Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__init__.py +71 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/configuration_bigbird_pegasus.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/convert_bigbird_pegasus_tf_to_pytorch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/modeling_bigbird_pegasus.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +422 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/convert_bigbird_pegasus_tf_to_pytorch.py +170 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/__init__.py +82 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/configuration_ernie_m.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/modeling_ernie_m.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/tokenization_ernie_m.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/configuration_ernie_m.py +117 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/modeling_ernie_m.py +1061 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/tokenization_ernie_m.py +429 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/__init__.py +68 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/configuration_falcon.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/convert_custom_code_checkpoint.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/modeling_falcon.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/configuration_falcon.py +192 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/convert_custom_code_checkpoint.py +74 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/modeling_falcon.py +1648 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/__init__.py +67 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/processing_layoutxlm.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm_fast.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/processing_layoutxlm.py +200 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm.py +1174 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm_fast.py +804 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__init__.py +73 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__pycache__/configuration_levit.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__pycache__/convert_levit_timm_to_pytorch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__pycache__/feature_extraction_levit.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__pycache__/image_processing_levit.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__pycache__/modeling_levit.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/levit/configuration_levit.py +146 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/levit/convert_levit_timm_to_pytorch.py +181 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/levit/feature_extraction_levit.py +33 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/levit/image_processing_levit.py +325 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/levit/modeling_levit.py +739 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__init__.py +110 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/convert_mlcvnets_to_pytorch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/image_processing_mobilevit.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/modeling_tf_mobilevit.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/configuration_mobilevit.py +185 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/convert_mlcvnets_to_pytorch.py +312 -0
env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__init__.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_bigbird_pegasus": [
|
21 |
+
"BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"BigBirdPegasusConfig",
|
23 |
+
"BigBirdPegasusOnnxConfig",
|
24 |
+
],
|
25 |
+
}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_torch_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["modeling_bigbird_pegasus"] = [
|
34 |
+
"BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST",
|
35 |
+
"BigBirdPegasusForCausalLM",
|
36 |
+
"BigBirdPegasusForConditionalGeneration",
|
37 |
+
"BigBirdPegasusForQuestionAnswering",
|
38 |
+
"BigBirdPegasusForSequenceClassification",
|
39 |
+
"BigBirdPegasusModel",
|
40 |
+
"BigBirdPegasusPreTrainedModel",
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
if TYPE_CHECKING:
|
45 |
+
from .configuration_bigbird_pegasus import (
|
46 |
+
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
47 |
+
BigBirdPegasusConfig,
|
48 |
+
BigBirdPegasusOnnxConfig,
|
49 |
+
)
|
50 |
+
|
51 |
+
try:
|
52 |
+
if not is_torch_available():
|
53 |
+
raise OptionalDependencyNotAvailable()
|
54 |
+
except OptionalDependencyNotAvailable:
|
55 |
+
pass
|
56 |
+
else:
|
57 |
+
from .modeling_bigbird_pegasus import (
|
58 |
+
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
|
59 |
+
BigBirdPegasusForCausalLM,
|
60 |
+
BigBirdPegasusForConditionalGeneration,
|
61 |
+
BigBirdPegasusForQuestionAnswering,
|
62 |
+
BigBirdPegasusForSequenceClassification,
|
63 |
+
BigBirdPegasusModel,
|
64 |
+
BigBirdPegasusPreTrainedModel,
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
else:
|
69 |
+
import sys
|
70 |
+
|
71 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.15 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/configuration_bigbird_pegasus.cpython-310.pyc
ADDED
Binary file (13.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/convert_bigbird_pegasus_tf_to_pytorch.cpython-310.pyc
ADDED
Binary file (5.33 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/modeling_bigbird_pegasus.cpython-310.pyc
ADDED
Binary file (85.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright Google Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" BigBirdPegasus model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Any, Mapping, Optional
|
19 |
+
|
20 |
+
from ... import PreTrainedTokenizer
|
21 |
+
from ...configuration_utils import PretrainedConfig
|
22 |
+
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
|
23 |
+
from ...onnx.utils import compute_effective_axis_dimension
|
24 |
+
from ...utils import TensorType, is_torch_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
30 |
+
"google/bigbird-pegasus-large-arxiv": (
|
31 |
+
"https://huggingface.co/google/bigbird-pegasus-large-arxiv/resolve/main/config.json"
|
32 |
+
),
|
33 |
+
"google/bigbird-pegasus-large-pubmed": (
|
34 |
+
"https://huggingface.co/google/bigbird-pegasus-large-pubmed/resolve/main/config.json"
|
35 |
+
),
|
36 |
+
"google/bigbird-pegasus-large-bigpatent": (
|
37 |
+
"https://huggingface.co/google/bigbird-pegasus-large-bigpatent/resolve/main/config.json"
|
38 |
+
),
|
39 |
+
# See all BigBirdPegasus models at https://huggingface.co/models?filter=bigbird_pegasus
|
40 |
+
}
|
41 |
+
|
42 |
+
|
43 |
+
class BigBirdPegasusConfig(PretrainedConfig):
|
44 |
+
r"""
|
45 |
+
This is the configuration class to store the configuration of a [`BigBirdPegasusModel`]. It is used to instantiate
|
46 |
+
an BigBirdPegasus model according to the specified arguments, defining the model architecture. Instantiating a
|
47 |
+
configuration with the defaults will yield a similar configuration to that of the BigBirdPegasus
|
48 |
+
[google/bigbird-pegasus-large-arxiv](https://huggingface.co/google/bigbird-pegasus-large-arxiv) architecture.
|
49 |
+
|
50 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
51 |
+
documentation from [`PretrainedConfig`] for more information.
|
52 |
+
|
53 |
+
|
54 |
+
Args:
|
55 |
+
vocab_size (`int`, *optional*, defaults to 96103):
|
56 |
+
Vocabulary size of the BigBirdPegasus model. Defines the number of different tokens that can be represented
|
57 |
+
by the `inputs_ids` passed when calling [`BigBirdPegasusModel`].
|
58 |
+
d_model (`int`, *optional*, defaults to 1024):
|
59 |
+
Dimension of the layers and the pooler layer.
|
60 |
+
encoder_layers (`int`, *optional*, defaults to 16):
|
61 |
+
Number of encoder layers.
|
62 |
+
decoder_layers (`int`, *optional*, defaults to 16):
|
63 |
+
Number of decoder layers.
|
64 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
65 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
66 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
67 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
68 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
69 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
70 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
71 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
72 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
73 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
74 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
75 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
76 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
77 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
78 |
+
The dropout ratio for the attention probabilities.
|
79 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
80 |
+
The dropout ratio for activations inside the fully connected layer.
|
81 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
82 |
+
The dropout ratio for classifier.
|
83 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
84 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
85 |
+
just in case (e.g., 1024 or 2048 or 4096).
|
86 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
87 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
88 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
89 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
90 |
+
for more details.
|
91 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
92 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
93 |
+
for more details.
|
94 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
95 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
96 |
+
attention_type (`str`, *optional*, defaults to `"block_sparse"`)
|
97 |
+
Whether to use block sparse attention (with n complexity) as introduced in paper or original attention
|
98 |
+
layer (with n^2 complexity) in encoder. Possible values are `"original_full"` and `"block_sparse"`.
|
99 |
+
use_bias (`bool`, *optional*, defaults to `False`)
|
100 |
+
Whether to use bias in query, key, value.
|
101 |
+
block_size (`int`, *optional*, defaults to 64)
|
102 |
+
Size of each block. Useful only when `attention_type == "block_sparse"`.
|
103 |
+
num_random_blocks (`int`, *optional*, defaults to 3)
|
104 |
+
Each query is going to attend these many number of random blocks. Useful only when `attention_type ==
|
105 |
+
"block_sparse"`.
|
106 |
+
scale_embeddings (`bool`, *optional*, defaults to `True`)
|
107 |
+
Whether to rescale embeddings with (hidden_size ** 0.5).
|
108 |
+
|
109 |
+
Example:
|
110 |
+
|
111 |
+
```python
|
112 |
+
>>> from transformers import BigBirdPegasusConfig, BigBirdPegasusModel
|
113 |
+
|
114 |
+
>>> # Initializing a BigBirdPegasus bigbird-pegasus-base style configuration
|
115 |
+
>>> configuration = BigBirdPegasusConfig()
|
116 |
+
|
117 |
+
>>> # Initializing a model (with random weights) from the bigbird-pegasus-base style configuration
|
118 |
+
>>> model = BigBirdPegasusModel(configuration)
|
119 |
+
|
120 |
+
>>> # Accessing the model configuration
|
121 |
+
>>> configuration = model.config
|
122 |
+
```"""
|
123 |
+
|
124 |
+
model_type = "bigbird_pegasus"
|
125 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
126 |
+
attribute_map = {
|
127 |
+
"num_attention_heads": "encoder_attention_heads",
|
128 |
+
"hidden_size": "d_model",
|
129 |
+
"attention_probs_dropout_prob": "attention_dropout",
|
130 |
+
}
|
131 |
+
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
vocab_size=96103,
|
135 |
+
max_position_embeddings=4096,
|
136 |
+
encoder_layers=16,
|
137 |
+
encoder_ffn_dim=4096,
|
138 |
+
encoder_attention_heads=16,
|
139 |
+
decoder_layers=16,
|
140 |
+
decoder_ffn_dim=4096,
|
141 |
+
decoder_attention_heads=16,
|
142 |
+
encoder_layerdrop=0.0,
|
143 |
+
decoder_layerdrop=0.0,
|
144 |
+
use_cache=True,
|
145 |
+
is_encoder_decoder=True,
|
146 |
+
activation_function="gelu_new",
|
147 |
+
d_model=1024,
|
148 |
+
dropout=0.1,
|
149 |
+
attention_dropout=0.0,
|
150 |
+
activation_dropout=0.0,
|
151 |
+
init_std=0.02,
|
152 |
+
decoder_start_token_id=2,
|
153 |
+
classifier_dropout=0.0,
|
154 |
+
scale_embedding=True,
|
155 |
+
pad_token_id=0,
|
156 |
+
bos_token_id=2,
|
157 |
+
eos_token_id=1,
|
158 |
+
attention_type="block_sparse", # only for encoder
|
159 |
+
block_size=64,
|
160 |
+
num_random_blocks=3,
|
161 |
+
use_bias=False,
|
162 |
+
**kwargs,
|
163 |
+
):
|
164 |
+
self.vocab_size = vocab_size
|
165 |
+
self.max_position_embeddings = max_position_embeddings
|
166 |
+
self.d_model = d_model
|
167 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
168 |
+
self.encoder_layers = encoder_layers
|
169 |
+
self.encoder_attention_heads = encoder_attention_heads
|
170 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
171 |
+
self.decoder_layers = decoder_layers
|
172 |
+
self.decoder_attention_heads = decoder_attention_heads
|
173 |
+
self.dropout = dropout
|
174 |
+
self.attention_dropout = attention_dropout
|
175 |
+
self.activation_dropout = activation_dropout
|
176 |
+
self.activation_function = activation_function
|
177 |
+
self.init_std = init_std
|
178 |
+
self.encoder_layerdrop = encoder_layerdrop
|
179 |
+
self.decoder_layerdrop = decoder_layerdrop
|
180 |
+
self.classifier_dropout = classifier_dropout
|
181 |
+
self.use_cache = use_cache
|
182 |
+
self.num_hidden_layers = encoder_layers
|
183 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
184 |
+
|
185 |
+
# extra config
|
186 |
+
self.attention_type = attention_type
|
187 |
+
self.block_size = block_size
|
188 |
+
self.num_random_blocks = num_random_blocks
|
189 |
+
self.use_bias = use_bias
|
190 |
+
|
191 |
+
super().__init__(
|
192 |
+
pad_token_id=pad_token_id,
|
193 |
+
bos_token_id=bos_token_id,
|
194 |
+
eos_token_id=eos_token_id,
|
195 |
+
is_encoder_decoder=is_encoder_decoder,
|
196 |
+
decoder_start_token_id=decoder_start_token_id,
|
197 |
+
**kwargs,
|
198 |
+
)
|
199 |
+
|
200 |
+
|
201 |
+
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig
|
202 |
+
class BigBirdPegasusOnnxConfig(OnnxSeq2SeqConfigWithPast):
|
203 |
+
@property
|
204 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
205 |
+
if self.task in ["default", "seq2seq-lm"]:
|
206 |
+
common_inputs = OrderedDict(
|
207 |
+
[
|
208 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
209 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
210 |
+
]
|
211 |
+
)
|
212 |
+
|
213 |
+
if self.use_past:
|
214 |
+
common_inputs["decoder_input_ids"] = {0: "batch"}
|
215 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
|
216 |
+
else:
|
217 |
+
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
218 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
|
219 |
+
|
220 |
+
if self.use_past:
|
221 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
222 |
+
elif self.task == "causal-lm":
|
223 |
+
# TODO: figure this case out.
|
224 |
+
common_inputs = OrderedDict(
|
225 |
+
[
|
226 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
227 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
228 |
+
]
|
229 |
+
)
|
230 |
+
if self.use_past:
|
231 |
+
num_encoder_layers, _ = self.num_layers
|
232 |
+
for i in range(num_encoder_layers):
|
233 |
+
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
234 |
+
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
235 |
+
else:
|
236 |
+
common_inputs = OrderedDict(
|
237 |
+
[
|
238 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
239 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
240 |
+
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
|
241 |
+
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
|
242 |
+
]
|
243 |
+
)
|
244 |
+
|
245 |
+
return common_inputs
|
246 |
+
|
247 |
+
@property
|
248 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
249 |
+
if self.task in ["default", "seq2seq-lm"]:
|
250 |
+
common_outputs = super().outputs
|
251 |
+
else:
|
252 |
+
common_outputs = super(OnnxConfigWithPast, self).outputs
|
253 |
+
if self.use_past:
|
254 |
+
num_encoder_layers, _ = self.num_layers
|
255 |
+
for i in range(num_encoder_layers):
|
256 |
+
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
257 |
+
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
258 |
+
return common_outputs
|
259 |
+
|
260 |
+
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
|
261 |
+
self,
|
262 |
+
tokenizer: PreTrainedTokenizer,
|
263 |
+
batch_size: int = -1,
|
264 |
+
seq_length: int = -1,
|
265 |
+
is_pair: bool = False,
|
266 |
+
framework: Optional[TensorType] = None,
|
267 |
+
) -> Mapping[str, Any]:
|
268 |
+
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
269 |
+
tokenizer, batch_size, seq_length, is_pair, framework
|
270 |
+
)
|
271 |
+
|
272 |
+
# Generate decoder inputs
|
273 |
+
decoder_seq_length = seq_length if not self.use_past else 1
|
274 |
+
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
275 |
+
tokenizer, batch_size, decoder_seq_length, is_pair, framework
|
276 |
+
)
|
277 |
+
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
|
278 |
+
common_inputs = dict(**encoder_inputs, **decoder_inputs)
|
279 |
+
|
280 |
+
if self.use_past:
|
281 |
+
if not is_torch_available():
|
282 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
283 |
+
else:
|
284 |
+
import torch
|
285 |
+
batch, encoder_seq_length = common_inputs["input_ids"].shape
|
286 |
+
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
|
287 |
+
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
|
288 |
+
encoder_shape = (
|
289 |
+
batch,
|
290 |
+
num_encoder_attention_heads,
|
291 |
+
encoder_seq_length,
|
292 |
+
self._config.hidden_size // num_encoder_attention_heads,
|
293 |
+
)
|
294 |
+
decoder_past_length = decoder_seq_length + 3
|
295 |
+
decoder_shape = (
|
296 |
+
batch,
|
297 |
+
num_decoder_attention_heads,
|
298 |
+
decoder_past_length,
|
299 |
+
self._config.hidden_size // num_decoder_attention_heads,
|
300 |
+
)
|
301 |
+
|
302 |
+
common_inputs["decoder_attention_mask"] = torch.cat(
|
303 |
+
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
|
304 |
+
)
|
305 |
+
|
306 |
+
common_inputs["past_key_values"] = []
|
307 |
+
# If the number of encoder and decoder layers are present in the model configuration, both are considered
|
308 |
+
num_encoder_layers, num_decoder_layers = self.num_layers
|
309 |
+
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
310 |
+
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
311 |
+
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
312 |
+
|
313 |
+
for _ in range(min_num_layers):
|
314 |
+
common_inputs["past_key_values"].append(
|
315 |
+
(
|
316 |
+
torch.zeros(decoder_shape),
|
317 |
+
torch.zeros(decoder_shape),
|
318 |
+
torch.zeros(encoder_shape),
|
319 |
+
torch.zeros(encoder_shape),
|
320 |
+
)
|
321 |
+
)
|
322 |
+
# TODO: test this.
|
323 |
+
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
|
324 |
+
for _ in range(min_num_layers, max_num_layers):
|
325 |
+
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
|
326 |
+
return common_inputs
|
327 |
+
|
328 |
+
def _generate_dummy_inputs_for_causal_lm(
|
329 |
+
self,
|
330 |
+
tokenizer: PreTrainedTokenizer,
|
331 |
+
batch_size: int = -1,
|
332 |
+
seq_length: int = -1,
|
333 |
+
is_pair: bool = False,
|
334 |
+
framework: Optional[TensorType] = None,
|
335 |
+
) -> Mapping[str, Any]:
|
336 |
+
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
337 |
+
tokenizer, batch_size, seq_length, is_pair, framework
|
338 |
+
)
|
339 |
+
|
340 |
+
if self.use_past:
|
341 |
+
if not is_torch_available():
|
342 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
343 |
+
else:
|
344 |
+
import torch
|
345 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
346 |
+
# Not using the same length for past_key_values
|
347 |
+
past_key_values_length = seqlen + 2
|
348 |
+
num_encoder_layers, _ = self.num_layers
|
349 |
+
num_encoder_attention_heads, _ = self.num_attention_heads
|
350 |
+
past_shape = (
|
351 |
+
batch,
|
352 |
+
num_encoder_attention_heads,
|
353 |
+
past_key_values_length,
|
354 |
+
self._config.hidden_size // num_encoder_attention_heads,
|
355 |
+
)
|
356 |
+
|
357 |
+
mask_dtype = common_inputs["attention_mask"].dtype
|
358 |
+
common_inputs["attention_mask"] = torch.cat(
|
359 |
+
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
360 |
+
)
|
361 |
+
common_inputs["past_key_values"] = [
|
362 |
+
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
|
363 |
+
]
|
364 |
+
return common_inputs
|
365 |
+
|
366 |
+
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
367 |
+
self,
|
368 |
+
tokenizer: PreTrainedTokenizer,
|
369 |
+
batch_size: int = -1,
|
370 |
+
seq_length: int = -1,
|
371 |
+
is_pair: bool = False,
|
372 |
+
framework: Optional[TensorType] = None,
|
373 |
+
) -> Mapping[str, Any]:
|
374 |
+
# Copied from OnnxConfig.generate_dummy_inputs
|
375 |
+
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
|
376 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
377 |
+
batch_size = compute_effective_axis_dimension(
|
378 |
+
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
|
379 |
+
)
|
380 |
+
|
381 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
|
382 |
+
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
|
383 |
+
seq_length = compute_effective_axis_dimension(
|
384 |
+
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
|
385 |
+
)
|
386 |
+
|
387 |
+
# Generate dummy inputs according to compute batch and sequence
|
388 |
+
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
|
389 |
+
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
|
390 |
+
return common_inputs
|
391 |
+
|
392 |
+
def generate_dummy_inputs(
|
393 |
+
self,
|
394 |
+
tokenizer: PreTrainedTokenizer,
|
395 |
+
batch_size: int = -1,
|
396 |
+
seq_length: int = -1,
|
397 |
+
is_pair: bool = False,
|
398 |
+
framework: Optional[TensorType] = None,
|
399 |
+
) -> Mapping[str, Any]:
|
400 |
+
if self.task in ["default", "seq2seq-lm"]:
|
401 |
+
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
|
402 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
403 |
+
)
|
404 |
+
|
405 |
+
elif self.task == "causal-lm":
|
406 |
+
common_inputs = self._generate_dummy_inputs_for_causal_lm(
|
407 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
408 |
+
)
|
409 |
+
else:
|
410 |
+
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
411 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
412 |
+
)
|
413 |
+
|
414 |
+
return common_inputs
|
415 |
+
|
416 |
+
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
|
417 |
+
if self.task in ["default", "seq2seq-lm"]:
|
418 |
+
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
|
419 |
+
else:
|
420 |
+
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
|
421 |
+
flattened_output, name, idx, t
|
422 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/convert_bigbird_pegasus_tf_to_pytorch.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
from typing import Dict
|
18 |
+
|
19 |
+
import tensorflow as tf
|
20 |
+
import torch
|
21 |
+
from tqdm import tqdm
|
22 |
+
|
23 |
+
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
|
24 |
+
|
25 |
+
|
26 |
+
INIT_COMMON = [
|
27 |
+
# tf -> hf
|
28 |
+
("/", "."),
|
29 |
+
("layer_", "layers."),
|
30 |
+
("kernel", "weight"),
|
31 |
+
("beta", "bias"),
|
32 |
+
("gamma", "weight"),
|
33 |
+
("pegasus", "model"),
|
34 |
+
]
|
35 |
+
END_COMMON = [
|
36 |
+
(".output.dense", ".fc2"),
|
37 |
+
("intermediate.LayerNorm", "final_layer_norm"),
|
38 |
+
("intermediate.dense", "fc1"),
|
39 |
+
]
|
40 |
+
|
41 |
+
DECODER_PATTERNS = (
|
42 |
+
INIT_COMMON
|
43 |
+
+ [
|
44 |
+
("attention.self.LayerNorm", "self_attn_layer_norm"),
|
45 |
+
("attention.output.dense", "self_attn.out_proj"),
|
46 |
+
("attention.self", "self_attn"),
|
47 |
+
("attention.encdec.LayerNorm", "encoder_attn_layer_norm"),
|
48 |
+
("attention.encdec_output.dense", "encoder_attn.out_proj"),
|
49 |
+
("attention.encdec", "encoder_attn"),
|
50 |
+
("key", "k_proj"),
|
51 |
+
("value", "v_proj"),
|
52 |
+
("query", "q_proj"),
|
53 |
+
("decoder.LayerNorm", "decoder.layernorm_embedding"),
|
54 |
+
]
|
55 |
+
+ END_COMMON
|
56 |
+
)
|
57 |
+
|
58 |
+
REMAINING_PATTERNS = (
|
59 |
+
INIT_COMMON
|
60 |
+
+ [
|
61 |
+
("embeddings.word_embeddings", "shared.weight"),
|
62 |
+
("embeddings.position_embeddings", "embed_positions.weight"),
|
63 |
+
("attention.self.LayerNorm", "self_attn_layer_norm"),
|
64 |
+
("attention.output.dense", "self_attn.output"),
|
65 |
+
("attention.self", "self_attn.self"),
|
66 |
+
("encoder.LayerNorm", "encoder.layernorm_embedding"),
|
67 |
+
]
|
68 |
+
+ END_COMMON
|
69 |
+
)
|
70 |
+
|
71 |
+
KEYS_TO_IGNORE = [
|
72 |
+
"encdec/key/bias",
|
73 |
+
"encdec/query/bias",
|
74 |
+
"encdec/value/bias",
|
75 |
+
"self/key/bias",
|
76 |
+
"self/query/bias",
|
77 |
+
"self/value/bias",
|
78 |
+
"encdec_output/dense/bias",
|
79 |
+
"attention/output/dense/bias",
|
80 |
+
]
|
81 |
+
|
82 |
+
|
83 |
+
def rename_state_dict_key(k, patterns):
|
84 |
+
for tf_name, hf_name in patterns:
|
85 |
+
k = k.replace(tf_name, hf_name)
|
86 |
+
return k
|
87 |
+
|
88 |
+
|
89 |
+
def convert_bigbird_pegasus(tf_weights: dict, config_update: dict) -> BigBirdPegasusForConditionalGeneration:
|
90 |
+
cfg = BigBirdPegasusConfig(**config_update)
|
91 |
+
torch_model = BigBirdPegasusForConditionalGeneration(cfg)
|
92 |
+
state_dict = torch_model.state_dict()
|
93 |
+
mapping = {}
|
94 |
+
|
95 |
+
# separating decoder weights
|
96 |
+
decoder_weights = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder")}
|
97 |
+
remaining_weights = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder")}
|
98 |
+
|
99 |
+
for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion"):
|
100 |
+
conditions = [k.endswith(ending) for ending in KEYS_TO_IGNORE]
|
101 |
+
if any(conditions):
|
102 |
+
continue
|
103 |
+
patterns = DECODER_PATTERNS
|
104 |
+
new_k = rename_state_dict_key(k, patterns)
|
105 |
+
if new_k not in state_dict:
|
106 |
+
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})")
|
107 |
+
if any(True if i in k else False for i in ["dense", "query", "key", "value"]):
|
108 |
+
v = v.T
|
109 |
+
mapping[new_k] = torch.from_numpy(v)
|
110 |
+
assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"
|
111 |
+
|
112 |
+
for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion"):
|
113 |
+
conditions = [k.endswith(ending) for ending in KEYS_TO_IGNORE]
|
114 |
+
if any(conditions):
|
115 |
+
continue
|
116 |
+
patterns = REMAINING_PATTERNS
|
117 |
+
new_k = rename_state_dict_key(k, patterns)
|
118 |
+
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
|
119 |
+
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})")
|
120 |
+
if any(True if i in k else False for i in ["dense", "query", "key", "value"]):
|
121 |
+
v = v.T
|
122 |
+
mapping[new_k] = torch.from_numpy(v)
|
123 |
+
if k != "pegasus/embeddings/position_embeddings":
|
124 |
+
assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"
|
125 |
+
|
126 |
+
mapping["model.encoder.embed_positions.weight"] = mapping["model.embed_positions.weight"]
|
127 |
+
mapping["model.decoder.embed_positions.weight"] = mapping.pop("model.embed_positions.weight")
|
128 |
+
missing, extra = torch_model.load_state_dict(mapping, strict=False)
|
129 |
+
unexpected_missing = [
|
130 |
+
k
|
131 |
+
for k in missing
|
132 |
+
if k
|
133 |
+
not in [
|
134 |
+
"final_logits_bias",
|
135 |
+
"model.encoder.embed_tokens.weight",
|
136 |
+
"model.decoder.embed_tokens.weight",
|
137 |
+
"lm_head.weight",
|
138 |
+
]
|
139 |
+
]
|
140 |
+
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
|
141 |
+
assert extra == [], f"no matches found for the following tf keys {extra}"
|
142 |
+
return torch_model
|
143 |
+
|
144 |
+
|
145 |
+
def get_tf_weights_as_numpy(path) -> Dict:
|
146 |
+
init_vars = tf.train.list_variables(path)
|
147 |
+
tf_weights = {}
|
148 |
+
ignore_name = ["global_step"]
|
149 |
+
for name, shape in tqdm(init_vars, desc="converting tf checkpoint to dict"):
|
150 |
+
skip_key = any(pat in name for pat in ignore_name)
|
151 |
+
if skip_key:
|
152 |
+
continue
|
153 |
+
array = tf.train.load_variable(path, name)
|
154 |
+
tf_weights[name] = array
|
155 |
+
return tf_weights
|
156 |
+
|
157 |
+
|
158 |
+
def convert_bigbird_pegasus_ckpt_to_pytorch(ckpt_path: str, save_dir: str, config_update: dict):
|
159 |
+
tf_weights = get_tf_weights_as_numpy(ckpt_path)
|
160 |
+
torch_model = convert_bigbird_pegasus(tf_weights, config_update)
|
161 |
+
torch_model.save_pretrained(save_dir)
|
162 |
+
|
163 |
+
|
164 |
+
if __name__ == "__main__":
|
165 |
+
parser = argparse.ArgumentParser()
|
166 |
+
parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
|
167 |
+
parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.")
|
168 |
+
args = parser.parse_args()
|
169 |
+
config_update = {}
|
170 |
+
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/__init__.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace and Baidu Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
# rely on isort to merge the imports
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_ernie_m": ["ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieMConfig"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_sentencepiece_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["tokenization_ernie_m"] = ["ErnieMTokenizer"]
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_torch_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["modeling_ernie_m"] = [
|
39 |
+
"ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST",
|
40 |
+
"ErnieMForMultipleChoice",
|
41 |
+
"ErnieMForQuestionAnswering",
|
42 |
+
"ErnieMForSequenceClassification",
|
43 |
+
"ErnieMForTokenClassification",
|
44 |
+
"ErnieMModel",
|
45 |
+
"ErnieMPreTrainedModel",
|
46 |
+
"ErnieMForInformationExtraction",
|
47 |
+
]
|
48 |
+
|
49 |
+
|
50 |
+
if TYPE_CHECKING:
|
51 |
+
from .configuration_ernie_m import ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieMConfig
|
52 |
+
|
53 |
+
try:
|
54 |
+
if not is_sentencepiece_available():
|
55 |
+
raise OptionalDependencyNotAvailable()
|
56 |
+
except OptionalDependencyNotAvailable:
|
57 |
+
pass
|
58 |
+
else:
|
59 |
+
from .tokenization_ernie_m import ErnieMTokenizer
|
60 |
+
|
61 |
+
try:
|
62 |
+
if not is_torch_available():
|
63 |
+
raise OptionalDependencyNotAvailable()
|
64 |
+
except OptionalDependencyNotAvailable:
|
65 |
+
pass
|
66 |
+
else:
|
67 |
+
from .modeling_ernie_m import (
|
68 |
+
ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST,
|
69 |
+
ErnieMForInformationExtraction,
|
70 |
+
ErnieMForMultipleChoice,
|
71 |
+
ErnieMForQuestionAnswering,
|
72 |
+
ErnieMForSequenceClassification,
|
73 |
+
ErnieMForTokenClassification,
|
74 |
+
ErnieMModel,
|
75 |
+
ErnieMPreTrainedModel,
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
else:
|
80 |
+
import sys
|
81 |
+
|
82 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.34 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/configuration_ernie_m.cpython-310.pyc
ADDED
Binary file (5.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/modeling_ernie_m.cpython-310.pyc
ADDED
Binary file (29.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/tokenization_ernie_m.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/configuration_ernie_m.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" ErnieM model configuration"""
|
16 |
+
# Adapted from original paddlenlp repository.(https://github.com/PaddlePaddle/PaddleNLP/blob/develop/paddlenlp/transformers/ernie_m/configuration.py)
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
from typing import Dict
|
21 |
+
|
22 |
+
from ...configuration_utils import PretrainedConfig
|
23 |
+
|
24 |
+
|
25 |
+
ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json",
|
27 |
+
"susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json",
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class ErnieMConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`ErnieMModel`]. It is used to instantiate a
|
34 |
+
Ernie-M model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
35 |
+
with the defaults will yield a similar configuration to that of the `Ernie-M`
|
36 |
+
[susnato/ernie-m-base_pytorch](https://huggingface.co/susnato/ernie-m-base_pytorch) architecture.
|
37 |
+
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*, defaults to 250002):
|
44 |
+
Vocabulary size of `inputs_ids` in [`ErnieMModel`]. Also is the vocab size of token embedding matrix.
|
45 |
+
Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling
|
46 |
+
[`ErnieMModel`].
|
47 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
48 |
+
Dimensionality of the embedding layer, encoder layers and pooler layer.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
54 |
+
Dimensionality of the feed-forward (ff) layer in the encoder. Input tensors to feed-forward layers are
|
55 |
+
firstly projected from hidden_size to intermediate_size, and then projected back to hidden_size. Typically
|
56 |
+
intermediate_size is larger than hidden_size.
|
57 |
+
hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
58 |
+
The non-linear activation function in the feed-forward layer. `"gelu"`, `"relu"` and any other torch
|
59 |
+
supported activation functions are supported.
|
60 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings and encoder.
|
62 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
63 |
+
The dropout probability used in `MultiHeadAttention` in all encoder layers to drop some attention target.
|
64 |
+
max_position_embeddings (`int`, *optional*, defaults to 514):
|
65 |
+
The maximum value of the dimensionality of position encoding, which dictates the maximum supported length
|
66 |
+
of an input sequence.
|
67 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
68 |
+
The standard deviation of the normal initializer for initializing all weight matrices. The index of padding
|
69 |
+
token in the token vocabulary.
|
70 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
71 |
+
Padding token id.
|
72 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
73 |
+
The epsilon used by the layer normalization layers.
|
74 |
+
classifier_dropout (`float`, *optional*):
|
75 |
+
The dropout ratio for the classification head.
|
76 |
+
act_dropout (`float`, *optional*, defaults to 0.0):
|
77 |
+
This dropout probability is used in `ErnieMEncoderLayer` after activation.
|
78 |
+
|
79 |
+
A normal_initializer initializes weight matrices as normal distributions. See
|
80 |
+
`ErnieMPretrainedModel._init_weights()` for how weights are initialized in `ErnieMModel`.
|
81 |
+
"""
|
82 |
+
|
83 |
+
model_type = "ernie_m"
|
84 |
+
attribute_map: Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
vocab_size: int = 250002,
|
89 |
+
hidden_size: int = 768,
|
90 |
+
num_hidden_layers: int = 12,
|
91 |
+
num_attention_heads: int = 12,
|
92 |
+
intermediate_size: int = 3072,
|
93 |
+
hidden_act: str = "gelu",
|
94 |
+
hidden_dropout_prob: float = 0.1,
|
95 |
+
attention_probs_dropout_prob: float = 0.1,
|
96 |
+
max_position_embeddings: int = 514,
|
97 |
+
initializer_range: float = 0.02,
|
98 |
+
pad_token_id: int = 1,
|
99 |
+
layer_norm_eps: float = 1e-05,
|
100 |
+
classifier_dropout=None,
|
101 |
+
act_dropout=0.0,
|
102 |
+
**kwargs,
|
103 |
+
):
|
104 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
105 |
+
self.vocab_size = vocab_size
|
106 |
+
self.hidden_size = hidden_size
|
107 |
+
self.num_hidden_layers = num_hidden_layers
|
108 |
+
self.num_attention_heads = num_attention_heads
|
109 |
+
self.intermediate_size = intermediate_size
|
110 |
+
self.hidden_act = hidden_act
|
111 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
112 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
113 |
+
self.max_position_embeddings = max_position_embeddings
|
114 |
+
self.initializer_range = initializer_range
|
115 |
+
self.layer_norm_eps = layer_norm_eps
|
116 |
+
self.classifier_dropout = classifier_dropout
|
117 |
+
self.act_dropout = act_dropout
|
env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/modeling_ernie_m.py
ADDED
@@ -0,0 +1,1061 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch ErnieM model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn, tensor
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_outputs import (
|
28 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
30 |
+
MultipleChoiceModelOutput,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
+
SequenceClassifierOutput,
|
33 |
+
TokenClassifierOutput,
|
34 |
+
)
|
35 |
+
from ...modeling_utils import PreTrainedModel
|
36 |
+
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
37 |
+
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
38 |
+
from .configuration_ernie_m import ErnieMConfig
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
_CHECKPOINT_FOR_DOC = "susnato/ernie-m-base_pytorch"
|
44 |
+
_CONFIG_FOR_DOC = "ErnieMConfig"
|
45 |
+
_TOKENIZER_FOR_DOC = "ErnieMTokenizer"
|
46 |
+
|
47 |
+
ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
48 |
+
"susnato/ernie-m-base_pytorch",
|
49 |
+
"susnato/ernie-m-large_pytorch",
|
50 |
+
# See all ErnieM models at https://huggingface.co/models?filter=ernie_m
|
51 |
+
]
|
52 |
+
|
53 |
+
|
54 |
+
# Adapted from paddlenlp.transformers.ernie_m.modeling.ErnieEmbeddings
|
55 |
+
class ErnieMEmbeddings(nn.Module):
|
56 |
+
"""Construct the embeddings from word and position embeddings."""
|
57 |
+
|
58 |
+
def __init__(self, config):
|
59 |
+
super().__init__()
|
60 |
+
self.hidden_size = config.hidden_size
|
61 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
62 |
+
self.position_embeddings = nn.Embedding(
|
63 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=config.pad_token_id
|
64 |
+
)
|
65 |
+
self.layer_norm = nn.LayerNorm(normalized_shape=config.hidden_size, eps=config.layer_norm_eps)
|
66 |
+
self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
|
67 |
+
self.padding_idx = config.pad_token_id
|
68 |
+
|
69 |
+
def forward(
|
70 |
+
self,
|
71 |
+
input_ids: Optional[torch.LongTensor] = None,
|
72 |
+
position_ids: Optional[torch.LongTensor] = None,
|
73 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
74 |
+
past_key_values_length: int = 0,
|
75 |
+
) -> torch.Tensor:
|
76 |
+
if inputs_embeds is None:
|
77 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
78 |
+
if position_ids is None:
|
79 |
+
input_shape = inputs_embeds.size()[:-1]
|
80 |
+
ones = torch.ones(input_shape, dtype=torch.int64, device=inputs_embeds.device)
|
81 |
+
seq_length = torch.cumsum(ones, dim=1)
|
82 |
+
position_ids = seq_length - ones
|
83 |
+
|
84 |
+
if past_key_values_length > 0:
|
85 |
+
position_ids = position_ids + past_key_values_length
|
86 |
+
# to mimic paddlenlp implementation
|
87 |
+
position_ids += 2
|
88 |
+
position_embeddings = self.position_embeddings(position_ids)
|
89 |
+
embeddings = inputs_embeds + position_embeddings
|
90 |
+
embeddings = self.layer_norm(embeddings)
|
91 |
+
embeddings = self.dropout(embeddings)
|
92 |
+
|
93 |
+
return embeddings
|
94 |
+
|
95 |
+
|
96 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ErnieM,self.value->self.v_proj,self.key->self.k_proj,self.query->self.q_proj
|
97 |
+
class ErnieMSelfAttention(nn.Module):
|
98 |
+
def __init__(self, config, position_embedding_type=None):
|
99 |
+
super().__init__()
|
100 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
101 |
+
raise ValueError(
|
102 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
103 |
+
f"heads ({config.num_attention_heads})"
|
104 |
+
)
|
105 |
+
|
106 |
+
self.num_attention_heads = config.num_attention_heads
|
107 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
108 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
109 |
+
|
110 |
+
self.q_proj = nn.Linear(config.hidden_size, self.all_head_size)
|
111 |
+
self.k_proj = nn.Linear(config.hidden_size, self.all_head_size)
|
112 |
+
self.v_proj = nn.Linear(config.hidden_size, self.all_head_size)
|
113 |
+
|
114 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
115 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
116 |
+
config, "position_embedding_type", "absolute"
|
117 |
+
)
|
118 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
119 |
+
self.max_position_embeddings = config.max_position_embeddings
|
120 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
121 |
+
|
122 |
+
self.is_decoder = config.is_decoder
|
123 |
+
|
124 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
125 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
126 |
+
x = x.view(new_x_shape)
|
127 |
+
return x.permute(0, 2, 1, 3)
|
128 |
+
|
129 |
+
def forward(
|
130 |
+
self,
|
131 |
+
hidden_states: torch.Tensor,
|
132 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
133 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
134 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
135 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
136 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
137 |
+
output_attentions: Optional[bool] = False,
|
138 |
+
) -> Tuple[torch.Tensor]:
|
139 |
+
mixed_query_layer = self.q_proj(hidden_states)
|
140 |
+
|
141 |
+
# If this is instantiated as a cross-attention module, the keys
|
142 |
+
# and values come from an encoder; the attention mask needs to be
|
143 |
+
# such that the encoder's padding tokens are not attended to.
|
144 |
+
is_cross_attention = encoder_hidden_states is not None
|
145 |
+
|
146 |
+
if is_cross_attention and past_key_value is not None:
|
147 |
+
# reuse k,v, cross_attentions
|
148 |
+
key_layer = past_key_value[0]
|
149 |
+
value_layer = past_key_value[1]
|
150 |
+
attention_mask = encoder_attention_mask
|
151 |
+
elif is_cross_attention:
|
152 |
+
key_layer = self.transpose_for_scores(self.k_proj(encoder_hidden_states))
|
153 |
+
value_layer = self.transpose_for_scores(self.v_proj(encoder_hidden_states))
|
154 |
+
attention_mask = encoder_attention_mask
|
155 |
+
elif past_key_value is not None:
|
156 |
+
key_layer = self.transpose_for_scores(self.k_proj(hidden_states))
|
157 |
+
value_layer = self.transpose_for_scores(self.v_proj(hidden_states))
|
158 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
159 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
160 |
+
else:
|
161 |
+
key_layer = self.transpose_for_scores(self.k_proj(hidden_states))
|
162 |
+
value_layer = self.transpose_for_scores(self.v_proj(hidden_states))
|
163 |
+
|
164 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
165 |
+
|
166 |
+
use_cache = past_key_value is not None
|
167 |
+
if self.is_decoder:
|
168 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
169 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
170 |
+
# key/value_states (first "if" case)
|
171 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
172 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
173 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
174 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
175 |
+
past_key_value = (key_layer, value_layer)
|
176 |
+
|
177 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
178 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
179 |
+
|
180 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
181 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
182 |
+
if use_cache:
|
183 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
184 |
+
-1, 1
|
185 |
+
)
|
186 |
+
else:
|
187 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
188 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
189 |
+
distance = position_ids_l - position_ids_r
|
190 |
+
|
191 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
192 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
193 |
+
|
194 |
+
if self.position_embedding_type == "relative_key":
|
195 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
196 |
+
attention_scores = attention_scores + relative_position_scores
|
197 |
+
elif self.position_embedding_type == "relative_key_query":
|
198 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
199 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
200 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
201 |
+
|
202 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
203 |
+
if attention_mask is not None:
