applied-ai-018 commited on
Commit
7edb135
·
verified ·
1 Parent(s): c4282f5

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/sklearn/_loss/__init__.py +30 -0
  2. env-llmeval/lib/python3.10/site-packages/sklearn/_loss/__pycache__/__init__.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/sklearn/_loss/__pycache__/link.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/sklearn/_loss/__pycache__/loss.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/sklearn/_loss/_loss.pxd +91 -0
  6. env-llmeval/lib/python3.10/site-packages/sklearn/_loss/link.py +280 -0
  7. env-llmeval/lib/python3.10/site-packages/sklearn/_loss/loss.py +1177 -0
  8. env-llmeval/lib/python3.10/site-packages/sklearn/_loss/tests/__init__.py +0 -0
  9. env-llmeval/lib/python3.10/site-packages/sklearn/_loss/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/sklearn/_loss/tests/__pycache__/test_link.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/sklearn/_loss/tests/__pycache__/test_loss.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/sklearn/_loss/tests/test_link.py +111 -0
  13. env-llmeval/lib/python3.10/site-packages/sklearn/_loss/tests/test_loss.py +1320 -0
  14. env-llmeval/lib/python3.10/site-packages/sklearn/compose/__init__.py +20 -0
  15. env-llmeval/lib/python3.10/site-packages/sklearn/compose/__pycache__/__init__.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/sklearn/compose/__pycache__/_column_transformer.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/sklearn/compose/__pycache__/_target.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/sklearn/compose/_column_transformer.py +1463 -0
  19. env-llmeval/lib/python3.10/site-packages/sklearn/compose/_target.py +342 -0
  20. env-llmeval/lib/python3.10/site-packages/sklearn/compose/tests/__init__.py +0 -0
  21. env-llmeval/lib/python3.10/site-packages/sklearn/compose/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/sklearn/compose/tests/__pycache__/test_column_transformer.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/sklearn/compose/tests/__pycache__/test_target.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/sklearn/compose/tests/test_column_transformer.py +2582 -0
  25. env-llmeval/lib/python3.10/site-packages/sklearn/compose/tests/test_target.py +387 -0
  26. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/diabetes_data_raw.csv.gz +3 -0
  27. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/diabetes_target.csv.gz +3 -0
  28. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/digits.csv.gz +3 -0
  29. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/images/china.jpg +3 -0
  30. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/images/flower.jpg +3 -0
  31. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1590/api-v1-jd-1590.json.gz +3 -0
  32. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1590/api-v1-jdf-1590.json.gz +3 -0
  33. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1590/api-v1-jdq-1590.json.gz +3 -0
  34. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1590/data-v1-dl-1595261.arff.gz +3 -0
  35. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_292/api-v1-jd-40981.json.gz +3 -0
  36. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40589/api-v1-jdl-dn-emotions-l-2-s-act-.json.gz +3 -0
  37. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40945/api-v1-jdf-40945.json.gz +3 -0
  38. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42074/api-v1-jd-42074.json.gz +3 -0
  39. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42074/api-v1-jdf-42074.json.gz +3 -0
  40. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42074/api-v1-jdq-42074.json.gz +3 -0
  41. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42074/data-v1-dl-21552912.arff.gz +3 -0
  42. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_561/api-v1-jd-561.json.gz +3 -0
  43. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_561/api-v1-jdf-561.json.gz +3 -0
  44. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_561/api-v1-jdl-dn-cpu-l-2-dv-1.json.gz +3 -0
  45. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_561/api-v1-jdl-dn-cpu-l-2-s-act-.json.gz +3 -0
  46. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_561/api-v1-jdq-561.json.gz +3 -0
  47. env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_561/data-v1-dl-52739.arff.gz +3 -0
  48. env-llmeval/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/__init__.cpython-310.pyc +0 -0
  49. env-llmeval/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/_base.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/_dict_learning.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/sklearn/_loss/__init__.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ The :mod:`sklearn._loss` module includes loss function classes suitable for
3
+ fitting classification and regression tasks.
4
+ """
5
+
6
+ from .loss import (
7
+ AbsoluteError,
8
+ HalfBinomialLoss,
9
+ HalfGammaLoss,
10
+ HalfMultinomialLoss,
11
+ HalfPoissonLoss,
12
+ HalfSquaredError,
13
+ HalfTweedieLoss,
14
+ HalfTweedieLossIdentity,
15
+ HuberLoss,
16
+ PinballLoss,
17
+ )
18
+
19
+ __all__ = [
20
+ "HalfSquaredError",
21
+ "AbsoluteError",
22
+ "PinballLoss",
23
+ "HuberLoss",
24
+ "HalfPoissonLoss",
25
+ "HalfGammaLoss",
26
+ "HalfTweedieLoss",
27
+ "HalfTweedieLossIdentity",
28
+ "HalfBinomialLoss",
29
+ "HalfMultinomialLoss",
30
+ ]
env-llmeval/lib/python3.10/site-packages/sklearn/_loss/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (666 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/_loss/__pycache__/link.cpython-310.pyc ADDED
Binary file (8.96 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/_loss/__pycache__/loss.cpython-310.pyc ADDED
Binary file (33.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/_loss/_loss.pxd ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Fused types for input like y_true, raw_prediction, sample_weights.
2
+ ctypedef fused floating_in:
3
+ double
4
+ float
5
+
6
+
7
+ # Fused types for output like gradient and hessian
8
+ # We use a different fused types for input (floating_in) and output (floating_out), such
9
+ # that input and output can have different dtypes in the same function call. A single
10
+ # fused type can only take on one single value (type) for all arguments in one function
11
+ # call.
12
+ ctypedef fused floating_out:
13
+ double
14
+ float
15
+
16
+
17
+ # Struct to return 2 doubles
18
+ ctypedef struct double_pair:
19
+ double val1
20
+ double val2
21
+
22
+
23
+ # C base class for loss functions
24
+ cdef class CyLossFunction:
25
+ cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
26
+ cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
27
+ cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
28
+
29
+
30
+ cdef class CyHalfSquaredError(CyLossFunction):
31
+ cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
32
+ cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
33
+ cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
34
+
35
+
36
+ cdef class CyAbsoluteError(CyLossFunction):
37
+ cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
38
+ cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
39
+ cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
40
+
41
+
42
+ cdef class CyPinballLoss(CyLossFunction):
43
+ cdef readonly double quantile # readonly makes it accessible from Python
44
+ cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
45
+ cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
46
+ cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
47
+
48
+
49
+ cdef class CyHuberLoss(CyLossFunction):
50
+ cdef public double delta # public makes it accessible from Python
51
+ cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
52
+ cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
53
+ cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
54
+
55
+
56
+ cdef class CyHalfPoissonLoss(CyLossFunction):
57
+ cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
58
+ cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
59
+ cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
60
+
61
+
62
+ cdef class CyHalfGammaLoss(CyLossFunction):
63
+ cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
64
+ cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
65
+ cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
66
+
67
+
68
+ cdef class CyHalfTweedieLoss(CyLossFunction):
69
+ cdef readonly double power # readonly makes it accessible from Python
70
+ cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
71
+ cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
72
+ cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
73
+
74
+
75
+ cdef class CyHalfTweedieLossIdentity(CyLossFunction):
76
+ cdef readonly double power # readonly makes it accessible from Python
77
+ cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
78
+ cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
79
+ cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
80
+
81
+
82
+ cdef class CyHalfBinomialLoss(CyLossFunction):
83
+ cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
84
+ cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
85
+ cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
86
+
87
+
88
+ cdef class CyExponentialLoss(CyLossFunction):
89
+ cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
90
+ cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
91
+ cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
env-llmeval/lib/python3.10/site-packages/sklearn/_loss/link.py ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Module contains classes for invertible (and differentiable) link functions.
3
+ """
4
+ # Author: Christian Lorentzen <[email protected]>
5
+
6
+ from abc import ABC, abstractmethod
7
+ from dataclasses import dataclass
8
+
9
+ import numpy as np
10
+ from scipy.special import expit, logit
11
+ from scipy.stats import gmean
12
+
13
+ from ..utils.extmath import softmax
14
+
15
+
16
+ @dataclass
17
+ class Interval:
18
+ low: float
19
+ high: float
20
+ low_inclusive: bool
21
+ high_inclusive: bool
22
+
23
+ def __post_init__(self):
24
+ """Check that low <= high"""
25
+ if self.low > self.high:
26
+ raise ValueError(
27
+ f"One must have low <= high; got low={self.low}, high={self.high}."
28
+ )
29
+
30
+ def includes(self, x):
31
+ """Test whether all values of x are in interval range.
32
+
33
+ Parameters
34
+ ----------
35
+ x : ndarray
36
+ Array whose elements are tested to be in interval range.
37
+
38
+ Returns
39
+ -------
40
+ result : bool
41
+ """
42
+ if self.low_inclusive:
43
+ low = np.greater_equal(x, self.low)
44
+ else:
45
+ low = np.greater(x, self.low)
46
+
47
+ if not np.all(low):
48
+ return False
49
+
50
+ if self.high_inclusive:
51
+ high = np.less_equal(x, self.high)
52
+ else:
53
+ high = np.less(x, self.high)
54
+
55
+ # Note: np.all returns numpy.bool_
56
+ return bool(np.all(high))
57
+
58
+
59
+ def _inclusive_low_high(interval, dtype=np.float64):
60
+ """Generate values low and high to be within the interval range.
61
+
62
+ This is used in tests only.
63
+
64
+ Returns
65
+ -------
66
+ low, high : tuple
67
+ The returned values low and high lie within the interval.
68
+ """
69
+ eps = 10 * np.finfo(dtype).eps
70
+ if interval.low == -np.inf:
71
+ low = -1e10
72
+ elif interval.low < 0:
73
+ low = interval.low * (1 - eps) + eps
74
+ else:
75
+ low = interval.low * (1 + eps) + eps
76
+
77
+ if interval.high == np.inf:
78
+ high = 1e10
79
+ elif interval.high < 0:
80
+ high = interval.high * (1 + eps) - eps
81
+ else:
82
+ high = interval.high * (1 - eps) - eps
83
+
84
+ return low, high
85
+
86
+
87
+ class BaseLink(ABC):
88
+ """Abstract base class for differentiable, invertible link functions.
89
+
90
+ Convention:
91
+ - link function g: raw_prediction = g(y_pred)
92
+ - inverse link h: y_pred = h(raw_prediction)
93
+
94
+ For (generalized) linear models, `raw_prediction = X @ coef` is the so
95
+ called linear predictor, and `y_pred = h(raw_prediction)` is the predicted
96
+ conditional (on X) expected value of the target `y_true`.
97
+
98
+ The methods are not implemented as staticmethods in case a link function needs
99
+ parameters.
100
+ """
101
+
102
+ is_multiclass = False # used for testing only
103
+
104
+ # Usually, raw_prediction may be any real number and y_pred is an open
105
+ # interval.
106
+ # interval_raw_prediction = Interval(-np.inf, np.inf, False, False)
107
+ interval_y_pred = Interval(-np.inf, np.inf, False, False)
108
+
109
+ @abstractmethod
110
+ def link(self, y_pred, out=None):
111
+ """Compute the link function g(y_pred).
112
+
113
+ The link function maps (predicted) target values to raw predictions,
114
+ i.e. `g(y_pred) = raw_prediction`.
115
+
116
+ Parameters
117
+ ----------
118
+ y_pred : array
119
+ Predicted target values.
120
+ out : array
121
+ A location into which the result is stored. If provided, it must
122
+ have a shape that the inputs broadcast to. If not provided or None,
123
+ a freshly-allocated array is returned.
124
+
125
+ Returns
126
+ -------
127
+ out : array
128
+ Output array, element-wise link function.
129
+ """
130
+
131
+ @abstractmethod
132
+ def inverse(self, raw_prediction, out=None):
133
+ """Compute the inverse link function h(raw_prediction).
134
+
135
+ The inverse link function maps raw predictions to predicted target
136
+ values, i.e. `h(raw_prediction) = y_pred`.
137
+
138
+ Parameters
139
+ ----------
140
+ raw_prediction : array
141
+ Raw prediction values (in link space).
142
+ out : array
143
+ A location into which the result is stored. If provided, it must
144
+ have a shape that the inputs broadcast to. If not provided or None,
145
+ a freshly-allocated array is returned.
146
+
147
+ Returns
148
+ -------
149
+ out : array
150
+ Output array, element-wise inverse link function.
151
+ """
152
+
153
+
154
+ class IdentityLink(BaseLink):
155
+ """The identity link function g(x)=x."""
156
+
157
+ def link(self, y_pred, out=None):
158
+ if out is not None:
159
+ np.copyto(out, y_pred)
160
+ return out
161
+ else:
162
+ return y_pred
163
+
164
+ inverse = link
165
+
166
+
167
+ class LogLink(BaseLink):
168
+ """The log link function g(x)=log(x)."""
169
+
170
+ interval_y_pred = Interval(0, np.inf, False, False)
171
+
172
+ def link(self, y_pred, out=None):
173
+ return np.log(y_pred, out=out)
174
+
175
+ def inverse(self, raw_prediction, out=None):
176
+ return np.exp(raw_prediction, out=out)
177
+
178
+
179
+ class LogitLink(BaseLink):
180
+ """The logit link function g(x)=logit(x)."""
181
+
182
+ interval_y_pred = Interval(0, 1, False, False)
183
+
184
+ def link(self, y_pred, out=None):
185
+ return logit(y_pred, out=out)
186
+
187
+ def inverse(self, raw_prediction, out=None):
188
+ return expit(raw_prediction, out=out)
189
+
190
+
191
+ class HalfLogitLink(BaseLink):
192
+ """Half the logit link function g(x)=1/2 * logit(x).
193
+
194
+ Used for the exponential loss.
195
+ """
196
+
197
+ interval_y_pred = Interval(0, 1, False, False)
198
+
199
+ def link(self, y_pred, out=None):
200
+ out = logit(y_pred, out=out)
201
+ out *= 0.5
202
+ return out
203
+
204
+ def inverse(self, raw_prediction, out=None):
205
+ return expit(2 * raw_prediction, out)
206
+
207
+
208
+ class MultinomialLogit(BaseLink):
209
+ """The symmetric multinomial logit function.
210
+
211
+ Convention:
212
+ - y_pred.shape = raw_prediction.shape = (n_samples, n_classes)
213
+
214
+ Notes:
215
+ - The inverse link h is the softmax function.
216
+ - The sum is over the second axis, i.e. axis=1 (n_classes).
217
+
218
+ We have to choose additional constraints in order to make
219
+
220
+ y_pred[k] = exp(raw_pred[k]) / sum(exp(raw_pred[k]), k=0..n_classes-1)
221
+
222
+ for n_classes classes identifiable and invertible.
223
+ We choose the symmetric side constraint where the geometric mean response
224
+ is set as reference category, see [2]:
225
+
226
+ The symmetric multinomial logit link function for a single data point is
227
+ then defined as
228
+
229
+ raw_prediction[k] = g(y_pred[k]) = log(y_pred[k]/gmean(y_pred))
230
+ = log(y_pred[k]) - mean(log(y_pred)).
231
+
232
+ Note that this is equivalent to the definition in [1] and implies mean
233
+ centered raw predictions:
234
+
235
+ sum(raw_prediction[k], k=0..n_classes-1) = 0.
236
+
237
+ For linear models with raw_prediction = X @ coef, this corresponds to
238
+ sum(coef[k], k=0..n_classes-1) = 0, i.e. the sum over classes for every
239
+ feature is zero.
240
+
241
+ Reference
242
+ ---------
243
+ .. [1] Friedman, Jerome; Hastie, Trevor; Tibshirani, Robert. "Additive
244
+ logistic regression: a statistical view of boosting" Ann. Statist.
245
+ 28 (2000), no. 2, 337--407. doi:10.1214/aos/1016218223.
246
+ https://projecteuclid.org/euclid.aos/1016218223
247
+
248
+ .. [2] Zahid, Faisal Maqbool and Gerhard Tutz. "Ridge estimation for
249
+ multinomial logit models with symmetric side constraints."
250
+ Computational Statistics 28 (2013): 1017-1034.
251
+ http://epub.ub.uni-muenchen.de/11001/1/tr067.pdf
252
+ """
253
+
254
+ is_multiclass = True
255
+ interval_y_pred = Interval(0, 1, False, False)
256
+
257
+ def symmetrize_raw_prediction(self, raw_prediction):
258
+ return raw_prediction - np.mean(raw_prediction, axis=1)[:, np.newaxis]
259
+
260
+ def link(self, y_pred, out=None):
261
+ # geometric mean as reference category
262
+ gm = gmean(y_pred, axis=1)
263
+ return np.log(y_pred / gm[:, np.newaxis], out=out)
264
+
265
+ def inverse(self, raw_prediction, out=None):
266
+ if out is None:
267
+ return softmax(raw_prediction, copy=True)
268
+ else:
269
+ np.copyto(out, raw_prediction)
270
+ softmax(out, copy=False)
271
+ return out
272
+
273
+
274
+ _LINKS = {
275
+ "identity": IdentityLink,
276
+ "log": LogLink,
277
+ "logit": LogitLink,
278
+ "half_logit": HalfLogitLink,
279
+ "multinomial_logit": MultinomialLogit,
280
+ }
env-llmeval/lib/python3.10/site-packages/sklearn/_loss/loss.py ADDED
@@ -0,0 +1,1177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module contains loss classes suitable for fitting.
3
+
4
+ It is not part of the public API.
5
+ Specific losses are used for regression, binary classification or multiclass
6
+ classification.
7
+ """
8
+ # Goals:
9
+ # - Provide a common private module for loss functions/classes.
10
+ # - To be used in:
11
+ # - LogisticRegression
12
+ # - PoissonRegressor, GammaRegressor, TweedieRegressor
13
+ # - HistGradientBoostingRegressor, HistGradientBoostingClassifier
14
+ # - GradientBoostingRegressor, GradientBoostingClassifier
15
+ # - SGDRegressor, SGDClassifier
16
+ # - Replace link module of GLMs.
17
+
18
+ import numbers
19
+
20
+ import numpy as np
21
+ from scipy.special import xlogy
22
+
23
+ from ..utils import check_scalar
24
+ from ..utils.stats import _weighted_percentile
25
+ from ._loss import (
26
+ CyAbsoluteError,
27
+ CyExponentialLoss,
28
+ CyHalfBinomialLoss,
29
+ CyHalfGammaLoss,
30
+ CyHalfMultinomialLoss,
31
+ CyHalfPoissonLoss,
32
+ CyHalfSquaredError,
33
+ CyHalfTweedieLoss,
34
+ CyHalfTweedieLossIdentity,
35
+ CyHuberLoss,
36
+ CyPinballLoss,
37
+ )
38
+ from .link import (
39
+ HalfLogitLink,
40
+ IdentityLink,
41
+ Interval,
42
+ LogitLink,
43
+ LogLink,
44
+ MultinomialLogit,
45
+ )
46
+
47
+
48
+ # Note: The shape of raw_prediction for multiclass classifications are
49
+ # - GradientBoostingClassifier: (n_samples, n_classes)
50
+ # - HistGradientBoostingClassifier: (n_classes, n_samples)
51
+ #
52
+ # Note: Instead of inheritance like
53
+ #
54
+ # class BaseLoss(BaseLink, CyLossFunction):
55
+ # ...
56
+ #
57
+ # # Note: Naturally, we would inherit in the following order
58
+ # # class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss)
59
+ # # But because of https://github.com/cython/cython/issues/4350 we set BaseLoss as
60
+ # # the last one. This, of course, changes the MRO.
61
+ # class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss):
62
+ #
63
+ # we use composition. This way we improve maintainability by avoiding the above
64
+ # mentioned Cython edge case and have easier to understand code (which method calls
65
+ # which code).
66
+ class BaseLoss:
67
+ """Base class for a loss function of 1-dimensional targets.
68
+
69
+ Conventions:
70
+
71
+ - y_true.shape = sample_weight.shape = (n_samples,)
72
+ - y_pred.shape = raw_prediction.shape = (n_samples,)
73
+ - If is_multiclass is true (multiclass classification), then
74
+ y_pred.shape = raw_prediction.shape = (n_samples, n_classes)
75
+ Note that this corresponds to the return value of decision_function.
76
+
77
+ y_true, y_pred, sample_weight and raw_prediction must either be all float64
78
+ or all float32.
79
+ gradient and hessian must be either both float64 or both float32.
80
+
81
+ Note that y_pred = link.inverse(raw_prediction).
82
+
83
+ Specific loss classes can inherit specific link classes to satisfy
84
+ BaseLink's abstractmethods.
85
+
86
+ Parameters
87
+ ----------
88
+ sample_weight : {None, ndarray}
89
+ If sample_weight is None, the hessian might be constant.
90
+ n_classes : {None, int}
91
+ The number of classes for classification, else None.
92
+
93
+ Attributes
94
+ ----------
95
+ closs: CyLossFunction
96
+ link : BaseLink
97
+ interval_y_true : Interval
98
+ Valid interval for y_true
99
+ interval_y_pred : Interval
100
+ Valid Interval for y_pred
101
+ differentiable : bool
102
+ Indicates whether or not loss function is differentiable in
103
+ raw_prediction everywhere.
104
+ need_update_leaves_values : bool
105
+ Indicates whether decision trees in gradient boosting need to uptade
106
+ leave values after having been fit to the (negative) gradients.
107
+ approx_hessian : bool
108
+ Indicates whether the hessian is approximated or exact. If,
109
+ approximated, it should be larger or equal to the exact one.
110
+ constant_hessian : bool
111
+ Indicates whether the hessian is one for this loss.
112
+ is_multiclass : bool
113
+ Indicates whether n_classes > 2 is allowed.
114
+ """
115
+
116
+ # For gradient boosted decision trees:
117
+ # This variable indicates whether the loss requires the leaves values to
118
+ # be updated once the tree has been trained. The trees are trained to
119
+ # predict a Newton-Raphson step (see grower._finalize_leaf()). But for
120
+ # some losses (e.g. least absolute deviation) we need to adjust the tree
121
+ # values to account for the "line search" of the gradient descent
122
+ # procedure. See the original paper Greedy Function Approximation: A
123
+ # Gradient Boosting Machine by Friedman
124
+ # (https://statweb.stanford.edu/~jhf/ftp/trebst.pdf) for the theory.
125
+ differentiable = True
126
+ need_update_leaves_values = False
127
+ is_multiclass = False
128
+
129
+ def __init__(self, closs, link, n_classes=None):
130
+ self.closs = closs
131
+ self.link = link
132
+ self.approx_hessian = False
133
+ self.constant_hessian = False
134
+ self.n_classes = n_classes
135
+ self.interval_y_true = Interval(-np.inf, np.inf, False, False)
136
+ self.interval_y_pred = self.link.interval_y_pred
137
+
138
+ def in_y_true_range(self, y):
139
+ """Return True if y is in the valid range of y_true.
140
+
141
+ Parameters
142
+ ----------
143
+ y : ndarray
144
+ """
145
+ return self.interval_y_true.includes(y)
146
+
147
+ def in_y_pred_range(self, y):
148
+ """Return True if y is in the valid range of y_pred.
149
+
150
+ Parameters
151
+ ----------
152
+ y : ndarray
153
+ """
154
+ return self.interval_y_pred.includes(y)
155
+
156
+ def loss(
157
+ self,
158
+ y_true,
159
+ raw_prediction,
160
+ sample_weight=None,
161
+ loss_out=None,
162
+ n_threads=1,
163
+ ):
164
+ """Compute the pointwise loss value for each input.
165
+
166
+ Parameters
167
+ ----------
168
+ y_true : C-contiguous array of shape (n_samples,)
169
+ Observed, true target values.
170
+ raw_prediction : C-contiguous array of shape (n_samples,) or array of \
171
+ shape (n_samples, n_classes)
172
+ Raw prediction values (in link space).
173
+ sample_weight : None or C-contiguous array of shape (n_samples,)
174
+ Sample weights.
175
+ loss_out : None or C-contiguous array of shape (n_samples,)
176
+ A location into which the result is stored. If None, a new array
177
+ might be created.
178
+ n_threads : int, default=1
179
+ Might use openmp thread parallelism.
180
+
181
+ Returns
182
+ -------
183
+ loss : array of shape (n_samples,)
184
+ Element-wise loss function.
185
+ """
186
+ if loss_out is None:
187
+ loss_out = np.empty_like(y_true)
188
+ # Be graceful to shape (n_samples, 1) -> (n_samples,)
189
+ if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
190
+ raw_prediction = raw_prediction.squeeze(1)
191
+
192
+ self.closs.loss(
193
+ y_true=y_true,
194
+ raw_prediction=raw_prediction,
195
+ sample_weight=sample_weight,
196
+ loss_out=loss_out,
197
+ n_threads=n_threads,
198
+ )
199
+ return loss_out
200
+
201
+ def loss_gradient(
202
+ self,
203
+ y_true,
204
+ raw_prediction,
205
+ sample_weight=None,
206
+ loss_out=None,
207
+ gradient_out=None,
208
+ n_threads=1,
209
+ ):
210
+ """Compute loss and gradient w.r.t. raw_prediction for each input.
211
+
212
+ Parameters
213
+ ----------
214
+ y_true : C-contiguous array of shape (n_samples,)
215
+ Observed, true target values.
216
+ raw_prediction : C-contiguous array of shape (n_samples,) or array of \
217
+ shape (n_samples, n_classes)
218
+ Raw prediction values (in link space).
219
+ sample_weight : None or C-contiguous array of shape (n_samples,)
220
+ Sample weights.
221
+ loss_out : None or C-contiguous array of shape (n_samples,)
222
+ A location into which the loss is stored. If None, a new array
223
+ might be created.
224
+ gradient_out : None or C-contiguous array of shape (n_samples,) or array \
225
+ of shape (n_samples, n_classes)
226
+ A location into which the gradient is stored. If None, a new array
227
+ might be created.
228
+ n_threads : int, default=1
229
+ Might use openmp thread parallelism.
230
+
231
+ Returns
232
+ -------
233
+ loss : array of shape (n_samples,)
234
+ Element-wise loss function.
235
+
236
+ gradient : array of shape (n_samples,) or (n_samples, n_classes)
237
+ Element-wise gradients.
238
+ """
239
+ if loss_out is None:
240
+ if gradient_out is None:
241
+ loss_out = np.empty_like(y_true)
242
+ gradient_out = np.empty_like(raw_prediction)
243
+ else:
244
+ loss_out = np.empty_like(y_true, dtype=gradient_out.dtype)
245
+ elif gradient_out is None:
246
+ gradient_out = np.empty_like(raw_prediction, dtype=loss_out.dtype)
247
+
248
+ # Be graceful to shape (n_samples, 1) -> (n_samples,)
249
+ if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
250
+ raw_prediction = raw_prediction.squeeze(1)
251
+ if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
252
+ gradient_out = gradient_out.squeeze(1)
253
+
254
+ self.closs.loss_gradient(
255
+ y_true=y_true,
256
+ raw_prediction=raw_prediction,
257
+ sample_weight=sample_weight,
258
+ loss_out=loss_out,
259
+ gradient_out=gradient_out,
260
+ n_threads=n_threads,
261
+ )
262
+ return loss_out, gradient_out
263
+
264
+ def gradient(
265
+ self,
266
+ y_true,
267
+ raw_prediction,
268
+ sample_weight=None,
269
+ gradient_out=None,
270
+ n_threads=1,
271
+ ):
272
+ """Compute gradient of loss w.r.t raw_prediction for each input.
273
+
274
+ Parameters
275
+ ----------
276
+ y_true : C-contiguous array of shape (n_samples,)
277
+ Observed, true target values.
278
+ raw_prediction : C-contiguous array of shape (n_samples,) or array of \
279
+ shape (n_samples, n_classes)
280
+ Raw prediction values (in link space).
281
+ sample_weight : None or C-contiguous array of shape (n_samples,)
282
+ Sample weights.
283
+ gradient_out : None or C-contiguous array of shape (n_samples,) or array \
284
+ of shape (n_samples, n_classes)
285
+ A location into which the result is stored. If None, a new array
286
+ might be created.
287
+ n_threads : int, default=1
288
+ Might use openmp thread parallelism.
289
+
290
+ Returns
291
+ -------
292
+ gradient : array of shape (n_samples,) or (n_samples, n_classes)
293
+ Element-wise gradients.
294
+ """
295
+ if gradient_out is None:
296
+ gradient_out = np.empty_like(raw_prediction)
297
+
298
+ # Be graceful to shape (n_samples, 1) -> (n_samples,)
299
+ if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
300
+ raw_prediction = raw_prediction.squeeze(1)
301
+ if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
302
+ gradient_out = gradient_out.squeeze(1)
303
+
304
+ self.closs.gradient(
305
+ y_true=y_true,
306
+ raw_prediction=raw_prediction,
307
+ sample_weight=sample_weight,
308
+ gradient_out=gradient_out,
309
+ n_threads=n_threads,
310
+ )
311
+ return gradient_out
312
+
313
+ def gradient_hessian(
314
+ self,
315
+ y_true,
316
+ raw_prediction,
317
+ sample_weight=None,
318
+ gradient_out=None,
319
+ hessian_out=None,
320
+ n_threads=1,
321
+ ):
322
+ """Compute gradient and hessian of loss w.r.t raw_prediction.
323
+
324
+ Parameters
325
+ ----------
326
+ y_true : C-contiguous array of shape (n_samples,)
327
+ Observed, true target values.
328
+ raw_prediction : C-contiguous array of shape (n_samples,) or array of \
329
+ shape (n_samples, n_classes)
330
+ Raw prediction values (in link space).
331
+ sample_weight : None or C-contiguous array of shape (n_samples,)
332
+ Sample weights.
333
+ gradient_out : None or C-contiguous array of shape (n_samples,) or array \
334
+ of shape (n_samples, n_classes)
335
+ A location into which the gradient is stored. If None, a new array
336
+ might be created.
337
+ hessian_out : None or C-contiguous array of shape (n_samples,) or array \
338
+ of shape (n_samples, n_classes)
339
+ A location into which the hessian is stored. If None, a new array
340
+ might be created.
341
+ n_threads : int, default=1
342
+ Might use openmp thread parallelism.
343
+
344
+ Returns
345
+ -------
346
+ gradient : arrays of shape (n_samples,) or (n_samples, n_classes)
347
+ Element-wise gradients.
348
+
349
+ hessian : arrays of shape (n_samples,) or (n_samples, n_classes)
350
+ Element-wise hessians.
351
+ """
352
+ if gradient_out is None:
353
+ if hessian_out is None:
354
+ gradient_out = np.empty_like(raw_prediction)
355
+ hessian_out = np.empty_like(raw_prediction)
356
+ else:
357
+ gradient_out = np.empty_like(hessian_out)
358
+ elif hessian_out is None:
359
+ hessian_out = np.empty_like(gradient_out)
360
+
361
+ # Be graceful to shape (n_samples, 1) -> (n_samples,)
362
+ if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
363
+ raw_prediction = raw_prediction.squeeze(1)
364
+ if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
365
+ gradient_out = gradient_out.squeeze(1)
366
+ if hessian_out.ndim == 2 and hessian_out.shape[1] == 1:
367
+ hessian_out = hessian_out.squeeze(1)
368
+
369
+ self.closs.gradient_hessian(
370
+ y_true=y_true,
371
+ raw_prediction=raw_prediction,
372
+ sample_weight=sample_weight,
373
+ gradient_out=gradient_out,
374
+ hessian_out=hessian_out,
375
+ n_threads=n_threads,
376
+ )
377
+ return gradient_out, hessian_out
378
+
379
+ def __call__(self, y_true, raw_prediction, sample_weight=None, n_threads=1):
380
+ """Compute the weighted average loss.
381
+
382
+ Parameters
383
+ ----------
384
+ y_true : C-contiguous array of shape (n_samples,)
385
+ Observed, true target values.
386
+ raw_prediction : C-contiguous array of shape (n_samples,) or array of \
387
+ shape (n_samples, n_classes)
388
+ Raw prediction values (in link space).
389
+ sample_weight : None or C-contiguous array of shape (n_samples,)
390
+ Sample weights.
391
+ n_threads : int, default=1
392
+ Might use openmp thread parallelism.
393
+
394
+ Returns
395
+ -------
396
+ loss : float
397
+ Mean or averaged loss function.
398
+ """
399
+ return np.average(
400
+ self.loss(
401
+ y_true=y_true,
402
+ raw_prediction=raw_prediction,
403
+ sample_weight=None,
404
+ loss_out=None,
405
+ n_threads=n_threads,
406
+ ),
407
+ weights=sample_weight,
408
+ )
409
+
410
+ def fit_intercept_only(self, y_true, sample_weight=None):
411
+ """Compute raw_prediction of an intercept-only model.
412
+
413
+ This can be used as initial estimates of predictions, i.e. before the
414
+ first iteration in fit.
415
+
416
+ Parameters
417
+ ----------
418
+ y_true : array-like of shape (n_samples,)
419
+ Observed, true target values.
420
+ sample_weight : None or array of shape (n_samples,)
421
+ Sample weights.
422
+
423
+ Returns
424
+ -------
425
+ raw_prediction : numpy scalar or array of shape (n_classes,)
426
+ Raw predictions of an intercept-only model.
427
+ """
428
+ # As default, take weighted average of the target over the samples
429
+ # axis=0 and then transform into link-scale (raw_prediction).
430
+ y_pred = np.average(y_true, weights=sample_weight, axis=0)
431
+ eps = 10 * np.finfo(y_pred.dtype).eps
432
+
433
+ if self.interval_y_pred.low == -np.inf:
434
+ a_min = None
435
+ elif self.interval_y_pred.low_inclusive:
436
+ a_min = self.interval_y_pred.low
437
+ else:
438
+ a_min = self.interval_y_pred.low + eps
439
+
440
+ if self.interval_y_pred.high == np.inf:
441
+ a_max = None
442
+ elif self.interval_y_pred.high_inclusive:
443
+ a_max = self.interval_y_pred.high
444
+ else:
445
+ a_max = self.interval_y_pred.high - eps
446
+
447
+ if a_min is None and a_max is None:
448
+ return self.link.link(y_pred)
449
+ else:
450
+ return self.link.link(np.clip(y_pred, a_min, a_max))
451
+
452
+ def constant_to_optimal_zero(self, y_true, sample_weight=None):
453
+ """Calculate term dropped in loss.
454
+
455
+ With this term added, the loss of perfect predictions is zero.
456
+ """
457
+ return np.zeros_like(y_true)
458
+
459
+ def init_gradient_and_hessian(self, n_samples, dtype=np.float64, order="F"):
460
+ """Initialize arrays for gradients and hessians.
461
+
462
+ Unless hessians are constant, arrays are initialized with undefined values.
463
+
464
+ Parameters
465
+ ----------
466
+ n_samples : int
467
+ The number of samples, usually passed to `fit()`.
468
+ dtype : {np.float64, np.float32}, default=np.float64
469
+ The dtype of the arrays gradient and hessian.
470
+ order : {'C', 'F'}, default='F'
471
+ Order of the arrays gradient and hessian. The default 'F' makes the arrays
472
+ contiguous along samples.
473
+
474
+ Returns
475
+ -------
476
+ gradient : C-contiguous array of shape (n_samples,) or array of shape \
477
+ (n_samples, n_classes)
478
+ Empty array (allocated but not initialized) to be used as argument
479
+ gradient_out.
480
+ hessian : C-contiguous array of shape (n_samples,), array of shape
481
+ (n_samples, n_classes) or shape (1,)
482
+ Empty (allocated but not initialized) array to be used as argument
483
+ hessian_out.
484
+ If constant_hessian is True (e.g. `HalfSquaredError`), the array is
485
+ initialized to ``1``.
486
+ """
487
+ if dtype not in (np.float32, np.float64):
488
+ raise ValueError(
489
+ "Valid options for 'dtype' are np.float32 and np.float64. "
490
+ f"Got dtype={dtype} instead."
491
+ )
492
+
493
+ if self.is_multiclass:
494
+ shape = (n_samples, self.n_classes)
495
+ else:
496
+ shape = (n_samples,)
497
+ gradient = np.empty(shape=shape, dtype=dtype, order=order)
498
+
499
+ if self.constant_hessian:
500
+ # If the hessians are constant, we consider them equal to 1.
501
+ # - This is correct for HalfSquaredError
502
+ # - For AbsoluteError, hessians are actually 0, but they are
503
+ # always ignored anyway.
504
+ hessian = np.ones(shape=(1,), dtype=dtype)
505
+ else:
506
+ hessian = np.empty(shape=shape, dtype=dtype, order=order)
507
+
508
+ return gradient, hessian
509
+
510
+
511
+ # Note: Naturally, we would inherit in the following order
512
+ # class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss)
513
+ # But because of https://github.com/cython/cython/issues/4350 we
514
+ # set BaseLoss as the last one. This, of course, changes the MRO.
515
+ class HalfSquaredError(BaseLoss):
516
+ """Half squared error with identity link, for regression.
517
+
518
+ Domain:
519
+ y_true and y_pred all real numbers
520
+
521
+ Link:
522
+ y_pred = raw_prediction
523
+
524
+ For a given sample x_i, half squared error is defined as::
525
+
526
+ loss(x_i) = 0.5 * (y_true_i - raw_prediction_i)**2
527
+
528
+ The factor of 0.5 simplifies the computation of gradients and results in a
529
+ unit hessian (and is consistent with what is done in LightGBM). It is also
530
+ half the Normal distribution deviance.
531
+ """
532
+
533
+ def __init__(self, sample_weight=None):
534
+ super().__init__(closs=CyHalfSquaredError(), link=IdentityLink())
535
+ self.constant_hessian = sample_weight is None
536
+
537
+
538
+ class AbsoluteError(BaseLoss):
539
+ """Absolute error with identity link, for regression.
540
+
541
+ Domain:
542
+ y_true and y_pred all real numbers
543
+
544
+ Link:
545
+ y_pred = raw_prediction
546
+
547
+ For a given sample x_i, the absolute error is defined as::
548
+
549
+ loss(x_i) = |y_true_i - raw_prediction_i|
550
+
551
+ Note that the exact hessian = 0 almost everywhere (except at one point, therefore
552
+ differentiable = False). Optimization routines like in HGBT, however, need a
553
+ hessian > 0. Therefore, we assign 1.
554
+ """
555
+
556
+ differentiable = False
557
+ need_update_leaves_values = True
558
+
559
+ def __init__(self, sample_weight=None):
560
+ super().__init__(closs=CyAbsoluteError(), link=IdentityLink())
561
+ self.approx_hessian = True
562
+ self.constant_hessian = sample_weight is None
563
+
564
+ def fit_intercept_only(self, y_true, sample_weight=None):
565
+ """Compute raw_prediction of an intercept-only model.
566
+
567
+ This is the weighted median of the target, i.e. over the samples
568
+ axis=0.
569
+ """
570
+ if sample_weight is None:
571
+ return np.median(y_true, axis=0)
572
+ else:
573
+ return _weighted_percentile(y_true, sample_weight, 50)
574
+
575
+
576
+ class PinballLoss(BaseLoss):
577
+ """Quantile loss aka pinball loss, for regression.
578
+
579
+ Domain:
580
+ y_true and y_pred all real numbers
581
+ quantile in (0, 1)
582
+
583
+ Link:
584
+ y_pred = raw_prediction
585
+
586
+ For a given sample x_i, the pinball loss is defined as::
587
+
588
+ loss(x_i) = rho_{quantile}(y_true_i - raw_prediction_i)
589
+
590
+ rho_{quantile}(u) = u * (quantile - 1_{u<0})
591
+ = -u *(1 - quantile) if u < 0
592
+ u * quantile if u >= 0
593
+
594
+ Note: 2 * PinballLoss(quantile=0.5) equals AbsoluteError().
595
+
596
+ Note that the exact hessian = 0 almost everywhere (except at one point, therefore
597
+ differentiable = False). Optimization routines like in HGBT, however, need a
598
+ hessian > 0. Therefore, we assign 1.
599
+
600
+ Additional Attributes
601
+ ---------------------
602
+ quantile : float
603
+ The quantile level of the quantile to be estimated. Must be in range (0, 1).
604
+ """
605
+
606
+ differentiable = False
607
+ need_update_leaves_values = True
608
+
609
+ def __init__(self, sample_weight=None, quantile=0.5):
610
+ check_scalar(
611
+ quantile,
612
+ "quantile",
613
+ target_type=numbers.Real,
614
+ min_val=0,
615
+ max_val=1,
616
+ include_boundaries="neither",
617
+ )
618
+ super().__init__(
619
+ closs=CyPinballLoss(quantile=float(quantile)),
620
+ link=IdentityLink(),
621
+ )
622
+ self.approx_hessian = True
623
+ self.constant_hessian = sample_weight is None
624
+
625
+ def fit_intercept_only(self, y_true, sample_weight=None):
626
+ """Compute raw_prediction of an intercept-only model.
627
+
628
+ This is the weighted median of the target, i.e. over the samples
629
+ axis=0.
630
+ """
631
+ if sample_weight is None:
632
+ return np.percentile(y_true, 100 * self.closs.quantile, axis=0)
633
+ else:
634
+ return _weighted_percentile(
635
+ y_true, sample_weight, 100 * self.closs.quantile
636
+ )
637
+
638
+
639
+ class HuberLoss(BaseLoss):
640
+ """Huber loss, for regression.
641
+
642
+ Domain:
643
+ y_true and y_pred all real numbers
644
+ quantile in (0, 1)
645
+
646
+ Link:
647
+ y_pred = raw_prediction
648
+
649
+ For a given sample x_i, the Huber loss is defined as::
650
+
651
+ loss(x_i) = 1/2 * abserr**2 if abserr <= delta
652
+ delta * (abserr - delta/2) if abserr > delta
653
+
654
+ abserr = |y_true_i - raw_prediction_i|
655
+ delta = quantile(abserr, self.quantile)
656
+
657
+ Note: HuberLoss(quantile=1) equals HalfSquaredError and HuberLoss(quantile=0)
658
+ equals delta * (AbsoluteError() - delta/2).
