Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/transformers/models/bertweet/__init__.py +29 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bertweet/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bertweet/__pycache__/tokenization_bertweet.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bertweet/tokenization_bertweet.py +782 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__init__.py +88 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/configuration_chinese_clip.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/convert_chinese_clip_original_pytorch_to_hf.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/feature_extraction_chinese_clip.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/image_processing_chinese_clip.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/modeling_chinese_clip.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/processing_chinese_clip.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/configuration_chinese_clip.py +471 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py +134 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/feature_extraction_chinese_clip.py +33 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/image_processing_chinese_clip.py +331 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/modeling_chinese_clip.py +1564 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/processing_chinese_clip.py +142 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__init__.py +56 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/configuration_mctct.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/feature_extraction_mctct.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/modeling_mctct.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/processing_mctct.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/configuration_mctct.py +186 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/feature_extraction_mctct.py +288 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/modeling_mctct.py +795 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/processing_mctct.py +142 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/__init__.py +112 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/configuration_gptj.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_flax_gptj.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_gptj.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_tf_gptj.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/configuration_gptj.py +220 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/modeling_flax_gptj.py +718 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/modeling_gptj.py +1430 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/modeling_tf_gptj.py +1104 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__init__.py +97 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/configuration_groupvit.py +453 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/convert_groupvit_nvlab_to_hf.py +217 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/modeling_tf_groupvit.py +2135 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__init__.py +114 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__pycache__/configuration_llama.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__pycache__/convert_llama_weights_to_hf.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__pycache__/modeling_flax_llama.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__pycache__/modeling_llama.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__pycache__/tokenization_llama.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/transformers/models/bertweet/__init__.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import _LazyModule
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {"tokenization_bertweet": ["BertweetTokenizer"]}
|
21 |
+
|
22 |
+
|
23 |
+
if TYPE_CHECKING:
|
24 |
+
from .tokenization_bertweet import BertweetTokenizer
|
25 |
+
|
26 |
+
else:
|
27 |
+
import sys
|
28 |
+
|
29 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bertweet/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (510 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bertweet/__pycache__/tokenization_bertweet.cpython-310.pyc
ADDED
Binary file (21.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bertweet/tokenization_bertweet.py
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
|
3 |
+
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" Tokenization classes for BERTweet"""
|
17 |
+
|
18 |
+
|
19 |
+
import html
|
20 |
+
import os
|
21 |
+
import re
|
22 |
+
from shutil import copyfile
|
23 |
+
from typing import List, Optional, Tuple
|
24 |
+
|
25 |
+
import regex
|
26 |
+
|
27 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
28 |
+
from ...utils import logging
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
VOCAB_FILES_NAMES = {
|
34 |
+
"vocab_file": "vocab.txt",
|
35 |
+
"merges_file": "bpe.codes",
|
36 |
+
}
|
37 |
+
|
38 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
39 |
+
"vocab_file": {
|
40 |
+
"vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/vocab.txt",
|
41 |
+
},
|
42 |
+
"merges_file": {
|
43 |
+
"vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/bpe.codes",
|
44 |
+
},
|
45 |
+
}
|
46 |
+
|
47 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
48 |
+
"vinai/bertweet-base": 128,
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
def get_pairs(word):
|
53 |
+
"""
|
54 |
+
Return set of symbol pairs in a word.
|
55 |
+
|
56 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
57 |
+
"""
|
58 |
+
pairs = set()
|
59 |
+
prev_char = word[0]
|
60 |
+
for char in word[1:]:
|
61 |
+
pairs.add((prev_char, char))
|
62 |
+
prev_char = char
|
63 |
+
|
64 |
+
pairs = set(pairs)
|
65 |
+
return pairs
|
66 |
+
|
67 |
+
|
68 |
+
class BertweetTokenizer(PreTrainedTokenizer):
|
69 |
+
"""
|
70 |
+
Constructs a BERTweet tokenizer, using Byte-Pair-Encoding.
|
71 |
+
|
72 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
73 |
+
this superclass for more information regarding those methods.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
vocab_file (`str`):
|
77 |
+
Path to the vocabulary file.
|
78 |
+
merges_file (`str`):
|
79 |
+
Path to the merges file.
|
80 |
+
normalization (`bool`, *optional*, defaults to `False`):
|
81 |
+
Whether or not to apply a normalization preprocess.
|
82 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
83 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
84 |
+
|
85 |
+
<Tip>
|
86 |
+
|
87 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
88 |
+
sequence. The token used is the `cls_token`.
|
89 |
+
|
90 |
+
</Tip>
|
91 |
+
|
92 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
93 |
+
The end of sequence token.
|
94 |
+
|
95 |
+
<Tip>
|
96 |
+
|
97 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
98 |
+
The token used is the `sep_token`.
|
99 |
+
|
100 |
+
</Tip>
|
101 |
+
|
102 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
103 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
104 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
105 |
+
token of a sequence built with special tokens.
|
106 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
107 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
108 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
109 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
110 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
111 |
+
token instead.
|
112 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
113 |
+
The token used for padding, for example when batching sequences of different lengths.
|
114 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
115 |
+
The token used for masking values. This is the token used when training this model with masked language
|
116 |
+
modeling. This is the token which the model will try to predict.
|
117 |
+
"""
|
118 |
+
|
119 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
120 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
121 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
122 |
+
|
123 |
+
def __init__(
|
124 |
+
self,
|
125 |
+
vocab_file,
|
126 |
+
merges_file,
|
127 |
+
normalization=False,
|
128 |
+
bos_token="<s>",
|
129 |
+
eos_token="</s>",
|
130 |
+
sep_token="</s>",
|
131 |
+
cls_token="<s>",
|
132 |
+
unk_token="<unk>",
|
133 |
+
pad_token="<pad>",
|
134 |
+
mask_token="<mask>",
|
135 |
+
**kwargs,
|
136 |
+
):
|
137 |
+
try:
|
138 |
+
from emoji import demojize
|
139 |
+
|
140 |
+
self.demojizer = demojize
|
141 |
+
except ImportError:
|
142 |
+
logger.warning(
|
143 |
+
"emoji is not installed, thus not converting emoticons or emojis into text. Install emoji: pip3"
|
144 |
+
" install emoji==0.6.0"
|
145 |
+
)
|
146 |
+
self.demojizer = None
|
147 |
+
|
148 |
+
self.vocab_file = vocab_file
|
149 |
+
self.merges_file = merges_file
|
150 |
+
|
151 |
+
self.encoder = {}
|
152 |
+
self.encoder[str(bos_token)] = 0
|
153 |
+
self.encoder[str(pad_token)] = 1
|
154 |
+
self.encoder[str(eos_token)] = 2
|
155 |
+
self.encoder[str(unk_token)] = 3
|
156 |
+
|
157 |
+
self.add_from_file(vocab_file)
|
158 |
+
|
159 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
160 |
+
|
161 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
162 |
+
merges = merges_handle.read().split("\n")[:-1]
|
163 |
+
merges = [tuple(merge.split()[:-1]) for merge in merges]
|
164 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
165 |
+
self.cache = {}
|
166 |
+
|
167 |
+
self.normalization = normalization
|
168 |
+
self.tweetPreprocessor = TweetTokenizer()
|
169 |
+
self.special_puncts = {"’": "'", "…": "..."}
|
170 |
+
|
171 |
+
super().__init__(
|
172 |
+
normalization=normalization,
|
173 |
+
bos_token=bos_token,
|
174 |
+
eos_token=eos_token,
|
175 |
+
sep_token=sep_token,
|
176 |
+
cls_token=cls_token,
|
177 |
+
unk_token=unk_token,
|
178 |
+
pad_token=pad_token,
|
179 |
+
mask_token=mask_token,
|
180 |
+
**kwargs,
|
181 |
+
)
|
182 |
+
|
183 |
+
def build_inputs_with_special_tokens(
|
184 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
185 |
+
) -> List[int]:
|
186 |
+
"""
|
187 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
188 |
+
adding special tokens. A BERTweet sequence has the following format:
|
189 |
+
|
190 |
+
- single sequence: `<s> X </s>`
|
191 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
192 |
+
|
193 |
+
Args:
|
194 |
+
token_ids_0 (`List[int]`):
|
195 |
+
List of IDs to which the special tokens will be added.
|
196 |
+
token_ids_1 (`List[int]`, *optional*):
|
197 |
+
Optional second list of IDs for sequence pairs.
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
201 |
+
"""
|
202 |
+
|
203 |
+
if token_ids_1 is None:
|
204 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
205 |
+
cls = [self.cls_token_id]
|
206 |
+
sep = [self.sep_token_id]
|
207 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
208 |
+
|
209 |
+
def get_special_tokens_mask(
|
210 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
211 |
+
) -> List[int]:
|
212 |
+
"""
|
213 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
214 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
215 |
+
|
216 |
+
Args:
|
217 |
+
token_ids_0 (`List[int]`):
|
218 |
+
List of IDs.
|
219 |
+
token_ids_1 (`List[int]`, *optional*):
|
220 |
+
Optional second list of IDs for sequence pairs.
|
221 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
222 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
226 |
+
"""
|
227 |
+
|
228 |
+
if already_has_special_tokens:
|
229 |
+
return super().get_special_tokens_mask(
|
230 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
231 |
+
)
|
232 |
+
|
233 |
+
if token_ids_1 is None:
|
234 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
235 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
236 |
+
|
237 |
+
def create_token_type_ids_from_sequences(
|
238 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
239 |
+
) -> List[int]:
|
240 |
+
"""
|
241 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BERTweet does
|
242 |
+
not make use of token type ids, therefore a list of zeros is returned.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
token_ids_0 (`List[int]`):
|
246 |
+
List of IDs.
|
247 |
+
token_ids_1 (`List[int]`, *optional*):
|
248 |
+
Optional second list of IDs for sequence pairs.
|
249 |
+
|
250 |
+
Returns:
|
251 |
+
`List[int]`: List of zeros.
|
252 |
+
"""
|
253 |
+
|
254 |
+
sep = [self.sep_token_id]
|
255 |
+
cls = [self.cls_token_id]
|
256 |
+
|
257 |
+
if token_ids_1 is None:
|
258 |
+
return len(cls + token_ids_0 + sep) * [0]
|
259 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
260 |
+
|
261 |
+
@property
|
262 |
+
def vocab_size(self):
|
263 |
+
return len(self.encoder)
|
264 |
+
|
265 |
+
def get_vocab(self):
|
266 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
267 |
+
|
268 |
+
def bpe(self, token):
|
269 |
+
if token in self.cache:
|
270 |
+
return self.cache[token]
|
271 |
+
word = tuple(token)
|
272 |
+
word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
|
273 |
+
pairs = get_pairs(word)
|
274 |
+
|
275 |
+
if not pairs:
|
276 |
+
return token
|
277 |
+
|
278 |
+
while True:
|
279 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
280 |
+
if bigram not in self.bpe_ranks:
|
281 |
+
break
|
282 |
+
first, second = bigram
|
283 |
+
new_word = []
|
284 |
+
i = 0
|
285 |
+
while i < len(word):
|
286 |
+
try:
|
287 |
+
j = word.index(first, i)
|
288 |
+
except ValueError:
|
289 |
+
new_word.extend(word[i:])
|
290 |
+
break
|
291 |
+
else:
|
292 |
+
new_word.extend(word[i:j])
|
293 |
+
i = j
|
294 |
+
|
295 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
296 |
+
new_word.append(first + second)
|
297 |
+
i += 2
|
298 |
+
else:
|
299 |
+
new_word.append(word[i])
|
300 |
+
i += 1
|
301 |
+
new_word = tuple(new_word)
|
302 |
+
word = new_word
|
303 |
+
if len(word) == 1:
|
304 |
+
break
|
305 |
+
else:
|
306 |
+
pairs = get_pairs(word)
|
307 |
+
word = "@@ ".join(word)
|
308 |
+
word = word[:-4]
|
309 |
+
self.cache[token] = word
|
310 |
+
return word
|
311 |
+
|
312 |
+
def _tokenize(self, text):
|
313 |
+
"""Tokenize a string."""
|
314 |
+
if self.normalization: # Perform Tweet normalization before performing BPE
|
315 |
+
text = self.normalizeTweet(text)
|
316 |
+
|
317 |
+
split_tokens = []
|
318 |
+
words = re.findall(r"\S+\n?", text)
|
319 |
+
for token in words:
|
320 |
+
split_tokens.extend(list(self.bpe(token).split(" ")))
|
321 |
+
return split_tokens
|
322 |
+
|
323 |
+
def normalizeTweet(self, tweet):
|
324 |
+
"""
|
325 |
+
Normalize a raw Tweet
|
326 |
+
"""
|
327 |
+
for punct in self.special_puncts:
|
328 |
+
tweet = tweet.replace(punct, self.special_puncts[punct])
|
329 |
+
|
330 |
+
tokens = self.tweetPreprocessor.tokenize(tweet)
|
331 |
+
normTweet = " ".join([self.normalizeToken(token) for token in tokens])
|
332 |
+
|
333 |
+
normTweet = (
|
334 |
+
normTweet.replace("cannot ", "can not ")
|
335 |
+
.replace("n't ", " n't ")
|
336 |
+
.replace("n 't ", " n't ")
|
337 |
+
.replace("ca n't", "can't")
|
338 |
+
.replace("ai n't", "ain't")
|
339 |
+
)
|
340 |
+
normTweet = (
|
341 |
+
normTweet.replace("'m ", " 'm ")
|
342 |
+
.replace("'re ", " 're ")
|
343 |
+
.replace("'s ", " 's ")
|
344 |
+
.replace("'ll ", " 'll ")
|
345 |
+
.replace("'d ", " 'd ")
|
346 |
+
.replace("'ve ", " 've ")
|
347 |
+
)
|
348 |
+
normTweet = (
|
349 |
+
normTweet.replace(" p . m .", " p.m.")
|
350 |
+
.replace(" p . m ", " p.m ")
|
351 |
+
.replace(" a . m .", " a.m.")
|
352 |
+
.replace(" a . m ", " a.m ")
|
353 |
+
)
|
354 |
+
|
355 |
+
return " ".join(normTweet.split())
|
356 |
+
|
357 |
+
def normalizeToken(self, token):
|
358 |
+
"""
|
359 |
+
Normalize tokens in a Tweet
|
360 |
+
"""
|
361 |
+
lowercased_token = token.lower()
|
362 |
+
if token.startswith("@"):
|
363 |
+
return "@USER"
|
364 |
+
elif lowercased_token.startswith("http") or lowercased_token.startswith("www"):
|
365 |
+
return "HTTPURL"
|
366 |
+
elif len(token) == 1:
|
367 |
+
if token in self.special_puncts:
|
368 |
+
return self.special_puncts[token]
|
369 |
+
if self.demojizer is not None:
|
370 |
+
return self.demojizer(token)
|
371 |
+
else:
|
372 |
+
return token
|
373 |
+
else:
|
374 |
+
return token
|
375 |
+
|
376 |
+
def _convert_token_to_id(self, token):
|
377 |
+
"""Converts a token (str) in an id using the vocab."""
|
378 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
379 |
+
|
380 |
+
def _convert_id_to_token(self, index):
|
381 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
382 |
+
return self.decoder.get(index, self.unk_token)
|
383 |
+
|
384 |
+
def convert_tokens_to_string(self, tokens):
|
385 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
386 |
+
out_string = " ".join(tokens).replace("@@ ", "").strip()
|
387 |
+
return out_string
|
388 |
+
|
389 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
390 |
+
if not os.path.isdir(save_directory):
|
391 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
392 |
+
return
|
393 |
+
out_vocab_file = os.path.join(
|
394 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
395 |
+
)
|
396 |
+
out_merge_file = os.path.join(
|
397 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
398 |
+
)
|
399 |
+
|
400 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
401 |
+
copyfile(self.vocab_file, out_vocab_file)
|
402 |
+
elif not os.path.isfile(self.vocab_file):
|
403 |
+
with open(out_vocab_file, "wb") as fi:
|
404 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
405 |
+
fi.write(content_spiece_model)
|
406 |
+
|
407 |
+
if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file):
|
408 |
+
copyfile(self.merges_file, out_merge_file)
|
409 |
+
|
410 |
+
return out_vocab_file, out_merge_file
|
411 |
+
|
412 |
+
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
|
413 |
+
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
|
414 |
+
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
|
415 |
+
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
|
416 |
+
# return ''.join(tokens_generated_so_far)
|
417 |
+
|
418 |
+
def add_from_file(self, f):
|
419 |
+
"""
|
420 |
+
Loads a pre-existing dictionary from a text file and adds its symbols to this instance.
|
421 |
+
"""
|
422 |
+
if isinstance(f, str):
|
423 |
+
try:
|
424 |
+
with open(f, "r", encoding="utf-8") as fd:
|
425 |
+
self.add_from_file(fd)
|
426 |
+
except FileNotFoundError as fnfe:
|
427 |
+
raise fnfe
|
428 |
+
except UnicodeError:
|
429 |
+
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset")
|
430 |
+
return
|
431 |
+
|
432 |
+
lines = f.readlines()
|
433 |
+
for lineTmp in lines:
|
434 |
+
line = lineTmp.strip()
|
435 |
+
idx = line.rfind(" ")
|
436 |
+
if idx == -1:
|
437 |
+
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
|
438 |
+
word = line[:idx]
|
439 |
+
self.encoder[word] = len(self.encoder)
|
440 |
+
|
441 |
+
|
442 |
+
# Natural Language Toolkit: Twitter Tokenizer
|
443 |
+
#
|
444 |
+
# Copyright (C) 2001-2020 NLTK Project
|
445 |
+
# Author: Christopher Potts <[email protected]>
|
446 |
+
# Ewan Klein <[email protected]> (modifications)
|
447 |
+
# Pierpaolo Pantone <> (modifications)
|
448 |
+
# URL: http://nltk.org/
|
449 |
+
# For license information, see LICENSE.TXT
|
450 |
+
#
|
451 |
+
|
452 |
+
|
453 |
+
"""
|
454 |
+
Twitter-aware tokenizer, designed to be flexible and easy to adapt to new domains and tasks. The basic logic is this:
|
455 |
+
|
456 |
+
1. The tuple regex_strings defines a list of regular expression strings.
|
457 |
+
|
458 |
+
2. The regex_strings strings are put, in order, into a compiled regular expression object called word_re.
|
459 |
+
|
460 |
+
3. The tokenization is done by word_re.findall(s), where s is the user-supplied string, inside the tokenize() method of
|
461 |
+
the class Tokenizer.
|
462 |
+
|
463 |
+
4. When instantiating Tokenizer objects, there is a single option: preserve_case. By default, it is set to True. If it
|
464 |
+
is set to False, then the tokenizer will lowercase everything except for emoticons.
|
465 |
+
|
466 |
+
"""
|
467 |
+
|
468 |
+
|
469 |
+
######################################################################
|
470 |
+
#
|
471 |
+
# import regex # https://github.com/nltk/nltk/issues/2409
|
472 |
+
# import html
|
473 |
+
#
|
474 |
+
######################################################################
|
475 |
+
# The following strings are components in the regular expression
|
476 |
+
# that is used for tokenizing. It's important that phone_number
|
477 |
+
# appears first in the final regex (since it can contain whitespace).
|
478 |
+
# It also could matter that tags comes after emoticons, due to the
|
479 |
+
# possibility of having text like
|
480 |
+
#
|
481 |
+
# <:| and some text >:)
|
482 |
+
#
|
483 |
+
# Most importantly, the final element should always be last, since it
|
484 |
+
# does a last ditch whitespace-based tokenization of whatever is left.
|
485 |
+
|
486 |
+
# ToDo: Update with http://en.wikipedia.org/wiki/List_of_emoticons ?
|
487 |
+
|
488 |
+
# This particular element is used in a couple ways, so we define it
|
489 |
+
# with a name:
|
490 |
+
# docstyle-ignore
|
491 |
+
EMOTICONS = r"""
|
492 |
+
(?:
|
493 |
+
[<>]?
|
494 |
+
[:;=8] # eyes
|
495 |
+
[\-o\*\']? # optional nose
|
496 |
+
[\)\]\(\[dDpP/\:\}\{@\|\\] # mouth
|
497 |
+
|
|
498 |
+
[\)\]\(\[dDpP/\:\}\{@\|\\] # mouth
|
499 |
+
[\-o\*\']? # optional nose
|
500 |
+
[:;=8] # eyes
|
501 |
+
[<>]?
|
502 |
+
|
|
503 |
+
<3 # heart
|
504 |
+
)"""
|
505 |
+
|
506 |
+
# URL pattern due to John Gruber, modified by Tom Winzig. See
|
507 |
+
# https://gist.github.com/winzig/8894715
|
508 |
+
# docstyle-ignore
|
509 |
+
URLS = r""" # Capture 1: entire matched URL
|
510 |
+
(?:
|
511 |
+
https?: # URL protocol and colon
|
512 |
+
(?:
|
513 |
+
/{1,3} # 1-3 slashes
|
514 |
+
| # or
|
515 |
+
[a-z0-9%] # Single letter or digit or '%'
|
516 |
+
# (Trying not to match e.g. "URI::Escape")
|
517 |
+
)
|
518 |
+
| # or
|
519 |
+
# looks like domain name followed by a slash:
|
520 |
+
[a-z0-9.\-]+[.]
|
521 |
+
(?:[a-z]{2,13})
|
522 |
+
/
|
523 |
+
)
|
524 |
+
(?: # One or more:
|
525 |
+
[^\s()<>{}\[\]]+ # Run of non-space, non-()<>{}[]
|
526 |
+
| # or
|
527 |
+
\([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...)
|
528 |
+
|
|
529 |
+
\([^\s]+?\) # balanced parens, non-recursive: (...)
|
530 |
+
)+
|
531 |
+
(?: # End with:
|
532 |
+
\([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...)
|
533 |
+
|
|
534 |
+
\([^\s]+?\) # balanced parens, non-recursive: (...)
|
535 |
+
| # or
|
536 |
+
[^\s`!()\[\]{};:'".,<>?«»“”‘’] # not a space or one of these punct chars
|
537 |
+
)
|
538 |
+
| # OR, the following to match naked domains:
|
539 |
+
(?:
|
540 |
+
(?<!@) # not preceded by a @, avoid matching foo@_gmail.com_
|
541 |
+
[a-z0-9]+
|
542 |
+
(?:[.\-][a-z0-9]+)*
|
543 |
+
[.]
|
544 |
+
(?:[a-z]{2,13})
|
545 |
+
\b
|
546 |
+
/?
|
547 |
+
(?!@) # not succeeded by a @,
|
548 |
+
# avoid matching "foo.na" in "[email protected]"
|
549 |
+
)
|
550 |
+
"""
|
551 |
+
|
552 |
+
# docstyle-ignore
|
553 |
+
# The components of the tokenizer:
|
554 |
+
REGEXPS = (
|
555 |
+
URLS,
|
556 |
+
# Phone numbers:
|
557 |
+
r"""
|
558 |
+
(?:
|
559 |
+
(?: # (international)
|
560 |
+
\+?[01]
|
561 |
+
[ *\-.\)]*
|
562 |
+
)?
|
563 |
+
(?: # (area code)
|
564 |
+
[\(]?
|
565 |
+
\d{3}
|
566 |
+
[ *\-.\)]*
|
567 |
+
)?
|
568 |
+
\d{3} # exchange
|
569 |
+
[ *\-.\)]*
|
570 |
+
\d{4} # base
|
571 |
+
)""",
|
572 |
+
# ASCII Emoticons
|
573 |
+
EMOTICONS,
|
574 |
+
# HTML tags:
|
575 |
+
r"""<[^>\s]+>""",
|
576 |
+
# ASCII Arrows
|
577 |
+
r"""[\-]+>|<[\-]+""",
|
578 |
+
# Twitter username:
|
579 |
+
r"""(?:@[\w_]+)""",
|
580 |
+
# Twitter hashtags:
|
581 |
+
r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)""",
|
582 |
+
# email addresses
|
583 |
+
r"""[\w.+-]+@[\w-]+\.(?:[\w-]\.?)+[\w-]""",
|
584 |
+
# docstyle-ignore
|
585 |
+
# Remaining word types:
|
586 |
+
r"""
|
587 |
+
(?:[^\W\d_](?:[^\W\d_]|['\-_])+[^\W\d_]) # Words with apostrophes or dashes.
|
588 |
+
|
|
589 |
+
(?:[+\-]?\d+[,/.:-]\d+[+\-]?) # Numbers, including fractions, decimals.
|
590 |
+
|
|
591 |
+
(?:[\w_]+) # Words without apostrophes or dashes.
|
592 |
+
|
|
593 |
+
(?:\.(?:\s*\.){1,}) # Ellipsis dots.
|
594 |
+
|
|
595 |
+
(?:\S) # Everything else that isn't whitespace.
|
596 |
+
""",
|
597 |
+
)
|
598 |
+
|
599 |
+
######################################################################
|
600 |
+
# This is the core tokenizing regex:
|
601 |
+
|
602 |
+
WORD_RE = regex.compile(r"""(%s)""" % "|".join(REGEXPS), regex.VERBOSE | regex.I | regex.UNICODE)
|
603 |
+
|
604 |
+
# WORD_RE performs poorly on these patterns:
|
605 |
+
HANG_RE = regex.compile(r"([^a-zA-Z0-9])\1{3,}")
|
606 |
+
|
607 |
+
# The emoticon string gets its own regex so that we can preserve case for
|
608 |
+
# them as needed:
|
609 |
+
EMOTICON_RE = regex.compile(EMOTICONS, regex.VERBOSE | regex.I | regex.UNICODE)
|
610 |
+
|
611 |
+
# These are for regularizing HTML entities to Unicode:
|
612 |
+
ENT_RE = regex.compile(r"&(#?(x?))([^&;\s]+);")
|
613 |
+
|
614 |
+
|
615 |
+
######################################################################
|
616 |
+
# Functions for converting html entities
|
617 |
+
######################################################################
|
618 |
+
|
619 |
+
|
620 |
+
def _str_to_unicode(text, encoding=None, errors="strict"):
|
621 |
+
if encoding is None:
|
622 |
+
encoding = "utf-8"
|
623 |
+
if isinstance(text, bytes):
|
624 |
+
return text.decode(encoding, errors)
|
625 |
+
return text
|
626 |
+
|
627 |
+
|
628 |
+
def _replace_html_entities(text, keep=(), remove_illegal=True, encoding="utf-8"):
|
629 |
+
"""
|
630 |
+
Remove entities from text by converting them to their corresponding unicode character.
|
631 |
+
|
632 |
+
Args:
|
633 |
+
text:
|
634 |
+
A unicode string or a byte string encoded in the given *encoding* (which defaults to 'utf-8').
|
635 |
+
keep (list):
|
636 |
+
List of entity names which should not be replaced. This supports both numeric entities (`&#nnnn;` and
|
637 |
+
`&#hhhh;`) and named entities (such as ` ` or `>`).
|
638 |
+
remove_illegal (bool):
|
639 |
+
If `True`, entities that can't be converted are removed. Otherwise, entities that can't be converted are
|
640 |
+
kept "as is".
|
641 |
+
|
642 |
+
Returns: A unicode string with the entities removed.
|
643 |
+
|
644 |
+
See https://github.com/scrapy/w3lib/blob/master/w3lib/html.py
|
645 |
+
|
646 |
+
Examples:
|
647 |
+
|
648 |
+
```python
|
649 |
+
>>> from nltk.tokenize.casual import _replace_html_entities
|
650 |
+
|
651 |
+
>>> _replace_html_entities(b"Price: £100")
|
652 |
+
'Price: \\xa3100'
|
653 |
+
|
654 |
+
>>> print(_replace_html_entities(b"Price: £100"))
|
655 |
+
Price: £100
|
656 |
+
```"""
|
657 |
+
|
658 |
+
def _convert_entity(match):
|
659 |
+
entity_body = match.group(3)
|
660 |
+
if match.group(1):
|
661 |
+
try:
|
662 |
+
if match.group(2):
|
663 |
+
number = int(entity_body, 16)
|
664 |
+
else:
|
665 |
+
number = int(entity_body, 10)
|
666 |
+
# Numeric character references in the 80-9F range are typically
|
667 |
+
# interpreted by browsers as representing the characters mapped
|
668 |
+
# to bytes 80-9F in the Windows-1252 encoding. For more info
|
669 |
+
# see: https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Similar_character_sets
|
670 |
+
if 0x80 <= number <= 0x9F:
|
671 |
+
return bytes((number,)).decode("cp1252")
|
672 |
+
except ValueError:
|
673 |
+
number = None
|
674 |
+
else:
|
675 |
+
if entity_body in keep:
|
676 |
+
return match.group(0)
|
677 |
+
else:
|
678 |
+
number = html.entities.name2codepoint.get(entity_body)
|
679 |
+
if number is not None:
|
680 |
+
try:
|
681 |
+
return chr(number)
|
682 |
+
except (ValueError, OverflowError):
|
683 |
+
pass
|
684 |
+
|
685 |
+
return "" if remove_illegal else match.group(0)
|
686 |
+
|
687 |
+
return ENT_RE.sub(_convert_entity, _str_to_unicode(text, encoding))
|
688 |
+
|
689 |
+
|
690 |
+
######################################################################
|
691 |
+
|
692 |
+
|
693 |
+
class TweetTokenizer:
|
694 |
+
r"""
|
695 |
+
Examples:
|
696 |
+
|
697 |
+
```python
|
698 |
+
>>> # Tokenizer for tweets.
|
699 |
+
>>> from nltk.tokenize import TweetTokenizer
|
700 |
+
|
701 |
+
>>> tknzr = TweetTokenizer()
|
702 |
+
>>> s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--"
|
703 |
+
>>> tknzr.tokenize(s0)
|
704 |
+
['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>', '->', '<--']
|
705 |
+
|
706 |
+
>>> # Examples using *strip_handles* and *reduce_len parameters*:
|
707 |
+
>>> tknzr = TweetTokenizer(strip_handles=True, reduce_len=True)
|
708 |
+
>>> s1 = "@remy: This is waaaaayyyy too much for you!!!!!!"
|
709 |
+
>>> tknzr.tokenize(s1)
|
710 |
+
[':', 'This', 'is', 'waaayyy', 'too', 'much', 'for', 'you', '!', '!', '!']
|
711 |
+
```"""
|
712 |
+
|
713 |
+
def __init__(self, preserve_case=True, reduce_len=False, strip_handles=False):
|
714 |
+
self.preserve_case = preserve_case
|
715 |
+
self.reduce_len = reduce_len
|
716 |
+
self.strip_handles = strip_handles
|
717 |
+
|
718 |
+
def tokenize(self, text):
|
719 |
+
"""
|
720 |
+
Args:
|
721 |
+
text: str
|
722 |
+
|
723 |
+
Returns: list(str) A tokenized list of strings; concatenating this list returns the original string if
|
724 |
+
`preserve_case=False`
|
725 |
+
"""
|
726 |
+
# Fix HTML character entities:
|
727 |
+
text = _replace_html_entities(text)
|
728 |
+
# Remove username handles
|
729 |
+
if self.strip_handles:
|
730 |
+
text = remove_handles(text)
|
731 |
+
# Normalize word lengthening
|
732 |
+
if self.reduce_len:
|
733 |
+
text = reduce_lengthening(text)
|
734 |
+
# Shorten problematic sequences of characters
|
735 |
+
safe_text = HANG_RE.sub(r"\1\1\1", text)
|
736 |
+
# Tokenize:
|
737 |
+
words = WORD_RE.findall(safe_text)
|
738 |
+
# Possibly alter the case, but avoid changing emoticons like :D into :d:
|
739 |
+
if not self.preserve_case:
|
740 |
+
words = [x if EMOTICON_RE.search(x) else x.lower() for x in words]
|
741 |
+
return words
|
742 |
+
|
743 |
+
|
744 |
+
######################################################################
|
745 |
+
# Normalization Functions
|
746 |
+
######################################################################
|
747 |
+
|
748 |
+
|
749 |
+
def reduce_lengthening(text):
|
750 |
+
"""
|
751 |
+
Replace repeated character sequences of length 3 or greater with sequences of length 3.
|
752 |
+
"""
|
753 |
+
pattern = regex.compile(r"(.)\1{2,}")
|
754 |
+
return pattern.sub(r"\1\1\1", text)
|
755 |
+
|
756 |
+
|
757 |
+
def remove_handles(text):
|
758 |
+
"""
|
759 |
+
Remove Twitter username handles from text.
|
760 |
+
"""
|
761 |
+
pattern = regex.compile(
|
762 |
+
r"(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){20}(?!@))|(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){1,19})(?![A-Za-z0-9_]*@)"
|
763 |
+
)
|
764 |
+
# Substitute handles with ' ' to ensure that text on either side of removed handles are tokenized correctly
|
765 |
+
return pattern.sub(" ", text)
|
766 |
+
|
767 |
+
|
768 |
+
######################################################################
|
769 |
+
# Tokenization Function
|
770 |
+
######################################################################
|
771 |
+
|
772 |
+
|
773 |
+
def casual_tokenize(text, preserve_case=True, reduce_len=False, strip_handles=False):
|
774 |
+
"""
|
775 |
+
Convenience function for wrapping the tokenizer.
|
776 |
+
"""
|
777 |
+
return TweetTokenizer(preserve_case=preserve_case, reduce_len=reduce_len, strip_handles=strip_handles).tokenize(
|
778 |
+
text
|
779 |
+
)
|
780 |
+
|
781 |
+
|
782 |
+
###############################################################################
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__init__.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_chinese_clip": [
|
21 |
+
"CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"ChineseCLIPConfig",
|
23 |
+
"ChineseCLIPOnnxConfig",
|
24 |
+
"ChineseCLIPTextConfig",
|
25 |
+
"ChineseCLIPVisionConfig",
|
26 |
+
],
|
27 |
+
"processing_chinese_clip": ["ChineseCLIPProcessor"],
|
28 |
+
}
|
29 |
+
|
30 |
+
try:
|
31 |
+
if not is_vision_available():
|
32 |
+
raise OptionalDependencyNotAvailable()
|
33 |
+
except OptionalDependencyNotAvailable:
|
34 |
+
pass
|
35 |
+
else:
|
36 |
+
_import_structure["feature_extraction_chinese_clip"] = ["ChineseCLIPFeatureExtractor"]
|
37 |
+
_import_structure["image_processing_chinese_clip"] = ["ChineseCLIPImageProcessor"]
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_torch_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["modeling_chinese_clip"] = [
|
46 |
+
"CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
|
47 |
+
"ChineseCLIPModel",
|
48 |
+
"ChineseCLIPPreTrainedModel",
|
49 |
+
"ChineseCLIPTextModel",
|
50 |
+
"ChineseCLIPVisionModel",
|
51 |
+
]
|
52 |
+
|
53 |
+
if TYPE_CHECKING:
|
54 |
+
from .configuration_chinese_clip import (
|
55 |
+
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
56 |
+
ChineseCLIPConfig,
|
57 |
+
ChineseCLIPOnnxConfig,
|
58 |
+
ChineseCLIPTextConfig,
|
59 |
+
ChineseCLIPVisionConfig,
|
60 |
+
)
|
61 |
+
from .processing_chinese_clip import ChineseCLIPProcessor
|
62 |
+
|
63 |
+
try:
|
64 |
+
if not is_vision_available():
|
65 |
+
raise OptionalDependencyNotAvailable()
|
66 |
+
except OptionalDependencyNotAvailable:
|
67 |
+
pass
|
68 |
+
else:
|
69 |
+
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
|
70 |
+
|
71 |
+
try:
|
72 |
+
if not is_torch_available():
|
73 |
+
raise OptionalDependencyNotAvailable()
|
74 |
+
except OptionalDependencyNotAvailable:
|
75 |
+
pass
|
76 |
+
else:
|
77 |
+
from .modeling_chinese_clip import (
|
78 |
+
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
|
79 |
+
ChineseCLIPModel,
|
80 |
+
ChineseCLIPPreTrainedModel,
|
81 |
+
ChineseCLIPTextModel,
|
82 |
+
ChineseCLIPVisionModel,
|
83 |
+
)
|
84 |
+
|
85 |
+
else:
|
86 |
+
import sys
|
87 |
+
|
88 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.48 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/configuration_chinese_clip.cpython-310.pyc
ADDED
Binary file (17.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/convert_chinese_clip_original_pytorch_to_hf.cpython-310.pyc
ADDED
Binary file (4.05 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/feature_extraction_chinese_clip.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/image_processing_chinese_clip.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/modeling_chinese_clip.cpython-310.pyc
ADDED
Binary file (48.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/processing_chinese_clip.cpython-310.pyc
ADDED
Binary file (6.12 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/configuration_chinese_clip.py
ADDED
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Chinese-CLIP model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from collections import OrderedDict
|
19 |
+
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
20 |
+
|
21 |
+
|
22 |
+
if TYPE_CHECKING:
|
23 |
+
from ...processing_utils import ProcessorMixin
|
24 |
+
from ...utils import TensorType
|
25 |
+
|
26 |
+
from ...configuration_utils import PretrainedConfig
|
27 |
+
from ...onnx import OnnxConfig
|
28 |
+
from ...utils import logging
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
34 |
+
"OFA-Sys/chinese-clip-vit-base-patch16": (
|
35 |
+
"https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/resolve/main/config.json"
|
36 |
+
),
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
class ChineseCLIPTextConfig(PretrainedConfig):
|
41 |
+
r"""
|
42 |
+
This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate a
|
43 |
+
Chinese CLIP model according to the specified arguments, defining the model architecture. Instantiating a
|
44 |
+
configuration with the defaults will yield a similar configuration to that of the Chinese CLIP
|
45 |
+
[OFA-Sys/chinese-clip-vit-base-patch16](https:
|
46 |
+
//huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
|
47 |
+
|
48 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
49 |
+
documentation from [`PretrainedConfig`] for more information.
|
50 |
+
|
51 |
+
|
52 |
+
Args:
|
53 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
54 |
+
Vocabulary size of the CHINESE_CLIP model. Defines the number of different tokens that can be represented
|
55 |
+
by the `inputs_ids` passed when calling [`ChineseCLIPModel`].
|
56 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
57 |
+
Dimensionality of the encoder layers and the pooler layer.
|
58 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
59 |
+
Number of hidden layers in the Transformer encoder.
|
60 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
61 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
62 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
63 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
64 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
65 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
66 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
67 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
68 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
69 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
70 |
+
The dropout ratio for the attention probabilities.
|
71 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
72 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
73 |
+
just in case (e.g., 512 or 1024 or 2048).
|
74 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
75 |
+
The vocabulary size of the `token_type_ids` passed when calling [`ChineseCLIPModel`].
|
76 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
77 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
78 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
79 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
80 |
+
testing).
|
81 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
82 |
+
The epsilon used by the layer normalization layers.
|
83 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
84 |
+
Padding token id.
|
85 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
86 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
87 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
88 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
89 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
90 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
91 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
92 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
93 |
+
relevant if `config.is_decoder=True`.
|
94 |
+
|
95 |
+
Example:
|
96 |
+
|
97 |
+
```python
|
98 |
+
>>> from transformers import ChineseCLIPTextConfig, ChineseCLIPTextModel
|
99 |
+
|
100 |
+
>>> # Initializing a ChineseCLIPTextConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
|
101 |
+
>>> configuration = ChineseCLIPTextConfig()
|
102 |
+
|
103 |
+
>>> # Initializing a ChineseCLIPTextModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
|
104 |
+
>>> model = ChineseCLIPTextModel(configuration)
|
105 |
+
|
106 |
+
>>> # Accessing the model configuration
|
107 |
+
>>> configuration = model.config
|
108 |
+
```"""
|
109 |
+
|
110 |
+
model_type = "chinese_clip_text_model"
|
111 |
+
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
vocab_size=30522,
|
115 |
+
hidden_size=768,
|
116 |
+
num_hidden_layers=12,
|
117 |
+
num_attention_heads=12,
|
118 |
+
intermediate_size=3072,
|
119 |
+
hidden_act="gelu",
|
120 |
+
hidden_dropout_prob=0.1,
|
121 |
+
attention_probs_dropout_prob=0.1,
|
122 |
+
max_position_embeddings=512,
|
123 |
+
type_vocab_size=2,
|
124 |
+
initializer_range=0.02,
|
125 |
+
initializer_factor=1.0,
|
126 |
+
layer_norm_eps=1e-12,
|
127 |
+
pad_token_id=0,
|
128 |
+
position_embedding_type="absolute",
|
129 |
+
use_cache=True,
|
130 |
+
**kwargs,
|
131 |
+
):
|
132 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
133 |
+
|
134 |
+
self.vocab_size = vocab_size
|
135 |
+
self.hidden_size = hidden_size
|
136 |
+
self.num_hidden_layers = num_hidden_layers
|
137 |
+
self.num_attention_heads = num_attention_heads
|
138 |
+
self.hidden_act = hidden_act
|
139 |
+
self.intermediate_size = intermediate_size
|
140 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
141 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
142 |
+
self.max_position_embeddings = max_position_embeddings
|
143 |
+
self.type_vocab_size = type_vocab_size
|
144 |
+
self.initializer_range = initializer_range
|
145 |
+
self.initializer_factor = initializer_factor
|
146 |
+
self.layer_norm_eps = layer_norm_eps
|
147 |
+
self.position_embedding_type = position_embedding_type
|
148 |
+
self.use_cache = use_cache
|
149 |
+
|
150 |
+
@classmethod
|
151 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
152 |
+
cls._set_token_in_kwargs(kwargs)
|
153 |
+
|
154 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
155 |
+
|
156 |
+
# get the vision config dict if we are loading from ChineseCLIPConfig
|
157 |
+
if config_dict.get("model_type") == "chinese_clip":
|
158 |
+
config_dict = config_dict["text_config"]
|
159 |
+
|
160 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
161 |
+
logger.warning(
|
162 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
163 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
164 |
+
)
|
165 |
+
|
166 |
+
return cls.from_dict(config_dict, **kwargs)
|
167 |
+
|
168 |
+
|
169 |
+
class ChineseCLIPVisionConfig(PretrainedConfig):
|
170 |
+
r"""
|
171 |
+
This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate an
|
172 |
+
ChineseCLIP model according to the specified arguments, defining the model architecture. Instantiating a
|
173 |
+
configuration with the defaults will yield a similar configuration to that of the ChineseCLIP
|
174 |
+
[OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
|
175 |
+
|
176 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
177 |
+
documentation from [`PretrainedConfig`] for more information.
|
178 |
+
|
179 |
+
|
180 |
+
Args:
|
181 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
182 |
+
Dimensionality of the encoder layers and the pooler layer.
|
183 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
184 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
185 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
186 |
+
Dimentionality of text and vision projection layers.
|
187 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
188 |
+
Number of hidden layers in the Transformer encoder.
|
189 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
190 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
191 |
+
num_channels (`int`, *optional*, defaults to 3):
|
192 |
+
The number of input channels.
|
193 |
+
image_size (`int`, *optional*, defaults to 224):
|
194 |
+
The size (resolution) of each image.
|
195 |
+
patch_size (`int`, *optional*, defaults to 32):
|
196 |
+
The size (resolution) of each patch.
|
197 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
198 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
199 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
200 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
201 |
+
The epsilon used by the layer normalization layers.
|
202 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
203 |
+
The dropout ratio for the attention probabilities.
|
204 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
205 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
206 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
207 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
208 |
+
testing).
|
209 |
+
Example:
|
210 |
+
```python
|
211 |
+
>>> from transformers import ChineseCLIPVisionConfig, ChineseCLIPVisionModel
|
212 |
+
|
213 |
+
>>> # Initializing a ChineseCLIPVisionConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
|
214 |
+
>>> configuration = ChineseCLIPVisionConfig()
|
215 |
+
|
216 |
+
>>> # Initializing a ChineseCLIPVisionModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
|
217 |
+
>>> model = ChineseCLIPVisionModel(configuration)
|
218 |
+
|
219 |
+
>>> # Accessing the model configuration
|
220 |
+
>>> configuration = model.config
|
221 |
+
```"""
|
222 |
+
|
223 |
+
model_type = "chinese_clip_vision_model"
|
224 |
+
|
225 |
+
def __init__(
|
226 |
+
self,
|
227 |
+
hidden_size=768,
|
228 |
+
intermediate_size=3072,
|
229 |
+
projection_dim=512,
|
230 |
+
num_hidden_layers=12,
|
231 |
+
num_attention_heads=12,
|
232 |
+
num_channels=3,
|
233 |
+
image_size=224,
|
234 |
+
patch_size=32,
|
235 |
+
hidden_act="quick_gelu",
|
236 |
+
layer_norm_eps=1e-5,
|
237 |
+
attention_dropout=0.0,
|
238 |
+
initializer_range=0.02,
|
239 |
+
initializer_factor=1.0,
|
240 |
+
**kwargs,
|
241 |
+
):
|
242 |
+
super().__init__(**kwargs)
|
243 |
+
|
244 |
+
self.hidden_size = hidden_size
|
245 |
+
self.intermediate_size = intermediate_size
|
246 |
+
self.projection_dim = projection_dim
|
247 |
+
self.num_hidden_layers = num_hidden_layers
|
248 |
+
self.num_attention_heads = num_attention_heads
|
249 |
+
self.num_channels = num_channels
|
250 |
+
self.patch_size = patch_size
|
251 |
+
self.image_size = image_size
|
252 |
+
self.initializer_range = initializer_range
|
253 |
+
self.initializer_factor = initializer_factor
|
254 |
+
self.attention_dropout = attention_dropout
|
255 |
+
self.layer_norm_eps = layer_norm_eps
|
256 |
+
self.hidden_act = hidden_act
|
257 |
+
|
258 |
+
@classmethod
|
259 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
260 |
+
cls._set_token_in_kwargs(kwargs)
|
261 |
+
|
262 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
263 |
+
|
264 |
+
# get the vision config dict if we are loading from ChineseCLIPConfig
|
265 |
+
if config_dict.get("model_type") == "chinese_clip":
|
266 |
+
config_dict = config_dict["vision_config"]
|
267 |
+
|
268 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
269 |
+
logger.warning(
|
270 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
271 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
272 |
+
)
|
273 |
+
|
274 |
+
return cls.from_dict(config_dict, **kwargs)
|
275 |
+
|
276 |
+
|
277 |
+
class ChineseCLIPConfig(PretrainedConfig):
|
278 |
+
r"""
|
279 |
+
[`ChineseCLIPConfig`] is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used
|
280 |
+
to instantiate Chinese-CLIP model according to the specified arguments, defining the text model and vision model
|
281 |
+
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the
|
282 |
+
Chinese-CLIP [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16)
|
283 |
+
architecture.
|
284 |
+
|
285 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
286 |
+
documentation from [`PretrainedConfig`] for more information.
|
287 |
+
|
288 |
+
Args:
|
289 |
+
text_config (`dict`, *optional*):
|
290 |
+
Dictionary of configuration options used to initialize [`ChineseCLIPTextConfig`].
|
291 |
+
vision_config (`dict`, *optional*):
|
292 |
+
Dictionary of configuration options used to initialize [`ChineseCLIPVisionConfig`].
|
293 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
294 |
+
Dimentionality of text and vision projection layers.
|
295 |
+
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
296 |
+
The inital value of the *logit_scale* paramter. Default is used as per the original ChineseCLIP
|
297 |
+
implementation.
|
298 |
+
kwargs (*optional*):
|
299 |
+
Dictionary of keyword arguments.
|
300 |
+
|
301 |
+
Example:
|
302 |
+
|
303 |
+
```python
|
304 |
+
>>> from transformers import ChineseCLIPConfig, ChineseCLIPModel
|
305 |
+
|
306 |
+
>>> # Initializing a ChineseCLIPConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
|
307 |
+
>>> configuration = ChineseCLIPConfig()
|
308 |
+
|
309 |
+
>>> # Initializing a ChineseCLIPModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
|
310 |
+
>>> model = ChineseCLIPModel(configuration)
|
311 |
+
|
312 |
+
>>> # Accessing the model configuration
|
313 |
+
>>> configuration = model.config
|
314 |
+
|
315 |
+
>>> # We can also initialize a ChineseCLIPConfig from a ChineseCLIPTextConfig and a ChineseCLIPVisionConfig
|
316 |
+
|
317 |
+
>>> # Initializing a ChineseCLIPTextConfig and ChineseCLIPVisionConfig configuration
|
318 |
+
>>> config_text = ChineseCLIPTextConfig()
|
319 |
+
>>> config_vision = ChineseCLIPVisionConfig()
|
320 |
+
|
321 |
+
>>> config = ChineseCLIPConfig.from_text_vision_configs(config_text, config_vision)
|
322 |
+
```"""
|
323 |
+
|
324 |
+
model_type = "chinese_clip"
|
325 |
+
|
326 |
+
def __init__(
|
327 |
+
self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
|
328 |
+
):
|
329 |
+
# If `_config_dict` exist, we use them for the backward compatibility.
|
330 |
+
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
|
331 |
+
# of confusion!).
|
332 |
+
text_config_dict = kwargs.pop("text_config_dict", None)
|
333 |
+
vision_config_dict = kwargs.pop("vision_config_dict", None)
|
334 |
+
|
335 |
+
super().__init__(**kwargs)
|
336 |
+
|
337 |
+
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
|
338 |
+
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
|
339 |
+
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
|
340 |
+
if text_config_dict is not None:
|
341 |
+
if text_config is None:
|
342 |
+
text_config = {}
|
343 |
+
|
344 |
+
# This is the complete result when using `text_config_dict`.
|
345 |
+
_text_config_dict = ChineseCLIPTextConfig(**text_config_dict).to_dict()
|
346 |
+
|
347 |
+
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
|
348 |
+
for key, value in _text_config_dict.items():
|
349 |
+
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
|
350 |
+
# If specified in `text_config_dict`
|
351 |
+
if key in text_config_dict:
|
352 |
+
message = (
|
353 |
+
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
|
354 |
+
f'The value `text_config_dict["{key}"]` will be used instead.'
|
355 |
+
)
|
356 |
+
# If inferred from default argument values (just to be super careful)
|
357 |
+
else:
|
358 |
+
message = (
|
359 |
+
f"`text_config_dict` is provided which will be used to initialize `ChineseCLIPTextConfig`. "
|
360 |
+
f'The value `text_config["{key}"]` will be overriden.'
|
361 |
+
)
|
362 |
+
logger.info(message)
|
363 |
+
|
364 |
+
# Update all values in `text_config` with the ones in `_text_config_dict`.
|
365 |
+
text_config.update(_text_config_dict)
|
366 |
+
|
367 |
+
if vision_config_dict is not None:
|
368 |
+
if vision_config is None:
|
369 |
+
vision_config = {}
|
370 |
+
|
371 |
+
# This is the complete result when using `vision_config_dict`.
|
372 |
+
_vision_config_dict = ChineseCLIPVisionConfig(**vision_config_dict).to_dict()
|
373 |
+
# convert keys to string instead of integer
|
374 |
+
if "id2label" in _vision_config_dict:
|
375 |
+
_vision_config_dict["id2label"] = {
|
376 |
+
str(key): value for key, value in _vision_config_dict["id2label"].items()
|
377 |
+
}
|
378 |
+
|
379 |
+
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
|
380 |
+
for key, value in _vision_config_dict.items():
|
381 |
+
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
|
382 |
+
# If specified in `vision_config_dict`
|
383 |
+
if key in vision_config_dict:
|
384 |
+
message = (
|
385 |
+
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
|
386 |
+
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
|
387 |
+
)
|
388 |
+
# If inferred from default argument values (just to be super careful)
|
389 |
+
else:
|
390 |
+
message = (
|
391 |
+
f"`vision_config_dict` is provided which will be used to initialize "
|
392 |
+
f'`ChineseCLIPVisionConfig`. The value `vision_config["{key}"]` will be overriden.'
|
393 |
+
)
|
394 |
+
logger.info(message)
|
395 |
+
|
396 |
+
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
|
397 |
+
vision_config.update(_vision_config_dict)
|
398 |
+
|
399 |
+
if text_config is None:
|
400 |
+
text_config = {}
|
401 |
+
logger.info("`text_config` is `None`. Initializing the `ChineseCLIPTextConfig` with default values.")
|
402 |
+
|
403 |
+
if vision_config is None:
|
404 |
+
vision_config = {}
|
405 |
+
logger.info("`vision_config` is `None`. initializing the `ChineseCLIPVisionConfig` with default values.")
|
406 |
+
|
407 |
+
self.text_config = ChineseCLIPTextConfig(**text_config)
|
408 |
+
self.vision_config = ChineseCLIPVisionConfig(**vision_config)
|
409 |
+
|
410 |
+
self.projection_dim = projection_dim
|
411 |
+
self.logit_scale_init_value = logit_scale_init_value
|
412 |
+
self.initializer_factor = 1.0
|
413 |
+
self.initializer_range = 0.02
|
414 |
+
|
415 |
+
@classmethod
|
416 |
+
def from_text_vision_configs(
|
417 |
+
cls, text_config: ChineseCLIPTextConfig, vision_config: ChineseCLIPVisionConfig, **kwargs
|
418 |
+
):
|
419 |
+
r"""
|
420 |
+
Instantiate a [`ChineseCLIPConfig`] (or a derived class) from Chinese-CLIP text model configuration and
|
421 |
+
Chinese-CLIP vision model configuration. Returns:
|
422 |
+
[`ChineseCLIPConfig`]: An instance of a configuration object
|
423 |
+
"""
|
424 |
+
|
425 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
426 |
+
|
427 |
+
|
428 |
+
class ChineseCLIPOnnxConfig(OnnxConfig):
|
429 |
+
@property
|
430 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
431 |
+
return OrderedDict(
|
432 |
+
[
|
433 |
+
("input_ids", {0: "batch", 1: "sequence"}),
|
434 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
435 |
+
("attention_mask", {0: "batch", 1: "sequence"}),
|
436 |
+
]
|
437 |
+
)
|
438 |
+
|
439 |
+
@property
|
440 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
441 |
+
return OrderedDict(
|
442 |
+
[
|
443 |
+
("logits_per_image", {0: "batch"}),
|
444 |
+
("logits_per_text", {0: "batch"}),
|
445 |
+
("text_embeds", {0: "batch"}),
|
446 |
+
("image_embeds", {0: "batch"}),
|
447 |
+
]
|
448 |
+
)
|
449 |
+
|
450 |
+
@property
|
451 |
+
def atol_for_validation(self) -> float:
|
452 |
+
return 1e-4
|
453 |
+
|
454 |
+
def generate_dummy_inputs(
|
455 |
+
self,
|
456 |
+
processor: "ProcessorMixin",
|
457 |
+
batch_size: int = -1,
|
458 |
+
seq_length: int = -1,
|
459 |
+
framework: Optional["TensorType"] = None,
|
460 |
+
) -> Mapping[str, Any]:
|
461 |
+
text_input_dict = super().generate_dummy_inputs(
|
462 |
+
processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
|
463 |
+
)
|
464 |
+
image_input_dict = super().generate_dummy_inputs(
|
465 |
+
processor.image_processor, batch_size=batch_size, framework=framework
|
466 |
+
)
|
467 |
+
return {**text_input_dict, **image_input_dict}
|
468 |
+
|
469 |
+
@property
|
470 |
+
def default_onnx_opset(self) -> int:
|
471 |
+
return 14
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from transformers import ChineseCLIPConfig, ChineseCLIPModel
|
21 |
+
|
22 |
+
|
23 |
+
def copy_attn_layer(hf_attn_layer, pt_weights, prefix):
|
24 |
+
q_proj, k_proj, v_proj = pt_weights[f"{prefix}.in_proj_weight"].chunk(3, dim=0)
|
25 |
+
q_proj_bias, k_proj_bias, v_proj_bias = pt_weights[f"{prefix}.in_proj_bias"].chunk(3, dim=0)
|
26 |
+
|
27 |
+
out_proj_weights = pt_weights[f"{prefix}.out_proj.weight"]
|
28 |
+
out_proj_bias = pt_weights[f"{prefix}.out_proj.bias"]
|
29 |
+
|
30 |
+
hf_attn_layer.q_proj.weight.data = q_proj
|
31 |
+
hf_attn_layer.q_proj.bias.data = q_proj_bias
|
32 |
+
|
33 |
+
hf_attn_layer.k_proj.weight.data = k_proj
|
34 |
+
hf_attn_layer.k_proj.bias.data = k_proj_bias
|
35 |
+
|
36 |
+
hf_attn_layer.v_proj.weight.data = v_proj
|
37 |
+
hf_attn_layer.v_proj.bias.data = v_proj_bias
|
38 |
+
|
39 |
+
hf_attn_layer.out_proj.weight.data = out_proj_weights
|
40 |
+
hf_attn_layer.out_proj.bias.data = out_proj_bias
|
41 |
+
|
42 |
+
|
43 |
+
def copy_mlp(hf_mlp, pt_weights, prefix):
|
44 |
+
copy_linear(hf_mlp.fc1, pt_weights, f"{prefix}.c_fc")
|
45 |
+
copy_linear(hf_mlp.fc2, pt_weights, f"{prefix}.c_proj")
|
46 |
+
|
47 |
+
|
48 |
+
def copy_linear(hf_linear, pt_weights, prefix):
|
49 |
+
hf_linear.weight.data = pt_weights[f"{prefix}.weight"].data
|
50 |
+
hf_linear.bias.data = pt_weights[f"{prefix}.bias"].data
|
51 |
+
|
52 |
+
|
53 |
+
def copy_layer(hf_layer, pt_weights, prefix):
|
54 |
+
# copy layer norms
|
55 |
+
copy_linear(hf_layer.layer_norm1, pt_weights, f"{prefix}.ln_1")
|
56 |
+
copy_linear(hf_layer.layer_norm2, pt_weights, f"{prefix}.ln_2")
|
57 |
+
|
58 |
+
# copy MLP
|
59 |
+
copy_mlp(hf_layer.mlp, pt_weights, f"{prefix}.mlp")
|
60 |
+
|
61 |
+
# copy attn
|
62 |
+
copy_attn_layer(hf_layer.self_attn, pt_weights, f"{prefix}.attn")
|
63 |
+
|
64 |
+
|
65 |
+
def copy_layers(hf_layers, pt_weights, prefix):
|
66 |
+
for layer_id, hf_layer in enumerate(hf_layers):
|
67 |
+
copy_layer(hf_layer, pt_weights, f"{prefix}.{layer_id}")
|
68 |
+
|
69 |
+
|
70 |
+
def copy_text_model_and_projection(hf_model, pt_weights):
|
71 |
+
# copy projection
|
72 |
+
hf_model.text_projection.weight.data = pt_weights["text_projection"].data.T
|
73 |
+
|
74 |
+
# copy text encoder
|
75 |
+
for name, param in hf_model.text_model.named_parameters():
|
76 |
+
param.data = pt_weights[f"bert.{name}"].data
|
77 |
+
|
78 |
+
|
79 |
+
def copy_vision_model_and_projection(hf_model, pt_weights):
|
80 |
+
# copy projection
|
81 |
+
hf_model.visual_projection.weight.data = pt_weights["visual.proj"].data.T
|
82 |
+
|
83 |
+
# copy layer norms
|
84 |
+
copy_linear(hf_model.vision_model.pre_layrnorm, pt_weights, "visual.ln_pre")
|
85 |
+
copy_linear(hf_model.vision_model.post_layernorm, pt_weights, "visual.ln_post")
|
86 |
+
|
87 |
+
# copy embeddings
|
88 |
+
hf_model.vision_model.embeddings.patch_embedding.weight.data = pt_weights["visual.conv1.weight"].data
|
89 |
+
hf_model.vision_model.embeddings.class_embedding.data = pt_weights["visual.class_embedding"].data
|
90 |
+
hf_model.vision_model.embeddings.position_embedding.weight.data = pt_weights["visual.positional_embedding"].data
|
91 |
+
|
92 |
+
# copy encoder
|
93 |
+
copy_layers(hf_model.vision_model.encoder.layers, pt_weights, "visual.transformer.resblocks")
|
94 |
+
|
95 |
+
|
96 |
+
@torch.no_grad()
|
97 |
+
def convert_chinese_clip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None):
|
98 |
+
"""
|
99 |
+
Copy/paste/tweak model's weights to transformers design.
|
100 |
+
"""
|
101 |
+
|
102 |
+
assert config_path is not None, "Please specify the ChineseCLIP model config of the corresponding model size."
|
103 |
+
config = ChineseCLIPConfig.from_pretrained(config_path)
|
104 |
+
|
105 |
+
hf_model = ChineseCLIPModel(config).eval()
|
106 |
+
|
107 |
+
pt_weights = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
|
108 |
+
pt_weights = {(name[7:] if name.startswith("module.") else name): value for name, value in pt_weights.items()}
|
109 |
+
|
110 |
+
copy_text_model_and_projection(hf_model, pt_weights)
|
111 |
+
copy_vision_model_and_projection(hf_model, pt_weights)
|
112 |
+
hf_model.logit_scale.data = pt_weights["logit_scale"].data
|
113 |
+
|
114 |
+
hf_model.save_pretrained(pytorch_dump_folder_path)
|
115 |
+
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
parser = argparse.ArgumentParser()
|
119 |
+
parser.add_argument(
|
120 |
+
"--pytorch_dump_folder_path",
|
121 |
+
default=None,
|
122 |
+
type=str,
|
123 |
+
help="Path to the output folder storing converted hf PyTorch model.",
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"--checkpoint_path", default=None, type=str, help="Path to original github format ChineseCLIP checkpoint."
|
127 |
+
)
|
128 |
+
parser.add_argument(
|
129 |
+
"--config_path", default=None, required=True, type=str, help="Path to hf config.json of model to convert."
|
130 |
+
)
|
131 |
+
args = parser.parse_args()
|
132 |
+
|
133 |
+
convert_chinese_clip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
|
134 |
+
print("The conversion is finished!")
