Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/DataProperty-1.0.1.dist-info/INSTALLER +1 -0
- llmeval-env/lib/python3.10/site-packages/DataProperty-1.0.1.dist-info/LICENSE +21 -0
- llmeval-env/lib/python3.10/site-packages/DataProperty-1.0.1.dist-info/METADATA +276 -0
- llmeval-env/lib/python3.10/site-packages/DataProperty-1.0.1.dist-info/RECORD +47 -0
- llmeval-env/lib/python3.10/site-packages/DataProperty-1.0.1.dist-info/WHEEL +5 -0
- llmeval-env/lib/python3.10/site-packages/DataProperty-1.0.1.dist-info/top_level.txt +1 -0
- llmeval-env/lib/python3.10/site-packages/PyYAML-6.0.1.dist-info/INSTALLER +1 -0
- llmeval-env/lib/python3.10/site-packages/PyYAML-6.0.1.dist-info/LICENSE +20 -0
- llmeval-env/lib/python3.10/site-packages/PyYAML-6.0.1.dist-info/METADATA +46 -0
- llmeval-env/lib/python3.10/site-packages/PyYAML-6.0.1.dist-info/RECORD +43 -0
- llmeval-env/lib/python3.10/site-packages/PyYAML-6.0.1.dist-info/WHEEL +6 -0
- llmeval-env/lib/python3.10/site-packages/PyYAML-6.0.1.dist-info/top_level.txt +2 -0
- llmeval-env/lib/python3.10/site-packages/aiosignal-1.3.1.dist-info/INSTALLER +1 -0
- llmeval-env/lib/python3.10/site-packages/aiosignal-1.3.1.dist-info/LICENSE +201 -0
- llmeval-env/lib/python3.10/site-packages/aiosignal-1.3.1.dist-info/METADATA +128 -0
- llmeval-env/lib/python3.10/site-packages/aiosignal-1.3.1.dist-info/RECORD +10 -0
- llmeval-env/lib/python3.10/site-packages/aiosignal-1.3.1.dist-info/WHEEL +5 -0
- llmeval-env/lib/python3.10/site-packages/aiosignal-1.3.1.dist-info/top_level.txt +1 -0
- llmeval-env/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/INSTALLER +1 -0
- llmeval-env/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/LICENSE +27 -0
- llmeval-env/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/METADATA +233 -0
- llmeval-env/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/RECORD +180 -0
- llmeval-env/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/WHEEL +5 -0
- llmeval-env/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/top_level.txt +1 -0
- llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/INSTALLER +1 -0
- llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/LICENSE.txt +37 -0
- llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/METADATA +133 -0
- llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/RECORD +0 -0
- llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/WHEEL +5 -0
- llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/entry_points.txt +2 -0
- llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/top_level.txt +1 -0
- llmeval-env/lib/python3.10/site-packages/pandas/arrays/__init__.py +53 -0
- llmeval-env/lib/python3.10/site-packages/pandas/arrays/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_series_apply.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/safetensors/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/safetensors/__pycache__/flax.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/safetensors/__pycache__/tensorflow.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/safetensors/__pycache__/torch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/safetensors/mlx.py +138 -0
- llmeval-env/lib/python3.10/site-packages/tcolorpy-0.1.6.dist-info/INSTALLER +1 -0
- llmeval-env/lib/python3.10/site-packages/tcolorpy-0.1.6.dist-info/LICENSE +21 -0
- llmeval-env/lib/python3.10/site-packages/tcolorpy-0.1.6.dist-info/METADATA +171 -0
- llmeval-env/lib/python3.10/site-packages/tcolorpy-0.1.6.dist-info/RECORD +17 -0
- llmeval-env/lib/python3.10/site-packages/tcolorpy-0.1.6.dist-info/WHEEL +5 -0
- llmeval-env/lib/python3.10/site-packages/tcolorpy-0.1.6.dist-info/top_level.txt +1 -0
- llmeval-env/lib/python3.10/site-packages/torch/_C.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_VF.pyi +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/__config__.py +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/__future__.py +75 -0
- llmeval-env/lib/python3.10/site-packages/torch/__init__.py +2038 -0
llmeval-env/lib/python3.10/site-packages/DataProperty-1.0.1.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
llmeval-env/lib/python3.10/site-packages/DataProperty-1.0.1.dist-info/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
The MIT License (MIT)
|
2 |
+
|
3 |
+
Copyright (c) 2016 Tsuyoshi Hombashi
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
llmeval-env/lib/python3.10/site-packages/DataProperty-1.0.1.dist-info/METADATA
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: DataProperty
|
3 |
+
Version: 1.0.1
|
4 |
+
Summary: Python library for extract property from data.
|
5 |
+
Home-page: https://github.com/thombashi/DataProperty
|
6 |
+
Author: Tsuyoshi Hombashi
|
7 |
+
Author-email: [email protected]
|
8 |
+
Maintainer: Tsuyoshi Hombashi
|
9 |
+
Maintainer-email: [email protected]
|
10 |
+
License: MIT License
|
11 |
+
Project-URL: Source, https://github.com/thombashi/DataProperty
|
12 |
+
Project-URL: Tracker, https://github.com/thombashi/DataProperty/issues
|
13 |
+
Keywords: data,library,property
|
14 |
+
Classifier: Development Status :: 5 - Production/Stable
|
15 |
+
Classifier: Intended Audience :: Developers
|
16 |
+
Classifier: Intended Audience :: Information Technology
|
17 |
+
Classifier: License :: OSI Approved :: MIT License
|
18 |
+
Classifier: Operating System :: OS Independent
|
19 |
+
Classifier: Programming Language :: Python :: 3
|
20 |
+
Classifier: Programming Language :: Python :: 3.7
|
21 |
+
Classifier: Programming Language :: Python :: 3.8
|
22 |
+
Classifier: Programming Language :: Python :: 3.9
|
23 |
+
Classifier: Programming Language :: Python :: 3.10
|
24 |
+
Classifier: Programming Language :: Python :: 3.11
|
25 |
+
Classifier: Programming Language :: Python :: Implementation :: CPython
|
26 |
+
Classifier: Programming Language :: Python :: Implementation :: PyPy
|
27 |
+
Classifier: Topic :: Software Development :: Libraries
|
28 |
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
29 |
+
Requires-Python: >=3.7
|
30 |
+
Description-Content-Type: text/x-rst
|
31 |
+
License-File: LICENSE
|
32 |
+
Requires-Dist: mbstrdecoder (<2,>=1.0.0)
|
33 |
+
Requires-Dist: typepy[datetime] (<2,>=1.2.0)
|
34 |
+
Provides-Extra: logging
|
35 |
+
Requires-Dist: loguru (<1,>=0.4.1) ; extra == 'logging'
|
36 |
+
Provides-Extra: test
|
37 |
+
Requires-Dist: pytest (>=6.0.1) ; extra == 'test'
|
38 |
+
Requires-Dist: pytest-md-report (>=0.3) ; extra == 'test'
|
39 |
+
Requires-Dist: tcolorpy (>=0.1.2) ; extra == 'test'
|
40 |
+
|
41 |
+
.. contents:: **DataProperty**
|
42 |
+
:backlinks: top
|
43 |
+
:local:
|
44 |
+
|
45 |
+
|
46 |
+
Summary
|
47 |
+
=======
|
48 |
+
A Python library for extract property from data.
|
49 |
+
|
50 |
+
|
51 |
+
.. image:: https://badge.fury.io/py/DataProperty.svg
|
52 |
+
:target: https://badge.fury.io/py/DataProperty
|
53 |
+
:alt: PyPI package version
|
54 |
+
|
55 |
+
.. image:: https://anaconda.org/conda-forge/DataProperty/badges/version.svg
|
56 |
+
:target: https://anaconda.org/conda-forge/DataProperty
|
57 |
+
:alt: conda-forge package version
|
58 |
+
|
59 |
+
.. image:: https://img.shields.io/pypi/pyversions/DataProperty.svg
|
60 |
+
:target: https://pypi.org/project/DataProperty
|
61 |
+
:alt: Supported Python versions
|
62 |
+
|
63 |
+
.. image:: https://img.shields.io/pypi/implementation/DataProperty.svg
|
64 |
+
:target: https://pypi.org/project/DataProperty
|
65 |
+
:alt: Supported Python implementations
|
66 |
+
|
67 |
+
.. image:: https://github.com/thombashi/DataProperty/actions/workflows/ci.yml/badge.svg
|
68 |
+
:target: https://github.com/thombashi/DataProperty/actions/workflows/ci.yml
|
69 |
+
:alt: CI status of Linux/macOS/Windows
|
70 |
+
|
71 |
+
.. image:: https://coveralls.io/repos/github/thombashi/DataProperty/badge.svg?branch=master
|
72 |
+
:target: https://coveralls.io/github/thombashi/DataProperty?branch=master
|
73 |
+
:alt: Test coverage
|
74 |
+
|
75 |
+
.. image:: https://github.com/thombashi/DataProperty/actions/workflows/github-code-scanning/codeql/badge.svg
|
76 |
+
:target: https://github.com/thombashi/DataProperty/actions/workflows/github-code-scanning/codeql
|
77 |
+
:alt: CodeQL
|
78 |
+
|
79 |
+
|
80 |
+
Installation
|
81 |
+
============
|
82 |
+
|
83 |
+
Installation: pip
|
84 |
+
------------------------------
|
85 |
+
::
|
86 |
+
|
87 |
+
pip install DataProperty
|
88 |
+
|
89 |
+
Installation: conda
|
90 |
+
------------------------------
|
91 |
+
::
|
92 |
+
|
93 |
+
conda install -c conda-forge dataproperty
|
94 |
+
|
95 |
+
Installation: apt
|
96 |
+
------------------------------
|
97 |
+
::
|
98 |
+
|
99 |
+
sudo add-apt-repository ppa:thombashi/ppa
|
100 |
+
sudo apt update
|
101 |
+
sudo apt install python3-dataproperty
|
102 |
+
|
103 |
+
|
104 |
+
Usage
|
105 |
+
=====
|
106 |
+
|
107 |
+
Extract property of data
|
108 |
+
------------------------
|
109 |
+
|
110 |
+
e.g. Extract a ``float`` value property
|
111 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
112 |
+
.. code:: python
|
113 |
+
|
114 |
+
>>> from dataproperty import DataProperty
|
115 |
+
>>> DataProperty(-1.1)
|
116 |
+
data=-1.1, type=REAL_NUMBER, align=right, ascii_width=4, int_digits=1, decimal_places=1, extra_len=1
|
117 |
+
|
118 |
+
e.g. Extract a ``int`` value property
|
119 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
120 |
+
.. code:: python
|
121 |
+
|
122 |
+
>>> from dataproperty import DataProperty
|
123 |
+
>>> DataProperty(123456789)
|
124 |
+
data=123456789, type=INTEGER, align=right, ascii_width=9, int_digits=9, decimal_places=0, extra_len=0
|
125 |
+
|
126 |
+
e.g. Extract a ``str`` (ascii) value property
|
127 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
128 |
+
.. code:: python
|
129 |
+
|
130 |
+
>>> from dataproperty import DataProperty
|
131 |
+
>>> DataProperty("sample string")
|
132 |
+
data=sample string, type=STRING, align=left, length=13, ascii_width=13, extra_len=0
|
133 |
+
|
134 |
+
e.g. Extract a ``str`` (multi-byte) value property
|
135 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
136 |
+
.. code:: python
|
137 |
+
|
138 |
+
>>> from dataproperty import DataProperty
|
139 |
+
>>> str(DataProperty("吾輩は猫である"))
|
140 |
+
data=吾輩は猫である, type=STRING, align=left, length=7, ascii_width=14, extra_len=0
|
141 |
+
|
142 |
+
e.g. Extract a time (``datetime``) value property
|
143 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
144 |
+
.. code:: python
|
145 |
+
|
146 |
+
>>> import datetime
|
147 |
+
>>> from dataproperty import DataProperty
|
148 |
+
>>> DataProperty(datetime.datetime(2017, 1, 1, 0, 0, 0))
|
149 |
+
data=2017-01-01 00:00:00, type=DATETIME, align=left, ascii_width=19, extra_len=0
|
150 |
+
|
151 |
+
e.g. Extract a ``bool`` value property
|
152 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
153 |
+
.. code:: python
|
154 |
+
|
155 |
+
>>> from dataproperty import DataProperty
|
156 |
+
>>> DataProperty(True)
|
157 |
+
data=True, type=BOOL, align=left, ascii_width=4, extra_len=0
|
158 |
+
|
159 |
+
|
160 |
+
Extract data property for each element from a matrix
|
161 |
+
----------------------------------------------------
|
162 |
+
``DataPropertyExtractor.to_dp_matrix`` method returns a matrix of ``DataProperty`` instances from a data matrix.
|
163 |
+
An example data set and the result are as follows:
|
164 |
+
|
165 |
+
:Sample Code:
|
166 |
+
.. code:: python
|
167 |
+
|
168 |
+
import datetime
|
169 |
+
from dataproperty import DataPropertyExtractor
|
170 |
+
|
171 |
+
dp_extractor = DataPropertyExtractor()
|
172 |
+
dt = datetime.datetime(2017, 1, 1, 0, 0, 0)
|
173 |
+
inf = float("inf")
|
174 |
+
nan = float("nan")
|
175 |
+
|
176 |
+
dp_matrix = dp_extractor.to_dp_matrix([
|
177 |
+
[1, 1.1, "aa", 1, 1, True, inf, nan, dt],
|
178 |
+
[2, 2.2, "bbb", 2.2, 2.2, False, "inf", "nan", dt],
|
179 |
+
[3, 3.33, "cccc", -3, "ccc", "true", inf, "NAN", "2017-01-01T01:23:45+0900"],
|
180 |
+
])
|
181 |
+
|
182 |
+
for row, dp_list in enumerate(dp_matrix):
|
183 |
+
for col, dp in enumerate(dp_list):
|
184 |
+
print("row={:d}, col={:d}, {}".format(row, col, str(dp)))
|
185 |
+
|
186 |
+
:Output:
|
187 |
+
::
|
188 |
+
|
189 |
+
row=0, col=0, data=1, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
|
190 |
+
row=0, col=1, data=1.1, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
|
191 |
+
row=0, col=2, data=aa, type=STRING, align=left, ascii_width=2, length=2, extra_len=0
|
192 |
+
row=0, col=3, data=1, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
|
193 |
+
row=0, col=4, data=1, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
|
194 |
+
row=0, col=5, data=True, type=BOOL, align=left, ascii_width=4, extra_len=0
|
195 |
+
row=0, col=6, data=Infinity, type=INFINITY, align=left, ascii_width=8, extra_len=0
|
196 |
+
row=0, col=7, data=NaN, type=NAN, align=left, ascii_width=3, extra_len=0
|
197 |
+
row=0, col=8, data=2017-01-01 00:00:00, type=DATETIME, align=left, ascii_width=19, extra_len=0
|
198 |
+
row=1, col=0, data=2, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
|
199 |
+
row=1, col=1, data=2.2, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
|
200 |
+
row=1, col=2, data=bbb, type=STRING, align=left, ascii_width=3, length=3, extra_len=0
|
201 |
+
row=1, col=3, data=2.2, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
|
202 |
+
row=1, col=4, data=2.2, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
|
203 |
+
row=1, col=5, data=False, type=BOOL, align=left, ascii_width=5, extra_len=0
|
204 |
+
row=1, col=6, data=Infinity, type=INFINITY, align=left, ascii_width=8, extra_len=0
|
205 |
+
row=1, col=7, data=NaN, type=NAN, align=left, ascii_width=3, extra_len=0
|
206 |
+
row=1, col=8, data=2017-01-01 00:00:00, type=DATETIME, align=left, ascii_width=19, extra_len=0
|
207 |
+
row=2, col=0, data=3, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
|
208 |
+
row=2, col=1, data=3.33, type=REAL_NUMBER, align=right, ascii_width=4, int_digits=1, decimal_places=2, extra_len=0
|
209 |
+
row=2, col=2, data=cccc, type=STRING, align=left, ascii_width=4, length=4, extra_len=0
|
210 |
+
row=2, col=3, data=-3, type=INTEGER, align=right, ascii_width=2, int_digits=1, decimal_places=0, extra_len=1
|
211 |
+
row=2, col=4, data=ccc, type=STRING, align=left, ascii_width=3, length=3, extra_len=0
|
212 |
+
row=2, col=5, data=True, type=BOOL, align=left, ascii_width=4, extra_len=0
|
213 |
+
row=2, col=6, data=Infinity, type=INFINITY, align=left, ascii_width=8, extra_len=0
|
214 |
+
row=2, col=7, data=NaN, type=NAN, align=left, ascii_width=3, extra_len=0
|
215 |
+
row=2, col=8, data=2017-01-01T01:23:45+0900, type=STRING, align=left, ascii_width=24, length=24, extra_len=0
|
216 |
+
|
217 |
+
|
218 |
+
Full example source code can be found at *examples/py/to_dp_matrix.py*
|
219 |
+
|
220 |
+
|
221 |
+
Extract properties for each column from a matrix
|
222 |
+
------------------------------------------------------
|
223 |
+
``DataPropertyExtractor.to_column_dp_list`` method returns a list of ``DataProperty`` instances from a data matrix. The list represents the properties for each column.
|
224 |
+
An example data set and the result are as follows:
|
225 |
+
|
226 |
+
Example data set and result are as follows:
|
227 |
+
|
228 |
+
:Sample Code:
|
229 |
+
.. code:: python
|
230 |
+
|
231 |
+
import datetime
|
232 |
+
from dataproperty import DataPropertyExtractor
|
233 |
+
|
234 |
+
dp_extractor = DataPropertyExtractor()
|
235 |
+
dt = datetime.datetime(2017, 1, 1, 0, 0, 0)
|
236 |
+
inf = float("inf")
|
237 |
+
nan = float("nan")
|
238 |
+
|
239 |
+
data_matrix = [
|
240 |
+
[1, 1.1, "aa", 1, 1, True, inf, nan, dt],
|
241 |
+
[2, 2.2, "bbb", 2.2, 2.2, False, "inf", "nan", dt],
|
242 |
+
[3, 3.33, "cccc", -3, "ccc", "true", inf, "NAN", "2017-01-01T01:23:45+0900"],
|
243 |
+
]
|
244 |
+
|
245 |
+
dp_extractor.headers = ["int", "float", "str", "num", "mix", "bool", "inf", "nan", "time"]
|
246 |
+
col_dp_list = dp_extractor.to_column_dp_list(dp_extractor.to_dp_matrix(dp_matrix))
|
247 |
+
|
248 |
+
for col_idx, col_dp in enumerate(col_dp_list):
|
249 |
+
print(str(col_dp))
|
250 |
+
|
251 |
+
:Output:
|
252 |
+
::
|
253 |
+
|
254 |
+
column=0, type=INTEGER, align=right, ascii_width=3, bit_len=2, int_digits=1, decimal_places=0
|
255 |
+
column=1, type=REAL_NUMBER, align=right, ascii_width=5, int_digits=1, decimal_places=(min=1, max=2)
|
256 |
+
column=2, type=STRING, align=left, ascii_width=4
|
257 |
+
column=3, type=REAL_NUMBER, align=right, ascii_width=4, int_digits=1, decimal_places=(min=0, max=1), extra_len=(min=0, max=1)
|
258 |
+
column=4, type=STRING, align=left, ascii_width=3, int_digits=1, decimal_places=(min=0, max=1)
|
259 |
+
column=5, type=BOOL, align=left, ascii_width=5
|
260 |
+
column=6, type=INFINITY, align=left, ascii_width=8
|
261 |
+
column=7, type=NAN, align=left, ascii_width=3
|
262 |
+
column=8, type=STRING, align=left, ascii_width=24
|
263 |
+
|
264 |
+
|
265 |
+
Full example source code can be found at *examples/py/to_column_dp_list.py*
|
266 |
+
|
267 |
+
|
268 |
+
Dependencies
|
269 |
+
============
|
270 |
+
- Python 3.7+
|
271 |
+
- `Python package dependencies (automatically installed) <https://github.com/thombashi/DataProperty/network/dependencies>`__
|
272 |
+
|
273 |
+
Optional dependencies
|
274 |
+
---------------------
|
275 |
+
- `loguru <https://github.com/Delgan/loguru>`__
|
276 |
+
- Used for logging if the package installed
|
llmeval-env/lib/python3.10/site-packages/DataProperty-1.0.1.dist-info/RECORD
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DataProperty-1.0.1.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
2 |
+
DataProperty-1.0.1.dist-info/LICENSE,sha256=qT11vLB3TimQEGOAytrW3LLeGTxV1DX_xWujRaCLHcI,1084
|
3 |
+
DataProperty-1.0.1.dist-info/METADATA,sha256=BxNvMErHIPajm-sKqeSWNuN7mZwJU7L-m87uzOUQpb4,11519
|
4 |
+
DataProperty-1.0.1.dist-info/RECORD,,
|
5 |
+
DataProperty-1.0.1.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
|
6 |
+
DataProperty-1.0.1.dist-info/top_level.txt,sha256=RiW0aJCSmIPslrGSqg9wyPRas0Rl7Kcdi_fBBEd0-LY,13
|
7 |
+
dataproperty/__init__.py,sha256=y_LoBUs28gC7b7AXv49X1XCPHckXo3oKECpW-Oj6LbM,1308
|
8 |
+
dataproperty/__pycache__/__init__.cpython-310.pyc,,
|
9 |
+
dataproperty/__pycache__/__version__.cpython-310.pyc,,
|
10 |
+
dataproperty/__pycache__/_align.cpython-310.pyc,,
|
11 |
+
dataproperty/__pycache__/_align_getter.cpython-310.pyc,,
|
12 |
+
dataproperty/__pycache__/_base.cpython-310.pyc,,
|
13 |
+
dataproperty/__pycache__/_column.cpython-310.pyc,,
|
14 |
+
dataproperty/__pycache__/_common.cpython-310.pyc,,
|
15 |
+
dataproperty/__pycache__/_container.cpython-310.pyc,,
|
16 |
+
dataproperty/__pycache__/_converter.cpython-310.pyc,,
|
17 |
+
dataproperty/__pycache__/_dataproperty.cpython-310.pyc,,
|
18 |
+
dataproperty/__pycache__/_extractor.cpython-310.pyc,,
|
19 |
+
dataproperty/__pycache__/_formatter.cpython-310.pyc,,
|
20 |
+
dataproperty/__pycache__/_function.cpython-310.pyc,,
|
21 |
+
dataproperty/__pycache__/_interface.cpython-310.pyc,,
|
22 |
+
dataproperty/__pycache__/_line_break.cpython-310.pyc,,
|
23 |
+
dataproperty/__pycache__/_preprocessor.cpython-310.pyc,,
|
24 |
+
dataproperty/__pycache__/typing.cpython-310.pyc,,
|
25 |
+
dataproperty/__version__.py,sha256=67tYZapqaNY9QXFm4kAOxyg6b6T1ttw2NjFPHfyCkkc,201
|
26 |
+
dataproperty/_align.py,sha256=VQCp3HUN-rw5lDcG0CHwoQNwabSOwMF8Fpn52nHpQs8,535
|
27 |
+
dataproperty/_align_getter.py,sha256=GV8rvnGaF8-8C6E7SNa3SsXw-gp80jR93knG_XDwcZQ,833
|
28 |
+
dataproperty/_base.py,sha256=WfDF5FqUFRm9_Aw8T0H5AxyKyvaz4Fv3Z0x7lDzzLTM,2514
|
29 |
+
dataproperty/_column.py,sha256=Y7Xn16Jtc8vBMcqarrulNVzV4A3-TkYOQxkGXmup4lw,11653
|
30 |
+
dataproperty/_common.py,sha256=scfSVZRoBT74UIOYS99lZye06OUbT9347QpbxRhIi8M,1915
|
31 |
+
dataproperty/_container.py,sha256=NT-zFw68PqCCV8wcK7sTuIKlnW3eStVA0gkiO0DcBkY,5130
|
32 |
+
dataproperty/_converter.py,sha256=rEYWC1rcBIgi2WRM9PrLAycoOs9uSsYUsXaAlW5dWzM,3269
|
33 |
+
dataproperty/_dataproperty.py,sha256=Mq8J1pcJIqI2PbOfqH0CUF0aUzGhJnfdlTuzpz8-5wU,11321
|
34 |
+
dataproperty/_extractor.py,sha256=Rg_z5aKUGulUxi0Y3iGhLCEQ2nQpMYRbU8-Dd7XfyG4,25899
|
35 |
+
dataproperty/_formatter.py,sha256=nqQkEhtYKfG6WskuuN8_0mw3tpGNov8kJ6VBK36VYUA,3000
|
36 |
+
dataproperty/_function.py,sha256=h48XjTqYuXwFI1xeerFIIAlaWINxtLXEDw91ZuF_AuQ,3115
|
37 |
+
dataproperty/_interface.py,sha256=nronY0GKDo5AkgXjM7wvpYY8cx5SmpxpBiDLLbW6NSY,626
|
38 |
+
dataproperty/_line_break.py,sha256=FGjtuWKftOchoeJZJ9DxHJ9DUY0PPO_tPTiAM1e-Wck,114
|
39 |
+
dataproperty/_preprocessor.py,sha256=7v-Py61jZK9SkNrpaHrmJLdwMbjumpsfzk6JU2PiThw,5467
|
40 |
+
dataproperty/logger/__init__.py,sha256=2kFcgMA8P4-c51nShgJQsY31tbbLvvsfSGDLXTOj9ig,88
|
41 |
+
dataproperty/logger/__pycache__/__init__.cpython-310.pyc,,
|
42 |
+
dataproperty/logger/__pycache__/_logger.cpython-310.pyc,,
|
43 |
+
dataproperty/logger/__pycache__/_null_logger.cpython-310.pyc,,
|
44 |
+
dataproperty/logger/_logger.py,sha256=edZ7M2Hf9zjSMr4iRi_IYAcf3l1EiLIVqhCEtf0AFHg,442
|
45 |
+
dataproperty/logger/_null_logger.py,sha256=xWCR2KAa2aKAcpKi8DosfCOgaRMb_YXr9MKrK7xMD-A,1071
|
46 |
+
dataproperty/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
47 |
+
dataproperty/typing.py,sha256=YhjN4wF_7uqG9tPUbFLFemWIzx3WgyJJFhTh62TyhJU,1403
|
llmeval-env/lib/python3.10/site-packages/DataProperty-1.0.1.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.40.0)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py3-none-any
|
5 |
+
|
llmeval-env/lib/python3.10/site-packages/DataProperty-1.0.1.dist-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
dataproperty
|
llmeval-env/lib/python3.10/site-packages/PyYAML-6.0.1.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
llmeval-env/lib/python3.10/site-packages/PyYAML-6.0.1.dist-info/LICENSE
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2017-2021 Ingy döt Net
|
2 |
+
Copyright (c) 2006-2016 Kirill Simonov
|
3 |
+
|
4 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
5 |
+
this software and associated documentation files (the "Software"), to deal in
|
6 |
+
the Software without restriction, including without limitation the rights to
|
7 |
+
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
8 |
+
of the Software, and to permit persons to whom the Software is furnished to do
|
9 |
+
so, subject to the following conditions:
|
10 |
+
|
11 |
+
The above copyright notice and this permission notice shall be included in all
|
12 |
+
copies or substantial portions of the Software.
|
13 |
+
|
14 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
15 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
16 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
17 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
18 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
19 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
20 |
+
SOFTWARE.