659
+
660
+ Additional Attributes
661
+ ---------------------
662
+ quantile : float
663
+ The quantile level which defines the breaking point `delta` to distinguish
664
+ between absolute error and squared error. Must be in range (0, 1).
665
+
666
+ Reference
667
+ ---------
668
+ .. [1] Friedman, J.H. (2001). :doi:`Greedy function approximation: A gradient
669
+ boosting machine <10.1214/aos/1013203451>`.
670
+ Annals of Statistics, 29, 1189-1232.
671
+ """
672
+
673
+ differentiable = False
674
+ need_update_leaves_values = True
675
+
676
+ def __init__(self, sample_weight=None, quantile=0.9, delta=0.5):
677
+ check_scalar(
678
+ quantile,
679
+ "quantile",
680
+ target_type=numbers.Real,
681
+ min_val=0,
682
+ max_val=1,
683
+ include_boundaries="neither",
684
+ )
685
+ self.quantile = quantile # This is better stored outside of Cython.
686
+ super().__init__(
687
+ closs=CyHuberLoss(delta=float(delta)),
688
+ link=IdentityLink(),
689
+ )
690
+ self.approx_hessian = True
691
+ self.constant_hessian = False
692
+
693
+ def fit_intercept_only(self, y_true, sample_weight=None):
694
+ """Compute raw_prediction of an intercept-only model.
695
+
696
+ This is the weighted median of the target, i.e. over the samples
697
+ axis=0.
698
+ """
699
+ # See formula before algo 4 in Friedman (2001), but we apply it to y_true,
700
+ # not to the residual y_true - raw_prediction. An estimator like
701
+ # HistGradientBoostingRegressor might then call it on the residual, e.g.
702
+ # fit_intercept_only(y_true - raw_prediction).
703
+ if sample_weight is None:
704
+ median = np.percentile(y_true, 50, axis=0)
705
+ else:
706
+ median = _weighted_percentile(y_true, sample_weight, 50)
707
+ diff = y_true - median
708
+ term = np.sign(diff) * np.minimum(self.closs.delta, np.abs(diff))
709
+ return median + np.average(term, weights=sample_weight)
710
+
711
+
712
+ class HalfPoissonLoss(BaseLoss):
713
+ """Half Poisson deviance loss with log-link, for regression.
714
+
715
+ Domain:
716
+ y_true in non-negative real numbers
717
+ y_pred in positive real numbers
718
+
719
+ Link:
720
+ y_pred = exp(raw_prediction)
721
+
722
+ For a given sample x_i, half the Poisson deviance is defined as::
723
+
724
+ loss(x_i) = y_true_i * log(y_true_i/exp(raw_prediction_i))
725
+ - y_true_i + exp(raw_prediction_i)
726
+
727
+ Half the Poisson deviance is actually the negative log-likelihood up to
728
+ constant terms (not involving raw_prediction) and simplifies the
729
+ computation of the gradients.
730
+ We also skip the constant term `y_true_i * log(y_true_i) - y_true_i`.
731
+ """
732
+
733
+ def __init__(self, sample_weight=None):
734
+ super().__init__(closs=CyHalfPoissonLoss(), link=LogLink())
735
+ self.interval_y_true = Interval(0, np.inf, True, False)
736
+
737
+ def constant_to_optimal_zero(self, y_true, sample_weight=None):
738
+ term = xlogy(y_true, y_true) - y_true
739
+ if sample_weight is not None:
740
+ term *= sample_weight
741
+ return term
742
+
743
+
744
+ class HalfGammaLoss(BaseLoss):
745
+ """Half Gamma deviance loss with log-link, for regression.
746
+
747
+ Domain:
748
+ y_true and y_pred in positive real numbers
749
+
750
+ Link:
751
+ y_pred = exp(raw_prediction)
752
+
753
+ For a given sample x_i, half Gamma deviance loss is defined as::
754
+
755
+ loss(x_i) = log(exp(raw_prediction_i)/y_true_i)
756
+ + y_true/exp(raw_prediction_i) - 1
757
+
758
+ Half the Gamma deviance is actually proportional to the negative log-
759
+ likelihood up to constant terms (not involving raw_prediction) and
760
+ simplifies the computation of the gradients.
761
+ We also skip the constant term `-log(y_true_i) - 1`.
762
+ """
763
+
764
+ def __init__(self, sample_weight=None):
765
+ super().__init__(closs=CyHalfGammaLoss(), link=LogLink())
766
+ self.interval_y_true = Interval(0, np.inf, False, False)
767
+
768
+ def constant_to_optimal_zero(self, y_true, sample_weight=None):
769
+ term = -np.log(y_true) - 1
770
+ if sample_weight is not None:
771
+ term *= sample_weight
772
+ return term
773
+
774
+
775
+ class HalfTweedieLoss(BaseLoss):
776
+ """Half Tweedie deviance loss with log-link, for regression.
777
+
778
+ Domain:
779
+ y_true in real numbers for power <= 0
780
+ y_true in non-negative real numbers for 0 < power < 2
781
+ y_true in positive real numbers for 2 <= power
782
+ y_pred in positive real numbers
783
+ power in real numbers
784
+
785
+ Link:
786
+ y_pred = exp(raw_prediction)
787
+
788
+ For a given sample x_i, half Tweedie deviance loss with p=power is defined
789
+ as::
790
+
791
+ loss(x_i) = max(y_true_i, 0)**(2-p) / (1-p) / (2-p)
792
+ - y_true_i * exp(raw_prediction_i)**(1-p) / (1-p)
793
+ + exp(raw_prediction_i)**(2-p) / (2-p)
794
+
795
+ Taking the limits for p=0, 1, 2 gives HalfSquaredError with a log link,
796
+ HalfPoissonLoss and HalfGammaLoss.
797
+
798
+ We also skip constant terms, but those are different for p=0, 1, 2.
799
+ Therefore, the loss is not continuous in `power`.
800
+
801
+ Note furthermore that although no Tweedie distribution exists for
802
+ 0 < power < 1, it still gives a strictly consistent scoring function for
803
+ the expectation.
804
+ """
805
+
806
+ def __init__(self, sample_weight=None, power=1.5):
807
+ super().__init__(
808
+ closs=CyHalfTweedieLoss(power=float(power)),
809
+ link=LogLink(),
810
+ )
811
+ if self.closs.power <= 0:
812
+ self.interval_y_true = Interval(-np.inf, np.inf, False, False)
813
+ elif self.closs.power < 2:
814
+ self.interval_y_true = Interval(0, np.inf, True, False)
815
+ else:
816
+ self.interval_y_true = Interval(0, np.inf, False, False)
817
+
818
+ def constant_to_optimal_zero(self, y_true, sample_weight=None):
819
+ if self.closs.power == 0:
820
+ return HalfSquaredError().constant_to_optimal_zero(
821
+ y_true=y_true, sample_weight=sample_weight
822
+ )
823
+ elif self.closs.power == 1:
824
+ return HalfPoissonLoss().constant_to_optimal_zero(
825
+ y_true=y_true, sample_weight=sample_weight
826
+ )
827
+ elif self.closs.power == 2:
828
+ return HalfGammaLoss().constant_to_optimal_zero(
829
+ y_true=y_true, sample_weight=sample_weight
830
+ )
831
+ else:
832
+ p = self.closs.power
833
+ term = np.power(np.maximum(y_true, 0), 2 - p) / (1 - p) / (2 - p)
834
+ if sample_weight is not None:
835
+ term *= sample_weight
836
+ return term
837
+
838
+
839
+ class HalfTweedieLossIdentity(BaseLoss):
840
+ """Half Tweedie deviance loss with identity link, for regression.
841
+
842
+ Domain:
843
+ y_true in real numbers for power <= 0
844
+ y_true in non-negative real numbers for 0 < power < 2
845
+ y_true in positive real numbers for 2 <= power
846
+ y_pred in positive real numbers for power != 0
847
+ y_pred in real numbers for power = 0
848
+ power in real numbers
849
+
850
+ Link:
851
+ y_pred = raw_prediction
852
+
853
+ For a given sample x_i, half Tweedie deviance loss with p=power is defined
854
+ as::
855
+
856
+ loss(x_i) = max(y_true_i, 0)**(2-p) / (1-p) / (2-p)
857
+ - y_true_i * raw_prediction_i**(1-p) / (1-p)
858
+ + raw_prediction_i**(2-p) / (2-p)
859
+
860
+ Note that the minimum value of this loss is 0.
861
+
862
+ Note furthermore that although no Tweedie distribution exists for
863
+ 0 < power < 1, it still gives a strictly consistent scoring function for
864
+ the expectation.
865
+ """
866
+
867
+ def __init__(self, sample_weight=None, power=1.5):
868
+ super().__init__(
869
+ closs=CyHalfTweedieLossIdentity(power=float(power)),
870
+ link=IdentityLink(),
871
+ )
872
+ if self.closs.power <= 0:
873
+ self.interval_y_true = Interval(-np.inf, np.inf, False, False)
874
+ elif self.closs.power < 2:
875
+ self.interval_y_true = Interval(0, np.inf, True, False)
876
+ else:
877
+ self.interval_y_true = Interval(0, np.inf, False, False)
878
+
879
+ if self.closs.power == 0:
880
+ self.interval_y_pred = Interval(-np.inf, np.inf, False, False)
881
+ else:
882
+ self.interval_y_pred = Interval(0, np.inf, False, False)
883
+
884
+
885
+ class HalfBinomialLoss(BaseLoss):
886
+ """Half Binomial deviance loss with logit link, for binary classification.
887
+
888
+ This is also know as binary cross entropy, log-loss and logistic loss.
889
+
890
+ Domain:
891
+ y_true in [0, 1], i.e. regression on the unit interval
892
+ y_pred in (0, 1), i.e. boundaries excluded
893
+
894
+ Link:
895
+ y_pred = expit(raw_prediction)
896
+
897
+ For a given sample x_i, half Binomial deviance is defined as the negative
898
+ log-likelihood of the Binomial/Bernoulli distribution and can be expressed
899
+ as::
900
+
901
+ loss(x_i) = log(1 + exp(raw_pred_i)) - y_true_i * raw_pred_i
902
+
903
+ See The Elements of Statistical Learning, by Hastie, Tibshirani, Friedman,
904
+ section 4.4.1 (about logistic regression).
905
+
906
+ Note that the formulation works for classification, y = {0, 1}, as well as
907
+ logistic regression, y = [0, 1].
908
+ If you add `constant_to_optimal_zero` to the loss, you get half the
909
+ Bernoulli/binomial deviance.
910
+
911
+ More details: Inserting the predicted probability y_pred = expit(raw_prediction)
912
+ in the loss gives the well known::
913
+
914
+ loss(x_i) = - y_true_i * log(y_pred_i) - (1 - y_true_i) * log(1 - y_pred_i)
915
+ """
916
+
917
+ def __init__(self, sample_weight=None):
918
+ super().__init__(
919
+ closs=CyHalfBinomialLoss(),
920
+ link=LogitLink(),
921
+ n_classes=2,
922
+ )
923
+ self.interval_y_true = Interval(0, 1, True, True)
924
+
925
+ def constant_to_optimal_zero(self, y_true, sample_weight=None):
926
+ # This is non-zero only if y_true is neither 0 nor 1.
927
+ term = xlogy(y_true, y_true) + xlogy(1 - y_true, 1 - y_true)
928
+ if sample_weight is not None:
929
+ term *= sample_weight
930
+ return term
931
+
932
+ def predict_proba(self, raw_prediction):
933
+ """Predict probabilities.
934
+
935
+ Parameters
936
+ ----------
937
+ raw_prediction : array of shape (n_samples,) or (n_samples, 1)
938
+ Raw prediction values (in link space).
939
+
940
+ Returns
941
+ -------
942
+ proba : array of shape (n_samples, 2)
943
+ Element-wise class probabilities.
944
+ """
945
+ # Be graceful to shape (n_samples, 1) -> (n_samples,)
946
+ if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
947
+ raw_prediction = raw_prediction.squeeze(1)
948
+ proba = np.empty((raw_prediction.shape[0], 2), dtype=raw_prediction.dtype)
949
+ proba[:, 1] = self.link.inverse(raw_prediction)
950
+ proba[:, 0] = 1 - proba[:, 1]
951
+ return proba
952
+
953
+
954
+ class HalfMultinomialLoss(BaseLoss):
955
+ """Categorical cross-entropy loss, for multiclass classification.
956
+
957
+ Domain:
958
+ y_true in {0, 1, 2, 3, .., n_classes - 1}
959
+ y_pred has n_classes elements, each element in (0, 1)
960
+
961
+ Link:
962
+ y_pred = softmax(raw_prediction)
963
+
964
+ Note: We assume y_true to be already label encoded. The inverse link is
965
+ softmax. But the full link function is the symmetric multinomial logit
966
+ function.
967
+
968
+ For a given sample x_i, the categorical cross-entropy loss is defined as
969
+ the negative log-likelihood of the multinomial distribution, it
970
+ generalizes the binary cross-entropy to more than 2 classes::
971
+
972
+ loss_i = log(sum(exp(raw_pred_{i, k}), k=0..n_classes-1))
973
+ - sum(y_true_{i, k} * raw_pred_{i, k}, k=0..n_classes-1)
974
+
975
+ See [1].
976
+
977
+ Note that for the hessian, we calculate only the diagonal part in the
978
+ classes: If the full hessian for classes k and l and sample i is H_i_k_l,
979
+ we calculate H_i_k_k, i.e. k=l.
980
+
981
+ Reference
982
+ ---------
983
+ .. [1] :arxiv:`Simon, Noah, J. Friedman and T. Hastie.
984
+ "A Blockwise Descent Algorithm for Group-penalized Multiresponse and
985
+ Multinomial Regression".
986
+ <1311.6529>`
987
+ """
988
+
989
+ is_multiclass = True
990
+
991
+ def __init__(self, sample_weight=None, n_classes=3):
992
+ super().__init__(
993
+ closs=CyHalfMultinomialLoss(),
994
+ link=MultinomialLogit(),
995
+ n_classes=n_classes,
996
+ )
997
+ self.interval_y_true = Interval(0, np.inf, True, False)
998
+ self.interval_y_pred = Interval(0, 1, False, False)
999
+
1000
+ def in_y_true_range(self, y):
1001
+ """Return True if y is in the valid range of y_true.
1002
+
1003
+ Parameters
1004
+ ----------
1005
+ y : ndarray
1006
+ """
1007
+ return self.interval_y_true.includes(y) and np.all(y.astype(int) == y)
1008
+
1009
+ def fit_intercept_only(self, y_true, sample_weight=None):
1010
+ """Compute raw_prediction of an intercept-only model.
1011
+
1012
+ This is the softmax of the weighted average of the target, i.e. over
1013
+ the samples axis=0.
1014
+ """
1015
+ out = np.zeros(self.n_classes, dtype=y_true.dtype)
1016
+ eps = np.finfo(y_true.dtype).eps
1017
+ for k in range(self.n_classes):
1018
+ out[k] = np.average(y_true == k, weights=sample_weight, axis=0)
1019
+ out[k] = np.clip(out[k], eps, 1 - eps)
1020
+ return self.link.link(out[None, :]).reshape(-1)
1021
+
1022
+ def predict_proba(self, raw_prediction):
1023
+ """Predict probabilities.
1024
+
1025
+ Parameters
1026
+ ----------
1027
+ raw_prediction : array of shape (n_samples, n_classes)
1028
+ Raw prediction values (in link space).
1029
+
1030
+ Returns
1031
+ -------
1032
+ proba : array of shape (n_samples, n_classes)
1033
+ Element-wise class probabilities.
1034
+ """
1035
+ return self.link.inverse(raw_prediction)
1036
+
1037
+ def gradient_proba(
1038
+ self,
1039
+ y_true,
1040
+ raw_prediction,
1041
+ sample_weight=None,
1042
+ gradient_out=None,
1043
+ proba_out=None,
1044
+ n_threads=1,
1045
+ ):
1046
+ """Compute gradient and class probabilities fow raw_prediction.
1047
+
1048
+ Parameters
1049
+ ----------
1050
+ y_true : C-contiguous array of shape (n_samples,)
1051
+ Observed, true target values.
1052
+ raw_prediction : array of shape (n_samples, n_classes)
1053
+ Raw prediction values (in link space).
1054
+ sample_weight : None or C-contiguous array of shape (n_samples,)
1055
+ Sample weights.
1056
+ gradient_out : None or array of shape (n_samples, n_classes)
1057
+ A location into which the gradient is stored. If None, a new array
1058
+ might be created.
1059
+ proba_out : None or array of shape (n_samples, n_classes)
1060
+ A location into which the class probabilities are stored. If None,
1061
+ a new array might be created.
1062
+ n_threads : int, default=1
1063
+ Might use openmp thread parallelism.
1064
+
1065
+ Returns
1066
+ -------
1067
+ gradient : array of shape (n_samples, n_classes)
1068
+ Element-wise gradients.
1069
+
1070
+ proba : array of shape (n_samples, n_classes)
1071
+ Element-wise class probabilities.
1072
+ """
1073
+ if gradient_out is None:
1074
+ if proba_out is None:
1075
+ gradient_out = np.empty_like(raw_prediction)
1076
+ proba_out = np.empty_like(raw_prediction)
1077
+ else:
1078
+ gradient_out = np.empty_like(proba_out)
1079
+ elif proba_out is None:
1080
+ proba_out = np.empty_like(gradient_out)
1081
+
1082
+ self.closs.gradient_proba(
1083
+ y_true=y_true,
1084
+ raw_prediction=raw_prediction,
1085
+ sample_weight=sample_weight,
1086
+ gradient_out=gradient_out,
1087
+ proba_out=proba_out,
1088
+ n_threads=n_threads,
1089
+ )
1090
+ return gradient_out, proba_out
1091
+
1092
+
1093
+ class ExponentialLoss(BaseLoss):
1094
+ """Exponential loss with (half) logit link, for binary classification.
1095
+
1096
+ This is also know as boosting loss.
1097
+
1098
+ Domain:
1099
+ y_true in [0, 1], i.e. regression on the unit interval
1100
+ y_pred in (0, 1), i.e. boundaries excluded
1101
+
1102
+ Link:
1103
+ y_pred = expit(2 * raw_prediction)
1104
+
1105
+ For a given sample x_i, the exponential loss is defined as::
1106
+
1107
+ loss(x_i) = y_true_i * exp(-raw_pred_i)) + (1 - y_true_i) * exp(raw_pred_i)
1108
+
1109
+ See:
1110
+ - J. Friedman, T. Hastie, R. Tibshirani.
1111
+ "Additive logistic regression: a statistical view of boosting (With discussion
1112
+ and a rejoinder by the authors)." Ann. Statist. 28 (2) 337 - 407, April 2000.
1113
+ https://doi.org/10.1214/aos/1016218223
1114
+ - A. Buja, W. Stuetzle, Y. Shen. (2005).
1115
+ "Loss Functions for Binary Class Probability Estimation and Classification:
1116
+ Structure and Applications."
1117
+
1118
+ Note that the formulation works for classification, y = {0, 1}, as well as
1119
+ "exponential logistic" regression, y = [0, 1].
1120
+ Note that this is a proper scoring rule, but without it's canonical link.
1121
+
1122
+ More details: Inserting the predicted probability
1123
+ y_pred = expit(2 * raw_prediction) in the loss gives::
1124
+
1125
+ loss(x_i) = y_true_i * sqrt((1 - y_pred_i) / y_pred_i)
1126
+ + (1 - y_true_i) * sqrt(y_pred_i / (1 - y_pred_i))
1127
+ """
1128
+
1129
+ def __init__(self, sample_weight=None):
1130
+ super().__init__(
1131
+ closs=CyExponentialLoss(),
1132
+ link=HalfLogitLink(),
1133
+ n_classes=2,
1134
+ )
1135
+ self.interval_y_true = Interval(0, 1, True, True)
1136
+
1137
+ def constant_to_optimal_zero(self, y_true, sample_weight=None):
1138
+ # This is non-zero only if y_true is neither 0 nor 1.
1139
+ term = -2 * np.sqrt(y_true * (1 - y_true))
1140
+ if sample_weight is not None:
1141
+ term *= sample_weight
1142
+ return term
1143
+
1144
+ def predict_proba(self, raw_prediction):
1145
+ """Predict probabilities.
1146
+
1147
+ Parameters
1148
+ ----------
1149
+ raw_prediction : array of shape (n_samples,) or (n_samples, 1)
1150
+ Raw prediction values (in link space).
1151
+
1152
+ Returns
1153
+ -------
1154
+ proba : array of shape (n_samples, 2)
1155
+ Element-wise class probabilities.
1156
+ """
1157
+ # Be graceful to shape (n_samples, 1) -> (n_samples,)
1158
+ if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
1159
+ raw_prediction = raw_prediction.squeeze(1)
1160
+ proba = np.empty((raw_prediction.shape[0], 2), dtype=raw_prediction.dtype)
1161
+ proba[:, 1] = self.link.inverse(raw_prediction)
1162
+ proba[:, 0] = 1 - proba[:, 1]
1163
+ return proba
1164
+
1165
+
1166
+ _LOSSES = {
1167
+ "squared_error": HalfSquaredError,
1168
+ "absolute_error": AbsoluteError,
1169
+ "pinball_loss": PinballLoss,
1170
+ "huber_loss": HuberLoss,
1171
+ "poisson_loss": HalfPoissonLoss,
1172
+ "gamma_loss": HalfGammaLoss,
1173
+ "tweedie_loss": HalfTweedieLoss,
1174
+ "binomial_loss": HalfBinomialLoss,
1175
+ "multinomial_loss": HalfMultinomialLoss,
1176
+ "exponential_loss": ExponentialLoss,
1177
+ }
env-llmeval/lib/python3.10/site-packages/sklearn/_loss/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sklearn/_loss/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (184 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/_loss/tests/__pycache__/test_link.cpython-310.pyc ADDED
Binary file (2.66 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/_loss/tests/__pycache__/test_loss.cpython-310.pyc ADDED
Binary file (27 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/_loss/tests/test_link.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+ from numpy.testing import assert_allclose, assert_array_equal
4
+
5
+ from sklearn._loss.link import (
6
+ _LINKS,
7
+ HalfLogitLink,
8
+ Interval,
9
+ MultinomialLogit,
10
+ _inclusive_low_high,
11
+ )
12
+
13
+ LINK_FUNCTIONS = list(_LINKS.values())
14
+
15
+
16
+ def test_interval_raises():
17
+ """Test that interval with low > high raises ValueError."""
18
+ with pytest.raises(
19
+ ValueError, match="One must have low <= high; got low=1, high=0."
20
+ ):
21
+ Interval(1, 0, False, False)
22
+
23
+
24
+ @pytest.mark.parametrize(
25
+ "interval",
26
+ [
27
+ Interval(0, 1, False, False),
28
+ Interval(0, 1, False, True),
29
+ Interval(0, 1, True, False),
30
+ Interval(0, 1, True, True),
31
+ Interval(-np.inf, np.inf, False, False),
32
+ Interval(-np.inf, np.inf, False, True),
33
+ Interval(-np.inf, np.inf, True, False),
34
+ Interval(-np.inf, np.inf, True, True),
35
+ Interval(-10, -1, False, False),
36
+ Interval(-10, -1, False, True),
37
+ Interval(-10, -1, True, False),
38
+ Interval(-10, -1, True, True),
39
+ ],
40
+ )
41
+ def test_is_in_range(interval):
42
+ # make sure low and high are always within the interval, used for linspace
43
+ low, high = _inclusive_low_high(interval)
44
+
45
+ x = np.linspace(low, high, num=10)
46
+ assert interval.includes(x)
47
+
48
+ # x contains lower bound
49
+ assert interval.includes(np.r_[x, interval.low]) == interval.low_inclusive
50
+
51
+ # x contains upper bound
52
+ assert interval.includes(np.r_[x, interval.high]) == interval.high_inclusive
53
+
54
+ # x contains upper and lower bound
55
+ assert interval.includes(np.r_[x, interval.low, interval.high]) == (
56
+ interval.low_inclusive and interval.high_inclusive
57
+ )
58
+
59
+
60
+ @pytest.mark.parametrize("link", LINK_FUNCTIONS)
61
+ def test_link_inverse_identity(link, global_random_seed):
62
+ # Test that link of inverse gives identity.
63
+ rng = np.random.RandomState(global_random_seed)
64
+ link = link()
65
+ n_samples, n_classes = 100, None
66
+ # The values for `raw_prediction` are limited from -20 to 20 because in the
67
+ # class `LogitLink` the term `expit(x)` comes very close to 1 for large
68
+ # positive x and therefore loses precision.
69
+ if link.is_multiclass:
70
+ n_classes = 10
71
+ raw_prediction = rng.uniform(low=-20, high=20, size=(n_samples, n_classes))
72
+ if isinstance(link, MultinomialLogit):
73
+ raw_prediction = link.symmetrize_raw_prediction(raw_prediction)
74
+ elif isinstance(link, HalfLogitLink):
75
+ raw_prediction = rng.uniform(low=-10, high=10, size=(n_samples))
76
+ else:
77
+ raw_prediction = rng.uniform(low=-20, high=20, size=(n_samples))
78
+
79
+ assert_allclose(link.link(link.inverse(raw_prediction)), raw_prediction)
80
+ y_pred = link.inverse(raw_prediction)
81
+ assert_allclose(link.inverse(link.link(y_pred)), y_pred)
82
+
83
+
84
+ @pytest.mark.parametrize("link", LINK_FUNCTIONS)
85
+ def test_link_out_argument(link):
86
+ # Test that out argument gets assigned the result.
87
+ rng = np.random.RandomState(42)
88
+ link = link()
89
+ n_samples, n_classes = 100, None
90
+ if link.is_multiclass:
91
+ n_classes = 10
92
+ raw_prediction = rng.normal(loc=0, scale=10, size=(n_samples, n_classes))
93
+ if isinstance(link, MultinomialLogit):
94
+ raw_prediction = link.symmetrize_raw_prediction(raw_prediction)
95
+ else:
96
+ # So far, the valid interval of raw_prediction is (-inf, inf) and
97
+ # we do not need to distinguish.
98
+ raw_prediction = rng.uniform(low=-10, high=10, size=(n_samples))
99
+
100
+ y_pred = link.inverse(raw_prediction, out=None)
101
+ out = np.empty_like(raw_prediction)
102
+ y_pred_2 = link.inverse(raw_prediction, out=out)
103
+ assert_allclose(y_pred, out)
104
+ assert_array_equal(out, y_pred_2)
105
+ assert np.shares_memory(out, y_pred_2)
106
+
107
+ out = np.empty_like(y_pred)
108
+ raw_prediction_2 = link.link(y_pred, out=out)
109
+ assert_allclose(raw_prediction, out)
110
+ assert_array_equal(out, raw_prediction_2)
111
+ assert np.shares_memory(out, raw_prediction_2)
env-llmeval/lib/python3.10/site-packages/sklearn/_loss/tests/test_loss.py ADDED
@@ -0,0 +1,1320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+
3
+ import numpy as np
4
+ import pytest
5
+ from numpy.testing import assert_allclose, assert_array_equal
6
+ from pytest import approx
7
+ from scipy.optimize import (
8
+ LinearConstraint,
9
+ minimize,
10
+ minimize_scalar,
11
+ newton,
12
+ )
13
+ from scipy.special import logsumexp
14
+
15
+ from sklearn._loss.link import IdentityLink, _inclusive_low_high
16
+ from sklearn._loss.loss import (
17
+ _LOSSES,
18
+ AbsoluteError,
19
+ BaseLoss,
20
+ HalfBinomialLoss,
21
+ HalfGammaLoss,
22
+ HalfMultinomialLoss,
23
+ HalfPoissonLoss,
24
+ HalfSquaredError,
25
+ HalfTweedieLoss,
26
+ HalfTweedieLossIdentity,
27
+ HuberLoss,
28
+ PinballLoss,
29
+ )
30
+ from sklearn.utils import _IS_WASM, assert_all_finite
31
+ from sklearn.utils._testing import create_memmap_backed_data, skip_if_32bit
32
+
33
+ ALL_LOSSES = list(_LOSSES.values())
34
+
35
+ LOSS_INSTANCES = [loss() for loss in ALL_LOSSES]
36
+ # HalfTweedieLoss(power=1.5) is already there as default
37
+ LOSS_INSTANCES += [
38
+ PinballLoss(quantile=0.25),
39
+ HuberLoss(quantile=0.75),
40
+ HalfTweedieLoss(power=-1.5),
41
+ HalfTweedieLoss(power=0),
42
+ HalfTweedieLoss(power=1),
43
+ HalfTweedieLoss(power=2),
44
+ HalfTweedieLoss(power=3.0),
45
+ HalfTweedieLossIdentity(power=0),
46
+ HalfTweedieLossIdentity(power=1),
47
+ HalfTweedieLossIdentity(power=2),
48
+ HalfTweedieLossIdentity(power=3.0),
49
+ ]
50
+
51
+
52
+ def loss_instance_name(param):
53
+ if isinstance(param, BaseLoss):
54
+ loss = param
55
+ name = loss.__class__.__name__
56
+ if isinstance(loss, PinballLoss):
57
+ name += f"(quantile={loss.closs.quantile})"
58
+ elif isinstance(loss, HuberLoss):
59
+ name += f"(quantile={loss.quantile}"
60
+ elif hasattr(loss, "closs") and hasattr(loss.closs, "power"):
61
+ name += f"(power={loss.closs.power})"
62
+ return name
63
+ else:
64
+ return str(param)
65
+
66
+
67
+ def random_y_true_raw_prediction(
68
+ loss, n_samples, y_bound=(-100, 100), raw_bound=(-5, 5), seed=42
69
+ ):
70
+ """Random generate y_true and raw_prediction in valid range."""
71
+ rng = np.random.RandomState(seed)
72
+ if loss.is_multiclass:
73
+ raw_prediction = np.empty((n_samples, loss.n_classes))
74
+ raw_prediction.flat[:] = rng.uniform(
75
+ low=raw_bound[0],
76
+ high=raw_bound[1],
77
+ size=n_samples * loss.n_classes,
78
+ )
79
+ y_true = np.arange(n_samples).astype(float) % loss.n_classes
80
+ else:
81
+ # If link is identity, we must respect the interval of y_pred:
82
+ if isinstance(loss.link, IdentityLink):
83
+ low, high = _inclusive_low_high(loss.interval_y_pred)
84
+ low = np.amax([low, raw_bound[0]])
85
+ high = np.amin([high, raw_bound[1]])
86
+ raw_bound = (low, high)
87
+ raw_prediction = rng.uniform(
88
+ low=raw_bound[0], high=raw_bound[1], size=n_samples
89
+ )
90
+ # generate a y_true in valid range
91
+ low, high = _inclusive_low_high(loss.interval_y_true)
92
+ low = max(low, y_bound[0])
93
+ high = min(high, y_bound[1])
94
+ y_true = rng.uniform(low, high, size=n_samples)
95
+ # set some values at special boundaries
96
+ if loss.interval_y_true.low == 0 and loss.interval_y_true.low_inclusive:
97
+ y_true[:: (n_samples // 3)] = 0
98
+ if loss.interval_y_true.high == 1 and loss.interval_y_true.high_inclusive:
99
+ y_true[1 :: (n_samples // 3)] = 1
100
+
101
+ return y_true, raw_prediction
102
+
103
+
104
+ def numerical_derivative(func, x, eps):
105
+ """Helper function for numerical (first) derivatives."""
106
+ # For numerical derivatives, see
107
+ # https://en.wikipedia.org/wiki/Numerical_differentiation
108
+ # https://en.wikipedia.org/wiki/Finite_difference_coefficient
109
+ # We use central finite differences of accuracy 4.
110
+ h = np.full_like(x, fill_value=eps)
111
+ f_minus_2h = func(x - 2 * h)
112
+ f_minus_1h = func(x - h)
113
+ f_plus_1h = func(x + h)
114
+ f_plus_2h = func(x + 2 * h)
115
+ return (-f_plus_2h + 8 * f_plus_1h - 8 * f_minus_1h + f_minus_2h) / (12.0 * eps)
116
+
117
+
118
+ @pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
119
+ def test_loss_boundary(loss):
120
+ """Test interval ranges of y_true and y_pred in losses."""
121
+ # make sure low and high are always within the interval, used for linspace
122
+ if loss.is_multiclass:
123
+ y_true = np.linspace(0, 9, num=10)
124
+ else:
125
+ low, high = _inclusive_low_high(loss.interval_y_true)
126
+ y_true = np.linspace(low, high, num=10)
127
+
128
+ # add boundaries if they are included
129
+ if loss.interval_y_true.low_inclusive:
130
+ y_true = np.r_[y_true, loss.interval_y_true.low]
131
+ if loss.interval_y_true.high_inclusive:
132
+ y_true = np.r_[y_true, loss.interval_y_true.high]
133
+
134
+ assert loss.in_y_true_range(y_true)
135
+
136
+ n = y_true.shape[0]
137
+ low, high = _inclusive_low_high(loss.interval_y_pred)
138
+ if loss.is_multiclass:
139
+ y_pred = np.empty((n, 3))
140
+ y_pred[:, 0] = np.linspace(low, high, num=n)
141
+ y_pred[:, 1] = 0.5 * (1 - y_pred[:, 0])
142
+ y_pred[:, 2] = 0.5 * (1 - y_pred[:, 0])
143
+ else:
144
+ y_pred = np.linspace(low, high, num=n)
145
+
146
+ assert loss.in_y_pred_range(y_pred)
147
+
148
+ # calculating losses should not fail
149
+ raw_prediction = loss.link.link(y_pred)
150
+ loss.loss(y_true=y_true, raw_prediction=raw_prediction)
151
+
152
+
153
+ # Fixture to test valid value ranges.
154
+ Y_COMMON_PARAMS = [
155
+ # (loss, [y success], [y fail])
156
+ (HalfSquaredError(), [-100, 0, 0.1, 100], [-np.inf, np.inf]),
157
+ (AbsoluteError(), [-100, 0, 0.1, 100], [-np.inf, np.inf]),
158
+ (PinballLoss(), [-100, 0, 0.1, 100], [-np.inf, np.inf]),
159
+ (HuberLoss(), [-100, 0, 0.1, 100], [-np.inf, np.inf]),
160
+ (HalfPoissonLoss(), [0.1, 100], [-np.inf, -3, -0.1, np.inf]),
161
+ (HalfGammaLoss(), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
162
+ (HalfTweedieLoss(power=-3), [0.1, 100], [-np.inf, np.inf]),
163
+ (HalfTweedieLoss(power=0), [0.1, 100], [-np.inf, np.inf]),
164
+ (HalfTweedieLoss(power=1.5), [0.1, 100], [-np.inf, -3, -0.1, np.inf]),
165
+ (HalfTweedieLoss(power=2), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
166
+ (HalfTweedieLoss(power=3), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
167
+ (HalfTweedieLossIdentity(power=-3), [0.1, 100], [-np.inf, np.inf]),
168
+ (HalfTweedieLossIdentity(power=0), [-3, -0.1, 0, 0.1, 100], [-np.inf, np.inf]),
169
+ (HalfTweedieLossIdentity(power=1.5), [0.1, 100], [-np.inf, -3, -0.1, np.inf]),
170
+ (HalfTweedieLossIdentity(power=2), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
171
+ (HalfTweedieLossIdentity(power=3), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
172
+ (HalfBinomialLoss(), [0.1, 0.5, 0.9], [-np.inf, -1, 2, np.inf]),
173
+ (HalfMultinomialLoss(), [], [-np.inf, -1, 1.1, np.inf]),
174
+ ]
175
+ # y_pred and y_true do not always have the same domain (valid value range).
176
+ # Hence, we define extra sets of parameters for each of them.
177
+ Y_TRUE_PARAMS = [ # type: ignore
178
+ # (loss, [y success], [y fail])
179
+ (HalfPoissonLoss(), [0], []),
180
+ (HuberLoss(), [0], []),
181
+ (HalfTweedieLoss(power=-3), [-100, -0.1, 0], []),
182
+ (HalfTweedieLoss(power=0), [-100, 0], []),
183
+ (HalfTweedieLoss(power=1.5), [0], []),
184
+ (HalfTweedieLossIdentity(power=-3), [-100, -0.1, 0], []),
185
+ (HalfTweedieLossIdentity(power=0), [-100, 0], []),
186
+ (HalfTweedieLossIdentity(power=1.5), [0], []),
187
+ (HalfBinomialLoss(), [0, 1], []),
188
+ (HalfMultinomialLoss(), [0.0, 1.0, 2], []),
189
+ ]
190
+ Y_PRED_PARAMS = [
191
+ # (loss, [y success], [y fail])
192
+ (HalfPoissonLoss(), [], [0]),
193
+ (HalfTweedieLoss(power=-3), [], [-3, -0.1, 0]),
194
+ (HalfTweedieLoss(power=0), [], [-3, -0.1, 0]),
195
+ (HalfTweedieLoss(power=1.5), [], [0]),
196
+ (HalfTweedieLossIdentity(power=-3), [], [-3, -0.1, 0]),
197
+ (HalfTweedieLossIdentity(power=0), [-3, -0.1, 0], []),
198
+ (HalfTweedieLossIdentity(power=1.5), [], [0]),
199
+ (HalfBinomialLoss(), [], [0, 1]),
200
+ (HalfMultinomialLoss(), [0.1, 0.5], [0, 1]),
201
+ ]
202
+
203
+
204
+ @pytest.mark.parametrize(
205
+ "loss, y_true_success, y_true_fail", Y_COMMON_PARAMS + Y_TRUE_PARAMS
206
+ )
207
+ def test_loss_boundary_y_true(loss, y_true_success, y_true_fail):
208
+ """Test boundaries of y_true for loss functions."""
209
+ for y in y_true_success:
210
+ assert loss.in_y_true_range(np.array([y]))
211
+ for y in y_true_fail:
212
+ assert not loss.in_y_true_range(np.array([y]))
213
+
214
+
215
+ @pytest.mark.parametrize(
216
+ "loss, y_pred_success, y_pred_fail", Y_COMMON_PARAMS + Y_PRED_PARAMS # type: ignore
217
+ )
218
+ def test_loss_boundary_y_pred(loss, y_pred_success, y_pred_fail):
219
+ """Test boundaries of y_pred for loss functions."""
220
+ for y in y_pred_success:
221
+ assert loss.in_y_pred_range(np.array([y]))
222
+ for y in y_pred_fail:
223
+ assert not loss.in_y_pred_range(np.array([y]))
224
+
225
+
226
+ @pytest.mark.parametrize(
227
+ "loss, y_true, raw_prediction, loss_true, gradient_true, hessian_true",
228
+ [
229
+ (HalfSquaredError(), 1.0, 5.0, 8, 4, 1),
230
+ (AbsoluteError(), 1.0, 5.0, 4.0, 1.0, None),
231
+ (PinballLoss(quantile=0.5), 1.0, 5.0, 2, 0.5, None),
232
+ (PinballLoss(quantile=0.25), 1.0, 5.0, 4 * (1 - 0.25), 1 - 0.25, None),
233
+ (PinballLoss(quantile=0.25), 5.0, 1.0, 4 * 0.25, -0.25, None),
234
+ (HuberLoss(quantile=0.5, delta=3), 1.0, 5.0, 3 * (4 - 3 / 2), None, None),
235
+ (HuberLoss(quantile=0.5, delta=3), 1.0, 3.0, 0.5 * 2**2, None, None),
236
+ (HalfPoissonLoss(), 2.0, np.log(4), 4 - 2 * np.log(4), 4 - 2, 4),
237
+ (HalfGammaLoss(), 2.0, np.log(4), np.log(4) + 2 / 4, 1 - 2 / 4, 2 / 4),
238
+ (HalfTweedieLoss(power=3), 2.0, np.log(4), -1 / 4 + 1 / 4**2, None, None),
239
+ (HalfTweedieLossIdentity(power=1), 2.0, 4.0, 2 - 2 * np.log(2), None, None),
240
+ (HalfTweedieLossIdentity(power=2), 2.0, 4.0, np.log(2) - 1 / 2, None, None),
241
+ (
242
+ HalfTweedieLossIdentity(power=3),
243
+ 2.0,
244
+ 4.0,
245
+ -1 / 4 + 1 / 4**2 + 1 / 2 / 2,
246
+ None,
247
+ None,
248
+ ),
249
+ (
250
+ HalfBinomialLoss(),
251
+ 0.25,
252
+ np.log(4),
253
+ np.log1p(4) - 0.25 * np.log(4),
254
+ None,
255
+ None,
256
+ ),
257
+ # Extreme log loss cases, checked with mpmath:
258
+ # import mpmath as mp
259
+ #
260
+ # # Stolen from scipy
261
+ # def mpf2float(x):
262
+ # return float(mp.nstr(x, 17, min_fixed=0, max_fixed=0))
263
+ #
264
+ # def mp_logloss(y_true, raw):
265
+ # with mp.workdps(100):
266
+ # y_true, raw = mp.mpf(float(y_true)), mp.mpf(float(raw))
267
+ # out = mp.log1p(mp.exp(raw)) - y_true * raw
268
+ # return mpf2float(out)
269
+ #
270
+ # def mp_gradient(y_true, raw):
271
+ # with mp.workdps(100):
272
+ # y_true, raw = mp.mpf(float(y_true)), mp.mpf(float(raw))
273
+ # out = mp.mpf(1) / (mp.mpf(1) + mp.exp(-raw)) - y_true
274
+ # return mpf2float(out)
275
+ #
276
+ # def mp_hessian(y_true, raw):
277
+ # with mp.workdps(100):
278
+ # y_true, raw = mp.mpf(float(y_true)), mp.mpf(float(raw))
279
+ # p = mp.mpf(1) / (mp.mpf(1) + mp.exp(-raw))
280
+ # out = p * (mp.mpf(1) - p)
281
+ # return mpf2float(out)
282
+ #
283
+ # y, raw = 0.0, 37.