|
204 |
+
# Apply the attention mask is (precomputed for all layers in ErnieMModel forward() function)
|
205 |
+
attention_scores = attention_scores + attention_mask
|
206 |
+
|
207 |
+
# Normalize the attention scores to probabilities.
|
208 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
209 |
+
|
210 |
+
# This is actually dropping out entire tokens to attend to, which might
|
211 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
212 |
+
attention_probs = self.dropout(attention_probs)
|
213 |
+
|
214 |
+
# Mask heads if we want to
|
215 |
+
if head_mask is not None:
|
216 |
+
attention_probs = attention_probs * head_mask
|
217 |
+
|
218 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
219 |
+
|
220 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
221 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
222 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
223 |
+
|
224 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
225 |
+
|
226 |
+
if self.is_decoder:
|
227 |
+
outputs = outputs + (past_key_value,)
|
228 |
+
return outputs
|
229 |
+
|
230 |
+
|
231 |
+
class ErnieMAttention(nn.Module):
|
232 |
+
def __init__(self, config, position_embedding_type=None):
|
233 |
+
super().__init__()
|
234 |
+
self.self_attn = ErnieMSelfAttention(config, position_embedding_type=position_embedding_type)
|
235 |
+
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
236 |
+
self.pruned_heads = set()
|
237 |
+
|
238 |
+
def prune_heads(self, heads):
|
239 |
+
if len(heads) == 0:
|
240 |
+
return
|
241 |
+
heads, index = find_pruneable_heads_and_indices(
|
242 |
+
heads, self.self_attn.num_attention_heads, self.self_attn.attention_head_size, self.pruned_heads
|
243 |
+
)
|
244 |
+
|
245 |
+
# Prune linear layers
|
246 |
+
self.self_attn.q_proj = prune_linear_layer(self.self_attn.q_proj, index)
|
247 |
+
self.self_attn.k_proj = prune_linear_layer(self.self_attn.k_proj, index)
|
248 |
+
self.self_attn.v_proj = prune_linear_layer(self.self_attn.v_proj, index)
|
249 |
+
self.out_proj = prune_linear_layer(self.out_proj, index, dim=1)
|
250 |
+
|
251 |
+
# Update hyper params and store pruned heads
|
252 |
+
self.self_attn.num_attention_heads = self.self_attn.num_attention_heads - len(heads)
|
253 |
+
self.self_attn.all_head_size = self.self_attn.attention_head_size * self.self_attn.num_attention_heads
|
254 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
255 |
+
|
256 |
+
def forward(
|
257 |
+
self,
|
258 |
+
hidden_states: torch.Tensor,
|
259 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
260 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
261 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
262 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
263 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
264 |
+
output_attentions: Optional[bool] = False,
|
265 |
+
) -> Tuple[torch.Tensor]:
|
266 |
+
self_outputs = self.self_attn(
|
267 |
+
hidden_states,
|
268 |
+
attention_mask,
|
269 |
+
head_mask,
|
270 |
+
encoder_hidden_states,
|
271 |
+
encoder_attention_mask,
|
272 |
+
past_key_value,
|
273 |
+
output_attentions,
|
274 |
+
)
|
275 |
+
attention_output = self.out_proj(self_outputs[0])
|
276 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
277 |
+
return outputs
|
278 |
+
|
279 |
+
|
280 |
+
class ErnieMEncoderLayer(nn.Module):
|
281 |
+
def __init__(self, config):
|
282 |
+
super().__init__()
|
283 |
+
# to mimic paddlenlp implementation
|
284 |
+
dropout = 0.1 if config.hidden_dropout_prob is None else config.hidden_dropout_prob
|
285 |
+
act_dropout = config.hidden_dropout_prob if config.act_dropout is None else config.act_dropout
|
286 |
+
|
287 |
+
self.self_attn = ErnieMAttention(config)
|
288 |
+
self.linear1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
289 |
+
self.dropout = nn.Dropout(act_dropout)
|
290 |
+
self.linear2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
291 |
+
self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
292 |
+
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
293 |
+
self.dropout1 = nn.Dropout(dropout)
|
294 |
+
self.dropout2 = nn.Dropout(dropout)
|
295 |
+
if isinstance(config.hidden_act, str):
|
296 |
+
self.activation = ACT2FN[config.hidden_act]
|
297 |
+
else:
|
298 |
+
self.activation = config.hidden_act
|
299 |
+
|
300 |
+
def forward(
|
301 |
+
self,
|
302 |
+
hidden_states: torch.Tensor,
|
303 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
304 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
305 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
306 |
+
output_attentions: Optional[bool] = True,
|
307 |
+
):
|
308 |
+
residual = hidden_states
|
309 |
+
if output_attentions:
|
310 |
+
hidden_states, attention_opt_weights = self.self_attn(
|
311 |
+
hidden_states=hidden_states,
|
312 |
+
attention_mask=attention_mask,
|
313 |
+
head_mask=head_mask,
|
314 |
+
past_key_value=past_key_value,
|
315 |
+
output_attentions=output_attentions,
|
316 |
+
)
|
317 |
+
|
318 |
+
else:
|
319 |
+
hidden_states = self.self_attn(
|
320 |
+
hidden_states=hidden_states,
|
321 |
+
attention_mask=attention_mask,
|
322 |
+
head_mask=head_mask,
|
323 |
+
past_key_value=past_key_value,
|
324 |
+
output_attentions=output_attentions,
|
325 |
+
)
|
326 |
+
hidden_states = residual + self.dropout1(hidden_states)
|
327 |
+
hidden_states = self.norm1(hidden_states)
|
328 |
+
residual = hidden_states
|
329 |
+
|
330 |
+
hidden_states = self.linear1(hidden_states)
|
331 |
+
hidden_states = self.activation(hidden_states)
|
332 |
+
hidden_states = self.dropout(hidden_states)
|
333 |
+
hidden_states = self.linear2(hidden_states)
|
334 |
+
hidden_states = residual + self.dropout2(hidden_states)
|
335 |
+
hidden_states = self.norm2(hidden_states)
|
336 |
+
|
337 |
+
if output_attentions:
|
338 |
+
return hidden_states, attention_opt_weights
|
339 |
+
else:
|
340 |
+
return hidden_states
|
341 |
+
|
342 |
+
|
343 |
+
class ErnieMEncoder(nn.Module):
|
344 |
+
def __init__(self, config):
|
345 |
+
super().__init__()
|
346 |
+
self.config = config
|
347 |
+
self.layers = nn.ModuleList([ErnieMEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
348 |
+
|
349 |
+
def forward(
|
350 |
+
self,
|
351 |
+
input_embeds: torch.Tensor,
|
352 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
353 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
354 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
355 |
+
output_attentions: Optional[bool] = False,
|
356 |
+
output_hidden_states: Optional[bool] = False,
|
357 |
+
return_dict: Optional[bool] = True,
|
358 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
359 |
+
hidden_states = () if output_hidden_states else None
|
360 |
+
attentions = () if output_attentions else None
|
361 |
+
|
362 |
+
output = input_embeds
|
363 |
+
if output_hidden_states:
|
364 |
+
hidden_states = hidden_states + (output,)
|
365 |
+
for i, layer in enumerate(self.layers):
|
366 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
367 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
368 |
+
|
369 |
+
output, opt_attn_weights = layer(
|
370 |
+
hidden_states=output,
|
371 |
+
attention_mask=attention_mask,
|
372 |
+
head_mask=layer_head_mask,
|
373 |
+
past_key_value=past_key_value,
|
374 |
+
)
|
375 |
+
|
376 |
+
if output_hidden_states:
|
377 |
+
hidden_states = hidden_states + (output,)
|
378 |
+
if output_attentions:
|
379 |
+
attentions = attentions + (opt_attn_weights,)
|
380 |
+
|
381 |
+
last_hidden_state = output
|
382 |
+
if not return_dict:
|
383 |
+
return tuple(v for v in [last_hidden_state, hidden_states, attentions] if v is not None)
|
384 |
+
|
385 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
386 |
+
last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=attentions
|
387 |
+
)
|
388 |
+
|
389 |
+
|
390 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->ErnieM
|
391 |
+
class ErnieMPooler(nn.Module):
|
392 |
+
def __init__(self, config):
|
393 |
+
super().__init__()
|
394 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
395 |
+
self.activation = nn.Tanh()
|
396 |
+
|
397 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
398 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
399 |
+
# to the first token.
|
400 |
+
first_token_tensor = hidden_states[:, 0]
|
401 |
+
pooled_output = self.dense(first_token_tensor)
|
402 |
+
pooled_output = self.activation(pooled_output)
|
403 |
+
return pooled_output
|
404 |
+
|
405 |
+
|
406 |
+
class ErnieMPreTrainedModel(PreTrainedModel):
|
407 |
+
"""
|
408 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
409 |
+
models.
|
410 |
+
"""
|
411 |
+
|
412 |
+
config_class = ErnieMConfig
|
413 |
+
base_model_prefix = "ernie_m"
|
414 |
+
|
415 |
+
def _init_weights(self, module):
|
416 |
+
"""Initialize the weights"""
|
417 |
+
if isinstance(module, nn.Linear):
|
418 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
419 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
420 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
421 |
+
if module.bias is not None:
|
422 |
+
module.bias.data.zero_()
|
423 |
+
elif isinstance(module, nn.Embedding):
|
424 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
425 |
+
if module.padding_idx is not None:
|
426 |
+
module.weight.data[module.padding_idx].zero_()
|
427 |
+
elif isinstance(module, nn.LayerNorm):
|
428 |
+
module.bias.data.zero_()
|
429 |
+
module.weight.data.fill_(1.0)
|
430 |
+
|
431 |
+
|
432 |
+
ERNIE_M_START_DOCSTRING = r"""
|
433 |
+
|
434 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
435 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
436 |
+
etc.)
|
437 |
+
|
438 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
439 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
440 |
+
behavior.
|
441 |
+
|
442 |
+
Parameters:
|
443 |
+
config ([`ErnieMConfig`]): Model configuration class with all the parameters of the model.
|
444 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
445 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
446 |
+
"""
|
447 |
+
|
448 |
+
ERNIE_M_INPUTS_DOCSTRING = r"""
|
449 |
+
Args:
|
450 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
451 |
+
Indices of input sequence tokens in the vocabulary.
|
452 |
+
|
453 |
+
Indices can be obtained using [`ErnieMTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
454 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
455 |
+
|
456 |
+
[What are input IDs?](../glossary#input-ids)
|
457 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
458 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
459 |
+
|
460 |
+
- 1 for tokens that are **not masked**,
|
461 |
+
- 0 for tokens that are **masked**.
|
462 |
+
|
463 |
+
[What are attention masks?](../glossary#attention-mask)
|
464 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
465 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
466 |
+
config.max_position_embeddings - 1]`.
|
467 |
+
|
468 |
+
[What are position IDs?](../glossary#position-ids)
|
469 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
470 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
471 |
+
|
472 |
+
- 1 indicates the head is **not masked**,
|
473 |
+
- 0 indicates the head is **masked**.
|
474 |
+
|
475 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
476 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
477 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
478 |
+
model's internal embedding lookup matrix.
|
479 |
+
output_attentions (`bool`, *optional*):
|
480 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
481 |
+
tensors for more detail.
|
482 |
+
output_hidden_states (`bool`, *optional*):
|
483 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
484 |
+
more detail.
|
485 |
+
return_dict (`bool`, *optional*):
|
486 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
487 |
+
"""
|
488 |
+
|
489 |
+
|
490 |
+
@add_start_docstrings(
|
491 |
+
"The bare ErnieM Model transformer outputting raw hidden-states without any specific head on top.",
|
492 |
+
ERNIE_M_START_DOCSTRING,
|
493 |
+
)
|
494 |
+
class ErnieMModel(ErnieMPreTrainedModel):
|
495 |
+
def __init__(self, config, add_pooling_layer=True):
|
496 |
+
super(ErnieMModel, self).__init__(config)
|
497 |
+
self.initializer_range = config.initializer_range
|
498 |
+
self.embeddings = ErnieMEmbeddings(config)
|
499 |
+
self.encoder = ErnieMEncoder(config)
|
500 |
+
self.pooler = ErnieMPooler(config) if add_pooling_layer else None
|
501 |
+
self.post_init()
|
502 |
+
|
503 |
+
def get_input_embeddings(self):
|
504 |
+
return self.embeddings.word_embeddings
|
505 |
+
|
506 |
+
def set_input_embeddings(self, value):
|
507 |
+
self.embeddings.word_embeddings = value
|
508 |
+
|
509 |
+
def _prune_heads(self, heads_to_prune):
|
510 |
+
"""
|
511 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
512 |
+
class PreTrainedModel
|
513 |
+
"""
|
514 |
+
for layer, heads in heads_to_prune.items():
|
515 |
+
self.encoder.layers[layer].self_attn.prune_heads(heads)
|
516 |
+
|
517 |
+
@add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
518 |
+
@add_code_sample_docstrings(
|
519 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
520 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
521 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
522 |
+
config_class=_CONFIG_FOR_DOC,
|
523 |
+
)
|
524 |
+
def forward(
|
525 |
+
self,
|
526 |
+
input_ids: Optional[tensor] = None,
|
527 |
+
position_ids: Optional[tensor] = None,
|
528 |
+
attention_mask: Optional[tensor] = None,
|
529 |
+
head_mask: Optional[tensor] = None,
|
530 |
+
inputs_embeds: Optional[tensor] = None,
|
531 |
+
past_key_values: Optional[Tuple[Tuple[tensor]]] = None,
|
532 |
+
use_cache: Optional[bool] = None,
|
533 |
+
output_hidden_states: Optional[bool] = None,
|
534 |
+
output_attentions: Optional[bool] = None,
|
535 |
+
return_dict: Optional[bool] = None,
|
536 |
+
) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
537 |
+
if input_ids is not None and inputs_embeds is not None:
|
538 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time.")
|
539 |
+
|
540 |
+
# init the default bool value
|
541 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
542 |
+
output_hidden_states = (
|
543 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
544 |
+
)
|
545 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
546 |
+
|
547 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
548 |
+
|
549 |
+
past_key_values_length = 0
|
550 |
+
if past_key_values is not None:
|
551 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
552 |
+
|
553 |
+
# Adapted from paddlenlp.transformers.ernie_m.ErnieMModel
|
554 |
+
if attention_mask is None:
|
555 |
+
attention_mask = (input_ids == self.config.pad_token_id).to(torch.float32)
|
556 |
+
attention_mask *= torch.finfo(attention_mask.dtype).min
|
557 |
+
if past_key_values is not None:
|
558 |
+
batch_size = past_key_values[0][0].shape[0]
|
559 |
+
past_mask = torch.zeros([batch_size, 1, 1, past_key_values_length], dtype=attention_mask.dtype)
|
560 |
+
attention_mask = torch.concat([past_mask, attention_mask], dim=-1)
|
561 |
+
# For 2D attention_mask from tokenizer
|
562 |
+
elif attention_mask.ndim == 2:
|
563 |
+
attention_mask = attention_mask.to(torch.float32)
|
564 |
+
attention_mask = 1.0 - attention_mask
|
565 |
+
attention_mask *= torch.finfo(attention_mask.dtype).min
|
566 |
+
|
567 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)
|
568 |
+
|
569 |
+
embedding_output = self.embeddings(
|
570 |
+
input_ids=input_ids,
|
571 |
+
position_ids=position_ids,
|
572 |
+
inputs_embeds=inputs_embeds,
|
573 |
+
past_key_values_length=past_key_values_length,
|
574 |
+
)
|
575 |
+
encoder_outputs = self.encoder(
|
576 |
+
embedding_output,
|
577 |
+
attention_mask=extended_attention_mask,
|
578 |
+
head_mask=head_mask,
|
579 |
+
past_key_values=past_key_values,
|
580 |
+
output_attentions=output_attentions,
|
581 |
+
output_hidden_states=output_hidden_states,
|
582 |
+
return_dict=return_dict,
|
583 |
+
)
|
584 |
+
|
585 |
+
if not return_dict:
|
586 |
+
sequence_output = encoder_outputs[0]
|
587 |
+
pooler_output = self.pooler(sequence_output) if self.pooler is not None else None
|
588 |
+
return (sequence_output, pooler_output) + encoder_outputs[1:]
|
589 |
+
|
590 |
+
sequence_output = encoder_outputs["last_hidden_state"]
|
591 |
+
pooler_output = self.pooler(sequence_output) if self.pooler is not None else None
|
592 |
+
hidden_states = None if not output_hidden_states else encoder_outputs["hidden_states"]
|
593 |
+
attentions = None if not output_attentions else encoder_outputs["attentions"]
|
594 |
+
|
595 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
596 |
+
last_hidden_state=sequence_output,
|
597 |
+
pooler_output=pooler_output,
|
598 |
+
hidden_states=hidden_states,
|
599 |
+
attentions=attentions,
|
600 |
+
)
|
601 |
+
|
602 |
+
|
603 |
+
@add_start_docstrings(
|
604 |
+
"""ErnieM Model transformer with a sequence classification/regression head on top (a linear layer on top of
|
605 |
+
the pooled output) e.g. for GLUE tasks.""",
|
606 |
+
ERNIE_M_START_DOCSTRING,
|
607 |
+
)
|
608 |
+
class ErnieMForSequenceClassification(ErnieMPreTrainedModel):
|
609 |
+
# Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with Bert->ErnieM,bert->ernie_m
|
610 |
+
def __init__(self, config):
|
611 |
+
super().__init__(config)
|
612 |
+
self.num_labels = config.num_labels
|
613 |
+
self.config = config
|
614 |
+
|
615 |
+
self.ernie_m = ErnieMModel(config)
|
616 |
+
classifier_dropout = (
|
617 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
618 |
+
)
|
619 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
620 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
621 |
+
|
622 |
+
# Initialize weights and apply final processing
|
623 |
+
self.post_init()
|
624 |
+
|
625 |
+
@add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
626 |
+
@add_code_sample_docstrings(
|
627 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
628 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
629 |
+
output_type=SequenceClassifierOutput,
|
630 |
+
config_class=_CONFIG_FOR_DOC,
|
631 |
+
)
|
632 |
+
def forward(
|
633 |
+
self,
|
634 |
+
input_ids: Optional[torch.Tensor] = None,
|
635 |
+
attention_mask: Optional[torch.Tensor] = None,
|
636 |
+
position_ids: Optional[torch.Tensor] = None,
|
637 |
+
head_mask: Optional[torch.Tensor] = None,
|
638 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
639 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
640 |
+
use_cache: Optional[bool] = None,
|
641 |
+
output_hidden_states: Optional[bool] = None,
|
642 |
+
output_attentions: Optional[bool] = None,
|
643 |
+
return_dict: Optional[bool] = True,
|
644 |
+
labels: Optional[torch.Tensor] = None,
|
645 |
+
) -> Union[Tuple[torch.FloatTensor], SequenceClassifierOutput]:
|
646 |
+
r"""
|
647 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
648 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
649 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
650 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
651 |
+
"""
|
652 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
653 |
+
|
654 |
+
outputs = self.ernie_m(
|
655 |
+
input_ids,
|
656 |
+
attention_mask=attention_mask,
|
657 |
+
position_ids=position_ids,
|
658 |
+
head_mask=head_mask,
|
659 |
+
inputs_embeds=inputs_embeds,
|
660 |
+
past_key_values=past_key_values,
|
661 |
+
output_hidden_states=output_hidden_states,
|
662 |
+
output_attentions=output_attentions,
|
663 |
+
return_dict=return_dict,
|
664 |
+
)
|
665 |
+
|
666 |
+
pooled_output = outputs[1]
|
667 |
+
|
668 |
+
pooled_output = self.dropout(pooled_output)
|
669 |
+
logits = self.classifier(pooled_output)
|
670 |
+
|
671 |
+
loss = None
|
672 |
+
if labels is not None:
|
673 |
+
if self.config.problem_type is None:
|
674 |
+
if self.num_labels == 1:
|
675 |
+
self.config.problem_type = "regression"
|
676 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
677 |
+
self.config.problem_type = "single_label_classification"
|
678 |
+
else:
|
679 |
+
self.config.problem_type = "multi_label_classification"
|
680 |
+
|
681 |
+
if self.config.problem_type == "regression":
|
682 |
+
loss_fct = MSELoss()
|
683 |
+
if self.num_labels == 1:
|
684 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
685 |
+
else:
|
686 |
+
loss = loss_fct(logits, labels)
|
687 |
+
elif self.config.problem_type == "single_label_classification":
|
688 |
+
loss_fct = CrossEntropyLoss()
|
689 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
690 |
+
elif self.config.problem_type == "multi_label_classification":
|
691 |
+
loss_fct = BCEWithLogitsLoss()
|
692 |
+
loss = loss_fct(logits, labels)
|
693 |
+
if not return_dict:
|
694 |
+
output = (logits,) + outputs[2:]
|
695 |
+
return ((loss,) + output) if loss is not None else output
|
696 |
+
|
697 |
+
return SequenceClassifierOutput(
|
698 |
+
loss=loss,
|
699 |
+
logits=logits,
|
700 |
+
hidden_states=outputs.hidden_states,
|
701 |
+
attentions=outputs.attentions,
|
702 |
+
)
|
703 |
+
|
704 |
+
|
705 |
+
@add_start_docstrings(
|
706 |
+
"""ErnieM Model with a multiple choice classification head on top (a linear layer on top of
|
707 |
+
the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""",
|
708 |
+
ERNIE_M_START_DOCSTRING,
|
709 |
+
)
|
710 |
+
class ErnieMForMultipleChoice(ErnieMPreTrainedModel):
|
711 |
+
# Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice.__init__ with Bert->ErnieM,bert->ernie_m
|
712 |
+
def __init__(self, config):
|
713 |
+
super().__init__(config)
|
714 |
+
|
715 |
+
self.ernie_m = ErnieMModel(config)
|
716 |
+
classifier_dropout = (
|
717 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
718 |
+
)
|
719 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
720 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
721 |
+
|
722 |
+
# Initialize weights and apply final processing
|
723 |
+
self.post_init()
|
724 |
+
|
725 |
+
@add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
726 |
+
@add_code_sample_docstrings(
|
727 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
728 |
+
output_type=MultipleChoiceModelOutput,
|
729 |
+
config_class=_CONFIG_FOR_DOC,
|
730 |
+
)
|
731 |
+
def forward(
|
732 |
+
self,
|
733 |
+
input_ids: Optional[torch.Tensor] = None,
|
734 |
+
attention_mask: Optional[torch.Tensor] = None,
|
735 |
+
position_ids: Optional[torch.Tensor] = None,
|
736 |
+
head_mask: Optional[torch.Tensor] = None,
|
737 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
738 |
+
labels: Optional[torch.Tensor] = None,
|
739 |
+
output_attentions: Optional[bool] = None,
|
740 |
+
output_hidden_states: Optional[bool] = None,
|
741 |
+
return_dict: Optional[bool] = True,
|
742 |
+
) -> Union[Tuple[torch.FloatTensor], MultipleChoiceModelOutput]:
|
743 |
+
r"""
|
744 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
745 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
746 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
747 |
+
`input_ids` above)
|
748 |
+
"""
|
749 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
750 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
751 |
+
|
752 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
753 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
754 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
755 |
+
inputs_embeds = (
|
756 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
757 |
+
if inputs_embeds is not None
|
758 |
+
else None
|
759 |
+
)
|
760 |
+
|
761 |
+
outputs = self.ernie_m(
|
762 |
+
input_ids,
|
763 |
+
attention_mask=attention_mask,
|
764 |
+
position_ids=position_ids,
|
765 |
+
head_mask=head_mask,
|
766 |
+
inputs_embeds=inputs_embeds,
|
767 |
+
output_attentions=output_attentions,
|
768 |
+
output_hidden_states=output_hidden_states,
|
769 |
+
return_dict=return_dict,
|
770 |
+
)
|
771 |
+
|
772 |
+
pooled_output = outputs[1]
|
773 |
+
|
774 |
+
pooled_output = self.dropout(pooled_output)
|
775 |
+
logits = self.classifier(pooled_output)
|
776 |
+
reshaped_logits = logits.view(-1, num_choices)
|
777 |
+
|
778 |
+
loss = None
|
779 |
+
if labels is not None:
|
780 |
+
loss_fct = CrossEntropyLoss()
|
781 |
+
loss = loss_fct(reshaped_logits, labels)
|
782 |
+
|
783 |
+
if not return_dict:
|
784 |
+
output = (reshaped_logits,) + outputs[2:]
|
785 |
+
return ((loss,) + output) if loss is not None else output
|
786 |
+
|
787 |
+
return MultipleChoiceModelOutput(
|
788 |
+
loss=loss,
|
789 |
+
logits=reshaped_logits,
|
790 |
+
hidden_states=outputs.hidden_states,
|
791 |
+
attentions=outputs.attentions,
|
792 |
+
)
|
793 |
+
|
794 |
+
|
795 |
+
@add_start_docstrings(
|
796 |
+
"""ErnieM Model with a token classification head on top (a linear layer on top of
|
797 |
+
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""",
|
798 |
+
ERNIE_M_START_DOCSTRING,
|
799 |
+
)
|
800 |
+
class ErnieMForTokenClassification(ErnieMPreTrainedModel):
|
801 |
+
# Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with Bert->ErnieM,bert->ernie_m
|
802 |
+
def __init__(self, config):
|
803 |
+
super().__init__(config)
|
804 |
+
self.num_labels = config.num_labels
|
805 |
+
|
806 |
+
self.ernie_m = ErnieMModel(config, add_pooling_layer=False)
|
807 |
+
classifier_dropout = (
|
808 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
809 |
+
)
|
810 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
811 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
812 |
+
|
813 |
+
# Initialize weights and apply final processing
|
814 |
+
self.post_init()
|
815 |
+
|
816 |
+
@add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
817 |
+
@add_code_sample_docstrings(
|
818 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
819 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
820 |
+
output_type=TokenClassifierOutput,
|
821 |
+
config_class=_CONFIG_FOR_DOC,
|
822 |
+
)
|
823 |
+
def forward(
|
824 |
+
self,
|
825 |
+
input_ids: Optional[torch.Tensor] = None,
|
826 |
+
attention_mask: Optional[torch.Tensor] = None,
|
827 |
+
position_ids: Optional[torch.Tensor] = None,
|
828 |
+
head_mask: Optional[torch.Tensor] = None,
|
829 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
830 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
831 |
+
output_hidden_states: Optional[bool] = None,
|
832 |
+
output_attentions: Optional[bool] = None,
|
833 |
+
return_dict: Optional[bool] = True,
|
834 |
+
labels: Optional[torch.Tensor] = None,
|
835 |
+
) -> Union[Tuple[torch.FloatTensor], TokenClassifierOutput]:
|
836 |
+
r"""
|
837 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
838 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
839 |
+
"""
|
840 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
841 |
+
|
842 |
+
outputs = self.ernie_m(
|
843 |
+
input_ids,
|
844 |
+
attention_mask=attention_mask,
|
845 |
+
position_ids=position_ids,
|
846 |
+
head_mask=head_mask,
|
847 |
+
inputs_embeds=inputs_embeds,
|
848 |
+
past_key_values=past_key_values,
|
849 |
+
output_attentions=output_attentions,
|
850 |
+
output_hidden_states=output_hidden_states,
|
851 |
+
return_dict=return_dict,
|
852 |
+
)
|
853 |
+
|
854 |
+
sequence_output = outputs[0]
|
855 |
+
|
856 |
+
sequence_output = self.dropout(sequence_output)
|
857 |
+
logits = self.classifier(sequence_output)
|
858 |
+
|
859 |
+
loss = None
|
860 |
+
if labels is not None:
|
861 |
+
loss_fct = CrossEntropyLoss()
|
862 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
863 |
+
|
864 |
+
if not return_dict:
|
865 |
+
output = (logits,) + outputs[2:]
|
866 |
+
return ((loss,) + output) if loss is not None else output
|
867 |
+
|
868 |
+
return TokenClassifierOutput(
|
869 |
+
loss=loss,
|
870 |
+
logits=logits,
|
871 |
+
hidden_states=outputs.hidden_states,
|
872 |
+
attentions=outputs.attentions,
|
873 |
+
)
|
874 |
+
|
875 |
+
|
876 |
+
@add_start_docstrings(
|
877 |
+
"""ErnieM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
878 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""",
|
879 |
+
ERNIE_M_START_DOCSTRING,
|
880 |
+
)
|
881 |
+
class ErnieMForQuestionAnswering(ErnieMPreTrainedModel):
|
882 |
+
# Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with Bert->ErnieM,bert->ernie_m
|
883 |
+
def __init__(self, config):
|
884 |
+
super().__init__(config)
|
885 |
+
self.num_labels = config.num_labels
|
886 |
+
|
887 |
+
self.ernie_m = ErnieMModel(config, add_pooling_layer=False)
|
888 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
889 |
+
|
890 |
+
# Initialize weights and apply final processing
|
891 |
+
self.post_init()
|
892 |
+
|
893 |
+
@add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
894 |
+
@add_code_sample_docstrings(
|
895 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
896 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
897 |
+
output_type=QuestionAnsweringModelOutput,
|
898 |
+
config_class=_CONFIG_FOR_DOC,
|
899 |
+
)
|
900 |
+
def forward(
|
901 |
+
self,
|
902 |
+
input_ids: Optional[torch.Tensor] = None,
|
903 |
+
attention_mask: Optional[torch.Tensor] = None,
|
904 |
+
position_ids: Optional[torch.Tensor] = None,
|
905 |
+
head_mask: Optional[torch.Tensor] = None,
|
906 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
907 |
+
start_positions: Optional[torch.Tensor] = None,
|
908 |
+
end_positions: Optional[torch.Tensor] = None,
|
909 |
+
output_attentions: Optional[bool] = None,
|
910 |
+
output_hidden_states: Optional[bool] = None,
|
911 |
+
return_dict: Optional[bool] = True,
|
912 |
+
) -> Union[Tuple[torch.FloatTensor], QuestionAnsweringModelOutput]:
|
913 |
+
r"""
|
914 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
915 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
916 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
917 |
+
are not taken into account for computing the loss.
|
918 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
919 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
920 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
921 |
+
are not taken into account for computing the loss.
|
922 |
+
"""
|
923 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
924 |
+
|
925 |
+
outputs = self.ernie_m(
|
926 |
+
input_ids,
|
927 |
+
attention_mask=attention_mask,
|
928 |
+
position_ids=position_ids,
|
929 |
+
head_mask=head_mask,
|
930 |
+
inputs_embeds=inputs_embeds,
|
931 |
+
output_attentions=output_attentions,
|
932 |
+
output_hidden_states=output_hidden_states,
|
933 |
+
return_dict=return_dict,
|
934 |
+
)
|
935 |
+
|
936 |
+
sequence_output = outputs[0]
|
937 |
+
|
938 |
+
logits = self.qa_outputs(sequence_output)
|
939 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
940 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
941 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
942 |
+
|
943 |
+
total_loss = None
|
944 |
+
if start_positions is not None and end_positions is not None:
|
945 |
+
# If we are on multi-GPU, split add a dimension
|
946 |
+
if len(start_positions.size()) > 1:
|
947 |
+
start_positions = start_positions.squeeze(-1)
|
948 |
+
if len(end_positions.size()) > 1:
|
949 |
+
end_positions = end_positions.squeeze(-1)
|
950 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
951 |
+
ignored_index = start_logits.size(1)
|
952 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
953 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
954 |
+
|
955 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
956 |
+
start_loss = loss_fct(start_logits, start_positions)
|
957 |
+
end_loss = loss_fct(end_logits, end_positions)
|
958 |
+
total_loss = (start_loss + end_loss) / 2
|
959 |
+
|
960 |
+
if not return_dict:
|
961 |
+
output = (start_logits, end_logits) + outputs[2:]
|
962 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
963 |
+
|
964 |
+
return QuestionAnsweringModelOutput(
|
965 |
+
loss=total_loss,
|
966 |
+
start_logits=start_logits,
|
967 |
+
end_logits=end_logits,
|
968 |
+
hidden_states=outputs.hidden_states,
|
969 |
+
attentions=outputs.attentions,
|
970 |
+
)
|
971 |
+
|
972 |
+
|
973 |
+
@add_start_docstrings(
|
974 |
+
"""ErnieMForInformationExtraction is a Ernie-M Model with two linear layer on top of the hidden-states output to
|
975 |
+
compute `start_prob` and `end_prob`, designed for Universal Information Extraction.""",
|
976 |
+
ERNIE_M_START_DOCSTRING,
|
977 |
+
)
|
978 |
+
# Copied from paddlenlp.transformers.ernie_m.modeling.UIEM
|
979 |
+
class ErnieMForInformationExtraction(ErnieMPreTrainedModel):
|
980 |
+
def __init__(self, config):
|
981 |
+
super(ErnieMForInformationExtraction, self).__init__(config)
|
982 |
+
self.ernie_m = ErnieMModel(config)
|
983 |
+
self.linear_start = nn.Linear(config.hidden_size, 1)
|
984 |
+
self.linear_end = nn.Linear(config.hidden_size, 1)
|
985 |
+
self.sigmoid = nn.Sigmoid()
|
986 |
+
self.post_init()
|
987 |
+
|
988 |
+
@add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
989 |
+
def forward(
|
990 |
+
self,
|
991 |
+
input_ids: Optional[torch.Tensor] = None,
|
992 |
+
attention_mask: Optional[torch.Tensor] = None,
|
993 |
+
position_ids: Optional[torch.Tensor] = None,
|
994 |
+
head_mask: Optional[torch.Tensor] = None,
|
995 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
996 |
+
start_positions: Optional[torch.Tensor] = None,
|
997 |
+
end_positions: Optional[torch.Tensor] = None,
|
998 |
+
output_attentions: Optional[bool] = None,
|
999 |
+
output_hidden_states: Optional[bool] = None,
|
1000 |
+
return_dict: Optional[bool] = True,
|
1001 |
+
) -> Union[Tuple[torch.FloatTensor], QuestionAnsweringModelOutput]:
|
1002 |
+
r"""
|
1003 |
+
start_positions (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1004 |
+
Labels for position (index) for computing the start_positions loss. Position outside of the sequence are
|
1005 |
+
not taken into account for computing the loss.
|
1006 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1007 |
+
Labels for position (index) for computing the end_positions loss. Position outside of the sequence are not
|
1008 |
+
taken into account for computing the loss.
|
1009 |
+
"""
|
1010 |
+
|
1011 |
+
result = self.ernie_m(
|
1012 |
+
input_ids,
|
1013 |
+
attention_mask=attention_mask,
|
1014 |
+
position_ids=position_ids,
|
1015 |
+
head_mask=head_mask,
|
1016 |
+
inputs_embeds=inputs_embeds,
|
1017 |
+
output_attentions=output_attentions,
|
1018 |
+
output_hidden_states=output_hidden_states,
|
1019 |
+
return_dict=return_dict,
|
1020 |
+
)
|
1021 |
+
if return_dict:
|
1022 |
+
sequence_output = result.last_hidden_state
|
1023 |
+
elif not return_dict:
|
1024 |
+
sequence_output = result[0]
|
1025 |
+
|
1026 |
+
start_logits = self.linear_start(sequence_output)
|
1027 |
+
start_logits = start_logits.squeeze(-1)
|
1028 |
+
end_logits = self.linear_end(sequence_output)
|
1029 |
+
end_logits = end_logits.squeeze(-1)
|
1030 |
+
|
1031 |
+
total_loss = None
|
1032 |
+
if start_positions is not None and end_positions is not None:
|
1033 |
+
# If we are on multi-GPU, split add a dimension
|
1034 |
+
if len(start_positions.size()) > 1:
|
1035 |
+
start_positions = start_positions.squeeze(-1)
|
1036 |
+
if len(end_positions.size()) > 1:
|
1037 |
+
end_positions = end_positions.squeeze(-1)
|
1038 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1039 |
+
ignored_index = start_logits.size(1)
|
1040 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1041 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1042 |
+
|
1043 |
+
loss_fct = BCEWithLogitsLoss()
|
1044 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1045 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1046 |
+
total_loss = (start_loss + end_loss) / 2
|
1047 |
+
|
1048 |
+
if not return_dict:
|
1049 |
+
return tuple(
|
1050 |
+
i
|
1051 |
+
for i in [total_loss, start_logits, end_logits, result.hidden_states, result.attentions]
|
1052 |
+
if i is not None
|
1053 |
+
)
|
1054 |
+
|
1055 |
+
return QuestionAnsweringModelOutput(
|
1056 |
+
loss=total_loss,
|
1057 |
+
start_logits=start_logits,
|
1058 |
+
end_logits=end_logits,
|
1059 |
+
hidden_states=result.hidden_states,
|
1060 |
+
attentions=result.attentions,
|
1061 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/ernie_m/tokenization_ernie_m.py
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for Ernie-M."""
|
16 |
+
|
17 |
+
import io
|
18 |
+
import os
|
19 |
+
import unicodedata
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
21 |
+
|
22 |
+
import sentencepiece as spm
|
23 |
+
|
24 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
25 |
+
from ...utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
SPIECE_UNDERLINE = "▁"
|
31 |
+
|
32 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
|
33 |
+
|
34 |
+
RESOURCE_FILES_NAMES = {
|
35 |
+
"sentencepiece_model_file": "sentencepiece.bpe.model",
|
36 |
+
"vocab_file": "vocab.txt",
|
37 |
+
}
|
38 |
+
|
39 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
40 |
+
"vocab_file": {
|
41 |
+
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
|
42 |
+
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
|
43 |
+
},
|
44 |
+
"sentencepiece_model_file": {
|
45 |
+
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
|
46 |
+
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
|
47 |
+
},
|
48 |
+
}
|
49 |
+
|
50 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
51 |
+
"ernie-m-base": 514,
|
52 |
+
"ernie-m-large": 514,
|
53 |
+
}
|
54 |
+
|
55 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
56 |
+
"ernie-m-base": {"do_lower_case": False},
|
57 |
+
"ernie-m-large": {"do_lower_case": False},
|
58 |
+
}
|
59 |
+
|
60 |
+
|
61 |
+
# Adapted from paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer
|
62 |
+
class ErnieMTokenizer(PreTrainedTokenizer):
|
63 |
+
r"""
|
64 |
+
Constructs a Ernie-M tokenizer. It uses the `sentencepiece` tools to cut the words to sub-words.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
sentencepiece_model_file (`str`):
|
68 |
+
The file path of sentencepiece model.
|
69 |
+
vocab_file (`str`, *optional*):
|
70 |
+
The file path of the vocabulary.
|
71 |
+
do_lower_case (`str`, *optional*, defaults to `True`):
|
72 |
+
Whether or not to lowercase the input when tokenizing.
|
73 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
74 |
+
A special token representing the `unknown (out-of-vocabulary)` token. An unknown token is set to be
|
75 |
+
`unk_token` inorder to be converted to an ID.
|
76 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
77 |
+
A special token separating two different sentences in the same input.
|
78 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
79 |
+
A special token used to make arrays of tokens the same size for batching purposes.
|
80 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
81 |
+
A special token used for sequence classification. It is the last token of the sequence when built with
|
82 |
+
special tokens.
|
83 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
84 |
+
A special token representing a masked token. This is the token used in the masked language modeling task
|
85 |
+
which the model tries to predict the original unmasked ones.
|
86 |
+
"""
|
87 |
+
|
88 |
+
# Ernie-M model doesn't have token_type embedding.
|
89 |
+
model_input_names: List[str] = ["input_ids"]
|
90 |
+
|
91 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
92 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
93 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
94 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
95 |
+
resource_files_names = RESOURCE_FILES_NAMES
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
sentencepiece_model_ckpt,
|
100 |
+
vocab_file=None,
|
101 |
+
do_lower_case=False,
|
102 |
+
encoding="utf8",
|
103 |
+
unk_token="[UNK]",
|
104 |
+
sep_token="[SEP]",
|
105 |
+
pad_token="[PAD]",
|
106 |
+
cls_token="[CLS]",
|
107 |
+
mask_token="[MASK]",
|
108 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
109 |
+
**kwargs,
|
110 |
+
) -> None:
|
111 |
+
# Mask token behave like a normal word, i.e. include the space before it and
|
112 |
+
# is included in the raw text, there should be a match in a non-normalized sentence.
|
113 |
+
|
114 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
115 |
+
|
116 |
+
self.do_lower_case = do_lower_case
|
117 |
+
self.sentencepiece_model_ckpt = sentencepiece_model_ckpt
|
118 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
119 |
+
self.sp_model.Load(sentencepiece_model_ckpt)
|
120 |
+
|
121 |
+
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
|
122 |
+
if vocab_file is not None:
|
123 |
+
self.vocab = self.load_vocab(filepath=vocab_file)
|
124 |
+
else:
|
125 |
+
self.vocab = {self.sp_model.id_to_piece(id): id for id in range(self.sp_model.get_piece_size())}
|
126 |
+
self.reverse_vocab = {v: k for k, v in self.vocab.items()}
|
127 |
+
|
128 |
+
super().__init__(
|
129 |
+
do_lower_case=do_lower_case,
|
130 |
+
unk_token=unk_token,
|
131 |
+
sep_token=sep_token,
|
132 |
+
pad_token=pad_token,
|
133 |
+
cls_token=cls_token,
|
134 |
+
mask_token=mask_token,
|
135 |
+
vocab_file=vocab_file,
|
136 |
+
encoding=encoding,
|
137 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
138 |
+
**kwargs,
|
139 |
+
)
|
140 |
+
|
141 |
+
def get_offset_mapping(self, text):
|
142 |
+
if text is None:
|
143 |
+
return None
|
144 |
+
|
145 |
+
split_tokens = self.tokenize(text)
|
146 |
+
normalized_text, char_mapping = "", []
|
147 |
+
|
148 |
+
for i, ch in enumerate(text):
|
149 |
+
if ch in self.SP_CHAR_MAPPING:
|
150 |
+
ch = self.SP_CHAR_MAPPING.get(ch)
|
151 |
+
else:
|
152 |
+
ch = unicodedata.normalize("NFKC", ch)
|
153 |
+
if self.is_whitespace(ch):
|
154 |
+
continue
|
155 |
+
normalized_text += ch
|
156 |
+
char_mapping.extend([i] * len(ch))
|
157 |
+
|
158 |
+
text, token_mapping, offset = normalized_text, [], 0
|
159 |
+
|
160 |
+
if self.do_lower_case:
|
161 |
+
text = text.lower()
|
162 |
+
|
163 |
+
for token in split_tokens:
|
164 |
+
if token[:1] == "▁":
|
165 |
+
token = token[1:]
|
166 |
+
start = text[offset:].index(token) + offset
|
167 |
+
end = start + len(token)
|
168 |
+
|
169 |
+
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1))
|
170 |
+
offset = end
|
171 |
+
return token_mapping
|
172 |
+
|
173 |
+
@property
|
174 |
+
def vocab_size(self):
|
175 |
+
return len(self.vocab)
|
176 |
+
|
177 |
+
def get_vocab(self):
|
178 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
179 |
+
|
180 |
+
def __getstate__(self):
|
181 |
+
state = self.__dict__.copy()
|
182 |
+
state["sp_model"] = None
|
183 |
+
return state
|
184 |
+
|
185 |
+
def __setstate__(self, d):
|
186 |
+
self.__dict__ = d
|
187 |
+
|
188 |
+
# for backward compatibility
|
189 |
+
if not hasattr(self, "sp_model_kwargs"):
|
190 |
+
self.sp_model_kwargs = {}
|
191 |
+
|
192 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
193 |
+
self.sp_model.Load(self.sentencepiece_model_ckpt)
|
194 |
+
|
195 |
+
def clean_text(self, text):
|
196 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
197 |
+
return "".join((self.SP_CHAR_MAPPING.get(c, c) for c in text))
|
198 |
+
|
199 |
+
def _tokenize(self, text, enable_sampling=False, nbest_size=64, alpha=0.1):
|
200 |
+
"""Tokenize a string."""