|
llmeval-env/lib/python3.10/site-packages/PyYAML-6.0.1.dist-info/METADATA
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: PyYAML
|
3 |
+
Version: 6.0.1
|
4 |
+
Summary: YAML parser and emitter for Python
|
5 |
+
Home-page: https://pyyaml.org/
|
6 |
+
Download-URL: https://pypi.org/project/PyYAML/
|
7 |
+
Author: Kirill Simonov
|
8 |
+
Author-email: [email protected]
|
9 |
+
License: MIT
|
10 |
+
Project-URL: Bug Tracker, https://github.com/yaml/pyyaml/issues
|
11 |
+
Project-URL: CI, https://github.com/yaml/pyyaml/actions
|
12 |
+
Project-URL: Documentation, https://pyyaml.org/wiki/PyYAMLDocumentation
|
13 |
+
Project-URL: Mailing lists, http://lists.sourceforge.net/lists/listinfo/yaml-core
|
14 |
+
Project-URL: Source Code, https://github.com/yaml/pyyaml
|
15 |
+
Platform: Any
|
16 |
+
Classifier: Development Status :: 5 - Production/Stable
|
17 |
+
Classifier: Intended Audience :: Developers
|
18 |
+
Classifier: License :: OSI Approved :: MIT License
|
19 |
+
Classifier: Operating System :: OS Independent
|
20 |
+
Classifier: Programming Language :: Cython
|
21 |
+
Classifier: Programming Language :: Python
|
22 |
+
Classifier: Programming Language :: Python :: 3
|
23 |
+
Classifier: Programming Language :: Python :: 3.6
|
24 |
+
Classifier: Programming Language :: Python :: 3.7
|
25 |
+
Classifier: Programming Language :: Python :: 3.8
|
26 |
+
Classifier: Programming Language :: Python :: 3.9
|
27 |
+
Classifier: Programming Language :: Python :: 3.10
|
28 |
+
Classifier: Programming Language :: Python :: 3.11
|
29 |
+
Classifier: Programming Language :: Python :: Implementation :: CPython
|
30 |
+
Classifier: Programming Language :: Python :: Implementation :: PyPy
|
31 |
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
32 |
+
Classifier: Topic :: Text Processing :: Markup
|
33 |
+
Requires-Python: >=3.6
|
34 |
+
License-File: LICENSE
|
35 |
+
|
36 |
+
YAML is a data serialization format designed for human readability
|
37 |
+
and interaction with scripting languages. PyYAML is a YAML parser
|
38 |
+
and emitter for Python.
|
39 |
+
|
40 |
+
PyYAML features a complete YAML 1.1 parser, Unicode support, pickle
|
41 |
+
support, capable extension API, and sensible error messages. PyYAML
|
42 |
+
supports standard YAML tags and provides Python-specific tags that
|
43 |
+
allow to represent an arbitrary Python object.
|
44 |
+
|
45 |
+
PyYAML is applicable for a broad range of tasks from complex
|
46 |
+
configuration files to object serialization and persistence.
|
llmeval-env/lib/python3.10/site-packages/PyYAML-6.0.1.dist-info/RECORD
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PyYAML-6.0.1.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
2 |
+
PyYAML-6.0.1.dist-info/LICENSE,sha256=jTko-dxEkP1jVwfLiOsmvXZBAqcoKVQwfT5RZ6V36KQ,1101
|
3 |
+
PyYAML-6.0.1.dist-info/METADATA,sha256=UNNF8-SzzwOKXVo-kV5lXUGH2_wDWMBmGxqISpp5HQk,2058
|
4 |
+
PyYAML-6.0.1.dist-info/RECORD,,
|
5 |
+
PyYAML-6.0.1.dist-info/WHEEL,sha256=iZaXX0Td62Nww8bojl0E84uJHjT41csHPKZmbUBbJPs,152
|
6 |
+
PyYAML-6.0.1.dist-info/top_level.txt,sha256=rpj0IVMTisAjh_1vG3Ccf9v5jpCQwAz6cD1IVU5ZdhQ,11
|
7 |
+
_yaml/__init__.py,sha256=04Ae_5osxahpJHa3XBZUAf4wi6XX32gR8D6X6p64GEA,1402
|
8 |
+
_yaml/__pycache__/__init__.cpython-310.pyc,,
|
9 |
+
yaml/__init__.py,sha256=bhl05qSeO-1ZxlSRjGrvl2m9nrXb1n9-GQatTN0Mrqc,12311
|
10 |
+
yaml/__pycache__/__init__.cpython-310.pyc,,
|
11 |
+
yaml/__pycache__/composer.cpython-310.pyc,,
|
12 |
+
yaml/__pycache__/constructor.cpython-310.pyc,,
|
13 |
+
yaml/__pycache__/cyaml.cpython-310.pyc,,
|
14 |
+
yaml/__pycache__/dumper.cpython-310.pyc,,
|
15 |
+
yaml/__pycache__/emitter.cpython-310.pyc,,
|
16 |
+
yaml/__pycache__/error.cpython-310.pyc,,
|
17 |
+
yaml/__pycache__/events.cpython-310.pyc,,
|
18 |
+
yaml/__pycache__/loader.cpython-310.pyc,,
|
19 |
+
yaml/__pycache__/nodes.cpython-310.pyc,,
|
20 |
+
yaml/__pycache__/parser.cpython-310.pyc,,
|
21 |
+
yaml/__pycache__/reader.cpython-310.pyc,,
|
22 |
+
yaml/__pycache__/representer.cpython-310.pyc,,
|
23 |
+
yaml/__pycache__/resolver.cpython-310.pyc,,
|
24 |
+
yaml/__pycache__/scanner.cpython-310.pyc,,
|
25 |
+
yaml/__pycache__/serializer.cpython-310.pyc,,
|
26 |
+
yaml/__pycache__/tokens.cpython-310.pyc,,
|
27 |
+
yaml/_yaml.cpython-310-x86_64-linux-gnu.so,sha256=_9iVrASatQgQSFXlKeCe2uK2TyKwk9nd61Cs_-fqAHM,2226000
|
28 |
+
yaml/composer.py,sha256=_Ko30Wr6eDWUeUpauUGT3Lcg9QPBnOPVlTnIMRGJ9FM,4883
|
29 |
+
yaml/constructor.py,sha256=kNgkfaeLUkwQYY_Q6Ff1Tz2XVw_pG1xVE9Ak7z-viLA,28639
|
30 |
+
yaml/cyaml.py,sha256=6ZrAG9fAYvdVe2FK_w0hmXoG7ZYsoYUwapG8CiC72H0,3851
|
31 |
+
yaml/dumper.py,sha256=PLctZlYwZLp7XmeUdwRuv4nYOZ2UBnDIUy8-lKfLF-o,2837
|
32 |
+
yaml/emitter.py,sha256=jghtaU7eFwg31bG0B7RZea_29Adi9CKmXq_QjgQpCkQ,43006
|
33 |
+
yaml/error.py,sha256=Ah9z-toHJUbE9j-M8YpxgSRM5CgLCcwVzJgLLRF2Fxo,2533
|
34 |
+
yaml/events.py,sha256=50_TksgQiE4up-lKo_V-nBy-tAIxkIPQxY5qDhKCeHw,2445
|
35 |
+
yaml/loader.py,sha256=UVa-zIqmkFSCIYq_PgSGm4NSJttHY2Rf_zQ4_b1fHN0,2061
|
36 |
+
yaml/nodes.py,sha256=gPKNj8pKCdh2d4gr3gIYINnPOaOxGhJAUiYhGRnPE84,1440
|
37 |
+
yaml/parser.py,sha256=ilWp5vvgoHFGzvOZDItFoGjD6D42nhlZrZyjAwa0oJo,25495
|
38 |
+
yaml/reader.py,sha256=0dmzirOiDG4Xo41RnuQS7K9rkY3xjHiVasfDMNTqCNw,6794
|
39 |
+
yaml/representer.py,sha256=IuWP-cAW9sHKEnS0gCqSa894k1Bg4cgTxaDwIcbRQ-Y,14190
|
40 |
+
yaml/resolver.py,sha256=9L-VYfm4mWHxUD1Vg4X7rjDRK_7VZd6b92wzq7Y2IKY,9004
|
41 |
+
yaml/scanner.py,sha256=YEM3iLZSaQwXcQRg2l2R4MdT0zGP2F9eHkKGKnHyWQY,51279
|
42 |
+
yaml/serializer.py,sha256=ChuFgmhU01hj4xgI8GaKv6vfM2Bujwa9i7d2FAHj7cA,4165
|
43 |
+
yaml/tokens.py,sha256=lTQIzSVw8Mg9wv459-TjiOQe6wVziqaRlqX2_89rp54,2573
|
llmeval-env/lib/python3.10/site-packages/PyYAML-6.0.1.dist-info/WHEEL
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.40.0)
|
3 |
+
Root-Is-Purelib: false
|
4 |
+
Tag: cp310-cp310-manylinux_2_17_x86_64
|
5 |
+
Tag: cp310-cp310-manylinux2014_x86_64
|
6 |
+
|
llmeval-env/lib/python3.10/site-packages/PyYAML-6.0.1.dist-info/top_level.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
_yaml
|
2 |
+
yaml
|
llmeval-env/lib/python3.10/site-packages/aiosignal-1.3.1.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
llmeval-env/lib/python3.10/site-packages/aiosignal-1.3.1.dist-info/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "{}"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2013-2019 Nikolay Kim and Andrew Svetlov
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
llmeval-env/lib/python3.10/site-packages/aiosignal-1.3.1.dist-info/METADATA
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: aiosignal
|
3 |
+
Version: 1.3.1
|
4 |
+
Summary: aiosignal: a list of registered asynchronous callbacks
|
5 |
+
Home-page: https://github.com/aio-libs/aiosignal
|
6 |
+
Maintainer: aiohttp team <[email protected]>
|
7 |
+
Maintainer-email: [email protected]
|
8 |
+
License: Apache 2.0
|
9 |
+
Project-URL: Chat: Gitter, https://gitter.im/aio-libs/Lobby
|
10 |
+
Project-URL: CI: GitHub Actions, https://github.com/aio-libs/aiosignal/actions
|
11 |
+
Project-URL: Coverage: codecov, https://codecov.io/github/aio-libs/aiosignal
|
12 |
+
Project-URL: Docs: RTD, https://docs.aiosignal.org
|
13 |
+
Project-URL: GitHub: issues, https://github.com/aio-libs/aiosignal/issues
|
14 |
+
Project-URL: GitHub: repo, https://github.com/aio-libs/aiosignal
|
15 |
+
Classifier: License :: OSI Approved :: Apache Software License
|
16 |
+
Classifier: Intended Audience :: Developers
|
17 |
+
Classifier: Programming Language :: Python
|
18 |
+
Classifier: Programming Language :: Python :: 3
|
19 |
+
Classifier: Programming Language :: Python :: 3 :: Only
|
20 |
+
Classifier: Programming Language :: Python :: 3.7
|
21 |
+
Classifier: Programming Language :: Python :: 3.8
|
22 |
+
Classifier: Programming Language :: Python :: 3.9
|
23 |
+
Classifier: Programming Language :: Python :: 3.10
|
24 |
+
Classifier: Programming Language :: Python :: 3.11
|
25 |
+
Classifier: Development Status :: 5 - Production/Stable
|
26 |
+
Classifier: Operating System :: POSIX
|
27 |
+
Classifier: Operating System :: MacOS :: MacOS X
|
28 |
+
Classifier: Operating System :: Microsoft :: Windows
|
29 |
+
Classifier: Framework :: AsyncIO
|
30 |
+
Requires-Python: >=3.7
|
31 |
+
Description-Content-Type: text/x-rst
|
32 |
+
License-File: LICENSE
|
33 |
+
Requires-Dist: frozenlist (>=1.1.0)
|
34 |
+
|
35 |
+
=========
|
36 |
+
aiosignal
|
37 |
+
=========
|
38 |
+
|
39 |
+
.. image:: https://github.com/aio-libs/aiosignal/workflows/CI/badge.svg
|
40 |
+
:target: https://github.com/aio-libs/aiosignal/actions?query=workflow%3ACI
|
41 |
+
:alt: GitHub status for master branch
|
42 |
+
|
43 |
+
.. image:: https://codecov.io/gh/aio-libs/aiosignal/branch/master/graph/badge.svg
|
44 |
+
:target: https://codecov.io/gh/aio-libs/aiosignal
|
45 |
+
:alt: codecov.io status for master branch
|
46 |
+
|
47 |
+
.. image:: https://badge.fury.io/py/aiosignal.svg
|
48 |
+
:target: https://pypi.org/project/aiosignal
|
49 |
+
:alt: Latest PyPI package version
|
50 |
+
|
51 |
+
.. image:: https://readthedocs.org/projects/aiosignal/badge/?version=latest
|
52 |
+
:target: https://aiosignal.readthedocs.io/
|
53 |
+
:alt: Latest Read The Docs
|
54 |
+
|
55 |
+
.. image:: https://img.shields.io/discourse/topics?server=https%3A%2F%2Faio-libs.discourse.group%2F
|
56 |
+
:target: https://aio-libs.discourse.group/
|
57 |
+
:alt: Discourse group for io-libs
|
58 |
+
|
59 |
+
.. image:: https://badges.gitter.im/Join%20Chat.svg
|
60 |
+
:target: https://gitter.im/aio-libs/Lobby
|
61 |
+
:alt: Chat on Gitter
|
62 |
+
|
63 |
+
Introduction
|
64 |
+
============
|
65 |
+
|
66 |
+
A project to manage callbacks in `asyncio` projects.
|
67 |
+
|
68 |
+
``Signal`` is a list of registered asynchronous callbacks.
|
69 |
+
|
70 |
+
The signal's life-cycle has two stages: after creation its content
|
71 |
+
could be filled by using standard list operations: ``sig.append()``
|
72 |
+
etc.
|
73 |
+
|
74 |
+
After you call ``sig.freeze()`` the signal is *frozen*: adding, removing
|
75 |
+
and dropping callbacks is forbidden.
|
76 |
+
|
77 |
+
The only available operation is calling the previously registered
|
78 |
+
callbacks by using ``await sig.send(data)``.
|
79 |
+
|
80 |
+
For concrete usage examples see the `Signals
|
81 |
+
<https://docs.aiohttp.org/en/stable/web_advanced.html#aiohttp-web-signals>
|
82 |
+
section of the `Web Server Advanced
|
83 |
+
<https://docs.aiohttp.org/en/stable/web_advanced.html>` chapter of the `aiohttp
|
84 |
+
documentation`_.
|
85 |
+
|
86 |
+
|
87 |
+
Installation
|
88 |
+
------------
|
89 |
+
|
90 |
+
::
|
91 |
+
|
92 |
+
$ pip install aiosignal
|
93 |
+
|
94 |
+
The library requires Python 3.6 or newer.
|
95 |
+
|
96 |
+
|
97 |
+
Documentation
|
98 |
+
=============
|
99 |
+
|
100 |
+
https://aiosignal.readthedocs.io/
|
101 |
+
|
102 |
+
Communication channels
|
103 |
+
======================
|
104 |
+
|
105 |
+
*gitter chat* https://gitter.im/aio-libs/Lobby
|
106 |
+
|
107 |
+
Requirements
|
108 |
+
============
|
109 |
+
|
110 |
+
- Python >= 3.6
|
111 |
+
- frozenlist >= 1.0.0
|
112 |
+
|
113 |
+
License
|
114 |
+
=======
|
115 |
+
|
116 |
+
``aiosignal`` is offered under the Apache 2 license.
|
117 |
+
|
118 |
+
Source code
|
119 |
+
===========
|
120 |
+
|
121 |
+
The project is hosted on GitHub_
|
122 |
+
|
123 |
+
Please file an issue in the `bug tracker
|
124 |
+
<https://github.com/aio-libs/aiosignal/issues>`_ if you have found a bug
|
125 |
+
or have some suggestions to improve the library.
|
126 |
+
|
127 |
+
.. _GitHub: https://github.com/aio-libs/aiosignal
|
128 |
+
.. _aiohttp documentation: https://docs.aiohttp.org/
|
llmeval-env/lib/python3.10/site-packages/aiosignal-1.3.1.dist-info/RECORD
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiosignal-1.3.1.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
2 |
+
aiosignal-1.3.1.dist-info/LICENSE,sha256=b9UkPpLdf5jsacesN3co50kFcJ_1J6W_mNbQJjwE9bY,11332
|
3 |
+
aiosignal-1.3.1.dist-info/METADATA,sha256=c0HRnlYzfXKztZPTFDlPfygizTherhG5WdwXlvco0Ug,4008
|
4 |
+
aiosignal-1.3.1.dist-info/RECORD,,
|
5 |
+
aiosignal-1.3.1.dist-info/WHEEL,sha256=ZL1lC_LiPDNRgDnOl2taCMc83aPEUZgHHv2h-LDgdiM,92
|
6 |
+
aiosignal-1.3.1.dist-info/top_level.txt,sha256=z45aNOKGDdrI1roqZY3BGXQ22kJFPHBmVdwtLYLtXC0,10
|
7 |
+
aiosignal/__init__.py,sha256=zQNfFYRSd84bswvpFv8ZWjEr5DeYwV3LXbMSyo2222s,867
|
8 |
+
aiosignal/__init__.pyi,sha256=xeCddYSS8fZAkz8S4HuKSR2IDe3N7RW_LKcXDPPA1Xk,311
|
9 |
+
aiosignal/__pycache__/__init__.cpython-310.pyc,,
|
10 |
+
aiosignal/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
llmeval-env/lib/python3.10/site-packages/aiosignal-1.3.1.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.38.2)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py3-none-any
|
5 |
+
|
llmeval-env/lib/python3.10/site-packages/aiosignal-1.3.1.dist-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
aiosignal
|
llmeval-env/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
llmeval-env/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/LICENSE
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2005-2021 Fredrik Johansson and mpmath contributors
|
2 |
+
|
3 |
+
All rights reserved.
|
4 |
+
|
5 |
+
Redistribution and use in source and binary forms, with or without
|
6 |
+
modification, are permitted provided that the following conditions are met:
|
7 |
+
|
8 |
+
a. Redistributions of source code must retain the above copyright notice,
|
9 |
+
this list of conditions and the following disclaimer.
|
10 |
+
b. Redistributions in binary form must reproduce the above copyright
|
11 |
+
notice, this list of conditions and the following disclaimer in the
|
12 |
+
documentation and/or other materials provided with the distribution.
|
13 |
+
c. Neither the name of the copyright holder nor the names of its
|
14 |
+
contributors may be used to endorse or promote products derived
|
15 |
+
from this software without specific prior written permission.
|
16 |
+
|
17 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
18 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
19 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
20 |
+
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
|
21 |
+
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
22 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
23 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
24 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
25 |
+
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
26 |
+
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
27 |
+
DAMAGE.
|
llmeval-env/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/METADATA
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: mpmath
|
3 |
+
Version: 1.3.0
|
4 |
+
Summary: Python library for arbitrary-precision floating-point arithmetic
|
5 |
+
Home-page: http://mpmath.org/
|
6 |
+
Author: Fredrik Johansson
|
7 |
+
Author-email: [email protected]
|
8 |
+
License: BSD
|
9 |
+
Project-URL: Source, https://github.com/fredrik-johansson/mpmath
|
10 |
+
Project-URL: Tracker, https://github.com/fredrik-johansson/mpmath/issues
|
11 |
+
Project-URL: Documentation, http://mpmath.org/doc/current/
|
12 |
+
Classifier: License :: OSI Approved :: BSD License
|
13 |
+
Classifier: Topic :: Scientific/Engineering :: Mathematics
|
14 |
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
15 |
+
Classifier: Programming Language :: Python
|
16 |
+
Classifier: Programming Language :: Python :: 2
|
17 |
+
Classifier: Programming Language :: Python :: 2.7
|
18 |
+
Classifier: Programming Language :: Python :: 3
|
19 |
+
Classifier: Programming Language :: Python :: 3.5
|
20 |
+
Classifier: Programming Language :: Python :: 3.6
|
21 |
+
Classifier: Programming Language :: Python :: 3.7
|
22 |
+
Classifier: Programming Language :: Python :: 3.8
|
23 |
+
Classifier: Programming Language :: Python :: 3.9
|
24 |
+
Classifier: Programming Language :: Python :: Implementation :: CPython
|
25 |
+
Classifier: Programming Language :: Python :: Implementation :: PyPy
|
26 |
+
License-File: LICENSE
|
27 |
+
Provides-Extra: develop
|
28 |
+
Requires-Dist: pytest (>=4.6) ; extra == 'develop'
|
29 |
+
Requires-Dist: pycodestyle ; extra == 'develop'
|
30 |
+
Requires-Dist: pytest-cov ; extra == 'develop'
|
31 |
+
Requires-Dist: codecov ; extra == 'develop'
|
32 |
+
Requires-Dist: wheel ; extra == 'develop'
|
33 |
+
Provides-Extra: docs
|
34 |
+
Requires-Dist: sphinx ; extra == 'docs'
|
35 |
+
Provides-Extra: gmpy
|
36 |
+
Requires-Dist: gmpy2 (>=2.1.0a4) ; (platform_python_implementation != "PyPy") and extra == 'gmpy'
|
37 |
+
Provides-Extra: tests
|
38 |
+
Requires-Dist: pytest (>=4.6) ; extra == 'tests'
|
39 |
+
|
40 |
+
mpmath
|
41 |
+
======
|
42 |
+
|
43 |
+
|pypi version| |Build status| |Code coverage status| |Zenodo Badge|
|
44 |
+
|
45 |
+
.. |pypi version| image:: https://img.shields.io/pypi/v/mpmath.svg
|
46 |
+
:target: https://pypi.python.org/pypi/mpmath
|
47 |
+
.. |Build status| image:: https://github.com/fredrik-johansson/mpmath/workflows/test/badge.svg
|
48 |
+
:target: https://github.com/fredrik-johansson/mpmath/actions?workflow=test
|
49 |
+
.. |Code coverage status| image:: https://codecov.io/gh/fredrik-johansson/mpmath/branch/master/graph/badge.svg
|
50 |
+
:target: https://codecov.io/gh/fredrik-johansson/mpmath
|
51 |
+
.. |Zenodo Badge| image:: https://zenodo.org/badge/2934512.svg
|
52 |
+
:target: https://zenodo.org/badge/latestdoi/2934512
|
53 |
+
|
54 |
+
A Python library for arbitrary-precision floating-point arithmetic.
|
55 |
+
|
56 |
+
Website: http://mpmath.org/
|
57 |
+
Main author: Fredrik Johansson <[email protected]>
|
58 |
+
|
59 |
+
Mpmath is free software released under the New BSD License (see the
|
60 |
+
LICENSE file for details)
|
61 |
+
|
62 |
+
0. History and credits
|
63 |
+
----------------------
|
64 |
+
|
65 |
+
The following people (among others) have contributed major patches
|
66 |
+
or new features to mpmath:
|
67 |
+
|
68 |
+
* Pearu Peterson <[email protected]>
|
69 |
+
* Mario Pernici <[email protected]>
|
70 |
+
* Ondrej Certik <[email protected]>
|
71 |
+
* Vinzent Steinberg <[email protected]>
|
72 |
+
* Nimish Telang <[email protected]>
|
73 |
+
* Mike Taschuk <[email protected]>
|
74 |
+
* Case Van Horsen <[email protected]>
|
75 |
+
* Jorn Baayen <[email protected]>
|
76 |
+
* Chris Smith <[email protected]>
|
77 |
+
* Juan Arias de Reyna <[email protected]>
|
78 |
+
* Ioannis Tziakos <[email protected]>
|
79 |
+
* Aaron Meurer <[email protected]>
|
80 |
+
* Stefan Krastanov <[email protected]>
|
81 |
+
* Ken Allen <[email protected]>
|
82 |
+
* Timo Hartmann <[email protected]>
|
83 |
+
* Sergey B Kirpichev <[email protected]>
|
84 |
+
* Kris Kuhlman <[email protected]>
|
85 |
+
* Paul Masson <[email protected]>
|
86 |
+
* Michael Kagalenko <[email protected]>
|
87 |
+
* Jonathan Warner <[email protected]>
|
88 |
+
* Max Gaukler <[email protected]>
|
89 |
+
* Guillermo Navas-Palencia <[email protected]>
|
90 |
+
* Nike Dattani <[email protected]>
|
91 |
+
|
92 |
+
Numerous other people have contributed by reporting bugs,
|
93 |
+
requesting new features, or suggesting improvements to the
|
94 |
+
documentation.
|
95 |
+
|
96 |
+
For a detailed changelog, including individual contributions,
|
97 |
+
see the CHANGES file.
|
98 |
+
|
99 |
+
Fredrik's work on mpmath during summer 2008 was sponsored by Google
|
100 |
+
as part of the Google Summer of Code program.
|
101 |
+
|
102 |
+
Fredrik's work on mpmath during summer 2009 was sponsored by the
|
103 |
+
American Institute of Mathematics under the support of the National Science
|
104 |
+
Foundation Grant No. 0757627 (FRG: L-functions and Modular Forms).
|
105 |
+
|
106 |
+
Any opinions, findings, and conclusions or recommendations expressed in this
|
107 |
+
material are those of the author(s) and do not necessarily reflect the
|
108 |
+
views of the sponsors.
|
109 |
+
|
110 |
+
Credit also goes to:
|
111 |
+
|
112 |
+
* The authors of the GMP library and the Python wrapper
|
113 |
+
gmpy, enabling mpmath to become much faster at
|
114 |
+
high precision
|
115 |
+
* The authors of MPFR, pari/gp, MPFUN, and other arbitrary-
|
116 |
+
precision libraries, whose documentation has been helpful
|
117 |
+
for implementing many of the algorithms in mpmath
|
118 |
+
* Wikipedia contributors; Abramowitz & Stegun; Gradshteyn & Ryzhik;
|
119 |
+
Wolfram Research for MathWorld and the Wolfram Functions site.
|
120 |
+
These are the main references used for special functions
|
121 |
+
implementations.
|
122 |
+
* George Brandl for developing the Sphinx documentation tool
|
123 |
+
used to build mpmath's documentation
|
124 |
+
|
125 |
+
Release history:
|
126 |
+
|
127 |
+
* Version 1.3.0 released on March 7, 2023
|
128 |
+
* Version 1.2.0 released on February 1, 2021
|
129 |
+
* Version 1.1.0 released on December 11, 2018
|
130 |
+
* Version 1.0.0 released on September 27, 2017
|
131 |
+
* Version 0.19 released on June 10, 2014
|
132 |
+
* Version 0.18 released on December 31, 2013
|
133 |
+
* Version 0.17 released on February 1, 2011
|
134 |
+
* Version 0.16 released on September 24, 2010
|
135 |
+
* Version 0.15 released on June 6, 2010
|
136 |
+
* Version 0.14 released on February 5, 2010
|
137 |
+
* Version 0.13 released on August 13, 2009
|
138 |
+
* Version 0.12 released on June 9, 2009
|
139 |
+
* Version 0.11 released on January 26, 2009
|
140 |
+
* Version 0.10 released on October 15, 2008
|
141 |
+
* Version 0.9 released on August 23, 2008
|
142 |
+
* Version 0.8 released on April 20, 2008
|
143 |
+
* Version 0.7 released on March 12, 2008
|
144 |
+
* Version 0.6 released on January 13, 2008
|
145 |
+
* Version 0.5 released on November 24, 2007
|
146 |
+
* Version 0.4 released on November 3, 2007
|
147 |
+
* Version 0.3 released on October 5, 2007
|
148 |
+
* Version 0.2 released on October 2, 2007
|
149 |
+
* Version 0.1 released on September 27, 2007
|
150 |
+
|
151 |
+
1. Download & installation
|
152 |
+
--------------------------
|
153 |
+
|
154 |
+
Mpmath requires Python 2.7 or 3.5 (or later versions). It has been tested
|
155 |
+
with CPython 2.7, 3.5 through 3.7 and for PyPy.
|
156 |
+
|
157 |
+
The latest release of mpmath can be downloaded from the mpmath
|
158 |
+
website and from https://github.com/fredrik-johansson/mpmath/releases
|
159 |
+
|
160 |
+
It should also be available in the Python Package Index at
|
161 |
+
https://pypi.python.org/pypi/mpmath
|
162 |
+
|
163 |
+
To install latest release of Mpmath with pip, simply run
|
164 |
+
|
165 |
+
``pip install mpmath``
|
166 |
+
|
167 |
+
Or unpack the mpmath archive and run
|
168 |
+
|
169 |
+
``python setup.py install``
|
170 |
+
|
171 |
+
Mpmath can also be installed using
|
172 |
+
|
173 |
+
``python -m easy_install mpmath``
|
174 |
+
|
175 |
+
The latest development code is available from
|
176 |
+
https://github.com/fredrik-johansson/mpmath
|
177 |
+
|
178 |
+
See the main documentation for more detailed instructions.
|
179 |
+
|
180 |
+
2. Running tests
|
181 |
+
----------------
|
182 |
+
|
183 |
+
The unit tests in mpmath/tests/ can be run via the script
|
184 |
+
runtests.py, but it is recommended to run them with py.test
|
185 |
+
(https://pytest.org/), especially
|
186 |
+
to generate more useful reports in case there are failures.
|
187 |
+
|
188 |
+
You may also want to check out the demo scripts in the demo
|
189 |
+
directory.
|
190 |
+
|
191 |
+
The master branch is automatically tested by Travis CI.