284
+ # mp_logloss(y, raw), mp_gradient(y, raw), mp_hessian(y, raw)
285
+ (HalfBinomialLoss(), 0.0, -1e20, 0, 0, 0),
286
+ (HalfBinomialLoss(), 1.0, -1e20, 1e20, -1, 0),
287
+ (HalfBinomialLoss(), 0.0, -1e3, 0, 0, 0),
288
+ (HalfBinomialLoss(), 1.0, -1e3, 1e3, -1, 0),
289
+ (HalfBinomialLoss(), 1.0, -37.5, 37.5, -1, 0),
290
+ (HalfBinomialLoss(), 1.0, -37.0, 37, 1e-16 - 1, 8.533047625744065e-17),
291
+ (HalfBinomialLoss(), 0.0, -37.0, *[8.533047625744065e-17] * 3),
292
+ (HalfBinomialLoss(), 1.0, -36.9, 36.9, 1e-16 - 1, 9.430476078526806e-17),
293
+ (HalfBinomialLoss(), 0.0, -36.9, *[9.430476078526806e-17] * 3),
294
+ (HalfBinomialLoss(), 0.0, 37.0, 37, 1 - 1e-16, 8.533047625744065e-17),
295
+ (HalfBinomialLoss(), 1.0, 37.0, *[8.533047625744066e-17] * 3),
296
+ (HalfBinomialLoss(), 0.0, 37.5, 37.5, 1, 5.175555005801868e-17),
297
+ (HalfBinomialLoss(), 0.0, 232.8, 232.8, 1, 1.4287342391028437e-101),
298
+ (HalfBinomialLoss(), 1.0, 1e20, 0, 0, 0),
299
+ (HalfBinomialLoss(), 0.0, 1e20, 1e20, 1, 0),
300
+ (
301
+ HalfBinomialLoss(),
302
+ 1.0,
303
+ 232.8,
304
+ 0,
305
+ -1.4287342391028437e-101,
306
+ 1.4287342391028437e-101,
307
+ ),
308
+ (HalfBinomialLoss(), 1.0, 232.9, 0, 0, 0),
309
+ (HalfBinomialLoss(), 1.0, 1e3, 0, 0, 0),
310
+ (HalfBinomialLoss(), 0.0, 1e3, 1e3, 1, 0),
311
+ (
312
+ HalfMultinomialLoss(n_classes=3),
313
+ 0.0,
314
+ [0.2, 0.5, 0.3],
315
+ logsumexp([0.2, 0.5, 0.3]) - 0.2,
316
+ None,
317
+ None,
318
+ ),
319
+ (
320
+ HalfMultinomialLoss(n_classes=3),
321
+ 1.0,
322
+ [0.2, 0.5, 0.3],
323
+ logsumexp([0.2, 0.5, 0.3]) - 0.5,
324
+ None,
325
+ None,
326
+ ),
327
+ (
328
+ HalfMultinomialLoss(n_classes=3),
329
+ 2.0,
330
+ [0.2, 0.5, 0.3],
331
+ logsumexp([0.2, 0.5, 0.3]) - 0.3,
332
+ None,
333
+ None,
334
+ ),
335
+ (
336
+ HalfMultinomialLoss(n_classes=3),
337
+ 2.0,
338
+ [1e4, 0, 7e-7],
339
+ logsumexp([1e4, 0, 7e-7]) - (7e-7),
340
+ None,
341
+ None,
342
+ ),
343
+ ],
344
+ ids=loss_instance_name,
345
+ )
346
+ def test_loss_on_specific_values(
347
+ loss, y_true, raw_prediction, loss_true, gradient_true, hessian_true
348
+ ):
349
+ """Test losses, gradients and hessians at specific values."""
350
+ loss1 = loss(y_true=np.array([y_true]), raw_prediction=np.array([raw_prediction]))
351
+ grad1 = loss.gradient(
352
+ y_true=np.array([y_true]), raw_prediction=np.array([raw_prediction])
353
+ )
354
+ loss2, grad2 = loss.loss_gradient(
355
+ y_true=np.array([y_true]), raw_prediction=np.array([raw_prediction])
356
+ )
357
+ grad3, hess = loss.gradient_hessian(
358
+ y_true=np.array([y_true]), raw_prediction=np.array([raw_prediction])
359
+ )
360
+
361
+ assert loss1 == approx(loss_true, rel=1e-15, abs=1e-15)
362
+ assert loss2 == approx(loss_true, rel=1e-15, abs=1e-15)
363
+
364
+ if gradient_true is not None:
365
+ assert grad1 == approx(gradient_true, rel=1e-15, abs=1e-15)
366
+ assert grad2 == approx(gradient_true, rel=1e-15, abs=1e-15)
367
+ assert grad3 == approx(gradient_true, rel=1e-15, abs=1e-15)
368
+
369
+ if hessian_true is not None:
370
+ assert hess == approx(hessian_true, rel=1e-15, abs=1e-15)
371
+
372
+
373
+ @pytest.mark.parametrize("loss", ALL_LOSSES)
374
+ @pytest.mark.parametrize("readonly_memmap", [False, True])
375
+ @pytest.mark.parametrize("dtype_in", [np.float32, np.float64])
376
+ @pytest.mark.parametrize("dtype_out", [np.float32, np.float64])
377
+ @pytest.mark.parametrize("sample_weight", [None, 1])
378
+ @pytest.mark.parametrize("out1", [None, 1])
379
+ @pytest.mark.parametrize("out2", [None, 1])
380
+ @pytest.mark.parametrize("n_threads", [1, 2])
381
+ def test_loss_dtype(
382
+ loss, readonly_memmap, dtype_in, dtype_out, sample_weight, out1, out2, n_threads
383
+ ):
384
+ """Test acceptance of dtypes, readonly and writeable arrays in loss functions.
385
+
386
+ Check that loss accepts if all input arrays are either all float32 or all
387
+ float64, and all output arrays are either all float32 or all float64.
388
+
389
+ Also check that input arrays can be readonly, e.g. memory mapped.
390
+ """
391
+ if _IS_WASM and readonly_memmap: # pragma: nocover
392
+ pytest.xfail(reason="memmap not fully supported")
393
+
394
+ loss = loss()
395
+ # generate a y_true and raw_prediction in valid range
396
+ n_samples = 5
397
+ y_true, raw_prediction = random_y_true_raw_prediction(
398
+ loss=loss,
399
+ n_samples=n_samples,
400
+ y_bound=(-100, 100),
401
+ raw_bound=(-10, 10),
402
+ seed=42,
403
+ )
404
+ y_true = y_true.astype(dtype_in)
405
+ raw_prediction = raw_prediction.astype(dtype_in)
406
+
407
+ if sample_weight is not None:
408
+ sample_weight = np.array([2.0] * n_samples, dtype=dtype_in)
409
+ if out1 is not None:
410
+ out1 = np.empty_like(y_true, dtype=dtype_out)
411
+ if out2 is not None:
412
+ out2 = np.empty_like(raw_prediction, dtype=dtype_out)
413
+
414
+ if readonly_memmap:
415
+ y_true = create_memmap_backed_data(y_true)
416
+ raw_prediction = create_memmap_backed_data(raw_prediction)
417
+ if sample_weight is not None:
418
+ sample_weight = create_memmap_backed_data(sample_weight)
419
+
420
+ loss.loss(
421
+ y_true=y_true,
422
+ raw_prediction=raw_prediction,
423
+ sample_weight=sample_weight,
424
+ loss_out=out1,
425
+ n_threads=n_threads,
426
+ )
427
+ loss.gradient(
428
+ y_true=y_true,
429
+ raw_prediction=raw_prediction,
430
+ sample_weight=sample_weight,
431
+ gradient_out=out2,
432
+ n_threads=n_threads,
433
+ )
434
+ loss.loss_gradient(
435
+ y_true=y_true,
436
+ raw_prediction=raw_prediction,
437
+ sample_weight=sample_weight,
438
+ loss_out=out1,
439
+ gradient_out=out2,
440
+ n_threads=n_threads,
441
+ )
442
+ if out1 is not None and loss.is_multiclass:
443
+ out1 = np.empty_like(raw_prediction, dtype=dtype_out)
444
+ loss.gradient_hessian(
445
+ y_true=y_true,
446
+ raw_prediction=raw_prediction,
447
+ sample_weight=sample_weight,
448
+ gradient_out=out1,
449
+ hessian_out=out2,
450
+ n_threads=n_threads,
451
+ )
452
+ loss(y_true=y_true, raw_prediction=raw_prediction, sample_weight=sample_weight)
453
+ loss.fit_intercept_only(y_true=y_true, sample_weight=sample_weight)
454
+ loss.constant_to_optimal_zero(y_true=y_true, sample_weight=sample_weight)
455
+ if hasattr(loss, "predict_proba"):
456
+ loss.predict_proba(raw_prediction=raw_prediction)
457
+ if hasattr(loss, "gradient_proba"):
458
+ loss.gradient_proba(
459
+ y_true=y_true,
460
+ raw_prediction=raw_prediction,
461
+ sample_weight=sample_weight,
462
+ gradient_out=out1,
463
+ proba_out=out2,
464
+ n_threads=n_threads,
465
+ )
466
+
467
+
468
+ @pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
469
+ @pytest.mark.parametrize("sample_weight", [None, "range"])
470
+ def test_loss_same_as_C_functions(loss, sample_weight):
471
+ """Test that Python and Cython functions return same results."""
472
+ y_true, raw_prediction = random_y_true_raw_prediction(
473
+ loss=loss,
474
+ n_samples=20,
475
+ y_bound=(-100, 100),
476
+ raw_bound=(-10, 10),
477
+ seed=42,
478
+ )
479
+ if sample_weight == "range":
480
+ sample_weight = np.linspace(1, y_true.shape[0], num=y_true.shape[0])
481
+
482
+ out_l1 = np.empty_like(y_true)
483
+ out_l2 = np.empty_like(y_true)
484
+ out_g1 = np.empty_like(raw_prediction)
485
+ out_g2 = np.empty_like(raw_prediction)
486
+ out_h1 = np.empty_like(raw_prediction)
487
+ out_h2 = np.empty_like(raw_prediction)
488
+ loss.loss(
489
+ y_true=y_true,
490
+ raw_prediction=raw_prediction,
491
+ sample_weight=sample_weight,
492
+ loss_out=out_l1,
493
+ )
494
+ loss.closs.loss(
495
+ y_true=y_true,
496
+ raw_prediction=raw_prediction,
497
+ sample_weight=sample_weight,
498
+ loss_out=out_l2,
499
+ ),
500
+ assert_allclose(out_l1, out_l2)
501
+ loss.gradient(
502
+ y_true=y_true,
503
+ raw_prediction=raw_prediction,
504
+ sample_weight=sample_weight,
505
+ gradient_out=out_g1,
506
+ )
507
+ loss.closs.gradient(
508
+ y_true=y_true,
509
+ raw_prediction=raw_prediction,
510
+ sample_weight=sample_weight,
511
+ gradient_out=out_g2,
512
+ )
513
+ assert_allclose(out_g1, out_g2)
514
+ loss.closs.loss_gradient(
515
+ y_true=y_true,
516
+ raw_prediction=raw_prediction,
517
+ sample_weight=sample_weight,
518
+ loss_out=out_l1,
519
+ gradient_out=out_g1,
520
+ )
521
+ loss.closs.loss_gradient(
522
+ y_true=y_true,
523
+ raw_prediction=raw_prediction,
524
+ sample_weight=sample_weight,
525
+ loss_out=out_l2,
526
+ gradient_out=out_g2,
527
+ )
528
+ assert_allclose(out_l1, out_l2)
529
+ assert_allclose(out_g1, out_g2)
530
+ loss.gradient_hessian(
531
+ y_true=y_true,
532
+ raw_prediction=raw_prediction,
533
+ sample_weight=sample_weight,
534
+ gradient_out=out_g1,
535
+ hessian_out=out_h1,
536
+ )
537
+ loss.closs.gradient_hessian(
538
+ y_true=y_true,
539
+ raw_prediction=raw_prediction,
540
+ sample_weight=sample_weight,
541
+ gradient_out=out_g2,
542
+ hessian_out=out_h2,
543
+ )
544
+ assert_allclose(out_g1, out_g2)
545
+ assert_allclose(out_h1, out_h2)
546
+
547
+
548
+ @pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
549
+ @pytest.mark.parametrize("sample_weight", [None, "range"])
550
+ def test_loss_gradients_are_the_same(loss, sample_weight, global_random_seed):
551
+ """Test that loss and gradient are the same across different functions.
552
+
553
+ Also test that output arguments contain correct results.
554
+ """
555
+ y_true, raw_prediction = random_y_true_raw_prediction(
556
+ loss=loss,
557
+ n_samples=20,
558
+ y_bound=(-100, 100),
559
+ raw_bound=(-10, 10),
560
+ seed=global_random_seed,
561
+ )
562
+ if sample_weight == "range":
563
+ sample_weight = np.linspace(1, y_true.shape[0], num=y_true.shape[0])
564
+
565
+ out_l1 = np.empty_like(y_true)
566
+ out_l2 = np.empty_like(y_true)
567
+ out_g1 = np.empty_like(raw_prediction)
568
+ out_g2 = np.empty_like(raw_prediction)
569
+ out_g3 = np.empty_like(raw_prediction)
570
+ out_h3 = np.empty_like(raw_prediction)
571
+
572
+ l1 = loss.loss(
573
+ y_true=y_true,
574
+ raw_prediction=raw_prediction,
575
+ sample_weight=sample_weight,
576
+ loss_out=out_l1,
577
+ )
578
+ g1 = loss.gradient(
579
+ y_true=y_true,
580
+ raw_prediction=raw_prediction,
581
+ sample_weight=sample_weight,
582
+ gradient_out=out_g1,
583
+ )
584
+ l2, g2 = loss.loss_gradient(
585
+ y_true=y_true,
586
+ raw_prediction=raw_prediction,
587
+ sample_weight=sample_weight,
588
+ loss_out=out_l2,
589
+ gradient_out=out_g2,
590
+ )
591
+ g3, h3 = loss.gradient_hessian(
592
+ y_true=y_true,
593
+ raw_prediction=raw_prediction,
594
+ sample_weight=sample_weight,
595
+ gradient_out=out_g3,
596
+ hessian_out=out_h3,
597
+ )
598
+ assert_allclose(l1, l2)
599
+ assert_array_equal(l1, out_l1)
600
+ assert np.shares_memory(l1, out_l1)
601
+ assert_array_equal(l2, out_l2)
602
+ assert np.shares_memory(l2, out_l2)
603
+ assert_allclose(g1, g2)
604
+ assert_allclose(g1, g3)
605
+ assert_array_equal(g1, out_g1)
606
+ assert np.shares_memory(g1, out_g1)
607
+ assert_array_equal(g2, out_g2)
608
+ assert np.shares_memory(g2, out_g2)
609
+ assert_array_equal(g3, out_g3)
610
+ assert np.shares_memory(g3, out_g3)
611
+
612
+ if hasattr(loss, "gradient_proba"):
613
+ assert loss.is_multiclass # only for HalfMultinomialLoss
614
+ out_g4 = np.empty_like(raw_prediction)
615
+ out_proba = np.empty_like(raw_prediction)
616
+ g4, proba = loss.gradient_proba(
617
+ y_true=y_true,
618
+ raw_prediction=raw_prediction,
619
+ sample_weight=sample_weight,
620
+ gradient_out=out_g4,
621
+ proba_out=out_proba,
622
+ )
623
+ assert_allclose(g1, out_g4)
624
+ assert_allclose(g1, g4)
625
+ assert_allclose(proba, out_proba)
626
+ assert_allclose(np.sum(proba, axis=1), 1, rtol=1e-11)
627
+
628
+
629
+ @pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
630
+ @pytest.mark.parametrize("sample_weight", ["ones", "random"])
631
+ def test_sample_weight_multiplies(loss, sample_weight, global_random_seed):
632
+ """Test sample weights in loss, gradients and hessians.
633
+
634
+ Make sure that passing sample weights to loss, gradient and hessian
635
+ computation methods is equivalent to multiplying by the weights.
636
+ """
637
+ n_samples = 100
638
+ y_true, raw_prediction = random_y_true_raw_prediction(
639
+ loss=loss,
640
+ n_samples=n_samples,
641
+ y_bound=(-100, 100),
642
+ raw_bound=(-5, 5),
643
+ seed=global_random_seed,
644
+ )
645
+
646
+ if sample_weight == "ones":
647
+ sample_weight = np.ones(shape=n_samples, dtype=np.float64)
648
+ else:
649
+ rng = np.random.RandomState(global_random_seed)
650
+ sample_weight = rng.normal(size=n_samples).astype(np.float64)
651
+
652
+ assert_allclose(
653
+ loss.loss(
654
+ y_true=y_true,
655
+ raw_prediction=raw_prediction,
656
+ sample_weight=sample_weight,
657
+ ),
658
+ sample_weight
659
+ * loss.loss(
660
+ y_true=y_true,
661
+ raw_prediction=raw_prediction,
662
+ sample_weight=None,
663
+ ),
664
+ )
665
+
666
+ losses, gradient = loss.loss_gradient(
667
+ y_true=y_true,
668
+ raw_prediction=raw_prediction,
669
+ sample_weight=None,
670
+ )
671
+ losses_sw, gradient_sw = loss.loss_gradient(
672
+ y_true=y_true,
673
+ raw_prediction=raw_prediction,
674
+ sample_weight=sample_weight,
675
+ )
676
+ assert_allclose(losses * sample_weight, losses_sw)
677
+ if not loss.is_multiclass:
678
+ assert_allclose(gradient * sample_weight, gradient_sw)
679
+ else:
680
+ assert_allclose(gradient * sample_weight[:, None], gradient_sw)
681
+
682
+ gradient, hessian = loss.gradient_hessian(
683
+ y_true=y_true,
684
+ raw_prediction=raw_prediction,
685
+ sample_weight=None,
686
+ )
687
+ gradient_sw, hessian_sw = loss.gradient_hessian(
688
+ y_true=y_true,
689
+ raw_prediction=raw_prediction,
690
+ sample_weight=sample_weight,
691
+ )
692
+ if not loss.is_multiclass:
693
+ assert_allclose(gradient * sample_weight, gradient_sw)
694
+ assert_allclose(hessian * sample_weight, hessian_sw)
695
+ else:
696
+ assert_allclose(gradient * sample_weight[:, None], gradient_sw)
697
+ assert_allclose(hessian * sample_weight[:, None], hessian_sw)
698
+
699
+
700
+ @pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
701
+ def test_graceful_squeezing(loss):
702
+ """Test that reshaped raw_prediction gives same results."""
703
+ y_true, raw_prediction = random_y_true_raw_prediction(
704
+ loss=loss,
705
+ n_samples=20,
706
+ y_bound=(-100, 100),
707
+ raw_bound=(-10, 10),
708
+ seed=42,
709
+ )
710
+
711
+ if raw_prediction.ndim == 1:
712
+ raw_prediction_2d = raw_prediction[:, None]
713
+ assert_allclose(
714
+ loss.loss(y_true=y_true, raw_prediction=raw_prediction_2d),
715
+ loss.loss(y_true=y_true, raw_prediction=raw_prediction),
716
+ )
717
+ assert_allclose(
718
+ loss.loss_gradient(y_true=y_true, raw_prediction=raw_prediction_2d),
719
+ loss.loss_gradient(y_true=y_true, raw_prediction=raw_prediction),
720
+ )
721
+ assert_allclose(
722
+ loss.gradient(y_true=y_true, raw_prediction=raw_prediction_2d),
723
+ loss.gradient(y_true=y_true, raw_prediction=raw_prediction),
724
+ )
725
+ assert_allclose(
726
+ loss.gradient_hessian(y_true=y_true, raw_prediction=raw_prediction_2d),
727
+ loss.gradient_hessian(y_true=y_true, raw_prediction=raw_prediction),
728
+ )
729
+
730
+
731
+ @pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
732
+ @pytest.mark.parametrize("sample_weight", [None, "range"])
733
+ def test_loss_of_perfect_prediction(loss, sample_weight):
734
+ """Test value of perfect predictions.
735
+
736
+ Loss of y_pred = y_true plus constant_to_optimal_zero should sums up to
737
+ zero.
738
+ """
739
+ if not loss.is_multiclass:
740
+ # Use small values such that exp(value) is not nan.
741
+ raw_prediction = np.array([-10, -0.1, 0, 0.1, 3, 10])
742
+ # If link is identity, we must respect the interval of y_pred:
743
+ if isinstance(loss.link, IdentityLink):
744
+ eps = 1e-10
745
+ low = loss.interval_y_pred.low
746
+ if not loss.interval_y_pred.low_inclusive:
747
+ low = low + eps
748
+ high = loss.interval_y_pred.high
749
+ if not loss.interval_y_pred.high_inclusive:
750
+ high = high - eps
751
+ raw_prediction = np.clip(raw_prediction, low, high)
752
+ y_true = loss.link.inverse(raw_prediction)
753
+ else:
754
+ # HalfMultinomialLoss
755
+ y_true = np.arange(loss.n_classes).astype(float)
756
+ # raw_prediction with entries -exp(10), but +exp(10) on the diagonal
757
+ # this is close enough to np.inf which would produce nan
758
+ raw_prediction = np.full(
759
+ shape=(loss.n_classes, loss.n_classes),
760
+ fill_value=-np.exp(10),
761
+ dtype=float,
762
+ )
763
+ raw_prediction.flat[:: loss.n_classes + 1] = np.exp(10)
764
+
765
+ if sample_weight == "range":
766
+ sample_weight = np.linspace(1, y_true.shape[0], num=y_true.shape[0])
767
+
768
+ loss_value = loss.loss(
769
+ y_true=y_true,
770
+ raw_prediction=raw_prediction,
771
+ sample_weight=sample_weight,
772
+ )
773
+ constant_term = loss.constant_to_optimal_zero(
774
+ y_true=y_true, sample_weight=sample_weight
775
+ )
776
+ # Comparing loss_value + constant_term to zero would result in large
777
+ # round-off errors.
778
+ assert_allclose(loss_value, -constant_term, atol=1e-14, rtol=1e-15)
779
+
780
+
781
+ @pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
782
+ @pytest.mark.parametrize("sample_weight", [None, "range"])
783
+ def test_gradients_hessians_numerically(loss, sample_weight, global_random_seed):
784
+ """Test gradients and hessians with numerical derivatives.
785
+
786
+ Gradient should equal the numerical derivatives of the loss function.
787
+ Hessians should equal the numerical derivatives of gradients.
788
+ """
789
+ n_samples = 20
790
+ y_true, raw_prediction = random_y_true_raw_prediction(
791
+ loss=loss,
792
+ n_samples=n_samples,
793
+ y_bound=(-100, 100),
794
+ raw_bound=(-5, 5),
795
+ seed=global_random_seed,
796
+ )
797
+
798
+ if sample_weight == "range":
799
+ sample_weight = np.linspace(1, y_true.shape[0], num=y_true.shape[0])
800
+
801
+ g, h = loss.gradient_hessian(
802
+ y_true=y_true,
803
+ raw_prediction=raw_prediction,
804
+ sample_weight=sample_weight,
805
+ )
806
+
807
+ assert g.shape == raw_prediction.shape
808
+ assert h.shape == raw_prediction.shape
809
+
810
+ if not loss.is_multiclass:
811
+
812
+ def loss_func(x):
813
+ return loss.loss(
814
+ y_true=y_true,
815
+ raw_prediction=x,
816
+ sample_weight=sample_weight,
817
+ )
818
+
819
+ g_numeric = numerical_derivative(loss_func, raw_prediction, eps=1e-6)
820
+ assert_allclose(g, g_numeric, rtol=5e-6, atol=1e-10)
821
+
822
+ def grad_func(x):
823
+ return loss.gradient(
824
+ y_true=y_true,
825
+ raw_prediction=x,
826
+ sample_weight=sample_weight,
827
+ )
828
+
829
+ h_numeric = numerical_derivative(grad_func, raw_prediction, eps=1e-6)
830
+ if loss.approx_hessian:
831
+ # TODO: What could we test if loss.approx_hessian?
832
+ pass
833
+ else:
834
+ assert_allclose(h, h_numeric, rtol=5e-6, atol=1e-10)
835
+ else:
836
+ # For multiclass loss, we should only change the predictions of the
837
+ # class for which the derivative is taken for, e.g. offset[:, k] = eps
838
+ # for class k.
839
+ # As a softmax is computed, offsetting the whole array by a constant
840
+ # would have no effect on the probabilities, and thus on the loss.
841
+ for k in range(loss.n_classes):
842
+
843
+ def loss_func(x):
844
+ raw = raw_prediction.copy()
845
+ raw[:, k] = x
846
+ return loss.loss(
847
+ y_true=y_true,
848
+ raw_prediction=raw,
849
+ sample_weight=sample_weight,
850
+ )
851
+
852
+ g_numeric = numerical_derivative(loss_func, raw_prediction[:, k], eps=1e-5)
853
+ assert_allclose(g[:, k], g_numeric, rtol=5e-6, atol=1e-10)
854
+
855
+ def grad_func(x):
856
+ raw = raw_prediction.copy()
857
+ raw[:, k] = x
858
+ return loss.gradient(
859
+ y_true=y_true,
860
+ raw_prediction=raw,
861
+ sample_weight=sample_weight,
862
+ )[:, k]
863
+
864
+ h_numeric = numerical_derivative(grad_func, raw_prediction[:, k], eps=1e-6)
865
+ if loss.approx_hessian:
866
+ # TODO: What could we test if loss.approx_hessian?
867
+ pass
868
+ else:
869
+ assert_allclose(h[:, k], h_numeric, rtol=5e-6, atol=1e-10)
870
+
871
+
872
+ @pytest.mark.parametrize(
873
+ "loss, x0, y_true",
874
+ [
875
+ ("squared_error", -2.0, 42),
876
+ ("squared_error", 117.0, 1.05),
877
+ ("squared_error", 0.0, 0.0),
878
+ # The argmin of binomial_loss for y_true=0 and y_true=1 is resp.
879
+ # -inf and +inf due to logit, cf. "complete separation". Therefore, we
880
+ # use 0 < y_true < 1.
881
+ ("binomial_loss", 0.3, 0.1),
882
+ ("binomial_loss", -12, 0.2),
883
+ ("binomial_loss", 30, 0.9),
884
+ ("poisson_loss", 12.0, 1.0),
885
+ ("poisson_loss", 0.0, 2.0),
886
+ ("poisson_loss", -22.0, 10.0),
887
+ ],
888
+ )
889
+ @skip_if_32bit
890
+ def test_derivatives(loss, x0, y_true):
891
+ """Test that gradients are zero at the minimum of the loss.
892
+
893
+ We check this on a single value/sample using Halley's method with the
894
+ first and second order derivatives computed by the Loss instance.
895
+ Note that methods of Loss instances operate on arrays while the newton
896
+ root finder expects a scalar or a one-element array for this purpose.
897
+ """
898
+ loss = _LOSSES[loss](sample_weight=None)
899
+ y_true = np.array([y_true], dtype=np.float64)
900
+ x0 = np.array([x0], dtype=np.float64)
901
+
902
+ def func(x: np.ndarray) -> np.ndarray:
903
+ """Compute loss plus constant term.
904
+
905
+ The constant term is such that the minimum function value is zero,
906
+ which is required by the Newton method.
907
+ """
908
+ return loss.loss(
909
+ y_true=y_true, raw_prediction=x
910
+ ) + loss.constant_to_optimal_zero(y_true=y_true)
911
+
912
+ def fprime(x: np.ndarray) -> np.ndarray:
913
+ return loss.gradient(y_true=y_true, raw_prediction=x)
914
+
915
+ def fprime2(x: np.ndarray) -> np.ndarray:
916
+ return loss.gradient_hessian(y_true=y_true, raw_prediction=x)[1]
917
+
918
+ optimum = newton(
919
+ func,
920
+ x0=x0,
921
+ fprime=fprime,
922
+ fprime2=fprime2,
923
+ maxiter=100,
924
+ tol=5e-8,
925
+ )
926
+
927
+ # Need to ravel arrays because assert_allclose requires matching
928
+ # dimensions.
929
+ y_true = y_true.ravel()
930
+ optimum = optimum.ravel()
931
+ assert_allclose(loss.link.inverse(optimum), y_true)
932
+ assert_allclose(func(optimum), 0, atol=1e-14)
933
+ assert_allclose(loss.gradient(y_true=y_true, raw_prediction=optimum), 0, atol=5e-7)
934
+
935
+
936
+ @pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
937
+ @pytest.mark.parametrize("sample_weight", [None, "range"])
938
+ def test_loss_intercept_only(loss, sample_weight):
939
+ """Test that fit_intercept_only returns the argmin of the loss.
940
+
941
+ Also test that the gradient is zero at the minimum.
942
+ """
943
+ n_samples = 50
944
+ if not loss.is_multiclass:
945
+ y_true = loss.link.inverse(np.linspace(-4, 4, num=n_samples))
946
+ else:
947
+ y_true = np.arange(n_samples).astype(np.float64) % loss.n_classes
948
+ y_true[::5] = 0 # exceedance of class 0
949
+
950
+ if sample_weight == "range":
951
+ sample_weight = np.linspace(0.1, 2, num=n_samples)
952
+
953
+ a = loss.fit_intercept_only(y_true=y_true, sample_weight=sample_weight)
954
+
955
+ # find minimum by optimization
956
+ def fun(x):
957
+ if not loss.is_multiclass:
958
+ raw_prediction = np.full(shape=(n_samples), fill_value=x)
959
+ else:
960
+ raw_prediction = np.ascontiguousarray(
961
+ np.broadcast_to(x, shape=(n_samples, loss.n_classes))
962
+ )
963
+ return loss(
964
+ y_true=y_true,
965
+ raw_prediction=raw_prediction,
966
+ sample_weight=sample_weight,
967
+ )
968
+
969
+ if not loss.is_multiclass:
970
+ opt = minimize_scalar(fun, tol=1e-7, options={"maxiter": 100})
971
+ grad = loss.gradient(
972
+ y_true=y_true,
973
+ raw_prediction=np.full_like(y_true, a),
974
+ sample_weight=sample_weight,
975
+ )
976
+ assert a.shape == tuple() # scalar
977
+ assert a.dtype == y_true.dtype
978
+ assert_all_finite(a)
979
+ a == approx(opt.x, rel=1e-7)
980
+ grad.sum() == approx(0, abs=1e-12)
981
+ else:
982
+ # The constraint corresponds to sum(raw_prediction) = 0. Without it, we would
983
+ # need to apply loss.symmetrize_raw_prediction to opt.x before comparing.
984
+ opt = minimize(
985
+ fun,
986
+ np.zeros((loss.n_classes)),
987
+ tol=1e-13,
988
+ options={"maxiter": 100},
989
+ method="SLSQP",
990
+ constraints=LinearConstraint(np.ones((1, loss.n_classes)), 0, 0),
991
+ )
992
+ grad = loss.gradient(
993
+ y_true=y_true,
994
+ raw_prediction=np.tile(a, (n_samples, 1)),
995
+ sample_weight=sample_weight,
996
+ )
997
+ assert a.dtype == y_true.dtype
998
+ assert_all_finite(a)
999
+ assert_allclose(a, opt.x, rtol=5e-6, atol=1e-12)
1000
+ assert_allclose(grad.sum(axis=0), 0, atol=1e-12)
1001
+
1002
+
1003
+ @pytest.mark.parametrize(
1004
+ "loss, func, random_dist",
1005
+ [
1006
+ (HalfSquaredError(), np.mean, "normal"),
1007
+ (AbsoluteError(), np.median, "normal"),
1008
+ (PinballLoss(quantile=0.25), lambda x: np.percentile(x, q=25), "normal"),
1009
+ (HalfPoissonLoss(), np.mean, "poisson"),
1010
+ (HalfGammaLoss(), np.mean, "exponential"),
1011
+ (HalfTweedieLoss(), np.mean, "exponential"),
1012
+ (HalfBinomialLoss(), np.mean, "binomial"),
1013
+ ],
1014
+ )
1015
+ def test_specific_fit_intercept_only(loss, func, random_dist, global_random_seed):
1016
+ """Test that fit_intercept_only returns the correct functional.
1017
+
1018
+ We test the functional for specific, meaningful distributions, e.g.
1019
+ squared error estimates the expectation of a probability distribution.
1020
+ """
1021
+ rng = np.random.RandomState(global_random_seed)
1022
+ if random_dist == "binomial":
1023
+ y_train = rng.binomial(1, 0.5, size=100)
1024
+ else:
1025
+ y_train = getattr(rng, random_dist)(size=100)
1026
+ baseline_prediction = loss.fit_intercept_only(y_true=y_train)
1027
+ # Make sure baseline prediction is the expected functional=func, e.g. mean
1028
+ # or median.
1029
+ assert_all_finite(baseline_prediction)
1030
+ assert baseline_prediction == approx(loss.link.link(func(y_train)))
1031
+ assert loss.link.inverse(baseline_prediction) == approx(func(y_train))
1032
+ if isinstance(loss, IdentityLink):
1033
+ assert_allclose(loss.link.inverse(baseline_prediction), baseline_prediction)
1034
+
1035
+ # Test baseline at boundary
1036
+ if loss.interval_y_true.low_inclusive:
1037
+ y_train.fill(loss.interval_y_true.low)
1038
+ baseline_prediction = loss.fit_intercept_only(y_true=y_train)
1039
+ assert_all_finite(baseline_prediction)
1040
+ if loss.interval_y_true.high_inclusive:
1041
+ y_train.fill(loss.interval_y_true.high)
1042
+ baseline_prediction = loss.fit_intercept_only(y_true=y_train)
1043
+ assert_all_finite(baseline_prediction)
1044
+
1045
+
1046
+ def test_multinomial_loss_fit_intercept_only():
1047
+ """Test that fit_intercept_only returns the mean functional for CCE."""
1048
+ rng = np.random.RandomState(0)
1049
+ n_classes = 4
1050
+ loss = HalfMultinomialLoss(n_classes=n_classes)
1051
+ # Same logic as test_specific_fit_intercept_only. Here inverse link
1052
+ # function = softmax and link function = log - symmetry term.
1053
+ y_train = rng.randint(0, n_classes + 1, size=100).astype(np.float64)
1054
+ baseline_prediction = loss.fit_intercept_only(y_true=y_train)
1055
+ assert baseline_prediction.shape == (n_classes,)
1056
+ p = np.zeros(n_classes, dtype=y_train.dtype)
1057
+ for k in range(n_classes):
1058
+ p[k] = (y_train == k).mean()
1059
+ assert_allclose(baseline_prediction, np.log(p) - np.mean(np.log(p)))
1060
+ assert_allclose(baseline_prediction[None, :], loss.link.link(p[None, :]))
1061
+
1062
+ for y_train in (np.zeros(shape=10), np.ones(shape=10)):
1063
+ y_train = y_train.astype(np.float64)
1064
+ baseline_prediction = loss.fit_intercept_only(y_true=y_train)
1065
+ assert baseline_prediction.dtype == y_train.dtype
1066
+ assert_all_finite(baseline_prediction)
1067
+
1068
+
1069
+ def test_binomial_and_multinomial_loss(global_random_seed):
1070
+ """Test that multinomial loss with n_classes = 2 is the same as binomial loss."""
1071
+ rng = np.random.RandomState(global_random_seed)
1072
+ n_samples = 20
1073
+ binom = HalfBinomialLoss()
1074
+ multinom = HalfMultinomialLoss(n_classes=2)
1075
+ y_train = rng.randint(0, 2, size=n_samples).astype(np.float64)
1076
+ raw_prediction = rng.normal(size=n_samples)
1077
+ raw_multinom = np.empty((n_samples, 2))
1078
+ raw_multinom[:, 0] = -0.5 * raw_prediction
1079
+ raw_multinom[:, 1] = 0.5 * raw_prediction
1080
+ assert_allclose(
1081
+ binom.loss(y_true=y_train, raw_prediction=raw_prediction),
1082
+ multinom.loss(y_true=y_train, raw_prediction=raw_multinom),
1083
+ )
1084
+
1085
+
1086
+ @pytest.mark.parametrize("y_true", (np.array([0.0, 0, 0]), np.array([1.0, 1, 1])))
1087
+ @pytest.mark.parametrize("y_pred", (np.array([-5.0, -5, -5]), np.array([3.0, 3, 3])))
1088
+ def test_binomial_vs_alternative_formulation(y_true, y_pred, global_dtype):
1089
+ """Test that both formulations of the binomial deviance agree.
1090
+
1091
+ Often, the binomial deviance or log loss is written in terms of a variable
1092
+ z in {-1, +1}, but we use y in {0, 1}, hence z = 2 * y - 1.
1093
+ ESL II Eq. (10.18):
1094
+
1095
+ -loglike(z, f) = log(1 + exp(-2 * z * f))
1096
+
1097
+ Note:
1098
+ - ESL 2*f = raw_prediction, hence the factor 2 of ESL disappears.
1099
+ - Deviance = -2*loglike + .., but HalfBinomialLoss is half of the
1100
+ deviance, hence the factor of 2 cancels in the comparison.
1101
+ """
1102
+
1103
+ def alt_loss(y, raw_pred):
1104
+ z = 2 * y - 1
1105
+ return np.mean(np.log(1 + np.exp(-z * raw_pred)))
1106
+
1107
+ def alt_gradient(y, raw_pred):
1108
+ # alternative gradient formula according to ESL
1109
+ z = 2 * y - 1
1110
+ return -z / (1 + np.exp(z * raw_pred))
1111
+
1112
+ bin_loss = HalfBinomialLoss()
1113
+
1114
+ y_true = y_true.astype(global_dtype)
1115
+ y_pred = y_pred.astype(global_dtype)
1116
+ datum = (y_true, y_pred)
1117
+
1118
+ assert bin_loss(*datum) == approx(alt_loss(*datum))
1119
+ assert_allclose(bin_loss.gradient(*datum), alt_gradient(*datum))
1120
+
1121
+
1122
+ @pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
1123
+ def test_predict_proba(loss, global_random_seed):
1124
+ """Test that predict_proba and gradient_proba work as expected."""
1125
+ n_samples = 20
1126
+ y_true, raw_prediction = random_y_true_raw_prediction(
1127
+ loss=loss,
1128
+ n_samples=n_samples,
1129
+ y_bound=(-100, 100),
1130
+ raw_bound=(-5, 5),
1131
+ seed=global_random_seed,
1132
+ )
1133
+
1134
+ if hasattr(loss, "predict_proba"):
1135
+ proba = loss.predict_proba(raw_prediction)
1136
+ assert proba.shape == (n_samples, loss.n_classes)
1137
+ assert np.sum(proba, axis=1) == approx(1, rel=1e-11)
1138
+
1139
+ if hasattr(loss, "gradient_proba"):
1140
+ for grad, proba in (
1141
+ (None, None),
1142
+ (None, np.empty_like(raw_prediction)),
1143
+ (np.empty_like(raw_prediction), None),
1144
+ (np.empty_like(raw_prediction), np.empty_like(raw_prediction)),
1145
+ ):
1146
+ grad, proba = loss.gradient_proba(
1147
+ y_true=y_true,
1148
+ raw_prediction=raw_prediction,
1149
+ sample_weight=None,
1150
+ gradient_out=grad,
1151
+ proba_out=proba,
1152
+ )
1153
+ assert proba.shape == (n_samples, loss.n_classes)
1154
+ assert np.sum(proba, axis=1) == approx(1, rel=1e-11)
1155
+ assert_allclose(
1156
+ grad,
1157
+ loss.gradient(
1158
+ y_true=y_true,
1159
+ raw_prediction=raw_prediction,
1160
+ sample_weight=None,
1161
+ gradient_out=None,
1162
+ ),
1163
+ )
1164
+
1165
+
1166
+ @pytest.mark.parametrize("loss", ALL_LOSSES)
1167
+ @pytest.mark.parametrize("sample_weight", [None, "range"])
1168
+ @pytest.mark.parametrize("dtype", (np.float32, np.float64))
1169
+ @pytest.mark.parametrize("order", ("C", "F"))
1170
+ def test_init_gradient_and_hessians(loss, sample_weight, dtype, order):
1171
+ """Test that init_gradient_and_hessian works as expected.
1172
+
1173
+ passing sample_weight to a loss correctly influences the constant_hessian
1174
+ attribute, and consequently the shape of the hessian array.
1175
+ """
1176
+ n_samples = 5
1177
+ if sample_weight == "range":
1178
+ sample_weight = np.ones(n_samples)
1179
+ loss = loss(sample_weight=sample_weight)
1180
+ gradient, hessian = loss.init_gradient_and_hessian(
1181
+ n_samples=n_samples,
1182
+ dtype=dtype,
1183
+ order=order,
1184
+ )
1185
+ if loss.constant_hessian:
1186
+ assert gradient.shape == (n_samples,)
1187
+ assert hessian.shape == (1,)
1188
+ elif loss.is_multiclass:
1189
+ assert gradient.shape == (n_samples, loss.n_classes)
1190
+ assert hessian.shape == (n_samples, loss.n_classes)
1191
+ else:
1192
+ assert hessian.shape == (n_samples,)
1193
+ assert hessian.shape == (n_samples,)
1194
+
1195
+ assert gradient.dtype == dtype
1196
+ assert hessian.dtype == dtype
1197
+
1198
+ if order == "C":
1199
+ assert gradient.flags.c_contiguous
1200
+ assert hessian.flags.c_contiguous
1201
+ else:
1202
+ assert gradient.flags.f_contiguous
1203
+ assert hessian.flags.f_contiguous
1204
+
1205
+
1206
+ @pytest.mark.parametrize("loss", ALL_LOSSES)
1207
+ @pytest.mark.parametrize(
1208
+ "params, err_msg",
1209
+ [
1210
+ (
1211
+ {"dtype": np.int64},
1212
+ f"Valid options for 'dtype' are .* Got dtype={np.int64} instead.",
1213
+ ),
1214
+ ],
1215
+ )
1216
+ def test_init_gradient_and_hessian_raises(loss, params, err_msg):
1217
+ """Test that init_gradient_and_hessian raises errors for invalid input."""
