Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/modeling_conditional_detr.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__init__.py +109 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/configuration_efficientformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/image_processing_efficientformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_efficientformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_tf_efficientformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/configuration_efficientformer.py +170 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.py +252 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/image_processing_efficientformer.py +321 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/modeling_efficientformer.py +803 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/modeling_tf_efficientformer.py +1193 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__init__.py +75 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/configuration_glpn.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/convert_glpn_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/feature_extraction_glpn.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/image_processing_glpn.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/modeling_glpn.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/configuration_glpn.py +135 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/convert_glpn_to_pytorch.py +219 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/feature_extraction_glpn.py +33 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/image_processing_glpn.py +233 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/modeling_glpn.py +778 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/__init__.py +85 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/__pycache__/configuration_gpt_neo.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/__pycache__/convert_gpt_neo_mesh_tf_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/__pycache__/modeling_flax_gpt_neo.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/__pycache__/modeling_gpt_neo.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/configuration_gpt_neo.py +272 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/convert_gpt_neo_mesh_tf_to_pytorch.py +72 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/modeling_flax_gpt_neo.py +684 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/modeling_gpt_neo.py +1346 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/grounding_dino/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/grounding_dino/__pycache__/configuration_grounding_dino.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/grounding_dino/__pycache__/convert_grounding_dino_to_hf.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/grounding_dino/__pycache__/image_processing_grounding_dino.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/grounding_dino/__pycache__/modeling_grounding_dino.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/grounding_dino/__pycache__/processing_grounding_dino.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlm/modeling_tf_layoutlm.py +1685 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlm/tokenization_layoutlm.py +504 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus_x/__init__.py +57 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus_x/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus_x/__pycache__/configuration_pegasus_x.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus_x/__pycache__/modeling_pegasus_x.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus_x/configuration_pegasus_x.py +177 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus_x/modeling_pegasus_x.py +1627 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/udop/__init__.py +98 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/modeling_conditional_detr.cpython-310.pyc
ADDED
Binary file (93.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__init__.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_tf_available,
|
20 |
+
is_torch_available,
|
21 |
+
is_vision_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {
|
26 |
+
"configuration_efficientformer": [
|
27 |
+
"EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
28 |
+
"EfficientFormerConfig",
|
29 |
+
]
|
30 |
+
}
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_vision_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["image_processing_efficientformer"] = ["EfficientFormerImageProcessor"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_torch_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_efficientformer"] = [
|
47 |
+
"EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
48 |
+
"EfficientFormerForImageClassification",
|
49 |
+
"EfficientFormerForImageClassificationWithTeacher",
|
50 |
+
"EfficientFormerModel",
|
51 |
+
"EfficientFormerPreTrainedModel",
|
52 |
+
]
|
53 |
+
|
54 |
+
try:
|
55 |
+
if not is_tf_available():
|
56 |
+
raise OptionalDependencyNotAvailable()
|
57 |
+
except OptionalDependencyNotAvailable:
|
58 |
+
pass
|
59 |
+
else:
|
60 |
+
_import_structure["modeling_tf_efficientformer"] = [
|
61 |
+
"TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
62 |
+
"TFEfficientFormerForImageClassification",
|
63 |
+
"TFEfficientFormerForImageClassificationWithTeacher",
|
64 |
+
"TFEfficientFormerModel",
|
65 |
+
"TFEfficientFormerPreTrainedModel",
|
66 |
+
]
|
67 |
+
|
68 |
+
if TYPE_CHECKING:
|
69 |
+
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
|
70 |
+
|
71 |
+
try:
|
72 |
+
if not is_vision_available():
|
73 |
+
raise OptionalDependencyNotAvailable()
|
74 |
+
except OptionalDependencyNotAvailable:
|
75 |
+
pass
|
76 |
+
else:
|
77 |
+
from .image_processing_efficientformer import EfficientFormerImageProcessor
|
78 |
+
|
79 |
+
try:
|
80 |
+
if not is_torch_available():
|
81 |
+
raise OptionalDependencyNotAvailable()
|
82 |
+
except OptionalDependencyNotAvailable:
|
83 |
+
pass
|
84 |
+
else:
|
85 |
+
from .modeling_efficientformer import (
|
86 |
+
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
87 |
+
EfficientFormerForImageClassification,
|
88 |
+
EfficientFormerForImageClassificationWithTeacher,
|
89 |
+
EfficientFormerModel,
|
90 |
+
EfficientFormerPreTrainedModel,
|
91 |
+
)
|
92 |
+
try:
|
93 |
+
if not is_tf_available():
|
94 |
+
raise OptionalDependencyNotAvailable()
|
95 |
+
except OptionalDependencyNotAvailable:
|
96 |
+
pass
|
97 |
+
else:
|
98 |
+
from .modeling_tf_efficientformer import (
|
99 |
+
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
100 |
+
TFEfficientFormerForImageClassification,
|
101 |
+
TFEfficientFormerForImageClassificationWithTeacher,
|
102 |
+
TFEfficientFormerModel,
|
103 |
+
TFEfficientFormerPreTrainedModel,
|
104 |
+
)
|
105 |
+
|
106 |
+
else:
|
107 |
+
import sys
|
108 |
+
|
109 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.74 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/configuration_efficientformer.cpython-310.pyc
ADDED
Binary file (6.94 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (6.15 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/image_processing_efficientformer.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_efficientformer.cpython-310.pyc
ADDED
Binary file (27.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_tf_efficientformer.cpython-310.pyc
ADDED
Binary file (37.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/configuration_efficientformer.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" EfficientFormer model configuration"""
|
16 |
+
|
17 |
+
from typing import List
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
from ..deprecated._archive_maps import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
27 |
+
|
28 |
+
|
29 |
+
class EfficientFormerConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of an [`EfficientFormerModel`]. It is used to
|
32 |
+
instantiate an EfficientFormer model according to the specified arguments, defining the model architecture.
|
33 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the EfficientFormer
|
34 |
+
[snap-research/efficientformer-l1](https://huggingface.co/snap-research/efficientformer-l1) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
depths (`List(int)`, *optional*, defaults to `[3, 2, 6, 4]`)
|
41 |
+
Depth of each stage.
|
42 |
+
hidden_sizes (`List(int)`, *optional*, defaults to `[48, 96, 224, 448]`)
|
43 |
+
Dimensionality of each stage.
|
44 |
+
downsamples (`List(bool)`, *optional*, defaults to `[True, True, True, True]`)
|
45 |
+
Whether or not to downsample inputs between two stages.
|
46 |
+
dim (`int`, *optional*, defaults to 448):
|
47 |
+
Number of channels in Meta3D layers
|
48 |
+
key_dim (`int`, *optional*, defaults to 32):
|
49 |
+
The size of the key in meta3D block.
|
50 |
+
attention_ratio (`int`, *optional*, defaults to 4):
|
51 |
+
Ratio of the dimension of the query and value to the dimension of the key in MSHA block
|
52 |
+
resolution (`int`, *optional*, defaults to 7)
|
53 |
+
Size of each patch
|
54 |
+
num_hidden_layers (`int`, *optional*, defaults to 5):
|
55 |
+
Number of hidden layers in the Transformer encoder.
|
56 |
+
num_attention_heads (`int`, *optional*, defaults to 8):
|
57 |
+
Number of attention heads for each attention layer in the 3D MetaBlock.
|
58 |
+
mlp_expansion_ratio (`int`, *optional*, defaults to 4):
|
59 |
+
Ratio of size of the hidden dimensionality of an MLP to the dimensionality of its input.
|
60 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings and encoder.
|
62 |
+
patch_size (`int`, *optional*, defaults to 16):
|
63 |
+
The size (resolution) of each patch.
|
64 |
+
num_channels (`int`, *optional*, defaults to 3):
|
65 |
+
The number of input channels.
|
66 |
+
pool_size (`int`, *optional*, defaults to 3):
|
67 |
+
Kernel size of pooling layers.
|
68 |
+
downsample_patch_size (`int`, *optional*, defaults to 3):
|
69 |
+
The size of patches in downsampling layers.
|
70 |
+
downsample_stride (`int`, *optional*, defaults to 2):
|
71 |
+
The stride of convolution kernels in downsampling layers.
|
72 |
+
downsample_pad (`int`, *optional*, defaults to 1):
|
73 |
+
Padding in downsampling layers.
|
74 |
+
drop_path_rate (`int`, *optional*, defaults to 0):
|
75 |
+
Rate at which to increase dropout probability in DropPath.
|
76 |
+
num_meta3d_blocks (`int`, *optional*, defaults to 1):
|
77 |
+
The number of 3D MetaBlocks in the last stage.
|
78 |
+
distillation (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether to add a distillation head.
|
80 |
+
use_layer_scale (`bool`, *optional*, defaults to `True`):
|
81 |
+
Whether to scale outputs from token mixers.
|
82 |
+
layer_scale_init_value (`float`, *optional*, defaults to 1e-5):
|
83 |
+
Factor by which outputs from token mixers are scaled.
|
84 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
85 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
86 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
87 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
88 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
89 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
90 |
+
The epsilon used by the layer normalization layers.
|
91 |
+
image_size (`int`, *optional*, defaults to `224`):
|
92 |
+
The size (resolution) of each image.
|
93 |
+
|
94 |
+
Example:
|
95 |
+
|
96 |
+
```python
|
97 |
+
>>> from transformers import EfficientFormerConfig, EfficientFormerModel
|
98 |
+
|
99 |
+
>>> # Initializing a EfficientFormer efficientformer-l1 style configuration
|
100 |
+
>>> configuration = EfficientFormerConfig()
|
101 |
+
|
102 |
+
>>> # Initializing a EfficientFormerModel (with random weights) from the efficientformer-l3 style configuration
|
103 |
+
>>> model = EfficientFormerModel(configuration)
|
104 |
+
|
105 |
+
>>> # Accessing the model configuration
|
106 |
+
>>> configuration = model.config
|
107 |
+
```"""
|
108 |
+
|
109 |
+
model_type = "efficientformer"
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
depths: List[int] = [3, 2, 6, 4],
|
114 |
+
hidden_sizes: List[int] = [48, 96, 224, 448],
|
115 |
+
downsamples: List[bool] = [True, True, True, True],
|
116 |
+
dim: int = 448,
|
117 |
+
key_dim: int = 32,
|
118 |
+
attention_ratio: int = 4,
|
119 |
+
resolution: int = 7,
|
120 |
+
num_hidden_layers: int = 5,
|
121 |
+
num_attention_heads: int = 8,
|
122 |
+
mlp_expansion_ratio: int = 4,
|
123 |
+
hidden_dropout_prob: float = 0.0,
|
124 |
+
patch_size: int = 16,
|
125 |
+
num_channels: int = 3,
|
126 |
+
pool_size: int = 3,
|
127 |
+
downsample_patch_size: int = 3,
|
128 |
+
downsample_stride: int = 2,
|
129 |
+
downsample_pad: int = 1,
|
130 |
+
drop_path_rate: float = 0.0,
|
131 |
+
num_meta3d_blocks: int = 1,
|
132 |
+
distillation: bool = True,
|
133 |
+
use_layer_scale: bool = True,
|
134 |
+
layer_scale_init_value: float = 1e-5,
|
135 |
+
hidden_act: str = "gelu",
|
136 |
+
initializer_range: float = 0.02,
|
137 |
+
layer_norm_eps: float = 1e-12,
|
138 |
+
image_size: int = 224,
|
139 |
+
batch_norm_eps: float = 1e-05,
|
140 |
+
**kwargs,
|
141 |
+
) -> None:
|
142 |
+
super().__init__(**kwargs)
|
143 |
+
|
144 |
+
self.hidden_act = hidden_act
|
145 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
146 |
+
self.hidden_sizes = hidden_sizes
|
147 |
+
self.num_hidden_layers = num_hidden_layers
|
148 |
+
self.num_attention_heads = num_attention_heads
|
149 |
+
self.initializer_range = initializer_range
|
150 |
+
self.layer_norm_eps = layer_norm_eps
|
151 |
+
self.patch_size = patch_size
|
152 |
+
self.num_channels = num_channels
|
153 |
+
self.depths = depths
|
154 |
+
self.mlp_expansion_ratio = mlp_expansion_ratio
|
155 |
+
self.downsamples = downsamples
|
156 |
+
self.dim = dim
|
157 |
+
self.key_dim = key_dim
|
158 |
+
self.attention_ratio = attention_ratio
|
159 |
+
self.resolution = resolution
|
160 |
+
self.pool_size = pool_size
|
161 |
+
self.downsample_patch_size = downsample_patch_size
|
162 |
+
self.downsample_stride = downsample_stride
|
163 |
+
self.downsample_pad = downsample_pad
|
164 |
+
self.drop_path_rate = drop_path_rate
|
165 |
+
self.num_meta3d_blocks = num_meta3d_blocks
|
166 |
+
self.distillation = distillation
|
167 |
+
self.use_layer_scale = use_layer_scale
|
168 |
+
self.layer_scale_init_value = layer_scale_init_value
|
169 |
+
self.image_size = image_size
|
170 |
+
self.batch_norm_eps = batch_norm_eps
|
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Convert EfficientFormer checkpoints from the original repository.