|
201 |
+
|
202 |
+
if self.sp_model_kwargs.get("enable_sampling") is True:
|
203 |
+
enable_sampling = True
|
204 |
+
if self.sp_model_kwargs.get("alpha") is not None:
|
205 |
+
alpha = self.sp_model_kwargs.get("alpha")
|
206 |
+
if self.sp_model_kwargs.get("nbest_size") is not None:
|
207 |
+
nbest_size = self.sp_model_kwargs.get("nbest_size")
|
208 |
+
|
209 |
+
if not enable_sampling:
|
210 |
+
pieces = self.sp_model.EncodeAsPieces(text)
|
211 |
+
else:
|
212 |
+
pieces = self.sp_model.SampleEncodeAsPieces(text, nbest_size, alpha)
|
213 |
+
new_pieces = []
|
214 |
+
for pi, piece in enumerate(pieces):
|
215 |
+
if piece == SPIECE_UNDERLINE:
|
216 |
+
if not pieces[pi + 1].startswith(SPIECE_UNDERLINE) and pi != 0:
|
217 |
+
new_pieces.append(SPIECE_UNDERLINE)
|
218 |
+
continue
|
219 |
+
else:
|
220 |
+
continue
|
221 |
+
lst_i = 0
|
222 |
+
for i, chunk in enumerate(piece):
|
223 |
+
if chunk == SPIECE_UNDERLINE:
|
224 |
+
continue
|
225 |
+
if self.is_ch_char(chunk) or self.is_punct(chunk):
|
226 |
+
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
|
227 |
+
new_pieces.append(piece[lst_i:i])
|
228 |
+
new_pieces.append(chunk)
|
229 |
+
lst_i = i + 1
|
230 |
+
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
|
231 |
+
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
|
232 |
+
new_pieces.append(piece[lst_i:i])
|
233 |
+
lst_i = i
|
234 |
+
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
|
235 |
+
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
|
236 |
+
new_pieces.append(piece[lst_i:i])
|
237 |
+
lst_i = i
|
238 |
+
if len(piece) > lst_i:
|
239 |
+
new_pieces.append(piece[lst_i:])
|
240 |
+
return new_pieces
|
241 |
+
|
242 |
+
def convert_tokens_to_string(self, tokens):
|
243 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
244 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
245 |
+
return out_string
|
246 |
+
|
247 |
+
def convert_ids_to_string(self, ids):
|
248 |
+
"""
|
249 |
+
Converts a sequence of tokens (strings for sub-words) in a single string.
|
250 |
+
"""
|
251 |
+
tokens = self.convert_ids_to_tokens(ids)
|
252 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
253 |
+
return out_string
|
254 |
+
|
255 |
+
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
|
256 |
+
def _convert_token_to_id(self, token):
|
257 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
258 |
+
|
259 |
+
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
|
260 |
+
def _convert_id_to_token(self, index):
|
261 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
262 |
+
return self.reverse_vocab.get(index, self.unk_token)
|
263 |
+
|
264 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
265 |
+
r"""
|
266 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
267 |
+
adding special tokens. An ErnieM sequence has the following format:
|
268 |
+
|
269 |
+
- single sequence: `[CLS] X [SEP]`
|
270 |
+
- pair of sequences: `[CLS] A [SEP] [SEP] B [SEP]`
|
271 |
+
|
272 |
+
Args:
|
273 |
+
token_ids_0 (`List[int]`):
|
274 |
+
List of IDs to which the special tokens will be added.
|
275 |
+
token_ids_1 (`List[int]`, *optional*):
|
276 |
+
Optional second list of IDs for sequence pairs.
|
277 |
+
Returns:
|
278 |
+
`List[int]`: List of input_id with the appropriate special tokens.
|
279 |
+
"""
|
280 |
+
if token_ids_1 is None:
|
281 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
282 |
+
_cls = [self.cls_token_id]
|
283 |
+
_sep = [self.sep_token_id]
|
284 |
+
return _cls + token_ids_0 + _sep + _sep + token_ids_1 + _sep
|
285 |
+
|
286 |
+
def build_offset_mapping_with_special_tokens(self, offset_mapping_0, offset_mapping_1=None):
|
287 |
+
r"""
|
288 |
+
Build offset map from a pair of offset map by concatenating and adding offsets of special tokens. An Ernie-M
|
289 |
+
offset_mapping has the following format:
|
290 |
+
|
291 |
+
- single sequence: `(0,0) X (0,0)`
|
292 |
+
- pair of sequences: `(0,0) A (0,0) (0,0) B (0,0)`
|
293 |
+
|
294 |
+
Args:
|
295 |
+
offset_mapping_ids_0 (`List[tuple]`):
|
296 |
+
List of char offsets to which the special tokens will be added.
|
297 |
+
offset_mapping_ids_1 (`List[tuple]`, *optional*):
|
298 |
+
Optional second list of wordpiece offsets for offset mapping pairs.
|
299 |
+
Returns:
|
300 |
+
`List[tuple]`: List of wordpiece offsets with the appropriate offsets of special tokens.
|
301 |
+
"""
|
302 |
+
if offset_mapping_1 is None:
|
303 |
+
return [(0, 0)] + offset_mapping_0 + [(0, 0)]
|
304 |
+
|
305 |
+
return [(0, 0)] + offset_mapping_0 + [(0, 0), (0, 0)] + offset_mapping_1 + [(0, 0)]
|
306 |
+
|
307 |
+
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
|
308 |
+
r"""
|
309 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
310 |
+
special tokens using the tokenizer `encode` method.
|
311 |
+
|
312 |
+
Args:
|
313 |
+
token_ids_0 (`List[int]`):
|
314 |
+
List of ids of the first sequence.
|
315 |
+
token_ids_1 (`List[int]`, *optional*):
|
316 |
+
Optional second list of IDs for sequence pairs.
|
317 |
+
already_has_special_tokens (`str`, *optional*, defaults to `False`):
|
318 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
319 |
+
Returns:
|
320 |
+
`List[int]`:
|
321 |
+
The list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
322 |
+
"""
|
323 |
+
|
324 |
+
if already_has_special_tokens:
|
325 |
+
if token_ids_1 is not None:
|
326 |
+
raise ValueError(
|
327 |
+
"You should not supply a second sequence if the provided sequence of "
|
328 |
+
"ids is already formatted with special tokens for the model."
|
329 |
+
)
|
330 |
+
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0]
|
331 |
+
|
332 |
+
if token_ids_1 is not None:
|
333 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
334 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
335 |
+
|
336 |
+
def create_token_type_ids_from_sequences(
|
337 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
338 |
+
) -> List[int]:
|
339 |
+
"""
|
340 |
+
Create the token type IDs corresponding to the sequences passed. [What are token type
|
341 |
+
IDs?](../glossary#token-type-ids) Should be overridden in a subclass if the model has a special way of
|
342 |
+
building: those.
|
343 |
+
|
344 |
+
Args:
|
345 |
+
token_ids_0 (`List[int]`):
|
346 |
+
The first tokenized sequence.
|
347 |
+
token_ids_1 (`List[int]`, *optional*):
|
348 |
+
The second tokenized sequence.
|
349 |
+
Returns:
|
350 |
+
`List[int]`: The token type ids.
|
351 |
+
"""
|
352 |
+
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
|
353 |
+
if token_ids_1 is None:
|
354 |
+
# [CLS] X [SEP]
|
355 |
+
return (len(token_ids_0) + 2) * [0]
|
356 |
+
|
357 |
+
# [CLS] A [SEP] [SEP] B [SEP]
|
358 |
+
return [0] * (len(token_ids_0) + 1) + [1] * (len(token_ids_1) + 3)
|
359 |
+
|
360 |
+
def is_ch_char(self, char):
|
361 |
+
"""
|
362 |
+
is_ch_char
|
363 |
+
"""
|
364 |
+
if "\u4e00" <= char <= "\u9fff":
|
365 |
+
return True
|
366 |
+
return False
|
367 |
+
|
368 |
+
def is_alpha(self, char):
|
369 |
+
"""
|
370 |
+
is_alpha
|
371 |
+
"""
|
372 |
+
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
|
373 |
+
return True
|
374 |
+
return False
|
375 |
+
|
376 |
+
def is_punct(self, char):
|
377 |
+
"""
|
378 |
+
is_punct
|
379 |
+
"""
|
380 |
+
if char in ",;:.?!~,;:。?!《》【】":
|
381 |
+
return True
|
382 |
+
return False
|
383 |
+
|
384 |
+
def is_whitespace(self, char):
|
385 |
+
"""
|
386 |
+
is whitespace
|
387 |
+
"""
|
388 |
+
if char == " " or char == "\t" or char == "\n" or char == "\r":
|
389 |
+
return True
|
390 |
+
if len(char) == 1:
|
391 |
+
cat = unicodedata.category(char)
|
392 |
+
if cat == "Zs":
|
393 |
+
return True
|
394 |
+
return False
|
395 |
+
|
396 |
+
def load_vocab(self, filepath):
|
397 |
+
token_to_idx = {}
|
398 |
+
with io.open(filepath, "r", encoding="utf-8") as f:
|
399 |
+
for index, line in enumerate(f):
|
400 |
+
token = line.rstrip("\n")
|
401 |
+
token_to_idx[token] = int(index)
|
402 |
+
|
403 |
+
return token_to_idx
|
404 |
+
|
405 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
406 |
+
index = 0
|
407 |
+
if os.path.isdir(save_directory):
|
408 |
+
vocab_file = os.path.join(
|
409 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
410 |
+
)
|
411 |
+
else:
|
412 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
413 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
414 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
415 |
+
if index != token_index:
|
416 |
+
logger.warning(
|
417 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
418 |
+
" Please check that the vocabulary is not corrupted!"
|
419 |
+
)
|
420 |
+
index = token_index
|
421 |
+
writer.write(token + "\n")
|
422 |
+
index += 1
|
423 |
+
|
424 |
+
tokenizer_model_file = os.path.join(save_directory, "sentencepiece.bpe.model")
|
425 |
+
with open(tokenizer_model_file, "wb") as fi:
|
426 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
427 |
+
fi.write(content_spiece_model)
|
428 |
+
|
429 |
+
return (vocab_file,)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/__init__.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_torch_available,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
_import_structure = {
|
25 |
+
"configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
|
26 |
+
}
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_torch_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["modeling_falcon"] = [
|
35 |
+
"FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
|
36 |
+
"FalconForCausalLM",
|
37 |
+
"FalconModel",
|
38 |
+
"FalconPreTrainedModel",
|
39 |
+
"FalconForSequenceClassification",
|
40 |
+
"FalconForTokenClassification",
|
41 |
+
"FalconForQuestionAnswering",
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_torch_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
from .modeling_falcon import (
|
55 |
+
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
|
56 |
+
FalconForCausalLM,
|
57 |
+
FalconForQuestionAnswering,
|
58 |
+
FalconForSequenceClassification,
|
59 |
+
FalconForTokenClassification,
|
60 |
+
FalconModel,
|
61 |
+
FalconPreTrainedModel,
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
else:
|
66 |
+
import sys
|
67 |
+
|
68 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/configuration_falcon.cpython-310.pyc
ADDED
Binary file (7.94 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/convert_custom_code_checkpoint.cpython-310.pyc
ADDED
Binary file (2.06 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/modeling_falcon.cpython-310.pyc
ADDED
Binary file (44.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/configuration_falcon.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Falcon configuration"""
|
16 |
+
from ...configuration_utils import PretrainedConfig
|
17 |
+
from ...utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
23 |
+
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
|
24 |
+
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class FalconConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
|
31 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
32 |
+
defaults will yield a similar configuration to that of the
|
33 |
+
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 65024):
|
41 |
+
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`FalconModel`]
|
43 |
+
hidden_size (`int`, *optional*, defaults to 4544):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer decoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 71):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
50 |
+
The epsilon used by the layer normalization layers.
|
51 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
52 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
53 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether the model should return the last key/values attentions (not used by all models). Only relevant if
|
55 |
+
`config.is_decoder=True`.
|
56 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
57 |
+
The dropout probability for MLP layers.
|
58 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
59 |
+
The dropout probability for attention layers.
|
60 |
+
num_kv_heads (`int`, *optional*):
|
61 |
+
Number of key-value heads to use per attention layer. If unset, defaults to the same value as
|
62 |
+
`num_attention_heads`.
|
63 |
+
alibi (`bool`, *optional*, defaults to `False`):
|
64 |
+
Whether to use ALiBi positional biases during self-attention.
|
65 |
+
new_decoder_architecture (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
|
67 |
+
arguments are ignored, as the new decoder always uses parallel attention.
|
68 |
+
multi_query (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
|
70 |
+
parallel_attn (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
|
72 |
+
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
|
73 |
+
bias (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether to use bias on Linear layers.
|
75 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
76 |
+
The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained
|
77 |
+
Falcon models with RoPE support up to 2048 tokens.
|
78 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
79 |
+
The base period of the RoPE embeddings.
|
80 |
+
rope_scaling (`Dict`, *optional*):
|
81 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
82 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
83 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
84 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
85 |
+
these scaling strategies behave:
|
86 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
87 |
+
experimental feature, subject to breaking API changes in future versions.
|
88 |
+
bos_token_id (`int`, *optional*, defaults to 11):
|
89 |
+
The id of the "beginning-of-sequence" token.
|
90 |
+
eos_token_id (`int`, *optional*, defaults to 11):
|
91 |
+
The id of the "end-of-sequence" token.
|
92 |
+
|
93 |
+
Example:
|
94 |
+
|
95 |
+
```python
|
96 |
+
>>> from transformers import FalconModel, FalconConfig
|
97 |
+
|
98 |
+
>>> # Initializing a small (2-layer) Falcon configuration
|
99 |
+
>>> configuration = FalconConfig(num_hidden_layers=2)
|
100 |
+
|
101 |
+
>>> # Initializing a model from the small configuration
|
102 |
+
>>> model = FalconModel(configuration)
|
103 |
+
|
104 |
+
>>> # Accessing the model configuration
|
105 |
+
>>> configuration = model.config
|
106 |
+
```"""
|
107 |
+
|
108 |
+
model_type = "falcon"
|
109 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=65024,
|
114 |
+
hidden_size=4544,
|
115 |
+
num_hidden_layers=32,
|
116 |
+
num_attention_heads=71,
|
117 |
+
layer_norm_epsilon=1e-5,
|
118 |
+
initializer_range=0.02,
|
119 |
+
use_cache=True,
|
120 |
+
hidden_dropout=0.0,
|
121 |
+
attention_dropout=0.0,
|
122 |
+
num_kv_heads=None,
|
123 |
+
alibi=False,
|
124 |
+
new_decoder_architecture=False,
|
125 |
+
multi_query=True,
|
126 |
+
parallel_attn=True,
|
127 |
+
bias=False,
|
128 |
+
max_position_embeddings=2048,
|
129 |
+
rope_theta=10000.0,
|
130 |
+
rope_scaling=None,
|
131 |
+
bos_token_id=11,
|
132 |
+
eos_token_id=11,
|
133 |
+
**kwargs,
|
134 |
+
):
|
135 |
+
self.vocab_size = vocab_size
|
136 |
+
# Backward compatibility with n_embed kwarg
|
137 |
+
n_embed = kwargs.pop("n_embed", None)
|
138 |
+
self.hidden_size = hidden_size if n_embed is None else n_embed
|
139 |
+
self.num_hidden_layers = num_hidden_layers
|
140 |
+
self.num_attention_heads = num_attention_heads
|
141 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
142 |
+
self.initializer_range = initializer_range
|
143 |
+
self.use_cache = use_cache
|
144 |
+
self.hidden_dropout = hidden_dropout
|
145 |
+
self.attention_dropout = attention_dropout
|
146 |
+
|
147 |
+
self.bos_token_id = bos_token_id
|
148 |
+
self.eos_token_id = eos_token_id
|
149 |
+
self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
|
150 |
+
self.alibi = alibi
|
151 |
+
self.new_decoder_architecture = new_decoder_architecture
|
152 |
+
self.multi_query = multi_query # Ignored when new_decoder_architecture is True
|
153 |
+
self.parallel_attn = parallel_attn
|
154 |
+
self.bias = bias
|
155 |
+
self.max_position_embeddings = max_position_embeddings
|
156 |
+
self.rope_theta = rope_theta
|
157 |
+
self.rope_scaling = rope_scaling
|
158 |
+
self._rope_scaling_validation()
|
159 |
+
|
160 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
161 |
+
|
162 |
+
@property
|
163 |
+
def head_dim(self):
|
164 |
+
return self.hidden_size // self.num_attention_heads
|
165 |
+
|
166 |
+
@property
|
167 |
+
def rotary(self):
|
168 |
+
return not self.alibi
|
169 |
+
|
170 |
+
def _rope_scaling_validation(self):
|
171 |
+
"""
|
172 |
+
Validate the `rope_scaling` configuration.
|
173 |
+
"""
|
174 |
+
if self.rope_scaling is None:
|
175 |
+
return
|
176 |
+
|
177 |
+
if self.alibi:
|
178 |
+
raise ValueError("`rope_scaling` is not supported when `alibi` is `True`.")
|
179 |
+
|
180 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
181 |
+
raise ValueError(
|
182 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
183 |
+
f"got {self.rope_scaling}"
|
184 |
+
)
|
185 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
186 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
187 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
188 |
+
raise ValueError(
|
189 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
190 |
+
)
|
191 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
192 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/convert_custom_code_checkpoint.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
|
6 |
+
"""
|
7 |
+
This script converts Falcon custom code checkpoints to modern Falcon checkpoints that use code in the Transformers
|
8 |
+
library. After conversion, performance (especially for generation) should improve and the checkpoint can be loaded
|
9 |
+
without needing trust_remote_code=True.
|
10 |
+
"""
|
11 |
+
|
12 |
+
if __name__ == "__main__":
|
13 |
+
parser = ArgumentParser()
|
14 |
+
parser.add_argument(
|
15 |
+
"--checkpoint_dir",
|
16 |
+
type=Path,
|
17 |
+
required=True,
|
18 |
+
help="Directory containing a custom code checkpoint to convert to a modern Falcon checkpoint.",
|
19 |
+
)
|
20 |
+
args = parser.parse_args()
|
21 |
+
|
22 |
+
if not args.checkpoint_dir.is_dir():
|
23 |
+
raise ValueError("--checkpoint_dir argument should be a directory!")
|
24 |
+
|
25 |
+
if (
|
26 |
+
not (args.checkpoint_dir / "configuration_RW.py").is_file()
|
27 |
+
or not (args.checkpoint_dir / "modelling_RW.py").is_file()
|
28 |
+
):
|
29 |
+
raise ValueError(
|
30 |
+
"The model directory should contain configuration_RW.py and modelling_RW.py files! Are you sure this is a custom code checkpoint?"
|
31 |
+
)
|
32 |
+
(args.checkpoint_dir / "configuration_RW.py").unlink()
|
33 |
+
(args.checkpoint_dir / "modelling_RW.py").unlink()
|
34 |
+
|
35 |
+
config = args.checkpoint_dir / "config.json"
|
36 |
+
text = config.read_text()
|
37 |
+
text = text.replace("RWForCausalLM", "FalconForCausalLM")
|
38 |
+
text = text.replace("RefinedWebModel", "falcon")
|
39 |
+
text = text.replace("RefinedWeb", "falcon")
|
40 |
+
json_config = json.loads(text)
|
41 |
+
del json_config["auto_map"]
|
42 |
+
|
43 |
+
if "n_head" in json_config:
|
44 |
+
json_config["num_attention_heads"] = json_config.pop("n_head")
|
45 |
+
if "n_layer" in json_config:
|
46 |
+
json_config["num_hidden_layers"] = json_config.pop("n_layer")
|
47 |
+
if "n_head_kv" in json_config:
|
48 |
+
json_config["num_kv_heads"] = json_config.pop("n_head_kv")
|
49 |
+
json_config["new_decoder_architecture"] = True
|
50 |
+
else:
|
51 |
+
json_config["new_decoder_architecture"] = False
|
52 |
+
bos_token_id = json_config.get("bos_token_id", 1)
|
53 |
+
eos_token_id = json_config.get("eos_token_id", 2)
|
54 |
+
config.unlink()
|
55 |
+
config.write_text(json.dumps(json_config, indent=2, sort_keys=True))
|
56 |
+
|
57 |
+
tokenizer_config = args.checkpoint_dir / "tokenizer_config.json"
|
58 |
+
if tokenizer_config.is_file():
|
59 |
+
text = tokenizer_config.read_text()
|
60 |
+
json_config = json.loads(text)
|
61 |
+
if json_config["tokenizer_class"] == "PreTrainedTokenizerFast":
|
62 |
+
json_config["model_input_names"] = ["input_ids", "attention_mask"]
|
63 |
+
tokenizer_config.unlink()
|
64 |
+
tokenizer_config.write_text(json.dumps(json_config, indent=2, sort_keys=True))
|
65 |
+
|
66 |
+
generation_config_path = args.checkpoint_dir / "generation_config.json"
|
67 |
+
generation_dict = {
|
68 |
+
"_from_model_config": True,
|
69 |
+
"bos_token_id": bos_token_id,
|
70 |
+
"eos_token_id": eos_token_id,
|
71 |
+
"transformers_version": "4.33.0.dev0",
|
72 |
+
}
|
73 |
+
generation_config_path.write_text(json.dumps(generation_dict, indent=2, sort_keys=True))
|
74 |
+
print("Done! Please double-check that the new checkpoint works as expected.")
|
env-llmeval/lib/python3.10/site-packages/transformers/models/falcon/modeling_falcon.py
ADDED
@@ -0,0 +1,1648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch Falcon model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import warnings
|
19 |
+
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
25 |
+
from torch.nn import functional as F
|
26 |
+
|
27 |
+
from ...modeling_attn_mask_utils import (
|
28 |
+
AttentionMaskConverter,
|
29 |
+
_prepare_4d_causal_attention_mask,
|
30 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
31 |
+
)
|
32 |
+
from ...modeling_outputs import (
|
33 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
34 |
+
CausalLMOutputWithCrossAttentions,
|
35 |
+
QuestionAnsweringModelOutput,
|
36 |
+
SequenceClassifierOutputWithPast,
|
37 |
+
TokenClassifierOutput,
|
38 |
+
)
|
39 |
+
from ...modeling_utils import PreTrainedModel
|
40 |
+
from ...pytorch_utils import is_torch_greater_or_equal_than_2_0
|
41 |
+
from ...utils import (
|
42 |
+
add_code_sample_docstrings,
|
43 |
+
add_start_docstrings,
|
44 |
+
add_start_docstrings_to_model_forward,
|
45 |
+
is_flash_attn_2_available,
|
46 |
+
is_flash_attn_greater_or_equal_2_10,
|
47 |
+
logging,
|
48 |
+
)
|
49 |
+
from .configuration_falcon import FalconConfig
|
50 |
+
|
51 |
+
|
52 |
+
if TYPE_CHECKING:
|
53 |
+
from ...configuration_utils import PretrainedConfig
|
54 |
+
|
55 |
+
if is_flash_attn_2_available():
|
56 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
57 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
62 |
+
"tiiuae/falcon-40b",
|
63 |
+
"tiiuae/falcon-40b-instruct",
|
64 |
+
"tiiuae/falcon-7b",
|
65 |
+
"tiiuae/falcon-7b-instruct",
|
66 |
+
"tiiuae/falcon-rw-7b",
|
67 |
+
"tiiuae/falcon-rw-1b",
|
68 |
+
]
|
69 |
+
_CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b"
|
70 |
+
_CONFIG_FOR_DOC = "FalconConfig"
|
71 |
+
|
72 |
+
|
73 |
+
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
|
74 |
+
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
|
75 |
+
class FalconLinear(nn.Linear):
|
76 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
77 |
+
hidden_states = input @ self.weight.T
|
78 |
+
if self.bias is None:
|
79 |
+
return hidden_states
|
80 |
+
return hidden_states + self.bias
|
81 |
+
|
82 |
+
|
83 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
84 |
+
def rotate_half(x):
|
85 |
+
"""Rotates half the hidden dims of the input."""
|
86 |
+
x1 = x[..., : x.shape[-1] // 2]
|
87 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
88 |
+
return torch.cat((-x2, x1), dim=-1)
|
89 |
+
|
90 |
+
|
91 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
92 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
93 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
q (`torch.Tensor`): The query tensor.
|
97 |
+
k (`torch.Tensor`): The key tensor.
|
98 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
99 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
100 |
+
position_ids (`torch.Tensor`):
|
101 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
102 |
+
used to pass offsetted position ids when working with a KV-cache.
|
103 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
104 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
105 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
106 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
107 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
108 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
109 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
110 |
+
Returns:
|
111 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
112 |
+
"""
|
113 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
114 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
115 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
116 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
117 |
+
return q_embed, k_embed
|
118 |
+
|
119 |
+
|
120 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
121 |
+
def _get_unpad_data(attention_mask):
|
122 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
123 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
124 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
125 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
126 |
+
return (
|
127 |
+
indices,
|
128 |
+
cu_seqlens,
|
129 |
+
max_seqlen_in_batch,
|
130 |
+
)
|
131 |
+
|
132 |
+
|
133 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Falcon
|
134 |
+
class FalconRotaryEmbedding(nn.Module):
|
135 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
136 |
+
super().__init__()
|
137 |
+
|
138 |
+
self.dim = dim
|
139 |
+
self.max_position_embeddings = max_position_embeddings
|
140 |
+
self.base = base
|
141 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
142 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
143 |
+
|
144 |
+
# Build here to make `torch.jit.trace` work.
|
145 |
+
self._set_cos_sin_cache(
|
146 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
147 |
+
)
|
148 |
+
|
149 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
150 |
+
self.max_seq_len_cached = seq_len
|
151 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
152 |
+
|
153 |
+
freqs = torch.outer(t, self.inv_freq)
|
154 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
155 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
156 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
157 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
158 |
+
|
159 |
+
def forward(self, x, seq_len=None):
|
160 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
161 |
+
if seq_len > self.max_seq_len_cached:
|
162 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
163 |
+
|
164 |
+
return (
|
165 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
166 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
# copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Falcon
|
171 |
+
# TODO @joao no longer copied from LLama after static cache, fix me (copied -> Copied)
|
172 |
+
class FalconLinearScalingRotaryEmbedding(FalconRotaryEmbedding):
|
173 |
+
"""FalconRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
174 |
+
|
175 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
176 |
+
self.scaling_factor = scaling_factor
|
177 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
178 |
+
|
179 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
180 |
+
self.max_seq_len_cached = seq_len
|
181 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
182 |
+
t = t / self.scaling_factor
|
183 |
+
|
184 |
+
freqs = torch.outer(t, self.inv_freq)
|
185 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
186 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
187 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
188 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
189 |
+
|
190 |
+
|
191 |
+
# copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Falcon
|
192 |
+
# TODO @joao no longer copied from LLama after static cache, fix me (copied -> Copied)
|
193 |
+
class FalconDynamicNTKScalingRotaryEmbedding(FalconRotaryEmbedding):
|
194 |
+
"""FalconRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
195 |
+
|
196 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
197 |
+
self.scaling_factor = scaling_factor
|
198 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
199 |
+
|
200 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
201 |
+
self.max_seq_len_cached = seq_len
|
202 |
+
|
203 |
+
if seq_len > self.max_position_embeddings:
|
204 |
+
base = self.base * (
|
205 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
206 |
+
) ** (self.dim / (self.dim - 2))
|
207 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
208 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
209 |
+
|
210 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
211 |
+
|
212 |
+
freqs = torch.outer(t, self.inv_freq)
|
213 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
214 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
215 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
216 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
217 |
+
|
218 |
+
|
219 |
+
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
220 |
+
batch_size, seq_length = attention_mask.shape
|
221 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
222 |
+
base = torch.tensor(
|
223 |
+
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
224 |
+
)
|
225 |
+
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
|
226 |
+
slopes = torch.pow(base, powers)
|
227 |
+
|
228 |
+
if closest_power_of_2 != num_heads:
|
229 |
+
extra_base = torch.tensor(
|
230 |
+
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
231 |
+
)
|
232 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
233 |
+
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
|
234 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
235 |
+
|
236 |
+
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
237 |
+
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
238 |
+
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
239 |
+
# => the query_length dimension will then be broadcasted correctly
|
240 |
+
# This is more or less identical to T5's relative position bias:
|
241 |
+
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
242 |
+
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
243 |
+
alibi = slopes[..., None].bfloat16() * arange_tensor
|
244 |
+
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
245 |
+
|
246 |
+
|
247 |
+
# Copied from transformers.models.bloom.modeling_bloom.dropout_add
|
248 |
+
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
249 |
+
"""
|
250 |
+
Dropout add function
|
251 |
+
|
252 |
+
Args:
|
253 |
+
x (`torch.tensor`, *required*):
|
254 |
+
input tensor
|
255 |
+
residual (`torch.tensor`, *required*):
|
256 |
+
residual tensor
|
257 |
+
prob (`float`, *required*):
|
258 |
+
dropout probability
|
259 |
+
training (`bool`, *required*):
|
260 |
+
training mode
|
261 |
+
"""
|
262 |
+
out = F.dropout(x, p=prob, training=training)
|
263 |
+
out = residual + out
|
264 |
+
return out
|
265 |
+
|
266 |
+
|
267 |
+
class FalconAttention(nn.Module):
|
268 |
+
def __init__(self, config: FalconConfig):
|
269 |
+
super().__init__()
|
270 |
+
|
271 |
+
self.config = config
|
272 |
+
self.hidden_size = config.hidden_size
|
273 |
+
self.num_heads = config.num_attention_heads
|
274 |
+
self.head_dim = self.hidden_size // self.num_heads
|
275 |
+
self.split_size = self.hidden_size
|
276 |
+
self.hidden_dropout = config.hidden_dropout
|
277 |
+
self.max_position_embeddings = config.max_position_embeddings
|
278 |
+
self.rope_theta = config.rope_theta
|
279 |
+
self.is_causal = True
|
280 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
281 |
+
|
282 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
283 |
+
raise ValueError(
|
284 |
+
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
285 |
+
f" {self.num_heads})."
|
286 |
+
)
|
287 |
+
|
288 |
+
if config.rotary:
|
289 |
+
self._init_rope()
|
290 |
+
|
291 |
+
# Layer-wise attention scaling
|
292 |
+
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
293 |
+
self.beta = self.inv_norm_factor
|
294 |
+
if config.new_decoder_architecture:
|
295 |
+
qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim
|
296 |
+
elif config.multi_query:
|
297 |
+
qkv_out_dim = self.hidden_size + 2 * self.head_dim
|
298 |
+
else:
|
299 |
+
qkv_out_dim = 3 * self.hidden_size
|
300 |
+
self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias)
|
301 |
+
self.new_decoder_architecture = config.new_decoder_architecture
|
302 |
+
self.multi_query = config.multi_query
|
303 |
+
self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias)
|
304 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
305 |
+
self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1
|
306 |
+
|
307 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaAttention._init_rope with Llama->Falcon
|
308 |
+
def _init_rope(self):
|
309 |
+
if self.config.rope_scaling is None:
|
310 |
+
self.rotary_emb = FalconRotaryEmbedding(
|
311 |
+
self.head_dim,
|
312 |
+
max_position_embeddings=self.max_position_embeddings,
|
313 |
+
base=self.rope_theta,
|
314 |
+
)
|
315 |
+
else:
|
316 |
+
scaling_type = self.config.rope_scaling["type"]
|
317 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
318 |
+
if scaling_type == "linear":
|
319 |
+
self.rotary_emb = FalconLinearScalingRotaryEmbedding(
|
320 |
+
self.head_dim,
|
321 |
+
max_position_embeddings=self.max_position_embeddings,
|
322 |
+
scaling_factor=scaling_factor,
|
323 |
+
base=self.rope_theta,
|
324 |
+
)
|
325 |
+
elif scaling_type == "dynamic":
|
326 |
+
self.rotary_emb = FalconDynamicNTKScalingRotaryEmbedding(
|
327 |
+
self.head_dim,
|
328 |
+
max_position_embeddings=self.max_position_embeddings,
|
329 |
+
scaling_factor=scaling_factor,
|
330 |
+
base=self.rope_theta,
|
331 |
+
)
|
332 |
+
else:
|
333 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
334 |
+
|
335 |
+
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
336 |
+
"""
|
337 |
+
Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv`
|
338 |
+
|
339 |
+
Args:
|
340 |
+
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
341 |
+
|
342 |
+
Returns:
|
343 |
+
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
|
344 |
+
value: [batch_size, seq_length, num_heads, head_dim]
|
345 |
+
"""
|
346 |
+
if self.new_decoder_architecture:
|
347 |
+
batch, seq_len, _ = fused_qkv.shape
|
348 |
+
qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim)
|
349 |
+
query = qkv[:, :, :, :-2]
|
350 |
+
key = qkv[:, :, :, [-2]]
|
351 |
+
value = qkv[:, :, :, [-1]]
|
352 |
+
key = torch.broadcast_to(key, query.shape)
|
353 |
+
value = torch.broadcast_to(value, query.shape)
|
354 |
+
|
355 |
+
query, key, value = [x.flatten(2, 3) for x in (query, key, value)]
|
356 |
+
return query, key, value
|
357 |
+
elif not self.multi_query:
|
358 |
+
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
359 |
+
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
|
360 |
+
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
|
361 |
+
else:
|
362 |
+
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
363 |
+
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim)
|
364 |
+
return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :]
|
365 |
+
|
366 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads
|
367 |
+
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
368 |
+
"""
|
369 |
+
Merge heads together over the last dimension
|
370 |
+
|
371 |
+
Args:
|
372 |
+
x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
373 |
+
|
374 |
+
Returns:
|
375 |
+
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
376 |
+
"""
|
377 |
+
# What we want to achieve is:
|
378 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
|
379 |
+
batch_size_and_num_heads, seq_length, _ = x.shape
|
380 |
+
batch_size = batch_size_and_num_heads // self.num_heads
|
381 |
+
|
382 |
+
# First view to decompose the batch size
|
383 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
|
384 |
+
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
|
385 |
+
|
386 |
+
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
|
387 |
+
x = x.permute(0, 2, 1, 3)
|
388 |
+
|
389 |
+
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
|
390 |
+
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
|
391 |
+
|
392 |
+
def forward(
|
393 |
+
self,
|
394 |
+
hidden_states: torch.Tensor,
|
395 |
+
alibi: Optional[torch.Tensor],
|
396 |
+
attention_mask: torch.Tensor,
|
397 |
+
position_ids: Optional[torch.LongTensor] = None,
|
398 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
399 |
+
head_mask: Optional[torch.Tensor] = None,
|
400 |
+
use_cache: bool = False,
|
401 |
+
output_attentions: bool = False,
|
402 |
+
**kwargs,
|
403 |
+
):
|
404 |
+
if "padding_mask" in kwargs:
|
405 |
+
warnings.warn(
|
406 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
407 |
+
)
|
408 |
+
|
409 |
+
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
410 |
+
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
|
411 |
+
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
412 |
+
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
413 |
+
|
414 |
+
batch_size, query_length, _, _ = query_layer.shape
|
415 |
+
|
416 |
+
query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim)
|
417 |
+
key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
|
418 |
+
value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
|
419 |
+
|
420 |
+
kv_seq_len = key_layer.shape[-2]
|
421 |
+
if layer_past is not None:
|
422 |
+
kv_seq_len += layer_past[0].shape[-2]
|
423 |
+
if alibi is None:
|
424 |
+
cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
|
425 |
+
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids)
|
426 |
+
|
427 |
+
if layer_past is not None:
|
428 |
+
past_key, past_value = layer_past
|
429 |
+
# concatenate along seq_length dimension:
|
430 |
+
# - key: [batch_size, self.num_heads, kv_length, head_dim]
|
431 |
+
# - value: [batch_size, self.num_heads, kv_length, head_dim]
|
432 |
+
key_layer = torch.cat((past_key, key_layer), dim=-2)
|
433 |
+
value_layer = torch.cat((past_value, value_layer), dim=-2)
|
434 |
+
|
435 |
+
kv_length = key_layer.shape[-2]
|
436 |
+
if use_cache:
|
437 |
+
present = (key_layer, value_layer)
|
438 |
+
else:
|
439 |
+
present = None
|
440 |
+
|
441 |
+
if self._use_sdpa and query_layer.device.type == "cuda" and attention_mask is not None:
|
442 |
+
# For torch<=2.1.2, SDPA with memory-efficient backend is bugged with non-contiguous inputs with custom attn_mask,
|
443 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
444 |
+
query_layer = query_layer.contiguous()
|
445 |
+
key_layer = key_layer.contiguous()
|
446 |
+
value_layer = value_layer.contiguous()
|
447 |
+
|
448 |
+
if alibi is None:
|
449 |
+
if self._use_sdpa and not output_attentions:
|
450 |
+
attn_output = F.scaled_dot_product_attention(
|
451 |
+
query_layer,
|
452 |
+
key_layer,
|
453 |
+
value_layer,
|
454 |
+
attention_mask,
|
455 |
+
0.0,
|
456 |
+
# The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case query_length == 1.
|
457 |
+
is_causal=self.is_causal and attention_mask is None and query_length > 1,
|
458 |
+
)
|
459 |
+
|
460 |
+
attention_scores = None
|
461 |
+
else:
|
462 |
+
attention_scores = query_layer @ key_layer.transpose(-1, -2)
|
463 |
+
attention_scores /= math.sqrt(self.head_dim)
|
464 |
+
|
465 |
+
attention_scores = F.softmax(attention_scores + attention_mask, dim=-1, dtype=hidden_states.dtype)
|
466 |
+
# It is unclear why neither dropout nor head_mask is applied here (while it is with alibi).
|
467 |
+
attn_output = attention_scores @ value_layer
|
468 |
+
|
469 |
+
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
|
470 |
+
attn_output = attn_output.permute(0, 2, 1, 3)
|
471 |
+
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
|
472 |
+
|
473 |
+
attn_output = self.dense(attn_output)
|
474 |
+
|
475 |
+
if output_attentions:
|
476 |
+
return attn_output, present, attention_scores
|
477 |
+
else:
|
478 |
+
return attn_output, present
|
479 |
+
|
480 |
+
else:
|
481 |
+
if self._use_sdpa and not output_attentions and head_mask is None:
|
482 |
+
attn_output = F.scaled_dot_product_attention(
|
483 |
+
query_layer,
|
484 |
+
key_layer,
|
485 |
+
value_layer,
|
486 |
+
attn_mask=attention_mask,
|
487 |
+
dropout_p=self.attention_dropout.p if self.training else 0.0,
|
488 |
+
is_causal=self.is_causal and attention_mask is None and query_length > 1,
|
489 |
+
)
|
490 |
+
attn_output = attn_output.transpose(1, 2)
|
491 |
+
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
|
492 |
+
|
493 |
+
attn_output = self.dense(attn_output)
|
494 |
+
else:
|
495 |
+
matmul_result = query_layer @ key_layer.transpose(-1, -2)
|
496 |
+
|
497 |
+
# change view to [batch_size, num_heads, q_length, kv_length]
|
498 |
+
attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length)
|
499 |
+
|
500 |
+
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
501 |
+
input_dtype = attention_scores.dtype
|
502 |
+
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
503 |
+
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
|
504 |
+
attention_scores = attention_scores.to(torch.float32)
|
505 |
+
|
506 |
+
attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
|
507 |
+
attention_logits *= self.inv_norm_factor
|
508 |
+
attention_probs = F.softmax(attention_logits + attention_mask, dim=-1, dtype=hidden_states.dtype)
|
509 |
+
# [batch_size, num_heads, q_length, kv_length]
|
510 |
+
attention_probs = self.attention_dropout(attention_probs)
|
511 |
+
|
512 |
+
if head_mask is not None:
|
513 |
+
attention_probs = attention_probs * head_mask
|
514 |
+
|
515 |
+
# change view [batch_size, num_heads, q_length, kv_length]
|
516 |
+
attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length)
|
517 |
+
|
518 |
+
# matmul: [batch_size * num_heads, q_length, head_dim]
|
519 |
+
attn_output = (attention_probs_reshaped @ value_layer).flatten(0, 1)
|
520 |
+
|
521 |
+
# change view [batch_size, q_length, num_heads * head_dim]
|
522 |
+
attn_output = self._merge_heads(attn_output)
|
523 |
+
|
524 |
+
attn_output = self.dense(attn_output)
|
525 |
+
|
526 |
+
if output_attentions:
|
527 |
+
return attn_output, present, attention_probs
|
528 |
+
else:
|
529 |
+
return attn_output, present
|
530 |
+
|
531 |
+
|
532 |
+
class FalconFlashAttention2(FalconAttention):
|
533 |
+
"""
|
534 |
+
Falcon flash attention module. This module inherits from `FalconAttention` as the weights of the module stays
|
535 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
536 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
537 |
+
"""
|
538 |
+
|
539 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
540 |
+
def __init__(self, *args, **kwargs):
|
541 |
+
super().__init__(*args, **kwargs)
|
542 |
+
|
543 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
544 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
545 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
546 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
547 |
+
|
548 |
+
def forward(
|
549 |
+
self,
|
550 |
+
hidden_states: torch.Tensor,
|
551 |
+
alibi: Optional[torch.Tensor],
|
552 |
+
attention_mask: torch.Tensor,
|
553 |
+
position_ids: Optional[torch.LongTensor] = None,
|
554 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
555 |
+
head_mask: Optional[torch.Tensor] = None,
|
556 |
+
use_cache: bool = False,
|
557 |
+
output_attentions: bool = False,
|
558 |
+
**kwargs,
|
559 |
+
):
|
560 |
+
if "padding_mask" in kwargs:
|
561 |
+
warnings.warn(
|
562 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
563 |
+
)
|
564 |
+
|
565 |
+
# overwrite attention_mask with padding_mask
|
566 |
+
attention_mask = kwargs.pop("padding_mask")
|
567 |
+
|
568 |
+
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
569 |
+
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
|
570 |
+
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
571 |
+
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
572 |
+
|
573 |
+
batch_size, query_length, _, _ = query_layer.shape
|
574 |
+
|
575 |
+
query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim)
|
576 |
+
key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
|
577 |
+
value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
|
578 |
+
|
579 |
+
kv_seq_len = key_layer.shape[-2]
|
580 |
+
if layer_past is not None:
|
581 |
+
kv_seq_len += layer_past[0].shape[-2]
|
582 |
+
if alibi is None:
|
583 |
+
cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
|
584 |
+
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids)
|
585 |
+
|
586 |
+
if layer_past is not None and use_cache:
|
587 |
+
past_key, past_value = layer_past
|
588 |
+
# concatenate along seq_length dimension:
|
589 |
+
# - key: [batch_size, self.num_heads, kv_length, head_dim]
|
590 |
+
# - value: [batch_size, self.num_heads, kv_length, head_dim]
|
591 |
+
key_layer = torch.cat((past_key, key_layer), dim=-2)
|
592 |
+
value_layer = torch.cat((past_value, value_layer), dim=-2)
|
593 |
+
|
594 |
+
past_key_value = (key_layer, value_layer) if use_cache else None
|
595 |
+
|
596 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
597 |
+
# to be able to avoid many of these transpose/reshape/view.
|
598 |
+
query_layer = query_layer.transpose(1, 2)
|
599 |
+
key_layer = key_layer.transpose(1, 2)
|
600 |
+
value_layer = value_layer.transpose(1, 2)
|
601 |
+
|
602 |
+
if alibi is not None:
|
603 |
+
raise ValueError("`alibi` is not supported when `use_flash_attn` is True")
|
604 |
+
|
605 |
+
attn_dropout = self.config.attention_dropout if self.training else 0.0
|
606 |
+
|
607 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
608 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
609 |
+
# cast them back in float16 just to be sure everything works as expected.
|
610 |
+
input_dtype = query_layer.dtype
|
611 |
+
if input_dtype == torch.float32:
|
612 |
+
if torch.is_autocast_enabled():
|
613 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
614 |
+
# Handle the case where the model is quantized
|
615 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
616 |
+
target_dtype = self.config._pre_quantization_dtype
|
617 |
+
else:
|
618 |
+
target_dtype = self.query_key_value.weight.dtype
|
619 |
+
|
620 |
+
logger.warning_once(
|
621 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
622 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
623 |
+
f" {target_dtype}."