|
192 |
+
|
193 |
+
3. Documentation
|
194 |
+
----------------
|
195 |
+
|
196 |
+
Documentation in reStructuredText format is available in the
|
197 |
+
doc directory included with the source package. These files
|
198 |
+
are human-readable, but can be compiled to prettier HTML using
|
199 |
+
the build.py script (requires Sphinx, http://sphinx.pocoo.org/).
|
200 |
+
|
201 |
+
See setup.txt in the documentation for more information.
|
202 |
+
|
203 |
+
The most recent documentation is also available in HTML format:
|
204 |
+
|
205 |
+
http://mpmath.org/doc/current/
|
206 |
+
|
207 |
+
4. Known problems
|
208 |
+
-----------------
|
209 |
+
|
210 |
+
Mpmath is a work in progress. Major issues include:
|
211 |
+
|
212 |
+
* Some functions may return incorrect values when given extremely
|
213 |
+
large arguments or arguments very close to singularities.
|
214 |
+
|
215 |
+
* Directed rounding works for arithmetic operations. It is implemented
|
216 |
+
heuristically for other operations, and their results may be off by one
|
217 |
+
or two units in the last place (even if otherwise accurate).
|
218 |
+
|
219 |
+
* Some IEEE 754 features are not available. Inifinities and NaN are
|
220 |
+
partially supported; denormal rounding is currently not available
|
221 |
+
at all.
|
222 |
+
|
223 |
+
* The interface for switching precision and rounding is not finalized.
|
224 |
+
The current method is not threadsafe.
|
225 |
+
|
226 |
+
5. Help and bug reports
|
227 |
+
-----------------------
|
228 |
+
|
229 |
+
General questions and comments can be sent to the mpmath mailinglist,
|
230 | |
231 |
+
|
232 |
+
You can also report bugs and send patches to the mpmath issue tracker,
|
233 |
+
https://github.com/fredrik-johansson/mpmath/issues
|
llmeval-env/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/RECORD
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mpmath-1.3.0.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
2 |
+
mpmath-1.3.0.dist-info/LICENSE,sha256=wmyugdpFCOXiSZhXd6M4IfGDIj67dNf4z7-Q_n7vL7c,1537
|
3 |
+
mpmath-1.3.0.dist-info/METADATA,sha256=RLZupES5wNGa6UgV01a_BHrmtoDBkmi1wmVofNaoFAY,8630
|
4 |
+
mpmath-1.3.0.dist-info/RECORD,,
|
5 |
+
mpmath-1.3.0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6 |
+
mpmath-1.3.0.dist-info/top_level.txt,sha256=BUVWrh8EVlkOhM1n3X9S8msTaVcC-3s6Sjt60avHYus,7
|
7 |
+
mpmath/__init__.py,sha256=skFYTSwfwDBLChAV6pI3SdewgAQR3UBtyrfIK_Jdn-g,8765
|
8 |
+
mpmath/__pycache__/__init__.cpython-310.pyc,,
|
9 |
+
mpmath/__pycache__/ctx_base.cpython-310.pyc,,
|
10 |
+
mpmath/__pycache__/ctx_fp.cpython-310.pyc,,
|
11 |
+
mpmath/__pycache__/ctx_iv.cpython-310.pyc,,
|
12 |
+
mpmath/__pycache__/ctx_mp.cpython-310.pyc,,
|
13 |
+
mpmath/__pycache__/ctx_mp_python.cpython-310.pyc,,
|
14 |
+
mpmath/__pycache__/function_docs.cpython-310.pyc,,
|
15 |
+
mpmath/__pycache__/identification.cpython-310.pyc,,
|
16 |
+
mpmath/__pycache__/math2.cpython-310.pyc,,
|
17 |
+
mpmath/__pycache__/rational.cpython-310.pyc,,
|
18 |
+
mpmath/__pycache__/usertools.cpython-310.pyc,,
|
19 |
+
mpmath/__pycache__/visualization.cpython-310.pyc,,
|
20 |
+
mpmath/calculus/__init__.py,sha256=UAgCIJ1YmaeyTqpNzjBlCZGeIzLtUZMEEpl99VWNjus,162
|
21 |
+
mpmath/calculus/__pycache__/__init__.cpython-310.pyc,,
|
22 |
+
mpmath/calculus/__pycache__/approximation.cpython-310.pyc,,
|
23 |
+
mpmath/calculus/__pycache__/calculus.cpython-310.pyc,,
|
24 |
+
mpmath/calculus/__pycache__/differentiation.cpython-310.pyc,,
|
25 |
+
mpmath/calculus/__pycache__/extrapolation.cpython-310.pyc,,
|
26 |
+
mpmath/calculus/__pycache__/inverselaplace.cpython-310.pyc,,
|
27 |
+
mpmath/calculus/__pycache__/odes.cpython-310.pyc,,
|
28 |
+
mpmath/calculus/__pycache__/optimization.cpython-310.pyc,,
|
29 |
+
mpmath/calculus/__pycache__/polynomials.cpython-310.pyc,,
|
30 |
+
mpmath/calculus/__pycache__/quadrature.cpython-310.pyc,,
|
31 |
+
mpmath/calculus/approximation.py,sha256=vyzu3YI6r63Oq1KFHrQz02mGXAcH23emqNYhJuUaFZ4,8817
|
32 |
+
mpmath/calculus/calculus.py,sha256=A0gSp0hxSyEDfugJViY3CeWalF-vK701YftzrjSQzQ4,112
|
33 |
+
mpmath/calculus/differentiation.py,sha256=2L6CBj8xtX9iip98NPbKsLtwtRjxi571wYmTMHFeL90,20226
|
34 |
+
mpmath/calculus/extrapolation.py,sha256=xM0rvk2DFEF4iR1Jhl-Y3aS93iW9VVJX7y9IGpmzC-A,73306
|
35 |
+
mpmath/calculus/inverselaplace.py,sha256=5-pn8N_t0PtgBTXixsXZ4xxrihK2J5gYsVfTKfDx4gA,36056
|
36 |
+
mpmath/calculus/odes.py,sha256=gaHiw7IJjsONNTAa6izFPZpmcg9uyTp8MULnGdzTIGo,9908
|
37 |
+
mpmath/calculus/optimization.py,sha256=bKnShXElBOmVOIOlFeksDsYCp9fYSmYwKmXDt0z26MM,32856
|
38 |
+
mpmath/calculus/polynomials.py,sha256=D16BhU_SHbVi06IxNwABHR-H77IylndNsN3muPTuFYs,7877
|
39 |
+
mpmath/calculus/quadrature.py,sha256=n-avtS8E43foV-5tr5lofgOBaiMUYE8AJjQcWI9QcKk,42432
|
40 |
+
mpmath/ctx_base.py,sha256=rfjmfMyA55x8R_cWFINUwWVTElfZmyx5erKDdauSEVw,15985
|
41 |
+
mpmath/ctx_fp.py,sha256=ctUjx_NoU0iFWk05cXDYCL2ZtLZOlWs1n6Zao3pbG2g,6572
|
42 |
+
mpmath/ctx_iv.py,sha256=tqdMr-GDfkZk1EhoGeCAajy7pQv-RWtrVqhYjfI8r4g,17211
|
43 |
+
mpmath/ctx_mp.py,sha256=d3r4t7xHNqSFtmqsA9Btq1Npy3WTM-pcM2_jeCyECxY,49452
|
44 |
+
mpmath/ctx_mp_python.py,sha256=3olYWo4lk1SnQ0A_IaZ181qqG8u5pxGat_v-L4Qtn3Y,37815
|
45 |
+
mpmath/function_docs.py,sha256=g4PP8n6ILXmHcLyA50sxK6Tmp_Z4_pRN-wDErU8D1i4,283512
|
46 |
+
mpmath/functions/__init__.py,sha256=YXVdhqv-6LKm6cr5xxtTNTtuD9zDPKGQl8GmS0xz2xo,330
|
47 |
+
mpmath/functions/__pycache__/__init__.cpython-310.pyc,,
|
48 |
+
mpmath/functions/__pycache__/bessel.cpython-310.pyc,,
|
49 |
+
mpmath/functions/__pycache__/elliptic.cpython-310.pyc,,
|
50 |
+
mpmath/functions/__pycache__/expintegrals.cpython-310.pyc,,
|
51 |
+
mpmath/functions/__pycache__/factorials.cpython-310.pyc,,
|
52 |
+
mpmath/functions/__pycache__/functions.cpython-310.pyc,,
|
53 |
+
mpmath/functions/__pycache__/hypergeometric.cpython-310.pyc,,
|
54 |
+
mpmath/functions/__pycache__/orthogonal.cpython-310.pyc,,
|
55 |
+
mpmath/functions/__pycache__/qfunctions.cpython-310.pyc,,
|
56 |
+
mpmath/functions/__pycache__/rszeta.cpython-310.pyc,,
|
57 |
+
mpmath/functions/__pycache__/signals.cpython-310.pyc,,
|
58 |
+
mpmath/functions/__pycache__/theta.cpython-310.pyc,,
|
59 |
+
mpmath/functions/__pycache__/zeta.cpython-310.pyc,,
|
60 |
+
mpmath/functions/__pycache__/zetazeros.cpython-310.pyc,,
|
61 |
+
mpmath/functions/bessel.py,sha256=dUPLu8frlK-vmf3-irX_7uvwyw4xccv6EIizmIZ88kM,37938
|
62 |
+
mpmath/functions/elliptic.py,sha256=qz0yVMb4lWEeOTDL_DWz5u5awmGIPKAsuZFJXgwHJNU,42237
|
63 |
+
mpmath/functions/expintegrals.py,sha256=75X_MRdYc1F_X73bgNiOJqwRlS2hqAzcFLl3RM2tCDc,11644
|
64 |
+
mpmath/functions/factorials.py,sha256=8_6kCR7e4k1GwxiAOJu0NRadeF4jA28qx4hidhu4ILk,5273
|
65 |
+
mpmath/functions/functions.py,sha256=ub2JExvqzCWLkm5yAm72Fr6fdWmZZUknq9_3w9MEigI,18100
|
66 |
+
mpmath/functions/hypergeometric.py,sha256=Z0OMAMC4ylK42n_SnamyFVnUx6zHLyCLCoJDSZ1JrHY,51570
|
67 |
+
mpmath/functions/orthogonal.py,sha256=FabkxKfBoSseA5flWu1a3re-2BYaew9augqIsT8LaLw,16097
|
68 |
+
mpmath/functions/qfunctions.py,sha256=a3EHGKQt_jMd4x9I772Jz-TGFnGY-arWqPvZGz9QSe0,7633
|
69 |
+
mpmath/functions/rszeta.py,sha256=yuUVp4ilIyDmXyE3WTBxDDjwfEJNypJnbPS-xPH5How,46184
|
70 |
+
mpmath/functions/signals.py,sha256=ELotwQaW1CDpv-eeJzOZ5c23NhfaZcj9_Gkb3psvS0Q,703
|
71 |
+
mpmath/functions/theta.py,sha256=KggOocczoMG6_HMoal4oEP7iZ4SKOou9JFE-WzY2r3M,37320
|
72 |
+
mpmath/functions/zeta.py,sha256=ue7JY7GXA0oX8q08sQJl2CSRrZ7kOt8HsftpVjnTwrE,36410
|
73 |
+
mpmath/functions/zetazeros.py,sha256=uq6TVyZBcY2MLX7VSdVfn0TOkowBLM9fXtnySEwaNzw,30858
|
74 |
+
mpmath/identification.py,sha256=7aMdngRAaeL_MafDUNbmEIlGQSklHDZ8pmPFt-OLgkw,29253
|
75 |
+
mpmath/libmp/__init__.py,sha256=UCDjLZw4brbklaCmSixCcPdLdHkz8sF_-6F_wr0duAg,3790
|
76 |
+
mpmath/libmp/__pycache__/__init__.cpython-310.pyc,,
|
77 |
+
mpmath/libmp/__pycache__/backend.cpython-310.pyc,,
|
78 |
+
mpmath/libmp/__pycache__/gammazeta.cpython-310.pyc,,
|
79 |
+
mpmath/libmp/__pycache__/libelefun.cpython-310.pyc,,
|
80 |
+
mpmath/libmp/__pycache__/libhyper.cpython-310.pyc,,
|
81 |
+
mpmath/libmp/__pycache__/libintmath.cpython-310.pyc,,
|
82 |
+
mpmath/libmp/__pycache__/libmpc.cpython-310.pyc,,
|
83 |
+
mpmath/libmp/__pycache__/libmpf.cpython-310.pyc,,
|
84 |
+
mpmath/libmp/__pycache__/libmpi.cpython-310.pyc,,
|
85 |
+
mpmath/libmp/backend.py,sha256=26A8pUkaGov26vrrFNQVyWJ5LDtK8sl3UHrYLecaTjA,3360
|
86 |
+
mpmath/libmp/gammazeta.py,sha256=Xqdw6PMoswDaSca_sOs-IglRuk3fb8c9p43M_lbcrlc,71469
|
87 |
+
mpmath/libmp/libelefun.py,sha256=joBZP4FOdxPfieWso1LPtSr6dHydpG_LQiF_bYQYWMg,43861
|
88 |
+
mpmath/libmp/libhyper.py,sha256=J9fmdDF6u27EcssEWvBuVaAa3hFjPvPN1SgRgu1dEbc,36624
|
89 |
+
mpmath/libmp/libintmath.py,sha256=aIRT0rkUZ_sdGQf3TNCLd-pBMvtQWjssbvFLfK7U0jc,16688
|
90 |
+
mpmath/libmp/libmpc.py,sha256=KBndUjs5YVS32-Id3fflDfYgpdW1Prx6zfo8Ez5Qbrs,26875
|
91 |
+
mpmath/libmp/libmpf.py,sha256=vpP0kNVkScbCVoZogJ4Watl4I7Ce0d4dzHVjfVe57so,45021
|
92 |
+
mpmath/libmp/libmpi.py,sha256=u0I5Eiwkqa-4-dXETi5k7MuaxBeZbvCAPFtl93U9YF0,27622
|
93 |
+
mpmath/math2.py,sha256=O5Dglg81SsW0wfHDUJcXOD8-cCaLvbVIvyw0sVmRbpI,18561
|
94 |
+
mpmath/matrices/__init__.py,sha256=ETzGDciYbq9ftiKwaMbJ15EI-KNXHrzRb-ZHehhqFjs,94
|
95 |
+
mpmath/matrices/__pycache__/__init__.cpython-310.pyc,,
|
96 |
+
mpmath/matrices/__pycache__/calculus.cpython-310.pyc,,
|
97 |
+
mpmath/matrices/__pycache__/eigen.cpython-310.pyc,,
|
98 |
+
mpmath/matrices/__pycache__/eigen_symmetric.cpython-310.pyc,,
|
99 |
+
mpmath/matrices/__pycache__/linalg.cpython-310.pyc,,
|
100 |
+
mpmath/matrices/__pycache__/matrices.cpython-310.pyc,,
|
101 |
+
mpmath/matrices/calculus.py,sha256=PNRq-p2nxgT-fzC54K2depi8ddhdx6Q86G8qpUiHeUY,18609
|
102 |
+
mpmath/matrices/eigen.py,sha256=GbDXI3CixzEdXxr1G86uUWkAngAvd-05MmSQ-Tsu_5k,24394
|
103 |
+
mpmath/matrices/eigen_symmetric.py,sha256=FPKPeQr1cGYw6Y6ea32a1YdEWQDLP6JlQHEA2WfNLYg,58534
|
104 |
+
mpmath/matrices/linalg.py,sha256=04C3ijzMFom7ob5fXBCDfyPPdo3BIboIeE8x2A6vqF0,26958
|
105 |
+
mpmath/matrices/matrices.py,sha256=o78Eq62EHQnxcsR0LBoWDEGREOoN4L2iDM1q3dQrw0o,32331
|
106 |
+
mpmath/rational.py,sha256=64d56fvZXngYZT7nOAHeFRUX77eJ1A0R3rpfWBU-mSo,5976
|
107 |
+
mpmath/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
108 |
+
mpmath/tests/__pycache__/__init__.cpython-310.pyc,,
|
109 |
+
mpmath/tests/__pycache__/extratest_gamma.cpython-310.pyc,,
|
110 |
+
mpmath/tests/__pycache__/extratest_zeta.cpython-310.pyc,,
|
111 |
+
mpmath/tests/__pycache__/runtests.cpython-310.pyc,,
|
112 |
+
mpmath/tests/__pycache__/test_basic_ops.cpython-310.pyc,,
|
113 |
+
mpmath/tests/__pycache__/test_bitwise.cpython-310.pyc,,
|
114 |
+
mpmath/tests/__pycache__/test_calculus.cpython-310.pyc,,
|
115 |
+
mpmath/tests/__pycache__/test_compatibility.cpython-310.pyc,,
|
116 |
+
mpmath/tests/__pycache__/test_convert.cpython-310.pyc,,
|
117 |
+
mpmath/tests/__pycache__/test_diff.cpython-310.pyc,,
|
118 |
+
mpmath/tests/__pycache__/test_division.cpython-310.pyc,,
|
119 |
+
mpmath/tests/__pycache__/test_eigen.cpython-310.pyc,,
|
120 |
+
mpmath/tests/__pycache__/test_eigen_symmetric.cpython-310.pyc,,
|
121 |
+
mpmath/tests/__pycache__/test_elliptic.cpython-310.pyc,,
|
122 |
+
mpmath/tests/__pycache__/test_fp.cpython-310.pyc,,
|
123 |
+
mpmath/tests/__pycache__/test_functions.cpython-310.pyc,,
|
124 |
+
mpmath/tests/__pycache__/test_functions2.cpython-310.pyc,,
|
125 |
+
mpmath/tests/__pycache__/test_gammazeta.cpython-310.pyc,,
|
126 |
+
mpmath/tests/__pycache__/test_hp.cpython-310.pyc,,
|
127 |
+
mpmath/tests/__pycache__/test_identify.cpython-310.pyc,,
|
128 |
+
mpmath/tests/__pycache__/test_interval.cpython-310.pyc,,
|
129 |
+
mpmath/tests/__pycache__/test_levin.cpython-310.pyc,,
|
130 |
+
mpmath/tests/__pycache__/test_linalg.cpython-310.pyc,,
|
131 |
+
mpmath/tests/__pycache__/test_matrices.cpython-310.pyc,,
|
132 |
+
mpmath/tests/__pycache__/test_mpmath.cpython-310.pyc,,
|
133 |
+
mpmath/tests/__pycache__/test_ode.cpython-310.pyc,,
|
134 |
+
mpmath/tests/__pycache__/test_pickle.cpython-310.pyc,,
|
135 |
+
mpmath/tests/__pycache__/test_power.cpython-310.pyc,,
|
136 |
+
mpmath/tests/__pycache__/test_quad.cpython-310.pyc,,
|
137 |
+
mpmath/tests/__pycache__/test_rootfinding.cpython-310.pyc,,
|
138 |
+
mpmath/tests/__pycache__/test_special.cpython-310.pyc,,
|
139 |
+
mpmath/tests/__pycache__/test_str.cpython-310.pyc,,
|
140 |
+
mpmath/tests/__pycache__/test_summation.cpython-310.pyc,,
|
141 |
+
mpmath/tests/__pycache__/test_trig.cpython-310.pyc,,
|
142 |
+
mpmath/tests/__pycache__/test_visualization.cpython-310.pyc,,
|
143 |
+
mpmath/tests/__pycache__/torture.cpython-310.pyc,,
|
144 |
+
mpmath/tests/extratest_gamma.py,sha256=xidhXUelILcxtiPGoTBHjqUOKIJzEaZ_v3nntGQyWZQ,7228
|
145 |
+
mpmath/tests/extratest_zeta.py,sha256=sg10j9RhjBpV2EdUqyYhGV2ERWvM--EvwwGIz6HTmlw,1003
|
146 |
+
mpmath/tests/runtests.py,sha256=7NUV82F3K_5AhU8mCLUFf5OibtT7uloFCwPyM3l71wM,5189
|
147 |
+
mpmath/tests/test_basic_ops.py,sha256=dsB8DRG-GrPzBaZ-bIauYabaeqXbfqBo9SIP9BqcTSs,15348
|
148 |
+
mpmath/tests/test_bitwise.py,sha256=-nLYhgQbhDza3SQM63BhktYntACagqMYx9ib3dPnTKM,7686
|
149 |
+
mpmath/tests/test_calculus.py,sha256=4oxtNfMpO4RLLoOzrv7r9-h8BcqfBsJIE6UpsHe7c4w,9187
|
150 |
+
mpmath/tests/test_compatibility.py,sha256=_t3ASZ3jhfAMnN1voWX7PDNIDzn-3PokkJGIdT1x7y0,2306
|
151 |
+
mpmath/tests/test_convert.py,sha256=JPcDcTJIWh5prIxjx5DM1aNWgqlUoF2KpHvAgK3uHi4,8834
|
152 |
+
mpmath/tests/test_diff.py,sha256=qjiF8NxQ8vueuZ5ZHGPQ-kjcj_I7Jh_fEdFtaA8DzEI,2466
|
153 |
+
mpmath/tests/test_division.py,sha256=6lUeZfmaBWvvszdqlWLMHgXPjVsxvW1WZpd4-jFWCpU,5340
|
154 |
+
mpmath/tests/test_eigen.py,sha256=2mnqVATGbsJkvSVHPpitfAk881twFfb3LsO3XikV9Hs,3905
|
155 |
+
mpmath/tests/test_eigen_symmetric.py,sha256=v0VimCicIU2owASDMBaP-t-30uq-pXcsglt95KBtNO4,8778
|
156 |
+
mpmath/tests/test_elliptic.py,sha256=Kjiwq9Bb6N_OOzzWewGQ1M_PMa7vRs42V0t90gloZxo,26225
|
157 |
+
mpmath/tests/test_fp.py,sha256=AJo0FTyH4BuUnUsv176LD956om308KGYndy-b54KGxM,89997
|
158 |
+
mpmath/tests/test_functions.py,sha256=b47VywdomoOX6KmMmz9-iv2IqVIydwKSuUw2pWlFHrY,30955
|
159 |
+
mpmath/tests/test_functions2.py,sha256=vlw2RWhL1oTcifnOMDx1a_YzN96UgNNIE5STeKRv1HY,96990
|
160 |
+
mpmath/tests/test_gammazeta.py,sha256=AB34O0DV7AlEf9Z4brnCadeQU5-uAwhWRw5FZas65DA,27917
|
161 |
+
mpmath/tests/test_hp.py,sha256=6hcENu6Te2klPEiTSeLBIRPlH7PADlJwFKbx8xpnOhg,10461
|
162 |
+
mpmath/tests/test_identify.py,sha256=lGUIPfrB2paTg0cFUo64GmMzF77F9gs9FQjX7gxGHV8,692
|
163 |
+
mpmath/tests/test_interval.py,sha256=TjYd7a9ca6iRJiLjw06isLeZTuGoGAPmgleDZ0cYfJ0,17527
|
164 |
+
mpmath/tests/test_levin.py,sha256=P8M11yV1dj_gdSNv5xuwCzFiF86QyRDtPMjURy6wJ28,5090
|
165 |
+
mpmath/tests/test_linalg.py,sha256=miKEnwB8iwWV13hi1bF1cg3hgB4rTKOR0fvDVfWmXds,10440
|
166 |
+
mpmath/tests/test_matrices.py,sha256=qyA4Ml2CvNvW034lzB01G6wVgNr7UrgZqh2wkMXtpzM,7944
|
167 |
+
mpmath/tests/test_mpmath.py,sha256=LVyJUeofiaxW-zLKWVBCz59L9UQsjlW0Ts9_oBiEv_4,196
|
168 |
+
mpmath/tests/test_ode.py,sha256=zAxexBH4fnmFNO4bvEHbug1NJWC5zqfFaVDlYijowkY,1822
|
169 |
+
mpmath/tests/test_pickle.py,sha256=Y8CKmDLFsJHUqG8CDaBw5ilrPP4YT1xijVduLpQ7XFE,401
|
170 |
+
mpmath/tests/test_power.py,sha256=sz_K02SmNxpa6Kb1uJLN_N4tXTJGdQ___vPRshEN7Gk,5227
|
171 |
+
mpmath/tests/test_quad.py,sha256=49Ltft0vZ_kdKLL5s-Kj-BzAVoF5LPVEUeNUzdOkghI,3893
|
172 |
+
mpmath/tests/test_rootfinding.py,sha256=umQegEaKHmYOEl5jEyoD-VLKDtXsTJJkepKEr4c0dC0,3132
|
173 |
+
mpmath/tests/test_special.py,sha256=YbMIoMIkJEvvKYIzS0CXthJFG0--j6un7-tcE6b7FPM,2848
|
174 |
+
mpmath/tests/test_str.py,sha256=0WsGD9hMPRi8zcuYMA9Cu2mOvQiCFskPwMsMf8lBDK4,544
|
175 |
+
mpmath/tests/test_summation.py,sha256=fdNlsvRVOsbWxbhlyDLDaEO2S8kTJrRMKIvB5-aNci0,2035
|
176 |
+
mpmath/tests/test_trig.py,sha256=zPtkIEnZaThxcWur4k7BX8-2Jmj-AhO191Svv7ANYUU,4799
|
177 |
+
mpmath/tests/test_visualization.py,sha256=1PqtkoUx-WsKYgTRiu5o9pBc85kwhf1lzU2eobDQCJM,944
|
178 |
+
mpmath/tests/torture.py,sha256=LD95oES7JY2KroELK-m-jhvtbvZaKChnt0Cq7kFMNCw,7868
|
179 |
+
mpmath/usertools.py,sha256=a-TDw7XSRsPdBEffxOooDV4WDFfuXnO58P75dcAD87I,3029
|
180 |
+
mpmath/visualization.py,sha256=pnnbjcd9AhFVRBZavYX5gjx4ytK_kXoDDisYR6EpXhs,10627
|
llmeval-env/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.38.4)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py3-none-any
|
5 |
+
|
llmeval-env/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
mpmath
|
llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/LICENSE.txt
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
NetworkX is distributed with the 3-clause BSD license.
|
2 |
+
|
3 |
+
::
|
4 |
+
|
5 |
+
Copyright (C) 2004-2024, NetworkX Developers
|
6 |
+
Aric Hagberg <[email protected]>
|
7 |
+
Dan Schult <[email protected]>
|
8 |
+
Pieter Swart <[email protected]>
|
9 |
+
All rights reserved.
|
10 |
+
|
11 |
+
Redistribution and use in source and binary forms, with or without
|
12 |
+
modification, are permitted provided that the following conditions are
|
13 |
+
met:
|
14 |
+
|
15 |
+
* Redistributions of source code must retain the above copyright
|
16 |
+
notice, this list of conditions and the following disclaimer.
|
17 |
+
|
18 |
+
* Redistributions in binary form must reproduce the above
|
19 |
+
copyright notice, this list of conditions and the following
|
20 |
+
disclaimer in the documentation and/or other materials provided
|
21 |
+
with the distribution.
|
22 |
+
|
23 |
+
* Neither the name of the NetworkX Developers nor the names of its
|
24 |
+
contributors may be used to endorse or promote products derived
|
25 |
+
from this software without specific prior written permission.