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/feature_extraction_chinese_clip.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for Chinese-CLIP."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...utils import logging
|
20 |
+
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class ChineseCLIPFeatureExtractor(ChineseCLIPImageProcessor):
|
27 |
+
def __init__(self, *args, **kwargs) -> None:
|
28 |
+
warnings.warn(
|
29 |
+
"The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
|
30 |
+
" Please use ChineseCLIPImageProcessor instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
super().__init__(*args, **kwargs)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/image_processing_chinese_clip.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for Chinese-CLIP."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import (
|
23 |
+
convert_to_rgb,
|
24 |
+
get_resize_output_image_size,
|
25 |
+
resize,
|
26 |
+
to_channel_dimension_format,
|
27 |
+
)
|
28 |
+
from ...image_utils import (
|
29 |
+
OPENAI_CLIP_MEAN,
|
30 |
+
OPENAI_CLIP_STD,
|
31 |
+
ChannelDimension,
|
32 |
+
ImageInput,
|
33 |
+
PILImageResampling,
|
34 |
+
infer_channel_dimension_format,
|
35 |
+
is_scaled_image,
|
36 |
+
make_list_of_images,
|
37 |
+
to_numpy_array,
|
38 |
+
valid_images,
|
39 |
+
validate_kwargs,
|
40 |
+
validate_preprocess_arguments,
|
41 |
+
)
|
42 |
+
from ...utils import TensorType, is_vision_available, logging
|
43 |
+
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
|
48 |
+
if is_vision_available():
|
49 |
+
import PIL
|
50 |
+
|
51 |
+
|
52 |
+
class ChineseCLIPImageProcessor(BaseImageProcessor):
|
53 |
+
r"""
|
54 |
+
Constructs a Chinese-CLIP image processor.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
58 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
59 |
+
`do_resize` in the `preprocess` method.
|
60 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
|
61 |
+
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
|
62 |
+
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
|
63 |
+
method.
|
64 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
65 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
66 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
|
68 |
+
`preprocess` method.
|
69 |
+
crop_size (`Dict[str, int]` *optional*, defaults to 224):
|
70 |
+
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
|
71 |
+
method.
|
72 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
74 |
+
the `preprocess` method.
|
75 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
76 |
+
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
77 |
+
method.
|
78 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
|
80 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
81 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
82 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
83 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
84 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
85 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
86 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
87 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
88 |
+
Whether to convert the image to RGB.
|
89 |
+
"""
|
90 |
+
|
91 |
+
model_input_names = ["pixel_values"]
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
do_resize: bool = True,
|
96 |
+
size: Dict[str, int] = None,
|
97 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
98 |
+
do_center_crop: bool = True,
|
99 |
+
crop_size: Dict[str, int] = None,
|
100 |
+
do_rescale: bool = True,
|
101 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
102 |
+
do_normalize: bool = True,
|
103 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
104 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
105 |
+
do_convert_rgb: bool = True,
|
106 |
+
**kwargs,
|
107 |
+
) -> None:
|
108 |
+
super().__init__(**kwargs)
|
109 |
+
size = size if size is not None else {"shortest_edge": 224}
|
110 |
+
size = get_size_dict(size, default_to_square=False)
|
111 |
+
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
112 |
+
crop_size = get_size_dict(crop_size)
|
113 |
+
|
114 |
+
self.do_resize = do_resize
|
115 |
+
self.size = size
|
116 |
+
self.resample = resample
|
117 |
+
self.do_center_crop = do_center_crop
|
118 |
+
self.crop_size = crop_size
|
119 |
+
self.do_rescale = do_rescale
|
120 |
+
self.rescale_factor = rescale_factor
|
121 |
+
self.do_normalize = do_normalize
|
122 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
123 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
124 |
+
self.do_convert_rgb = do_convert_rgb
|
125 |
+
self._valid_processor_keys = [
|
126 |
+
"images",
|
127 |
+
"do_resize",
|
128 |
+
"size",
|
129 |
+
"resample",
|
130 |
+
"do_center_crop",
|
131 |
+
"crop_size",
|
132 |
+
"do_rescale",
|
133 |
+
"rescale_factor",
|
134 |
+
"do_normalize",
|
135 |
+
"image_mean",
|
136 |
+
"image_std",
|
137 |
+
"do_convert_rgb",
|
138 |
+
"return_tensors",
|
139 |
+
"data_format",
|
140 |
+
"input_data_format",
|
141 |
+
]
|
142 |
+
|
143 |
+
def resize(
|
144 |
+
self,
|
145 |
+
image: np.ndarray,
|
146 |
+
size: Dict[str, int],
|
147 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
148 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
149 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
150 |
+
**kwargs,
|
151 |
+
) -> np.ndarray:
|
152 |
+
"""
|
153 |
+
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
|
154 |
+
resized to keep the input aspect ratio.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
image (`np.ndarray`):
|
158 |
+
Image to resize.
|
159 |
+
size (`Dict[str, int]`):
|
160 |
+
Size of the output image.
|
161 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
162 |
+
Resampling filter to use when resiizing the image.
|
163 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
164 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
165 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
166 |
+
The channel dimension format of the input image. If not provided, it will be inferred from the input
|
167 |
+
image.
|
168 |
+
"""
|
169 |
+
size = get_size_dict(size, default_to_square=False)
|
170 |
+
output_size = get_resize_output_image_size(
|
171 |
+
image, size=(size["height"], size["width"]), default_to_square=False, input_data_format=input_data_format
|
172 |
+
)
|
173 |
+
return resize(
|
174 |
+
image,
|
175 |
+
size=output_size,
|
176 |
+
resample=resample,
|
177 |
+
data_format=data_format,
|
178 |
+
input_data_format=input_data_format,
|
179 |
+
**kwargs,
|
180 |
+
)
|
181 |
+
|
182 |
+
def preprocess(
|
183 |
+
self,
|
184 |
+
images: ImageInput,
|
185 |
+
do_resize: bool = None,
|
186 |
+
size: Dict[str, int] = None,
|
187 |
+
resample: PILImageResampling = None,
|
188 |
+
do_center_crop: bool = None,
|
189 |
+
crop_size: int = None,
|
190 |
+
do_rescale: bool = None,
|
191 |
+
rescale_factor: float = None,
|
192 |
+
do_normalize: bool = None,
|
193 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
194 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
195 |
+
do_convert_rgb: bool = None,
|
196 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
197 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
198 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
199 |
+
**kwargs,
|
200 |
+
) -> PIL.Image.Image:
|
201 |
+
"""
|
202 |
+
Preprocess an image or batch of images.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
images (`ImageInput`):
|
206 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
207 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
208 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
209 |
+
Whether to resize the image.
|
210 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
211 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
212 |
+
the longest edge resized to keep the input aspect ratio.
|
213 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
214 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
215 |
+
has an effect if `do_resize` is set to `True`.
|
216 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
217 |
+
Whether to center crop the image.
|
218 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
219 |
+
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
220 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
221 |
+
Whether to rescale the image.
|
222 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
223 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
224 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
225 |
+
Whether to normalize the image.
|
226 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
227 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
228 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
229 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
230 |
+
`True`.
|
231 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
232 |
+
Whether to convert the image to RGB.
|
233 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
234 |
+
The type of tensors to return. Can be one of:
|
235 |
+
- Unset: Return a list of `np.ndarray`.
|
236 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
237 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
238 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
239 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
240 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
241 |
+
The channel dimension format for the output image. Can be one of:
|
242 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
243 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
244 |
+
- Unset: Use the channel dimension format of the input image.
|
245 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
246 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
247 |
+
from the input image. Can be one of:
|
248 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
249 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
250 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
251 |
+
"""
|
252 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
253 |
+
size = size if size is not None else self.size
|
254 |
+
size = get_size_dict(size, default_to_square=False)
|
255 |
+
resample = resample if resample is not None else self.resample
|
256 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
257 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
258 |
+
crop_size = get_size_dict(crop_size)
|
259 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
260 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
261 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
262 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
263 |
+
image_std = image_std if image_std is not None else self.image_std
|
264 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
265 |
+
|
266 |
+
images = make_list_of_images(images)
|
267 |
+
|
268 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
269 |
+
|
270 |
+
if not valid_images(images):
|
271 |
+
raise ValueError(
|
272 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
273 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
274 |
+
)
|
275 |
+
validate_preprocess_arguments(
|
276 |
+
do_rescale=do_rescale,
|
277 |
+
rescale_factor=rescale_factor,
|
278 |
+
do_normalize=do_normalize,
|
279 |
+
image_mean=image_mean,
|
280 |
+
image_std=image_std,
|
281 |
+
do_center_crop=do_center_crop,
|
282 |
+
crop_size=crop_size,
|
283 |
+
do_resize=do_resize,
|
284 |
+
size=size,
|
285 |
+
resample=resample,
|
286 |
+
)
|
287 |
+
if do_convert_rgb:
|
288 |
+
images = [convert_to_rgb(image) for image in images]
|
289 |
+
|
290 |
+
# All transformations expect numpy arrays.
|
291 |
+
images = [to_numpy_array(image) for image in images]
|
292 |
+
|
293 |
+
if is_scaled_image(images[0]) and do_rescale:
|
294 |
+
logger.warning_once(
|
295 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
296 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
297 |
+
)
|
298 |
+
|
299 |
+
if input_data_format is None:
|
300 |
+
# We assume that all images have the same channel dimension format.
|
301 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
302 |
+
|
303 |
+
if do_resize:
|
304 |
+
images = [
|
305 |
+
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
306 |
+
for image in images
|
307 |
+
]
|
308 |
+
|
309 |
+
if do_center_crop:
|
310 |
+
images = [
|
311 |
+
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
|
312 |
+
]
|
313 |
+
|
314 |
+
if do_rescale:
|
315 |
+
images = [
|
316 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
317 |
+
for image in images
|
318 |
+
]
|
319 |
+
|
320 |
+
if do_normalize:
|
321 |
+
images = [
|
322 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
323 |
+
for image in images
|
324 |
+
]
|
325 |
+
|
326 |
+
images = [
|
327 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
328 |
+
]
|
329 |
+
|
330 |
+
data = {"pixel_values": images}
|
331 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/modeling_chinese_clip.py
ADDED
@@ -0,0 +1,1564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Chinese-CLIP model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Any, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_outputs import (
|
28 |
+
BaseModelOutput,
|
29 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
BaseModelOutputWithPooling,
|
31 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
32 |
+
)
|
33 |
+
from ...modeling_utils import PreTrainedModel
|
34 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
35 |
+
from ...utils import (
|
36 |
+
ModelOutput,
|
37 |
+
add_code_sample_docstrings,
|
38 |
+
add_start_docstrings,
|
39 |
+
add_start_docstrings_to_model_forward,
|
40 |
+
logging,
|
41 |
+
replace_return_docstrings,
|
42 |
+
)
|
43 |
+
from .configuration_chinese_clip import ChineseCLIPConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
_CHECKPOINT_FOR_DOC = "OFA-Sys/chinese-clip-vit-base-patch16"
|
49 |
+
_CONFIG_FOR_DOC = "ChineseCLIPConfig"
|
50 |
+
|
51 |
+
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
52 |
+
"OFA-Sys/chinese-clip-vit-base-patch16",
|
53 |
+
# See all Chinese-CLIP models at https://huggingface.co/models?filter=chinese_clip
|
54 |
+
]
|
55 |
+
|
56 |
+
|
57 |
+
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
|
58 |
+
# Copied from transformers.models.clip.modeling_clip.contrastive_loss
|
59 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
60 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
61 |
+
|
62 |
+
|
63 |
+
def chinese_clip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
64 |
+
caption_loss = contrastive_loss(similarity)
|
65 |
+
image_loss = contrastive_loss(similarity.t())
|
66 |
+
return (caption_loss + image_loss) / 2.0
|
67 |
+
|
68 |
+
|
69 |
+
@dataclass
|
70 |
+
class ChineseCLIPOutput(ModelOutput):
|
71 |
+
"""
|
72 |
+
Args:
|
73 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
74 |
+
Contrastive loss for image-text similarity.
|
75 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
76 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
77 |
+
similarity scores.
|
78 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
79 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
80 |
+
similarity scores.
|
81 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
82 |
+
The text embeddings obtained by applying the projection layer to the pooled output of
|
83 |
+
[`ChineseCLIPTextModel`].
|
84 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
85 |
+
The image embeddings obtained by applying the projection layer to the pooled output of
|
86 |
+
[`ChineseCLIPVisionModel`].
|
87 |
+
text_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
|
88 |
+
The output of the [`ChineseCLIPTextModel`].
|
89 |
+
vision_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
|
90 |
+
The output of the [`ChineseCLIPVisionModel`].
|
91 |
+
"""
|
92 |
+
|
93 |
+
loss: Optional[torch.FloatTensor] = None
|
94 |
+
logits_per_image: torch.FloatTensor = None
|
95 |
+
logits_per_text: torch.FloatTensor = None
|
96 |
+
text_embeds: torch.FloatTensor = None
|
97 |
+
image_embeds: torch.FloatTensor = None
|
98 |
+
text_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
|
99 |
+
vision_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
|
100 |
+
|
101 |
+
def to_tuple(self) -> Tuple[Any]:
|
102 |
+
return tuple(
|
103 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
104 |
+
for k in self.keys()
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->ChineseCLIPText
|
109 |
+
class ChineseCLIPTextEmbeddings(nn.Module):
|
110 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
111 |
+
|
112 |
+
def __init__(self, config):
|
113 |
+
super().__init__()
|
114 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
115 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
116 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
117 |
+
|
118 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
119 |
+
# any TensorFlow checkpoint file
|
120 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
121 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
122 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
123 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
124 |
+
self.register_buffer(
|
125 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
126 |
+
)
|
127 |
+
self.register_buffer(
|
128 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
129 |
+
)
|
130 |
+
|
131 |
+
def forward(
|
132 |
+
self,
|
133 |
+
input_ids: Optional[torch.LongTensor] = None,
|
134 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
135 |
+
position_ids: Optional[torch.LongTensor] = None,
|
136 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
137 |
+
past_key_values_length: int = 0,
|
138 |
+
) -> torch.Tensor:
|
139 |
+
if input_ids is not None:
|
140 |
+
input_shape = input_ids.size()
|
141 |
+
else:
|
142 |
+
input_shape = inputs_embeds.size()[:-1]
|
143 |
+
|
144 |
+
seq_length = input_shape[1]
|
145 |
+
|
146 |
+
if position_ids is None:
|
147 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
148 |
+
|
149 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
150 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
151 |
+
# issue #5664
|
152 |
+
if token_type_ids is None:
|
153 |
+
if hasattr(self, "token_type_ids"):
|
154 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
155 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
156 |
+
token_type_ids = buffered_token_type_ids_expanded
|
157 |
+
else:
|
158 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
159 |
+
|
160 |
+
if inputs_embeds is None:
|
161 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
162 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
163 |
+
|
164 |
+
embeddings = inputs_embeds + token_type_embeddings
|
165 |
+
if self.position_embedding_type == "absolute":
|
166 |
+
position_embeddings = self.position_embeddings(position_ids)
|
167 |
+
embeddings += position_embeddings
|
168 |
+
embeddings = self.LayerNorm(embeddings)
|
169 |
+
embeddings = self.dropout(embeddings)
|
170 |
+
return embeddings
|
171 |
+
|
172 |
+
|
173 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->ChineseCLIP
|
174 |
+
class ChineseCLIPVisionEmbeddings(nn.Module):
|
175 |
+
def __init__(self, config: ChineseCLIPVisionConfig):
|
176 |
+
super().__init__()
|
177 |
+
self.config = config
|
178 |
+
self.embed_dim = config.hidden_size
|
179 |
+
self.image_size = config.image_size
|
180 |
+
self.patch_size = config.patch_size
|
181 |
+
|
182 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
183 |
+
|
184 |
+
self.patch_embedding = nn.Conv2d(
|
185 |
+
in_channels=config.num_channels,
|
186 |
+
out_channels=self.embed_dim,
|
187 |
+
kernel_size=self.patch_size,
|
188 |
+
stride=self.patch_size,
|
189 |
+
bias=False,
|
190 |
+
)
|
191 |
+
|
192 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
193 |
+
self.num_positions = self.num_patches + 1
|
194 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
195 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
196 |
+
|
197 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
198 |
+
batch_size = pixel_values.shape[0]
|
199 |
+
target_dtype = self.patch_embedding.weight.dtype
|
200 |
+
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
201 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
202 |
+
|
203 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
204 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
205 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
206 |
+
return embeddings
|
207 |
+
|
208 |
+
|
209 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ChineseCLIPText
|
210 |
+
class ChineseCLIPTextSelfAttention(nn.Module):
|
211 |
+
def __init__(self, config, position_embedding_type=None):
|
212 |
+
super().__init__()
|
213 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
214 |
+
raise ValueError(
|
215 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
216 |
+
f"heads ({config.num_attention_heads})"
|
217 |
+
)
|
218 |
+
|
219 |
+
self.num_attention_heads = config.num_attention_heads
|
220 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
221 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
222 |
+
|
223 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
224 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
225 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
226 |
+
|
227 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
228 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
229 |
+
config, "position_embedding_type", "absolute"
|
230 |
+
)
|
231 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
232 |
+
self.max_position_embeddings = config.max_position_embeddings
|
233 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
234 |
+
|
235 |
+
self.is_decoder = config.is_decoder
|
236 |
+
|
237 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
238 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
239 |
+
x = x.view(new_x_shape)
|
240 |
+
return x.permute(0, 2, 1, 3)
|
241 |
+
|
242 |
+
def forward(
|
243 |
+
self,
|
244 |
+
hidden_states: torch.Tensor,
|
245 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
246 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
247 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
248 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
249 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
250 |
+
output_attentions: Optional[bool] = False,
|
251 |
+
) -> Tuple[torch.Tensor]:
|
252 |
+
mixed_query_layer = self.query(hidden_states)
|
253 |
+
|
254 |
+
# If this is instantiated as a cross-attention module, the keys
|
255 |
+
# and values come from an encoder; the attention mask needs to be
|
256 |
+
# such that the encoder's padding tokens are not attended to.
|
257 |
+
is_cross_attention = encoder_hidden_states is not None
|
258 |
+
|
259 |
+
if is_cross_attention and past_key_value is not None:
|
260 |
+
# reuse k,v, cross_attentions
|
261 |
+
key_layer = past_key_value[0]
|
262 |
+
value_layer = past_key_value[1]
|
263 |
+
attention_mask = encoder_attention_mask
|
264 |
+
elif is_cross_attention:
|
265 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
266 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
267 |
+
attention_mask = encoder_attention_mask
|
268 |
+
elif past_key_value is not None:
|
269 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
270 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
271 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
272 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
273 |
+
else:
|
274 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
275 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
276 |
+
|
277 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
278 |
+
|
279 |
+
use_cache = past_key_value is not None
|
280 |
+
if self.is_decoder:
|
281 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
282 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
283 |
+
# key/value_states (first "if" case)
|
284 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
285 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
286 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
287 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
288 |
+
past_key_value = (key_layer, value_layer)
|
289 |
+
|
290 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
291 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
292 |
+
|
293 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
294 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
295 |
+
if use_cache:
|
296 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
297 |
+
-1, 1
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
301 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
302 |
+
distance = position_ids_l - position_ids_r
|
303 |
+
|
304 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
305 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
306 |
+
|
307 |
+
if self.position_embedding_type == "relative_key":
|
308 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
309 |
+
attention_scores = attention_scores + relative_position_scores
|
310 |
+
elif self.position_embedding_type == "relative_key_query":
|
311 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
312 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
313 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
314 |
+
|
315 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
316 |
+
if attention_mask is not None:
|
317 |
+
# Apply the attention mask is (precomputed for all layers in ChineseCLIPTextModel forward() function)
|
318 |
+
attention_scores = attention_scores + attention_mask
|
319 |
+
|
320 |
+
# Normalize the attention scores to probabilities.
|
321 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
322 |
+
|
323 |
+
# This is actually dropping out entire tokens to attend to, which might
|
324 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
325 |
+
attention_probs = self.dropout(attention_probs)
|
326 |
+
|
327 |
+
# Mask heads if we want to
|
328 |
+
if head_mask is not None:
|
329 |
+
attention_probs = attention_probs * head_mask
|
330 |
+
|
331 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
332 |
+
|
333 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
334 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
335 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
336 |
+
|
337 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
338 |
+
|
339 |
+
if self.is_decoder:
|
340 |
+
outputs = outputs + (past_key_value,)
|
341 |
+
return outputs
|
342 |
+
|
343 |
+
|
344 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->ChineseCLIPText
|
345 |
+
class ChineseCLIPTextSelfOutput(nn.Module):
|
346 |
+
def __init__(self, config):
|
347 |
+
super().__init__()
|
348 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
349 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
350 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
351 |
+
|
352 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
353 |
+
hidden_states = self.dense(hidden_states)
|
354 |
+
hidden_states = self.dropout(hidden_states)
|
355 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
356 |
+
return hidden_states
|
357 |
+
|
358 |
+
|
359 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ChineseCLIPText
|
360 |
+
class ChineseCLIPTextAttention(nn.Module):
|
361 |
+
def __init__(self, config, position_embedding_type=None):
|
362 |
+
super().__init__()
|
363 |
+
self.self = ChineseCLIPTextSelfAttention(config, position_embedding_type=position_embedding_type)
|
364 |
+
self.output = ChineseCLIPTextSelfOutput(config)
|
365 |
+
self.pruned_heads = set()
|
366 |
+
|
367 |
+
def prune_heads(self, heads):
|
368 |
+
if len(heads) == 0:
|
369 |
+
return
|
370 |
+
heads, index = find_pruneable_heads_and_indices(
|
371 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
372 |
+
)
|
373 |
+
|
374 |
+
# Prune linear layers
|
375 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
376 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
377 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
378 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
379 |
+
|
380 |
+
# Update hyper params and store pruned heads
|
381 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
382 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
383 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
384 |
+
|
385 |
+
def forward(
|
386 |
+
self,
|
387 |
+
hidden_states: torch.Tensor,
|
388 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
389 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
390 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
391 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
392 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
393 |
+
output_attentions: Optional[bool] = False,
|
394 |
+
) -> Tuple[torch.Tensor]:
|
395 |
+
self_outputs = self.self(
|
396 |
+
hidden_states,
|
397 |
+
attention_mask,
|
398 |
+
head_mask,
|
399 |
+
encoder_hidden_states,
|
400 |
+
encoder_attention_mask,
|
401 |
+
past_key_value,
|
402 |
+
output_attentions,
|
403 |
+
)
|
404 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
405 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
406 |
+
return outputs
|
407 |
+
|
408 |
+
|
409 |
+
class ChineseCLIPVisionAttention(nn.Module):
|
410 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
411 |
+
|
412 |
+
def __init__(self, config):
|
413 |
+
super().__init__()
|
414 |
+
self.config = config
|
415 |
+
self.embed_dim = config.hidden_size
|
416 |
+
self.num_heads = config.num_attention_heads
|
417 |
+
self.head_dim = self.embed_dim // self.num_heads
|
418 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
419 |
+
raise ValueError(
|
420 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
421 |
+
f" {self.num_heads})."
|
422 |
+
)
|
423 |
+
self.scale = self.head_dim**-0.5
|
424 |
+
self.dropout = config.attention_dropout
|
425 |
+
|
426 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
427 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
428 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
429 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
430 |
+
|
431 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
432 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
433 |
+
|
434 |
+
def forward(
|
435 |
+
self,
|
436 |
+
hidden_states: torch.Tensor,
|
437 |
+
output_attentions: Optional[bool] = False,
|
438 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
439 |
+
"""Input shape: Batch x Time x Channel"""
|
440 |
+
|
441 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
442 |
+
|
443 |
+
# get query proj
|
444 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
445 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
446 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
447 |
+
|
448 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
449 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
450 |
+
key_states = key_states.view(*proj_shape)
|
451 |
+
value_states = value_states.view(*proj_shape)
|
452 |
+
|
453 |
+
src_len = key_states.size(1)
|
454 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
455 |
+
|
456 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
457 |
+
raise ValueError(
|
458 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
459 |
+
f" {attn_weights.size()}"
|
460 |
+
)
|
461 |
+
|
462 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
463 |
+
|
464 |
+
if output_attentions:
|
465 |
+
# this operation is a bit akward, but it's required to
|
466 |
+
# make sure that attn_weights keeps its gradient.
|
467 |
+
# In order to do so, attn_weights have to reshaped
|
468 |
+
# twice and have to be reused in the following
|
469 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
470 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
471 |
+
else:
|
472 |
+
attn_weights_reshaped = None
|
473 |
+
|
474 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
475 |
+
|
476 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
477 |
+
|
478 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
479 |
+
raise ValueError(
|
480 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
481 |
+
f" {attn_output.size()}"
|
482 |
+
)
|
483 |
+
|
484 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
485 |
+
attn_output = attn_output.transpose(1, 2)
|
486 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
487 |
+
|
488 |
+
attn_output = self.out_proj(attn_output)
|
489 |
+
|
490 |
+
return attn_output, attn_weights_reshaped
|
491 |
+
|
492 |
+
|
493 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->ChineseCLIPText
|
494 |
+
class ChineseCLIPTextIntermediate(nn.Module):
|
495 |
+
def __init__(self, config):
|
496 |
+
super().__init__()
|
497 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
498 |
+
if isinstance(config.hidden_act, str):
|
499 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
500 |
+
else:
|
501 |
+
self.intermediate_act_fn = config.hidden_act
|
502 |
+
|
503 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
504 |
+
hidden_states = self.dense(hidden_states)
|
505 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
506 |
+
return hidden_states
|
507 |
+
|
508 |
+
|
509 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->ChineseCLIPText
|
510 |
+
class ChineseCLIPTextOutput(nn.Module):
|
511 |
+
def __init__(self, config):
|
512 |
+
super().__init__()
|
513 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
514 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
515 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
516 |
+
|
517 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
518 |
+
hidden_states = self.dense(hidden_states)
|
519 |
+
hidden_states = self.dropout(hidden_states)
|
520 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
521 |
+
return hidden_states
|
522 |
+
|
523 |
+
|
524 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->ChineseCLIPVision
|
525 |
+
class ChineseCLIPVisionMLP(nn.Module):
|
526 |
+
def __init__(self, config):
|
527 |
+
super().__init__()
|
528 |
+
self.config = config
|
529 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
530 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
531 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
532 |
+
|
533 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
534 |
+
hidden_states = self.fc1(hidden_states)
|
535 |
+
hidden_states = self.activation_fn(hidden_states)
|
536 |
+
hidden_states = self.fc2(hidden_states)
|
537 |
+
return hidden_states
|
538 |
+
|
539 |
+
|
540 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ChineseCLIPText
|
541 |
+
class ChineseCLIPTextLayer(nn.Module):
|
542 |
+
def __init__(self, config):
|
543 |
+
super().__init__()
|
544 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
545 |
+
self.seq_len_dim = 1
|
546 |
+
self.attention = ChineseCLIPTextAttention(config)
|
547 |
+
self.is_decoder = config.is_decoder
|
548 |
+
self.add_cross_attention = config.add_cross_attention
|
549 |
+
if self.add_cross_attention:
|
550 |
+
if not self.is_decoder:
|
551 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
552 |
+
self.crossattention = ChineseCLIPTextAttention(config, position_embedding_type="absolute")
|
553 |
+
self.intermediate = ChineseCLIPTextIntermediate(config)
|
554 |
+
self.output = ChineseCLIPTextOutput(config)
|
555 |
+
|
556 |
+
def forward(
|
557 |
+
self,
|
558 |
+
hidden_states: torch.Tensor,
|
559 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
560 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
561 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
562 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
563 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
564 |
+
output_attentions: Optional[bool] = False,
|
565 |
+
) -> Tuple[torch.Tensor]:
|
566 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
567 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
568 |
+
self_attention_outputs = self.attention(
|
569 |
+
hidden_states,
|
570 |
+
attention_mask,
|
571 |
+
head_mask,
|
572 |
+
output_attentions=output_attentions,
|
573 |
+
past_key_value=self_attn_past_key_value,
|
574 |
+
)
|
575 |
+
attention_output = self_attention_outputs[0]
|
576 |
+
|
577 |
+
# if decoder, the last output is tuple of self-attn cache
|
578 |
+
if self.is_decoder:
|
579 |
+
outputs = self_attention_outputs[1:-1]
|
580 |
+
present_key_value = self_attention_outputs[-1]
|
581 |
+
else:
|
582 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
583 |
+
|
584 |
+
cross_attn_present_key_value = None
|
585 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
586 |
+
if not hasattr(self, "crossattention"):
|
587 |
+
raise ValueError(
|
588 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
589 |
+
" by setting `config.add_cross_attention=True`"
|
590 |
+
)
|
591 |
+
|
592 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
593 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
594 |
+
cross_attention_outputs = self.crossattention(
|
595 |
+
attention_output,
|
596 |
+
attention_mask,
|
597 |
+
head_mask,
|
598 |
+
encoder_hidden_states,
|
599 |
+
encoder_attention_mask,
|
600 |
+
cross_attn_past_key_value,
|
601 |
+
output_attentions,
|
602 |
+
)
|
603 |
+
attention_output = cross_attention_outputs[0]
|
604 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
605 |
+
|
606 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
607 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
608 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
609 |
+
|
610 |
+
layer_output = apply_chunking_to_forward(
|
611 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
612 |
+
)
|
613 |
+
outputs = (layer_output,) + outputs
|
614 |
+
|
615 |
+
# if decoder, return the attn key/values as the last output
|
616 |
+
if self.is_decoder:
|
617 |
+
outputs = outputs + (present_key_value,)
|
618 |
+
|
619 |
+
return outputs
|
620 |
+
|
621 |
+
def feed_forward_chunk(self, attention_output):
|
622 |
+
intermediate_output = self.intermediate(attention_output)
|
623 |
+
layer_output = self.output(intermediate_output, attention_output)
|
624 |
+
return layer_output
|
625 |
+
|
626 |
+
|
627 |
+
class ChineseCLIPVisionLayer(nn.Module):
|
628 |
+
def __init__(self, config: ChineseCLIPConfig):
|
629 |
+
super().__init__()
|
630 |
+
self.embed_dim = config.hidden_size
|
631 |
+
self.self_attn = ChineseCLIPVisionAttention(config)
|
632 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
633 |
+
self.mlp = ChineseCLIPVisionMLP(config)
|
634 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
635 |
+
|
636 |
+
def forward(
|
637 |
+
self,
|
638 |
+
hidden_states: torch.Tensor,
|
639 |
+
output_attentions: Optional[bool] = False,
|
640 |
+
) -> Tuple[torch.FloatTensor]:
|
641 |
+
"""
|
642 |
+
Args:
|
643 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
644 |
+
output_attentions (`bool`, *optional*):
|
645 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
646 |
+
returned tensors for more detail.
|
647 |
+
"""
|
648 |
+
residual = hidden_states
|
649 |
+
|
650 |
+
hidden_states = self.layer_norm1(hidden_states)
|
651 |
+
hidden_states, attn_weights = self.self_attn(
|
652 |
+
hidden_states=hidden_states,
|
653 |
+
output_attentions=output_attentions,
|
654 |
+
)
|
655 |
+
hidden_states = residual + hidden_states
|
656 |
+
|
657 |
+
residual = hidden_states
|
658 |
+
hidden_states = self.layer_norm2(hidden_states)
|
659 |
+
hidden_states = self.mlp(hidden_states)
|
660 |
+
hidden_states = residual + hidden_states
|
661 |
+
|
662 |
+
outputs = (hidden_states,)
|
663 |
+
|
664 |
+
if output_attentions:
|
665 |
+
outputs += (attn_weights,)
|
666 |
+
|
667 |
+
return outputs
|
668 |
+
|
669 |
+
|
670 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->ChineseCLIPText
|
671 |
+
class ChineseCLIPTextPooler(nn.Module):
|
672 |
+
def __init__(self, config):
|
673 |
+
super().__init__()
|
674 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
675 |
+
self.activation = nn.Tanh()
|
676 |
+
|
677 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
678 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
679 |
+
# to the first token.
|
680 |
+
first_token_tensor = hidden_states[:, 0]
|
681 |
+
pooled_output = self.dense(first_token_tensor)
|
682 |
+
pooled_output = self.activation(pooled_output)
|
683 |
+
return pooled_output
|
684 |
+
|
685 |
+
|
686 |
+
class ChineseCLIPPreTrainedModel(PreTrainedModel):
|
687 |
+
"""
|
688 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
689 |
+
models.
|
690 |
+
"""
|
691 |
+
|
692 |
+
config_class = ChineseCLIPConfig
|
693 |
+
base_model_prefix = "chinese_clip"
|
694 |
+
supports_gradient_checkpointing = True
|
695 |
+
|
696 |
+
def _init_weights(self, module):
|
697 |
+
"""Initialize the weights"""
|
698 |
+
factor = self.config.initializer_factor
|
699 |
+
if isinstance(module, ChineseCLIPVisionEmbeddings):
|
700 |
+
factor = self.config.initializer_factor
|
701 |
+
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
|
702 |
+
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
703 |
+
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
704 |
+
elif isinstance(module, ChineseCLIPTextEmbeddings):
|
705 |
+
nn.init.normal_(module.word_embeddings.weight, mean=0.0, std=self.config.initializer_range)
|
706 |
+
nn.init.normal_(module.position_embeddings.weight, mean=0.0, std=self.config.initializer_range)
|
707 |
+
nn.init.normal_(module.token_type_embeddings.weight, mean=0.0, std=self.config.initializer_range)
|
708 |
+
for embedding in [module.word_embeddings, module.position_embeddings, module.token_type_embeddings]:
|
709 |
+
if embedding.padding_idx is not None:
|
710 |
+
embedding.weight.data[embedding.padding_idx].zero_()
|
711 |
+
elif isinstance(module, ChineseCLIPVisionAttention):
|
712 |
+
factor = self.config.initializer_factor
|
713 |
+
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
714 |
+
out_proj_std = (module.embed_dim**-0.5) * factor
|
715 |
+
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
716 |
+
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
717 |
+
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
718 |
+
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
719 |
+
elif isinstance(module, ChineseCLIPVisionMLP):
|
720 |
+
factor = self.config.initializer_factor
|
721 |
+
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
722 |
+
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
723 |
+
nn.init.normal_(module.fc1.weight, std=fc_std)
|
724 |
+
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
725 |
+
elif isinstance(module, ChineseCLIPModel):
|
726 |
+
nn.init.normal_(
|
727 |
+
module.text_projection.weight,
|
728 |
+
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
|
729 |
+
)
|
730 |
+
nn.init.normal_(
|
731 |
+
module.visual_projection.weight,
|
732 |
+
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
|
733 |
+
)
|
734 |
+
|
735 |
+
if isinstance(module, nn.LayerNorm):
|
736 |
+
module.bias.data.zero_()
|
737 |
+
module.weight.data.fill_(1.0)
|
738 |
+
if isinstance(module, nn.Linear):
|
739 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
740 |
+
if module.bias is not None:
|
741 |
+
module.bias.data.zero_()
|
742 |
+
|
743 |
+
|
744 |
+
CHINESE_CLIP_START_DOCSTRING = r"""
|
745 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
746 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
747 |
+
behavior.
|
748 |
+
|
749 |
+
Parameters:
|
750 |
+
config ([`ChineseCLIPConfig`]): Model configuration class with all the parameters of the model.
|
751 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
752 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
753 |
+
"""
|
754 |
+
|
755 |
+
CHINESE_CLIP_TEXT_INPUTS_DOCSTRING = r"""
|
756 |
+
Args:
|
757 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
758 |
+
Indices of input sequence tokens in the vocabulary.
|
759 |
+
|
760 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
761 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
762 |
+
|
763 |
+
[What are input IDs?](../glossary#input-ids)
|
764 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
765 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
766 |
+
|
767 |
+
- 1 for tokens that are **not masked**,
|
768 |
+
- 0 for tokens that are **masked**.
|
769 |
+
|
770 |
+
[What are attention masks?](../glossary#attention-mask)
|
771 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
772 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
773 |
+
1]`:
|
774 |
+
|
775 |
+
- 0 corresponds to a *sentence A* token,
|
776 |
+
- 1 corresponds to a *sentence B* token.
|
777 |
+
|
778 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
779 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
780 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
781 |
+
config.max_position_embeddings - 1]`.
|
782 |
+
|
783 |
+
[What are position IDs?](../glossary#position-ids)
|
784 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
785 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
786 |
+
|
787 |
+
- 1 indicates the head is **not masked**,
|
788 |
+
- 0 indicates the head is **masked**.
|
789 |
+
|
790 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
791 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
792 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
793 |
+
model's internal embedding lookup matrix.
|
794 |
+
output_attentions (`bool`, *optional*):
|
795 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
796 |
+
tensors for more detail.
|
797 |
+
output_hidden_states (`bool`, *optional*):
|
798 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
799 |
+
more detail.
|
800 |
+
return_dict (`bool`, *optional*):
|
801 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
802 |
+
"""
|
803 |
+
|
804 |
+
CHINESE_CLIP_VISION_INPUTS_DOCSTRING = r"""
|
805 |
+
Args:
|
806 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
807 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
808 |
+
[`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
|
809 |
+
output_attentions (`bool`, *optional*):
|
810 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
811 |
+
tensors for more detail.
|
812 |
+
output_hidden_states (`bool`, *optional*):
|
813 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
814 |
+
more detail.
|
815 |
+
return_dict (`bool`, *optional*):
|
816 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
817 |
+
"""
|
818 |
+
|
819 |
+
CHINESE_CLIP_INPUTS_DOCSTRING = r"""
|
820 |
+
Args:
|
821 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
822 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
823 |
+
it.
|
824 |
+
|
825 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
826 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
827 |
+
|
828 |
+
[What are input IDs?](../glossary#input-ids)
|
829 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
830 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
831 |
+
|
832 |
+
- 1 for tokens that are **not masked**,
|
833 |
+
- 0 for tokens that are **masked**.
|
834 |
+
|
835 |
+
[What are attention masks?](../glossary#attention-mask)
|
836 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
837 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
838 |
+
1]`:
|
839 |
+
|
840 |
+
- 0 corresponds to a *sentence A* token,
|
841 |
+
- 1 corresponds to a *sentence B* token.
|
842 |
+
|
843 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
844 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
845 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
846 |
+
config.max_position_embeddings - 1]`.
|
847 |
+
|
848 |
+
[What are position IDs?](../glossary#position-ids)
|
849 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
850 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
851 |
+
[`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
|
852 |
+
return_loss (`bool`, *optional*):
|
853 |
+
Whether or not to return the contrastive loss.
|
854 |
+
output_attentions (`bool`, *optional*):
|
855 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
856 |
+
tensors for more detail.
|
857 |
+
output_hidden_states (`bool`, *optional*):
|
858 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
859 |
+
more detail.
|
860 |
+
return_dict (`bool`, *optional*):
|
861 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
862 |
+
"""
|
863 |
+
|
864 |
+
|
865 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ChineseCLIPText
|
866 |
+
class ChineseCLIPTextEncoder(nn.Module):
|
867 |
+
def __init__(self, config):
|
868 |
+
super().__init__()
|
869 |
+
self.config = config
|
870 |
+
self.layer = nn.ModuleList([ChineseCLIPTextLayer(config) for _ in range(config.num_hidden_layers)])
|
871 |
+
self.gradient_checkpointing = False
|
872 |
+
|
873 |
+
def forward(
|
874 |
+
self,
|
875 |
+
hidden_states: torch.Tensor,
|
876 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
877 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
878 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
879 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
880 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
881 |
+
use_cache: Optional[bool] = None,
|
882 |
+
output_attentions: Optional[bool] = False,
|
883 |
+
output_hidden_states: Optional[bool] = False,
|
884 |
+
return_dict: Optional[bool] = True,
|
885 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
886 |
+
all_hidden_states = () if output_hidden_states else None
|
887 |
+
all_self_attentions = () if output_attentions else None
|
888 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
889 |
+
|
890 |
+
if self.gradient_checkpointing and self.training:
|
891 |
+
if use_cache:
|
892 |
+
logger.warning_once(
|
893 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
894 |
+
)
|
895 |
+
use_cache = False
|
896 |
+
|
897 |
+
next_decoder_cache = () if use_cache else None
|
898 |
+
for i, layer_module in enumerate(self.layer):
|
899 |
+
if output_hidden_states:
|
900 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
901 |
+
|
902 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
903 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
904 |
+
|
905 |
+
if self.gradient_checkpointing and self.training:
|
906 |
+
layer_outputs = self._gradient_checkpointing_func(
|
907 |
+
layer_module.__call__,
|
908 |
+
hidden_states,
|
909 |
+
attention_mask,
|
910 |
+
layer_head_mask,
|
911 |
+
encoder_hidden_states,
|
912 |
+
encoder_attention_mask,
|
913 |
+
past_key_value,
|
914 |
+
output_attentions,
|
915 |
+
)
|
916 |
+
else:
|
917 |
+
layer_outputs = layer_module(
|
918 |
+
hidden_states,
|
919 |
+
attention_mask,
|
920 |
+
layer_head_mask,
|
921 |
+
encoder_hidden_states,
|
922 |
+
encoder_attention_mask,
|
923 |
+
past_key_value,
|
924 |
+
output_attentions,
|
925 |
+
)
|
926 |
+
|
927 |
+
hidden_states = layer_outputs[0]
|
928 |
+
if use_cache:
|
929 |
+
next_decoder_cache += (layer_outputs[-1],)
|
930 |
+
if output_attentions:
|
931 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
932 |
+
if self.config.add_cross_attention:
|
933 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
934 |
+
|
935 |
+
if output_hidden_states:
|
936 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
937 |
+
|
938 |
+
if not return_dict:
|
939 |
+
return tuple(
|
940 |
+
v
|
941 |
+
for v in [
|
942 |
+
hidden_states,
|
943 |
+
next_decoder_cache,
|
944 |
+
all_hidden_states,
|
945 |
+
all_self_attentions,
|
946 |
+
all_cross_attentions,
|
947 |
+
]
|
948 |
+
if v is not None
|
949 |
+
)
|
950 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
951 |
+
last_hidden_state=hidden_states,
|
952 |
+
past_key_values=next_decoder_cache,
|
953 |
+
hidden_states=all_hidden_states,
|
954 |
+
attentions=all_self_attentions,
|
955 |
+
cross_attentions=all_cross_attentions,
|
956 |
+
)
|
957 |
+
|
958 |
+
|
959 |
+
class ChineseCLIPVisionEncoder(nn.Module):
|
960 |
+
"""
|
961 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
962 |
+
[`ChineseCLIPVisionEncoderLayer`].
|
963 |
+
|
964 |
+
Args:
|
965 |
+
config: ChineseCLIPConfig
|
966 |
+
"""
|
967 |
+
|
968 |
+
def __init__(self, config: ChineseCLIPConfig):
|
969 |
+
super().__init__()
|
970 |
+
self.config = config
|
971 |
+
self.layers = nn.ModuleList([ChineseCLIPVisionLayer(config) for _ in range(config.num_hidden_layers)])
|
972 |
+
self.gradient_checkpointing = False
|
973 |
+
|
974 |
+
def forward(
|
975 |
+
self,
|
976 |
+
inputs_embeds,
|
977 |
+
output_attentions: Optional[bool] = None,
|
978 |
+
output_hidden_states: Optional[bool] = None,
|
979 |
+
return_dict: Optional[bool] = None,
|
980 |
+
) -> Union[Tuple, BaseModelOutput]:
|
981 |
+
r"""
|
982 |
+
Args:
|
983 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
984 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
985 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
986 |
+
than the model's internal embedding lookup matrix.
|
987 |
+
output_attentions (`bool`, *optional*):
|
988 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
989 |
+
returned tensors for more detail.
|
990 |
+
output_hidden_states (`bool`, *optional*):
|
991 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
992 |
+
for more detail.
|
993 |
+
return_dict (`bool`, *optional*):
|
994 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
995 |
+
"""
|
996 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
997 |
+
output_hidden_states = (
|
998 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
999 |
+
)
|
1000 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1001 |
+
|
1002 |
+
encoder_states = () if output_hidden_states else None
|
1003 |
+
all_attentions = () if output_attentions else None
|
1004 |
+
|
1005 |
+
hidden_states = inputs_embeds
|
1006 |
+
for idx, encoder_layer in enumerate(self.layers):
|
1007 |
+
if output_hidden_states:
|
1008 |
+
encoder_states = encoder_states + (hidden_states,)
|
1009 |
+
if self.gradient_checkpointing and self.training:
|
1010 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1011 |
+
encoder_layer.__call__,
|
1012 |
+
hidden_states,
|
1013 |
+
output_attentions,
|
1014 |
+
)
|
1015 |
+
else:
|
1016 |
+
layer_outputs = encoder_layer(
|
1017 |
+
hidden_states,
|
1018 |
+
output_attentions=output_attentions,
|
1019 |
+
)
|
1020 |
+
|
1021 |
+
hidden_states = layer_outputs[0]
|
1022 |
+
|
1023 |
+
if output_attentions:
|
1024 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
1025 |
+
|
1026 |
+
if output_hidden_states:
|
1027 |
+
encoder_states = encoder_states + (hidden_states,)
|
1028 |
+
|
1029 |
+
if not return_dict:
|
1030 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
1031 |
+
return BaseModelOutput(
|
1032 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
|
1036 |
+
class ChineseCLIPVisionTransformer(nn.Module):
|
1037 |
+
def __init__(self, config: ChineseCLIPVisionConfig):
|
1038 |
+
super().__init__()
|
1039 |
+
self.config = config
|
1040 |
+
embed_dim = config.hidden_size
|
1041 |
+
|
1042 |
+
self.embeddings = ChineseCLIPVisionEmbeddings(config)
|
1043 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
1044 |
+
self.encoder = ChineseCLIPVisionEncoder(config)
|
1045 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
1046 |
+
|
1047 |
+
@add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
|
1048 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
|
1049 |
+
def forward(
|
1050 |
+
self,
|
1051 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1052 |
+
output_attentions: Optional[bool] = None,
|
1053 |
+
output_hidden_states: Optional[bool] = None,
|
1054 |
+
return_dict: Optional[bool] = None,
|
1055 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1056 |
+
r"""
|
1057 |
+
Returns:
|
1058 |
+
"""
|
1059 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1060 |
+
output_hidden_states = (
|
1061 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1062 |
+
)
|
1063 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1064 |
+
|
1065 |
+
if pixel_values is None:
|
1066 |
+
raise ValueError("You have to specify pixel_values")
|
1067 |
+
|
1068 |
+
hidden_states = self.embeddings(pixel_values)
|
1069 |
+
hidden_states = self.pre_layrnorm(hidden_states)
|
1070 |
+
|
1071 |
+
encoder_outputs = self.encoder(
|
1072 |
+
inputs_embeds=hidden_states,
|
1073 |
+
output_attentions=output_attentions,
|
1074 |
+
output_hidden_states=output_hidden_states,
|
1075 |
+
return_dict=return_dict,
|
1076 |
+
)
|
1077 |
+
|
1078 |
+
last_hidden_state = encoder_outputs[0]
|
1079 |
+
pooled_output = last_hidden_state[:, 0, :]
|
1080 |
+
pooled_output = self.post_layernorm(pooled_output)
|
1081 |
+
|
1082 |
+
if not return_dict:
|
1083 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
1084 |
+
|
1085 |
+
return BaseModelOutputWithPooling(
|
1086 |
+
last_hidden_state=last_hidden_state,
|
1087 |
+
pooler_output=pooled_output,
|
1088 |
+
hidden_states=encoder_outputs.hidden_states,
|
1089 |
+
attentions=encoder_outputs.attentions,
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
|
1093 |
+
@add_start_docstrings(
|
1094 |
+
"The text model from CHINESE_CLIP without any head or projection on top.",
|
1095 |
+
CHINESE_CLIP_START_DOCSTRING,
|
1096 |
+
)
|
1097 |
+
class ChineseCLIPTextModel(ChineseCLIPPreTrainedModel):
|
1098 |
+
"""
|
1099 |
+
|
1100 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
1101 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
1102 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
1103 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
1104 |
+
|
1105 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
1106 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
1107 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
1108 |
+
"""
|
1109 |
+
|
1110 |
+
config_class = ChineseCLIPTextConfig
|
1111 |
+
|
1112 |
+
def __init__(self, config, add_pooling_layer=True):
|
1113 |
+
super().__init__(config)
|
1114 |
+
self.config = config
|
1115 |
+
|
1116 |
+
self.embeddings = ChineseCLIPTextEmbeddings(config)
|
1117 |
+
self.encoder = ChineseCLIPTextEncoder(config)
|
1118 |
+
|
1119 |
+
self.pooler = ChineseCLIPTextPooler(config) if add_pooling_layer else None
|
1120 |
+
|
1121 |
+
# Initialize weights and apply final processing
|
1122 |
+
self.post_init()
|
1123 |
+
|
1124 |
+
def get_input_embeddings(self):
|
1125 |
+
return self.embeddings.word_embeddings
|
1126 |
+
|
1127 |
+
def set_input_embeddings(self, value):
|
1128 |
+
self.embeddings.word_embeddings = value
|
1129 |
+
|
1130 |
+
def _prune_heads(self, heads_to_prune):
|
1131 |
+
"""
|
1132 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1133 |
+
class PreTrainedModel
|
1134 |
+
"""
|
1135 |
+
for layer, heads in heads_to_prune.items():
|
1136 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1137 |
+
|
1138 |
+
@add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1139 |
+
@add_code_sample_docstrings(
|
1140 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1141 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
1142 |
+
config_class=_CONFIG_FOR_DOC,
|
1143 |
+
)
|
1144 |
+
def forward(
|
1145 |
+
self,
|
1146 |
+
input_ids: Optional[torch.Tensor] = None,
|
1147 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1148 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1149 |
+
position_ids: Optional[torch.Tensor] = None,
|
1150 |
+
head_mask: Optional[torch.Tensor] = None,
|
1151 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1152 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1153 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1154 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1155 |
+
use_cache: Optional[bool] = None,
|
1156 |
+
output_attentions: Optional[bool] = None,
|
1157 |
+
output_hidden_states: Optional[bool] = None,
|
1158 |
+
return_dict: Optional[bool] = None,
|
1159 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
1160 |
+
r"""
|
1161 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1162 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1163 |
+
the model is configured as a decoder.
|
1164 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1165 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1166 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1167 |
+
|
1168 |
+
- 1 for tokens that are **not masked**,
|
1169 |
+
- 0 for tokens that are **masked**.
|
1170 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1171 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1172 |
+
|
1173 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1174 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1175 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1176 |
+
use_cache (`bool`, *optional*):
|
1177 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1178 |
+
`past_key_values`).
|
1179 |
+
"""
|
1180 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1181 |
+
output_hidden_states = (
|
1182 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1183 |
+
)
|
1184 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1185 |
+
|
1186 |
+
if self.config.is_decoder:
|
1187 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1188 |
+
else:
|
1189 |
+
use_cache = False
|
1190 |
+
|
1191 |
+
if input_ids is not None and inputs_embeds is not None:
|
1192 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1193 |
+
elif input_ids is not None:
|
1194 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
1195 |
+
input_shape = input_ids.size()
|
1196 |
+
elif inputs_embeds is not None:
|
1197 |
+
input_shape = inputs_embeds.size()[:-1]
|
1198 |
+
else:
|
1199 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1200 |
+
|
1201 |
+
batch_size, seq_length = input_shape
|
1202 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1203 |
+
|
1204 |
+
# past_key_values_length
|
1205 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1206 |
+
|
1207 |
+
if attention_mask is None:
|
1208 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
1209 |
+
|
1210 |
+
if token_type_ids is None:
|
1211 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
1212 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
1213 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
1214 |
+
token_type_ids = buffered_token_type_ids_expanded
|
1215 |
+
else:
|
1216 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1217 |
+
|
1218 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1219 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1220 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
1221 |
+
|
1222 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1223 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1224 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
1225 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
1226 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1227 |
+
if encoder_attention_mask is None:
|
1228 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1229 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1230 |
+
else:
|
1231 |
+
encoder_extended_attention_mask = None
|
1232 |
+
|
1233 |
+
# Prepare head mask if needed
|
1234 |
+
# 1.0 in head_mask indicate we keep the head
|
1235 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1236 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1237 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1238 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1239 |
+
|
1240 |
+
embedding_output = self.embeddings(
|
1241 |
+
input_ids=input_ids,
|
1242 |
+
position_ids=position_ids,
|
1243 |
+
token_type_ids=token_type_ids,
|
1244 |
+
inputs_embeds=inputs_embeds,
|
1245 |
+
past_key_values_length=past_key_values_length,
|
1246 |
+
)
|
1247 |
+
encoder_outputs = self.encoder(
|
1248 |
+
embedding_output,
|
1249 |
+
attention_mask=extended_attention_mask,
|
1250 |
+
head_mask=head_mask,
|
1251 |
+
encoder_hidden_states=encoder_hidden_states,
|
1252 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1253 |
+
past_key_values=past_key_values,
|
1254 |
+
use_cache=use_cache,
|
1255 |
+
output_attentions=output_attentions,
|
1256 |
+
output_hidden_states=output_hidden_states,
|
1257 |
+
return_dict=return_dict,
|
1258 |
+
)
|
1259 |
+
sequence_output = encoder_outputs[0]
|
1260 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1261 |
+
|
1262 |
+
if not return_dict:
|
1263 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1264 |
+
|
1265 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1266 |
+
last_hidden_state=sequence_output,
|
1267 |
+
pooler_output=pooled_output,
|
1268 |
+
past_key_values=encoder_outputs.past_key_values,
|
1269 |
+
hidden_states=encoder_outputs.hidden_states,
|
1270 |
+
attentions=encoder_outputs.attentions,
|
1271 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1272 |
+
)
|
1273 |
+
|
1274 |
+
|
1275 |
+
@add_start_docstrings(
|
1276 |
+
"""The vision model from CHINESE_CLIP without any head or projection on top.""",
|
1277 |
+
CHINESE_CLIP_START_DOCSTRING,
|
1278 |
+
)
|
1279 |
+
class ChineseCLIPVisionModel(ChineseCLIPPreTrainedModel):
|
1280 |
+
config_class = ChineseCLIPVisionConfig
|
1281 |
+
main_input_name = "pixel_values"
|
1282 |
+
|
1283 |
+
def __init__(self, config: ChineseCLIPVisionConfig):
|
1284 |
+
super().__init__(config)
|
1285 |
+
self.vision_model = ChineseCLIPVisionTransformer(config)
|
1286 |
+
# Initialize weights and apply final processing
|
1287 |
+
self.post_init()
|
1288 |
+
|
1289 |
+
def get_input_embeddings(self) -> nn.Module:
|
1290 |
+
return self.vision_model.embeddings.patch_embedding
|
1291 |
+
|
1292 |
+
@add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
|
1293 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
|
1294 |
+
def forward(
|
1295 |
+
self,
|
1296 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1297 |
+
output_attentions: Optional[bool] = None,
|
1298 |
+
output_hidden_states: Optional[bool] = None,
|
1299 |
+
return_dict: Optional[bool] = None,
|
1300 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1301 |
+
r"""
|
1302 |
+
Returns:
|
1303 |
+
|
1304 |
+
Examples:
|
1305 |
+
|
1306 |
+
```python
|
1307 |
+
>>> from PIL import Image
|
1308 |
+
>>> import requests
|
1309 |
+
>>> from transformers import CLIPProcessor, ChineseCLIPVisionModel
|
1310 |
+
|
1311 |
+
>>> model = ChineseCLIPVisionModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
1312 |
+
>>> processor = CLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
1313 |
+
|
1314 |
+
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
|
1315 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1316 |
+
|
1317 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1318 |
+
|
1319 |
+
>>> outputs = model(**inputs)
|
1320 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1321 |
+
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
1322 |
+
```"""
|
1323 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1324 |
+
|
1325 |
+
return self.vision_model(
|
1326 |
+
pixel_values=pixel_values,
|
1327 |
+
output_attentions=output_attentions,
|
1328 |
+
output_hidden_states=output_hidden_states,
|
1329 |
+
return_dict=return_dict,
|
1330 |
+
)
|
1331 |
+
|
1332 |
+
|
1333 |
+
@add_start_docstrings(CHINESE_CLIP_START_DOCSTRING)
|
1334 |
+
class ChineseCLIPModel(ChineseCLIPPreTrainedModel):
|
1335 |
+
config_class = ChineseCLIPConfig
|
1336 |
+
|
1337 |
+
def __init__(self, config: ChineseCLIPConfig):
|
1338 |
+
super().__init__(config)
|
1339 |
+
|
1340 |
+
if not isinstance(config.text_config, ChineseCLIPTextConfig):
|
1341 |
+
raise ValueError(
|
1342 |
+
"config.text_config is expected to be of type ChineseCLIPTextConfig but is of type"
|
1343 |
+
f" {type(config.text_config)}."