1218
+ loss = loss()
1219
+ with pytest.raises((ValueError, TypeError), match=err_msg):
1220
+ gradient, hessian = loss.init_gradient_and_hessian(n_samples=5, **params)
1221
+
1222
+
1223
+ @pytest.mark.parametrize(
1224
+ "loss, params, err_type, err_msg",
1225
+ [
1226
+ (
1227
+ PinballLoss,
1228
+ {"quantile": None},
1229
+ TypeError,
1230
+ "quantile must be an instance of float, not NoneType.",
1231
+ ),
1232
+ (
1233
+ PinballLoss,
1234
+ {"quantile": 0},
1235
+ ValueError,
1236
+ "quantile == 0, must be > 0.",
1237
+ ),
1238
+ (PinballLoss, {"quantile": 1.1}, ValueError, "quantile == 1.1, must be < 1."),
1239
+ (
1240
+ HuberLoss,
1241
+ {"quantile": None},
1242
+ TypeError,
1243
+ "quantile must be an instance of float, not NoneType.",
1244
+ ),
1245
+ (
1246
+ HuberLoss,
1247
+ {"quantile": 0},
1248
+ ValueError,
1249
+ "quantile == 0, must be > 0.",
1250
+ ),
1251
+ (HuberLoss, {"quantile": 1.1}, ValueError, "quantile == 1.1, must be < 1."),
1252
+ ],
1253
+ )
1254
+ def test_loss_init_parameter_validation(loss, params, err_type, err_msg):
1255
+ """Test that loss raises errors for invalid input."""
1256
+ with pytest.raises(err_type, match=err_msg):
1257
+ loss(**params)
1258
+
1259
+
1260
+ @pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
1261
+ def test_loss_pickle(loss):
1262
+ """Test that losses can be pickled."""
1263
+ n_samples = 20
1264
+ y_true, raw_prediction = random_y_true_raw_prediction(
1265
+ loss=loss,
1266
+ n_samples=n_samples,
1267
+ y_bound=(-100, 100),
1268
+ raw_bound=(-5, 5),
1269
+ seed=42,
1270
+ )
1271
+ pickled_loss = pickle.dumps(loss)
1272
+ unpickled_loss = pickle.loads(pickled_loss)
1273
+ assert loss(y_true=y_true, raw_prediction=raw_prediction) == approx(
1274
+ unpickled_loss(y_true=y_true, raw_prediction=raw_prediction)
1275
+ )
1276
+
1277
+
1278
+ @pytest.mark.parametrize("p", [-1.5, 0, 1, 1.5, 2, 3])
1279
+ def test_tweedie_log_identity_consistency(p):
1280
+ """Test for identical losses when only the link function is different."""
1281
+ half_tweedie_log = HalfTweedieLoss(power=p)
1282
+ half_tweedie_identity = HalfTweedieLossIdentity(power=p)
1283
+ n_samples = 10
1284
+ y_true, raw_prediction = random_y_true_raw_prediction(
1285
+ loss=half_tweedie_log, n_samples=n_samples, seed=42
1286
+ )
1287
+ y_pred = half_tweedie_log.link.inverse(raw_prediction) # exp(raw_prediction)
1288
+
1289
+ # Let's compare the loss values, up to some constant term that is dropped
1290
+ # in HalfTweedieLoss but not in HalfTweedieLossIdentity.
1291
+ loss_log = half_tweedie_log.loss(
1292
+ y_true=y_true, raw_prediction=raw_prediction
1293
+ ) + half_tweedie_log.constant_to_optimal_zero(y_true)
1294
+ loss_identity = half_tweedie_identity.loss(
1295
+ y_true=y_true, raw_prediction=y_pred
1296
+ ) + half_tweedie_identity.constant_to_optimal_zero(y_true)
1297
+ # Note that HalfTweedieLoss ignores different constant terms than
1298
+ # HalfTweedieLossIdentity. Constant terms means terms not depending on
1299
+ # raw_prediction. By adding these terms, `constant_to_optimal_zero`, both losses
1300
+ # give the same values.
1301
+ assert_allclose(loss_log, loss_identity)
1302
+
1303
+ # For gradients and hessians, the constant terms do not matter. We have, however,
1304
+ # to account for the chain rule, i.e. with x=raw_prediction
1305
+ # gradient_log(x) = d/dx loss_log(x)
1306
+ # = d/dx loss_identity(exp(x))
1307
+ # = exp(x) * gradient_identity(exp(x))
1308
+ # Similarly,
1309
+ # hessian_log(x) = exp(x) * gradient_identity(exp(x))
1310
+ # + exp(x)**2 * hessian_identity(x)
1311
+ gradient_log, hessian_log = half_tweedie_log.gradient_hessian(
1312
+ y_true=y_true, raw_prediction=raw_prediction
1313
+ )
1314
+ gradient_identity, hessian_identity = half_tweedie_identity.gradient_hessian(
1315
+ y_true=y_true, raw_prediction=y_pred
1316
+ )
1317
+ assert_allclose(gradient_log, y_pred * gradient_identity)
1318
+ assert_allclose(
1319
+ hessian_log, y_pred * gradient_identity + y_pred**2 * hessian_identity
1320
+ )
env-llmeval/lib/python3.10/site-packages/sklearn/compose/__init__.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Meta-estimators for building composite models with transformers
2
+
3
+ In addition to its current contents, this module will eventually be home to
4
+ refurbished versions of Pipeline and FeatureUnion.
5
+
6
+ """
7
+
8
+ from ._column_transformer import (
9
+ ColumnTransformer,
10
+ make_column_selector,
11
+ make_column_transformer,
12
+ )
13
+ from ._target import TransformedTargetRegressor
14
+
15
+ __all__ = [
16
+ "ColumnTransformer",
17
+ "make_column_transformer",
18
+ "TransformedTargetRegressor",
19
+ "make_column_selector",
20
+ ]
env-llmeval/lib/python3.10/site-packages/sklearn/compose/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (615 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/compose/__pycache__/_column_transformer.cpython-310.pyc ADDED
Binary file (49.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/compose/__pycache__/_target.cpython-310.pyc ADDED
Binary file (9.68 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/compose/_column_transformer.py ADDED
@@ -0,0 +1,1463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ The :mod:`sklearn.compose._column_transformer` module implements utilities
3
+ to work with heterogeneous data and to apply different transformers to
4
+ different columns.
5
+ """
6
+
7
+ # Author: Andreas Mueller
8
+ # Joris Van den Bossche
9
+ # License: BSD
10
+ import warnings
11
+ from collections import Counter
12
+ from itertools import chain
13
+ from numbers import Integral, Real
14
+
15
+ import numpy as np
16
+ from scipy import sparse
17
+
18
+ from ..base import TransformerMixin, _fit_context, clone
19
+ from ..pipeline import _fit_transform_one, _name_estimators, _transform_one
20
+ from ..preprocessing import FunctionTransformer
21
+ from ..utils import Bunch, _get_column_indices, _safe_indexing
22
+ from ..utils._estimator_html_repr import _VisualBlock
23
+ from ..utils._metadata_requests import METHODS
24
+ from ..utils._param_validation import HasMethods, Hidden, Interval, StrOptions
25
+ from ..utils._set_output import (
26
+ _get_container_adapter,
27
+ _get_output_config,
28
+ _safe_set_output,
29
+ )
30
+ from ..utils.metadata_routing import (
31
+ MetadataRouter,
32
+ MethodMapping,
33
+ _raise_for_params,
34
+ _routing_enabled,
35
+ process_routing,
36
+ )
37
+ from ..utils.metaestimators import _BaseComposition
38
+ from ..utils.parallel import Parallel, delayed
39
+ from ..utils.validation import (
40
+ _check_feature_names_in,
41
+ _get_feature_names,
42
+ _is_pandas_df,
43
+ _num_samples,
44
+ check_array,
45
+ check_is_fitted,
46
+ )
47
+
48
+ __all__ = ["ColumnTransformer", "make_column_transformer", "make_column_selector"]
49
+
50
+
51
+ _ERR_MSG_1DCOLUMN = (
52
+ "1D data passed to a transformer that expects 2D data. "
53
+ "Try to specify the column selection as a list of one "
54
+ "item instead of a scalar."
55
+ )
56
+
57
+
58
+ class ColumnTransformer(TransformerMixin, _BaseComposition):
59
+ """Applies transformers to columns of an array or pandas DataFrame.
60
+
61
+ This estimator allows different columns or column subsets of the input
62
+ to be transformed separately and the features generated by each transformer
63
+ will be concatenated to form a single feature space.
64
+ This is useful for heterogeneous or columnar data, to combine several
65
+ feature extraction mechanisms or transformations into a single transformer.
66
+
67
+ Read more in the :ref:`User Guide <column_transformer>`.
68
+
69
+ .. versionadded:: 0.20
70
+
71
+ Parameters
72
+ ----------
73
+ transformers : list of tuples
74
+ List of (name, transformer, columns) tuples specifying the
75
+ transformer objects to be applied to subsets of the data.
76
+
77
+ name : str
78
+ Like in Pipeline and FeatureUnion, this allows the transformer and
79
+ its parameters to be set using ``set_params`` and searched in grid
80
+ search.
81
+ transformer : {'drop', 'passthrough'} or estimator
82
+ Estimator must support :term:`fit` and :term:`transform`.
83
+ Special-cased strings 'drop' and 'passthrough' are accepted as
84
+ well, to indicate to drop the columns or to pass them through
85
+ untransformed, respectively.
86
+ columns : str, array-like of str, int, array-like of int, \
87
+ array-like of bool, slice or callable
88
+ Indexes the data on its second axis. Integers are interpreted as
89
+ positional columns, while strings can reference DataFrame columns
90
+ by name. A scalar string or int should be used where
91
+ ``transformer`` expects X to be a 1d array-like (vector),
92
+ otherwise a 2d array will be passed to the transformer.
93
+ A callable is passed the input data `X` and can return any of the
94
+ above. To select multiple columns by name or dtype, you can use
95
+ :obj:`make_column_selector`.
96
+
97
+ remainder : {'drop', 'passthrough'} or estimator, default='drop'
98
+ By default, only the specified columns in `transformers` are
99
+ transformed and combined in the output, and the non-specified
100
+ columns are dropped. (default of ``'drop'``).
101
+ By specifying ``remainder='passthrough'``, all remaining columns that
102
+ were not specified in `transformers`, but present in the data passed
103
+ to `fit` will be automatically passed through. This subset of columns
104
+ is concatenated with the output of the transformers. For dataframes,
105
+ extra columns not seen during `fit` will be excluded from the output
106
+ of `transform`.
107
+ By setting ``remainder`` to be an estimator, the remaining
108
+ non-specified columns will use the ``remainder`` estimator. The
109
+ estimator must support :term:`fit` and :term:`transform`.
110
+ Note that using this feature requires that the DataFrame columns
111
+ input at :term:`fit` and :term:`transform` have identical order.
112
+
113
+ sparse_threshold : float, default=0.3
114
+ If the output of the different transformers contains sparse matrices,
115
+ these will be stacked as a sparse matrix if the overall density is
116
+ lower than this value. Use ``sparse_threshold=0`` to always return
117
+ dense. When the transformed output consists of all dense data, the
118
+ stacked result will be dense, and this keyword will be ignored.
119
+
120
+ n_jobs : int, default=None
121
+ Number of jobs to run in parallel.
122
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
123
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
124
+ for more details.
125
+
126
+ transformer_weights : dict, default=None
127
+ Multiplicative weights for features per transformer. The output of the
128
+ transformer is multiplied by these weights. Keys are transformer names,
129
+ values the weights.
130
+
131
+ verbose : bool, default=False
132
+ If True, the time elapsed while fitting each transformer will be
133
+ printed as it is completed.
134
+
135
+ verbose_feature_names_out : bool, default=True
136
+ If True, :meth:`ColumnTransformer.get_feature_names_out` will prefix
137
+ all feature names with the name of the transformer that generated that
138
+ feature.
139
+ If False, :meth:`ColumnTransformer.get_feature_names_out` will not
140
+ prefix any feature names and will error if feature names are not
141
+ unique.
142
+
143
+ .. versionadded:: 1.0
144
+
145
+ Attributes
146
+ ----------
147
+ transformers_ : list
148
+ The collection of fitted transformers as tuples of (name,
149
+ fitted_transformer, column). `fitted_transformer` can be an estimator,
150
+ or `'drop'`; `'passthrough'` is replaced with an equivalent
151
+ :class:`~sklearn.preprocessing.FunctionTransformer`. In case there were
152
+ no columns selected, this will be the unfitted transformer. If there
153
+ are remaining columns, the final element is a tuple of the form:
154
+ ('remainder', transformer, remaining_columns) corresponding to the
155
+ ``remainder`` parameter. If there are remaining columns, then
156
+ ``len(transformers_)==len(transformers)+1``, otherwise
157
+ ``len(transformers_)==len(transformers)``.
158
+
159
+ named_transformers_ : :class:`~sklearn.utils.Bunch`
160
+ Read-only attribute to access any transformer by given name.
161
+ Keys are transformer names and values are the fitted transformer
162
+ objects.
163
+
164
+ sparse_output_ : bool
165
+ Boolean flag indicating whether the output of ``transform`` is a
166
+ sparse matrix or a dense numpy array, which depends on the output
167
+ of the individual transformers and the `sparse_threshold` keyword.
168
+
169
+ output_indices_ : dict
170
+ A dictionary from each transformer name to a slice, where the slice
171
+ corresponds to indices in the transformed output. This is useful to
172
+ inspect which transformer is responsible for which transformed
173
+ feature(s).
174
+
175
+ .. versionadded:: 1.0
176
+
177
+ n_features_in_ : int
178
+ Number of features seen during :term:`fit`. Only defined if the
179
+ underlying transformers expose such an attribute when fit.
180
+
181
+ .. versionadded:: 0.24
182
+
183
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
184
+ Names of features seen during :term:`fit`. Defined only when `X`
185
+ has feature names that are all strings.
186
+
187
+ .. versionadded:: 1.0
188
+
189
+ See Also
190
+ --------
191
+ make_column_transformer : Convenience function for
192
+ combining the outputs of multiple transformer objects applied to
193
+ column subsets of the original feature space.
194
+ make_column_selector : Convenience function for selecting
195
+ columns based on datatype or the columns name with a regex pattern.
196
+
197
+ Notes
198
+ -----
199
+ The order of the columns in the transformed feature matrix follows the
200
+ order of how the columns are specified in the `transformers` list.
201
+ Columns of the original feature matrix that are not specified are
202
+ dropped from the resulting transformed feature matrix, unless specified
203
+ in the `passthrough` keyword. Those columns specified with `passthrough`
204
+ are added at the right to the output of the transformers.
205
+
206
+ Examples
207
+ --------
208
+ >>> import numpy as np
209
+ >>> from sklearn.compose import ColumnTransformer
210
+ >>> from sklearn.preprocessing import Normalizer
211
+ >>> ct = ColumnTransformer(
212
+ ... [("norm1", Normalizer(norm='l1'), [0, 1]),
213
+ ... ("norm2", Normalizer(norm='l1'), slice(2, 4))])
214
+ >>> X = np.array([[0., 1., 2., 2.],
215
+ ... [1., 1., 0., 1.]])
216
+ >>> # Normalizer scales each row of X to unit norm. A separate scaling
217
+ >>> # is applied for the two first and two last elements of each
218
+ >>> # row independently.
219
+ >>> ct.fit_transform(X)
220
+ array([[0. , 1. , 0.5, 0.5],
221
+ [0.5, 0.5, 0. , 1. ]])
222
+
223
+ :class:`ColumnTransformer` can be configured with a transformer that requires
224
+ a 1d array by setting the column to a string:
225
+
226
+ >>> from sklearn.feature_extraction.text import CountVectorizer
227
+ >>> from sklearn.preprocessing import MinMaxScaler
228
+ >>> import pandas as pd # doctest: +SKIP
229
+ >>> X = pd.DataFrame({
230
+ ... "documents": ["First item", "second one here", "Is this the last?"],
231
+ ... "width": [3, 4, 5],
232
+ ... }) # doctest: +SKIP
233
+ >>> # "documents" is a string which configures ColumnTransformer to
234
+ >>> # pass the documents column as a 1d array to the CountVectorizer
235
+ >>> ct = ColumnTransformer(
236
+ ... [("text_preprocess", CountVectorizer(), "documents"),
237
+ ... ("num_preprocess", MinMaxScaler(), ["width"])])
238
+ >>> X_trans = ct.fit_transform(X) # doctest: +SKIP
239
+
240
+ For a more detailed example of usage, see
241
+ :ref:`sphx_glr_auto_examples_compose_plot_column_transformer_mixed_types.py`.
242
+ """
243
+
244
+ _required_parameters = ["transformers"]
245
+
246
+ _parameter_constraints: dict = {
247
+ "transformers": [list, Hidden(tuple)],
248
+ "remainder": [
249
+ StrOptions({"drop", "passthrough"}),
250
+ HasMethods(["fit", "transform"]),
251
+ HasMethods(["fit_transform", "transform"]),
252
+ ],
253
+ "sparse_threshold": [Interval(Real, 0, 1, closed="both")],
254
+ "n_jobs": [Integral, None],
255
+ "transformer_weights": [dict, None],
256
+ "verbose": ["verbose"],
257
+ "verbose_feature_names_out": ["boolean"],
258
+ }
259
+
260
+ def __init__(
261
+ self,
262
+ transformers,
263
+ *,
264
+ remainder="drop",
265
+ sparse_threshold=0.3,
266
+ n_jobs=None,
267
+ transformer_weights=None,
268
+ verbose=False,
269
+ verbose_feature_names_out=True,
270
+ ):
271
+ self.transformers = transformers
272
+ self.remainder = remainder
273
+ self.sparse_threshold = sparse_threshold
274
+ self.n_jobs = n_jobs
275
+ self.transformer_weights = transformer_weights
276
+ self.verbose = verbose
277
+ self.verbose_feature_names_out = verbose_feature_names_out
278
+
279
+ @property
280
+ def _transformers(self):
281
+ """
282
+ Internal list of transformer only containing the name and
283
+ transformers, dropping the columns.
284
+
285
+ DO NOT USE: This is for the implementation of get_params via
286
+ BaseComposition._get_params which expects lists of tuples of len 2.
287
+
288
+ To iterate through the transformers, use ``self._iter`` instead.
289
+ """
290
+ try:
291
+ return [(name, trans) for name, trans, _ in self.transformers]
292
+ except (TypeError, ValueError):
293
+ return self.transformers
294
+
295
+ @_transformers.setter
296
+ def _transformers(self, value):
297
+ """DO NOT USE: This is for the implementation of set_params via
298
+ BaseComposition._get_params which gives lists of tuples of len 2.
299
+ """
300
+ try:
301
+ self.transformers = [
302
+ (name, trans, col)
303
+ for ((name, trans), (_, _, col)) in zip(value, self.transformers)
304
+ ]
305
+ except (TypeError, ValueError):
306
+ self.transformers = value
307
+
308
+ def set_output(self, *, transform=None):
309
+ """Set the output container when `"transform"` and `"fit_transform"` are called.
310
+
311
+ Calling `set_output` will set the output of all estimators in `transformers`
312
+ and `transformers_`.
313
+
314
+ Parameters
315
+ ----------
316
+ transform : {"default", "pandas"}, default=None
317
+ Configure output of `transform` and `fit_transform`.
318
+
319
+ - `"default"`: Default output format of a transformer
320
+ - `"pandas"`: DataFrame output
321
+ - `"polars"`: Polars output
322
+ - `None`: Transform configuration is unchanged
323
+
324
+ .. versionadded:: 1.4
325
+ `"polars"` option was added.
326
+
327
+ Returns
328
+ -------
329
+ self : estimator instance
330
+ Estimator instance.
331
+ """
332
+ super().set_output(transform=transform)
333
+
334
+ transformers = (
335
+ trans
336
+ for _, trans, _ in chain(
337
+ self.transformers, getattr(self, "transformers_", [])
338
+ )
339
+ if trans not in {"passthrough", "drop"}
340
+ )
341
+ for trans in transformers:
342
+ _safe_set_output(trans, transform=transform)
343
+
344
+ if self.remainder not in {"passthrough", "drop"}:
345
+ _safe_set_output(self.remainder, transform=transform)
346
+
347
+ return self
348
+
349
+ def get_params(self, deep=True):
350
+ """Get parameters for this estimator.
351
+
352
+ Returns the parameters given in the constructor as well as the
353
+ estimators contained within the `transformers` of the
354
+ `ColumnTransformer`.
355
+
356
+ Parameters
357
+ ----------
358
+ deep : bool, default=True
359
+ If True, will return the parameters for this estimator and
360
+ contained subobjects that are estimators.
361
+
362
+ Returns
363
+ -------
364
+ params : dict
365
+ Parameter names mapped to their values.
366
+ """
367
+ return self._get_params("_transformers", deep=deep)
368
+
369
+ def set_params(self, **kwargs):
370
+ """Set the parameters of this estimator.
371
+
372
+ Valid parameter keys can be listed with ``get_params()``. Note that you
373
+ can directly set the parameters of the estimators contained in
374
+ `transformers` of `ColumnTransformer`.
375
+
376
+ Parameters
377
+ ----------
378
+ **kwargs : dict
379
+ Estimator parameters.
380
+
381
+ Returns
382
+ -------
383
+ self : ColumnTransformer
384
+ This estimator.
385
+ """
386
+ self._set_params("_transformers", **kwargs)
387
+ return self
388
+
389
+ def _iter(self, fitted, column_as_labels, skip_drop, skip_empty_columns):
390
+ """
391
+ Generate (name, trans, column, weight) tuples.
392
+
393
+
394
+ Parameters
395
+ ----------
396
+ fitted : bool
397
+ If True, use the fitted transformers (``self.transformers_``) to
398
+ iterate through transformers, else use the transformers passed by
399
+ the user (``self.transformers``).
400
+
401
+ column_as_labels : bool
402
+ If True, columns are returned as string labels. If False, columns
403
+ are returned as they were given by the user. This can only be True
404
+ if the ``ColumnTransformer`` is already fitted.
405
+
406
+ skip_drop : bool
407
+ If True, 'drop' transformers are filtered out.
408
+
409
+ skip_empty_columns : bool
410
+ If True, transformers with empty selected columns are filtered out.
411
+
412
+ Yields
413
+ ------
414
+ A generator of tuples containing:
415
+ - name : the name of the transformer
416
+ - transformer : the transformer object
417
+ - columns : the columns for that transformer
418
+ - weight : the weight of the transformer
419
+ """
420
+ if fitted:
421
+ transformers = self.transformers_
422
+ else:
423
+ # interleave the validated column specifiers
424
+ transformers = [
425
+ (name, trans, column)
426
+ for (name, trans, _), column in zip(self.transformers, self._columns)
427
+ ]
428
+ # add transformer tuple for remainder
429
+ if self._remainder[2]:
430
+ transformers = chain(transformers, [self._remainder])
431
+ get_weight = (self.transformer_weights or {}).get
432
+
433
+ for name, trans, columns in transformers:
434
+ if skip_drop and trans == "drop":
435
+ continue
436
+ if skip_empty_columns and _is_empty_column_selection(columns):
437
+ continue
438
+
439
+ if column_as_labels:
440
+ # Convert all columns to using their string labels
441
+ columns_is_scalar = np.isscalar(columns)
442
+
443
+ indices = self._transformer_to_input_indices[name]
444
+ columns = self.feature_names_in_[indices]
445
+
446
+ if columns_is_scalar:
447
+ # selection is done with one dimension
448
+ columns = columns[0]
449
+
450
+ yield (name, trans, columns, get_weight(name))
451
+
452
+ def _validate_transformers(self):
453
+ """Validate names of transformers and the transformers themselves.
454
+
455
+ This checks whether given transformers have the required methods, i.e.
456
+ `fit` or `fit_transform` and `transform` implemented.
457
+ """
458
+ if not self.transformers:
459
+ return
460
+
461
+ names, transformers, _ = zip(*self.transformers)
462
+
463
+ # validate names
464
+ self._validate_names(names)
465
+
466
+ # validate estimators
467
+ for t in transformers:
468
+ if t in ("drop", "passthrough"):
469
+ continue
470
+ if not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(
471
+ t, "transform"
472
+ ):
473
+ # Used to validate the transformers in the `transformers` list
474
+ raise TypeError(
475
+ "All estimators should implement fit and "
476
+ "transform, or can be 'drop' or 'passthrough' "
477
+ "specifiers. '%s' (type %s) doesn't." % (t, type(t))
478
+ )
479
+
480
+ def _validate_column_callables(self, X):
481
+ """
482
+ Converts callable column specifications.
483
+
484
+ This stores a dictionary of the form `{step_name: column_indices}` and
485
+ calls the `columns` on `X` if `columns` is a callable for a given
486
+ transformer.
487
+
488
+ The results are then stored in `self._transformer_to_input_indices`.
489
+ """
490
+ all_columns = []
491
+ transformer_to_input_indices = {}
492
+ for name, _, columns in self.transformers:
493
+ if callable(columns):
494
+ columns = columns(X)
495
+ all_columns.append(columns)
496
+ transformer_to_input_indices[name] = _get_column_indices(X, columns)
497
+
498
+ self._columns = all_columns
499
+ self._transformer_to_input_indices = transformer_to_input_indices
500
+
501
+ def _validate_remainder(self, X):
502
+ """
503
+ Validates ``remainder`` and defines ``_remainder`` targeting
504
+ the remaining columns.
505
+ """
506
+ cols = set(chain(*self._transformer_to_input_indices.values()))
507
+ remaining = sorted(set(range(self.n_features_in_)) - cols)
508
+ self._remainder = ("remainder", self.remainder, remaining)
509
+ self._transformer_to_input_indices["remainder"] = remaining
510
+
511
+ @property
512
+ def named_transformers_(self):
513
+ """Access the fitted transformer by name.
514
+
515
+ Read-only attribute to access any transformer by given name.
516
+ Keys are transformer names and values are the fitted transformer
517
+ objects.
518
+ """
519
+ # Use Bunch object to improve autocomplete
520
+ return Bunch(**{name: trans for name, trans, _ in self.transformers_})
521
+
522
+ def _get_feature_name_out_for_transformer(self, name, trans, feature_names_in):
523
+ """Gets feature names of transformer.
524
+
525
+ Used in conjunction with self._iter(fitted=True) in get_feature_names_out.
526
+ """
527
+ column_indices = self._transformer_to_input_indices[name]
528
+ names = feature_names_in[column_indices]
529
+ # An actual transformer
530
+ if not hasattr(trans, "get_feature_names_out"):
531
+ raise AttributeError(
532
+ f"Transformer {name} (type {type(trans).__name__}) does "
533
+ "not provide get_feature_names_out."
534
+ )
535
+ return trans.get_feature_names_out(names)
536
+
537
+ def get_feature_names_out(self, input_features=None):
538
+ """Get output feature names for transformation.
539
+
540
+ Parameters
541
+ ----------
542
+ input_features : array-like of str or None, default=None
543
+ Input features.
544
+
545
+ - If `input_features` is `None`, then `feature_names_in_` is
546
+ used as feature names in. If `feature_names_in_` is not defined,
547
+ then the following input feature names are generated:
548
+ `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
549
+ - If `input_features` is an array-like, then `input_features` must
550
+ match `feature_names_in_` if `feature_names_in_` is defined.
551
+
552
+ Returns
553
+ -------
554
+ feature_names_out : ndarray of str objects
555
+ Transformed feature names.
556
+ """
557
+ check_is_fitted(self)
558
+ input_features = _check_feature_names_in(self, input_features)
559
+
560
+ # List of tuples (name, feature_names_out)
561
+ transformer_with_feature_names_out = []
562
+ for name, trans, *_ in self._iter(
563
+ fitted=True,
564
+ column_as_labels=False,
565
+ skip_empty_columns=True,
566
+ skip_drop=True,
567
+ ):
568
+ feature_names_out = self._get_feature_name_out_for_transformer(
569
+ name, trans, input_features
570
+ )
571
+ if feature_names_out is None:
572
+ continue
573
+ transformer_with_feature_names_out.append((name, feature_names_out))
574
+
575
+ if not transformer_with_feature_names_out:
576
+ # No feature names
577
+ return np.array([], dtype=object)
578
+
579
+ return self._add_prefix_for_feature_names_out(
580
+ transformer_with_feature_names_out
581
+ )
582
+
583
+ def _add_prefix_for_feature_names_out(self, transformer_with_feature_names_out):
584
+ """Add prefix for feature names out that includes the transformer names.
585
+
586
+ Parameters
587
+ ----------
588
+ transformer_with_feature_names_out : list of tuples of (str, array-like of str)
589
+ The tuple consistent of the transformer's name and its feature names out.
590
+
591
+ Returns
592
+ -------
593
+ feature_names_out : ndarray of shape (n_features,), dtype=str
594
+ Transformed feature names.
595
+ """
596
+ if self.verbose_feature_names_out:
597
+ # Prefix the feature names out with the transformers name
598
+ names = list(
599
+ chain.from_iterable(
600
+ (f"{name}__{i}" for i in feature_names_out)
601
+ for name, feature_names_out in transformer_with_feature_names_out
602
+ )
603
+ )
604
+ return np.asarray(names, dtype=object)
605
+
606
+ # verbose_feature_names_out is False
607
+ # Check that names are all unique without a prefix
608
+ feature_names_count = Counter(
609
+ chain.from_iterable(s for _, s in transformer_with_feature_names_out)
610
+ )
611
+ top_6_overlap = [
612
+ name for name, count in feature_names_count.most_common(6) if count > 1
613
+ ]
614
+ top_6_overlap.sort()
615
+ if top_6_overlap:
616
+ if len(top_6_overlap) == 6:
617
+ # There are more than 5 overlapping names, we only show the 5
618
+ # of the feature names
619
+ names_repr = str(top_6_overlap[:5])[:-1] + ", ...]"
620
+ else:
621
+ names_repr = str(top_6_overlap)
622
+ raise ValueError(
623
+ f"Output feature names: {names_repr} are not unique. Please set "
624
+ "verbose_feature_names_out=True to add prefixes to feature names"
625
+ )
626
+
627
+ return np.concatenate(
628
+ [name for _, name in transformer_with_feature_names_out],
629
+ )
630
+
631
+ def _update_fitted_transformers(self, transformers):
632
+ """Set self.transformers_ from given transformers.
633
+
634
+ Parameters
635
+ ----------
636
+ transformers : list of estimators
637
+ The fitted estimators as the output of
638
+ `self._call_func_on_transformers(func=_fit_transform_one, ...)`.
639
+ That function doesn't include 'drop' or transformers for which no
640
+ column is selected. 'drop' is kept as is, and for the no-column
641
+ transformers the unfitted transformer is put in
642
+ `self.transformers_`.
643
+ """
644
+ # transformers are fitted; excludes 'drop' cases
645
+ fitted_transformers = iter(transformers)
646
+ transformers_ = []
647
+
648
+ for name, old, column, _ in self._iter(
649
+ fitted=False,
650
+ column_as_labels=False,
651
+ skip_drop=False,
652
+ skip_empty_columns=False,
653
+ ):
654
+ if old == "drop":
655
+ trans = "drop"
656
+ elif _is_empty_column_selection(column):
657
+ trans = old
658
+ else:
659
+ trans = next(fitted_transformers)
660
+ transformers_.append((name, trans, column))
661
+
662
+ # sanity check that transformers is exhausted
663
+ assert not list(fitted_transformers)
664
+ self.transformers_ = transformers_
665
+
666
+ def _validate_output(self, result):
667
+ """
668
+ Ensure that the output of each transformer is 2D. Otherwise
669
+ hstack can raise an error or produce incorrect results.
670
+ """
671
+ names = [
672
+ name
673
+ for name, _, _, _ in self._iter(
674
+ fitted=True,
675
+ column_as_labels=False,
676
+ skip_drop=True,
677
+ skip_empty_columns=True,
678
+ )
679
+ ]
680
+ for Xs, name in zip(result, names):
681
+ if not getattr(Xs, "ndim", 0) == 2 and not hasattr(Xs, "__dataframe__"):
682
+ raise ValueError(
683
+ "The output of the '{0}' transformer should be 2D (numpy array, "
684
+ "scipy sparse array, dataframe).".format(name)
685
+ )
686
+ if _get_output_config("transform", self)["dense"] == "pandas":
687
+ return
688
+ try:
689
+ import pandas as pd
690
+ except ImportError:
691
+ return
692
+ for Xs, name in zip(result, names):
693
+ if not _is_pandas_df(Xs):
694
+ continue
695
+ for col_name, dtype in Xs.dtypes.to_dict().items():
696
+ if getattr(dtype, "na_value", None) is not pd.NA:
697
+ continue
698
+ if pd.NA not in Xs[col_name].values:
699
+ continue
700
+ class_name = self.__class__.__name__
701
+ # TODO(1.6): replace warning with ValueError
702
+ warnings.warn(
703
+ (
704
+ f"The output of the '{name}' transformer for column"
705
+ f" '{col_name}' has dtype {dtype} and uses pandas.NA to"
706
+ " represent null values. Storing this output in a numpy array"
707
+ " can cause errors in downstream scikit-learn estimators, and"
708
+ " inefficiencies. Starting with scikit-learn version 1.6, this"
709
+ " will raise a ValueError. To avoid this problem you can (i)"
710
+ " store the output in a pandas DataFrame by using"
711
+ f" {class_name}.set_output(transform='pandas') or (ii) modify"
712
+ f" the input data or the '{name}' transformer to avoid the"
713
+ " presence of pandas.NA (for example by using"
714
+ " pandas.DataFrame.astype)."
715
+ ),
716
+ FutureWarning,
717
+ )
718
+
719
+ def _record_output_indices(self, Xs):
720
+ """
721
+ Record which transformer produced which column.
722
+ """
723
+ idx = 0
724
+ self.output_indices_ = {}
725
+
726
+ for transformer_idx, (name, _, _, _) in enumerate(
727
+ self._iter(
728
+ fitted=True,
729
+ column_as_labels=False,
730
+ skip_drop=True,
731
+ skip_empty_columns=True,
732
+ )
733
+ ):
734
+ n_columns = Xs[transformer_idx].shape[1]
735
+ self.output_indices_[name] = slice(idx, idx + n_columns)
736
+ idx += n_columns
737
+
738
+ # `_iter` only generates transformers that have a non empty
739
+ # selection. Here we set empty slices for transformers that
740
+ # generate no output, which are safe for indexing
741
+ all_names = [t[0] for t in self.transformers] + ["remainder"]
742
+ for name in all_names:
743
+ if name not in self.output_indices_:
744
+ self.output_indices_[name] = slice(0, 0)
745
+
746
+ def _log_message(self, name, idx, total):
747
+ if not self.verbose:
748
+ return None
749
+ return "(%d of %d) Processing %s" % (idx, total, name)
750
+
751
+ def _call_func_on_transformers(self, X, y, func, column_as_labels, routed_params):
752
+ """
753
+ Private function to fit and/or transform on demand.
754
+
755
+ Parameters
756
+ ----------
757
+ X : {array-like, dataframe} of shape (n_samples, n_features)
758
+ The data to be used in fit and/or transform.
759
+
760
+ y : array-like of shape (n_samples,)
761
+ Targets.
762
+
763
+ func : callable
764
+ Function to call, which can be _fit_transform_one or
765
+ _transform_one.
766
+
767
+ column_as_labels : bool
768
+ Used to iterate through transformers. If True, columns are returned
769
+ as strings. If False, columns are returned as they were given by
770
+ the user. Can be True only if the ``ColumnTransformer`` is already
771
+ fitted.
772
+
773
+ routed_params : dict
774
+ The routed parameters as the output from ``process_routing``.
775
+
776
+ Returns
777
+ -------
778
+ Return value (transformers and/or transformed X data) depends
779
+ on the passed function.
780
+ """
781
+ if func is _fit_transform_one:
782
+ fitted = False
783
+ else: # func is _transform_one
784
+ fitted = True
785
+
786
+ transformers = list(
787
+ self._iter(
788
+ fitted=fitted,
789
+ column_as_labels=column_as_labels,
790
+ skip_drop=True,
791
+ skip_empty_columns=True,
792
+ )
793
+ )
794
+ try:
795
+ jobs = []
796
+ for idx, (name, trans, column, weight) in enumerate(transformers, start=1):
797
+ if func is _fit_transform_one:
798
+ if trans == "passthrough":
799
+ output_config = _get_output_config("transform", self)
800
+ trans = FunctionTransformer(
801
+ accept_sparse=True,
802
+ check_inverse=False,
803
+ feature_names_out="one-to-one",
804
+ ).set_output(transform=output_config["dense"])
805
+
806
+ extra_args = dict(
807
+ message_clsname="ColumnTransformer",
808
+ message=self._log_message(name, idx, len(transformers)),
809
+ )
810
+ else: # func is _transform_one
811
+ extra_args = {}
812
+ jobs.append(
813
+ delayed(func)(
814
+ transformer=clone(trans) if not fitted else trans,
815
+ X=_safe_indexing(X, column, axis=1),
816
+ y=y,
817
+ weight=weight,
818
+ **extra_args,
819
+ params=routed_params[name],
820
+ )
821
+ )
822
+
823
+ return Parallel(n_jobs=self.n_jobs)(jobs)
824
+
825
+ except ValueError as e:
826
+ if "Expected 2D array, got 1D array instead" in str(e):
827
+ raise ValueError(_ERR_MSG_1DCOLUMN) from e
828
+ else:
829
+ raise
830
+
831
+ def fit(self, X, y=None, **params):
832
+ """Fit all transformers using X.
833
+
834
+ Parameters
835
+ ----------
836
+ X : {array-like, dataframe} of shape (n_samples, n_features)
837
+ Input data, of which specified subsets are used to fit the
838
+ transformers.
839
+
840
+ y : array-like of shape (n_samples,...), default=None
841
+ Targets for supervised learning.
842
+
843
+ **params : dict, default=None
844
+ Parameters to be passed to the underlying transformers' ``fit`` and
845
+ ``transform`` methods.
846
+
847
+ You can only pass this if metadata routing is enabled, which you
848
+ can enable using ``sklearn.set_config(enable_metadata_routing=True)``.
849
+
850
+ .. versionadded:: 1.4
851
+
852
+ Returns
853
+ -------
854
+ self : ColumnTransformer
855
+ This estimator.
856
+ """
857
+ _raise_for_params(params, self, "fit")
858
+ # we use fit_transform to make sure to set sparse_output_ (for which we
859
+ # need the transformed data) to have consistent output type in predict
860
+ self.fit_transform(X, y=y, **params)
861
+ return self
862
+
863
+ @_fit_context(
864
+ # estimators in ColumnTransformer.transformers are not validated yet
865
+ prefer_skip_nested_validation=False
866
+ )
867
+ def fit_transform(self, X, y=None, **params):
868
+ """Fit all transformers, transform the data and concatenate results.
869
+
870
+ Parameters
871
+ ----------
872
+ X : {array-like, dataframe} of shape (n_samples, n_features)
873
+ Input data, of which specified subsets are used to fit the
874
+ transformers.
875
+
876
+ y : array-like of shape (n_samples,), default=None
877
+ Targets for supervised learning.
878
+
879
+ **params : dict, default=None
880
+ Parameters to be passed to the underlying transformers' ``fit`` and
881
+ ``transform`` methods.
882
+
883
+ You can only pass this if metadata routing is enabled, which you
884
+ can enable using ``sklearn.set_config(enable_metadata_routing=True)``.
885
+
886
+ .. versionadded:: 1.4
887
+
888
+ Returns
889
+ -------
890
+ X_t : {array-like, sparse matrix} of \
891
+ shape (n_samples, sum_n_components)
892
+ Horizontally stacked results of transformers. sum_n_components is the
893
+ sum of n_components (output dimension) over transformers. If
894
+ any result is a sparse matrix, everything will be converted to
895
+ sparse matrices.
896
+ """
897
+ _raise_for_params(params, self, "fit_transform")
898
+ self._check_feature_names(X, reset=True)
899
+
900
+ X = _check_X(X)
901
+ # set n_features_in_ attribute
902
+ self._check_n_features(X, reset=True)
903
+ self._validate_transformers()
904
+ n_samples = _num_samples(X)
905
+
906
+ self._validate_column_callables(X)
907
+ self._validate_remainder(X)
908
+
909
+ if _routing_enabled():
910
+ routed_params = process_routing(self, "fit_transform", **params)
911
+ else:
912
+ routed_params = self._get_empty_routing()
913
+
914
+ result = self._call_func_on_transformers(
915
+ X,
916
+ y,
917
+ _fit_transform_one,
918
+ column_as_labels=False,
919
+ routed_params=routed_params,
920
+ )
921
+
922
+ if not result:
923
+ self._update_fitted_transformers([])
924
+ # All transformers are None
925
+ return np.zeros((n_samples, 0))
926
+
927
+ Xs, transformers = zip(*result)
928
+
929
+ # determine if concatenated output will be sparse or not
930
+ if any(sparse.issparse(X) for X in Xs):
931
+ nnz = sum(X.nnz if sparse.issparse(X) else X.size for X in Xs)
932
+ total = sum(
933
+ X.shape[0] * X.shape[1] if sparse.issparse(X) else X.size for X in Xs
934
+ )
935
+ density = nnz / total
936
+ self.sparse_output_ = density < self.sparse_threshold
937
+ else:
938
+ self.sparse_output_ = False
939
+
940
+ self._update_fitted_transformers(transformers)
941
+ self._validate_output(Xs)
942
+ self._record_output_indices(Xs)
943
+
944
+ return self._hstack(list(Xs), n_samples=n_samples)
945
+
946
+ def transform(self, X, **params):
947
+ """Transform X separately by each transformer, concatenate results.