|
26 |
+
|
27 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
28 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
29 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
30 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
31 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
32 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
33 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
34 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
35 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
36 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
37 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/METADATA
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: networkx
|
3 |
+
Version: 3.3
|
4 |
+
Summary: Python package for creating and manipulating graphs and networks
|
5 |
+
Author-email: Aric Hagberg <[email protected]>
|
6 |
+
Maintainer-email: NetworkX Developers <[email protected]>
|
7 |
+
Project-URL: Homepage, https://networkx.org/
|
8 |
+
Project-URL: Bug Tracker, https://github.com/networkx/networkx/issues
|
9 |
+
Project-URL: Documentation, https://networkx.org/documentation/stable/
|
10 |
+
Project-URL: Source Code, https://github.com/networkx/networkx
|
11 |
+
Keywords: Networks,Graph Theory,Mathematics,network,graph,discrete mathematics,math
|
12 |
+
Platform: Linux
|
13 |
+
Platform: Mac OSX
|
14 |
+
Platform: Windows
|
15 |
+
Platform: Unix
|
16 |
+
Classifier: Development Status :: 5 - Production/Stable
|
17 |
+
Classifier: Intended Audience :: Developers
|
18 |
+
Classifier: Intended Audience :: Science/Research
|
19 |
+
Classifier: License :: OSI Approved :: BSD License
|
20 |
+
Classifier: Operating System :: OS Independent
|
21 |
+
Classifier: Programming Language :: Python :: 3
|
22 |
+
Classifier: Programming Language :: Python :: 3.10
|
23 |
+
Classifier: Programming Language :: Python :: 3.11
|
24 |
+
Classifier: Programming Language :: Python :: 3.12
|
25 |
+
Classifier: Programming Language :: Python :: 3 :: Only
|
26 |
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
27 |
+
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
|
28 |
+
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
29 |
+
Classifier: Topic :: Scientific/Engineering :: Mathematics
|
30 |
+
Classifier: Topic :: Scientific/Engineering :: Physics
|
31 |
+
Requires-Python: >=3.10
|
32 |
+
Description-Content-Type: text/x-rst
|
33 |
+
License-File: LICENSE.txt
|
34 |
+
Provides-Extra: default
|
35 |
+
Requires-Dist: numpy >=1.23 ; extra == 'default'
|
36 |
+
Requires-Dist: scipy !=1.11.0,!=1.11.1,>=1.9 ; extra == 'default'
|
37 |
+
Requires-Dist: matplotlib >=3.6 ; extra == 'default'
|
38 |
+
Requires-Dist: pandas >=1.4 ; extra == 'default'
|
39 |
+
Provides-Extra: developer
|
40 |
+
Requires-Dist: changelist ==0.5 ; extra == 'developer'
|
41 |
+
Requires-Dist: pre-commit >=3.2 ; extra == 'developer'
|
42 |
+
Requires-Dist: mypy >=1.1 ; extra == 'developer'
|
43 |
+
Requires-Dist: rtoml ; extra == 'developer'
|
44 |
+
Provides-Extra: doc
|
45 |
+
Requires-Dist: sphinx >=7 ; extra == 'doc'
|
46 |
+
Requires-Dist: pydata-sphinx-theme >=0.14 ; extra == 'doc'
|
47 |
+
Requires-Dist: sphinx-gallery >=0.14 ; extra == 'doc'
|
48 |
+
Requires-Dist: numpydoc >=1.7 ; extra == 'doc'
|
49 |
+
Requires-Dist: pillow >=9.4 ; extra == 'doc'
|
50 |
+
Requires-Dist: texext >=0.6.7 ; extra == 'doc'
|
51 |
+
Requires-Dist: myst-nb >=1.0 ; extra == 'doc'
|
52 |
+
Provides-Extra: extra
|
53 |
+
Requires-Dist: lxml >=4.6 ; extra == 'extra'
|
54 |
+
Requires-Dist: pygraphviz >=1.12 ; extra == 'extra'
|
55 |
+
Requires-Dist: pydot >=2.0 ; extra == 'extra'
|
56 |
+
Requires-Dist: sympy >=1.10 ; extra == 'extra'
|
57 |
+
Provides-Extra: test
|
58 |
+
Requires-Dist: pytest >=7.2 ; extra == 'test'
|
59 |
+
Requires-Dist: pytest-cov >=4.0 ; extra == 'test'
|
60 |
+
|
61 |
+
NetworkX
|
62 |
+
========
|
63 |
+
|
64 |
+
|
65 |
+
.. image:: https://github.com/networkx/networkx/workflows/test/badge.svg?branch=main
|
66 |
+
:target: https://github.com/networkx/networkx/actions?query=workflow%3A%22test%22
|
67 |
+
|
68 |
+
.. image:: https://codecov.io/gh/networkx/networkx/branch/main/graph/badge.svg
|
69 |
+
:target: https://app.codecov.io/gh/networkx/networkx/branch/main
|
70 |
+
|
71 |
+
.. image:: https://img.shields.io/github/labels/networkx/networkx/Good%20First%20Issue?color=green&label=Contribute%20&style=flat-square
|
72 |
+
:target: https://github.com/networkx/networkx/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+First+Issue%22
|
73 |
+
|
74 |
+
|
75 |
+
NetworkX is a Python package for the creation, manipulation,
|
76 |
+
and study of the structure, dynamics, and functions
|
77 |
+
of complex networks.
|
78 |
+
|
79 |
+
- **Website (including documentation):** https://networkx.org
|
80 |
+
- **Mailing list:** https://groups.google.com/forum/#!forum/networkx-discuss
|
81 |
+
- **Source:** https://github.com/networkx/networkx
|
82 |
+
- **Bug reports:** https://github.com/networkx/networkx/issues
|
83 |
+
- **Report a security vulnerability:** https://tidelift.com/security
|
84 |
+
- **Tutorial:** https://networkx.org/documentation/latest/tutorial.html
|
85 |
+
- **GitHub Discussions:** https://github.com/networkx/networkx/discussions
|
86 |
+
|
87 |
+
Simple example
|
88 |
+
--------------
|
89 |
+
|
90 |
+
Find the shortest path between two nodes in an undirected graph:
|
91 |
+
|
92 |
+
.. code:: pycon
|
93 |
+
|
94 |
+
>>> import networkx as nx
|
95 |
+
>>> G = nx.Graph()
|
96 |
+
>>> G.add_edge("A", "B", weight=4)
|
97 |
+
>>> G.add_edge("B", "D", weight=2)
|
98 |
+
>>> G.add_edge("A", "C", weight=3)
|
99 |
+
>>> G.add_edge("C", "D", weight=4)
|
100 |
+
>>> nx.shortest_path(G, "A", "D", weight="weight")
|
101 |
+
['A', 'B', 'D']
|
102 |
+
|
103 |
+
Install
|
104 |
+
-------
|
105 |
+
|
106 |
+
Install the latest version of NetworkX::
|
107 |
+
|
108 |
+
$ pip install networkx
|
109 |
+
|
110 |
+
Install with all optional dependencies::
|
111 |
+
|
112 |
+
$ pip install networkx[all]
|
113 |
+
|
114 |
+
For additional details, please see `INSTALL.rst`.
|
115 |
+
|
116 |
+
Bugs
|
117 |
+
----
|
118 |
+
|
119 |
+
Please report any bugs that you find `here <https://github.com/networkx/networkx/issues>`_.
|
120 |
+
Or, even better, fork the repository on `GitHub <https://github.com/networkx/networkx>`_
|
121 |
+
and create a pull request (PR). We welcome all changes, big or small, and we
|
122 |
+
will help you make the PR if you are new to `git` (just ask on the issue and/or
|
123 |
+
see `CONTRIBUTING.rst`).
|
124 |
+
|
125 |
+
License
|
126 |
+
-------
|
127 |
+
|
128 |
+
Released under the 3-Clause BSD license (see `LICENSE.txt`)::
|
129 |
+
|
130 |
+
Copyright (C) 2004-2024 NetworkX Developers
|
131 |
+
Aric Hagberg <[email protected]>
|
132 |
+
Dan Schult <[email protected]>
|
133 |
+
Pieter Swart <[email protected]>
|
llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/RECORD
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.43.0)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py3-none-any
|
5 |
+
|
llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/entry_points.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[networkx.backends]
|
2 |
+
nx-loopback = networkx.classes.tests.dispatch_interface:dispatcher
|
llmeval-env/lib/python3.10/site-packages/networkx-3.3.dist-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
networkx
|
llmeval-env/lib/python3.10/site-packages/pandas/arrays/__init__.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
All of pandas' ExtensionArrays.
|
3 |
+
|
4 |
+
See :ref:`extending.extension-types` for more.
|
5 |
+
"""
|
6 |
+
from pandas.core.arrays import (
|
7 |
+
ArrowExtensionArray,
|
8 |
+
ArrowStringArray,
|
9 |
+
BooleanArray,
|
10 |
+
Categorical,
|
11 |
+
DatetimeArray,
|
12 |
+
FloatingArray,
|
13 |
+
IntegerArray,
|
14 |
+
IntervalArray,
|
15 |
+
NumpyExtensionArray,
|
16 |
+
PeriodArray,
|
17 |
+
SparseArray,
|
18 |
+
StringArray,
|
19 |
+
TimedeltaArray,
|
20 |
+
)
|
21 |
+
|
22 |
+
__all__ = [
|
23 |
+
"ArrowExtensionArray",
|
24 |
+
"ArrowStringArray",
|
25 |
+
"BooleanArray",
|
26 |
+
"Categorical",
|
27 |
+
"DatetimeArray",
|
28 |
+
"FloatingArray",
|
29 |
+
"IntegerArray",
|
30 |
+
"IntervalArray",
|
31 |
+
"NumpyExtensionArray",
|
32 |
+
"PeriodArray",
|
33 |
+
"SparseArray",
|
34 |
+
"StringArray",
|
35 |
+
"TimedeltaArray",
|
36 |
+
]
|
37 |
+
|
38 |
+
|
39 |
+
def __getattr__(name: str) -> type[NumpyExtensionArray]:
|
40 |
+
if name == "PandasArray":
|
41 |
+
# GH#53694
|
42 |
+
import warnings
|
43 |
+
|
44 |
+
from pandas.util._exceptions import find_stack_level
|
45 |
+
|
46 |
+
warnings.warn(
|
47 |
+
"PandasArray has been renamed NumpyExtensionArray. Use that "
|
48 |
+
"instead. This alias will be removed in a future version.",
|
49 |
+
FutureWarning,
|
50 |
+
stacklevel=find_stack_level(),
|
51 |
+
)
|
52 |
+
return NumpyExtensionArray
|
53 |
+
raise AttributeError(f"module 'pandas.arrays' has no attribute '{name}'")
|
llmeval-env/lib/python3.10/site-packages/pandas/arrays/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.18 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/apply/__pycache__/test_series_apply.cpython-310.pyc
ADDED
Binary file (23.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/safetensors/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (350 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/safetensors/__pycache__/flax.cpython-310.pyc
ADDED
Binary file (4.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/safetensors/__pycache__/tensorflow.cpython-310.pyc
ADDED
Binary file (4.38 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/safetensors/__pycache__/torch.cpython-310.pyc
ADDED
Binary file (14.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/safetensors/mlx.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict, Optional, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
import mlx.core as mx
|
7 |
+
from safetensors import numpy, safe_open
|
8 |
+
|
9 |
+
|
10 |
+
def save(tensors: Dict[str, mx.array], metadata: Optional[Dict[str, str]] = None) -> bytes:
|
11 |
+
"""
|
12 |
+
Saves a dictionary of tensors into raw bytes in safetensors format.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
tensors (`Dict[str, mx.array]`):
|
16 |
+
The incoming tensors. Tensors need to be contiguous and dense.
|
17 |
+
metadata (`Dict[str, str]`, *optional*, defaults to `None`):
|
18 |
+
Optional text only metadata you might want to save in your header.
|
19 |
+
For instance it can be useful to specify more about the underlying
|
20 |
+
tensors. This is purely informative and does not affect tensor loading.
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
`bytes`: The raw bytes representing the format
|
24 |
+
|
25 |
+
Example:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from safetensors.mlx import save
|
29 |
+
import mlx.core as mx
|
30 |
+
|
31 |
+
tensors = {"embedding": mx.zeros((512, 1024)), "attention": mx.zeros((256, 256))}
|
32 |
+
byte_data = save(tensors)
|
33 |
+
```
|
34 |
+
"""
|
35 |
+
np_tensors = _mx2np(tensors)
|
36 |
+
return numpy.save(np_tensors, metadata=metadata)
|
37 |
+
|
38 |
+
|
39 |
+
def save_file(
|
40 |
+
tensors: Dict[str, mx.array],
|
41 |
+
filename: Union[str, os.PathLike],
|
42 |
+
metadata: Optional[Dict[str, str]] = None,
|
43 |
+
) -> None:
|
44 |
+
"""
|
45 |
+
Saves a dictionary of tensors into raw bytes in safetensors format.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
tensors (`Dict[str, mx.array]`):
|
49 |
+
The incoming tensors. Tensors need to be contiguous and dense.
|
50 |
+
filename (`str`, or `os.PathLike`)):
|
51 |
+
The filename we're saving into.
|
52 |
+
metadata (`Dict[str, str]`, *optional*, defaults to `None`):
|
53 |
+
Optional text only metadata you might want to save in your header.
|
54 |
+
For instance it can be useful to specify more about the underlying
|
55 |
+
tensors. This is purely informative and does not affect tensor loading.
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
`None`
|
59 |
+
|
60 |
+
Example:
|
61 |
+
|
62 |
+
```python
|
63 |
+
from safetensors.mlx import save_file
|
64 |
+
import mlx.core as mx
|
65 |
+
|
66 |
+
tensors = {"embedding": mx.zeros((512, 1024)), "attention": mx.zeros((256, 256))}
|
67 |
+
save_file(tensors, "model.safetensors")
|
68 |
+
```
|
69 |
+
"""
|
70 |
+
np_tensors = _mx2np(tensors)
|
71 |
+
return numpy.save_file(np_tensors, filename, metadata=metadata)
|
72 |
+
|
73 |
+
|
74 |
+
def load(data: bytes) -> Dict[str, mx.array]:
|
75 |
+
"""
|
76 |
+
Loads a safetensors file into MLX format from pure bytes.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
data (`bytes`):
|
80 |
+
The content of a safetensors file
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
`Dict[str, mx.array]`: dictionary that contains name as key, value as `mx.array`
|
84 |
+
|
85 |
+
Example:
|
86 |
+
|
87 |
+
```python
|
88 |
+
from safetensors.mlx import load
|
89 |
+
|
90 |
+
file_path = "./my_folder/bert.safetensors"
|
91 |
+
with open(file_path, "rb") as f:
|
92 |
+
data = f.read()
|
93 |
+
|
94 |
+
loaded = load(data)
|
95 |
+
```
|
96 |
+
"""
|
97 |
+
flat = numpy.load(data)
|
98 |
+
return _np2mx(flat)
|
99 |
+
|
100 |
+
|
101 |
+
def load_file(filename: Union[str, os.PathLike]) -> Dict[str, mx.array]:
|
102 |
+
"""
|
103 |
+
Loads a safetensors file into MLX format.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
filename (`str`, or `os.PathLike`)):
|
107 |
+
The name of the file which contains the tensors
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
`Dict[str, mx.array]`: dictionary that contains name as key, value as `mx.array`
|
111 |
+
|
112 |
+
Example:
|
113 |
+
|
114 |
+
```python
|
115 |
+
from safetensors.flax import load_file
|
116 |
+
|
117 |
+
file_path = "./my_folder/bert.safetensors"
|
118 |
+
loaded = load_file(file_path)
|
119 |
+
```
|
120 |
+
"""
|
121 |
+
result = {}
|
122 |
+
with safe_open(filename, framework="mlx") as f:
|
123 |
+
for k in f.keys():
|
124 |
+
result[k] = f.get_tensor(k)
|
125 |
+
return result
|
126 |
+
|
127 |
+
|
128 |
+
def _np2mx(numpy_dict: Dict[str, np.ndarray]) -> Dict[str, mx.array]:
|
129 |
+
for k, v in numpy_dict.items():
|
130 |
+
numpy_dict[k] = mx.array(v)
|
131 |
+
return numpy_dict
|
132 |
+
|
133 |
+
|
134 |
+
def _mx2np(mx_dict: Dict[str, mx.array]) -> Dict[str, np.array]:
|
135 |
+
new_dict = {}
|
136 |
+
for k, v in mx_dict.items():
|
137 |
+
new_dict[k] = np.asarray(v)
|
138 |
+
return new_dict
|
llmeval-env/lib/python3.10/site-packages/tcolorpy-0.1.6.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
llmeval-env/lib/python3.10/site-packages/tcolorpy-0.1.6.dist-info/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 Tsuyoshi Hombashi
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
llmeval-env/lib/python3.10/site-packages/tcolorpy-0.1.6.dist-info/METADATA
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: tcolorpy
|
3 |
+
Version: 0.1.6
|
4 |
+
Summary: tcolopy is a Python library to apply true color for terminal text.
|
5 |
+
Home-page: https://github.com/thombashi/tcolorpy
|
6 |
+
Author: Tsuyoshi Hombashi
|
7 |
+
Author-email: [email protected]
|
8 |
+
License: MIT License
|
9 |
+
Project-URL: Changlog, https://github.com/thombashi/tcolorpy/blob/master/CHANGELOG.md
|
10 |
+
Project-URL: Source, https://github.com/thombashi/tcolorpy
|
11 |
+
Project-URL: Tracker, https://github.com/thombashi/tcolorpy/issues
|
12 |
+
Keywords: ANSI escape,terminal color,truecolor
|
13 |
+
Classifier: Development Status :: 4 - Beta
|
14 |
+
Classifier: Intended Audience :: Information Technology
|
15 |
+
Classifier: License :: OSI Approved :: MIT License
|
16 |
+
Classifier: Operating System :: OS Independent
|
17 |
+
Classifier: Programming Language :: Python :: 3
|
18 |
+
Classifier: Programming Language :: Python :: 3.7
|
19 |
+
Classifier: Programming Language :: Python :: 3.8
|
20 |
+
Classifier: Programming Language :: Python :: 3.9
|
21 |
+
Classifier: Programming Language :: Python :: 3.10
|
22 |
+
Classifier: Programming Language :: Python :: 3.11
|
23 |
+
Classifier: Programming Language :: Python :: 3.12
|
24 |
+
Classifier: Programming Language :: Python :: 3 :: Only
|
25 |
+
Classifier: Programming Language :: Python :: Implementation :: CPython
|
26 |
+
Classifier: Programming Language :: Python :: Implementation :: PyPy
|
27 |
+
Classifier: Topic :: Software Development :: Libraries
|
28 |
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
29 |
+
Classifier: Topic :: Terminals
|
30 |
+
Classifier: Topic :: Text Processing
|
31 |
+
Classifier: Typing :: Typed
|
32 |
+
Requires-Python: >=3.7
|
33 |
+
Description-Content-Type: text/x-rst
|
34 |
+
License-File: LICENSE
|
35 |
+
Provides-Extra: test
|
36 |
+
Requires-Dist: pytest >=6.0.1 ; extra == 'test'
|
37 |
+
Requires-Dist: pytest-md-report >=0.5 ; extra == 'test'
|
38 |
+
|
39 |
+
.. contents:: **tcolorpy**
|
40 |
+
:backlinks: top
|
41 |
+
:depth: 2
|
42 |
+
|
43 |
+
|
44 |
+
Summary
|
45 |
+
============================================
|
46 |
+
tcolopy is a Python library to apply true color for terminal text.
|
47 |
+
|
48 |
+
|PyPI pkg ver| |conda pkg ver| |Supported Python implementations| |Supported Python versions| |CI status| |CodeQL| |coverage|
|
49 |
+
|
50 |
+
.. |PyPI pkg ver| image:: https://badge.fury.io/py/tcolorpy.svg
|
51 |
+
:target: https://badge.fury.io/py/tcolorpy
|
52 |
+
:alt: PyPI package version
|
53 |
+
|
54 |
+
.. |conda pkg ver| image:: https://anaconda.org/conda-forge/tcolorpy/badges/version.svg
|
55 |
+
:target: https://anaconda.org/conda-forge/tcolorpy
|
56 |
+
:alt: conda-forge package version
|
57 |
+
|
58 |
+
.. |Supported Python implementations| image:: https://img.shields.io/pypi/implementation/tcolorpy.svg
|
59 |
+
:target: https://pypi.org/project/tcolorpy
|
60 |
+
:alt: Supported Python implementations
|
61 |
+
|
62 |
+
.. |Supported Python versions| image:: https://img.shields.io/pypi/pyversions/tcolorpy.svg
|
63 |
+
:target: https://pypi.org/project/tcolorpy
|
64 |
+
:alt: Supported Python versions
|
65 |
+
|
66 |
+
.. |CI status| image:: https://github.com/thombashi/tcolorpy/actions/workflows/ci.yml/badge.svg
|
67 |
+
:target: https://github.com/thombashi/tcolorpy/actions/workflows/ci.yml
|
68 |
+
:alt: CI status of Linux/macOS/Windows
|
69 |
+
|
70 |
+
.. |CodeQL| image:: https://github.com/thombashi/tcolorpy/actions/workflows/github-code-scanning/codeql/badge.svg
|
71 |
+
:target: https://github.com/thombashi/tcolorpy/actions/workflows/github-code-scanning/codeql
|
72 |
+
:alt: CodeQL
|
73 |
+
|
74 |
+
.. |coverage| image:: https://coveralls.io/repos/github/thombashi/tcolorpy/badge.svg?branch=master
|
75 |
+
:target: https://coveralls.io/github/thombashi/tcolorpy?branch=master
|
76 |
+
:alt: Test coverage: coveralls
|
77 |
+
|
78 |
+
|
79 |
+
Installation
|
80 |
+
============================================
|
81 |
+
|
82 |
+
Installation: pip
|
83 |
+
------------------------------
|
84 |
+
::
|
85 |
+
|
86 |
+
pip install tcolorpy
|
87 |
+
|
88 |
+
Installation: conda
|
89 |
+
------------------------------
|
90 |
+
::
|
91 |
+
|
92 |
+
conda install -c conda-forge tcolorpy
|
93 |
+
|
94 |
+
|
95 |
+
Usage
|
96 |
+
============================================
|
97 |
+
|
98 |
+
Library usage
|
99 |
+
--------------------------------------------
|
100 |
+
|
101 |
+
:Sample Code:
|
102 |
+
.. code-block:: python
|
103 |
+
|
104 |
+
from tcolorpy import tcolor
|
105 |
+
|
106 |
+
print(tcolor("tcolopy example", color="#ee1177", styles=["bold", "italic", "underline"]))
|
107 |
+
|
108 |
+
:Output:
|
109 |
+
.. figure:: https://cdn.jsdelivr.net/gh/thombashi/tcolorpy@master/ss/oneline.png
|
110 |
+
:scale: 60%
|
111 |
+
:alt: https://github.com/thombashi/tcolorpy/blob/master/ss/oneline.png
|
112 |
+
|
113 |
+
You can set the following ``tcolor`` arguments:
|
114 |
+
|
115 |
+
- ``color``/``bg_color``
|
116 |
+
- color names (``"red"``, ``"green"``, etc.) or color code (``"#RRGGBB"``)
|
117 |
+
- ``styles``
|
118 |
+
- ``"bold"``, ``"italic"``, etc.
|
119 |
+
|
120 |
+
|
121 |
+
Other examples
|
122 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
123 |
+
Apply true color and styles to text:
|
124 |
+
|
125 |
+
.. figure:: https://cdn.jsdelivr.net/gh/thombashi/tcolorpy@master/ss/styles.png
|
126 |
+
:scale: 60%
|
127 |
+
:alt: https://github.com/thombashi/tcolorpy/blob/master/ss/styles.png
|
128 |
+
|
129 |
+
`example source code <https://github.com/thombashi/tcolorpy/blob/master/examples/ansi_styles.py>`__
|
130 |
+
|
131 |
+
You can also specify colors by name:
|
132 |
+
|
133 |
+
.. figure:: https://cdn.jsdelivr.net/gh/thombashi/tcolorpy@master/ss/ansi_colors.png
|
134 |
+
:scale: 60%
|
135 |
+
:alt: https://github.com/thombashi/tcolorpy/blob/master/ss/ansi_colors.png
|
136 |
+
|
137 |
+
`example source code <https://github.com/thombashi/tcolorpy/blob/master/examples/ansi_colors.py>`__
|
138 |
+
|
139 |
+
|
140 |
+
CLI usage
|
141 |
+
--------------------------------------------
|
142 |
+
``tcolorpy`` can be used via CLI:
|
143 |
+
|
144 |
+
::
|
145 |
+
|
146 |
+
$ python3 -m tcolorpy "tcolopy example" -c "#ee1177" -s bold,italic,underline
|
147 |
+
|
148 |
+
Command help
|
149 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
150 |
+
::
|
151 |
+
|
152 |
+
usage: __main__.py [-h] [-c COLOR] [-b BG_COLOR] [-s STYLES] [--encode ENCODE] string
|
153 |
+
|
154 |
+
positional arguments:
|
155 |
+
string string to apply styles.
|
156 |
+
|
157 |
+
options:
|
158 |
+
-h, --help show this help message and exit
|
159 |
+
-c COLOR, --color COLOR
|
160 |
+
specify a color code (#XXXXXX) or a name. valid names are: black, red, green, yellow, blue, magenta, cyan, white, lightblack, lightred, lightgreen, lightyellow, lightblue, lightmagenta, lightcyan, lightwhite
|
161 |
+
-b BG_COLOR, --bg-color BG_COLOR
|
162 |
+
specify a background color code (#XXXXXX) or a name. valid names are: black, red, green, yellow, blue, magenta, cyan, white, lightblack, lightred, lightgreen, lightyellow, lightblue, lightmagenta, lightcyan, lightwhite
|
163 |
+
-s STYLES, --styles STYLES
|
164 |
+
specify a comma-separated style. valid values are: bold, dim, italic, underline, blink, invert, strike
|
165 |
+
--encode ENCODE output a text encoded with the specified encoding
|
166 |
+
|
167 |
+
|
168 |
+
Dependencies
|
169 |
+
============================================
|
170 |
+
Python 3.7+
|
171 |
+
no external dependencies.
|
llmeval-env/lib/python3.10/site-packages/tcolorpy-0.1.6.dist-info/RECORD
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tcolorpy-0.1.6.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
2 |
+
tcolorpy-0.1.6.dist-info/LICENSE,sha256=9BoEVtXyu6Jf1NflC1GpXeMEdw_x21p5UV0DOXqRTY0,1074
|
3 |
+
tcolorpy-0.1.6.dist-info/METADATA,sha256=IDGYAt_oFtLBO4jHLKx8SETH0FP33K-RaszTkTLhMes,6358
|
4 |
+
tcolorpy-0.1.6.dist-info/RECORD,,
|
5 |
+
tcolorpy-0.1.6.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
6 |
+
tcolorpy-0.1.6.dist-info/top_level.txt,sha256=g8LDaQz0FVP61jibPz7OTwQqiseVV9pxUYDeGp2lFAI,9
|
7 |
+
tcolorpy/__init__.py,sha256=6fI5Y7N04ZgSFfienFNtd7hjJtAmBO8j4zxcDpk4OYk,913
|
8 |
+
tcolorpy/__main__.py,sha256=gjNpi78hE-X6CpY20ZLMmQ_yaWYIh_eOu2XrLnoGkBE,1701
|
9 |
+
tcolorpy/__pycache__/__init__.cpython-310.pyc,,
|
10 |
+
tcolorpy/__pycache__/__main__.cpython-310.pyc,,
|
11 |
+
tcolorpy/__pycache__/__version__.cpython-310.pyc,,
|
12 |
+
tcolorpy/__pycache__/_const.cpython-310.pyc,,
|
13 |
+
tcolorpy/__pycache__/_truecolor.cpython-310.pyc,,
|
14 |
+
tcolorpy/__version__.py,sha256=FfUl1ix-FI5DHv8TmnpAYpPWggJASYcLGQ0s-sVO6Ko,201
|
15 |
+
tcolorpy/_const.py,sha256=XS2rzsxY7SKxg0HreYTR_kEGeSi_59gOrrntI2_kG1o,1080
|
16 |
+
tcolorpy/_truecolor.py,sha256=nzu2GCc6Tu_4no5_Qcksm88-Vm75sCdeOMDQHG_2DhM,7495
|
17 |
+
tcolorpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
llmeval-env/lib/python3.10/site-packages/tcolorpy-0.1.6.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.43.0)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py3-none-any
|
5 |
+
|
llmeval-env/lib/python3.10/site-packages/tcolorpy-0.1.6.dist-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
tcolorpy
|
llmeval-env/lib/python3.10/site-packages/torch/_C.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (37.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_VF.pyi
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/torch/__config__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def show():
|
5 |
+
"""
|
6 |
+
Return a human-readable string with descriptions of the
|
7 |
+
configuration of PyTorch.
|
8 |
+
"""
|
9 |
+
return torch._C._show_config()
|
10 |
+
|
11 |
+
|
12 |
+
# TODO: In principle, we could provide more structured version/config
|
13 |
+
# information here. For now only CXX_FLAGS is exposed, as Timer
|
14 |
+
# uses them.
|
15 |
+
def _cxx_flags():
|
16 |
+
"""Returns the CXX_FLAGS used when building PyTorch."""