|
1344 |
+
)
|
1345 |
+
|
1346 |
+
if not isinstance(config.vision_config, ChineseCLIPVisionConfig):
|
1347 |
+
raise ValueError(
|
1348 |
+
"config.vision_config is expected to be of type ChineseCLIPVisionConfig but is of type"
|
1349 |
+
f" {type(config.vision_config)}."
|
1350 |
+
)
|
1351 |
+
|
1352 |
+
text_config = config.text_config
|
1353 |
+
vision_config = config.vision_config
|
1354 |
+
|
1355 |
+
self.projection_dim = config.projection_dim
|
1356 |
+
self.text_embed_dim = text_config.hidden_size
|
1357 |
+
self.vision_embed_dim = vision_config.hidden_size
|
1358 |
+
|
1359 |
+
self.text_model = ChineseCLIPTextModel(text_config, add_pooling_layer=False)
|
1360 |
+
self.vision_model = ChineseCLIPVisionTransformer(vision_config)
|
1361 |
+
|
1362 |
+
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
|
1363 |
+
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
|
1364 |
+
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
1365 |
+
|
1366 |
+
# Initialize weights and apply final processing
|
1367 |
+
self.post_init()
|
1368 |
+
|
1369 |
+
@add_start_docstrings_to_model_forward(CHINESE_CLIP_TEXT_INPUTS_DOCSTRING)
|
1370 |
+
def get_text_features(
|
1371 |
+
self,
|
1372 |
+
input_ids: Optional[torch.Tensor] = None,
|
1373 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1374 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1375 |
+
position_ids: Optional[torch.Tensor] = None,
|
1376 |
+
output_attentions: Optional[bool] = None,
|
1377 |
+
output_hidden_states: Optional[bool] = None,
|
1378 |
+
return_dict: Optional[bool] = None,
|
1379 |
+
) -> torch.FloatTensor:
|
1380 |
+
r"""
|
1381 |
+
Returns:
|
1382 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1383 |
+
applying the projection layer to the final [CLS] hidden state of Text-Transformer.
|
1384 |
+
|
1385 |
+
Examples:
|
1386 |
+
|
1387 |
+
```python
|
1388 |
+
>>> from transformers import AutoTokenizer, ChineseCLIPModel
|
1389 |
+
|
1390 |
+
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
1391 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
1392 |
+
|
1393 |
+
>>> inputs = tokenizer(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], padding=True, return_tensors="pt")
|
1394 |
+
>>> text_features = model.get_text_features(**inputs)
|
1395 |
+
>>> text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
|
1396 |
+
```"""
|
1397 |
+
# Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1398 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1399 |
+
output_hidden_states = (
|
1400 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1401 |
+
)
|
1402 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1403 |
+
|
1404 |
+
text_outputs = self.text_model(
|
1405 |
+
input_ids=input_ids,
|
1406 |
+
attention_mask=attention_mask,
|
1407 |
+
token_type_ids=token_type_ids,
|
1408 |
+
position_ids=position_ids,
|
1409 |
+
output_attentions=output_attentions,
|
1410 |
+
output_hidden_states=output_hidden_states,
|
1411 |
+
return_dict=return_dict,
|
1412 |
+
)
|
1413 |
+
|
1414 |
+
pooled_output = text_outputs[0][:, 0, :]
|
1415 |
+
text_features = self.text_projection(pooled_output)
|
1416 |
+
|
1417 |
+
return text_features
|
1418 |
+
|
1419 |
+
@add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
|
1420 |
+
def get_image_features(
|
1421 |
+
self,
|
1422 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1423 |
+
output_attentions: Optional[bool] = None,
|
1424 |
+
output_hidden_states: Optional[bool] = None,
|
1425 |
+
return_dict: Optional[bool] = None,
|
1426 |
+
) -> torch.FloatTensor:
|
1427 |
+
r"""
|
1428 |
+
Returns:
|
1429 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1430 |
+
applying the projection layer to the final [CLS] hidden state of Vision-Transformer.
|
1431 |
+
|
1432 |
+
Examples:
|
1433 |
+
|
1434 |
+
```python
|
1435 |
+
>>> from PIL import Image
|
1436 |
+
>>> import requests
|
1437 |
+
>>> from transformers import AutoProcessor, ChineseCLIPModel
|
1438 |
+
|
1439 |
+
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
1440 |
+
>>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
1441 |
+
|
1442 |
+
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
|
1443 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1444 |
+
|
1445 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1446 |
+
|
1447 |
+
>>> image_features = model.get_image_features(**inputs)
|
1448 |
+
>>> image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
|
1449 |
+
```"""
|
1450 |
+
# Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1451 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1452 |
+
output_hidden_states = (
|
1453 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1454 |
+
)
|
1455 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1456 |
+
|
1457 |
+
vision_outputs = self.vision_model(
|
1458 |
+
pixel_values=pixel_values,
|
1459 |
+
output_attentions=output_attentions,
|
1460 |
+
output_hidden_states=output_hidden_states,
|
1461 |
+
return_dict=return_dict,
|
1462 |
+
)
|
1463 |
+
|
1464 |
+
pooled_output = vision_outputs[1] # pooled_output
|
1465 |
+
image_features = self.visual_projection(pooled_output)
|
1466 |
+
|
1467 |
+
return image_features
|
1468 |
+
|
1469 |
+
@add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING)
|
1470 |
+
@replace_return_docstrings(output_type=ChineseCLIPOutput, config_class=ChineseCLIPConfig)
|
1471 |
+
def forward(
|
1472 |
+
self,
|
1473 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1474 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1475 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1476 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1477 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1478 |
+
return_loss: Optional[bool] = None,
|
1479 |
+
output_attentions: Optional[bool] = None,
|
1480 |
+
output_hidden_states: Optional[bool] = None,
|
1481 |
+
return_dict: Optional[bool] = None,
|
1482 |
+
) -> Union[Tuple, ChineseCLIPOutput]:
|
1483 |
+
r"""
|
1484 |
+
Returns:
|
1485 |
+
|
1486 |
+
Examples:
|
1487 |
+
|
1488 |
+
```python
|
1489 |
+
>>> from PIL import Image
|
1490 |
+
>>> import requests
|
1491 |
+
>>> from transformers import AutoProcessor, ChineseCLIPModel
|
1492 |
+
|
1493 |
+
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
1494 |
+
>>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
1495 |
+
|
1496 |
+
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
|
1497 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1498 |
+
|
1499 |
+
>>> inputs = processor(text=["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], images=image, return_tensors="pt", padding=True)
|
1500 |
+
|
1501 |
+
>>> outputs = model(**inputs)
|
1502 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
1503 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
1504 |
+
```"""
|
1505 |
+
# Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1506 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1507 |
+
output_hidden_states = (
|
1508 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1509 |
+
)
|
1510 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1511 |
+
|
1512 |
+
vision_outputs = self.vision_model(
|
1513 |
+
pixel_values=pixel_values,
|
1514 |
+
output_attentions=output_attentions,
|
1515 |
+
output_hidden_states=output_hidden_states,
|
1516 |
+
return_dict=return_dict,
|
1517 |
+
)
|
1518 |
+
|
1519 |
+
text_outputs = self.text_model(
|
1520 |
+
input_ids=input_ids,
|
1521 |
+
attention_mask=attention_mask,
|
1522 |
+
token_type_ids=token_type_ids,
|
1523 |
+
position_ids=position_ids,
|
1524 |
+
output_attentions=output_attentions,
|
1525 |
+
output_hidden_states=output_hidden_states,
|
1526 |
+
return_dict=return_dict,
|
1527 |
+
)
|
1528 |
+
|
1529 |
+
image_embeds = vision_outputs[1]
|
1530 |
+
image_embeds = self.visual_projection(image_embeds)
|
1531 |
+
|
1532 |
+
text_embeds = text_outputs[0][:, 0, :]
|
1533 |
+
text_embeds = self.text_projection(text_embeds)
|
1534 |
+
|
1535 |
+
# normalized features
|
1536 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
1537 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1538 |
+
|
1539 |
+
# cosine similarity as logits
|
1540 |
+
logit_scale = self.logit_scale.exp()
|
1541 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
1542 |
+
logits_per_image = logits_per_text.t()
|
1543 |
+
|
1544 |
+
loss = None
|
1545 |
+
if return_loss:
|
1546 |
+
loss = chinese_clip_loss(logits_per_text)
|
1547 |
+
|
1548 |
+
if not return_dict:
|
1549 |
+
# fix the None pooled_output of text_outputs to conform with dict_output
|
1550 |
+
pooled_output = text_outputs[1]
|
1551 |
+
if pooled_output is None:
|
1552 |
+
text_outputs = (text_outputs[0],) + text_outputs[2:]
|
1553 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
1554 |
+
return ((loss,) + output) if loss is not None else output
|
1555 |
+
|
1556 |
+
return ChineseCLIPOutput(
|
1557 |
+
loss=loss,
|
1558 |
+
logits_per_image=logits_per_image,
|
1559 |
+
logits_per_text=logits_per_text,
|
1560 |
+
text_embeds=text_embeds,
|
1561 |
+
image_embeds=image_embeds,
|
1562 |
+
text_model_output=text_outputs,
|
1563 |
+
vision_model_output=vision_outputs,
|
1564 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/chinese_clip/processing_chinese_clip.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Image/Text processor class for Chinese-CLIP
|
17 |
+
"""
|
18 |
+
|
19 |
+
import warnings
|
20 |
+
|
21 |
+
from ...processing_utils import ProcessorMixin
|
22 |
+
from ...tokenization_utils_base import BatchEncoding
|
23 |
+
|
24 |
+
|
25 |
+
class ChineseCLIPProcessor(ProcessorMixin):
|
26 |
+
r"""
|
27 |
+
Constructs a Chinese-CLIP processor which wraps a Chinese-CLIP image processor and a Chinese-CLIP tokenizer into a
|
28 |
+
single processor.
|
29 |
+
|
30 |
+
[`ChineseCLIPProcessor`] offers all the functionalities of [`ChineseCLIPImageProcessor`] and [`BertTokenizerFast`].
|
31 |
+
See the [`~ChineseCLIPProcessor.__call__`] and [`~ChineseCLIPProcessor.decode`] for more information.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
image_processor ([`ChineseCLIPImageProcessor`], *optional*):
|
35 |
+
The image processor is a required input.
|
36 |
+
tokenizer ([`BertTokenizerFast`], *optional*):
|
37 |
+
The tokenizer is a required input.
|
38 |
+
"""
|
39 |
+
|
40 |
+
attributes = ["image_processor", "tokenizer"]
|
41 |
+
image_processor_class = "ChineseCLIPImageProcessor"
|
42 |
+
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
|
43 |
+
|
44 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
45 |
+
feature_extractor = None
|
46 |
+
if "feature_extractor" in kwargs:
|
47 |
+
warnings.warn(
|
48 |
+
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
|
49 |
+
" instead.",
|
50 |
+
FutureWarning,
|
51 |
+
)
|
52 |
+
feature_extractor = kwargs.pop("feature_extractor")
|
53 |
+
|
54 |
+
image_processor = image_processor if image_processor is not None else feature_extractor
|
55 |
+
if image_processor is None:
|
56 |
+
raise ValueError("You need to specify an `image_processor`.")
|
57 |
+
if tokenizer is None:
|
58 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
59 |
+
|
60 |
+
super().__init__(image_processor, tokenizer)
|
61 |
+
self.current_processor = self.image_processor
|
62 |
+
|
63 |
+
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
|
64 |
+
"""
|
65 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
66 |
+
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
|
67 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
68 |
+
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
69 |
+
of the above two methods for more information.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
73 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
74 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
75 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
76 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
77 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
78 |
+
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
|
79 |
+
number of channels, H and W are image height and width.
|
80 |
+
|
81 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
82 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
83 |
+
|
84 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
85 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
86 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
87 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
91 |
+
|
92 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
93 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
94 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
95 |
+
`None`).
|
96 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
97 |
+
"""
|
98 |
+
|
99 |
+
if text is None and images is None:
|
100 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
101 |
+
|
102 |
+
if text is not None:
|
103 |
+
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
|
104 |
+
|
105 |
+
if images is not None:
|
106 |
+
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
|
107 |
+
|
108 |
+
if text is not None and images is not None:
|
109 |
+
encoding["pixel_values"] = image_features.pixel_values
|
110 |
+
return encoding
|
111 |
+
elif text is not None:
|
112 |
+
return encoding
|
113 |
+
else:
|
114 |
+
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
115 |
+
|
116 |
+
def batch_decode(self, *args, **kwargs):
|
117 |
+
"""
|
118 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
119 |
+
refer to the docstring of this method for more information.
|
120 |
+
"""
|
121 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
122 |
+
|
123 |
+
def decode(self, *args, **kwargs):
|
124 |
+
"""
|
125 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
126 |
+
the docstring of this method for more information.
|
127 |
+
"""
|
128 |
+
return self.tokenizer.decode(*args, **kwargs)
|
129 |
+
|
130 |
+
@property
|
131 |
+
def model_input_names(self):
|
132 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
133 |
+
image_processor_input_names = self.image_processor.model_input_names
|
134 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
135 |
+
|
136 |
+
@property
|
137 |
+
def feature_extractor_class(self):
|
138 |
+
warnings.warn(
|
139 |
+
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
|
140 |
+
FutureWarning,
|
141 |
+
)
|
142 |
+
return self.image_processor_class
|
env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__init__.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
|
21 |
+
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
|
22 |
+
"processing_mctct": ["MCTCTProcessor"],
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
try:
|
27 |
+
if not is_torch_available():
|
28 |
+
raise OptionalDependencyNotAvailable()
|
29 |
+
except OptionalDependencyNotAvailable:
|
30 |
+
pass
|
31 |
+
else:
|
32 |
+
_import_structure["modeling_mctct"] = [
|
33 |
+
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
34 |
+
"MCTCTForCTC",
|
35 |
+
"MCTCTModel",
|
36 |
+
"MCTCTPreTrainedModel",
|
37 |
+
]
|
38 |
+
|
39 |
+
|
40 |
+
if TYPE_CHECKING:
|
41 |
+
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
|
42 |
+
from .feature_extraction_mctct import MCTCTFeatureExtractor
|
43 |
+
from .processing_mctct import MCTCTProcessor
|
44 |
+
|
45 |
+
try:
|
46 |
+
if not is_torch_available():
|
47 |
+
raise OptionalDependencyNotAvailable()
|
48 |
+
except OptionalDependencyNotAvailable:
|
49 |
+
pass
|
50 |
+
else:
|
51 |
+
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
|
52 |
+
|
53 |
+
else:
|
54 |
+
import sys
|
55 |
+
|
56 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/configuration_mctct.cpython-310.pyc
ADDED
Binary file (7.94 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/feature_extraction_mctct.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/modeling_mctct.cpython-310.pyc
ADDED
Binary file (22.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/processing_mctct.cpython-310.pyc
ADDED
Binary file (4.81 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/configuration_mctct.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""M-CTC-T model configuration"""
|
16 |
+
|
17 |
+
from ....configuration_utils import PretrainedConfig
|
18 |
+
from ....utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json",
|
25 |
+
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class MCTCTConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`MCTCTModel`]. It is used to instantiate an
|
32 |
+
M-CTC-T model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
33 |
+
with the defaults will yield a similar configuration to that of the M-CTC-T
|
34 |
+
[speechbrain/m-ctc-t-large](https://huggingface.co/speechbrain/m-ctc-t-large) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 8065):
|
42 |
+
Vocabulary size of the M-CTC-T model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`MCTCTModel`].
|
44 |
+
hidden_size (`int`, *optional*, defaults to 1536):
|
45 |
+
Dimension of the encoder layers and the pooler layer.
|
46 |
+
num_hidden_layers (`int`, *optional*, defaults to 36):
|
47 |
+
Number of hidden layers in the Transformer encoder.
|
48 |
+
intermediate_size (`int`, *optional*, defaults to 6144):
|
49 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 4):
|
51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
+
attention_head_dim (`int`, *optional*, defaults to 384):
|
53 |
+
Dimensions of each attention head for each attention layer in the Transformer encoder.
|
54 |
+
max_position_embeddings (`int`, *optional*, defaults to 920):
|
55 |
+
The maximum sequence length that this model might ever be used with (after log-mel spectrogram extraction).
|
56 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
57 |
+
The epsilon used by the layer normalization layers.
|
58 |
+
layerdrop (`float`, *optional*, defaults to 0.3):
|
59 |
+
The probability of dropping an encoder layer during training. The default 0.3 value is used in the original
|
60 |
+
implementation.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
|
62 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
63 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.3):
|
67 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
68 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.3):
|
69 |
+
The dropout ratio for the attention probabilities.
|
70 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
71 |
+
The tokenizer index of the pad token.
|
72 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
73 |
+
The tokenizer index of the bos token.
|
74 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
75 |
+
The tokenizer index of the eos token.
|
76 |
+
conv_glu_dim (`int`, *optional*, defaults to 1):
|
77 |
+
The dimension of the output of the `Conv1dSubsampler` layer in which GLU is applied on. Though the original
|
78 |
+
Flashlight code uses the value of 2, here it's adapted to 1 due to transposition differences.
|
79 |
+
conv_dropout (`int`, *optional*, defaults to 0.3):
|
80 |
+
The probability of randomly dropping the `Conv1dSubsampler` layer during training.
|
81 |
+
num_conv_layers (`int`, *optional*, defaults to 1):
|
82 |
+
Number of convolution layers before applying transformer encoder layers.
|
83 |
+
conv_kernel (`Sequence[int]`, *optional*, defaults to `(7,)`):
|
84 |
+
The kernel size of the 1D convolution applied before transformer layers. `len(conv_kernel)` must be equal
|
85 |
+
to `num_conv_layers`.
|
86 |
+
conv_stride (`Sequence[int]`, *optional*, defaults to `(3,)`):
|
87 |
+
The stride length of the 1D convolution applied before transformer layers. `len(conv_stride)` must be equal
|
88 |
+
to `num_conv_layers`.
|
89 |
+
input_feat_per_channel (`int`, *optional*, defaults to 80):
|
90 |
+
Feature dimensions of the channels of the input to the Conv1D layer.
|
91 |
+
input_channels (`int`, *optional*, defaults to 1):
|
92 |
+
Number of input channels of the input to the Conv1D layer.
|
93 |
+
conv_channels (`List[int]`, *optional*):
|
94 |
+
Channel sizes of intermediate Conv1D layers.
|
95 |
+
ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
|
96 |
+
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
|
97 |
+
instance of [`MCTCTForCTC`].
|
98 |
+
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
|
99 |
+
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
|
100 |
+
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
|
101 |
+
of [`MCTCTForCTC`].
|
102 |
+
|
103 |
+
Example:
|
104 |
+
|
105 |
+
```python
|
106 |
+
>>> from transformers import MCTCTConfig, MCTCTModel
|
107 |
+
|
108 |
+
>>> # Initializing a M-CTC-T mctct-large style configuration
|
109 |
+
>>> configuration = MCTCTConfig()
|
110 |
+
|
111 |
+
>>> # Initializing a model (with random weights) from the mctct-large style configuration
|
112 |
+
>>> model = MCTCTModel(configuration)
|
113 |
+
|
114 |
+
>>> # Accessing the model configuration
|
115 |
+
>>> configuration = model.config
|
116 |
+
```"""
|
117 |
+
|
118 |
+
model_type = "mctct"
|
119 |
+
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
vocab_size=8065,
|
123 |
+
hidden_size=1536,
|
124 |
+
num_hidden_layers=36,
|
125 |
+
intermediate_size=6144,
|
126 |
+
num_attention_heads=4,
|
127 |
+
attention_head_dim=384,
|
128 |
+
max_position_embeddings=920,
|
129 |
+
layer_norm_eps=1e-5,
|
130 |
+
layerdrop=0.3,
|
131 |
+
hidden_act="relu",
|
132 |
+
initializer_range=0.02,
|
133 |
+
hidden_dropout_prob=0.3,
|
134 |
+
attention_probs_dropout_prob=0.3,
|
135 |
+
pad_token_id=1,
|
136 |
+
bos_token_id=0,
|
137 |
+
eos_token_id=2,
|
138 |
+
conv_glu_dim=1,
|
139 |
+
conv_dropout=0.3,
|
140 |
+
num_conv_layers=1,
|
141 |
+
conv_kernel=(7,),
|
142 |
+
conv_stride=(3,),
|
143 |
+
input_feat_per_channel=80,
|
144 |
+
input_channels=1,
|
145 |
+
conv_channels=None,
|
146 |
+
ctc_loss_reduction="sum",
|
147 |
+
ctc_zero_infinity=False,
|
148 |
+
**kwargs,
|
149 |
+
):
|
150 |
+
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
|
151 |
+
self.vocab_size = vocab_size
|
152 |
+
self.hidden_size = hidden_size
|
153 |
+
self.num_hidden_layers = num_hidden_layers
|
154 |
+
self.intermediate_size = intermediate_size
|
155 |
+
self.num_attention_heads = num_attention_heads
|
156 |
+
self.attention_head_dim = attention_head_dim
|
157 |
+
self.max_position_embeddings = max_position_embeddings
|
158 |
+
self.layer_norm_eps = layer_norm_eps
|
159 |
+
self.layerdrop = layerdrop
|
160 |
+
self.hidden_act = hidden_act
|
161 |
+
self.initializer_range = initializer_range
|
162 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
163 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
164 |
+
self.pad_token_id = pad_token_id
|
165 |
+
self.bos_token_id = bos_token_id
|
166 |
+
self.eos_token_id = eos_token_id
|
167 |
+
self.conv_glu_dim = conv_glu_dim
|
168 |
+
self.conv_dropout = conv_dropout
|
169 |
+
self.num_conv_layers = num_conv_layers
|
170 |
+
self.input_feat_per_channel = input_feat_per_channel
|
171 |
+
self.input_channels = input_channels
|
172 |
+
self.conv_channels = conv_channels
|
173 |
+
self.ctc_loss_reduction = ctc_loss_reduction
|
174 |
+
self.ctc_zero_infinity = ctc_zero_infinity
|
175 |
+
|
176 |
+
# prevents config testing fail with exporting to json
|
177 |
+
self.conv_kernel = list(conv_kernel)
|
178 |
+
self.conv_stride = list(conv_stride)
|
179 |
+
|
180 |
+
if len(self.conv_kernel) != self.num_conv_layers:
|
181 |
+
raise ValueError(
|
182 |
+
"Configuration for convolutional module is incorrect. "
|
183 |
+
"It is required that `len(config.conv_kernel)` == `config.num_conv_layers` "
|
184 |
+
f"but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, "
|
185 |
+
f"`config.num_conv_layers = {self.num_conv_layers}`."
|
186 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/feature_extraction_mctct.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Feature extractor class for M-CTC-T
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
|
24 |
+
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
|
25 |
+
from ....feature_extraction_utils import BatchFeature
|
26 |
+
from ....file_utils import PaddingStrategy, TensorType
|
27 |
+
from ....utils import logging
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class MCTCTFeatureExtractor(SequenceFeatureExtractor):
|
34 |
+
r"""
|
35 |
+
Constructs a M-CTC-T feature extractor.
|
36 |
+
|
37 |
+
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
|
38 |
+
most of the main methods. Users should refer to this superclass for more information regarding those methods. This
|
39 |
+
code has been adapted from Flashlight's C++ code. For more information about the implementation, one can refer to
|
40 |
+
this [notebook](https://colab.research.google.com/drive/1GLtINkkhzms-IsdcGy_-tVCkv0qNF-Gt#scrollTo=pMCRGMmUC_an)
|
41 |
+
that takes the user step-by-step in the implementation.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
feature_size (`int`, defaults to 80):
|
45 |
+
The feature dimension of the extracted features. This is the number of mel_frequency
|
46 |
+
sampling_rate (`int`, defaults to 16000):
|
47 |
+
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
|
48 |
+
padding_value (`float`, defaults to 0.0):
|
49 |
+
The value that is used to fill the padding values.
|
50 |
+
hop_length (`int`, defaults to 10):
|
51 |
+
Number of audio samples between windows. Otherwise referred to as "shift" in many papers.
|
52 |
+
win_length (`int`, defaults to 25):
|
53 |
+
Number of ms per window
|
54 |
+
win_function (`str`, defaults to `"hamming_window"`):
|
55 |
+
Name for the window function used for windowing, must be accessible via `torch.{win_function}`
|
56 |
+
frame_signal_scale (`float`, defaults to 32768.0):
|
57 |
+
Constant multiplied in creating the frames before applying DFT.
|
58 |
+
preemphasis_coeff (`float`, defaults to 0.97):
|
59 |
+
Constant multiplied in applying Pre-emphasis before DFT.
|
60 |
+
mel_floor (`float` defaults to 1.0):
|
61 |
+
Minimum value of mel frequency banks.
|
62 |
+
normalize_means (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether or not to zero-mean normalize the extracted features.
|
64 |
+
normalize_vars (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not to unit-variance normalize the extracted features.
|
66 |
+
"""
|
67 |
+
|
68 |
+
model_input_names = ["input_features", "attention_mask"]
|
69 |
+
|
70 |
+
def __init__(
|
71 |
+
self,
|
72 |
+
feature_size=80,
|
73 |
+
sampling_rate=16000,
|
74 |
+
padding_value=0.0,
|
75 |
+
hop_length=10,
|
76 |
+
win_length=25,
|
77 |
+
win_function="hamming_window",
|
78 |
+
frame_signal_scale=32768.0,
|
79 |
+
preemphasis_coeff=0.97,
|
80 |
+
mel_floor=1.0,
|
81 |
+
normalize_means=True,
|
82 |
+
normalize_vars=True,
|
83 |
+
return_attention_mask=False,
|
84 |
+
**kwargs,
|
85 |
+
):
|
86 |
+
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
|
87 |
+
|
88 |
+
self.feature_size = feature_size
|
89 |
+
self.sampling_rate = sampling_rate
|
90 |
+
self.padding_value = padding_value
|
91 |
+
self.hop_length = hop_length
|
92 |
+
self.win_length = win_length
|
93 |
+
self.frame_signal_scale = frame_signal_scale
|
94 |
+
self.preemphasis_coeff = preemphasis_coeff
|
95 |
+
self.mel_floor = mel_floor
|
96 |
+
self.normalize_means = normalize_means
|
97 |
+
self.normalize_vars = normalize_vars
|
98 |
+
self.win_function = win_function
|
99 |
+
self.return_attention_mask = return_attention_mask
|
100 |
+
|
101 |
+
self.sample_size = win_length * sampling_rate // 1000
|
102 |
+
self.sample_stride = hop_length * sampling_rate // 1000
|
103 |
+
|
104 |
+
self.n_fft = optimal_fft_length(self.sample_size)
|
105 |
+
self.n_freqs = (self.n_fft // 2) + 1
|
106 |
+
|
107 |
+
def _extract_mfsc_features(self, one_waveform: np.array) -> np.ndarray:
|
108 |
+
"""
|
109 |
+
Extracts MFSC Features for one waveform vector (unbatched). Adapted from Flashlight's C++ MFSC code.
|
110 |
+
"""
|
111 |
+
if self.win_function == "hamming_window":
|
112 |
+
window = window_function(window_length=self.sample_size, name=self.win_function, periodic=False)
|
113 |
+
else:
|
114 |
+
window = window_function(window_length=self.sample_size, name=self.win_function)
|
115 |
+
|
116 |
+
fbanks = mel_filter_bank(
|
117 |
+
num_frequency_bins=self.n_freqs,
|
118 |
+
num_mel_filters=self.feature_size,
|
119 |
+
min_frequency=0.0,
|
120 |
+
max_frequency=self.sampling_rate / 2.0,
|
121 |
+
sampling_rate=self.sampling_rate,
|
122 |
+
)
|
123 |
+
|
124 |
+
msfc_features = spectrogram(
|
125 |
+
one_waveform * self.frame_signal_scale,
|
126 |
+
window=window,
|
127 |
+
frame_length=self.sample_size,
|
128 |
+
hop_length=self.sample_stride,
|
129 |
+
fft_length=self.n_fft,
|
130 |
+
center=False,
|
131 |
+
preemphasis=self.preemphasis_coeff,
|
132 |
+
mel_filters=fbanks,
|
133 |
+
mel_floor=self.mel_floor,
|
134 |
+
log_mel="log",
|
135 |
+
)
|
136 |
+
return msfc_features.T
|
137 |
+
|
138 |
+
def _normalize_one(self, x, input_length, padding_value):
|
139 |
+
# make sure we normalize float32 arrays
|
140 |
+
if self.normalize_means:
|
141 |
+
mean = x[:input_length].mean(axis=0)
|
142 |
+
x = np.subtract(x, mean)
|
143 |
+
if self.normalize_vars:
|
144 |
+
std = x[:input_length].std(axis=0)
|
145 |
+
x = np.divide(x, std)
|
146 |
+
|
147 |
+
if input_length < x.shape[0]:
|
148 |
+
x[input_length:] = padding_value
|
149 |
+
|
150 |
+
# make sure array is in float32
|
151 |
+
x = x.astype(np.float32)
|
152 |
+
|
153 |
+
return x
|
154 |
+
|
155 |
+
def normalize(
|
156 |
+
self, input_features: List[np.ndarray], attention_mask: Optional[np.ndarray] = None
|
157 |
+
) -> List[np.ndarray]:
|
158 |
+
lengths = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features]
|
159 |
+
return [self._normalize_one(x, n, self.padding_value) for x, n in zip(input_features, lengths)]
|
160 |
+
|
161 |
+
def __call__(
|
162 |
+
self,
|
163 |
+
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
|
164 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
165 |
+
max_length: Optional[int] = None,
|
166 |
+
truncation: bool = False,
|
167 |
+
pad_to_multiple_of: Optional[int] = None,
|
168 |
+
return_attention_mask: Optional[bool] = None,
|
169 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
170 |
+
sampling_rate: Optional[int] = None,
|
171 |
+
**kwargs,
|
172 |
+
) -> BatchFeature:
|
173 |
+
"""
|
174 |
+
Main method to featurize and prepare for the model one or several sequence(s). sequences. It returns the
|
175 |
+
log-mel spectrogram of the input audio, as implemented in the original Flashlight MFSC feature extraction code.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
raw_speech (`torch.Tensor`, `np.ndarray`, `List[float]`, `List[torch.Tensor]`, `List[np.ndarray]`, `List[List[float]]`):
|
179 |
+
The sequence or batch of sequences to be padded. Each sequence can be a tensor, a numpy array, a list
|
180 |
+
of float values, a list of tensors, a list of numpy arrays or a list of list of float values. Must be
|
181 |
+
mono channel audio, not stereo, i.e. single float per timestep.
|
182 |
+
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
|
183 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
184 |
+
index) among:
|
185 |
+
|
186 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
187 |
+
sequence if provided).
|
188 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
189 |
+
acceptable input length for the model if that argument is not provided.
|
190 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
191 |
+
lengths).
|
192 |
+
max_length (`int`, *optional*):
|
193 |
+
Maximum length of the returned list and optionally padding length (see above).
|
194 |
+
truncation (`bool`):
|
195 |
+
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
|
196 |
+
pad_to_multiple_of (`int`, *optional*):
|
197 |
+
If set will pad the sequence to a multiple of the provided value.
|
198 |
+
|
199 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
200 |
+
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
|
201 |
+
return_attention_mask (`bool`, *optional*):
|
202 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
203 |
+
to the specific feature_extractor's default.
|
204 |
+
|
205 |
+
[What are attention masks?](../glossary#attention-mask)
|
206 |
+
|
207 |
+
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
|
208 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
209 |
+
|
210 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
211 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
212 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
213 |
+
sampling_rate (`int`, *optional*):
|
214 |
+
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
|
215 |
+
`sampling_rate` at the forward call to prevent silent errors.
|
216 |
+
padding_value (`float`, defaults to 0.0):
|
217 |
+
"""
|
218 |
+
|
219 |
+
if sampling_rate is not None:
|
220 |
+
if sampling_rate != self.sampling_rate:
|
221 |
+
raise ValueError(
|
222 |
+
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
|
223 |
+
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
|
224 |
+
f" {self.sampling_rate} and not {sampling_rate}."
|
225 |
+
)
|
226 |
+
else:
|
227 |
+
logger.warning(
|
228 |
+
"It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
|
229 |
+
"Failing to do so can result in silent errors that might be hard to debug."
|
230 |
+
)
|
231 |
+
|
232 |
+
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
|
233 |
+
if is_batched_numpy and len(raw_speech.shape) > 2:
|
234 |
+
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
|
235 |
+
is_batched = is_batched_numpy or (
|
236 |
+
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
|
237 |
+
)
|
238 |
+
|
239 |
+
if is_batched:
|
240 |
+
raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech]
|
241 |
+
elif not is_batched and not isinstance(raw_speech, np.ndarray):
|
242 |
+
raw_speech = np.asarray(raw_speech, dtype=np.float32)
|
243 |
+
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
|
244 |
+
raw_speech = raw_speech.astype(np.float32)
|
245 |
+
|
246 |
+
# always return batch
|
247 |
+
if not is_batched:
|
248 |
+
raw_speech = [raw_speech]
|
249 |
+
|
250 |
+
# extract fbank features
|
251 |
+
features = [self._extract_mfsc_features(one_waveform) for one_waveform in raw_speech]
|
252 |
+
|
253 |
+
# convert into correct format for padding
|
254 |
+
encoded_inputs = BatchFeature({"input_features": features})
|
255 |
+
|
256 |
+
padded_inputs = self.pad(
|
257 |
+
encoded_inputs,
|
258 |
+
padding=padding,
|
259 |
+
max_length=max_length,
|
260 |
+
truncation=truncation,
|
261 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
262 |
+
return_attention_mask=True,
|
263 |
+
**kwargs,
|
264 |
+
)
|
265 |
+
# make sure list is in array format
|
266 |
+
input_features = padded_inputs.get("input_features")
|
267 |
+
if isinstance(input_features[0], list):
|
268 |
+
padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features]
|
269 |
+
|
270 |
+
attention_mask = padded_inputs.get("attention_mask")
|
271 |
+
if attention_mask is not None:
|
272 |
+
padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask]
|
273 |
+
|
274 |
+
if self.normalize_means or self.normalize_vars:
|
275 |
+
attention_mask = (
|
276 |
+
np.array(attention_mask, dtype=np.int32)
|
277 |
+
if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD
|
278 |
+
and padding
|
279 |
+
else None
|
280 |
+
)
|
281 |
+
padded_inputs["input_features"] = self.normalize(
|
282 |
+
padded_inputs["input_features"], attention_mask=attention_mask
|
283 |
+
)
|
284 |
+
|
285 |
+
if return_tensors is not None:
|
286 |
+
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
|
287 |
+
|
288 |
+
return padded_inputs
|
env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/modeling_mctct.py
ADDED
@@ -0,0 +1,795 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch M-CTC-T model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from ....activations import ACT2FN
|
26 |
+
from ....file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
27 |
+
from ....integrations.deepspeed import is_deepspeed_zero3_enabled
|
28 |
+
from ....modeling_attn_mask_utils import _prepare_4d_attention_mask
|
29 |
+
from ....modeling_outputs import BaseModelOutput, CausalLMOutput
|
30 |
+
from ....modeling_utils import (
|
31 |
+
PreTrainedModel,
|
32 |
+
apply_chunking_to_forward,
|
33 |
+
find_pruneable_heads_and_indices,
|
34 |
+
prune_linear_layer,
|
35 |
+
)
|
36 |
+
from ....utils import logging
|
37 |
+
from .configuration_mctct import MCTCTConfig
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
_HIDDEN_STATES_START_POSITION = 1
|
43 |
+
|
44 |
+
_CONFIG_FOR_DOC = "MCTCTConfig"
|
45 |
+
|
46 |
+
# Base docstring
|
47 |
+
_CHECKPOINT_FOR_DOC = "speechbrain/m-ctc-t-large"
|
48 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 195, 1536]
|
49 |
+
|
50 |
+
# CTC docstring
|
51 |
+
_CTC_EXPECTED_OUTPUT = '"Mr. Quilter is the apostle of the middle classes, and we\'re glad to welcome his gospel."'
|
52 |
+
_CTC_EXPECTED_LOSS = 1885.65
|
53 |
+
|
54 |
+
|
55 |
+
MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
56 |
+
"speechbrain/m-ctc-t-large",
|
57 |
+
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
|
58 |
+
]
|
59 |
+
|
60 |
+
|
61 |
+
class MCTCTConv1dSubsampler(nn.Module):
|
62 |
+
"""
|
63 |
+
Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation
|
64 |
+
via gated linear units (https://arxiv.org/abs/1911.08460)
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(self, config):
|
68 |
+
super().__init__()
|
69 |
+
self.config = config
|
70 |
+
self.glu_dim = config.conv_glu_dim
|
71 |
+
|
72 |
+
self.dropout = nn.Dropout(config.conv_dropout)
|
73 |
+
|
74 |
+
self.num_layers = config.num_conv_layers
|
75 |
+
self.in_channels = config.input_feat_per_channel * config.input_channels
|
76 |
+
|
77 |
+
if self.num_layers > 1:
|
78 |
+
if config.conv_channels is None:
|
79 |
+
raise ValueError(
|
80 |
+
"Need to specify `conv_channels` configuration in `MCTCTConfig` to use multiple convolution"
|
81 |
+
" layers."
|
82 |
+
)
|
83 |
+
|
84 |
+
self.mid_channels = config.conv_channels
|
85 |
+
else:
|
86 |
+
self.mid_channels = None
|
87 |
+
|
88 |
+
self.out_channels = config.hidden_size * 2 # considering GLU halving
|
89 |
+
self.kernel_size = config.conv_kernel
|
90 |
+
self.stride = config.conv_stride
|
91 |
+
|
92 |
+
# NOTE: MCTCT by construction only uses one convolution kernel. I've made this flexible to allow for
|
93 |
+
# multiple layers of convolutions, but not sure if this model definition should just restrict it
|
94 |
+
# to one layer. This becomes especially relevant when considering the padding like line 1 of forward().
|
95 |
+
self.conv_layers = nn.ModuleList(
|
96 |
+
nn.Conv1d(
|
97 |
+
self.in_channels if i == 0 else self.mid_channels[i],
|
98 |
+
self.mid_channels[i] if i < self.num_layers - 1 else self.out_channels,
|
99 |
+
kernel_size=k,
|
100 |
+
stride=self.stride[i],
|
101 |
+
padding="valid",
|
102 |
+
)
|
103 |
+
for i, k in enumerate(self.kernel_size)
|
104 |
+
)
|
105 |
+
|
106 |
+
def forward(self, input_features):
|
107 |
+
# NOTE: in reference to the NOTE in __init__, right now it just calculates padding as if
|
108 |
+
# there will be just one conv layer.
|
109 |
+
padding = sum([size // 2 for size in self.kernel_size]) # (7, 7) -> (3, 3)
|
110 |
+
|
111 |
+
input_features = torch.nn.functional.pad(input_features, (0, 0, padding, padding), "constant", 0)
|
112 |
+
hidden_states = input_features.transpose(1, 2).contiguous() # -> Batch x Frame x Time
|
113 |
+
for conv in self.conv_layers:
|
114 |
+
hidden_states = conv(hidden_states)
|
115 |
+
hidden_states = nn.functional.glu(hidden_states, dim=self.glu_dim)
|
116 |
+
hidden_states = self.dropout(hidden_states)
|
117 |
+
|
118 |
+
hidden_states = hidden_states.transpose(1, 2).contiguous() # -> Batch x Time x Frame
|
119 |
+
return hidden_states
|
120 |
+
|
121 |
+
|
122 |
+
class MCTCTEmbeddings(nn.Module):
|
123 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
124 |
+
|
125 |
+
def __init__(self, config):
|
126 |
+
super().__init__()
|
127 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
128 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
129 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
130 |
+
|
131 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
132 |
+
# any TensorFlow checkpoint file
|
133 |
+
# self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
134 |
+
self.LayerNorm = MCTCTLayerNorm()
|
135 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
136 |
+
|
137 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
138 |
+
self.register_buffer(
|
139 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
140 |
+
)
|
141 |
+
self.register_buffer(
|
142 |
+
"token_type_ids",
|
143 |
+
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
|
144 |
+
persistent=False,
|
145 |
+
)
|
146 |
+
|
147 |
+
def forward(
|
148 |
+
self, input_features=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
149 |
+
):
|
150 |
+
input_shape = input_features.size() if input_features is not None else inputs_embeds.size()[:-1]
|
151 |
+
|
152 |
+
seq_length = input_shape[1]
|
153 |
+
|
154 |
+
if position_ids is None:
|
155 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
156 |
+
|
157 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
158 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
159 |
+
# issue #5664
|
160 |
+
if token_type_ids is None:
|
161 |
+
if hasattr(self, "token_type_ids"):
|
162 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
163 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
164 |
+
token_type_ids = buffered_token_type_ids_expanded
|
165 |
+
else:
|
166 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
167 |
+
|
168 |
+
if inputs_embeds is None:
|
169 |
+
inputs_embeds = self.word_embeddings(input_features)
|
170 |
+
|
171 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
172 |
+
|
173 |
+
embeddings = inputs_embeds + token_type_embeddings
|
174 |
+
|
175 |
+
embeddings = self.LayerNorm(embeddings)
|
176 |
+
embeddings = self.dropout(embeddings)
|
177 |
+
return embeddings
|
178 |
+
|
179 |
+
|
180 |
+
class MCTCTSelfAttention(nn.Module):
|
181 |
+
def __init__(self, config):
|
182 |
+
super().__init__()
|
183 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
184 |
+
raise ValueError(
|
185 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
186 |
+
f"heads ({config.num_attention_heads})"
|
187 |
+
)
|
188 |
+
|
189 |
+
self.num_attention_heads = config.num_attention_heads
|
190 |
+
self.attention_head_size = config.attention_head_dim
|
191 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
192 |
+
|
193 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
194 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
195 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
196 |
+
|
197 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
198 |
+
|
199 |
+
self.max_position_embeddings = config.max_position_embeddings
|
200 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
201 |
+
|
202 |
+
self.is_decoder = config.is_decoder
|
203 |
+
|
204 |
+
def transpose_for_scores(self, x):
|
205 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
206 |
+
x = x.view(*new_x_shape)
|
207 |
+
return x.permute(0, 2, 1, 3)
|
208 |
+
|
209 |
+
def reshape_fortran(self, x, shape):
|
210 |
+
if len(x.shape) > 0:
|
211 |
+
x = x.permute(*reversed(range(len(x.shape))))
|
212 |
+
return x.reshape(*reversed(shape)).permute(*reversed(range(len(shape))))
|
213 |
+
|
214 |
+
def relative_position_embedding_rotate(self, scores):
|
215 |
+
# NOTE: should re-evaluate whether this re-implementation was truly necessary
|
216 |
+
# or the reason why my complete re-haul worked was due to some other part
|
217 |
+
# of the code. Adding this and the reshape fortrain code seems very undesirable.
|
218 |
+
scores = scores.permute(0, 2, 3, 1) # e.g. [10, 1839, 14, 4]
|
219 |
+
|
220 |
+
batch, hidden_state, seq_len, heads = scores.shape
|
221 |
+
|
222 |
+
# e.g. [10, 1853, 14, 4]
|
223 |
+
scores = torch.cat((scores, torch.zeros((batch, seq_len, seq_len, heads), device=scores.device)), dim=1)
|
224 |
+
|
225 |
+
# e.g. [10, 25942, 1, 4]
|
226 |
+
scores = self.reshape_fortran(scores, [batch, (hidden_state + seq_len) * seq_len, 1, heads])
|
227 |
+
|
228 |
+
# e.g. [10, 25928, 1, 4]
|
229 |
+
scores = scores[:, : (seq_len + hidden_state - 1) * seq_len]
|
230 |
+
|
231 |
+
# e.g. [10, 1852, 14, 4]
|
232 |
+
scores = self.reshape_fortran(scores, [batch, hidden_state + seq_len - 1, seq_len, heads])
|
233 |
+
|
234 |
+
halfpoint = hidden_state // 2
|
235 |
+
scores = scores[:, halfpoint : halfpoint + seq_len].transpose(1, 2) # e.g. [10, 14, 14, 4]
|
236 |
+
|
237 |
+
return scores.permute(0, 3, 1, 2)
|
238 |
+
|
239 |
+
def forward(
|
240 |
+
self,
|
241 |
+
hidden_states,
|
242 |
+
attention_mask=None,
|
243 |
+
head_mask=None,
|
244 |
+
output_attentions=False,
|
245 |
+
):
|
246 |
+
mixed_query_layer = self.query(hidden_states)
|
247 |
+
mixed_query_layer = mixed_query_layer / math.sqrt(self.attention_head_size)
|
248 |
+
|
249 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
250 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
251 |
+
|
252 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
253 |
+
|
254 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
255 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
256 |
+
|
257 |
+
# relative key position embeddings
|
258 |
+
positional_embedding = self.distance_embedding.weight
|
259 |
+
relative_position_scores = torch.einsum("lh, bche -> bcle", positional_embedding, query_layer.transpose(2, 3))
|
260 |
+
|
261 |
+
relative_position_scores = self.relative_position_embedding_rotate(relative_position_scores)
|
262 |
+
attention_scores = attention_scores + relative_position_scores
|
263 |
+
|
264 |
+
if attention_mask is not None:
|
265 |
+
# Apply the attention mask is (precomputed for all layers in MCTCTModel forward() function)
|
266 |
+
attention_scores = attention_scores + attention_mask
|
267 |
+
|
268 |
+
# Normalize the attention scores to probabilities.
|
269 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
270 |
+
|
271 |
+
# This is actually dropping out entire tokens to attend to, which might
|
272 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
273 |
+
attention_probs = self.dropout(attention_probs)
|
274 |
+
|
275 |
+
# Mask heads if we want to
|
276 |
+
if head_mask is not None:
|
277 |
+
attention_probs = attention_probs * head_mask
|
278 |
+
|
279 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
280 |
+
|
281 |
+
context_layer = context_layer.permute(0, 2, 1, 3).flatten(start_dim=-2)
|
282 |
+
|
283 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
284 |
+
|
285 |
+
return outputs
|
286 |
+
|
287 |
+
|
288 |
+
class MCTCTLayerNorm(nn.Module):
|
289 |
+
def __init__(self):
|
290 |
+
super().__init__()
|
291 |
+
self.singleton_weight = nn.Parameter(torch.ones(1))
|
292 |
+
self.singleton_bias = nn.Parameter(torch.zeros(1))
|
293 |
+
|
294 |
+
def forward(self, hidden_states):
|
295 |
+
return (hidden_states * self.singleton_weight) + self.singleton_bias
|
296 |
+
|
297 |
+
|
298 |
+
class MCTCTSelfOutput(nn.Module):
|
299 |
+
def __init__(self, config):
|
300 |
+
super().__init__()
|
301 |
+
self.config = config
|
302 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
|
303 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
304 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
305 |
+
|
306 |
+
def forward(self, hidden_states, input_tensor):
|
307 |
+
hidden_states = self.dense(hidden_states)
|
308 |
+
hidden_states = self.dropout(hidden_states)
|
309 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
310 |
+
return hidden_states
|
311 |
+
|
312 |
+
|
313 |
+
class MCTCTAttention(nn.Module):
|
314 |
+
def __init__(self, config):
|
315 |
+
super().__init__()
|
316 |
+
self.self = MCTCTSelfAttention(config)
|
317 |
+
self.output = MCTCTSelfOutput(config)
|
318 |
+
self.pruned_heads = set()
|
319 |
+
|
320 |
+
def prune_heads(self, heads):
|
321 |
+
if len(heads) == 0:
|
322 |
+
return
|
323 |
+
heads, index = find_pruneable_heads_and_indices(
|
324 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
325 |
+
)
|
326 |
+
|
327 |
+
# Prune linear layers
|
328 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
329 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
330 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
331 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
332 |
+
|
333 |
+
# Update hyper params and store pruned heads
|
334 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
335 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
336 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
337 |
+
|
338 |
+
def forward(
|
339 |
+
self,
|
340 |
+
hidden_states,
|
341 |
+
attention_mask=None,
|
342 |
+
head_mask=None,
|
343 |
+
output_attentions=False,
|
344 |
+
):
|
345 |
+
self_outputs = self.self(
|
346 |
+
hidden_states,
|
347 |
+
attention_mask,
|
348 |
+
head_mask,
|
349 |
+
output_attentions,
|
350 |
+
)
|
351 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
352 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
353 |
+
|
354 |
+
return outputs
|
355 |
+
|
356 |
+
|
357 |
+
class MCTCTIntermediate(nn.Module):
|
358 |
+
def __init__(self, config):
|
359 |
+
super().__init__()
|
360 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
361 |
+
if isinstance(config.hidden_act, str):
|
362 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
363 |
+
else:
|
364 |
+
self.intermediate_act_fn = config.hidden_act
|
365 |
+
|
366 |
+
def forward(self, hidden_states):
|
367 |
+
hidden_states = self.dense(hidden_states)
|
368 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
369 |
+
return hidden_states
|
370 |
+
|
371 |
+
|
372 |
+
class MCTCTOutput(nn.Module):
|
373 |
+
def __init__(self, config):
|
374 |
+
super().__init__()
|
375 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
376 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
377 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
378 |
+
|
379 |
+
def forward(self, hidden_states, input_tensor):
|
380 |
+
hidden_states = self.dense(hidden_states)
|
381 |
+
hidden_states = self.dropout(hidden_states)
|
382 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
383 |
+
return hidden_states
|
384 |
+
|
385 |
+
|
386 |
+
class MCTCTLayer(nn.Module):
|
387 |
+
def __init__(self, config: MCTCTConfig):
|
388 |
+
super().__init__()
|
389 |
+
|
390 |
+
self.seq_len_dim = 1
|
391 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
392 |
+
|
393 |
+
self.intermediate = MCTCTIntermediate(config)
|
394 |
+
self.attention = MCTCTAttention(config)
|
395 |
+
self.is_decoder = config.is_decoder
|
396 |
+
self.output = MCTCTOutput(config)
|
397 |
+
|
398 |
+
def forward(
|
399 |
+
self,
|
400 |
+
hidden_states,
|
401 |
+
attention_mask=None,
|
402 |
+
head_mask=None,
|
403 |
+
output_attentions=False,
|
404 |
+
):
|
405 |
+
self_attention_outputs = self.attention(
|
406 |
+
hidden_states, attention_mask, head_mask, output_attentions=output_attentions
|
407 |
+
)
|
408 |
+
attention_output = self_attention_outputs[0]
|
409 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
410 |
+
|
411 |
+
layer_output = apply_chunking_to_forward(
|
412 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
413 |
+
)
|
414 |
+
|
415 |
+
outputs = (layer_output,) + outputs
|
416 |
+
|
417 |
+
return outputs
|
418 |
+
|
419 |
+
def feed_forward_chunk(self, attention_output):
|
420 |
+
intermediate_output = self.intermediate(attention_output)
|
421 |
+
layer_output = self.output(intermediate_output, attention_output)
|
422 |
+
return layer_output
|
423 |
+
|
424 |
+
|
425 |
+
class MCTCTPreTrainedModel(PreTrainedModel):
|
426 |
+
"""
|
427 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
428 |
+
models.
|
429 |
+
"""
|
430 |
+
|
431 |
+
config_class = MCTCTConfig
|
432 |
+
base_model_prefix = "mctct"
|
433 |
+
main_input_name = "input_features"
|
434 |
+
supports_gradient_checkpointing = True
|
435 |
+
|
436 |
+
def _init_weights(self, module):
|
437 |
+
"""Initialize the weights"""
|
438 |
+
std = self.config.initializer_range
|
439 |
+
if isinstance(module, nn.Linear):
|
440 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
441 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
442 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
443 |
+
if module.bias is not None:
|
444 |
+
module.bias.data.zero_()
|
445 |
+
elif isinstance(module, nn.Embedding):
|
446 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
447 |
+
if module.padding_idx is not None:
|
448 |
+
module.weight.data[module.padding_idx].zero_()
|
449 |
+
elif isinstance(module, nn.LayerNorm):
|
450 |
+
module.bias.data.zero_()
|
451 |
+
module.weight.data.fill_(1.0)
|
452 |
+
elif isinstance(module, MCTCTLayerNorm):
|
453 |
+
module.singleton_weight.data.fill_(1.0)
|
454 |
+
module.singleton_bias.data.zero_()
|
455 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
456 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
457 |
+
if module.bias is not None:
|
458 |
+
module.bias.data.zero_()
|
459 |
+
|
460 |
+
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
|
461 |
+
"""
|
462 |
+
Computes the output length of the convolutional layers
|
463 |
+
"""
|
464 |
+
dilation = 1
|
465 |
+
for _, kernel_sz, stride in zip(
|
466 |
+
range(self.config.num_conv_layers), self.config.conv_kernel, self.config.conv_stride
|
467 |
+
):
|
468 |
+
padding = kernel_sz // 2
|
469 |
+
input_lengths = input_lengths + 2 * padding - dilation * (kernel_sz - 1) - 1
|
470 |
+
input_lengths = torch.div(input_lengths, stride, rounding_mode="trunc") + 1
|
471 |
+
|
472 |
+
return input_lengths
|
473 |
+
|
474 |
+
def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask):
|
475 |
+
# generate creates 3D attention mask, because of the shape of input_features
|
476 |
+
# convert it to 2D if thats the case
|
477 |
+
if len(attention_mask.shape) > 2:
|
478 |
+
attention_mask = attention_mask[:, :, -1]
|
479 |
+
|
480 |
+
# subsampled_lengths = attention_mask.sum(-1)
|
481 |
+
subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1))
|
482 |
+
bsz = attention_mask.size()[0]
|
483 |
+
attention_mask = torch.zeros(
|
484 |
+
(bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
|
485 |
+
)
|
486 |
+
|
487 |
+
# these two operations makes sure that all values
|
488 |
+
# before the output lengths indices are attended to
|
489 |
+
attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1
|
490 |
+
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long()
|
491 |
+
return attention_mask
|
492 |
+
|
493 |
+
|
494 |
+
MCTCT_START_DOCSTRING = r"""
|
495 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
496 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
497 |
+
behavior.
|
498 |
+
|
499 |
+
Parameters:
|
500 |
+
config ([`MCTCTConfig`]): Model configuration class with all the parameters of the model.
|
501 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
502 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
503 |
+
"""
|
504 |
+
|
505 |
+
MCTCT_INPUTS_DOCSTRING = r"""
|
506 |
+
Args:
|
507 |
+
input_features (`torch.LongTensor` of shape `({0})`):
|
508 |
+
Indices of input sequence tokens in the vocabulary.
|
509 |
+
|
510 |
+
Indices can be obtained using [`Wav2Vec2CTCTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
511 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
512 |
+
|
513 |
+
[What are input IDs?](../glossary#input-ids)
|
514 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
515 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
516 |
+
|
517 |
+
- 1 for tokens that are **not masked**,
|
518 |
+
- 0 for tokens that are **masked**.
|
519 |
+
|
520 |
+
[What are attention masks?](../glossary#attention-mask)
|
521 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
522 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
523 |
+
|
524 |
+
- 1 indicates the head is **not masked**,
|
525 |
+
- 0 indicates the head is **masked**.
|
526 |
+
output_attentions (`bool`, *optional*):
|
527 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
528 |
+
tensors for more detail.
|
529 |
+
output_hidden_states (`bool`, *optional*):
|
530 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
531 |
+
more detail.