948
+
949
+ Parameters
950
+ ----------
951
+ X : {array-like, dataframe} of shape (n_samples, n_features)
952
+ The data to be transformed by subset.
953
+
954
+ **params : dict, default=None
955
+ Parameters to be passed to the underlying transformers' ``transform``
956
+ method.
957
+
958
+ You can only pass this if metadata routing is enabled, which you
959
+ can enable using ``sklearn.set_config(enable_metadata_routing=True)``.
960
+
961
+ .. versionadded:: 1.4
962
+
963
+ Returns
964
+ -------
965
+ X_t : {array-like, sparse matrix} of \
966
+ shape (n_samples, sum_n_components)
967
+ Horizontally stacked results of transformers. sum_n_components is the
968
+ sum of n_components (output dimension) over transformers. If
969
+ any result is a sparse matrix, everything will be converted to
970
+ sparse matrices.
971
+ """
972
+ _raise_for_params(params, self, "transform")
973
+ check_is_fitted(self)
974
+ X = _check_X(X)
975
+
976
+ # If ColumnTransformer is fit using a dataframe, and now a dataframe is
977
+ # passed to be transformed, we select columns by name instead. This
978
+ # enables the user to pass X at transform time with extra columns which
979
+ # were not present in fit time, and the order of the columns doesn't
980
+ # matter.
981
+ fit_dataframe_and_transform_dataframe = hasattr(self, "feature_names_in_") and (
982
+ _is_pandas_df(X) or hasattr(X, "__dataframe__")
983
+ )
984
+
985
+ n_samples = _num_samples(X)
986
+ column_names = _get_feature_names(X)
987
+
988
+ if fit_dataframe_and_transform_dataframe:
989
+ named_transformers = self.named_transformers_
990
+ # check that all names seen in fit are in transform, unless
991
+ # they were dropped
992
+ non_dropped_indices = [
993
+ ind
994
+ for name, ind in self._transformer_to_input_indices.items()
995
+ if name in named_transformers and named_transformers[name] != "drop"
996
+ ]
997
+
998
+ all_indices = set(chain(*non_dropped_indices))
999
+ all_names = set(self.feature_names_in_[ind] for ind in all_indices)
1000
+
1001
+ diff = all_names - set(column_names)
1002
+ if diff:
1003
+ raise ValueError(f"columns are missing: {diff}")
1004
+ else:
1005
+ # ndarray was used for fitting or transforming, thus we only
1006
+ # check that n_features_in_ is consistent
1007
+ self._check_n_features(X, reset=False)
1008
+
1009
+ if _routing_enabled():
1010
+ routed_params = process_routing(self, "transform", **params)
1011
+ else:
1012
+ routed_params = self._get_empty_routing()
1013
+
1014
+ Xs = self._call_func_on_transformers(
1015
+ X,
1016
+ None,
1017
+ _transform_one,
1018
+ column_as_labels=fit_dataframe_and_transform_dataframe,
1019
+ routed_params=routed_params,
1020
+ )
1021
+ self._validate_output(Xs)
1022
+
1023
+ if not Xs:
1024
+ # All transformers are None
1025
+ return np.zeros((n_samples, 0))
1026
+
1027
+ return self._hstack(list(Xs), n_samples=n_samples)
1028
+
1029
+ def _hstack(self, Xs, *, n_samples):
1030
+ """Stacks Xs horizontally.
1031
+
1032
+ This allows subclasses to control the stacking behavior, while reusing
1033
+ everything else from ColumnTransformer.
1034
+
1035
+ Parameters
1036
+ ----------
1037
+ Xs : list of {array-like, sparse matrix, dataframe}
1038
+ The container to concatenate.
1039
+ n_samples : int
1040
+ The number of samples in the input data to checking the transformation
1041
+ consistency.
1042
+ """
1043
+ if self.sparse_output_:
1044
+ try:
1045
+ # since all columns should be numeric before stacking them
1046
+ # in a sparse matrix, `check_array` is used for the
1047
+ # dtype conversion if necessary.
1048
+ converted_Xs = [
1049
+ check_array(X, accept_sparse=True, force_all_finite=False)
1050
+ for X in Xs
1051
+ ]
1052
+ except ValueError as e:
1053
+ raise ValueError(
1054
+ "For a sparse output, all columns should "
1055
+ "be a numeric or convertible to a numeric."
1056
+ ) from e
1057
+
1058
+ return sparse.hstack(converted_Xs).tocsr()
1059
+ else:
1060
+ Xs = [f.toarray() if sparse.issparse(f) else f for f in Xs]
1061
+ adapter = _get_container_adapter("transform", self)
1062
+ if adapter and all(adapter.is_supported_container(X) for X in Xs):
1063
+ # rename before stacking as it avoids to error on temporary duplicated
1064
+ # columns
1065
+ transformer_names = [
1066
+ t[0]
1067
+ for t in self._iter(
1068
+ fitted=True,
1069
+ column_as_labels=False,
1070
+ skip_drop=True,
1071
+ skip_empty_columns=True,
1072
+ )
1073
+ ]
1074
+ feature_names_outs = [X.columns for X in Xs if X.shape[1] != 0]
1075
+ if self.verbose_feature_names_out:
1076
+ # `_add_prefix_for_feature_names_out` takes care about raising
1077
+ # an error if there are duplicated columns.
1078
+ feature_names_outs = self._add_prefix_for_feature_names_out(
1079
+ list(zip(transformer_names, feature_names_outs))
1080
+ )
1081
+ else:
1082
+ # check for duplicated columns and raise if any
1083
+ feature_names_outs = list(chain.from_iterable(feature_names_outs))
1084
+ feature_names_count = Counter(feature_names_outs)
1085
+ if any(count > 1 for count in feature_names_count.values()):
1086
+ duplicated_feature_names = sorted(
1087
+ name
1088
+ for name, count in feature_names_count.items()
1089
+ if count > 1
1090
+ )
1091
+ err_msg = (
1092
+ "Duplicated feature names found before concatenating the"
1093
+ " outputs of the transformers:"
1094
+ f" {duplicated_feature_names}.\n"
1095
+ )
1096
+ for transformer_name, X in zip(transformer_names, Xs):
1097
+ if X.shape[1] == 0:
1098
+ continue
1099
+ dup_cols_in_transformer = sorted(
1100
+ set(X.columns).intersection(duplicated_feature_names)
1101
+ )
1102
+ if len(dup_cols_in_transformer):
1103
+ err_msg += (
1104
+ f"Transformer {transformer_name} has conflicting "
1105
+ f"columns names: {dup_cols_in_transformer}.\n"
1106
+ )
1107
+ raise ValueError(
1108
+ err_msg
1109
+ + "Either make sure that the transformers named above "
1110
+ "do not generate columns with conflicting names or set "
1111
+ "verbose_feature_names_out=True to automatically "
1112
+ "prefix to the output feature names with the name "
1113
+ "of the transformer to prevent any conflicting "
1114
+ "names."
1115
+ )
1116
+
1117
+ names_idx = 0
1118
+ for X in Xs:
1119
+ if X.shape[1] == 0:
1120
+ continue
1121
+ names_out = feature_names_outs[names_idx : names_idx + X.shape[1]]
1122
+ adapter.rename_columns(X, names_out)
1123
+ names_idx += X.shape[1]
1124
+
1125
+ output = adapter.hstack(Xs)
1126
+ output_samples = output.shape[0]
1127
+ if output_samples != n_samples:
1128
+ raise ValueError(
1129
+ "Concatenating DataFrames from the transformer's output lead to"
1130
+ " an inconsistent number of samples. The output may have Pandas"
1131
+ " Indexes that do not match, or that transformers are returning"
1132
+ " number of samples which are not the same as the number input"
1133
+ " samples."
1134
+ )
1135
+
1136
+ return output
1137
+
1138
+ return np.hstack(Xs)
1139
+
1140
+ def _sk_visual_block_(self):
1141
+ if isinstance(self.remainder, str) and self.remainder == "drop":
1142
+ transformers = self.transformers
1143
+ elif hasattr(self, "_remainder"):
1144
+ remainder_columns = self._remainder[2]
1145
+ if (
1146
+ hasattr(self, "feature_names_in_")
1147
+ and remainder_columns
1148
+ and not all(isinstance(col, str) for col in remainder_columns)
1149
+ ):
1150
+ remainder_columns = self.feature_names_in_[remainder_columns].tolist()
1151
+ transformers = chain(
1152
+ self.transformers, [("remainder", self.remainder, remainder_columns)]
1153
+ )
1154
+ else:
1155
+ transformers = chain(self.transformers, [("remainder", self.remainder, "")])
1156
+
1157
+ names, transformers, name_details = zip(*transformers)
1158
+ return _VisualBlock(
1159
+ "parallel", transformers, names=names, name_details=name_details
1160
+ )
1161
+
1162
+ def _get_empty_routing(self):
1163
+ """Return empty routing.
1164
+
1165
+ Used while routing can be disabled.
1166
+
1167
+ TODO: Remove when ``set_config(enable_metadata_routing=False)`` is no
1168
+ more an option.
1169
+ """
1170
+ return Bunch(
1171
+ **{
1172
+ name: Bunch(**{method: {} for method in METHODS})
1173
+ for name, step, _, _ in self._iter(
1174
+ fitted=False,
1175
+ column_as_labels=False,
1176
+ skip_drop=True,
1177
+ skip_empty_columns=True,
1178
+ )
1179
+ }
1180
+ )
1181
+
1182
+ def get_metadata_routing(self):
1183
+ """Get metadata routing of this object.
1184
+
1185
+ Please check :ref:`User Guide <metadata_routing>` on how the routing
1186
+ mechanism works.
1187
+
1188
+ .. versionadded:: 1.4
1189
+
1190
+ Returns
1191
+ -------
1192
+ routing : MetadataRouter
1193
+ A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
1194
+ routing information.
1195
+ """
1196
+ router = MetadataRouter(owner=self.__class__.__name__)
1197
+ # Here we don't care about which columns are used for which
1198
+ # transformers, and whether or not a transformer is used at all, which
1199
+ # might happen if no columns are selected for that transformer. We
1200
+ # request all metadata requested by all transformers.
1201
+ transformers = chain(self.transformers, [("remainder", self.remainder, None)])
1202
+ for name, step, _ in transformers:
1203
+ method_mapping = MethodMapping()
1204
+ if hasattr(step, "fit_transform"):
1205
+ (
1206
+ method_mapping.add(caller="fit", callee="fit_transform").add(
1207
+ caller="fit_transform", callee="fit_transform"
1208
+ )
1209
+ )
1210
+ else:
1211
+ (
1212
+ method_mapping.add(caller="fit", callee="fit")
1213
+ .add(caller="fit", callee="transform")
1214
+ .add(caller="fit_transform", callee="fit")
1215
+ .add(caller="fit_transform", callee="transform")
1216
+ )
1217
+ method_mapping.add(caller="transform", callee="transform")
1218
+ router.add(method_mapping=method_mapping, **{name: step})
1219
+
1220
+ return router
1221
+
1222
+
1223
+ def _check_X(X):
1224
+ """Use check_array only when necessary, e.g. on lists and other non-array-likes."""
1225
+ if hasattr(X, "__array__") or hasattr(X, "__dataframe__") or sparse.issparse(X):
1226
+ return X
1227
+ return check_array(X, force_all_finite="allow-nan", dtype=object)
1228
+
1229
+
1230
+ def _is_empty_column_selection(column):
1231
+ """
1232
+ Return True if the column selection is empty (empty list or all-False
1233
+ boolean array).
1234
+
1235
+ """
1236
+ if hasattr(column, "dtype") and np.issubdtype(column.dtype, np.bool_):
1237
+ return not column.any()
1238
+ elif hasattr(column, "__len__"):
1239
+ return (
1240
+ len(column) == 0
1241
+ or all(isinstance(col, bool) for col in column)
1242
+ and not any(column)
1243
+ )
1244
+ else:
1245
+ return False
1246
+
1247
+
1248
+ def _get_transformer_list(estimators):
1249
+ """
1250
+ Construct (name, trans, column) tuples from list
1251
+
1252
+ """
1253
+ transformers, columns = zip(*estimators)
1254
+ names, _ = zip(*_name_estimators(transformers))
1255
+
1256
+ transformer_list = list(zip(names, transformers, columns))
1257
+ return transformer_list
1258
+
1259
+
1260
+ # This function is not validated using validate_params because
1261
+ # it's just a factory for ColumnTransformer.
1262
+ def make_column_transformer(
1263
+ *transformers,
1264
+ remainder="drop",
1265
+ sparse_threshold=0.3,
1266
+ n_jobs=None,
1267
+ verbose=False,
1268
+ verbose_feature_names_out=True,
1269
+ ):
1270
+ """Construct a ColumnTransformer from the given transformers.
1271
+
1272
+ This is a shorthand for the ColumnTransformer constructor; it does not
1273
+ require, and does not permit, naming the transformers. Instead, they will
1274
+ be given names automatically based on their types. It also does not allow
1275
+ weighting with ``transformer_weights``.
1276
+
1277
+ Read more in the :ref:`User Guide <make_column_transformer>`.
1278
+
1279
+ Parameters
1280
+ ----------
1281
+ *transformers : tuples
1282
+ Tuples of the form (transformer, columns) specifying the
1283
+ transformer objects to be applied to subsets of the data.
1284
+
1285
+ transformer : {'drop', 'passthrough'} or estimator
1286
+ Estimator must support :term:`fit` and :term:`transform`.
1287
+ Special-cased strings 'drop' and 'passthrough' are accepted as
1288
+ well, to indicate to drop the columns or to pass them through
1289
+ untransformed, respectively.
1290
+ columns : str, array-like of str, int, array-like of int, slice, \
1291
+ array-like of bool or callable
1292
+ Indexes the data on its second axis. Integers are interpreted as
1293
+ positional columns, while strings can reference DataFrame columns
1294
+ by name. A scalar string or int should be used where
1295
+ ``transformer`` expects X to be a 1d array-like (vector),
1296
+ otherwise a 2d array will be passed to the transformer.
1297
+ A callable is passed the input data `X` and can return any of the
1298
+ above. To select multiple columns by name or dtype, you can use
1299
+ :obj:`make_column_selector`.
1300
+
1301
+ remainder : {'drop', 'passthrough'} or estimator, default='drop'
1302
+ By default, only the specified columns in `transformers` are
1303
+ transformed and combined in the output, and the non-specified
1304
+ columns are dropped. (default of ``'drop'``).
1305
+ By specifying ``remainder='passthrough'``, all remaining columns that
1306
+ were not specified in `transformers` will be automatically passed
1307
+ through. This subset of columns is concatenated with the output of
1308
+ the transformers.
1309
+ By setting ``remainder`` to be an estimator, the remaining
1310
+ non-specified columns will use the ``remainder`` estimator. The
1311
+ estimator must support :term:`fit` and :term:`transform`.
1312
+
1313
+ sparse_threshold : float, default=0.3
1314
+ If the transformed output consists of a mix of sparse and dense data,
1315
+ it will be stacked as a sparse matrix if the density is lower than this
1316
+ value. Use ``sparse_threshold=0`` to always return dense.
1317
+ When the transformed output consists of all sparse or all dense data,
1318
+ the stacked result will be sparse or dense, respectively, and this
1319
+ keyword will be ignored.
1320
+
1321
+ n_jobs : int, default=None
1322
+ Number of jobs to run in parallel.
1323
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
1324
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
1325
+ for more details.
1326
+
1327
+ verbose : bool, default=False
1328
+ If True, the time elapsed while fitting each transformer will be
1329
+ printed as it is completed.
1330
+
1331
+ verbose_feature_names_out : bool, default=True
1332
+ If True, :meth:`ColumnTransformer.get_feature_names_out` will prefix
1333
+ all feature names with the name of the transformer that generated that
1334
+ feature.
1335
+ If False, :meth:`ColumnTransformer.get_feature_names_out` will not
1336
+ prefix any feature names and will error if feature names are not
1337
+ unique.
1338
+
1339
+ .. versionadded:: 1.0
1340
+
1341
+ Returns
1342
+ -------
1343
+ ct : ColumnTransformer
1344
+ Returns a :class:`ColumnTransformer` object.
1345
+
1346
+ See Also
1347
+ --------
1348
+ ColumnTransformer : Class that allows combining the
1349
+ outputs of multiple transformer objects used on column subsets
1350
+ of the data into a single feature space.
1351
+
1352
+ Examples
1353
+ --------
1354
+ >>> from sklearn.preprocessing import StandardScaler, OneHotEncoder
1355
+ >>> from sklearn.compose import make_column_transformer
1356
+ >>> make_column_transformer(
1357
+ ... (StandardScaler(), ['numerical_column']),
1358
+ ... (OneHotEncoder(), ['categorical_column']))
1359
+ ColumnTransformer(transformers=[('standardscaler', StandardScaler(...),
1360
+ ['numerical_column']),
1361
+ ('onehotencoder', OneHotEncoder(...),
1362
+ ['categorical_column'])])
1363
+ """
1364
+ # transformer_weights keyword is not passed through because the user
1365
+ # would need to know the automatically generated names of the transformers
1366
+ transformer_list = _get_transformer_list(transformers)
1367
+ return ColumnTransformer(
1368
+ transformer_list,
1369
+ n_jobs=n_jobs,
1370
+ remainder=remainder,
1371
+ sparse_threshold=sparse_threshold,
1372
+ verbose=verbose,
1373
+ verbose_feature_names_out=verbose_feature_names_out,
1374
+ )
1375
+
1376
+
1377
+ class make_column_selector:
1378
+ """Create a callable to select columns to be used with
1379
+ :class:`ColumnTransformer`.
1380
+
1381
+ :func:`make_column_selector` can select columns based on datatype or the
1382
+ columns name with a regex. When using multiple selection criteria, **all**
1383
+ criteria must match for a column to be selected.
1384
+
1385
+ For an example of how to use :func:`make_column_selector` within a
1386
+ :class:`ColumnTransformer` to select columns based on data type (i.e.
1387
+ `dtype`), refer to
1388
+ :ref:`sphx_glr_auto_examples_compose_plot_column_transformer_mixed_types.py`.
1389
+
1390
+ Parameters
1391
+ ----------
1392
+ pattern : str, default=None
1393
+ Name of columns containing this regex pattern will be included. If
1394
+ None, column selection will not be selected based on pattern.
1395
+
1396
+ dtype_include : column dtype or list of column dtypes, default=None
1397
+ A selection of dtypes to include. For more details, see
1398
+ :meth:`pandas.DataFrame.select_dtypes`.
1399
+
1400
+ dtype_exclude : column dtype or list of column dtypes, default=None
1401
+ A selection of dtypes to exclude. For more details, see
1402
+ :meth:`pandas.DataFrame.select_dtypes`.
1403
+
1404
+ Returns
1405
+ -------
1406
+ selector : callable
1407
+ Callable for column selection to be used by a
1408
+ :class:`ColumnTransformer`.
1409
+
1410
+ See Also
1411
+ --------
1412
+ ColumnTransformer : Class that allows combining the
1413
+ outputs of multiple transformer objects used on column subsets
1414
+ of the data into a single feature space.
1415
+
1416
+ Examples
1417
+ --------
1418
+ >>> from sklearn.preprocessing import StandardScaler, OneHotEncoder
1419
+ >>> from sklearn.compose import make_column_transformer
1420
+ >>> from sklearn.compose import make_column_selector
1421
+ >>> import numpy as np
1422
+ >>> import pandas as pd # doctest: +SKIP
1423
+ >>> X = pd.DataFrame({'city': ['London', 'London', 'Paris', 'Sallisaw'],
1424
+ ... 'rating': [5, 3, 4, 5]}) # doctest: +SKIP
1425
+ >>> ct = make_column_transformer(
1426
+ ... (StandardScaler(),
1427
+ ... make_column_selector(dtype_include=np.number)), # rating
1428
+ ... (OneHotEncoder(),
1429
+ ... make_column_selector(dtype_include=object))) # city
1430
+ >>> ct.fit_transform(X) # doctest: +SKIP
1431
+ array([[ 0.90453403, 1. , 0. , 0. ],
1432
+ [-1.50755672, 1. , 0. , 0. ],
1433
+ [-0.30151134, 0. , 1. , 0. ],
1434
+ [ 0.90453403, 0. , 0. , 1. ]])
1435
+ """
1436
+
1437
+ def __init__(self, pattern=None, *, dtype_include=None, dtype_exclude=None):
1438
+ self.pattern = pattern
1439
+ self.dtype_include = dtype_include
1440
+ self.dtype_exclude = dtype_exclude
1441
+
1442
+ def __call__(self, df):
1443
+ """Callable for column selection to be used by a
1444
+ :class:`ColumnTransformer`.
1445
+
1446
+ Parameters
1447
+ ----------
1448
+ df : dataframe of shape (n_features, n_samples)
1449
+ DataFrame to select columns from.
1450
+ """
1451
+ if not hasattr(df, "iloc"):
1452
+ raise ValueError(
1453
+ "make_column_selector can only be applied to pandas dataframes"
1454
+ )
1455
+ df_row = df.iloc[:1]
1456
+ if self.dtype_include is not None or self.dtype_exclude is not None:
1457
+ df_row = df_row.select_dtypes(
1458
+ include=self.dtype_include, exclude=self.dtype_exclude
1459
+ )
1460
+ cols = df_row.columns
1461
+ if self.pattern is not None:
1462
+ cols = cols[cols.str.contains(self.pattern, regex=True)]
1463
+ return cols.tolist()
env-llmeval/lib/python3.10/site-packages/sklearn/compose/_target.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Authors: Andreas Mueller <[email protected]>
2
+ # Guillaume Lemaitre <[email protected]>
3
+ # License: BSD 3 clause
4
+
5
+ import warnings
6
+
7
+ import numpy as np
8
+
9
+ from ..base import BaseEstimator, RegressorMixin, _fit_context, clone
10
+ from ..exceptions import NotFittedError
11
+ from ..preprocessing import FunctionTransformer
12
+ from ..utils import _safe_indexing, check_array
13
+ from ..utils._param_validation import HasMethods
14
+ from ..utils._tags import _safe_tags
15
+ from ..utils.metadata_routing import (
16
+ _raise_for_unsupported_routing,
17
+ _RoutingNotSupportedMixin,
18
+ )
19
+ from ..utils.validation import check_is_fitted
20
+
21
+ __all__ = ["TransformedTargetRegressor"]
22
+
23
+
24
+ class TransformedTargetRegressor(
25
+ _RoutingNotSupportedMixin, RegressorMixin, BaseEstimator
26
+ ):
27
+ """Meta-estimator to regress on a transformed target.
28
+
29
+ Useful for applying a non-linear transformation to the target `y` in
30
+ regression problems. This transformation can be given as a Transformer
31
+ such as the :class:`~sklearn.preprocessing.QuantileTransformer` or as a
32
+ function and its inverse such as `np.log` and `np.exp`.
33
+
34
+ The computation during :meth:`fit` is::
35
+
36
+ regressor.fit(X, func(y))
37
+
38
+ or::
39
+
40
+ regressor.fit(X, transformer.transform(y))
41
+
42
+ The computation during :meth:`predict` is::
43
+
44
+ inverse_func(regressor.predict(X))
45
+
46
+ or::
47
+
48
+ transformer.inverse_transform(regressor.predict(X))
49
+
50
+ Read more in the :ref:`User Guide <transformed_target_regressor>`.
51
+
52
+ .. versionadded:: 0.20
53
+
54
+ Parameters
55
+ ----------
56
+ regressor : object, default=None
57
+ Regressor object such as derived from
58
+ :class:`~sklearn.base.RegressorMixin`. This regressor will
59
+ automatically be cloned each time prior to fitting. If `regressor is
60
+ None`, :class:`~sklearn.linear_model.LinearRegression` is created and used.
61
+
62
+ transformer : object, default=None
63
+ Estimator object such as derived from
64
+ :class:`~sklearn.base.TransformerMixin`. Cannot be set at the same time
65
+ as `func` and `inverse_func`. If `transformer is None` as well as
66
+ `func` and `inverse_func`, the transformer will be an identity
67
+ transformer. Note that the transformer will be cloned during fitting.
68
+ Also, the transformer is restricting `y` to be a numpy array.
69
+
70
+ func : function, default=None
71
+ Function to apply to `y` before passing to :meth:`fit`. Cannot be set
72
+ at the same time as `transformer`. The function needs to return a
73
+ 2-dimensional array. If `func is None`, the function used will be the
74
+ identity function.
75
+
76
+ inverse_func : function, default=None
77
+ Function to apply to the prediction of the regressor. Cannot be set at
78
+ the same time as `transformer`. The function needs to return a
79
+ 2-dimensional array. The inverse function is used to return
80
+ predictions to the same space of the original training labels.
81
+
82
+ check_inverse : bool, default=True
83
+ Whether to check that `transform` followed by `inverse_transform`
84
+ or `func` followed by `inverse_func` leads to the original targets.
85
+
86
+ Attributes
87
+ ----------
88
+ regressor_ : object
89
+ Fitted regressor.
90
+
91
+ transformer_ : object
92
+ Transformer used in :meth:`fit` and :meth:`predict`.
93
+
94
+ n_features_in_ : int
95
+ Number of features seen during :term:`fit`. Only defined if the
96
+ underlying regressor exposes such an attribute when fit.
97
+
98
+ .. versionadded:: 0.24
99
+
100
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
101
+ Names of features seen during :term:`fit`. Defined only when `X`
102
+ has feature names that are all strings.
103
+
104
+ .. versionadded:: 1.0
105
+
106
+ See Also
107
+ --------
108
+ sklearn.preprocessing.FunctionTransformer : Construct a transformer from an
109
+ arbitrary callable.
110
+
111
+ Notes
112
+ -----
113
+ Internally, the target `y` is always converted into a 2-dimensional array
114
+ to be used by scikit-learn transformers. At the time of prediction, the
115
+ output will be reshaped to a have the same number of dimensions as `y`.
116
+
117
+ Examples
118
+ --------
119
+ >>> import numpy as np
120
+ >>> from sklearn.linear_model import LinearRegression
121
+ >>> from sklearn.compose import TransformedTargetRegressor
122
+ >>> tt = TransformedTargetRegressor(regressor=LinearRegression(),
123
+ ... func=np.log, inverse_func=np.exp)
124
+ >>> X = np.arange(4).reshape(-1, 1)
125
+ >>> y = np.exp(2 * X).ravel()
126
+ >>> tt.fit(X, y)
127
+ TransformedTargetRegressor(...)
128
+ >>> tt.score(X, y)
129
+ 1.0
130
+ >>> tt.regressor_.coef_
131
+ array([2.])
132
+
133
+ For a more detailed example use case refer to
134
+ :ref:`sphx_glr_auto_examples_compose_plot_transformed_target.py`.
135
+ """
136
+
137
+ _parameter_constraints: dict = {
138
+ "regressor": [HasMethods(["fit", "predict"]), None],
139
+ "transformer": [HasMethods("transform"), None],
140
+ "func": [callable, None],
141
+ "inverse_func": [callable, None],
142
+ "check_inverse": ["boolean"],
143
+ }
144
+
145
+ def __init__(
146
+ self,
147
+ regressor=None,
148
+ *,
149
+ transformer=None,
150
+ func=None,
151
+ inverse_func=None,
152
+ check_inverse=True,
153
+ ):
154
+ self.regressor = regressor
155
+ self.transformer = transformer
156
+ self.func = func
157
+ self.inverse_func = inverse_func
158
+ self.check_inverse = check_inverse
159
+
160
+ def _fit_transformer(self, y):
161
+ """Check transformer and fit transformer.
162
+
163
+ Create the default transformer, fit it and make additional inverse
164
+ check on a subset (optional).
165
+
166
+ """
167
+ if self.transformer is not None and (
168
+ self.func is not None or self.inverse_func is not None
169
+ ):
170
+ raise ValueError(
171
+ "'transformer' and functions 'func'/'inverse_func' cannot both be set."
172
+ )
173
+ elif self.transformer is not None:
174
+ self.transformer_ = clone(self.transformer)
175
+ else:
176
+ if self.func is not None and self.inverse_func is None:
177
+ raise ValueError(
178
+ "When 'func' is provided, 'inverse_func' must also be provided"
179
+ )
180
+ self.transformer_ = FunctionTransformer(
181
+ func=self.func,
182
+ inverse_func=self.inverse_func,
183
+ validate=True,
184
+ check_inverse=self.check_inverse,
185
+ )
186
+ # XXX: sample_weight is not currently passed to the
187
+ # transformer. However, if transformer starts using sample_weight, the
188
+ # code should be modified accordingly. At the time to consider the
189
+ # sample_prop feature, it is also a good use case to be considered.
190
+ self.transformer_.fit(y)
191
+ if self.check_inverse:
192
+ idx_selected = slice(None, None, max(1, y.shape[0] // 10))
193
+ y_sel = _safe_indexing(y, idx_selected)
194
+ y_sel_t = self.transformer_.transform(y_sel)
195
+ if not np.allclose(y_sel, self.transformer_.inverse_transform(y_sel_t)):
196
+ warnings.warn(
197
+ (
198
+ "The provided functions or transformer are"
199
+ " not strictly inverse of each other. If"
200
+ " you are sure you want to proceed regardless"
201
+ ", set 'check_inverse=False'"
202
+ ),
203
+ UserWarning,
204
+ )
205
+
206
+ @_fit_context(
207
+ # TransformedTargetRegressor.regressor/transformer are not validated yet.
208
+ prefer_skip_nested_validation=False
209
+ )
210
+ def fit(self, X, y, **fit_params):
211
+ """Fit the model according to the given training data.
212
+
213
+ Parameters
214
+ ----------
215
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
216
+ Training vector, where `n_samples` is the number of samples and
217
+ `n_features` is the number of features.
218
+
219
+ y : array-like of shape (n_samples,)
220
+ Target values.
221
+
222
+ **fit_params : dict
223
+ Parameters passed to the `fit` method of the underlying
224
+ regressor.
225
+
226
+ Returns
227
+ -------
228
+ self : object
229
+ Fitted estimator.
230
+ """
231
+ _raise_for_unsupported_routing(self, "fit", **fit_params)
232
+ if y is None:
233
+ raise ValueError(
234
+ f"This {self.__class__.__name__} estimator "
235
+ "requires y to be passed, but the target y is None."
236
+ )
237
+ y = check_array(
238
+ y,
239
+ input_name="y",
240
+ accept_sparse=False,
241
+ force_all_finite=True,
242
+ ensure_2d=False,
243
+ dtype="numeric",
244
+ allow_nd=True,
245
+ )
246
+
247
+ # store the number of dimension of the target to predict an array of
248
+ # similar shape at predict
249
+ self._training_dim = y.ndim
250
+
251
+ # transformers are designed to modify X which is 2d dimensional, we
252
+ # need to modify y accordingly.
253
+ if y.ndim == 1:
254
+ y_2d = y.reshape(-1, 1)
255
+ else:
256
+ y_2d = y
257
+ self._fit_transformer(y_2d)
258
+
259
+ # transform y and convert back to 1d array if needed
260
+ y_trans = self.transformer_.transform(y_2d)
261
+ # FIXME: a FunctionTransformer can return a 1D array even when validate
262
+ # is set to True. Therefore, we need to check the number of dimension
263
+ # first.
264
+ if y_trans.ndim == 2 and y_trans.shape[1] == 1:
265
+ y_trans = y_trans.squeeze(axis=1)
266
+
267
+ if self.regressor is None:
268
+ from ..linear_model import LinearRegression
269
+
270
+ self.regressor_ = LinearRegression()
271
+ else:
272
+ self.regressor_ = clone(self.regressor)
273
+
274
+ self.regressor_.fit(X, y_trans, **fit_params)
275
+
276
+ if hasattr(self.regressor_, "feature_names_in_"):
277
+ self.feature_names_in_ = self.regressor_.feature_names_in_
278
+
279
+ return self
280
+
281
+ def predict(self, X, **predict_params):
282
+ """Predict using the base regressor, applying inverse.
283
+
284
+ The regressor is used to predict and the `inverse_func` or
285
+ `inverse_transform` is applied before returning the prediction.
286
+
287
+ Parameters
288
+ ----------
289
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
290
+ Samples.
291
+
292
+ **predict_params : dict of str -> object
293
+ Parameters passed to the `predict` method of the underlying
294
+ regressor.
295
+
296
+ Returns
297
+ -------
298
+ y_hat : ndarray of shape (n_samples,)
299
+ Predicted values.
300
+ """
301
+ check_is_fitted(self)
302
+ pred = self.regressor_.predict(X, **predict_params)
303
+ if pred.ndim == 1:
304
+ pred_trans = self.transformer_.inverse_transform(pred.reshape(-1, 1))
305
+ else:
306
+ pred_trans = self.transformer_.inverse_transform(pred)
307
+ if (
308
+ self._training_dim == 1
309
+ and pred_trans.ndim == 2
310
+ and pred_trans.shape[1] == 1
311
+ ):
312
+ pred_trans = pred_trans.squeeze(axis=1)
313
+
314
+ return pred_trans
315
+
316
+ def _more_tags(self):
317
+ regressor = self.regressor
318
+ if regressor is None:
319
+ from ..linear_model import LinearRegression
320
+
321
+ regressor = LinearRegression()
322
+
323
+ return {
324
+ "poor_score": True,
325
+ "multioutput": _safe_tags(regressor, key="multioutput"),
326
+ }
327
+
328
+ @property
329
+ def n_features_in_(self):
330
+ """Number of features seen during :term:`fit`."""
331
+ # For consistency with other estimators we raise a AttributeError so
332
+ # that hasattr() returns False the estimator isn't fitted.
333
+ try:
334
+ check_is_fitted(self)
335
+ except NotFittedError as nfe:
336
+ raise AttributeError(
337
+ "{} object has no n_features_in_ attribute.".format(
338
+ self.__class__.__name__
339
+ )
340
+ ) from nfe
341
+
342
+ return self.regressor_.n_features_in_
env-llmeval/lib/python3.10/site-packages/sklearn/compose/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sklearn/compose/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (186 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/compose/tests/__pycache__/test_column_transformer.cpython-310.pyc ADDED
Binary file (60.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/compose/tests/__pycache__/test_target.cpython-310.pyc ADDED
Binary file (11.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/compose/tests/test_column_transformer.py ADDED
@@ -0,0 +1,2582 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Test the ColumnTransformer.
3
+ """
4
+
5
+ import pickle
6
+ import re
7
+ import warnings
8
+
9
+ import numpy as np
10
+ import pytest
11
+ from numpy.testing import assert_allclose
12
+ from scipy import sparse
13
+
14
+ from sklearn.base import BaseEstimator, TransformerMixin
15
+ from sklearn.compose import (
16
+ ColumnTransformer,
17
+ make_column_selector,
18
+ make_column_transformer,
19
+ )
20
+ from sklearn.exceptions import NotFittedError
21
+ from sklearn.feature_selection import VarianceThreshold
22
+ from sklearn.preprocessing import (
23
+ FunctionTransformer,
24
+ Normalizer,
25
+ OneHotEncoder,
26
+ StandardScaler,
27
+ )
28
+ from sklearn.tests.metadata_routing_common import (
29
+ ConsumingTransformer,
30
+ _Registry,
31
+ check_recorded_metadata,
32
+ )
33
+ from sklearn.utils._testing import (
34
+ _convert_container,
35
+ assert_allclose_dense_sparse,
36
+ assert_almost_equal,
37
+ assert_array_equal,
38
+ )
39
+ from sklearn.utils.fixes import CSR_CONTAINERS
40
+
41
+
42
+ class Trans(TransformerMixin, BaseEstimator):
43
+ def fit(self, X, y=None):
44
+ return self
45
+
46
+ def transform(self, X, y=None):
47
+ # 1D Series -> 2D DataFrame
48
+ if hasattr(X, "to_frame"):
49
+ return X.to_frame()
50
+ # 1D array -> 2D array
51
+ if getattr(X, "ndim", 2) == 1:
52
+ return np.atleast_2d(X).T
53
+ return X
54
+
55
+
56
+ class DoubleTrans(BaseEstimator):
57
+ def fit(self, X, y=None):
58
+ return self
59
+
60
+ def transform(self, X):
61
+ return 2 * X
62
+
63
+
64
+ class SparseMatrixTrans(BaseEstimator):
65
+ def __init__(self, csr_container):
66
+ self.csr_container = csr_container
67
+
68
+ def fit(self, X, y=None):
69
+ return self
70
+
71
+ def transform(self, X, y=None):
72
+ n_samples = len(X)
73
+ return self.csr_container(sparse.eye(n_samples, n_samples))
74
+
75
+
76
+ class TransNo2D(BaseEstimator):
77
+ def fit(self, X, y=None):
78
+ return self
79
+
80
+ def transform(self, X, y=None):
81
+ return X
82
+
83
+
84
+ class TransRaise(BaseEstimator):
85
+ def fit(self, X, y=None):
86
+ raise ValueError("specific message")
87
+
88
+ def transform(self, X, y=None):
89
+ raise ValueError("specific message")
90
+
91
+
92
+ def test_column_transformer():
93
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
94
+
95
+ X_res_first1D = np.array([0, 1, 2])
96
+ X_res_second1D = np.array([2, 4, 6])
97
+ X_res_first = X_res_first1D.reshape(-1, 1)
98
+ X_res_both = X_array
99
+
100
+ cases = [
101
+ # single column 1D / 2D
102
+ (0, X_res_first),
103
+ ([0], X_res_first),
104
+ # list-like
105
+ ([0, 1], X_res_both),
106
+ (np.array([0, 1]), X_res_both),
107
+ # slice
108
+ (slice(0, 1), X_res_first),
109
+ (slice(0, 2), X_res_both),
110
+ # boolean mask
111
+ (np.array([True, False]), X_res_first),
112
+ ([True, False], X_res_first),
113
+ (np.array([True, True]), X_res_both),
114
+ ([True, True], X_res_both),
115
+ ]
116
+
117
+ for selection, res in cases:
118
+ ct = ColumnTransformer([("trans", Trans(), selection)], remainder="drop")
119
+ assert_array_equal(ct.fit_transform(X_array), res)
120
+ assert_array_equal(ct.fit(X_array).transform(X_array), res)
121
+
122
+ # callable that returns any of the allowed specifiers
123
+ ct = ColumnTransformer(
124
+ [("trans", Trans(), lambda x: selection)], remainder="drop"
125
+ )
126
+ assert_array_equal(ct.fit_transform(X_array), res)
127
+ assert_array_equal(ct.fit(X_array).transform(X_array), res)
128
+
129
+ ct = ColumnTransformer([("trans1", Trans(), [0]), ("trans2", Trans(), [1])])
130
+ assert_array_equal(ct.fit_transform(X_array), X_res_both)
131
+ assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
132
+ assert len(ct.transformers_) == 2
133
+
134
+ # test with transformer_weights
135
+ transformer_weights = {"trans1": 0.1, "trans2": 10}
136
+ both = ColumnTransformer(
137
+ [("trans1", Trans(), [0]), ("trans2", Trans(), [1])],
138
+ transformer_weights=transformer_weights,
139
+ )
140
+ res = np.vstack(
141
+ [
142
+ transformer_weights["trans1"] * X_res_first1D,
143
+ transformer_weights["trans2"] * X_res_second1D,
144
+ ]
145
+ ).T
146
+ assert_array_equal(both.fit_transform(X_array), res)
147
+ assert_array_equal(both.fit(X_array).transform(X_array), res)
148
+ assert len(both.transformers_) == 2
149
+
150
+ both = ColumnTransformer(
151
+ [("trans", Trans(), [0, 1])], transformer_weights={"trans": 0.1}
152
+ )
153
+ assert_array_equal(both.fit_transform(X_array), 0.1 * X_res_both)
154
+ assert_array_equal(both.fit(X_array).transform(X_array), 0.1 * X_res_both)
155
+ assert len(both.transformers_) == 1
156
+
157
+
158
+ def test_column_transformer_tuple_transformers_parameter():
159
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
160
+
161
+ transformers = [("trans1", Trans(), [0]), ("trans2", Trans(), [1])]
162
+
163
+ ct_with_list = ColumnTransformer(transformers)
164
+ ct_with_tuple = ColumnTransformer(tuple(transformers))
165
+
166
+ assert_array_equal(
167
+ ct_with_list.fit_transform(X_array), ct_with_tuple.fit_transform(X_array)
168
+ )
169
+ assert_array_equal(
170
+ ct_with_list.fit(X_array).transform(X_array),
171
+ ct_with_tuple.fit(X_array).transform(X_array),
172
+ )
173
+
174
+
175
+ @pytest.mark.parametrize("constructor_name", ["dataframe", "polars"])
176
+ def test_column_transformer_dataframe(constructor_name):
177
+ if constructor_name == "dataframe":
178
+ dataframe_lib = pytest.importorskip("pandas")
179
+ else:
180
+ dataframe_lib = pytest.importorskip(constructor_name)
181
+
182
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
183
+ X_df = _convert_container(
184
+ X_array, constructor_name, columns_name=["first", "second"]
185
+ )
186
+
187
+ X_res_first = np.array([0, 1, 2]).reshape(-1, 1)
188
+ X_res_both = X_array
189
+
190
+ cases = [
191
+ # String keys: label based
192
+ # list
193
+ (["first"], X_res_first),
194
+ (["first", "second"], X_res_both),
195
+ # slice
196
+ (slice("first", "second"), X_res_both),
197
+ # int keys: positional
198
+ # list
199
+ ([0], X_res_first),
200
+ ([0, 1], X_res_both),
201
+ (np.array([0, 1]), X_res_both),
202
+ # slice
203
+ (slice(0, 1), X_res_first),
204
+ (slice(0, 2), X_res_both),
205
+ # boolean mask
206
+ (np.array([True, False]), X_res_first),
207
+ ([True, False], X_res_first),
208
+ ]
209
+ if constructor_name == "dataframe":
210
+ # Scalars are only supported for pandas dataframes.