|
17 |
+
return torch._C._cxx_flags()
|
18 |
+
|
19 |
+
|
20 |
+
def parallel_info():
|
21 |
+
r"""Returns detailed string with parallelization settings"""
|
22 |
+
return torch._C._parallel_info()
|
llmeval-env/lib/python3.10/site-packages/torch/__future__.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_overwrite_module_params_on_conversion: bool = False
|
2 |
+
_swap_module_params_on_conversion: bool = False
|
3 |
+
|
4 |
+
|
5 |
+
def set_overwrite_module_params_on_conversion(value: bool) -> None:
|
6 |
+
"""
|
7 |
+
Sets whether to assign new tensors to the parameters instead of changing the
|
8 |
+
existing parameters in-place when converting an ``nn.Module``.
|
9 |
+
|
10 |
+
When enabled, the following methods will assign new parameters to the module:
|
11 |
+
|
12 |
+
#. ``module.{device}()`` (e.g. :meth:`nn.Module.cuda()`) for moving a module between devices
|
13 |
+
#. ``module.{dtype}()`` (e.g. :meth:`nn.Module.float()`) for converting a module to a different dtype
|
14 |
+
#. :meth:`nn.Module.to`
|
15 |
+
#. :meth:`nn.Module.to_empty`
|
16 |
+
|
17 |
+
Args:
|
18 |
+
value (bool): Whether to assign new tensors or not.
|
19 |
+
|
20 |
+
"""
|
21 |
+
global _overwrite_module_params_on_conversion
|
22 |
+
_overwrite_module_params_on_conversion = value
|
23 |
+
|
24 |
+
|
25 |
+
def get_overwrite_module_params_on_conversion() -> bool:
|
26 |
+
"""
|
27 |
+
Returns whether to assign new tensors to the parameters instead of changing the
|
28 |
+
existing parameters in-place when converting an :class:`torch.nn.Module`. Defaults to ``False``.
|
29 |
+
|
30 |
+
See :func:`~torch.__future__.set_overwrite_module_params_on_conversion` for more information.
|
31 |
+
"""
|
32 |
+
return _overwrite_module_params_on_conversion
|
33 |
+
|
34 |
+
|
35 |
+
def set_swap_module_params_on_conversion(value: bool) -> None:
|
36 |
+
"""
|
37 |
+
Sets whether to use :func:`~torch.utils.swap_tensors` instead of setting ``.data`` to
|
38 |
+
change the existing parameters in-place when converting an ``nn.Module`` and instead
|
39 |
+
of ``param.copy_(state_dict[key])`` when loading a state dict into an ``nn.Module``.
|
40 |
+
|
41 |
+
.. note::
|
42 |
+
This function takes precedence over :func:`~torch.__future__.get_overwrite_module_params_on_conversion`
|
43 |
+
|
44 |
+
When enabled, the following methods will swap the existing parameters in-place:
|
45 |
+
|
46 |
+
#. ``module.{device}()`` (e.g. :meth:`nn.Module.cuda()`) for moving a module between devices
|
47 |
+
#. ``module.{dtype}()`` (e.g. :meth:`nn.Module.float()`) for converting a module to a different dtype
|
48 |
+
#. :meth:`nn.Module.to`
|
49 |
+
#. :meth:`nn.Module.to_empty`
|
50 |
+
#. :meth:`nn.Module.load_state_dict`
|
51 |
+
|
52 |
+
The semantics for :meth:`~nn.Module.load_state_dict` when this is set are as follows:
|
53 |
+
|
54 |
+
#. For each parameter/buffer, its corresponding ``state_dict['key']`` is transformed via
|
55 |
+
:meth:`~torch.Tensor.module_load` (i.e. ``res = param.module_load(state_dict['key'])``)
|
56 |
+
#. If necessary, ``res`` will be wrapped in an :class:`~nn.Parameter`
|
57 |
+
#. The parameter/buffer in the module will be swapped via :func:`~torch.utils.swap_tensors`
|
58 |
+
with ``res``
|
59 |
+
|
60 |
+
Args:
|
61 |
+
value (bool): Whether to use :func:`~torch.utils.swap_tensors` or not.
|
62 |
+
|
63 |
+
"""
|
64 |
+
global _swap_module_params_on_conversion
|
65 |
+
_swap_module_params_on_conversion = value
|
66 |
+
|
67 |
+
|
68 |
+
def get_swap_module_params_on_conversion() -> bool:
|
69 |
+
"""
|
70 |
+
Returns whether to use :func:`~torch.utils.swap_tensors` instead of setting .data to
|
71 |
+
change the existing parameters in-place when converting an ``nn.Module``. Defaults to ``False``.
|
72 |
+
|
73 |
+
See :func:`~torch.__future__.set_swap_module_params_on_conversion` for more information.
|
74 |
+
"""
|
75 |
+
return _swap_module_params_on_conversion
|
llmeval-env/lib/python3.10/site-packages/torch/__init__.py
ADDED
@@ -0,0 +1,2038 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
r"""
|
3 |
+
The torch package contains data structures for multi-dimensional
|
4 |
+
tensors and defines mathematical operations over these tensors.
|
5 |
+
Additionally, it provides many utilities for efficient serialization of
|
6 |
+
Tensors and arbitrary types, and other useful utilities.
|
7 |
+
|
8 |
+
It has a CUDA counterpart, that enables you to run your tensor computations
|
9 |
+
on an NVIDIA GPU with compute capability >= 3.0.
|
10 |
+
"""
|
11 |
+
|
12 |
+
import math
|
13 |
+
import os
|
14 |
+
import sys
|
15 |
+
import platform
|
16 |
+
import textwrap
|
17 |
+
import ctypes
|
18 |
+
import inspect
|
19 |
+
import threading
|
20 |
+
|
21 |
+
# multipy/deploy is setting this import before importing torch, this is the most
|
22 |
+
# reliable way we have to detect if we're running within deploy.
|
23 |
+
# https://github.com/pytorch/multipy/blob/d60f34ad38c371e441fe7ffdb77a3c3dda5a5d19/multipy/runtime/interpreter/interpreter_impl.cpp#L134-L137
|
24 |
+
def _running_with_deploy():
|
25 |
+
return sys.modules.get("torch._meta_registrations", None) is object
|
26 |
+
|
27 |
+
from ._utils import _import_dotted_name, classproperty
|
28 |
+
from ._utils import _functionalize_sync as _sync
|
29 |
+
from ._utils_internal import get_file_path, prepare_multiprocessing_environment, \
|
30 |
+
USE_RTLD_GLOBAL_WITH_LIBTORCH, USE_GLOBAL_DEPS
|
31 |
+
|
32 |
+
# TODO(torch_deploy) figure out how to freeze version.py in fbcode build
|
33 |
+
if _running_with_deploy():
|
34 |
+
__version__ = "torch-deploy-1.8"
|
35 |
+
else:
|
36 |
+
from .torch_version import __version__ as __version__
|
37 |
+
|
38 |
+
from typing import Any, Callable, Dict, Optional, Set, Tuple, Type, TYPE_CHECKING, Union, List
|
39 |
+
import builtins
|
40 |
+
|
41 |
+
__all__ = [
|
42 |
+
'typename', 'is_tensor', 'is_storage',
|
43 |
+
'set_default_tensor_type', 'set_default_device', 'get_default_device',
|
44 |
+
'set_rng_state', 'get_rng_state', 'manual_seed', 'initial_seed', 'seed',
|
45 |
+
'save', 'load', 'set_printoptions', 'chunk', 'split', 'stack', 'matmul',
|
46 |
+
'no_grad', 'enable_grad', 'rand', 'randn', 'inference_mode',
|
47 |
+
'DoubleStorage', 'FloatStorage', 'LongStorage', 'IntStorage',
|
48 |
+
'ShortStorage', 'CharStorage', 'ByteStorage', 'BoolStorage',
|
49 |
+
'TypedStorage', 'UntypedStorage',
|
50 |
+
'DoubleTensor', 'FloatTensor', 'LongTensor', 'IntTensor',
|
51 |
+
'ShortTensor', 'CharTensor', 'ByteTensor', 'BoolTensor', 'Tensor',
|
52 |
+
'lobpcg', 'use_deterministic_algorithms',
|
53 |
+
'are_deterministic_algorithms_enabled',
|
54 |
+
'is_deterministic_algorithms_warn_only_enabled',
|
55 |
+
'set_deterministic_debug_mode', 'get_deterministic_debug_mode',
|
56 |
+
'set_float32_matmul_precision', 'get_float32_matmul_precision',
|
57 |
+
'set_warn_always', 'is_warn_always_enabled', 'SymInt', 'SymFloat',
|
58 |
+
'SymBool', 'sym_not', 'unravel_index',
|
59 |
+
'sym_int', 'sym_float', 'sym_max', 'sym_min', 'sym_ite', 'compile', 'vmap',
|
60 |
+
'export', 'autocast', 'cond', 'GradScaler',
|
61 |
+
]
|
62 |
+
|
63 |
+
################################################################################
|
64 |
+
# Load the extension module
|
65 |
+
################################################################################
|
66 |
+
|
67 |
+
if sys.platform == 'win32':
|
68 |
+
pfiles_path = os.getenv('ProgramFiles', 'C:\\Program Files')
|
69 |
+
py_dll_path = os.path.join(sys.exec_prefix, 'Library', 'bin')
|
70 |
+
th_dll_path = os.path.join(os.path.dirname(__file__), 'lib')
|
71 |
+
|
72 |
+
# When users create a virtualenv that inherits the base environment,
|
73 |
+
# we will need to add the corresponding library directory into
|
74 |
+
# DLL search directories. Otherwise, it will rely on `PATH` which
|
75 |
+
# is dependent on user settings.
|
76 |
+
if sys.exec_prefix != sys.base_exec_prefix:
|
77 |
+
base_py_dll_path = os.path.join(sys.base_exec_prefix, 'Library', 'bin')
|
78 |
+
else:
|
79 |
+
base_py_dll_path = ''
|
80 |
+
|
81 |
+
dll_paths = list(filter(os.path.exists, [th_dll_path, py_dll_path, base_py_dll_path]))
|
82 |
+
|
83 |
+
if all(not os.path.exists(os.path.join(p, 'nvToolsExt64_1.dll')) for p in dll_paths):
|
84 |
+
nvtoolsext_dll_path = os.path.join(
|
85 |
+
os.getenv('NVTOOLSEXT_PATH', os.path.join(pfiles_path, 'NVIDIA Corporation', 'NvToolsExt')), 'bin', 'x64')
|
86 |
+
else:
|
87 |
+
nvtoolsext_dll_path = ''
|
88 |
+
|
89 |
+
from .version import cuda as cuda_version
|
90 |
+
import glob
|
91 |
+
if cuda_version and all(not glob.glob(os.path.join(p, 'cudart64*.dll')) for p in dll_paths):
|
92 |
+
cuda_version_1 = cuda_version.replace('.', '_')
|
93 |
+
cuda_path_var = 'CUDA_PATH_V' + cuda_version_1
|
94 |
+
default_path = os.path.join(pfiles_path, 'NVIDIA GPU Computing Toolkit', 'CUDA', 'v' + cuda_version)
|
95 |
+
cuda_path = os.path.join(os.getenv(cuda_path_var, default_path), 'bin')
|
96 |
+
else:
|
97 |
+
cuda_path = ''
|
98 |
+
|
99 |
+
dll_paths.extend(filter(os.path.exists, [nvtoolsext_dll_path, cuda_path]))
|
100 |
+
|
101 |
+
kernel32 = ctypes.WinDLL('kernel32.dll', use_last_error=True)
|
102 |
+
with_load_library_flags = hasattr(kernel32, 'AddDllDirectory')
|
103 |
+
prev_error_mode = kernel32.SetErrorMode(0x0001)
|
104 |
+
|
105 |
+
kernel32.LoadLibraryW.restype = ctypes.c_void_p
|
106 |
+
if with_load_library_flags:
|
107 |
+
kernel32.LoadLibraryExW.restype = ctypes.c_void_p
|
108 |
+
|
109 |
+
for dll_path in dll_paths:
|
110 |
+
os.add_dll_directory(dll_path)
|
111 |
+
|
112 |
+
try:
|
113 |
+
ctypes.CDLL('vcruntime140.dll')
|
114 |
+
ctypes.CDLL('msvcp140.dll')
|
115 |
+
ctypes.CDLL('vcruntime140_1.dll')
|
116 |
+
except OSError:
|
117 |
+
print('''Microsoft Visual C++ Redistributable is not installed, this may lead to the DLL load failure.
|
118 |
+
It can be downloaded at https://aka.ms/vs/16/release/vc_redist.x64.exe''')
|
119 |
+
|
120 |
+
dlls = glob.glob(os.path.join(th_dll_path, '*.dll'))
|
121 |
+
path_patched = False
|
122 |
+
for dll in dlls:
|
123 |
+
is_loaded = False
|
124 |
+
if with_load_library_flags:
|
125 |
+
res = kernel32.LoadLibraryExW(dll, None, 0x00001100)
|
126 |
+
last_error = ctypes.get_last_error()
|
127 |
+
if res is None and last_error != 126:
|
128 |
+
err = ctypes.WinError(last_error)
|
129 |
+
err.strerror += f' Error loading "{dll}" or one of its dependencies.'
|
130 |
+
raise err
|
131 |
+
elif res is not None:
|
132 |
+
is_loaded = True
|
133 |
+
if not is_loaded:
|
134 |
+
if not path_patched:
|
135 |
+
os.environ['PATH'] = ';'.join(dll_paths + [os.environ['PATH']])
|
136 |
+
path_patched = True
|
137 |
+
res = kernel32.LoadLibraryW(dll)
|
138 |
+
if res is None:
|
139 |
+
err = ctypes.WinError(ctypes.get_last_error())
|
140 |
+
err.strerror += f' Error loading "{dll}" or one of its dependencies.'
|
141 |
+
raise err
|
142 |
+
|
143 |
+
kernel32.SetErrorMode(prev_error_mode)
|
144 |
+
|
145 |
+
|
146 |
+
def _preload_cuda_deps(lib_folder, lib_name):
|
147 |
+
"""Preloads cuda deps if they could not be found otherwise."""
|
148 |
+
# Should only be called on Linux if default path resolution have failed
|
149 |
+
assert platform.system() == 'Linux', 'Should only be called on Linux'
|
150 |
+
import glob
|
151 |
+
lib_path = None
|
152 |
+
for path in sys.path:
|
153 |
+
nvidia_path = os.path.join(path, 'nvidia')
|
154 |
+
if not os.path.exists(nvidia_path):
|
155 |
+
continue
|
156 |
+
candidate_lib_paths = glob.glob(os.path.join(nvidia_path, lib_folder, 'lib', lib_name))
|
157 |
+
if candidate_lib_paths and not lib_path:
|
158 |
+
lib_path = candidate_lib_paths[0]
|
159 |
+
if lib_path:
|
160 |
+
break
|
161 |
+
if not lib_path:
|
162 |
+
raise ValueError(f"{lib_name} not found in the system path {sys.path}")
|
163 |
+
ctypes.CDLL(lib_path)
|
164 |
+
|
165 |
+
|
166 |
+
# See Note [Global dependencies]
|
167 |
+
def _load_global_deps() -> None:
|
168 |
+
if _running_with_deploy() or platform.system() == 'Windows':
|
169 |
+
return
|
170 |
+
|
171 |
+
lib_name = 'libtorch_global_deps' + ('.dylib' if platform.system() == 'Darwin' else '.so')
|
172 |
+
here = os.path.abspath(__file__)
|
173 |
+
lib_path = os.path.join(os.path.dirname(here), 'lib', lib_name)
|
174 |
+
|
175 |
+
try:
|
176 |
+
ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL)
|
177 |
+
except OSError as err:
|
178 |
+
# Can only happen for wheel with cuda libs as PYPI deps
|
179 |
+
# As PyTorch is not purelib, but nvidia-*-cu12 is
|
180 |
+
cuda_libs: Dict[str, str] = {
|
181 |
+
'cublas': 'libcublas.so.*[0-9]',
|
182 |
+
'cudnn': 'libcudnn.so.*[0-9]',
|
183 |
+
'cuda_nvrtc': 'libnvrtc.so.*[0-9]',
|
184 |
+
'cuda_runtime': 'libcudart.so.*[0-9]',
|
185 |
+
'cuda_cupti': 'libcupti.so.*[0-9]',
|
186 |
+
'cufft': 'libcufft.so.*[0-9]',
|
187 |
+
'curand': 'libcurand.so.*[0-9]',
|
188 |
+
'cusolver': 'libcusolver.so.*[0-9]',
|
189 |
+
'cusparse': 'libcusparse.so.*[0-9]',
|
190 |
+
'nccl': 'libnccl.so.*[0-9]',
|
191 |
+
'nvtx': 'libnvToolsExt.so.*[0-9]',
|
192 |
+
}
|
193 |
+
is_cuda_lib_err = [lib for lib in cuda_libs.values() if lib.split('.')[0] in err.args[0]]
|
194 |
+
if not is_cuda_lib_err:
|
195 |
+
raise err
|
196 |
+
for lib_folder, lib_name in cuda_libs.items():
|
197 |
+
_preload_cuda_deps(lib_folder, lib_name)
|
198 |
+
ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL)
|
199 |
+
|
200 |
+
|
201 |
+
if (USE_RTLD_GLOBAL_WITH_LIBTORCH or os.getenv('TORCH_USE_RTLD_GLOBAL')) and \
|
202 |
+
(_running_with_deploy() or platform.system() != 'Windows'):
|
203 |
+
# Do it the hard way. You might want to load libtorch with RTLD_GLOBAL in a
|
204 |
+
# few circumstances:
|
205 |
+
#
|
206 |
+
# 1. You're in a build environment (e.g., fbcode) where
|
207 |
+
# libtorch_global_deps is not available, but you still need
|
208 |
+
# to get mkl to link in with RTLD_GLOBAL or it will just
|
209 |
+
# not work.
|
210 |
+
#
|
211 |
+
# 2. You're trying to run PyTorch under UBSAN and you need
|
212 |
+
# to ensure that only one copy of libtorch is loaded, so
|
213 |
+
# vptr checks work properly
|
214 |
+
#
|
215 |
+
# If you're using this setting, you must verify that all the libraries
|
216 |
+
# you load consistently use the same libstdc++, or you may have
|
217 |
+
# mysterious segfaults.
|
218 |
+
#
|
219 |
+
old_flags = sys.getdlopenflags()
|
220 |
+
sys.setdlopenflags(os.RTLD_GLOBAL | os.RTLD_LAZY)
|
221 |
+
from torch._C import * # noqa: F403
|
222 |
+
sys.setdlopenflags(old_flags)
|
223 |
+
del old_flags
|
224 |
+
|
225 |
+
else:
|
226 |
+
# Easy way. You want this most of the time, because it will prevent
|
227 |
+
# C++ symbols from libtorch clobbering C++ symbols from other
|
228 |
+
# libraries, leading to mysterious segfaults.
|
229 |
+
#
|
230 |
+
# If building in an environment where libtorch_global_deps isn't available
|
231 |
+
# like parts of fbsource, but where RTLD_GLOBAL causes segfaults, you will
|
232 |
+
# want USE_RTLD_GLOBAL_WITH_LIBTORCH = False and USE_GLOBAL_DEPS = False
|
233 |
+
#
|
234 |
+
# See Note [Global dependencies]
|
235 |
+
if USE_GLOBAL_DEPS:
|
236 |
+
_load_global_deps()
|
237 |
+
from torch._C import * # noqa: F403
|
238 |
+
|
239 |
+
# Appease the type checker; ordinarily this binding is inserted by the
|
240 |
+
# torch._C module initialization code in C
|
241 |
+
if TYPE_CHECKING:
|
242 |
+
from . import _C as _C
|
243 |
+
|
244 |
+
class SymInt:
|
245 |
+
"""
|
246 |
+
Like an int (including magic methods), but redirects all operations on the
|
247 |
+
wrapped node. This is used in particular to symbolically record operations
|
248 |
+
in the symbolic shape workflow.
|
249 |
+
"""
|
250 |
+
|
251 |
+
def __init__(self, node):
|
252 |
+
# This field MUST be named node; C++ binding code assumes that this
|
253 |
+
# class has a field named node that stores SymNode
|
254 |
+
self.node = node
|
255 |
+
|
256 |
+
def __bool__(self):
|
257 |
+
return builtins.bool(self != 0)
|
258 |
+
|
259 |
+
def __int__(self):
|
260 |
+
return self.node.int_()
|
261 |
+
|
262 |
+
def __index__(self):
|
263 |
+
return self.node.int_()
|
264 |
+
|
265 |
+
# Magic methods installed by torch.fx.experimental.sym_node
|
266 |
+
|
267 |
+
def __eq__(self, other: object) -> builtins.bool:
|
268 |
+
raise AssertionError("type stub not overridden")
|
269 |
+
|
270 |
+
def __lt__(self, other) -> builtins.bool:
|
271 |
+
raise AssertionError("type stub not overridden")
|
272 |
+
|
273 |
+
def __gt__(self, other) -> builtins.bool:
|
274 |
+
raise AssertionError("type stub not overridden")
|
275 |
+
|
276 |
+
def __le__(self, other) -> builtins.bool:
|
277 |
+
raise AssertionError("type stub not overridden")
|
278 |
+
|
279 |
+
def __ge__(self, other) -> builtins.bool:
|
280 |
+
raise AssertionError("type stub not overridden")
|
281 |
+
|
282 |
+
def __add__(self, other) -> "SymInt":
|
283 |
+
raise AssertionError("type stub not overridden")
|
284 |
+
|
285 |
+
def __mul__(self, other) -> "SymInt":
|
286 |
+
raise AssertionError("type stub not overridden")
|
287 |
+
|
288 |
+
def __sym_max__(self, other):
|
289 |
+
raise AssertionError("type stub not overridden")
|
290 |
+
|
291 |
+
def __sym_min__(self, other):
|
292 |
+
raise AssertionError("type stub not overridden")
|
293 |
+
|
294 |
+
def __sym_float__(self):
|
295 |
+
raise AssertionError("type stub not overridden")
|
296 |
+
|
297 |
+
def __neg__(self):
|
298 |
+
raise AssertionError("type stub not overridden")
|
299 |
+
|
300 |
+
def __repr__(self):
|
301 |
+
return str(self.node)
|
302 |
+
|
303 |
+
def __hash__(self) -> builtins.int:
|
304 |
+
if self.node.is_nested_int():
|
305 |
+
return hash(self.node.nested_int())
|
306 |
+
else:
|
307 |
+
# We could support constant SymInts as well, but not doing it for now
|
308 |
+
raise TypeError("unhashable type: non-nested SymInt")
|
309 |
+
|
310 |
+
class SymFloat:
|
311 |
+
"""
|
312 |
+
Like an float (including magic methods), but redirects all operations on the
|
313 |
+
wrapped node. This is used in particular to symbolically record operations
|
314 |
+
in the symbolic shape workflow.
|
315 |
+
"""
|
316 |
+
|
317 |
+
def __init__(self, node):
|
318 |
+
# This field MUST be named node; C++ binding code assumes that this
|
319 |
+
# class has a field named node that stores SymNode
|
320 |
+
self.node = node
|
321 |
+
|
322 |
+
def __bool__(self):
|
323 |
+
return self.node.bool_()
|
324 |
+
|
325 |
+
# Magic methods installed by torch.fx.experimental.sym_node
|
326 |
+
|
327 |
+
def __eq__(self, other: object) -> builtins.bool:
|
328 |
+
raise AssertionError("type stub not overridden")
|
329 |
+
|
330 |
+
def __lt__(self, other) -> builtins.bool:
|
331 |
+
raise AssertionError("type stub not overridden")
|
332 |
+
|
333 |
+
def __gt__(self, other) -> builtins.bool:
|
334 |
+
raise AssertionError("type stub not overridden")
|
335 |
+
|
336 |
+
def __le__(self, other) -> builtins.bool:
|
337 |
+
raise AssertionError("type stub not overridden")
|
338 |
+
|
339 |
+
def __ge__(self, other) -> builtins.bool:
|
340 |
+
raise AssertionError("type stub not overridden")
|
341 |
+
|
342 |
+
def __sym_max__(self, other):
|
343 |
+
raise AssertionError("type stub not overridden")
|
344 |
+
|
345 |
+
def __sym_min__(self, other):
|
346 |
+
raise AssertionError("type stub not overridden")
|
347 |
+
|
348 |
+
def __sym_int__(self):
|
349 |
+
raise AssertionError("type stub not overridden")
|
350 |
+
|
351 |
+
def is_integer(self):
|
352 |
+
"""Return True if the float is an integer."""
|
353 |
+
raise AssertionError("type stub not overridden")
|
354 |
+
|
355 |
+
def __repr__(self):
|
356 |
+
return self.node.str()
|
357 |
+
|
358 |
+
class SymBool:
|
359 |
+
"""
|
360 |
+
Like an bool (including magic methods), but redirects all operations on the
|
361 |
+
wrapped node. This is used in particular to symbolically record operations
|
362 |
+
in the symbolic shape workflow.
|
363 |
+
|
364 |
+
Unlike regular bools, regular boolean operators will force extra guards instead
|
365 |
+
of symbolically evaluate. Use the bitwise operators instead to handle this.
|
366 |
+
"""
|
367 |
+
|
368 |
+
def __init__(self, node):
|
369 |
+
# This field MUST be named node; C++ binding code assumes that this
|
370 |
+
# class has a field named node that stores SymNode
|
371 |
+
self.node = node
|
372 |
+
|
373 |
+
def __bool__(self):
|
374 |
+
return self.node.bool_()
|
375 |
+
|
376 |
+
def __int__(self):
|
377 |
+
return builtins.int(self.node.bool_())
|
378 |
+
|
379 |
+
# Magic methods installed by torch.fx.experimental.sym_node
|
380 |
+
def __and__(self, other) -> "SymBool":
|
381 |
+
raise AssertionError("type stub not overridden")
|
382 |
+
|
383 |
+
def __or__(self, other) -> "SymBool":
|
384 |
+
raise AssertionError("type stub not overridden")
|
385 |
+
|
386 |
+
# We very carefully define __sym_not__, and not a number of other
|
387 |
+
# plausible alternatives:
|
388 |
+
#
|
389 |
+
# - We do not override __not__ because this is not a real magic
|
390 |
+
# method; you cannot override the meaning of the not builtin in
|
391 |
+
# Python. We use the name 'sym_not' to clarify that in user code you
|
392 |
+
# cannot use the builtin not or operator.not_ or operator.__not__ and
|
393 |
+
# hit this magic method; you must use our custom sym_not operator.
|
394 |
+
#
|
395 |
+
# - We do not override the __invert__ method because SymBool is
|
396 |
+
# meant to be usable in situations where bool is expected. However,
|
397 |
+
# bitwise negation ~a does the wrong thing with booleans (because
|
398 |
+
# bool is a subclass of int, so ~1 = -2 which is not falseish.)
|
399 |
+
# This would be a giant footgun, so we get around it by defining
|
400 |
+
# our own operator. Note that bitwise and/or do the right thing,
|
401 |
+
# so we reuse the conventional operators there for readability.
|
402 |
+
#
|
403 |
+
def __sym_not__(self) -> "SymBool":
|
404 |
+
raise AssertionError("type stub not overridden")
|
405 |
+
|
406 |
+
def __sym_ite__(self, then_val, else_val):
|
407 |
+
raise AssertionError("type stub not overridden")
|
408 |
+
|
409 |
+
def __eq__(self, other) -> builtins.bool:
|
410 |
+
raise AssertionError("type stub not overridden")
|
411 |
+
|
412 |
+
def __repr__(self):
|
413 |
+
return str(self.node)
|
414 |
+
|
415 |
+
def __hash__(self):
|
416 |
+
if self.node.is_constant():
|
417 |
+
return hash(self.node.bool_())
|
418 |
+
else:
|
419 |
+
raise TypeError("unhashable type: SymBool")
|
420 |
+
|
421 |
+
def sym_not(a):
|
422 |
+
r""" SymInt-aware utility for logical negation.
|
423 |
+
|
424 |
+
Args:
|
425 |
+
a (SymBool or bool): Object to negate
|
426 |
+
"""
|
427 |
+
import sympy
|
428 |
+
from .overrides import has_torch_function_unary, handle_torch_function
|
429 |
+
|
430 |
+
if has_torch_function_unary(a):
|
431 |
+
return handle_torch_function(sym_not, (a,), a)
|
432 |
+
if hasattr(a, '__sym_not__'):
|
433 |
+
return a.__sym_not__()
|
434 |
+
if isinstance(a, sympy.Basic):
|
435 |
+
return ~a # type: ignore[operator]
|
436 |
+
return not a
|
437 |
+
|
438 |
+
def sym_float(a):
|
439 |
+
r""" SymInt-aware utility for float casting.