|
17 |
+
|
18 |
+
URL: https://github.com/snap-research/EfficientFormer
|
19 |
+
"""
|
20 |
+
|
21 |
+
import argparse
|
22 |
+
import re
|
23 |
+
from pathlib import Path
|
24 |
+
|
25 |
+
import requests
|
26 |
+
import torch
|
27 |
+
from PIL import Image
|
28 |
+
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
|
29 |
+
|
30 |
+
from transformers import (
|
31 |
+
EfficientFormerConfig,
|
32 |
+
EfficientFormerForImageClassificationWithTeacher,
|
33 |
+
EfficientFormerImageProcessor,
|
34 |
+
)
|
35 |
+
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
|
36 |
+
|
37 |
+
|
38 |
+
def rename_key(old_name, num_meta4D_last_stage):
|
39 |
+
new_name = old_name
|
40 |
+
|
41 |
+
if "patch_embed" in old_name:
|
42 |
+
_, layer, param = old_name.split(".")
|
43 |
+
|
44 |
+
if layer == "0":
|
45 |
+
new_name = old_name.replace("0", "convolution1")
|
46 |
+
elif layer == "1":
|
47 |
+
new_name = old_name.replace("1", "batchnorm_before")
|
48 |
+
elif layer == "3":
|
49 |
+
new_name = old_name.replace("3", "convolution2")
|
50 |
+
else:
|
51 |
+
new_name = old_name.replace("4", "batchnorm_after")
|
52 |
+
|
53 |
+
if "network" in old_name and re.search(r"\d\.\d", old_name):
|
54 |
+
two_digit_num = r"\b\d{2}\b"
|
55 |
+
if bool(re.search(two_digit_num, old_name)):
|
56 |
+
match = re.search(r"\d\.\d\d.", old_name).group()
|
57 |
+
else:
|
58 |
+
match = re.search(r"\d\.\d.", old_name).group()
|
59 |
+
if int(match[0]) < 6:
|
60 |
+
trimmed_name = old_name.replace(match, "")
|
61 |
+
trimmed_name = trimmed_name.replace("network", match[0] + ".meta4D_layers.blocks." + match[2:-1])
|
62 |
+
new_name = "intermediate_stages." + trimmed_name
|
63 |
+
else:
|
64 |
+
trimmed_name = old_name.replace(match, "")
|
65 |
+
if int(match[2]) < num_meta4D_last_stage:
|
66 |
+
trimmed_name = trimmed_name.replace("network", "meta4D_layers.blocks." + match[2])
|
67 |
+
else:
|
68 |
+
layer_index = str(int(match[2]) - num_meta4D_last_stage)
|
69 |
+
trimmed_name = trimmed_name.replace("network", "meta3D_layers.blocks." + layer_index)
|
70 |
+
if "norm1" in old_name:
|
71 |
+
trimmed_name = trimmed_name.replace("norm1", "layernorm1")
|
72 |
+
elif "norm2" in old_name:
|
73 |
+
trimmed_name = trimmed_name.replace("norm2", "layernorm2")
|
74 |
+
elif "fc1" in old_name:
|
75 |
+
trimmed_name = trimmed_name.replace("fc1", "linear_in")
|
76 |
+
elif "fc2" in old_name:
|
77 |
+
trimmed_name = trimmed_name.replace("fc2", "linear_out")
|
78 |
+
|
79 |
+
new_name = "last_stage." + trimmed_name
|
80 |
+
|
81 |
+
elif "network" in old_name and re.search(r".\d.", old_name):
|
82 |
+
new_name = old_name.replace("network", "intermediate_stages")
|
83 |
+
|
84 |
+
if "fc" in new_name:
|
85 |
+
new_name = new_name.replace("fc", "convolution")
|
86 |
+
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
|
87 |
+
new_name = new_name.replace("norm1", "batchnorm_before")
|
88 |
+
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
|
89 |
+
new_name = new_name.replace("norm2", "batchnorm_after")
|
90 |
+
if "proj" in new_name:
|
91 |
+
new_name = new_name.replace("proj", "projection")
|
92 |
+
if "dist_head" in new_name:
|
93 |
+
new_name = new_name.replace("dist_head", "distillation_classifier")
|
94 |
+
elif "head" in new_name:
|
95 |
+
new_name = new_name.replace("head", "classifier")
|
96 |
+
elif "patch_embed" in new_name:
|
97 |
+
new_name = "efficientformer." + new_name
|
98 |
+
elif new_name == "norm.weight" or new_name == "norm.bias":
|
99 |
+
new_name = new_name.replace("norm", "layernorm")
|
100 |
+
new_name = "efficientformer." + new_name
|
101 |
+
else:
|
102 |
+
new_name = "efficientformer.encoder." + new_name
|
103 |
+
|
104 |
+
return new_name
|
105 |
+
|
106 |
+
|
107 |
+
def convert_torch_checkpoint(checkpoint, num_meta4D_last_stage):
|
108 |
+
for key in checkpoint.copy().keys():
|
109 |
+
val = checkpoint.pop(key)
|
110 |
+
checkpoint[rename_key(key, num_meta4D_last_stage)] = val
|
111 |
+
|
112 |
+
return checkpoint
|
113 |
+
|
114 |
+
|
115 |
+
# We will verify our results on a COCO image
|
116 |
+
def prepare_img():
|
117 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
118 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
119 |
+
|
120 |
+
return image
|
121 |
+
|
122 |
+
|
123 |
+
def convert_efficientformer_checkpoint(
|
124 |
+
checkpoint_path: Path, efficientformer_config_file: Path, pytorch_dump_path: Path, push_to_hub: bool
|
125 |
+
):
|
126 |
+
orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
|
127 |
+
config = EfficientFormerConfig.from_json_file(efficientformer_config_file)
|
128 |
+
model = EfficientFormerForImageClassificationWithTeacher(config)
|
129 |
+
model_name = "_".join(checkpoint_path.split("/")[-1].split(".")[0].split("_")[:-1])
|
130 |
+
|
131 |
+
num_meta4D_last_stage = config.depths[-1] - config.num_meta3d_blocks + 1
|
132 |
+
new_state_dict = convert_torch_checkpoint(orig_state_dict, num_meta4D_last_stage)
|
133 |
+
|
134 |
+
model.load_state_dict(new_state_dict)
|
135 |
+
model.eval()
|
136 |
+
|
137 |
+
pillow_resamplings = {
|
138 |
+
"bilinear": PILImageResampling.BILINEAR,
|
139 |
+
"bicubic": PILImageResampling.BICUBIC,
|
140 |
+
"nearest": PILImageResampling.NEAREST,
|
141 |
+
}
|
142 |
+
|
143 |
+
# prepare image
|
144 |
+
image = prepare_img()
|
145 |
+
image_size = 256
|
146 |
+
crop_size = 224
|
147 |
+
processor = EfficientFormerImageProcessor(
|
148 |
+
size={"shortest_edge": image_size},
|
149 |
+
crop_size={"height": crop_size, "width": crop_size},
|
150 |
+
resample=pillow_resamplings["bicubic"],
|
151 |
+
)
|
152 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
153 |
+
|
154 |
+
# original processing pipeline
|
155 |
+
image_transforms = Compose(
|
156 |
+
[
|
157 |
+
Resize(image_size, interpolation=pillow_resamplings["bicubic"]),
|
158 |
+
CenterCrop(crop_size),
|
159 |
+
ToTensor(),
|
160 |
+
Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD),
|
161 |
+
]
|
162 |
+
)
|
163 |
+
original_pixel_values = image_transforms(image).unsqueeze(0)
|
164 |
+
|
165 |
+
assert torch.allclose(original_pixel_values, pixel_values)
|
166 |
+
|
167 |
+
outputs = model(pixel_values)
|
168 |
+
logits = outputs.logits
|
169 |
+
|
170 |
+
expected_shape = (1, 1000)
|
171 |
+
|
172 |
+
if "l1" in model_name:
|
173 |
+
expected_logits = torch.Tensor(
|
174 |
+
[-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328]
|
175 |
+
)
|
176 |
+
assert torch.allclose(logits[0, :10], expected_logits, atol=1e-3)
|
177 |
+
assert logits.shape == expected_shape
|
178 |
+
elif "l3" in model_name:
|
179 |
+
expected_logits = torch.Tensor(
|
180 |
+
[-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127]
|
181 |
+
)
|
182 |
+
assert torch.allclose(logits[0, :10], expected_logits, atol=1e-3)
|
183 |
+
assert logits.shape == expected_shape
|
184 |
+
elif "l7" in model_name:
|
185 |
+
expected_logits = torch.Tensor(
|
186 |
+
[-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878]
|
187 |
+
)
|
188 |
+
assert logits.shape == expected_shape
|
189 |
+
else:
|
190 |
+
raise ValueError(
|
191 |
+
f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7"
|
192 |
+
)
|
193 |
+
|
194 |
+
# Save Checkpoints
|
195 |
+
Path(pytorch_dump_path).mkdir(exist_ok=True)
|
196 |
+
model.save_pretrained(pytorch_dump_path)
|
197 |
+
print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}")
|
198 |
+
processor.save_pretrained(pytorch_dump_path)
|
199 |
+
print(f"Processor successfuly saved at {pytorch_dump_path}")
|
200 |
+
|
201 |
+
if push_to_hub:
|
202 |
+
print("Pushing model to the hub...")
|
203 |
+
|
204 |
+
model.push_to_hub(
|
205 |
+
repo_id=f"Bearnardd/{pytorch_dump_path}",
|
206 |
+
commit_message="Add model",
|
207 |
+
use_temp_dir=True,
|
208 |
+
)
|
209 |
+
processor.push_to_hub(
|
210 |
+
repo_id=f"Bearnardd/{pytorch_dump_path}",
|
211 |
+
commit_message="Add image processor",
|
212 |
+
use_temp_dir=True,
|
213 |
+
)
|
214 |
+
|
215 |
+
|
216 |
+
if __name__ == "__main__":
|
217 |
+
parser = argparse.ArgumentParser()
|
218 |
+
# Required parameters
|
219 |
+
parser.add_argument(
|
220 |
+
"--pytorch_model_path",
|
221 |
+
default=None,
|
222 |
+
type=str,
|
223 |
+
required=True,
|
224 |
+
help="Path to EfficientFormer pytorch checkpoint.",
|
225 |
+
)
|
226 |
+
parser.add_argument(
|
227 |
+
"--config_file",
|
228 |
+
default=None,
|
229 |
+
type=str,
|
230 |
+
required=True,
|
231 |
+
help="The json file for EfficientFormer model config.",
|
232 |
+
)
|
233 |
+
parser.add_argument(
|
234 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
235 |
+
)
|
236 |
+
|
237 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
|
238 |
+
parser.add_argument(
|
239 |
+
"--no-push_to_hub",
|
240 |
+
dest="push_to_hub",
|
241 |
+
action="store_false",
|
242 |
+
help="Do not push model and image processor to the hub",
|
243 |
+
)
|
244 |
+
parser.set_defaults(push_to_hub=True)
|
245 |
+
|
246 |
+
args = parser.parse_args()
|
247 |
+
convert_efficientformer_checkpoint(
|
248 |
+
checkpoint_path=args.pytorch_model_path,
|
249 |
+
efficientformer_config_file=args.config_file,
|
250 |
+
pytorch_dump_path=args.pytorch_dump_path,
|
251 |
+
push_to_hub=args.push_to_hub,
|
252 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/image_processing_efficientformer.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for EfficientFormer."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import (
|
23 |
+
get_resize_output_image_size,
|
24 |
+
resize,
|
25 |
+
to_channel_dimension_format,
|
26 |
+
)
|
27 |
+
from ...image_utils import (
|
28 |
+
IMAGENET_DEFAULT_MEAN,
|
29 |
+
IMAGENET_DEFAULT_STD,
|
30 |
+
ChannelDimension,
|
31 |
+
ImageInput,
|
32 |
+
PILImageResampling,
|
33 |
+
infer_channel_dimension_format,
|
34 |
+
is_batched,
|
35 |
+
is_scaled_image,
|
36 |
+
to_numpy_array,
|
37 |
+
valid_images,
|
38 |
+
validate_kwargs,
|
39 |
+
validate_preprocess_arguments,
|
40 |
+
)
|
41 |
+
from ...utils import TensorType, logging
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
|
47 |
+
class EfficientFormerImageProcessor(BaseImageProcessor):
|
48 |
+
r"""
|
49 |
+
Constructs a EfficientFormer image processor.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
53 |
+
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
|
54 |
+
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
|
55 |
+
size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
|
56 |
+
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
|
57 |
+
method.
|
58 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
59 |
+
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
|
60 |
+
`preprocess` method.
|
61 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
62 |
+
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
|
63 |
+
`preprocess` method.
|
64 |
+
crop_size (`Dict[str, int]` *optional*, defaults to 224):
|
65 |
+
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
|
66 |
+
method.
|
67 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
68 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
|
69 |
+
parameter in the `preprocess` method.
|
70 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
71 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
72 |
+
`preprocess` method.
|
73 |
+
do_normalize:
|
74 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
75 |
+
method.