|
532 |
+
return_dict (`bool`, *optional*):
|
533 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
534 |
+
"""
|
535 |
+
|
536 |
+
|
537 |
+
class MCTCTEncoder(MCTCTPreTrainedModel):
|
538 |
+
def __init__(self, config: MCTCTConfig):
|
539 |
+
super().__init__(config)
|
540 |
+
self.hidden_dropout_prob = config.hidden_dropout_prob
|
541 |
+
|
542 |
+
self.layer_norm = MCTCTLayerNorm()
|
543 |
+
self.conv = MCTCTConv1dSubsampler(config)
|
544 |
+
self.layers = nn.ModuleList([MCTCTLayer(config) for _ in range(config.num_hidden_layers)])
|
545 |
+
|
546 |
+
self.gradient_checkpointing = False
|
547 |
+
|
548 |
+
def forward(
|
549 |
+
self,
|
550 |
+
input_features: torch.Tensor,
|
551 |
+
attention_mask: torch.Tensor,
|
552 |
+
head_mask: torch.Tensor,
|
553 |
+
output_attentions: bool = False,
|
554 |
+
output_hidden_states: bool = False,
|
555 |
+
return_dict: bool = True,
|
556 |
+
) -> Union[Tuple, BaseModelOutput]:
|
557 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
558 |
+
output_hidden_states = (
|
559 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
560 |
+
)
|
561 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
562 |
+
|
563 |
+
input_features = self.layer_norm(input_features)
|
564 |
+
|
565 |
+
inputs_embeds = self.conv(input_features)
|
566 |
+
|
567 |
+
# subsample attention mask if necessary
|
568 |
+
if attention_mask is not None:
|
569 |
+
attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask)
|
570 |
+
|
571 |
+
hidden_states = nn.functional.dropout(inputs_embeds, p=self.hidden_dropout_prob, training=self.training)
|
572 |
+
|
573 |
+
# expand attention_mask
|
574 |
+
if attention_mask is not None:
|
575 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
576 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
|
577 |
+
|
578 |
+
encoder_states = () if output_hidden_states else None
|
579 |
+
all_attentions = () if output_attentions else None
|
580 |
+
|
581 |
+
# check if head_mask has a correct number of layers specified if desired
|
582 |
+
if head_mask is not None:
|
583 |
+
if head_mask.size()[0] != len(self.layers):
|
584 |
+
raise ValueError(
|
585 |
+
f"The head_mask should be specified for {len(self.layers)} layers, "
|
586 |
+
f"but it is for {head_mask.size()[0]}."
|
587 |
+
)
|
588 |
+
|
589 |
+
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
590 |
+
for idx, encoder_layer in enumerate(self.layers):
|
591 |
+
if output_hidden_states:
|
592 |
+
encoder_states = encoder_states + (hidden_states,)
|
593 |
+
|
594 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
595 |
+
dropout_probability = torch.rand([])
|
596 |
+
|
597 |
+
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
|
598 |
+
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
599 |
+
# under deepspeed zero3 all gpus must run in sync
|
600 |
+
if self.gradient_checkpointing and self.training:
|
601 |
+
layer_outputs = self._gradient_checkpointing_func(
|
602 |
+
encoder_layer.__call__,
|
603 |
+
hidden_states,
|
604 |
+
attention_mask,
|
605 |
+
(head_mask[idx] if head_mask is not None else None),
|
606 |
+
output_attentions,
|
607 |
+
)
|
608 |
+
else:
|
609 |
+
layer_outputs = encoder_layer(
|
610 |
+
hidden_states=hidden_states,
|
611 |
+
attention_mask=attention_mask,
|
612 |
+
output_attentions=output_attentions,
|
613 |
+
)
|
614 |
+
|
615 |
+
hidden_states = layer_outputs[0]
|
616 |
+
|
617 |
+
if skip_the_layer:
|
618 |
+
layer_outputs = (None, None)
|
619 |
+
|
620 |
+
if output_attentions:
|
621 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
622 |
+
|
623 |
+
if output_hidden_states:
|
624 |
+
encoder_states = encoder_states + (hidden_states,)
|
625 |
+
|
626 |
+
if not return_dict:
|
627 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
628 |
+
return BaseModelOutput(
|
629 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
630 |
+
)
|
631 |
+
|
632 |
+
|
633 |
+
@add_start_docstrings(
|
634 |
+
"The bare M-CTC-T Model transformer outputting raw hidden-states without any specific head on top.",
|
635 |
+
MCTCT_START_DOCSTRING,
|
636 |
+
)
|
637 |
+
class MCTCTModel(MCTCTPreTrainedModel):
|
638 |
+
def __init__(self, config):
|
639 |
+
super().__init__(config)
|
640 |
+
self.config = config
|
641 |
+
|
642 |
+
self.encoder = MCTCTEncoder(config)
|
643 |
+
|
644 |
+
# Initialize weights and apply final processing
|
645 |
+
self.post_init()
|
646 |
+
|
647 |
+
@add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
648 |
+
@add_code_sample_docstrings(
|
649 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
650 |
+
output_type=BaseModelOutput,
|
651 |
+
config_class=_CONFIG_FOR_DOC,
|
652 |
+
modality="audio",
|
653 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
654 |
+
)
|
655 |
+
def forward(
|
656 |
+
self,
|
657 |
+
input_features: torch.Tensor,
|
658 |
+
attention_mask: Optional[torch.Tensor] = None,
|
659 |
+
head_mask: Optional[torch.Tensor] = None,
|
660 |
+
output_attentions: Optional[bool] = None,
|
661 |
+
output_hidden_states: Optional[bool] = None,
|
662 |
+
return_dict: Optional[bool] = None,
|
663 |
+
) -> Union[Tuple, BaseModelOutput]:
|
664 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
665 |
+
output_hidden_states = (
|
666 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
667 |
+
)
|
668 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
669 |
+
|
670 |
+
if input_features is None:
|
671 |
+
raise ValueError("You have to specify input_features.")
|
672 |
+
|
673 |
+
encoder_outputs = self.encoder(
|
674 |
+
input_features,
|
675 |
+
attention_mask=attention_mask,
|
676 |
+
head_mask=head_mask,
|
677 |
+
output_attentions=output_attentions,
|
678 |
+
output_hidden_states=output_hidden_states,
|
679 |
+
return_dict=return_dict,
|
680 |
+
)
|
681 |
+
sequence_output = encoder_outputs[0]
|
682 |
+
|
683 |
+
if not return_dict:
|
684 |
+
return (sequence_output,) + encoder_outputs[1:]
|
685 |
+
|
686 |
+
return BaseModelOutput(
|
687 |
+
last_hidden_state=sequence_output,
|
688 |
+
hidden_states=encoder_outputs.hidden_states,
|
689 |
+
attentions=encoder_outputs.attentions,
|
690 |
+
)
|
691 |
+
|
692 |
+
|
693 |
+
@add_start_docstrings(
|
694 |
+
"""MCTCT Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
|
695 |
+
MCTCT_START_DOCSTRING,
|
696 |
+
)
|
697 |
+
class MCTCTForCTC(MCTCTPreTrainedModel):
|
698 |
+
def __init__(self, config):
|
699 |
+
super().__init__(config)
|
700 |
+
|
701 |
+
self.mctct = MCTCTModel(config)
|
702 |
+
|
703 |
+
if config.vocab_size is None:
|
704 |
+
raise ValueError(
|
705 |
+
f"You are trying to instantiate {self.__class__} with a configuration that "
|
706 |
+
"does not define the vocabulary size of the language model head. Please "
|
707 |
+
"instantiate the model as follows: `MCTCTForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
|
708 |
+
"or define `vocab_size` of your model's configuration."
|
709 |
+
)
|
710 |
+
output_hidden_size = config.hidden_size
|
711 |
+
|
712 |
+
self.ctc_head = nn.Linear(output_hidden_size, config.vocab_size)
|
713 |
+
|
714 |
+
# Initialize weights and apply final processing
|
715 |
+
self.post_init()
|
716 |
+
|
717 |
+
@add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING)
|
718 |
+
@add_code_sample_docstrings(
|
719 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
720 |
+
output_type=CausalLMOutput,
|
721 |
+
config_class=_CONFIG_FOR_DOC,
|
722 |
+
expected_output=_CTC_EXPECTED_OUTPUT,
|
723 |
+
expected_loss=_CTC_EXPECTED_LOSS,
|
724 |
+
)
|
725 |
+
def forward(
|
726 |
+
self,
|
727 |
+
input_features: torch.Tensor,
|
728 |
+
attention_mask: Optional[torch.Tensor] = None,
|
729 |
+
head_mask: Optional[torch.Tensor] = None,
|
730 |
+
output_attentions: Optional[bool] = None,
|
731 |
+
output_hidden_states: Optional[bool] = None,
|
732 |
+
return_dict: Optional[bool] = None,
|
733 |
+
labels: Optional[torch.LongTensor] = None,
|
734 |
+
) -> Union[Tuple, CausalLMOutput]:
|
735 |
+
r"""
|
736 |
+
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
737 |
+
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
738 |
+
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
|
739 |
+
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
|
740 |
+
config.vocab_size - 1]`.
|
741 |
+
"""
|
742 |
+
|
743 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
744 |
+
outputs = self.mctct(
|
745 |
+
input_features,
|
746 |
+
attention_mask=attention_mask,
|
747 |
+
head_mask=head_mask,
|
748 |
+
output_attentions=output_attentions,
|
749 |
+
output_hidden_states=output_hidden_states,
|
750 |
+
return_dict=return_dict,
|
751 |
+
)
|
752 |
+
|
753 |
+
hidden_states = outputs[0]
|
754 |
+
|
755 |
+
logits = self.ctc_head(hidden_states)
|
756 |
+
|
757 |
+
loss = None
|
758 |
+
if labels is not None:
|
759 |
+
if labels.max() >= self.config.vocab_size:
|
760 |
+
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
|
761 |
+
|
762 |
+
# retrieve loss input_lengths from attention_mask
|
763 |
+
attention_mask = (
|
764 |
+
attention_mask
|
765 |
+
if attention_mask is not None
|
766 |
+
else torch.ones(input_features.shape[:-1], dtype=torch.long)
|
767 |
+
)
|
768 |
+
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
|
769 |
+
# assuming that padded tokens are filled with -100
|
770 |
+
# when not being attended to
|
771 |
+
labels_mask = labels >= 0
|
772 |
+
target_lengths = labels_mask.sum(-1)
|
773 |
+
flattened_targets = labels.masked_select(labels_mask)
|
774 |
+
|
775 |
+
# ctc_loss doesn't support fp16
|
776 |
+
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
|
777 |
+
|
778 |
+
with torch.backends.cudnn.flags(enabled=False):
|
779 |
+
loss = nn.functional.ctc_loss(
|
780 |
+
log_probs,
|
781 |
+
flattened_targets,
|
782 |
+
input_lengths,
|
783 |
+
target_lengths,
|
784 |
+
blank=self.config.pad_token_id,
|
785 |
+
reduction=self.config.ctc_loss_reduction,
|
786 |
+
zero_infinity=self.config.ctc_zero_infinity,
|
787 |
+
)
|
788 |
+
|
789 |
+
if not return_dict:
|
790 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
791 |
+
return ((loss,) + output) if loss is not None else output
|
792 |
+
|
793 |
+
return CausalLMOutput(
|
794 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
795 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mctct/processing_mctct.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Speech processor class for M-CTC-T
|
17 |
+
"""
|
18 |
+
import warnings
|
19 |
+
from contextlib import contextmanager
|
20 |
+
|
21 |
+
from ....processing_utils import ProcessorMixin
|
22 |
+
|
23 |
+
|
24 |
+
class MCTCTProcessor(ProcessorMixin):
|
25 |
+
r"""
|
26 |
+
Constructs a MCTCT processor which wraps a MCTCT feature extractor and a MCTCT tokenizer into a single processor.
|
27 |
+
|
28 |
+
[`MCTCTProcessor`] offers all the functionalities of [`MCTCTFeatureExtractor`] and [`AutoTokenizer`]. See the
|
29 |
+
[`~MCTCTProcessor.__call__`] and [`~MCTCTProcessor.decode`] for more information.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
feature_extractor (`MCTCTFeatureExtractor`):
|
33 |
+
An instance of [`MCTCTFeatureExtractor`]. The feature extractor is a required input.
|
34 |
+
tokenizer (`AutoTokenizer`):
|
35 |
+
An instance of [`AutoTokenizer`]. The tokenizer is a required input.
|
36 |
+
"""
|
37 |
+
|
38 |
+
feature_extractor_class = "MCTCTFeatureExtractor"
|
39 |
+
tokenizer_class = "AutoTokenizer"
|
40 |
+
|
41 |
+
def __init__(self, feature_extractor, tokenizer):
|
42 |
+
super().__init__(feature_extractor, tokenizer)
|
43 |
+
self.current_processor = self.feature_extractor
|
44 |
+
self._in_target_context_manager = False
|
45 |
+
|
46 |
+
def __call__(self, *args, **kwargs):
|
47 |
+
"""
|
48 |
+
When used in normal mode, this method forwards all its arguments to MCTCTFeatureExtractor's
|
49 |
+
[`~MCTCTFeatureExtractor.__call__`] and returns its output. If used in the context
|
50 |
+
[`~MCTCTProcessor.as_target_processor`] this method forwards all its arguments to AutoTokenizer's
|
51 |
+
[`~AutoTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information.
|
52 |
+
"""
|
53 |
+
# For backward compatibility
|
54 |
+
if self._in_target_context_manager:
|
55 |
+
return self.current_processor(*args, **kwargs)
|
56 |
+
|
57 |
+
if "raw_speech" in kwargs:
|
58 |
+
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.")
|
59 |
+
audio = kwargs.pop("raw_speech")
|
60 |
+
else:
|
61 |
+
audio = kwargs.pop("audio", None)
|
62 |
+
sampling_rate = kwargs.pop("sampling_rate", None)
|
63 |
+
text = kwargs.pop("text", None)
|
64 |
+
if len(args) > 0:
|
65 |
+
audio = args[0]
|
66 |
+
args = args[1:]
|
67 |
+
|
68 |
+
if audio is None and text is None:
|
69 |
+
raise ValueError("You need to specify either an `audio` or `text` input to process.")
|
70 |
+
|
71 |
+
if audio is not None:
|
72 |
+
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
|
73 |
+
if text is not None:
|
74 |
+
encodings = self.tokenizer(text, **kwargs)
|
75 |
+
|
76 |
+
if text is None:
|
77 |
+
return inputs
|
78 |
+
elif audio is None:
|
79 |
+
return encodings
|
80 |
+
else:
|
81 |
+
inputs["labels"] = encodings["input_ids"]
|
82 |
+
return inputs
|
83 |
+
|
84 |
+
def batch_decode(self, *args, **kwargs):
|
85 |
+
"""
|
86 |
+
This method forwards all its arguments to AutoTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
|
87 |
+
to the docstring of this method for more information.
|
88 |
+
"""
|
89 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
90 |
+
|
91 |
+
def pad(self, *args, **kwargs):
|
92 |
+
"""
|
93 |
+
When used in normal mode, this method forwards all its arguments to MCTCTFeatureExtractor's
|
94 |
+
[`~MCTCTFeatureExtractor.pad`] and returns its output. If used in the context
|
95 |
+
[`~MCTCTProcessor.as_target_processor`] this method forwards all its arguments to PreTrainedTokenizer's
|
96 |
+
[`~PreTrainedTokenizer.pad`]. Please refer to the docstring of the above two methods for more information.
|
97 |
+
"""
|
98 |
+
# For backward compatibility
|
99 |
+
if self._in_target_context_manager:
|
100 |
+
return self.current_processor.pad(*args, **kwargs)
|
101 |
+
|
102 |
+
input_features = kwargs.pop("input_features", None)
|
103 |
+
labels = kwargs.pop("labels", None)
|
104 |
+
if len(args) > 0:
|
105 |
+
input_features = args[0]
|
106 |
+
args = args[1:]
|
107 |
+
|
108 |
+
if input_features is not None:
|
109 |
+
input_features = self.feature_extractor.pad(input_features, *args, **kwargs)
|
110 |
+
if labels is not None:
|
111 |
+
labels = self.tokenizer.pad(labels, **kwargs)
|
112 |
+
|
113 |
+
if labels is None:
|
114 |
+
return input_features
|
115 |
+
elif input_features is None:
|
116 |
+
return labels
|
117 |
+
else:
|
118 |
+
input_features["labels"] = labels["input_ids"]
|
119 |
+
return input_features
|
120 |
+
|
121 |
+
def decode(self, *args, **kwargs):
|
122 |
+
"""
|
123 |
+
This method forwards all its arguments to AutoTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
|
124 |
+
docstring of this method for more information.
|
125 |
+
"""
|
126 |
+
return self.tokenizer.decode(*args, **kwargs)
|
127 |
+
|
128 |
+
@contextmanager
|
129 |
+
def as_target_processor(self):
|
130 |
+
"""
|
131 |
+
Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning MCTCT.
|
132 |
+
"""
|
133 |
+
warnings.warn(
|
134 |
+
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
|
135 |
+
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
|
136 |
+
"your audio inputs, or in a separate call."
|
137 |
+
)
|
138 |
+
self._in_target_context_manager = True
|
139 |
+
self.current_processor = self.tokenizer
|
140 |
+
yield
|
141 |
+
self.current_processor = self.feature_extractor
|
142 |
+
self._in_target_context_manager = False
|
env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.23 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/__init__.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_flax_available,
|
20 |
+
is_tf_available,
|
21 |
+
is_torch_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {"configuration_gptj": ["GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTJConfig", "GPTJOnnxConfig"]}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_torch_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["modeling_gptj"] = [
|
34 |
+
"GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST",
|
35 |
+
"GPTJForCausalLM",
|
36 |
+
"GPTJForQuestionAnswering",
|
37 |
+
"GPTJForSequenceClassification",
|
38 |
+
"GPTJModel",
|
39 |
+
"GPTJPreTrainedModel",
|
40 |
+
]
|
41 |
+
|
42 |
+
try:
|
43 |
+
if not is_tf_available():
|
44 |
+
raise OptionalDependencyNotAvailable()
|
45 |
+
except OptionalDependencyNotAvailable:
|
46 |
+
pass
|
47 |
+
else:
|
48 |
+
_import_structure["modeling_tf_gptj"] = [
|
49 |
+
"TFGPTJForCausalLM",
|
50 |
+
"TFGPTJForQuestionAnswering",
|
51 |
+
"TFGPTJForSequenceClassification",
|
52 |
+
"TFGPTJModel",
|
53 |
+
"TFGPTJPreTrainedModel",
|
54 |
+
]
|
55 |
+
|
56 |
+
try:
|
57 |
+
if not is_flax_available():
|
58 |
+
raise OptionalDependencyNotAvailable()
|
59 |
+
except OptionalDependencyNotAvailable:
|
60 |
+
pass
|
61 |
+
else:
|
62 |
+
_import_structure["modeling_flax_gptj"] = [
|
63 |
+
"FlaxGPTJForCausalLM",
|
64 |
+
"FlaxGPTJModel",
|
65 |
+
"FlaxGPTJPreTrainedModel",
|
66 |
+
]
|
67 |
+
|
68 |
+
|
69 |
+
if TYPE_CHECKING:
|
70 |
+
from .configuration_gptj import GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTJConfig, GPTJOnnxConfig
|
71 |
+
|
72 |
+
try:
|
73 |
+
if not is_torch_available():
|
74 |
+
raise OptionalDependencyNotAvailable()
|
75 |
+
except OptionalDependencyNotAvailable:
|
76 |
+
pass
|
77 |
+
else:
|
78 |
+
from .modeling_gptj import (
|
79 |
+
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST,
|
80 |
+
GPTJForCausalLM,
|
81 |
+
GPTJForQuestionAnswering,
|
82 |
+
GPTJForSequenceClassification,
|
83 |
+
GPTJModel,
|
84 |
+
GPTJPreTrainedModel,
|
85 |
+
)
|
86 |
+
|
87 |
+
try:
|
88 |
+
if not is_tf_available():
|
89 |
+
raise OptionalDependencyNotAvailable()
|
90 |
+
except OptionalDependencyNotAvailable:
|
91 |
+
pass
|
92 |
+
else:
|
93 |
+
from .modeling_tf_gptj import (
|
94 |
+
TFGPTJForCausalLM,
|
95 |
+
TFGPTJForQuestionAnswering,
|
96 |
+
TFGPTJForSequenceClassification,
|
97 |
+
TFGPTJModel,
|
98 |
+
TFGPTJPreTrainedModel,
|
99 |
+
)
|
100 |
+
|
101 |
+
try:
|
102 |
+
if not is_flax_available():
|
103 |
+
raise OptionalDependencyNotAvailable()
|
104 |
+
except OptionalDependencyNotAvailable:
|
105 |
+
pass
|
106 |
+
else:
|
107 |
+
from .modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel, FlaxGPTJPreTrainedModel
|
108 |
+
|
109 |
+
else:
|
110 |
+
import sys
|
111 |
+
|
112 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.58 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/configuration_gptj.cpython-310.pyc
ADDED
Binary file (7.71 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_flax_gptj.cpython-310.pyc
ADDED
Binary file (21 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_gptj.cpython-310.pyc
ADDED
Binary file (38.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_tf_gptj.cpython-310.pyc
ADDED
Binary file (33.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/configuration_gptj.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GPT-J model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Any, List, Mapping, Optional
|
18 |
+
|
19 |
+
from ... import PreTrainedTokenizer, TensorType, is_torch_available
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...onnx import OnnxConfigWithPast, PatchingSpec
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
28 |
+
"EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json",
|
29 |
+
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
class GPTJConfig(PretrainedConfig):
|
34 |
+
r"""
|
35 |
+
This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
|
36 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
37 |
+
defaults will yield a similar configuration to that of the GPT-J
|
38 |
+
[EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
|
39 |
+
[`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
40 |
+
for more information.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*, defaults to 50400):
|
44 |
+
Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
|
45 |
+
`inputs_ids` passed when calling [`GPTJModel`].
|
46 |
+
n_positions (`int`, *optional*, defaults to 2048):
|
47 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
48 |
+
just in case (e.g., 512 or 1024 or 2048).
|
49 |
+
n_embd (`int`, *optional*, defaults to 4096):
|
50 |
+
Dimensionality of the embeddings and hidden states.
|
51 |
+
n_layer (`int`, *optional*, defaults to 28):
|
52 |
+
Number of hidden layers in the Transformer encoder.
|
53 |
+
n_head (`int`, *optional*, defaults to 16):
|
54 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
55 |
+
rotary_dim (`int`, *optional*, defaults to 64):
|
56 |
+
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
|
57 |
+
n_inner (`int`, *optional*, defaults to None):
|
58 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
59 |
+
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
60 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
61 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
62 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
63 |
+
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
64 |
+
The dropout ratio for the embeddings.
|
65 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
66 |
+
The dropout ratio for the attention.
|
67 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
68 |
+
The epsilon to use in the layer normalization layers.
|
69 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
70 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
71 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
73 |
+
|
74 |
+
Example:
|
75 |
+
|
76 |
+
```python
|
77 |
+
>>> from transformers import GPTJModel, GPTJConfig
|
78 |
+
|
79 |
+
>>> # Initializing a GPT-J 6B configuration
|
80 |
+
>>> configuration = GPTJConfig()
|
81 |
+
|
82 |
+
>>> # Initializing a model from the configuration
|
83 |
+
>>> model = GPTJModel(configuration)
|
84 |
+
|
85 |
+
>>> # Accessing the model configuration
|
86 |
+
>>> configuration = model.config
|
87 |
+
```"""
|
88 |
+
|
89 |
+
model_type = "gptj"
|
90 |
+
attribute_map = {
|
91 |
+
"max_position_embeddings": "n_positions",
|
92 |
+
"hidden_size": "n_embd",
|
93 |
+
"num_attention_heads": "n_head",
|
94 |
+
"num_hidden_layers": "n_layer",
|
95 |
+
}
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
vocab_size=50400,
|
100 |
+
n_positions=2048,
|
101 |
+
n_embd=4096,
|
102 |
+
n_layer=28,
|
103 |
+
n_head=16,
|
104 |
+
rotary_dim=64,
|
105 |
+
n_inner=None,
|
106 |
+
activation_function="gelu_new",
|
107 |
+
resid_pdrop=0.0,
|
108 |
+
embd_pdrop=0.0,
|
109 |
+
attn_pdrop=0.0,
|
110 |
+
layer_norm_epsilon=1e-5,
|
111 |
+
initializer_range=0.02,
|
112 |
+
use_cache=True,
|
113 |
+
bos_token_id=50256,
|
114 |
+
eos_token_id=50256,
|
115 |
+
tie_word_embeddings=False,
|
116 |
+
**kwargs,
|
117 |
+
):
|
118 |
+
self.vocab_size = vocab_size
|
119 |
+
self.n_positions = n_positions
|
120 |
+
self.n_embd = n_embd
|
121 |
+
self.n_layer = n_layer
|
122 |
+
self.n_head = n_head
|
123 |
+
self.n_inner = n_inner
|
124 |
+
self.rotary_dim = rotary_dim
|
125 |
+
self.activation_function = activation_function
|
126 |
+
self.resid_pdrop = resid_pdrop
|
127 |
+
self.embd_pdrop = embd_pdrop
|
128 |
+
self.attn_pdrop = attn_pdrop
|
129 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
130 |
+
self.initializer_range = initializer_range
|
131 |
+
self.use_cache = use_cache
|
132 |
+
|
133 |
+
self.bos_token_id = bos_token_id
|
134 |
+
self.eos_token_id = eos_token_id
|
135 |
+
|
136 |
+
super().__init__(
|
137 |
+
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
138 |
+
)
|
139 |
+
|
140 |
+
|
141 |
+
# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig
|
142 |
+
class GPTJOnnxConfig(OnnxConfigWithPast):
|
143 |
+
def __init__(
|
144 |
+
self,
|
145 |
+
config: PretrainedConfig,
|
146 |
+
task: str = "default",
|
147 |
+
patching_specs: List[PatchingSpec] = None,
|
148 |
+
use_past: bool = False,
|
149 |
+
):
|
150 |
+
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
|
151 |
+
if not getattr(self._config, "pad_token_id", None):
|
152 |
+
# TODO: how to do that better?
|
153 |
+
self._config.pad_token_id = 0
|
154 |
+
|
155 |
+
@property
|
156 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
157 |
+
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
158 |
+
if self.use_past:
|
159 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
160 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
161 |
+
else:
|
162 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
163 |
+
|
164 |
+
return common_inputs
|
165 |
+
|
166 |
+
@property
|
167 |
+
def num_layers(self) -> int:
|
168 |
+
return self._config.n_layer
|
169 |
+
|
170 |
+
@property
|
171 |
+
def num_attention_heads(self) -> int:
|
172 |
+
return self._config.n_head
|
173 |
+
|
174 |
+
def generate_dummy_inputs(
|
175 |
+
self,
|
176 |
+
tokenizer: PreTrainedTokenizer,
|
177 |
+
batch_size: int = -1,
|
178 |
+
seq_length: int = -1,
|
179 |
+
is_pair: bool = False,
|
180 |
+
framework: Optional[TensorType] = None,
|
181 |
+
) -> Mapping[str, Any]:
|
182 |
+
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
183 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
184 |
+
)
|
185 |
+
|
186 |
+
# We need to order the input in the way they appears in the forward()
|
187 |
+
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
188 |
+
|
189 |
+
# Need to add the past_keys
|
190 |
+
if self.use_past:
|
191 |
+
if not is_torch_available():
|
192 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
193 |
+
else:
|
194 |
+
import torch
|
195 |
+
|
196 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
197 |
+
# Not using the same length for past_key_values
|
198 |
+
past_key_values_length = seqlen + 2
|
199 |
+
past_shape = (
|
200 |
+
batch,
|
201 |
+
self.num_attention_heads,
|
202 |
+
past_key_values_length,
|
203 |
+
self._config.hidden_size // self.num_attention_heads,
|
204 |
+
)
|
205 |
+
ordered_inputs["past_key_values"] = [
|
206 |
+
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
|
207 |
+
]
|
208 |
+
|
209 |
+
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
210 |
+
if self.use_past:
|
211 |
+
mask_dtype = ordered_inputs["attention_mask"].dtype
|
212 |
+
ordered_inputs["attention_mask"] = torch.cat(
|
213 |
+
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
214 |
+
)
|
215 |
+
|
216 |
+
return ordered_inputs
|
217 |
+
|
218 |
+
@property
|
219 |
+
def default_onnx_opset(self) -> int:
|
220 |
+
return 13
|
env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/modeling_flax_gptj.py
ADDED
@@ -0,0 +1,718 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The EleutherAI and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from functools import partial
|
17 |
+
from typing import Optional, Tuple
|
18 |
+
|
19 |
+
import flax.linen as nn
|
20 |
+
import jax
|
21 |
+
import jax.numpy as jnp
|
22 |
+
import numpy as np
|
23 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
24 |
+
from flax.linen import combine_masks, make_causal_mask
|
25 |
+
from flax.linen.attention import dot_product_attention_weights
|
26 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
27 |
+
from jax import lax
|
28 |
+
|
29 |
+
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
|
30 |
+
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
|
31 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
32 |
+
from .configuration_gptj import GPTJConfig
|
33 |
+
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__)
|
36 |
+
|
37 |
+
_CHECKPOINT_FOR_DOC = "gptj"
|
38 |
+
_CONFIG_FOR_DOC = "GPTJConfig"
|
39 |
+
|
40 |
+
|
41 |
+
GPTJ_START_DOCSTRING = r"""
|
42 |
+
|
43 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
44 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
45 |
+
etc.)
|
46 |
+
|
47 |
+
This model is also a Flax Linen
|
48 |
+
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
|
49 |
+
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
|
50 |
+
|
51 |
+
Finally, this model supports inherent JAX features such as:
|
52 |
+
|
53 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
54 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
55 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
56 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
57 |
+
|
58 |
+
Parameters:
|
59 |
+
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
|
60 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
61 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
62 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
63 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
64 |
+
`jax.numpy.bfloat16` (on TPUs).
|
65 |
+
|
66 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
67 |
+
specified all the computation will be performed with the given `dtype`.
|
68 |
+
|
69 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
70 |
+
parameters.**
|
71 |
+
|
72 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
73 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
74 |
+
"""
|
75 |
+
|
76 |
+
GPTJ_INPUTS_DOCSTRING = r"""
|
77 |
+
Args:
|
78 |
+
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
|
79 |
+
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
|
80 |
+
|
81 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
82 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
83 |
+
|
84 |
+
[What are input IDs?](../glossary#input-ids)
|
85 |
+
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
86 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
87 |
+
|
88 |
+
- 1 for tokens that are **not masked**,
|
89 |
+
- 0 for tokens that are **masked**.
|
90 |
+
|
91 |
+
[What are attention masks?](../glossary#attention-mask)
|
92 |
+
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
93 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
94 |
+
config.max_position_embeddings - 1]`.
|
95 |
+
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
|
96 |
+
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
|
97 |
+
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
|
98 |
+
output_attentions (`bool`, *optional*):
|
99 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
100 |
+
tensors for more detail.
|
101 |
+
output_hidden_states (`bool`, *optional*):
|
102 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
103 |
+
more detail.
|
104 |
+
return_dict (`bool`, *optional*):
|
105 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
106 |
+
"""
|
107 |
+
|
108 |
+
|
109 |
+
def create_sinusoidal_positions(num_pos, dim):
|
110 |
+
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
|
111 |
+
sinusoid_inp = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32")
|
112 |
+
sin, cos = np.sin(sinusoid_inp), np.cos(sinusoid_inp)
|
113 |
+
|
114 |
+
sentinel = dim // 2 + dim % 2
|
115 |
+
out = np.zeros((num_pos, dim))
|
116 |
+
out[:, 0:sentinel] = sin
|
117 |
+
out[:, sentinel:] = cos
|
118 |
+
|
119 |
+
return jnp.array(out)
|
120 |
+
|
121 |
+
|
122 |
+
def rotate_every_two(tensor):
|
123 |
+
rotate_half_tensor = jnp.stack((-tensor[:, :, :, 1::2], tensor[:, :, :, ::2]), axis=-1)
|
124 |
+
rotate_half_tensor = rotate_half_tensor.reshape(rotate_half_tensor.shape[:-2] + (-1,))
|
125 |
+
return rotate_half_tensor
|
126 |
+
|
127 |
+
|
128 |
+
def apply_rotary_pos_emb(tensor, sincos):
|
129 |
+
sin_pos, cos_pos = sincos
|
130 |
+
sin_pos = sin_pos[:, :, None, :].repeat(2, 3)
|
131 |
+
cos_pos = cos_pos[:, :, None, :].repeat(2, 3)
|
132 |
+
return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos)
|
133 |
+
|
134 |
+
|
135 |
+
class FlaxGPTJAttention(nn.Module):
|
136 |
+
config: GPTJConfig
|
137 |
+
dtype: jnp.dtype = jnp.float32
|
138 |
+
causal: bool = True
|
139 |
+
is_cross_attention: bool = False
|
140 |
+
|
141 |
+
def setup(self):
|
142 |
+
config = self.config
|
143 |
+
self.embed_dim = config.hidden_size
|
144 |
+
self.num_heads = config.num_attention_heads
|
145 |
+
self.head_dim = self.embed_dim // self.num_heads
|
146 |
+
|
147 |
+
self.rotary_dim = config.rotary_dim
|
148 |
+
|
149 |
+
dense = partial(
|
150 |
+
nn.Dense,
|
151 |
+
self.embed_dim,
|
152 |
+
use_bias=False,
|
153 |
+
dtype=self.dtype,
|
154 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
155 |
+
)
|
156 |
+
|
157 |
+
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
|
158 |
+
self.out_proj = dense()
|
159 |
+
|
160 |
+
self.resid_dropout = nn.Dropout(rate=config.resid_pdrop)
|
161 |
+
|
162 |
+
self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
|
163 |
+
|
164 |
+
pos_embd_dim = self.rotary_dim or self.embed_dim
|
165 |
+
self.embed_positions = create_sinusoidal_positions(config.max_position_embeddings, pos_embd_dim)
|
166 |
+
|
167 |
+
def _split_heads(self, hidden_states):
|
168 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
|
169 |
+
|
170 |
+
def _merge_heads(self, hidden_states):
|
171 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
172 |
+
|
173 |
+
@nn.compact
|
174 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
175 |
+
"""
|
176 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
177 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
178 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
179 |
+
"""
|
180 |
+
# detect if we're initializing by absence of existing cache data.
|
181 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
182 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
183 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
184 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
185 |
+
|
186 |
+
if is_initialized:
|
187 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
188 |
+
# update key, value caches with our new 1d spatial slices
|
189 |
+
cur_index = cache_index.value
|
190 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
191 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
192 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
193 |
+
cached_key.value = key
|
194 |
+
cached_value.value = value
|
195 |
+
num_updated_cache_vectors = query.shape[1]
|
196 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
197 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key
|
198 |
+
# positions that have already been generated and cached, not the remaining zero elements.
|
199 |
+
pad_mask = jnp.broadcast_to(
|
200 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
201 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
202 |
+
)
|
203 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
204 |
+
return key, value, attention_mask
|
205 |
+
|
206 |
+
def __call__(
|
207 |
+
self,
|
208 |
+
hidden_states,
|
209 |
+
attention_mask,
|
210 |
+
position_ids,
|
211 |
+
deterministic: bool = True,
|
212 |
+
init_cache: bool = False,
|
213 |
+
output_attentions: bool = False,
|
214 |
+
):
|
215 |
+
query = self.q_proj(hidden_states)
|
216 |
+
key = self.k_proj(hidden_states)
|
217 |
+
value = self.v_proj(hidden_states)
|
218 |
+
|
219 |
+
query = self._split_heads(query)
|
220 |
+
key = self._split_heads(key)
|
221 |
+
value = self._split_heads(value)
|
222 |
+
|
223 |
+
sincos = jnp.take(self.embed_positions, position_ids, axis=0)
|
224 |
+
sincos = jnp.split(sincos, 2, axis=-1)
|
225 |
+
if self.rotary_dim is not None:
|
226 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
227 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
228 |
+
|
229 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
230 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
231 |
+
|
232 |
+
k_rot = apply_rotary_pos_emb(k_rot, sincos)
|
233 |
+
q_rot = apply_rotary_pos_emb(q_rot, sincos)
|
234 |
+
|
235 |
+
key = jnp.concatenate([k_rot, k_pass], axis=-1)
|
236 |
+
query = jnp.concatenate([q_rot, q_pass], axis=-1)
|
237 |
+
else:
|
238 |
+
key = apply_rotary_pos_emb(key, sincos)
|
239 |
+
query = apply_rotary_pos_emb(query, sincos)
|
240 |
+
|
241 |
+
query_length, key_length = query.shape[1], key.shape[1]
|
242 |
+
|
243 |
+
if self.has_variable("cache", "cached_key"):
|
244 |
+
mask_shift = self.variables["cache"]["cache_index"]
|
245 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
246 |
+
causal_mask = lax.dynamic_slice(
|
247 |
+
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
251 |
+
|
252 |
+
batch_size = hidden_states.shape[0]
|
253 |
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
254 |
+
|
255 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
256 |
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
257 |
+
|
258 |
+
dropout_rng = None
|
259 |
+
if not deterministic and self.config.attn_pdrop > 0.0:
|
260 |
+
dropout_rng = self.make_rng("dropout")
|
261 |
+
|
262 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
263 |
+
# and cache the keys and values step by step.
|
264 |
+
if self.has_variable("cache", "cached_key") or init_cache:
|
265 |
+
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
|
266 |
+
|
267 |
+
# transform boolean mask into float mask
|
268 |
+
attention_bias = lax.select(
|
269 |
+
attention_mask > 0,
|
270 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
271 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
272 |
+
)
|
273 |
+
|
274 |
+
# usual dot product attention
|
275 |
+
attn_weights = dot_product_attention_weights(
|
276 |
+
query,
|
277 |
+
key,
|
278 |
+
bias=attention_bias,
|
279 |
+
dropout_rng=dropout_rng,
|
280 |
+
dropout_rate=self.config.attn_pdrop,
|
281 |
+
deterministic=deterministic,
|
282 |
+
dtype=self.dtype,
|
283 |
+
precision=None,
|
284 |
+
)
|
285 |
+
|
286 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
|
287 |
+
attn_output = self._merge_heads(attn_output)
|
288 |
+
attn_output = self.out_proj(attn_output)
|
289 |
+
attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
|
290 |
+
|
291 |
+
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
292 |
+
return outputs
|
293 |
+
|
294 |
+
|
295 |
+
class FlaxGPTJMLP(nn.Module):
|
296 |
+
config: GPTJConfig
|
297 |
+
intermediate_size: int
|
298 |
+
dtype: jnp.dtype = jnp.float32
|
299 |
+
|
300 |
+
def setup(self):
|
301 |
+
embed_dim = self.config.hidden_size
|
302 |
+
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
|
303 |
+
|
304 |
+
self.fc_in = nn.Dense(self.intermediate_size, dtype=self.dtype, kernel_init=kernel_init)
|
305 |
+
self.fc_out = nn.Dense(embed_dim, dtype=self.dtype, kernel_init=kernel_init)
|
306 |
+
|
307 |
+
self.act = ACT2FN[self.config.activation_function]
|
308 |
+
self.dropout = nn.Dropout(rate=self.config.resid_pdrop)
|
309 |
+
|
310 |
+
def __call__(self, hidden_states, deterministic: bool = True):
|
311 |
+
hidden_states = self.fc_in(hidden_states)
|
312 |
+
hidden_states = self.act(hidden_states)
|
313 |
+
hidden_states = self.fc_out(hidden_states)
|
314 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
315 |
+
return hidden_states
|
316 |
+
|
317 |
+
|
318 |
+
class FlaxGPTJBlock(nn.Module):
|
319 |
+
config: GPTJConfig
|
320 |
+
dtype: jnp.dtype = jnp.float32
|
321 |
+
|
322 |
+
def setup(self):
|
323 |
+
hidden_size = self.config.hidden_size
|
324 |
+
inner_dim = self.config.n_inner if self.config.n_inner is not None else 4 * hidden_size
|
325 |
+
|
326 |
+
self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
327 |
+
self.attn = FlaxGPTJAttention(self.config, dtype=self.dtype)
|
328 |
+
|
329 |
+
self.mlp = FlaxGPTJMLP(self.config, inner_dim, dtype=self.dtype)
|
330 |
+
|
331 |
+
def __call__(
|
332 |
+
self,
|
333 |
+
hidden_states,
|
334 |
+
attention_mask=None,
|
335 |
+
position_ids=None,
|
336 |
+
deterministic: bool = True,
|
337 |
+
init_cache: bool = False,
|
338 |
+
output_attentions: bool = False,
|
339 |
+
):
|
340 |
+
residual = hidden_states
|
341 |
+
hidden_states = self.ln_1(hidden_states)
|
342 |
+
attn_outputs = self.attn(
|
343 |
+
hidden_states,
|
344 |
+
attention_mask=attention_mask,
|
345 |
+
position_ids=position_ids,
|
346 |
+
deterministic=deterministic,
|
347 |
+
init_cache=init_cache,
|
348 |
+
output_attentions=output_attentions,
|
349 |
+
)
|
350 |
+
attn_output = attn_outputs[0]
|
351 |
+
|
352 |
+
feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic)
|
353 |
+
# residual connection
|
354 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
355 |
+
|
356 |
+
return (hidden_states,) + attn_outputs[1:]
|
357 |
+
|
358 |
+
|
359 |
+
class FlaxGPTJPreTrainedModel(FlaxPreTrainedModel):
|
360 |
+
"""
|
361 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
362 |
+
models.
|
363 |
+
"""
|
364 |
+
|
365 |
+
config_class = GPTJConfig
|
366 |
+
base_model_prefix = "transformer"
|
367 |
+
module_class: nn.Module = None
|
368 |
+
|
369 |
+
def __init__(
|
370 |
+
self,
|
371 |
+
config: GPTJConfig,
|
372 |
+
input_shape: Tuple = (1, 1),
|
373 |
+
seed: int = 0,
|
374 |
+
dtype: jnp.dtype = jnp.float32,
|
375 |
+
_do_init: bool = True,
|
376 |
+
**kwargs,
|
377 |
+
):
|
378 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
379 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
380 |
+
|
381 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
382 |
+
# init input tensors
|
383 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
384 |
+
attention_mask = jnp.ones_like(input_ids)
|
385 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
|
386 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
387 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
388 |
+
|
389 |
+
if self.config.add_cross_attention:
|
390 |
+
encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,))
|
391 |
+
encoder_attention_mask = attention_mask
|
392 |
+
module_init_outputs = self.module.init(
|
393 |
+
rngs,
|
394 |
+
input_ids,
|
395 |
+
attention_mask,
|
396 |
+
position_ids,
|
397 |
+
encoder_hidden_states,
|
398 |
+
encoder_attention_mask,
|
399 |
+
return_dict=False,
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)
|
403 |
+
|
404 |
+
random_params = module_init_outputs["params"]
|
405 |
+
|
406 |
+
if params is not None:
|
407 |
+
random_params = flatten_dict(unfreeze(random_params))
|
408 |
+
params = flatten_dict(unfreeze(params))
|
409 |
+
for missing_key in self._missing_keys:
|
410 |
+
params[missing_key] = random_params[missing_key]
|
411 |
+
self._missing_keys = set()
|
412 |
+
return freeze(unflatten_dict(params))
|
413 |
+
else:
|
414 |
+
return random_params
|
415 |
+
|
416 |
+
def init_cache(self, batch_size, max_length):
|
417 |
+
r"""
|
418 |
+
Args:
|
419 |
+
batch_size (`int`):
|
420 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
421 |
+
max_length (`int`):
|
422 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
423 |
+
cache.
|
424 |
+
"""
|
425 |
+
# init input variables to retrieve cache
|
426 |
+
input_ids = jnp.ones((batch_size, max_length))
|
427 |
+
attention_mask = jnp.ones_like(input_ids)
|
428 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
429 |
+
|
430 |
+
init_variables = self.module.init(
|
431 |
+
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
|
432 |
+
)
|
433 |
+
return init_variables["cache"]
|
434 |
+
|
435 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING)
|
436 |
+
def __call__(
|
437 |
+
self,
|
438 |
+
input_ids,
|
439 |
+
attention_mask=None,
|
440 |
+
position_ids=None,
|
441 |
+
params: dict = None,
|
442 |
+
past_key_values: dict = None,
|
443 |
+
dropout_rng: jax.random.PRNGKey = None,
|
444 |
+
train: bool = False,
|
445 |
+
output_attentions: Optional[bool] = None,
|
446 |
+
output_hidden_states: Optional[bool] = None,
|
447 |
+
return_dict: Optional[bool] = None,
|
448 |
+
):
|
449 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
450 |
+
output_hidden_states = (
|
451 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
452 |
+
)
|
453 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
454 |
+
|
455 |
+
batch_size, sequence_length = input_ids.shape
|
456 |
+
|
457 |
+
if position_ids is None:
|
458 |
+
if past_key_values is not None:
|
459 |
+
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
|
460 |
+
|
461 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
462 |
+
|
463 |
+
if attention_mask is None:
|
464 |
+
attention_mask = jnp.ones((batch_size, sequence_length))
|
465 |
+
|
466 |
+
# Handle any PRNG if needed
|
467 |
+
rngs = {}
|
468 |
+
if dropout_rng is not None:
|
469 |
+
rngs["dropout"] = dropout_rng
|
470 |
+
|
471 |
+
inputs = {"params": params or self.params}
|
472 |
+
|
473 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPTJAttention module
|
474 |
+
if past_key_values:
|
475 |
+
inputs["cache"] = past_key_values
|
476 |
+
mutable = ["cache"]
|
477 |
+
else:
|
478 |
+
mutable = False
|
479 |
+
|
480 |
+
outputs = self.module.apply(
|
481 |
+
inputs,
|
482 |
+
jnp.array(input_ids, dtype="i4"),
|
483 |
+
jnp.array(attention_mask, dtype="i4"),
|
484 |
+
jnp.array(position_ids, dtype="i4"),
|
485 |
+
not train,
|
486 |
+
False,
|
487 |
+
output_attentions,
|
488 |
+
output_hidden_states,
|
489 |
+
return_dict,
|
490 |
+
rngs=rngs,
|
491 |
+
mutable=mutable,
|
492 |
+
)
|
493 |
+
|
494 |
+
# add updated cache to model output
|
495 |
+
if past_key_values is not None and return_dict:
|
496 |
+
outputs, past_key_values = outputs
|
497 |
+
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
|
498 |
+
return outputs
|
499 |
+
elif past_key_values is not None and not return_dict:
|
500 |
+
outputs, past_key_values = outputs
|
501 |
+
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
|
502 |
+
|
503 |
+
return outputs
|
504 |
+
|
505 |
+
|
506 |
+
class FlaxGPTJBlockCollection(nn.Module):
|
507 |
+
config: GPTJConfig
|
508 |
+
dtype: jnp.dtype = jnp.float32
|
509 |
+
|
510 |
+
def setup(self):
|
511 |
+
self.blocks = [
|
512 |
+
FlaxGPTJBlock(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
|
513 |
+
]
|
514 |
+
|
515 |
+
def __call__(
|
516 |
+
self,
|
517 |
+
hidden_states,
|
518 |
+
attention_mask=None,
|
519 |
+
position_ids=None,
|
520 |
+
deterministic: bool = True,
|
521 |
+
init_cache: bool = False,
|
522 |
+
output_attentions: bool = False,
|
523 |
+
output_hidden_states: bool = False,
|
524 |
+
return_dict: bool = True,
|
525 |
+
):
|
526 |
+
all_attentions = () if output_attentions else None
|
527 |
+
all_hidden_states = () if output_hidden_states else None
|
528 |
+
|
529 |
+
for block in self.blocks:
|
530 |
+
if output_hidden_states:
|
531 |
+
all_hidden_states += (hidden_states,)
|
532 |
+
|
533 |
+
layer_outputs = block(
|
534 |
+
hidden_states,
|
535 |
+
attention_mask,
|
536 |
+
position_ids=position_ids,
|
537 |
+
deterministic=deterministic,
|
538 |
+
init_cache=init_cache,
|
539 |
+
output_attentions=output_attentions,
|
540 |
+
)
|
541 |
+
hidden_states = layer_outputs[0]
|
542 |
+
|
543 |
+
if output_attentions:
|
544 |
+
all_attentions += (layer_outputs[1],)
|
545 |
+
|
546 |
+
# this contains possible `None` values - `FlaxGPTJModule` will filter them out
|
547 |
+
outputs = (hidden_states, all_hidden_states, all_attentions)
|
548 |
+
|
549 |
+
return outputs
|
550 |
+
|
551 |
+
|
552 |
+
class FlaxGPTJModule(nn.Module):
|
553 |
+
config: GPTJConfig
|
554 |
+
dtype: jnp.dtype = jnp.float32
|
555 |
+
|
556 |
+
def setup(self):
|
557 |
+
self.embed_dim = self.config.hidden_size
|
558 |
+
|
559 |
+
self.wte = nn.Embed(
|
560 |
+
self.config.vocab_size,
|
561 |
+
self.config.hidden_size,
|
562 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
563 |
+
)
|
564 |
+
self.dropout = nn.Dropout(rate=self.config.embd_pdrop)
|
565 |
+
self.h = FlaxGPTJBlockCollection(self.config, dtype=self.dtype)
|
566 |
+
self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
567 |
+
|
568 |
+
def __call__(
|
569 |
+
self,
|
570 |
+
input_ids,
|
571 |
+
attention_mask,
|
572 |
+
position_ids,
|
573 |
+
deterministic=True,
|
574 |
+
init_cache: bool = False,
|
575 |
+
output_attentions: bool = False,
|
576 |
+
output_hidden_states: bool = False,
|
577 |
+
return_dict: bool = True,
|
578 |
+
):
|
579 |
+
input_embeds = self.wte(input_ids.astype("i4"))
|
580 |
+
|
581 |
+
hidden_states = self.dropout(input_embeds, deterministic=deterministic)
|
582 |
+
|
583 |
+
outputs = self.h(
|
584 |
+
hidden_states,
|
585 |
+
attention_mask,
|
586 |
+
position_ids=position_ids,
|
587 |
+
deterministic=deterministic,
|
588 |
+
init_cache=init_cache,
|
589 |
+
output_attentions=output_attentions,
|
590 |
+
output_hidden_states=output_hidden_states,
|
591 |
+
return_dict=return_dict,
|
592 |
+
)
|
593 |
+
|
594 |
+
hidden_states = outputs[0]
|
595 |
+
hidden_states = self.ln_f(hidden_states)
|
596 |
+
|
597 |
+
if output_hidden_states:
|
598 |
+
all_hidden_states = outputs[1] + (hidden_states,)
|
599 |
+
outputs = (hidden_states, all_hidden_states) + outputs[2:]
|
600 |
+
else:
|
601 |
+
outputs = (hidden_states,) + outputs[1:]
|
602 |
+
|
603 |
+
if not return_dict:
|
604 |
+
return tuple(v for v in outputs if v is not None)
|
605 |
+
|
606 |
+
return FlaxBaseModelOutput(
|
607 |
+
last_hidden_state=hidden_states,
|
608 |
+
hidden_states=outputs[1],
|
609 |
+
attentions=outputs[-1],
|
610 |
+
)
|
611 |
+
|
612 |
+
|
613 |
+
@add_start_docstrings(
|
614 |
+
"The bare GPTJ Model transformer outputting raw hidden-states without any specific head on top.",
|
615 |
+
GPTJ_START_DOCSTRING,
|
616 |
+
)
|
617 |
+
class FlaxGPTJModel(FlaxGPTJPreTrainedModel):
|
618 |
+
module_class = FlaxGPTJModule
|
619 |
+
|
620 |
+
|
621 |
+
append_call_sample_docstring(
|
622 |
+
FlaxGPTJModel,
|
623 |
+
_CHECKPOINT_FOR_DOC,
|
624 |
+
FlaxCausalLMOutput,
|
625 |
+
_CONFIG_FOR_DOC,
|
626 |
+
)
|
627 |
+
|
628 |
+
|
629 |
+
class FlaxGPTJForCausalLMModule(nn.Module):
|
630 |
+
config: GPTJConfig
|
631 |
+
dtype: jnp.dtype = jnp.float32
|
632 |
+
|
633 |
+
def setup(self):
|
634 |
+
self.transformer = FlaxGPTJModule(self.config, dtype=self.dtype)
|
635 |
+
self.lm_head = nn.Dense(
|
636 |
+
self.config.vocab_size,
|
637 |
+
dtype=self.dtype,
|
638 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
639 |
+
)
|
640 |
+
|
641 |
+
def __call__(
|
642 |
+
self,
|
643 |
+
input_ids,
|
644 |
+
attention_mask,
|
645 |
+
position_ids,
|
646 |
+
deterministic: bool = True,
|
647 |
+
init_cache: bool = False,
|
648 |
+
output_attentions: bool = False,
|
649 |
+
output_hidden_states: bool = False,
|
650 |
+
return_dict: bool = True,
|
651 |
+
):
|
652 |
+
outputs = self.transformer(
|
653 |
+
input_ids,
|
654 |
+
attention_mask,
|
655 |
+
position_ids,
|
656 |
+
deterministic=deterministic,
|
657 |
+
init_cache=init_cache,
|
658 |
+
output_attentions=output_attentions,
|
659 |
+
output_hidden_states=output_hidden_states,
|
660 |
+
return_dict=return_dict,
|
661 |
+
)
|
662 |
+
|
663 |
+
hidden_states = outputs[0]
|
664 |
+
|
665 |
+
if self.config.tie_word_embeddings:
|
666 |
+
shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T
|
667 |
+
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
|
668 |
+
else:
|
669 |
+
lm_logits = self.lm_head(hidden_states)
|
670 |
+
|
671 |
+
if not return_dict:
|
672 |
+
return (lm_logits,) + outputs[1:]
|
673 |
+
|
674 |
+
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
675 |
+
|
676 |
+
|
677 |
+
@add_start_docstrings(
|
678 |
+
"""
|
679 |
+
The GPTJ Model transformer with a language modeling head on top.
|
680 |
+
""",
|
681 |
+
GPTJ_START_DOCSTRING,
|
682 |
+
)
|
683 |
+
class FlaxGPTJForCausalLM(FlaxGPTJPreTrainedModel):
|
684 |
+
module_class = FlaxGPTJForCausalLMModule
|
685 |
+
|
686 |
+
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
|
687 |
+
# initializing the cache
|
688 |
+
batch_size, seq_length = input_ids.shape
|
689 |
+
|
690 |
+
past_key_values = self.init_cache(batch_size, max_length)
|
691 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
692 |
+
# But since GPTJ uses a causal mask, those positions are masked anyways.
|
693 |
+
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
694 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
695 |
+
if attention_mask is not None:
|
696 |
+
position_ids = attention_mask.cumsum(axis=-1) - 1
|
697 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
|
698 |
+
else:
|
699 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
700 |
+
|
701 |
+
return {
|
702 |
+
"past_key_values": past_key_values,
|
703 |
+
"attention_mask": extended_attention_mask,
|
704 |
+
"position_ids": position_ids,
|
705 |
+
}
|
706 |
+
|
707 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
708 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
709 |
+
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
|
710 |
+
return model_kwargs
|
711 |
+
|
712 |
+
|
713 |
+
append_call_sample_docstring(
|
714 |
+
FlaxGPTJForCausalLM,
|
715 |
+
_CHECKPOINT_FOR_DOC,
|
716 |
+
FlaxCausalLMOutput,
|
717 |
+
_CONFIG_FOR_DOC,
|
718 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/modeling_gptj.py
ADDED
@@ -0,0 +1,1430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch GPT-J model."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.fx
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BaseModelOutputWithPast,
|
30 |
+
CausalLMOutputWithPast,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
+
SequenceClassifierOutputWithPast,
|
33 |
+
)
|
34 |
+
from ...modeling_utils import PreTrainedModel
|
35 |
+
from ...utils import (
|
36 |
+
add_code_sample_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
is_flash_attn_2_available,
|
40 |
+
is_flash_attn_greater_or_equal_2_10,
|
41 |
+
is_torch_fx_proxy,
|
42 |
+
logging,
|
43 |
+
)
|
44 |
+
from ...utils.model_parallel_utils import assert_device_map, get_device_map
|
45 |
+
from .configuration_gptj import GPTJConfig
|
46 |
+
|
47 |
+
|
48 |
+
if is_flash_attn_2_available():
|
49 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
50 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj"
|
56 |
+
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B"
|
57 |
+
_CONFIG_FOR_DOC = "GPTJConfig"
|
58 |
+
|
59 |
+
|
60 |
+
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
61 |
+
"EleutherAI/gpt-j-6B",
|
62 |
+
# See all GPT-J models at https://huggingface.co/models?filter=gptj
|
63 |
+
]
|
64 |
+
|
65 |
+
|
66 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
67 |
+
def _get_unpad_data(attention_mask):
|
68 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
69 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
70 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
71 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
72 |
+
return (
|
73 |
+
indices,
|
74 |
+
cu_seqlens,
|
75 |
+
max_seqlen_in_batch,
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
|
80 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim))
|
81 |
+
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.int64).float(), inv_freq).float()
|
82 |
+
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
|
83 |
+
|
84 |
+
|
85 |
+
@torch.fx.wrap
|
86 |
+
def get_embed_positions(embed_positions, position_ids):
|
87 |
+
return embed_positions.to(position_ids.device).repeat(position_ids.shape[0], 1, 1)
|
88 |
+
|
89 |
+
|
90 |
+
def rotate_every_two(x: torch.Tensor) -> torch.Tensor:
|
91 |
+
x1 = x[:, :, :, ::2]
|
92 |
+
x2 = x[:, :, :, 1::2]
|
93 |
+
x = torch.stack((-x2, x1), dim=-1)
|
94 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
95 |
+
|
96 |
+
|
97 |
+
def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor:
|
98 |
+
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
99 |
+
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
100 |
+
return (tensor * cos) + (rotate_every_two(tensor) * sin)
|
101 |
+
|
102 |
+
|
103 |
+
class GPTJAttention(nn.Module):
|
104 |
+
def __init__(self, config):
|
105 |
+
super().__init__()
|
106 |
+
self.config = config
|
107 |
+
max_positions = config.max_position_embeddings
|
108 |
+
self.register_buffer(
|
109 |
+
"bias",
|
110 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
111 |
+
1, 1, max_positions, max_positions
|
112 |
+
),
|
113 |
+
persistent=False,
|
114 |
+
)
|
115 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
|
116 |
+
|
117 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
118 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
119 |
+
|
120 |
+
self.is_causal = True
|
121 |
+
|
122 |
+
self.embed_dim = config.hidden_size
|
123 |
+
self.num_attention_heads = config.num_attention_heads
|
124 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
125 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
126 |
+
raise ValueError(
|
127 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
128 |
+
f" `num_attention_heads`: {self.num_attention_heads})."