|
440 |
+
|
441 |
+
Args:
|
442 |
+
a (SymInt, SymFloat, or object): Object to cast
|
443 |
+
"""
|
444 |
+
from .overrides import has_torch_function_unary, handle_torch_function
|
445 |
+
|
446 |
+
if has_torch_function_unary(a):
|
447 |
+
return handle_torch_function(sym_float, (a,), a)
|
448 |
+
if isinstance(a, SymFloat):
|
449 |
+
return a
|
450 |
+
elif hasattr(a, '__sym_float__'):
|
451 |
+
return a.__sym_float__()
|
452 |
+
return py_float(a) # type: ignore[operator]
|
453 |
+
|
454 |
+
|
455 |
+
def sym_int(a):
|
456 |
+
r""" SymInt-aware utility for int casting.
|
457 |
+
|
458 |
+
Args:
|
459 |
+
a (SymInt, SymFloat, or object): Object to cast
|
460 |
+
"""
|
461 |
+
from .overrides import has_torch_function_unary, handle_torch_function
|
462 |
+
|
463 |
+
if has_torch_function_unary(a):
|
464 |
+
return handle_torch_function(sym_int, (a,), a)
|
465 |
+
if isinstance(a, SymInt):
|
466 |
+
return a
|
467 |
+
elif isinstance(a, SymFloat):
|
468 |
+
return math.floor(a) if a >= 0 else math.ceil(a) # type: ignore[arg-type, call-overload]
|
469 |
+
return py_int(a) # type: ignore[operator]
|
470 |
+
|
471 |
+
def sym_max(a, b):
|
472 |
+
""" SymInt-aware utility for max()."""
|
473 |
+
from .overrides import has_torch_function, handle_torch_function
|
474 |
+
|
475 |
+
if has_torch_function((a, b)):
|
476 |
+
return handle_torch_function(sym_max, (a, b), a, b)
|
477 |
+
if isinstance(a, (SymInt, SymFloat)):
|
478 |
+
return a.__sym_max__(b)
|
479 |
+
elif isinstance(b, (SymInt, SymFloat)):
|
480 |
+
# NB: If you actually care about preserving output type exactly
|
481 |
+
# if you do something like max(0, 0.0), it is NOT sound to treat
|
482 |
+
# min/max as commutative
|
483 |
+
return b.__sym_max__(a)
|
484 |
+
return builtins.max(a, b) # type: ignore[operator]
|
485 |
+
|
486 |
+
def sym_min(a, b):
|
487 |
+
""" SymInt-aware utility for max()."""
|
488 |
+
from .overrides import has_torch_function, handle_torch_function
|
489 |
+
|
490 |
+
if has_torch_function((a, b)):
|
491 |
+
return handle_torch_function(sym_min, (a, b), a, b)
|
492 |
+
if isinstance(a, (SymInt, SymFloat)):
|
493 |
+
return a.__sym_min__(b)
|
494 |
+
elif isinstance(b, (SymInt, SymFloat)):
|
495 |
+
return b.__sym_min__(a)
|
496 |
+
return builtins.min(a, b) # type: ignore[operator]
|
497 |
+
|
498 |
+
# Drop in replacement for math.sqrt, math.sin, math.cos etc
|
499 |
+
current_module = sys.modules[__name__]
|
500 |
+
|
501 |
+
def _get_sym_math_fn(name):
|
502 |
+
def fn(a):
|
503 |
+
from .overrides import has_torch_function_unary, handle_torch_function
|
504 |
+
|
505 |
+
if has_torch_function_unary(a):
|
506 |
+
return handle_torch_function(fn, (a,), a)
|
507 |
+
if hasattr(a, f"__sym_{name}__"):
|
508 |
+
return getattr(a, f"__sym_{name}__")()
|
509 |
+
return getattr(math, name)(a)
|
510 |
+
|
511 |
+
return fn
|
512 |
+
|
513 |
+
for name in ("sqrt", "cos", "cosh", "sin", "sinh", "tan", "tanh", "asin", "acos", "atan"):
|
514 |
+
sym_name = f"_sym_{name}"
|
515 |
+
fn = _get_sym_math_fn(name)
|
516 |
+
fn.__qualname__ = fn.__name__ = sym_name
|
517 |
+
setattr(current_module, sym_name, fn)
|
518 |
+
|
519 |
+
# Adding temporary shortcut
|
520 |
+
sym_sqrt = current_module._sym_sqrt
|
521 |
+
__all__.append("sym_sqrt")
|
522 |
+
|
523 |
+
del fn, name, sym_name, current_module # type: ignore[possibly-undefined]
|
524 |
+
|
525 |
+
|
526 |
+
def sym_ite(b, t, f):
|
527 |
+
from .overrides import has_torch_function, handle_torch_function
|
528 |
+
|
529 |
+
if has_torch_function((b, t, f)):
|
530 |
+
return handle_torch_function(sym_ite, (b, t, f), b, t, f)
|
531 |
+
assert isinstance(b, (SymBool, builtins.bool)) and type(t) == type(f)
|
532 |
+
if isinstance(b, SymBool):
|
533 |
+
return b.__sym_ite__(t, f)
|
534 |
+
return t if b else f
|
535 |
+
|
536 |
+
# Check to see if we can load C extensions, and if not provide some guidance
|
537 |
+
# on what the problem might be.
|
538 |
+
try:
|
539 |
+
# _initExtension is chosen (arbitrarily) as a sentinel.
|
540 |
+
from torch._C import _initExtension
|
541 |
+
except ImportError:
|
542 |
+
import torch._C as _C_for_compiled_check
|
543 |
+
|
544 |
+
# The __file__ check only works for Python 3.7 and above.
|
545 |
+
if _C_for_compiled_check.__file__ is None:
|
546 |
+
raise ImportError(textwrap.dedent('''
|
547 |
+
Failed to load PyTorch C extensions:
|
548 |
+
It appears that PyTorch has loaded the `torch/_C` folder
|
549 |
+
of the PyTorch repository rather than the C extensions which
|
550 |
+
are expected in the `torch._C` namespace. This can occur when
|
551 |
+
using the `install` workflow. e.g.
|
552 |
+
$ python setup.py install && python -c "import torch"
|
553 |
+
|
554 |
+
This error can generally be solved using the `develop` workflow
|
555 |
+
$ python setup.py develop && python -c "import torch" # This should succeed
|
556 |
+
or by running Python from a different directory.
|
557 |
+
''').strip()) from None
|
558 |
+
raise # If __file__ is not None the cause is unknown, so just re-raise.
|
559 |
+
|
560 |
+
for name in dir(_C):
|
561 |
+
if name[0] != '_' and not name.endswith('Base'):
|
562 |
+
__all__.append(name)
|
563 |
+
obj = getattr(_C, name)
|
564 |
+
if (isinstance(obj, Callable) or inspect.isclass(obj)): # type: ignore[arg-type]
|
565 |
+
if (obj.__module__ != 'torch'):
|
566 |
+
# TODO: fix their module from C++ side
|
567 |
+
if name not in ['DisableTorchFunctionSubclass', 'DisableTorchFunction', 'Generator']:
|
568 |
+
obj.__module__ = 'torch'
|
569 |
+
elif name == 'TensorBase':
|
570 |
+
# issue 109438 / pr 109940. Prevent TensorBase from being copied into torch.
|
571 |
+
delattr(sys.modules[__name__], name)
|
572 |
+
|
573 |
+
if not TYPE_CHECKING:
|
574 |
+
# issue 38137 and python issue 43367. Submodules of a C extension are
|
575 |
+
# non-standard, and attributes of those submodules cannot be pickled since
|
576 |
+
# pickle expect to be able to import them as "from _C.sub import attr"
|
577 |
+
# which fails with "_C is not a package
|
578 |
+
for attr in dir(_C):
|
579 |
+
candidate = getattr(_C, attr)
|
580 |
+
if type(candidate) is type(_C):
|
581 |
+
# submodule
|
582 |
+
if f'torch._C.{attr}' not in sys.modules:
|
583 |
+
sys.modules[f'torch._C.{attr}'] = candidate
|
584 |
+
|
585 |
+
|
586 |
+
################################################################################
|
587 |
+
# Define basic utilities
|
588 |
+
################################################################################
|
589 |
+
|
590 |
+
|
591 |
+
def typename(o):
|
592 |
+
if isinstance(o, torch.Tensor):
|
593 |
+
return o.type()
|
594 |
+
|
595 |
+
module = ''
|
596 |
+
class_name = ''
|
597 |
+
if hasattr(o, '__module__') and o.__module__ != 'builtins' \
|
598 |
+
and o.__module__ != '__builtin__' and o.__module__ is not None:
|
599 |
+
module = o.__module__ + '.'
|
600 |
+
|
601 |
+
if hasattr(o, '__qualname__'):
|
602 |
+
class_name = o.__qualname__
|
603 |
+
elif hasattr(o, '__name__'):
|
604 |
+
class_name = o.__name__
|
605 |
+
else:
|
606 |
+
class_name = o.__class__.__name__
|
607 |
+
|
608 |
+
return module + class_name
|
609 |
+
|
610 |
+
|
611 |
+
def is_tensor(obj):
|
612 |
+
r"""Returns True if `obj` is a PyTorch tensor.
|
613 |
+
|
614 |
+
Note that this function is simply doing ``isinstance(obj, Tensor)``.
|
615 |
+
Using that ``isinstance`` check is better for typechecking with mypy,
|
616 |
+
and more explicit - so it's recommended to use that instead of
|
617 |
+
``is_tensor``.
|
618 |
+
|
619 |
+
Args:
|
620 |
+
obj (Object): Object to test
|
621 |
+
Example::
|
622 |
+
|
623 |
+
>>> x = torch.tensor([1, 2, 3])
|
624 |
+
>>> torch.is_tensor(x)
|
625 |
+
True
|
626 |
+
|
627 |
+
"""
|
628 |
+
return isinstance(obj, torch.Tensor)
|
629 |
+
|
630 |
+
|
631 |
+
def is_storage(obj):
|
632 |
+
r"""Returns True if `obj` is a PyTorch storage object.
|
633 |
+
|
634 |
+
Args:
|
635 |
+
obj (Object): Object to test
|
636 |
+
"""
|
637 |
+
return type(obj) in _storage_classes
|
638 |
+
|
639 |
+
|
640 |
+
_GLOBAL_DEVICE_CONTEXT = threading.local()
|
641 |
+
|
642 |
+
|
643 |
+
def get_default_device() -> "torch.device":
|
644 |
+
r"""Gets the default ``torch.Tensor`` to be allocated on ``device``"""
|
645 |
+
global _GLOBAL_DEVICE_CONTEXT
|
646 |
+
if hasattr(_GLOBAL_DEVICE_CONTEXT, "device_context"):
|
647 |
+
device = _GLOBAL_DEVICE_CONTEXT.device_context.device
|
648 |
+
if device.index is not None:
|
649 |
+
return device
|
650 |
+
else:
|
651 |
+
# TODO: Call like get_device_index() method corresponding to
|
652 |
+
# each device type
|
653 |
+
return torch.tensor([]).device
|
654 |
+
else:
|
655 |
+
return torch.device("cpu")
|
656 |
+
|
657 |
+
|
658 |
+
def set_default_device(device):
|
659 |
+
"""Sets the default ``torch.Tensor`` to be allocated on ``device``. This
|
660 |
+
does not affect factory function calls which are called with an explicit
|
661 |
+
``device`` argument. Factory calls will be performed as if they
|
662 |
+
were passed ``device`` as an argument.
|
663 |
+
|
664 |
+
To only temporarily change the default device instead of setting it
|
665 |
+
globally, use ``with torch.device(device):`` instead.
|
666 |
+
|
667 |
+
The default device is initially ``cpu``. If you set the default tensor
|
668 |
+
device to another device (e.g., ``cuda``) without a device index, tensors
|
669 |
+
will be allocated on whatever the current device for the device type,
|
670 |
+
even after :func:`torch.cuda.set_device` is called.
|
671 |
+
|
672 |
+
.. warning::
|
673 |
+
|
674 |
+
This function imposes a slight performance cost on every Python
|
675 |
+
call to the torch API (not just factory functions). If this
|
676 |
+
is causing problems for you, please comment on
|
677 |
+
https://github.com/pytorch/pytorch/issues/92701
|
678 |
+
|
679 |
+
.. note::
|
680 |
+
|
681 |
+
This doesn't affect functions that create tensors that share the same memory as the input, like:
|
682 |
+
:func:`torch.from_numpy` and :func:`torch.frombuffer`
|
683 |
+
|
684 |
+
Args:
|
685 |
+
device (device or string): the device to set as default
|
686 |
+
|
687 |
+
Example::
|
688 |
+
|
689 |
+
>>> # xdoctest: +SKIP("requires cuda, changes global state")
|
690 |
+
>>> torch.get_default_device()
|
691 |
+
device(type='cpu')
|
692 |
+
>>> torch.set_default_device('cuda') # current device is 0
|
693 |
+
>>> torch.get_default_device()
|
694 |
+
device(type='cuda', index=0)
|
695 |
+
>>> torch.set_default_device('cuda')
|
696 |
+
>>> torch.cuda.set_device('cuda:1') # current device is 1
|
697 |
+
>>> torch.get_default_device()
|
698 |
+
device(type='cuda', index=1)
|
699 |
+
>>> torch.set_default_device('cuda:1')
|
700 |
+
>>> torch.get_default_device()
|
701 |
+
device(type='cuda', index=1)
|
702 |
+
|
703 |
+
"""
|
704 |
+
global _GLOBAL_DEVICE_CONTEXT
|
705 |
+
if hasattr(_GLOBAL_DEVICE_CONTEXT, "device_context"):
|
706 |
+
device_context = _GLOBAL_DEVICE_CONTEXT.device_context
|
707 |
+
if device_context is not None:
|
708 |
+
device_context.__exit__(None, None, None)
|
709 |
+
|
710 |
+
if device is None:
|
711 |
+
device_context = None
|
712 |
+
else:
|
713 |
+
from torch.utils._device import DeviceContext
|
714 |
+
device_context = DeviceContext(device)
|
715 |
+
device_context.__enter__()
|
716 |
+
_GLOBAL_DEVICE_CONTEXT.device_context = device_context
|
717 |
+
|
718 |
+
|
719 |
+
def set_default_tensor_type(t):
|
720 |
+
r"""
|
721 |
+
.. warning::
|
722 |
+
|
723 |
+
This function is deprecated as of PyTorch 2.1, please use :func:`torch.set_default_dtype()` and
|
724 |
+
:func:`torch.set_default_device()` as alternatives.
|
725 |
+
|
726 |
+
Sets the default ``torch.Tensor`` type to floating point tensor type
|
727 |
+
``t``. This type will also be used as default floating point type for
|
728 |
+
type inference in :func:`torch.tensor`.
|
729 |
+
|
730 |
+
The default floating point tensor type is initially ``torch.FloatTensor``.
|
731 |
+
|
732 |
+
Args:
|
733 |
+
t (type or string): the floating point tensor type or its name
|
734 |
+
|
735 |
+
Example::
|
736 |
+
|
737 |
+
>>> # xdoctest: +SKIP("Other tests may have changed the default type. Can we reset it?")
|
738 |
+
>>> torch.tensor([1.2, 3]).dtype # initial default for floating point is torch.float32
|
739 |
+
torch.float32
|
740 |
+
>>> torch.set_default_tensor_type(torch.DoubleTensor)
|
741 |
+
>>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
|
742 |
+
torch.float64
|
743 |
+
|
744 |
+
"""
|
745 |
+
if isinstance(t, str):
|
746 |
+
t = _import_dotted_name(t)
|
747 |
+
_C._set_default_tensor_type(t)
|
748 |
+
|
749 |
+
|
750 |
+
def set_default_dtype(d):
|
751 |
+
r"""
|
752 |
+
|
753 |
+
Sets the default floating point dtype to :attr:`d`. Supports torch.float32
|
754 |
+
and torch.float64 as inputs. Other dtypes may be accepted without complaint
|
755 |
+
but are not supported and are unlikely to work as expected.
|
756 |
+
|
757 |
+
When PyTorch is initialized its default floating point dtype is torch.float32,
|
758 |
+
and the intent of set_default_dtype(torch.float64) is to facilitate NumPy-like
|
759 |
+
type inference. The default floating point dtype is used to:
|
760 |
+
|
761 |
+
1. Implicitly determine the default complex dtype. When the default floating point
|
762 |
+
type is float32 the default complex dtype is complex64, and when the default
|
763 |
+
floating point type is float64 the default complex type is complex128.
|
764 |
+
2. Infer the dtype for tensors constructed using Python floats or complex Python
|
765 |
+
numbers. See examples below.
|
766 |
+
3. Determine the result of type promotion between bool and integer tensors and
|
767 |
+
Python floats and complex Python numbers.
|
768 |
+
|
769 |
+
Args:
|
770 |
+
d (:class:`torch.dtype`): the floating point dtype to make the default.
|
771 |
+
Either torch.float32 or torch.float64.
|
772 |
+
|
773 |
+
Example:
|
774 |
+
>>> # xdoctest: +SKIP("Other tests may have changed the default type. Can we reset it?")
|
775 |
+
>>> # initial default for floating point is torch.float32
|
776 |
+
>>> # Python floats are interpreted as float32
|
777 |
+
>>> torch.tensor([1.2, 3]).dtype
|
778 |
+
torch.float32
|
779 |
+
>>> # initial default for floating point is torch.complex64
|
780 |
+
>>> # Complex Python numbers are interpreted as complex64
|
781 |
+
>>> torch.tensor([1.2, 3j]).dtype
|
782 |
+
torch.complex64
|
783 |
+
|
784 |
+
>>> torch.set_default_dtype(torch.float64)
|
785 |
+
|
786 |
+
>>> # Python floats are now interpreted as float64
|
787 |
+
>>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
|
788 |
+
torch.float64
|
789 |
+
>>> # Complex Python numbers are now interpreted as complex128
|
790 |
+
>>> torch.tensor([1.2, 3j]).dtype # a new complex tensor
|
791 |
+
torch.complex128
|
792 |
+
|
793 |
+
"""
|
794 |
+
_C._set_default_dtype(d)
|
795 |
+
|
796 |
+
def use_deterministic_algorithms(mode: builtins.bool, *, warn_only: builtins.bool = False) -> None:
|
797 |
+
r""" Sets whether PyTorch operations must use "deterministic"
|
798 |
+
algorithms. That is, algorithms which, given the same input, and when
|
799 |
+
run on the same software and hardware, always produce the same output.
|
800 |
+
When enabled, operations will use deterministic algorithms when available,
|
801 |
+
and if only nondeterministic algorithms are available they will throw a
|
802 |
+
:class:`RuntimeError` when called.
|
803 |
+
|
804 |
+
.. note:: This setting alone is not always enough to make an application
|
805 |
+
reproducible. Refer to :ref:`reproducibility` for more information.
|
806 |
+
|
807 |
+
.. note:: :func:`torch.set_deterministic_debug_mode` offers an alternative
|
808 |
+
interface for this feature.
|
809 |
+
|
810 |
+
The following normally-nondeterministic operations will act
|
811 |
+
deterministically when ``mode=True``:
|
812 |
+
|
813 |
+
* :class:`torch.nn.Conv1d` when called on CUDA tensor
|
814 |
+
* :class:`torch.nn.Conv2d` when called on CUDA tensor
|
815 |
+
* :class:`torch.nn.Conv3d` when called on CUDA tensor
|
816 |
+
* :class:`torch.nn.ConvTranspose1d` when called on CUDA tensor
|
817 |
+
* :class:`torch.nn.ConvTranspose2d` when called on CUDA tensor
|
818 |
+
* :class:`torch.nn.ConvTranspose3d` when called on CUDA tensor
|
819 |
+
* :class:`torch.nn.ReplicationPad2d` when attempting to differentiate a CUDA tensor
|
820 |
+
* :func:`torch.bmm` when called on sparse-dense CUDA tensors
|
821 |
+
* :func:`torch.Tensor.__getitem__` when attempting to differentiate a CPU tensor
|
822 |
+
and the index is a list of tensors
|
823 |
+
* :func:`torch.Tensor.index_put` with ``accumulate=False``
|
824 |
+
* :func:`torch.Tensor.index_put` with ``accumulate=True`` when called on a CPU
|
825 |
+
tensor
|
826 |
+
* :func:`torch.Tensor.put_` with ``accumulate=True`` when called on a CPU
|
827 |
+
tensor
|
828 |
+
* :func:`torch.Tensor.scatter_add_` when called on a CUDA tensor
|
829 |
+
* :func:`torch.gather` when called on a CUDA tensor that requires grad
|
830 |
+
* :func:`torch.index_add` when called on CUDA tensor
|
831 |
+
* :func:`torch.index_select` when attempting to differentiate a CUDA tensor
|
832 |
+
* :func:`torch.repeat_interleave` when attempting to differentiate a CUDA tensor
|
833 |
+
* :func:`torch.Tensor.index_copy` when called on a CPU or CUDA tensor
|
834 |
+
* :func:`torch.Tensor.scatter` when `src` type is Tensor and called on CUDA tensor
|
835 |
+
* :func:`torch.Tensor.scatter_reduce` when ``reduce='sum'`` or ``reduce='mean'`` and called on CUDA tensor
|
836 |
+
|
837 |
+
The following normally-nondeterministic operations will throw a
|
838 |
+
:class:`RuntimeError` when ``mode=True``:
|
839 |
+
|
840 |
+
* :class:`torch.nn.AvgPool3d` when attempting to differentiate a CUDA tensor
|
841 |
+
* :class:`torch.nn.AdaptiveAvgPool2d` when attempting to differentiate a CUDA tensor
|
842 |
+
* :class:`torch.nn.AdaptiveAvgPool3d` when attempting to differentiate a CUDA tensor
|
843 |
+
* :class:`torch.nn.MaxPool3d` when attempting to differentiate a CUDA tensor
|
844 |
+
* :class:`torch.nn.AdaptiveMaxPool2d` when attempting to differentiate a CUDA tensor
|
845 |
+
* :class:`torch.nn.FractionalMaxPool2d` when attempting to differentiate a CUDA tensor
|
846 |
+
* :class:`torch.nn.FractionalMaxPool3d` when attempting to differentiate a CUDA tensor
|
847 |
+
* :class:`torch.nn.MaxUnpool1d`
|
848 |
+
* :class:`torch.nn.MaxUnpool2d`
|
849 |
+
* :class:`torch.nn.MaxUnpool3d`
|
850 |
+
* :func:`torch.nn.functional.interpolate` when attempting to differentiate a CUDA tensor
|
851 |
+
and one of the following modes is used:
|
852 |
+
|
853 |
+
- ``linear``
|
854 |
+
- ``bilinear``
|
855 |
+
- ``bicubic``
|
856 |
+
- ``trilinear``
|
857 |
+
|
858 |
+
* :class:`torch.nn.ReflectionPad1d` when attempting to differentiate a CUDA tensor
|
859 |
+
* :class:`torch.nn.ReflectionPad2d` when attempting to differentiate a CUDA tensor
|
860 |
+
* :class:`torch.nn.ReflectionPad3d` when attempting to differentiate a CUDA tensor
|
861 |
+
* :class:`torch.nn.ReplicationPad1d` when attempting to differentiate a CUDA tensor
|
862 |
+
* :class:`torch.nn.ReplicationPad3d` when attempting to differentiate a CUDA tensor
|
863 |
+
* :class:`torch.nn.NLLLoss` when called on a CUDA tensor
|
864 |
+
* :class:`torch.nn.CTCLoss` when attempting to differentiate a CUDA tensor
|
865 |
+
* :class:`torch.nn.EmbeddingBag` when attempting to differentiate a CUDA tensor when
|
866 |
+
``mode='max'``
|
867 |
+
* :func:`torch.Tensor.put_` when ``accumulate=False``
|
868 |
+
* :func:`torch.Tensor.put_` when ``accumulate=True`` and called on a CUDA tensor
|
869 |
+
* :func:`torch.histc` when called on a CUDA tensor
|
870 |
+
* :func:`torch.bincount` when called on a CUDA tensor and ``weights``
|
871 |
+
tensor is given
|
872 |
+
* :func:`torch.kthvalue` with called on a CUDA tensor
|
873 |
+
* :func:`torch.median` with indices output when called on a CUDA tensor
|
874 |
+
* :func:`torch.nn.functional.grid_sample` when attempting to differentiate a CUDA tensor
|
875 |
+
* :func:`torch.cumsum` when called on a CUDA tensor when dtype is floating point or complex
|
876 |
+
* :func:`torch.Tensor.scatter_reduce` when ``reduce='prod'`` and called on CUDA tensor
|
877 |
+
* :func:`torch.Tensor.resize_` when called with a quantized tensor
|
878 |
+
|
879 |
+
In addition, several operations fill uninitialized memory when this setting
|
880 |
+
is turned on and when
|
881 |
+
:attr:`torch.utils.deterministic.fill_uninitialized_memory` is turned on.
|
882 |
+
See the documentation for that attribute for more information.
|
883 |
+
|
884 |
+
A handful of CUDA operations are nondeterministic if the CUDA version is
|
885 |
+
10.2 or greater, unless the environment variable ``CUBLAS_WORKSPACE_CONFIG=:4096:8``
|
886 |
+
or ``CUBLAS_WORKSPACE_CONFIG=:16:8`` is set. See the CUDA documentation for more
|
887 |
+
details: `<https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility>`_
|
888 |
+
If one of these environment variable configurations is not set, a :class:`RuntimeError`
|
889 |
+
will be raised from these operations when called with CUDA tensors:
|
890 |
+
|
891 |
+
* :func:`torch.mm`
|
892 |
+
* :func:`torch.mv`
|
893 |
+
* :func:`torch.bmm`
|
894 |
+
|
895 |
+
Note that deterministic operations tend to have worse performance than
|
896 |
+
nondeterministic operations.
|
897 |
+
|
898 |
+
.. note::
|
899 |
+
|
900 |
+
This flag does not detect or prevent nondeterministic behavior caused
|
901 |
+
by calling an inplace operation on a tensor with an internal memory
|
902 |
+
overlap or by giving such a tensor as the :attr:`out` argument for an
|
903 |
+
operation. In these cases, multiple writes of different data may target
|
904 |
+
a single memory location, and the order of writes is not guaranteed.
|
905 |
+
|
906 |
+
Args:
|
907 |
+
mode (:class:`bool`): If True, makes potentially nondeterministic
|
908 |
+
operations switch to a deterministic algorithm or throw a runtime
|
909 |
+
error. If False, allows nondeterministic operations.
|
910 |
+
|
911 |
+
Keyword args:
|
912 |
+
warn_only (:class:`bool`, optional): If True, operations that do not
|
913 |
+
have a deterministic implementation will throw a warning instead of
|
914 |
+
an error. Default: ``False``
|
915 |
+
|
916 |
+
Example::
|
917 |
+
|
918 |
+
>>> # xdoctest: +SKIP
|
919 |
+
>>> torch.use_deterministic_algorithms(True)
|
920 |
+
|
921 |
+
# Forward mode nondeterministic error
|
922 |
+
>>> torch.randn(10, device='cuda').kthvalue(1)
|
923 |
+
...
|
924 |
+
RuntimeError: kthvalue CUDA does not have a deterministic implementation...
|
925 |
+
|
926 |
+
# Backward mode nondeterministic error
|
927 |
+
>>> torch.nn.AvgPool3d(1)(torch.randn(3, 4, 5, 6, requires_grad=True).cuda()).sum().backward()
|
928 |
+
...
|
929 |
+
RuntimeError: avg_pool3d_backward_cuda does not have a deterministic implementation...
|
930 |
+
"""
|
931 |
+
_C._set_deterministic_algorithms(mode, warn_only=warn_only)
|
932 |
+
|
933 |
+
def are_deterministic_algorithms_enabled() -> builtins.bool:
|
934 |
+
r"""Returns True if the global deterministic flag is turned on. Refer to
|
935 |
+
:func:`torch.use_deterministic_algorithms` documentation for more details.
|
936 |
+
"""
|
937 |
+
return _C._get_deterministic_algorithms()
|
938 |
+
|
939 |
+
def is_deterministic_algorithms_warn_only_enabled() -> builtins.bool:
|
940 |
+
r"""Returns True if the global deterministic flag is set to warn only.
|
941 |
+
Refer to :func:`torch.use_deterministic_algorithms` documentation for more
|
942 |
+
details.