|
76 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
77 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
78 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
79 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
80 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
81 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
82 |
+
"""
|
83 |
+
|
84 |
+
model_input_names = ["pixel_values"]
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
do_resize: bool = True,
|
89 |
+
size: Optional[Dict[str, int]] = None,
|
90 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
91 |
+
do_center_crop: bool = True,
|
92 |
+
do_rescale: bool = True,
|
93 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
94 |
+
crop_size: Dict[str, int] = None,
|
95 |
+
do_normalize: bool = True,
|
96 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
97 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
98 |
+
**kwargs,
|
99 |
+
) -> None:
|
100 |
+
super().__init__(**kwargs)
|
101 |
+
size = size if size is not None else {"height": 224, "width": 224}
|
102 |
+
size = get_size_dict(size)
|
103 |
+
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
104 |
+
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
105 |
+
|
106 |
+
self.do_resize = do_resize
|
107 |
+
self.do_rescale = do_rescale
|
108 |
+
self.do_normalize = do_normalize
|
109 |
+
self.do_center_crop = do_center_crop
|
110 |
+
self.crop_size = crop_size
|
111 |
+
self.size = size
|
112 |
+
self.resample = resample
|
113 |
+
self.rescale_factor = rescale_factor
|
114 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
115 |
+
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
116 |
+
self._valid_processor_keys = [
|
117 |
+
"images",
|
118 |
+
"do_resize",
|
119 |
+
"size",
|
120 |
+
"resample",
|
121 |
+
"do_center_crop",
|
122 |
+
"crop_size",
|
123 |
+
"do_rescale",
|
124 |
+
"rescale_factor",
|
125 |
+
"do_normalize",
|
126 |
+
"image_mean",
|
127 |
+
"image_std",
|
128 |
+
"return_tensors",
|
129 |
+
"data_format",
|
130 |
+
"input_data_format",
|
131 |
+
]
|
132 |
+
|
133 |
+
def resize(
|
134 |
+
self,
|
135 |
+
image: np.ndarray,
|
136 |
+
size: Dict[str, int],
|
137 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
138 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
139 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
140 |
+
**kwargs,
|
141 |
+
) -> np.ndarray:
|
142 |
+
"""
|
143 |
+
Resize an image to `(size["height"], size["width"])`.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
image (`np.ndarray`):
|
147 |
+
Image to resize.
|
148 |
+
size (`Dict[str, int]`):
|
149 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
|
150 |
+
resample:
|
151 |
+
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
|
152 |
+
data_format (`ChannelDimension` or `str`, *optional*):
|
153 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
154 |
+
image is used. Can be one of:
|
155 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
156 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
157 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
158 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
`np.ndarray`: The resized image.
|
162 |
+
"""
|
163 |
+
size = get_size_dict(size)
|
164 |
+
|
165 |
+
if "shortest_edge" in size:
|
166 |
+
size = get_resize_output_image_size(
|
167 |
+
image, size=size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
|
168 |
+
)
|
169 |
+
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
|
170 |
+
elif "height" in size and "width" in size:
|
171 |
+
size = (size["height"], size["width"])
|
172 |
+
else:
|
173 |
+
raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}")
|
174 |
+
return resize(
|
175 |
+
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
|
176 |
+
)
|
177 |
+
|
178 |
+
def preprocess(
|
179 |
+
self,
|
180 |
+
images: ImageInput,
|
181 |
+
do_resize: Optional[bool] = None,
|
182 |
+
size: Dict[str, int] = None,
|
183 |
+
resample: PILImageResampling = None,
|
184 |
+
do_center_crop: bool = None,
|
185 |
+
crop_size: int = None,
|
186 |
+
do_rescale: Optional[bool] = None,
|
187 |
+
rescale_factor: Optional[float] = None,
|
188 |
+
do_normalize: Optional[bool] = None,
|
189 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
190 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
191 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
192 |
+
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
|
193 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
194 |
+
**kwargs,
|
195 |
+
) -> BatchFeature:
|
196 |
+
"""
|
197 |
+
Preprocess an image or batch of images.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
images (`ImageInput`):
|
201 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
202 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
203 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
204 |
+
Whether to resize the image.
|
205 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
206 |
+
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
|
207 |
+
resizing.
|
208 |
+
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
|
209 |
+
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
|
210 |
+
an effect if `do_resize` is set to `True`.
|
211 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
212 |
+
Whether to center crop the image.
|
213 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
214 |
+
Whether to rescale the image values between [0 - 1].
|
215 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
216 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
217 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
218 |
+
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
219 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
220 |
+
Whether to normalize the image.
|
221 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
222 |
+
Image mean to use if `do_normalize` is set to `True`.
|
223 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
224 |
+
Image standard deviation to use if `do_normalize` is set to `True`.
|
225 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
226 |
+
The type of tensors to return. Can be one of:
|
227 |
+
- Unset: Return a list of `np.ndarray`.
|
228 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
229 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
230 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
231 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
232 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
233 |
+
The channel dimension format for the output image. Can be one of:
|
234 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
235 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
236 |
+
- Unset: Use the channel dimension format of the input image.
|
237 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
238 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
239 |
+
from the input image. Can be one of:
|
240 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
241 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
242 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
243 |
+
"""
|
244 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
245 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
246 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
247 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
248 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
249 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
|
250 |
+
resample = resample if resample is not None else self.resample
|
251 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
252 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
253 |
+
image_std = image_std if image_std is not None else self.image_std
|
254 |
+
|
255 |
+
size = size if size is not None else self.size
|
256 |
+
size_dict = get_size_dict(size)
|
257 |
+
|
258 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
259 |
+
|
260 |
+
if not is_batched(images):
|
261 |
+
images = [images]
|
262 |
+
|
263 |
+
if not valid_images(images):
|
264 |
+
raise ValueError(
|
265 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
266 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
267 |
+
)
|
268 |
+
validate_preprocess_arguments(
|
269 |
+
do_rescale=do_rescale,
|
270 |
+
rescale_factor=rescale_factor,
|
271 |
+
do_normalize=do_normalize,
|
272 |
+
image_mean=image_mean,
|
273 |
+
image_std=image_std,
|
274 |
+
do_center_crop=do_center_crop,
|
275 |
+
crop_size=crop_size,
|
276 |
+
do_resize=do_resize,
|
277 |
+
size=size,
|
278 |
+
resample=resample,
|
279 |
+
)
|
280 |
+
# All transformations expect numpy arrays.
|
281 |
+
images = [to_numpy_array(image) for image in images]
|
282 |
+
|
283 |
+
if is_scaled_image(images[0]) and do_rescale:
|
284 |
+
logger.warning_once(
|
285 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
286 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
287 |
+
)
|
288 |
+
|
289 |
+
if input_data_format is None:
|
290 |
+
# We assume that all images have the same channel dimension format.
|
291 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
292 |
+
|
293 |
+
if do_resize:
|
294 |
+
images = [
|
295 |
+
self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format)
|
296 |
+
for image in images
|
297 |
+
]
|
298 |
+
|
299 |
+
if do_center_crop:
|
300 |
+
images = [
|
301 |
+
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
|
302 |
+
]
|
303 |
+
|
304 |
+
if do_rescale:
|
305 |
+
images = [
|
306 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
307 |
+
for image in images
|
308 |
+
]
|
309 |
+
|
310 |
+
if do_normalize:
|
311 |
+
images = [
|
312 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
313 |
+
for image in images
|
314 |
+
]
|
315 |
+
|
316 |
+
images = [
|
317 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
318 |
+
]
|
319 |
+
|
320 |
+
data = {"pixel_values": images}
|
321 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/modeling_efficientformer.py
ADDED
@@ -0,0 +1,803 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Snapchat Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch EfficientFormer model."""
|
16 |
+
|
17 |
+
import itertools
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
|
28 |
+
from ...modeling_utils import PreTrainedModel
|
29 |
+
from ...utils import (
|
30 |
+
ModelOutput,
|
31 |
+
add_code_sample_docstrings,
|
32 |
+
add_start_docstrings,
|
33 |
+
add_start_docstrings_to_model_forward,
|
34 |
+
logging,
|
35 |
+
)
|
36 |
+
from .configuration_efficientformer import EfficientFormerConfig
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
# General docstring
|
42 |
+
_CONFIG_FOR_DOC = "EfficientFormerConfig"
|
43 |
+
|
44 |
+
# Base docstring
|
45 |
+
_CHECKPOINT_FOR_DOC = "snap-research/efficientformer-l1-300"
|
46 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 49, 448]
|
47 |
+
|
48 |
+
# Image classification docstring
|
49 |
+
_IMAGE_CLASS_CHECKPOINT = "snap-research/efficientformer-l1-300"
|
50 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
|
51 |
+
|
52 |
+
|
53 |
+
from ..deprecated._archive_maps import EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
54 |
+
|
55 |
+
|
56 |
+
class EfficientFormerPatchEmbeddings(nn.Module):
|
57 |
+
"""
|
58 |
+
This class performs downsampling between two stages. For the input tensor with the shape [batch_size, num_channels,
|
59 |
+
height, width] it produces output tensor with the shape [batch_size, num_channels, height/stride, width/stride]
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(self, config: EfficientFormerConfig, num_channels: int, embed_dim: int, apply_norm: bool = True):
|
63 |
+
super().__init__()
|
64 |
+
self.num_channels = num_channels
|
65 |
+
|
66 |
+
self.projection = nn.Conv2d(
|
67 |
+
num_channels,
|
68 |
+
embed_dim,
|
69 |
+
kernel_size=config.downsample_patch_size,
|
70 |
+
stride=config.downsample_stride,
|
71 |
+
padding=config.downsample_pad,
|
72 |
+
)
|
73 |
+
self.norm = nn.BatchNorm2d(embed_dim, eps=config.batch_norm_eps) if apply_norm else nn.Identity()
|
74 |
+
|
75 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
76 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
77 |
+
if num_channels != self.num_channels:
|
78 |
+
raise ValueError(
|
79 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
80 |
+
)
|
81 |
+
|
82 |
+
embeddings = self.projection(pixel_values)
|
83 |
+
embeddings = self.norm(embeddings)
|
84 |
+
|
85 |
+
return embeddings
|
86 |
+
|
87 |
+
|
88 |
+
class EfficientFormerSelfAttention(nn.Module):
|
89 |
+
def __init__(self, dim: int, key_dim: int, num_heads: int, attention_ratio: int, resolution: int):
|
90 |
+
super().__init__()
|
91 |
+
|
92 |
+
self.num_heads = num_heads
|
93 |
+
self.key_dim = key_dim
|
94 |
+
self.attention_ratio = attention_ratio
|
95 |
+
self.scale = key_dim**-0.5
|
96 |
+
self.total_key_dim = key_dim * num_heads
|
97 |
+
self.expanded_key_dim = int(attention_ratio * key_dim)
|
98 |
+
self.total_expanded_key_dim = int(self.expanded_key_dim * num_heads)
|
99 |
+
hidden_size = self.total_expanded_key_dim + self.total_key_dim * 2
|
100 |
+
self.qkv = nn.Linear(dim, hidden_size)
|
101 |
+
self.projection = nn.Linear(self.total_expanded_key_dim, dim)
|
102 |
+
points = list(itertools.product(range(resolution), range(resolution)))
|
103 |
+
num_points = len(points)
|
104 |
+
attention_offsets = {}
|
105 |
+
idxs = []
|
106 |
+
for point_1 in points:
|
107 |
+
for point_2 in points:
|
108 |
+
offset = (abs(point_1[0] - point_2[0]), abs(point_1[1] - point_2[1]))
|
109 |
+
if offset not in attention_offsets:
|
110 |
+
attention_offsets[offset] = len(attention_offsets)
|
111 |
+
idxs.append(attention_offsets[offset])
|
112 |
+
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
|
113 |
+
self.register_buffer("attention_bias_idxs", torch.LongTensor(idxs).view(num_points, num_points))
|
114 |
+
|
115 |
+
@torch.no_grad()
|
116 |
+
def train(self, mode=True):
|
117 |
+
super().train(mode)
|
118 |
+
if mode and hasattr(self, "ab"):
|
119 |
+
del self.ab
|
120 |
+
else:
|
121 |
+
self.ab = self.attention_biases[:, self.attention_bias_idxs]
|
122 |
+
|
123 |
+
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
|
124 |
+
batch_size, sequence_length, num_channels = hidden_states.shape
|
125 |
+
qkv = self.qkv(hidden_states)
|
126 |
+
query_layer, key_layer, value_layer = qkv.reshape(batch_size, sequence_length, self.num_heads, -1).split(
|
127 |
+
[self.key_dim, self.key_dim, self.expanded_key_dim], dim=3
|
128 |
+
)
|
129 |
+
query_layer = query_layer.permute(0, 2, 1, 3)
|
130 |
+
key_layer = key_layer.permute(0, 2, 1, 3)
|
131 |
+
value_layer = value_layer.permute(0, 2, 1, 3)