|
129 |
+
)
|
130 |
+
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
|
131 |
+
|
132 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
133 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
134 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
135 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
136 |
+
self.rotary_dim = config.rotary_dim
|
137 |
+
pos_embd_dim = self.rotary_dim or self.embed_dim
|
138 |
+
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
|
139 |
+
|
140 |
+
def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary):
|
141 |
+
"""
|
142 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
143 |
+
"""
|
144 |
+
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
145 |
+
tensor = tensor.view(new_shape)
|
146 |
+
if rotary:
|
147 |
+
return tensor
|
148 |
+
if len(tensor.shape) == 5:
|
149 |
+
return tensor.permute(0, 1, 3, 2, 4) # (batch, blocks, head, block_length, head_features)
|
150 |
+
elif len(tensor.shape) == 4:
|
151 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
152 |
+
else:
|
153 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
154 |
+
|
155 |
+
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
156 |
+
"""
|
157 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
158 |
+
"""
|
159 |
+
if len(tensor.shape) == 5:
|
160 |
+
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
|
161 |
+
elif len(tensor.shape) == 4:
|
162 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
163 |
+
else:
|
164 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
165 |
+
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
166 |
+
return tensor.view(new_shape)
|
167 |
+
|
168 |
+
def _attn(
|
169 |
+
self,
|
170 |
+
query,
|
171 |
+
key,
|
172 |
+
value,
|
173 |
+
attention_mask=None,
|
174 |
+
head_mask=None,
|
175 |
+
):
|
176 |
+
# compute causal mask from causal mask buffer
|
177 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
178 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
179 |
+
|
180 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
181 |
+
query = query.to(torch.float32)
|
182 |
+
key = key.to(torch.float32)
|
183 |
+
|
184 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
185 |
+
|
186 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
187 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
188 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
189 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
190 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
191 |
+
|
192 |
+
attn_weights = attn_weights / self.scale_attn
|
193 |
+
|
194 |
+
if attention_mask is not None:
|
195 |
+
# Apply the attention mask
|
196 |
+
attn_weights = attn_weights + attention_mask
|
197 |
+
|
198 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
199 |
+
attn_weights = attn_weights.to(value.dtype)
|
200 |
+
attn_weights = self.attn_dropout(attn_weights)
|
201 |
+
|
202 |
+
# Mask heads if we want to
|
203 |
+
if head_mask is not None:
|
204 |
+
attn_weights = attn_weights * head_mask
|
205 |
+
|
206 |
+
attn_output = torch.matmul(attn_weights, value)
|
207 |
+
|
208 |
+
return attn_output, attn_weights
|
209 |
+
|
210 |
+
def _get_embed_positions(self, position_ids):
|
211 |
+
embed_positions = self.embed_positions
|
212 |
+
if embed_positions.device != position_ids.device:
|
213 |
+
embed_positions = embed_positions.to(position_ids.device)
|
214 |
+
self.embed_positions = embed_positions
|
215 |
+
return embed_positions.repeat(position_ids.shape[0], 1, 1)
|
216 |
+
|
217 |
+
def forward(
|
218 |
+
self,
|
219 |
+
hidden_states: torch.FloatTensor,
|
220 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
221 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
222 |
+
position_ids: Optional[torch.LongTensor] = None,
|
223 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
224 |
+
use_cache: Optional[bool] = False,
|
225 |
+
output_attentions: Optional[bool] = False,
|
226 |
+
) -> Union[
|
227 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
228 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
229 |
+
]:
|
230 |
+
query = self.q_proj(hidden_states)
|
231 |
+
key = self.k_proj(hidden_states)
|
232 |
+
value = self.v_proj(hidden_states)
|
233 |
+
|
234 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
|
235 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
|
236 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
|
237 |
+
|
238 |
+
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
|
239 |
+
# The logic to conditionally copy to GPU could not be traced, so we do this
|
240 |
+
# every time in the torch.fx case
|
241 |
+
embed_positions = get_embed_positions(self.embed_positions, position_ids)
|
242 |
+
else:
|
243 |
+
embed_positions = self._get_embed_positions(position_ids)
|
244 |
+
|
245 |
+
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
|
246 |
+
sincos = torch.gather(embed_positions, 1, repeated_position_ids)
|
247 |
+
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
248 |
+
|
249 |
+
if self.rotary_dim is not None:
|
250 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
251 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
252 |
+
|
253 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
254 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
255 |
+
|
256 |
+
k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
|
257 |
+
q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
|
258 |
+
|
259 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
260 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
261 |
+
else:
|
262 |
+
key = apply_rotary_pos_emb(key, sin, cos)
|
263 |
+
query = apply_rotary_pos_emb(query, sin, cos)
|
264 |
+
|
265 |
+
key = key.permute(0, 2, 1, 3)
|
266 |
+
query = query.permute(0, 2, 1, 3)
|
267 |
+
|
268 |
+
if layer_past is not None:
|
269 |
+
past_key = layer_past[0]
|
270 |
+
past_value = layer_past[1]
|
271 |
+
key = torch.cat((past_key, key), dim=-2)
|
272 |
+
value = torch.cat((past_value, value), dim=-2)
|
273 |
+
|
274 |
+
if use_cache is True:
|
275 |
+
# Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation.
|
276 |
+
# Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128
|
277 |
+
present = (key.to(hidden_states.dtype), value)
|
278 |
+
else:
|
279 |
+
present = None
|
280 |
+
|
281 |
+
# compute self-attention: V x Softmax(QK^T)
|
282 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
283 |
+
|
284 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
285 |
+
attn_output = self.out_proj(attn_output)
|
286 |
+
attn_output = self.resid_dropout(attn_output)
|
287 |
+
|
288 |
+
outputs = (attn_output, present)
|
289 |
+
if output_attentions:
|
290 |
+
outputs += (attn_weights,)
|
291 |
+
|
292 |
+
return outputs # a, present, (attentions)
|
293 |
+
|
294 |
+
|
295 |
+
class GPTJFlashAttention2(GPTJAttention):
|
296 |
+
"""
|
297 |
+
GPTJ flash attention module. This module inherits from `GPTJAttention` as the weights of the module stays
|
298 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
299 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
300 |
+
"""
|
301 |
+
|
302 |
+
def __init__(self, *args, **kwargs):
|
303 |
+
super().__init__(*args, **kwargs)
|
304 |
+
|
305 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
306 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
307 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
308 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
309 |
+
|
310 |
+
def forward(
|
311 |
+
self,
|
312 |
+
hidden_states: torch.FloatTensor,
|
313 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
314 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
315 |
+
position_ids: Optional[torch.LongTensor] = None,
|
316 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
317 |
+
use_cache: Optional[bool] = False,
|
318 |
+
output_attentions: Optional[bool] = False,
|
319 |
+
) -> Union[
|
320 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
321 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
322 |
+
]:
|
323 |
+
query = self.q_proj(hidden_states)
|
324 |
+
key = self.k_proj(hidden_states)
|
325 |
+
value = self.v_proj(hidden_states)
|
326 |
+
|
327 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
|
328 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
|
329 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
|
330 |
+
|
331 |
+
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
|
332 |
+
# The logic to conditionally copy to GPU could not be traced, so we do this
|
333 |
+
# every time in the torch.fx case
|
334 |
+
embed_positions = get_embed_positions(self.embed_positions, position_ids)
|
335 |
+
else:
|
336 |
+
embed_positions = self._get_embed_positions(position_ids)
|
337 |
+
|
338 |
+
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
|
339 |
+
sincos = torch.gather(embed_positions, 1, repeated_position_ids)
|
340 |
+
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
341 |
+
|
342 |
+
if self.rotary_dim is not None:
|
343 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
344 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
345 |
+
|
346 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
347 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
348 |
+
|
349 |
+
k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
|
350 |
+
q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
|
351 |
+
|
352 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
353 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
354 |
+
else:
|
355 |
+
key = apply_rotary_pos_emb(key, sin, cos)
|
356 |
+
query = apply_rotary_pos_emb(query, sin, cos)
|
357 |
+
|
358 |
+
# tanspose to have the desired shape
|
359 |
+
# before transpose: batch_size x seq_length x num_attention_heads x head_dim
|
360 |
+
# after transpose: batch_size x num_attention_heads x seq_length x head_dim
|
361 |
+
key = key.permute(0, 2, 1, 3)
|
362 |
+
query = query.permute(0, 2, 1, 3)
|
363 |
+
# value: batch_size x num_attention_heads x seq_length x head_dim
|
364 |
+
|
365 |
+
if layer_past is not None:
|
366 |
+
past_key = layer_past[0]
|
367 |
+
past_value = layer_past[1]
|
368 |
+
key = torch.cat((past_key, key), dim=-2)
|
369 |
+
value = torch.cat((past_value, value), dim=-2)
|
370 |
+
|
371 |
+
if use_cache is True:
|
372 |
+
# Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation.
|
373 |
+
# Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128
|
374 |
+
present = (key.to(hidden_states.dtype), value)
|
375 |
+
else:
|
376 |
+
present = None
|
377 |
+
|
378 |
+
# The Flash attention requires the input to have the shape
|
379 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
380 |
+
# therefore we need to keep the original shape for query and key, and reshape value
|
381 |
+
# to have the correct shape.
|
382 |
+
key = key.permute(0, 2, 1, 3).contiguous()
|
383 |
+
query = query.permute(0, 2, 1, 3).contiguous()
|
384 |
+
value = value.permute(0, 2, 1, 3).contiguous()
|
385 |
+
|
386 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
387 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
388 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
389 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
390 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
391 |
+
|
392 |
+
input_dtype = query.dtype
|
393 |
+
if input_dtype == torch.float32:
|
394 |
+
if torch.is_autocast_enabled():
|
395 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
396 |
+
# Handle the case where the model is quantized
|
397 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
398 |
+
target_dtype = self.config._pre_quantization_dtype
|
399 |
+
else:
|
400 |
+
target_dtype = self.q_proj.weight.dtype
|
401 |
+
|
402 |
+
logger.warning_once(
|
403 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
404 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
405 |
+
f" {target_dtype}."
|
406 |
+
)
|
407 |
+
|
408 |
+
query = query.to(target_dtype)
|
409 |
+
key = key.to(target_dtype)
|
410 |
+
value = value.to(target_dtype)
|
411 |
+
|
412 |
+
attention_dropout = self.config.attn_pdrop if self.training else 0.0 # attn_pdrop in gptj
|
413 |
+
|
414 |
+
query_length = query.shape[1]
|
415 |
+
|
416 |
+
# Compute attention
|
417 |
+
attn_weights = self._flash_attention_forward(
|
418 |
+
query,
|
419 |
+
key,
|
420 |
+
value,
|
421 |
+
attention_mask,
|
422 |
+
query_length,
|
423 |
+
dropout=attention_dropout,
|
424 |
+
)
|
425 |
+
|
426 |
+
# Reshape outputs
|
427 |
+
attn_output = attn_weights.reshape(
|
428 |
+
attn_weights.shape[0], attn_weights.shape[1], attn_weights.shape[2] * attn_weights.shape[3]
|
429 |
+
)
|
430 |
+
attn_output = self.out_proj(attn_output)
|
431 |
+
attn_output = self.resid_dropout(attn_output)
|
432 |
+
|
433 |
+
outputs = (attn_output, present)
|
434 |
+
if output_attentions:
|
435 |
+
outputs += (attn_weights,)
|
436 |
+
|
437 |
+
return outputs
|
438 |
+
|
439 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
440 |
+
def _flash_attention_forward(
|
441 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
442 |
+
):
|
443 |
+
"""
|
444 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
445 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
446 |
+
|
447 |
+
Args:
|
448 |
+
query_states (`torch.Tensor`):
|
449 |
+
Input query states to be passed to Flash Attention API
|
450 |
+
key_states (`torch.Tensor`):
|
451 |
+
Input key states to be passed to Flash Attention API
|
452 |
+
value_states (`torch.Tensor`):
|
453 |
+
Input value states to be passed to Flash Attention API
|
454 |
+
attention_mask (`torch.Tensor`):
|
455 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
456 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
457 |
+
dropout (`float`):
|
458 |
+
Attention dropout
|
459 |
+
softmax_scale (`float`, *optional*):
|
460 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
461 |
+
"""
|
462 |
+
if not self._flash_attn_uses_top_left_mask:
|
463 |
+
causal = self.is_causal
|
464 |
+
else:
|
465 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
466 |
+
causal = self.is_causal and query_length != 1
|
467 |
+
|
468 |
+
# Contains at least one padding token in the sequence
|
469 |
+
if attention_mask is not None:
|
470 |
+
batch_size = query_states.shape[0]
|
471 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
472 |
+
query_states, key_states, value_states, attention_mask, query_length
|
473 |
+
)
|
474 |
+
|
475 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
476 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
477 |
+
|
478 |
+
attn_output_unpad = flash_attn_varlen_func(
|
479 |
+
query_states,
|
480 |
+
key_states,
|
481 |
+
value_states,
|
482 |
+
cu_seqlens_q=cu_seqlens_q,
|
483 |
+
cu_seqlens_k=cu_seqlens_k,
|
484 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
485 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
486 |
+
dropout_p=dropout,
|
487 |
+
softmax_scale=softmax_scale,
|
488 |
+
causal=causal,
|
489 |
+
)
|
490 |
+
|
491 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
492 |
+
else:
|
493 |
+
attn_output = flash_attn_func(
|
494 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
495 |
+
)
|
496 |
+
|
497 |
+
return attn_output
|
498 |
+
|
499 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input with num_heads->num_attention_heads
|
500 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
501 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
502 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
503 |
+
|
504 |
+
key_layer = index_first_axis(
|
505 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
506 |
+
)
|
507 |
+
value_layer = index_first_axis(
|
508 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
509 |
+
)
|
510 |
+
if query_length == kv_seq_len:
|
511 |
+
query_layer = index_first_axis(
|
512 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads, head_dim), indices_k
|
513 |
+
)
|
514 |
+
cu_seqlens_q = cu_seqlens_k
|
515 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
516 |
+
indices_q = indices_k
|
517 |
+
elif query_length == 1:
|
518 |
+
max_seqlen_in_batch_q = 1
|
519 |
+
cu_seqlens_q = torch.arange(
|
520 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
521 |
+
) # There is a memcpy here, that is very bad.
|
522 |
+
indices_q = cu_seqlens_q[:-1]
|
523 |
+
query_layer = query_layer.squeeze(1)
|
524 |
+
else:
|
525 |
+
# The -q_len: slice assumes left padding.
|
526 |
+
attention_mask = attention_mask[:, -query_length:]
|
527 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
528 |
+
|
529 |
+
return (
|
530 |
+
query_layer,
|
531 |
+
key_layer,
|
532 |
+
value_layer,
|
533 |
+
indices_q,
|
534 |
+
(cu_seqlens_q, cu_seqlens_k),
|
535 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
536 |
+
)
|
537 |
+
|
538 |
+
|
539 |
+
GPTJ_ATTENTION_CLASSES = {
|
540 |
+
"eager": GPTJAttention,
|
541 |
+
"flash_attention_2": GPTJFlashAttention2,
|
542 |
+
}
|
543 |
+
|
544 |
+
|
545 |
+
class GPTJMLP(nn.Module):
|
546 |
+
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
|
547 |
+
super().__init__()
|
548 |
+
embed_dim = config.n_embd
|
549 |
+
|
550 |
+
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
551 |
+
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
552 |
+
|
553 |
+
self.act = ACT2FN[config.activation_function]
|
554 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
555 |
+
|
556 |
+
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
|
557 |
+
hidden_states = self.fc_in(hidden_states)
|
558 |
+
hidden_states = self.act(hidden_states)
|
559 |
+
hidden_states = self.fc_out(hidden_states)
|
560 |
+
hidden_states = self.dropout(hidden_states)
|
561 |
+
return hidden_states
|
562 |
+
|
563 |
+
|
564 |
+
class GPTJBlock(nn.Module):
|
565 |
+
def __init__(self, config):
|
566 |
+
super().__init__()
|
567 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
568 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
569 |
+
self.attn = GPTJ_ATTENTION_CLASSES[config._attn_implementation](config)
|
570 |
+
self.mlp = GPTJMLP(inner_dim, config)
|
571 |
+
|
572 |
+
def forward(
|
573 |
+
self,
|
574 |
+
hidden_states: Optional[torch.FloatTensor],
|
575 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
576 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
577 |
+
position_ids: Optional[torch.LongTensor] = None,
|
578 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
579 |
+
use_cache: Optional[bool] = False,
|
580 |
+
output_attentions: Optional[bool] = False,
|
581 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
582 |
+
residual = hidden_states
|
583 |
+
hidden_states = self.ln_1(hidden_states)
|
584 |
+
attn_outputs = self.attn(
|
585 |
+
hidden_states=hidden_states,
|
586 |
+
layer_past=layer_past,
|
587 |
+
attention_mask=attention_mask,
|
588 |
+
position_ids=position_ids,
|
589 |
+
head_mask=head_mask,
|
590 |
+
use_cache=use_cache,
|
591 |
+
output_attentions=output_attentions,
|
592 |
+
)
|
593 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
594 |
+
outputs = attn_outputs[1:]
|
595 |
+
|
596 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
597 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
598 |
+
|
599 |
+
if use_cache:
|
600 |
+
outputs = (hidden_states,) + outputs
|
601 |
+
else:
|
602 |
+
outputs = (hidden_states,) + outputs[1:]
|
603 |
+
|
604 |
+
return outputs # hidden_states, present, (attentions)
|
605 |
+
|
606 |
+
|
607 |
+
class GPTJPreTrainedModel(PreTrainedModel):
|
608 |
+
"""
|
609 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
610 |
+
models.
|
611 |
+
"""
|
612 |
+
|
613 |
+
config_class = GPTJConfig
|
614 |
+
base_model_prefix = "transformer"
|
615 |
+
is_parallelizable = True
|
616 |
+
supports_gradient_checkpointing = True
|
617 |
+
_no_split_modules = ["GPTJBlock"]
|
618 |
+
_skip_keys_device_placement = "past_key_values"
|
619 |
+
_supports_flash_attn_2 = True
|
620 |
+
|
621 |
+
def __init__(self, *inputs, **kwargs):
|
622 |
+
super().__init__(*inputs, **kwargs)
|
623 |
+
|
624 |
+
def _init_weights(self, module):
|
625 |
+
"""Initialize the weights."""
|
626 |
+
if isinstance(module, (nn.Linear,)):
|
627 |
+
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
628 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
629 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
630 |
+
if module.bias is not None:
|
631 |
+
module.bias.data.zero_()
|
632 |
+
elif isinstance(module, nn.Embedding):
|
633 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
634 |
+
if module.padding_idx is not None:
|
635 |
+
module.weight.data[module.padding_idx].zero_()
|
636 |
+
elif isinstance(module, nn.LayerNorm):
|
637 |
+
module.bias.data.zero_()
|
638 |
+
module.weight.data.fill_(1.0)
|
639 |
+
|
640 |
+
|
641 |
+
GPTJ_START_DOCSTRING = r"""
|
642 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
643 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
644 |
+
behavior.
|
645 |
+
|
646 |
+
Parameters:
|
647 |
+
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
|
648 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
649 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
650 |
+
"""
|
651 |
+
|
652 |
+
GPTJ_INPUTS_DOCSTRING = r"""
|
653 |
+
Args:
|
654 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
655 |
+
Indices of input sequence tokens in the vocabulary.
|
656 |
+
|
657 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
658 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
659 |
+
|
660 |
+
[What are input IDs?](../glossary#input-ids)
|
661 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
662 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
663 |
+
|
664 |
+
- 1 for tokens that are **not masked**,
|
665 |
+
- 0 for tokens that are **masked**.
|
666 |
+
|
667 |
+
[What are attention masks?](../glossary#attention-mask)
|
668 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
669 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
670 |
+
1]`:
|
671 |
+
|
672 |
+
- 0 corresponds to a *sentence A* token,
|
673 |
+
- 1 corresponds to a *sentence B* token.
|
674 |
+
|
675 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
676 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
677 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
678 |
+
config.n_positions - 1]`.
|
679 |
+
|
680 |
+
[What are position IDs?](../glossary#position-ids)
|
681 |
+
head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
|
682 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
683 |
+
|
684 |
+
- 1 indicates the head is **not masked**,
|
685 |
+
- 0 indicates the head is **masked**.
|
686 |
+
|
687 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
|
688 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
689 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
690 |
+
model's internal embedding lookup matrix.
|
691 |
+
output_attentions (`bool`, *optional*):
|
692 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
693 |
+
tensors for more detail.
|
694 |
+
output_hidden_states (`bool`, *optional*):
|
695 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
696 |
+
more detail.
|
697 |
+
return_dict (`bool`, *optional*):
|
698 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
699 |
+
"""
|
700 |
+
|
701 |
+
PARALLELIZE_DOCSTRING = r"""
|
702 |
+
This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute
|
703 |
+
attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks
|
704 |
+
across all devices.
|
705 |
+
|
706 |
+
Args:
|
707 |
+
device_map (`Dict[int, list]`, optional, defaults to None):
|
708 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
709 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
710 |
+
have fewer attention modules mapped to it than other devices. For reference, the GPT-J models have the
|
711 |
+
following number of attention modules:
|
712 |
+
|
713 |
+
- gpt-j-6B: 28
|
714 |
+
|
715 |
+
Example:
|
716 |
+
|
717 |
+
```python
|
718 |
+
# Here is an example of a device map on a machine with 4 GPUs using gpt-j-6B, which has a total of 28 attention modules:
|
719 |
+
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
|
720 |
+
device_map = {
|
721 |
+
0: [0, 1, 2, 3, 4, 5, 6],
|
722 |
+
1: [7, 8, 9, 10, 11, 12, 13],
|
723 |
+
2: [14, 15, 16, 17, 18, 19, 20],
|
724 |
+
3: [21, 22, 23, 24, 25, 26, 27],
|
725 |
+
}
|
726 |
+
model.parallelize(device_map)
|
727 |
+
```
|
728 |
+
"""
|
729 |
+
|
730 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
731 |
+
Moves the model to CPU from a model parallel state.
|
732 |
+
|
733 |
+
Example:
|
734 |
+
|
735 |
+
```python
|
736 |
+
# On a 4 GPU machine with gpt-j-6B:
|
737 |
+
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
|
738 |
+
device_map = {
|
739 |
+
0: [0, 1, 2, 3, 4, 5, 6],
|
740 |
+
1: [7, 8, 9, 10, 11, 12, 13],
|
741 |
+
2: [14, 15, 16, 17, 18, 19, 20],
|
742 |
+
3: [21, 22, 23, 24, 25, 26, 27],
|
743 |
+
}
|
744 |
+
model.parallelize(device_map) # Splits the model across several devices
|
745 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
746 |
+
```
|
747 |
+
"""
|
748 |
+
|
749 |
+
|
750 |
+
@add_start_docstrings(
|
751 |
+
"The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
|
752 |
+
GPTJ_START_DOCSTRING,
|
753 |
+
)
|
754 |
+
class GPTJModel(GPTJPreTrainedModel):
|
755 |
+
def __init__(self, config):
|
756 |
+
super().__init__(config)
|
757 |
+
|
758 |
+
self.embed_dim = config.n_embd
|
759 |
+
self.vocab_size = config.vocab_size
|
760 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
761 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
762 |
+
self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)])
|
763 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
764 |
+
|
765 |
+
# Model parallel
|
766 |
+
self.model_parallel = False
|
767 |
+
self.device_map = None
|
768 |
+
self.gradient_checkpointing = False
|
769 |
+
|
770 |
+
# Initialize weights and apply final processing
|
771 |
+
self.post_init()
|
772 |
+
|
773 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
774 |
+
|
775 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
776 |
+
def parallelize(self, device_map=None):
|
777 |
+
warnings.warn(
|
778 |
+
"`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
779 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
780 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
781 |
+
" ...}",
|
782 |
+
FutureWarning,
|
783 |
+
)
|
784 |
+
# Check validity of device_map
|
785 |
+
self.device_map = (
|
786 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
787 |
+
)
|
788 |
+
assert_device_map(self.device_map, len(self.h))
|
789 |
+
self.model_parallel = True
|
790 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
791 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
792 |
+
self.wte = self.wte.to(self.first_device)
|
793 |
+
# Load onto devices
|
794 |
+
for k, v in self.device_map.items():
|
795 |
+
for block in v:
|
796 |
+
cuda_device = "cuda:" + str(k)
|
797 |
+
self.h[block] = self.h[block].to(cuda_device)
|
798 |
+
# ln_f to last
|
799 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
800 |
+
|
801 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
802 |
+
def deparallelize(self):
|
803 |
+
warnings.warn(
|
804 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
805 |
+
FutureWarning,
|
806 |
+
)
|
807 |
+
self.model_parallel = False
|
808 |
+
self.device_map = None
|
809 |
+
self.first_device = "cpu"
|
810 |
+
self.last_device = "cpu"
|
811 |
+
self.wte = self.wte.to("cpu")
|
812 |
+
for index in range(len(self.h)):
|
813 |
+
self.h[index] = self.h[index].to("cpu")
|
814 |
+
self.ln_f = self.ln_f.to("cpu")
|
815 |
+
torch.cuda.empty_cache()
|
816 |
+
|
817 |
+
def get_input_embeddings(self):
|
818 |
+
return self.wte
|
819 |
+
|
820 |
+
def set_input_embeddings(self, new_embeddings):
|
821 |
+
self.wte = new_embeddings
|
822 |
+
|
823 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
824 |
+
@add_code_sample_docstrings(
|
825 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
826 |
+
output_type=BaseModelOutputWithPast,
|
827 |
+
config_class=_CONFIG_FOR_DOC,
|
828 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
829 |
+
)
|
830 |
+
def forward(
|
831 |
+
self,
|
832 |
+
input_ids: Optional[torch.LongTensor] = None,
|
833 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
834 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
835 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
836 |
+
position_ids: Optional[torch.LongTensor] = None,
|
837 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
838 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
839 |
+
use_cache: Optional[bool] = None,
|
840 |
+
output_attentions: Optional[bool] = None,
|
841 |
+
output_hidden_states: Optional[bool] = None,
|
842 |
+
return_dict: Optional[bool] = None,
|
843 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
844 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
845 |
+
output_hidden_states = (
|
846 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
847 |
+
)
|
848 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
849 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
850 |
+
|
851 |
+
if input_ids is not None and inputs_embeds is not None:
|
852 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
853 |
+
elif input_ids is not None:
|
854 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
855 |
+
input_shape = input_ids.size()
|
856 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
857 |
+
batch_size = input_ids.shape[0]
|
858 |
+
elif inputs_embeds is not None:
|
859 |
+
input_shape = inputs_embeds.size()[:-1]
|
860 |
+
batch_size = inputs_embeds.shape[0]
|
861 |
+
else:
|
862 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
863 |
+
|
864 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
865 |
+
|
866 |
+
if token_type_ids is not None:
|
867 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
868 |
+
|
869 |
+
if past_key_values is None:
|
870 |
+
past_length = 0
|
871 |
+
past_key_values = tuple([None] * len(self.h))
|
872 |
+
else:
|
873 |
+
past_length = past_key_values[0][0].size(-2)
|
874 |
+
|
875 |
+
if position_ids is None:
|
876 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
877 |
+
position_ids = position_ids.unsqueeze(0)
|
878 |
+
|
879 |
+
if not self._use_flash_attention_2:
|
880 |
+
# Attention mask.
|
881 |
+
if attention_mask is not None:
|
882 |
+
if batch_size <= 0:
|
883 |
+
raise ValueError("batch_size has to be defined and > 0")
|
884 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
885 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
886 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
887 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
888 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
889 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
890 |
+
attention_mask = attention_mask[:, None, None, :]
|
891 |
+
|
892 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
893 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
894 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
895 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
896 |
+
# effectively the same as removing these entirely.
|
897 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
898 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
899 |
+
|
900 |
+
# Prepare head mask if needed
|
901 |
+
# 1.0 in head_mask indicate we keep the head
|
902 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
903 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
904 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
905 |
+
|
906 |
+
if inputs_embeds is None:
|
907 |
+
inputs_embeds = self.wte(input_ids)
|
908 |
+
|
909 |
+
hidden_states = inputs_embeds
|
910 |
+
|
911 |
+
if token_type_ids is not None:
|
912 |
+
token_type_embeds = self.wte(token_type_ids)
|
913 |
+
hidden_states = hidden_states + token_type_embeds
|
914 |
+
|
915 |
+
hidden_states = self.drop(hidden_states)
|
916 |
+
|
917 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
918 |
+
|
919 |
+
if self.gradient_checkpointing and self.training:
|
920 |
+
if use_cache:
|
921 |
+
logger.warning_once(
|
922 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
923 |
+
)
|
924 |
+
use_cache = False
|
925 |
+
|
926 |
+
presents = () if use_cache else None
|
927 |
+
all_self_attentions = () if output_attentions else None
|
928 |
+
all_hidden_states = () if output_hidden_states else None
|
929 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
930 |
+
# Model parallel
|
931 |
+
if self.model_parallel:
|
932 |
+
torch.cuda.set_device(hidden_states.device)
|
933 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
934 |
+
if layer_past is not None:
|
935 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
936 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
937 |
+
if attention_mask is not None:
|
938 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
939 |
+
if isinstance(head_mask, torch.Tensor):
|
940 |
+
head_mask = head_mask.to(hidden_states.device)
|
941 |
+
if output_hidden_states:
|
942 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
943 |
+
|
944 |
+
if self.gradient_checkpointing and self.training:
|
945 |
+
outputs = self._gradient_checkpointing_func(
|
946 |
+
block.__call__,
|
947 |
+
hidden_states,
|
948 |
+
None,
|
949 |
+
attention_mask,
|
950 |
+
position_ids,
|
951 |
+
head_mask[i],
|
952 |
+
use_cache,
|
953 |
+
output_attentions,
|
954 |
+
)
|
955 |
+
else:
|
956 |
+
outputs = block(
|
957 |
+
hidden_states=hidden_states,
|
958 |
+
layer_past=layer_past,
|
959 |
+
attention_mask=attention_mask,
|
960 |
+
position_ids=position_ids,
|
961 |
+
head_mask=head_mask[i],
|
962 |
+
use_cache=use_cache,
|
963 |
+
output_attentions=output_attentions,
|
964 |
+
)
|
965 |
+
|
966 |
+
hidden_states = outputs[0]
|
967 |
+
if use_cache is True:
|
968 |
+
presents = presents + (outputs[1],)
|
969 |
+
|
970 |
+
if output_attentions:
|
971 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
972 |
+
|
973 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
974 |
+
if self.model_parallel:
|
975 |
+
for k, v in self.device_map.items():
|
976 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
977 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
978 |
+
|
979 |
+
hidden_states = self.ln_f(hidden_states)
|
980 |
+
|
981 |
+
hidden_states = hidden_states.view(output_shape)
|
982 |
+
# Add last hidden state
|
983 |
+
if output_hidden_states:
|
984 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
985 |
+
|
986 |
+
if not return_dict:
|
987 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
988 |
+
|
989 |
+
return BaseModelOutputWithPast(
|
990 |
+
last_hidden_state=hidden_states,
|
991 |
+
past_key_values=presents,
|
992 |
+
hidden_states=all_hidden_states,
|
993 |
+
attentions=all_self_attentions,
|
994 |
+
)
|
995 |
+
|
996 |
+
|
997 |
+
@add_start_docstrings(
|
998 |
+
"""
|
999 |
+
The GPT-J Model transformer with a language modeling head on top.
|
1000 |
+
""",
|
1001 |
+
GPTJ_START_DOCSTRING,
|
1002 |
+
)
|
1003 |
+
class GPTJForCausalLM(GPTJPreTrainedModel):
|
1004 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1005 |
+
|
1006 |
+
def __init__(self, config):
|
1007 |
+
super().__init__(config)
|
1008 |
+
self.transformer = GPTJModel(config)
|
1009 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
1010 |
+
|
1011 |
+
# Model parallel
|
1012 |
+
self.model_parallel = False
|
1013 |
+
self.device_map = None
|
1014 |
+
|
1015 |
+
# Initialize weights and apply final processing
|
1016 |
+
self.post_init()
|
1017 |
+
|
1018 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1019 |
+
def parallelize(self, device_map=None):
|
1020 |
+
warnings.warn(
|
1021 |
+
"`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
1022 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
1023 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
1024 |
+
" 0, 'transformer.h.1': 1, ...}",
|
1025 |
+
FutureWarning,
|
1026 |
+
)
|
1027 |
+
self.device_map = (
|
1028 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
1029 |
+
if device_map is None
|
1030 |
+
else device_map
|
1031 |
+
)
|
1032 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
1033 |
+
self.transformer.parallelize(self.device_map)
|
1034 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
1035 |
+
self.model_parallel = True
|
1036 |
+
|
1037 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1038 |
+
def deparallelize(self):
|
1039 |
+
warnings.warn(
|
1040 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
1041 |
+
FutureWarning,
|
1042 |
+
)
|
1043 |
+
self.transformer.deparallelize()
|
1044 |
+
self.transformer = self.transformer.to("cpu")
|
1045 |
+
self.lm_head = self.lm_head.to("cpu")
|
1046 |
+
self.model_parallel = False
|
1047 |
+
torch.cuda.empty_cache()
|
1048 |
+
|
1049 |
+
def get_output_embeddings(self):
|
1050 |
+
return self.lm_head
|
1051 |
+
|
1052 |
+
def set_output_embeddings(self, new_embeddings):
|
1053 |
+
self.lm_head = new_embeddings
|
1054 |
+
|
1055 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
1056 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
1057 |
+
# Omit tokens covered by past_key_values
|
1058 |
+
if past_key_values:
|
1059 |
+
past_length = past_key_values[0][0].shape[2]
|
1060 |
+
|
1061 |
+
# Some generation methods already pass only the last input ID
|
1062 |
+
if input_ids.shape[1] > past_length:
|
1063 |
+
remove_prefix_length = past_length
|
1064 |
+
else:
|
1065 |
+
# Default to old behavior: keep only final ID
|
1066 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1067 |
+
|
1068 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1069 |
+
if token_type_ids is not None:
|
1070 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
1071 |
+
|
1072 |
+
attention_mask = kwargs.get("attention_mask", None)
|
1073 |
+
position_ids = kwargs.get("position_ids", None)
|
1074 |
+
|
1075 |
+
if attention_mask is not None and position_ids is None:
|
1076 |
+
# create position_ids on the fly for batch generation
|
1077 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1078 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1079 |
+
if past_key_values:
|
1080 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1081 |
+
|
1082 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1083 |
+
if inputs_embeds is not None and past_key_values is None:
|
1084 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1085 |
+
else:
|
1086 |
+
model_inputs = {"input_ids": input_ids}
|
1087 |
+
|
1088 |
+
model_inputs.update(
|
1089 |
+
{
|
1090 |
+
"past_key_values": past_key_values,
|
1091 |
+
"use_cache": kwargs.get("use_cache"),
|
1092 |
+
"position_ids": position_ids,
|
1093 |
+
"attention_mask": attention_mask,
|
1094 |
+
"token_type_ids": token_type_ids,
|
1095 |
+
}
|
1096 |
+
)
|
1097 |
+
|
1098 |
+
return model_inputs
|
1099 |
+
|
1100 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1101 |
+
@add_code_sample_docstrings(
|
1102 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1103 |
+
output_type=CausalLMOutputWithPast,
|
1104 |
+
config_class=_CONFIG_FOR_DOC,
|
1105 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1106 |
+
)
|
1107 |
+
def forward(
|
1108 |
+
self,
|
1109 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1110 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1111 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1112 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1113 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1114 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1115 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1116 |
+
labels: Optional[torch.LongTensor] = None,
|
1117 |
+
use_cache: Optional[bool] = None,
|
1118 |
+
output_attentions: Optional[bool] = None,
|
1119 |
+
output_hidden_states: Optional[bool] = None,
|
1120 |
+
return_dict: Optional[bool] = None,
|
1121 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1122 |
+
r"""
|
1123 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1124 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1125 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
1126 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
1127 |
+
"""
|
1128 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1129 |
+
|
1130 |
+
transformer_outputs = self.transformer(
|
1131 |
+
input_ids,
|
1132 |
+
past_key_values=past_key_values,
|
1133 |
+
attention_mask=attention_mask,
|
1134 |
+
token_type_ids=token_type_ids,
|
1135 |
+
position_ids=position_ids,
|
1136 |
+
head_mask=head_mask,
|
1137 |
+
inputs_embeds=inputs_embeds,
|
1138 |
+
use_cache=use_cache,
|
1139 |
+
output_attentions=output_attentions,
|
1140 |
+
output_hidden_states=output_hidden_states,
|
1141 |
+
return_dict=return_dict,
|
1142 |
+
)
|
1143 |
+
hidden_states = transformer_outputs[0]
|
1144 |
+
|
1145 |
+
# Set device for model parallelism
|
1146 |
+
if self.model_parallel:
|
1147 |
+
torch.cuda.set_device(self.transformer.first_device)
|
1148 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
1149 |
+
|
1150 |
+
# make sure sampling in fp16 works correctly and
|
1151 |
+
# compute loss in fp32 to match with mesh-tf version
|
1152 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
1153 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
1154 |
+
|
1155 |
+
loss = None
|
1156 |
+
if labels is not None:
|
1157 |
+
# move labels to correct device to enable model parallelism
|
1158 |
+
labels = labels.to(lm_logits.device)
|
1159 |
+
# Shift so that tokens < n predict n
|
1160 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1161 |
+
shift_labels = labels[..., 1:].contiguous()
|
1162 |
+
# Flatten the tokens
|
1163 |
+
loss_fct = CrossEntropyLoss()
|
1164 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1165 |
+
|
1166 |
+
loss = loss.to(hidden_states.dtype)
|
1167 |
+
|
1168 |
+
if not return_dict:
|
1169 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1170 |
+
return ((loss,) + output) if loss is not None else output
|
1171 |
+
|
1172 |
+
return CausalLMOutputWithPast(
|
1173 |
+
loss=loss,
|
1174 |
+
logits=lm_logits,
|
1175 |
+
past_key_values=transformer_outputs.past_key_values,
|
1176 |
+
hidden_states=transformer_outputs.hidden_states,
|
1177 |
+
attentions=transformer_outputs.attentions,
|
1178 |
+
)
|
1179 |
+
|
1180 |
+
@staticmethod
|
1181 |
+
def _reorder_cache(
|
1182 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
1183 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
1184 |
+
"""
|
1185 |
+
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
1186 |
+
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1187 |
+
beam_idx at every generation step.
|
1188 |
+
"""
|
1189 |
+
return tuple(
|
1190 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
1191 |
+
for layer_past in past_key_values
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
|
1195 |
+
@add_start_docstrings(
|
1196 |
+
"""
|
1197 |
+
The GPT-J Model transformer with a sequence classification head on top (linear layer).
|
1198 |
+
|
1199 |
+
[`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1200 |
+
(e.g. GPT, GPT-2, GPT-Neo) do.
|
1201 |
+
|
1202 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1203 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1204 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1205 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1206 |
+
each row of the batch).
|
1207 |
+
""",
|
1208 |
+
GPTJ_START_DOCSTRING,
|
1209 |
+
)
|
1210 |
+
class GPTJForSequenceClassification(GPTJPreTrainedModel):
|
1211 |
+
def __init__(self, config):
|
1212 |
+
super().__init__(config)
|
1213 |
+
self.num_labels = config.num_labels
|
1214 |
+
self.transformer = GPTJModel(config)
|
1215 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
1216 |
+
|
1217 |
+
# Model parallel
|
1218 |
+
self.model_parallel = False
|
1219 |
+
self.device_map = None
|
1220 |
+
|
1221 |
+
# Initialize weights and apply final processing
|
1222 |
+
self.post_init()
|
1223 |
+
|
1224 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1225 |
+
@add_code_sample_docstrings(
|
1226 |
+
checkpoint="ydshieh/tiny-random-gptj-for-sequence-classification",
|
1227 |
+
output_type=SequenceClassifierOutputWithPast,
|
1228 |
+
config_class=_CONFIG_FOR_DOC,
|
1229 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1230 |
+
)
|
1231 |
+
def forward(
|
1232 |
+
self,
|
1233 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1234 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1235 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1236 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1237 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1238 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1239 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1240 |
+
labels: Optional[torch.LongTensor] = None,
|
1241 |
+
use_cache: Optional[bool] = None,
|
1242 |
+
output_attentions: Optional[bool] = None,
|
1243 |
+
output_hidden_states: Optional[bool] = None,
|
1244 |
+
return_dict: Optional[bool] = None,
|
1245 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1246 |
+
r"""
|
1247 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1248 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1249 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1250 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1251 |
+
"""
|
1252 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1253 |
+
|
1254 |
+
transformer_outputs = self.transformer(
|
1255 |
+
input_ids,
|
1256 |
+
past_key_values=past_key_values,
|
1257 |
+
attention_mask=attention_mask,
|
1258 |
+
token_type_ids=token_type_ids,
|
1259 |
+
position_ids=position_ids,
|
1260 |
+
head_mask=head_mask,
|
1261 |
+
inputs_embeds=inputs_embeds,
|
1262 |
+
use_cache=use_cache,
|
1263 |
+
output_attentions=output_attentions,
|
1264 |
+
output_hidden_states=output_hidden_states,
|
1265 |
+
return_dict=return_dict,
|
1266 |
+
)
|
1267 |
+
hidden_states = transformer_outputs[0]
|
1268 |
+
logits = self.score(hidden_states)
|
1269 |
+
|
1270 |
+
if input_ids is not None:
|
1271 |
+
batch_size = input_ids.shape[0]
|
1272 |
+
else:
|
1273 |
+
batch_size = inputs_embeds.shape[0]
|
1274 |
+
|
1275 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1276 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1277 |
+
if self.config.pad_token_id is None:
|
1278 |
+
sequence_lengths = -1
|
1279 |
+
else:
|
1280 |
+
if input_ids is not None:
|
1281 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1282 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1283 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1284 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1285 |
+
else:
|
1286 |
+
sequence_lengths = -1
|
1287 |
+
logger.warning(
|
1288 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1289 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1290 |
+
)
|
1291 |
+
|
1292 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1293 |
+
|
1294 |
+
loss = None
|
1295 |
+
if labels is not None:
|
1296 |
+
labels = labels.to(pooled_logits.device)
|
1297 |
+
if self.config.problem_type is None:
|
1298 |
+
if self.num_labels == 1:
|
1299 |
+
self.config.problem_type = "regression"
|
1300 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1301 |
+
self.config.problem_type = "single_label_classification"
|
1302 |
+
else:
|
1303 |
+
self.config.problem_type = "multi_label_classification"
|
1304 |
+
|
1305 |
+
if self.config.problem_type == "regression":
|
1306 |
+
loss_fct = MSELoss()
|
1307 |
+
if self.num_labels == 1:
|
1308 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1309 |
+
else:
|
1310 |
+
loss = loss_fct(pooled_logits, labels)
|
1311 |
+
elif self.config.problem_type == "single_label_classification":
|
1312 |
+
loss_fct = CrossEntropyLoss()
|
1313 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1314 |
+
elif self.config.problem_type == "multi_label_classification":
|
1315 |
+
loss_fct = BCEWithLogitsLoss()
|
1316 |
+
loss = loss_fct(pooled_logits, labels)
|
1317 |
+
if not return_dict:
|
1318 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1319 |
+
return ((loss,) + output) if loss is not None else output
|
1320 |
+
|
1321 |
+
return SequenceClassifierOutputWithPast(
|
1322 |
+
loss=loss,
|
1323 |
+
logits=pooled_logits,
|
1324 |
+
past_key_values=transformer_outputs.past_key_values,
|
1325 |
+
hidden_states=transformer_outputs.hidden_states,
|
1326 |
+
attentions=transformer_outputs.attentions,
|
1327 |
+
)
|
1328 |
+
|
1329 |
+
|
1330 |
+
@add_start_docstrings(
|
1331 |
+
"""
|
1332 |
+
The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
|
1333 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1334 |
+
""",
|
1335 |
+
GPTJ_START_DOCSTRING,
|
1336 |
+
)
|
1337 |
+
class GPTJForQuestionAnswering(GPTJPreTrainedModel):
|
1338 |
+
def __init__(self, config):
|
1339 |
+
super().__init__(config)
|
1340 |
+
self.num_labels = config.num_labels
|
1341 |
+
self.transformer = GPTJModel(config)
|
1342 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1343 |
+
|
1344 |
+
# Model parallel
|
1345 |
+
self.model_parallel = False
|
1346 |
+
self.device_map = None
|
1347 |
+
|
1348 |
+
# Initialize weights and apply final processing
|
1349 |
+
self.post_init()
|
1350 |
+
|
1351 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1352 |
+
@add_code_sample_docstrings(
|
1353 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1354 |
+
output_type=QuestionAnsweringModelOutput,
|
1355 |
+
config_class=_CONFIG_FOR_DOC,
|
1356 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1357 |
+
)
|
1358 |
+
def forward(
|
1359 |
+
self,
|
1360 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1361 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1362 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1363 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1364 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1365 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1366 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1367 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1368 |
+
output_attentions: Optional[bool] = None,
|
1369 |
+
output_hidden_states: Optional[bool] = None,
|
1370 |
+
return_dict: Optional[bool] = None,
|
1371 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1372 |
+
r"""
|
1373 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1374 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1375 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1376 |
+
are not taken into account for computing the loss.
|
1377 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1378 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1379 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1380 |
+
are not taken into account for computing the loss.
|
1381 |
+
"""
|
1382 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1383 |
+
|
1384 |
+
outputs = self.transformer(
|
1385 |
+
input_ids,
|
1386 |
+
attention_mask=attention_mask,
|
1387 |
+
token_type_ids=token_type_ids,
|
1388 |
+
position_ids=position_ids,
|
1389 |
+
head_mask=head_mask,
|
1390 |
+
inputs_embeds=inputs_embeds,
|
1391 |
+
output_attentions=output_attentions,
|
1392 |
+
output_hidden_states=output_hidden_states,
|
1393 |
+
return_dict=return_dict,
|
1394 |
+
)
|
1395 |
+
|
1396 |
+
sequence_output = outputs[0]
|
1397 |
+
|
1398 |
+
logits = self.qa_outputs(sequence_output)
|
1399 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1400 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1401 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1402 |
+
|
1403 |
+
total_loss = None
|
1404 |
+
if start_positions is not None and end_positions is not None:
|
1405 |
+
# If we are on multi-GPU, split add a dimension
|
1406 |
+
if len(start_positions.size()) > 1:
|
1407 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1408 |
+
if len(end_positions.size()) > 1:
|
1409 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1410 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1411 |
+
ignored_index = start_logits.size(1)
|
1412 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1413 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1414 |
+
|
1415 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1416 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1417 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1418 |
+
total_loss = (start_loss + end_loss) / 2
|
1419 |
+
|
1420 |
+
if not return_dict:
|
1421 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1422 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1423 |
+
|
1424 |
+
return QuestionAnsweringModelOutput(
|
1425 |
+
loss=total_loss,
|
1426 |
+
start_logits=start_logits,
|
1427 |
+
end_logits=end_logits,
|
1428 |
+
hidden_states=outputs.hidden_states,
|
1429 |
+
attentions=outputs.attentions,
|
1430 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/gptj/modeling_tf_gptj.py
ADDED
@@ -0,0 +1,1104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The EleutherAI and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 GPT-J model."""
|
16 |
+
|
17 |
+
from __future__ import annotations
|
18 |
+
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import tensorflow as tf
|
23 |
+
|
24 |
+
from ...activations_tf import get_tf_activation
|
25 |
+
from ...file_utils import (
|
26 |
+
add_code_sample_docstrings,
|
27 |
+
add_start_docstrings,
|
28 |
+
add_start_docstrings_to_model_forward,
|
29 |
+
)
|
30 |
+
from ...modeling_tf_outputs import (
|
31 |
+
TFBaseModelOutputWithPast,
|
32 |
+
TFCausalLMOutputWithPast,
|
33 |
+
TFQuestionAnsweringModelOutput,
|
34 |
+
TFSequenceClassifierOutputWithPast,
|
35 |
+
)
|
36 |
+
from ...modeling_tf_utils import (
|
37 |
+
TFCausalLanguageModelingLoss,
|
38 |
+
TFModelInputType,
|
39 |
+
TFPreTrainedModel,
|
40 |
+
TFQuestionAnsweringLoss,
|
41 |
+
TFSequenceClassificationLoss,
|
42 |
+
TFSharedEmbeddings,
|
43 |
+
get_initializer,
|
44 |
+
keras,
|
45 |
+
keras_serializable,
|
46 |
+
unpack_inputs,
|
47 |
+
)
|
48 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
49 |
+
from ...utils import logging
|
50 |
+
from .configuration_gptj import GPTJConfig
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B"
|
56 |
+
_CONFIG_FOR_DOC = "GPTJConfig"
|
57 |
+
|
58 |
+
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
59 |
+
"EleutherAI/gpt-j-6B",
|
60 |
+
# See all GPT-J models at https://huggingface.co/models?filter=gptj
|
61 |
+
]
|
62 |
+
|
63 |
+
|
64 |
+
def create_sinusoidal_positions(num_pos: int, dim: int) -> tf.Tensor:
|
65 |
+
inv_freq = tf.cast(1.0 / (10000 ** (tf.range(0, dim, 2) / dim)), tf.float32)
|
66 |
+
sinusoid_inp = tf.cast(tf.einsum("i , j -> i j", tf.range(num_pos, dtype=tf.float32), inv_freq), tf.float32)
|
67 |
+
sin, cos = tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)
|
68 |
+
out = tf.concat((sin, cos), axis=1)
|
69 |
+
return out
|
70 |
+
|
71 |
+
|
72 |
+
def rotate_every_two(x: tf.Tensor) -> tf.Tensor:
|
73 |
+
rotate_half_tensor = tf.stack((-x[:, :, :, 1::2], x[:, :, :, ::2]), axis=-1)
|
74 |
+
new_shape = shape_list(rotate_half_tensor)[:-2] + [tf.math.reduce_prod(shape_list(rotate_half_tensor)[-2:])]
|
75 |
+
rotate_half_tensor = tf.reshape(rotate_half_tensor, new_shape)
|
76 |
+
return rotate_half_tensor
|
77 |
+
|
78 |
+
|
79 |
+
def apply_rotary_pos_emb(tensor: tf.Tensor, sincos: tf.Tensor) -> tf.Tensor:
|
80 |
+
sin_pos, cos_pos = sincos
|
81 |
+
sin_pos = tf.repeat(sin_pos[:, :, None, :], 2, 3)
|
82 |
+
cos_pos = tf.repeat(cos_pos[:, :, None, :], 2, 3)
|
83 |
+
return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos)
|
84 |
+
|
85 |
+
|
86 |
+
class TFGPTJAttention(keras.layers.Layer):
|
87 |
+
def __init__(self, config: GPTJConfig, **kwargs):
|
88 |
+
super().__init__(**kwargs)
|
89 |
+
|
90 |
+
self.embed_dim = config.hidden_size
|
91 |
+
self.num_attention_heads = config.num_attention_heads
|
92 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
93 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
94 |
+
raise ValueError(
|
95 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
96 |
+
f" `num_attention_heads`: {self.num_attention_heads})."