|
624 |
+
)
|
625 |
+
|
626 |
+
query_layer = query_layer.to(target_dtype)
|
627 |
+
key_layer = key_layer.to(target_dtype)
|
628 |
+
value_layer = value_layer.to(target_dtype)
|
629 |
+
|
630 |
+
attn_output = self._flash_attention_forward(
|
631 |
+
query_layer, key_layer, value_layer, attention_mask, query_length, dropout=attn_dropout
|
632 |
+
)
|
633 |
+
|
634 |
+
attn_weights = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
|
635 |
+
attn_output = self.dense(attn_weights)
|
636 |
+
|
637 |
+
if not output_attentions:
|
638 |
+
attn_weights = None
|
639 |
+
|
640 |
+
return attn_output, past_key_value, attn_weights
|
641 |
+
|
642 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
643 |
+
def _flash_attention_forward(
|
644 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
645 |
+
):
|
646 |
+
"""
|
647 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
648 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
649 |
+
|
650 |
+
Args:
|
651 |
+
query_states (`torch.Tensor`):
|
652 |
+
Input query states to be passed to Flash Attention API
|
653 |
+
key_states (`torch.Tensor`):
|
654 |
+
Input key states to be passed to Flash Attention API
|
655 |
+
value_states (`torch.Tensor`):
|
656 |
+
Input value states to be passed to Flash Attention API
|
657 |
+
attention_mask (`torch.Tensor`):
|
658 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
659 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
660 |
+
dropout (`float`):
|
661 |
+
Attention dropout
|
662 |
+
softmax_scale (`float`, *optional*):
|
663 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
664 |
+
"""
|
665 |
+
if not self._flash_attn_uses_top_left_mask:
|
666 |
+
causal = self.is_causal
|
667 |
+
else:
|
668 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
669 |
+
causal = self.is_causal and query_length != 1
|
670 |
+
|
671 |
+
# Contains at least one padding token in the sequence
|
672 |
+
if attention_mask is not None:
|
673 |
+
batch_size = query_states.shape[0]
|
674 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
675 |
+
query_states, key_states, value_states, attention_mask, query_length
|
676 |
+
)
|
677 |
+
|
678 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
679 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
680 |
+
|
681 |
+
attn_output_unpad = flash_attn_varlen_func(
|
682 |
+
query_states,
|
683 |
+
key_states,
|
684 |
+
value_states,
|
685 |
+
cu_seqlens_q=cu_seqlens_q,
|
686 |
+
cu_seqlens_k=cu_seqlens_k,
|
687 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
688 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
689 |
+
dropout_p=dropout,
|
690 |
+
softmax_scale=softmax_scale,
|
691 |
+
causal=causal,
|
692 |
+
)
|
693 |
+
|
694 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
695 |
+
else:
|
696 |
+
attn_output = flash_attn_func(
|
697 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
698 |
+
)
|
699 |
+
|
700 |
+
return attn_output
|
701 |
+
|
702 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
703 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
704 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
705 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
706 |
+
|
707 |
+
key_layer = index_first_axis(
|
708 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
709 |
+
)
|
710 |
+
value_layer = index_first_axis(
|
711 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
712 |
+
)
|
713 |
+
if query_length == kv_seq_len:
|
714 |
+
query_layer = index_first_axis(
|
715 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
716 |
+
)
|
717 |
+
cu_seqlens_q = cu_seqlens_k
|
718 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
719 |
+
indices_q = indices_k
|
720 |
+
elif query_length == 1:
|
721 |
+
max_seqlen_in_batch_q = 1
|
722 |
+
cu_seqlens_q = torch.arange(
|
723 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
724 |
+
) # There is a memcpy here, that is very bad.
|
725 |
+
indices_q = cu_seqlens_q[:-1]
|
726 |
+
query_layer = query_layer.squeeze(1)
|
727 |
+
else:
|
728 |
+
# The -q_len: slice assumes left padding.
|
729 |
+
attention_mask = attention_mask[:, -query_length:]
|
730 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
731 |
+
|
732 |
+
return (
|
733 |
+
query_layer,
|
734 |
+
key_layer,
|
735 |
+
value_layer,
|
736 |
+
indices_q,
|
737 |
+
(cu_seqlens_q, cu_seqlens_k),
|
738 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
739 |
+
)
|
740 |
+
|
741 |
+
|
742 |
+
class FalconMLP(nn.Module):
|
743 |
+
def __init__(self, config: FalconConfig):
|
744 |
+
super().__init__()
|
745 |
+
hidden_size = config.hidden_size
|
746 |
+
|
747 |
+
self.dense_h_to_4h = FalconLinear(hidden_size, 4 * hidden_size, bias=config.bias)
|
748 |
+
self.act = nn.GELU()
|
749 |
+
self.dense_4h_to_h = FalconLinear(4 * hidden_size, hidden_size, bias=config.bias)
|
750 |
+
self.hidden_dropout = config.hidden_dropout
|
751 |
+
|
752 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
753 |
+
x = self.act(self.dense_h_to_4h(x))
|
754 |
+
x = self.dense_4h_to_h(x)
|
755 |
+
return x
|
756 |
+
|
757 |
+
|
758 |
+
FALCON_ATTENTION_CLASSES = {
|
759 |
+
"eager": FalconAttention,
|
760 |
+
"sdpa": FalconAttention, # FalconAttention originally implemented both a forward with & without SDPA
|
761 |
+
"flash_attention_2": FalconFlashAttention2,
|
762 |
+
}
|
763 |
+
|
764 |
+
|
765 |
+
class FalconDecoderLayer(nn.Module):
|
766 |
+
def __init__(self, config: FalconConfig):
|
767 |
+
super().__init__()
|
768 |
+
hidden_size = config.hidden_size
|
769 |
+
self.num_heads = config.num_attention_heads
|
770 |
+
|
771 |
+
self.self_attention = FALCON_ATTENTION_CLASSES[config._attn_implementation](config)
|
772 |
+
self.mlp = FalconMLP(config)
|
773 |
+
self.hidden_dropout = config.hidden_dropout
|
774 |
+
self.config = config
|
775 |
+
|
776 |
+
if config.new_decoder_architecture:
|
777 |
+
# The layer norm before self-attention
|
778 |
+
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
779 |
+
# The layer norm before the MLP
|
780 |
+
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
781 |
+
else:
|
782 |
+
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
783 |
+
if not config.parallel_attn:
|
784 |
+
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
785 |
+
|
786 |
+
def forward(
|
787 |
+
self,
|
788 |
+
hidden_states: torch.Tensor,
|
789 |
+
alibi: Optional[torch.Tensor],
|
790 |
+
attention_mask: torch.Tensor,
|
791 |
+
position_ids: Optional[torch.LongTensor] = None,
|
792 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
793 |
+
head_mask: Optional[torch.Tensor] = None,
|
794 |
+
use_cache: bool = False,
|
795 |
+
output_attentions: bool = False,
|
796 |
+
**kwargs,
|
797 |
+
):
|
798 |
+
if "padding_mask" in kwargs:
|
799 |
+
warnings.warn(
|
800 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
801 |
+
)
|
802 |
+
|
803 |
+
residual = hidden_states
|
804 |
+
|
805 |
+
if self.config.new_decoder_architecture:
|
806 |
+
attention_layernorm_out = self.ln_attn(hidden_states)
|
807 |
+
mlp_layernorm_out = self.ln_mlp(hidden_states)
|
808 |
+
else:
|
809 |
+
attention_layernorm_out = self.input_layernorm(hidden_states)
|
810 |
+
|
811 |
+
# Self attention.
|
812 |
+
attn_outputs = self.self_attention(
|
813 |
+
attention_layernorm_out,
|
814 |
+
layer_past=layer_past,
|
815 |
+
attention_mask=attention_mask,
|
816 |
+
position_ids=position_ids,
|
817 |
+
alibi=alibi,
|
818 |
+
head_mask=head_mask,
|
819 |
+
use_cache=use_cache,
|
820 |
+
output_attentions=output_attentions,
|
821 |
+
**kwargs,
|
822 |
+
)
|
823 |
+
|
824 |
+
attention_output = attn_outputs[0]
|
825 |
+
|
826 |
+
if not self.config.new_decoder_architecture:
|
827 |
+
if self.config.parallel_attn:
|
828 |
+
mlp_layernorm_out = attention_layernorm_out
|
829 |
+
else:
|
830 |
+
residual = dropout_add(
|
831 |
+
attention_output, residual, self.config.attention_dropout, training=self.training
|
832 |
+
)
|
833 |
+
mlp_layernorm_out = self.post_attention_layernorm(residual)
|
834 |
+
|
835 |
+
outputs = attn_outputs[1:]
|
836 |
+
|
837 |
+
# MLP.
|
838 |
+
mlp_output = self.mlp(mlp_layernorm_out)
|
839 |
+
|
840 |
+
if self.config.new_decoder_architecture or self.config.parallel_attn:
|
841 |
+
mlp_output += attention_output
|
842 |
+
|
843 |
+
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)
|
844 |
+
|
845 |
+
if use_cache:
|
846 |
+
outputs = (output,) + outputs
|
847 |
+
else:
|
848 |
+
outputs = (output,) + outputs[1:]
|
849 |
+
|
850 |
+
return outputs # hidden_states, present, attentions
|
851 |
+
|
852 |
+
|
853 |
+
FALCON_START_DOCSTRING = r"""
|
854 |
+
|
855 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
856 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
|
857 |
+
|
858 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
859 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
860 |
+
and behavior.
|
861 |
+
|
862 |
+
Parameters:
|
863 |
+
config ([`FalconConfig`]): Model configuration class with all the parameters of the model.
|
864 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
865 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
866 |
+
"""
|
867 |
+
|
868 |
+
FALCON_INPUTS_DOCSTRING = r"""
|
869 |
+
Args:
|
870 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
871 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
|
872 |
+
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
|
873 |
+
|
874 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
875 |
+
`input_ids`.
|
876 |
+
|
877 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
878 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
879 |
+
|
880 |
+
[What are input IDs?](../glossary#input-ids)
|
881 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_hidden_layers`):
|
882 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
883 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
884 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
885 |
+
|
886 |
+
Each element of `past_key_values` is a tuple (past_key, past_value):
|
887 |
+
- past_key: [batch_size * num_heads, head_dim, kv_length]
|
888 |
+
- past_value: [batch_size * num_heads, kv_length, head_dim]
|
889 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
890 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
891 |
+
|
892 |
+
- 1 for tokens that are **not masked**,
|
893 |
+
- 0 for tokens that are **masked**.
|
894 |
+
|
895 |
+
[What are attention masks?](../glossary#attention-mask)
|
896 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
897 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
898 |
+
config.n_positions - 1]`.
|
899 |
+
|
900 |
+
[What are position IDs?](../glossary#position-ids)
|
901 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
902 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
903 |
+
|
904 |
+
- 1 indicates the head is **not masked**,
|
905 |
+
- 0 indicates the head is **masked**.
|
906 |
+
|
907 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
908 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
909 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
910 |
+
model's internal embedding lookup matrix.
|
911 |
+
|
912 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
913 |
+
`past_key_values`).
|
914 |
+
use_cache (`bool`, *optional*):
|
915 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
916 |
+
`past_key_values`).
|
917 |
+
output_attentions (`bool`, *optional*):
|
918 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
919 |
+
tensors for more detail.
|
920 |
+
output_hidden_states (`bool`, *optional*):
|
921 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
922 |
+
more detail.
|
923 |
+
return_dict (`bool`, *optional*):
|
924 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
925 |
+
"""
|
926 |
+
|
927 |
+
|
928 |
+
class FalconPreTrainedModel(PreTrainedModel):
|
929 |
+
"""
|
930 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
931 |
+
models.
|
932 |
+
"""
|
933 |
+
|
934 |
+
config_class = FalconConfig
|
935 |
+
base_model_prefix = "transformer"
|
936 |
+
supports_gradient_checkpointing = True
|
937 |
+
_no_split_modules = ["FalconDecoderLayer"]
|
938 |
+
_supports_flash_attn_2 = True
|
939 |
+
_supports_sdpa = True
|
940 |
+
|
941 |
+
def __init__(self, *inputs, **kwargs):
|
942 |
+
super().__init__(*inputs, **kwargs)
|
943 |
+
|
944 |
+
def _init_weights(self, module: nn.Module):
|
945 |
+
"""Initialize the weights."""
|
946 |
+
if isinstance(module, nn.Linear) or isinstance(module, FalconLinear):
|
947 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
948 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
949 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
950 |
+
if module.bias is not None:
|
951 |
+
module.bias.data.zero_()
|
952 |
+
elif isinstance(module, nn.Embedding):
|
953 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
954 |
+
if module.padding_idx is not None:
|
955 |
+
module.weight.data[module.padding_idx].zero_()
|
956 |
+
elif isinstance(module, LayerNorm):
|
957 |
+
module.bias.data.zero_()
|
958 |
+
module.weight.data.fill_(1.0)
|
959 |
+
|
960 |
+
# Adapted from transformers.modeling_utils.PreTrainedModel._check_and_enable_sdpa
|
961 |
+
@classmethod
|
962 |
+
def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> "PretrainedConfig":
|
963 |
+
# NOTE: Falcon supported SDPA from PyTorch 2.0. We keep it like that for backward compatibility (automatically use SDPA for torch>=2.0).
|
964 |
+
if hard_check_only:
|
965 |
+
if not is_torch_greater_or_equal_than_2_0:
|
966 |
+
raise ImportError("PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.0.")
|
967 |
+
|
968 |
+
if not is_torch_greater_or_equal_than_2_0:
|
969 |
+
return config
|
970 |
+
|
971 |
+
_is_bettertransformer = getattr(cls, "use_bettertransformer", False)
|
972 |
+
if _is_bettertransformer:
|
973 |
+
return config
|
974 |
+
|
975 |
+
if not hard_check_only:
|
976 |
+
config._attn_implementation = "sdpa"
|
977 |
+
return config
|
978 |
+
|
979 |
+
|
980 |
+
@add_start_docstrings(
|
981 |
+
"The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.",
|
982 |
+
FALCON_START_DOCSTRING,
|
983 |
+
)
|
984 |
+
class FalconModel(FalconPreTrainedModel):
|
985 |
+
def __init__(self, config: FalconConfig):
|
986 |
+
super().__init__(config)
|
987 |
+
|
988 |
+
self.embed_dim = config.hidden_size
|
989 |
+
self.num_heads = config.num_attention_heads
|
990 |
+
self.use_alibi = config.alibi
|
991 |
+
|
992 |
+
# Embedding + LN Embedding
|
993 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
994 |
+
|
995 |
+
# Transformer blocks
|
996 |
+
self.h = nn.ModuleList([FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
997 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
998 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
999 |
+
|
1000 |
+
# Final Layer Norm
|
1001 |
+
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
1002 |
+
|
1003 |
+
self.gradient_checkpointing = False
|
1004 |
+
|
1005 |
+
# Initialize weights and apply final processing
|
1006 |
+
self.post_init()
|
1007 |
+
|
1008 |
+
def get_input_embeddings(self):
|
1009 |
+
return self.word_embeddings
|
1010 |
+
|
1011 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
1012 |
+
self.word_embeddings = new_embeddings
|
1013 |
+
|
1014 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1015 |
+
@add_code_sample_docstrings(
|
1016 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1017 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
1018 |
+
config_class=_CONFIG_FOR_DOC,
|
1019 |
+
)
|
1020 |
+
def forward(
|
1021 |
+
self,
|
1022 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1023 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1024 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1025 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1026 |
+
head_mask: Optional[torch.LongTensor] = None,
|
1027 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
1028 |
+
use_cache: Optional[bool] = None,
|
1029 |
+
output_attentions: Optional[bool] = None,
|
1030 |
+
output_hidden_states: Optional[bool] = None,
|
1031 |
+
return_dict: Optional[bool] = None,
|
1032 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
1033 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1034 |
+
output_hidden_states = (
|
1035 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1036 |
+
)
|
1037 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1038 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1039 |
+
|
1040 |
+
if input_ids is not None and inputs_embeds is not None:
|
1041 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1042 |
+
elif input_ids is not None:
|
1043 |
+
batch_size, seq_length = input_ids.shape
|
1044 |
+
elif inputs_embeds is not None:
|
1045 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1046 |
+
else:
|
1047 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1048 |
+
|
1049 |
+
if past_key_values is None:
|
1050 |
+
past_key_values = tuple([None] * len(self.h))
|
1051 |
+
|
1052 |
+
if inputs_embeds is None:
|
1053 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
1054 |
+
|
1055 |
+
hidden_states = inputs_embeds
|
1056 |
+
|
1057 |
+
if self.gradient_checkpointing and self.training:
|
1058 |
+
if use_cache:
|
1059 |
+
logger.warning(
|
1060 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1061 |
+
)
|
1062 |
+
use_cache = False
|
1063 |
+
presents = () if use_cache else None
|
1064 |
+
all_self_attentions = () if output_attentions else None
|
1065 |
+
all_hidden_states = () if output_hidden_states else None
|
1066 |
+
|
1067 |
+
# Compute alibi tensor: check build_alibi_tensor documentation
|
1068 |
+
past_key_values_length = 0
|
1069 |
+
if past_key_values[0] is not None:
|
1070 |
+
past_key_values_length = past_key_values[0][0].shape[-2]
|
1071 |
+
|
1072 |
+
if self.use_alibi:
|
1073 |
+
mask = (
|
1074 |
+
torch.ones(
|
1075 |
+
(batch_size, seq_length + past_key_values_length), device=inputs_embeds.device, dtype=torch.long
|
1076 |
+
)
|
1077 |
+
if attention_mask is None
|
1078 |
+
else attention_mask
|
1079 |
+
)
|
1080 |
+
alibi = build_alibi_tensor(mask, self.num_heads, dtype=hidden_states.dtype)
|
1081 |
+
else:
|
1082 |
+
alibi = None
|
1083 |
+
if position_ids is None:
|
1084 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1085 |
+
position_ids = torch.arange(
|
1086 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1087 |
+
)
|
1088 |
+
position_ids = position_ids.unsqueeze(0)
|
1089 |
+
|
1090 |
+
if self._use_flash_attention_2:
|
1091 |
+
# 2d mask is passed through the layers
|
1092 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1093 |
+
elif self._use_sdpa and not output_attentions:
|
1094 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1095 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1096 |
+
if alibi is None:
|
1097 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1098 |
+
attention_mask,
|
1099 |
+
(batch_size, seq_length),
|
1100 |
+
inputs_embeds,
|
1101 |
+
past_key_values_length,
|
1102 |
+
)
|
1103 |
+
elif head_mask is None:
|
1104 |
+
alibi = alibi.reshape(batch_size, -1, *alibi.shape[1:])
|
1105 |
+
|
1106 |
+
attention_mask_2d = attention_mask
|
1107 |
+
# We don't call _prepare_4d_causal_attention_mask_for_sdpa as we need to mask alibi using the 4D attention_mask untouched.
|
1108 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1109 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1110 |
+
)
|
1111 |
+
|
1112 |
+
# We take care to integrate alibi bias in the attention_mask here.
|
1113 |
+
if attention_mask_2d is None:
|
1114 |
+
attention_mask = alibi / math.sqrt(self.config.hidden_size // self.num_heads)
|
1115 |
+
else:
|
1116 |
+
min_dtype = torch.finfo(alibi.dtype).min
|
1117 |
+
attention_mask = torch.masked_fill(
|
1118 |
+
alibi / math.sqrt(self.config.hidden_size // self.num_heads),
|
1119 |
+
attention_mask < -1,
|
1120 |
+
min_dtype,
|
1121 |
+
)
|
1122 |
+
|
1123 |
+
# From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
|
1124 |
+
# produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
|
1125 |
+
if seq_length > 1 and attention_mask.device.type == "cuda":
|
1126 |
+
attention_mask = AttentionMaskConverter._unmask_unattended(attention_mask, min_dtype=min_dtype)
|
1127 |
+
else:
|
1128 |
+
# PyTorch SDPA does not support head_mask, we fall back on the eager implementation in this case.
|
1129 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1130 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1131 |
+
)
|
1132 |
+
else:
|
1133 |
+
# 4d mask is passed through the layers
|
1134 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1135 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1136 |
+
)
|
1137 |
+
|
1138 |
+
# Prepare head mask if needed
|
1139 |
+
# 1.0 in head_mask indicate we keep the head
|
1140 |
+
# attention_probs has shape batch_size x num_heads x N x N
|
1141 |
+
# head_mask has shape n_layer x batch x num_heads x N x N
|
1142 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1143 |
+
|
1144 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
1145 |
+
if output_hidden_states:
|
1146 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1147 |
+
|
1148 |
+
if self.gradient_checkpointing and self.training:
|
1149 |
+
outputs = self._gradient_checkpointing_func(
|
1150 |
+
block.__call__,
|
1151 |
+
hidden_states,
|
1152 |
+
alibi,
|
1153 |
+
attention_mask,
|
1154 |
+
position_ids,
|
1155 |
+
head_mask[i],
|
1156 |
+
layer_past,
|
1157 |
+
use_cache,
|
1158 |
+
output_attentions,
|
1159 |
+
)
|
1160 |
+
else:
|
1161 |
+
outputs = block(
|
1162 |
+
hidden_states,
|
1163 |
+
layer_past=layer_past,
|
1164 |
+
attention_mask=attention_mask,
|
1165 |
+
position_ids=position_ids,
|
1166 |
+
head_mask=head_mask[i],
|
1167 |
+
use_cache=use_cache,
|
1168 |
+
output_attentions=output_attentions,
|
1169 |
+
alibi=alibi,
|
1170 |
+
)
|
1171 |
+
|
1172 |
+
hidden_states = outputs[0]
|
1173 |
+
if use_cache is True:
|
1174 |
+
presents = presents + (outputs[1],)
|
1175 |
+
|
1176 |
+
if output_attentions:
|
1177 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
1178 |
+
|
1179 |
+
# Add last hidden state
|
1180 |
+
hidden_states = self.ln_f(hidden_states)
|
1181 |
+
|
1182 |
+
if output_hidden_states:
|
1183 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1184 |
+
|
1185 |
+
if not return_dict:
|
1186 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
1187 |
+
|
1188 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1189 |
+
last_hidden_state=hidden_states,
|
1190 |
+
past_key_values=presents,
|
1191 |
+
hidden_states=all_hidden_states,
|
1192 |
+
attentions=all_self_attentions,
|
1193 |
+
)
|
1194 |
+
|
1195 |
+
|
1196 |
+
@add_start_docstrings(
|
1197 |
+
"The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).",
|
1198 |
+
FALCON_START_DOCSTRING,
|
1199 |
+
)
|
1200 |
+
class FalconForCausalLM(FalconPreTrainedModel):
|
1201 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1202 |
+
|
1203 |
+
def __init__(self, config: FalconConfig):
|
1204 |
+
super().__init__(config)
|
1205 |
+
self.transformer = FalconModel(config)
|
1206 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1207 |
+
|
1208 |
+
# Initialize weights and apply final processing
|
1209 |
+
self.post_init()
|
1210 |
+
|
1211 |
+
def get_output_embeddings(self):
|
1212 |
+
return self.lm_head
|
1213 |
+
|
1214 |
+
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
1215 |
+
self.lm_head = new_embeddings
|
1216 |
+
|
1217 |
+
def prepare_inputs_for_generation(
|
1218 |
+
self,
|
1219 |
+
input_ids: torch.LongTensor,
|
1220 |
+
past_key_values: Optional[torch.Tensor] = None,
|
1221 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1222 |
+
position_ids: Optional[torch.Tensor] = None,
|
1223 |
+
**kwargs,
|
1224 |
+
) -> dict:
|
1225 |
+
if past_key_values is not None:
|
1226 |
+
past_length = past_key_values[0][0].shape[2]
|
1227 |
+
|
1228 |
+
# Some generation methods already pass only the last input ID
|
1229 |
+
if input_ids.shape[1] > past_length:
|
1230 |
+
remove_prefix_length = past_length
|
1231 |
+
else:
|
1232 |
+
# Default to old behavior: keep only final ID
|
1233 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1234 |
+
|
1235 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1236 |
+
|
1237 |
+
# Note: versions of Falcon with alibi do not use position_ids. It is used with RoPE.
|
1238 |
+
if not self.transformer.use_alibi and attention_mask is not None and position_ids is None:
|
1239 |
+
# create position_ids on the fly for batch generation
|
1240 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1241 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1242 |
+
if past_key_values:
|
1243 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1244 |
+
|
1245 |
+
return {
|
1246 |
+
"input_ids": input_ids,
|
1247 |
+
"position_ids": position_ids,
|
1248 |
+
"past_key_values": past_key_values,
|
1249 |
+
"use_cache": kwargs.get("use_cache"),
|
1250 |
+
"attention_mask": attention_mask,
|
1251 |
+
}
|
1252 |
+
|
1253 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1254 |
+
@add_code_sample_docstrings(
|
1255 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1256 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
1257 |
+
config_class=_CONFIG_FOR_DOC,
|
1258 |
+
)
|
1259 |
+
def forward(
|
1260 |
+
self,
|
1261 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1262 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1263 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1264 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1265 |
+
head_mask: Optional[torch.Tensor] = None,
|
1266 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1267 |
+
labels: Optional[torch.Tensor] = None,
|
1268 |
+
use_cache: Optional[bool] = None,
|
1269 |
+
output_attentions: Optional[bool] = None,
|
1270 |
+
output_hidden_states: Optional[bool] = None,
|
1271 |
+
return_dict: Optional[bool] = None,
|
1272 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
1273 |
+
r"""
|
1274 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1275 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1276 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
1277 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
1278 |
+
"""
|
1279 |
+
|
1280 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1281 |
+
|
1282 |
+
transformer_outputs = self.transformer(
|
1283 |
+
input_ids,
|
1284 |
+
past_key_values=past_key_values,
|
1285 |
+
attention_mask=attention_mask,
|
1286 |
+
position_ids=position_ids,
|
1287 |
+
head_mask=head_mask,
|
1288 |
+
inputs_embeds=inputs_embeds,
|
1289 |
+
use_cache=use_cache,
|
1290 |
+
output_attentions=output_attentions,
|
1291 |
+
output_hidden_states=output_hidden_states,
|
1292 |
+
return_dict=return_dict,
|
1293 |
+
)
|
1294 |
+
hidden_states = transformer_outputs[0]
|
1295 |
+
|
1296 |
+
lm_logits = self.lm_head(hidden_states)
|
1297 |
+
|
1298 |
+
loss = None
|
1299 |
+
if labels is not None:
|
1300 |
+
# Shift so that tokens < n predict n
|
1301 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1302 |
+
shift_labels = labels[..., 1:].contiguous()
|
1303 |
+
batch_size, seq_length, vocab_size = shift_logits.shape
|
1304 |
+
# Flatten the tokens
|
1305 |
+
loss_fct = CrossEntropyLoss()
|
1306 |
+
loss = loss_fct(
|
1307 |
+
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
1308 |
+
)
|
1309 |
+
|
1310 |
+
if not return_dict:
|
1311 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1312 |
+
return ((loss,) + output) if loss is not None else output
|
1313 |
+
|
1314 |
+
return CausalLMOutputWithCrossAttentions(
|
1315 |
+
loss=loss,
|
1316 |
+
logits=lm_logits,
|
1317 |
+
past_key_values=transformer_outputs.past_key_values,
|
1318 |
+
hidden_states=transformer_outputs.hidden_states,
|
1319 |
+
attentions=transformer_outputs.attentions,
|
1320 |
+
)
|
1321 |
+
|
1322 |
+
def _reorder_cache(
|
1323 |
+
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
1324 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
1325 |
+
"""
|
1326 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1327 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1328 |
+
beam_idx at every generation step.
|
1329 |
+
|
1330 |
+
Output shares the same memory storage as `past`.
|
1331 |
+
"""
|
1332 |
+
|
1333 |
+
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
1334 |
+
device_to_beam_idx = {
|
1335 |
+
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
|
1336 |
+
}
|
1337 |
+
reordered_past = tuple(
|
1338 |
+
(
|
1339 |
+
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
1340 |
+
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
1341 |
+
)
|
1342 |
+
for layer_past in past
|
1343 |
+
)
|
1344 |
+
return reordered_past
|
1345 |
+
|
1346 |
+
|
1347 |
+
@add_start_docstrings(
|
1348 |
+
"""
|
1349 |
+
The Falcon Model transformer with a sequence classification head on top (linear layer).
|
1350 |
+
|
1351 |
+
[`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1352 |
+
(e.g. GPT-1) do.
|
1353 |
+
|
1354 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1355 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1356 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1357 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1358 |
+
each row of the batch).
|
1359 |
+
""",
|
1360 |
+
FALCON_START_DOCSTRING,
|
1361 |
+
)
|
1362 |
+
class FalconForSequenceClassification(FalconPreTrainedModel):
|
1363 |
+
def __init__(self, config: FalconConfig):
|
1364 |
+
super().__init__(config)
|
1365 |
+
self.num_labels = config.num_labels
|
1366 |
+
self.transformer = FalconModel(config)
|
1367 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
1368 |
+
|
1369 |
+
# Initialize weights and apply final processing
|
1370 |
+
self.post_init()
|
1371 |
+
|
1372 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1373 |
+
@add_code_sample_docstrings(
|
1374 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1375 |
+
output_type=SequenceClassifierOutputWithPast,
|
1376 |
+
config_class=_CONFIG_FOR_DOC,
|
1377 |
+
)
|
1378 |
+
def forward(
|
1379 |
+
self,
|
1380 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1381 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1382 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1383 |
+
head_mask: Optional[torch.Tensor] = None,
|
1384 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1385 |
+
labels: Optional[torch.Tensor] = None,
|
1386 |
+
use_cache: Optional[bool] = None,
|
1387 |
+
output_attentions: Optional[bool] = None,
|
1388 |
+
output_hidden_states: Optional[bool] = None,
|
1389 |
+
return_dict: Optional[bool] = None,
|
1390 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
1391 |
+
r"""
|
1392 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1393 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1394 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1395 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1396 |
+
"""
|
1397 |
+
|
1398 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1399 |
+
|
1400 |
+
transformer_outputs = self.transformer(
|
1401 |
+
input_ids,
|
1402 |
+
past_key_values=past_key_values,
|
1403 |
+
attention_mask=attention_mask,
|
1404 |
+
head_mask=head_mask,
|
1405 |
+
inputs_embeds=inputs_embeds,
|
1406 |
+
use_cache=use_cache,
|
1407 |
+
output_attentions=output_attentions,
|
1408 |
+
output_hidden_states=output_hidden_states,
|
1409 |
+
return_dict=return_dict,
|
1410 |
+
)
|
1411 |
+
|
1412 |
+
hidden_states = transformer_outputs[0]
|
1413 |
+
logits = self.score(hidden_states)
|
1414 |
+
|
1415 |
+
if input_ids is not None:
|
1416 |
+
batch_size = input_ids.shape[0]
|
1417 |
+
else:
|
1418 |
+
batch_size = inputs_embeds.shape[0]
|
1419 |
+
|
1420 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1421 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1422 |
+
if self.config.pad_token_id is None:
|
1423 |
+
sequence_lengths = -1
|
1424 |
+
else:
|
1425 |
+
if input_ids is not None:
|
1426 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1427 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1428 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1429 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1430 |
+
else:
|
1431 |
+
sequence_lengths = -1
|
1432 |
+
logger.warning(
|
1433 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1434 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1435 |
+
)
|
1436 |
+
|
1437 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1438 |
+
|
1439 |
+
loss = None
|
1440 |
+
if labels is not None:
|
1441 |
+
if self.config.problem_type is None:
|
1442 |
+
if self.num_labels == 1:
|
1443 |
+
self.config.problem_type = "regression"
|
1444 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1445 |
+
self.config.problem_type = "single_label_classification"
|
1446 |
+
else:
|
1447 |
+
self.config.problem_type = "multi_label_classification"
|
1448 |
+
|
1449 |
+
if self.config.problem_type == "regression":
|
1450 |
+
loss_fct = MSELoss()
|
1451 |
+
if self.num_labels == 1:
|
1452 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1453 |
+
else:
|
1454 |
+
loss = loss_fct(pooled_logits, labels)
|
1455 |
+
elif self.config.problem_type == "single_label_classification":
|
1456 |
+
loss_fct = CrossEntropyLoss()
|
1457 |
+
loss = loss_fct(pooled_logits, labels)
|
1458 |
+
elif self.config.problem_type == "multi_label_classification":
|
1459 |
+
loss_fct = BCEWithLogitsLoss()
|
1460 |
+
loss = loss_fct(pooled_logits, labels)
|
1461 |
+
if not return_dict:
|
1462 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1463 |
+
return ((loss,) + output) if loss is not None else output
|
1464 |
+
|
1465 |
+
return SequenceClassifierOutputWithPast(
|
1466 |
+
loss=loss,
|
1467 |
+
logits=pooled_logits,
|
1468 |
+
past_key_values=transformer_outputs.past_key_values,
|
1469 |
+
hidden_states=transformer_outputs.hidden_states,
|
1470 |
+
attentions=transformer_outputs.attentions,
|
1471 |
+
)
|
1472 |
+
|
1473 |
+
|
1474 |
+
@add_start_docstrings(
|
1475 |
+
"""
|
1476 |
+
Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1477 |
+
Named-Entity-Recognition (NER) tasks.
|
1478 |
+
""",
|
1479 |
+
FALCON_START_DOCSTRING,
|
1480 |
+
)
|
1481 |
+
class FalconForTokenClassification(FalconPreTrainedModel):
|
1482 |
+
def __init__(self, config: FalconConfig):
|
1483 |
+
super().__init__(config)
|
1484 |
+
self.num_labels = config.num_labels
|
1485 |
+
|
1486 |
+
self.transformer = FalconModel(config)
|
1487 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1488 |
+
classifier_dropout = config.classifier_dropout
|
1489 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1490 |
+
classifier_dropout = config.hidden_dropout
|
1491 |
+
else:
|
1492 |
+
classifier_dropout = 0.1
|
1493 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1494 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1495 |
+
|
1496 |
+
# Initialize weights and apply final processing
|
1497 |
+
self.post_init()
|
1498 |
+
|
1499 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1500 |
+
@add_code_sample_docstrings(
|
1501 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1502 |
+
output_type=TokenClassifierOutput,
|
1503 |
+
config_class=_CONFIG_FOR_DOC,
|
1504 |
+
)
|
1505 |
+
def forward(
|
1506 |
+
self,
|
1507 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1508 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1509 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1510 |
+
head_mask: Optional[torch.Tensor] = None,
|
1511 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1512 |
+
labels: Optional[torch.Tensor] = None,
|
1513 |
+
use_cache: Optional[bool] = None,
|
1514 |
+
output_attentions: Optional[bool] = None,
|
1515 |
+
output_hidden_states: Optional[bool] = None,
|
1516 |
+
return_dict: Optional[bool] = None,
|
1517 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1518 |
+
r"""
|
1519 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1520 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1521 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1522 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1523 |
+
"""
|
1524 |
+
|
1525 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1526 |
+
|
1527 |
+
transformer_outputs = self.transformer(
|
1528 |
+
input_ids,
|
1529 |
+
past_key_values=past_key_values,
|
1530 |
+
attention_mask=attention_mask,
|
1531 |
+
head_mask=head_mask,
|
1532 |
+
inputs_embeds=inputs_embeds,
|
1533 |
+
use_cache=use_cache,
|
1534 |
+
output_attentions=output_attentions,
|
1535 |
+
output_hidden_states=output_hidden_states,
|
1536 |
+
return_dict=return_dict,
|
1537 |
+
)
|
1538 |
+
|
1539 |
+
hidden_states = transformer_outputs[0]
|
1540 |
+
hidden_states = self.dropout(hidden_states)
|
1541 |
+
logits = self.classifier(hidden_states)
|
1542 |
+
|
1543 |
+
loss = None
|
1544 |
+
if labels is not None:
|
1545 |
+
batch_size, seq_length = labels.shape
|
1546 |
+
loss_fct = CrossEntropyLoss()
|
1547 |
+
loss = loss_fct(
|
1548 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
1549 |
+
)
|
1550 |
+
|
1551 |
+
if not return_dict:
|
1552 |
+
output = (logits,) + transformer_outputs[2:]
|
1553 |
+
return ((loss,) + output) if loss is not None else output
|
1554 |
+
|
1555 |
+
return TokenClassifierOutput(
|
1556 |
+
loss=loss,
|
1557 |
+
logits=logits,
|
1558 |
+
hidden_states=transformer_outputs.hidden_states,
|
1559 |
+
attentions=transformer_outputs.attentions,
|
1560 |
+
)
|
1561 |
+
|
1562 |
+
|
1563 |
+
@add_start_docstrings(
|
1564 |
+
"""
|
1565 |
+
The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like
|
1566 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1567 |
+
""",
|
1568 |
+
FALCON_START_DOCSTRING,
|
1569 |
+
)
|
1570 |
+
class FalconForQuestionAnswering(FalconPreTrainedModel):
|
1571 |
+
def __init__(self, config):
|
1572 |
+
super().__init__(config)
|
1573 |
+
self.transformer = FalconModel(config)
|
1574 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1575 |
+
|
1576 |
+
# Initialize weights and apply final processing
|
1577 |
+
self.post_init()
|
1578 |
+
|
1579 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1580 |
+
def forward(
|
1581 |
+
self,
|
1582 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1583 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1584 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1585 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1586 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1587 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1588 |
+
output_attentions: Optional[bool] = None,
|
1589 |
+
output_hidden_states: Optional[bool] = None,
|
1590 |
+
return_dict: Optional[bool] = None,
|
1591 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1592 |
+
r"""
|
1593 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1594 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1595 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1596 |
+
are not taken into account for computing the loss.
|
1597 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1598 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1599 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1600 |
+
are not taken into account for computing the loss.
|
1601 |
+
"""
|
1602 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1603 |
+
|
1604 |
+
outputs = self.transformer(
|
1605 |
+
input_ids,
|
1606 |
+
attention_mask=attention_mask,
|
1607 |
+
head_mask=head_mask,
|
1608 |
+
inputs_embeds=inputs_embeds,
|
1609 |
+
output_attentions=output_attentions,
|
1610 |
+
output_hidden_states=output_hidden_states,
|
1611 |
+
return_dict=return_dict,
|
1612 |
+
)
|
1613 |
+
|
1614 |
+
sequence_output = outputs[0]
|
1615 |
+
|
1616 |
+
logits = self.qa_outputs(sequence_output)
|
1617 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1618 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1619 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1620 |
+
|
1621 |
+
total_loss = None
|
1622 |
+
if start_positions is not None and end_positions is not None:
|
1623 |
+
# If we are on multi-GPU, split add a dimension
|
1624 |
+
if len(start_positions.size()) > 1:
|
1625 |
+
start_positions = start_positions.squeeze(-1)
|
1626 |
+
if len(end_positions.size()) > 1:
|
1627 |
+
end_positions = end_positions.squeeze(-1)
|
1628 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1629 |
+
ignored_index = start_logits.size(1)
|
1630 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1631 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1632 |
+
|
1633 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1634 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1635 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1636 |
+
total_loss = (start_loss + end_loss) / 2
|
1637 |
+
|
1638 |
+
if not return_dict:
|
1639 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1640 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1641 |
+
|
1642 |
+
return QuestionAnsweringModelOutput(
|
1643 |
+
loss=total_loss,
|
1644 |
+
start_logits=start_logits,
|
1645 |
+
end_logits=end_logits,
|
1646 |
+
hidden_states=outputs.hidden_states,
|
1647 |
+
attentions=outputs.attentions,
|
1648 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/__init__.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_sentencepiece_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
is_vision_available,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
_import_structure = {"processing_layoutxlm": ["LayoutXLMProcessor"]}
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_sentencepiece_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["tokenization_layoutxlm"] = ["LayoutXLMTokenizer"]
|
36 |
+
|
37 |
+
try:
|
38 |
+
if not is_tokenizers_available():
|
39 |
+
raise OptionalDependencyNotAvailable()
|
40 |
+
except OptionalDependencyNotAvailable:
|
41 |
+
pass
|
42 |
+
else:
|
43 |
+
_import_structure["tokenization_layoutxlm_fast"] = ["LayoutXLMTokenizerFast"]
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from .processing_layoutxlm import LayoutXLMProcessor
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_sentencepiece_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
from .tokenization_layoutxlm import LayoutXLMTokenizer
|
55 |
+
|
56 |
+
try:
|
57 |
+
if not is_tokenizers_available():
|
58 |
+
raise OptionalDependencyNotAvailable()
|
59 |
+
except OptionalDependencyNotAvailable:
|
60 |
+
pass
|
61 |
+
else:
|
62 |
+
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
|
63 |
+
|
64 |
+
else:
|
65 |
+
import sys
|
66 |
+
|
67 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/processing_layoutxlm.cpython-310.pyc
ADDED
Binary file (7.26 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm.cpython-310.pyc
ADDED
Binary file (39.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm_fast.cpython-310.pyc
ADDED
Binary file (27.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/processing_layoutxlm.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for LayoutXLM.
|
17 |
+
"""
|
18 |
+
import warnings
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
from ...processing_utils import ProcessorMixin
|
22 |
+
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
23 |
+
from ...utils import TensorType
|
24 |
+
|
25 |
+
|
26 |
+
class LayoutXLMProcessor(ProcessorMixin):
|
27 |
+
r"""
|
28 |
+
Constructs a LayoutXLM processor which combines a LayoutXLM image processor and a LayoutXLM tokenizer into a single
|
29 |
+
processor.
|
30 |
+
|
31 |
+
[`LayoutXLMProcessor`] offers all the functionalities you need to prepare data for the model.
|
32 |
+
|
33 |
+
It first uses [`LayoutLMv2ImageProcessor`] to resize document images to a fixed size, and optionally applies OCR to
|
34 |
+
get words and normalized bounding boxes. These are then provided to [`LayoutXLMTokenizer`] or
|
35 |
+
[`LayoutXLMTokenizerFast`], which turns the words and bounding boxes into token-level `input_ids`,
|
36 |
+
`attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide integer `word_labels`, which are turned
|
37 |
+
into token-level `labels` for token classification tasks (such as FUNSD, CORD).
|
38 |
+
|
39 |
+
Args:
|
40 |
+
image_processor (`LayoutLMv2ImageProcessor`, *optional*):
|
41 |
+
An instance of [`LayoutLMv2ImageProcessor`]. The image processor is a required input.
|
42 |
+
tokenizer (`LayoutXLMTokenizer` or `LayoutXLMTokenizerFast`, *optional*):
|
43 |
+
An instance of [`LayoutXLMTokenizer`] or [`LayoutXLMTokenizerFast`]. The tokenizer is a required input.