211
+ cases.extend(
212
+ [
213
+ # scalar
214
+ (0, X_res_first),
215
+ ("first", X_res_first),
216
+ (
217
+ dataframe_lib.Series([True, False], index=["first", "second"]),
218
+ X_res_first,
219
+ ),
220
+ ]
221
+ )
222
+
223
+ for selection, res in cases:
224
+ ct = ColumnTransformer([("trans", Trans(), selection)], remainder="drop")
225
+ assert_array_equal(ct.fit_transform(X_df), res)
226
+ assert_array_equal(ct.fit(X_df).transform(X_df), res)
227
+
228
+ # callable that returns any of the allowed specifiers
229
+ ct = ColumnTransformer(
230
+ [("trans", Trans(), lambda X: selection)], remainder="drop"
231
+ )
232
+ assert_array_equal(ct.fit_transform(X_df), res)
233
+ assert_array_equal(ct.fit(X_df).transform(X_df), res)
234
+
235
+ ct = ColumnTransformer(
236
+ [("trans1", Trans(), ["first"]), ("trans2", Trans(), ["second"])]
237
+ )
238
+ assert_array_equal(ct.fit_transform(X_df), X_res_both)
239
+ assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
240
+ assert len(ct.transformers_) == 2
241
+ assert ct.transformers_[-1][0] != "remainder"
242
+
243
+ ct = ColumnTransformer([("trans1", Trans(), [0]), ("trans2", Trans(), [1])])
244
+ assert_array_equal(ct.fit_transform(X_df), X_res_both)
245
+ assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
246
+ assert len(ct.transformers_) == 2
247
+ assert ct.transformers_[-1][0] != "remainder"
248
+
249
+ # test with transformer_weights
250
+ transformer_weights = {"trans1": 0.1, "trans2": 10}
251
+ both = ColumnTransformer(
252
+ [("trans1", Trans(), ["first"]), ("trans2", Trans(), ["second"])],
253
+ transformer_weights=transformer_weights,
254
+ )
255
+ res = np.vstack(
256
+ [
257
+ transformer_weights["trans1"] * X_df["first"],
258
+ transformer_weights["trans2"] * X_df["second"],
259
+ ]
260
+ ).T
261
+ assert_array_equal(both.fit_transform(X_df), res)
262
+ assert_array_equal(both.fit(X_df).transform(X_df), res)
263
+ assert len(both.transformers_) == 2
264
+ assert both.transformers_[-1][0] != "remainder"
265
+
266
+ # test multiple columns
267
+ both = ColumnTransformer(
268
+ [("trans", Trans(), ["first", "second"])], transformer_weights={"trans": 0.1}
269
+ )
270
+ assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both)
271
+ assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both)
272
+ assert len(both.transformers_) == 1
273
+ assert both.transformers_[-1][0] != "remainder"
274
+
275
+ both = ColumnTransformer(
276
+ [("trans", Trans(), [0, 1])], transformer_weights={"trans": 0.1}
277
+ )
278
+ assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both)
279
+ assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both)
280
+ assert len(both.transformers_) == 1
281
+ assert both.transformers_[-1][0] != "remainder"
282
+
283
+ # ensure pandas object is passed through
284
+
285
+ class TransAssert(BaseEstimator):
286
+ def __init__(self, expected_type_transform):
287
+ self.expected_type_transform = expected_type_transform
288
+
289
+ def fit(self, X, y=None):
290
+ return self
291
+
292
+ def transform(self, X, y=None):
293
+ assert isinstance(X, self.expected_type_transform)
294
+ if isinstance(X, dataframe_lib.Series):
295
+ X = X.to_frame()
296
+ return X
297
+
298
+ ct = ColumnTransformer(
299
+ [
300
+ (
301
+ "trans",
302
+ TransAssert(expected_type_transform=dataframe_lib.DataFrame),
303
+ ["first", "second"],
304
+ )
305
+ ]
306
+ )
307
+ ct.fit_transform(X_df)
308
+
309
+ if constructor_name == "dataframe":
310
+ # DataFrame protocol does not have 1d columns, so we only test on Pandas
311
+ # dataframes.
312
+ ct = ColumnTransformer(
313
+ [
314
+ (
315
+ "trans",
316
+ TransAssert(expected_type_transform=dataframe_lib.Series),
317
+ "first",
318
+ )
319
+ ],
320
+ remainder="drop",
321
+ )
322
+ ct.fit_transform(X_df)
323
+
324
+ # Only test on pandas because the dataframe protocol requires string column
325
+ # names
326
+ # integer column spec + integer column names -> still use positional
327
+ X_df2 = X_df.copy()
328
+ X_df2.columns = [1, 0]
329
+ ct = ColumnTransformer([("trans", Trans(), 0)], remainder="drop")
330
+ assert_array_equal(ct.fit_transform(X_df2), X_res_first)
331
+ assert_array_equal(ct.fit(X_df2).transform(X_df2), X_res_first)
332
+
333
+ assert len(ct.transformers_) == 2
334
+ assert ct.transformers_[-1][0] == "remainder"
335
+ assert ct.transformers_[-1][1] == "drop"
336
+ assert_array_equal(ct.transformers_[-1][2], [1])
337
+
338
+
339
+ @pytest.mark.parametrize("pandas", [True, False], ids=["pandas", "numpy"])
340
+ @pytest.mark.parametrize(
341
+ "column_selection",
342
+ [[], np.array([False, False]), [False, False]],
343
+ ids=["list", "bool", "bool_int"],
344
+ )
345
+ @pytest.mark.parametrize("callable_column", [False, True])
346
+ def test_column_transformer_empty_columns(pandas, column_selection, callable_column):
347
+ # test case that ensures that the column transformer does also work when
348
+ # a given transformer doesn't have any columns to work on
349
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
350
+ X_res_both = X_array
351
+
352
+ if pandas:
353
+ pd = pytest.importorskip("pandas")
354
+ X = pd.DataFrame(X_array, columns=["first", "second"])
355
+ else:
356
+ X = X_array
357
+
358
+ if callable_column:
359
+ column = lambda X: column_selection # noqa
360
+ else:
361
+ column = column_selection
362
+
363
+ ct = ColumnTransformer(
364
+ [("trans1", Trans(), [0, 1]), ("trans2", TransRaise(), column)]
365
+ )
366
+ assert_array_equal(ct.fit_transform(X), X_res_both)
367
+ assert_array_equal(ct.fit(X).transform(X), X_res_both)
368
+ assert len(ct.transformers_) == 2
369
+ assert isinstance(ct.transformers_[1][1], TransRaise)
370
+
371
+ ct = ColumnTransformer(
372
+ [("trans1", TransRaise(), column), ("trans2", Trans(), [0, 1])]
373
+ )
374
+ assert_array_equal(ct.fit_transform(X), X_res_both)
375
+ assert_array_equal(ct.fit(X).transform(X), X_res_both)
376
+ assert len(ct.transformers_) == 2
377
+ assert isinstance(ct.transformers_[0][1], TransRaise)
378
+
379
+ ct = ColumnTransformer([("trans", TransRaise(), column)], remainder="passthrough")
380
+ assert_array_equal(ct.fit_transform(X), X_res_both)
381
+ assert_array_equal(ct.fit(X).transform(X), X_res_both)
382
+ assert len(ct.transformers_) == 2 # including remainder
383
+ assert isinstance(ct.transformers_[0][1], TransRaise)
384
+
385
+ fixture = np.array([[], [], []])
386
+ ct = ColumnTransformer([("trans", TransRaise(), column)], remainder="drop")
387
+ assert_array_equal(ct.fit_transform(X), fixture)
388
+ assert_array_equal(ct.fit(X).transform(X), fixture)
389
+ assert len(ct.transformers_) == 2 # including remainder
390
+ assert isinstance(ct.transformers_[0][1], TransRaise)
391
+
392
+
393
+ def test_column_transformer_output_indices():
394
+ # Checks for the output_indices_ attribute
395
+ X_array = np.arange(6).reshape(3, 2)
396
+
397
+ ct = ColumnTransformer([("trans1", Trans(), [0]), ("trans2", Trans(), [1])])
398
+ X_trans = ct.fit_transform(X_array)
399
+ assert ct.output_indices_ == {
400
+ "trans1": slice(0, 1),
401
+ "trans2": slice(1, 2),
402
+ "remainder": slice(0, 0),
403
+ }
404
+ assert_array_equal(X_trans[:, [0]], X_trans[:, ct.output_indices_["trans1"]])
405
+ assert_array_equal(X_trans[:, [1]], X_trans[:, ct.output_indices_["trans2"]])
406
+
407
+ # test with transformer_weights and multiple columns
408
+ ct = ColumnTransformer(
409
+ [("trans", Trans(), [0, 1])], transformer_weights={"trans": 0.1}
410
+ )
411
+ X_trans = ct.fit_transform(X_array)
412
+ assert ct.output_indices_ == {"trans": slice(0, 2), "remainder": slice(0, 0)}
413
+ assert_array_equal(X_trans[:, [0, 1]], X_trans[:, ct.output_indices_["trans"]])
414
+ assert_array_equal(X_trans[:, []], X_trans[:, ct.output_indices_["remainder"]])
415
+
416
+ # test case that ensures that the attribute does also work when
417
+ # a given transformer doesn't have any columns to work on
418
+ ct = ColumnTransformer([("trans1", Trans(), [0, 1]), ("trans2", TransRaise(), [])])
419
+ X_trans = ct.fit_transform(X_array)
420
+ assert ct.output_indices_ == {
421
+ "trans1": slice(0, 2),
422
+ "trans2": slice(0, 0),
423
+ "remainder": slice(0, 0),
424
+ }
425
+ assert_array_equal(X_trans[:, [0, 1]], X_trans[:, ct.output_indices_["trans1"]])
426
+ assert_array_equal(X_trans[:, []], X_trans[:, ct.output_indices_["trans2"]])
427
+ assert_array_equal(X_trans[:, []], X_trans[:, ct.output_indices_["remainder"]])
428
+
429
+ ct = ColumnTransformer([("trans", TransRaise(), [])], remainder="passthrough")
430
+ X_trans = ct.fit_transform(X_array)
431
+ assert ct.output_indices_ == {"trans": slice(0, 0), "remainder": slice(0, 2)}
432
+ assert_array_equal(X_trans[:, []], X_trans[:, ct.output_indices_["trans"]])
433
+ assert_array_equal(X_trans[:, [0, 1]], X_trans[:, ct.output_indices_["remainder"]])
434
+
435
+
436
+ def test_column_transformer_output_indices_df():
437
+ # Checks for the output_indices_ attribute with data frames
438
+ pd = pytest.importorskip("pandas")
439
+
440
+ X_df = pd.DataFrame(np.arange(6).reshape(3, 2), columns=["first", "second"])
441
+
442
+ ct = ColumnTransformer(
443
+ [("trans1", Trans(), ["first"]), ("trans2", Trans(), ["second"])]
444
+ )
445
+ X_trans = ct.fit_transform(X_df)
446
+ assert ct.output_indices_ == {
447
+ "trans1": slice(0, 1),
448
+ "trans2": slice(1, 2),
449
+ "remainder": slice(0, 0),
450
+ }
451
+ assert_array_equal(X_trans[:, [0]], X_trans[:, ct.output_indices_["trans1"]])
452
+ assert_array_equal(X_trans[:, [1]], X_trans[:, ct.output_indices_["trans2"]])
453
+ assert_array_equal(X_trans[:, []], X_trans[:, ct.output_indices_["remainder"]])
454
+
455
+ ct = ColumnTransformer([("trans1", Trans(), [0]), ("trans2", Trans(), [1])])
456
+ X_trans = ct.fit_transform(X_df)
457
+ assert ct.output_indices_ == {
458
+ "trans1": slice(0, 1),
459
+ "trans2": slice(1, 2),
460
+ "remainder": slice(0, 0),
461
+ }
462
+ assert_array_equal(X_trans[:, [0]], X_trans[:, ct.output_indices_["trans1"]])
463
+ assert_array_equal(X_trans[:, [1]], X_trans[:, ct.output_indices_["trans2"]])
464
+ assert_array_equal(X_trans[:, []], X_trans[:, ct.output_indices_["remainder"]])
465
+
466
+
467
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
468
+ def test_column_transformer_sparse_array(csr_container):
469
+ X_sparse = csr_container(sparse.eye(3, 2))
470
+
471
+ # no distinction between 1D and 2D
472
+ X_res_first = X_sparse[:, [0]]
473
+ X_res_both = X_sparse
474
+
475
+ for col in [(0,), [0], slice(0, 1)]:
476
+ for remainder, res in [("drop", X_res_first), ("passthrough", X_res_both)]:
477
+ ct = ColumnTransformer(
478
+ [("trans", Trans(), col)], remainder=remainder, sparse_threshold=0.8
479
+ )
480
+ assert sparse.issparse(ct.fit_transform(X_sparse))
481
+ assert_allclose_dense_sparse(ct.fit_transform(X_sparse), res)
482
+ assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse), res)
483
+
484
+ for col in [[0, 1], slice(0, 2)]:
485
+ ct = ColumnTransformer([("trans", Trans(), col)], sparse_threshold=0.8)
486
+ assert sparse.issparse(ct.fit_transform(X_sparse))
487
+ assert_allclose_dense_sparse(ct.fit_transform(X_sparse), X_res_both)
488
+ assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse), X_res_both)
489
+
490
+
491
+ def test_column_transformer_list():
492
+ X_list = [[1, float("nan"), "a"], [0, 0, "b"]]
493
+ expected_result = np.array(
494
+ [
495
+ [1, float("nan"), 1, 0],
496
+ [-1, 0, 0, 1],
497
+ ]
498
+ )
499
+
500
+ ct = ColumnTransformer(
501
+ [
502
+ ("numerical", StandardScaler(), [0, 1]),
503
+ ("categorical", OneHotEncoder(), [2]),
504
+ ]
505
+ )
506
+
507
+ assert_array_equal(ct.fit_transform(X_list), expected_result)
508
+ assert_array_equal(ct.fit(X_list).transform(X_list), expected_result)
509
+
510
+
511
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
512
+ def test_column_transformer_sparse_stacking(csr_container):
513
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
514
+ col_trans = ColumnTransformer(
515
+ [("trans1", Trans(), [0]), ("trans2", SparseMatrixTrans(csr_container), 1)],
516
+ sparse_threshold=0.8,
517
+ )
518
+ col_trans.fit(X_array)
519
+ X_trans = col_trans.transform(X_array)
520
+ assert sparse.issparse(X_trans)
521
+ assert X_trans.shape == (X_trans.shape[0], X_trans.shape[0] + 1)
522
+ assert_array_equal(X_trans.toarray()[:, 1:], np.eye(X_trans.shape[0]))
523
+ assert len(col_trans.transformers_) == 2
524
+ assert col_trans.transformers_[-1][0] != "remainder"
525
+
526
+ col_trans = ColumnTransformer(
527
+ [("trans1", Trans(), [0]), ("trans2", SparseMatrixTrans(csr_container), 1)],
528
+ sparse_threshold=0.1,
529
+ )
530
+ col_trans.fit(X_array)
531
+ X_trans = col_trans.transform(X_array)
532
+ assert not sparse.issparse(X_trans)
533
+ assert X_trans.shape == (X_trans.shape[0], X_trans.shape[0] + 1)
534
+ assert_array_equal(X_trans[:, 1:], np.eye(X_trans.shape[0]))
535
+
536
+
537
+ def test_column_transformer_mixed_cols_sparse():
538
+ df = np.array([["a", 1, True], ["b", 2, False]], dtype="O")
539
+
540
+ ct = make_column_transformer(
541
+ (OneHotEncoder(), [0]), ("passthrough", [1, 2]), sparse_threshold=1.0
542
+ )
543
+
544
+ # this shouldn't fail, since boolean can be coerced into a numeric
545
+ # See: https://github.com/scikit-learn/scikit-learn/issues/11912
546
+ X_trans = ct.fit_transform(df)
547
+ assert X_trans.getformat() == "csr"
548
+ assert_array_equal(X_trans.toarray(), np.array([[1, 0, 1, 1], [0, 1, 2, 0]]))
549
+
550
+ ct = make_column_transformer(
551
+ (OneHotEncoder(), [0]), ("passthrough", [0]), sparse_threshold=1.0
552
+ )
553
+ with pytest.raises(ValueError, match="For a sparse output, all columns should"):
554
+ # this fails since strings `a` and `b` cannot be
555
+ # coerced into a numeric.
556
+ ct.fit_transform(df)
557
+
558
+
559
+ def test_column_transformer_sparse_threshold():
560
+ X_array = np.array([["a", "b"], ["A", "B"]], dtype=object).T
561
+ # above data has sparsity of 4 / 8 = 0.5
562
+
563
+ # apply threshold even if all sparse
564
+ col_trans = ColumnTransformer(
565
+ [("trans1", OneHotEncoder(), [0]), ("trans2", OneHotEncoder(), [1])],
566
+ sparse_threshold=0.2,
567
+ )
568
+ res = col_trans.fit_transform(X_array)
569
+ assert not sparse.issparse(res)
570
+ assert not col_trans.sparse_output_
571
+
572
+ # mixed -> sparsity of (4 + 2) / 8 = 0.75
573
+ for thres in [0.75001, 1]:
574
+ col_trans = ColumnTransformer(
575
+ [
576
+ ("trans1", OneHotEncoder(sparse_output=True), [0]),
577
+ ("trans2", OneHotEncoder(sparse_output=False), [1]),
578
+ ],
579
+ sparse_threshold=thres,
580
+ )
581
+ res = col_trans.fit_transform(X_array)
582
+ assert sparse.issparse(res)
583
+ assert col_trans.sparse_output_
584
+
585
+ for thres in [0.75, 0]:
586
+ col_trans = ColumnTransformer(
587
+ [
588
+ ("trans1", OneHotEncoder(sparse_output=True), [0]),
589
+ ("trans2", OneHotEncoder(sparse_output=False), [1]),
590
+ ],
591
+ sparse_threshold=thres,
592
+ )
593
+ res = col_trans.fit_transform(X_array)
594
+ assert not sparse.issparse(res)
595
+ assert not col_trans.sparse_output_
596
+
597
+ # if nothing is sparse -> no sparse
598
+ for thres in [0.33, 0, 1]:
599
+ col_trans = ColumnTransformer(
600
+ [
601
+ ("trans1", OneHotEncoder(sparse_output=False), [0]),
602
+ ("trans2", OneHotEncoder(sparse_output=False), [1]),
603
+ ],
604
+ sparse_threshold=thres,
605
+ )
606
+ res = col_trans.fit_transform(X_array)
607
+ assert not sparse.issparse(res)
608
+ assert not col_trans.sparse_output_
609
+
610
+
611
+ def test_column_transformer_error_msg_1D():
612
+ X_array = np.array([[0.0, 1.0, 2.0], [2.0, 4.0, 6.0]]).T
613
+
614
+ col_trans = ColumnTransformer([("trans", StandardScaler(), 0)])
615
+ msg = "1D data passed to a transformer"
616
+ with pytest.raises(ValueError, match=msg):
617
+ col_trans.fit(X_array)
618
+
619
+ with pytest.raises(ValueError, match=msg):
620
+ col_trans.fit_transform(X_array)
621
+
622
+ col_trans = ColumnTransformer([("trans", TransRaise(), 0)])
623
+ for func in [col_trans.fit, col_trans.fit_transform]:
624
+ with pytest.raises(ValueError, match="specific message"):
625
+ func(X_array)
626
+
627
+
628
+ def test_2D_transformer_output():
629
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
630
+
631
+ # if one transformer is dropped, test that name is still correct
632
+ ct = ColumnTransformer([("trans1", "drop", 0), ("trans2", TransNo2D(), 1)])
633
+
634
+ msg = "the 'trans2' transformer should be 2D"
635
+ with pytest.raises(ValueError, match=msg):
636
+ ct.fit_transform(X_array)
637
+ # because fit is also doing transform, this raises already on fit
638
+ with pytest.raises(ValueError, match=msg):
639
+ ct.fit(X_array)
640
+
641
+
642
+ def test_2D_transformer_output_pandas():
643
+ pd = pytest.importorskip("pandas")
644
+
645
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
646
+ X_df = pd.DataFrame(X_array, columns=["col1", "col2"])
647
+
648
+ # if one transformer is dropped, test that name is still correct
649
+ ct = ColumnTransformer([("trans1", TransNo2D(), "col1")])
650
+ msg = "the 'trans1' transformer should be 2D"
651
+ with pytest.raises(ValueError, match=msg):
652
+ ct.fit_transform(X_df)
653
+ # because fit is also doing transform, this raises already on fit
654
+ with pytest.raises(ValueError, match=msg):
655
+ ct.fit(X_df)
656
+
657
+
658
+ @pytest.mark.parametrize("remainder", ["drop", "passthrough"])
659
+ def test_column_transformer_invalid_columns(remainder):
660
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
661
+
662
+ # general invalid
663
+ for col in [1.5, ["string", 1], slice(1, "s"), np.array([1.0])]:
664
+ ct = ColumnTransformer([("trans", Trans(), col)], remainder=remainder)
665
+ with pytest.raises(ValueError, match="No valid specification"):
666
+ ct.fit(X_array)
667
+
668
+ # invalid for arrays
669
+ for col in ["string", ["string", "other"], slice("a", "b")]:
670
+ ct = ColumnTransformer([("trans", Trans(), col)], remainder=remainder)
671
+ with pytest.raises(ValueError, match="Specifying the columns"):
672
+ ct.fit(X_array)
673
+
674
+ # transformed n_features does not match fitted n_features
675
+ col = [0, 1]
676
+ ct = ColumnTransformer([("trans", Trans(), col)], remainder=remainder)
677
+ ct.fit(X_array)
678
+ X_array_more = np.array([[0, 1, 2], [2, 4, 6], [3, 6, 9]]).T
679
+ msg = "X has 3 features, but ColumnTransformer is expecting 2 features as input."
680
+ with pytest.raises(ValueError, match=msg):
681
+ ct.transform(X_array_more)
682
+ X_array_fewer = np.array(
683
+ [
684
+ [0, 1, 2],
685
+ ]
686
+ ).T
687
+ err_msg = (
688
+ "X has 1 features, but ColumnTransformer is expecting 2 features as input."
689
+ )
690
+ with pytest.raises(ValueError, match=err_msg):
691
+ ct.transform(X_array_fewer)
692
+
693
+
694
+ def test_column_transformer_invalid_transformer():
695
+ class NoTrans(BaseEstimator):
696
+ def fit(self, X, y=None):
697
+ return self
698
+
699
+ def predict(self, X):
700
+ return X
701
+
702
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
703
+ ct = ColumnTransformer([("trans", NoTrans(), [0])])
704
+ msg = "All estimators should implement fit and transform"
705
+ with pytest.raises(TypeError, match=msg):
706
+ ct.fit(X_array)
707
+
708
+
709
+ def test_make_column_transformer():
710
+ scaler = StandardScaler()
711
+ norm = Normalizer()
712
+ ct = make_column_transformer((scaler, "first"), (norm, ["second"]))
713
+ names, transformers, columns = zip(*ct.transformers)
714
+ assert names == ("standardscaler", "normalizer")
715
+ assert transformers == (scaler, norm)
716
+ assert columns == ("first", ["second"])
717
+
718
+
719
+ def test_make_column_transformer_pandas():
720
+ pd = pytest.importorskip("pandas")
721
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
722
+ X_df = pd.DataFrame(X_array, columns=["first", "second"])
723
+ norm = Normalizer()
724
+ ct1 = ColumnTransformer([("norm", Normalizer(), X_df.columns)])
725
+ ct2 = make_column_transformer((norm, X_df.columns))
726
+ assert_almost_equal(ct1.fit_transform(X_df), ct2.fit_transform(X_df))
727
+
728
+
729
+ def test_make_column_transformer_kwargs():
730
+ scaler = StandardScaler()
731
+ norm = Normalizer()
732
+ ct = make_column_transformer(
733
+ (scaler, "first"),
734
+ (norm, ["second"]),
735
+ n_jobs=3,
736
+ remainder="drop",
737
+ sparse_threshold=0.5,
738
+ )
739
+ assert (
740
+ ct.transformers
741
+ == make_column_transformer((scaler, "first"), (norm, ["second"])).transformers
742
+ )
743
+ assert ct.n_jobs == 3
744
+ assert ct.remainder == "drop"
745
+ assert ct.sparse_threshold == 0.5
746
+ # invalid keyword parameters should raise an error message
747
+ msg = re.escape(
748
+ "make_column_transformer() got an unexpected "
749
+ "keyword argument 'transformer_weights'"
750
+ )
751
+ with pytest.raises(TypeError, match=msg):
752
+ make_column_transformer(
753
+ (scaler, "first"),
754
+ (norm, ["second"]),
755
+ transformer_weights={"pca": 10, "Transf": 1},
756
+ )
757
+
758
+
759
+ def test_make_column_transformer_remainder_transformer():
760
+ scaler = StandardScaler()
761
+ norm = Normalizer()
762
+ remainder = StandardScaler()
763
+ ct = make_column_transformer(
764
+ (scaler, "first"), (norm, ["second"]), remainder=remainder
765
+ )
766
+ assert ct.remainder == remainder
767
+
768
+
769
+ def test_column_transformer_get_set_params():
770
+ ct = ColumnTransformer(
771
+ [("trans1", StandardScaler(), [0]), ("trans2", StandardScaler(), [1])]
772
+ )
773
+
774
+ exp = {
775
+ "n_jobs": None,
776
+ "remainder": "drop",
777
+ "sparse_threshold": 0.3,
778
+ "trans1": ct.transformers[0][1],
779
+ "trans1__copy": True,
780
+ "trans1__with_mean": True,
781
+ "trans1__with_std": True,
782
+ "trans2": ct.transformers[1][1],
783
+ "trans2__copy": True,
784
+ "trans2__with_mean": True,
785
+ "trans2__with_std": True,
786
+ "transformers": ct.transformers,
787
+ "transformer_weights": None,
788
+ "verbose_feature_names_out": True,
789
+ "verbose": False,
790
+ }
791
+
792
+ assert ct.get_params() == exp
793
+
794
+ ct.set_params(trans1__with_mean=False)
795
+ assert not ct.get_params()["trans1__with_mean"]
796
+
797
+ ct.set_params(trans1="passthrough")
798
+ exp = {
799
+ "n_jobs": None,
800
+ "remainder": "drop",
801
+ "sparse_threshold": 0.3,
802
+ "trans1": "passthrough",
803
+ "trans2": ct.transformers[1][1],
804
+ "trans2__copy": True,
805
+ "trans2__with_mean": True,
806
+ "trans2__with_std": True,
807
+ "transformers": ct.transformers,
808
+ "transformer_weights": None,
809
+ "verbose_feature_names_out": True,
810
+ "verbose": False,
811
+ }
812
+
813
+ assert ct.get_params() == exp
814
+
815
+
816
+ def test_column_transformer_named_estimators():
817
+ X_array = np.array([[0.0, 1.0, 2.0], [2.0, 4.0, 6.0]]).T
818
+ ct = ColumnTransformer(
819
+ [
820
+ ("trans1", StandardScaler(), [0]),
821
+ ("trans2", StandardScaler(with_std=False), [1]),
822
+ ]
823
+ )
824
+ assert not hasattr(ct, "transformers_")
825
+ ct.fit(X_array)
826
+ assert hasattr(ct, "transformers_")
827
+ assert isinstance(ct.named_transformers_["trans1"], StandardScaler)
828
+ assert isinstance(ct.named_transformers_.trans1, StandardScaler)
829
+ assert isinstance(ct.named_transformers_["trans2"], StandardScaler)
830
+ assert isinstance(ct.named_transformers_.trans2, StandardScaler)
831
+ assert not ct.named_transformers_.trans2.with_std
832
+ # check it are fitted transformers
833
+ assert ct.named_transformers_.trans1.mean_ == 1.0
834
+
835
+
836
+ def test_column_transformer_cloning():
837
+ X_array = np.array([[0.0, 1.0, 2.0], [2.0, 4.0, 6.0]]).T
838
+
839
+ ct = ColumnTransformer([("trans", StandardScaler(), [0])])
840
+ ct.fit(X_array)
841
+ assert not hasattr(ct.transformers[0][1], "mean_")
842
+ assert hasattr(ct.transformers_[0][1], "mean_")
843
+
844
+ ct = ColumnTransformer([("trans", StandardScaler(), [0])])
845
+ ct.fit_transform(X_array)
846
+ assert not hasattr(ct.transformers[0][1], "mean_")
847
+ assert hasattr(ct.transformers_[0][1], "mean_")
848
+
849
+
850
+ def test_column_transformer_get_feature_names():
851
+ X_array = np.array([[0.0, 1.0, 2.0], [2.0, 4.0, 6.0]]).T
852
+ ct = ColumnTransformer([("trans", Trans(), [0, 1])])
853
+ # raise correct error when not fitted
854
+ with pytest.raises(NotFittedError):
855
+ ct.get_feature_names_out()
856
+ # raise correct error when no feature names are available
857
+ ct.fit(X_array)
858
+ msg = re.escape(
859
+ "Transformer trans (type Trans) does not provide get_feature_names_out"
860
+ )
861
+ with pytest.raises(AttributeError, match=msg):
862
+ ct.get_feature_names_out()
863
+
864
+
865
+ def test_column_transformer_special_strings():
866
+ # one 'drop' -> ignore
867
+ X_array = np.array([[0.0, 1.0, 2.0], [2.0, 4.0, 6.0]]).T
868
+ ct = ColumnTransformer([("trans1", Trans(), [0]), ("trans2", "drop", [1])])
869
+ exp = np.array([[0.0], [1.0], [2.0]])
870
+ assert_array_equal(ct.fit_transform(X_array), exp)
871
+ assert_array_equal(ct.fit(X_array).transform(X_array), exp)
872
+ assert len(ct.transformers_) == 2
873
+ assert ct.transformers_[-1][0] != "remainder"
874
+
875
+ # all 'drop' -> return shape 0 array
876
+ ct = ColumnTransformer([("trans1", "drop", [0]), ("trans2", "drop", [1])])
877
+ assert_array_equal(ct.fit(X_array).transform(X_array).shape, (3, 0))
878
+ assert_array_equal(ct.fit_transform(X_array).shape, (3, 0))
879
+ assert len(ct.transformers_) == 2
880
+ assert ct.transformers_[-1][0] != "remainder"
881
+
882
+ # 'passthrough'
883
+ X_array = np.array([[0.0, 1.0, 2.0], [2.0, 4.0, 6.0]]).T
884
+ ct = ColumnTransformer([("trans1", Trans(), [0]), ("trans2", "passthrough", [1])])
885
+ exp = X_array
886
+ assert_array_equal(ct.fit_transform(X_array), exp)
887
+ assert_array_equal(ct.fit(X_array).transform(X_array), exp)
888
+ assert len(ct.transformers_) == 2
889
+ assert ct.transformers_[-1][0] != "remainder"
890
+
891
+
892
+ def test_column_transformer_remainder():
893
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
894
+
895
+ X_res_first = np.array([0, 1, 2]).reshape(-1, 1)
896
+ X_res_second = np.array([2, 4, 6]).reshape(-1, 1)
897
+ X_res_both = X_array
898
+
899
+ # default drop
900
+ ct = ColumnTransformer([("trans1", Trans(), [0])])
901
+ assert_array_equal(ct.fit_transform(X_array), X_res_first)
902
+ assert_array_equal(ct.fit(X_array).transform(X_array), X_res_first)
903
+ assert len(ct.transformers_) == 2
904
+ assert ct.transformers_[-1][0] == "remainder"
905
+ assert ct.transformers_[-1][1] == "drop"
906
+ assert_array_equal(ct.transformers_[-1][2], [1])
907
+
908
+ # specify passthrough
909
+ ct = ColumnTransformer([("trans", Trans(), [0])], remainder="passthrough")
910
+ assert_array_equal(ct.fit_transform(X_array), X_res_both)
911
+ assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
912
+ assert len(ct.transformers_) == 2
913
+ assert ct.transformers_[-1][0] == "remainder"
914
+ assert isinstance(ct.transformers_[-1][1], FunctionTransformer)
915
+ assert_array_equal(ct.transformers_[-1][2], [1])
916
+
917
+ # column order is not preserved (passed through added to end)
918
+ ct = ColumnTransformer([("trans1", Trans(), [1])], remainder="passthrough")
919
+ assert_array_equal(ct.fit_transform(X_array), X_res_both[:, ::-1])
920
+ assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both[:, ::-1])
921
+ assert len(ct.transformers_) == 2
922
+ assert ct.transformers_[-1][0] == "remainder"
923
+ assert isinstance(ct.transformers_[-1][1], FunctionTransformer)
924
+ assert_array_equal(ct.transformers_[-1][2], [0])
925
+
926
+ # passthrough when all actual transformers are skipped
927
+ ct = ColumnTransformer([("trans1", "drop", [0])], remainder="passthrough")
928
+ assert_array_equal(ct.fit_transform(X_array), X_res_second)
929
+ assert_array_equal(ct.fit(X_array).transform(X_array), X_res_second)
930
+ assert len(ct.transformers_) == 2
931
+ assert ct.transformers_[-1][0] == "remainder"
932
+ assert isinstance(ct.transformers_[-1][1], FunctionTransformer)
933
+ assert_array_equal(ct.transformers_[-1][2], [1])
934
+
935
+ # check default for make_column_transformer
936
+ ct = make_column_transformer((Trans(), [0]))
937
+ assert ct.remainder == "drop"
938
+
939
+
940
+ @pytest.mark.parametrize(
941
+ "key", [[0], np.array([0]), slice(0, 1), np.array([True, False])]
942
+ )
943
+ def test_column_transformer_remainder_numpy(key):
944
+ # test different ways that columns are specified with passthrough
945
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
946
+ X_res_both = X_array
947
+
948
+ ct = ColumnTransformer([("trans1", Trans(), key)], remainder="passthrough")
949
+ assert_array_equal(ct.fit_transform(X_array), X_res_both)
950
+ assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
951
+ assert len(ct.transformers_) == 2
952
+ assert ct.transformers_[-1][0] == "remainder"
953
+ assert isinstance(ct.transformers_[-1][1], FunctionTransformer)
954
+ assert_array_equal(ct.transformers_[-1][2], [1])
955
+
956
+
957
+ @pytest.mark.parametrize(
958
+ "key",
959
+ [
960
+ [0],
961
+ slice(0, 1),
962
+ np.array([True, False]),
963
+ ["first"],
964
+ "pd-index",
965
+ np.array(["first"]),
966
+ np.array(["first"], dtype=object),
967
+ slice(None, "first"),
968
+ slice("first", "first"),
969
+ ],
970
+ )
971
+ def test_column_transformer_remainder_pandas(key):
972
+ # test different ways that columns are specified with passthrough
973
+ pd = pytest.importorskip("pandas")
974
+ if isinstance(key, str) and key == "pd-index":
975
+ key = pd.Index(["first"])
976
+
977
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
978
+ X_df = pd.DataFrame(X_array, columns=["first", "second"])
979
+ X_res_both = X_array
980
+
981
+ ct = ColumnTransformer([("trans1", Trans(), key)], remainder="passthrough")
982
+ assert_array_equal(ct.fit_transform(X_df), X_res_both)
983
+ assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
984
+ assert len(ct.transformers_) == 2
985
+ assert ct.transformers_[-1][0] == "remainder"
986
+ assert isinstance(ct.transformers_[-1][1], FunctionTransformer)
987
+ assert_array_equal(ct.transformers_[-1][2], [1])
988
+
989
+
990
+ @pytest.mark.parametrize(
991
+ "key", [[0], np.array([0]), slice(0, 1), np.array([True, False, False])]
992
+ )
993
+ def test_column_transformer_remainder_transformer(key):
994
+ X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
995
+ X_res_both = X_array.copy()
996
+
997
+ # second and third columns are doubled when remainder = DoubleTrans
998
+ X_res_both[:, 1:3] *= 2
999
+
1000
+ ct = ColumnTransformer([("trans1", Trans(), key)], remainder=DoubleTrans())
1001
+
1002
+ assert_array_equal(ct.fit_transform(X_array), X_res_both)
1003
+ assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
1004
+ assert len(ct.transformers_) == 2
1005
+ assert ct.transformers_[-1][0] == "remainder"
1006
+ assert isinstance(ct.transformers_[-1][1], DoubleTrans)
1007
+ assert_array_equal(ct.transformers_[-1][2], [1, 2])
1008
+
1009
+
1010
+ def test_column_transformer_no_remaining_remainder_transformer():
1011
+ X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
1012
+
1013
+ ct = ColumnTransformer([("trans1", Trans(), [0, 1, 2])], remainder=DoubleTrans())
1014
+
1015
+ assert_array_equal(ct.fit_transform(X_array), X_array)
1016
+ assert_array_equal(ct.fit(X_array).transform(X_array), X_array)
1017
+ assert len(ct.transformers_) == 1
1018
+ assert ct.transformers_[-1][0] != "remainder"
1019
+
1020
+
1021
+ def test_column_transformer_drops_all_remainder_transformer():
1022
+ X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
1023
+
1024
+ # columns are doubled when remainder = DoubleTrans
1025
+ X_res_both = 2 * X_array.copy()[:, 1:3]
1026
+
1027
+ ct = ColumnTransformer([("trans1", "drop", [0])], remainder=DoubleTrans())
1028
+
1029
+ assert_array_equal(ct.fit_transform(X_array), X_res_both)
1030
+ assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
1031
+ assert len(ct.transformers_) == 2
1032
+ assert ct.transformers_[-1][0] == "remainder"
1033
+ assert isinstance(ct.transformers_[-1][1], DoubleTrans)
1034
+ assert_array_equal(ct.transformers_[-1][2], [1, 2])
1035
+
1036
+
1037
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
1038
+ def test_column_transformer_sparse_remainder_transformer(csr_container):
1039
+ X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
1040
+
1041
+ ct = ColumnTransformer(
1042
+ [("trans1", Trans(), [0])],
1043
+ remainder=SparseMatrixTrans(csr_container),
1044
+ sparse_threshold=0.8,
1045
+ )
1046
+
1047
+ X_trans = ct.fit_transform(X_array)
1048
+ assert sparse.issparse(X_trans)
1049
+ # SparseMatrixTrans creates 3 features for each column. There is
1050
+ # one column in ``transformers``, thus:
1051
+ assert X_trans.shape == (3, 3 + 1)
1052
+
1053
+ exp_array = np.hstack((X_array[:, 0].reshape(-1, 1), np.eye(3)))
1054
+ assert_array_equal(X_trans.toarray(), exp_array)
1055
+ assert len(ct.transformers_) == 2
1056
+ assert ct.transformers_[-1][0] == "remainder"
1057
+ assert isinstance(ct.transformers_[-1][1], SparseMatrixTrans)
1058
+ assert_array_equal(ct.transformers_[-1][2], [1, 2])
1059
+
1060
+
1061
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
1062
+ def test_column_transformer_drop_all_sparse_remainder_transformer(csr_container):
1063
+ X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
1064
+ ct = ColumnTransformer(
1065
+ [("trans1", "drop", [0])],
1066
+ remainder=SparseMatrixTrans(csr_container),
1067
+ sparse_threshold=0.8,
1068
+ )
1069
+
1070
+ X_trans = ct.fit_transform(X_array)
1071
+ assert sparse.issparse(X_trans)
1072
+
1073
+ # SparseMatrixTrans creates 3 features for each column, thus:
1074
+ assert X_trans.shape == (3, 3)
1075
+ assert_array_equal(X_trans.toarray(), np.eye(3))
1076
+ assert len(ct.transformers_) == 2
1077
+ assert ct.transformers_[-1][0] == "remainder"
1078
+ assert isinstance(ct.transformers_[-1][1], SparseMatrixTrans)
1079
+ assert_array_equal(ct.transformers_[-1][2], [1, 2])
1080
+
1081
+
1082
+ def test_column_transformer_get_set_params_with_remainder():
1083
+ ct = ColumnTransformer(
1084
+ [("trans1", StandardScaler(), [0])], remainder=StandardScaler()
1085
+ )
1086
+
1087
+ exp = {
1088
+ "n_jobs": None,
1089
+ "remainder": ct.remainder,
1090
+ "remainder__copy": True,
1091
+ "remainder__with_mean": True,
1092
+ "remainder__with_std": True,
1093
+ "sparse_threshold": 0.3,
1094
+ "trans1": ct.transformers[0][1],
1095
+ "trans1__copy": True,
1096
+ "trans1__with_mean": True,
1097
+ "trans1__with_std": True,
1098
+ "transformers": ct.transformers,
1099
+ "transformer_weights": None,
1100
+ "verbose_feature_names_out": True,
1101
+ "verbose": False,
1102
+ }
1103
+
1104
+ assert ct.get_params() == exp
1105
+
1106
+ ct.set_params(remainder__with_std=False)
1107
+ assert not ct.get_params()["remainder__with_std"]
1108
+
1109
+ ct.set_params(trans1="passthrough")
1110
+ exp = {
1111
+ "n_jobs": None,
1112
+ "remainder": ct.remainder,
1113
+ "remainder__copy": True,
1114
+ "remainder__with_mean": True,
1115
+ "remainder__with_std": False,
1116
+ "sparse_threshold": 0.3,
1117
+ "trans1": "passthrough",
1118
+ "transformers": ct.transformers,
1119
+ "transformer_weights": None,
1120
+ "verbose_feature_names_out": True,
1121
+ "verbose": False,
1122
+ }
1123
+ assert ct.get_params() == exp
1124
+
1125
+
1126
+ def test_column_transformer_no_estimators():
1127
+ X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).astype("float").T
1128
+ ct = ColumnTransformer([], remainder=StandardScaler())
1129
+
1130
+ params = ct.get_params()
1131
+ assert params["remainder__with_mean"]
1132
+
1133
+ X_trans = ct.fit_transform(X_array)
1134
+ assert X_trans.shape == X_array.shape
1135
+ assert len(ct.transformers_) == 1
1136
+ assert ct.transformers_[-1][0] == "remainder"
1137
+ assert ct.transformers_[-1][2] == [0, 1, 2]
1138
+
1139
+
1140
+ @pytest.mark.parametrize(
1141
+ ["est", "pattern"],
1142
+ [
1143
+ (
1144
+ ColumnTransformer(
1145
+ [("trans1", Trans(), [0]), ("trans2", Trans(), [1])],
1146
+ remainder=DoubleTrans(),
1147
+ ),
1148
+ (
1149
+ r"\[ColumnTransformer\].*\(1 of 3\) Processing trans1.* total=.*\n"
1150
+ r"\[ColumnTransformer\].*\(2 of 3\) Processing trans2.* total=.*\n"
1151
+ r"\[ColumnTransformer\].*\(3 of 3\) Processing remainder.* total=.*\n$"
1152
+ ),
1153
+ ),
1154
+ (
1155
+ ColumnTransformer(
1156
+ [("trans1", Trans(), [0]), ("trans2", Trans(), [1])],
1157
+ remainder="passthrough",
1158
+ ),
1159
+ (
1160
+ r"\[ColumnTransformer\].*\(1 of 3\) Processing trans1.* total=.*\n"
1161
+ r"\[ColumnTransformer\].*\(2 of 3\) Processing trans2.* total=.*\n"
1162
+ r"\[ColumnTransformer\].*\(3 of 3\) Processing remainder.* total=.*\n$"
1163
+ ),
1164
+ ),
1165
+ (
1166
+ ColumnTransformer(
1167
+ [("trans1", Trans(), [0]), ("trans2", "drop", [1])],
1168
+ remainder="passthrough",
1169
+ ),
1170
+ (
1171
+ r"\[ColumnTransformer\].*\(1 of 2\) Processing trans1.* total=.*\n"
1172
+ r"\[ColumnTransformer\].*\(2 of 2\) Processing remainder.* total=.*\n$"
1173
+ ),
1174
+ ),
1175
+ (
1176
+ ColumnTransformer(
1177
+ [("trans1", Trans(), [0]), ("trans2", "passthrough", [1])],
1178
+ remainder="passthrough",
1179
+ ),
1180
+ (
1181
+ r"\[ColumnTransformer\].*\(1 of 3\) Processing trans1.* total=.*\n"
1182
+ r"\[ColumnTransformer\].*\(2 of 3\) Processing trans2.* total=.*\n"
1183
+ r"\[ColumnTransformer\].*\(3 of 3\) Processing remainder.* total=.*\n$"
1184
+ ),
1185
+ ),
1186
+ (
1187
+ ColumnTransformer([("trans1", Trans(), [0])], remainder="passthrough"),
1188
+ (
1189
+ r"\[ColumnTransformer\].*\(1 of 2\) Processing trans1.* total=.*\n"
1190
+ r"\[ColumnTransformer\].*\(2 of 2\) Processing remainder.* total=.*\n$"
1191
+ ),
1192
+ ),
1193
+ (
1194
+ ColumnTransformer(
1195
+ [("trans1", Trans(), [0]), ("trans2", Trans(), [1])], remainder="drop"
1196
+ ),
1197
+ (
1198
+ r"\[ColumnTransformer\].*\(1 of 2\) Processing trans1.* total=.*\n"
1199
+ r"\[ColumnTransformer\].*\(2 of 2\) Processing trans2.* total=.*\n$"
1200
+ ),
1201
+ ),
1202
+ (
1203
+ ColumnTransformer([("trans1", Trans(), [0])], remainder="drop"),
1204
+ r"\[ColumnTransformer\].*\(1 of 1\) Processing trans1.* total=.*\n$",
1205
+ ),
1206
+ ],
1207
+ )
1208
+ @pytest.mark.parametrize("method", ["fit", "fit_transform"])
1209
+ def test_column_transformer_verbose(est, pattern, method, capsys):
1210
+ X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
1211
+
1212
+ func = getattr(est, method)
1213
+ est.set_params(verbose=False)
1214
+ func(X_array)
1215
+ assert not capsys.readouterr().out, "Got output for verbose=False"
1216
+
1217
+ est.set_params(verbose=True)
1218
+ func(X_array)
1219
+ assert re.match(pattern, capsys.readouterr()[0])
1220
+
1221
+
1222
+ def test_column_transformer_no_estimators_set_params():
1223
+ ct = ColumnTransformer([]).set_params(n_jobs=2)
1224
+ assert ct.n_jobs == 2
1225
+
1226
+
1227
+ def test_column_transformer_callable_specifier():
1228
+ # assert that function gets the full array
1229
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
1230
+ X_res_first = np.array([[0, 1, 2]]).T
1231
+
1232
+ def func(X):
1233
+ assert_array_equal(X, X_array)
1234
+ return [0]
1235
+
1236
+ ct = ColumnTransformer([("trans", Trans(), func)], remainder="drop")
1237
+ assert_array_equal(ct.fit_transform(X_array), X_res_first)
1238
+ assert_array_equal(ct.fit(X_array).transform(X_array), X_res_first)
1239
+ assert callable(ct.transformers[0][2])
1240
+ assert ct.transformers_[0][2] == [0]
1241
+
1242
+
1243
+ def test_column_transformer_callable_specifier_dataframe():
1244
+ # assert that function gets the full dataframe
1245
+ pd = pytest.importorskip("pandas")
1246
+ X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
1247
+ X_res_first = np.array([[0, 1, 2]]).T
1248
+
1249
+ X_df = pd.DataFrame(X_array, columns=["first", "second"])
1250
+
1251
+ def func(X):
1252
+ assert_array_equal(X.columns, X_df.columns)
1253
+ assert_array_equal(X.values, X_df.values)
1254
+ return ["first"]
1255
+
1256
+ ct = ColumnTransformer([("trans", Trans(), func)], remainder="drop")
1257
+ assert_array_equal(ct.fit_transform(X_df), X_res_first)
1258
+ assert_array_equal(ct.fit(X_df).transform(X_df), X_res_first)
1259
+ assert callable(ct.transformers[0][2])
1260
+ assert ct.transformers_[0][2] == ["first"]
1261
+
1262
+
1263
+ def test_column_transformer_negative_column_indexes():
1264
+ X = np.random.randn(2, 2)
1265
+ X_categories = np.array([[1], [2]])
1266
+ X = np.concatenate([X, X_categories], axis=1)
1267
+
1268
+ ohe = OneHotEncoder()
1269
+
1270
+ tf_1 = ColumnTransformer([("ohe", ohe, [-1])], remainder="passthrough")
1271
+ tf_2 = ColumnTransformer([("ohe", ohe, [2])], remainder="passthrough")
1272
+ assert_array_equal(tf_1.fit_transform(X), tf_2.fit_transform(X))
1273
+
1274
+
1275
+ @pytest.mark.parametrize("array_type", [np.asarray, *CSR_CONTAINERS])
1276
+ def test_column_transformer_mask_indexing(array_type):
1277
+ # Regression test for #14510
1278
+ # Boolean array-like does not behave as boolean array with sparse matrices.