|
943 |
+
"""
|
944 |
+
return _C._get_deterministic_algorithms_warn_only()
|
945 |
+
|
946 |
+
def set_deterministic_debug_mode(debug_mode: Union[builtins.int, str]) -> None:
|
947 |
+
r"""Sets the debug mode for deterministic operations.
|
948 |
+
|
949 |
+
.. note:: This is an alternative interface for
|
950 |
+
:func:`torch.use_deterministic_algorithms`. Refer to that function's
|
951 |
+
documentation for details about affected operations.
|
952 |
+
|
953 |
+
Args:
|
954 |
+
debug_mode(str or int): If "default" or 0, don't error or warn on
|
955 |
+
nondeterministic operations. If "warn" or 1, warn on
|
956 |
+
nondeterministic operations. If "error" or 2, error on
|
957 |
+
nondeterministic operations.
|
958 |
+
"""
|
959 |
+
|
960 |
+
# NOTE: builtins.int is used here because int in this scope resolves
|
961 |
+
# to torch.int
|
962 |
+
if not isinstance(debug_mode, (builtins.int, str)):
|
963 |
+
raise TypeError(f'debug_mode must be str or int, but got {type(debug_mode)}')
|
964 |
+
|
965 |
+
if isinstance(debug_mode, str):
|
966 |
+
if debug_mode == 'default':
|
967 |
+
debug_mode = 0
|
968 |
+
elif debug_mode == 'warn':
|
969 |
+
debug_mode = 1
|
970 |
+
elif debug_mode == 'error':
|
971 |
+
debug_mode = 2
|
972 |
+
else:
|
973 |
+
raise RuntimeError(
|
974 |
+
'invalid value of debug_mode, expected one of `default`, '
|
975 |
+
f'`warn`, `error`, but got {debug_mode}')
|
976 |
+
|
977 |
+
if debug_mode == 0:
|
978 |
+
_C._set_deterministic_algorithms(False)
|
979 |
+
elif debug_mode == 1:
|
980 |
+
_C._set_deterministic_algorithms(True, warn_only=True)
|
981 |
+
elif debug_mode == 2:
|
982 |
+
_C._set_deterministic_algorithms(True)
|
983 |
+
else:
|
984 |
+
raise RuntimeError(
|
985 |
+
'invalid value of debug_mode, expected 0, 1, or 2, '
|
986 |
+
f'but got {debug_mode}')
|
987 |
+
|
988 |
+
def get_deterministic_debug_mode() -> builtins.int:
|
989 |
+
r"""Returns the current value of the debug mode for deterministic
|
990 |
+
operations. Refer to :func:`torch.set_deterministic_debug_mode`
|
991 |
+
documentation for more details.
|
992 |
+
"""
|
993 |
+
|
994 |
+
if _C._get_deterministic_algorithms():
|
995 |
+
if _C._get_deterministic_algorithms_warn_only():
|
996 |
+
return 1
|
997 |
+
else:
|
998 |
+
return 2
|
999 |
+
else:
|
1000 |
+
return 0
|
1001 |
+
|
1002 |
+
def get_float32_matmul_precision() -> builtins.str:
|
1003 |
+
r"""Returns the current value of float32 matrix multiplication precision. Refer to
|
1004 |
+
:func:`torch.set_float32_matmul_precision` documentation for more details.
|
1005 |
+
"""
|
1006 |
+
return _C._get_float32_matmul_precision()
|
1007 |
+
|
1008 |
+
def set_float32_matmul_precision(precision: str) -> None:
|
1009 |
+
r"""Sets the internal precision of float32 matrix multiplications.
|
1010 |
+
|
1011 |
+
Running float32 matrix multiplications in lower precision may significantly increase
|
1012 |
+
performance, and in some programs the loss of precision has a negligible impact.
|
1013 |
+
|
1014 |
+
Supports three settings:
|
1015 |
+
|
1016 |
+
* "highest", float32 matrix multiplications use the float32 datatype (24 mantissa
|
1017 |
+
bits with 23 bits explicitly stored) for internal computations.
|
1018 |
+
* "high", float32 matrix multiplications either use the TensorFloat32 datatype (10
|
1019 |
+
mantissa bits explicitly stored) or treat each float32 number as the sum of two bfloat16 numbers
|
1020 |
+
(approximately 16 mantissa bits with 14 bits explicitly stored), if the appropriate fast matrix multiplication
|
1021 |
+
algorithms are available. Otherwise float32 matrix multiplications are computed
|
1022 |
+
as if the precision is "highest". See below for more information on the bfloat16
|
1023 |
+
approach.
|
1024 |
+
* "medium", float32 matrix multiplications use the bfloat16 datatype (8 mantissa
|
1025 |
+
bits with 7 bits explicitly stored) for internal computations, if a fast matrix multiplication algorithm
|
1026 |
+
using that datatype internally is available. Otherwise float32
|
1027 |
+
matrix multiplications are computed as if the precision is "high".
|
1028 |
+
|
1029 |
+
When using "high" precision, float32 multiplications may use a bfloat16-based algorithm
|
1030 |
+
that is more complicated than simply truncating to some smaller number mantissa bits
|
1031 |
+
(e.g. 10 for TensorFloat32, 7 for bfloat16 explicitly stored). Refer to [Henry2019]_ for a complete
|
1032 |
+
description of this algorithm. To briefly explain here, the first step is to realize
|
1033 |
+
that we can perfectly encode a single float32 number as the sum of three bfloat16
|
1034 |
+
numbers (because float32 has 23 mantissa bits while bfloat16 has 7 explicitly stored, and both have the
|
1035 |
+
same number of exponent bits). This means that the product of two float32 numbers can
|
1036 |
+
be exactly given by the sum of nine products of bfloat16 numbers. We can then trade
|
1037 |
+
accuracy for speed by dropping some of these products. The "high" precision algorithm
|
1038 |
+
specifically keeps only the three most significant products, which conveniently excludes
|
1039 |
+
all of the products involving the last 8 mantissa bits of either input. This means that
|
1040 |
+
we can represent our inputs as the sum of two bfloat16 numbers rather than three.
|
1041 |
+
Because bfloat16 fused-multiply-add (FMA) instructions are typically >10x faster than
|
1042 |
+
float32 ones, it's faster to do three multiplications and 2 additions with bfloat16
|
1043 |
+
precision than it is to do a single multiplication with float32 precision.
|
1044 |
+
|
1045 |
+
.. [Henry2019] http://arxiv.org/abs/1904.06376
|
1046 |
+
|
1047 |
+
.. note::
|
1048 |
+
|
1049 |
+
This does not change the output dtype of float32 matrix multiplications,
|
1050 |
+
it controls how the internal computation of the matrix multiplication is performed.
|
1051 |
+
|
1052 |
+
.. note::
|
1053 |
+
|
1054 |
+
This does not change the precision of convolution operations. Other flags,
|
1055 |
+
like `torch.backends.cudnn.allow_tf32`, may control the precision of convolution
|
1056 |
+
operations.
|
1057 |
+
|
1058 |
+
.. note::
|
1059 |
+
|
1060 |
+
This flag currently only affects one native device type: CUDA.
|
1061 |
+
If "high" or "medium" are set then the TensorFloat32 datatype will be used
|
1062 |
+
when computing float32 matrix multiplications, equivalent to setting
|
1063 |
+
`torch.backends.cuda.matmul.allow_tf32 = True`. When "highest" (the default)
|
1064 |
+
is set then the float32 datatype is used for internal computations, equivalent
|
1065 |
+
to setting `torch.backends.cuda.matmul.allow_tf32 = False`.
|
1066 |
+
|
1067 |
+
Args:
|
1068 |
+
precision(str): can be set to "highest" (default), "high", or "medium" (see above).
|
1069 |
+
|
1070 |
+
"""
|
1071 |
+
_C._set_float32_matmul_precision(precision)
|
1072 |
+
|
1073 |
+
def set_warn_always(b: builtins.bool) -> None:
|
1074 |
+
r"""When this flag is False (default) then some PyTorch warnings may only
|
1075 |
+
appear once per process. This helps avoid excessive warning information.
|
1076 |
+
Setting it to True causes these warnings to always appear, which may be
|
1077 |
+
helpful when debugging.
|
1078 |
+
|
1079 |
+
Args:
|
1080 |
+
b (:class:`bool`): If True, force warnings to always be emitted
|
1081 |
+
If False, set to the default behaviour
|
1082 |
+
"""
|
1083 |
+
_C._set_warnAlways(b)
|
1084 |
+
|
1085 |
+
def is_warn_always_enabled() -> builtins.bool:
|
1086 |
+
r"""Returns True if the global warn_always flag is turned on. Refer to
|
1087 |
+
:func:`torch.set_warn_always` documentation for more details.
|
1088 |
+
"""
|
1089 |
+
return _C._get_warnAlways()
|
1090 |
+
|
1091 |
+
################################################################################
|
1092 |
+
# Define error checking functions
|
1093 |
+
################################################################################
|
1094 |
+
|
1095 |
+
# These error checking functions must be kept consistent with their C++
|
1096 |
+
# equivalents. Their C++ equivalents are mentioned where applicable.
|
1097 |
+
|
1098 |
+
def _check_with(error_type, cond: Union[builtins.bool, SymBool], message: Callable[[], str]): # noqa: F811
|
1099 |
+
if not isinstance(cond, (builtins.bool, torch.SymBool)):
|
1100 |
+
raise TypeError(f'cond must be a bool, but got {type(cond)}')
|
1101 |
+
|
1102 |
+
from torch.fx.experimental.symbolic_shapes import expect_true
|
1103 |
+
if expect_true(cond):
|
1104 |
+
return
|
1105 |
+
|
1106 |
+
# error_type must be a subclass of Exception and not subclass of Warning
|
1107 |
+
assert issubclass(error_type, Exception) and not issubclass(error_type, Warning)
|
1108 |
+
|
1109 |
+
if message is None:
|
1110 |
+
message_evaluated = (
|
1111 |
+
'Expected cond to be True, but got False. (Could this error '
|
1112 |
+
'message be improved? If so, please report an enhancement request '
|
1113 |
+
'to PyTorch.)')
|
1114 |
+
|
1115 |
+
else:
|
1116 |
+
if not callable(message):
|
1117 |
+
raise TypeError('message must be a callable')
|
1118 |
+
|
1119 |
+
message_evaluated = str(message())
|
1120 |
+
|
1121 |
+
raise error_type(message_evaluated)
|
1122 |
+
|
1123 |
+
def _check(cond, message=None): # noqa: F811
|
1124 |
+
r"""Throws error containing an optional message if the specified condition
|
1125 |
+
is False.
|
1126 |
+
|
1127 |
+
Error type: ``RuntimeError``
|
1128 |
+
|
1129 |
+
C++ equivalent: ``TORCH_CHECK``
|
1130 |
+
|
1131 |
+
Args:
|
1132 |
+
cond (:class:`bool`): If False, throw error
|
1133 |
+
|
1134 |
+
message (Callable, optional): Callable that returns either a string or
|
1135 |
+
an object that has a ``__str__()`` method to be used as the error
|
1136 |
+
message. Default: ``None``
|
1137 |
+
"""
|
1138 |
+
_check_with(RuntimeError, cond, message)
|
1139 |
+
|
1140 |
+
def _check_is_size(i, message=None):
|
1141 |
+
"""Checks that a given integer is a valid size (i.e., is non-negative).
|
1142 |
+
You should use this over _check(i >= 0) because we can use the semantic
|
1143 |
+
information (that i is a size) to make some further inferences in case
|
1144 |
+
i is an unbacked SymInt.
|
1145 |
+
|
1146 |
+
NB: Do NOT use this in contexts where a -1 size would be valid (indicating
|
1147 |
+
to infer the size from context, or if you should wrap-around or truncate).
|
1148 |
+
Only use this if the only valid value is an honest to goodness size.
|
1149 |
+
"""
|
1150 |
+
# This is responsible for the expect_true
|
1151 |
+
_check(i >= 0, message)
|
1152 |
+
from torch.fx.experimental.symbolic_shapes import _advise_is_size
|
1153 |
+
_advise_is_size(i)
|
1154 |
+
|
1155 |
+
def _check_index(cond, message=None): # noqa: F811
|
1156 |
+
r"""Throws error containing an optional message if the specified condition
|
1157 |
+
is False.
|
1158 |
+
|
1159 |
+
Error type: ``IndexError``
|
1160 |
+
|
1161 |
+
C++ equivalent: ``TORCH_CHECK_INDEX``
|
1162 |
+
|
1163 |
+
Args:
|
1164 |
+
cond (:class:`bool`): If False, throw error
|
1165 |
+
|
1166 |
+
message (Callable, optional): Callable that returns either a string or
|
1167 |
+
an object that has a ``__str__()`` method to be used as the error
|
1168 |
+
message. Default: ``None``
|
1169 |
+
"""
|
1170 |
+
_check_with(IndexError, cond, message)
|
1171 |
+
|
1172 |
+
def _check_value(cond, message=None): # noqa: F811
|
1173 |
+
r"""Throws error containing an optional message if the specified condition
|
1174 |
+
is False.
|
1175 |
+
|
1176 |
+
Error type: ``ValueError``
|
1177 |
+
|
1178 |
+
C++ equivalent: ``TORCH_CHECK_VALUE``
|
1179 |
+
|
1180 |
+
Args:
|
1181 |
+
cond (:class:`bool`): If False, throw error
|
1182 |
+
|
1183 |
+
message (Callable, optional): Callable that returns either a string or
|
1184 |
+
an object that has a ``__str__()`` method to be used as the error
|
1185 |
+
message. Default: ``None``
|
1186 |
+
"""
|
1187 |
+
_check_with(ValueError, cond, message)
|
1188 |
+
|
1189 |
+
def _check_type(cond, message=None): # noqa: F811
|
1190 |
+
r"""Throws error containing an optional message if the specified condition
|
1191 |
+
is False.
|
1192 |
+
|
1193 |
+
Error type: ``TypeError``
|
1194 |
+
|
1195 |
+
C++ equivalent: ``TORCH_CHECK_TYPE``
|
1196 |
+
|
1197 |
+
Args:
|
1198 |
+
cond (:class:`bool`): If False, throw error
|
1199 |
+
|
1200 |
+
message (Callable, optional): Callable that returns either a string or
|
1201 |
+
an object that has a ``__str__()`` method to be used as the error
|
1202 |
+
message. Default: ``None``
|
1203 |
+
"""
|
1204 |
+
_check_with(TypeError, cond, message)
|
1205 |
+
|
1206 |
+
def _check_not_implemented(cond, message=None): # noqa: F811
|
1207 |
+
r"""Throws error containing an optional message if the specified condition
|
1208 |
+
is False.
|
1209 |
+
|
1210 |
+
Error type: ``NotImplementedError``
|
1211 |
+
|
1212 |
+
C++ equivalent: ``TORCH_CHECK_NOT_IMPLEMENTED``
|
1213 |
+
|
1214 |
+
Args:
|
1215 |
+
cond (:class:`bool`): If False, throw error
|
1216 |
+
|
1217 |
+
message (Callable, optional): Callable that returns either a string or
|
1218 |
+
an object that has a ``__str__()`` method to be used as the error
|
1219 |
+
message. Default: ``None``
|
1220 |
+
"""
|
1221 |
+
_check_with(NotImplementedError, cond, message)
|
1222 |
+
|
1223 |
+
def _check_tensor_all_with(error_type, cond, message=None): # noqa: F811
|
1224 |
+
if not torch.is_tensor(cond):
|
1225 |
+
raise TypeError(f'cond must be a tensor, but got {type(cond)}')
|
1226 |
+
|
1227 |
+
if not cond.dtype == torch.bool:
|
1228 |
+
raise TypeError(
|
1229 |
+
f'cond tensor must have dtype torch.bool, but got {cond.dtype}')
|
1230 |
+
|
1231 |
+
_check_with(error_type, cond._is_all_true().item(), message)
|
1232 |
+
|
1233 |
+
# C++ equivalent: `TORCH_CHECK_TENSOR_ALL`
|
1234 |
+
def _check_tensor_all(cond, message=None): # noqa: F811
|
1235 |
+
r"""Throws error containing an optional message if the specified condition
|
1236 |
+
is False.
|
1237 |
+
|
1238 |
+
Error type: ``RuntimeError``
|
1239 |
+
|
1240 |
+
C++ equivalent: ``TORCH_CHECK_TENSOR_ALL``
|
1241 |
+
|
1242 |
+
Args:
|
1243 |
+
cond (:class:`torch.Tensor`): Tensor of dtype ``torch.bool``. If any
|
1244 |
+
element is ``False``, throw error
|
1245 |
+
|
1246 |
+
message (Callable, optional): Callable that returns either a string or
|
1247 |
+
an object that has a ``__str__()`` method to be used as the error
|
1248 |
+
message. Default: ``None``
|
1249 |
+
"""
|
1250 |
+
_check_tensor_all_with(RuntimeError, cond, message)
|
1251 |
+
|
1252 |
+
################################################################################
|
1253 |
+
# Define numeric constants
|
1254 |
+
################################################################################
|
1255 |
+
|
1256 |
+
# For Python Array API (https://data-apis.org/array-api/latest/API_specification/constants.html) and
|
1257 |
+
# NumPy consistency (https://numpy.org/devdocs/reference/constants.html)
|
1258 |
+
from math import e , nan , inf , pi
|
1259 |
+
__all__.extend(['e', 'pi', 'nan', 'inf'])
|
1260 |
+
|
1261 |
+
################################################################################
|
1262 |
+
# Define Storage and Tensor classes
|
1263 |
+
################################################################################
|
1264 |
+
|
1265 |
+
from ._tensor import Tensor
|
1266 |
+
from .storage import _StorageBase, TypedStorage, _LegacyStorage, UntypedStorage, _warn_typed_storage_removal
|
1267 |
+
|
1268 |
+
# NOTE: New <type>Storage classes should never be added. When adding a new
|
1269 |
+
# dtype, use torch.storage.TypedStorage directly.
|
1270 |
+
|
1271 |
+
class ByteStorage(_LegacyStorage):
|
1272 |
+
@classproperty
|
1273 |
+
def dtype(self):
|
1274 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1275 |
+
return self._dtype
|
1276 |
+
|
1277 |
+
@classproperty
|
1278 |
+
def _dtype(self):
|
1279 |
+
return torch.uint8
|
1280 |
+
|
1281 |
+
class DoubleStorage(_LegacyStorage):
|
1282 |
+
@classproperty
|
1283 |
+
def dtype(self):
|
1284 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1285 |
+
return self._dtype
|
1286 |
+
|
1287 |
+
@classproperty
|
1288 |
+
def _dtype(self):
|
1289 |
+
return torch.double
|
1290 |
+
|
1291 |
+
class FloatStorage(_LegacyStorage):
|
1292 |
+
@classproperty
|
1293 |
+
def dtype(self):
|
1294 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1295 |
+
return self._dtype
|
1296 |
+
|
1297 |
+
@classproperty
|
1298 |
+
def _dtype(self):
|
1299 |
+
return torch.float
|
1300 |
+
|
1301 |
+
class HalfStorage(_LegacyStorage):
|
1302 |
+
@classproperty
|
1303 |
+
def dtype(self):
|
1304 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1305 |
+
return self._dtype
|
1306 |
+
|
1307 |
+
@classproperty
|
1308 |
+
def _dtype(self):
|
1309 |
+
return torch.half
|
1310 |
+
|
1311 |
+
class LongStorage(_LegacyStorage):
|
1312 |
+
@classproperty
|
1313 |
+
def dtype(self):
|
1314 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1315 |
+
return self._dtype
|
1316 |
+
|
1317 |
+
@classproperty
|
1318 |
+
def _dtype(self):
|
1319 |
+
return torch.long
|
1320 |
+
|
1321 |
+
class IntStorage(_LegacyStorage):
|
1322 |
+
@classproperty
|
1323 |
+
def dtype(self):
|
1324 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1325 |
+
return self._dtype
|
1326 |
+
|
1327 |
+
@classproperty
|
1328 |
+
def _dtype(self):
|
1329 |
+
return torch.int
|
1330 |
+
|
1331 |
+
class ShortStorage(_LegacyStorage):
|
1332 |
+
@classproperty
|
1333 |
+
def dtype(self):
|
1334 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1335 |
+
return self._dtype
|
1336 |
+
|
1337 |
+
@classproperty
|
1338 |
+
def _dtype(self):
|
1339 |
+
return torch.short
|
1340 |
+
|
1341 |
+
class CharStorage(_LegacyStorage):
|
1342 |
+
@classproperty
|
1343 |
+
def dtype(self):
|
1344 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1345 |
+
return self._dtype
|
1346 |
+
|
1347 |
+
@classproperty
|
1348 |
+
def _dtype(self):
|
1349 |
+
return torch.int8
|
1350 |
+
|
1351 |
+
class BoolStorage(_LegacyStorage):
|
1352 |
+
@classproperty
|
1353 |
+
def dtype(self):
|
1354 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1355 |
+
return self._dtype
|
1356 |
+
|
1357 |
+
@classproperty
|
1358 |
+
def _dtype(self):
|
1359 |
+
return torch.bool
|
1360 |
+
|
1361 |
+
class BFloat16Storage(_LegacyStorage):
|
1362 |
+
@classproperty
|
1363 |
+
def dtype(self):
|
1364 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1365 |
+
return self._dtype
|
1366 |
+
|
1367 |
+
@classproperty
|
1368 |
+
def _dtype(self):
|
1369 |
+
return torch.bfloat16
|
1370 |
+
|
1371 |
+
class ComplexDoubleStorage(_LegacyStorage):
|
1372 |
+
@classproperty
|
1373 |
+
def dtype(self):
|
1374 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1375 |
+
return self._dtype
|
1376 |
+
|
1377 |
+
@classproperty
|
1378 |
+
def _dtype(self):
|
1379 |
+
return torch.cdouble
|
1380 |
+
|
1381 |
+
class ComplexFloatStorage(_LegacyStorage):
|
1382 |
+
@classproperty
|
1383 |
+
def dtype(self):
|
1384 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1385 |
+
return self._dtype
|
1386 |
+
|
1387 |
+
@classproperty
|
1388 |
+
def _dtype(self):
|
1389 |
+
return torch.cfloat
|
1390 |
+
|
1391 |
+
class QUInt8Storage(_LegacyStorage):
|
1392 |
+
@classproperty
|
1393 |
+
def dtype(self):
|
1394 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1395 |
+
return self._dtype
|
1396 |
+
|
1397 |
+
@classproperty
|
1398 |
+
def _dtype(self):
|
1399 |
+
return torch.quint8
|
1400 |
+
|
1401 |
+
class QInt8Storage(_LegacyStorage):
|
1402 |
+
@classproperty
|
1403 |
+
def dtype(self):
|
1404 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1405 |
+
return self._dtype
|
1406 |
+
|
1407 |
+
@classproperty
|
1408 |
+
def _dtype(self):
|
1409 |
+
return torch.qint8
|
1410 |
+
|
1411 |
+
class QInt32Storage(_LegacyStorage):
|
1412 |
+
@classproperty
|
1413 |
+
def dtype(self):
|
1414 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1415 |
+
return self._dtype
|
1416 |
+
|
1417 |
+
@classproperty
|
1418 |
+
def _dtype(self):
|
1419 |
+
return torch.qint32
|
1420 |
+
|
1421 |
+
class QUInt4x2Storage(_LegacyStorage):
|
1422 |
+
@classproperty
|
1423 |
+
def dtype(self):
|
1424 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1425 |
+
return self._dtype
|
1426 |
+
|
1427 |
+
@classproperty
|
1428 |
+
def _dtype(self):
|
1429 |
+
return torch.quint4x2
|
1430 |
+
|
1431 |
+
class QUInt2x4Storage(_LegacyStorage):
|
1432 |
+
@classproperty
|
1433 |
+
def dtype(self):
|
1434 |
+
_warn_typed_storage_removal(stacklevel=3)
|
1435 |
+
return self._dtype
|
1436 |
+
|
1437 |
+
@classproperty
|
1438 |
+
def _dtype(self):
|
1439 |
+
return torch.quint2x4
|
1440 |
+
|
1441 |
+
_storage_classes = {
|
1442 |
+
UntypedStorage, DoubleStorage, FloatStorage, LongStorage, IntStorage,
|
1443 |
+
ShortStorage, CharStorage, ByteStorage, HalfStorage, BoolStorage,
|
1444 |
+
QUInt8Storage, QInt8Storage, QInt32Storage, BFloat16Storage,
|
1445 |
+
ComplexFloatStorage, ComplexDoubleStorage, QUInt4x2Storage, QUInt2x4Storage,
|
1446 |
+
TypedStorage
|
1447 |
+
}
|
1448 |
+
|
1449 |
+
# The _tensor_classes set is initialized by the call to initialize_python_bindings.
|
1450 |
+
_tensor_classes: Set[Type] = set()
|
1451 |
+
|
1452 |
+
# If you edit these imports, please update torch/__init__.py.in as well
|
1453 |
+
from .random import set_rng_state, get_rng_state, manual_seed, initial_seed, seed
|
1454 |
+
from .serialization import save, load
|
1455 |
+
from ._tensor_str import set_printoptions
|
1456 |
+
|
1457 |
+
################################################################################
|
1458 |
+
# Initialize extension
|
1459 |
+
################################################################################
|
1460 |
+
|
1461 |
+
def manager_path():
|
1462 |
+
if _running_with_deploy() or platform.system() == 'Windows':
|
1463 |
+
return b""
|
1464 |
+
path = get_file_path('torch', 'bin', 'torch_shm_manager')
|
1465 |
+
prepare_multiprocessing_environment(get_file_path('torch'))
|
1466 |
+
if not os.path.exists(path):
|
1467 |
+
raise RuntimeError("Unable to find torch_shm_manager at " + path)
|
1468 |
+
return path.encode('utf-8')
|
1469 |
+
|
1470 |
+
from torch.amp import autocast, GradScaler
|
1471 |
+
|
1472 |
+
# Initializing the extension shadows the built-in python float / int classes;
|
1473 |
+
# store them for later use by SymInt / SymFloat.
|
1474 |
+
py_float = float
|
1475 |
+
py_int = int
|
1476 |
+
|
1477 |
+
# Shared memory manager needs to know the exact location of manager executable
|
1478 |
+
_C._initExtension(manager_path())
|
1479 |
+
del manager_path
|
1480 |
+
|
1481 |
+
# Appease the type checker: it can't deal with direct setting of globals().
|
1482 |
+
# Note that we will see "too many" functions when reexporting this way; there
|
1483 |
+
# is not a good way to fix this problem. Perhaps, try to redesign VariableFunctions
|
1484 |
+
# so that this import is good enough
|
1485 |
+
if TYPE_CHECKING:
|
1486 |
+
# Some type signatures pulled in from _VariableFunctions here clash with
|
1487 |
+
# signatures already imported. For now these clashes are ignored; see
|
1488 |
+
# PR #43339 for details.
|
1489 |
+
from torch._C._VariableFunctions import * # type: ignore[assignment, misc] # noqa: F403
|
1490 |
+
# Fixup segment_reduce visibility
|
1491 |
+
_segment_reduce = segment_reduce
|
1492 |
+
del segment_reduce # noqa: F821
|
1493 |
+
|
1494 |
+
# Ops not to be exposed in `torch` namespace,
|
1495 |
+
# mostly helper ops.
|
1496 |
+
PRIVATE_OPS = (
|
1497 |
+
'unique_dim',
|
1498 |
+
)
|
1499 |
+
|
1500 |
+
for name in dir(_C._VariableFunctions):
|
1501 |
+
if name.startswith('__') or name in PRIVATE_OPS:
|
1502 |
+
continue
|
1503 |
+
obj = getattr(_C._VariableFunctions, name)
|
1504 |
+
obj.__module__ = 'torch'
|
1505 |
+
# Hide some APIs that should not be public
|
1506 |
+
if name == "segment_reduce":
|
1507 |
+
# TODO: Once the undocumented FC window is passed, remove the line bellow
|
1508 |
+
globals()[name] = obj
|
1509 |
+
name = "_" + name
|
1510 |
+
globals()[name] = obj
|
1511 |
+
if not name.startswith("_"):
|
1512 |
+
__all__.append(name)
|
1513 |
+
|
1514 |
+
|
1515 |
+
################################################################################
|
1516 |
+
# Add torch.dtype instances to the public API
|
1517 |
+
################################################################################
|
1518 |
+
|
1519 |
+
import torch
|
1520 |
+
|
1521 |
+
for attribute in dir(torch):
|
1522 |
+
if isinstance(getattr(torch, attribute), torch.dtype):
|
1523 |
+
__all__.append(attribute)
|
1524 |
+
|
1525 |
+
################################################################################
|
1526 |
+
# Import TorchDynamo's lazy APIs to avoid circular dependenices
|
1527 |
+
################################################################################
|
1528 |
+
|
1529 |
+
# needs to be before from .functional import * to avoid circular dependencies
|
1530 |
+
from ._compile import _disable_dynamo
|
1531 |
+
|
1532 |
+
################################################################################
|
1533 |
+
# Import interface functions defined in Python
|
1534 |
+
################################################################################
|
1535 |
+
|
1536 |
+
# needs to be after the above ATen bindings so we can overwrite from Python side
|
1537 |
+
from .functional import * # noqa: F403
|
1538 |
+
|
1539 |
+
|
1540 |
+
################################################################################
|
1541 |
+
# Remove unnecessary members
|
1542 |
+
################################################################################
|
1543 |
+
|
1544 |
+
del _StorageBase
|
1545 |
+
del _LegacyStorage
|
1546 |
+
|
1547 |
+
################################################################################
|
1548 |
+
# Define _assert
|
1549 |
+
################################################################################
|
1550 |
+
|
1551 |
+
# needs to be before the submodule imports to avoid circular dependencies
|
1552 |
+
def _assert(condition, message):
|
1553 |
+
r"""A wrapper around Python's assert which is symbolically traceable.