|
44 |
+
"""
|
45 |
+
|
46 |
+
attributes = ["image_processor", "tokenizer"]
|
47 |
+
image_processor_class = "LayoutLMv2ImageProcessor"
|
48 |
+
tokenizer_class = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
|
49 |
+
|
50 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
51 |
+
if "feature_extractor" in kwargs:
|
52 |
+
warnings.warn(
|
53 |
+
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
|
54 |
+
" instead.",
|
55 |
+
FutureWarning,
|
56 |
+
)
|
57 |
+
feature_extractor = kwargs.pop("feature_extractor")
|
58 |
+
|
59 |
+
image_processor = image_processor if image_processor is not None else feature_extractor
|
60 |
+
if image_processor is None:
|
61 |
+
raise ValueError("You need to specify an `image_processor`.")
|
62 |
+
if tokenizer is None:
|
63 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
64 |
+
|
65 |
+
super().__init__(image_processor, tokenizer)
|
66 |
+
|
67 |
+
def __call__(
|
68 |
+
self,
|
69 |
+
images,
|
70 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
71 |
+
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
|
72 |
+
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
|
73 |
+
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
74 |
+
add_special_tokens: bool = True,
|
75 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
76 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
77 |
+
max_length: Optional[int] = None,
|
78 |
+
stride: int = 0,
|
79 |
+
pad_to_multiple_of: Optional[int] = None,
|
80 |
+
return_token_type_ids: Optional[bool] = None,
|
81 |
+
return_attention_mask: Optional[bool] = None,
|
82 |
+
return_overflowing_tokens: bool = False,
|
83 |
+
return_special_tokens_mask: bool = False,
|
84 |
+
return_offsets_mapping: bool = False,
|
85 |
+
return_length: bool = False,
|
86 |
+
verbose: bool = True,
|
87 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
88 |
+
**kwargs,
|
89 |
+
) -> BatchEncoding:
|
90 |
+
"""
|
91 |
+
This method first forwards the `images` argument to [`~LayoutLMv2ImagePrpcessor.__call__`]. In case
|
92 |
+
[`LayoutLMv2ImagePrpcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and
|
93 |
+
bounding boxes along with the additional arguments to [`~LayoutXLMTokenizer.__call__`] and returns the output,
|
94 |
+
together with resized `images`. In case [`LayoutLMv2ImagePrpcessor`] was initialized with `apply_ocr` set to
|
95 |
+
`False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the additional
|
96 |
+
arguments to [`~LayoutXLMTokenizer.__call__`] and returns the output, together with resized `images``.
|
97 |
+
|
98 |
+
Please refer to the docstring of the above two methods for more information.
|
99 |
+
"""
|
100 |
+
# verify input
|
101 |
+
if self.image_processor.apply_ocr and (boxes is not None):
|
102 |
+
raise ValueError(
|
103 |
+
"You cannot provide bounding boxes "
|
104 |
+
"if you initialized the image processor with apply_ocr set to True."
|
105 |
+
)
|
106 |
+
|
107 |
+
if self.image_processor.apply_ocr and (word_labels is not None):
|
108 |
+
raise ValueError(
|
109 |
+
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True."
|
110 |
+
)
|
111 |
+
|
112 |
+
if return_overflowing_tokens is True and return_offsets_mapping is False:
|
113 |
+
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.")
|
114 |
+
|
115 |
+
# first, apply the image processor
|
116 |
+
features = self.image_processor(images=images, return_tensors=return_tensors)
|
117 |
+
|
118 |
+
# second, apply the tokenizer
|
119 |
+
if text is not None and self.image_processor.apply_ocr and text_pair is None:
|
120 |
+
if isinstance(text, str):
|
121 |
+
text = [text] # add batch dimension (as the image processor always adds a batch dimension)
|
122 |
+
text_pair = features["words"]
|
123 |
+
|
124 |
+
encoded_inputs = self.tokenizer(
|
125 |
+
text=text if text is not None else features["words"],
|
126 |
+
text_pair=text_pair if text_pair is not None else None,
|
127 |
+
boxes=boxes if boxes is not None else features["boxes"],
|
128 |
+
word_labels=word_labels,
|
129 |
+
add_special_tokens=add_special_tokens,
|
130 |
+
padding=padding,
|
131 |
+
truncation=truncation,
|
132 |
+
max_length=max_length,
|
133 |
+
stride=stride,
|
134 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
135 |
+
return_token_type_ids=return_token_type_ids,
|
136 |
+
return_attention_mask=return_attention_mask,
|
137 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
138 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
139 |
+
return_offsets_mapping=return_offsets_mapping,
|
140 |
+
return_length=return_length,
|
141 |
+
verbose=verbose,
|
142 |
+
return_tensors=return_tensors,
|
143 |
+
**kwargs,
|
144 |
+
)
|
145 |
+
|
146 |
+
# add pixel values
|
147 |
+
images = features.pop("pixel_values")
|
148 |
+
if return_overflowing_tokens is True:
|
149 |
+
images = self.get_overflowing_images(images, encoded_inputs["overflow_to_sample_mapping"])
|
150 |
+
encoded_inputs["image"] = images
|
151 |
+
|
152 |
+
return encoded_inputs
|
153 |
+
|
154 |
+
def get_overflowing_images(self, images, overflow_to_sample_mapping):
|
155 |
+
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
|
156 |
+
images_with_overflow = []
|
157 |
+
for sample_idx in overflow_to_sample_mapping:
|
158 |
+
images_with_overflow.append(images[sample_idx])
|
159 |
+
|
160 |
+
if len(images_with_overflow) != len(overflow_to_sample_mapping):
|
161 |
+
raise ValueError(
|
162 |
+
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
|
163 |
+
f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}"
|
164 |
+
)
|
165 |
+
|
166 |
+
return images_with_overflow
|
167 |
+
|
168 |
+
def batch_decode(self, *args, **kwargs):
|
169 |
+
"""
|
170 |
+
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
171 |
+
refer to the docstring of this method for more information.
|
172 |
+
"""
|
173 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
174 |
+
|
175 |
+
def decode(self, *args, **kwargs):
|
176 |
+
"""
|
177 |
+
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
|
178 |
+
to the docstring of this method for more information.
|
179 |
+
"""
|
180 |
+
return self.tokenizer.decode(*args, **kwargs)
|
181 |
+
|
182 |
+
@property
|
183 |
+
def model_input_names(self):
|
184 |
+
return ["input_ids", "bbox", "attention_mask", "image"]
|
185 |
+
|
186 |
+
@property
|
187 |
+
def feature_extractor_class(self):
|
188 |
+
warnings.warn(
|
189 |
+
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
|
190 |
+
FutureWarning,
|
191 |
+
)
|
192 |
+
return self.image_processor_class
|
193 |
+
|
194 |
+
@property
|
195 |
+
def feature_extractor(self):
|
196 |
+
warnings.warn(
|
197 |
+
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
|
198 |
+
FutureWarning,
|
199 |
+
)
|
200 |
+
return self.image_processor
|
env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm.py
ADDED
@@ -0,0 +1,1174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
""" Tokenization classes for LayoutXLM model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import sentencepiece as spm
|
23 |
+
|
24 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
25 |
+
from ...tokenization_utils_base import (
|
26 |
+
BatchEncoding,
|
27 |
+
EncodedInput,
|
28 |
+
PreTokenizedInput,
|
29 |
+
TextInput,
|
30 |
+
TextInputPair,
|
31 |
+
TruncationStrategy,
|
32 |
+
)
|
33 |
+
from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging
|
34 |
+
from ..xlm_roberta.tokenization_xlm_roberta import (
|
35 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES,
|
36 |
+
PRETRAINED_VOCAB_FILES_MAP,
|
37 |
+
SPIECE_UNDERLINE,
|
38 |
+
VOCAB_FILES_NAMES,
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
|
45 |
+
LAYOUTXLM_ENCODE_KWARGS_DOCSTRING = r"""
|
46 |
+
add_special_tokens (`bool`, *optional*, defaults to `True`):
|
47 |
+
Whether or not to encode the sequences with the special tokens relative to their model.
|
48 |
+
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
|
49 |
+
Activates and controls padding. Accepts the following values:
|
50 |
+
|
51 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
52 |
+
sequence if provided).
|
53 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
54 |
+
acceptable input length for the model if that argument is not provided.
|
55 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
56 |
+
lengths).
|
57 |
+
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
|
58 |
+
Activates and controls truncation. Accepts the following values:
|
59 |
+
|
60 |
+
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
|
61 |
+
to the maximum acceptable input length for the model if that argument is not provided. This will
|
62 |
+
truncate token by token, removing a token from the longest sequence in the pair if a pair of
|
63 |
+
sequences (or a batch of pairs) is provided.
|
64 |
+
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
65 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
66 |
+
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
67 |
+
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
68 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
69 |
+
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
70 |
+
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
|
71 |
+
greater than the model maximum admissible input size).
|
72 |
+
max_length (`int`, *optional*):
|
73 |
+
Controls the maximum length to use by one of the truncation/padding parameters.
|
74 |
+
|
75 |
+
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
|
76 |
+
is required by one of the truncation/padding parameters. If the model has no specific maximum input
|
77 |
+
length (like XLNet) truncation/padding to a maximum length will be deactivated.
|
78 |
+
stride (`int`, *optional*, defaults to 0):
|
79 |
+
If set to a number along with `max_length`, the overflowing tokens returned when
|
80 |
+
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
|
81 |
+
returned to provide some overlap between truncated and overflowing sequences. The value of this
|
82 |
+
argument defines the number of overlapping tokens.
|
83 |
+
pad_to_multiple_of (`int`, *optional*):
|
84 |
+
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
|
85 |
+
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
|
86 |
+
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
|
87 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
88 |
+
|
89 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
90 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
91 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
92 |
+
return_token_type_ids (`bool`, *optional*):
|
93 |
+
Whether to return token type IDs. If left to the default, will return the token type IDs according to
|
94 |
+
the specific tokenizer's default, defined by the `return_outputs` attribute.
|
95 |
+
|
96 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
97 |
+
return_attention_mask (`bool`, *optional*):
|
98 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
99 |
+
to the specific tokenizer's default, defined by the `return_outputs` attribute.
|
100 |
+
|
101 |
+
[What are attention masks?](../glossary#attention-mask)
|
102 |
+
return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
|
103 |
+
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
|
104 |
+
of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
|
105 |
+
of returning overflowing tokens.
|
106 |
+
return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
|
107 |
+
Whether or not to return special tokens mask information.
|
108 |
+
return_offsets_mapping (`bool`, *optional*, defaults to `False`):
|
109 |
+
Whether or not to return `(char_start, char_end)` for each token.
|
110 |
+
|
111 |
+
This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
|
112 |
+
Python's tokenizer, this method will raise `NotImplementedError`.
|
113 |
+
return_length (`bool`, *optional*, defaults to `False`):
|
114 |
+
Whether or not to return the lengths of the encoded inputs.
|
115 |
+
verbose (`bool`, *optional*, defaults to `True`):
|
116 |
+
Whether or not to print more information and warnings.
|
117 |
+
**kwargs: passed to the `self.tokenize()` method
|
118 |
+
|
119 |
+
Return:
|
120 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
121 |
+
|
122 |
+
- **input_ids** -- List of token ids to be fed to a model.
|
123 |
+
|
124 |
+
[What are input IDs?](../glossary#input-ids)
|
125 |
+
|
126 |
+
- **bbox** -- List of bounding boxes to be fed to a model.
|
127 |
+
|
128 |
+
- **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
|
129 |
+
if *"token_type_ids"* is in `self.model_input_names`).
|
130 |
+
|
131 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
132 |
+
|
133 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
134 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
|
135 |
+
|
136 |
+
[What are attention masks?](../glossary#attention-mask)
|
137 |
+
|
138 |
+
- **labels** -- List of labels to be fed to a model. (when `word_labels` is specified).
|
139 |
+
- **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
|
140 |
+
`return_overflowing_tokens=True`).
|
141 |
+
- **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
|
142 |
+
`return_overflowing_tokens=True`).
|
143 |
+
- **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
|
144 |
+
regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
|
145 |
+
- **length** -- The length of the inputs (when `return_length=True`).
|
146 |
+
"""
|
147 |
+
|
148 |
+
|
149 |
+
class LayoutXLMTokenizer(PreTrainedTokenizer):
|
150 |
+
"""
|
151 |
+
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
|
152 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
153 |
+
|
154 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
155 |
+
this superclass for more information regarding those methods.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
vocab_file (`str`):
|
159 |
+
Path to the vocabulary file.
|
160 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
161 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
162 |
+
|
163 |
+
<Tip>
|
164 |
+
|
165 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
166 |
+
sequence. The token used is the `cls_token`.
|
167 |
+
|
168 |
+
</Tip>
|
169 |
+
|
170 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
171 |
+
The end of sequence token.
|
172 |
+
|
173 |
+
<Tip>
|
174 |
+
|
175 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
176 |
+
The token used is the `sep_token`.
|
177 |
+
|
178 |
+
</Tip>
|
179 |
+
|
180 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
181 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
182 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
183 |
+
token of a sequence built with special tokens.
|
184 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
185 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
186 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
187 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
188 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
189 |
+
token instead.
|
190 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
191 |
+
The token used for padding, for example when batching sequences of different lengths.
|
192 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
193 |
+
The token used for masking values. This is the token used when training this model with masked language
|
194 |
+
modeling. This is the token which the model will try to predict.
|
195 |
+
cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
|
196 |
+
The bounding box to use for the special [CLS] token.
|
197 |
+
sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`):
|
198 |
+
The bounding box to use for the special [SEP] token.
|
199 |
+
pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
|
200 |
+
The bounding box to use for the special [PAD] token.
|
201 |
+
pad_token_label (`int`, *optional*, defaults to -100):
|
202 |
+
The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
|
203 |
+
CrossEntropyLoss.
|
204 |
+
only_label_first_subword (`bool`, *optional*, defaults to `True`):
|
205 |
+
Whether or not to only label the first subword, in case word labels are provided.
|
206 |
+
sp_model_kwargs (`dict`, *optional*):
|
207 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
208 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
209 |
+
to set:
|
210 |
+
|
211 |
+
- `enable_sampling`: Enable subword regularization.
|
212 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
213 |
+
|
214 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
215 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
216 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
217 |
+
using forward-filtering-and-backward-sampling algorithm.
|
218 |
+
|
219 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
220 |
+
BPE-dropout.
|
221 |
+
|
222 |
+
Attributes:
|
223 |
+
sp_model (`SentencePieceProcessor`):
|
224 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
225 |
+
"""
|
226 |
+
|
227 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
228 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
229 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
230 |
+
model_input_names = ["input_ids", "attention_mask"]
|
231 |
+
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
vocab_file,
|
235 |
+
bos_token="<s>",
|
236 |
+
eos_token="</s>",
|
237 |
+
sep_token="</s>",
|
238 |
+
cls_token="<s>",
|
239 |
+
unk_token="<unk>",
|
240 |
+
pad_token="<pad>",
|
241 |
+
mask_token="<mask>",
|
242 |
+
cls_token_box=[0, 0, 0, 0],
|
243 |
+
sep_token_box=[1000, 1000, 1000, 1000],
|
244 |
+
pad_token_box=[0, 0, 0, 0],
|
245 |
+
pad_token_label=-100,
|
246 |
+
only_label_first_subword=True,
|
247 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
248 |
+
**kwargs,
|
249 |
+
) -> None:
|
250 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
251 |
+
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
|
252 |
+
|
253 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
254 |
+
|
255 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
256 |
+
self.sp_model.Load(str(vocab_file))
|
257 |
+
self.vocab_file = vocab_file
|
258 |
+
|
259 |
+
# Original fairseq vocab and spm vocab must be "aligned":
|
260 |
+
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
|
261 |
+
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
|
262 |
+
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
|
263 |
+
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
|
264 |
+
|
265 |
+
# Mimic fairseq token-to-id alignment for the first 4 token
|
266 |
+
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
|
267 |
+
|
268 |
+
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
|
269 |
+
self.fairseq_offset = 1
|
270 |
+
|
271 |
+
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset
|
272 |
+
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
273 |
+
|
274 |
+
# additional properties
|
275 |
+
self.cls_token_box = cls_token_box
|
276 |
+
self.sep_token_box = sep_token_box
|
277 |
+
self.pad_token_box = pad_token_box
|
278 |
+
self.pad_token_label = pad_token_label
|
279 |
+
self.only_label_first_subword = only_label_first_subword
|
280 |
+
|
281 |
+
super().__init__(
|
282 |
+
bos_token=bos_token,
|
283 |
+
eos_token=eos_token,
|
284 |
+
unk_token=unk_token,
|
285 |
+
sep_token=sep_token,
|
286 |
+
cls_token=cls_token,
|
287 |
+
pad_token=pad_token,
|
288 |
+
mask_token=mask_token,
|
289 |
+
cls_token_box=cls_token_box,
|
290 |
+
sep_token_box=sep_token_box,
|
291 |
+
pad_token_box=pad_token_box,
|
292 |
+
pad_token_label=pad_token_label,
|
293 |
+
only_label_first_subword=only_label_first_subword,
|
294 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
295 |
+
**kwargs,
|
296 |
+
)
|
297 |
+
|
298 |
+
def __getstate__(self):
|
299 |
+
state = self.__dict__.copy()
|
300 |
+
state["sp_model"] = None
|
301 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
302 |
+
return state
|
303 |
+
|
304 |
+
def __setstate__(self, d):
|
305 |
+
self.__dict__ = d
|
306 |
+
|
307 |
+
# for backward compatibility
|
308 |
+
if not hasattr(self, "sp_model_kwargs"):
|
309 |
+
self.sp_model_kwargs = {}
|
310 |
+
|
311 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
312 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
313 |
+
|
314 |
+
def build_inputs_with_special_tokens(
|
315 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
316 |
+
) -> List[int]:
|
317 |
+
"""
|
318 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
319 |
+
adding special tokens. An XLM-RoBERTa sequence has the following format:
|
320 |
+
|
321 |
+
- single sequence: `<s> X </s>`
|
322 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
323 |
+
|
324 |
+
Args:
|
325 |
+
token_ids_0 (`List[int]`):
|
326 |
+
List of IDs to which the special tokens will be added.
|
327 |
+
token_ids_1 (`List[int]`, *optional*):
|
328 |
+
Optional second list of IDs for sequence pairs.
|
329 |
+
|
330 |
+
Returns:
|
331 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
332 |
+
"""
|
333 |
+
|
334 |
+
if token_ids_1 is None:
|
335 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
336 |
+
cls = [self.cls_token_id]
|
337 |
+
sep = [self.sep_token_id]
|
338 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
339 |
+
|
340 |
+
def get_special_tokens_mask(
|
341 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
342 |
+
) -> List[int]:
|
343 |
+
"""
|
344 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
345 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
token_ids_0 (`List[int]`):
|
349 |
+
List of IDs.
|
350 |
+
token_ids_1 (`List[int]`, *optional*):
|
351 |
+
Optional second list of IDs for sequence pairs.
|
352 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
353 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
354 |
+
|
355 |
+
Returns:
|
356 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
357 |
+
"""
|
358 |
+
|
359 |
+
if already_has_special_tokens:
|
360 |
+
return super().get_special_tokens_mask(
|
361 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
362 |
+
)
|
363 |
+
|
364 |
+
if token_ids_1 is None:
|
365 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
366 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
367 |
+
|
368 |
+
def create_token_type_ids_from_sequences(
|
369 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
370 |
+
) -> List[int]:
|
371 |
+
"""
|
372 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
|
373 |
+
not make use of token type ids, therefore a list of zeros is returned.
|
374 |
+
|
375 |
+
Args:
|
376 |
+
token_ids_0 (`List[int]`):
|
377 |
+
List of IDs.
|
378 |
+
token_ids_1 (`List[int]`, *optional*):
|
379 |
+
Optional second list of IDs for sequence pairs.
|
380 |
+
|
381 |
+
Returns:
|
382 |
+
`List[int]`: List of zeros.
|
383 |
+
|
384 |
+
"""
|
385 |
+
|
386 |
+
sep = [self.sep_token_id]
|
387 |
+
cls = [self.cls_token_id]
|
388 |
+
|
389 |
+
if token_ids_1 is None:
|
390 |
+
return len(cls + token_ids_0 + sep) * [0]
|
391 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
392 |
+
|
393 |
+
@property
|
394 |
+
def vocab_size(self):
|
395 |
+
return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token
|
396 |
+
|
397 |
+
def get_vocab(self):
|
398 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
399 |
+
vocab.update(self.added_tokens_encoder)
|
400 |
+
return vocab
|
401 |
+
|
402 |
+
def _tokenize(self, text: str) -> List[str]:
|
403 |
+
return self.sp_model.encode(text, out_type=str)
|
404 |
+
|
405 |
+
def _convert_token_to_id(self, token):
|
406 |
+
"""Converts a token (str) in an id using the vocab."""
|
407 |
+
if token in self.fairseq_tokens_to_ids:
|
408 |
+
return self.fairseq_tokens_to_ids[token]
|
409 |
+
spm_id = self.sp_model.PieceToId(token)
|
410 |
+
|
411 |
+
# Need to return unknown token if the SP model returned 0
|
412 |
+
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
|
413 |
+
|
414 |
+
def _convert_id_to_token(self, index):
|
415 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
416 |
+
if index in self.fairseq_ids_to_tokens:
|
417 |
+
return self.fairseq_ids_to_tokens[index]
|
418 |
+
return self.sp_model.IdToPiece(index - self.fairseq_offset)
|
419 |
+
|
420 |
+
def convert_tokens_to_string(self, tokens):
|
421 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
422 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
423 |
+
return out_string
|
424 |
+
|
425 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
426 |
+
if not os.path.isdir(save_directory):
|
427 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
428 |
+
return
|
429 |
+
out_vocab_file = os.path.join(
|
430 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
431 |
+
)
|
432 |
+
|
433 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
434 |
+
copyfile(self.vocab_file, out_vocab_file)
|
435 |
+
elif not os.path.isfile(self.vocab_file):
|
436 |
+
with open(out_vocab_file, "wb") as fi:
|
437 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
438 |
+
fi.write(content_spiece_model)
|
439 |
+
|
440 |
+
return (out_vocab_file,)
|
441 |
+
|
442 |
+
@add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
|
443 |
+
def __call__(
|
444 |
+
self,
|
445 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
446 |
+
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
|
447 |
+
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
|
448 |
+
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
449 |
+
add_special_tokens: bool = True,
|
450 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
451 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
452 |
+
max_length: Optional[int] = None,
|
453 |
+
stride: int = 0,
|
454 |
+
pad_to_multiple_of: Optional[int] = None,
|
455 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
456 |
+
return_token_type_ids: Optional[bool] = None,
|
457 |
+
return_attention_mask: Optional[bool] = None,
|
458 |
+
return_overflowing_tokens: bool = False,
|
459 |
+
return_special_tokens_mask: bool = False,
|
460 |
+
return_offsets_mapping: bool = False,
|
461 |
+
return_length: bool = False,
|
462 |
+
verbose: bool = True,
|
463 |
+
**kwargs,
|
464 |
+
) -> BatchEncoding:
|
465 |
+
"""
|
466 |
+
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
|
467 |
+
sequences with word-level normalized bounding boxes and optional labels.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
471 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
|
472 |
+
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
|
473 |
+
words).
|
474 |
+
text_pair (`List[str]`, `List[List[str]]`):
|
475 |
+
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
|
476 |
+
(pretokenized string).
|
477 |
+
boxes (`List[List[int]]`, `List[List[List[int]]]`):
|
478 |
+
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
|
479 |
+
word_labels (`List[int]`, `List[List[int]]`, *optional*):
|
480 |
+
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
|
481 |
+
"""
|
482 |
+
|
483 |
+
# Input type checking for clearer error
|
484 |
+
def _is_valid_text_input(t):
|
485 |
+
if isinstance(t, str):
|
486 |
+
# Strings are fine
|
487 |
+
return True
|
488 |
+
elif isinstance(t, (list, tuple)):
|
489 |
+
# List are fine as long as they are...
|
490 |
+
if len(t) == 0:
|
491 |
+
# ... empty
|
492 |
+
return True
|
493 |
+
elif isinstance(t[0], str):
|
494 |
+
# ... list of strings
|
495 |
+
return True
|
496 |
+
elif isinstance(t[0], (list, tuple)):
|
497 |
+
# ... list with an empty list or with a list of strings
|
498 |
+
return len(t[0]) == 0 or isinstance(t[0][0], str)
|
499 |
+
else:
|
500 |
+
return False
|
501 |
+
else:
|
502 |
+
return False
|
503 |
+
|
504 |
+
if text_pair is not None:
|
505 |
+
# in case text + text_pair are provided, text = questions, text_pair = words
|
506 |
+
if not _is_valid_text_input(text):
|
507 |
+
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
|
508 |
+
if not isinstance(text_pair, (list, tuple)):
|
509 |
+
raise ValueError(
|
510 |
+
"words must of type `List[str]` (single pretokenized example), "
|
511 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
512 |
+
)
|
513 |
+
else:
|
514 |
+
# in case only text is provided => must be words
|
515 |
+
if not isinstance(text, (list, tuple)):
|
516 |
+
raise ValueError(
|
517 |
+
"Words must of type `List[str]` (single pretokenized example), "
|
518 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
519 |
+
)
|
520 |
+
|
521 |
+
if text_pair is not None:
|
522 |
+
is_batched = isinstance(text, (list, tuple))
|
523 |
+
else:
|
524 |
+
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
|
525 |
+
|
526 |
+
words = text if text_pair is None else text_pair
|
527 |
+
if boxes is None:
|
528 |
+
raise ValueError("You must provide corresponding bounding boxes")
|
529 |
+
if is_batched:
|
530 |
+
if len(words) != len(boxes):
|
531 |
+
raise ValueError("You must provide words and boxes for an equal amount of examples")
|
532 |
+
for words_example, boxes_example in zip(words, boxes):
|
533 |
+
if len(words_example) != len(boxes_example):
|
534 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
535 |
+
else:
|
536 |
+
if len(words) != len(boxes):
|
537 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
538 |
+
|
539 |
+
if is_batched:
|
540 |
+
if text_pair is not None and len(text) != len(text_pair):
|
541 |
+
raise ValueError(
|
542 |
+
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
|
543 |
+
f" {len(text_pair)}."
|
544 |
+
)
|
545 |
+
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
|
546 |
+
is_pair = bool(text_pair is not None)
|
547 |
+
return self.batch_encode_plus(
|
548 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
549 |
+
is_pair=is_pair,
|
550 |
+
boxes=boxes,
|
551 |
+
word_labels=word_labels,
|
552 |
+
add_special_tokens=add_special_tokens,
|
553 |
+
padding=padding,
|
554 |
+
truncation=truncation,
|
555 |
+
max_length=max_length,
|
556 |
+
stride=stride,
|
557 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
558 |
+
return_tensors=return_tensors,
|
559 |
+
return_token_type_ids=return_token_type_ids,
|
560 |
+
return_attention_mask=return_attention_mask,
|
561 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
562 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
563 |
+
return_offsets_mapping=return_offsets_mapping,
|
564 |
+
return_length=return_length,
|
565 |
+
verbose=verbose,
|
566 |
+
**kwargs,
|
567 |
+
)
|
568 |
+
else:
|
569 |
+
return self.encode_plus(
|
570 |
+
text=text,
|
571 |
+
text_pair=text_pair,
|
572 |
+
boxes=boxes,
|
573 |
+
word_labels=word_labels,
|
574 |
+
add_special_tokens=add_special_tokens,
|
575 |
+
padding=padding,
|
576 |
+
truncation=truncation,
|
577 |
+
max_length=max_length,
|
578 |
+
stride=stride,
|
579 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
580 |
+
return_tensors=return_tensors,
|
581 |
+
return_token_type_ids=return_token_type_ids,
|
582 |
+
return_attention_mask=return_attention_mask,
|
583 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
584 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
585 |
+
return_offsets_mapping=return_offsets_mapping,
|
586 |
+
return_length=return_length,
|
587 |
+
verbose=verbose,
|
588 |
+
**kwargs,
|
589 |
+
)
|
590 |
+
|
591 |
+
def _batch_encode_plus(
|
592 |
+
self,
|
593 |
+
batch_text_or_text_pairs: Union[
|
594 |
+
List[TextInput],
|
595 |
+
List[TextInputPair],
|
596 |
+
List[PreTokenizedInput],
|
597 |
+
],
|
598 |
+
is_pair: bool = None,
|
599 |
+
boxes: Optional[List[List[List[int]]]] = None,
|
600 |
+
word_labels: Optional[List[List[int]]] = None,
|
601 |
+
add_special_tokens: bool = True,
|
602 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
603 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
604 |
+
max_length: Optional[int] = None,
|
605 |
+
stride: int = 0,
|
606 |
+
pad_to_multiple_of: Optional[int] = None,
|
607 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
608 |
+
return_token_type_ids: Optional[bool] = None,
|
609 |
+
return_attention_mask: Optional[bool] = None,
|
610 |
+
return_overflowing_tokens: bool = False,
|
611 |
+
return_special_tokens_mask: bool = False,
|
612 |
+
return_offsets_mapping: bool = False,
|
613 |
+
return_length: bool = False,
|
614 |
+
verbose: bool = True,
|
615 |
+
**kwargs,
|
616 |
+
) -> BatchEncoding:
|
617 |
+
if return_offsets_mapping:
|
618 |
+
raise NotImplementedError(
|
619 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
620 |
+
"To use this feature, change your tokenizer to one deriving from "
|
621 |
+
"transformers.PreTrainedTokenizerFast."
|
622 |
+
)
|
623 |
+
|
624 |
+
batch_outputs = self._batch_prepare_for_model(
|
625 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
626 |
+
is_pair=is_pair,
|
627 |
+
boxes=boxes,
|
628 |
+
word_labels=word_labels,
|
629 |
+
add_special_tokens=add_special_tokens,
|
630 |
+
padding_strategy=padding_strategy,
|
631 |
+
truncation_strategy=truncation_strategy,
|
632 |
+
max_length=max_length,
|
633 |
+
stride=stride,
|
634 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
635 |
+
return_attention_mask=return_attention_mask,
|
636 |
+
return_token_type_ids=return_token_type_ids,
|
637 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
638 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
639 |
+
return_length=return_length,
|
640 |
+
return_tensors=return_tensors,
|
641 |
+
verbose=verbose,
|
642 |
+
)
|
643 |
+
|
644 |
+
return BatchEncoding(batch_outputs)
|
645 |
+
|
646 |
+
@add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
|
647 |
+
def _batch_prepare_for_model(
|
648 |
+
self,
|
649 |
+
batch_text_or_text_pairs,
|
650 |
+
is_pair: bool = None,
|
651 |
+
boxes: Optional[List[List[int]]] = None,
|
652 |
+
word_labels: Optional[List[List[int]]] = None,
|
653 |
+
add_special_tokens: bool = True,
|
654 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
655 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
656 |
+
max_length: Optional[int] = None,
|
657 |
+
stride: int = 0,
|
658 |
+
pad_to_multiple_of: Optional[int] = None,
|
659 |
+
return_tensors: Optional[str] = None,
|
660 |
+
return_token_type_ids: Optional[bool] = None,
|
661 |
+
return_attention_mask: Optional[bool] = None,
|
662 |
+
return_overflowing_tokens: bool = False,
|
663 |
+
return_special_tokens_mask: bool = False,
|
664 |
+
return_length: bool = False,
|
665 |
+
verbose: bool = True,
|
666 |
+
) -> BatchEncoding:
|
667 |
+
"""
|
668 |
+
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
|
669 |
+
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
|
670 |
+
manages a moving window (with user defined stride) for overflowing tokens
|
671 |
+
|
672 |
+
Args:
|
673 |
+
batch_ids_pairs: list of tokenized input ids or input ids pairs
|
674 |
+
"""
|
675 |
+
|
676 |
+
batch_outputs = {}
|
677 |
+
for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)):
|
678 |
+
batch_text_or_text_pair, boxes_example = example
|
679 |
+
outputs = self.prepare_for_model(
|
680 |
+
batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair,
|
681 |
+
batch_text_or_text_pair[1] if is_pair else None,
|
682 |
+
boxes_example,
|
683 |
+
word_labels=word_labels[idx] if word_labels is not None else None,
|
684 |
+
add_special_tokens=add_special_tokens,
|
685 |
+
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
|
686 |
+
truncation=truncation_strategy.value,
|
687 |
+
max_length=max_length,
|
688 |
+
stride=stride,
|
689 |
+
pad_to_multiple_of=None, # we pad in batch afterward
|
690 |
+
return_attention_mask=False, # we pad in batch afterward
|
691 |
+
return_token_type_ids=return_token_type_ids,
|
692 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
693 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
694 |
+
return_length=return_length,
|
695 |
+
return_tensors=None, # We convert the whole batch to tensors at the end
|
696 |
+
prepend_batch_axis=False,
|
697 |
+
verbose=verbose,
|
698 |
+
)
|
699 |
+
|
700 |
+
for key, value in outputs.items():
|
701 |
+
if key not in batch_outputs:
|
702 |
+
batch_outputs[key] = []
|
703 |
+
batch_outputs[key].append(value)
|
704 |
+
|
705 |
+
batch_outputs = self.pad(
|
706 |
+
batch_outputs,
|
707 |
+
padding=padding_strategy.value,
|
708 |
+
max_length=max_length,
|
709 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
710 |
+
return_attention_mask=return_attention_mask,
|
711 |
+
)
|
712 |
+
|
713 |
+
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
714 |
+
|
715 |
+
return batch_outputs
|
716 |
+
|
717 |
+
def _encode_plus(
|
718 |
+
self,
|
719 |
+
text: Union[TextInput, PreTokenizedInput],
|
720 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
721 |
+
boxes: Optional[List[List[int]]] = None,
|
722 |
+
word_labels: Optional[List[int]] = None,
|
723 |
+
add_special_tokens: bool = True,
|
724 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
725 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
726 |
+
max_length: Optional[int] = None,
|
727 |
+
stride: int = 0,
|
728 |
+
pad_to_multiple_of: Optional[int] = None,
|
729 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
730 |
+
return_token_type_ids: Optional[bool] = None,
|
731 |
+
return_attention_mask: Optional[bool] = None,
|
732 |
+
return_overflowing_tokens: bool = False,
|
733 |
+
return_special_tokens_mask: bool = False,
|
734 |
+
return_offsets_mapping: bool = False,
|
735 |
+
return_length: bool = False,
|
736 |
+
verbose: bool = True,
|
737 |
+
**kwargs,
|
738 |
+
) -> BatchEncoding:
|
739 |
+
if return_offsets_mapping:
|
740 |
+
raise NotImplementedError(
|
741 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
742 |
+
"To use this feature, change your tokenizer to one deriving from "
|
743 |
+
"transformers.PreTrainedTokenizerFast. "
|
744 |
+
"More information on available tokenizers at "
|
745 |
+
"https://github.com/huggingface/transformers/pull/2674"
|
746 |
+
)
|
747 |
+
|
748 |
+
return self.prepare_for_model(
|
749 |
+
text=text,
|
750 |
+
text_pair=text_pair,
|
751 |
+
boxes=boxes,
|
752 |
+
word_labels=word_labels,
|
753 |
+
add_special_tokens=add_special_tokens,
|
754 |
+
padding=padding_strategy.value,
|
755 |
+
truncation=truncation_strategy.value,
|
756 |
+
max_length=max_length,
|
757 |
+
stride=stride,
|
758 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
759 |
+
return_tensors=return_tensors,
|
760 |
+
prepend_batch_axis=True,
|
761 |
+
return_attention_mask=return_attention_mask,
|
762 |
+
return_token_type_ids=return_token_type_ids,
|
763 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
764 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
765 |
+
return_length=return_length,
|
766 |
+
verbose=verbose,
|
767 |
+
)
|
768 |
+
|
769 |
+
@add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
|
770 |
+
def prepare_for_model(
|
771 |
+
self,
|
772 |
+
text: Union[TextInput, PreTokenizedInput],
|
773 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
774 |
+
boxes: Optional[List[List[int]]] = None,
|
775 |
+
word_labels: Optional[List[int]] = None,
|
776 |
+
add_special_tokens: bool = True,
|
777 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
778 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
779 |
+
max_length: Optional[int] = None,
|
780 |
+
stride: int = 0,
|
781 |
+
pad_to_multiple_of: Optional[int] = None,
|
782 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
783 |
+
return_token_type_ids: Optional[bool] = None,
|
784 |
+
return_attention_mask: Optional[bool] = None,
|
785 |
+
return_overflowing_tokens: bool = False,
|
786 |
+
return_special_tokens_mask: bool = False,
|
787 |
+
return_offsets_mapping: bool = False,
|
788 |
+
return_length: bool = False,
|
789 |
+
verbose: bool = True,
|
790 |
+
prepend_batch_axis: bool = False,
|
791 |
+
**kwargs,
|
792 |
+
) -> BatchEncoding:
|
793 |
+
"""
|
794 |
+
Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens,
|
795 |
+
truncates sequences if overflowing while taking into account the special tokens and manages a moving window
|
796 |
+
(with user defined stride) for overflowing tokens.
|
797 |
+
|
798 |
+
Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into
|
799 |
+
token-level `labels`. The word label is used for the first token of the word, while remaining tokens are
|
800 |
+
labeled with -100, such that they will be ignored by the loss function.
|
801 |
+
|
802 |
+
Args:
|
803 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
804 |
+
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
|
805 |
+
text_pair (`List[str]` or `List[int]`, *optional*):
|
806 |
+
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
|
807 |
+
list of list of strings (words of a batch of examples).
|
808 |
+
"""
|
809 |
+
|
810 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
811 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
812 |
+
padding=padding,
|
813 |
+
truncation=truncation,
|
814 |
+
max_length=max_length,
|
815 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
816 |
+
verbose=verbose,
|
817 |
+
**kwargs,
|
818 |
+
)
|
819 |
+
|
820 |
+
tokens = []
|
821 |
+
pair_tokens = []
|
822 |
+
token_boxes = []
|
823 |
+
pair_token_boxes = []
|
824 |
+
labels = []
|
825 |
+
|
826 |
+
if text_pair is None:
|
827 |
+
if word_labels is None:
|
828 |
+
# CASE 1: document image classification (training + inference) + CASE 2: token classification (inference)
|
829 |
+
for word, box in zip(text, boxes):
|
830 |
+
if len(word) < 1: # skip empty words
|
831 |
+
continue
|
832 |
+
word_tokens = self.tokenize(word)
|
833 |
+
tokens.extend(word_tokens)
|
834 |
+
token_boxes.extend([box] * len(word_tokens))
|
835 |
+
else:
|
836 |
+
# CASE 2: token classification (training)
|
837 |
+
for word, box, label in zip(text, boxes, word_labels):
|
838 |
+
if len(word) < 1: # skip empty words
|
839 |
+
continue
|
840 |
+
word_tokens = self.tokenize(word)
|
841 |
+
tokens.extend(word_tokens)
|
842 |
+
token_boxes.extend([box] * len(word_tokens))
|
843 |
+
if self.only_label_first_subword:
|
844 |
+
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
|
845 |
+
labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1))
|
846 |
+
else:
|
847 |
+
labels.extend([label] * len(word_tokens))
|
848 |
+
else:
|
849 |
+
# CASE 3: document visual question answering (inference)
|
850 |
+
# text = question
|
851 |
+
# text_pair = words
|
852 |
+
tokens = self.tokenize(text)
|
853 |
+
token_boxes = [self.pad_token_box for _ in range(len(tokens))] + [self.sep_token_box]
|
854 |
+
|
855 |
+
for word, box in zip(text_pair, boxes):
|
856 |
+
if len(word) < 1: # skip empty words
|
857 |
+
continue
|
858 |
+
word_tokens = self.tokenize(word)
|
859 |
+
pair_tokens.extend(word_tokens)
|
860 |
+
pair_token_boxes.extend([box] * len(word_tokens))
|
861 |
+
|
862 |
+
# Create ids + pair_ids
|
863 |
+
ids = self.convert_tokens_to_ids(tokens)
|
864 |
+
pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None
|
865 |
+
|
866 |
+
# Compute the total size of the returned encodings
|
867 |
+
pair = bool(pair_ids is not None)
|
868 |
+
len_ids = len(ids)
|
869 |
+
len_pair_ids = len(pair_ids) if pair else 0
|
870 |
+
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
|
871 |
+
|
872 |
+
# Truncation: Handle max sequence length
|
873 |
+
overflowing_tokens = []
|
874 |
+
overflowing_token_boxes = []
|
875 |
+
overflowing_labels = []
|
876 |
+
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
|
877 |
+
(
|
878 |
+
ids,
|
879 |
+
token_boxes,
|
880 |
+
pair_ids,
|
881 |
+
pair_token_boxes,
|
882 |
+
labels,
|
883 |
+
overflowing_tokens,
|
884 |
+
overflowing_token_boxes,
|
885 |
+
overflowing_labels,
|
886 |
+
) = self.truncate_sequences(
|
887 |
+
ids,
|
888 |
+
token_boxes,
|
889 |
+
pair_ids=pair_ids,
|
890 |
+
pair_token_boxes=pair_token_boxes,
|
891 |
+
labels=labels,
|
892 |
+
num_tokens_to_remove=total_len - max_length,
|
893 |
+
truncation_strategy=truncation_strategy,
|
894 |
+
stride=stride,
|
895 |
+
)
|
896 |
+
|
897 |
+
if return_token_type_ids and not add_special_tokens:
|
898 |
+
raise ValueError(
|
899 |
+
"Asking to return token_type_ids while setting add_special_tokens to False "
|
900 |
+
"results in an undefined behavior. Please set add_special_tokens to True or "
|
901 |
+
"set return_token_type_ids to None."