|
132 |
+
|
133 |
+
# set `model.to(torch_device)` won't change `self.ab.device`, if there is no follow-up `train` or `eval` call.
|
134 |
+
# Let's do it manually here, so users won't have to do this everytime.
|
135 |
+
if not self.training:
|
136 |
+
self.ab = self.ab.to(self.attention_biases.device)
|
137 |
+
attention_probs = (torch.matmul(query_layer, key_layer.transpose(-2, -1))) * self.scale + (
|
138 |
+
self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab
|
139 |
+
)
|
140 |
+
|
141 |
+
attention_probs = attention_probs.softmax(dim=-1)
|
142 |
+
|
143 |
+
context_layer = torch.matmul(attention_probs, value_layer).transpose(1, 2)
|
144 |
+
context_layer = context_layer.reshape(batch_size, sequence_length, self.total_expanded_key_dim)
|
145 |
+
context_layer = self.projection(context_layer)
|
146 |
+
|
147 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
148 |
+
|
149 |
+
return outputs
|
150 |
+
|
151 |
+
|
152 |
+
class EfficientFormerConvStem(nn.Module):
|
153 |
+
def __init__(self, config: EfficientFormerConfig, out_channels: int):
|
154 |
+
super().__init__()
|
155 |
+
|
156 |
+
self.convolution1 = nn.Conv2d(config.num_channels, out_channels // 2, kernel_size=3, stride=2, padding=1)
|
157 |
+
self.batchnorm_before = nn.BatchNorm2d(out_channels // 2, eps=config.batch_norm_eps)
|
158 |
+
|
159 |
+
self.convolution2 = nn.Conv2d(out_channels // 2, out_channels, kernel_size=3, stride=2, padding=1)
|
160 |
+
self.batchnorm_after = nn.BatchNorm2d(out_channels, eps=config.batch_norm_eps)
|
161 |
+
|
162 |
+
self.activation = nn.ReLU()
|
163 |
+
|
164 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
165 |
+
features = self.batchnorm_before(self.convolution1(pixel_values))
|
166 |
+
features = self.activation(features)
|
167 |
+
features = self.batchnorm_after(self.convolution2(features))
|
168 |
+
features = self.activation(features)
|
169 |
+
|
170 |
+
return features
|
171 |
+
|
172 |
+
|
173 |
+
class EfficientFormerPooling(nn.Module):
|
174 |
+
def __init__(self, pool_size: int):
|
175 |
+
super().__init__()
|
176 |
+
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False)
|
177 |
+
|
178 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
179 |
+
output = self.pool(hidden_states) - hidden_states
|
180 |
+
return output
|
181 |
+
|
182 |
+
|
183 |
+
class EfficientFormerDenseMlp(nn.Module):
|
184 |
+
def __init__(
|
185 |
+
self,
|
186 |
+
config: EfficientFormerConfig,
|
187 |
+
in_features: int,
|
188 |
+
hidden_features: Optional[int] = None,
|
189 |
+
out_features: Optional[int] = None,
|
190 |
+
):
|
191 |
+
super().__init__()
|
192 |
+
out_features = out_features or in_features
|
193 |
+
hidden_features = hidden_features or in_features
|
194 |
+
|
195 |
+
self.linear_in = nn.Linear(in_features, hidden_features)
|
196 |
+
self.activation = ACT2FN[config.hidden_act]
|
197 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
198 |
+
self.linear_out = nn.Linear(hidden_features, out_features)
|
199 |
+
|
200 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
201 |
+
hidden_states = self.linear_in(hidden_states)
|
202 |
+
hidden_states = self.activation(hidden_states)
|
203 |
+
hidden_states = self.dropout(hidden_states)
|
204 |
+
hidden_states = self.linear_out(hidden_states)
|
205 |
+
hidden_states = self.dropout(hidden_states)
|
206 |
+
|
207 |
+
return hidden_states
|
208 |
+
|
209 |
+
|
210 |
+
class EfficientFormerConvMlp(nn.Module):
|
211 |
+
def __init__(
|
212 |
+
self,
|
213 |
+
config: EfficientFormerConfig,
|
214 |
+
in_features: int,
|
215 |
+
hidden_features: Optional[int] = None,
|
216 |
+
out_features: Optional[int] = None,
|
217 |
+
drop: float = 0.0,
|
218 |
+
):
|
219 |
+
super().__init__()
|
220 |
+
out_features = out_features or in_features
|
221 |
+
hidden_features = hidden_features or in_features
|
222 |
+
|
223 |
+
self.convolution1 = nn.Conv2d(in_features, hidden_features, 1)
|
224 |
+
self.activation = ACT2FN[config.hidden_act]
|
225 |
+
self.convolution2 = nn.Conv2d(hidden_features, out_features, 1)
|
226 |
+
self.dropout = nn.Dropout(drop)
|
227 |
+
|
228 |
+
self.batchnorm_before = nn.BatchNorm2d(hidden_features, eps=config.batch_norm_eps)
|
229 |
+
self.batchnorm_after = nn.BatchNorm2d(out_features, eps=config.batch_norm_eps)
|
230 |
+
|
231 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
232 |
+
hidden_state = self.convolution1(hidden_state)
|
233 |
+
hidden_state = self.batchnorm_before(hidden_state)
|
234 |
+
|
235 |
+
hidden_state = self.activation(hidden_state)
|
236 |
+
hidden_state = self.dropout(hidden_state)
|
237 |
+
hidden_state = self.convolution2(hidden_state)
|
238 |
+
|
239 |
+
hidden_state = self.batchnorm_after(hidden_state)
|
240 |
+
hidden_state = self.dropout(hidden_state)
|
241 |
+
|
242 |
+
return hidden_state
|
243 |
+
|
244 |
+
|
245 |
+
# Copied from transformers.models.convnext.modeling_convnext.drop_path
|
246 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
247 |
+
"""
|
248 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
249 |
+
|
250 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
251 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
252 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
253 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
254 |
+
argument.
|
255 |
+
"""
|
256 |
+
if drop_prob == 0.0 or not training:
|
257 |
+
return input
|
258 |
+
keep_prob = 1 - drop_prob
|
259 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
260 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
261 |
+
random_tensor.floor_() # binarize
|
262 |
+
output = input.div(keep_prob) * random_tensor
|
263 |
+
return output
|
264 |
+
|
265 |
+
|
266 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->EfficientFormer
|
267 |
+
class EfficientFormerDropPath(nn.Module):
|
268 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
269 |
+
|
270 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
271 |
+
super().__init__()
|
272 |
+
self.drop_prob = drop_prob
|
273 |
+
|
274 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
275 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
276 |
+
|
277 |
+
def extra_repr(self) -> str:
|
278 |
+
return "p={}".format(self.drop_prob)
|
279 |
+
|
280 |
+
|
281 |
+
class EfficientFormerFlat(nn.Module):
|
282 |
+
def __init__(self):
|
283 |
+
super().__init__()
|
284 |
+
|
285 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
|
286 |
+
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
287 |
+
return hidden_states
|
288 |
+
|
289 |
+
|
290 |
+
class EfficientFormerMeta3D(nn.Module):
|
291 |
+
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0):
|
292 |
+
super().__init__()
|
293 |
+
|
294 |
+
self.token_mixer = EfficientFormerSelfAttention(
|
295 |
+
dim=config.dim,
|
296 |
+
key_dim=config.key_dim,
|
297 |
+
num_heads=config.num_attention_heads,
|
298 |
+
attention_ratio=config.attention_ratio,
|
299 |
+
resolution=config.resolution,
|
300 |
+
)
|
301 |
+
|
302 |
+
self.layernorm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
303 |
+
self.layernorm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
304 |
+
|
305 |
+
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
|
306 |
+
self.mlp = EfficientFormerDenseMlp(config, in_features=dim, hidden_features=mlp_hidden_dim)
|
307 |
+
|
308 |
+
self.drop_path = EfficientFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
309 |
+
self.use_layer_scale = config.use_layer_scale
|
310 |
+
if config.use_layer_scale:
|
311 |
+
self.layer_scale_1 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
312 |
+
self.layer_scale_2 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
313 |
+
|
314 |
+
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
|
315 |
+
self_attention_outputs = self.token_mixer(self.layernorm1(hidden_states), output_attentions)
|
316 |
+
attention_output = self_attention_outputs[0]
|
317 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
318 |
+
|
319 |
+
if self.use_layer_scale:
|
320 |
+
layer_output = hidden_states + self.drop_path(
|
321 |
+
self.layer_scale_1.unsqueeze(0).unsqueeze(0) * attention_output
|
322 |
+
)
|
323 |
+
layer_output = layer_output + self.drop_path(
|
324 |
+
self.layer_scale_2.unsqueeze(0).unsqueeze(0) * self.mlp(self.layernorm2(layer_output))
|
325 |
+
)
|
326 |
+
else:
|
327 |
+
layer_output = hidden_states + self.drop_path(attention_output)
|
328 |
+
layer_output = layer_output + self.drop_path(self.mlp(self.layernorm2(layer_output)))
|
329 |
+
|
330 |
+
outputs = (layer_output,) + outputs
|
331 |
+
|
332 |
+
return outputs
|
333 |
+
|
334 |
+
|
335 |
+
class EfficientFormerMeta3DLayers(nn.Module):
|
336 |
+
def __init__(self, config: EfficientFormerConfig):
|
337 |
+
super().__init__()
|
338 |
+
drop_paths = [
|
339 |
+
config.drop_path_rate * (block_idx + sum(config.depths[:-1]))
|
340 |
+
for block_idx in range(config.num_meta3d_blocks)
|
341 |
+
]
|
342 |
+
self.blocks = nn.ModuleList(
|
343 |
+
[EfficientFormerMeta3D(config, config.hidden_sizes[-1], drop_path=drop_path) for drop_path in drop_paths]
|
344 |
+
)
|
345 |
+
|
346 |
+
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
|
347 |
+
all_attention_outputs = () if output_attentions else None
|
348 |
+
|
349 |
+
for layer_module in self.blocks:
|
350 |
+
if isinstance(hidden_states, tuple):
|
351 |
+
hidden_states = hidden_states[0]
|
352 |
+
|
353 |
+
hidden_states = layer_module(hidden_states, output_attentions)
|
354 |
+
|
355 |
+
if output_attentions:
|
356 |
+
all_attention_outputs = all_attention_outputs + (hidden_states[1],)
|
357 |
+
|
358 |
+
if output_attentions:
|
359 |
+
outputs = (hidden_states[0],) + all_attention_outputs
|
360 |
+
return outputs
|
361 |
+
|
362 |
+
return hidden_states
|
363 |
+
|
364 |
+
|
365 |
+
class EfficientFormerMeta4D(nn.Module):
|
366 |
+
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0):
|
367 |
+
super().__init__()
|
368 |
+
pool_size = config.pool_size if config.pool_size is not None else 3
|
369 |
+
self.token_mixer = EfficientFormerPooling(pool_size=pool_size)
|
370 |
+
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
|
371 |
+
self.mlp = EfficientFormerConvMlp(
|
372 |
+
config, in_features=dim, hidden_features=mlp_hidden_dim, drop=config.hidden_dropout_prob
|
373 |
+
)
|
374 |
+
|
375 |
+
self.drop_path = EfficientFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
376 |
+
self.use_layer_scale = config.use_layer_scale
|
377 |
+
if config.use_layer_scale:
|
378 |
+
self.layer_scale_1 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
379 |
+
self.layer_scale_2 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
380 |
+
|
381 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
|
382 |
+
outputs = self.token_mixer(hidden_states)
|
383 |
+
|
384 |
+
if self.use_layer_scale:
|
385 |
+
layer_output = hidden_states + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * outputs)
|
386 |
+
|
387 |
+
layer_output = layer_output + self.drop_path(
|
388 |
+
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(layer_output)
|
389 |
+
)
|
390 |
+
else:
|
391 |
+
layer_output = hidden_states + self.drop_path(outputs)
|
392 |
+
layer_output = layer_output + self.drop_path(self.mlp(layer_output))
|
393 |
+
|
394 |
+
return layer_output
|
395 |
+
|
396 |
+
|
397 |
+
class EfficientFormerMeta4DLayers(nn.Module):
|
398 |
+
def __init__(self, config: EfficientFormerConfig, stage_idx: int):
|
399 |
+
super().__init__()
|
400 |
+
num_layers = (
|
401 |
+
config.depths[stage_idx] if stage_idx != -1 else config.depths[stage_idx] - config.num_meta3d_blocks
|
402 |
+
)
|
403 |
+
drop_paths = [
|
404 |
+
config.drop_path_rate * (block_idx + sum(config.depths[:stage_idx])) for block_idx in range(num_layers)
|
405 |
+
]
|
406 |
+
|
407 |
+
self.blocks = nn.ModuleList(
|
408 |
+
[
|
409 |
+
EfficientFormerMeta4D(config, config.hidden_sizes[stage_idx], drop_path=drop_path)
|
410 |
+
for drop_path in drop_paths
|
411 |
+
]
|
412 |
+
)
|
413 |
+
|
414 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
|
415 |
+
for layer_module in self.blocks:
|
416 |
+
hidden_states = layer_module(hidden_states)
|
417 |
+
return hidden_states
|
418 |
+
|
419 |
+
|
420 |
+
class EfficientFormerIntermediateStage(nn.Module):
|
421 |
+
def __init__(self, config: EfficientFormerConfig, index: int):
|
422 |
+
super().__init__()
|
423 |
+
self.meta4D_layers = EfficientFormerMeta4DLayers(config, index)
|
424 |
+
|
425 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
|
426 |
+
hidden_states = self.meta4D_layers(hidden_states)
|
427 |
+
return hidden_states
|
428 |
+
|
429 |
+
|
430 |
+
class EfficientFormerLastStage(nn.Module):
|
431 |
+
def __init__(self, config: EfficientFormerConfig):
|
432 |
+
super().__init__()
|
433 |
+
self.meta4D_layers = EfficientFormerMeta4DLayers(config, -1)
|
434 |
+
self.flat = EfficientFormerFlat()
|
435 |
+
self.meta3D_layers = EfficientFormerMeta3DLayers(config)
|
436 |
+
|
437 |
+
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
|
438 |
+
hidden_states = self.meta4D_layers(hidden_states)
|
439 |
+
hidden_states = self.flat(hidden_states)
|
440 |
+
hidden_states = self.meta3D_layers(hidden_states, output_attentions)
|
441 |
+
|
442 |
+
return hidden_states
|
443 |
+
|
444 |
+
|
445 |
+
class EfficientFormerEncoder(nn.Module):
|
446 |
+
def __init__(self, config: EfficientFormerConfig):
|
447 |
+
super().__init__()
|
448 |
+
self.config = config
|
449 |
+
num_intermediate_stages = len(config.depths) - 1
|
450 |
+
downsamples = [
|
451 |
+
config.downsamples[i] or config.hidden_sizes[i] != config.hidden_sizes[i + 1]
|
452 |
+
for i in range(num_intermediate_stages)
|
453 |
+
]
|
454 |
+
intermediate_stages = []
|
455 |
+
|
456 |
+
for i in range(num_intermediate_stages):
|
457 |
+
intermediate_stages.append(EfficientFormerIntermediateStage(config, i))
|
458 |
+
if downsamples[i]:
|
459 |
+
intermediate_stages.append(
|
460 |
+
EfficientFormerPatchEmbeddings(config, config.hidden_sizes[i], config.hidden_sizes[i + 1])
|
461 |
+
)
|
462 |
+
|
463 |
+
self.intermediate_stages = nn.ModuleList(intermediate_stages)
|
464 |
+
self.last_stage = EfficientFormerLastStage(config)
|
465 |
+
|
466 |
+
def forward(
|
467 |
+
self,
|
468 |
+
hidden_states: torch.Tensor,
|
469 |
+
output_hidden_states: bool = False,
|
470 |
+
output_attentions: bool = False,
|
471 |
+
return_dict: bool = True,
|
472 |
+
) -> BaseModelOutput:
|
473 |
+
all_hidden_states = () if output_hidden_states else None
|
474 |
+
all_self_attentions = () if output_attentions else None
|
475 |
+
|
476 |
+
if output_hidden_states:
|
477 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
478 |
+
|
479 |
+
for layer_module in self.intermediate_stages:
|
480 |
+
hidden_states = layer_module(hidden_states)
|
481 |
+
if output_hidden_states:
|
482 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
483 |
+
|
484 |
+
layer_output = self.last_stage(hidden_states, output_attentions=output_attentions)
|
485 |
+
|
486 |
+
if output_attentions:
|
487 |
+
all_self_attentions = all_self_attentions + layer_output[1:]
|
488 |
+
|
489 |
+
if output_hidden_states:
|
490 |
+
all_hidden_states = all_hidden_states + (layer_output[0],)
|
491 |
+
|
492 |
+
if not return_dict:
|
493 |
+
return tuple(v for v in [layer_output[0], all_hidden_states, all_self_attentions] if v is not None)
|
494 |
+
|
495 |
+
return BaseModelOutput(
|
496 |
+
last_hidden_state=layer_output[0],
|
497 |
+
hidden_states=all_hidden_states,
|
498 |
+
attentions=all_self_attentions,
|
499 |
+
)
|
500 |
+
|
501 |
+
|
502 |
+
class EfficientFormerPreTrainedModel(PreTrainedModel):
|
503 |
+
"""
|
504 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
505 |
+
models.
