-310.pyc
ADDED
Binary file (3.68 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_grouping.cpython-310.pyc
ADDED
Binary file (38.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_index_as_string.cpython-310.pyc
ADDED
Binary file (2.11 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_indexing.cpython-310.pyc
ADDED
Binary file (9.75 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_libgroupby.cpython-310.pyc
ADDED
Binary file (9.96 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_missing.cpython-310.pyc
ADDED
Binary file (5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_numba.cpython-310.pyc
ADDED
Binary file (3.24 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_numeric_only.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_pipe.cpython-310.pyc
ADDED
Binary file (2.56 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_raises.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_reductions.cpython-310.pyc
ADDED
Binary file (29.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/groupby/__pycache__/test_timegrouper.cpython-310.pyc
ADDED
Binary file (23.6 kB). View file
|
|