|
97 |
+
)
|
98 |
+
self.scale_attn = self.head_dim**0.5
|
99 |
+
self.rotary_dim = config.rotary_dim
|
100 |
+
|
101 |
+
self.attn_dropout = keras.layers.Dropout(config.attn_pdrop)
|
102 |
+
self.resid_dropout = keras.layers.Dropout(config.resid_pdrop)
|
103 |
+
|
104 |
+
self.q_proj = keras.layers.Dense(
|
105 |
+
self.embed_dim,
|
106 |
+
use_bias=False,
|
107 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
108 |
+
name="q_proj",
|
109 |
+
)
|
110 |
+
self.k_proj = keras.layers.Dense(
|
111 |
+
self.embed_dim,
|
112 |
+
use_bias=False,
|
113 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
114 |
+
name="k_proj",
|
115 |
+
)
|
116 |
+
self.v_proj = keras.layers.Dense(
|
117 |
+
self.embed_dim,
|
118 |
+
use_bias=False,
|
119 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
120 |
+
name="v_proj",
|
121 |
+
)
|
122 |
+
self.out_proj = keras.layers.Dense(
|
123 |
+
self.embed_dim,
|
124 |
+
use_bias=False,
|
125 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
126 |
+
name="out_proj",
|
127 |
+
)
|
128 |
+
|
129 |
+
self.max_positions = config.max_position_embeddings
|
130 |
+
self.lower_triangle_mask = tf.reshape(
|
131 |
+
tf.cast(tf.experimental.numpy.tril(tf.ones((self.max_positions, self.max_positions))), tf.int8),
|
132 |
+
(1, 1, self.max_positions, self.max_positions),
|
133 |
+
)
|
134 |
+
pos_embd_dim = self.rotary_dim or self.embed_dim
|
135 |
+
self.embed_positions = create_sinusoidal_positions(self.max_positions, pos_embd_dim)
|
136 |
+
|
137 |
+
def get_causal_mask(self, key_length, query_length) -> tf.Tensor:
|
138 |
+
return tf.cast(self.lower_triangle_mask[:, :, key_length - query_length : key_length, :key_length], tf.bool)
|
139 |
+
|
140 |
+
@staticmethod
|
141 |
+
def get_masked_bias(dtype: tf.DType) -> tf.Tensor:
|
142 |
+
return tf.cast(tf.constant(-1e9), dtype)
|
143 |
+
|
144 |
+
def _split_heads(self, hidden_states: tf.Tensor, rotary: bool) -> tf.Tensor:
|
145 |
+
"""
|
146 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
147 |
+
"""
|
148 |
+
new_shape = shape_list(hidden_states)[:-1] + [self.num_attention_heads, self.head_dim]
|
149 |
+
hidden_states = tf.reshape(hidden_states, new_shape)
|
150 |
+
if rotary:
|
151 |
+
return hidden_states
|
152 |
+
if len(shape_list(hidden_states)) == 4:
|
153 |
+
return tf.transpose(hidden_states, (0, 2, 1, 3)) # (batch, head, seq_length, head_features)
|
154 |
+
if len(shape_list(hidden_states)) == 5:
|
155 |
+
return tf.transpose(hidden_states, (0, 1, 3, 2, 4)) # (batch, blocks, head, block_length, head_features)
|
156 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(shape_list(hidden_states))}")
|
157 |
+
|
158 |
+
def _merge_heads(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
159 |
+
"""
|
160 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
161 |
+
"""
|
162 |
+
if len(shape_list(hidden_states)) == 4:
|
163 |
+
hidden_states = tf.transpose(hidden_states, (0, 2, 1, 3))
|
164 |
+
elif len(shape_list(hidden_states)) == 5:
|
165 |
+
hidden_states = tf.transpose(hidden_states, (0, 1, 3, 2, 4))
|
166 |
+
else:
|
167 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(shape_list(hidden_states))}")
|
168 |
+
new_shape = shape_list(hidden_states)[:-2] + [self.num_attention_heads * self.head_dim]
|
169 |
+
return tf.reshape(hidden_states, new_shape)
|
170 |
+
|
171 |
+
def _attn(
|
172 |
+
self,
|
173 |
+
query: tf.Tensor,
|
174 |
+
key: tf.Tensor,
|
175 |
+
value: tf.Tensor,
|
176 |
+
attention_mask: tf.Tensor | None = None,
|
177 |
+
head_mask: tf.Tensor | None = None,
|
178 |
+
) -> Tuple[tf.Tensor, tf.Tensor]:
|
179 |
+
# compute causal mask from causal mask buffer
|
180 |
+
query_length, key_length = shape_list(query)[-2], shape_list(key)[-2]
|
181 |
+
causal_mask = self.get_causal_mask(key_length, query_length)
|
182 |
+
|
183 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
184 |
+
query = tf.cast(query, tf.float32)
|
185 |
+
key = tf.cast(key, tf.float32)
|
186 |
+
|
187 |
+
attn_weights = tf.matmul(query, key, transpose_b=True)
|
188 |
+
attn_weights = tf.where(causal_mask, attn_weights, self.get_masked_bias(attn_weights.dtype))
|
189 |
+
|
190 |
+
attn_weights = attn_weights / self.scale_attn
|
191 |
+
|
192 |
+
if attention_mask is not None:
|
193 |
+
# Apply the attention mask
|
194 |
+
attn_weights = attn_weights + attention_mask
|
195 |
+
|
196 |
+
attn_weights = stable_softmax(attn_weights, axis=-1)
|
197 |
+
attn_weights = tf.cast(attn_weights, value.dtype)
|
198 |
+
attn_weights = self.attn_dropout(attn_weights)
|
199 |
+
|
200 |
+
# Mask heads if we want to
|
201 |
+
if head_mask is not None:
|
202 |
+
attn_weights = attn_weights * head_mask
|
203 |
+
|
204 |
+
attn_output = tf.matmul(attn_weights, value)
|
205 |
+
|
206 |
+
return attn_output, attn_weights
|
207 |
+
|
208 |
+
def call(
|
209 |
+
self,
|
210 |
+
hidden_states: tf.Tensor,
|
211 |
+
layer_past: Optional[Tuple[tf.Tensor, tf.Tensor]] = None,
|
212 |
+
attention_mask: tf.Tensor | None = None,
|
213 |
+
position_ids: tf.Tensor | None = None,
|
214 |
+
head_mask: tf.Tensor | None = None,
|
215 |
+
use_cache: bool = False,
|
216 |
+
output_attentions: bool = False,
|
217 |
+
):
|
218 |
+
query = self.q_proj(hidden_states)
|
219 |
+
key = self.k_proj(hidden_states)
|
220 |
+
value = self.v_proj(hidden_states)
|
221 |
+
|
222 |
+
query = self._split_heads(query, True)
|
223 |
+
key = self._split_heads(key, True)
|
224 |
+
value = self._split_heads(value, False)
|
225 |
+
|
226 |
+
sincos = tf.cast(tf.gather(self.embed_positions, position_ids, axis=0), hidden_states.dtype)
|
227 |
+
sincos = tf.split(sincos, 2, axis=-1)
|
228 |
+
if self.rotary_dim is not None:
|
229 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
230 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
231 |
+
|
232 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
233 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
234 |
+
|
235 |
+
k_rot = apply_rotary_pos_emb(k_rot, sincos)
|
236 |
+
q_rot = apply_rotary_pos_emb(q_rot, sincos)
|
237 |
+
|
238 |
+
key = tf.concat((k_rot, k_pass), axis=-1)
|
239 |
+
query = tf.concat((q_rot, q_pass), axis=-1)
|
240 |
+
else:
|
241 |
+
key = apply_rotary_pos_emb(key, sincos)
|
242 |
+
query = apply_rotary_pos_emb(query, sincos)
|
243 |
+
|
244 |
+
key = tf.transpose(key, (0, 2, 1, 3))
|
245 |
+
query = tf.transpose(query, (0, 2, 1, 3))
|
246 |
+
|
247 |
+
if layer_past is not None:
|
248 |
+
past_key = layer_past[0]
|
249 |
+
past_value = layer_past[1]
|
250 |
+
key = tf.concat((past_key, key), axis=-2)
|
251 |
+
value = tf.concat((past_value, value), axis=-2)
|
252 |
+
|
253 |
+
if use_cache is True:
|
254 |
+
present = (key, value)
|
255 |
+
else:
|
256 |
+
present = None
|
257 |
+
|
258 |
+
# compute self-attention: V x Softmax(QK^T)
|
259 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
260 |
+
|
261 |
+
attn_output = self._merge_heads(attn_output)
|
262 |
+
attn_output = self.out_proj(attn_output)
|
263 |
+
attn_output = self.resid_dropout(attn_output)
|
264 |
+
|
265 |
+
outputs = (attn_output, present)
|
266 |
+
if output_attentions:
|
267 |
+
outputs += (attn_weights,)
|
268 |
+
|
269 |
+
return outputs # a, present, (attentions)
|
270 |
+
|
271 |
+
def build(self, input_shape=None):
|
272 |
+
if self.built:
|
273 |
+
return
|
274 |
+
self.built = True
|
275 |
+
if getattr(self, "q_proj", None) is not None:
|
276 |
+
with tf.name_scope(self.q_proj.name):
|
277 |
+
self.q_proj.build([None, None, self.embed_dim])
|
278 |
+
if getattr(self, "k_proj", None) is not None:
|
279 |
+
with tf.name_scope(self.k_proj.name):
|
280 |
+
self.k_proj.build([None, None, self.embed_dim])
|
281 |
+
if getattr(self, "v_proj", None) is not None:
|
282 |
+
with tf.name_scope(self.v_proj.name):
|
283 |
+
self.v_proj.build([None, None, self.embed_dim])
|
284 |
+
if getattr(self, "out_proj", None) is not None:
|
285 |
+
with tf.name_scope(self.out_proj.name):
|
286 |
+
self.out_proj.build([None, None, self.embed_dim])
|
287 |
+
|
288 |
+
|
289 |
+
class TFGPTJMLP(keras.layers.Layer):
|
290 |
+
def __init__(self, intermediate_size: int, config: GPTJConfig, **kwargs):
|
291 |
+
super().__init__(**kwargs)
|
292 |
+
embed_dim = config.n_embd
|
293 |
+
|
294 |
+
self.fc_in = keras.layers.Dense(
|
295 |
+
intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="fc_in"
|
296 |
+
)
|
297 |
+
self.fc_out = keras.layers.Dense(
|
298 |
+
embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="fc_out"
|
299 |
+
)
|
300 |
+
|
301 |
+
self.act = get_tf_activation(config.activation_function)
|
302 |
+
self.dropout = keras.layers.Dropout(config.embd_pdrop)
|
303 |
+
self.embed_dim = config.n_embd
|
304 |
+
self.intermediate_size = intermediate_size
|
305 |
+
|
306 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
307 |
+
hidden_states = self.fc_in(hidden_states)
|
308 |
+
hidden_states = self.act(hidden_states)
|
309 |
+
hidden_states = self.fc_out(hidden_states)
|
310 |
+
hidden_states = self.dropout(hidden_states)
|
311 |
+
return hidden_states
|
312 |
+
|
313 |
+
def build(self, input_shape=None):
|
314 |
+
if self.built:
|
315 |
+
return
|
316 |
+
self.built = True
|
317 |
+
if getattr(self, "fc_in", None) is not None:
|
318 |
+
with tf.name_scope(self.fc_in.name):
|
319 |
+
self.fc_in.build([None, None, self.embed_dim])
|
320 |
+
if getattr(self, "fc_out", None) is not None:
|
321 |
+
with tf.name_scope(self.fc_out.name):
|
322 |
+
self.fc_out.build([None, None, self.intermediate_size])
|
323 |
+
|
324 |
+
|
325 |
+
class TFGPTJBlock(keras.layers.Layer):
|
326 |
+
def __init__(self, config: GPTJConfig, **kwargs):
|
327 |
+
super().__init__(**kwargs)
|
328 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
329 |
+
self.ln_1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1")
|
330 |
+
self.attn = TFGPTJAttention(config, name="attn")
|
331 |
+
self.mlp = TFGPTJMLP(inner_dim, config, name="mlp")
|
332 |
+
self.config = config
|
333 |
+
|
334 |
+
def call(
|
335 |
+
self,
|
336 |
+
hidden_states: tf.Tensor,
|
337 |
+
layer_past: tf.Tensor | None = None,
|
338 |
+
attention_mask: tf.Tensor | None = None,
|
339 |
+
position_ids: tf.Tensor | None = None,
|
340 |
+
head_mask: tf.Tensor | None = None,
|
341 |
+
use_cache: bool = False,
|
342 |
+
output_attentions: bool = False,
|
343 |
+
):
|
344 |
+
residual = hidden_states
|
345 |
+
hidden_states = self.ln_1(hidden_states)
|
346 |
+
attn_outputs = self.attn(
|
347 |
+
hidden_states=hidden_states,
|
348 |
+
layer_past=layer_past,
|
349 |
+
attention_mask=attention_mask,
|
350 |
+
position_ids=position_ids,
|
351 |
+
head_mask=head_mask,
|
352 |
+
use_cache=use_cache,
|
353 |
+
output_attentions=output_attentions,
|
354 |
+
) # attn_outputs: attn_output, present, (attentions)
|
355 |
+
attn_output = attn_outputs[0]
|
356 |
+
outputs = attn_outputs[1:]
|
357 |
+
|
358 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
359 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
360 |
+
|
361 |
+
if use_cache:
|
362 |
+
outputs = (hidden_states,) + outputs
|
363 |
+
else:
|
364 |
+
outputs = (hidden_states,) + outputs[1:]
|
365 |
+
return outputs # hidden_states, present, (attentions)
|
366 |
+
|
367 |
+
def build(self, input_shape=None):
|
368 |
+
if self.built:
|
369 |
+
return
|
370 |
+
self.built = True
|
371 |
+
if getattr(self, "ln_1", None) is not None:
|
372 |
+
with tf.name_scope(self.ln_1.name):
|
373 |
+
self.ln_1.build([None, None, self.config.n_embd])
|
374 |
+
if getattr(self, "attn", None) is not None:
|
375 |
+
with tf.name_scope(self.attn.name):
|
376 |
+
self.attn.build(None)
|
377 |
+
if getattr(self, "mlp", None) is not None:
|
378 |
+
with tf.name_scope(self.mlp.name):
|
379 |
+
self.mlp.build(None)
|
380 |
+
|
381 |
+
|
382 |
+
@keras_serializable
|
383 |
+
class TFGPTJMainLayer(keras.layers.Layer):
|
384 |
+
config_class = GPTJConfig
|
385 |
+
|
386 |
+
def __init__(self, config: GPTJConfig, *inputs, **kwargs):
|
387 |
+
super().__init__(*inputs, **kwargs)
|
388 |
+
|
389 |
+
self.config = config
|
390 |
+
self.output_attentions = config.output_attentions
|
391 |
+
self.output_hidden_states = config.output_hidden_states
|
392 |
+
self.use_cache = config.use_cache
|
393 |
+
self.return_dict = config.use_return_dict
|
394 |
+
|
395 |
+
self.num_hidden_layers = config.n_layer
|
396 |
+
self.n_embd = config.n_embd
|
397 |
+
self.n_positions = config.n_positions
|
398 |
+
self.initializer_range = config.initializer_range
|
399 |
+
|
400 |
+
self.wte = TFSharedEmbeddings(
|
401 |
+
config.vocab_size, config.hidden_size, initializer_range=config.initializer_range, name="wte"
|
402 |
+
)
|
403 |
+
self.drop = keras.layers.Dropout(config.embd_pdrop)
|
404 |
+
self.h = [TFGPTJBlock(config, name=f"h_._{i}") for i in range(config.n_layer)]
|
405 |
+
self.ln_f = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_f")
|
406 |
+
self.embed_dim = config.n_embd
|
407 |
+
|
408 |
+
def get_input_embeddings(self):
|
409 |
+
return self.wte
|
410 |
+
|
411 |
+
def set_input_embeddings(self, value: tf.Tensor):
|
412 |
+
self.wte.weight = value
|
413 |
+
self.wte.vocab_size = shape_list(value)[0]
|
414 |
+
|
415 |
+
def _prune_heads(self, heads_to_prune):
|
416 |
+
"""
|
417 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
418 |
+
"""
|
419 |
+
raise NotImplementedError
|
420 |
+
|
421 |
+
@unpack_inputs
|
422 |
+
def call(
|
423 |
+
self,
|
424 |
+
input_ids=None,
|
425 |
+
past_key_values=None,
|
426 |
+
attention_mask=None,
|
427 |
+
token_type_ids=None,
|
428 |
+
position_ids=None,
|
429 |
+
head_mask=None,
|
430 |
+
inputs_embeds=None,
|
431 |
+
use_cache=None,
|
432 |
+
output_attentions=None,
|
433 |
+
output_hidden_states=None,
|
434 |
+
return_dict=None,
|
435 |
+
training=False,
|
436 |
+
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
|
437 |
+
if input_ids is not None and inputs_embeds is not None:
|
438 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
439 |
+
elif input_ids is not None:
|
440 |
+
input_shape = shape_list(input_ids)
|
441 |
+
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
|
442 |
+
elif inputs_embeds is not None:
|
443 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
444 |
+
else:
|
445 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
446 |
+
|
447 |
+
if past_key_values is None:
|
448 |
+
past_length = 0
|
449 |
+
past_key_values = [None] * len(self.h)
|
450 |
+
else:
|
451 |
+
past_length = shape_list(past_key_values[0][0])[-2]
|
452 |
+
|
453 |
+
if position_ids is None:
|
454 |
+
position_ids = tf.expand_dims(tf.range(past_length, input_shape[-1] + past_length), axis=0)
|
455 |
+
|
456 |
+
if attention_mask is not None:
|
457 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
458 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
459 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
460 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
461 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
462 |
+
attention_mask_shape = shape_list(attention_mask)
|
463 |
+
attention_mask = tf.reshape(attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]))
|
464 |
+
|
465 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
466 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
467 |
+
# positions we want to attend and -10000.0 for masked positions.
|
468 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
469 |
+
# effectively the same as removing these entirely.
|
470 |
+
one_cst = tf.constant(1.0)
|
471 |
+
attention_mask = tf.cast(attention_mask, dtype=one_cst.dtype)
|
472 |
+
attention_mask = tf.multiply(tf.subtract(one_cst, attention_mask), tf.constant(-10000.0))
|
473 |
+
|
474 |
+
# Prepare head mask if needed
|
475 |
+
# 1.0 in head_mask indicate we keep the head
|
476 |
+
# attention_probs has shape bsz x n_heads x N x N
|
477 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
478 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
479 |
+
if head_mask is not None:
|
480 |
+
raise NotImplementedError
|
481 |
+
else:
|
482 |
+
head_mask = [None] * self.num_hidden_layers
|
483 |
+
# head_mask = tf.constant([0] * self.num_hidden_layers)
|
484 |
+
|
485 |
+
position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
|
486 |
+
|
487 |
+
if inputs_embeds is None:
|
488 |
+
check_embeddings_within_bounds(input_ids, self.wte.vocab_size)
|
489 |
+
inputs_embeds = self.wte(input_ids, mode="embedding")
|
490 |
+
|
491 |
+
if token_type_ids is not None:
|
492 |
+
token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
|
493 |
+
token_type_embeds = self.wte(token_type_ids, mode="embedding")
|
494 |
+
else:
|
495 |
+
token_type_embeds = tf.constant(0.0)
|
496 |
+
|
497 |
+
token_type_embeds = tf.cast(token_type_embeds, dtype=inputs_embeds.dtype)
|
498 |
+
hidden_states = inputs_embeds + token_type_embeds
|
499 |
+
hidden_states = self.drop(hidden_states, training=training)
|
500 |
+
|
501 |
+
output_shape = input_shape + [shape_list(hidden_states)[-1]]
|
502 |
+
|
503 |
+
presents = () if use_cache else None
|
504 |
+
all_attentions = () if output_attentions else None
|
505 |
+
all_hidden_states = () if output_hidden_states else None
|
506 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
507 |
+
if output_hidden_states:
|
508 |
+
all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),)
|
509 |
+
|
510 |
+
outputs = block(
|
511 |
+
hidden_states=hidden_states,
|
512 |
+
layer_past=layer_past,
|
513 |
+
attention_mask=attention_mask,
|
514 |
+
position_ids=position_ids,
|
515 |
+
head_mask=head_mask[i],
|
516 |
+
use_cache=use_cache,
|
517 |
+
output_attentions=output_attentions,
|
518 |
+
training=training,
|
519 |
+
)
|
520 |
+
|
521 |
+
hidden_states = outputs[0]
|
522 |
+
if use_cache:
|
523 |
+
presents = presents + (outputs[1],)
|
524 |
+
|
525 |
+
if output_attentions:
|
526 |
+
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
527 |
+
|
528 |
+
hidden_states = self.ln_f(hidden_states)
|
529 |
+
|
530 |
+
hidden_states = tf.reshape(hidden_states, output_shape)
|
531 |
+
# Add last hidden state
|
532 |
+
if output_hidden_states:
|
533 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
534 |
+
|
535 |
+
if output_attentions:
|
536 |
+
# let the number of heads free (-1) so we can extract attention even after head pruning
|
537 |
+
attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:]
|
538 |
+
all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions)
|
539 |
+
|
540 |
+
if not return_dict:
|
541 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
|
542 |
+
|
543 |
+
return TFBaseModelOutputWithPast(
|
544 |
+
last_hidden_state=hidden_states,
|
545 |
+
past_key_values=presents,
|
546 |
+
hidden_states=all_hidden_states,
|
547 |
+
attentions=all_attentions,
|
548 |
+
)
|
549 |
+
|
550 |
+
def build(self, input_shape=None):
|
551 |
+
if self.built:
|
552 |
+
return
|
553 |
+
self.built = True
|
554 |
+
if getattr(self, "wte", None) is not None:
|
555 |
+
with tf.name_scope(self.wte.name):
|
556 |
+
self.wte.build(None)
|
557 |
+
if getattr(self, "ln_f", None) is not None:
|
558 |
+
with tf.name_scope(self.ln_f.name):
|
559 |
+
self.ln_f.build([None, None, self.embed_dim])
|
560 |
+
if getattr(self, "h", None) is not None:
|
561 |
+
for layer in self.h:
|
562 |
+
with tf.name_scope(layer.name):
|
563 |
+
layer.build(None)
|
564 |
+
|
565 |
+
|
566 |
+
class TFGPTJPreTrainedModel(TFPreTrainedModel):
|
567 |
+
"""
|
568 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
569 |
+
models.
|
570 |
+
"""
|
571 |
+
|
572 |
+
config_class = GPTJConfig
|
573 |
+
base_model_prefix = "transformer"
|
574 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
575 |
+
_keys_to_ignore_on_load_unexpected = [r"h.\d+.attn.bias"]
|
576 |
+
|
577 |
+
|
578 |
+
GPTJ_START_DOCSTRING = r"""
|
579 |
+
|
580 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
581 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
582 |
+
etc.)
|
583 |
+
|
584 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
585 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
586 |
+
behavior.
|
587 |
+
|
588 |
+
<Tip>
|
589 |
+
|
590 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
591 |
+
|
592 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
593 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
594 |
+
|
595 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
596 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
597 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
598 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
599 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
600 |
+
positional argument:
|
601 |
+
|
602 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
603 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
604 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
605 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
606 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
607 |
+
|
608 |
+
Note that when creating models and layers with
|
609 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
610 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
611 |
+
|
612 |
+
</Tip>
|
613 |
+
|
614 |
+
Parameters:
|
615 |
+
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
|
616 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
617 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
618 |
+
"""
|
619 |
+
|
620 |
+
GPTJ_INPUTS_DOCSTRING = r"""
|
621 |
+
Args:
|
622 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, input_ids_length)`):
|
623 |
+
`input_ids_length` = `sequence_length` if `past` is `None` else `past[0].shape[-2]` (`sequence_length` of
|
624 |
+
input past key value states). Indices of input sequence tokens in the vocabulary.
|
625 |
+
|
626 |
+
If `past` is used, only input IDs that do not have their past calculated should be passed as `input_ids`.
|
627 |
+
|
628 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
629 |
+
[`PreTrainedTokenizer.encode`] for details.
|
630 |
+
|
631 |
+
[What are input IDs?](../glossary#input-ids)
|
632 |
+
past_key_values (`List[tf.Tensor]` of length `config.n_layers`):
|
633 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see
|
634 |
+
`past` output below). Can be used to speed up sequential decoding. The token ids which have their past
|
635 |
+
given to this model should not be passed as input ids as they have already been computed.
|
636 |
+
attention_mask (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
637 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
638 |
+
|
639 |
+
- 1 for tokens that are **not masked**,
|
640 |
+
- 0 for tokens that are **masked**.
|
641 |
+
|
642 |
+
[What are attention masks?](../glossary#attention-mask)
|
643 |
+
token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
644 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
645 |
+
1]`:
|
646 |
+
|
647 |
+
- 0 corresponds to a *sentence A* token,
|
648 |
+
- 1 corresponds to a *sentence B* token.
|
649 |
+
|
650 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
651 |
+
position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
652 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
653 |
+
config.max_position_embeddings - 1]`.
|
654 |
+
|
655 |
+
[What are position IDs?](../glossary#position-ids)
|
656 |
+
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
657 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
658 |
+
|
659 |
+
- 1 indicates the head is **not masked**,
|
660 |
+
- 0 indicates the head is **masked**.
|
661 |
+
|
662 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
663 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
664 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
665 |
+
model's internal embedding lookup matrix.
|
666 |
+
output_attentions (`bool`, *optional*):
|
667 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
668 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
669 |
+
config will be used instead.
|
670 |
+
output_hidden_states (`bool`, *optional*):
|
671 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
672 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
673 |
+
used instead.
|
674 |
+
return_dict (`bool`, *optional*):
|
675 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used
|
676 |
+
in eager mode, in graph mode the value will always be set to True.
|
677 |
+
training (`bool`, *optional*, defaults to `False`):
|
678 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
679 |
+
behaviors between training and evaluation).
|
680 |
+
"""
|
681 |
+
|
682 |
+
|
683 |
+
@add_start_docstrings(
|
684 |
+
"The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
|
685 |
+
GPTJ_START_DOCSTRING,
|
686 |
+
)
|
687 |
+
class TFGPTJModel(TFGPTJPreTrainedModel):
|
688 |
+
def __init__(self, config, *inputs, **kwargs):
|
689 |
+
super().__init__(config, *inputs, **kwargs)
|
690 |
+
self.transformer = TFGPTJMainLayer(config, name="transformer")
|
691 |
+
|
692 |
+
@unpack_inputs
|
693 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING)
|
694 |
+
@add_code_sample_docstrings(
|
695 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
696 |
+
output_type=TFBaseModelOutputWithPast,
|
697 |
+
config_class=_CONFIG_FOR_DOC,
|
698 |
+
)
|
699 |
+
def call(
|
700 |
+
self,
|
701 |
+
input_ids: TFModelInputType | None = None,
|
702 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
703 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
704 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
705 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
706 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
707 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
708 |
+
use_cache: Optional[bool] = None,
|
709 |
+
output_attentions: Optional[bool] = None,
|
710 |
+
output_hidden_states: Optional[bool] = None,
|
711 |
+
return_dict: Optional[bool] = None,
|
712 |
+
training: Optional[bool] = False,
|
713 |
+
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
|
714 |
+
r"""
|
715 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
716 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
717 |
+
`past`). Set to `False` during training, `True` during generation
|
718 |
+
"""
|
719 |
+
|
720 |
+
outputs = self.transformer(
|
721 |
+
input_ids=input_ids,
|
722 |
+
past_key_values=past_key_values,
|
723 |
+
attention_mask=attention_mask,
|
724 |
+
token_type_ids=token_type_ids,
|
725 |
+
position_ids=position_ids,
|
726 |
+
head_mask=head_mask,
|
727 |
+
inputs_embeds=inputs_embeds,
|
728 |
+
use_cache=use_cache,
|
729 |
+
output_attentions=output_attentions,
|
730 |
+
output_hidden_states=output_hidden_states,
|
731 |
+
return_dict=return_dict,
|
732 |
+
training=training,
|
733 |
+
)
|
734 |
+
|
735 |
+
return outputs
|
736 |
+
|
737 |
+
def build(self, input_shape=None):
|
738 |
+
if self.built:
|
739 |
+
return
|
740 |
+
self.built = True
|
741 |
+
if getattr(self, "transformer", None) is not None:
|
742 |
+
with tf.name_scope(self.transformer.name):
|
743 |
+
self.transformer.build(None)
|
744 |
+
|
745 |
+
|
746 |
+
@add_start_docstrings(
|
747 |
+
"""
|
748 |
+
The GPT-J Model transformer with a language modeling head on top.
|
749 |
+
""",
|
750 |
+
GPTJ_START_DOCSTRING,
|
751 |
+
)
|
752 |
+
class TFGPTJForCausalLM(TFGPTJPreTrainedModel, TFCausalLanguageModelingLoss):
|
753 |
+
def __init__(self, config, *inputs, **kwargs):
|
754 |
+
super().__init__(config, *inputs, **kwargs)
|
755 |
+
self.transformer = TFGPTJMainLayer(config, name="transformer")
|
756 |
+
self.lm_head = keras.layers.Dense(
|
757 |
+
config.vocab_size, kernel_initializer=get_initializer(config.initializer_range), name="lm_head"
|
758 |
+
)
|
759 |
+
self.config = config
|
760 |
+
|
761 |
+
def get_output_embeddings(self):
|
762 |
+
return self.lm_head
|
763 |
+
|
764 |
+
def set_output_embeddings(self, new_embeddings):
|
765 |
+
self.lm_head = new_embeddings
|
766 |
+
|
767 |
+
def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs):
|
768 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
769 |
+
# only last token for inputs_ids if past is defined in kwargs
|
770 |
+
if past_key_values:
|
771 |
+
inputs = tf.expand_dims(inputs[:, -1], -1)
|
772 |
+
if token_type_ids is not None:
|
773 |
+
token_type_ids = tf.expand_dims(token_type_ids[:, -1], -1)
|
774 |
+
|
775 |
+
position_ids = kwargs.get("position_ids", None)
|
776 |
+
attention_mask = kwargs.get("attention_mask", None)
|
777 |
+
|
778 |
+
if attention_mask is not None and position_ids is None:
|
779 |
+
position_ids = tf.math.cumsum(attention_mask, axis=-1, exclusive=True)
|
780 |
+
if past_key_values:
|
781 |
+
position_ids = tf.expand_dims(position_ids[:, -1], -1)
|
782 |
+
|
783 |
+
return {
|
784 |
+
"input_ids": inputs,
|
785 |
+
"attention_mask": attention_mask,
|
786 |
+
"position_ids": position_ids,
|
787 |
+
"past_key_values": past_key_values,
|
788 |
+
"use_cache": use_cache,
|
789 |
+
"token_type_ids": token_type_ids,
|
790 |
+
}
|
791 |
+
|
792 |
+
@unpack_inputs
|
793 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
794 |
+
@add_code_sample_docstrings(
|
795 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
796 |
+
output_type=TFCausalLMOutputWithPast,
|
797 |
+
config_class=_CONFIG_FOR_DOC,
|
798 |
+
)
|
799 |
+
def call(
|
800 |
+
self,
|
801 |
+
input_ids: TFModelInputType | None = None,
|
802 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
803 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
804 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
805 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
806 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
807 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
808 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
809 |
+
use_cache: Optional[bool] = None,
|
810 |
+
output_attentions: Optional[bool] = None,
|
811 |
+
output_hidden_states: Optional[bool] = None,
|
812 |
+
return_dict: Optional[bool] = None,
|
813 |
+
training: Optional[bool] = False,
|
814 |
+
) -> Union[TFCausalLMOutputWithPast, Tuple[tf.Tensor]]:
|
815 |
+
r"""
|
816 |
+
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
817 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
818 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
819 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
820 |
+
"""
|
821 |
+
|
822 |
+
transformer_outputs = self.transformer(
|
823 |
+
input_ids=input_ids,
|
824 |
+
past_key_values=past_key_values,
|
825 |
+
attention_mask=attention_mask,
|
826 |
+
token_type_ids=token_type_ids,
|
827 |
+
position_ids=position_ids,
|
828 |
+
head_mask=head_mask,
|
829 |
+
inputs_embeds=inputs_embeds,
|
830 |
+
use_cache=use_cache,
|
831 |
+
output_attentions=output_attentions,
|
832 |
+
output_hidden_states=output_hidden_states,
|
833 |
+
return_dict=return_dict,
|
834 |
+
training=training,
|
835 |
+
)
|
836 |
+
hidden_states = transformer_outputs[0]
|
837 |
+
lm_logits = self.lm_head(hidden_states)
|
838 |
+
|
839 |
+
loss = None
|
840 |
+
if labels is not None:
|
841 |
+
# shift labels to the left and cut last logit token
|
842 |
+
shifted_logits = lm_logits[:, :-1]
|
843 |
+
labels = labels[:, 1:]
|
844 |
+
loss = self.hf_compute_loss(labels, shifted_logits)
|
845 |
+
|
846 |
+
if not return_dict:
|
847 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
848 |
+
return ((loss,) + output) if loss is not None else output
|
849 |
+
|
850 |
+
return TFCausalLMOutputWithPast(
|
851 |
+
loss=loss,
|
852 |
+
logits=lm_logits,
|
853 |
+
past_key_values=transformer_outputs.past_key_values,
|
854 |
+
hidden_states=transformer_outputs.hidden_states,
|
855 |
+
attentions=transformer_outputs.attentions,
|
856 |
+
)
|
857 |
+
|
858 |
+
def build(self, input_shape=None):
|
859 |
+
if self.built:
|
860 |
+
return
|
861 |
+
self.built = True
|
862 |
+
if getattr(self, "transformer", None) is not None:
|
863 |
+
with tf.name_scope(self.transformer.name):
|
864 |
+
self.transformer.build(None)
|
865 |
+
if getattr(self, "lm_head", None) is not None:
|
866 |
+
with tf.name_scope(self.lm_head.name):
|
867 |
+
self.lm_head.build([None, None, self.config.n_embd])
|
868 |
+
|
869 |
+
|
870 |
+
@add_start_docstrings(
|
871 |
+
"""
|
872 |
+
The GPT-J Model transformer with a sequence classification head on top (linear layer).
|
873 |
+
|
874 |
+
[`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
875 |
+
(e.g. GPT, GPT-2, GPT-Neo) do.
|
876 |
+
|
877 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
878 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
879 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
880 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
881 |
+
each row of the batch).
|
882 |
+
""",
|
883 |
+
GPTJ_START_DOCSTRING,
|
884 |
+
)
|
885 |
+
class TFGPTJForSequenceClassification(TFGPTJPreTrainedModel, TFSequenceClassificationLoss):
|
886 |
+
_keys_to_ignore_on_load_missing = [r"h.\d+.attn.masked_bias", r"h.\d+.attn.bias", r"lm_head.weight"]
|
887 |
+
|
888 |
+
def __init__(self, config, *inputs, **kwargs):
|
889 |
+
super().__init__(config, *inputs, **kwargs)
|
890 |
+
self.num_labels = config.num_labels
|
891 |
+
self.transformer = TFGPTJMainLayer(config, name="transformer")
|
892 |
+
self.score = keras.layers.Dense(
|
893 |
+
self.num_labels,
|
894 |
+
use_bias=False,
|
895 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
896 |
+
name="score",
|
897 |
+
)
|
898 |
+
self.config = config
|
899 |
+
|
900 |
+
@unpack_inputs
|
901 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
902 |
+
@add_code_sample_docstrings(
|
903 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
904 |
+
output_type=TFSequenceClassifierOutputWithPast,
|
905 |
+
config_class=_CONFIG_FOR_DOC,
|
906 |
+
)
|
907 |
+
def call(
|
908 |
+
self,
|
909 |
+
input_ids: TFModelInputType | None = None,
|
910 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
911 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
912 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
913 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
914 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
915 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
916 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
917 |
+
use_cache: Optional[bool] = None,
|
918 |
+
output_attentions: Optional[bool] = None,
|
919 |
+
output_hidden_states: Optional[bool] = None,
|
920 |
+
return_dict: Optional[bool] = None,
|
921 |
+
training: Optional[bool] = False,
|
922 |
+
) -> Union[TFSequenceClassifierOutputWithPast, Tuple[tf.Tensor]]:
|
923 |
+
r"""
|
924 |
+
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
|
925 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
926 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
927 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
928 |
+
"""
|
929 |
+
|
930 |
+
transformer_outputs = self.transformer(
|
931 |
+
input_ids=input_ids,
|
932 |
+
past_key_values=past_key_values,
|
933 |
+
attention_mask=attention_mask,
|
934 |
+
token_type_ids=token_type_ids,
|
935 |
+
position_ids=position_ids,
|
936 |
+
head_mask=head_mask,
|
937 |
+
inputs_embeds=inputs_embeds,
|
938 |
+
use_cache=use_cache,
|
939 |
+
output_attentions=output_attentions,
|
940 |
+
output_hidden_states=output_hidden_states,
|
941 |
+
return_dict=return_dict,
|
942 |
+
training=training,
|
943 |
+
)
|
944 |
+
hidden_states = transformer_outputs[0]
|
945 |
+
logits = self.score(hidden_states)
|
946 |
+
logits_shape = shape_list(logits)
|
947 |
+
in_logits = None
|
948 |
+
if self.config.pad_token_id is None:
|
949 |
+
sequence_lengths = -1
|
950 |
+
else:
|
951 |
+
if input_ids is not None:
|
952 |
+
sequence_lengths = (
|
953 |
+
tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1)
|
954 |
+
- 1
|
955 |
+
)
|
956 |
+
sequence_lengths = tf.where(
|
957 |
+
sequence_lengths >= 0,
|
958 |
+
sequence_lengths,
|
959 |
+
tf.cast(shape_list(input_ids[-1]), sequence_lengths.dtype) - 1,
|
960 |
+
)
|
961 |
+
in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1)
|
962 |
+
else:
|
963 |
+
sequence_lengths = -1
|
964 |
+
logger.warning(
|
965 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
966 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
967 |
+
)
|
968 |
+
loss = None
|
969 |
+
|
970 |
+
if labels is not None:
|
971 |
+
if self.config.pad_token_id is None and logits_shape[0] != 1:
|
972 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
973 |
+
|
974 |
+
if not tf.is_tensor(sequence_lengths):
|
975 |
+
in_logits = logits[0 : logits_shape[0], sequence_lengths]
|
976 |
+
|
977 |
+
loss = self.hf_compute_loss(tf.reshape(labels, [-1]), tf.reshape(in_logits, [-1, self.num_labels]))
|
978 |
+
pooled_logits = in_logits if in_logits is not None else logits
|
979 |
+
|
980 |
+
if not return_dict:
|
981 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
982 |
+
return ((loss,) + output) if loss is not None else output
|
983 |
+
|
984 |
+
return TFSequenceClassifierOutputWithPast(
|
985 |
+
loss=loss,
|
986 |
+
logits=pooled_logits,
|
987 |
+
past_key_values=transformer_outputs.past_key_values,
|
988 |
+
hidden_states=transformer_outputs.hidden_states,
|
989 |
+
attentions=transformer_outputs.attentions,
|
990 |
+
)
|
991 |
+
|
992 |
+
def build(self, input_shape=None):
|
993 |
+
if self.built:
|
994 |
+
return
|
995 |
+
self.built = True
|
996 |
+
if getattr(self, "transformer", None) is not None:
|
997 |
+
with tf.name_scope(self.transformer.name):
|
998 |
+
self.transformer.build(None)
|
999 |
+
if getattr(self, "score", None) is not None:
|
1000 |
+
with tf.name_scope(self.score.name):
|
1001 |
+
self.score.build([None, None, self.config.n_embd])
|
1002 |
+
|
1003 |
+
|
1004 |
+
@add_start_docstrings(
|
1005 |
+
"""
|
1006 |
+
The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
|
1007 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1008 |
+
""",
|
1009 |
+
GPTJ_START_DOCSTRING,
|
1010 |
+
)
|
1011 |
+
class TFGPTJForQuestionAnswering(TFGPTJPreTrainedModel, TFQuestionAnsweringLoss):
|
1012 |
+
_keys_to_ignore_on_load_missing = [r"h.\d+.attn.masked_bias", r"h.\d+.attn.bias", r"lm_head.weight"]
|
1013 |
+
|
1014 |
+
def __init__(self, config, *inputs, **kwargs):
|
1015 |
+
super().__init__(config, *inputs, **kwargs)
|
1016 |
+
self.num_labels = config.num_labels
|
1017 |
+
self.transformer = TFGPTJMainLayer(config, name="transformer")
|
1018 |
+
self.qa_outputs = keras.layers.Dense(
|
1019 |
+
self.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
|
1020 |
+
)
|
1021 |
+
self.config = config
|
1022 |
+
|
1023 |
+
@unpack_inputs
|
1024 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1025 |
+
@add_code_sample_docstrings(
|
1026 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1027 |
+
output_type=TFQuestionAnsweringModelOutput,
|
1028 |
+
config_class=_CONFIG_FOR_DOC,
|
1029 |
+
)
|
1030 |
+
def call(
|
1031 |
+
self,
|
1032 |
+
input_ids: TFModelInputType | None = None,
|
1033 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1034 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1035 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1036 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1037 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1038 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1039 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
1040 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
1041 |
+
output_attentions: Optional[bool] = None,
|
1042 |
+
output_hidden_states: Optional[bool] = None,
|
1043 |
+
return_dict: Optional[bool] = None,
|
1044 |
+
training: Optional[bool] = False,
|
1045 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
1046 |
+
r"""
|
1047 |
+
start_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1048 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1049 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1050 |
+
are not taken into account for computing the loss.
|
1051 |
+
end_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1052 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1053 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1054 |
+
are not taken into account for computing the loss.
|
1055 |
+
"""
|
1056 |
+
|
1057 |
+
transformer_outputs = self.transformer(
|
1058 |
+
input_ids=input_ids,
|
1059 |
+
past_key_values=past_key_values,
|
1060 |
+
attention_mask=attention_mask,
|
1061 |
+
token_type_ids=token_type_ids,
|
1062 |
+
position_ids=position_ids,
|
1063 |
+
head_mask=head_mask,
|
1064 |
+
inputs_embeds=inputs_embeds,
|
1065 |
+
output_attentions=output_attentions,
|
1066 |
+
output_hidden_states=output_hidden_states,
|
1067 |
+
return_dict=return_dict,
|
1068 |
+
training=training,
|
1069 |
+
)
|
1070 |
+
sequence_output = transformer_outputs[0]
|
1071 |
+
|
1072 |
+
logits = self.qa_outputs(sequence_output)
|
1073 |
+
start_logits, end_logits = tf.split(logits, 2, axis=-1)
|
1074 |
+
start_logits = tf.squeeze(start_logits, axis=-1)
|
1075 |
+
end_logits = tf.squeeze(end_logits, axis=-1)
|
1076 |
+
|
1077 |
+
loss = None
|
1078 |
+
if start_positions is not None and end_positions is not None:
|
1079 |
+
labels = {"start_position": start_positions}
|
1080 |
+
labels["end_position"] = end_positions
|
1081 |
+
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
|
1082 |
+
|
1083 |
+
if not return_dict:
|
1084 |
+
output = (start_logits, end_logits) + transformer_outputs[2:]
|
1085 |
+
return ((loss,) + output) if loss is not None else output
|
1086 |
+
|
1087 |
+
return TFQuestionAnsweringModelOutput(
|
1088 |
+
loss=loss,
|
1089 |
+
start_logits=start_logits,
|
1090 |
+
end_logits=end_logits,
|
1091 |
+
hidden_states=transformer_outputs.hidden_states,
|
1092 |
+
attentions=transformer_outputs.attentions,
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
def build(self, input_shape=None):
|
1096 |
+
if self.built:
|
1097 |
+
return
|
1098 |
+
self.built = True
|
1099 |
+
if getattr(self, "transformer", None) is not None:
|
1100 |
+
with tf.name_scope(self.transformer.name):
|
1101 |
+
self.transformer.build(None)
|
1102 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1103 |
+
with tf.name_scope(self.qa_outputs.name):
|
1104 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__init__.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_groupvit": [
|
21 |
+
"GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"GroupViTConfig",
|
23 |
+
"GroupViTOnnxConfig",
|
24 |
+
"GroupViTTextConfig",
|
25 |
+
"GroupViTVisionConfig",
|
26 |
+
],
|
27 |
+
}
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_torch_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["modeling_groupvit"] = [
|
36 |
+
"GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
37 |
+
"GroupViTModel",
|
38 |
+
"GroupViTPreTrainedModel",
|
39 |
+
"GroupViTTextModel",
|
40 |
+
"GroupViTVisionModel",
|
41 |
+
]
|
42 |
+
|
43 |
+
try:
|
44 |
+
if not is_tf_available():
|
45 |
+
raise OptionalDependencyNotAvailable()
|
46 |
+
except OptionalDependencyNotAvailable:
|
47 |
+
pass
|
48 |
+
else:
|
49 |
+
_import_structure["modeling_tf_groupvit"] = [
|
50 |
+
"TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
51 |
+
"TFGroupViTModel",
|
52 |
+
"TFGroupViTPreTrainedModel",
|
53 |
+
"TFGroupViTTextModel",
|
54 |
+
"TFGroupViTVisionModel",
|
55 |
+
]
|
56 |
+
|
57 |
+
if TYPE_CHECKING:
|
58 |
+
from .configuration_groupvit import (
|
59 |
+
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
60 |
+
GroupViTConfig,
|
61 |
+
GroupViTOnnxConfig,
|
62 |
+
GroupViTTextConfig,
|
63 |
+
GroupViTVisionConfig,
|
64 |
+
)
|
65 |
+
|
66 |
+
try:
|
67 |
+
if not is_torch_available():
|
68 |
+
raise OptionalDependencyNotAvailable()
|
69 |
+
except OptionalDependencyNotAvailable:
|
70 |
+
pass
|
71 |
+
else:
|
72 |
+
from .modeling_groupvit import (
|
73 |
+
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
74 |
+
GroupViTModel,
|
75 |
+
GroupViTPreTrainedModel,
|
76 |
+
GroupViTTextModel,
|
77 |
+
GroupViTVisionModel,
|
78 |
+
)
|
79 |
+
|
80 |
+
try:
|
81 |
+
if not is_tf_available():
|
82 |
+
raise OptionalDependencyNotAvailable()
|
83 |
+
except OptionalDependencyNotAvailable:
|
84 |
+
pass
|
85 |
+
else:
|
86 |
+
from .modeling_tf_groupvit import (
|
87 |
+
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
88 |
+
TFGroupViTModel,
|
89 |
+
TFGroupViTPreTrainedModel,
|
90 |
+
TFGroupViTTextModel,
|
91 |
+
TFGroupViTVisionModel,
|
92 |
+
)
|
93 |
+
|
94 |
+
else:
|
95 |
+
import sys
|
96 |
+
|
97 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/configuration_groupvit.py
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GroupViT model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from collections import OrderedDict
|
19 |
+
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
20 |
+
|
21 |
+
from ...configuration_utils import PretrainedConfig
|
22 |
+
from ...onnx import OnnxConfig
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from ...processing_utils import ProcessorMixin
|
28 |
+
from ...utils import TensorType
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
34 |
+
"nvidia/groupvit-gcc-yfcc": "https://huggingface.co/nvidia/groupvit-gcc-yfcc/resolve/main/config.json",
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
class GroupViTTextConfig(PretrainedConfig):
|
39 |
+
r"""
|
40 |
+
This is the configuration class to store the configuration of a [`GroupViTTextModel`]. It is used to instantiate an
|
41 |
+
GroupViT model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
42 |
+
with the defaults will yield a similar configuration to that of the GroupViT
|
43 |
+
[nvidia/groupvit-gcc-yfcc](https://huggingface.co/nvidia/groupvit-gcc-yfcc) architecture.
|
44 |
+
|
45 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
46 |
+
documentation from [`PretrainedConfig`] for more information.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
vocab_size (`int`, *optional*, defaults to 49408):
|
50 |
+
Vocabulary size of the GroupViT text model. Defines the number of different tokens that can be represented
|
51 |
+
by the `inputs_ids` passed when calling [`GroupViTModel`].
|
52 |
+
hidden_size (`int`, *optional*, defaults to 256):
|
53 |
+
Dimensionality of the encoder layers and the pooler layer.
|
54 |
+
intermediate_size (`int`, *optional*, defaults to 1024):
|
55 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
56 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
57 |
+
Number of hidden layers in the Transformer encoder.
|
58 |
+
num_attention_heads (`int`, *optional*, defaults to 4):
|
59 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 77):
|
61 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
62 |
+
just in case (e.g., 512 or 1024 or 2048).
|
63 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
64 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
65 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
66 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
67 |
+
The epsilon used by the layer normalization layers.
|
68 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
69 |
+
The dropout ratio for the attention probabilities.
|
70 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
71 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
72 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
73 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
74 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
75 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
76 |
+
testing).
|
77 |
+
|
78 |
+
Example:
|
79 |
+
|
80 |
+
```python
|
81 |
+
>>> from transformers import GroupViTTextConfig, GroupViTTextModel
|
82 |
+
|
83 |
+
>>> # Initializing a GroupViTTextModel with nvidia/groupvit-gcc-yfcc style configuration
|
84 |
+
>>> configuration = GroupViTTextConfig()
|
85 |
+
|
86 |
+
>>> model = GroupViTTextModel(configuration)
|
87 |
+
|
88 |
+
>>> # Accessing the model configuration
|
89 |
+
>>> configuration = model.config
|
90 |
+
```"""
|
91 |
+
|
92 |
+
model_type = "groupvit_text_model"
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
vocab_size=49408,
|
97 |
+
hidden_size=256,
|
98 |
+
intermediate_size=1024,
|
99 |
+
num_hidden_layers=12,
|
100 |
+
num_attention_heads=4,
|
101 |
+
max_position_embeddings=77,
|
102 |
+
hidden_act="quick_gelu",
|
103 |
+
layer_norm_eps=1e-5,
|
104 |
+
dropout=0.0,
|
105 |
+
attention_dropout=0.0,
|
106 |
+
initializer_range=0.02,
|
107 |
+
initializer_factor=1.0,
|
108 |
+
pad_token_id=1,
|
109 |
+
bos_token_id=49406,
|
110 |
+
eos_token_id=49407,
|
111 |
+
**kwargs,
|
112 |
+
):
|
113 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
114 |
+
|
115 |
+
self.vocab_size = vocab_size
|
116 |
+
self.hidden_size = hidden_size
|
117 |
+
self.intermediate_size = intermediate_size
|
118 |
+
self.dropout = dropout
|
119 |
+
self.num_hidden_layers = num_hidden_layers
|
120 |
+
self.num_attention_heads = num_attention_heads
|
121 |
+
self.max_position_embeddings = max_position_embeddings
|
122 |
+
self.layer_norm_eps = layer_norm_eps
|
123 |
+
self.hidden_act = hidden_act
|
124 |
+
self.initializer_range = initializer_range
|
125 |
+
self.initializer_factor = initializer_factor
|
126 |
+
self.attention_dropout = attention_dropout
|
127 |
+
|
128 |
+
@classmethod
|
129 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
130 |
+
cls._set_token_in_kwargs(kwargs)
|
131 |
+
|
132 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
133 |
+
|
134 |
+
# get the text config dict if we are loading from GroupViTConfig
|
135 |
+
if config_dict.get("model_type") == "groupvit":
|
136 |
+
config_dict = config_dict["text_config"]
|
137 |
+
|
138 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
139 |
+
logger.warning(
|
140 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
141 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
142 |
+
)
|
143 |
+
|
144 |
+
return cls.from_dict(config_dict, **kwargs)
|
145 |
+
|
146 |
+
|
147 |
+
class GroupViTVisionConfig(PretrainedConfig):
|
148 |
+
r"""
|
149 |
+
This is the configuration class to store the configuration of a [`GroupViTVisionModel`]. It is used to instantiate
|
150 |
+
an GroupViT model according to the specified arguments, defining the model architecture. Instantiating a
|
151 |
+
configuration with the defaults will yield a similar configuration to that of the GroupViT
|
152 |
+
[nvidia/groupvit-gcc-yfcc](https://huggingface.co/nvidia/groupvit-gcc-yfcc) architecture.
|
153 |
+
|
154 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
155 |
+
documentation from [`PretrainedConfig`] for more information.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
hidden_size (`int`, *optional*, defaults to 384):
|
159 |
+
Dimensionality of the encoder layers and the pooler layer.
|
160 |
+
intermediate_size (`int`, *optional*, defaults to 1536):
|
161 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
162 |
+
depths (`List[int]`, *optional*, defaults to [6, 3, 3]):
|
163 |
+
The number of layers in each encoder block.
|
164 |
+
num_group_tokens (`List[int]`, *optional*, defaults to [64, 8, 0]):
|
165 |
+
The number of group tokens for each stage.
|
166 |
+
num_output_groups (`List[int]`, *optional*, defaults to [64, 8, 8]):
|
167 |
+
The number of output groups for each stage, 0 means no group.
|
168 |
+
num_attention_heads (`int`, *optional*, defaults to 6):
|
169 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
170 |
+
image_size (`int`, *optional*, defaults to 224):
|
171 |
+
The size (resolution) of each image.
|
172 |
+
patch_size (`int`, *optional*, defaults to 16):
|
173 |
+
The size (resolution) of each patch.
|
174 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
175 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
176 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
177 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
178 |
+
The epsilon used by the layer normalization layers.
|
179 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
180 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
181 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
182 |
+
The dropout ratio for the attention probabilities.
|
183 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
184 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
185 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
186 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
187 |
+
testing).
|
188 |
+
|
189 |
+
Example:
|
190 |
+
|
191 |
+
```python
|
192 |
+
>>> from transformers import GroupViTVisionConfig, GroupViTVisionModel
|
193 |
+
|
194 |
+
>>> # Initializing a GroupViTVisionModel with nvidia/groupvit-gcc-yfcc style configuration
|
195 |
+
>>> configuration = GroupViTVisionConfig()
|
196 |
+
|
197 |
+
>>> model = GroupViTVisionModel(configuration)
|
198 |
+
|
199 |
+
>>> # Accessing the model configuration
|
200 |
+
>>> configuration = model.config
|
201 |
+
```"""
|
202 |
+
|
203 |
+
model_type = "groupvit_vision_model"
|
204 |
+
|
205 |
+
def __init__(
|
206 |
+
self,
|
207 |
+
hidden_size=384,
|
208 |
+
intermediate_size=1536,
|
209 |
+
depths=[6, 3, 3],
|
210 |
+
num_hidden_layers=12,
|
211 |
+
num_group_tokens=[64, 8, 0],
|
212 |
+
num_output_groups=[64, 8, 8],
|
213 |
+
num_attention_heads=6,
|
214 |
+
image_size=224,
|
215 |
+
patch_size=16,
|
216 |
+
num_channels=3,
|
217 |
+
hidden_act="gelu",
|
218 |
+
layer_norm_eps=1e-5,
|
219 |
+
dropout=0.0,
|
220 |
+
attention_dropout=0.0,
|
221 |
+
initializer_range=0.02,
|
222 |
+
initializer_factor=1.0,
|
223 |
+
assign_eps=1.0,
|
224 |
+
assign_mlp_ratio=[0.5, 4],
|
225 |
+
**kwargs,
|
226 |
+
):
|
227 |
+
super().__init__(**kwargs)
|
228 |
+
|
229 |
+
self.hidden_size = hidden_size
|
230 |
+
self.intermediate_size = intermediate_size
|
231 |
+
self.depths = depths
|
232 |
+
if num_hidden_layers != sum(depths):
|
233 |
+
logger.warning(
|
234 |
+
f"Manually setting num_hidden_layers to {num_hidden_layers}, but we expect num_hidden_layers ="
|
235 |
+
f" sum(depth) = {sum(depths)}"
|
236 |
+
)
|
237 |
+
self.num_hidden_layers = num_hidden_layers
|
238 |
+
self.num_group_tokens = num_group_tokens
|
239 |
+
self.num_output_groups = num_output_groups
|
240 |
+
self.num_attention_heads = num_attention_heads
|
241 |
+
self.image_size = image_size
|
242 |
+
self.patch_size = patch_size
|
243 |
+
self.num_channels = num_channels
|
244 |
+
self.hidden_act = hidden_act
|
245 |
+
self.layer_norm_eps = layer_norm_eps
|
246 |
+
self.dropout = dropout
|
247 |
+
self.attention_dropout = attention_dropout
|
248 |
+
self.initializer_range = initializer_range
|
249 |
+
self.initializer_factor = initializer_factor
|
250 |
+
self.assign_eps = assign_eps
|
251 |
+
self.assign_mlp_ratio = assign_mlp_ratio
|
252 |
+
|
253 |
+
@classmethod
|
254 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
255 |
+
cls._set_token_in_kwargs(kwargs)
|
256 |
+
|
257 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
258 |
+
|
259 |
+
# get the vision config dict if we are loading from GroupViTConfig
|
260 |
+
if config_dict.get("model_type") == "groupvit":
|
261 |
+
config_dict = config_dict["vision_config"]
|
262 |
+
|
263 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
264 |
+
logger.warning(
|
265 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
266 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
267 |
+
)
|
268 |
+
|
269 |
+
return cls.from_dict(config_dict, **kwargs)
|
270 |
+
|
271 |
+
|
272 |
+
class GroupViTConfig(PretrainedConfig):
|
273 |
+
r"""
|
274 |
+
[`GroupViTConfig`] is the configuration class to store the configuration of a [`GroupViTModel`]. It is used to
|
275 |
+
instantiate a GroupViT model according to the specified arguments, defining the text model and vision model
|
276 |
+
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the GroupViT
|
277 |
+
[nvidia/groupvit-gcc-yfcc](https://huggingface.co/nvidia/groupvit-gcc-yfcc) architecture.
|
278 |
+
|
279 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
280 |
+
documentation from [`PretrainedConfig`] for more information.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
text_config (`dict`, *optional*):
|
284 |
+
Dictionary of configuration options used to initialize [`GroupViTTextConfig`].
|
285 |
+
vision_config (`dict`, *optional*):
|
286 |
+
Dictionary of configuration options used to initialize [`GroupViTVisionConfig`].
|
287 |
+
projection_dim (`int`, *optional*, defaults to 256):
|
288 |
+
Dimentionality of text and vision projection layers.
|
289 |
+
projection_intermediate_dim (`int`, *optional*, defaults to 4096):
|
290 |
+
Dimentionality of intermediate layer of text and vision projection layers.
|
291 |
+
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
292 |
+
The inital value of the *logit_scale* parameter. Default is used as per the original GroupViT
|
293 |
+
implementation.
|
294 |
+
kwargs (*optional*):
|
295 |
+
Dictionary of keyword arguments.
|
296 |
+
"""
|
297 |
+
|
298 |
+
model_type = "groupvit"
|
299 |
+
|
300 |
+
def __init__(
|
301 |
+
self,
|
302 |
+
text_config=None,
|
303 |
+
vision_config=None,
|
304 |
+
projection_dim=256,
|
305 |
+
projection_intermediate_dim=4096,
|
306 |
+
logit_scale_init_value=2.6592,
|
307 |
+
**kwargs,
|
308 |
+
):
|
309 |
+
# If `_config_dict` exist, we use them for the backward compatibility.
|
310 |
+
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
|
311 |
+
# of confusion!).
|
312 |
+
text_config_dict = kwargs.pop("text_config_dict", None)
|
313 |
+
vision_config_dict = kwargs.pop("vision_config_dict", None)
|
314 |
+
|
315 |
+
super().__init__(**kwargs)
|
316 |
+
|
317 |
+
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
|
318 |
+
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
|
319 |
+
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
|
320 |
+
if text_config_dict is not None:
|
321 |
+
if text_config is None:
|
322 |
+
text_config = {}
|
323 |
+
|
324 |
+
# This is the complete result when using `text_config_dict`.
|
325 |
+
_text_config_dict = GroupViTTextConfig(**text_config_dict).to_dict()
|
326 |
+
|
327 |
+
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
|
328 |
+
for key, value in _text_config_dict.items():
|
329 |
+
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
|
330 |
+
# If specified in `text_config_dict`
|
331 |
+
if key in text_config_dict:
|
332 |
+
message = (
|
333 |
+
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
|
334 |
+
f'The value `text_config_dict["{key}"]` will be used instead.'
|
335 |
+
)
|
336 |
+
# If inferred from default argument values (just to be super careful)
|
337 |
+
else:
|
338 |
+
message = (
|
339 |
+
f"`text_config_dict` is provided which will be used to initialize `GroupViTTextConfig`. "
|
340 |
+
f'The value `text_config["{key}"]` will be overriden.'
|
341 |
+
)
|
342 |
+
logger.info(message)
|
343 |
+
|
344 |
+
# Update all values in `text_config` with the ones in `_text_config_dict`.
|
345 |
+
text_config.update(_text_config_dict)
|
346 |
+
|
347 |
+
if vision_config_dict is not None:
|
348 |
+
if vision_config is None:
|
349 |
+
vision_config = {}
|
350 |
+
|
351 |
+
# This is the complete result when using `vision_config_dict`.
|
352 |
+
_vision_config_dict = GroupViTVisionConfig(**vision_config_dict).to_dict()
|
353 |
+
# convert keys to string instead of integer
|
354 |
+
if "id2label" in _vision_config_dict:
|
355 |
+
_vision_config_dict["id2label"] = {
|
356 |
+
str(key): value for key, value in _vision_config_dict["id2label"].items()
|
357 |
+
}
|
358 |
+
|
359 |
+
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
|
360 |
+
for key, value in _vision_config_dict.items():
|
361 |
+
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
|
362 |
+
# If specified in `vision_config_dict`
|
363 |
+
if key in vision_config_dict:
|
364 |
+
message = (
|
365 |
+
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
|
366 |
+
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
|
367 |
+
)
|
368 |
+
# If inferred from default argument values (just to be super careful)
|
369 |
+
else:
|
370 |
+
message = (
|
371 |
+
f"`vision_config_dict` is provided which will be used to initialize `GroupViTVisionConfig`."
|
372 |
+
f' The value `vision_config["{key}"]` will be overriden.'
|
373 |
+
)
|
374 |
+
logger.info(message)
|
375 |
+
|
376 |
+
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
|
377 |
+
vision_config.update(_vision_config_dict)
|
378 |
+
|
379 |
+
if text_config is None:
|
380 |
+
text_config = {}
|
381 |
+
logger.info("`text_config` is `None`. Initializing the `GroupViTTextConfig` with default values.")
|
382 |
+
|
383 |
+
if vision_config is None:
|
384 |
+
vision_config = {}
|
385 |
+
logger.info("`vision_config` is `None`. initializing the `GroupViTVisionConfig` with default values.")
|
386 |
+
|
387 |
+
self.text_config = GroupViTTextConfig(**text_config)
|
388 |
+
self.vision_config = GroupViTVisionConfig(**vision_config)
|
389 |
+
|
390 |
+
self.projection_dim = projection_dim
|
391 |
+
self.projection_intermediate_dim = projection_intermediate_dim
|
392 |
+
self.logit_scale_init_value = logit_scale_init_value
|
393 |
+
self.initializer_range = 0.02
|
394 |
+
self.initializer_factor = 1.0
|
395 |
+
self.output_segmentation = False
|
396 |
+
|
397 |
+
@classmethod
|
398 |
+
def from_text_vision_configs(cls, text_config: GroupViTTextConfig, vision_config: GroupViTVisionConfig, **kwargs):
|
399 |
+
r"""
|
400 |
+
Instantiate a [`GroupViTConfig`] (or a derived class) from groupvit text model configuration and groupvit
|
401 |
+
vision model configuration.
|
402 |
+
|
403 |
+
Returns:
|
404 |
+
[`GroupViTConfig`]: An instance of a configuration object
|
405 |
+
"""
|
406 |
+
|
407 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
408 |
+
|
409 |
+
|
410 |
+
class GroupViTOnnxConfig(OnnxConfig):
|
411 |
+
@property
|
412 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
413 |
+
return OrderedDict(
|
414 |
+
[
|
415 |
+
("input_ids", {0: "batch", 1: "sequence"}),
|
416 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
417 |
+
("attention_mask", {0: "batch", 1: "sequence"}),
|
418 |
+
]
|
419 |
+
)
|
420 |
+
|
421 |
+
@property
|
422 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
423 |
+
return OrderedDict(
|
424 |
+
[
|
425 |
+
("logits_per_image", {0: "batch"}),
|
426 |
+
("logits_per_text", {0: "batch"}),
|
427 |
+
("text_embeds", {0: "batch"}),
|
428 |
+
("image_embeds", {0: "batch"}),
|
429 |
+
]
|
430 |
+
)
|
431 |
+
|
432 |
+
@property
|
433 |
+
def atol_for_validation(self) -> float:
|
434 |
+
return 1e-4
|
435 |
+
|
436 |
+
def generate_dummy_inputs(
|
437 |
+
self,
|
438 |
+
processor: "ProcessorMixin",
|
439 |
+
batch_size: int = -1,
|
440 |
+
seq_length: int = -1,
|
441 |
+
framework: Optional["TensorType"] = None,
|
442 |
+
) -> Mapping[str, Any]:
|
443 |
+
text_input_dict = super().generate_dummy_inputs(
|
444 |
+
processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
|
445 |
+
)
|
446 |
+
image_input_dict = super().generate_dummy_inputs(
|
447 |
+
processor.image_processor, batch_size=batch_size, framework=framework
|
448 |
+
)
|
449 |
+
return {**text_input_dict, **image_input_dict}
|
450 |
+
|
451 |
+
@property
|
452 |
+
def default_onnx_opset(self) -> int:
|
453 |
+
return 14
|
env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/convert_groupvit_nvlab_to_hf.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
Convert GroupViT checkpoints from the original repository.