|
506 |
+
"""
|
507 |
+
|
508 |
+
config_class = EfficientFormerConfig
|
509 |
+
base_model_prefix = "efficientformer"
|
510 |
+
main_input_name = "pixel_values"
|
511 |
+
supports_gradient_checkpointing = False
|
512 |
+
|
513 |
+
def _init_weights(self, module: nn.Module):
|
514 |
+
"""Initialize the weights"""
|
515 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
516 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
517 |
+
if module.bias is not None:
|
518 |
+
module.bias.data.zero_()
|
519 |
+
elif isinstance(module, nn.LayerNorm):
|
520 |
+
module.bias.data.zero_()
|
521 |
+
module.weight.data.fill_(1.0)
|
522 |
+
|
523 |
+
|
524 |
+
EFFICIENTFORMER_START_DOCSTRING = r"""
|
525 |
+
This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#nn.Module) subclass. Use it as a
|
526 |
+
regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
|
527 |
+
|
528 |
+
Parameters:
|
529 |
+
config ([`EfficientFormerConfig`]): Model configuration class with all the parameters of the model.
|
530 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
531 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
532 |
+
"""
|
533 |
+
|
534 |
+
EFFICIENTFORMER_INPUTS_DOCSTRING = r"""
|
535 |
+
Args:
|
536 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
537 |
+
Pixel values. Pixel values can be obtained using [`ViTImageProcessor`]. See
|
538 |
+
[`ViTImageProcessor.preprocess`] for details.
|
539 |
+
output_attentions (`bool`, *optional*):
|
540 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
541 |
+
tensors for more detail.
|
542 |
+
output_hidden_states (`bool`, *optional*):
|
543 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
544 |
+
more detail.
|
545 |
+
return_dict (`bool`, *optional*):
|
546 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
547 |
+
"""
|
548 |
+
|
549 |
+
|
550 |
+
@add_start_docstrings(
|
551 |
+
"The bare EfficientFormer Model transformer outputting raw hidden-states without any specific head on top.",
|
552 |
+
EFFICIENTFORMER_START_DOCSTRING,
|
553 |
+
)
|
554 |
+
class EfficientFormerModel(EfficientFormerPreTrainedModel):
|
555 |
+
def __init__(self, config: EfficientFormerConfig):
|
556 |
+
super().__init__(config)
|
557 |
+
self.config = config
|
558 |
+
|
559 |
+
self.patch_embed = EfficientFormerConvStem(config, config.hidden_sizes[0])
|
560 |
+
self.encoder = EfficientFormerEncoder(config)
|
561 |
+
self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
|
562 |
+
|
563 |
+
# Initialize weights and apply final processing
|
564 |
+
self.post_init()
|
565 |
+
|
566 |
+
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
|
567 |
+
@add_code_sample_docstrings(
|
568 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
569 |
+
output_type=BaseModelOutputWithPooling,
|
570 |
+
config_class=_CONFIG_FOR_DOC,
|
571 |
+
modality="vision",
|
572 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
573 |
+
)
|
574 |
+
def forward(
|
575 |
+
self,
|
576 |
+
pixel_values: Optional[torch.Tensor] = None,
|
577 |
+
output_attentions: Optional[bool] = None,
|
578 |
+
output_hidden_states: Optional[bool] = None,
|
579 |
+
return_dict: Optional[bool] = None,
|
580 |
+
) -> Union[tuple, BaseModelOutput]:
|
581 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
582 |
+
output_hidden_states = (
|
583 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
584 |
+
)
|
585 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
586 |
+
|
587 |
+
if pixel_values is None:
|
588 |
+
raise ValueError("You have to specify pixel_values")
|
589 |
+
|
590 |
+
embedding_output = self.patch_embed(pixel_values)
|
591 |
+
encoder_outputs = self.encoder(
|
592 |
+
embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states
|
593 |
+
)
|
594 |
+
|
595 |
+
sequence_output = encoder_outputs[0]
|
596 |
+
sequence_output = self.layernorm(sequence_output)
|
597 |
+
|
598 |
+
if not return_dict:
|
599 |
+
head_outputs = (sequence_output,)
|
600 |
+
return head_outputs + encoder_outputs[1:]
|
601 |
+
|
602 |
+
return BaseModelOutput(
|
603 |
+
last_hidden_state=sequence_output,
|
604 |
+
hidden_states=encoder_outputs.hidden_states,
|
605 |
+
attentions=encoder_outputs.attentions,
|
606 |
+
)
|
607 |
+
|
608 |
+
|
609 |
+
@add_start_docstrings(
|
610 |
+
"""
|
611 |
+
EfficientFormer Model transformer with an image classification head on top (a linear layer on top of the final
|
612 |
+
hidden state of the [CLS] token) e.g. for ImageNet.
|
613 |
+
""",
|
614 |
+
EFFICIENTFORMER_START_DOCSTRING,
|
615 |
+
)
|
616 |
+
class EfficientFormerForImageClassification(EfficientFormerPreTrainedModel):
|
617 |
+
def __init__(self, config: EfficientFormerConfig):
|
618 |
+
super().__init__(config)
|
619 |
+
|
620 |
+
self.num_labels = config.num_labels
|
621 |
+
self.efficientformer = EfficientFormerModel(config)
|
622 |
+
|
623 |
+
# Classifier head
|
624 |
+
self.classifier = (
|
625 |
+
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
|
626 |
+
)
|
627 |
+
|
628 |
+
# Initialize weights and apply final processing
|
629 |
+
self.post_init()
|
630 |
+
|
631 |
+
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
|
632 |
+
@add_code_sample_docstrings(
|
633 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
634 |
+
output_type=ImageClassifierOutput,
|
635 |
+
config_class=_CONFIG_FOR_DOC,
|
636 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
637 |
+
)
|
638 |
+
def forward(
|
639 |
+
self,
|
640 |
+
pixel_values: Optional[torch.Tensor] = None,
|
641 |
+
labels: Optional[torch.Tensor] = None,
|
642 |
+
output_attentions: Optional[bool] = None,
|
643 |
+
output_hidden_states: Optional[bool] = None,
|
644 |
+
return_dict: Optional[bool] = None,
|
645 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
646 |
+
r"""
|
647 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
648 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
649 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
650 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
651 |
+
"""
|
652 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
653 |
+
|
654 |
+
outputs = self.efficientformer(
|
655 |
+
pixel_values,
|
656 |
+
output_attentions=output_attentions,
|
657 |
+
output_hidden_states=output_hidden_states,
|
658 |
+
return_dict=return_dict,
|
659 |
+
)
|
660 |
+
|
661 |
+
sequence_output = outputs[0]
|
662 |
+
|
663 |
+
logits = self.classifier(sequence_output.mean(-2))
|
664 |
+
|
665 |
+
loss = None
|
666 |
+
if labels is not None:
|
667 |
+
if self.config.problem_type is None:
|
668 |
+
if self.num_labels == 1:
|
669 |
+
self.config.problem_type = "regression"
|
670 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
671 |
+
self.config.problem_type = "single_label_classification"
|
672 |
+
else:
|
673 |
+
self.config.problem_type = "multi_label_classification"
|
674 |
+
|
675 |
+
if self.config.problem_type == "regression":
|
676 |
+
loss_fct = MSELoss()
|
677 |
+
if self.num_labels == 1:
|
678 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
679 |
+
else:
|
680 |
+
loss = loss_fct(logits, labels)
|
681 |
+
elif self.config.problem_type == "single_label_classification":
|
682 |
+
loss_fct = CrossEntropyLoss()
|
683 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
684 |
+
elif self.config.problem_type == "multi_label_classification":
|
685 |
+
loss_fct = BCEWithLogitsLoss()
|
686 |
+
loss = loss_fct(logits, labels)
|
687 |
+
|
688 |
+
if not return_dict:
|
689 |
+
output = (logits,) + outputs[1:]
|
690 |
+
return ((loss,) + output) if loss is not None else output
|
691 |
+
|
692 |
+
return ImageClassifierOutput(
|
693 |
+
loss=loss,
|
694 |
+
logits=logits,
|
695 |
+
hidden_states=outputs.hidden_states,
|
696 |
+
attentions=outputs.attentions,
|
697 |
+
)
|
698 |
+
|
699 |
+
|
700 |
+
@dataclass
|
701 |
+
class EfficientFormerForImageClassificationWithTeacherOutput(ModelOutput):
|
702 |
+
"""
|
703 |
+
Output type of [`EfficientFormerForImageClassificationWithTeacher`].
|
704 |
+
|
705 |
+
Args:
|
706 |
+
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
707 |
+
Prediction scores as the average of the cls_logits and distillation logits.
|
708 |
+
cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
709 |
+
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
|
710 |
+
class token).
|
711 |
+
distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
712 |
+
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
|
713 |
+
distillation token).
|
714 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
715 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
716 |
+
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
|
717 |
+
plus the initial embedding outputs.
|
718 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
719 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
720 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
721 |
+
the self-attention heads.
|
722 |
+
"""
|
723 |
+
|
724 |
+
logits: torch.FloatTensor = None
|
725 |
+
cls_logits: torch.FloatTensor = None
|
726 |
+
distillation_logits: torch.FloatTensor = None
|
727 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
728 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
729 |
+
|
730 |
+
|
731 |
+
@add_start_docstrings(
|
732 |
+
"""
|
733 |
+
EfficientFormer Model transformer with image classification heads on top (a linear layer on top of the final hidden
|
734 |
+
state of the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for
|
735 |
+
ImageNet.
|
736 |
+
|
737 |
+
<Tip warning={true}>
|
738 |
+
|
739 |
+
This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
|
740 |
+
supported.