|
902 |
+
)
|
903 |
+
|
904 |
+
# Load from model defaults
|
905 |
+
if return_token_type_ids is None:
|
906 |
+
return_token_type_ids = "token_type_ids" in self.model_input_names
|
907 |
+
if return_attention_mask is None:
|
908 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
909 |
+
|
910 |
+
encoded_inputs = {}
|
911 |
+
|
912 |
+
if return_overflowing_tokens:
|
913 |
+
encoded_inputs["overflowing_tokens"] = overflowing_tokens
|
914 |
+
encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes
|
915 |
+
encoded_inputs["overflowing_labels"] = overflowing_labels
|
916 |
+
encoded_inputs["num_truncated_tokens"] = total_len - max_length
|
917 |
+
|
918 |
+
# Add special tokens
|
919 |
+
if add_special_tokens:
|
920 |
+
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
|
921 |
+
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
|
922 |
+
token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box]
|
923 |
+
if pair_token_boxes:
|
924 |
+
pair_token_boxes = pair_token_boxes + [self.sep_token_box]
|
925 |
+
if labels:
|
926 |
+
labels = [self.pad_token_label] + labels + [self.pad_token_label]
|
927 |
+
else:
|
928 |
+
sequence = ids + pair_ids if pair else ids
|
929 |
+
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
|
930 |
+
|
931 |
+
# Build output dictionary
|
932 |
+
encoded_inputs["input_ids"] = sequence
|
933 |
+
encoded_inputs["bbox"] = token_boxes + pair_token_boxes
|
934 |
+
if return_token_type_ids:
|
935 |
+
encoded_inputs["token_type_ids"] = token_type_ids
|
936 |
+
if return_special_tokens_mask:
|
937 |
+
if add_special_tokens:
|
938 |
+
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
|
939 |
+
else:
|
940 |
+
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
|
941 |
+
|
942 |
+
if labels:
|
943 |
+
encoded_inputs["labels"] = labels
|
944 |
+
|
945 |
+
# Check lengths
|
946 |
+
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
|
947 |
+
|
948 |
+
# Padding
|
949 |
+
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
|
950 |
+
encoded_inputs = self.pad(
|
951 |
+
encoded_inputs,
|
952 |
+
max_length=max_length,
|
953 |
+
padding=padding_strategy.value,
|
954 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
955 |
+
return_attention_mask=return_attention_mask,
|
956 |
+
)
|
957 |
+
|
958 |
+
if return_length:
|
959 |
+
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
|
960 |
+
|
961 |
+
batch_outputs = BatchEncoding(
|
962 |
+
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
|
963 |
+
)
|
964 |
+
|
965 |
+
return batch_outputs
|
966 |
+
|
967 |
+
def truncate_sequences(
|
968 |
+
self,
|
969 |
+
ids: List[int],
|
970 |
+
token_boxes: List[List[int]],
|
971 |
+
pair_ids: Optional[List[int]] = None,
|
972 |
+
pair_token_boxes: Optional[List[List[int]]] = None,
|
973 |
+
labels: Optional[List[int]] = None,
|
974 |
+
num_tokens_to_remove: int = 0,
|
975 |
+
truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
|
976 |
+
stride: int = 0,
|
977 |
+
) -> Tuple[List[int], List[int], List[int]]:
|
978 |
+
"""
|
979 |
+
Truncates a sequence pair in-place following the strategy.
|
980 |
+
|
981 |
+
Args:
|
982 |
+
ids (`List[int]`):
|
983 |
+
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
|
984 |
+
`convert_tokens_to_ids` methods.
|
985 |
+
token_boxes (`List[List[int]]`):
|
986 |
+
Bounding boxes of the first sequence.
|
987 |
+
pair_ids (`List[int]`, *optional*):
|
988 |
+
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
|
989 |
+
and `convert_tokens_to_ids` methods.
|
990 |
+
pair_token_boxes (`List[List[int]]`, *optional*):
|
991 |
+
Bounding boxes of the second sequence.
|
992 |
+
labels (`List[int]`, *optional*):
|
993 |
+
Labels of the first sequence (for token classification tasks).
|
994 |
+
num_tokens_to_remove (`int`, *optional*, defaults to 0):
|
995 |
+
Number of tokens to remove using the truncation strategy.
|
996 |
+
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
|
997 |
+
The strategy to follow for truncation. Can be:
|
998 |
+
|
999 |
+
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
1000 |
+
maximum acceptable input length for the model if that argument is not provided. This will truncate
|
1001 |
+
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
|
1002 |
+
batch of pairs) is provided.
|
1003 |
+
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
1004 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
1005 |
+
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
1006 |
+
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
1007 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
1008 |
+
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
1009 |
+
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
|
1010 |
+
than the model maximum admissible input size).
|
1011 |
+
stride (`int`, *optional*, defaults to 0):
|
1012 |
+
If set to a positive number, the overflowing tokens returned will contain some tokens from the main
|
1013 |
+
sequence returned. The value of this argument defines the number of additional tokens.
|
1014 |
+
|
1015 |
+
Returns:
|
1016 |
+
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
|
1017 |
+
overflowing tokens.
|
1018 |
+
"""
|
1019 |
+
if num_tokens_to_remove <= 0:
|
1020 |
+
return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], []
|
1021 |
+
|
1022 |
+
if not isinstance(truncation_strategy, TruncationStrategy):
|
1023 |
+
truncation_strategy = TruncationStrategy(truncation_strategy)
|
1024 |
+
|
1025 |
+
overflowing_tokens = []
|
1026 |
+
overflowing_token_boxes = []
|
1027 |
+
overflowing_labels = []
|
1028 |
+
if truncation_strategy == TruncationStrategy.LONGEST_FIRST:
|
1029 |
+
for _ in range(num_tokens_to_remove):
|
1030 |
+
if pair_ids is None or len(ids) > len(pair_ids):
|
1031 |
+
if not overflowing_tokens:
|
1032 |
+
window_len = min(len(ids), stride + 1)
|
1033 |
+
else:
|
1034 |
+
window_len = 1
|
1035 |
+
overflowing_tokens.extend(ids[-window_len:])
|
1036 |
+
overflowing_token_boxes.extend(token_boxes[-window_len:])
|
1037 |
+
overflowing_labels.extend(labels[-window_len:])
|
1038 |
+
ids = ids[:-1]
|
1039 |
+
token_boxes = token_boxes[:-1]
|
1040 |
+
labels = labels[:-1]
|
1041 |
+
else:
|
1042 |
+
if not overflowing_tokens:
|
1043 |
+
window_len = min(len(pair_ids), stride + 1)
|
1044 |
+
else:
|
1045 |
+
window_len = 1
|
1046 |
+
overflowing_tokens.extend(pair_ids[-window_len:])
|
1047 |
+
overflowing_token_boxes.extend(pair_token_boxes[-window_len:])
|
1048 |
+
pair_ids = pair_ids[:-1]
|
1049 |
+
pair_token_boxes = pair_token_boxes[:-1]
|
1050 |
+
elif truncation_strategy == TruncationStrategy.ONLY_FIRST:
|
1051 |
+
if len(ids) > num_tokens_to_remove:
|
1052 |
+
window_len = min(len(ids), stride + num_tokens_to_remove)
|
1053 |
+
overflowing_tokens = ids[-window_len:]
|
1054 |
+
overflowing_token_boxes = token_boxes[-window_len:]
|
1055 |
+
overflowing_labels = labels[-window_len:]
|
1056 |
+
ids = ids[:-num_tokens_to_remove]
|
1057 |
+
token_boxes = token_boxes[:-num_tokens_to_remove]
|
1058 |
+
labels = labels[:-num_tokens_to_remove]
|
1059 |
+
else:
|
1060 |
+
logger.error(
|
1061 |
+
f"We need to remove {num_tokens_to_remove} to truncate the input "
|
1062 |
+
f"but the first sequence has a length {len(ids)}. "
|
1063 |
+
f"Please select another truncation strategy than {truncation_strategy}, "
|
1064 |
+
"for instance 'longest_first' or 'only_second'."
|
1065 |
+
)
|
1066 |
+
elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
|
1067 |
+
if len(pair_ids) > num_tokens_to_remove:
|
1068 |
+
window_len = min(len(pair_ids), stride + num_tokens_to_remove)
|
1069 |
+
overflowing_tokens = pair_ids[-window_len:]
|
1070 |
+
overflowing_token_boxes = pair_token_boxes[-window_len:]
|
1071 |
+
pair_ids = pair_ids[:-num_tokens_to_remove]
|
1072 |
+
pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove]
|
1073 |
+
else:
|
1074 |
+
logger.error(
|
1075 |
+
f"We need to remove {num_tokens_to_remove} to truncate the input "
|
1076 |
+
f"but the second sequence has a length {len(pair_ids)}. "
|
1077 |
+
f"Please select another truncation strategy than {truncation_strategy}, "
|
1078 |
+
"for instance 'longest_first' or 'only_first'."
|
1079 |
+
)
|
1080 |
+
|
1081 |
+
return (
|
1082 |
+
ids,
|
1083 |
+
token_boxes,
|
1084 |
+
pair_ids,
|
1085 |
+
pair_token_boxes,
|
1086 |
+
labels,
|
1087 |
+
overflowing_tokens,
|
1088 |
+
overflowing_token_boxes,
|
1089 |
+
overflowing_labels,
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
def _pad(
|
1093 |
+
self,
|
1094 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
1095 |
+
max_length: Optional[int] = None,
|
1096 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
1097 |
+
pad_to_multiple_of: Optional[int] = None,
|
1098 |
+
return_attention_mask: Optional[bool] = None,
|
1099 |
+
) -> dict:
|
1100 |
+
"""
|
1101 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
1102 |
+
|
1103 |
+
Args:
|
1104 |
+
encoded_inputs:
|
1105 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
1106 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
1107 |
+
Will truncate by taking into account the special tokens.
|
1108 |
+
padding_strategy: PaddingStrategy to use for padding.
|
1109 |
+
|
1110 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
1111 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
1112 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
1113 |
+
The tokenizer padding sides are defined in self.padding_side:
|
1114 |
+
|
1115 |
+
- 'left': pads on the left of the sequences
|
1116 |
+
- 'right': pads on the right of the sequences
|
1117 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
1118 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
1119 |
+
`>= 7.5` (Volta).
|
1120 |
+
return_attention_mask:
|
1121 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
1122 |
+
"""
|
1123 |
+
# Load from model defaults
|
1124 |
+
if return_attention_mask is None:
|
1125 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
1126 |
+
|
1127 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
1128 |
+
|
1129 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
1130 |
+
max_length = len(required_input)
|
1131 |
+
|
1132 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
1133 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
1134 |
+
|
1135 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
1136 |
+
|
1137 |
+
# Initialize attention mask if not present.
|
1138 |
+
if return_attention_mask and "attention_mask" not in encoded_inputs:
|
1139 |
+
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
1140 |
+
|
1141 |
+
if needs_to_be_padded:
|
1142 |
+
difference = max_length - len(required_input)
|
1143 |
+
if self.padding_side == "right":
|
1144 |
+
if return_attention_mask:
|
1145 |
+
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
|
1146 |
+
if "token_type_ids" in encoded_inputs:
|
1147 |
+
encoded_inputs["token_type_ids"] = (
|
1148 |
+
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
1149 |
+
)
|
1150 |
+
if "bbox" in encoded_inputs:
|
1151 |
+
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
|
1152 |
+
if "labels" in encoded_inputs:
|
1153 |
+
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
|
1154 |
+
if "special_tokens_mask" in encoded_inputs:
|
1155 |
+
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
1156 |
+
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
1157 |
+
elif self.padding_side == "left":
|
1158 |
+
if return_attention_mask:
|
1159 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
1160 |
+
if "token_type_ids" in encoded_inputs:
|
1161 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
1162 |
+
"token_type_ids"
|
1163 |
+
]
|
1164 |
+
if "bbox" in encoded_inputs:
|
1165 |
+
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
|
1166 |
+
if "labels" in encoded_inputs:
|
1167 |
+
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
|
1168 |
+
if "special_tokens_mask" in encoded_inputs:
|
1169 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
1170 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
1171 |
+
else:
|
1172 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
1173 |
+
|
1174 |
+
return encoded_inputs
|
env-llmeval/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm_fast.py
ADDED
@@ -0,0 +1,804 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
""" Tokenization classes for LayoutXLM model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken
|
23 |
+
from ...tokenization_utils_base import (
|
24 |
+
BatchEncoding,
|
25 |
+
EncodedInput,
|
26 |
+
PreTokenizedInput,
|
27 |
+
TextInput,
|
28 |
+
TextInputPair,
|
29 |
+
TruncationStrategy,
|
30 |
+
)
|
31 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
32 |
+
from ...utils import PaddingStrategy, TensorType, add_end_docstrings, is_sentencepiece_available, logging
|
33 |
+
from ..xlm_roberta.tokenization_xlm_roberta_fast import (
|
34 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES,
|
35 |
+
PRETRAINED_VOCAB_FILES_MAP,
|
36 |
+
VOCAB_FILES_NAMES,
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
if is_sentencepiece_available():
|
41 |
+
from .tokenization_layoutxlm import LayoutXLMTokenizer
|
42 |
+
else:
|
43 |
+
LayoutXLMTokenizer = None
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
LAYOUTXLM_ENCODE_KWARGS_DOCSTRING = r"""
|
49 |
+
add_special_tokens (`bool`, *optional*, defaults to `True`):
|
50 |
+
Whether or not to encode the sequences with the special tokens relative to their model.
|
51 |
+
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
|
52 |
+
Activates and controls padding. Accepts the following values:
|
53 |
+
|
54 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
55 |
+
sequence if provided).
|
56 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
57 |
+
acceptable input length for the model if that argument is not provided.
|
58 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
59 |
+
lengths).
|
60 |
+
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
|
61 |
+
Activates and controls truncation. Accepts the following values:
|
62 |
+
|
63 |
+
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
|
64 |
+
to the maximum acceptable input length for the model if that argument is not provided. This will
|
65 |
+
truncate token by token, removing a token from the longest sequence in the pair if a pair of
|
66 |
+
sequences (or a batch of pairs) is provided.
|
67 |
+
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
68 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
69 |
+
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
70 |
+
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
71 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
72 |
+
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
73 |
+
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
|
74 |
+
greater than the model maximum admissible input size).
|
75 |
+
max_length (`int`, *optional*):
|
76 |
+
Controls the maximum length to use by one of the truncation/padding parameters.
|
77 |
+
|
78 |
+
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
|
79 |
+
is required by one of the truncation/padding parameters. If the model has no specific maximum input
|
80 |
+
length (like XLNet) truncation/padding to a maximum length will be deactivated.
|
81 |
+
stride (`int`, *optional*, defaults to 0):
|
82 |
+
If set to a number along with `max_length`, the overflowing tokens returned when
|
83 |
+
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
|
84 |
+
returned to provide some overlap between truncated and overflowing sequences. The value of this
|
85 |
+
argument defines the number of overlapping tokens.
|
86 |
+
pad_to_multiple_of (`int`, *optional*):
|
87 |
+
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
|
88 |
+
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
|
89 |
+
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
|
90 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
91 |
+
|
92 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
93 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
94 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
95 |
+
return_token_type_ids (`bool`, *optional*):
|
96 |
+
Whether to return token type IDs. If left to the default, will return the token type IDs according to
|
97 |
+
the specific tokenizer's default, defined by the `return_outputs` attribute.
|
98 |
+
|
99 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
100 |
+
return_attention_mask (`bool`, *optional*):
|
101 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
102 |
+
to the specific tokenizer's default, defined by the `return_outputs` attribute.
|
103 |
+
|
104 |
+
[What are attention masks?](../glossary#attention-mask)
|
105 |
+
return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
|
106 |
+
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
|
107 |
+
of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
|
108 |
+
of returning overflowing tokens.
|
109 |
+
return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
|
110 |
+
Whether or not to return special tokens mask information.
|
111 |
+
return_offsets_mapping (`bool`, *optional*, defaults to `False`):
|
112 |
+
Whether or not to return `(char_start, char_end)` for each token.
|
113 |
+
|
114 |
+
This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
|
115 |
+
Python's tokenizer, this method will raise `NotImplementedError`.
|
116 |
+
return_length (`bool`, *optional*, defaults to `False`):
|
117 |
+
Whether or not to return the lengths of the encoded inputs.
|
118 |
+
verbose (`bool`, *optional*, defaults to `True`):
|
119 |
+
Whether or not to print more information and warnings.
|
120 |
+
**kwargs: passed to the `self.tokenize()` method
|
121 |
+
|
122 |
+
Return:
|
123 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
124 |
+
|
125 |
+
- **input_ids** -- List of token ids to be fed to a model.
|
126 |
+
|
127 |
+
[What are input IDs?](../glossary#input-ids)
|
128 |
+
|
129 |
+
- **bbox** -- List of bounding boxes to be fed to a model.
|
130 |
+
|
131 |
+
- **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
|
132 |
+
if *"token_type_ids"* is in `self.model_input_names`).
|
133 |
+
|
134 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
135 |
+
|
136 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
137 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
|
138 |
+
|
139 |
+
[What are attention masks?](../glossary#attention-mask)
|
140 |
+
|
141 |
+
- **labels** -- List of labels to be fed to a model. (when `word_labels` is specified).
|
142 |
+
- **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
|
143 |
+
`return_overflowing_tokens=True`).
|
144 |
+
- **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
|
145 |
+
`return_overflowing_tokens=True`).
|
146 |
+
- **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
|
147 |
+
regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
|
148 |
+
- **length** -- The length of the inputs (when `return_length=True`).
|
149 |
+
"""
|
150 |
+
|
151 |
+
|
152 |
+
class LayoutXLMTokenizerFast(PreTrainedTokenizerFast):
|
153 |
+
"""
|
154 |
+
Construct a "fast" LayoutXLM tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
|
155 |
+
[`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
|
156 |
+
[BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
|
157 |
+
|
158 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
159 |
+
refer to this superclass for more information regarding those methods.
|
160 |
+
|
161 |
+
Args:
|
162 |
+
vocab_file (`str`):
|
163 |
+
Path to the vocabulary file.
|
164 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
165 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
166 |
+
|
167 |
+
<Tip>
|
168 |
+
|
169 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
170 |
+
sequence. The token used is the `cls_token`.
|
171 |
+
|
172 |
+
</Tip>
|
173 |
+
|
174 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
175 |
+
The end of sequence token.
|
176 |
+
|
177 |
+
<Tip>
|
178 |
+
|
179 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
180 |
+
The token used is the `sep_token`.
|
181 |
+
|
182 |
+
</Tip>
|
183 |
+
|
184 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
185 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
186 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
187 |
+
token of a sequence built with special tokens.
|
188 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
189 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
190 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
191 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
192 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
193 |
+
token instead.
|
194 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
195 |
+
The token used for padding, for example when batching sequences of different lengths.
|
196 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
197 |
+
The token used for masking values. This is the token used when training this model with masked language
|
198 |
+
modeling. This is the token which the model will try to predict.
|
199 |
+
cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
|
200 |
+
The bounding box to use for the special [CLS] token.
|
201 |
+
sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`):
|
202 |
+
The bounding box to use for the special [SEP] token.
|
203 |
+
pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
|
204 |
+
The bounding box to use for the special [PAD] token.
|
205 |
+
pad_token_label (`int`, *optional*, defaults to -100):
|
206 |
+
The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
|
207 |
+
CrossEntropyLoss.
|
208 |
+
only_label_first_subword (`bool`, *optional*, defaults to `True`):
|
209 |
+
Whether or not to only label the first subword, in case word labels are provided.
|
210 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
|
211 |
+
Additional special tokens used by the tokenizer.
|
212 |
+
"""
|
213 |
+
|
214 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
215 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
216 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
217 |
+
model_input_names = ["input_ids", "attention_mask"]
|
218 |
+
slow_tokenizer_class = LayoutXLMTokenizer
|
219 |
+
|
220 |
+
def __init__(
|
221 |
+
self,
|
222 |
+
vocab_file=None,
|
223 |
+
tokenizer_file=None,
|
224 |
+
bos_token="<s>",
|
225 |
+
eos_token="</s>",
|
226 |
+
sep_token="</s>",
|
227 |
+
cls_token="<s>",
|
228 |
+
unk_token="<unk>",
|
229 |
+
pad_token="<pad>",
|
230 |
+
mask_token="<mask>",
|
231 |
+
cls_token_box=[0, 0, 0, 0],
|
232 |
+
sep_token_box=[1000, 1000, 1000, 1000],
|
233 |
+
pad_token_box=[0, 0, 0, 0],
|
234 |
+
pad_token_label=-100,
|
235 |
+
only_label_first_subword=True,
|
236 |
+
**kwargs,
|
237 |
+
):
|
238 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
239 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
240 |
+
|
241 |
+
super().__init__(
|
242 |
+
vocab_file,
|
243 |
+
tokenizer_file=tokenizer_file,
|
244 |
+
bos_token=bos_token,
|
245 |
+
eos_token=eos_token,
|
246 |
+
sep_token=sep_token,
|
247 |
+
cls_token=cls_token,
|
248 |
+
unk_token=unk_token,
|
249 |
+
pad_token=pad_token,
|
250 |
+
mask_token=mask_token,
|
251 |
+
cls_token_box=cls_token_box,
|
252 |
+
sep_token_box=sep_token_box,
|
253 |
+
pad_token_box=pad_token_box,
|
254 |
+
pad_token_label=pad_token_label,
|
255 |
+
only_label_first_subword=only_label_first_subword,
|
256 |
+
**kwargs,
|
257 |
+
)
|
258 |
+
|
259 |
+
self.vocab_file = vocab_file
|
260 |
+
|
261 |
+
# additional properties
|
262 |
+
self.cls_token_box = cls_token_box
|
263 |
+
self.sep_token_box = sep_token_box
|
264 |
+
self.pad_token_box = pad_token_box
|
265 |
+
self.pad_token_label = pad_token_label
|
266 |
+
self.only_label_first_subword = only_label_first_subword
|
267 |
+
|
268 |
+
@property
|
269 |
+
def can_save_slow_tokenizer(self) -> bool:
|
270 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
271 |
+
|
272 |
+
@add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
|
273 |
+
def __call__(
|
274 |
+
self,
|
275 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
276 |
+
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
|
277 |
+
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
|
278 |
+
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
279 |
+
add_special_tokens: bool = True,
|
280 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
281 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
282 |
+
max_length: Optional[int] = None,
|
283 |
+
stride: int = 0,
|
284 |
+
pad_to_multiple_of: Optional[int] = None,
|
285 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
286 |
+
return_token_type_ids: Optional[bool] = None,
|
287 |
+
return_attention_mask: Optional[bool] = None,
|
288 |
+
return_overflowing_tokens: bool = False,
|
289 |
+
return_special_tokens_mask: bool = False,
|
290 |
+
return_offsets_mapping: bool = False,
|
291 |
+
return_length: bool = False,
|
292 |
+
verbose: bool = True,
|
293 |
+
**kwargs,
|
294 |
+
) -> BatchEncoding:
|
295 |
+
"""
|
296 |
+
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
|
297 |
+
sequences with word-level normalized bounding boxes and optional labels.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
301 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
|
302 |
+
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
|
303 |
+
words).
|
304 |
+
text_pair (`List[str]`, `List[List[str]]`):
|
305 |
+
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
|
306 |
+
(pretokenized string).
|
307 |
+
boxes (`List[List[int]]`, `List[List[List[int]]]`):
|
308 |
+
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
|
309 |
+
word_labels (`List[int]`, `List[List[int]]`, *optional*):
|
310 |
+
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
|
311 |
+
"""
|
312 |
+
|
313 |
+
# Input type checking for clearer error
|
314 |
+
def _is_valid_text_input(t):
|
315 |
+
if isinstance(t, str):
|
316 |
+
# Strings are fine
|
317 |
+
return True
|
318 |
+
elif isinstance(t, (list, tuple)):
|
319 |
+
# List are fine as long as they are...
|
320 |
+
if len(t) == 0:
|
321 |
+
# ... empty
|
322 |
+
return True
|
323 |
+
elif isinstance(t[0], str):
|
324 |
+
# ... list of strings
|
325 |
+
return True
|
326 |
+
elif isinstance(t[0], (list, tuple)):
|
327 |
+
# ... list with an empty list or with a list of strings
|
328 |
+
return len(t[0]) == 0 or isinstance(t[0][0], str)
|
329 |
+
else:
|
330 |
+
return False
|
331 |
+
else:
|
332 |
+
return False
|
333 |
+
|
334 |
+
if text_pair is not None:
|
335 |
+
# in case text + text_pair are provided, text = questions, text_pair = words
|
336 |
+
if not _is_valid_text_input(text):
|
337 |
+
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
|
338 |
+
if not isinstance(text_pair, (list, tuple)):
|
339 |
+
raise ValueError(
|
340 |
+
"words must of type `List[str]` (single pretokenized example), "
|
341 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
342 |
+
)
|
343 |
+
else:
|
344 |
+
# in case only text is provided => must be words
|
345 |
+
if not isinstance(text, (list, tuple)):
|
346 |
+
raise ValueError(
|
347 |
+
"Words must of type `List[str]` (single pretokenized example), "
|
348 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
349 |
+
)
|
350 |
+
|
351 |
+
if text_pair is not None:
|
352 |
+
is_batched = isinstance(text, (list, tuple))
|
353 |
+
else:
|
354 |
+
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
|
355 |
+
|
356 |
+
words = text if text_pair is None else text_pair
|
357 |
+
if boxes is None:
|
358 |
+
raise ValueError("You must provide corresponding bounding boxes")
|
359 |
+
if is_batched:
|
360 |
+
if len(words) != len(boxes):
|
361 |
+
raise ValueError("You must provide words and boxes for an equal amount of examples")
|
362 |
+
for words_example, boxes_example in zip(words, boxes):
|
363 |
+
if len(words_example) != len(boxes_example):
|
364 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
365 |
+
else:
|
366 |
+
if len(words) != len(boxes):
|
367 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
368 |
+
|
369 |
+
if is_batched:
|
370 |
+
if text_pair is not None and len(text) != len(text_pair):
|
371 |
+
raise ValueError(
|
372 |
+
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
|
373 |
+
f" {len(text_pair)}."
|
374 |
+
)
|
375 |
+
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
|
376 |
+
is_pair = bool(text_pair is not None)
|
377 |
+
return self.batch_encode_plus(
|
378 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
379 |
+
is_pair=is_pair,
|
380 |
+
boxes=boxes,
|
381 |
+
word_labels=word_labels,
|
382 |
+
add_special_tokens=add_special_tokens,
|
383 |
+
padding=padding,
|
384 |
+
truncation=truncation,
|
385 |
+
max_length=max_length,
|
386 |
+
stride=stride,
|
387 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
388 |
+
return_tensors=return_tensors,
|
389 |
+
return_token_type_ids=return_token_type_ids,
|
390 |
+
return_attention_mask=return_attention_mask,
|
391 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
392 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
393 |
+
return_offsets_mapping=return_offsets_mapping,
|
394 |
+
return_length=return_length,
|
395 |
+
verbose=verbose,
|
396 |
+
**kwargs,
|
397 |
+
)
|
398 |
+
else:
|
399 |
+
return self.encode_plus(
|
400 |
+
text=text,
|
401 |
+
text_pair=text_pair,
|
402 |
+
boxes=boxes,
|
403 |
+
word_labels=word_labels,
|
404 |
+
add_special_tokens=add_special_tokens,
|
405 |
+
padding=padding,
|
406 |
+
truncation=truncation,
|
407 |
+
max_length=max_length,
|
408 |
+
stride=stride,
|
409 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
410 |
+
return_tensors=return_tensors,
|
411 |
+
return_token_type_ids=return_token_type_ids,
|
412 |
+
return_attention_mask=return_attention_mask,
|
413 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
414 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
415 |
+
return_offsets_mapping=return_offsets_mapping,
|
416 |
+
return_length=return_length,
|
417 |
+
verbose=verbose,
|
418 |
+
**kwargs,
|
419 |
+
)
|
420 |
+
|
421 |
+
def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
|
422 |
+
batched_input = [(text, pair)] if pair else [text]
|
423 |
+
encodings = self._tokenizer.encode_batch(
|
424 |
+
batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs
|
425 |
+
)
|
426 |
+
|
427 |
+
return encodings[0].tokens
|
428 |
+
|
429 |
+
def _batch_encode_plus(
|
430 |
+
self,
|
431 |
+
batch_text_or_text_pairs: Union[
|
432 |
+
List[TextInput],
|
433 |
+
List[TextInputPair],
|
434 |
+
List[PreTokenizedInput],
|
435 |
+
],
|
436 |
+
is_pair: bool = None,
|
437 |
+
boxes: Optional[List[List[List[int]]]] = None,
|
438 |
+
word_labels: Optional[List[List[int]]] = None,
|
439 |
+
add_special_tokens: bool = True,
|
440 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
441 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
442 |
+
max_length: Optional[int] = None,
|
443 |
+
stride: int = 0,
|
444 |
+
pad_to_multiple_of: Optional[int] = None,
|
445 |
+
return_tensors: Optional[str] = None,
|
446 |
+
return_token_type_ids: Optional[bool] = None,
|
447 |
+
return_attention_mask: Optional[bool] = None,
|
448 |
+
return_overflowing_tokens: bool = False,
|
449 |
+
return_special_tokens_mask: bool = False,
|
450 |
+
return_offsets_mapping: bool = False,
|
451 |
+
return_length: bool = False,
|
452 |
+
verbose: bool = True,
|
453 |
+
**kwargs,
|
454 |
+
) -> BatchEncoding:
|
455 |
+
if not isinstance(batch_text_or_text_pairs, list):
|
456 |
+
raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})")
|
457 |
+
|
458 |
+
# Set the truncation and padding strategy and restore the initial configuration
|
459 |
+
self.set_truncation_and_padding(
|
460 |
+
padding_strategy=padding_strategy,
|
461 |
+
truncation_strategy=truncation_strategy,
|
462 |
+
max_length=max_length,
|
463 |
+
stride=stride,
|
464 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
465 |
+
)
|
466 |
+
|
467 |
+
if is_pair:
|
468 |
+
batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs]
|
469 |
+
|
470 |
+
encodings = self._tokenizer.encode_batch(
|
471 |
+
batch_text_or_text_pairs,
|
472 |
+
add_special_tokens=add_special_tokens,
|
473 |
+
is_pretokenized=True, # we set this to True as LayoutLMv2 always expects pretokenized inputs
|
474 |
+
)
|
475 |
+
|
476 |
+
# Convert encoding to dict
|
477 |
+
# `Tokens` has type: Tuple[
|
478 |
+
# List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
|
479 |
+
# List[EncodingFast]
|
480 |
+
# ]
|
481 |
+
# with nested dimensions corresponding to batch, overflows, sequence length
|
482 |
+
tokens_and_encodings = [
|
483 |
+
self._convert_encoding(
|
484 |
+
encoding=encoding,
|
485 |
+
return_token_type_ids=return_token_type_ids,
|
486 |
+
return_attention_mask=return_attention_mask,
|
487 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
488 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
489 |
+
return_offsets_mapping=True
|
490 |
+
if word_labels is not None
|
491 |
+
else return_offsets_mapping, # we use offsets to create the labels
|
492 |
+
return_length=return_length,
|
493 |
+
verbose=verbose,
|
494 |
+
)
|
495 |
+
for encoding in encodings
|
496 |
+
]
|
497 |
+
|
498 |
+
# Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
|
499 |
+
# From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
|
500 |
+
# (we say ~ because the number of overflow varies with the example in the batch)
|
501 |
+
#
|
502 |
+
# To match each overflowing sample with the original sample in the batch
|
503 |
+
# we add an overflow_to_sample_mapping array (see below)
|
504 |
+
sanitized_tokens = {}
|
505 |
+
for key in tokens_and_encodings[0][0].keys():
|
506 |
+
stack = [e for item, _ in tokens_and_encodings for e in item[key]]
|
507 |
+
sanitized_tokens[key] = stack
|
508 |
+
sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]
|
509 |
+
|
510 |
+
# If returning overflowing tokens, we need to return a mapping
|
511 |
+
# from the batch idx to the original sample
|
512 |
+
if return_overflowing_tokens:
|
513 |
+
overflow_to_sample_mapping = []
|
514 |
+
for i, (toks, _) in enumerate(tokens_and_encodings):
|
515 |
+
overflow_to_sample_mapping += [i] * len(toks["input_ids"])
|
516 |
+
sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping
|
517 |
+
|
518 |
+
for input_ids in sanitized_tokens["input_ids"]:
|
519 |
+
self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
|
520 |
+
|
521 |
+
# create the token boxes
|
522 |
+
token_boxes = []
|
523 |
+
for batch_index in range(len(sanitized_tokens["input_ids"])):
|
524 |
+
if return_overflowing_tokens:
|
525 |
+
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
|
526 |
+
else:
|
527 |
+
original_index = batch_index
|
528 |
+
token_boxes_example = []
|
529 |
+
for id, sequence_id, word_id in zip(
|
530 |
+
sanitized_tokens["input_ids"][batch_index],
|
531 |
+
sanitized_encodings[batch_index].sequence_ids,
|
532 |
+
sanitized_encodings[batch_index].word_ids,
|
533 |
+
):
|
534 |
+
if word_id is not None:
|
535 |
+
if is_pair and sequence_id == 0:
|
536 |
+
token_boxes_example.append(self.pad_token_box)
|
537 |
+
else:
|
538 |
+
token_boxes_example.append(boxes[original_index][word_id])
|
539 |
+
else:
|
540 |
+
if id == self.cls_token_id:
|
541 |
+
token_boxes_example.append(self.cls_token_box)
|
542 |
+
elif id == self.sep_token_id:
|
543 |
+
token_boxes_example.append(self.sep_token_box)
|
544 |
+
elif id == self.pad_token_id:
|
545 |
+
token_boxes_example.append(self.pad_token_box)
|
546 |
+
else:
|
547 |
+
raise ValueError("Id not recognized")
|
548 |
+
token_boxes.append(token_boxes_example)
|
549 |
+
|
550 |
+
sanitized_tokens["bbox"] = token_boxes
|
551 |
+
|
552 |
+
# optionally, create the labels
|
553 |
+
if word_labels is not None:
|
554 |
+
labels = []
|
555 |
+
for batch_index in range(len(sanitized_tokens["input_ids"])):
|
556 |
+
if return_overflowing_tokens:
|
557 |
+
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
|
558 |
+
else:
|
559 |
+
original_index = batch_index
|
560 |
+
labels_example = []
|
561 |
+
for id, offset, word_id in zip(
|
562 |
+
sanitized_tokens["input_ids"][batch_index],
|
563 |
+
sanitized_tokens["offset_mapping"][batch_index],
|
564 |
+
sanitized_encodings[batch_index].word_ids,
|
565 |
+
):
|
566 |
+
if word_id is not None:
|
567 |
+
if self.only_label_first_subword:
|
568 |
+
if offset[0] == 0:
|
569 |
+
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
|
570 |
+
labels_example.append(word_labels[original_index][word_id])
|
571 |
+
else:
|
572 |
+
labels_example.append(self.pad_token_label)
|
573 |
+
else:
|
574 |
+
labels_example.append(word_labels[original_index][word_id])
|
575 |
+
else:
|
576 |
+
labels_example.append(self.pad_token_label)
|
577 |
+
labels.append(labels_example)
|
578 |
+
|
579 |
+
sanitized_tokens["labels"] = labels
|
580 |
+
# finally, remove offsets if the user didn't want them
|
581 |
+
if not return_offsets_mapping:
|
582 |
+
del sanitized_tokens["offset_mapping"]
|
583 |
+
|
584 |
+
return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)
|
585 |
+
|
586 |
+
def _encode_plus(
|
587 |
+
self,
|
588 |
+
text: Union[TextInput, PreTokenizedInput],
|
589 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
590 |
+
boxes: Optional[List[List[int]]] = None,
|
591 |
+
word_labels: Optional[List[int]] = None,
|
592 |
+
add_special_tokens: bool = True,
|
593 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
594 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
595 |
+
max_length: Optional[int] = None,
|
596 |
+
stride: int = 0,
|
597 |
+
pad_to_multiple_of: Optional[int] = None,
|
598 |
+
return_tensors: Optional[bool] = None,
|
599 |
+
return_token_type_ids: Optional[bool] = None,
|
600 |
+
return_attention_mask: Optional[bool] = None,
|
601 |
+
return_overflowing_tokens: bool = False,
|
602 |
+
return_special_tokens_mask: bool = False,
|
603 |
+
return_offsets_mapping: bool = False,
|
604 |
+
return_length: bool = False,
|
605 |
+
verbose: bool = True,
|
606 |
+
**kwargs,
|
607 |
+
) -> BatchEncoding:
|
608 |
+
# make it a batched input
|
609 |
+
# 2 options:
|
610 |
+
# 1) only text, in case text must be a list of str
|
611 |
+
# 2) text + text_pair, in which case text = str and text_pair a list of str
|
612 |
+
batched_input = [(text, text_pair)] if text_pair else [text]
|
613 |
+
batched_boxes = [boxes]
|
614 |
+
batched_word_labels = [word_labels] if word_labels is not None else None
|
615 |
+
batched_output = self._batch_encode_plus(
|
616 |
+
batched_input,
|
617 |
+
is_pair=bool(text_pair is not None),
|
618 |
+
boxes=batched_boxes,
|
619 |
+
word_labels=batched_word_labels,
|
620 |
+
add_special_tokens=add_special_tokens,
|
621 |
+
padding_strategy=padding_strategy,
|
622 |
+
truncation_strategy=truncation_strategy,
|
623 |
+
max_length=max_length,
|
624 |
+
stride=stride,
|
625 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
626 |
+
return_tensors=return_tensors,
|
627 |
+
return_token_type_ids=return_token_type_ids,
|
628 |
+
return_attention_mask=return_attention_mask,
|
629 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
630 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
631 |
+
return_offsets_mapping=return_offsets_mapping,
|
632 |
+
return_length=return_length,
|
633 |
+
verbose=verbose,
|
634 |
+
**kwargs,
|
635 |
+
)
|
636 |
+
|
637 |
+
# Return tensor is None, then we can remove the leading batch axis
|
638 |
+
# Overflowing tokens are returned as a batch of output so we keep them in this case
|
639 |
+
if return_tensors is None and not return_overflowing_tokens:
|
640 |
+
batched_output = BatchEncoding(
|
641 |
+
{
|
642 |
+
key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
|
643 |
+
for key, value in batched_output.items()
|
644 |
+
},
|
645 |
+
batched_output.encodings,
|
646 |
+
)
|
647 |
+
|
648 |
+
self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)
|
649 |
+
|
650 |
+
return batched_output
|
651 |
+
|
652 |
+
def _pad(
|
653 |
+
self,
|
654 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
655 |
+
max_length: Optional[int] = None,
|
656 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
657 |
+
pad_to_multiple_of: Optional[int] = None,
|
658 |
+
return_attention_mask: Optional[bool] = None,
|
659 |
+
) -> dict:
|
660 |
+
"""
|
661 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
662 |
+
|
663 |
+
Args:
|
664 |
+
encoded_inputs:
|
665 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
666 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
667 |
+
Will truncate by taking into account the special tokens.
|
668 |
+
padding_strategy: PaddingStrategy to use for padding.
|
669 |
+
|
670 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
671 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
672 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
673 |
+
The tokenizer padding sides are defined in self.padding_side:
|
674 |
+
|
675 |
+
- 'left': pads on the left of the sequences
|
676 |
+
- 'right': pads on the right of the sequences
|
677 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
678 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
679 |
+
`>= 7.5` (Volta).
|
680 |
+
return_attention_mask:
|
681 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
682 |
+
"""
|
683 |
+
# Load from model defaults
|
684 |
+
if return_attention_mask is None:
|
685 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
686 |
+
|
687 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
688 |
+
|
689 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
690 |
+
max_length = len(required_input)
|
691 |
+
|
692 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
693 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
694 |
+
|
695 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
696 |
+
|
697 |
+
# Initialize attention mask if not present.
|
698 |
+
if return_attention_mask and "attention_mask" not in encoded_inputs:
|
699 |
+
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
700 |
+
|
701 |
+
if needs_to_be_padded:
|
702 |
+
difference = max_length - len(required_input)
|
703 |
+
if self.padding_side == "right":
|
704 |
+
if return_attention_mask:
|
705 |
+
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
|
706 |
+
if "token_type_ids" in encoded_inputs:
|
707 |
+
encoded_inputs["token_type_ids"] = (
|
708 |
+
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
709 |
+
)
|
710 |
+
if "bbox" in encoded_inputs:
|
711 |
+
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
|
712 |
+
if "labels" in encoded_inputs:
|
713 |
+
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
|
714 |
+
if "special_tokens_mask" in encoded_inputs:
|
715 |
+
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
716 |
+
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
717 |
+
elif self.padding_side == "left":
|
718 |
+
if return_attention_mask:
|
719 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
720 |
+
if "token_type_ids" in encoded_inputs:
|
721 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
722 |
+
"token_type_ids"
|
723 |
+
]
|
724 |
+
if "bbox" in encoded_inputs:
|
725 |
+
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
|
726 |
+
if "labels" in encoded_inputs:
|
727 |
+
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
|
728 |
+
if "special_tokens_mask" in encoded_inputs:
|
729 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
730 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
731 |
+
else:
|
732 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
733 |
+
|
734 |
+
return encoded_inputs
|
735 |
+
|
736 |
+
def build_inputs_with_special_tokens(
|
737 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
738 |
+
) -> List[int]:
|
739 |
+
"""
|
740 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
741 |
+
adding special tokens. An XLM-RoBERTa sequence has the following format:
|
742 |
+
|
743 |
+
- single sequence: `<s> X </s>`
|
744 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
745 |
+
|
746 |
+
Args:
|
747 |
+
token_ids_0 (`List[int]`):
|
748 |
+
List of IDs to which the special tokens will be added.
|
749 |
+
token_ids_1 (`List[int]`, *optional*):
|
750 |
+
Optional second list of IDs for sequence pairs.
|
751 |
+
|
752 |
+
Returns:
|
753 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
754 |
+
"""
|
755 |
+
|
756 |
+
if token_ids_1 is None:
|
757 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
758 |
+
cls = [self.cls_token_id]
|
759 |
+
sep = [self.sep_token_id]
|
760 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
761 |
+
|
762 |
+
def create_token_type_ids_from_sequences(
|
763 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
764 |
+
) -> List[int]:
|
765 |
+
"""
|
766 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
|
767 |
+
not make use of token type ids, therefore a list of zeros is returned.
|
768 |
+
|
769 |
+
Args:
|
770 |
+
token_ids_0 (`List[int]`):
|
771 |
+
List of IDs.
|
772 |
+
token_ids_1 (`List[int]`, *optional*):
|
773 |
+
Optional second list of IDs for sequence pairs.
|
774 |
+
|
775 |
+
Returns:
|
776 |
+
`List[int]`: List of zeros.
|
777 |
+
|
778 |
+
"""
|
779 |
+
|
780 |
+
sep = [self.sep_token_id]
|
781 |
+
cls = [self.cls_token_id]
|
782 |
+
|
783 |
+
if token_ids_1 is None:
|
784 |
+
return len(cls + token_ids_0 + sep) * [0]
|
785 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
786 |
+
|
787 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
788 |
+
if not self.can_save_slow_tokenizer:
|
789 |
+
raise ValueError(
|
790 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
791 |
+
"tokenizer."