|
18 |
+
|
19 |
+
URL: https://github.com/NVlabs/GroupViT
|
20 |
+
"""
|
21 |
+
|
22 |
+
import argparse
|
23 |
+
|
24 |
+
import requests
|
25 |
+
import torch
|
26 |
+
from PIL import Image
|
27 |
+
|
28 |
+
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
|
29 |
+
|
30 |
+
|
31 |
+
def rename_key(name):
|
32 |
+
# vision encoder
|
33 |
+
if "img_encoder.pos_embed" in name:
|
34 |
+
name = name.replace("img_encoder.pos_embed", "vision_model.embeddings.position_embeddings")
|
35 |
+
if "img_encoder.patch_embed.proj" in name:
|
36 |
+
name = name.replace("img_encoder.patch_embed.proj", "vision_model.embeddings.patch_embeddings.projection")
|
37 |
+
if "img_encoder.patch_embed.norm" in name:
|
38 |
+
name = name.replace("img_encoder.patch_embed.norm", "vision_model.embeddings.layernorm")
|
39 |
+
if "img_encoder.layers" in name:
|
40 |
+
name = name.replace("img_encoder.layers", "vision_model.encoder.stages")
|
41 |
+
if "blocks" in name and "res" not in name:
|
42 |
+
name = name.replace("blocks", "layers")
|
43 |
+
if "attn" in name and "pre_assign" not in name:
|
44 |
+
name = name.replace("attn", "self_attn")
|
45 |
+
if "proj" in name and "self_attn" in name and "text" not in name:
|
46 |
+
name = name.replace("proj", "out_proj")
|
47 |
+
if "pre_assign_attn.attn.proj" in name:
|
48 |
+
name = name.replace("pre_assign_attn.attn.proj", "pre_assign_attn.attn.out_proj")
|
49 |
+
if "norm1" in name:
|
50 |
+
name = name.replace("norm1", "layer_norm1")
|
51 |
+
if "norm2" in name and "pre_assign" not in name:
|
52 |
+
name = name.replace("norm2", "layer_norm2")
|
53 |
+
if "img_encoder.norm" in name:
|
54 |
+
name = name.replace("img_encoder.norm", "vision_model.layernorm")
|
55 |
+
# text encoder
|
56 |
+
if "text_encoder.token_embedding" in name:
|
57 |
+
name = name.replace("text_encoder.token_embedding", "text_model.embeddings.token_embedding")
|
58 |
+
if "text_encoder.positional_embedding" in name:
|
59 |
+
name = name.replace("text_encoder.positional_embedding", "text_model.embeddings.position_embedding.weight")
|
60 |
+
if "text_encoder.transformer.resblocks." in name:
|
61 |
+
name = name.replace("text_encoder.transformer.resblocks.", "text_model.encoder.layers.")
|
62 |
+
if "ln_1" in name:
|
63 |
+
name = name.replace("ln_1", "layer_norm1")
|
64 |
+
if "ln_2" in name:
|
65 |
+
name = name.replace("ln_2", "layer_norm2")
|
66 |
+
if "c_fc" in name:
|
67 |
+
name = name.replace("c_fc", "fc1")
|
68 |
+
if "c_proj" in name:
|
69 |
+
name = name.replace("c_proj", "fc2")
|
70 |
+
if "text_encoder" in name:
|
71 |
+
name = name.replace("text_encoder", "text_model")
|
72 |
+
if "ln_final" in name:
|
73 |
+
name = name.replace("ln_final", "final_layer_norm")
|
74 |
+
# projection layers
|
75 |
+
if "img_projector.linear_hidden." in name:
|
76 |
+
name = name.replace("img_projector.linear_hidden.", "visual_projection.")
|
77 |
+
if "img_projector.linear_out." in name:
|
78 |
+
name = name.replace("img_projector.linear_out.", "visual_projection.3.")
|
79 |
+
if "text_projector.linear_hidden" in name:
|
80 |
+
name = name.replace("text_projector.linear_hidden", "text_projection")
|
81 |
+
if "text_projector.linear_out" in name:
|
82 |
+
name = name.replace("text_projector.linear_out", "text_projection.3")
|
83 |
+
|
84 |
+
return name
|
85 |
+
|
86 |
+
|
87 |
+
def convert_state_dict(orig_state_dict, config):
|
88 |
+
for key in orig_state_dict.copy().keys():
|
89 |
+
val = orig_state_dict.pop(key)
|
90 |
+
|
91 |
+
if "qkv" in key:
|
92 |
+
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
|
93 |
+
# we need to split them up into separate matrices/vectors
|
94 |
+
key_split = key.split(".")
|
95 |
+
stage_num, layer_num = int(key_split[2]), int(key_split[4])
|
96 |
+
dim = config.vision_config.hidden_size
|
97 |
+
if "weight" in key:
|
98 |
+
orig_state_dict[
|
99 |
+
f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.q_proj.weight"
|
100 |
+
] = val[:dim, :]
|
101 |
+
orig_state_dict[
|
102 |
+
f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.k_proj.weight"
|
103 |
+
] = val[dim : dim * 2, :]
|
104 |
+
orig_state_dict[
|
105 |
+
f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.v_proj.weight"
|
106 |
+
] = val[-dim:, :]
|
107 |
+
else:
|
108 |
+
orig_state_dict[
|
109 |
+
f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.q_proj.bias"
|
110 |
+
] = val[:dim]
|
111 |
+
orig_state_dict[
|
112 |
+
f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.k_proj.bias"
|
113 |
+
] = val[dim : dim * 2]
|
114 |
+
orig_state_dict[
|
115 |
+
f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.v_proj.bias"
|
116 |
+
] = val[-dim:]
|
117 |
+
elif "in_proj" in key:
|
118 |
+
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
|
119 |
+
# we need to split them up into separate matrices/vectors
|
120 |
+
key_split = key.split(".")
|
121 |
+
layer_num = int(key_split[3])
|
122 |
+
dim = config.text_config.hidden_size
|
123 |
+
if "weight" in key:
|
124 |
+
orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :]
|
125 |
+
orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[
|
126 |
+
dim : dim * 2, :
|
127 |
+
]
|
128 |
+
orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :]
|
129 |
+
else:
|
130 |
+
orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim]
|
131 |
+
orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[dim : dim * 2]
|
132 |
+
orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:]
|
133 |
+
else:
|
134 |
+
new_name = rename_key(key)
|
135 |
+
# squeeze if necessary
|
136 |
+
if (
|
137 |
+
"text_projection.0" in new_name
|
138 |
+
or "text_projection.3" in new_name
|
139 |
+
or "visual_projection.0" in new_name
|
140 |
+
or "visual_projection.3" in new_name
|
141 |
+
):
|
142 |
+
orig_state_dict[new_name] = val.squeeze_()
|
143 |
+
else:
|
144 |
+
orig_state_dict[new_name] = val
|
145 |
+
|
146 |
+
return orig_state_dict
|
147 |
+
|
148 |
+
|
149 |
+
# We will verify our results on an image of cute cats
|
150 |
+
def prepare_img():
|
151 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
152 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
153 |
+
return im
|
154 |
+
|
155 |
+
|
156 |
+
@torch.no_grad()
|
157 |
+
def convert_groupvit_checkpoint(
|
158 |
+
checkpoint_path, pytorch_dump_folder_path, model_name="groupvit-gcc-yfcc", push_to_hub=False
|
159 |
+
):
|
160 |
+
"""
|
161 |
+
Copy/paste/tweak model's weights to the Transformers design.
|
162 |
+
"""
|
163 |
+
config = GroupViTConfig()
|
164 |
+
model = GroupViTModel(config).eval()
|
165 |
+
|
166 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
|
167 |
+
new_state_dict = convert_state_dict(state_dict, config)
|
168 |
+
missing_keys, unexpected_keys = model.load_state_dict(new_state_dict, strict=False)
|
169 |
+
assert missing_keys == ["text_model.embeddings.position_ids"]
|
170 |
+
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(unexpected_keys) == 0)
|
171 |
+
|
172 |
+
# verify result
|
173 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
174 |
+
image = prepare_img()
|
175 |
+
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="pt")
|
176 |
+
|
177 |
+
with torch.no_grad():
|
178 |
+
outputs = model(**inputs)
|
179 |
+
|
180 |
+
if model_name == "groupvit-gcc-yfcc":
|
181 |
+
expected_logits = torch.tensor([[13.3523, 6.3629]])
|
182 |
+
elif model_name == "groupvit-gcc-redcaps":
|
183 |
+
expected_logits = torch.tensor([[16.1873, 8.6230]])
|
184 |
+
else:
|
185 |
+
raise ValueError(f"Model name {model_name} not supported.")
|
186 |
+
assert torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3)
|
187 |
+
|
188 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
189 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
190 |
+
print("Successfully saved processor and model to", pytorch_dump_folder_path)
|
191 |
+
|
192 |
+
if push_to_hub:
|
193 |
+
print("Pushing to the hub...")
|
194 |
+
processor.push_to_hub(model_name, organization="nielsr")
|
195 |
+
model.push_to_hub(model_name, organization="nielsr")
|
196 |
+
|
197 |
+
|
198 |
+
if __name__ == "__main__":
|
199 |
+
parser = argparse.ArgumentParser()
|
200 |
+
parser.add_argument(
|
201 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model."
|
202 |
+
)
|
203 |
+
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint")
|
204 |
+
parser.add_argument(
|
205 |
+
"--model_name",
|
206 |
+
default="groupvit-gccy-fcc",
|
207 |
+
type=str,
|
208 |
+
help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'",
|
209 |
+
)
|
210 |
+
parser.add_argument(
|
211 |
+
"--push_to_hub",
|
212 |
+
action="store_true",
|
213 |
+
help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.",
|
214 |
+
)
|
215 |
+
args = parser.parse_args()
|
216 |
+
|
217 |
+
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/modeling_tf_groupvit.py
ADDED
@@ -0,0 +1,2135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 GroupViT model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import collections.abc
|
21 |
+
import math
|
22 |
+
from dataclasses import dataclass
|
23 |
+
from typing import Any, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import tensorflow as tf
|
27 |
+
|
28 |
+
from ...activations_tf import get_tf_activation
|
29 |
+
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling
|
30 |
+
from ...modeling_tf_utils import (
|
31 |
+
TFModelInputType,
|
32 |
+
TFPreTrainedModel,
|
33 |
+
get_initializer,
|
34 |
+
keras,
|
35 |
+
keras_serializable,
|
36 |
+
unpack_inputs,
|
37 |
+
)
|
38 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
39 |
+
from ...utils import (
|
40 |
+
ModelOutput,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
is_tensorflow_probability_available,
|
44 |
+
logging,
|
45 |
+
replace_return_docstrings,
|
46 |
+
)
|
47 |
+
from .configuration_groupvit import GroupViTConfig, GroupViTTextConfig, GroupViTVisionConfig
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
# soft dependency
|
53 |
+
if is_tensorflow_probability_available():
|
54 |
+
try:
|
55 |
+
import tensorflow_probability as tfp
|
56 |
+
|
57 |
+
# On the first call, check whether a compatible version of TensorFlow is installed
|
58 |
+
# TensorFlow Probability depends on a recent stable release of TensorFlow
|
59 |
+
_ = tfp.distributions.Normal(loc=0.0, scale=1.0)
|
60 |
+
except ImportError:
|
61 |
+
logger.error(
|
62 |
+
"GroupViT models are not usable since `tensorflow_probability` can't be loaded. "
|
63 |
+
"It seems you have `tensorflow_probability` installed with the wrong tensorflow version."
|
64 |
+
"Please try to reinstall it following the instructions here: https://github.com/tensorflow/probability."
|
65 |
+
)
|
66 |
+
|
67 |
+
_CHECKPOINT_FOR_DOC = "nvidia/groupvit-gcc-yfcc"
|
68 |
+
|
69 |
+
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
70 |
+
"nvidia/groupvit-gcc-yfcc",
|
71 |
+
# See all GroupViT models at https://huggingface.co/models?filter=groupvit
|
72 |
+
]
|
73 |
+
|
74 |
+
|
75 |
+
LARGE_NEGATIVE = -1e8
|
76 |
+
|
77 |
+
|
78 |
+
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
|
79 |
+
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
|
80 |
+
"""
|
81 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
82 |
+
"""
|
83 |
+
src_len = shape_list(mask)[1]
|
84 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
85 |
+
one_cst = tf.constant(1.0)
|
86 |
+
mask = tf.cast(mask, dtype=one_cst.dtype)
|
87 |
+
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
|
88 |
+
|
89 |
+
return (one_cst - expanded_mask) * LARGE_NEGATIVE
|
90 |
+
|
91 |
+
|
92 |
+
# contrastive loss function, adapted from
|
93 |
+
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
|
94 |
+
def contrastive_loss(logits: tf.Tensor) -> tf.Tensor:
|
95 |
+
return tf.math.reduce_mean(
|
96 |
+
keras.metrics.sparse_categorical_crossentropy(
|
97 |
+
y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True
|
98 |
+
)
|
99 |
+
)
|
100 |
+
|
101 |
+
|
102 |
+
# Copied from transformers.models.clip.modeling_tf_clip.clip_loss with clip->groupvit
|
103 |
+
def groupvit_loss(similarity: tf.Tensor) -> tf.Tensor:
|
104 |
+
caption_loss = contrastive_loss(similarity)
|
105 |
+
image_loss = contrastive_loss(tf.transpose(similarity))
|
106 |
+
return (caption_loss + image_loss) / 2.0
|
107 |
+
|
108 |
+
|
109 |
+
def hard_softmax(logits: tf.Tensor, dim: int) -> tf.Tensor:
|
110 |
+
y_soft = stable_softmax(logits, dim)
|
111 |
+
# Straight through.
|
112 |
+
index = tf.argmax(y_soft, dim)
|
113 |
+
y_hard = tf.one_hot(
|
114 |
+
index,
|
115 |
+
depth=shape_list(logits)[dim],
|
116 |
+
# TensorFlow expects axis to be -1 or between [0, 3). But received: -2
|
117 |
+
# This is why the following code snippet is used.
|
118 |
+
axis=range(len(shape_list(logits)))[dim],
|
119 |
+
dtype=y_soft.dtype,
|
120 |
+
)
|
121 |
+
ret = y_hard - tf.stop_gradient(y_soft) + y_soft
|
122 |
+
|
123 |
+
return ret
|
124 |
+
|
125 |
+
|
126 |
+
def gumbel_softmax(logits: tf.Tensor, tau: float = 1, hard: bool = False, dim: int = -1) -> tf.Tensor:
|
127 |
+
gumbel_dist = tfp.distributions.Gumbel(0.0, 1.0)
|
128 |
+
gumbels = gumbel_dist.sample(tf.shape(logits), dtype=logits.dtype)
|
129 |
+
|
130 |
+
gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau)
|
131 |
+
y_soft = stable_softmax(gumbels, dim)
|
132 |
+
|
133 |
+
if hard:
|
134 |
+
# Straight through.
|
135 |
+
index = tf.argmax(y_soft, dim)
|
136 |
+
y_hard = tf.one_hot(
|
137 |
+
index,
|
138 |
+
depth=shape_list(logits)[dim],
|
139 |
+
# TensorFlow expects axis to be -1 or between [0, 3). But received: -2
|
140 |
+
# This is why the following code snippet is used.
|
141 |
+
axis=range(len(shape_list(logits)))[dim],
|
142 |
+
dtype=y_soft.dtype,
|
143 |
+
)
|
144 |
+
ret = y_hard - tf.stop_gradient(y_soft) + y_soft
|
145 |
+
else:
|
146 |
+
# Reparametrization trick.
|
147 |
+
ret = y_soft
|
148 |
+
return ret
|
149 |
+
|
150 |
+
|
151 |
+
def resize_attention_map(attentions: tf.Tensor, height: int, width: int, align_corners: bool = False) -> tf.Tensor:
|
152 |
+
"""
|
153 |
+
Args:
|
154 |
+
attentions (`tf.Tensor`): attention map of shape [batch_size, groups, feat_height*feat_width]
|
155 |
+
height (`int`): height of the output attention map
|
156 |
+
width (`int`): width of the output attention map
|
157 |
+
align_corners (`bool`, *optional*): the `align_corner` argument for `nn.functional.interpolate`.
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
`tf.Tensor`: resized attention map of shape [batch_size, groups, height, width]
|
161 |
+
"""
|
162 |
+
|
163 |
+
scale = (height * width // attentions.shape[2]) ** 0.5
|
164 |
+
if height > width:
|
165 |
+
feat_width = int(np.round(width / scale))
|
166 |
+
feat_height = shape_list(attentions)[2] // feat_width
|
167 |
+
else:
|
168 |
+
feat_height = int(np.round(height / scale))
|
169 |
+
feat_width = shape_list(attentions)[2] // feat_height
|
170 |
+
|
171 |
+
batch_size = shape_list(attentions)[0]
|
172 |
+
groups = shape_list(attentions)[1] # number of group token
|
173 |
+
# [batch_size, groups, height x width, groups] -> [batch_size, groups, height, width]
|
174 |
+
attentions = tf.reshape(attentions, (batch_size, groups, feat_height, feat_width))
|
175 |
+
attentions = tf.transpose(attentions, perm=(0, 2, 3, 1))
|
176 |
+
if align_corners:
|
177 |
+
attentions = tf.compat.v1.image.resize(
|
178 |
+
attentions,
|
179 |
+
size=(height, width),
|
180 |
+
method="bilinear",
|
181 |
+
align_corners=align_corners,
|
182 |
+
)
|
183 |
+
else:
|
184 |
+
attentions = tf.image.resize(attentions, size=(height, width), method="bilinear")
|
185 |
+
attentions = tf.transpose(attentions, perm=(0, 3, 1, 2))
|
186 |
+
return attentions
|
187 |
+
|
188 |
+
|
189 |
+
def get_grouping_from_attentions(attentions: Tuple[tf.Tensor], hw_shape: Tuple[int]) -> tf.Tensor:
|
190 |
+
"""
|
191 |
+
Args:
|
192 |
+
attentions (`tuple(tf.Tensor)`: tuple of attention maps returned by `TFGroupViTVisionTransformer`
|
193 |
+
hw_shape (`tuple(int)`): height and width of the output attention map
|
194 |
+
Returns:
|
195 |
+
`tf.Tensor`: the attention map of shape [batch_size, groups, height, width]
|
196 |
+
"""
|
197 |
+
|
198 |
+
attn_maps = []
|
199 |
+
prev_attn_masks = None
|
200 |
+
for attn_masks in attentions:
|
201 |
+
# [batch_size, num_groups, height x width] -> [batch_size, height x width, num_groups]
|
202 |
+
attn_masks = tf.transpose(attn_masks, perm=(0, 2, 1))
|
203 |
+
if prev_attn_masks is None:
|
204 |
+
prev_attn_masks = attn_masks
|
205 |
+
else:
|
206 |
+
prev_attn_masks = tf.matmul(prev_attn_masks, attn_masks)
|
207 |
+
# [batch_size, height x width, num_groups] -> [batch_size, num_groups, height x width] -> [batch_size, num_groups, height, width]
|
208 |
+
cur_attn_map = resize_attention_map(tf.transpose(prev_attn_masks, perm=(0, 2, 1)), *hw_shape)
|
209 |
+
attn_maps.append(cur_attn_map)
|
210 |
+
|
211 |
+
# [batch_size, num_groups, height, width]
|
212 |
+
final_grouping = attn_maps[-1]
|
213 |
+
|
214 |
+
return tf.stop_gradient(final_grouping)
|
215 |
+
|
216 |
+
|
217 |
+
@dataclass
|
218 |
+
class TFGroupViTModelOutput(ModelOutput):
|
219 |
+
"""
|
220 |
+
Args:
|
221 |
+
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
222 |
+
Contrastive loss for image-text similarity.
|
223 |
+
logits_per_image (`tf.Tensor` of shape `(image_batch_size, text_batch_size)`):
|
224 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
225 |
+
similarity scores.
|
226 |
+
logits_per_text (`tf.Tensor` of shape `(text_batch_size, image_batch_size)`):
|
227 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
228 |
+
similarity scores.
|
229 |
+
segmentation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels, logits_height, logits_width)`):
|
230 |
+
Classification scores for each pixel.
|
231 |
+
|
232 |
+
<Tip warning={true}>
|
233 |
+
|
234 |
+
The logits returned do not necessarily have the same size as the `pixel_values` passed as inputs. This is
|
235 |
+
to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the
|
236 |
+
original image size as post-processing. You should always check your logits shape and resize as needed.
|
237 |
+
|
238 |
+
</Tip>
|
239 |
+
|
240 |
+
text_embeds (`tf.Tensor` of shape `(batch_size, output_dim`):
|
241 |
+
The text embeddings obtained by applying the projection layer to the pooled output of
|
242 |
+
[`TFGroupViTTextModel`].
|
243 |
+
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim`):
|
244 |
+
The image embeddings obtained by applying the projection layer to the pooled output of
|
245 |
+
[`TFGroupViTVisionModel`].
|
246 |
+
text_model_output (`TFBaseModelOutputWithPooling`):
|
247 |
+
The output of the [`TFGroupViTTextModel`].
|
248 |
+
vision_model_output (`TFBaseModelOutputWithPooling`):
|
249 |
+
The output of the [`TFGroupViTVisionModel`].
|
250 |
+
"""
|
251 |
+
|
252 |
+
loss: tf.Tensor | None = None
|
253 |
+
logits_per_image: tf.Tensor = None
|
254 |
+
logits_per_text: tf.Tensor = None
|
255 |
+
segmentation_logits: tf.Tensor = None
|
256 |
+
text_embeds: tf.Tensor = None
|
257 |
+
image_embeds: tf.Tensor = None
|
258 |
+
text_model_output: TFBaseModelOutputWithPooling = None
|
259 |
+
vision_model_output: TFBaseModelOutputWithPooling = None
|
260 |
+
|
261 |
+
def to_tuple(self) -> Tuple[Any]:
|
262 |
+
return tuple(
|
263 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
264 |
+
for k in self.keys()
|
265 |
+
)
|
266 |
+
|
267 |
+
|
268 |
+
class TFGroupViTCrossAttentionLayer(keras.layers.Layer):
|
269 |
+
def __init__(self, config: GroupViTVisionConfig, **kwargs):
|
270 |
+
super().__init__(**kwargs)
|
271 |
+
self.attn = TFGroupViTAttention(config, name="attn")
|
272 |
+
self.norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm2")
|
273 |
+
self.mlp = TFGroupViTMLP(config, name="mlp")
|
274 |
+
self.norm_post = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_post")
|
275 |
+
self.config = config
|
276 |
+
|
277 |
+
def call(self, query: tf.Tensor, key: tf.Tensor, training: bool = False) -> tf.Tensor:
|
278 |
+
x = query
|
279 |
+
x = x + self.attn(query, encoder_hidden_states=key)[0]
|
280 |
+
x = x + self.mlp(self.norm2(x))
|
281 |
+
x = self.norm_post(x)
|
282 |
+
return x
|
283 |
+
|
284 |
+
def build(self, input_shape=None):
|
285 |
+
if self.built:
|
286 |
+
return
|
287 |
+
self.built = True
|
288 |
+
if getattr(self, "attn", None) is not None:
|
289 |
+
with tf.name_scope(self.attn.name):
|
290 |
+
self.attn.build(None)
|
291 |
+
if getattr(self, "norm2", None) is not None:
|
292 |
+
with tf.name_scope(self.norm2.name):
|
293 |
+
self.norm2.build([None, None, self.config.hidden_size])
|
294 |
+
if getattr(self, "mlp", None) is not None:
|
295 |
+
with tf.name_scope(self.mlp.name):
|
296 |
+
self.mlp.build(None)
|
297 |
+
if getattr(self, "norm_post", None) is not None:
|
298 |
+
with tf.name_scope(self.norm_post.name):
|
299 |
+
self.norm_post.build([None, None, self.config.hidden_size])
|
300 |
+
|
301 |
+
|
302 |
+
class TFGroupViTAssignAttention(keras.layers.Layer):
|
303 |
+
def __init__(self, config: GroupViTVisionConfig, **kwargs):
|
304 |
+
super().__init__(**kwargs)
|
305 |
+
self.scale = config.hidden_size**-0.5
|
306 |
+
|
307 |
+
self.q_proj = keras.layers.Dense(config.hidden_size, name="q_proj")
|
308 |
+
self.k_proj = keras.layers.Dense(config.hidden_size, name="k_proj")
|
309 |
+
self.v_proj = keras.layers.Dense(config.hidden_size, name="v_proj")
|
310 |
+
self.proj = keras.layers.Dense(config.hidden_size, name="proj")
|
311 |
+
self.assign_eps = config.assign_eps
|
312 |
+
self.config = config
|
313 |
+
|
314 |
+
def get_attn(self, attn: tf.Tensor, gumbel: bool = True, hard: bool = True, training: bool = False) -> tf.Tensor:
|
315 |
+
if gumbel and training:
|
316 |
+
attn = gumbel_softmax(attn, dim=-2, hard=hard)
|
317 |
+
else:
|
318 |
+
if hard:
|
319 |
+
attn = hard_softmax(attn, dim=-2)
|
320 |
+
else:
|
321 |
+
attn = stable_softmax(attn, axis=-2)
|
322 |
+
|
323 |
+
return attn
|
324 |
+
|
325 |
+
def call(self, query: tf.Tensor, key: tf.Tensor, training: bool = False):
|
326 |
+
value = key
|
327 |
+
# [batch_size, query_length, channels]
|
328 |
+
query = self.q_proj(query)
|
329 |
+
|
330 |
+
# [batch_size, key_length, channels]
|
331 |
+
key = self.k_proj(key)
|
332 |
+
|
333 |
+
# [batch_size, key_length, channels]
|
334 |
+
value = self.v_proj(value)
|
335 |
+
|
336 |
+
# [batch_size, query_length, key_length]
|
337 |
+
raw_attn = tf.matmul(query, key, transpose_b=True) * self.scale
|
338 |
+
|
339 |
+
attn = self.get_attn(raw_attn, training=training)
|
340 |
+
soft_attn = self.get_attn(raw_attn, training=training, gumbel=False, hard=False)
|
341 |
+
|
342 |
+
attn = attn / (tf.math.reduce_sum(attn, axis=-1, keepdims=True) + self.assign_eps)
|
343 |
+
|
344 |
+
out = tf.matmul(attn, value)
|
345 |
+
|
346 |
+
out = self.proj(out)
|
347 |
+
|
348 |
+
return out, soft_attn
|
349 |
+
|
350 |
+
def build(self, input_shape=None):
|
351 |
+
if self.built:
|
352 |
+
return
|
353 |
+
self.built = True
|
354 |
+
if getattr(self, "q_proj", None) is not None:
|
355 |
+
with tf.name_scope(self.q_proj.name):
|
356 |
+
self.q_proj.build([None, None, self.config.hidden_size])
|
357 |
+
if getattr(self, "k_proj", None) is not None:
|
358 |
+
with tf.name_scope(self.k_proj.name):
|
359 |
+
self.k_proj.build([None, None, self.config.hidden_size])
|
360 |
+
if getattr(self, "v_proj", None) is not None:
|
361 |
+
with tf.name_scope(self.v_proj.name):
|
362 |
+
self.v_proj.build([None, None, self.config.hidden_size])
|
363 |
+
if getattr(self, "proj", None) is not None:
|
364 |
+
with tf.name_scope(self.proj.name):
|
365 |
+
self.proj.build([None, None, self.config.hidden_size])
|
366 |
+
|
367 |
+
|
368 |
+
class TFGroupViTTokenAssign(keras.layers.Layer):
|
369 |
+
def __init__(self, config: GroupViTVisionConfig, num_group_token: int, num_output_group: int, **kwargs):
|
370 |
+
super().__init__(**kwargs)
|
371 |
+
self.num_output_group = num_output_group
|
372 |
+
# norm on group_tokens
|
373 |
+
self.norm_tokens = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_tokens")
|
374 |
+
assign_mlp_ratio = (
|
375 |
+
config.assign_mlp_ratio
|
376 |
+
if isinstance(config.assign_mlp_ratio, collections.abc.Iterable)
|
377 |
+
else (config.assign_mlp_ratio, config.assign_mlp_ratio)
|
378 |
+
)
|
379 |
+
tokens_dim, channels_dim = [int(x * config.hidden_size) for x in assign_mlp_ratio]
|
380 |
+
self.mlp_inter = TFGroupViTMixerMLP(config, num_group_token, tokens_dim, num_output_group, name="mlp_inter")
|
381 |
+
self.norm_post_tokens = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_post_tokens")
|
382 |
+
# norm on x
|
383 |
+
self.norm_x = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_x")
|
384 |
+
self.pre_assign_attn = TFGroupViTCrossAttentionLayer(config, name="pre_assign_attn")
|
385 |
+
|
386 |
+
self.assign = TFGroupViTAssignAttention(config, name="assign")
|
387 |
+
self.norm_new_x = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_new_x")
|
388 |
+
self.mlp_channels = TFGroupViTMLP(
|
389 |
+
config, config.hidden_size, channels_dim, config.hidden_size, name="mlp_channels"
|
390 |
+
)
|
391 |
+
self.config = config
|
392 |
+
|
393 |
+
def project_group_token(self, group_tokens: tf.Tensor) -> tf.Tensor:
|
394 |
+
"""
|
395 |
+
Args:
|
396 |
+
group_tokens (tf.Tensor): group tokens, [batch_size, num_group_tokens, channels]
|
397 |
+
|
398 |
+
Returns:
|
399 |
+
projected_group_tokens (tf.Tensor): [batch_size, num_output_groups, channels]
|
400 |
+
"""
|
401 |
+
# [B, num_output_groups, C] <- [B, num_group_tokens, C]
|
402 |
+
projected_group_tokens = self.mlp_inter(group_tokens)
|
403 |
+
projected_group_tokens = self.norm_post_tokens(projected_group_tokens)
|
404 |
+
return projected_group_tokens
|
405 |
+
|
406 |
+
def call(self, image_tokens: tf.Tensor, group_tokens: tf.Tensor, training: bool = False):
|
407 |
+
"""
|
408 |
+
Args:
|
409 |
+
image_tokens (`tf.Tensor`): image tokens, of shape [batch_size, input_length, channels]
|
410 |
+
group_tokens (`tf.Tensor`): group tokens, [batch_size, num_group_tokens, channels]
|
411 |
+
"""
|
412 |
+
|
413 |
+
group_tokens = self.norm_tokens(group_tokens)
|
414 |
+
image_tokens = self.norm_x(image_tokens)
|
415 |
+
# [batch_size, num_output_groups, channels]
|
416 |
+
projected_group_tokens = self.project_group_token(group_tokens)
|
417 |
+
projected_group_tokens = self.pre_assign_attn(projected_group_tokens, image_tokens)
|
418 |
+
new_image_tokens, attention = self.assign(projected_group_tokens, image_tokens)
|
419 |
+
new_image_tokens += projected_group_tokens
|
420 |
+
|
421 |
+
new_image_tokens = new_image_tokens + self.mlp_channels(self.norm_new_x(new_image_tokens))
|
422 |
+
|
423 |
+
return new_image_tokens, attention
|
424 |
+
|
425 |
+
def build(self, input_shape=None):
|
426 |
+
if self.built:
|
427 |
+
return
|
428 |
+
self.built = True
|
429 |
+
if getattr(self, "norm_tokens", None) is not None:
|
430 |
+
with tf.name_scope(self.norm_tokens.name):
|
431 |
+
self.norm_tokens.build([None, None, self.config.hidden_size])
|
432 |
+
if getattr(self, "mlp_inter", None) is not None:
|
433 |
+
with tf.name_scope(self.mlp_inter.name):
|
434 |
+
self.mlp_inter.build(None)
|
435 |
+
if getattr(self, "norm_post_tokens", None) is not None:
|
436 |
+
with tf.name_scope(self.norm_post_tokens.name):
|
437 |
+
self.norm_post_tokens.build([None, None, self.config.hidden_size])
|
438 |
+
if getattr(self, "norm_x", None) is not None:
|
439 |
+
with tf.name_scope(self.norm_x.name):
|
440 |
+
self.norm_x.build([None, None, self.config.hidden_size])
|
441 |
+
if getattr(self, "pre_assign_attn", None) is not None:
|
442 |
+
with tf.name_scope(self.pre_assign_attn.name):
|
443 |
+
self.pre_assign_attn.build(None)
|
444 |
+
if getattr(self, "assign", None) is not None:
|
445 |
+
with tf.name_scope(self.assign.name):
|
446 |
+
self.assign.build(None)
|
447 |
+
if getattr(self, "norm_new_x", None) is not None:
|
448 |
+
with tf.name_scope(self.norm_new_x.name):
|
449 |
+
self.norm_new_x.build([None, None, self.config.hidden_size])
|
450 |
+
if getattr(self, "mlp_channels", None) is not None:
|
451 |
+
with tf.name_scope(self.mlp_channels.name):
|
452 |
+
self.mlp_channels.build(None)
|
453 |
+
|
454 |
+
|
455 |
+
# Adapted from transformers.models.vit.modeling_tf_vit.TFViTPatchEmbeddings with ViT->GroupViT
|
456 |
+
class TFGroupViTPatchEmbeddings(keras.layers.Layer):
|
457 |
+
"""
|
458 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
459 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
460 |
+
Transformer.
|
461 |
+
"""
|
462 |
+
|
463 |
+
def __init__(self, config: GroupViTConfig, **kwargs):
|
464 |
+
super().__init__(**kwargs)
|
465 |
+
image_size, patch_size = config.image_size, config.patch_size
|
466 |
+
num_channels = config.num_channels
|
467 |
+
# hidden_size is a member as it will be required in the call method
|
468 |
+
self.hidden_size = config.hidden_size
|
469 |
+
|
470 |
+
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
471 |
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
472 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
473 |
+
self.image_size = image_size
|
474 |
+
self.patch_size = patch_size
|
475 |
+
self.num_patches = num_patches
|
476 |
+
self.num_channels = num_channels
|
477 |
+
self.config = config
|
478 |
+
|
479 |
+
self.projection = keras.layers.Conv2D(
|
480 |
+
filters=self.hidden_size,
|
481 |
+
kernel_size=patch_size,
|
482 |
+
strides=patch_size,
|
483 |
+
padding="valid",
|
484 |
+
data_format="channels_last",
|
485 |
+
use_bias=True,
|
486 |
+
kernel_initializer=get_initializer(self.config.initializer_range),
|
487 |
+
bias_initializer="zeros",
|
488 |
+
name="projection",
|
489 |
+
)
|
490 |
+
|
491 |
+
def call(
|
492 |
+
self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
|
493 |
+
) -> tf.Tensor:
|
494 |
+
batch_size, num_channels, height, width = shape_list(pixel_values)
|
495 |
+
if tf.executing_eagerly() and num_channels != self.num_channels:
|
496 |
+
raise ValueError(
|
497 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
498 |
+
)
|
499 |
+
if (
|
500 |
+
not interpolate_pos_encoding
|
501 |
+
and tf.executing_eagerly()
|
502 |
+
and (height != self.image_size[0] or width != self.image_size[1])
|
503 |
+
):
|
504 |
+
raise ValueError(
|
505 |
+
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
|
506 |
+
)
|
507 |
+
|
508 |
+
# When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
|
509 |
+
# So change the input format from `NCHW` to `NHWC`.
|
510 |
+
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
|
511 |
+
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
|
512 |
+
|
513 |
+
projection = self.projection(pixel_values)
|
514 |
+
|
515 |
+
# Change the 2D spatial dimensions to a single temporal dimension.
|
516 |
+
# shape = (batch_size, num_patches, out_channels=embed_dim)
|
517 |
+
num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0])
|
518 |
+
# In the TFGroupViTVisionEmbeddings the embeddings from this layer will be layer normalized
|
519 |
+
# LayerNormalization layer needs to have static last dimension (otherwise the test_keras_save_load fails with symbolic tensors)
|
520 |
+
# This is why we have used the hidden_size in the reshape method
|
521 |
+
embeddings = tf.reshape(tensor=projection, shape=(batch_size, num_patches, self.hidden_size))
|
522 |
+
|
523 |
+
return embeddings
|
524 |
+
|
525 |
+
def build(self, input_shape=None):
|
526 |
+
if self.built:
|
527 |
+
return
|
528 |
+
self.built = True
|
529 |
+
if getattr(self, "projection", None) is not None:
|
530 |
+
with tf.name_scope(self.projection.name):
|
531 |
+
self.projection.build([None, None, None, self.num_channels])
|
532 |
+
|
533 |
+
|
534 |
+
# Adapted from transformers.vit.modeling_tf_vit.TFViTEmbeddings
|
535 |
+
class TFGroupViTVisionEmbeddings(keras.layers.Layer):
|
536 |
+
"""
|
537 |
+
Construct the position and patch embeddings.
|
538 |
+
|
539 |
+
"""
|
540 |
+
|
541 |
+
def __init__(self, config: GroupViTVisionConfig, **kwargs):
|
542 |
+
super().__init__(**kwargs)
|
543 |
+
|
544 |
+
self.patch_embeddings = TFGroupViTPatchEmbeddings(config, name="patch_embeddings")
|
545 |
+
self.dropout = keras.layers.Dropout(rate=config.dropout, name="dropout")
|
546 |
+
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
|
547 |
+
self.config = config
|
548 |
+
|
549 |
+
def build(self, input_shape=None):
|
550 |
+
num_patches = self.patch_embeddings.num_patches
|
551 |
+
self.position_embeddings = self.add_weight(
|
552 |
+
shape=(1, num_patches, self.config.hidden_size),
|
553 |
+
initializer="zeros",
|
554 |
+
trainable=True,
|
555 |
+
name="position_embeddings",
|
556 |
+
)
|
557 |
+
|
558 |
+
if self.built:
|
559 |
+
return
|
560 |
+
self.built = True
|
561 |
+
if getattr(self, "patch_embeddings", None) is not None:
|
562 |
+
with tf.name_scope(self.patch_embeddings.name):
|
563 |
+
self.patch_embeddings.build(None)
|
564 |
+
if getattr(self, "dropout", None) is not None:
|
565 |
+
with tf.name_scope(self.dropout.name):
|
566 |
+
self.dropout.build(None)
|
567 |
+
if getattr(self, "layernorm", None) is not None:
|
568 |
+
with tf.name_scope(self.layernorm.name):
|
569 |
+
self.layernorm.build([None, None, self.config.hidden_size])
|
570 |
+
|
571 |
+
def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor:
|
572 |
+
"""
|
573 |
+
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
574 |
+
resolution images.
|
575 |
+
|
576 |
+
Source:
|
577 |
+
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
578 |
+
"""
|
579 |
+
|
580 |
+
batch_size, num_patches, dim = shape_list(embeddings)
|
581 |
+
num_positions = shape_list(self.position_embeddings)[1]
|
582 |
+
|
583 |
+
if num_patches == num_positions and height == width:
|
584 |
+
return self.position_embeddings
|
585 |
+
patch_pos_embed = self.position_embeddings
|
586 |
+
h0 = height // self.config.patch_size
|
587 |
+
w0 = width // self.config.patch_size
|
588 |
+
patch_pos_embed = tf.image.resize(
|
589 |
+
images=tf.reshape(
|
590 |
+
patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
|
591 |
+
),
|
592 |
+
size=(h0, w0),
|
593 |
+
method="bicubic",
|
594 |
+
)
|
595 |
+
patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim))
|
596 |
+
return patch_pos_embed
|
597 |
+
|
598 |
+
def call(
|
599 |
+
self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
|
600 |
+
) -> tf.Tensor:
|
601 |
+
_, _, height, width = shape_list(pixel_values)
|
602 |
+
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
|
603 |
+
embeddings = self.layernorm(embeddings)
|
604 |
+
|
605 |
+
# add positional encoding to each token
|
606 |
+
if interpolate_pos_encoding:
|
607 |
+
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
608 |
+
else:
|
609 |
+
embeddings = embeddings + self.position_embeddings
|
610 |
+
|
611 |
+
embeddings = self.dropout(embeddings)
|
612 |
+
|
613 |
+
return embeddings
|
614 |
+
|
615 |
+
|
616 |
+
# Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextEmbeddings with CLIP->GroupViT
|
617 |
+
class TFGroupViTTextEmbeddings(keras.layers.Layer):
|
618 |
+
def __init__(self, config: GroupViTTextConfig, **kwargs):
|
619 |
+
super().__init__(**kwargs)
|
620 |
+
|
621 |
+
self.embed_dim = config.hidden_size
|
622 |
+
|
623 |
+
self.config = config
|
624 |
+
|
625 |
+
def build(self, input_shape: tf.TensorShape = None):
|
626 |
+
with tf.name_scope("token_embedding"):
|
627 |
+
self.weight = self.add_weight(
|
628 |
+
shape=(self.config.vocab_size, self.embed_dim),
|
629 |
+
initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
|
630 |
+
trainable=True,
|
631 |
+
name="weight",
|
632 |
+
)
|
633 |
+
|
634 |
+
with tf.name_scope("position_embedding"):
|
635 |
+
self.position_embedding = self.add_weight(
|
636 |
+
shape=(self.config.max_position_embeddings, self.embed_dim),
|
637 |
+
initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
|
638 |
+
trainable=True,
|
639 |
+
name="embeddings",
|
640 |
+
)
|
641 |
+
|
642 |
+
super().build(input_shape)
|
643 |
+
|
644 |
+
def call(
|
645 |
+
self,
|
646 |
+
input_ids: tf.Tensor = None,
|
647 |
+
position_ids: tf.Tensor = None,
|
648 |
+
inputs_embeds: tf.Tensor = None,
|
649 |
+
) -> tf.Tensor:
|
650 |
+
"""
|
651 |
+
Applies embedding based on inputs tensor.
|
652 |
+
|
653 |
+
Returns:
|
654 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
655 |
+
"""
|
656 |
+
if input_ids is None and inputs_embeds is None:
|
657 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
658 |
+
|
659 |
+
if inputs_embeds is None:
|
660 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
661 |
+
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
|
662 |
+
|
663 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
664 |
+
|
665 |
+
if position_ids is None:
|
666 |
+
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
|
667 |
+
|
668 |
+
position_embeds = tf.gather(params=self.position_embedding, indices=position_ids)
|
669 |
+
position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1))
|
670 |
+
final_embeddings = inputs_embeds + position_embeds
|
671 |
+
|
672 |
+
return final_embeddings
|
673 |
+
|
674 |
+
|
675 |
+
class TFGroupViTStage(keras.layers.Layer):
|
676 |
+
"""This corresponds to the `GroupingLayer` class in the GroupViT implementation."""
|
677 |
+
|
678 |
+
def __init__(
|
679 |
+
self,
|
680 |
+
config: GroupViTVisionConfig,
|
681 |
+
depth: int,
|
682 |
+
num_prev_group_token: int,
|
683 |
+
num_group_token: int,
|
684 |
+
num_output_group: int,
|
685 |
+
**kwargs,
|
686 |
+
):
|
687 |
+
super().__init__(**kwargs)
|
688 |
+
self.config = config
|
689 |
+
self.depth = depth
|
690 |
+
self.num_group_token = num_group_token
|
691 |
+
self.layers = [TFGroupViTEncoderLayer(config, name=f"layers_._{i}") for i in range(depth)]
|
692 |
+
|
693 |
+
if num_group_token > 0:
|
694 |
+
self.downsample = TFGroupViTTokenAssign(
|
695 |
+
config=config,
|
696 |
+
num_group_token=num_group_token,
|
697 |
+
num_output_group=num_output_group,
|
698 |
+
name="downsample",
|
699 |
+
)
|
700 |
+
else:
|
701 |
+
self.downsample = None
|
702 |
+
|
703 |
+
if num_prev_group_token > 0 and num_group_token > 0:
|
704 |
+
self.group_projector = [
|
705 |
+
keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="group_projector.0"),
|
706 |
+
TFGroupViTMixerMLP(
|
707 |
+
config, num_prev_group_token, config.hidden_size // 2, num_group_token, name="group_projector.1"
|
708 |
+
),
|
709 |
+
]
|
710 |
+
else:
|
711 |
+
self.group_projector = None
|
712 |
+
|
713 |
+
def build(self, input_shape=None):
|
714 |
+
if self.num_group_token > 0:
|
715 |
+
self.group_token = self.add_weight(
|
716 |
+
shape=(1, self.num_group_token, self.config.hidden_size),
|
717 |
+
initializer="zeros",
|
718 |
+
trainable=True,
|
719 |
+
name="group_token",
|
720 |
+
)
|
721 |
+
else:
|
722 |
+
self.group_token = None
|
723 |
+
|
724 |
+
if self.built:
|
725 |
+
return
|
726 |
+
self.built = True
|
727 |
+
if getattr(self, "downsample", None) is not None:
|
728 |
+
with tf.name_scope(self.downsample.name):
|
729 |
+
self.downsample.build(None)
|
730 |
+
if getattr(self, "layers", None) is not None:
|
731 |
+
for layer in self.layers:
|
732 |
+
with tf.name_scope(layer.name):
|
733 |
+
layer.build(None)
|
734 |
+
if getattr(self, "group_projector", None) is not None:
|
735 |
+
with tf.name_scope(self.group_projector[0].name):
|
736 |
+
self.group_projector[0].build([None, None, self.config.hidden_size])
|
737 |
+
with tf.name_scope(self.group_projector[1].name):
|
738 |
+
self.group_projector[1].build(None)
|
739 |
+
|
740 |
+
@property
|
741 |
+
def with_group_token(self):
|
742 |
+
return self.group_token is not None
|
743 |
+
|
744 |
+
def split_x(self, x: tf.Tensor) -> tf.Tensor:
|
745 |
+
if self.with_group_token:
|
746 |
+
return x[:, : -self.num_group_token], x[:, -self.num_group_token :]
|
747 |
+
else:
|
748 |
+
return x, None
|
749 |
+
|
750 |
+
def concat_x(self, x: tf.Tensor, group_token: tf.Tensor | None = None) -> tf.Tensor:
|
751 |
+
if group_token is None:
|
752 |
+
return x
|
753 |
+
return tf.concat([x, group_token], axis=1)
|
754 |
+
|
755 |
+
def call(
|
756 |
+
self,
|
757 |
+
hidden_states: tf.Tensor,
|
758 |
+
prev_group_token: tf.Tensor | None = None,
|
759 |
+
output_attentions: bool = False,
|
760 |
+
training: bool = False,
|
761 |
+
) -> Tuple[tf.Tensor]:
|
762 |
+
"""
|
763 |
+
Args:
|
764 |
+
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
765 |
+
attention_mask (`tf.Tensor`): attention mask of size
|
766 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
767 |
+
`(config.encoder_attention_heads,)`.
|
768 |
+
output_attentions (`bool`, *optional*):
|
769 |
+
Whether or not to return the grouping tensors of Grouping block.
|
770 |
+
"""
|
771 |
+
if self.with_group_token:
|
772 |
+
group_token = tf.tile(self.group_token, multiples=(shape_list(hidden_states)[0], 1, 1))
|
773 |
+
if self.group_projector is not None:
|
774 |
+
for layer in self.group_projector:
|
775 |
+
prev_group_token = layer(prev_group_token)
|
776 |
+
group_token = group_token + prev_group_token
|
777 |
+
else:
|
778 |
+
group_token = None
|
779 |
+
|
780 |
+
x = hidden_states
|
781 |
+
|
782 |
+
cat_x = self.concat_x(x, group_token)
|
783 |
+
for layer in self.layers:
|
784 |
+
layer_out = layer(
|
785 |
+
cat_x,
|
786 |
+
attention_mask=None,
|
787 |
+
causal_attention_mask=None,
|
788 |
+
output_attentions=None,
|
789 |
+
)
|
790 |
+
cat_x = layer_out[0]
|
791 |
+
|
792 |
+
x, group_token = self.split_x(cat_x)
|
793 |
+
|
794 |
+
attention = None
|
795 |
+
if self.downsample is not None:
|
796 |
+
x, attention = self.downsample(x, group_token)
|
797 |
+
|
798 |
+
outputs = (x, group_token)
|
799 |
+
if output_attentions:
|
800 |
+
outputs = outputs + (attention,)
|
801 |
+
|
802 |
+
return outputs
|
803 |
+
|
804 |
+
|
805 |
+
class TFGroupViTMLP(keras.layers.Layer):
|
806 |
+
def __init__(
|
807 |
+
self,
|
808 |
+
config: GroupViTVisionConfig,
|
809 |
+
hidden_size: Optional[int] = None,
|
810 |
+
intermediate_size: Optional[int] = None,
|
811 |
+
output_size: Optional[int] = None,
|
812 |
+
**kwargs,
|
813 |
+
):
|
814 |
+
super().__init__(**kwargs)
|
815 |
+
self.config = config
|
816 |
+
self.activation_fn = get_tf_activation(config.hidden_act)
|
817 |
+
hidden_size = hidden_size if hidden_size is not None else config.hidden_size
|
818 |
+
intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size
|
819 |
+
output_size = output_size if output_size is not None else hidden_size
|
820 |
+
self.fc1 = keras.layers.Dense(intermediate_size, name="fc1")
|
821 |
+
self.fc2 = keras.layers.Dense(output_size, name="fc2")
|
822 |
+
self.intermediate_size = intermediate_size
|
823 |
+
self.hidden_size = hidden_size
|
824 |
+
|
825 |
+
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
|
826 |
+
hidden_states = self.fc1(hidden_states)
|
827 |
+
hidden_states = self.activation_fn(hidden_states)
|
828 |
+
hidden_states = self.fc2(hidden_states)
|
829 |
+
return hidden_states
|
830 |
+
|
831 |
+
def build(self, input_shape=None):
|
832 |
+
if self.built:
|
833 |
+
return
|
834 |
+
self.built = True
|
835 |
+
if getattr(self, "fc1", None) is not None:
|
836 |
+
with tf.name_scope(self.fc1.name):
|
837 |
+
self.fc1.build([None, None, self.hidden_size])
|
838 |
+
if getattr(self, "fc2", None) is not None:
|
839 |
+
with tf.name_scope(self.fc2.name):
|
840 |
+
self.fc2.build([None, None, self.intermediate_size])
|
841 |
+
|
842 |
+
|
843 |
+
class TFGroupViTMixerMLP(TFGroupViTMLP):
|
844 |
+
def call(self, x, training: bool = False):
|
845 |
+
x = super().call(hidden_states=tf.transpose(x, perm=(0, 2, 1)))
|
846 |
+
return tf.transpose(x, perm=(0, 2, 1))
|
847 |
+
|
848 |
+
|
849 |
+
# Adapted from transformers.models.clip.modeling_tf_clip.TFCLIPAttention
|
850 |
+
class TFGroupViTAttention(keras.layers.Layer):
|
851 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
852 |
+
|
853 |
+
def __init__(self, config: GroupViTConfig, **kwargs):
|
854 |
+
super().__init__(**kwargs)
|
855 |
+
|
856 |
+
self.embed_dim = config.hidden_size
|
857 |
+
self.num_attention_heads = config.num_attention_heads
|
858 |
+
self.attention_head_size = self.embed_dim // self.num_attention_heads
|
859 |
+
if self.attention_head_size * self.num_attention_heads != self.embed_dim:
|
860 |
+
raise ValueError(
|
861 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
862 |
+
f" {self.num_attention_heads})."
|
863 |
+
)
|
864 |
+
|
865 |
+
factor = config.initializer_factor
|
866 |
+
in_proj_std = (self.embed_dim**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor
|
867 |
+
out_proj_std = (self.embed_dim**-0.5) * factor
|
868 |
+
|
869 |
+
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
|
870 |
+
|
871 |
+
self.q_proj = keras.layers.Dense(
|
872 |
+
units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="q_proj"
|
873 |
+
)
|
874 |
+
self.k_proj = keras.layers.Dense(
|
875 |
+
units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="k_proj"
|
876 |
+
)
|
877 |
+
self.v_proj = keras.layers.Dense(
|
878 |
+
units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="v_proj"
|
879 |
+
)
|
880 |
+
|
881 |
+
self.dropout = keras.layers.Dropout(rate=config.attention_dropout)
|
882 |
+
|
883 |
+
self.out_proj = keras.layers.Dense(
|
884 |
+
units=self.embed_dim, kernel_initializer=get_initializer(out_proj_std), name="out_proj"
|
885 |
+
)
|
886 |
+
|
887 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention.transpose_for_scores
|
888 |
+
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
|
889 |
+
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
|
890 |
+
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
|
891 |
+
|
892 |
+
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
|
893 |
+
return tf.transpose(tensor, perm=[0, 2, 1, 3])
|
894 |
+
|
895 |
+
def call(
|
896 |
+
self,
|
897 |
+
hidden_states: tf.Tensor,
|
898 |
+
attention_mask: tf.Tensor = None,
|
899 |
+
causal_attention_mask: tf.Tensor = None,
|
900 |
+
output_attentions: bool = None,
|
901 |
+
encoder_hidden_states: tf.Tensor = None,
|
902 |
+
training: bool = False,
|
903 |
+
) -> Tuple[tf.Tensor]:
|
904 |
+
"""Input shape: Batch x Time x Channel"""
|
905 |
+
|
906 |
+
batch_size = shape_list(hidden_states)[0]
|
907 |
+
is_cross_attention = encoder_hidden_states is not None
|
908 |
+
|
909 |
+
mixed_query_layer = self.q_proj(inputs=hidden_states)
|
910 |
+
if is_cross_attention:
|
911 |
+
mixed_key_layer = self.k_proj(inputs=encoder_hidden_states)
|
912 |
+
mixed_value_layer = self.v_proj(inputs=encoder_hidden_states)
|
913 |
+
else:
|
914 |
+
mixed_key_layer = self.k_proj(inputs=hidden_states)
|
915 |
+
mixed_value_layer = self.v_proj(inputs=hidden_states)
|
916 |
+
|
917 |
+
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
|
918 |
+
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
|
919 |
+
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
|
920 |
+
|
921 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
922 |
+
# (batch size, num_heads, seq_len_q, seq_len_k)
|
923 |
+
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
|
924 |
+
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
|
925 |
+
attention_scores = tf.divide(attention_scores, dk)
|
926 |
+
|
927 |
+
# apply the causal_attention_mask first
|
928 |
+
if causal_attention_mask is not None:
|
929 |
+
# Apply the causal attention mask (precomputed for all layers in TFCLIPModel call() function)
|
930 |
+
attention_scores = tf.add(attention_scores, causal_attention_mask)
|
931 |
+
|
932 |
+
if attention_mask is not None:
|
933 |
+
# Apply the attention mask (precomputed for all layers in TFCLIPModel call() function)
|
934 |
+
attention_scores = tf.add(attention_scores, attention_mask)
|
935 |
+
|
936 |
+
# Normalize the attention scores to probabilities.
|
937 |
+
_attention_probs = stable_softmax(logits=attention_scores, axis=-1)
|
938 |
+
|
939 |
+
# This is actually dropping out entire tokens to attend to, which might
|
940 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
941 |
+
attention_probs = self.dropout(inputs=_attention_probs)
|
942 |
+
|
943 |
+
attention_output = tf.matmul(attention_probs, value_layer)
|
944 |
+
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
|
945 |
+
|
946 |
+
# (batch_size, seq_len_q, embed_dim)
|
947 |
+
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.embed_dim))
|
948 |
+
|
949 |
+
attention_output = self.out_proj(attention_output)
|
950 |
+
# In TFBert, attention weights are returned after dropout.
|
951 |
+
# However, in CLIP, they are returned before dropout.
|
952 |
+
outputs = (attention_output, _attention_probs) if output_attentions else (attention_output,)
|
953 |
+
|
954 |
+
return outputs
|
955 |
+
|
956 |
+
def build(self, input_shape=None):
|
957 |
+
if self.built:
|
958 |
+
return
|
959 |
+
self.built = True
|
960 |
+
if getattr(self, "q_proj", None) is not None:
|
961 |
+
with tf.name_scope(self.q_proj.name):
|
962 |
+
self.q_proj.build([None, None, self.embed_dim])
|
963 |
+
if getattr(self, "k_proj", None) is not None:
|
964 |
+
with tf.name_scope(self.k_proj.name):
|
965 |
+
self.k_proj.build([None, None, self.embed_dim])
|
966 |
+
if getattr(self, "v_proj", None) is not None:
|
967 |
+
with tf.name_scope(self.v_proj.name):
|
968 |
+
self.v_proj.build([None, None, self.embed_dim])
|
969 |
+
if getattr(self, "out_proj", None) is not None:
|
970 |
+
with tf.name_scope(self.out_proj.name):
|
971 |
+
self.out_proj.build([None, None, self.embed_dim])
|
972 |
+
|
973 |
+
|
974 |
+
# Copied from transformers.models.clip.modeling_tf_clip.TFCLIPEncoderLayer with CLIP->GroupViT
|
975 |
+
class TFGroupViTEncoderLayer(keras.layers.Layer):
|
976 |
+
def __init__(self, config: GroupViTConfig, **kwargs):
|
977 |
+
super().__init__(**kwargs)
|
978 |
+
|
979 |
+
self.embed_dim = config.hidden_size
|
980 |
+
self.self_attn = TFGroupViTAttention(config, name="self_attn")
|
981 |
+
self.layer_norm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
|
982 |
+
self.mlp = TFGroupViTMLP(config, name="mlp")
|
983 |
+
self.layer_norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")
|
984 |
+
|
985 |
+
def call(
|
986 |
+
self,
|
987 |
+
hidden_states: tf.Tensor,
|
988 |
+
attention_mask: tf.Tensor,
|
989 |
+
causal_attention_mask: tf.Tensor,
|
990 |
+
output_attentions: bool,
|
991 |
+
training: bool = False,
|
992 |
+
) -> Tuple[tf.Tensor]:
|
993 |
+
"""
|
994 |
+
Args:
|
995 |
+
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
996 |
+
attention_mask (`tf.Tensor`): attention mask of size
|
997 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
998 |
+
causal_attention_mask (`tf.Tensor`): causal attention mask of size
|
999 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
1000 |
+
output_attentions (`bool`):
|
1001 |
+
Whether or not to return the attentions tensors of all attention layers. See `outputs` under returned
|
1002 |
+
tensors for more detail.