|
1554 |
+
"""
|
1555 |
+
from .overrides import has_torch_function, handle_torch_function
|
1556 |
+
|
1557 |
+
if type(condition) is not torch.Tensor and has_torch_function((condition,)):
|
1558 |
+
return handle_torch_function(_assert, (condition,), condition, message)
|
1559 |
+
assert condition, message
|
1560 |
+
|
1561 |
+
################################################################################
|
1562 |
+
# Import most common subpackages
|
1563 |
+
################################################################################
|
1564 |
+
|
1565 |
+
# Use the redundant form so that type checkers know that these are a part of
|
1566 |
+
# the public API. The "regular" import lines are there solely for the runtime
|
1567 |
+
# side effect of adding to the imported module's members for other users.
|
1568 |
+
from torch import cuda as cuda
|
1569 |
+
from torch import cpu as cpu
|
1570 |
+
from torch import mps as mps
|
1571 |
+
from torch import xpu as xpu
|
1572 |
+
from torch import autograd as autograd
|
1573 |
+
from torch.autograd import (
|
1574 |
+
no_grad as no_grad,
|
1575 |
+
enable_grad as enable_grad,
|
1576 |
+
set_grad_enabled as set_grad_enabled,
|
1577 |
+
inference_mode as inference_mode,
|
1578 |
+
)
|
1579 |
+
from torch import fft as fft
|
1580 |
+
from torch import futures as futures
|
1581 |
+
from torch import _awaits as _awaits
|
1582 |
+
from torch import nested as nested
|
1583 |
+
from torch import nn as nn
|
1584 |
+
from torch.signal import windows as windows
|
1585 |
+
from torch import optim as optim
|
1586 |
+
import torch.optim._multi_tensor
|
1587 |
+
from torch import multiprocessing as multiprocessing
|
1588 |
+
from torch import sparse as sparse
|
1589 |
+
from torch import special as special
|
1590 |
+
import torch.utils.backcompat
|
1591 |
+
from torch import jit as jit
|
1592 |
+
from torch import linalg as linalg
|
1593 |
+
from torch import hub as hub
|
1594 |
+
from torch import random as random
|
1595 |
+
from torch import distributions as distributions
|
1596 |
+
from torch import testing as testing
|
1597 |
+
from torch import backends as backends
|
1598 |
+
import torch.utils.data
|
1599 |
+
from torch import __config__ as __config__
|
1600 |
+
from torch import __future__ as __future__
|
1601 |
+
from torch import profiler as profiler
|
1602 |
+
|
1603 |
+
# Quantized, sparse, AO, etc. should be last to get imported, as nothing
|
1604 |
+
# is expected to depend on them.
|
1605 |
+
from torch import ao as ao
|
1606 |
+
# nn.quant* depends on ao -- so should be after those.
|
1607 |
+
import torch.nn.quantizable
|
1608 |
+
import torch.nn.quantized
|
1609 |
+
import torch.nn.qat
|
1610 |
+
import torch.nn.intrinsic
|
1611 |
+
|
1612 |
+
_C._init_names(list(torch._storage_classes))
|
1613 |
+
|
1614 |
+
# attach docstrings to torch and tensor functions
|
1615 |
+
from . import _torch_docs, _tensor_docs, _storage_docs
|
1616 |
+
del _torch_docs, _tensor_docs, _storage_docs
|
1617 |
+
|
1618 |
+
|
1619 |
+
def compiled_with_cxx11_abi() -> builtins.bool:
|
1620 |
+
r"""Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1"""
|
1621 |
+
return _C._GLIBCXX_USE_CXX11_ABI
|
1622 |
+
|
1623 |
+
|
1624 |
+
# Import the ops "namespace"
|
1625 |
+
from torch._ops import ops
|
1626 |
+
from torch._classes import classes
|
1627 |
+
import torch._library
|
1628 |
+
|
1629 |
+
# quantization depends on torch.fx
|
1630 |
+
# Import quantization
|
1631 |
+
from torch import quantization as quantization
|
1632 |
+
|
1633 |
+
# Import the quasi random sampler
|
1634 |
+
from torch import quasirandom as quasirandom
|
1635 |
+
|
1636 |
+
# If you are seeing this, it means that this call site was not checked if
|
1637 |
+
# the memory format could be preserved, and it was switched to old default
|
1638 |
+
# behaviour of contiguous
|
1639 |
+
legacy_contiguous_format = contiguous_format
|
1640 |
+
|
1641 |
+
# Register fork handler to initialize OpenMP in child processes (see gh-28389)
|
1642 |
+
from torch.multiprocessing._atfork import register_after_fork
|
1643 |
+
register_after_fork(torch.get_num_threads)
|
1644 |
+
del register_after_fork
|
1645 |
+
|
1646 |
+
# Import tools that require fully imported torch (for applying
|
1647 |
+
# torch.jit.script as a decorator, for instance):
|
1648 |
+
from ._lobpcg import lobpcg as lobpcg
|
1649 |
+
|
1650 |
+
# These were previously defined in native_functions.yaml and appeared on the
|
1651 |
+
# `torch` namespace, but we moved them to c10 dispatch to facilitate custom
|
1652 |
+
# class usage. We add these lines here to preserve backward compatibility.
|
1653 |
+
quantized_lstm = torch.ops.aten.quantized_lstm
|
1654 |
+
quantized_gru = torch.ops.aten.quantized_gru
|
1655 |
+
|
1656 |
+
from torch.utils.dlpack import from_dlpack, to_dlpack
|
1657 |
+
|
1658 |
+
# Import experimental masked operations support. See
|
1659 |
+
# [RFC-0016](https://github.com/pytorch/rfcs/pull/27) for more
|
1660 |
+
# information.
|
1661 |
+
from . import masked
|
1662 |
+
|
1663 |
+
# Import removed ops with error message about removal
|
1664 |
+
from ._linalg_utils import ( # type: ignore[misc]
|
1665 |
+
matrix_rank,
|
1666 |
+
eig,
|
1667 |
+
solve,
|
1668 |
+
lstsq,
|
1669 |
+
)
|
1670 |
+
from ._linalg_utils import _symeig as symeig # type: ignore[misc]
|
1671 |
+
|
1672 |
+
class _TorchCompileInductorWrapper:
|
1673 |
+
compiler_name = "inductor"
|
1674 |
+
|
1675 |
+
def __init__(self, mode, options, dynamic):
|
1676 |
+
self.config: Dict[str, Any] = dict()
|
1677 |
+
self.dynamic = dynamic
|
1678 |
+
self.apply_mode(mode)
|
1679 |
+
self.apply_options(options)
|
1680 |
+
|
1681 |
+
if self.config.get("triton.cudagraphs", False):
|
1682 |
+
os.environ["DISABLE_CUPTI_LAZY_REINIT"] = "1"
|
1683 |
+
# FIXME: CUDA Graph does not work well with CUPTI teardown.
|
1684 |
+
# 1) crashes on 1st lazy CUPTI re-init after teardown (CUDA 11)
|
1685 |
+
# 2) crashes on 2nd non-lazy CUPTI re-init after teardown (CUDA 12)
|
1686 |
+
# Workaround: turn off CUPTI teardown when using CUDA Graphs.
|
1687 |
+
os.environ["TEARDOWN_CUPTI"] = "0"
|
1688 |
+
|
1689 |
+
def __eq__(self, other):
|
1690 |
+
return (isinstance(other, _TorchCompileInductorWrapper) and
|
1691 |
+
self.config == other.config and
|
1692 |
+
self.dynamic == other.dynamic)
|
1693 |
+
|
1694 |
+
def apply_mode(self, mode: Optional[str]):
|
1695 |
+
if mode is None or mode == "default":
|
1696 |
+
pass
|
1697 |
+
elif mode in ("reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"):
|
1698 |
+
from torch._inductor import list_mode_options
|
1699 |
+
self.apply_options(list_mode_options(mode, self.dynamic))
|
1700 |
+
else:
|
1701 |
+
raise RuntimeError(
|
1702 |
+
f"Unrecognized mode={mode}, should be one of: default, reduce-overhead, max-autotune, max-autotune-no-cudagraphs"
|
1703 |
+
)
|
1704 |
+
|
1705 |
+
def apply_options(self, options: Optional[Dict[str, Any]]):
|
1706 |
+
if not options:
|
1707 |
+
return
|
1708 |
+
|
1709 |
+
from torch._inductor import config
|
1710 |
+
current_config: Dict[str, Any] = config.shallow_copy_dict()
|
1711 |
+
|
1712 |
+
for key, val in options.items():
|
1713 |
+
attr_name = key.replace("-", "_")
|
1714 |
+
if attr_name not in current_config:
|
1715 |
+
raise RuntimeError(
|
1716 |
+
f"Unexpected optimization option {key}, known options are {list(current_config.keys())}"
|
1717 |
+
)
|
1718 |
+
if type(val) is not type(current_config[attr_name]):
|
1719 |
+
val_type_str = type(val).__name__
|
1720 |
+
expected_type_str = type(current_config[attr_name]).__name__
|
1721 |
+
raise RuntimeError(
|
1722 |
+
f"Unexpected type of attr {key}, got {val_type_str} should be {expected_type_str}"
|
1723 |
+
)
|
1724 |
+
self.config[attr_name] = val
|
1725 |
+
|
1726 |
+
def __call__(self, model_, inputs_):
|
1727 |
+
from torch._inductor.compile_fx import compile_fx
|
1728 |
+
|
1729 |
+
return compile_fx(model_, inputs_, config_patches=self.config)
|
1730 |
+
|
1731 |
+
def get_compiler_config(self):
|
1732 |
+
from torch._inductor.compile_fx import get_patched_config_dict
|
1733 |
+
return get_patched_config_dict(config_patches=self.config)
|
1734 |
+
|
1735 |
+
def reset(self):
|
1736 |
+
from torch._inductor import config
|
1737 |
+
if "triton.cudagraphs" in self.config or config.triton.cudagraphs:
|
1738 |
+
if self.config.get("triton.cudagraphs", True):
|
1739 |
+
from torch._inductor.cudagraph_trees import reset_cudagraph_trees
|
1740 |
+
reset_cudagraph_trees()
|
1741 |
+
|
1742 |
+
class _TorchCompileWrapper:
|
1743 |
+
def __init__(self, backend, mode, options, dynamic):
|
1744 |
+
from torch._dynamo.backends.registry import lookup_backend
|
1745 |
+
|
1746 |
+
if isinstance(backend, str):
|
1747 |
+
self.compiler_name = backend
|
1748 |
+
elif hasattr(backend, "__name__"):
|
1749 |
+
self.compiler_name = backend.__name__
|
1750 |
+
else:
|
1751 |
+
self.compiler_name = str(backend)
|
1752 |
+
self.dynamic = dynamic
|
1753 |
+
self.compiler_fn = lookup_backend(backend)
|
1754 |
+
self.kwargs = {}
|
1755 |
+
# only pass the args if they non-empty
|
1756 |
+
if mode and mode != "default":
|
1757 |
+
self.kwargs["mode"] = mode
|
1758 |
+
if options:
|
1759 |
+
self.kwargs["options"] = options
|
1760 |
+
|
1761 |
+
def __eq__(self, other):
|
1762 |
+
return (isinstance(other, _TorchCompileWrapper) and
|
1763 |
+
self.compiler_fn == other.compiler_fn and
|
1764 |
+
self.kwargs == other.kwargs and
|
1765 |
+
self.dynamic == other.dynamic)
|
1766 |
+
|
1767 |
+
def __call__(self, model_, inputs_):
|
1768 |
+
return self.compiler_fn(model_, inputs_, **self.kwargs)
|
1769 |
+
|
1770 |
+
def reset(self):
|
1771 |
+
if hasattr(self.compiler_fn, "reset"):
|
1772 |
+
self.compiler_fn.reset()
|
1773 |
+
|
1774 |
+
|
1775 |
+
def compile(model: Optional[Callable] = None, *,
|
1776 |
+
fullgraph: builtins.bool = False,
|
1777 |
+
dynamic: Optional[builtins.bool] = None,
|
1778 |
+
backend: Union[str, Callable] = "inductor",
|
1779 |
+
mode: Union[str, None] = None,
|
1780 |
+
options: Optional[Dict[str, Union[str, builtins.int, builtins.bool]]] = None,
|
1781 |
+
disable: builtins.bool = False) -> Callable:
|
1782 |
+
"""
|
1783 |
+
Optimizes given model/function using TorchDynamo and specified backend.
|
1784 |
+
|
1785 |
+
Concretely, for every frame executed within the compiled region, we will attempt
|
1786 |
+
to compile it and cache the compiled result on the code object for future
|
1787 |
+
use. A single frame may be compiled multiple times if previous compiled
|
1788 |
+
results are not applicable for subsequent calls (this is called a "guard
|
1789 |
+
failure), you can use TORCH_LOGS=guards to debug these situations.
|
1790 |
+
Multiple compiled results can be associated with a frame up to
|
1791 |
+
``torch._dynamo.config.cache_size_limit``, which defaults to 64; at which
|
1792 |
+
point we will fall back to eager. Note that compile caches are per
|
1793 |
+
*code object*, not frame; if you dynamically create multiple copies of a
|
1794 |
+
function, they will all share the same code cache.
|
1795 |
+
|
1796 |
+
Args:
|
1797 |
+
model (Callable): Module/function to optimize
|
1798 |
+
fullgraph (bool): If False (default), torch.compile attempts to discover compileable regions
|
1799 |
+
in the function that it will optimize. If True, then we require that the entire function be
|
1800 |
+
capturable into a single graph. If this is not possible (that is, if there are graph breaks),
|
1801 |
+
then this will raise an error.
|
1802 |
+
dynamic (bool or None): Use dynamic shape tracing. When this is True, we will up-front attempt
|
1803 |
+
to generate a kernel that is as dynamic as possible to avoid recompilations when
|
1804 |
+
sizes change. This may not always work as some operations/optimizations will
|
1805 |
+
force specialization; use TORCH_LOGS=dynamic to debug overspecialization.
|
1806 |
+
When this is False, we will NEVER generate dynamic kernels, we will always specialize.
|
1807 |
+
By default (None), we automatically detect if dynamism has occurred and compile a more
|
1808 |
+
dynamic kernel upon recompile.
|
1809 |
+
backend (str or Callable): backend to be used
|
1810 |
+
|
1811 |
+
- "inductor" is the default backend, which is a good balance between performance and overhead
|
1812 |
+
|
1813 |
+
- Non experimental in-tree backends can be seen with `torch._dynamo.list_backends()`
|
1814 |
+
|
1815 |
+
- Experimental or debug in-tree backends can be seen with `torch._dynamo.list_backends(None)`
|
1816 |
+
|
1817 |
+
- To register an out-of-tree custom backend: https://pytorch.org/docs/main/compile/custom-backends.html
|
1818 |
+
mode (str): Can be either "default", "reduce-overhead", "max-autotune" or "max-autotune-no-cudagraphs"
|
1819 |
+
|
1820 |
+
- "default" is the default mode, which is a good balance between performance and overhead
|
1821 |
+
|
1822 |
+
- "reduce-overhead" is a mode that reduces the overhead of python with CUDA graphs,
|
1823 |
+
useful for small batches. Reduction of overhead can come at the cost of more memory
|
1824 |
+
usage, as we will cache the workspace memory required for the invocation so that we
|
1825 |
+
do not have to reallocate it on subsequent runs. Reduction of overhead is not guaranteed
|
1826 |
+
to work; today, we only reduce overhead for CUDA only graphs which do not mutate inputs.
|
1827 |
+
There are other circumstances where CUDA graphs are not applicable; use TORCH_LOG=perf_hints
|
1828 |
+
to debug.
|
1829 |
+
|
1830 |
+
- "max-autotune" is a mode that leverages Triton based matrix multiplications and convolutions
|
1831 |
+
It enables CUDA graphs by default.
|
1832 |
+
|
1833 |
+
- "max-autotune-no-cudagraphs" is a mode similar to "max-autotune" but without CUDA graphs
|
1834 |
+
|
1835 |
+
- To see the exact configs that each mode sets you can call `torch._inductor.list_mode_options()`
|
1836 |
+
|
1837 |
+
options (dict): A dictionary of options to pass to the backend. Some notable ones to try out are
|
1838 |
+
|
1839 |
+
- `epilogue_fusion` which fuses pointwise ops into templates. Requires `max_autotune` to also be set
|
1840 |
+
|
1841 |
+
- `max_autotune` which will profile to pick the best matmul configuration
|
1842 |
+
|
1843 |
+
- `fallback_random` which is useful when debugging accuracy issues
|
1844 |
+
|
1845 |
+
- `shape_padding` which pads matrix shapes to better align loads on GPUs especially for tensor cores
|
1846 |
+
|
1847 |
+
- `triton.cudagraphs` which will reduce the overhead of python with CUDA graphs
|
1848 |
+
|
1849 |
+
- `trace.enabled` which is the most useful debugging flag to turn on
|
1850 |
+
|
1851 |
+
- `trace.graph_diagram` which will show you a picture of your graph after fusion
|
1852 |
+
|
1853 |
+
- For inductor you can see the full list of configs that it supports by calling `torch._inductor.list_options()`
|
1854 |
+
disable (bool): Turn torch.compile() into a no-op for testing
|
1855 |
+
|
1856 |
+
Example::
|
1857 |
+
|
1858 |
+
@torch.compile(options={"triton.cudagraphs": True}, fullgraph=True)
|
1859 |
+
def foo(x):
|
1860 |
+
return torch.sin(x) + torch.cos(x)
|
1861 |
+
|
1862 |
+
"""
|
1863 |
+
_C._log_api_usage_once("torch.compile")
|
1864 |
+
# Temporary until we get proper support for python 3.12
|
1865 |
+
if sys.version_info >= (3, 12):
|
1866 |
+
raise RuntimeError("Dynamo is not supported on Python 3.12+")
|
1867 |
+
|
1868 |
+
# Decorator mode
|
1869 |
+
if model is None:
|
1870 |
+
def fn(model: Callable):
|
1871 |
+
if model is None:
|
1872 |
+
raise RuntimeError("Model can't be None")
|
1873 |
+
return compile(model,
|
1874 |
+
fullgraph=fullgraph,
|
1875 |
+
dynamic=dynamic,
|
1876 |
+
backend=backend,
|
1877 |
+
mode=mode,
|
1878 |
+
options=options,
|
1879 |
+
disable=disable)
|
1880 |
+
return fn
|
1881 |
+
|
1882 |
+
if mode is not None and options is not None:
|
1883 |
+
raise RuntimeError("Either mode or options can be specified, but both can't be specified at the same time.")
|
1884 |
+
if mode is None and options is None:
|
1885 |
+
mode = "default"
|
1886 |
+
if backend == "inductor":
|
1887 |
+
backend = _TorchCompileInductorWrapper(mode, options, dynamic)
|
1888 |
+
else:
|
1889 |
+
backend = _TorchCompileWrapper(backend, mode, options, dynamic)
|
1890 |
+
|
1891 |
+
return torch._dynamo.optimize(backend=backend, nopython=fullgraph, dynamic=dynamic, disable=disable)(model)
|
1892 |
+
|
1893 |
+
|
1894 |
+
from torch import export as export
|
1895 |
+
|
1896 |
+
from torch._higher_order_ops import cond
|
1897 |
+
|
1898 |
+
def _register_device_module(device_type, module):
|
1899 |
+
r"""Register an external runtime module of the specific :attr:`device_type`
|
1900 |
+
supported by torch.
|
1901 |
+
|
1902 |
+
After the :attr:`module` is registered correctly, the user can refer
|
1903 |
+
the external runtime module as part of torch with attribute torch.xxx.
|
1904 |
+
"""
|
1905 |
+
# Make sure the device_type represent a supported device type for torch.
|
1906 |
+
device_type = torch.device(device_type).type
|
1907 |
+
m = sys.modules[__name__]
|
1908 |
+
if hasattr(m, device_type):
|
1909 |
+
raise RuntimeError(f"The runtime module of '{device_type}' has already "
|
1910 |
+
f"been registered with '{getattr(m, device_type)}'")
|
1911 |
+
setattr(m, device_type, module)
|
1912 |
+
torch_module_name = '.'.join([__name__, device_type])
|
1913 |
+
sys.modules[torch_module_name] = module
|
1914 |
+
|
1915 |
+
# expose return_types
|
1916 |
+
from . import return_types
|
1917 |
+
from . import library
|
1918 |
+
if not TYPE_CHECKING:
|
1919 |
+
from . import _meta_registrations
|
1920 |
+
|
1921 |
+
# Enable CUDA Sanitizer
|
1922 |
+
if 'TORCH_CUDA_SANITIZER' in os.environ:
|
1923 |
+
import torch.cuda._sanitizer as csan
|
1924 |
+
|
1925 |
+
csan.enable_cuda_sanitizer()
|
1926 |
+
|
1927 |
+
# Populate magic methods on SymInt and SymFloat
|
1928 |
+
import torch.fx.experimental.sym_node
|
1929 |
+
|
1930 |
+
from torch import func as func
|
1931 |
+
from torch.func import vmap
|
1932 |
+
|
1933 |
+
|
1934 |
+
# The function _sparse_coo_tensor_unsafe is removed from PyTorch
|
1935 |
+
# Python API (v. 1.13), here we temporarily provide its replacement
|
1936 |
+
# with a deprecation warning.
|
1937 |
+
# TODO: remove the function for PyTorch v 1.15.
|
1938 |
+
def _sparse_coo_tensor_unsafe(*args, **kwargs):
|
1939 |
+
import warnings
|
1940 |
+
warnings.warn('torch._sparse_coo_tensor_unsafe is deprecated, '
|
1941 |
+
'use torch.sparse_coo_tensor(..., check_invariants=False) instead.')
|
1942 |
+
kwargs['check_invariants'] = False
|
1943 |
+
return torch.sparse_coo_tensor(*args, **kwargs)
|
1944 |
+
|
1945 |
+
# Register MPS specific decomps
|
1946 |
+
torch.backends.mps._init()
|
1947 |
+
|
1948 |
+
if not _running_with_deploy():
|
1949 |
+
from torch import compiler as compiler
|
1950 |
+
|
1951 |
+
class _TritonLibrary:
|
1952 |
+
lib = torch.library.Library("triton", "DEF")
|
1953 |
+
ops_table: Dict[Tuple[str, str], Callable] = {}
|
1954 |
+
|
1955 |
+
@classmethod
|
1956 |
+
def registerOp(cls, op_key, full_schema, op_impl, dispatch_key):
|
1957 |
+
if (op_key, dispatch_key) not in cls.ops_table:
|
1958 |
+
cls.lib.define(full_schema)
|
1959 |
+
cls.lib.impl("triton::" + op_key, op_impl, dispatch_key)
|
1960 |
+
cls.ops_table[(op_key, dispatch_key)] = op_impl
|
1961 |
+
|
1962 |
+
return cls.ops_table[(op_key, dispatch_key)]
|
1963 |
+
|
1964 |
+
|
1965 |
+
# Deprecated attributes
|
1966 |
+
_deprecated_attrs = {
|
1967 |
+
"has_mps": torch.backends.mps.is_built,
|
1968 |
+
"has_cuda": torch.backends.cuda.is_built,
|
1969 |
+
"has_cudnn": torch.backends.cudnn.is_available,
|
1970 |
+
"has_mkldnn": torch.backends.mkldnn.is_available,
|
1971 |
+
}
|
1972 |
+
|
1973 |
+
if TYPE_CHECKING:
|
1974 |
+
# Import the following modules during type checking to enable code intelligence features,
|
1975 |
+
# such as auto-completion in tools like pylance, even when these modules are not explicitly
|
1976 |
+
# imported in user code.
|
1977 |
+
from torch import _dynamo as _dynamo
|
1978 |
+
from torch import _inductor as _inductor
|
1979 |
+
from torch import onnx as onnx
|
1980 |
+
|
1981 |
+
else:
|
1982 |
+
_lazy_modules = {
|
1983 |
+
"_dynamo",
|
1984 |
+
"_inductor",
|
1985 |
+
"_export",
|
1986 |
+
# ONNX must be imported after _dynamo, _ops, _subclasses, fx, func and jit
|
1987 |
+
"onnx",
|
1988 |
+
}
|
1989 |
+
|
1990 |
+
def __getattr__(name):
|
1991 |
+
# Deprecated attrs
|
1992 |
+
replacement = _deprecated_attrs.get(name)
|
1993 |
+
if replacement is not None:
|
1994 |
+
import warnings
|
1995 |
+
warnings.warn(f"'{name}' is deprecated, please use '{replacement.__module__}.{replacement.__name__}()'", stacklevel=2)
|
1996 |
+
return replacement()
|
1997 |
+
|
1998 |
+
# Lazy modules
|
1999 |
+
if name in _lazy_modules:
|
2000 |
+
import importlib
|
2001 |
+
return importlib.import_module(f".{name}", __name__)
|
2002 |
+
|
2003 |
+
raise AttributeError(f"module '{__name__}' has no attribute '{name}'")
|
2004 |
+
|
2005 |
+
|
2006 |
+
def _constrain_as_value(symbol, min: Optional[builtins.int] = None, max: Optional[builtins.int] = None):
|
2007 |
+
"""
|
2008 |
+
Add min/max constraint on the intermediate symbol at tracing time. If called in eager mode,
|
2009 |
+
it will still check if the input value is within the specified range.
|
2010 |
+
"""
|
2011 |
+
torch.sym_constrain_range(symbol, min=min, max=max)
|
2012 |
+
|
2013 |
+
|
2014 |
+
def _constrain_as_size(symbol, min: Optional[builtins.int] = None, max: Optional[builtins.int] = None):
|
2015 |
+
"""
|
2016 |
+
This indicates that a given int is size-like, and can be used in any context where a size is expected.
|
2017 |
+
You will typically use this when reading out integers from Tensors, e.g., max.item() or lengths.tolist()
|
2018 |
+
which then need to be used as tensor constructors. Providing these assertions to PyTorch can help resolve
|
2019 |
+
GuardOnDataDependentSymNode errors upon export, since we cannot guard on unbacked SymInts.
|
2020 |
+
|
2021 |
+
This function has unusual semantics which distinguish it from
|
2022 |
+
constrain_as_value. Specifically, in some circumstances in framework
|
2023 |
+
code, we will treat this int as >= 2 (when we do a size-oblivious guard).
|
2024 |
+
This makes it easier to This makes it easier to use the unbacked int in
|
2025 |
+
size contexts, as we will often attempt to guard on a size being zero/one
|
2026 |
+
(e.g., when computing the contiguity of a tensor, or testing if
|
2027 |
+
broadcasting can occur), which will not work on unbacked SymInts.
|
2028 |
+
However, if we conservatively assume that the size is not zero/one, we will
|
2029 |
+
end up with a graph that will still work even if the size is zero/one.
|
2030 |
+
|
2031 |
+
For more details, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit
|
2032 |
+
```
|
2033 |
+
"""
|
2034 |
+
torch.sym_constrain_range_for_size(symbol, min=min, max=max)
|
2035 |
+
|
2036 |
+
|
2037 |
+
from . import _logging
|
2038 |
+
_logging._init_logs()
|