|
792 |
+
)
|
793 |
+
|
794 |
+
if not os.path.isdir(save_directory):
|
795 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
|
796 |
+
return
|
797 |
+
out_vocab_file = os.path.join(
|
798 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
799 |
+
)
|
800 |
+
|
801 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
802 |
+
copyfile(self.vocab_file, out_vocab_file)
|
803 |
+
|
804 |
+
return (out_vocab_file,)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__init__.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {"configuration_levit": ["LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LevitConfig", "LevitOnnxConfig"]}
|
20 |
+
|
21 |
+
try:
|
22 |
+
if not is_vision_available():
|
23 |
+
raise OptionalDependencyNotAvailable()
|
24 |
+
except OptionalDependencyNotAvailable:
|
25 |
+
pass
|
26 |
+
else:
|
27 |
+
_import_structure["feature_extraction_levit"] = ["LevitFeatureExtractor"]
|
28 |
+
_import_structure["image_processing_levit"] = ["LevitImageProcessor"]
|
29 |
+
|
30 |
+
try:
|
31 |
+
if not is_torch_available():
|
32 |
+
raise OptionalDependencyNotAvailable()
|
33 |
+
except OptionalDependencyNotAvailable:
|
34 |
+
pass
|
35 |
+
else:
|
36 |
+
_import_structure["modeling_levit"] = [
|
37 |
+
"LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
38 |
+
"LevitForImageClassification",
|
39 |
+
"LevitForImageClassificationWithTeacher",
|
40 |
+
"LevitModel",
|
41 |
+
"LevitPreTrainedModel",
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from .configuration_levit import LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, LevitConfig, LevitOnnxConfig
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_vision_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
from .feature_extraction_levit import LevitFeatureExtractor
|
55 |
+
from .image_processing_levit import LevitImageProcessor
|
56 |
+
|
57 |
+
try:
|
58 |
+
if not is_torch_available():
|
59 |
+
raise OptionalDependencyNotAvailable()
|
60 |
+
except OptionalDependencyNotAvailable:
|
61 |
+
pass
|
62 |
+
else:
|
63 |
+
from .modeling_levit import (
|
64 |
+
LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
65 |
+
LevitForImageClassification,
|
66 |
+
LevitForImageClassificationWithTeacher,
|
67 |
+
LevitModel,
|
68 |
+
LevitPreTrainedModel,
|
69 |
+
)
|
70 |
+
else:
|
71 |
+
import sys
|
72 |
+
|
73 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.28 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__pycache__/configuration_levit.cpython-310.pyc
ADDED
Binary file (5.43 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__pycache__/convert_levit_timm_to_pytorch.cpython-310.pyc
ADDED
Binary file (4.33 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__pycache__/feature_extraction_levit.cpython-310.pyc
ADDED
Binary file (1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__pycache__/image_processing_levit.cpython-310.pyc
ADDED
Binary file (14.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/levit/__pycache__/modeling_levit.cpython-310.pyc
ADDED
Binary file (21.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/levit/configuration_levit.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" LeViT model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from ...configuration_utils import PretrainedConfig
|
23 |
+
from ...onnx import OnnxConfig
|
24 |
+
from ...utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
30 |
+
"facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json",
|
31 |
+
# See all LeViT models at https://huggingface.co/models?filter=levit
|
32 |
+
}
|
33 |
+
|
34 |
+
|
35 |
+
class LevitConfig(PretrainedConfig):
|
36 |
+
r"""
|
37 |
+
This is the configuration class to store the configuration of a [`LevitModel`]. It is used to instantiate a LeViT
|
38 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
39 |
+
defaults will yield a similar configuration to that of the LeViT
|
40 |
+
[facebook/levit-128S](https://huggingface.co/facebook/levit-128S) architecture.
|
41 |
+
|
42 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
43 |
+
documentation from [`PretrainedConfig`] for more information.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
image_size (`int`, *optional*, defaults to 224):
|
47 |
+
The size of the input image.
|
48 |
+
num_channels (`int`, *optional*, defaults to 3):
|
49 |
+
Number of channels in the input image.
|
50 |
+
kernel_size (`int`, *optional*, defaults to 3):
|
51 |
+
The kernel size for the initial convolution layers of patch embedding.
|
52 |
+
stride (`int`, *optional*, defaults to 2):
|
53 |
+
The stride size for the initial convolution layers of patch embedding.
|
54 |
+
padding (`int`, *optional*, defaults to 1):
|
55 |
+
The padding size for the initial convolution layers of patch embedding.
|
56 |
+
patch_size (`int`, *optional*, defaults to 16):
|
57 |
+
The patch size for embeddings.
|
58 |
+
hidden_sizes (`List[int]`, *optional*, defaults to `[128, 256, 384]`):
|
59 |
+
Dimension of each of the encoder blocks.
|
60 |
+
num_attention_heads (`List[int]`, *optional*, defaults to `[4, 8, 12]`):
|
61 |
+
Number of attention heads for each attention layer in each block of the Transformer encoder.
|
62 |
+
depths (`List[int]`, *optional*, defaults to `[4, 4, 4]`):
|
63 |
+
The number of layers in each encoder block.
|
64 |
+
key_dim (`List[int]`, *optional*, defaults to `[16, 16, 16]`):
|
65 |
+
The size of key in each of the encoder blocks.
|
66 |
+
drop_path_rate (`int`, *optional*, defaults to 0):
|
67 |
+
The dropout probability for stochastic depths, used in the blocks of the Transformer encoder.
|
68 |
+
mlp_ratios (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
|
69 |
+
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
|
70 |
+
encoder blocks.
|
71 |
+
attention_ratios (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
|
72 |
+
Ratio of the size of the output dimension compared to input dimension of attention layers.
|
73 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
74 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
75 |
+
|
76 |
+
Example:
|
77 |
+
|
78 |
+
```python
|
79 |
+
>>> from transformers import LevitConfig, LevitModel
|
80 |
+
|
81 |
+
>>> # Initializing a LeViT levit-128S style configuration
|
82 |
+
>>> configuration = LevitConfig()
|
83 |
+
|
84 |
+
>>> # Initializing a model (with random weights) from the levit-128S style configuration
|
85 |
+
>>> model = LevitModel(configuration)
|
86 |
+
|
87 |
+
>>> # Accessing the model configuration
|
88 |
+
>>> configuration = model.config
|
89 |
+
```"""
|
90 |
+
|
91 |
+
model_type = "levit"
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
image_size=224,
|
96 |
+
num_channels=3,
|
97 |
+
kernel_size=3,
|
98 |
+
stride=2,
|
99 |
+
padding=1,
|
100 |
+
patch_size=16,
|
101 |
+
hidden_sizes=[128, 256, 384],
|
102 |
+
num_attention_heads=[4, 8, 12],
|
103 |
+
depths=[4, 4, 4],
|
104 |
+
key_dim=[16, 16, 16],
|
105 |
+
drop_path_rate=0,
|
106 |
+
mlp_ratio=[2, 2, 2],
|
107 |
+
attention_ratio=[2, 2, 2],
|
108 |
+
initializer_range=0.02,
|
109 |
+
**kwargs,
|
110 |
+
):
|
111 |
+
super().__init__(**kwargs)
|
112 |
+
self.image_size = image_size
|
113 |
+
self.num_channels = num_channels
|
114 |
+
self.kernel_size = kernel_size
|
115 |
+
self.stride = stride
|
116 |
+
self.padding = padding
|
117 |
+
self.hidden_sizes = hidden_sizes
|
118 |
+
self.num_attention_heads = num_attention_heads
|
119 |
+
self.depths = depths
|
120 |
+
self.key_dim = key_dim
|
121 |
+
self.drop_path_rate = drop_path_rate
|
122 |
+
self.patch_size = patch_size
|
123 |
+
self.attention_ratio = attention_ratio
|
124 |
+
self.mlp_ratio = mlp_ratio
|
125 |
+
self.initializer_range = initializer_range
|
126 |
+
self.down_ops = [
|
127 |
+
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
|
128 |
+
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
|
129 |
+
]
|
130 |
+
|
131 |
+
|
132 |
+
# Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig
|
133 |
+
class LevitOnnxConfig(OnnxConfig):
|
134 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
135 |
+
|
136 |
+
@property
|
137 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
138 |
+
return OrderedDict(
|
139 |
+
[
|
140 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
141 |
+
]
|
142 |
+
)
|
143 |
+
|
144 |
+
@property
|
145 |
+
def atol_for_validation(self) -> float:
|
146 |
+
return 1e-4
|
env-llmeval/lib/python3.10/site-packages/transformers/models/levit/convert_levit_timm_to_pytorch.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert LeViT checkpoints from timm."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
from collections import OrderedDict
|
21 |
+
from functools import partial
|
22 |
+
from pathlib import Path
|
23 |
+
|
24 |
+
import timm
|
25 |
+
import torch
|
26 |
+
from huggingface_hub import hf_hub_download
|
27 |
+
|
28 |
+
from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
|
32 |
+
logging.set_verbosity_info()
|
33 |
+
logger = logging.get_logger()
|
34 |
+
|
35 |
+
|
36 |
+
def convert_weight_and_push(
|
37 |
+
hidden_sizes: int, name: str, config: LevitConfig, save_directory: Path, push_to_hub: bool = True
|
38 |
+
):
|
39 |
+
print(f"Converting {name}...")
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
if hidden_sizes == 128:
|
43 |
+
if name[-1] == "S":
|
44 |
+
from_model = timm.create_model("levit_128s", pretrained=True)
|
45 |
+
else:
|
46 |
+
from_model = timm.create_model("levit_128", pretrained=True)
|
47 |
+
if hidden_sizes == 192:
|
48 |
+
from_model = timm.create_model("levit_192", pretrained=True)
|
49 |
+
if hidden_sizes == 256:
|
50 |
+
from_model = timm.create_model("levit_256", pretrained=True)
|
51 |
+
if hidden_sizes == 384:
|
52 |
+
from_model = timm.create_model("levit_384", pretrained=True)
|
53 |
+
|
54 |
+
from_model.eval()
|
55 |
+
our_model = LevitForImageClassificationWithTeacher(config).eval()
|
56 |
+
huggingface_weights = OrderedDict()
|
57 |
+
|
58 |
+
weights = from_model.state_dict()
|
59 |
+
og_keys = list(from_model.state_dict().keys())
|
60 |
+
new_keys = list(our_model.state_dict().keys())
|
61 |
+
print(len(og_keys), len(new_keys))
|
62 |
+
for i in range(len(og_keys)):
|
63 |
+
huggingface_weights[new_keys[i]] = weights[og_keys[i]]
|
64 |
+
our_model.load_state_dict(huggingface_weights)
|
65 |
+
|
66 |
+
x = torch.randn((2, 3, 224, 224))
|
67 |
+
out1 = from_model(x)
|
68 |
+
out2 = our_model(x).logits
|
69 |
+
|
70 |
+
assert torch.allclose(out1, out2), "The model logits don't match the original one."
|
71 |
+
|
72 |
+
checkpoint_name = name
|
73 |
+
print(checkpoint_name)
|
74 |
+
|
75 |
+
if push_to_hub:
|
76 |
+
our_model.save_pretrained(save_directory / checkpoint_name)
|
77 |
+
image_processor = LevitImageProcessor()
|
78 |
+
image_processor.save_pretrained(save_directory / checkpoint_name)
|
79 |
+
|
80 |
+
print(f"Pushed {checkpoint_name}")
|
81 |
+
|
82 |
+
|
83 |
+
def convert_weights_and_push(save_directory: Path, model_name: str = None, push_to_hub: bool = True):
|
84 |
+
filename = "imagenet-1k-id2label.json"
|
85 |
+
num_labels = 1000
|
86 |
+
expected_shape = (1, num_labels)
|
87 |
+
|
88 |
+
repo_id = "huggingface/label-files"
|
89 |
+
num_labels = num_labels
|
90 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
91 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
92 |
+
|
93 |
+
id2label = id2label
|
94 |
+
label2id = {v: k for k, v in id2label.items()}
|
95 |
+
|
96 |
+
ImageNetPreTrainedConfig = partial(LevitConfig, num_labels=num_labels, id2label=id2label, label2id=label2id)
|
97 |
+
|
98 |
+
names_to_hidden_sizes = {
|
99 |
+
"levit-128S": 128,
|
100 |
+
"levit-128": 128,
|
101 |
+
"levit-192": 192,
|
102 |
+
"levit-256": 256,
|
103 |
+
"levit-384": 384,
|
104 |
+
}
|
105 |
+
|
106 |
+
names_to_config = {
|
107 |
+
"levit-128S": ImageNetPreTrainedConfig(
|
108 |
+
hidden_sizes=[128, 256, 384],
|
109 |
+
num_attention_heads=[4, 6, 8],
|
110 |
+
depths=[2, 3, 4],
|
111 |
+
key_dim=[16, 16, 16],
|
112 |
+
drop_path_rate=0,
|
113 |
+
),
|
114 |
+
"levit-128": ImageNetPreTrainedConfig(
|
115 |
+
hidden_sizes=[128, 256, 384],
|
116 |
+
num_attention_heads=[4, 8, 12],
|
117 |
+
depths=[4, 4, 4],
|
118 |
+
key_dim=[16, 16, 16],
|
119 |
+
drop_path_rate=0,
|
120 |
+
),
|
121 |
+
"levit-192": ImageNetPreTrainedConfig(
|
122 |
+
hidden_sizes=[192, 288, 384],
|
123 |
+
num_attention_heads=[3, 5, 6],
|
124 |
+
depths=[4, 4, 4],
|
125 |
+
key_dim=[32, 32, 32],
|
126 |
+
drop_path_rate=0,
|
127 |
+
),
|
128 |
+
"levit-256": ImageNetPreTrainedConfig(
|
129 |
+
hidden_sizes=[256, 384, 512],
|
130 |
+
num_attention_heads=[4, 6, 8],
|
131 |
+
depths=[4, 4, 4],
|
132 |
+
key_dim=[32, 32, 32],
|
133 |
+
drop_path_rate=0,
|
134 |
+
),
|
135 |
+
"levit-384": ImageNetPreTrainedConfig(
|
136 |
+
hidden_sizes=[384, 512, 768],
|
137 |
+
num_attention_heads=[6, 9, 12],
|
138 |
+
depths=[4, 4, 4],
|
139 |
+
key_dim=[32, 32, 32],
|
140 |
+
drop_path_rate=0.1,
|
141 |
+
),
|
142 |
+
}
|
143 |
+
|
144 |
+
if model_name:
|
145 |
+
convert_weight_and_push(
|
146 |
+
names_to_hidden_sizes[model_name], model_name, names_to_config[model_name], save_directory, push_to_hub
|
147 |
+
)
|
148 |
+
else:
|
149 |
+
for model_name, config in names_to_config.items():
|
150 |
+
convert_weight_and_push(names_to_hidden_sizes[model_name], model_name, config, save_directory, push_to_hub)
|
151 |
+
return config, expected_shape
|
152 |
+
|
153 |
+
|
154 |
+
if __name__ == "__main__":
|
155 |
+
parser = argparse.ArgumentParser()
|
156 |
+
# Required parameters
|
157 |
+
parser.add_argument(
|
158 |
+
"--model_name",
|
159 |
+
default=None,
|
160 |
+
type=str,
|
161 |
+
help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,",
|
162 |
+
)
|
163 |
+
parser.add_argument(
|
164 |
+
"--pytorch_dump_folder_path",
|
165 |
+
default="levit-dump-folder/",
|
166 |
+
type=Path,
|
167 |
+
required=False,
|
168 |
+
help="Path to the output PyTorch model directory.",
|
169 |
+
)
|
170 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
|
171 |
+
parser.add_argument(
|
172 |
+
"--no-push_to_hub",
|
173 |
+
dest="push_to_hub",
|
174 |
+
action="store_false",
|
175 |
+
help="Do not push model and image processor to the hub",
|
176 |
+
)
|
177 |
+
|
178 |
+
args = parser.parse_args()
|
179 |
+
pytorch_dump_folder_path: Path = args.pytorch_dump_folder_path
|
180 |
+
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
|
181 |
+
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/levit/feature_extraction_levit.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for LeViT."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...utils import logging
|
20 |
+
from .image_processing_levit import LevitImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class LevitFeatureExtractor(LevitImageProcessor):
|
27 |
+
def __init__(self, *args, **kwargs) -> None:
|
28 |
+
warnings.warn(
|
29 |
+
"The class LevitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
|
30 |
+
" use LevitImageProcessor instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
super().__init__(*args, **kwargs)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/levit/image_processing_levit.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for LeViT."""
|
16 |
+
|
17 |
+
from typing import Dict, Iterable, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import (
|
23 |
+
get_resize_output_image_size,
|
24 |
+
resize,
|
25 |
+
to_channel_dimension_format,
|
26 |
+
)
|
27 |
+
from ...image_utils import (
|
28 |
+
IMAGENET_DEFAULT_MEAN,
|
29 |
+
IMAGENET_DEFAULT_STD,
|
30 |
+
ChannelDimension,
|
31 |
+
ImageInput,
|
32 |
+
PILImageResampling,
|
33 |
+
infer_channel_dimension_format,
|
34 |
+
is_scaled_image,
|
35 |
+
make_list_of_images,
|
36 |
+
to_numpy_array,
|
37 |
+
valid_images,
|
38 |
+
validate_kwargs,
|
39 |
+
validate_preprocess_arguments,
|
40 |
+
)
|
41 |
+
from ...utils import TensorType, logging
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
|
47 |
+
class LevitImageProcessor(BaseImageProcessor):
|
48 |
+
r"""
|
49 |
+
Constructs a LeViT image processor.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
53 |
+
Wwhether to resize the shortest edge of the input to int(256/224 *`size`). Can be overridden by the
|
54 |
+
`do_resize` parameter in the `preprocess` method.
|
55 |
+
size (`Dict[str, int]`, *optional*, defaults to `{"shortest_edge": 224}`):
|
56 |
+
Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will
|
57 |
+
be resized to `(size["height"], size["width"])`. If size is a dict with key "shortest_edge", the shortest
|
58 |
+
edge value `c` is rescaled to `int(c * (256/224))`. The smaller edge of the image will be matched to this
|
59 |
+
value i.e, if height > width, then image will be rescaled to `(size["shortest_egde"] * height / width,
|
60 |
+
size["shortest_egde"])`. Can be overridden by the `size` parameter in the `preprocess` method.
|
61 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
62 |
+
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
|
63 |
+
`preprocess` method.
|
64 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not to center crop the input to `(crop_size["height"], crop_size["width"])`. Can be overridden
|
66 |
+
by the `do_center_crop` parameter in the `preprocess` method.
|
67 |
+
crop_size (`Dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
|
68 |
+
Desired image size after `center_crop`. Can be overridden by the `crop_size` parameter in the `preprocess`
|
69 |
+
method.
|
70 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
71 |
+
Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
|
72 |
+
`do_rescale` parameter in the `preprocess` method.
|
73 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
74 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
75 |
+
`preprocess` method.
|
76 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
77 |
+
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
|
78 |
+
`preprocess` method.
|
79 |
+
image_mean (`List[int]`, *optional*, defaults to `[0.485, 0.456, 0.406]`):
|
80 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
81 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
82 |
+
image_std (`List[int]`, *optional*, defaults to `[0.229, 0.224, 0.225]`):
|
83 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
84 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
85 |
+
"""
|
86 |
+
|
87 |
+
model_input_names = ["pixel_values"]
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
do_resize: bool = True,
|
92 |
+
size: Dict[str, int] = None,
|
93 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
94 |
+
do_center_crop: bool = True,
|
95 |
+
crop_size: Dict[str, int] = None,
|
96 |
+
do_rescale: bool = True,
|
97 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
98 |
+
do_normalize: bool = True,
|
99 |
+
image_mean: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN,
|
100 |
+
image_std: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD,
|
101 |
+
**kwargs,
|
102 |
+
) -> None:
|
103 |
+
super().__init__(**kwargs)
|
104 |
+
size = size if size is not None else {"shortest_edge": 224}
|
105 |
+
size = get_size_dict(size, default_to_square=False)
|
106 |
+
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
107 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
108 |
+
|
109 |
+
self.do_resize = do_resize
|
110 |
+
self.size = size
|
111 |
+
self.resample = resample
|
112 |
+
self.do_center_crop = do_center_crop
|
113 |
+
self.crop_size = crop_size
|
114 |
+
self.do_rescale = do_rescale
|
115 |
+
self.rescale_factor = rescale_factor
|
116 |
+
self.do_normalize = do_normalize
|
117 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
118 |
+
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
119 |
+
self._valid_processor_keys = [
|
120 |
+
"images",
|
121 |
+
"do_resize",
|
122 |
+
"size",
|
123 |
+
"resample",
|
124 |
+
"do_center_crop",
|
125 |
+
"crop_size",
|
126 |
+
"do_rescale",
|
127 |
+
"rescale_factor",
|
128 |
+
"do_normalize",
|
129 |
+
"image_mean",
|
130 |
+
"image_std",
|
131 |
+
"return_tensors",
|
132 |
+
"data_format",
|
133 |
+
"input_data_format",
|
134 |
+
]
|
135 |
+
|
136 |
+
def resize(
|
137 |
+
self,
|
138 |
+
image: np.ndarray,
|
139 |
+
size: Dict[str, int],
|
140 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
141 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
142 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
143 |
+
**kwargs,
|
144 |
+
) -> np.ndarray:
|
145 |
+
"""
|
146 |
+
Resize an image.
|
147 |
+
|
148 |
+
If size is a dict with keys "width" and "height", the image will be resized to `(size["height"],
|
149 |
+
size["width"])`.
|
150 |
+
|
151 |
+
If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to `int(c * (256/224))`.
|
152 |
+
The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled
|
153 |
+
to `(size["shortest_egde"] * height / width, size["shortest_egde"])`.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
image (`np.ndarray`):
|
157 |
+
Image to resize.
|
158 |
+
size (`Dict[str, int]`):
|
159 |
+
Size of the output image after resizing. If size is a dict with keys "width" and "height", the image
|
160 |
+
will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value
|
161 |
+
`c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value
|
162 |
+
i.e, if height > width, then image will be rescaled to (size * height / width, size).
|
163 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
164 |
+
Resampling filter to use when resiizing the image.
|
165 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
166 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
167 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
168 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
169 |
+
"""
|
170 |
+
size_dict = get_size_dict(size, default_to_square=False)
|
171 |
+
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
|
172 |
+
if "shortest_edge" in size:
|
173 |
+
shortest_edge = int((256 / 224) * size["shortest_edge"])
|
174 |
+
output_size = get_resize_output_image_size(
|
175 |
+
image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format
|
176 |
+
)
|
177 |
+
size_dict = {"height": output_size[0], "width": output_size[1]}
|
178 |
+
if "height" not in size_dict or "width" not in size_dict:
|
179 |
+
raise ValueError(
|
180 |
+
f"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}"
|
181 |
+
)
|
182 |
+
return resize(
|
183 |
+
image,
|
184 |
+
size=(size_dict["height"], size_dict["width"]),
|
185 |
+
resample=resample,
|
186 |
+
data_format=data_format,
|
187 |
+
input_data_format=input_data_format,
|
188 |
+
**kwargs,
|
189 |
+
)
|
190 |
+
|
191 |
+
def preprocess(
|
192 |
+
self,
|
193 |
+
images: ImageInput,
|
194 |
+
do_resize: Optional[bool] = None,
|
195 |
+
size: Optional[Dict[str, int]] = None,
|
196 |
+
resample: PILImageResampling = None,
|
197 |
+
do_center_crop: Optional[bool] = None,
|
198 |
+
crop_size: Optional[Dict[str, int]] = None,
|
199 |
+
do_rescale: Optional[bool] = None,
|
200 |
+
rescale_factor: Optional[float] = None,
|
201 |
+
do_normalize: Optional[bool] = None,
|
202 |
+
image_mean: Optional[Union[float, Iterable[float]]] = None,
|
203 |
+
image_std: Optional[Union[float, Iterable[float]]] = None,
|
204 |
+
return_tensors: Optional[TensorType] = None,
|
205 |
+
data_format: ChannelDimension = ChannelDimension.FIRST,
|
206 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
207 |
+
**kwargs,
|
208 |
+
) -> BatchFeature:
|
209 |
+
"""
|
210 |
+
Preprocess an image or batch of images to be used as input to a LeViT model.
|
211 |
+
|
212 |
+
Args:
|
213 |
+
images (`ImageInput`):
|
214 |
+
Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
|
215 |
+
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
216 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
217 |
+
Whether to resize the image.
|
218 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
219 |
+
Size of the output image after resizing. If size is a dict with keys "width" and "height", the image
|
220 |
+
will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value
|
221 |
+
`c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value
|
222 |
+
i.e, if height > width, then image will be rescaled to (size * height / width, size).
|
223 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
224 |
+
Resampling filter to use when resiizing the image.
|
225 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
226 |
+
Whether to center crop the image.
|
227 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
228 |
+
Size of the output image after center cropping. Crops images to (crop_size["height"],
|
229 |
+
crop_size["width"]).
|
230 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
231 |
+
Whether to rescale the image pixel values by `rescaling_factor` - typical to values between 0 and 1.
|
232 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
233 |
+
Factor to rescale the image pixel values by.
|
234 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
235 |
+
Whether to normalize the image pixel values by `image_mean` and `image_std`.
|
236 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
237 |
+
Mean to normalize the image pixel values by.
|
238 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
239 |
+
Standard deviation to normalize the image pixel values by.
|
240 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
241 |
+
The type of tensors to return. Can be one of:
|
242 |
+
- Unset: Return a list of `np.ndarray`.
|
243 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
244 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
245 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
246 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
247 |
+
data_format (`str` or `ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
248 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
249 |
+
image is used. Can be one of:
|
250 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
251 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
252 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
253 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
254 |
+
from the input image. Can be one of:
|
255 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
256 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
257 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
258 |
+
"""
|
259 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
260 |
+
resample = resample if resample is not None else self.resample
|
261 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
262 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
263 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
264 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
265 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
266 |
+
image_std = image_std if image_std is not None else self.image_std
|
267 |
+
|
268 |
+
size = size if size is not None else self.size
|
269 |
+
size = get_size_dict(size, default_to_square=False)
|
270 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
271 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
272 |
+
images = make_list_of_images(images)
|
273 |
+
|
274 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
275 |
+
|
276 |
+
if not valid_images(images):
|
277 |
+
raise ValueError(
|
278 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
279 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
280 |
+
)
|
281 |
+
validate_preprocess_arguments(
|
282 |
+
do_rescale=do_rescale,
|
283 |
+
rescale_factor=rescale_factor,
|
284 |
+
do_normalize=do_normalize,
|
285 |
+
image_mean=image_mean,
|
286 |
+
image_std=image_std,
|
287 |
+
do_center_crop=do_center_crop,
|
288 |
+
crop_size=crop_size,
|
289 |
+
do_resize=do_resize,
|
290 |
+
size=size,
|
291 |
+
resample=resample,
|
292 |
+
)
|
293 |
+
# All transformations expect numpy arrays.
|
294 |
+
images = [to_numpy_array(image) for image in images]
|
295 |
+
|
296 |
+
if is_scaled_image(images[0]) and do_rescale:
|
297 |
+
logger.warning_once(
|
298 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
299 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
300 |
+
)
|
301 |
+
|
302 |
+
if input_data_format is None:
|
303 |
+
# We assume that all images have the same channel dimension format.
|
304 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
305 |
+
|
306 |
+
if do_resize:
|
307 |
+
images = [self.resize(image, size, resample, input_data_format=input_data_format) for image in images]
|
308 |
+
|
309 |
+
if do_center_crop:
|
310 |
+
images = [self.center_crop(image, crop_size, input_data_format=input_data_format) for image in images]
|
311 |
+
|
312 |
+
if do_rescale:
|
313 |
+
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
|
314 |
+
|
315 |
+
if do_normalize:
|
316 |
+
images = [
|
317 |
+
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
|
318 |
+
]
|
319 |
+
|
320 |
+
images = [
|
321 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
322 |
+
]
|
323 |
+
|
324 |
+
data = {"pixel_values": images}
|
325 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/levit/modeling_levit.py
ADDED
@@ -0,0 +1,739 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch LeViT model."""
|
16 |
+
|
17 |
+
import itertools
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BaseModelOutputWithNoAttention,
|
28 |
+
BaseModelOutputWithPoolingAndNoAttention,
|
29 |
+
ImageClassifierOutputWithNoAttention,
|
30 |
+
ModelOutput,
|
31 |
+
)
|
32 |
+
from ...modeling_utils import PreTrainedModel
|
33 |
+
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
34 |
+
from .configuration_levit import LevitConfig
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
# General docstring
|
40 |
+
_CONFIG_FOR_DOC = "LevitConfig"
|
41 |
+
|
42 |
+
# Base docstring
|
43 |
+
_CHECKPOINT_FOR_DOC = "facebook/levit-128S"
|
44 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 16, 384]
|
45 |
+
|
46 |
+
# Image classification docstring
|
47 |
+
_IMAGE_CLASS_CHECKPOINT = "facebook/levit-128S"
|
48 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
49 |
+
|
50 |
+
LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
51 |
+
"facebook/levit-128S",
|
52 |
+
# See all LeViT models at https://huggingface.co/models?filter=levit
|
53 |
+
]
|
54 |
+
|
55 |
+
|
56 |
+
@dataclass
|
57 |
+
class LevitForImageClassificationWithTeacherOutput(ModelOutput):
|
58 |
+
"""
|
59 |
+
Output type of [`LevitForImageClassificationWithTeacher`].
|
60 |
+
|
61 |
+
Args:
|
62 |
+
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
63 |
+
Prediction scores as the average of the `cls_logits` and `distillation_logits`.
|
64 |
+
cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
65 |
+
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
|
66 |
+
class token).
|
67 |
+
distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
68 |
+
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
|
69 |
+
distillation token).
|
70 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
71 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
72 |
+
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
|
73 |
+
plus the initial embedding outputs.
|
74 |
+
"""
|
75 |
+
|
76 |
+
logits: torch.FloatTensor = None
|
77 |
+
cls_logits: torch.FloatTensor = None
|
78 |
+
distillation_logits: torch.FloatTensor = None
|
79 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
80 |
+
|
81 |
+
|
82 |
+
class LevitConvEmbeddings(nn.Module):
|
83 |
+
"""
|
84 |
+
LeViT Conv Embeddings with Batch Norm, used in the initial patch embedding layer.
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, groups=1, bn_weight_init=1
|
89 |
+
):
|
90 |
+
super().__init__()
|
91 |
+
self.convolution = nn.Conv2d(
|
92 |
+
in_channels, out_channels, kernel_size, stride, padding, dilation=dilation, groups=groups, bias=False
|
93 |
+
)
|
94 |
+
self.batch_norm = nn.BatchNorm2d(out_channels)
|
95 |
+
|
96 |
+
def forward(self, embeddings):
|
97 |
+
embeddings = self.convolution(embeddings)
|
98 |
+
embeddings = self.batch_norm(embeddings)
|
99 |
+
return embeddings
|
100 |
+
|
101 |
+
|
102 |
+
class LevitPatchEmbeddings(nn.Module):
|
103 |
+
"""
|
104 |
+
LeViT patch embeddings, for final embeddings to be passed to transformer blocks. It consists of multiple
|
105 |
+
`LevitConvEmbeddings`.
|
106 |
+
"""
|
107 |
+
|
108 |
+
def __init__(self, config):
|
109 |
+
super().__init__()
|
110 |
+
self.embedding_layer_1 = LevitConvEmbeddings(
|
111 |
+
config.num_channels, config.hidden_sizes[0] // 8, config.kernel_size, config.stride, config.padding
|
112 |
+
)
|
113 |
+
self.activation_layer_1 = nn.Hardswish()
|
114 |
+
|
115 |
+
self.embedding_layer_2 = LevitConvEmbeddings(
|
116 |
+
config.hidden_sizes[0] // 8, config.hidden_sizes[0] // 4, config.kernel_size, config.stride, config.padding
|
117 |
+
)
|
118 |
+
self.activation_layer_2 = nn.Hardswish()
|
119 |
+
|
120 |
+
self.embedding_layer_3 = LevitConvEmbeddings(
|
121 |
+
config.hidden_sizes[0] // 4, config.hidden_sizes[0] // 2, config.kernel_size, config.stride, config.padding
|
122 |
+
)
|
123 |
+
self.activation_layer_3 = nn.Hardswish()
|
124 |
+
|
125 |
+
self.embedding_layer_4 = LevitConvEmbeddings(
|
126 |
+
config.hidden_sizes[0] // 2, config.hidden_sizes[0], config.kernel_size, config.stride, config.padding
|
127 |
+
)
|
128 |
+
self.num_channels = config.num_channels
|
129 |
+
|
130 |
+
def forward(self, pixel_values):
|
131 |
+
num_channels = pixel_values.shape[1]
|
132 |
+
if num_channels != self.num_channels:
|
133 |
+
raise ValueError(
|
134 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
135 |
+
)
|
136 |
+
embeddings = self.embedding_layer_1(pixel_values)
|
137 |
+
embeddings = self.activation_layer_1(embeddings)
|
138 |
+
embeddings = self.embedding_layer_2(embeddings)
|
139 |
+
embeddings = self.activation_layer_2(embeddings)
|
140 |
+
embeddings = self.embedding_layer_3(embeddings)
|
141 |
+
embeddings = self.activation_layer_3(embeddings)
|
142 |
+
embeddings = self.embedding_layer_4(embeddings)
|
143 |
+
return embeddings.flatten(2).transpose(1, 2)
|
144 |
+
|
145 |
+
|
146 |
+
class MLPLayerWithBN(nn.Module):
|
147 |
+
def __init__(self, input_dim, output_dim, bn_weight_init=1):
|
148 |
+
super().__init__()
|
149 |
+
self.linear = nn.Linear(in_features=input_dim, out_features=output_dim, bias=False)
|
150 |
+
self.batch_norm = nn.BatchNorm1d(output_dim)
|
151 |
+
|
152 |
+
def forward(self, hidden_state):
|
153 |
+
hidden_state = self.linear(hidden_state)
|
154 |
+
hidden_state = self.batch_norm(hidden_state.flatten(0, 1)).reshape_as(hidden_state)
|
155 |
+
return hidden_state
|
156 |
+
|
157 |
+
|
158 |
+
class LevitSubsample(nn.Module):
|
159 |
+
def __init__(self, stride, resolution):
|
160 |
+
super().__init__()
|
161 |
+
self.stride = stride
|
162 |
+
self.resolution = resolution
|
163 |
+
|
164 |
+
def forward(self, hidden_state):
|
165 |
+
batch_size, _, channels = hidden_state.shape
|
166 |
+
hidden_state = hidden_state.view(batch_size, self.resolution, self.resolution, channels)[
|
167 |
+
:, :: self.stride, :: self.stride
|
168 |
+
].reshape(batch_size, -1, channels)
|
169 |
+
return hidden_state
|
170 |
+
|
171 |
+
|
172 |
+
class LevitAttention(nn.Module):
|
173 |
+
def __init__(self, hidden_sizes, key_dim, num_attention_heads, attention_ratio, resolution):
|
174 |
+
super().__init__()
|
175 |
+
self.num_attention_heads = num_attention_heads
|
176 |
+
self.scale = key_dim**-0.5
|
177 |
+
self.key_dim = key_dim
|
178 |
+
self.attention_ratio = attention_ratio
|
179 |
+
self.out_dim_keys_values = attention_ratio * key_dim * num_attention_heads + key_dim * num_attention_heads * 2
|
180 |
+
self.out_dim_projection = attention_ratio * key_dim * num_attention_heads
|
181 |
+
|
182 |
+
self.queries_keys_values = MLPLayerWithBN(hidden_sizes, self.out_dim_keys_values)
|
183 |
+
self.activation = nn.Hardswish()
|
184 |
+
self.projection = MLPLayerWithBN(self.out_dim_projection, hidden_sizes, bn_weight_init=0)
|
185 |
+
|
186 |
+
points = list(itertools.product(range(resolution), range(resolution)))
|
187 |
+
len_points = len(points)
|
188 |
+
attention_offsets, indices = {}, []
|
189 |
+
for p1 in points:
|
190 |
+
for p2 in points:
|
191 |
+
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
|
192 |
+
if offset not in attention_offsets:
|
193 |
+
attention_offsets[offset] = len(attention_offsets)
|
194 |
+
indices.append(attention_offsets[offset])
|
195 |
+
|
196 |
+
self.attention_bias_cache = {}
|
197 |
+
self.attention_biases = torch.nn.Parameter(torch.zeros(num_attention_heads, len(attention_offsets)))
|
198 |
+
self.register_buffer(
|
199 |
+
"attention_bias_idxs", torch.LongTensor(indices).view(len_points, len_points), persistent=False
|
200 |
+
)
|
201 |
+
|
202 |
+
@torch.no_grad()
|
203 |
+
def train(self, mode=True):
|
204 |
+
super().train(mode)
|
205 |
+
if mode and self.attention_bias_cache:
|
206 |
+
self.attention_bias_cache = {} # clear ab cache
|
207 |
+
|
208 |
+
def get_attention_biases(self, device):
|
209 |
+
if self.training:
|
210 |
+
return self.attention_biases[:, self.attention_bias_idxs]
|
211 |
+
else:
|
212 |
+
device_key = str(device)
|
213 |
+
if device_key not in self.attention_bias_cache:
|
214 |
+
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
|
215 |
+
return self.attention_bias_cache[device_key]
|
216 |
+
|
217 |
+
def forward(self, hidden_state):
|
218 |
+
batch_size, seq_length, _ = hidden_state.shape
|
219 |
+
queries_keys_values = self.queries_keys_values(hidden_state)
|
220 |
+
query, key, value = queries_keys_values.view(batch_size, seq_length, self.num_attention_heads, -1).split(
|
221 |
+
[self.key_dim, self.key_dim, self.attention_ratio * self.key_dim], dim=3
|
222 |
+
)
|
223 |
+
query = query.permute(0, 2, 1, 3)
|
224 |
+
key = key.permute(0, 2, 1, 3)
|
225 |
+
value = value.permute(0, 2, 1, 3)
|
226 |
+
|
227 |
+
attention = query @ key.transpose(-2, -1) * self.scale + self.get_attention_biases(hidden_state.device)
|
228 |
+
attention = attention.softmax(dim=-1)
|
229 |
+
hidden_state = (attention @ value).transpose(1, 2).reshape(batch_size, seq_length, self.out_dim_projection)
|
230 |
+
hidden_state = self.projection(self.activation(hidden_state))
|
231 |
+
return hidden_state
|
232 |
+
|
233 |
+
|
234 |
+
class LevitAttentionSubsample(nn.Module):
|
235 |
+
def __init__(
|
236 |
+
self,
|
237 |
+
input_dim,
|
238 |
+
output_dim,
|
239 |
+
key_dim,
|
240 |
+
num_attention_heads,
|
241 |
+
attention_ratio,
|
242 |
+
stride,
|
243 |
+
resolution_in,
|
244 |
+
resolution_out,
|
245 |
+
):
|
246 |
+
super().__init__()
|
247 |
+
self.num_attention_heads = num_attention_heads
|
248 |
+
self.scale = key_dim**-0.5
|
249 |
+
self.key_dim = key_dim
|
250 |
+
self.attention_ratio = attention_ratio
|
251 |
+
self.out_dim_keys_values = attention_ratio * key_dim * num_attention_heads + key_dim * num_attention_heads
|
252 |
+
self.out_dim_projection = attention_ratio * key_dim * num_attention_heads
|
253 |
+
self.resolution_out = resolution_out
|
254 |
+
# resolution_in is the intial resolution, resoloution_out is final resolution after downsampling
|
255 |
+
self.keys_values = MLPLayerWithBN(input_dim, self.out_dim_keys_values)
|
256 |
+
self.queries_subsample = LevitSubsample(stride, resolution_in)
|
257 |
+
self.queries = MLPLayerWithBN(input_dim, key_dim * num_attention_heads)
|
258 |
+
self.activation = nn.Hardswish()
|
259 |
+
self.projection = MLPLayerWithBN(self.out_dim_projection, output_dim)
|
260 |
+
|
261 |
+
self.attention_bias_cache = {}
|
262 |
+
|
263 |
+
points = list(itertools.product(range(resolution_in), range(resolution_in)))
|
264 |
+
points_ = list(itertools.product(range(resolution_out), range(resolution_out)))
|
265 |
+
len_points, len_points_ = len(points), len(points_)
|
266 |
+
attention_offsets, indices = {}, []
|
267 |
+
for p1 in points_:
|
268 |
+
for p2 in points:
|
269 |
+
size = 1
|
270 |
+
offset = (abs(p1[0] * stride - p2[0] + (size - 1) / 2), abs(p1[1] * stride - p2[1] + (size - 1) / 2))
|
271 |
+
if offset not in attention_offsets:
|
272 |
+
attention_offsets[offset] = len(attention_offsets)
|
273 |
+
indices.append(attention_offsets[offset])
|
274 |
+
|
275 |
+
self.attention_biases = torch.nn.Parameter(torch.zeros(num_attention_heads, len(attention_offsets)))
|
276 |
+
self.register_buffer(
|
277 |
+
"attention_bias_idxs", torch.LongTensor(indices).view(len_points_, len_points), persistent=False
|
278 |
+
)
|
279 |
+
|
280 |
+
@torch.no_grad()
|
281 |
+
def train(self, mode=True):
|
282 |
+
super().train(mode)
|
283 |
+
if mode and self.attention_bias_cache:
|
284 |
+
self.attention_bias_cache = {} # clear ab cache
|
285 |
+
|
286 |
+
def get_attention_biases(self, device):
|
287 |
+
if self.training:
|
288 |
+
return self.attention_biases[:, self.attention_bias_idxs]
|
289 |
+
else:
|
290 |
+
device_key = str(device)
|
291 |
+
if device_key not in self.attention_bias_cache:
|
292 |
+
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
|
293 |
+
return self.attention_bias_cache[device_key]
|
294 |
+
|
295 |
+
def forward(self, hidden_state):
|
296 |
+
batch_size, seq_length, _ = hidden_state.shape
|
297 |
+
key, value = (
|
298 |
+
self.keys_values(hidden_state)
|
299 |
+
.view(batch_size, seq_length, self.num_attention_heads, -1)
|
300 |
+
.split([self.key_dim, self.attention_ratio * self.key_dim], dim=3)
|
301 |
+
)
|
302 |
+
key = key.permute(0, 2, 1, 3)
|
303 |
+
value = value.permute(0, 2, 1, 3)
|
304 |
+
|
305 |
+
query = self.queries(self.queries_subsample(hidden_state))
|
306 |
+
query = query.view(batch_size, self.resolution_out**2, self.num_attention_heads, self.key_dim).permute(
|
307 |
+
0, 2, 1, 3
|
308 |
+
)
|
309 |
+
|
310 |
+
attention = query @ key.transpose(-2, -1) * self.scale + self.get_attention_biases(hidden_state.device)
|
311 |
+
attention = attention.softmax(dim=-1)
|
312 |
+
hidden_state = (attention @ value).transpose(1, 2).reshape(batch_size, -1, self.out_dim_projection)
|
313 |
+
hidden_state = self.projection(self.activation(hidden_state))
|
314 |
+
return hidden_state
|
315 |
+
|
316 |
+
|
317 |
+
class LevitMLPLayer(nn.Module):
|
318 |
+
"""
|
319 |
+
MLP Layer with `2X` expansion in contrast to ViT with `4X`.