|
1003 |
+
"""
|
1004 |
+
residual = hidden_states
|
1005 |
+
|
1006 |
+
hidden_states = self.layer_norm1(inputs=hidden_states)
|
1007 |
+
attention_outputs = self.self_attn(
|
1008 |
+
hidden_states=hidden_states,
|
1009 |
+
attention_mask=attention_mask,
|
1010 |
+
causal_attention_mask=causal_attention_mask,
|
1011 |
+
output_attentions=output_attentions,
|
1012 |
+
training=training,
|
1013 |
+
)
|
1014 |
+
hidden_states = attention_outputs[0]
|
1015 |
+
hidden_states = residual + hidden_states
|
1016 |
+
|
1017 |
+
residual = hidden_states
|
1018 |
+
hidden_states = self.layer_norm2(inputs=hidden_states)
|
1019 |
+
hidden_states = self.mlp(hidden_states=hidden_states)
|
1020 |
+
hidden_states = residual + hidden_states
|
1021 |
+
|
1022 |
+
outputs = (hidden_states,) + attention_outputs[1:] # add attentions if we output them
|
1023 |
+
|
1024 |
+
return outputs
|
1025 |
+
|
1026 |
+
def build(self, input_shape=None):
|
1027 |
+
if self.built:
|
1028 |
+
return
|
1029 |
+
self.built = True
|
1030 |
+
if getattr(self, "self_attn", None) is not None:
|
1031 |
+
with tf.name_scope(self.self_attn.name):
|
1032 |
+
self.self_attn.build(None)
|
1033 |
+
if getattr(self, "layer_norm1", None) is not None:
|
1034 |
+
with tf.name_scope(self.layer_norm1.name):
|
1035 |
+
self.layer_norm1.build([None, None, self.embed_dim])
|
1036 |
+
if getattr(self, "mlp", None) is not None:
|
1037 |
+
with tf.name_scope(self.mlp.name):
|
1038 |
+
self.mlp.build(None)
|
1039 |
+
if getattr(self, "layer_norm2", None) is not None:
|
1040 |
+
with tf.name_scope(self.layer_norm2.name):
|
1041 |
+
self.layer_norm2.build([None, None, self.embed_dim])
|
1042 |
+
|
1043 |
+
|
1044 |
+
# Adapted from transformers.models.clip.modeling_tf_clip.TFGroupViTTextEncoder
|
1045 |
+
class TFGroupViTTextEncoder(keras.layers.Layer):
|
1046 |
+
def __init__(self, config: GroupViTTextConfig, **kwargs):
|
1047 |
+
super().__init__(**kwargs)
|
1048 |
+
|
1049 |
+
self.layers = [TFGroupViTEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)]
|
1050 |
+
|
1051 |
+
def call(
|
1052 |
+
self,
|
1053 |
+
hidden_states,
|
1054 |
+
attention_mask: tf.Tensor,
|
1055 |
+
causal_attention_mask: tf.Tensor,
|
1056 |
+
output_attentions: bool,
|
1057 |
+
output_hidden_states: bool,
|
1058 |
+
return_dict: bool,
|
1059 |
+
training: bool = False,
|
1060 |
+
) -> Union[Tuple, TFBaseModelOutput]:
|
1061 |
+
encoder_states = () if output_hidden_states else None
|
1062 |
+
all_attentions = () if output_attentions else None
|
1063 |
+
|
1064 |
+
for idx, encoder_layer in enumerate(self.layers):
|
1065 |
+
if output_hidden_states:
|
1066 |
+
encoder_states = encoder_states + (hidden_states,)
|
1067 |
+
|
1068 |
+
layer_outputs = encoder_layer(
|
1069 |
+
hidden_states,
|
1070 |
+
attention_mask,
|
1071 |
+
causal_attention_mask,
|
1072 |
+
output_attentions=output_attentions,
|
1073 |
+
)
|
1074 |
+
hidden_states = layer_outputs[0]
|
1075 |
+
|
1076 |
+
if output_attentions:
|
1077 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
1078 |
+
|
1079 |
+
if output_hidden_states:
|
1080 |
+
encoder_states = encoder_states + (hidden_states,)
|
1081 |
+
|
1082 |
+
if not return_dict:
|
1083 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
1084 |
+
return TFBaseModelOutput(
|
1085 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
1086 |
+
)
|
1087 |
+
|
1088 |
+
def build(self, input_shape=None):
|
1089 |
+
if self.built:
|
1090 |
+
return
|
1091 |
+
self.built = True
|
1092 |
+
if getattr(self, "layers", None) is not None:
|
1093 |
+
for layer in self.layers:
|
1094 |
+
with tf.name_scope(layer.name):
|
1095 |
+
layer.build(None)
|
1096 |
+
|
1097 |
+
|
1098 |
+
class TFGroupViTVisionEncoder(keras.layers.Layer):
|
1099 |
+
def __init__(self, config: GroupViTVisionConfig, **kwargs) -> None:
|
1100 |
+
super().__init__(**kwargs)
|
1101 |
+
|
1102 |
+
self.stages = [
|
1103 |
+
TFGroupViTStage(
|
1104 |
+
config=config,
|
1105 |
+
depth=config.depths[i],
|
1106 |
+
num_group_token=config.num_group_tokens[i],
|
1107 |
+
num_output_group=config.num_output_groups[i],
|
1108 |
+
num_prev_group_token=config.num_output_groups[i - 1] if i > 0 else 0,
|
1109 |
+
name=f"stages_._{i}",
|
1110 |
+
)
|
1111 |
+
for i in range(len(config.depths))
|
1112 |
+
]
|
1113 |
+
|
1114 |
+
def call(
|
1115 |
+
self,
|
1116 |
+
hidden_states: tf.Tensor,
|
1117 |
+
output_hidden_states: bool,
|
1118 |
+
output_attentions: bool,
|
1119 |
+
return_dict: bool,
|
1120 |
+
training: bool = False,
|
1121 |
+
) -> Union[tuple, TFBaseModelOutput]:
|
1122 |
+
all_hidden_states = () if output_hidden_states else None
|
1123 |
+
all_groupings = () if output_attentions else None
|
1124 |
+
|
1125 |
+
group_tokens = None
|
1126 |
+
|
1127 |
+
for stage in self.stages:
|
1128 |
+
if output_hidden_states:
|
1129 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1130 |
+
|
1131 |
+
layer_outputs = stage(hidden_states, group_tokens, output_attentions)
|
1132 |
+
|
1133 |
+
hidden_states = layer_outputs[0]
|
1134 |
+
group_tokens = layer_outputs[1]
|
1135 |
+
|
1136 |
+
if output_attentions and layer_outputs[2] is not None:
|
1137 |
+
all_groupings = all_groupings + (layer_outputs[2],)
|
1138 |
+
|
1139 |
+
if output_hidden_states:
|
1140 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1141 |
+
|
1142 |
+
if not return_dict:
|
1143 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_groupings] if v is not None)
|
1144 |
+
return TFBaseModelOutput(
|
1145 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_groupings
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
def build(self, input_shape=None):
|
1149 |
+
if self.built:
|
1150 |
+
return
|
1151 |
+
self.built = True
|
1152 |
+
if getattr(self, "stages", None) is not None:
|
1153 |
+
for layer in self.stages:
|
1154 |
+
with tf.name_scope(layer.name):
|
1155 |
+
layer.build(None)
|
1156 |
+
|
1157 |
+
|
1158 |
+
# Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextTransformer with CLIPText->GroupViTText, CLIPEncoder->GroupViTTextEncoder
|
1159 |
+
class TFGroupViTTextTransformer(keras.layers.Layer):
|
1160 |
+
def __init__(self, config: GroupViTTextConfig, **kwargs):
|
1161 |
+
super().__init__(**kwargs)
|
1162 |
+
|
1163 |
+
self.embeddings = TFGroupViTTextEmbeddings(config, name="embeddings")
|
1164 |
+
self.encoder = TFGroupViTTextEncoder(config, name="encoder")
|
1165 |
+
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="final_layer_norm")
|
1166 |
+
|
1167 |
+
# For `pooled_output` computation
|
1168 |
+
self.eos_token_id = config.eos_token_id
|
1169 |
+
self.embed_dim = config.hidden_size
|
1170 |
+
|
1171 |
+
def call(
|
1172 |
+
self,
|
1173 |
+
input_ids: TFModelInputType,
|
1174 |
+
attention_mask: tf.Tensor,
|
1175 |
+
position_ids: tf.Tensor,
|
1176 |
+
output_attentions: bool,
|
1177 |
+
output_hidden_states: bool,
|
1178 |
+
return_dict: bool,
|
1179 |
+
training: bool = False,
|
1180 |
+
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
|
1181 |
+
input_shape = shape_list(input_ids)
|
1182 |
+
|
1183 |
+
embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
1184 |
+
|
1185 |
+
batch_size, seq_length = input_shape
|
1186 |
+
# CLIP's text model uses causal mask, prepare it here.
|
1187 |
+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
1188 |
+
causal_attention_mask = self._build_causal_attention_mask(batch_size, seq_length, dtype=embedding_output.dtype)
|
1189 |
+
|
1190 |
+
# check attention mask and invert
|
1191 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1192 |
+
attention_mask = _expand_mask(attention_mask)
|
1193 |
+
|
1194 |
+
encoder_outputs = self.encoder(
|
1195 |
+
hidden_states=embedding_output,
|
1196 |
+
attention_mask=attention_mask,
|
1197 |
+
causal_attention_mask=causal_attention_mask,
|
1198 |
+
output_attentions=output_attentions,
|
1199 |
+
output_hidden_states=output_hidden_states,
|
1200 |
+
return_dict=return_dict,
|
1201 |
+
training=training,
|
1202 |
+
)
|
1203 |
+
|
1204 |
+
sequence_output = encoder_outputs[0]
|
1205 |
+
sequence_output = self.final_layer_norm(inputs=sequence_output)
|
1206 |
+
|
1207 |
+
if self.eos_token_id == 2:
|
1208 |
+
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
|
1209 |
+
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
|
1210 |
+
# ------------------------------------------------------------
|
1211 |
+
# text_embeds.shape = [batch_size, n_ctx, transformer.width]
|
1212 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
1213 |
+
pooled_output = tf.gather_nd(
|
1214 |
+
params=sequence_output,
|
1215 |
+
indices=tf.stack(
|
1216 |
+
values=(tf.range(input_shape[0], dtype=tf.int64), tf.math.argmax(input_ids, axis=-1)), axis=1
|
1217 |
+
),
|
1218 |
+
)
|
1219 |
+
else:
|
1220 |
+
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
|
1221 |
+
pooled_output = tf.gather_nd(
|
1222 |
+
params=sequence_output,
|
1223 |
+
indices=tf.stack(
|
1224 |
+
values=(
|
1225 |
+
tf.range(input_shape[0], dtype=tf.int64),
|
1226 |
+
tf.math.argmax(tf.cast(input_ids == self.eos_token_id, dtype=tf.int8), axis=-1),
|
1227 |
+
),
|
1228 |
+
axis=1,
|
1229 |
+
),
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
if not return_dict:
|
1233 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1234 |
+
|
1235 |
+
return TFBaseModelOutputWithPooling(
|
1236 |
+
last_hidden_state=sequence_output,
|
1237 |
+
pooler_output=pooled_output,
|
1238 |
+
hidden_states=encoder_outputs.hidden_states,
|
1239 |
+
attentions=encoder_outputs.attentions,
|
1240 |
+
)
|
1241 |
+
|
1242 |
+
def _build_causal_attention_mask(self, batch_size, seq_length, dtype=tf.float32):
|
1243 |
+
# It is possible with an unspecified sequence length for seq_length to be
|
1244 |
+
# a runtime value, which is unsupported by tf.constant. Per the TensorFlow
|
1245 |
+
# docs, tf.fill can handle runtime dynamic shapes:
|
1246 |
+
# https://www.tensorflow.org/api_docs/python/tf/fill
|
1247 |
+
diag = tf.cast(tf.fill((seq_length,), 0.0), dtype)
|
1248 |
+
|
1249 |
+
# set an additive 2D attention mask with all places being masked
|
1250 |
+
to_mask = tf.cast(tf.fill((seq_length, seq_length), -10000.0), dtype)
|
1251 |
+
|
1252 |
+
# set diagonal & lower triangular parts to 0 (i.e. the places not to be masked)
|
1253 |
+
# TIP: think the 2D matrix as the space of (query_seq, key_seq)
|
1254 |
+
to_mask = tf.linalg.band_part(to_mask, 0, -1)
|
1255 |
+
# to_mask = tf.linalg.band_part(to_mask, -1, 0)
|
1256 |
+
to_mask = tf.linalg.set_diag(to_mask, diagonal=diag)
|
1257 |
+
|
1258 |
+
return tf.broadcast_to(input=to_mask, shape=(batch_size, 1, seq_length, seq_length))
|
1259 |
+
|
1260 |
+
def build(self, input_shape=None):
|
1261 |
+
if self.built:
|
1262 |
+
return
|
1263 |
+
self.built = True
|
1264 |
+
if getattr(self, "embeddings", None) is not None:
|
1265 |
+
with tf.name_scope(self.embeddings.name):
|
1266 |
+
self.embeddings.build(None)
|
1267 |
+
if getattr(self, "encoder", None) is not None:
|
1268 |
+
with tf.name_scope(self.encoder.name):
|
1269 |
+
self.encoder.build(None)
|
1270 |
+
if getattr(self, "final_layer_norm", None) is not None:
|
1271 |
+
with tf.name_scope(self.final_layer_norm.name):
|
1272 |
+
self.final_layer_norm.build([None, None, self.embed_dim])
|
1273 |
+
|
1274 |
+
|
1275 |
+
# Adapted from transformers.models.clip.modeling_tf_clip.TFCLIPVisionTransformer
|
1276 |
+
class TFGroupViTVisionTransformer(keras.layers.Layer):
|
1277 |
+
def __init__(self, config: GroupViTVisionConfig, **kwargs):
|
1278 |
+
super().__init__(**kwargs)
|
1279 |
+
|
1280 |
+
self.embeddings = TFGroupViTVisionEmbeddings(config, name="embeddings")
|
1281 |
+
self.encoder = TFGroupViTVisionEncoder(config, name="encoder")
|
1282 |
+
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
|
1283 |
+
self.embed_dim = config.hidden_size
|
1284 |
+
|
1285 |
+
def call(
|
1286 |
+
self,
|
1287 |
+
pixel_values: TFModelInputType,
|
1288 |
+
output_attentions: bool,
|
1289 |
+
output_hidden_states: bool,
|
1290 |
+
return_dict: bool,
|
1291 |
+
training: bool = False,
|
1292 |
+
) -> Union[Tuple, TFBaseModelOutputWithPooling]:
|
1293 |
+
embedding_output = self.embeddings(pixel_values)
|
1294 |
+
|
1295 |
+
encoder_outputs = self.encoder(
|
1296 |
+
hidden_states=embedding_output,
|
1297 |
+
output_hidden_states=output_hidden_states,
|
1298 |
+
output_attentions=output_attentions,
|
1299 |
+
return_dict=return_dict,
|
1300 |
+
)
|
1301 |
+
|
1302 |
+
last_hidden_state = encoder_outputs[0]
|
1303 |
+
|
1304 |
+
# normalize the last hidden state
|
1305 |
+
last_hidden_state = self.layernorm(last_hidden_state)
|
1306 |
+
pooled_output = tf.math.reduce_mean(last_hidden_state, axis=1)
|
1307 |
+
|
1308 |
+
if not return_dict:
|
1309 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
1310 |
+
|
1311 |
+
return TFBaseModelOutputWithPooling(
|
1312 |
+
last_hidden_state=last_hidden_state,
|
1313 |
+
pooler_output=pooled_output,
|
1314 |
+
hidden_states=encoder_outputs.hidden_states,
|
1315 |
+
attentions=encoder_outputs.attentions,
|
1316 |
+
)
|
1317 |
+
|
1318 |
+
def build(self, input_shape=None):
|
1319 |
+
if self.built:
|
1320 |
+
return
|
1321 |
+
self.built = True
|
1322 |
+
if getattr(self, "embeddings", None) is not None:
|
1323 |
+
with tf.name_scope(self.embeddings.name):
|
1324 |
+
self.embeddings.build(None)
|
1325 |
+
if getattr(self, "encoder", None) is not None:
|
1326 |
+
with tf.name_scope(self.encoder.name):
|
1327 |
+
self.encoder.build(None)
|
1328 |
+
if getattr(self, "layernorm", None) is not None:
|
1329 |
+
with tf.name_scope(self.layernorm.name):
|
1330 |
+
self.layernorm.build([None, None, self.embed_dim])
|
1331 |
+
|
1332 |
+
|
1333 |
+
@keras_serializable
|
1334 |
+
# Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextMainLayer with CLIP->GroupViT
|
1335 |
+
class TFGroupViTTextMainLayer(keras.layers.Layer):
|
1336 |
+
config_class = GroupViTTextConfig
|
1337 |
+
|
1338 |
+
def __init__(self, config: GroupViTTextConfig, **kwargs):
|
1339 |
+
super().__init__(**kwargs)
|
1340 |
+
self.config = config
|
1341 |
+
self.text_model = TFGroupViTTextTransformer(config, name="text_model")
|
1342 |
+
|
1343 |
+
def get_input_embeddings(self) -> keras.layers.Layer:
|
1344 |
+
return self.text_model.embeddings
|
1345 |
+
|
1346 |
+
def set_input_embeddings(self, value: tf.Variable):
|
1347 |
+
self.text_model.embeddings.weight = value
|
1348 |
+
self.text_model.embeddings.vocab_size = shape_list(value)[0]
|
1349 |
+
|
1350 |
+
@unpack_inputs
|
1351 |
+
def call(
|
1352 |
+
self,
|
1353 |
+
input_ids: TFModelInputType | None = None,
|
1354 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1355 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1356 |
+
output_attentions: Optional[bool] = None,
|
1357 |
+
output_hidden_states: Optional[bool] = None,
|
1358 |
+
return_dict: Optional[bool] = None,
|
1359 |
+
training: bool = False,
|
1360 |
+
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
|
1361 |
+
if input_ids is None:
|
1362 |
+
raise ValueError("You have to specify input_ids")
|
1363 |
+
|
1364 |
+
input_shape = shape_list(input_ids)
|
1365 |
+
|
1366 |
+
if attention_mask is None:
|
1367 |
+
attention_mask = tf.fill(dims=input_shape, value=1)
|
1368 |
+
|
1369 |
+
text_model_outputs = self.text_model(
|
1370 |
+
input_ids=input_ids,
|
1371 |
+
attention_mask=attention_mask,
|
1372 |
+
position_ids=position_ids,
|
1373 |
+
output_attentions=output_attentions,
|
1374 |
+
output_hidden_states=output_hidden_states,
|
1375 |
+
return_dict=return_dict,
|
1376 |
+
training=training,
|
1377 |
+
)
|
1378 |
+
|
1379 |
+
return text_model_outputs
|
1380 |
+
|
1381 |
+
def build(self, input_shape=None):
|
1382 |
+
if self.built:
|
1383 |
+
return
|
1384 |
+
self.built = True
|
1385 |
+
if getattr(self, "text_model", None) is not None:
|
1386 |
+
with tf.name_scope(self.text_model.name):
|
1387 |
+
self.text_model.build(None)
|
1388 |
+
|
1389 |
+
|
1390 |
+
@keras_serializable
|
1391 |
+
# Copied from transformers.models.clip.modeling_tf_clip.TFCLIPVisionMainLayer with CLIP->GroupViT
|
1392 |
+
class TFGroupViTVisionMainLayer(keras.layers.Layer):
|
1393 |
+
config_class = GroupViTVisionConfig
|
1394 |
+
|
1395 |
+
def __init__(self, config: GroupViTVisionConfig, **kwargs):
|
1396 |
+
super().__init__(**kwargs)
|
1397 |
+
self.config = config
|
1398 |
+
self.vision_model = TFGroupViTVisionTransformer(config, name="vision_model")
|
1399 |
+
|
1400 |
+
def get_input_embeddings(self) -> keras.layers.Layer:
|
1401 |
+
return self.vision_model.embeddings
|
1402 |
+
|
1403 |
+
@unpack_inputs
|
1404 |
+
def call(
|
1405 |
+
self,
|
1406 |
+
pixel_values: TFModelInputType | None = None,
|
1407 |
+
output_attentions: Optional[bool] = None,
|
1408 |
+
output_hidden_states: Optional[bool] = None,
|
1409 |
+
return_dict: Optional[bool] = None,
|
1410 |
+
training: bool = False,
|
1411 |
+
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
|
1412 |
+
if pixel_values is None:
|
1413 |
+
raise ValueError("You have to specify pixel_values")
|
1414 |
+
|
1415 |
+
vision_model_outputs = self.vision_model(
|
1416 |
+
pixel_values=pixel_values,
|
1417 |
+
output_attentions=output_attentions,
|
1418 |
+
output_hidden_states=output_hidden_states,
|
1419 |
+
return_dict=return_dict,
|
1420 |
+
training=training,
|
1421 |
+
)
|
1422 |
+
|
1423 |
+
return vision_model_outputs
|
1424 |
+
|
1425 |
+
def build(self, input_shape=None):
|
1426 |
+
if self.built:
|
1427 |
+
return
|
1428 |
+
self.built = True
|
1429 |
+
if getattr(self, "vision_model", None) is not None:
|
1430 |
+
with tf.name_scope(self.vision_model.name):
|
1431 |
+
self.vision_model.build(None)
|
1432 |
+
|
1433 |
+
|
1434 |
+
@keras_serializable
|
1435 |
+
# Adapted from transformers.models.clip.modeling_tf_clip.TFCLIPMainLayer
|
1436 |
+
class TFGroupViTMainLayer(keras.layers.Layer):
|
1437 |
+
config_class = GroupViTConfig
|
1438 |
+
|
1439 |
+
def __init__(self, config: GroupViTConfig, **kwargs):
|
1440 |
+
super().__init__(**kwargs)
|
1441 |
+
|
1442 |
+
if not isinstance(config.text_config, GroupViTTextConfig):
|
1443 |
+
raise ValueError(
|
1444 |
+
"config.text_config is expected to be of type GroupViTTextConfig but is of type"
|
1445 |
+
f" {type(config.text_config)}."
|
1446 |
+
)
|
1447 |
+
|
1448 |
+
if not isinstance(config.vision_config, GroupViTVisionConfig):
|
1449 |
+
raise ValueError(
|
1450 |
+
"config.vision_config is expected to be of type GroupViTVisionConfig but is of type"
|
1451 |
+
f" {type(config.vision_config)}."
|
1452 |
+
)
|
1453 |
+
|
1454 |
+
self.config = config
|
1455 |
+
|
1456 |
+
text_config = config.text_config
|
1457 |
+
vision_config = config.vision_config
|
1458 |
+
|
1459 |
+
self.projection_dim = config.projection_dim
|
1460 |
+
self.projection_intermediate_dim = config.projection_intermediate_dim
|
1461 |
+
self.text_embed_dim = text_config.hidden_size
|
1462 |
+
self.vision_embed_dim = vision_config.hidden_size
|
1463 |
+
|
1464 |
+
self.text_model = TFGroupViTTextTransformer(text_config, name="text_model")
|
1465 |
+
self.vision_model = TFGroupViTVisionTransformer(vision_config, name="vision_model")
|
1466 |
+
|
1467 |
+
self.visual_projection = [
|
1468 |
+
keras.layers.Dense(self.projection_intermediate_dim, name="visual_projection.0"),
|
1469 |
+
keras.layers.BatchNormalization(name="visual_projection.1", momentum=0.9, epsilon=1e-5),
|
1470 |
+
keras.layers.ReLU(name="visual_projection.2"),
|
1471 |
+
keras.layers.Dense(self.projection_dim, name="visual_projection.3"),
|
1472 |
+
]
|
1473 |
+
self.text_projection = [
|
1474 |
+
keras.layers.Dense(self.projection_intermediate_dim, name="text_projection.0"),
|
1475 |
+
keras.layers.BatchNormalization(name="text_projection.1", momentum=0.9, epsilon=1e-5),
|
1476 |
+
keras.layers.ReLU(name="text_projection.2"),
|
1477 |
+
keras.layers.Dense(self.projection_dim, name="text_projection.3"),
|
1478 |
+
]
|
1479 |
+
|
1480 |
+
def build(self, input_shape=None):
|
1481 |
+
self.logit_scale = self.add_weight(
|
1482 |
+
shape=(1,),
|
1483 |
+
initializer=keras.initializers.Constant(self.config.logit_scale_init_value),
|
1484 |
+
trainable=True,
|
1485 |
+
name="logit_scale",
|
1486 |
+
)
|
1487 |
+
|
1488 |
+
if self.built:
|
1489 |
+
return
|
1490 |
+
self.built = True
|
1491 |
+
if getattr(self, "text_model", None) is not None:
|
1492 |
+
with tf.name_scope(self.text_model.name):
|
1493 |
+
self.text_model.build(None)
|
1494 |
+
if getattr(self, "vision_model", None) is not None:
|
1495 |
+
with tf.name_scope(self.vision_model.name):
|
1496 |
+
self.vision_model.build(None)
|
1497 |
+
if getattr(self, "visual_projection", None) is not None:
|
1498 |
+
with tf.name_scope(self.visual_projection[0].name):
|
1499 |
+
self.visual_projection[0].build([None, None, None, self.vision_embed_dim])
|
1500 |
+
with tf.name_scope(self.visual_projection[1].name):
|
1501 |
+
self.visual_projection[1].build((None, self.projection_intermediate_dim))
|
1502 |
+
with tf.name_scope(self.visual_projection[3].name):
|
1503 |
+
self.visual_projection[3].build([None, None, None, self.projection_intermediate_dim])
|
1504 |
+
if getattr(self, "text_projection", None) is not None:
|
1505 |
+
with tf.name_scope(self.text_projection[0].name):
|
1506 |
+
self.text_projection[0].build([None, None, None, self.text_embed_dim])
|
1507 |
+
with tf.name_scope(self.text_projection[1].name):
|
1508 |
+
self.text_projection[1].build((None, self.projection_intermediate_dim))
|
1509 |
+
with tf.name_scope(self.text_projection[3].name):
|
1510 |
+
self.text_projection[3].build([None, None, None, self.projection_intermediate_dim])
|
1511 |
+
|
1512 |
+
@unpack_inputs
|
1513 |
+
def get_text_features(
|
1514 |
+
self,
|
1515 |
+
input_ids: TFModelInputType | None = None,
|
1516 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1517 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1518 |
+
output_attentions: Optional[bool] = None,
|
1519 |
+
output_hidden_states: Optional[bool] = None,
|
1520 |
+
return_dict: Optional[bool] = None,
|
1521 |
+
training: bool = False,
|
1522 |
+
) -> tf.Tensor:
|
1523 |
+
if input_ids is None:
|
1524 |
+
raise ValueError("You have to specify either input_ids")
|
1525 |
+
|
1526 |
+
input_shape = shape_list(input_ids)
|
1527 |
+
|
1528 |
+
if attention_mask is None:
|
1529 |
+
attention_mask = tf.fill(dims=input_shape, value=1)
|
1530 |
+
|
1531 |
+
text_outputs = self.text_model(
|
1532 |
+
input_ids=input_ids,
|
1533 |
+
attention_mask=attention_mask,
|
1534 |
+
position_ids=position_ids,
|
1535 |
+
output_attentions=output_attentions,
|
1536 |
+
output_hidden_states=output_hidden_states,
|
1537 |
+
return_dict=return_dict,
|
1538 |
+
training=training,
|
1539 |
+
)
|
1540 |
+
|
1541 |
+
pooled_output = text_outputs[1]
|
1542 |
+
for layer in self.text_projection:
|
1543 |
+
pooled_output = layer(pooled_output)
|
1544 |
+
|
1545 |
+
text_features = pooled_output
|
1546 |
+
return text_features
|
1547 |
+
|
1548 |
+
@unpack_inputs
|
1549 |
+
def get_image_features(
|
1550 |
+
self,
|
1551 |
+
pixel_values: TFModelInputType | None = None,
|
1552 |
+
output_attentions: Optional[bool] = None,
|
1553 |
+
output_hidden_states: Optional[bool] = None,
|
1554 |
+
return_dict: Optional[bool] = None,
|
1555 |
+
training: bool = False,
|
1556 |
+
) -> tf.Tensor:
|
1557 |
+
if pixel_values is None:
|
1558 |
+
raise ValueError("You have to specify pixel_values")
|
1559 |
+
|
1560 |
+
vision_outputs = self.vision_model(
|
1561 |
+
pixel_values=pixel_values,
|
1562 |
+
output_attentions=output_attentions,
|
1563 |
+
output_hidden_states=output_hidden_states,
|
1564 |
+
return_dict=return_dict,
|
1565 |
+
training=training,
|
1566 |
+
)
|
1567 |
+
|
1568 |
+
pooled_output = vision_outputs[1]
|
1569 |
+
for layer in self.visual_projection:
|
1570 |
+
pooled_output = layer(pooled_output)
|
1571 |
+
|
1572 |
+
image_features = pooled_output
|
1573 |
+
return image_features
|
1574 |
+
|
1575 |
+
@unpack_inputs
|
1576 |
+
def call(
|
1577 |
+
self,
|
1578 |
+
input_ids: TFModelInputType | None = None,
|
1579 |
+
pixel_values: TFModelInputType | None = None,
|
1580 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1581 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1582 |
+
return_loss: Optional[bool] = None,
|
1583 |
+
output_attentions: Optional[bool] = None,
|
1584 |
+
output_hidden_states: Optional[bool] = None,
|
1585 |
+
output_segmentation: Optional[bool] = None,
|
1586 |
+
return_dict: Optional[bool] = None,
|
1587 |
+
training: bool = False,
|
1588 |
+
) -> Union[TFGroupViTModelOutput, Tuple[tf.Tensor]]:
|
1589 |
+
if input_ids is None:
|
1590 |
+
raise ValueError("You have to specify either input_ids")
|
1591 |
+
if pixel_values is None:
|
1592 |
+
raise ValueError("You have to specify pixel_values")
|
1593 |
+
|
1594 |
+
input_shape = shape_list(input_ids)
|
1595 |
+
|
1596 |
+
if attention_mask is None:
|
1597 |
+
attention_mask = tf.fill(dims=input_shape, value=1)
|
1598 |
+
if output_segmentation:
|
1599 |
+
output_attentions = True
|
1600 |
+
vision_outputs = self.vision_model(
|
1601 |
+
pixel_values=pixel_values,
|
1602 |
+
output_attentions=output_attentions,
|
1603 |
+
output_hidden_states=output_hidden_states,
|
1604 |
+
return_dict=return_dict,
|
1605 |
+
training=training,
|
1606 |
+
)
|
1607 |
+
|
1608 |
+
text_outputs = self.text_model(
|
1609 |
+
input_ids=input_ids,
|
1610 |
+
attention_mask=attention_mask,
|
1611 |
+
position_ids=position_ids,
|
1612 |
+
output_attentions=output_attentions,
|
1613 |
+
output_hidden_states=output_hidden_states,
|
1614 |
+
return_dict=return_dict,
|
1615 |
+
training=training,
|
1616 |
+
)
|
1617 |
+
|
1618 |
+
image_embeds = vision_outputs[1]
|
1619 |
+
for layer in self.visual_projection:
|
1620 |
+
image_embeds = layer(image_embeds)
|
1621 |
+
|
1622 |
+
text_embeds = text_outputs[1]
|
1623 |
+
for layer in self.text_projection:
|
1624 |
+
text_embeds = layer(text_embeds)
|
1625 |
+
|
1626 |
+
# normalized features
|
1627 |
+
image_embeds = image_embeds / tf.norm(image_embeds, axis=-1, keepdims=True)
|
1628 |
+
text_embeds = text_embeds / tf.norm(text_embeds, axis=-1, keepdims=True)
|
1629 |
+
|
1630 |
+
# cosine similarity as logits
|
1631 |
+
logit_scale = tf.math.exp(self.logit_scale)
|
1632 |
+
logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale
|
1633 |
+
logits_per_image = tf.transpose(logits_per_text)
|
1634 |
+
|
1635 |
+
seg_logits = None
|
1636 |
+
if output_segmentation:
|
1637 |
+
# grouped features
|
1638 |
+
# [batch_size_image, num_group, hidden_size]
|
1639 |
+
image_group_embeds = vision_outputs[0]
|
1640 |
+
# [batch_size_image*num_group, hidden_size]
|
1641 |
+
image_group_embeds = tf.reshape(image_group_embeds, shape=(-1, shape_list(image_group_embeds)[-1]))
|
1642 |
+
for layer in self.visual_projection:
|
1643 |
+
image_group_embeds = layer(image_group_embeds)
|
1644 |
+
if output_hidden_states:
|
1645 |
+
attentions = vision_outputs[3]
|
1646 |
+
else:
|
1647 |
+
attentions = vision_outputs[2]
|
1648 |
+
# [batch_size_image, num_group, height, width]
|
1649 |
+
grouping = get_grouping_from_attentions(attentions, pixel_values.shape[2:])
|
1650 |
+
|
1651 |
+
# normalized features
|
1652 |
+
image_group_embeds = image_group_embeds / tf.norm(
|
1653 |
+
tensor=image_group_embeds, ord="euclidean", axis=-1, keepdims=True
|
1654 |
+
)
|
1655 |
+
# [batch_size_image x num_group, batch_size_text]
|
1656 |
+
logits_per_image_group = tf.matmul(image_group_embeds, text_embeds, transpose_b=True) * logit_scale
|
1657 |
+
# [batch_size_image, batch_size_text, num_group]
|
1658 |
+
logits_per_image_group = tf.reshape(
|
1659 |
+
logits_per_image_group, shape=(image_embeds.shape[0], -1, text_embeds.shape[0])
|
1660 |
+
)
|
1661 |
+
logits_per_image_group = tf.transpose(logits_per_image_group, perm=(0, 2, 1))
|
1662 |
+
|
1663 |
+
# [batch_size_image, batch_size_text, height x width]
|
1664 |
+
flatten_grouping = tf.reshape(grouping, shape=(shape_list(grouping)[0], shape_list(grouping)[1], -1))
|
1665 |
+
|
1666 |
+
# [batch_size_image, batch_size_text, height, width]
|
1667 |
+
seg_logits = tf.matmul(logits_per_image_group, flatten_grouping) * logit_scale
|
1668 |
+
seg_logits = tf.reshape(
|
1669 |
+
seg_logits, shape=(seg_logits.shape[0], seg_logits.shape[1], grouping.shape[2], grouping.shape[3])
|
1670 |
+
)
|
1671 |
+
|
1672 |
+
loss = None
|
1673 |
+
if return_loss:
|
1674 |
+
loss = groupvit_loss(logits_per_text)[None, ...]
|
1675 |
+
|
1676 |
+
if not return_dict:
|
1677 |
+
if seg_logits is not None:
|
1678 |
+
output = (
|
1679 |
+
logits_per_image,
|
1680 |
+
logits_per_text,
|
1681 |
+
seg_logits,
|
1682 |
+
text_embeds,
|
1683 |
+
image_embeds,
|
1684 |
+
text_outputs,
|
1685 |
+
vision_outputs,
|
1686 |
+
)
|
1687 |
+
else:
|
1688 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
1689 |
+
return ((loss,) + output) if loss is not None else output
|
1690 |
+
|
1691 |
+
return TFGroupViTModelOutput(
|
1692 |
+
loss=loss,
|
1693 |
+
logits_per_image=logits_per_image,
|
1694 |
+
logits_per_text=logits_per_text,
|
1695 |
+
segmentation_logits=seg_logits,
|
1696 |
+
text_embeds=text_embeds,
|
1697 |
+
image_embeds=image_embeds,
|
1698 |
+
text_model_output=text_outputs,
|
1699 |
+
vision_model_output=vision_outputs,
|
1700 |
+
)
|
1701 |
+
|
1702 |
+
|
1703 |
+
class TFGroupViTPreTrainedModel(TFPreTrainedModel):
|
1704 |
+
"""
|
1705 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
1706 |
+
models.
|
1707 |
+
"""
|
1708 |
+
|
1709 |
+
config_class = GroupViTConfig
|
1710 |
+
base_model_prefix = "groupvit"
|
1711 |
+
|
1712 |
+
|
1713 |
+
GROUPVIT_START_DOCSTRING = r"""
|
1714 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1715 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1716 |
+
etc.)
|
1717 |
+
|
1718 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
1719 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
1720 |
+
behavior.
|
1721 |
+
|
1722 |
+
<Tip>
|
1723 |
+
|
1724 |
+
TF 2.0 models accepts two formats as inputs:
|
1725 |
+
|
1726 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
1727 |
+
- having all inputs as a list, tuple or dict in the first positional arguments.
|
1728 |
+
|
1729 |
+
This second option is useful when using [`keras.Model.fit`] method which currently requires having all the
|
1730 |
+
tensors in the first argument of the model call function: `model(inputs)`.
|
1731 |
+
|
1732 |
+
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the
|
1733 |
+
first positional argument :
|
1734 |
+
|
1735 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
1736 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
1737 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
1738 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
1739 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
1740 |
+
|
1741 |
+
</Tip>
|
1742 |
+
|
1743 |
+
Args:
|
1744 |
+
config ([`GroupViTConfig`]): Model configuration class with all the parameters of the model.
|
1745 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1746 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1747 |
+
"""
|
1748 |
+
|
1749 |
+
GROUPVIT_TEXT_INPUTS_DOCSTRING = r"""
|
1750 |
+
Args:
|
1751 |
+
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
|
1752 |
+
Indices of input sequence tokens in the vocabulary.
|
1753 |
+
|
1754 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
1755 |
+
[`PreTrainedTokenizer.encode`] for details.
|
1756 |
+
|
1757 |
+
[What are input IDs?](../glossary#input-ids)
|
1758 |
+
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
1759 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1760 |
+
|
1761 |
+
- 1 for tokens that are **not masked**,
|
1762 |
+
- 0 for tokens that are **masked**.
|
1763 |
+
|
1764 |
+
[What are attention masks?](../glossary#attention-mask)
|
1765 |
+
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
1766 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1767 |
+
config.max_position_embeddings - 1]`.
|
1768 |
+
|
1769 |
+
[What are position IDs?](../glossary#position-ids)
|
1770 |
+
output_attentions (`bool`, *optional*):
|
1771 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1772 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
1773 |
+
config will be used instead.
|
1774 |
+
output_hidden_states (`bool`, *optional*):
|
1775 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1776 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
1777 |
+
used instead.
|
1778 |
+
return_dict (`bool`, *optional*):
|
1779 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
1780 |
+
eager mode, in graph mode the value will always be set to True.
|
1781 |
+
training (`bool`, *optional*, defaults to `False``):
|
1782 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
1783 |
+
behaviors between training and evaluation).
|
1784 |
+
"""
|
1785 |
+
|
1786 |
+
GROUPVIT_VISION_INPUTS_DOCSTRING = r"""
|
1787 |
+
Args:
|
1788 |
+
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
|
1789 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
1790 |
+
[`CLIPImageProcessor.__call__`] for details.
|
1791 |
+
output_attentions (`bool`, *optional*):
|
1792 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1793 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
1794 |
+
config will be used instead.
|
1795 |
+
output_hidden_states (`bool`, *optional*):
|
1796 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1797 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
1798 |
+
used instead.
|
1799 |
+
return_dict (`bool`, *optional*):
|
1800 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
1801 |
+
eager mode, in graph mode the value will always be set to True.
|
1802 |
+
training (`bool`, *optional*, defaults to `False``):
|
1803 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
1804 |
+
behaviors between training and evaluation).
|
1805 |
+
"""
|
1806 |
+
|
1807 |
+
GROUPVIT_INPUTS_DOCSTRING = r"""
|
1808 |
+
Args:
|
1809 |
+
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
|
1810 |
+
Indices of input sequence tokens in the vocabulary.
|
1811 |
+
|
1812 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
1813 |
+
[`PreTrainedTokenizer.encode`] for details.
|
1814 |
+
|
1815 |
+
[What are input IDs?](../glossary#input-ids)
|
1816 |
+
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
|
1817 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
1818 |
+
[`CLIPImageProcessor.__call__`] for details.
|
1819 |
+
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
1820 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1821 |
+
|
1822 |
+
- 1 for tokens that are **not masked**,
|
1823 |
+
- 0 for tokens that are **masked**.
|
1824 |
+
|
1825 |
+
[What are attention masks?](../glossary#attention-mask)
|
1826 |
+
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
1827 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1828 |
+
config.max_position_embeddings - 1]`.
|
1829 |
+
|
1830 |
+
[What are position IDs?](../glossary#position-ids)
|
1831 |
+
return_loss (`bool`, *optional*):
|
1832 |
+
Whether or not to return the contrastive loss.
|
1833 |
+
output_attentions (`bool`, *optional*):
|
1834 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1835 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
1836 |
+
config will be used instead.
|
1837 |
+
output_hidden_states (`bool`, *optional*):
|
1838 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1839 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
1840 |
+
used instead.
|
1841 |
+
return_dict (`bool`, *optional*):
|
1842 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
1843 |
+
eager mode, in graph mode the value will always be set to True.
|
1844 |
+
training (`bool`, *optional*, defaults to `False``):
|
1845 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
1846 |
+
behaviors between training and evaluation).
|
1847 |
+
"""
|
1848 |
+
|
1849 |
+
|
1850 |
+
class TFGroupViTTextModel(TFGroupViTPreTrainedModel):
|
1851 |
+
config_class = GroupViTTextConfig
|
1852 |
+
main_input_name = "input_ids"
|
1853 |
+
|
1854 |
+
def __init__(self, config: GroupViTTextConfig, *inputs, **kwargs):
|
1855 |
+
super().__init__(config, *inputs, **kwargs)
|
1856 |
+
|
1857 |
+
self.groupvit = TFGroupViTTextMainLayer(config, name="groupvit")
|
1858 |
+
|
1859 |
+
@unpack_inputs
|
1860 |
+
@add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1861 |
+
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=GroupViTTextConfig)
|
1862 |
+
def call(
|
1863 |
+
self,
|
1864 |
+
input_ids: TFModelInputType | None = None,
|
1865 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1866 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1867 |
+
output_attentions: Optional[bool] = None,
|
1868 |
+
output_hidden_states: Optional[bool] = None,
|
1869 |
+
return_dict: Optional[bool] = None,
|
1870 |
+
training: bool = False,
|
1871 |
+
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
|
1872 |
+
r"""
|
1873 |
+
Returns:
|
1874 |
+
|
1875 |
+
Examples:
|
1876 |
+
|
1877 |
+
```python
|
1878 |
+
>>> from transformers import CLIPTokenizer, TFGroupViTTextModel
|
1879 |
+
|
1880 |
+
>>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
1881 |
+
>>> model = TFGroupViTTextModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
1882 |
+
|
1883 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
|
1884 |
+
|
1885 |
+
>>> outputs = model(**inputs)
|
1886 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1887 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
1888 |
+
```"""
|
1889 |
+
|
1890 |
+
outputs = self.groupvit(
|
1891 |
+
input_ids=input_ids,
|
1892 |
+
attention_mask=attention_mask,
|
1893 |
+
position_ids=position_ids,
|
1894 |
+
output_attentions=output_attentions,
|
1895 |
+
output_hidden_states=output_hidden_states,
|
1896 |
+
return_dict=return_dict,
|
1897 |
+
training=training,
|
1898 |
+
)
|
1899 |
+
|
1900 |
+
return outputs
|
1901 |
+
|
1902 |
+
def build(self, input_shape=None):
|
1903 |
+
if self.built:
|
1904 |
+
return
|
1905 |
+
self.built = True
|
1906 |
+
if getattr(self, "groupvit", None) is not None:
|
1907 |
+
with tf.name_scope(self.groupvit.name):
|
1908 |
+
self.groupvit.build(None)
|
1909 |
+
|
1910 |
+
|
1911 |
+
class TFGroupViTVisionModel(TFGroupViTPreTrainedModel):
|
1912 |
+
config_class = GroupViTVisionConfig
|
1913 |
+
main_input_name = "pixel_values"
|
1914 |
+
|
1915 |
+
def __init__(self, config: GroupViTVisionConfig, *inputs, **kwargs):
|
1916 |
+
super().__init__(config, *inputs, **kwargs)
|
1917 |
+
|
1918 |
+
self.groupvit = TFGroupViTVisionMainLayer(config, name="groupvit")
|
1919 |
+
|
1920 |
+
@unpack_inputs
|
1921 |
+
@add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING)
|
1922 |
+
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=GroupViTVisionConfig)
|
1923 |
+
def call(
|
1924 |
+
self,
|
1925 |
+
pixel_values: TFModelInputType | None = None,
|
1926 |
+
output_attentions: Optional[bool] = None,
|
1927 |
+
output_hidden_states: Optional[bool] = None,
|
1928 |
+
return_dict: Optional[bool] = None,
|
1929 |
+
training: bool = False,
|
1930 |
+
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
|
1931 |
+
r"""
|
1932 |
+
Returns:
|
1933 |
+
|
1934 |
+
Examples:
|
1935 |
+
|
1936 |
+
```python
|
1937 |
+
>>> from PIL import Image
|
1938 |
+
>>> import requests
|
1939 |
+
>>> from transformers import AutoProcessor, TFGroupViTVisionModel
|
1940 |
+
|
1941 |
+
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
1942 |
+
>>> model = TFGroupViTVisionModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
1943 |
+
|
1944 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1945 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1946 |
+
|
1947 |
+
>>> inputs = processor(images=image, return_tensors="tf")
|
1948 |
+
|
1949 |
+
>>> outputs = model(**inputs)
|
1950 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1951 |
+
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
1952 |
+
```"""
|
1953 |
+
|
1954 |
+
outputs = self.groupvit(
|
1955 |
+
pixel_values=pixel_values,
|
1956 |
+
output_attentions=output_attentions,
|
1957 |
+
output_hidden_states=output_hidden_states,
|
1958 |
+
return_dict=return_dict,
|
1959 |
+
training=training,
|
1960 |
+
)
|
1961 |
+
|
1962 |
+
return outputs
|
1963 |
+
|
1964 |
+
def build(self, input_shape=None):
|
1965 |
+
if self.built:
|
1966 |
+
return
|
1967 |
+
self.built = True
|
1968 |
+
if getattr(self, "groupvit", None) is not None:
|
1969 |
+
with tf.name_scope(self.groupvit.name):
|
1970 |
+
self.groupvit.build(None)
|
1971 |
+
|
1972 |
+
|
1973 |
+
@add_start_docstrings(GROUPVIT_START_DOCSTRING)
|
1974 |
+
class TFGroupViTModel(TFGroupViTPreTrainedModel):
|
1975 |
+
config_class = GroupViTConfig
|
1976 |
+
|
1977 |
+
def __init__(self, config: GroupViTConfig, *inputs, **kwargs):
|
1978 |
+
super().__init__(config, *inputs, **kwargs)
|
1979 |
+
|
1980 |
+
self.groupvit = TFGroupViTMainLayer(config, name="groupvit")
|
1981 |
+
|
1982 |
+
@unpack_inputs
|
1983 |
+
@add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1984 |
+
def get_text_features(
|
1985 |
+
self,
|
1986 |
+
input_ids: TFModelInputType | None = None,
|
1987 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1988 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1989 |
+
output_attentions: Optional[bool] = None,
|
1990 |
+
output_hidden_states: Optional[bool] = None,
|
1991 |
+
return_dict: Optional[bool] = None,
|
1992 |
+
training: bool = False,
|
1993 |
+
) -> tf.Tensor:
|
1994 |
+
r"""
|
1995 |
+
Returns:
|
1996 |
+
text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
|
1997 |
+
the projection layer to the pooled output of [`TFGroupViTTextModel`].
|
1998 |
+
|
1999 |
+
Examples:
|
2000 |
+
|
2001 |
+
```python
|
2002 |
+
>>> from transformers import CLIPTokenizer, TFGroupViTModel
|
2003 |
+
|
2004 |
+
>>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
2005 |
+
>>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
2006 |
+
|
2007 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
|
2008 |
+
>>> text_features = model.get_text_features(**inputs)
|
2009 |
+
```"""
|
2010 |
+
|
2011 |
+
text_features = self.groupvit.get_text_features(
|
2012 |
+
input_ids=input_ids,
|
2013 |
+
attention_mask=attention_mask,
|
2014 |
+
position_ids=position_ids,
|
2015 |
+
output_attentions=output_attentions,
|
2016 |
+
output_hidden_states=output_hidden_states,
|
2017 |
+
return_dict=return_dict,
|
2018 |
+
training=training,
|
2019 |
+
)
|
2020 |
+
|
2021 |
+
return text_features
|
2022 |
+
|
2023 |
+
@unpack_inputs
|
2024 |
+
@add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING)
|
2025 |
+
def get_image_features(
|
2026 |
+
self,
|
2027 |
+
pixel_values: TFModelInputType | None = None,
|
2028 |
+
output_attentions: Optional[bool] = None,
|
2029 |
+
output_hidden_states: Optional[bool] = None,
|
2030 |
+
return_dict: Optional[bool] = None,
|
2031 |
+
training: bool = False,
|
2032 |
+
) -> tf.Tensor:
|
2033 |
+
r"""
|
2034 |
+
Returns:
|
2035 |
+
image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying
|
2036 |
+
the projection layer to the pooled output of [`TFGroupViTVisionModel`].
|
2037 |
+
|
2038 |
+
Examples:
|
2039 |
+
|
2040 |
+
```python
|
2041 |
+
>>> from PIL import Image
|
2042 |
+
>>> import requests
|
2043 |
+
>>> from transformers import AutoProcessor, TFGroupViTModel
|
2044 |
+
|
2045 |
+
>>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
2046 |
+
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
2047 |
+
|
2048 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
2049 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
2050 |
+
|
2051 |
+
>>> inputs = processor(images=image, return_tensors="tf")
|
2052 |
+
|
2053 |
+
>>> image_features = model.get_image_features(**inputs)
|
2054 |
+
```"""
|
2055 |
+
|
2056 |
+
image_features = self.groupvit.get_image_features(
|
2057 |
+
pixel_values=pixel_values,
|
2058 |
+
output_attentions=output_attentions,
|
2059 |
+
output_hidden_states=output_hidden_states,
|
2060 |
+
return_dict=return_dict,
|
2061 |
+
training=training,
|
2062 |
+
)
|
2063 |
+
|
2064 |
+
return image_features
|
2065 |
+
|
2066 |
+
@unpack_inputs
|
2067 |
+
@add_start_docstrings_to_model_forward(GROUPVIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
2068 |
+
@replace_return_docstrings(output_type=TFGroupViTModelOutput, config_class=GroupViTConfig)
|
2069 |
+
def call(
|
2070 |
+
self,
|
2071 |
+
input_ids: TFModelInputType | None = None,
|
2072 |
+
pixel_values: TFModelInputType | None = None,
|
2073 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
2074 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
2075 |
+
return_loss: Optional[bool] = None,
|
2076 |
+
output_attentions: Optional[bool] = None,
|
2077 |
+
output_hidden_states: Optional[bool] = None,
|
2078 |
+
output_segmentation: Optional[bool] = None,
|
2079 |
+
return_dict: Optional[bool] = None,
|
2080 |
+
training: bool = False,
|
2081 |
+
) -> Union[TFGroupViTModelOutput, Tuple[tf.Tensor]]:
|
2082 |
+
r"""
|
2083 |
+
Returns:
|
2084 |
+
|
2085 |
+
Examples:
|
2086 |
+
|
2087 |
+
```python
|
2088 |
+
>>> from PIL import Image
|
2089 |
+
>>> import requests
|
2090 |
+
>>> from transformers import AutoProcessor, TFGroupViTModel
|
2091 |
+
>>> import tensorflow as tf
|
2092 |
+
|
2093 |
+
>>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
2094 |
+
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
2095 |
+
|
2096 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
2097 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
2098 |
+
|
2099 |
+
>>> inputs = processor(
|
2100 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True
|
2101 |
+
... )
|
2102 |
+
|
2103 |
+
>>> outputs = model(**inputs)
|
2104 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
2105 |
+
>>> probs = tf.math.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
|
2106 |
+
```"""
|
2107 |
+
|
2108 |
+
outputs = self.groupvit(
|
2109 |
+
input_ids=input_ids,
|
2110 |
+
pixel_values=pixel_values,
|
2111 |
+
attention_mask=attention_mask,
|
2112 |
+
position_ids=position_ids,
|
2113 |
+
return_loss=return_loss,
|
2114 |
+
output_attentions=output_attentions,
|
2115 |
+
output_hidden_states=output_hidden_states,
|
2116 |
+
output_segmentation=output_segmentation,
|
2117 |
+
return_dict=return_dict,
|
2118 |
+
training=training,
|
2119 |
+
)
|
2120 |
+
|
2121 |
+
return outputs
|
2122 |
+
|
2123 |
+
def serving_output(self, output: TFGroupViTModelOutput) -> TFGroupViTModelOutput:
|
2124 |
+
# TODO: As is this currently fails with saved_model=True, because
|
2125 |
+
# TensorFlow cannot trace through nested dataclasses. Reference:
|
2126 |
+
# https://github.com/huggingface/transformers/pull/16886
|
2127 |
+
return output
|
2128 |
+
|
2129 |
+
def build(self, input_shape=None):
|
2130 |
+
if self.built:
|
2131 |
+
return
|
2132 |
+
self.built = True
|
2133 |
+
if getattr(self, "groupvit", None) is not None:
|
2134 |
+
with tf.name_scope(self.groupvit.name):
|
2135 |
+
self.groupvit.build(None)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__init__.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_flax_available,
|
20 |
+
is_sentencepiece_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"],
|
28 |
+
}
|
29 |
+
|
30 |
+
try:
|
31 |
+
if not is_sentencepiece_available():
|
32 |
+
raise OptionalDependencyNotAvailable()
|
33 |
+
except OptionalDependencyNotAvailable:
|
34 |
+
pass
|
35 |
+
else:
|
36 |
+
_import_structure["tokenization_llama"] = ["LlamaTokenizer"]
|
37 |
+
|
38 |
+
try:
|
39 |
+
if not is_tokenizers_available():
|
40 |
+
raise OptionalDependencyNotAvailable()
|
41 |
+
except OptionalDependencyNotAvailable:
|
42 |
+
pass
|
43 |
+
else:
|
44 |
+
_import_structure["tokenization_llama_fast"] = ["LlamaTokenizerFast"]
|
45 |
+
|
46 |
+
try:
|
47 |
+
if not is_torch_available():
|
48 |
+
raise OptionalDependencyNotAvailable()
|
49 |
+
except OptionalDependencyNotAvailable:
|
50 |
+
pass
|
51 |
+
else:
|
52 |
+
_import_structure["modeling_llama"] = [
|
53 |
+
"LlamaForCausalLM",
|
54 |
+
"LlamaModel",
|
55 |
+
"LlamaPreTrainedModel",
|
56 |
+
"LlamaForSequenceClassification",
|
57 |
+
"LlamaForQuestionAnswering",
|
58 |
+
]
|
59 |
+
|
60 |
+
try:
|
61 |
+
if not is_flax_available():
|
62 |
+
raise OptionalDependencyNotAvailable()
|
63 |
+
except OptionalDependencyNotAvailable:
|
64 |
+
pass
|
65 |
+
else:
|
66 |
+
_import_structure["modeling_flax_llama"] = ["FlaxLlamaForCausalLM", "FlaxLlamaModel", "FlaxLlamaPreTrainedModel"]
|
67 |
+
|
68 |
+
|
69 |
+
if TYPE_CHECKING:
|
70 |
+
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
|
71 |
+
|
72 |
+
try:
|
73 |
+
if not is_sentencepiece_available():
|
74 |
+
raise OptionalDependencyNotAvailable()
|
75 |
+
except OptionalDependencyNotAvailable:
|
76 |
+
pass
|
77 |
+
else:
|
78 |
+
from .tokenization_llama import LlamaTokenizer
|
79 |
+
|
80 |
+
try:
|
81 |
+
if not is_tokenizers_available():
|
82 |
+
raise OptionalDependencyNotAvailable()
|
83 |
+
except OptionalDependencyNotAvailable:
|
84 |
+
pass
|
85 |
+
else:
|
86 |
+
from .tokenization_llama_fast import LlamaTokenizerFast
|
87 |
+
|
88 |
+
try:
|
89 |
+
if not is_torch_available():
|
90 |
+
raise OptionalDependencyNotAvailable()
|
91 |
+
except OptionalDependencyNotAvailable:
|
92 |
+
pass
|
93 |
+
else:
|
94 |
+
from .modeling_llama import (
|
95 |
+
LlamaForCausalLM,
|
96 |
+
LlamaForQuestionAnswering,
|
97 |
+
LlamaForSequenceClassification,
|
98 |
+
LlamaModel,
|
99 |
+
LlamaPreTrainedModel,
|
100 |
+
)
|
101 |
+
|
102 |
+
try:
|
103 |
+
if not is_flax_available():
|
104 |
+
raise OptionalDependencyNotAvailable()
|
105 |
+
except OptionalDependencyNotAvailable:
|
106 |
+
pass
|
107 |
+
else:
|
108 |
+
from .modeling_flax_llama import FlaxLlamaForCausalLM, FlaxLlamaModel, FlaxLlamaPreTrainedModel
|
109 |
+
|
110 |
+
|
111 |
+
else:
|
112 |
+
import sys
|
113 |
+
|
114 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.67 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__pycache__/configuration_llama.cpython-310.pyc
ADDED
Binary file (7.82 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__pycache__/convert_llama_weights_to_hf.cpython-310.pyc
ADDED
Binary file (8.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__pycache__/modeling_flax_llama.cpython-310.pyc
ADDED
Binary file (22.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__pycache__/modeling_llama.cpython-310.pyc
ADDED
Binary file (47.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/llama/__pycache__/tokenization_llama.cpython-310.pyc
ADDED
Binary file (18.4 kB). View file
|
|