|
741 |
+
|
742 |
+
</Tip>
|
743 |
+
""",
|
744 |
+
EFFICIENTFORMER_START_DOCSTRING,
|
745 |
+
)
|
746 |
+
class EfficientFormerForImageClassificationWithTeacher(EfficientFormerPreTrainedModel):
|
747 |
+
def __init__(self, config: EfficientFormerConfig):
|
748 |
+
super().__init__(config)
|
749 |
+
|
750 |
+
self.num_labels = config.num_labels
|
751 |
+
self.efficientformer = EfficientFormerModel(config)
|
752 |
+
|
753 |
+
# Classifier head
|
754 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
755 |
+
# Distillation head
|
756 |
+
self.distillation_classifier = (
|
757 |
+
nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
758 |
+
)
|
759 |
+
|
760 |
+
# Initialize weights and apply final processing
|
761 |
+
self.post_init()
|
762 |
+
|
763 |
+
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
|
764 |
+
@add_code_sample_docstrings(
|
765 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
766 |
+
output_type=EfficientFormerForImageClassificationWithTeacherOutput,
|
767 |
+
config_class=_CONFIG_FOR_DOC,
|
768 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
769 |
+
)
|
770 |
+
def forward(
|
771 |
+
self,
|
772 |
+
pixel_values: Optional[torch.Tensor] = None,
|
773 |
+
output_attentions: Optional[bool] = None,
|
774 |
+
output_hidden_states: Optional[bool] = None,
|
775 |
+
return_dict: Optional[bool] = None,
|
776 |
+
) -> Union[tuple, EfficientFormerForImageClassificationWithTeacherOutput]:
|
777 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
778 |
+
outputs = self.efficientformer(
|
779 |
+
pixel_values,
|
780 |
+
output_attentions=output_attentions,
|
781 |
+
output_hidden_states=output_hidden_states,
|
782 |
+
return_dict=return_dict,
|
783 |
+
)
|
784 |
+
|
785 |
+
sequence_output = outputs[0]
|
786 |
+
|
787 |
+
cls_logits = self.classifier(sequence_output.mean(-2))
|
788 |
+
distillation_logits = self.distillation_classifier(sequence_output.mean(-2))
|
789 |
+
|
790 |
+
# during inference, return the average of both classifier predictions
|
791 |
+
logits = (cls_logits + distillation_logits) / 2
|
792 |
+
|
793 |
+
if not return_dict:
|
794 |
+
output = (logits, cls_logits, distillation_logits) + outputs[1:]
|
795 |
+
return output
|
796 |
+
|
797 |
+
return EfficientFormerForImageClassificationWithTeacherOutput(
|
798 |
+
logits=logits,
|
799 |
+
cls_logits=cls_logits,
|
800 |
+
distillation_logits=distillation_logits,
|
801 |
+
hidden_states=outputs.hidden_states,
|
802 |
+
attentions=outputs.attentions,
|
803 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientformer/modeling_tf_efficientformer.py
ADDED
@@ -0,0 +1,1193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Snapchat Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TensorFlow EfficientFormer model."""
|
16 |
+
|
17 |
+
import itertools
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import tensorflow as tf
|
22 |
+
|
23 |
+
from ...activations_tf import ACT2FN
|
24 |
+
from ...modeling_tf_outputs import (
|
25 |
+
TFBaseModelOutput,
|
26 |
+
TFBaseModelOutputWithPooling,
|
27 |
+
TFImageClassifierOutput,
|
28 |
+
)
|
29 |
+
from ...modeling_tf_utils import (
|
30 |
+
TFPreTrainedModel,
|
31 |
+
TFSequenceClassificationLoss,
|
32 |
+
get_initializer,
|
33 |
+
keras,
|
34 |
+
keras_serializable,
|
35 |
+
unpack_inputs,
|
36 |
+
)
|
37 |
+
from ...tf_utils import shape_list, stable_softmax
|
38 |
+
from ...utils import (
|
39 |
+
ModelOutput,
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
)
|
45 |
+
from .configuration_efficientformer import EfficientFormerConfig
|
46 |
+
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
# General docstring
|
51 |
+
_CONFIG_FOR_DOC = "EfficientFormerConfig"
|
52 |
+
|
53 |
+
# Base docstring
|
54 |
+
_CHECKPOINT_FOR_DOC = "snap-research/efficientformer-l1-300"
|
55 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 49, 448]
|
56 |
+
|
57 |
+
# Image classification docstring
|
58 |
+
_IMAGE_CLASS_CHECKPOINT = "snap-research/efficientformer-l1-300"
|
59 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_281"
|
60 |
+
|
61 |
+
|
62 |
+
from ..deprecated._archive_maps import TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
63 |
+
|
64 |
+
|
65 |
+
class TFEfficientFormerPatchEmbeddings(keras.layers.Layer):
|
66 |
+
"""
|
67 |
+
This class performs downsampling between two stages. For the input tensor with the shape [batch_size, num_channels,
|
68 |
+
height, width] it produces output tensor with the shape [batch_size, num_channels, height/stride, width/stride]
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self, config: EfficientFormerConfig, num_channels: int, embed_dim: int, apply_norm: bool = True, **kwargs
|
73 |
+
) -> None:
|
74 |
+
super().__init__(**kwargs)
|
75 |
+
self.num_channels = num_channels
|
76 |
+
|
77 |
+
self.padding = keras.layers.ZeroPadding2D(padding=config.downsample_pad)
|
78 |
+
self.projection = keras.layers.Conv2D(
|
79 |
+
filters=embed_dim,
|
80 |
+
kernel_size=config.downsample_patch_size,
|
81 |
+
strides=config.downsample_stride,
|
82 |
+
padding="valid",
|
83 |
+
name="projection",
|
84 |
+
)
|
85 |
+
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
|
86 |
+
self.norm = (
|
87 |
+
keras.layers.BatchNormalization(axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="norm")
|
88 |
+
if apply_norm
|
89 |
+
else tf.identity
|
90 |
+
)
|
91 |
+
self.embed_dim = embed_dim
|
92 |
+
|
93 |
+
def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor:
|
94 |
+
tf.debugging.assert_shapes(
|
95 |
+
[(pixel_values, (..., None, None, self.num_channels))],
|
96 |
+
message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.",
|
97 |
+
)
|
98 |
+
embeddings = self.projection(self.padding(pixel_values))
|
99 |
+
embeddings = self.norm(embeddings, training=training)
|
100 |
+
return embeddings
|
101 |
+
|
102 |
+
def build(self, input_shape=None):
|
103 |
+
if self.built:
|
104 |
+
return
|
105 |
+
self.built = True
|
106 |
+
if getattr(self, "projection", None) is not None:
|
107 |
+
with tf.name_scope(self.projection.name):
|
108 |
+
self.projection.build([None, None, None, self.num_channels])
|
109 |
+
if getattr(self, "norm", None) is not None:
|
110 |
+
if hasattr(self.norm, "name"):
|
111 |
+
with tf.name_scope(self.norm.name):
|
112 |
+
self.norm.build([None, None, None, self.embed_dim])
|
113 |
+
|
114 |
+
|
115 |
+
class TFEfficientFormerSelfAttention(keras.layers.Layer):
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
dim: int,
|
119 |
+
key_dim: int,
|
120 |
+
num_heads: int,
|
121 |
+
attention_ratio: int,
|
122 |
+
resolution: int,
|
123 |
+
config: EfficientFormerConfig,
|
124 |
+
**kwargs,
|
125 |
+
):
|
126 |
+
super().__init__(**kwargs)
|
127 |
+
|
128 |
+
self.num_heads = num_heads
|
129 |
+
self.key_dim = key_dim
|
130 |
+
self.attention_ratio = attention_ratio
|
131 |
+
self.scale = key_dim**-0.5
|
132 |
+
self.total_key_dim = key_dim * num_heads
|
133 |
+
self.expanded_key_dim = int(attention_ratio * key_dim)
|
134 |
+
self.total_expanded_key_dim = int(self.expanded_key_dim * num_heads)
|
135 |
+
hidden_size = self.total_expanded_key_dim + self.total_key_dim * 2
|
136 |
+
|
137 |
+
self.qkv = keras.layers.Dense(
|
138 |
+
units=hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="qkv"
|
139 |
+
)
|
140 |
+
self.projection = keras.layers.Dense(
|
141 |
+
units=dim, kernel_initializer=get_initializer(config.initializer_range), name="projection"
|
142 |
+
)
|
143 |
+
self.resolution = resolution
|
144 |
+
self.dim = dim
|
145 |
+
|
146 |
+
def build(self, input_shape: tf.TensorShape) -> None:
|
147 |
+
points = list(itertools.product(range(self.resolution), range(self.resolution)))
|
148 |
+
num_points = len(points)
|
149 |
+
attention_offsets = {}
|
150 |
+
|
151 |
+
idxs = []
|
152 |
+
|
153 |
+
for point_1 in points:
|
154 |
+
for point_2 in points:
|
155 |
+
offset = (abs(point_1[0] - point_2[0]), abs(point_1[1] - point_2[1]))
|
156 |
+
if offset not in attention_offsets:
|
157 |
+
attention_offsets[offset] = len(attention_offsets)
|
158 |
+
idxs.append(attention_offsets[offset])
|
159 |
+
|
160 |
+
self.attention_biases = self.add_weight(
|
161 |
+
shape=(self.num_heads, len(attention_offsets)),
|
162 |
+
initializer=keras.initializers.zeros(),
|
163 |
+
trainable=True,
|
164 |
+
name="attention_biases",
|
165 |
+
)
|
166 |
+
self.attention_bias_idxs = self.add_weight(
|
167 |
+
shape=(num_points, num_points),
|
168 |
+
trainable=False,
|
169 |
+
dtype=tf.int32,
|
170 |
+
name="attention_bias_idxs",
|
171 |
+
)
|
172 |
+
|
173 |
+
self.attention_bias_idxs.assign(tf.reshape(tf.cast(idxs, dtype=tf.int32), (num_points, num_points)))
|
174 |
+
|
175 |
+
if self.built:
|
176 |
+
return
|
177 |
+
self.built = True
|
178 |
+
if getattr(self, "qkv", None) is not None:
|
179 |
+
with tf.name_scope(self.qkv.name):
|
180 |
+
self.qkv.build([None, None, self.dim])
|
181 |
+
if getattr(self, "projection", None) is not None:
|
182 |
+
with tf.name_scope(self.projection.name):
|
183 |
+
self.projection.build([None, None, self.total_expanded_key_dim])
|
184 |
+
|
185 |
+
def call(
|
186 |
+
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
|
187 |
+
) -> Tuple[tf.Tensor]:
|
188 |
+
batch_size, sequence_length, *_ = shape_list(hidden_states)
|
189 |
+
qkv = self.qkv(inputs=hidden_states)
|
190 |
+
|
191 |
+
query_layer, key_layer, value_layer = tf.split(
|
192 |
+
tf.reshape(tensor=qkv, shape=(batch_size, sequence_length, self.num_heads, -1)),
|
193 |
+
num_or_size_splits=[self.key_dim, self.key_dim, self.expanded_key_dim],
|
194 |
+
axis=3,
|
195 |
+
)
|
196 |
+
|
197 |
+
query_layer = tf.transpose(query_layer, perm=[0, 2, 1, 3])
|
198 |
+
key_layer = tf.transpose(key_layer, perm=[0, 2, 1, 3])
|
199 |
+
value_layer = tf.transpose(value_layer, perm=[0, 2, 1, 3])
|
200 |
+
|
201 |
+
attention_probs = tf.matmul(query_layer, tf.transpose(key_layer, perm=[0, 1, 3, 2]))
|
202 |
+
scale = tf.cast(self.scale, dtype=attention_probs.dtype)
|
203 |
+
attention_probs = tf.multiply(attention_probs, scale)
|
204 |
+
|
205 |
+
attention_biases = tf.gather(params=self.attention_biases, indices=self.attention_bias_idxs, axis=1)
|
206 |
+
attention_probs = attention_probs + attention_biases
|
207 |
+
attention_probs = stable_softmax(logits=attention_probs, axis=-1)
|
208 |
+
|
209 |
+
context_layer = tf.matmul(attention_probs, value_layer)
|
210 |
+
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
|
211 |
+
|
212 |
+
context_layer = tf.reshape(
|
213 |
+
tensor=context_layer, shape=(batch_size, sequence_length, self.total_expanded_key_dim)
|
214 |
+