1279
+ X = np.transpose([[1, 2, 3], [4, 5, 6], [5, 6, 7], [8, 9, 10]])
1280
+ X = array_type(X)
1281
+ column_transformer = ColumnTransformer(
1282
+ [("identity", FunctionTransformer(), [False, True, False, True])]
1283
+ )
1284
+ X_trans = column_transformer.fit_transform(X)
1285
+ assert X_trans.shape == (3, 2)
1286
+
1287
+
1288
+ def test_n_features_in():
1289
+ # make sure n_features_in is what is passed as input to the column
1290
+ # transformer.
1291
+
1292
+ X = [[1, 2], [3, 4], [5, 6]]
1293
+ ct = ColumnTransformer([("a", DoubleTrans(), [0]), ("b", DoubleTrans(), [1])])
1294
+ assert not hasattr(ct, "n_features_in_")
1295
+ ct.fit(X)
1296
+ assert ct.n_features_in_ == 2
1297
+
1298
+
1299
+ @pytest.mark.parametrize(
1300
+ "cols, pattern, include, exclude",
1301
+ [
1302
+ (["col_int", "col_float"], None, np.number, None),
1303
+ (["col_int", "col_float"], None, None, object),
1304
+ (["col_int", "col_float"], None, [int, float], None),
1305
+ (["col_str"], None, [object], None),
1306
+ (["col_str"], None, object, None),
1307
+ (["col_float"], None, float, None),
1308
+ (["col_float"], "at$", [np.number], None),
1309
+ (["col_int"], None, [int], None),
1310
+ (["col_int"], "^col_int", [np.number], None),
1311
+ (["col_float", "col_str"], "float|str", None, None),
1312
+ (["col_str"], "^col_s", None, [int]),
1313
+ ([], "str$", float, None),
1314
+ (["col_int", "col_float", "col_str"], None, [np.number, object], None),
1315
+ ],
1316
+ )
1317
+ def test_make_column_selector_with_select_dtypes(cols, pattern, include, exclude):
1318
+ pd = pytest.importorskip("pandas")
1319
+
1320
+ X_df = pd.DataFrame(
1321
+ {
1322
+ "col_int": np.array([0, 1, 2], dtype=int),
1323
+ "col_float": np.array([0.0, 1.0, 2.0], dtype=float),
1324
+ "col_str": ["one", "two", "three"],
1325
+ },
1326
+ columns=["col_int", "col_float", "col_str"],
1327
+ )
1328
+
1329
+ selector = make_column_selector(
1330
+ dtype_include=include, dtype_exclude=exclude, pattern=pattern
1331
+ )
1332
+
1333
+ assert_array_equal(selector(X_df), cols)
1334
+
1335
+
1336
+ def test_column_transformer_with_make_column_selector():
1337
+ # Functional test for column transformer + column selector
1338
+ pd = pytest.importorskip("pandas")
1339
+ X_df = pd.DataFrame(
1340
+ {
1341
+ "col_int": np.array([0, 1, 2], dtype=int),
1342
+ "col_float": np.array([0.0, 1.0, 2.0], dtype=float),
1343
+ "col_cat": ["one", "two", "one"],
1344
+ "col_str": ["low", "middle", "high"],
1345
+ },
1346
+ columns=["col_int", "col_float", "col_cat", "col_str"],
1347
+ )
1348
+ X_df["col_str"] = X_df["col_str"].astype("category")
1349
+
1350
+ cat_selector = make_column_selector(dtype_include=["category", object])
1351
+ num_selector = make_column_selector(dtype_include=np.number)
1352
+
1353
+ ohe = OneHotEncoder()
1354
+ scaler = StandardScaler()
1355
+
1356
+ ct_selector = make_column_transformer((ohe, cat_selector), (scaler, num_selector))
1357
+ ct_direct = make_column_transformer(
1358
+ (ohe, ["col_cat", "col_str"]), (scaler, ["col_float", "col_int"])
1359
+ )
1360
+
1361
+ X_selector = ct_selector.fit_transform(X_df)
1362
+ X_direct = ct_direct.fit_transform(X_df)
1363
+
1364
+ assert_allclose(X_selector, X_direct)
1365
+
1366
+
1367
+ def test_make_column_selector_error():
1368
+ selector = make_column_selector(dtype_include=np.number)
1369
+ X = np.array([[0.1, 0.2]])
1370
+ msg = "make_column_selector can only be applied to pandas dataframes"
1371
+ with pytest.raises(ValueError, match=msg):
1372
+ selector(X)
1373
+
1374
+
1375
+ def test_make_column_selector_pickle():
1376
+ pd = pytest.importorskip("pandas")
1377
+
1378
+ X_df = pd.DataFrame(
1379
+ {
1380
+ "col_int": np.array([0, 1, 2], dtype=int),
1381
+ "col_float": np.array([0.0, 1.0, 2.0], dtype=float),
1382
+ "col_str": ["one", "two", "three"],
1383
+ },
1384
+ columns=["col_int", "col_float", "col_str"],
1385
+ )
1386
+
1387
+ selector = make_column_selector(dtype_include=[object])
1388
+ selector_picked = pickle.loads(pickle.dumps(selector))
1389
+
1390
+ assert_array_equal(selector(X_df), selector_picked(X_df))
1391
+
1392
+
1393
+ @pytest.mark.parametrize(
1394
+ "empty_col",
1395
+ [[], np.array([], dtype=int), lambda x: []],
1396
+ ids=["list", "array", "callable"],
1397
+ )
1398
+ def test_feature_names_empty_columns(empty_col):
1399
+ pd = pytest.importorskip("pandas")
1400
+
1401
+ df = pd.DataFrame({"col1": ["a", "a", "b"], "col2": ["z", "z", "z"]})
1402
+
1403
+ ct = ColumnTransformer(
1404
+ transformers=[
1405
+ ("ohe", OneHotEncoder(), ["col1", "col2"]),
1406
+ ("empty_features", OneHotEncoder(), empty_col),
1407
+ ],
1408
+ )
1409
+
1410
+ ct.fit(df)
1411
+ assert_array_equal(
1412
+ ct.get_feature_names_out(), ["ohe__col1_a", "ohe__col1_b", "ohe__col2_z"]
1413
+ )
1414
+
1415
+
1416
+ @pytest.mark.parametrize(
1417
+ "selector",
1418
+ [
1419
+ [1],
1420
+ lambda x: [1],
1421
+ ["col2"],
1422
+ lambda x: ["col2"],
1423
+ [False, True],
1424
+ lambda x: [False, True],
1425
+ ],
1426
+ )
1427
+ def test_feature_names_out_pandas(selector):
1428
+ """Checks name when selecting only the second column"""
1429
+ pd = pytest.importorskip("pandas")
1430
+ df = pd.DataFrame({"col1": ["a", "a", "b"], "col2": ["z", "z", "z"]})
1431
+ ct = ColumnTransformer([("ohe", OneHotEncoder(), selector)])
1432
+ ct.fit(df)
1433
+
1434
+ assert_array_equal(ct.get_feature_names_out(), ["ohe__col2_z"])
1435
+
1436
+
1437
+ @pytest.mark.parametrize(
1438
+ "selector", [[1], lambda x: [1], [False, True], lambda x: [False, True]]
1439
+ )
1440
+ def test_feature_names_out_non_pandas(selector):
1441
+ """Checks name when selecting the second column with numpy array"""
1442
+ X = [["a", "z"], ["a", "z"], ["b", "z"]]
1443
+ ct = ColumnTransformer([("ohe", OneHotEncoder(), selector)])
1444
+ ct.fit(X)
1445
+
1446
+ assert_array_equal(ct.get_feature_names_out(), ["ohe__x1_z"])
1447
+
1448
+
1449
+ @pytest.mark.parametrize("remainder", ["passthrough", StandardScaler()])
1450
+ def test_sk_visual_block_remainder(remainder):
1451
+ # remainder='passthrough' or an estimator will be shown in repr_html
1452
+ ohe = OneHotEncoder()
1453
+ ct = ColumnTransformer(
1454
+ transformers=[("ohe", ohe, ["col1", "col2"])], remainder=remainder
1455
+ )
1456
+ visual_block = ct._sk_visual_block_()
1457
+ assert visual_block.names == ("ohe", "remainder")
1458
+ assert visual_block.name_details == (["col1", "col2"], "")
1459
+ assert visual_block.estimators == (ohe, remainder)
1460
+
1461
+
1462
+ def test_sk_visual_block_remainder_drop():
1463
+ # remainder='drop' is not shown in repr_html
1464
+ ohe = OneHotEncoder()
1465
+ ct = ColumnTransformer(transformers=[("ohe", ohe, ["col1", "col2"])])
1466
+ visual_block = ct._sk_visual_block_()
1467
+ assert visual_block.names == ("ohe",)
1468
+ assert visual_block.name_details == (["col1", "col2"],)
1469
+ assert visual_block.estimators == (ohe,)
1470
+
1471
+
1472
+ @pytest.mark.parametrize("remainder", ["passthrough", StandardScaler()])
1473
+ def test_sk_visual_block_remainder_fitted_pandas(remainder):
1474
+ # Remainder shows the columns after fitting
1475
+ pd = pytest.importorskip("pandas")
1476
+ ohe = OneHotEncoder()
1477
+ ct = ColumnTransformer(
1478
+ transformers=[("ohe", ohe, ["col1", "col2"])], remainder=remainder
1479
+ )
1480
+ df = pd.DataFrame(
1481
+ {
1482
+ "col1": ["a", "b", "c"],
1483
+ "col2": ["z", "z", "z"],
1484
+ "col3": [1, 2, 3],
1485
+ "col4": [3, 4, 5],
1486
+ }
1487
+ )
1488
+ ct.fit(df)
1489
+ visual_block = ct._sk_visual_block_()
1490
+ assert visual_block.names == ("ohe", "remainder")
1491
+ assert visual_block.name_details == (["col1", "col2"], ["col3", "col4"])
1492
+ assert visual_block.estimators == (ohe, remainder)
1493
+
1494
+
1495
+ @pytest.mark.parametrize("remainder", ["passthrough", StandardScaler()])
1496
+ def test_sk_visual_block_remainder_fitted_numpy(remainder):
1497
+ # Remainder shows the indices after fitting
1498
+ X = np.array([[1, 2, 3], [4, 5, 6]], dtype=float)
1499
+ scaler = StandardScaler()
1500
+ ct = ColumnTransformer(
1501
+ transformers=[("scale", scaler, [0, 2])], remainder=remainder
1502
+ )
1503
+ ct.fit(X)
1504
+ visual_block = ct._sk_visual_block_()
1505
+ assert visual_block.names == ("scale", "remainder")
1506
+ assert visual_block.name_details == ([0, 2], [1])
1507
+ assert visual_block.estimators == (scaler, remainder)
1508
+
1509
+
1510
+ @pytest.mark.parametrize("explicit_colname", ["first", "second", 0, 1])
1511
+ @pytest.mark.parametrize("remainder", [Trans(), "passthrough", "drop"])
1512
+ def test_column_transformer_reordered_column_names_remainder(
1513
+ explicit_colname, remainder
1514
+ ):
1515
+ """Test the interaction between remainder and column transformer"""
1516
+ pd = pytest.importorskip("pandas")
1517
+
1518
+ X_fit_array = np.array([[0, 1, 2], [2, 4, 6]]).T
1519
+ X_fit_df = pd.DataFrame(X_fit_array, columns=["first", "second"])
1520
+
1521
+ X_trans_array = np.array([[2, 4, 6], [0, 1, 2]]).T
1522
+ X_trans_df = pd.DataFrame(X_trans_array, columns=["second", "first"])
1523
+
1524
+ tf = ColumnTransformer([("bycol", Trans(), explicit_colname)], remainder=remainder)
1525
+
1526
+ tf.fit(X_fit_df)
1527
+ X_fit_trans = tf.transform(X_fit_df)
1528
+
1529
+ # Changing the order still works
1530
+ X_trans = tf.transform(X_trans_df)
1531
+ assert_allclose(X_trans, X_fit_trans)
1532
+
1533
+ # extra columns are ignored
1534
+ X_extended_df = X_fit_df.copy()
1535
+ X_extended_df["third"] = [3, 6, 9]
1536
+ X_trans = tf.transform(X_extended_df)
1537
+ assert_allclose(X_trans, X_fit_trans)
1538
+
1539
+ if isinstance(explicit_colname, str):
1540
+ # Raise error if columns are specified by names but input only allows
1541
+ # to specify by position, e.g. numpy array instead of a pandas df.
1542
+ X_array = X_fit_array.copy()
1543
+ err_msg = "Specifying the columns"
1544
+ with pytest.raises(ValueError, match=err_msg):
1545
+ tf.transform(X_array)
1546
+
1547
+
1548
+ def test_feature_name_validation_missing_columns_drop_passthough():
1549
+ """Test the interaction between {'drop', 'passthrough'} and
1550
+ missing column names."""
1551
+ pd = pytest.importorskip("pandas")
1552
+
1553
+ X = np.ones(shape=(3, 4))
1554
+ df = pd.DataFrame(X, columns=["a", "b", "c", "d"])
1555
+
1556
+ df_dropped = df.drop("c", axis=1)
1557
+
1558
+ # with remainder='passthrough', all columns seen during `fit` must be
1559
+ # present
1560
+ tf = ColumnTransformer([("bycol", Trans(), [1])], remainder="passthrough")
1561
+ tf.fit(df)
1562
+ msg = r"columns are missing: {'c'}"
1563
+ with pytest.raises(ValueError, match=msg):
1564
+ tf.transform(df_dropped)
1565
+
1566
+ # with remainder='drop', it is allowed to have column 'c' missing
1567
+ tf = ColumnTransformer([("bycol", Trans(), [1])], remainder="drop")
1568
+ tf.fit(df)
1569
+
1570
+ df_dropped_trans = tf.transform(df_dropped)
1571
+ df_fit_trans = tf.transform(df)
1572
+ assert_allclose(df_dropped_trans, df_fit_trans)
1573
+
1574
+ # bycol drops 'c', thus it is allowed for 'c' to be missing
1575
+ tf = ColumnTransformer([("bycol", "drop", ["c"])], remainder="passthrough")
1576
+ tf.fit(df)
1577
+ df_dropped_trans = tf.transform(df_dropped)
1578
+ df_fit_trans = tf.transform(df)
1579
+ assert_allclose(df_dropped_trans, df_fit_trans)
1580
+
1581
+
1582
+ def test_feature_names_in_():
1583
+ """Feature names are stored in column transformer.
1584
+
1585
+ Column transformer deliberately does not check for column name consistency.
1586
+ It only checks that the non-dropped names seen in `fit` are seen
1587
+ in `transform`. This behavior is already tested in
1588
+ `test_feature_name_validation_missing_columns_drop_passthough`"""
1589
+
1590
+ pd = pytest.importorskip("pandas")
1591
+
1592
+ feature_names = ["a", "c", "d"]
1593
+ df = pd.DataFrame([[1, 2, 3]], columns=feature_names)
1594
+ ct = ColumnTransformer([("bycol", Trans(), ["a", "d"])], remainder="passthrough")
1595
+
1596
+ ct.fit(df)
1597
+ assert_array_equal(ct.feature_names_in_, feature_names)
1598
+ assert isinstance(ct.feature_names_in_, np.ndarray)
1599
+ assert ct.feature_names_in_.dtype == object
1600
+
1601
+
1602
+ class TransWithNames(Trans):
1603
+ def __init__(self, feature_names_out=None):
1604
+ self.feature_names_out = feature_names_out
1605
+
1606
+ def get_feature_names_out(self, input_features=None):
1607
+ if self.feature_names_out is not None:
1608
+ return np.asarray(self.feature_names_out, dtype=object)
1609
+ return input_features
1610
+
1611
+
1612
+ @pytest.mark.parametrize(
1613
+ "transformers, remainder, expected_names",
1614
+ [
1615
+ (
1616
+ [
1617
+ ("bycol1", TransWithNames(), ["d", "c"]),
1618
+ ("bycol2", "passthrough", ["d"]),
1619
+ ],
1620
+ "passthrough",
1621
+ ["bycol1__d", "bycol1__c", "bycol2__d", "remainder__a", "remainder__b"],
1622
+ ),
1623
+ (
1624
+ [
1625
+ ("bycol1", TransWithNames(), ["d", "c"]),
1626
+ ("bycol2", "passthrough", ["d"]),
1627
+ ],
1628
+ "drop",
1629
+ ["bycol1__d", "bycol1__c", "bycol2__d"],
1630
+ ),
1631
+ (
1632
+ [
1633
+ ("bycol1", TransWithNames(), ["b"]),
1634
+ ("bycol2", "drop", ["d"]),
1635
+ ],
1636
+ "passthrough",
1637
+ ["bycol1__b", "remainder__a", "remainder__c"],
1638
+ ),
1639
+ (
1640
+ [
1641
+ ("bycol1", TransWithNames(["pca1", "pca2"]), ["a", "b", "d"]),
1642
+ ],
1643
+ "passthrough",
1644
+ ["bycol1__pca1", "bycol1__pca2", "remainder__c"],
1645
+ ),
1646
+ (
1647
+ [
1648
+ ("bycol1", TransWithNames(["a", "b"]), ["d"]),
1649
+ ("bycol2", "passthrough", ["b"]),
1650
+ ],
1651
+ "drop",
1652
+ ["bycol1__a", "bycol1__b", "bycol2__b"],
1653
+ ),
1654
+ (
1655
+ [
1656
+ ("bycol1", TransWithNames([f"pca{i}" for i in range(2)]), ["b"]),
1657
+ ("bycol2", TransWithNames([f"pca{i}" for i in range(2)]), ["b"]),
1658
+ ],
1659
+ "passthrough",
1660
+ [
1661
+ "bycol1__pca0",
1662
+ "bycol1__pca1",
1663
+ "bycol2__pca0",
1664
+ "bycol2__pca1",
1665
+ "remainder__a",
1666
+ "remainder__c",
1667
+ "remainder__d",
1668
+ ],
1669
+ ),
1670
+ (
1671
+ [
1672
+ ("bycol1", "drop", ["d"]),
1673
+ ],
1674
+ "drop",
1675
+ [],
1676
+ ),
1677
+ (
1678
+ [
1679
+ ("bycol1", TransWithNames(), slice(1, 3)),
1680
+ ],
1681
+ "drop",
1682
+ ["bycol1__b", "bycol1__c"],
1683
+ ),
1684
+ (
1685
+ [
1686
+ ("bycol1", TransWithNames(), ["b"]),
1687
+ ("bycol2", "drop", slice(3, 4)),
1688
+ ],
1689
+ "passthrough",
1690
+ ["bycol1__b", "remainder__a", "remainder__c"],
1691
+ ),
1692
+ (
1693
+ [
1694
+ ("bycol1", TransWithNames(), ["d", "c"]),
1695
+ ("bycol2", "passthrough", slice(3, 4)),
1696
+ ],
1697
+ "passthrough",
1698
+ ["bycol1__d", "bycol1__c", "bycol2__d", "remainder__a", "remainder__b"],
1699
+ ),
1700
+ (
1701
+ [
1702
+ ("bycol1", TransWithNames(), slice("b", "c")),
1703
+ ],
1704
+ "drop",
1705
+ ["bycol1__b", "bycol1__c"],
1706
+ ),
1707
+ (
1708
+ [
1709
+ ("bycol1", TransWithNames(), ["b"]),
1710
+ ("bycol2", "drop", slice("c", "d")),
1711
+ ],
1712
+ "passthrough",
1713
+ ["bycol1__b", "remainder__a"],
1714
+ ),
1715
+ (
1716
+ [
1717
+ ("bycol1", TransWithNames(), ["d", "c"]),
1718
+ ("bycol2", "passthrough", slice("c", "d")),
1719
+ ],
1720
+ "passthrough",
1721
+ [
1722
+ "bycol1__d",
1723
+ "bycol1__c",
1724
+ "bycol2__c",
1725
+ "bycol2__d",
1726
+ "remainder__a",
1727
+ "remainder__b",
1728
+ ],
1729
+ ),
1730
+ ],
1731
+ )
1732
+ def test_verbose_feature_names_out_true(transformers, remainder, expected_names):
1733
+ """Check feature_names_out for verbose_feature_names_out=True (default)"""
1734
+ pd = pytest.importorskip("pandas")
1735
+ df = pd.DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"])
1736
+ ct = ColumnTransformer(
1737
+ transformers,
1738
+ remainder=remainder,
1739
+ )
1740
+ ct.fit(df)
1741
+
1742
+ names = ct.get_feature_names_out()
1743
+ assert isinstance(names, np.ndarray)
1744
+ assert names.dtype == object
1745
+ assert_array_equal(names, expected_names)
1746
+
1747
+
1748
+ @pytest.mark.parametrize(
1749
+ "transformers, remainder, expected_names",
1750
+ [
1751
+ (
1752
+ [
1753
+ ("bycol1", TransWithNames(), ["d", "c"]),
1754
+ ("bycol2", "passthrough", ["a"]),
1755
+ ],
1756
+ "passthrough",
1757
+ ["d", "c", "a", "b"],
1758
+ ),
1759
+ (
1760
+ [
1761
+ ("bycol1", TransWithNames(["a"]), ["d", "c"]),
1762
+ ("bycol2", "passthrough", ["d"]),
1763
+ ],
1764
+ "drop",
1765
+ ["a", "d"],
1766
+ ),
1767
+ (
1768
+ [
1769
+ ("bycol1", TransWithNames(), ["b"]),
1770
+ ("bycol2", "drop", ["d"]),
1771
+ ],
1772
+ "passthrough",
1773
+ ["b", "a", "c"],
1774
+ ),
1775
+ (
1776
+ [
1777
+ ("bycol1", TransWithNames(["pca1", "pca2"]), ["a", "b", "d"]),
1778
+ ],
1779
+ "passthrough",
1780
+ ["pca1", "pca2", "c"],
1781
+ ),
1782
+ (
1783
+ [
1784
+ ("bycol1", TransWithNames(["a", "c"]), ["d"]),
1785
+ ("bycol2", "passthrough", ["d"]),
1786
+ ],
1787
+ "drop",
1788
+ ["a", "c", "d"],
1789
+ ),
1790
+ (
1791
+ [
1792
+ ("bycol1", TransWithNames([f"pca{i}" for i in range(2)]), ["b"]),
1793
+ ("bycol2", TransWithNames([f"kpca{i}" for i in range(2)]), ["b"]),
1794
+ ],
1795
+ "passthrough",
1796
+ ["pca0", "pca1", "kpca0", "kpca1", "a", "c", "d"],
1797
+ ),
1798
+ (
1799
+ [
1800
+ ("bycol1", "drop", ["d"]),
1801
+ ],
1802
+ "drop",
1803
+ [],
1804
+ ),
1805
+ (
1806
+ [
1807
+ ("bycol1", TransWithNames(), slice(1, 2)),
1808
+ ("bycol2", "drop", ["d"]),
1809
+ ],
1810
+ "passthrough",
1811
+ ["b", "a", "c"],
1812
+ ),
1813
+ (
1814
+ [
1815
+ ("bycol1", TransWithNames(), ["b"]),
1816
+ ("bycol2", "drop", slice(3, 4)),
1817
+ ],
1818
+ "passthrough",
1819
+ ["b", "a", "c"],
1820
+ ),
1821
+ (
1822
+ [
1823
+ ("bycol1", TransWithNames(), ["d", "c"]),
1824
+ ("bycol2", "passthrough", slice(0, 2)),
1825
+ ],
1826
+ "drop",
1827
+ ["d", "c", "a", "b"],
1828
+ ),
1829
+ (
1830
+ [
1831
+ ("bycol1", TransWithNames(), slice("a", "b")),
1832
+ ("bycol2", "drop", ["d"]),
1833
+ ],
1834
+ "passthrough",
1835
+ ["a", "b", "c"],
1836
+ ),
1837
+ (
1838
+ [
1839
+ ("bycol1", TransWithNames(), ["b"]),
1840
+ ("bycol2", "drop", slice("c", "d")),
1841
+ ],
1842
+ "passthrough",
1843
+ ["b", "a"],
1844
+ ),
1845
+ (
1846
+ [
1847
+ ("bycol1", TransWithNames(), ["d", "c"]),
1848
+ ("bycol2", "passthrough", slice("a", "b")),
1849
+ ],
1850
+ "drop",
1851
+ ["d", "c", "a", "b"],
1852
+ ),
1853
+ (
1854
+ [
1855
+ ("bycol1", TransWithNames(), ["d", "c"]),
1856
+ ("bycol2", "passthrough", slice("b", "b")),
1857
+ ],
1858
+ "drop",
1859
+ ["d", "c", "b"],
1860
+ ),
1861
+ ],
1862
+ )
1863
+ def test_verbose_feature_names_out_false(transformers, remainder, expected_names):
1864
+ """Check feature_names_out for verbose_feature_names_out=False"""
1865
+ pd = pytest.importorskip("pandas")
1866
+ df = pd.DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"])
1867
+ ct = ColumnTransformer(
1868
+ transformers,
1869
+ remainder=remainder,
1870
+ verbose_feature_names_out=False,
1871
+ )
1872
+ ct.fit(df)
1873
+
1874
+ names = ct.get_feature_names_out()
1875
+ assert isinstance(names, np.ndarray)
1876
+ assert names.dtype == object
1877
+ assert_array_equal(names, expected_names)
1878
+
1879
+
1880
+ @pytest.mark.parametrize(
1881
+ "transformers, remainder, colliding_columns",
1882
+ [
1883
+ (
1884
+ [
1885
+ ("bycol1", TransWithNames(), ["b"]),
1886
+ ("bycol2", "passthrough", ["b"]),
1887
+ ],
1888
+ "drop",
1889
+ "['b']",
1890
+ ),
1891
+ (
1892
+ [
1893
+ ("bycol1", TransWithNames(["c", "d"]), ["c"]),
1894
+ ("bycol2", "passthrough", ["c"]),
1895
+ ],
1896
+ "drop",
1897
+ "['c']",
1898
+ ),
1899
+ (
1900
+ [
1901
+ ("bycol1", TransWithNames(["a"]), ["b"]),
1902
+ ("bycol2", "passthrough", ["b"]),
1903
+ ],
1904
+ "passthrough",
1905
+ "['a']",
1906
+ ),
1907
+ (
1908
+ [
1909
+ ("bycol1", TransWithNames(["a"]), ["b"]),
1910
+ ("bycol2", "drop", ["b"]),
1911
+ ],
1912
+ "passthrough",
1913
+ "['a']",
1914
+ ),
1915
+ (
1916
+ [
1917
+ ("bycol1", TransWithNames(["c", "b"]), ["b"]),
1918
+ ("bycol2", "passthrough", ["c", "b"]),
1919
+ ],
1920
+ "drop",
1921
+ "['b', 'c']",
1922
+ ),
1923
+ (
1924
+ [
1925
+ ("bycol1", TransWithNames(["a"]), ["b"]),
1926
+ ("bycol2", "passthrough", ["a"]),
1927
+ ("bycol3", TransWithNames(["a"]), ["b"]),
1928
+ ],
1929
+ "passthrough",
1930
+ "['a']",
1931
+ ),
1932
+ (
1933
+ [
1934
+ ("bycol1", TransWithNames(["a", "b"]), ["b"]),
1935
+ ("bycol2", "passthrough", ["a"]),
1936
+ ("bycol3", TransWithNames(["b"]), ["c"]),
1937
+ ],
1938
+ "passthrough",
1939
+ "['a', 'b']",
1940
+ ),
1941
+ (
1942
+ [
1943
+ ("bycol1", TransWithNames([f"pca{i}" for i in range(6)]), ["b"]),
1944
+ ("bycol2", TransWithNames([f"pca{i}" for i in range(6)]), ["b"]),
1945
+ ],
1946
+ "passthrough",
1947
+ "['pca0', 'pca1', 'pca2', 'pca3', 'pca4', ...]",
1948
+ ),
1949
+ (
1950
+ [
1951
+ ("bycol1", TransWithNames(["a", "b"]), slice(1, 2)),
1952
+ ("bycol2", "passthrough", ["a"]),
1953
+ ("bycol3", TransWithNames(["b"]), ["c"]),
1954
+ ],
1955
+ "passthrough",
1956
+ "['a', 'b']",
1957
+ ),
1958
+ (
1959
+ [
1960
+ ("bycol1", TransWithNames(["a", "b"]), ["b"]),
1961
+ ("bycol2", "passthrough", slice(0, 1)),
1962
+ ("bycol3", TransWithNames(["b"]), ["c"]),
1963
+ ],
1964
+ "passthrough",
1965
+ "['a', 'b']",
1966
+ ),
1967
+ (
1968
+ [
1969
+ ("bycol1", TransWithNames(["a", "b"]), slice("b", "c")),
1970
+ ("bycol2", "passthrough", ["a"]),
1971
+ ("bycol3", TransWithNames(["b"]), ["c"]),
1972
+ ],
1973
+ "passthrough",
1974
+ "['a', 'b']",
1975
+ ),
1976
+ (
1977
+ [
1978
+ ("bycol1", TransWithNames(["a", "b"]), ["b"]),
1979
+ ("bycol2", "passthrough", slice("a", "a")),
1980
+ ("bycol3", TransWithNames(["b"]), ["c"]),
1981
+ ],
1982
+ "passthrough",
1983
+ "['a', 'b']",
1984
+ ),
1985
+ ],
1986
+ )
1987
+ def test_verbose_feature_names_out_false_errors(
1988
+ transformers, remainder, colliding_columns
1989
+ ):
1990
+ """Check feature_names_out for verbose_feature_names_out=False"""
1991
+
1992
+ pd = pytest.importorskip("pandas")
1993
+ df = pd.DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"])
1994
+ ct = ColumnTransformer(
1995
+ transformers,
1996
+ remainder=remainder,
1997
+ verbose_feature_names_out=False,
1998
+ )
1999
+ ct.fit(df)
2000
+
2001
+ msg = re.escape(
2002
+ f"Output feature names: {colliding_columns} are not unique. Please set "
2003
+ "verbose_feature_names_out=True to add prefixes to feature names"
2004
+ )
2005
+ with pytest.raises(ValueError, match=msg):
2006
+ ct.get_feature_names_out()
2007
+
2008
+
2009
+ @pytest.mark.parametrize("verbose_feature_names_out", [True, False])
2010
+ @pytest.mark.parametrize("remainder", ["drop", "passthrough"])
2011
+ def test_column_transformer_set_output(verbose_feature_names_out, remainder):
2012
+ """Check column transformer behavior with set_output."""
2013
+ pd = pytest.importorskip("pandas")
2014
+ df = pd.DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"], index=[10])
2015
+ ct = ColumnTransformer(
2016
+ [("first", TransWithNames(), ["a", "c"]), ("second", TransWithNames(), ["d"])],
2017
+ remainder=remainder,
2018
+ verbose_feature_names_out=verbose_feature_names_out,
2019
+ )
2020
+ X_trans = ct.fit_transform(df)
2021
+ assert isinstance(X_trans, np.ndarray)
2022
+
2023
+ ct.set_output(transform="pandas")
2024
+
2025
+ df_test = pd.DataFrame([[1, 2, 3, 4]], columns=df.columns, index=[20])
2026
+ X_trans = ct.transform(df_test)
2027
+ assert isinstance(X_trans, pd.DataFrame)
2028
+
2029
+ feature_names_out = ct.get_feature_names_out()
2030
+ assert_array_equal(X_trans.columns, feature_names_out)
2031
+ assert_array_equal(X_trans.index, df_test.index)
2032
+
2033
+
2034
+ @pytest.mark.parametrize("remainder", ["drop", "passthrough"])
2035
+ @pytest.mark.parametrize("fit_transform", [True, False])
2036
+ def test_column_transform_set_output_mixed(remainder, fit_transform):
2037
+ """Check ColumnTransformer outputs mixed types correctly."""
2038
+ pd = pytest.importorskip("pandas")
2039
+ df = pd.DataFrame(
2040
+ {
2041
+ "pet": pd.Series(["dog", "cat", "snake"], dtype="category"),
2042
+ "color": pd.Series(["green", "blue", "red"], dtype="object"),
2043
+ "age": [1.4, 2.1, 4.4],
2044
+ "height": [20, 40, 10],
2045
+ "distance": pd.Series([20, pd.NA, 100], dtype="Int32"),
2046
+ }
2047
+ )
2048
+ ct = ColumnTransformer(
2049
+ [
2050
+ (
2051
+ "color_encode",
2052
+ OneHotEncoder(sparse_output=False, dtype="int8"),
2053
+ ["color"],
2054
+ ),
2055
+ ("age", StandardScaler(), ["age"]),
2056
+ ],
2057
+ remainder=remainder,
2058
+ verbose_feature_names_out=False,
2059
+ ).set_output(transform="pandas")
2060
+ if fit_transform:
2061
+ X_trans = ct.fit_transform(df)
2062
+ else:
2063
+ X_trans = ct.fit(df).transform(df)
2064
+
2065
+ assert isinstance(X_trans, pd.DataFrame)
2066
+ assert_array_equal(X_trans.columns, ct.get_feature_names_out())
2067
+
2068
+ expected_dtypes = {
2069
+ "color_blue": "int8",
2070
+ "color_green": "int8",
2071
+ "color_red": "int8",
2072
+ "age": "float64",
2073
+ "pet": "category",
2074
+ "height": "int64",
2075
+ "distance": "Int32",
2076
+ }
2077
+ for col, dtype in X_trans.dtypes.items():
2078
+ assert dtype == expected_dtypes[col]
2079
+
2080
+
2081
+ @pytest.mark.parametrize("remainder", ["drop", "passthrough"])
2082
+ def test_column_transform_set_output_after_fitting(remainder):
2083
+ pd = pytest.importorskip("pandas")
2084
+ df = pd.DataFrame(
2085
+ {
2086
+ "pet": pd.Series(["dog", "cat", "snake"], dtype="category"),
2087
+ "age": [1.4, 2.1, 4.4],
2088
+ "height": [20, 40, 10],
2089
+ }
2090
+ )
2091
+ ct = ColumnTransformer(
2092
+ [
2093
+ (
2094
+ "color_encode",
2095
+ OneHotEncoder(sparse_output=False, dtype="int16"),
2096
+ ["pet"],
2097
+ ),
2098
+ ("age", StandardScaler(), ["age"]),
2099
+ ],
2100
+ remainder=remainder,
2101
+ verbose_feature_names_out=False,
2102
+ )
2103
+
2104
+ # fit without calling set_output
2105
+ X_trans = ct.fit_transform(df)
2106
+ assert isinstance(X_trans, np.ndarray)
2107
+ assert X_trans.dtype == "float64"
2108
+
2109
+ ct.set_output(transform="pandas")
2110
+ X_trans_df = ct.transform(df)
2111
+ expected_dtypes = {
2112
+ "pet_cat": "int16",
2113
+ "pet_dog": "int16",
2114
+ "pet_snake": "int16",
2115
+ "height": "int64",
2116
+ "age": "float64",
2117
+ }
2118
+ for col, dtype in X_trans_df.dtypes.items():
2119
+ assert dtype == expected_dtypes[col]
2120
+
2121
+
2122
+ # PandasOutTransformer that does not define get_feature_names_out and always expects
2123
+ # the input to be a DataFrame.