|
320 |
+
"""
|
321 |
+
|
322 |
+
def __init__(self, input_dim, hidden_dim):
|
323 |
+
super().__init__()
|
324 |
+
self.linear_up = MLPLayerWithBN(input_dim, hidden_dim)
|
325 |
+
self.activation = nn.Hardswish()
|
326 |
+
self.linear_down = MLPLayerWithBN(hidden_dim, input_dim)
|
327 |
+
|
328 |
+
def forward(self, hidden_state):
|
329 |
+
hidden_state = self.linear_up(hidden_state)
|
330 |
+
hidden_state = self.activation(hidden_state)
|
331 |
+
hidden_state = self.linear_down(hidden_state)
|
332 |
+
return hidden_state
|
333 |
+
|
334 |
+
|
335 |
+
class LevitResidualLayer(nn.Module):
|
336 |
+
"""
|
337 |
+
Residual Block for LeViT
|
338 |
+
"""
|
339 |
+
|
340 |
+
def __init__(self, module, drop_rate):
|
341 |
+
super().__init__()
|
342 |
+
self.module = module
|
343 |
+
self.drop_rate = drop_rate
|
344 |
+
|
345 |
+
def forward(self, hidden_state):
|
346 |
+
if self.training and self.drop_rate > 0:
|
347 |
+
rnd = torch.rand(hidden_state.size(0), 1, 1, device=hidden_state.device)
|
348 |
+
rnd = rnd.ge_(self.drop_rate).div(1 - self.drop_rate).detach()
|
349 |
+
hidden_state = hidden_state + self.module(hidden_state) * rnd
|
350 |
+
return hidden_state
|
351 |
+
else:
|
352 |
+
hidden_state = hidden_state + self.module(hidden_state)
|
353 |
+
return hidden_state
|
354 |
+
|
355 |
+
|
356 |
+
class LevitStage(nn.Module):
|
357 |
+
"""
|
358 |
+
LeViT Stage consisting of `LevitMLPLayer` and `LevitAttention` layers.
|
359 |
+
"""
|
360 |
+
|
361 |
+
def __init__(
|
362 |
+
self,
|
363 |
+
config,
|
364 |
+
idx,
|
365 |
+
hidden_sizes,
|
366 |
+
key_dim,
|
367 |
+
depths,
|
368 |
+
num_attention_heads,
|
369 |
+
attention_ratio,
|
370 |
+
mlp_ratio,
|
371 |
+
down_ops,
|
372 |
+
resolution_in,
|
373 |
+
):
|
374 |
+
super().__init__()
|
375 |
+
self.layers = []
|
376 |
+
self.config = config
|
377 |
+
self.resolution_in = resolution_in
|
378 |
+
# resolution_in is the intial resolution, resolution_out is final resolution after downsampling
|
379 |
+
for _ in range(depths):
|
380 |
+
self.layers.append(
|
381 |
+
LevitResidualLayer(
|
382 |
+
LevitAttention(hidden_sizes, key_dim, num_attention_heads, attention_ratio, resolution_in),
|
383 |
+
self.config.drop_path_rate,
|
384 |
+
)
|
385 |
+
)
|
386 |
+
if mlp_ratio > 0:
|
387 |
+
hidden_dim = hidden_sizes * mlp_ratio
|
388 |
+
self.layers.append(
|
389 |
+
LevitResidualLayer(LevitMLPLayer(hidden_sizes, hidden_dim), self.config.drop_path_rate)
|
390 |
+
)
|
391 |
+
|
392 |
+
if down_ops[0] == "Subsample":
|
393 |
+
self.resolution_out = (self.resolution_in - 1) // down_ops[5] + 1
|
394 |
+
self.layers.append(
|
395 |
+
LevitAttentionSubsample(
|
396 |
+
*self.config.hidden_sizes[idx : idx + 2],
|
397 |
+
key_dim=down_ops[1],
|
398 |
+
num_attention_heads=down_ops[2],
|
399 |
+
attention_ratio=down_ops[3],
|
400 |
+
stride=down_ops[5],
|
401 |
+
resolution_in=resolution_in,
|
402 |
+
resolution_out=self.resolution_out,
|
403 |
+
)
|
404 |
+
)
|
405 |
+
self.resolution_in = self.resolution_out
|
406 |
+
if down_ops[4] > 0:
|
407 |
+
hidden_dim = self.config.hidden_sizes[idx + 1] * down_ops[4]
|
408 |
+
self.layers.append(
|
409 |
+
LevitResidualLayer(
|
410 |
+
LevitMLPLayer(self.config.hidden_sizes[idx + 1], hidden_dim), self.config.drop_path_rate
|
411 |
+
)
|
412 |
+
)
|
413 |
+
|
414 |
+
self.layers = nn.ModuleList(self.layers)
|
415 |
+
|
416 |
+
def get_resolution(self):
|
417 |
+
return self.resolution_in
|
418 |
+
|
419 |
+
def forward(self, hidden_state):
|
420 |
+
for layer in self.layers:
|
421 |
+
hidden_state = layer(hidden_state)
|
422 |
+
return hidden_state
|
423 |
+
|
424 |
+
|
425 |
+
class LevitEncoder(nn.Module):
|
426 |
+
"""
|
427 |
+
LeViT Encoder consisting of multiple `LevitStage` stages.
|
428 |
+
"""
|
429 |
+
|
430 |
+
def __init__(self, config):
|
431 |
+
super().__init__()
|
432 |
+
self.config = config
|
433 |
+
resolution = self.config.image_size // self.config.patch_size
|
434 |
+
self.stages = []
|
435 |
+
self.config.down_ops.append([""])
|
436 |
+
|
437 |
+
for stage_idx in range(len(config.depths)):
|
438 |
+
stage = LevitStage(
|
439 |
+
config,
|
440 |
+
stage_idx,
|
441 |
+
config.hidden_sizes[stage_idx],
|
442 |
+
config.key_dim[stage_idx],
|
443 |
+
config.depths[stage_idx],
|
444 |
+
config.num_attention_heads[stage_idx],
|
445 |
+
config.attention_ratio[stage_idx],
|
446 |
+
config.mlp_ratio[stage_idx],
|
447 |
+
config.down_ops[stage_idx],
|
448 |
+
resolution,
|
449 |
+
)
|
450 |
+
resolution = stage.get_resolution()
|
451 |
+
self.stages.append(stage)
|
452 |
+
|
453 |
+
self.stages = nn.ModuleList(self.stages)
|
454 |
+
|
455 |
+
def forward(self, hidden_state, output_hidden_states=False, return_dict=True):
|
456 |
+
all_hidden_states = () if output_hidden_states else None
|
457 |
+
|
458 |
+
for stage in self.stages:
|
459 |
+
if output_hidden_states:
|
460 |
+
all_hidden_states = all_hidden_states + (hidden_state,)
|
461 |
+
hidden_state = stage(hidden_state)
|
462 |
+
|
463 |
+
if output_hidden_states:
|
464 |
+
all_hidden_states = all_hidden_states + (hidden_state,)
|
465 |
+
if not return_dict:
|
466 |
+
return tuple(v for v in [hidden_state, all_hidden_states] if v is not None)
|
467 |
+
|
468 |
+
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=all_hidden_states)
|
469 |
+
|
470 |
+
|
471 |
+
class LevitClassificationLayer(nn.Module):
|
472 |
+
"""
|
473 |
+
LeViT Classification Layer
|
474 |
+
"""
|
475 |
+
|
476 |
+
def __init__(self, input_dim, output_dim):
|
477 |
+
super().__init__()
|
478 |
+
self.batch_norm = nn.BatchNorm1d(input_dim)
|
479 |
+
self.linear = nn.Linear(input_dim, output_dim)
|
480 |
+
|
481 |
+
def forward(self, hidden_state):
|
482 |
+
hidden_state = self.batch_norm(hidden_state)
|
483 |
+
logits = self.linear(hidden_state)
|
484 |
+
return logits
|
485 |
+
|
486 |
+
|
487 |
+
class LevitPreTrainedModel(PreTrainedModel):
|
488 |
+
"""
|
489 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
490 |
+
models.
|
491 |
+
"""
|
492 |
+
|
493 |
+
config_class = LevitConfig
|
494 |
+
base_model_prefix = "levit"
|
495 |
+
main_input_name = "pixel_values"
|
496 |
+
|
497 |
+
def _init_weights(self, module):
|
498 |
+
"""Initialize the weights"""
|
499 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
500 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
501 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
502 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
503 |
+
if module.bias is not None:
|
504 |
+
module.bias.data.zero_()
|
505 |
+
elif isinstance(module, (nn.BatchNorm1d, nn.BatchNorm2d)):
|
506 |
+
module.bias.data.zero_()
|
507 |
+
module.weight.data.fill_(1.0)
|
508 |
+
|
509 |
+
|
510 |
+
LEVIT_START_DOCSTRING = r"""
|
511 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
512 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
513 |
+
behavior.
|
514 |
+
|
515 |
+
Parameters:
|
516 |
+
config ([`LevitConfig`]): Model configuration class with all the parameters of the model.
|
517 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
518 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
519 |
+
"""
|
520 |
+
|
521 |
+
LEVIT_INPUTS_DOCSTRING = r"""
|
522 |
+
Args:
|
523 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
524 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
525 |
+
[`LevitImageProcessor.__call__`] for details.
|
526 |
+
|
527 |
+
output_hidden_states (`bool`, *optional*):
|
528 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
529 |
+
more detail.
|
530 |
+
return_dict (`bool`, *optional*):
|
531 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
532 |
+
"""
|
533 |
+
|
534 |
+
|
535 |
+
@add_start_docstrings(
|
536 |
+
"The bare Levit model outputting raw features without any specific head on top.",
|
537 |
+
LEVIT_START_DOCSTRING,
|
538 |
+
)
|
539 |
+
class LevitModel(LevitPreTrainedModel):
|
540 |
+
def __init__(self, config):
|
541 |
+
super().__init__(config)
|
542 |
+
self.config = config
|
543 |
+
self.patch_embeddings = LevitPatchEmbeddings(config)
|
544 |
+
self.encoder = LevitEncoder(config)
|
545 |
+
# Initialize weights and apply final processing
|
546 |
+
self.post_init()
|
547 |
+
|
548 |
+
@add_start_docstrings_to_model_forward(LEVIT_INPUTS_DOCSTRING)
|
549 |
+
@add_code_sample_docstrings(
|
550 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
551 |
+
output_type=BaseModelOutputWithPoolingAndNoAttention,
|
552 |
+
config_class=_CONFIG_FOR_DOC,
|
553 |
+
modality="vision",
|
554 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
555 |
+
)
|
556 |
+
def forward(
|
557 |
+
self,
|
558 |
+
pixel_values: torch.FloatTensor = None,
|
559 |
+
output_hidden_states: Optional[bool] = None,
|
560 |
+
return_dict: Optional[bool] = None,
|
561 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
|
562 |
+
output_hidden_states = (
|
563 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
564 |
+
)
|
565 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
566 |
+
|
567 |
+
if pixel_values is None:
|
568 |
+
raise ValueError("You have to specify pixel_values")
|
569 |
+
|
570 |
+
embeddings = self.patch_embeddings(pixel_values)
|
571 |
+
encoder_outputs = self.encoder(
|
572 |
+
embeddings,
|
573 |
+
output_hidden_states=output_hidden_states,
|
574 |
+
return_dict=return_dict,
|
575 |
+
)
|
576 |
+
|
577 |
+
last_hidden_state = encoder_outputs[0]
|
578 |
+
|
579 |
+
# global average pooling, (batch_size, seq_length, hidden_sizes) -> (batch_size, hidden_sizes)
|
580 |
+
pooled_output = last_hidden_state.mean(dim=1)
|
581 |
+
|
582 |
+
if not return_dict:
|
583 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
584 |
+
|
585 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
586 |
+
last_hidden_state=last_hidden_state,
|
587 |
+
pooler_output=pooled_output,
|
588 |
+
hidden_states=encoder_outputs.hidden_states,
|
589 |
+
)
|
590 |
+
|
591 |
+
|
592 |
+
@add_start_docstrings(
|
593 |
+
"""
|
594 |
+
Levit Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
595 |
+
ImageNet.
|
596 |
+
""",
|
597 |
+
LEVIT_START_DOCSTRING,
|
598 |
+
)
|
599 |
+
class LevitForImageClassification(LevitPreTrainedModel):
|
600 |
+
def __init__(self, config):
|
601 |
+
super().__init__(config)
|
602 |
+
self.config = config
|
603 |
+
self.num_labels = config.num_labels
|
604 |
+
self.levit = LevitModel(config)
|
605 |
+
|
606 |
+
# Classifier head
|
607 |
+
self.classifier = (
|
608 |
+
LevitClassificationLayer(config.hidden_sizes[-1], config.num_labels)
|
609 |
+
if config.num_labels > 0
|
610 |
+
else torch.nn.Identity()
|
611 |
+
)
|
612 |
+
|
613 |
+
# Initialize weights and apply final processing
|
614 |
+
self.post_init()
|
615 |
+
|
616 |
+
@add_start_docstrings_to_model_forward(LEVIT_INPUTS_DOCSTRING)
|
617 |
+
@add_code_sample_docstrings(
|
618 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
619 |
+
output_type=ImageClassifierOutputWithNoAttention,
|
620 |
+
config_class=_CONFIG_FOR_DOC,
|
621 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
622 |
+
)
|
623 |
+
def forward(
|
624 |
+
self,
|
625 |
+
pixel_values: torch.FloatTensor = None,
|
626 |
+
labels: Optional[torch.LongTensor] = None,
|
627 |
+
output_hidden_states: Optional[bool] = None,
|
628 |
+
return_dict: Optional[bool] = None,
|
629 |
+
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
|
630 |
+
r"""
|
631 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
632 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
633 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
634 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
635 |
+
"""
|
636 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
637 |
+
|
638 |
+
outputs = self.levit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
639 |
+
|
640 |
+
sequence_output = outputs[0]
|
641 |
+
sequence_output = sequence_output.mean(1)
|
642 |
+
logits = self.classifier(sequence_output)
|
643 |
+
|
644 |
+
loss = None
|
645 |
+
if labels is not None:
|
646 |
+
if self.config.problem_type is None:
|
647 |
+
if self.num_labels == 1:
|
648 |
+
self.config.problem_type = "regression"
|
649 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
650 |
+
self.config.problem_type = "single_label_classification"
|
651 |
+
else:
|
652 |
+
self.config.problem_type = "multi_label_classification"
|
653 |
+
|
654 |
+
if self.config.problem_type == "regression":
|
655 |
+
loss_fct = MSELoss()
|
656 |
+
if self.num_labels == 1:
|
657 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
658 |
+
else:
|
659 |
+
loss = loss_fct(logits, labels)
|
660 |
+
elif self.config.problem_type == "single_label_classification":
|
661 |
+
loss_fct = CrossEntropyLoss()
|
662 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
663 |
+
elif self.config.problem_type == "multi_label_classification":
|
664 |
+
loss_fct = BCEWithLogitsLoss()
|
665 |
+
loss = loss_fct(logits, labels)
|
666 |
+
if not return_dict:
|
667 |
+
output = (logits,) + outputs[2:]
|
668 |
+
return ((loss,) + output) if loss is not None else output
|
669 |
+
|
670 |
+
return ImageClassifierOutputWithNoAttention(
|
671 |
+
loss=loss,
|
672 |
+
logits=logits,
|
673 |
+
hidden_states=outputs.hidden_states,
|
674 |
+
)
|
675 |
+
|
676 |
+
|
677 |
+
@add_start_docstrings(
|
678 |
+
"""
|
679 |
+
LeViT Model transformer with image classification heads on top (a linear layer on top of the final hidden state and
|
680 |
+
a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. .. warning::
|
681 |
+
This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
|
682 |
+
supported.
|
683 |
+
""",
|
684 |
+
LEVIT_START_DOCSTRING,
|
685 |
+
)
|
686 |
+
class LevitForImageClassificationWithTeacher(LevitPreTrainedModel):
|
687 |
+
def __init__(self, config):
|
688 |
+
super().__init__(config)
|
689 |
+
self.config = config
|
690 |
+
self.num_labels = config.num_labels
|
691 |
+
self.levit = LevitModel(config)
|
692 |
+
|
693 |
+
# Classifier head
|
694 |
+
self.classifier = (
|
695 |
+
LevitClassificationLayer(config.hidden_sizes[-1], config.num_labels)
|
696 |
+
if config.num_labels > 0
|
697 |
+
else torch.nn.Identity()
|
698 |
+
)
|
699 |
+
self.classifier_distill = (
|
700 |
+
LevitClassificationLayer(config.hidden_sizes[-1], config.num_labels)
|
701 |
+
if config.num_labels > 0
|
702 |
+
else torch.nn.Identity()
|
703 |
+
)
|
704 |
+
|
705 |
+
# Initialize weights and apply final processing
|
706 |
+
self.post_init()
|
707 |
+
|
708 |
+
@add_start_docstrings_to_model_forward(LEVIT_INPUTS_DOCSTRING)
|
709 |
+
@add_code_sample_docstrings(
|
710 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
711 |
+
output_type=LevitForImageClassificationWithTeacherOutput,
|
712 |
+
config_class=_CONFIG_FOR_DOC,
|
713 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
714 |
+
)
|
715 |
+
def forward(
|
716 |
+
self,
|
717 |
+
pixel_values: torch.FloatTensor = None,
|
718 |
+
output_hidden_states: Optional[bool] = None,
|
719 |
+
return_dict: Optional[bool] = None,
|
720 |
+
) -> Union[Tuple, LevitForImageClassificationWithTeacherOutput]:
|
721 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
722 |
+
|
723 |
+
outputs = self.levit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
724 |
+
|
725 |
+
sequence_output = outputs[0]
|
726 |
+
sequence_output = sequence_output.mean(1)
|
727 |
+
cls_logits, distill_logits = self.classifier(sequence_output), self.classifier_distill(sequence_output)
|
728 |
+
logits = (cls_logits + distill_logits) / 2
|
729 |
+
|
730 |
+
if not return_dict:
|
731 |
+
output = (logits, cls_logits, distill_logits) + outputs[2:]
|
732 |
+
return output
|
733 |
+
|
734 |
+
return LevitForImageClassificationWithTeacherOutput(
|
735 |
+
logits=logits,
|
736 |
+
cls_logits=cls_logits,
|
737 |
+
distillation_logits=distill_logits,
|
738 |
+
hidden_states=outputs.hidden_states,
|
739 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__init__.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_tf_available,
|
20 |
+
is_torch_available,
|
21 |
+
is_vision_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {
|
26 |
+
"configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"],
|
27 |
+
}
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_vision_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["feature_extraction_mobilevit"] = ["MobileViTFeatureExtractor"]
|
36 |
+
_import_structure["image_processing_mobilevit"] = ["MobileViTImageProcessor"]
|
37 |
+
|
38 |
+
try:
|
39 |
+
if not is_torch_available():
|
40 |
+
raise OptionalDependencyNotAvailable()
|
41 |
+
except OptionalDependencyNotAvailable:
|
42 |
+
pass
|
43 |
+
else:
|
44 |
+
_import_structure["modeling_mobilevit"] = [
|
45 |
+
"MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
46 |
+
"MobileViTForImageClassification",
|
47 |
+
"MobileViTForSemanticSegmentation",
|
48 |
+
"MobileViTModel",
|
49 |
+
"MobileViTPreTrainedModel",
|
50 |
+
]
|
51 |
+
|
52 |
+
try:
|
53 |
+
if not is_tf_available():
|
54 |
+
raise OptionalDependencyNotAvailable()
|
55 |
+
except OptionalDependencyNotAvailable:
|
56 |
+
pass
|
57 |
+
else:
|
58 |
+
_import_structure["modeling_tf_mobilevit"] = [
|
59 |
+
"TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
60 |
+
"TFMobileViTForImageClassification",
|
61 |
+
"TFMobileViTForSemanticSegmentation",
|
62 |
+
"TFMobileViTModel",
|
63 |
+
"TFMobileViTPreTrainedModel",
|
64 |
+
]
|
65 |
+
|
66 |
+
if TYPE_CHECKING:
|
67 |
+
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
|
68 |
+
|
69 |
+
try:
|
70 |
+
if not is_vision_available():
|
71 |
+
raise OptionalDependencyNotAvailable()
|
72 |
+
except OptionalDependencyNotAvailable:
|
73 |
+
pass
|
74 |
+
else:
|
75 |
+
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
|
76 |
+
from .image_processing_mobilevit import MobileViTImageProcessor
|
77 |
+
|
78 |
+
try:
|
79 |
+
if not is_torch_available():
|
80 |
+
raise OptionalDependencyNotAvailable()
|
81 |
+
except OptionalDependencyNotAvailable:
|
82 |
+
pass
|
83 |
+
else:
|
84 |
+
from .modeling_mobilevit import (
|
85 |
+
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
86 |
+
MobileViTForImageClassification,
|
87 |
+
MobileViTForSemanticSegmentation,
|
88 |
+
MobileViTModel,
|
89 |
+
MobileViTPreTrainedModel,
|
90 |
+
)
|
91 |
+
|
92 |
+
try:
|
93 |
+
if not is_tf_available():
|
94 |
+
raise OptionalDependencyNotAvailable()
|
95 |
+
except OptionalDependencyNotAvailable:
|
96 |
+
pass
|
97 |
+
else:
|
98 |
+
from .modeling_tf_mobilevit import (
|
99 |
+
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
100 |
+
TFMobileViTForImageClassification,
|
101 |
+
TFMobileViTForSemanticSegmentation,
|
102 |
+
TFMobileViTModel,
|
103 |
+
TFMobileViTPreTrainedModel,
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
else:
|
108 |
+
import sys
|
109 |
+
|
110 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/convert_mlcvnets_to_pytorch.cpython-310.pyc
ADDED
Binary file (8.73 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/image_processing_mobilevit.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/modeling_tf_mobilevit.cpython-310.pyc
ADDED
Binary file (40.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/configuration_mobilevit.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" MobileViT model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from ...configuration_utils import PretrainedConfig
|
23 |
+
from ...onnx import OnnxConfig
|
24 |
+
from ...utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
30 |
+
"apple/mobilevit-small": "https://huggingface.co/apple/mobilevit-small/resolve/main/config.json",
|
31 |
+
"apple/mobilevit-x-small": "https://huggingface.co/apple/mobilevit-x-small/resolve/main/config.json",
|
32 |
+
"apple/mobilevit-xx-small": "https://huggingface.co/apple/mobilevit-xx-small/resolve/main/config.json",
|
33 |
+
"apple/deeplabv3-mobilevit-small": (
|
34 |
+
"https://huggingface.co/apple/deeplabv3-mobilevit-small/resolve/main/config.json"
|
35 |
+
),
|
36 |
+
"apple/deeplabv3-mobilevit-x-small": (
|
37 |
+
"https://huggingface.co/apple/deeplabv3-mobilevit-x-small/resolve/main/config.json"
|
38 |
+
),
|
39 |
+
"apple/deeplabv3-mobilevit-xx-small": (
|
40 |
+
"https://huggingface.co/apple/deeplabv3-mobilevit-xx-small/resolve/main/config.json"
|
41 |
+
),
|
42 |
+
# See all MobileViT models at https://huggingface.co/models?filter=mobilevit
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
class MobileViTConfig(PretrainedConfig):
|
47 |
+
r"""
|
48 |
+
This is the configuration class to store the configuration of a [`MobileViTModel`]. It is used to instantiate a
|
49 |
+
MobileViT model according to the specified arguments, defining the model architecture. Instantiating a
|
50 |
+
configuration with the defaults will yield a similar configuration to that of the MobileViT
|
51 |
+
[apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) architecture.
|
52 |
+
|
53 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
54 |
+
documentation from [`PretrainedConfig`] for more information.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
num_channels (`int`, *optional*, defaults to 3):
|
58 |
+
The number of input channels.
|
59 |
+
image_size (`int`, *optional*, defaults to 256):
|
60 |
+
The size (resolution) of each image.
|
61 |
+
patch_size (`int`, *optional*, defaults to 2):
|
62 |
+
The size (resolution) of each patch.
|
63 |
+
hidden_sizes (`List[int]`, *optional*, defaults to `[144, 192, 240]`):
|
64 |
+
Dimensionality (hidden size) of the Transformer encoders at each stage.
|
65 |
+
neck_hidden_sizes (`List[int]`, *optional*, defaults to `[16, 32, 64, 96, 128, 160, 640]`):
|
66 |
+
The number of channels for the feature maps of the backbone.
|
67 |
+
num_attention_heads (`int`, *optional*, defaults to 4):
|
68 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
69 |
+
mlp_ratio (`float`, *optional*, defaults to 2.0):
|
70 |
+
The ratio of the number of channels in the output of the MLP to the number of channels in the input.
|
71 |
+
expand_ratio (`float`, *optional*, defaults to 4.0):
|
72 |
+
Expansion factor for the MobileNetv2 layers.
|
73 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
74 |
+
The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
|
75 |
+
conv_kernel_size (`int`, *optional*, defaults to 3):
|
76 |
+
The size of the convolutional kernel in the MobileViT layer.
|
77 |
+
output_stride (`int`, *optional*, defaults to 32):
|
78 |
+
The ratio of the spatial resolution of the output to the resolution of the input image.
|
79 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
80 |
+
The dropout probability for all fully connected layers in the Transformer encoder.
|
81 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
82 |
+
The dropout ratio for the attention probabilities.
|
83 |
+
classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
|
84 |
+
The dropout ratio for attached classifiers.
|
85 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
86 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
87 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
88 |
+
The epsilon used by the layer normalization layers.
|
89 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
90 |
+
Whether to add a bias to the queries, keys and values.
|
91 |
+
aspp_out_channels (`int`, *optional*, defaults to 256):
|
92 |
+
Number of output channels used in the ASPP layer for semantic segmentation.
|
93 |
+
atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`):
|
94 |
+
Dilation (atrous) factors used in the ASPP layer for semantic segmentation.
|
95 |
+
aspp_dropout_prob (`float`, *optional*, defaults to 0.1):
|
96 |
+
The dropout ratio for the ASPP layer for semantic segmentation.
|
97 |
+
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
|
98 |
+
The index that is ignored by the loss function of the semantic segmentation model.
|
99 |
+
|
100 |
+
Example:
|
101 |
+
|
102 |
+
```python
|
103 |
+
>>> from transformers import MobileViTConfig, MobileViTModel
|
104 |
+
|
105 |
+
>>> # Initializing a mobilevit-small style configuration
|
106 |
+
>>> configuration = MobileViTConfig()
|
107 |
+
|
108 |
+
>>> # Initializing a model from the mobilevit-small style configuration
|
109 |
+
>>> model = MobileViTModel(configuration)
|
110 |
+
|
111 |
+
>>> # Accessing the model configuration
|
112 |
+
>>> configuration = model.config
|
113 |
+
```"""
|
114 |
+
|
115 |
+
model_type = "mobilevit"
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
num_channels=3,
|
120 |
+
image_size=256,
|
121 |
+
patch_size=2,
|
122 |
+
hidden_sizes=[144, 192, 240],
|
123 |
+
neck_hidden_sizes=[16, 32, 64, 96, 128, 160, 640],
|
124 |
+
num_attention_heads=4,
|
125 |
+
mlp_ratio=2.0,
|
126 |
+
expand_ratio=4.0,
|
127 |
+
hidden_act="silu",
|
128 |
+
conv_kernel_size=3,
|
129 |
+
output_stride=32,
|
130 |
+
hidden_dropout_prob=0.1,
|
131 |
+
attention_probs_dropout_prob=0.0,
|
132 |
+
classifier_dropout_prob=0.1,
|
133 |
+
initializer_range=0.02,
|
134 |
+
layer_norm_eps=1e-5,
|
135 |
+
qkv_bias=True,
|
136 |
+
aspp_out_channels=256,
|
137 |
+
atrous_rates=[6, 12, 18],
|
138 |
+
aspp_dropout_prob=0.1,
|
139 |
+
semantic_loss_ignore_index=255,
|
140 |
+
**kwargs,
|
141 |
+
):
|
142 |
+
super().__init__(**kwargs)
|
143 |
+
|
144 |
+
self.num_channels = num_channels
|
145 |
+
self.image_size = image_size
|
146 |
+
self.patch_size = patch_size
|
147 |
+
self.hidden_sizes = hidden_sizes
|
148 |
+
self.neck_hidden_sizes = neck_hidden_sizes
|
149 |
+
self.num_attention_heads = num_attention_heads
|
150 |
+
self.mlp_ratio = mlp_ratio
|
151 |
+
self.expand_ratio = expand_ratio
|
152 |
+
self.hidden_act = hidden_act
|
153 |
+
self.conv_kernel_size = conv_kernel_size
|
154 |
+
self.output_stride = output_stride
|
155 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
156 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
157 |
+
self.classifier_dropout_prob = classifier_dropout_prob
|
158 |
+
self.initializer_range = initializer_range
|
159 |
+
self.layer_norm_eps = layer_norm_eps
|
160 |
+
self.qkv_bias = qkv_bias
|
161 |
+
|
162 |
+
# decode head attributes for semantic segmentation
|
163 |
+
self.aspp_out_channels = aspp_out_channels
|
164 |
+
self.atrous_rates = atrous_rates
|
165 |
+
self.aspp_dropout_prob = aspp_dropout_prob
|
166 |
+
self.semantic_loss_ignore_index = semantic_loss_ignore_index
|
167 |
+
|
168 |
+
|
169 |
+
class MobileViTOnnxConfig(OnnxConfig):
|
170 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
171 |
+
|
172 |
+
@property
|
173 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
174 |
+
return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})])
|
175 |
+
|
176 |
+
@property
|
177 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
178 |
+
if self.task == "image-classification":
|
179 |
+
return OrderedDict([("logits", {0: "batch"})])
|
180 |
+
else:
|
181 |
+
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])
|
182 |
+
|
183 |
+
@property
|
184 |
+
def atol_for_validation(self) -> float:
|
185 |
+
return 1e-4
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/convert_mlcvnets_to_pytorch.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert MobileViT checkpoints from the ml-cvnets library."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import requests
|
23 |
+
import torch
|
24 |
+
from huggingface_hub import hf_hub_download
|
25 |
+
from PIL import Image
|
26 |
+
|
27 |
+
from transformers import (
|
28 |
+
MobileViTConfig,
|
29 |
+
MobileViTForImageClassification,
|
30 |
+
MobileViTForSemanticSegmentation,
|
31 |
+
MobileViTImageProcessor,
|
32 |
+
)
|
33 |
+
from transformers.utils import logging
|
34 |
+
|
35 |
+
|
36 |
+
logging.set_verbosity_info()
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
def get_mobilevit_config(mobilevit_name):
|
41 |
+
config = MobileViTConfig()
|
42 |
+
|
43 |
+
# size of the architecture
|
44 |
+
if "mobilevit_s" in mobilevit_name:
|
45 |
+
config.hidden_sizes = [144, 192, 240]
|
46 |
+
config.neck_hidden_sizes = [16, 32, 64, 96, 128, 160, 640]
|
47 |
+
elif "mobilevit_xs" in mobilevit_name:
|
48 |
+
config.hidden_sizes = [96, 120, 144]
|
49 |
+
config.neck_hidden_sizes = [16, 32, 48, 64, 80, 96, 384]
|
50 |
+
elif "mobilevit_xxs" in mobilevit_name:
|
51 |
+
config.hidden_sizes = [64, 80, 96]
|
52 |
+
config.neck_hidden_sizes = [16, 16, 24, 48, 64, 80, 320]
|
53 |
+
config.hidden_dropout_prob = 0.05
|
54 |
+
config.expand_ratio = 2.0
|
55 |
+
|
56 |
+
if mobilevit_name.startswith("deeplabv3_"):
|
57 |
+
config.image_size = 512
|
58 |
+
config.output_stride = 16
|
59 |
+
config.num_labels = 21
|
60 |
+
filename = "pascal-voc-id2label.json"
|
61 |
+
else:
|
62 |
+
config.num_labels = 1000
|
63 |
+
filename = "imagenet-1k-id2label.json"
|
64 |
+
|
65 |
+
repo_id = "huggingface/label-files"
|
66 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
67 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
68 |
+
config.id2label = id2label
|
69 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
70 |
+
|
71 |
+
return config
|
72 |
+
|
73 |
+
|
74 |
+
def rename_key(name, base_model=False):
|
75 |
+
for i in range(1, 6):
|
76 |
+
if f"layer_{i}." in name:
|
77 |
+
name = name.replace(f"layer_{i}.", f"encoder.layer.{i - 1}.")
|
78 |
+
|
79 |
+
if "conv_1." in name:
|
80 |
+
name = name.replace("conv_1.", "conv_stem.")
|
81 |
+
if ".block." in name:
|
82 |
+
name = name.replace(".block.", ".")
|
83 |
+
|
84 |
+
if "exp_1x1" in name:
|
85 |
+
name = name.replace("exp_1x1", "expand_1x1")
|
86 |
+
if "red_1x1" in name:
|
87 |
+
name = name.replace("red_1x1", "reduce_1x1")
|
88 |
+
if ".local_rep.conv_3x3." in name:
|
89 |
+
name = name.replace(".local_rep.conv_3x3.", ".conv_kxk.")
|
90 |
+
if ".local_rep.conv_1x1." in name:
|
91 |
+
name = name.replace(".local_rep.conv_1x1.", ".conv_1x1.")
|
92 |
+
if ".norm." in name:
|
93 |
+
name = name.replace(".norm.", ".normalization.")
|
94 |
+
if ".conv." in name:
|
95 |
+
name = name.replace(".conv.", ".convolution.")
|
96 |
+
if ".conv_proj." in name:
|
97 |
+
name = name.replace(".conv_proj.", ".conv_projection.")
|
98 |
+
|
99 |
+
for i in range(0, 2):
|
100 |
+
for j in range(0, 4):
|
101 |
+
if f".{i}.{j}." in name:
|
102 |
+
name = name.replace(f".{i}.{j}.", f".{i}.layer.{j}.")
|
103 |
+
|
104 |
+
for i in range(2, 6):
|
105 |
+
for j in range(0, 4):
|
106 |
+
if f".{i}.{j}." in name:
|
107 |
+
name = name.replace(f".{i}.{j}.", f".{i}.")
|
108 |
+
if "expand_1x1" in name:
|
109 |
+
name = name.replace("expand_1x1", "downsampling_layer.expand_1x1")
|
110 |
+
if "conv_3x3" in name:
|
111 |
+
name = name.replace("conv_3x3", "downsampling_layer.conv_3x3")
|
112 |
+
if "reduce_1x1" in name:
|
113 |
+
name = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1")
|
114 |
+
|
115 |
+
for i in range(2, 5):
|
116 |
+
if f".global_rep.{i}.weight" in name:
|
117 |
+
name = name.replace(f".global_rep.{i}.weight", ".layernorm.weight")
|
118 |
+
if f".global_rep.{i}.bias" in name:
|
119 |
+
name = name.replace(f".global_rep.{i}.bias", ".layernorm.bias")
|
120 |
+
|
121 |
+
if ".global_rep." in name:
|
122 |
+
name = name.replace(".global_rep.", ".transformer.")
|
123 |
+
if ".pre_norm_mha.0." in name:
|
124 |
+
name = name.replace(".pre_norm_mha.0.", ".layernorm_before.")
|
125 |
+
if ".pre_norm_mha.1.out_proj." in name:
|
126 |
+
name = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense.")
|
127 |
+
if ".pre_norm_ffn.0." in name:
|
128 |
+
name = name.replace(".pre_norm_ffn.0.", ".layernorm_after.")
|
129 |
+
if ".pre_norm_ffn.1." in name:
|
130 |
+
name = name.replace(".pre_norm_ffn.1.", ".intermediate.dense.")
|
131 |
+
if ".pre_norm_ffn.4." in name:
|
132 |
+
name = name.replace(".pre_norm_ffn.4.", ".output.dense.")
|
133 |
+
if ".transformer." in name:
|
134 |
+
name = name.replace(".transformer.", ".transformer.layer.")
|
135 |
+
|
136 |
+
if ".aspp_layer." in name:
|
137 |
+
name = name.replace(".aspp_layer.", ".")
|
138 |
+
if ".aspp_pool." in name:
|
139 |
+
name = name.replace(".aspp_pool.", ".")
|
140 |
+
if "seg_head." in name:
|
141 |
+
name = name.replace("seg_head.", "segmentation_head.")
|
142 |
+
if "segmentation_head.classifier.classifier." in name:
|
143 |
+
name = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier.")
|
144 |
+
|
145 |
+
if "classifier.fc." in name:
|
146 |
+
name = name.replace("classifier.fc.", "classifier.")
|
147 |
+
elif (not base_model) and ("segmentation_head." not in name):
|
148 |
+
name = "mobilevit." + name
|
149 |
+
|
150 |
+
return name
|
151 |
+
|
152 |
+
|
153 |
+
def convert_state_dict(orig_state_dict, model, base_model=False):
|
154 |
+
if base_model:
|
155 |
+
model_prefix = ""
|
156 |
+
else:
|
157 |
+
model_prefix = "mobilevit."
|
158 |
+
|
159 |
+
for key in orig_state_dict.copy().keys():
|
160 |
+
val = orig_state_dict.pop(key)
|
161 |
+
|
162 |
+
if key[:8] == "encoder.":
|
163 |
+
key = key[8:]
|
164 |
+
|
165 |
+
if "qkv" in key:
|
166 |
+
key_split = key.split(".")
|
167 |
+
layer_num = int(key_split[0][6:]) - 1
|
168 |
+
transformer_num = int(key_split[3])
|
169 |
+
layer = model.get_submodule(f"{model_prefix}encoder.layer.{layer_num}")
|
170 |
+
dim = layer.transformer.layer[transformer_num].attention.attention.all_head_size
|
171 |
+
prefix = (
|
172 |
+
f"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."
|
173 |
+
)
|
174 |
+
if "weight" in key:
|
175 |
+
orig_state_dict[prefix + "query.weight"] = val[:dim, :]
|
176 |
+
orig_state_dict[prefix + "key.weight"] = val[dim : dim * 2, :]
|
177 |
+
orig_state_dict[prefix + "value.weight"] = val[-dim:, :]
|
178 |
+
else:
|
179 |
+
orig_state_dict[prefix + "query.bias"] = val[:dim]
|
180 |
+
orig_state_dict[prefix + "key.bias"] = val[dim : dim * 2]
|
181 |
+
orig_state_dict[prefix + "value.bias"] = val[-dim:]
|
182 |
+
else:
|
183 |
+
orig_state_dict[rename_key(key, base_model)] = val
|
184 |
+
|
185 |
+
return orig_state_dict
|
186 |
+
|
187 |
+
|
188 |
+
# We will verify our results on an image of cute cats
|
189 |
+
def prepare_img():
|
190 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
191 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
192 |
+
return im
|
193 |
+
|
194 |
+
|
195 |
+
@torch.no_grad()
|
196 |
+
def convert_movilevit_checkpoint(mobilevit_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False):
|
197 |
+
"""
|
198 |
+
Copy/paste/tweak model's weights to our MobileViT structure.
|
199 |
+
"""
|
200 |
+
config = get_mobilevit_config(mobilevit_name)
|
201 |
+
|
202 |
+
# load original state_dict
|
203 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
204 |
+
|
205 |
+
# load 🤗 model
|
206 |
+
if mobilevit_name.startswith("deeplabv3_"):
|
207 |
+
model = MobileViTForSemanticSegmentation(config).eval()
|
208 |
+
else:
|
209 |
+
model = MobileViTForImageClassification(config).eval()
|
210 |
+
|
211 |
+
new_state_dict = convert_state_dict(state_dict, model)
|
212 |
+
model.load_state_dict(new_state_dict)
|
213 |
+
|
214 |
+
# Check outputs on an image, prepared by MobileViTImageProcessor
|
215 |
+
image_processor = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32)
|
216 |
+
encoding = image_processor(images=prepare_img(), return_tensors="pt")
|
217 |
+
outputs = model(**encoding)
|
218 |
+
logits = outputs.logits
|
219 |
+
|
220 |
+
if mobilevit_name.startswith("deeplabv3_"):
|
221 |
+
assert logits.shape == (1, 21, 32, 32)
|
222 |
+
|
223 |
+
if mobilevit_name == "deeplabv3_mobilevit_s":
|
224 |
+
expected_logits = torch.tensor(
|
225 |
+
[
|
226 |
+
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
|
227 |
+
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
|
228 |
+
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
|
229 |
+
]
|
230 |
+
)
|
231 |
+
elif mobilevit_name == "deeplabv3_mobilevit_xs":
|
232 |
+
expected_logits = torch.tensor(
|
233 |
+
[
|
234 |
+
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
|
235 |
+
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
|
236 |
+
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
|
237 |
+
]
|
238 |
+
)
|
239 |
+
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
|
240 |
+
expected_logits = torch.tensor(
|
241 |
+
[
|
242 |
+
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
|
243 |
+
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
|
244 |
+
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
|
245 |
+
]
|
246 |
+
)
|
247 |
+
else:
|
248 |
+
raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}")
|
249 |
+
|
250 |
+
assert torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-4)
|
251 |
+
else:
|
252 |
+
assert logits.shape == (1, 1000)
|
253 |
+
|
254 |
+
if mobilevit_name == "mobilevit_s":
|
255 |
+
expected_logits = torch.tensor([-0.9866, 0.2392, -1.1241])
|
256 |
+
elif mobilevit_name == "mobilevit_xs":
|
257 |
+
expected_logits = torch.tensor([-2.4761, -0.9399, -1.9587])
|
258 |
+
elif mobilevit_name == "mobilevit_xxs":
|
259 |
+
expected_logits = torch.tensor([-1.9364, -1.2327, -0.4653])
|
260 |
+
else:
|
261 |
+
raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}")
|
262 |
+
|
263 |
+
assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4)
|
264 |
+
|
265 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
266 |
+
print(f"Saving model {mobilevit_name} to {pytorch_dump_folder_path}")
|
267 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
268 |
+
print(f"Saving image processor to {pytorch_dump_folder_path}")
|
269 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
270 |
+
|
271 |
+
if push_to_hub:
|
272 |
+
model_mapping = {
|
273 |
+
"mobilevit_s": "mobilevit-small",
|
274 |
+
"mobilevit_xs": "mobilevit-x-small",
|
275 |
+
"mobilevit_xxs": "mobilevit-xx-small",
|
276 |
+
"deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
|
277 |
+
"deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
|
278 |
+
"deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
|
279 |
+
}
|
280 |
+
|
281 |
+
print("Pushing to the hub...")
|
282 |
+
model_name = model_mapping[mobilevit_name]
|
283 |
+
image_processor.push_to_hub(model_name, organization="apple")
|
284 |
+
model.push_to_hub(model_name, organization="apple")
|
285 |
+
|
286 |
+
|
287 |
+
if __name__ == "__main__":
|
288 |
+
parser = argparse.ArgumentParser()
|
289 |
+
# Required parameters
|
290 |
+
parser.add_argument(
|
291 |
+
"--mobilevit_name",
|
292 |
+
default="mobilevit_s",
|
293 |
+
type=str,
|
294 |
+
help=(
|
295 |
+
"Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',"
|
296 |
+
" 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'."
|
297 |
+
),
|
298 |
+
)
|
299 |
+
parser.add_argument(
|
300 |
+
"--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
|
301 |
+
)
|
302 |
+
parser.add_argument(
|
303 |
+
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
|
304 |
+
)
|
305 |
+
parser.add_argument(
|
306 |
+
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
|
307 |
+
)
|
308 |
+
|
309 |
+
args = parser.parse_args()
|
310 |
+
convert_movilevit_checkpoint(
|
311 |
+
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
|
312 |
+
)
|