)
|
215 |
+
context_layer = self.projection(context_layer)
|
216 |
+
|
217 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
218 |
+
|
219 |
+
return outputs
|
220 |
+
|
221 |
+
|
222 |
+
class TFEfficientFormerConvStem(keras.layers.Layer):
|
223 |
+
def __init__(self, config: EfficientFormerConfig, out_channels: int, **kwargs):
|
224 |
+
super().__init__(**kwargs)
|
225 |
+
|
226 |
+
self.padding = keras.layers.ZeroPadding2D(padding=1)
|
227 |
+
self.convolution1 = keras.layers.Conv2D(
|
228 |
+
filters=out_channels // 2, kernel_size=3, strides=2, padding="valid", name="convolution1"
|
229 |
+
)
|
230 |
+
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
|
231 |
+
self.batchnorm_before = keras.layers.BatchNormalization(
|
232 |
+
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_before"
|
233 |
+
)
|
234 |
+
|
235 |
+
self.convolution2 = keras.layers.Conv2D(
|
236 |
+
filters=out_channels,
|
237 |
+
kernel_size=3,
|
238 |
+
strides=2,
|
239 |
+
padding="valid",
|
240 |
+
name="convolution2",
|
241 |
+
)
|
242 |
+
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
|
243 |
+
self.batchnorm_after = keras.layers.BatchNormalization(
|
244 |
+
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_after"
|
245 |
+
)
|
246 |
+
|
247 |
+
self.activation = keras.layers.Activation(activation=keras.activations.relu, name="activation")
|
248 |
+
self.out_channels = out_channels
|
249 |
+
self.config = config
|
250 |
+
|
251 |
+
def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor:
|
252 |
+
features = self.batchnorm_before(self.convolution1(self.padding(pixel_values)), training=training)
|
253 |
+
features = self.activation(features)
|
254 |
+
features = self.batchnorm_after(self.convolution2(self.padding(features)), training=training)
|
255 |
+
features = self.activation(features)
|
256 |
+
return features
|
257 |
+
|
258 |
+
def build(self, input_shape=None):
|
259 |
+
if self.built:
|
260 |
+
return
|
261 |
+
self.built = True
|
262 |
+
if getattr(self, "convolution1", None) is not None:
|
263 |
+
with tf.name_scope(self.convolution1.name):
|
264 |
+
self.convolution1.build([None, None, None, self.config.num_channels])
|
265 |
+
if getattr(self, "batchnorm_before", None) is not None:
|
266 |
+
with tf.name_scope(self.batchnorm_before.name):
|
267 |
+
self.batchnorm_before.build([None, None, None, self.out_channels // 2])
|
268 |
+
if getattr(self, "convolution2", None) is not None:
|
269 |
+
with tf.name_scope(self.convolution2.name):
|
270 |
+
self.convolution2.build([None, None, None, self.out_channels // 2])
|
271 |
+
if getattr(self, "batchnorm_after", None) is not None:
|
272 |
+
with tf.name_scope(self.batchnorm_after.name):
|
273 |
+
self.batchnorm_after.build([None, None, None, self.out_channels])
|
274 |
+
if getattr(self, "activation", None) is not None:
|
275 |
+
with tf.name_scope(self.activation.name):
|
276 |
+
self.activation.build(None)
|
277 |
+
|
278 |
+
|
279 |
+
class TFEfficientFormerPooling(keras.layers.Layer):
|
280 |
+
def __init__(self, pool_size: int, **kwargs):
|
281 |
+
super().__init__(**kwargs)
|
282 |
+
self.pool = keras.layers.AveragePooling2D(pool_size=pool_size, strides=1, padding="same")
|
283 |
+
|
284 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
285 |
+
output = self.pool(hidden_states)
|
286 |
+
output = output - hidden_states
|
287 |
+
return output
|
288 |
+
|
289 |
+
|
290 |
+
class TFEfficientFormerDenseMlp(keras.layers.Layer):
|
291 |
+
def __init__(
|
292 |
+
self,
|
293 |
+
config: EfficientFormerConfig,
|
294 |
+
in_features: int,
|
295 |
+
hidden_features: Optional[int] = None,
|
296 |
+
out_features: Optional[int] = None,
|
297 |
+
**kwargs,
|
298 |
+
):
|
299 |
+
super().__init__(**kwargs)
|
300 |
+
out_features = out_features or in_features
|
301 |
+
hidden_features = hidden_features or in_features
|
302 |
+
|
303 |
+
self.linear_in = keras.layers.Dense(
|
304 |
+
units=hidden_features, kernel_initializer=get_initializer(config.initializer_range), name="linear_in"
|
305 |
+
)
|
306 |
+
self.activation = ACT2FN[config.hidden_act]
|
307 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
308 |
+
|
309 |
+
self.linear_out = keras.layers.Dense(
|
310 |
+
units=out_features, kernel_initializer=get_initializer(config.initializer_range), name="linear_out"
|
311 |
+
)
|
312 |
+
self.hidden_features = hidden_features
|
313 |
+
self.in_features = in_features
|
314 |
+
|
315 |
+
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
|
316 |
+
hidden_states = self.linear_in(inputs=hidden_states)
|
317 |
+
hidden_states = self.activation(hidden_states)
|
318 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
319 |
+
hidden_states = self.linear_out(inputs=hidden_states)
|
320 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
321 |
+
|
322 |
+
return hidden_states
|
323 |
+
|
324 |
+
def build(self, input_shape=None):
|
325 |
+
if self.built:
|
326 |
+
return
|
327 |
+
self.built = True
|
328 |
+
if getattr(self, "linear_in", None) is not None:
|
329 |
+
with tf.name_scope(self.linear_in.name):
|
330 |
+
self.linear_in.build([None, None, self.in_features])
|
331 |
+
if getattr(self, "linear_out", None) is not None:
|
332 |
+
with tf.name_scope(self.linear_out.name):
|
333 |
+
self.linear_out.build([None, None, self.hidden_features])
|
334 |
+
|
335 |
+
|
336 |
+
class TFEfficientFormerConvMlp(keras.layers.Layer):
|
337 |
+
def __init__(
|
338 |
+
self,
|
339 |
+
config: EfficientFormerConfig,
|
340 |
+
in_features: int,
|
341 |
+
hidden_features: Optional[int] = None,
|
342 |
+
out_features: Optional[int] = None,
|
343 |
+
drop: float = 0.0,
|
344 |
+
**kwargs,
|
345 |
+
):
|
346 |
+
super().__init__(**kwargs)
|
347 |
+
out_features = out_features or in_features
|
348 |
+
hidden_features = hidden_features or in_features
|
349 |
+
|
350 |
+
self.convolution1 = keras.layers.Conv2D(
|
351 |
+
filters=hidden_features,
|
352 |
+
kernel_size=1,
|
353 |
+
name="convolution1",
|
354 |
+
padding="valid",
|
355 |
+
)
|
356 |
+
|
357 |
+
self.activation = ACT2FN[config.hidden_act]
|
358 |
+
|
359 |
+
self.convolution2 = keras.layers.Conv2D(
|
360 |
+
filters=out_features,
|
361 |
+
kernel_size=1,
|
362 |
+
name="convolution2",
|
363 |
+
padding="valid",
|
364 |
+
)
|
365 |
+
|
366 |
+
self.dropout = keras.layers.Dropout(rate=drop)
|
367 |
+
|
368 |
+
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
|
369 |
+
self.batchnorm_before = keras.layers.BatchNormalization(
|
370 |
+
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_before"
|
371 |
+
)
|
372 |
+
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
|
373 |
+
self.batchnorm_after = keras.layers.BatchNormalization(
|
374 |
+
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_after"
|
375 |
+
)
|
376 |
+
self.hidden_features = hidden_features
|
377 |
+
self.in_features = in_features
|
378 |
+
self.out_features = out_features
|
379 |
+
|
380 |
+
def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
|
381 |
+
hidden_state = self.convolution1(hidden_state)
|
382 |
+
hidden_state = self.batchnorm_before(hidden_state, training=training)
|
383 |
+
hidden_state = self.activation(hidden_state)
|
384 |
+
hidden_state = self.dropout(hidden_state, training=training)
|
385 |
+
hidden_state = self.convolution2(hidden_state)
|
386 |
+
hidden_state = self.batchnorm_after(hidden_state, training=training)
|
387 |
+
hidden_state = self.dropout(hidden_state, training=training)
|
388 |
+
return hidden_state
|
389 |
+
|
390 |
+
def build(self, input_shape=None):
|
391 |
+
if self.built:
|
392 |
+
return
|
393 |
+
self.built = True
|
394 |
+
if getattr(self, "convolution1", None) is not None:
|
395 |
+
with tf.name_scope(self.convolution1.name):
|
396 |
+
self.convolution1.build([None, None, None, self.in_features])
|
397 |
+
if getattr(self, "convolution2", None) is not None:
|
398 |
+
with tf.name_scope(self.convolution2.name):
|
399 |
+
self.convolution2.build([None, None, None, self.hidden_features])
|
400 |
+
if getattr(self, "batchnorm_before", None) is not None:
|
401 |
+
with tf.name_scope(self.batchnorm_before.name):
|
402 |
+
self.batchnorm_before.build([None, None, None, self.hidden_features])
|
403 |
+
if getattr(self, "batchnorm_after", None) is not None:
|
404 |
+
with tf.name_scope(self.batchnorm_after.name):
|
405 |
+
self.batchnorm_after.build([None, None, None, self.out_features])
|
406 |
+
|
407 |
+
|
408 |
+
# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->EfficientFormer
|
409 |
+
class TFEfficientFormerDropPath(keras.layers.Layer):
|
410 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
411 |
+
References:
|
412 |
+
(1) github.com:rwightman/pytorch-image-models
|
413 |
+
"""
|
414 |
+
|
415 |
+
def __init__(self, drop_path: float, **kwargs):
|
416 |
+
super().__init__(**kwargs)
|
417 |
+
self.drop_path = drop_path
|
418 |
+
|
419 |
+
def call(self, x: tf.Tensor, training=None):
|
420 |
+
if training:
|
421 |
+
keep_prob = 1 - self.drop_path
|
422 |
+
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
|
423 |
+
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
|
424 |
+
random_tensor = tf.floor(random_tensor)
|
425 |
+
return (x / keep_prob) * random_tensor
|
426 |
+
return x
|
427 |
+
|
428 |
+
|
429 |
+
class TFEfficientFormerFlat(keras.layers.Layer):
|
430 |
+
def __init__(self, **kwargs):
|
431 |
+
super().__init__(**kwargs)
|
432 |
+
|
433 |
+
def call(self, hidden_states: tf.Tensor) -> Tuple[tf.Tensor]:
|
434 |
+
batch_size, _, _, in_channels = shape_list(hidden_states)
|
435 |
+
hidden_states = tf.reshape(hidden_states, shape=[batch_size, -1, in_channels])
|
436 |
+
return hidden_states
|
437 |
+
|
438 |
+
|
439 |
+
class TFEfficientFormerMeta3D(keras.layers.Layer):
|
440 |
+
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0, **kwargs):
|
441 |
+
super().__init__(**kwargs)
|
442 |
+
|
443 |
+
self.token_mixer = TFEfficientFormerSelfAttention(
|
444 |
+
dim=config.dim,
|
445 |
+
key_dim=config.key_dim,
|
446 |
+
num_heads=config.num_attention_heads,
|
447 |
+
attention_ratio=config.attention_ratio,
|
448 |
+
resolution=config.resolution,
|
449 |
+
name="token_mixer",
|
450 |
+
config=config,
|
451 |
+
)
|
452 |
+
self.dim = dim
|
453 |
+
self.config = config
|
454 |
+
|
455 |
+
self.layernorm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm1")
|
456 |
+
self.layernorm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm2")
|
457 |
+
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
|
458 |
+
self.mlp = TFEfficientFormerDenseMlp(config, in_features=dim, hidden_features=mlp_hidden_dim, name="mlp")