2124
+ class PandasOutTransformer(BaseEstimator):
2125
+ def __init__(self, offset=1.0):
2126
+ self.offset = offset
2127
+
2128
+ def fit(self, X, y=None):
2129
+ pd = pytest.importorskip("pandas")
2130
+ assert isinstance(X, pd.DataFrame)
2131
+ return self
2132
+
2133
+ def transform(self, X, y=None):
2134
+ pd = pytest.importorskip("pandas")
2135
+ assert isinstance(X, pd.DataFrame)
2136
+ return X - self.offset
2137
+
2138
+ def set_output(self, transform=None):
2139
+ # This transformer will always output a DataFrame regardless of the
2140
+ # configuration.
2141
+ return self
2142
+
2143
+
2144
+ @pytest.mark.parametrize(
2145
+ "trans_1, expected_verbose_names, expected_non_verbose_names",
2146
+ [
2147
+ (
2148
+ PandasOutTransformer(offset=2.0),
2149
+ ["trans_0__feat1", "trans_1__feat0"],
2150
+ ["feat1", "feat0"],
2151
+ ),
2152
+ (
2153
+ "drop",
2154
+ ["trans_0__feat1"],
2155
+ ["feat1"],
2156
+ ),
2157
+ (
2158
+ "passthrough",
2159
+ ["trans_0__feat1", "trans_1__feat0"],
2160
+ ["feat1", "feat0"],
2161
+ ),
2162
+ ],
2163
+ )
2164
+ def test_transformers_with_pandas_out_but_not_feature_names_out(
2165
+ trans_1, expected_verbose_names, expected_non_verbose_names
2166
+ ):
2167
+ """Check that set_config(transform="pandas") is compatible with more transformers.
2168
+
2169
+ Specifically, if transformers returns a DataFrame, but does not define
2170
+ `get_feature_names_out`.
2171
+ """
2172
+ pd = pytest.importorskip("pandas")
2173
+
2174
+ X_df = pd.DataFrame({"feat0": [1.0, 2.0, 3.0], "feat1": [2.0, 3.0, 4.0]})
2175
+ ct = ColumnTransformer(
2176
+ [
2177
+ ("trans_0", PandasOutTransformer(offset=3.0), ["feat1"]),
2178
+ ("trans_1", trans_1, ["feat0"]),
2179
+ ]
2180
+ )
2181
+ X_trans_np = ct.fit_transform(X_df)
2182
+ assert isinstance(X_trans_np, np.ndarray)
2183
+
2184
+ # `ct` does not have `get_feature_names_out` because `PandasOutTransformer` does
2185
+ # not define the method.
2186
+ with pytest.raises(AttributeError, match="not provide get_feature_names_out"):
2187
+ ct.get_feature_names_out()
2188
+
2189
+ # The feature names are prefixed because verbose_feature_names_out=True is default
2190
+ ct.set_output(transform="pandas")
2191
+ X_trans_df0 = ct.fit_transform(X_df)
2192
+ assert_array_equal(X_trans_df0.columns, expected_verbose_names)
2193
+
2194
+ ct.set_params(verbose_feature_names_out=False)
2195
+ X_trans_df1 = ct.fit_transform(X_df)
2196
+ assert_array_equal(X_trans_df1.columns, expected_non_verbose_names)
2197
+
2198
+
2199
+ @pytest.mark.parametrize(
2200
+ "empty_selection",
2201
+ [[], np.array([False, False]), [False, False]],
2202
+ ids=["list", "bool", "bool_int"],
2203
+ )
2204
+ def test_empty_selection_pandas_output(empty_selection):
2205
+ """Check that pandas output works when there is an empty selection.
2206
+
2207
+ Non-regression test for gh-25487
2208
+ """
2209
+ pd = pytest.importorskip("pandas")
2210
+
2211
+ X = pd.DataFrame([[1.0, 2.2], [3.0, 1.0]], columns=["a", "b"])
2212
+ ct = ColumnTransformer(
2213
+ [
2214
+ ("categorical", "passthrough", empty_selection),
2215
+ ("numerical", StandardScaler(), ["a", "b"]),
2216
+ ],
2217
+ verbose_feature_names_out=True,
2218
+ )
2219
+ ct.set_output(transform="pandas")
2220
+ X_out = ct.fit_transform(X)
2221
+ assert_array_equal(X_out.columns, ["numerical__a", "numerical__b"])
2222
+
2223
+ ct.set_params(verbose_feature_names_out=False)
2224
+ X_out = ct.fit_transform(X)
2225
+ assert_array_equal(X_out.columns, ["a", "b"])
2226
+
2227
+
2228
+ def test_raise_error_if_index_not_aligned():
2229
+ """Check column transformer raises error if indices are not aligned.
2230
+
2231
+ Non-regression test for gh-26210.
2232
+ """
2233
+ pd = pytest.importorskip("pandas")
2234
+
2235
+ X = pd.DataFrame([[1.0, 2.2], [3.0, 1.0]], columns=["a", "b"], index=[8, 3])
2236
+ reset_index_transformer = FunctionTransformer(
2237
+ lambda x: x.reset_index(drop=True), feature_names_out="one-to-one"
2238
+ )
2239
+
2240
+ ct = ColumnTransformer(
2241
+ [
2242
+ ("num1", "passthrough", ["a"]),
2243
+ ("num2", reset_index_transformer, ["b"]),
2244
+ ],
2245
+ )
2246
+ ct.set_output(transform="pandas")
2247
+ msg = (
2248
+ "Concatenating DataFrames from the transformer's output lead to"
2249
+ " an inconsistent number of samples. The output may have Pandas"
2250
+ " Indexes that do not match."
2251
+ )
2252
+ with pytest.raises(ValueError, match=msg):
2253
+ ct.fit_transform(X)
2254
+
2255
+
2256
+ def test_remainder_set_output():
2257
+ """Check that the output is set for the remainder.
2258
+
2259
+ Non-regression test for #26306.
2260
+ """
2261
+
2262
+ pd = pytest.importorskip("pandas")
2263
+ df = pd.DataFrame({"a": [True, False, True], "b": [1, 2, 3]})
2264
+
2265
+ ct = make_column_transformer(
2266
+ (VarianceThreshold(), make_column_selector(dtype_include=bool)),
2267
+ remainder=VarianceThreshold(),
2268
+ verbose_feature_names_out=False,
2269
+ )
2270
+ ct.set_output(transform="pandas")
2271
+
2272
+ out = ct.fit_transform(df)
2273
+ pd.testing.assert_frame_equal(out, df)
2274
+
2275
+ ct.set_output(transform="default")
2276
+ out = ct.fit_transform(df)
2277
+ assert isinstance(out, np.ndarray)
2278
+
2279
+
2280
+ # TODO(1.6): replace the warning by a ValueError exception
2281
+ def test_transform_pd_na():
2282
+ """Check behavior when a tranformer's output contains pandas.NA
2283
+
2284
+ It should emit a warning unless the output config is set to 'pandas'.
2285
+ """
2286
+ pd = pytest.importorskip("pandas")
2287
+ if not hasattr(pd, "Float64Dtype"):
2288
+ pytest.skip(
2289
+ "The issue with pd.NA tested here does not happen in old versions that do"
2290
+ " not have the extension dtypes"
2291
+ )
2292
+ df = pd.DataFrame({"a": [1.5, None]})
2293
+ ct = make_column_transformer(("passthrough", ["a"]))
2294
+ # No warning with non-extension dtypes and np.nan
2295
+ with warnings.catch_warnings():
2296
+ warnings.simplefilter("error")
2297
+ ct.fit_transform(df)
2298
+ df = df.convert_dtypes()
2299
+ # Error with extension dtype and pd.NA
2300
+ with pytest.warns(FutureWarning, match=r"set_output\(transform='pandas'\)"):
2301
+ ct.fit_transform(df)
2302
+ # No warning when output is set to pandas
2303
+ with warnings.catch_warnings():
2304
+ warnings.simplefilter("error")
2305
+ ct.set_output(transform="pandas")
2306
+ ct.fit_transform(df)
2307
+ ct.set_output(transform="default")
2308
+ # No warning when there are no pd.NA
2309
+ with warnings.catch_warnings():
2310
+ warnings.simplefilter("error")
2311
+ ct.fit_transform(df.fillna(-1.0))
2312
+
2313
+
2314
+ def test_dataframe_different_dataframe_libraries():
2315
+ """Check fitting and transforming on pandas and polars dataframes."""
2316
+ pd = pytest.importorskip("pandas")
2317
+ pl = pytest.importorskip("polars")
2318
+ X_train_np = np.array([[0, 1], [2, 4], [4, 5]])
2319
+ X_test_np = np.array([[1, 2], [1, 3], [2, 3]])
2320
+
2321
+ # Fit on pandas and transform on polars
2322
+ X_train_pd = pd.DataFrame(X_train_np, columns=["a", "b"])
2323
+ X_test_pl = pl.DataFrame(X_test_np, schema=["a", "b"])
2324
+
2325
+ ct = make_column_transformer((Trans(), [0, 1]))
2326
+ ct.fit(X_train_pd)
2327
+
2328
+ out_pl_in = ct.transform(X_test_pl)
2329
+ assert_array_equal(out_pl_in, X_test_np)
2330
+
2331
+ # Fit on polars and transform on pandas
2332
+ X_train_pl = pl.DataFrame(X_train_np, schema=["a", "b"])
2333
+ X_test_pd = pd.DataFrame(X_test_np, columns=["a", "b"])
2334
+ ct.fit(X_train_pl)
2335
+
2336
+ out_pd_in = ct.transform(X_test_pd)
2337
+ assert_array_equal(out_pd_in, X_test_np)
2338
+
2339
+
2340
+ @pytest.mark.parametrize("transform_output", ["default", "pandas"])
2341
+ def test_column_transformer_remainder_passthrough_naming_consistency(transform_output):
2342
+ """Check that when `remainder="passthrough"`, inconsistent naming is handled
2343
+ correctly by the underlying `FunctionTransformer`.
2344
+
2345
+ Non-regression test for:
2346
+ https://github.com/scikit-learn/scikit-learn/issues/28232
2347
+ """
2348
+ pd = pytest.importorskip("pandas")
2349
+ X = pd.DataFrame(np.random.randn(10, 4))
2350
+
2351
+ preprocessor = ColumnTransformer(
2352
+ transformers=[("scaler", StandardScaler(), [0, 1])],
2353
+ remainder="passthrough",
2354
+ ).set_output(transform=transform_output)
2355
+ X_trans = preprocessor.fit_transform(X)
2356
+ assert X_trans.shape == X.shape
2357
+
2358
+ expected_column_names = [
2359
+ "scaler__x0",
2360
+ "scaler__x1",
2361
+ "remainder__x2",
2362
+ "remainder__x3",
2363
+ ]
2364
+ if hasattr(X_trans, "columns"):
2365
+ assert X_trans.columns.tolist() == expected_column_names
2366
+ assert preprocessor.get_feature_names_out().tolist() == expected_column_names
2367
+
2368
+
2369
+ @pytest.mark.parametrize("dataframe_lib", ["pandas", "polars"])
2370
+ def test_column_transformer_column_renaming(dataframe_lib):
2371
+ """Check that we properly rename columns when using `ColumnTransformer` and
2372
+ selected columns are redundant between transformers.
2373
+
2374
+ Non-regression test for:
2375
+ https://github.com/scikit-learn/scikit-learn/issues/28260
2376
+ """
2377
+ lib = pytest.importorskip(dataframe_lib)
2378
+
2379
+ df = lib.DataFrame({"x1": [1, 2, 3], "x2": [10, 20, 30], "x3": [100, 200, 300]})
2380
+
2381
+ transformer = ColumnTransformer(
2382
+ transformers=[
2383
+ ("A", "passthrough", ["x1", "x2", "x3"]),
2384
+ ("B", FunctionTransformer(), ["x1", "x2"]),
2385
+ ("C", StandardScaler(), ["x1", "x3"]),
2386
+ # special case of empty transformer
2387
+ ("D", FunctionTransformer(lambda x: x[[]]), ["x1", "x2", "x3"]),
2388
+ ],
2389
+ verbose_feature_names_out=True,
2390
+ ).set_output(transform=dataframe_lib)
2391
+ df_trans = transformer.fit_transform(df)
2392
+ assert list(df_trans.columns) == [
2393
+ "A__x1",
2394
+ "A__x2",
2395
+ "A__x3",
2396
+ "B__x1",
2397
+ "B__x2",
2398
+ "C__x1",
2399
+ "C__x3",
2400
+ ]
2401
+
2402
+
2403
+ @pytest.mark.parametrize("dataframe_lib", ["pandas", "polars"])
2404
+ def test_column_transformer_error_with_duplicated_columns(dataframe_lib):
2405
+ """Check that we raise an error when using `ColumnTransformer` and
2406
+ the columns names are duplicated between transformers."""
2407
+ lib = pytest.importorskip(dataframe_lib)
2408
+
2409
+ df = lib.DataFrame({"x1": [1, 2, 3], "x2": [10, 20, 30], "x3": [100, 200, 300]})
2410
+
2411
+ transformer = ColumnTransformer(
2412
+ transformers=[
2413
+ ("A", "passthrough", ["x1", "x2", "x3"]),
2414
+ ("B", FunctionTransformer(), ["x1", "x2"]),
2415
+ ("C", StandardScaler(), ["x1", "x3"]),
2416
+ # special case of empty transformer
2417
+ ("D", FunctionTransformer(lambda x: x[[]]), ["x1", "x2", "x3"]),
2418
+ ],
2419
+ verbose_feature_names_out=False,
2420
+ ).set_output(transform=dataframe_lib)
2421
+ err_msg = re.escape(
2422
+ "Duplicated feature names found before concatenating the outputs of the "
2423
+ "transformers: ['x1', 'x2', 'x3'].\n"
2424
+ "Transformer A has conflicting columns names: ['x1', 'x2', 'x3'].\n"
2425
+ "Transformer B has conflicting columns names: ['x1', 'x2'].\n"
2426
+ "Transformer C has conflicting columns names: ['x1', 'x3'].\n"
2427
+ )
2428
+ with pytest.raises(ValueError, match=err_msg):
2429
+ transformer.fit_transform(df)
2430
+
2431
+
2432
+ # Metadata Routing Tests
2433
+ # ======================
2434
+
2435
+
2436
+ @pytest.mark.parametrize("method", ["transform", "fit_transform", "fit"])
2437
+ def test_routing_passed_metadata_not_supported(method):
2438
+ """Test that the right error message is raised when metadata is passed while
2439
+ not supported when `enable_metadata_routing=False`."""
2440
+
2441
+ X = np.array([[0, 1, 2], [2, 4, 6]]).T
2442
+ y = [1, 2, 3]
2443
+ trs = ColumnTransformer([("trans", Trans(), [0])]).fit(X, y)
2444
+
2445
+ with pytest.raises(
2446
+ ValueError, match="is only supported if enable_metadata_routing=True"
2447
+ ):
2448
+ getattr(trs, method)([[1]], sample_weight=[1], prop="a")
2449
+
2450
+
2451
+ @pytest.mark.usefixtures("enable_slep006")
2452
+ @pytest.mark.parametrize("method", ["transform", "fit_transform", "fit"])
2453
+ def test_metadata_routing_for_column_transformer(method):
2454
+ """Test that metadata is routed correctly for column transformer."""
2455
+ X = np.array([[0, 1, 2], [2, 4, 6]]).T
2456
+ y = [1, 2, 3]
2457
+ registry = _Registry()
2458
+ sample_weight, metadata = [1], "a"
2459
+ trs = ColumnTransformer(
2460
+ [
2461
+ (
2462
+ "trans",
2463
+ ConsumingTransformer(registry=registry)
2464
+ .set_fit_request(sample_weight=True, metadata=True)
2465
+ .set_transform_request(sample_weight=True, metadata=True),
2466
+ [0],
2467
+ )
2468
+ ]
2469
+ )
2470
+
2471
+ if method == "transform":
2472
+ trs.fit(X, y)
2473
+ trs.transform(X, sample_weight=sample_weight, metadata=metadata)
2474
+ else:
2475
+ getattr(trs, method)(X, y, sample_weight=sample_weight, metadata=metadata)
2476
+
2477
+ assert len(registry)
2478
+ for _trs in registry:
2479
+ check_recorded_metadata(
2480
+ obj=_trs, method=method, sample_weight=sample_weight, metadata=metadata
2481
+ )
2482
+
2483
+
2484
+ @pytest.mark.usefixtures("enable_slep006")
2485
+ def test_metadata_routing_no_fit_transform():
2486
+ """Test metadata routing when the sub-estimator doesn't implement
2487
+ ``fit_transform``."""
2488
+
2489
+ class NoFitTransform(BaseEstimator):
2490
+ def fit(self, X, y=None, sample_weight=None, metadata=None):
2491
+ assert sample_weight
2492
+ assert metadata
2493
+ return self
2494
+
2495
+ def transform(self, X, sample_weight=None, metadata=None):
2496
+ assert sample_weight
2497
+ assert metadata
2498
+ return X
2499
+
2500
+ X = np.array([[0, 1, 2], [2, 4, 6]]).T
2501
+ y = [1, 2, 3]
2502
+ _Registry()
2503
+ sample_weight, metadata = [1], "a"
2504
+ trs = ColumnTransformer(
2505
+ [
2506
+ (
2507
+ "trans",
2508
+ NoFitTransform()
2509
+ .set_fit_request(sample_weight=True, metadata=True)
2510
+ .set_transform_request(sample_weight=True, metadata=True),
2511
+ [0],
2512
+ )
2513
+ ]
2514
+ )
2515
+
2516
+ trs.fit(X, y, sample_weight=sample_weight, metadata=metadata)
2517
+ trs.fit_transform(X, y, sample_weight=sample_weight, metadata=metadata)
2518
+
2519
+
2520
+ @pytest.mark.usefixtures("enable_slep006")
2521
+ @pytest.mark.parametrize("method", ["transform", "fit_transform", "fit"])
2522
+ def test_metadata_routing_error_for_column_transformer(method):
2523
+ """Test that the right error is raised when metadata is not requested."""
2524
+ X = np.array([[0, 1, 2], [2, 4, 6]]).T
2525
+ y = [1, 2, 3]
2526
+ sample_weight, metadata = [1], "a"
2527
+ trs = ColumnTransformer([("trans", ConsumingTransformer(), [0])])
2528
+
2529
+ error_message = (
2530
+ "[sample_weight, metadata] are passed but are not explicitly set as requested"
2531
+ f" or not for ConsumingTransformer.{method}"
2532
+ )
2533
+ with pytest.raises(ValueError, match=re.escape(error_message)):
2534
+ if method == "transform":
2535
+ trs.fit(X, y)
2536
+ trs.transform(X, sample_weight=sample_weight, metadata=metadata)
2537
+ else:
2538
+ getattr(trs, method)(X, y, sample_weight=sample_weight, metadata=metadata)
2539
+
2540
+
2541
+ @pytest.mark.usefixtures("enable_slep006")
2542
+ def test_get_metadata_routing_works_without_fit():
2543
+ # Regression test for https://github.com/scikit-learn/scikit-learn/issues/28186
2544
+ # Make sure ct.get_metadata_routing() works w/o having called fit.
2545
+ ct = ColumnTransformer([("trans", ConsumingTransformer(), [0])])
2546
+ ct.get_metadata_routing()
2547
+
2548
+
2549
+ @pytest.mark.usefixtures("enable_slep006")
2550
+ def test_remainder_request_always_present():
2551
+ # Test that remainder request is always present.
2552
+ ct = ColumnTransformer(
2553
+ [("trans", StandardScaler(), [0])],
2554
+ remainder=ConsumingTransformer()
2555
+ .set_fit_request(metadata=True)
2556
+ .set_transform_request(metadata=True),
2557
+ )
2558
+ router = ct.get_metadata_routing()
2559
+ assert router.consumes("fit", ["metadata"]) == set(["metadata"])
2560
+
2561
+
2562
+ @pytest.mark.usefixtures("enable_slep006")
2563
+ def test_unused_transformer_request_present():
2564
+ # Test that the request of a transformer is always present even when not
2565
+ # used due to no selected columns.
2566
+ ct = ColumnTransformer(
2567
+ [
2568
+ (
2569
+ "trans",
2570
+ ConsumingTransformer()
2571
+ .set_fit_request(metadata=True)
2572
+ .set_transform_request(metadata=True),
2573
+ lambda X: [],
2574
+ )
2575
+ ]
2576
+ )
2577
+ router = ct.get_metadata_routing()
2578
+ assert router.consumes("fit", ["metadata"]) == set(["metadata"])
2579
+
2580
+
2581
+ # End of Metadata Routing Tests
2582
+ # =============================
env-llmeval/lib/python3.10/site-packages/sklearn/compose/tests/test_target.py ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from sklearn import datasets
5
+ from sklearn.base import BaseEstimator, TransformerMixin, clone
6
+ from sklearn.compose import TransformedTargetRegressor
7
+ from sklearn.dummy import DummyRegressor
8
+ from sklearn.linear_model import LinearRegression, OrthogonalMatchingPursuit
9
+ from sklearn.pipeline import Pipeline
10
+ from sklearn.preprocessing import FunctionTransformer, StandardScaler
11
+ from sklearn.utils._testing import assert_allclose, assert_no_warnings
12
+
13
+ friedman = datasets.make_friedman1(random_state=0)
14
+
15
+
16
+ def test_transform_target_regressor_error():
17
+ X, y = friedman
18
+ # provide a transformer and functions at the same time
19
+ regr = TransformedTargetRegressor(
20
+ regressor=LinearRegression(),
21
+ transformer=StandardScaler(),
22
+ func=np.exp,
23
+ inverse_func=np.log,
24
+ )
25
+ with pytest.raises(
26
+ ValueError,
27
+ match="'transformer' and functions 'func'/'inverse_func' cannot both be set.",
28
+ ):
29
+ regr.fit(X, y)
30
+ # fit with sample_weight with a regressor which does not support it
31
+ sample_weight = np.ones((y.shape[0],))
32
+ regr = TransformedTargetRegressor(
33
+ regressor=OrthogonalMatchingPursuit(), transformer=StandardScaler()
34
+ )
35
+ with pytest.raises(
36
+ TypeError,
37
+ match=r"fit\(\) got an unexpected " "keyword argument 'sample_weight'",
38
+ ):
39
+ regr.fit(X, y, sample_weight=sample_weight)
40
+ # func is given but inverse_func is not
41
+ regr = TransformedTargetRegressor(func=np.exp)
42
+ with pytest.raises(
43
+ ValueError,
44
+ match="When 'func' is provided, 'inverse_func' must also be provided",
45
+ ):
46
+ regr.fit(X, y)
47
+
48
+
49
+ def test_transform_target_regressor_invertible():
50
+ X, y = friedman
51
+ regr = TransformedTargetRegressor(
52
+ regressor=LinearRegression(),
53
+ func=np.sqrt,
54
+ inverse_func=np.log,
55
+ check_inverse=True,
56
+ )
57
+ with pytest.warns(
58
+ UserWarning,
59
+ match=(
60
+ "The provided functions or"
61
+ " transformer are not strictly inverse of each other."
62
+ ),
63
+ ):
64
+ regr.fit(X, y)
65
+ regr = TransformedTargetRegressor(
66
+ regressor=LinearRegression(), func=np.sqrt, inverse_func=np.log
67
+ )
68
+ regr.set_params(check_inverse=False)
69
+ assert_no_warnings(regr.fit, X, y)
70
+
71
+
72
+ def _check_standard_scaled(y, y_pred):
73
+ y_mean = np.mean(y, axis=0)
74
+ y_std = np.std(y, axis=0)
75
+ assert_allclose((y - y_mean) / y_std, y_pred)
76
+
77
+
78
+ def _check_shifted_by_one(y, y_pred):
79
+ assert_allclose(y + 1, y_pred)
80
+
81
+
82
+ def test_transform_target_regressor_functions():
83
+ X, y = friedman
84
+ regr = TransformedTargetRegressor(
85
+ regressor=LinearRegression(), func=np.log, inverse_func=np.exp
86
+ )
87
+ y_pred = regr.fit(X, y).predict(X)
88
+ # check the transformer output
89
+ y_tran = regr.transformer_.transform(y.reshape(-1, 1)).squeeze()
90
+ assert_allclose(np.log(y), y_tran)
91
+ assert_allclose(
92
+ y, regr.transformer_.inverse_transform(y_tran.reshape(-1, 1)).squeeze()
93
+ )
94
+ assert y.shape == y_pred.shape
95
+ assert_allclose(y_pred, regr.inverse_func(regr.regressor_.predict(X)))
96
+ # check the regressor output
97
+ lr = LinearRegression().fit(X, regr.func(y))
98
+ assert_allclose(regr.regressor_.coef_.ravel(), lr.coef_.ravel())
99
+
100
+
101
+ def test_transform_target_regressor_functions_multioutput():
102
+ X = friedman[0]
103
+ y = np.vstack((friedman[1], friedman[1] ** 2 + 1)).T
104
+ regr = TransformedTargetRegressor(
105
+ regressor=LinearRegression(), func=np.log, inverse_func=np.exp
106
+ )
107
+ y_pred = regr.fit(X, y).predict(X)
108
+ # check the transformer output
109
+ y_tran = regr.transformer_.transform(y)
110
+ assert_allclose(np.log(y), y_tran)
111
+ assert_allclose(y, regr.transformer_.inverse_transform(y_tran))
112
+ assert y.shape == y_pred.shape
113
+ assert_allclose(y_pred, regr.inverse_func(regr.regressor_.predict(X)))
114
+ # check the regressor output
115
+ lr = LinearRegression().fit(X, regr.func(y))
116
+ assert_allclose(regr.regressor_.coef_.ravel(), lr.coef_.ravel())
117
+
118
+
119
+ @pytest.mark.parametrize(
120
+ "X,y", [friedman, (friedman[0], np.vstack((friedman[1], friedman[1] ** 2 + 1)).T)]
121
+ )
122
+ def test_transform_target_regressor_1d_transformer(X, y):
123
+ # All transformer in scikit-learn expect 2D data. FunctionTransformer with
124
+ # validate=False lift this constraint without checking that the input is a
125
+ # 2D vector. We check the consistency of the data shape using a 1D and 2D y
126
+ # array.
127
+ transformer = FunctionTransformer(
128
+ func=lambda x: x + 1, inverse_func=lambda x: x - 1
129
+ )
130
+ regr = TransformedTargetRegressor(
131
+ regressor=LinearRegression(), transformer=transformer
132
+ )
133
+ y_pred = regr.fit(X, y).predict(X)
134
+ assert y.shape == y_pred.shape
135
+ # consistency forward transform
136
+ y_tran = regr.transformer_.transform(y)
137
+ _check_shifted_by_one(y, y_tran)
138
+ assert y.shape == y_pred.shape
139
+ # consistency inverse transform
140
+ assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze())
141
+ # consistency of the regressor
142
+ lr = LinearRegression()
143
+ transformer2 = clone(transformer)
144
+ lr.fit(X, transformer2.fit_transform(y))
145
+ y_lr_pred = lr.predict(X)
146
+ assert_allclose(y_pred, transformer2.inverse_transform(y_lr_pred))
147
+ assert_allclose(regr.regressor_.coef_, lr.coef_)
148
+
149
+
150
+ @pytest.mark.parametrize(
151
+ "X,y", [friedman, (friedman[0], np.vstack((friedman[1], friedman[1] ** 2 + 1)).T)]
152
+ )
153
+ def test_transform_target_regressor_2d_transformer(X, y):
154
+ # Check consistency with transformer accepting only 2D array and a 1D/2D y
155
+ # array.
156
+ transformer = StandardScaler()
157
+ regr = TransformedTargetRegressor(
158
+ regressor=LinearRegression(), transformer=transformer
159
+ )
160
+ y_pred = regr.fit(X, y).predict(X)
161
+ assert y.shape == y_pred.shape
162
+ # consistency forward transform
163
+ if y.ndim == 1: # create a 2D array and squeeze results
164
+ y_tran = regr.transformer_.transform(y.reshape(-1, 1))
165
+ else:
166
+ y_tran = regr.transformer_.transform(y)
167
+ _check_standard_scaled(y, y_tran.squeeze())
168
+ assert y.shape == y_pred.shape
169
+ # consistency inverse transform
170
+ assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze())
171
+ # consistency of the regressor
172
+ lr = LinearRegression()
173
+ transformer2 = clone(transformer)
174
+ if y.ndim == 1: # create a 2D array and squeeze results
175
+ lr.fit(X, transformer2.fit_transform(y.reshape(-1, 1)).squeeze())
176
+ y_lr_pred = lr.predict(X).reshape(-1, 1)
177
+ y_pred2 = transformer2.inverse_transform(y_lr_pred).squeeze()
178
+ else:
179
+ lr.fit(X, transformer2.fit_transform(y))
180
+ y_lr_pred = lr.predict(X)
181
+ y_pred2 = transformer2.inverse_transform(y_lr_pred)
182
+
183
+ assert_allclose(y_pred, y_pred2)
184
+ assert_allclose(regr.regressor_.coef_, lr.coef_)
185
+
186
+
187
+ def test_transform_target_regressor_2d_transformer_multioutput():
188
+ # Check consistency with transformer accepting only 2D array and a 2D y
189
+ # array.
190
+ X = friedman[0]
191
+ y = np.vstack((friedman[1], friedman[1] ** 2 + 1)).T
192
+ transformer = StandardScaler()
193
+ regr = TransformedTargetRegressor(
194
+ regressor=LinearRegression(), transformer=transformer
195
+ )
196
+ y_pred = regr.fit(X, y).predict(X)
197
+ assert y.shape == y_pred.shape
198
+ # consistency forward transform
199
+ y_tran = regr.transformer_.transform(y)
200
+ _check_standard_scaled(y, y_tran)
201
+ assert y.shape == y_pred.shape
202
+ # consistency inverse transform
203
+ assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze())
204
+ # consistency of the regressor
205
+ lr = LinearRegression()
206
+ transformer2 = clone(transformer)
207
+ lr.fit(X, transformer2.fit_transform(y))
208
+ y_lr_pred = lr.predict(X)
209
+ assert_allclose(y_pred, transformer2.inverse_transform(y_lr_pred))
210
+ assert_allclose(regr.regressor_.coef_, lr.coef_)
211
+
212
+
213
+ def test_transform_target_regressor_3d_target():
214
+ # Non-regression test for:
215
+ # https://github.com/scikit-learn/scikit-learn/issues/18866
216
+ # Check with a 3D target with a transformer that reshapes the target
217
+ X = friedman[0]
218
+ y = np.tile(friedman[1].reshape(-1, 1, 1), [1, 3, 2])
219
+
220
+ def flatten_data(data):
221
+ return data.reshape(data.shape[0], -1)
222
+
223
+ def unflatten_data(data):
224
+ return data.reshape(data.shape[0], -1, 2)
225
+
226
+ transformer = FunctionTransformer(func=flatten_data, inverse_func=unflatten_data)
227
+ regr = TransformedTargetRegressor(
228
+ regressor=LinearRegression(), transformer=transformer
229
+ )
230
+ y_pred = regr.fit(X, y).predict(X)
231
+ assert y.shape == y_pred.shape
232
+
233
+
234
+ def test_transform_target_regressor_multi_to_single():
235
+ X = friedman[0]
236
+ y = np.transpose([friedman[1], (friedman[1] ** 2 + 1)])
237
+
238
+ def func(y):
239
+ out = np.sqrt(y[:, 0] ** 2 + y[:, 1] ** 2)
240
+ return out[:, np.newaxis]
241
+
242
+ def inverse_func(y):
243
+ return y
244
+
245
+ tt = TransformedTargetRegressor(
246
+ func=func, inverse_func=inverse_func, check_inverse=False
247
+ )
248
+ tt.fit(X, y)
249
+ y_pred_2d_func = tt.predict(X)
250
+ assert y_pred_2d_func.shape == (100, 1)
251
+
252
+ # force that the function only return a 1D array
253
+ def func(y):
254
+ return np.sqrt(y[:, 0] ** 2 + y[:, 1] ** 2)
255
+
256
+ tt = TransformedTargetRegressor(
257
+ func=func, inverse_func=inverse_func, check_inverse=False
258
+ )
259
+ tt.fit(X, y)
260
+ y_pred_1d_func = tt.predict(X)
261
+ assert y_pred_1d_func.shape == (100, 1)
262
+
263
+ assert_allclose(y_pred_1d_func, y_pred_2d_func)
264
+
265
+
266
+ class DummyCheckerArrayTransformer(TransformerMixin, BaseEstimator):
267
+ def fit(self, X, y=None):
268
+ assert isinstance(X, np.ndarray)
269
+ return self
270
+
271
+ def transform(self, X):
272
+ assert isinstance(X, np.ndarray)
273
+ return X
274
+
275
+ def inverse_transform(self, X):
276
+ assert isinstance(X, np.ndarray)
277
+ return X
278
+
279
+
280
+ class DummyCheckerListRegressor(DummyRegressor):
281
+ def fit(self, X, y, sample_weight=None):
282
+ assert isinstance(X, list)
283
+ return super().fit(X, y, sample_weight)
284
+
285
+ def predict(self, X):
286
+ assert isinstance(X, list)
287
+ return super().predict(X)
288
+
289
+
290
+ def test_transform_target_regressor_ensure_y_array():
291
+ # check that the target ``y`` passed to the transformer will always be a
292
+ # numpy array. Similarly, if ``X`` is passed as a list, we check that the
293
+ # predictor receive as it is.
294
+ X, y = friedman
295
+ tt = TransformedTargetRegressor(
296
+ transformer=DummyCheckerArrayTransformer(),
297
+ regressor=DummyCheckerListRegressor(),
298
+ check_inverse=False,
299
+ )
300
+ tt.fit(X.tolist(), y.tolist())
301
+ tt.predict(X.tolist())
302
+ with pytest.raises(AssertionError):
303
+ tt.fit(X, y.tolist())
304
+ with pytest.raises(AssertionError):
305
+ tt.predict(X)
306
+
307
+
308
+ class DummyTransformer(TransformerMixin, BaseEstimator):
309
+ """Dummy transformer which count how many time fit was called."""
310
+
311
+ def __init__(self, fit_counter=0):
312
+ self.fit_counter = fit_counter
313
+
314
+ def fit(self, X, y=None):
315
+ self.fit_counter += 1
316
+ return self
317
+
318
+ def transform(self, X):
319
+ return X
320
+
321
+ def inverse_transform(self, X):
322
+ return X
323
+
324
+
325
+ @pytest.mark.parametrize("check_inverse", [False, True])
326
+ def test_transform_target_regressor_count_fit(check_inverse):
327
+ # regression test for gh-issue #11618
328
+ # check that we only call a single time fit for the transformer
329
+ X, y = friedman
330
+ ttr = TransformedTargetRegressor(
331
+ transformer=DummyTransformer(), check_inverse=check_inverse
332
+ )
333
+ ttr.fit(X, y)
334
+ assert ttr.transformer_.fit_counter == 1
335
+
336
+
337
+ class DummyRegressorWithExtraFitParams(DummyRegressor):
338
+ def fit(self, X, y, sample_weight=None, check_input=True):
339
+ # on the test below we force this to false, we make sure this is
340
+ # actually passed to the regressor
341
+ assert not check_input
342
+ return super().fit(X, y, sample_weight)
343
+
344
+
345
+ def test_transform_target_regressor_pass_fit_parameters():
346
+ X, y = friedman
347
+ regr = TransformedTargetRegressor(
348
+ regressor=DummyRegressorWithExtraFitParams(), transformer=DummyTransformer()
349
+ )
350
+
351
+ regr.fit(X, y, check_input=False)
352
+ assert regr.transformer_.fit_counter == 1
353
+
354
+
355
+ def test_transform_target_regressor_route_pipeline():
356
+ X, y = friedman
357
+
358
+ regr = TransformedTargetRegressor(
359
+ regressor=DummyRegressorWithExtraFitParams(), transformer=DummyTransformer()
360
+ )
361
+ estimators = [("normalize", StandardScaler()), ("est", regr)]
362
+
363
+ pip = Pipeline(estimators)
364
+ pip.fit(X, y, **{"est__check_input": False})
365
+
366
+ assert regr.transformer_.fit_counter == 1
367
+
368
+
369
+ class DummyRegressorWithExtraPredictParams(DummyRegressor):
370
+ def predict(self, X, check_input=True):
371
+ # In the test below we make sure that the check input parameter is
372
+ # passed as false
373
+ self.predict_called = True
374
+ assert not check_input
375
+ return super().predict(X)
376
+
377
+
378
+ def test_transform_target_regressor_pass_extra_predict_parameters():
379
+ # Checks that predict kwargs are passed to regressor.
380
+ X, y = friedman
381
+ regr = TransformedTargetRegressor(
382
+ regressor=DummyRegressorWithExtraPredictParams(), transformer=DummyTransformer()
383
+ )
384
+
385
+ regr.fit(X, y)
386
+ regr.predict(X, check_input=False)
387
+ assert regr.regressor_.predict_called
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/diabetes_data_raw.csv.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3e94cc7cea00f8a84fa5f6345203913a68efa42df18f87ddf9bead721bfd503
3
+ size 7105
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/diabetes_target.csv.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e53f65eb811df43c206f3534bb3af0e5fed213bc37ed6ba36310157d6023803
3
+ size 1050
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/digits.csv.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09f66e6debdee2cd2b5ae59e0d6abbb73fc2b0e0185d2e1957e9ebb51e23aa22
3
+ size 57523
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/images/china.jpg ADDED

Git LFS Details

  • SHA256: 8378025ad2519d649d02e32bd98990db4ab572357d9f09841c2fbfbb4fefad29
  • Pointer size: 131 Bytes
  • Size of remote file: 197 kB
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/images/flower.jpg ADDED

Git LFS Details

  • SHA256: a77f6ec41e353afdf8bdff2ea981b2955535d8d83294f8cfa49cf4e423dd5638
  • Pointer size: 131 Bytes
  • Size of remote file: 143 kB
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1590/api-v1-jd-1590.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b105adfedc6b6b82f4695ca9bfe232393034cdf79803523f397a6dc5bf824d1
3
+ size 1544
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1590/api-v1-jdf-1590.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:046f5e60564693f0f3b8e382725c8012c3e058647139c24685cec984e40fcd00
3
+ size 1032
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1590/api-v1-jdq-1590.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44b9b0d290a1e339695a431438f84080071c5635161c3977dd17f4c27b00a34a
3
+ size 1507
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1590/data-v1-dl-1595261.arff.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee1dcdf58f2f1072f7dd1b43388969c51bc6cfe776e3e9465ae6a756e5ddb10a
3
+ size 1152
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_292/api-v1-jd-40981.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c26dcbe30cfb39161f305b2b3d43a9b50adc8b368d0749568c47106cbdb20897
3
+ size 553
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40589/api-v1-jdl-dn-emotions-l-2-s-act-.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4da63a60163340b6e18922abfe7f1f2a7a7da23da63c269324985d61ffaa6075
3
+ size 318
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40945/api-v1-jdf-40945.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95f0938dfdf1b87d0ffc4d526f2c91e097ef7689480b693970126d908f291030
3
+ size 320
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42074/api-v1-jd-42074.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f443b3add7375ca92ece9296b8449a0780305d3b5210c84994bdeab36271d62a
3
+ size 584
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42074/api-v1-jdf-42074.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38b74e7f02a61ff55bcfac4d87103d5bffc43febb0c019d9aaa162f8f7693068
3
+ size 272
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42074/api-v1-jdq-42074.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8742a74bd5bc120acd9186c8a8737cb420ed9b009fade00b24e7ce5217797f2c
3
+ size 722
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42074/data-v1-dl-21552912.arff.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f623e777c0a36ae6c82fae10a7c2088cb383298ea244595bf8dc95449c9be4c4
3
+ size 2326
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_561/api-v1-jd-561.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1d38fdd601b67bb9c6d16152f53ddf166a0cfcfef4fa86438e899bfe449226c
3
+ size 1798
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_561/api-v1-jdf-561.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:407424fb79cc30b8e9ff90900b3bf29244ac7f3797f278b5be602843f959b4ee
3
+ size 425
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_561/api-v1-jdl-dn-cpu-l-2-dv-1.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0703b0ae20b9ff75087dc601640ee58f1c2ad6768858ea21a245151da9ba8e4c
3
+ size 301
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_561/api-v1-jdl-dn-cpu-l-2-s-act-.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70d4596ad879547863109da8675c2b789d07df66b526d7ebcbce9616c4c9b94c
3
+ size 347
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_561/api-v1-jdq-561.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8743b2d93d2c62a82fb47e1fbc002b97e25adcfb5bf1fcb26b58ad0bed15bd48
3
+ size 1074
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_561/data-v1-dl-52739.arff.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e96142b5e00dfec2617b0c22d7192b340ae2c28ec3ffc3a894c5be746b970a59
3
+ size 3303
env-llmeval/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.31 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/_base.cpython-310.pyc ADDED
Binary file (5.75 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/_dict_learning.cpython-310.pyc ADDED
Binary file (62.1 kB). View file