|
459 |
+
|
460 |
+
# Using `layers.Activation` instead of `tf.identity` to better control `training' behavior.
|
461 |
+
self.drop_path = (
|
462 |
+
TFEfficientFormerDropPath(drop_path)
|
463 |
+
if drop_path > 0.0
|
464 |
+
else keras.layers.Activation("linear", name="drop_path")
|
465 |
+
)
|
466 |
+
self.config = config
|
467 |
+
|
468 |
+
def build(self, input_shape=None):
|
469 |
+
self.layer_scale_1 = None
|
470 |
+
self.layer_scale_2 = None
|
471 |
+
|
472 |
+
if self.config.use_layer_scale:
|
473 |
+
self.layer_scale_1 = self.add_weight(
|
474 |
+
shape=(self.dim,),
|
475 |
+
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
|
476 |
+
trainable=True,
|
477 |
+
name="layer_scale_1",
|
478 |
+
)
|
479 |
+
self.layer_scale_2 = self.add_weight(
|
480 |
+
shape=(self.dim,),
|
481 |
+
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
|
482 |
+
trainable=True,
|
483 |
+
name="layer_scale_2",
|
484 |
+
)
|
485 |
+
|
486 |
+
if self.built:
|
487 |
+
return
|
488 |
+
self.built = True
|
489 |
+
if getattr(self, "token_mixer", None) is not None:
|
490 |
+
with tf.name_scope(self.token_mixer.name):
|
491 |
+
self.token_mixer.build(None)
|
492 |
+
if getattr(self, "layernorm1", None) is not None:
|
493 |
+
with tf.name_scope(self.layernorm1.name):
|
494 |
+
self.layernorm1.build([None, None, self.dim])
|
495 |
+
if getattr(self, "layernorm2", None) is not None:
|
496 |
+
with tf.name_scope(self.layernorm2.name):
|
497 |
+
self.layernorm2.build([None, None, self.dim])
|
498 |
+
if getattr(self, "mlp", None) is not None:
|
499 |
+
with tf.name_scope(self.mlp.name):
|
500 |
+
self.mlp.build(None)
|
501 |
+
if getattr(self, "drop_path", None) is not None:
|
502 |
+
with tf.name_scope(self.drop_path.name):
|
503 |
+
self.drop_path.build(None)
|
504 |
+
|
505 |
+
def call(
|
506 |
+
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
|
507 |
+
) -> Tuple[tf.Tensor]:
|
508 |
+
self_attention_outputs = self.token_mixer(
|
509 |
+
hidden_states=self.layernorm1(hidden_states, training=training),
|
510 |
+
output_attentions=output_attentions,
|
511 |
+
training=training,
|
512 |
+
)
|
513 |
+
|
514 |
+
attention_output = self_attention_outputs[0]
|
515 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
516 |
+
|
517 |
+
if self.config.use_layer_scale:
|
518 |
+
layer_output = hidden_states + self.drop_path(
|
519 |
+
tf.expand_dims(tf.expand_dims(self.layer_scale_1, 0), 0) * attention_output,
|
520 |
+
training=training,
|
521 |
+
)
|
522 |
+
layer_output = layer_output + self.drop_path(
|
523 |
+
tf.expand_dims(tf.expand_dims(self.layer_scale_2, 0), 0)
|
524 |
+
* self.mlp(hidden_states=self.layernorm2(inputs=layer_output, training=training), training=training),
|
525 |
+
training=training,
|
526 |
+
)
|
527 |
+
else:
|
528 |
+
layer_output = hidden_states + self.drop_path(attention_output, training=training)
|
529 |
+
layer_output = layer_output + self.drop_path(
|
530 |
+
self.mlp(hidden_states=self.layernorm2(inputs=layer_output, training=training), training=training),
|
531 |
+
training=training,
|
532 |
+
)
|
533 |
+
|
534 |
+
outputs = (layer_output,) + outputs
|
535 |
+
|
536 |
+
return outputs
|
537 |
+
|
538 |
+
|
539 |
+
class TFEfficientFormerMeta3DLayers(keras.layers.Layer):
|
540 |
+
def __init__(self, config: EfficientFormerConfig, **kwargs):
|
541 |
+
super().__init__(**kwargs)
|
542 |
+
drop_paths = [
|
543 |
+
config.drop_path_rate * (block_idx + sum(config.depths[:-1]))
|
544 |
+
for block_idx in range(config.num_meta3d_blocks)
|
545 |
+
]
|
546 |
+
self.blocks = [
|
547 |
+
TFEfficientFormerMeta3D(config, config.hidden_sizes[-1], drop_path=drop_path, name=f"blocks.{i}")
|
548 |
+
for i, drop_path in enumerate(drop_paths)
|
549 |
+
]
|
550 |
+
|
551 |
+
def call(
|
552 |
+
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
|
553 |
+
) -> Tuple[tf.Tensor]:
|
554 |
+
all_attention_outputs = () if output_attentions else None
|
555 |
+
|
556 |
+
for i, layer_module in enumerate(self.blocks):
|
557 |
+
if isinstance(hidden_states, tuple):
|
558 |
+
hidden_states = hidden_states[0]
|
559 |
+
|
560 |
+
hidden_states = layer_module(
|
561 |
+
hidden_states=hidden_states, output_attentions=output_attentions, training=training
|
562 |
+
)
|
563 |
+
if output_attentions:
|
564 |
+
all_attention_outputs = all_attention_outputs + (hidden_states[1],)
|
565 |
+
|
566 |
+
if output_attentions:
|
567 |
+
outputs = (hidden_states[0],) + all_attention_outputs
|
568 |
+
return outputs
|
569 |
+
|
570 |
+
return hidden_states
|
571 |
+
|
572 |
+
def build(self, input_shape=None):
|
573 |
+
if self.built:
|
574 |
+
return
|
575 |
+
self.built = True
|
576 |
+
if getattr(self, "blocks", None) is not None:
|
577 |
+
for layer in self.blocks:
|
578 |
+
with tf.name_scope(layer.name):
|
579 |
+
layer.build(None)
|
580 |
+
|
581 |
+
|
582 |
+
class TFEfficientFormerMeta4D(keras.layers.Layer):
|
583 |
+
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0, **kwargs):
|
584 |
+
super().__init__(**kwargs)
|
585 |
+
pool_size = config.pool_size if config.pool_size is not None else 3
|
586 |
+
self.token_mixer = TFEfficientFormerPooling(pool_size=pool_size, name="token_mixer")
|
587 |
+
self.dim = dim
|
588 |
+
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
|
589 |
+
self.mlp = TFEfficientFormerConvMlp(
|
590 |
+
config=config, in_features=dim, hidden_features=mlp_hidden_dim, drop=config.hidden_dropout_prob, name="mlp"
|
591 |
+
)
|
592 |
+
|
593 |
+
self.drop_path = (
|
594 |
+
TFEfficientFormerDropPath(drop_path, name="drop_path")
|
595 |
+
if drop_path > 0.0
|
596 |
+
else keras.layers.Activation("linear", name="drop_path")
|
597 |
+
)
|
598 |
+
self.config = config
|
599 |
+
|
600 |
+
def build(self, input_shape=None):
|
601 |
+
self.layer_scale_1 = None
|
602 |
+
self.layer_scale_2 = None
|
603 |
+
|
604 |
+
if self.config.use_layer_scale:
|
605 |
+
self.layer_scale_1 = self.add_weight(
|
606 |
+
shape=(self.dim),
|
607 |
+
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
|
608 |
+
trainable=True,
|
609 |
+
name="layer_scale_1",
|
610 |
+
)
|
611 |
+
self.layer_scale_2 = self.add_weight(
|
612 |
+
shape=(self.dim),
|
613 |
+
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
|
614 |
+
trainable=True,
|
615 |
+
name="layer_scale_2",
|
616 |
+
)
|
617 |
+
|
618 |
+
if self.built:
|
619 |
+
return
|
620 |
+
self.built = True
|
621 |
+
if getattr(self, "token_mixer", None) is not None:
|
622 |
+
with tf.name_scope(self.token_mixer.name):
|
623 |
+
self.token_mixer.build(None)
|
624 |
+
if getattr(self, "mlp", None) is not None:
|
625 |
+
with tf.name_scope(self.mlp.name):
|
626 |
+
self.mlp.build(None)
|
627 |
+
if getattr(self, "drop_path", None) is not None:
|
628 |
+
with tf.name_scope(self.drop_path.name):
|
629 |
+
self.drop_path.build(None)
|
630 |
+
|
631 |
+
def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]:
|
632 |
+
outputs = self.token_mixer(hidden_states)
|
633 |
+
|
634 |
+
if self.config.use_layer_scale:
|
635 |
+
layer_output = hidden_states + self.drop_path(
|
636 |
+
tf.expand_dims(tf.expand_dims(self.layer_scale_1, 0), 0) * outputs,
|
637 |
+
training=training,
|
638 |
+
)
|
639 |
+
|
640 |
+
layer_output = layer_output + self.drop_path(
|
641 |
+
tf.expand_dims(tf.expand_dims(self.layer_scale_2, 0), 0)
|
642 |
+
* self.mlp(hidden_state=layer_output, training=training),
|
643 |
+
training=training,
|
644 |
+
)
|
645 |
+
|
646 |
+
else:
|
647 |
+
layer_output = hidden_states + self.drop_path(outputs, training=training)
|
648 |
+
layer_output = layer_output + self.drop_path(
|
649 |
+
self.mlp(hidden_state=layer_output, training=training), training=training
|
650 |
+
)
|
651 |
+
|
652 |
+
return layer_output
|
653 |
+
|
654 |
+
|
655 |
+
class TFEfficientFormerMeta4DLayers(keras.layers.Layer):
|
656 |
+
def __init__(self, config: EfficientFormerConfig, stage_idx: int, **kwargs):
|
657 |
+
super().__init__(**kwargs)
|
658 |
+
num_layers = (
|
659 |
+
config.depths[stage_idx] if stage_idx != -1 else config.depths[stage_idx] - config.num_meta3d_blocks
|
660 |
+
)
|
661 |
+
drop_paths = [
|
662 |
+
config.drop_path_rate * (block_idx + sum(config.depths[:stage_idx])) for block_idx in range(num_layers)
|
663 |
+
]
|
664 |
+
|
665 |
+
self.blocks = [
|
666 |
+
TFEfficientFormerMeta4D(
|
667 |
+
config=config, dim=config.hidden_sizes[stage_idx], drop_path=drop_paths[i], name=f"blocks.{i}"
|
668 |
+
)
|
669 |
+
for i in range(len(drop_paths))
|
670 |
+
]
|
671 |
+
|
672 |
+
def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]:
|
673 |
+
for layer_module in self.blocks:
|
674 |
+
hidden_states = layer_module(hidden_states=hidden_states, training=training)
|
675 |
+
return hidden_states
|
676 |
+
|
677 |
+
def build(self, input_shape=None):
|
678 |
+
if self.built:
|
679 |
+
return
|
680 |
+
self.built = True
|
681 |
+
if getattr(self, "blocks", None) is not None:
|
682 |
+
for layer in self.blocks:
|
683 |
+
with tf.name_scope(layer.name):
|
684 |
+
layer.build(None)
|
685 |
+
|
686 |
+
|
687 |
+
class TFEfficientFormerIntermediateStage(keras.layers.Layer):
|
688 |
+
def __init__(self, config: EfficientFormerConfig, index: int, **kwargs):
|
689 |
+
super().__init__(**kwargs)
|
690 |
+
self.meta4D_layers = TFEfficientFormerMeta4DLayers(config=config, stage_idx=index, name="meta4D_layers")
|
691 |
+
|
692 |
+
def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]:
|
693 |
+
hidden_states = self.meta4D_layers(hidden_states=hidden_states, training=training)
|
694 |
+
return hidden_states
|
695 |
+
|
696 |
+
def build(self, input_shape=None):
|
697 |
+
if self.built:
|
698 |
+
return
|
699 |
+
self.built = True
|
700 |
+
if getattr(self, "meta4D_layers", None) is not None:
|
701 |
+
with tf.name_scope(self.meta4D_layers.name):
|
702 |
+
self.meta4D_layers.build(None)
|
703 |
+
|
704 |
+
|
705 |
+
class TFEfficientFormerLastStage(keras.layers.Layer):
|
706 |
+
def __init__(self, config: EfficientFormerConfig, **kwargs):
|
707 |
+
super().__init__(**kwargs)
|
708 |
+
self.meta4D_layers = TFEfficientFormerMeta4DLayers(config=config, stage_idx=-1, name="meta4D_layers")
|
709 |
+
self.flat = TFEfficientFormerFlat(name="flat")
|
710 |
+
self.meta3D_layers = TFEfficientFormerMeta3DLayers(config, name="meta3D_layers")
|
711 |
+
|
712 |
+
def call(
|
713 |
+
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
|
714 |
+
) -> Tuple[tf.Tensor]:
|
715 |
+
hidden_states = self.meta4D_layers(hidden_states=hidden_states, training=training)
|
716 |
+
hidden_states = self.flat(hidden_states=hidden_states)
|
717 |
+
hidden_states = self.meta3D_layers(
|
718 |
+
hidden_states=hidden_states, output_attentions=output_attentions, training=training
|
719 |
+
)
|
720 |
+
|
721 |
+
return hidden_states
|
722 |
+
|
723 |
+
def build(self, input_shape=None):
|
724 |
+
if self.built:
|
725 |
+
return
|
726 |
+
self.built = True
|
727 |
+
if getattr(self, "meta4D_layers", None) is not None:
|
728 |
+
with tf.name_scope(self.meta4D_layers.name):
|
729 |
+
self.meta4D_layers.build(None)
|
730 |
+
if getattr(self, "flat", None) is not None:
|
731 |
+
with tf.name_scope(self.flat.name):
|
732 |
+
self.flat.build(None)
|
733 |
+
if getattr(self, "meta3D_layers", None) is not None:
|
734 |
+
with tf.name_scope(self.meta3D_layers.name):
|
735 |
+
self.meta3D_layers.build(None)
|
736 |
+
|
737 |
+
|
738 |
+
class TFEfficientFormerEncoder(keras.layers.Layer):
|
739 |
+
def __init__(self, config: EfficientFormerConfig, **kwargs):
|
740 |
+
super().__init__(**kwargs)
|
741 |
+
|
742 |
+
self.config = config
|
743 |
+
num_intermediate_stages = len(config.depths) - 1
|
744 |
+
downsamples = [
|
745 |
+
config.downsamples[i] or config.hidden_sizes[i] != config.hidden_sizes[i + 1]
|
746 |
+
for i in range(num_intermediate_stages)
|
747 |
+
]
|
748 |
+
|
749 |
+
intermediate_stages = []
|
750 |
+
layer_count = -1
|
751 |
+
for i in range(num_intermediate_stages):
|
752 |
+
layer_count += 1
|
753 |
+
intermediate_stages.append(
|
754 |
+
TFEfficientFormerIntermediateStage(config, i, name=f"intermediate_stages.{layer_count}")
|
755 |
+
)
|
756 |
+
if downsamples[i]:
|
757 |
+
layer_count += 1
|
758 |
+
intermediate_stages.append(
|
759 |
+
TFEfficientFormerPatchEmbeddings(
|
760 |
+
config,
|
761 |
+
config.hidden_sizes[i],
|
762 |
+
config.hidden_sizes[i + 1],
|
763 |
+
name=f"intermediate_stages.{layer_count}",
|
764 |
+
)
|
765 |
+
)
|
766 |
+
self.intermediate_stages = intermediate_stages
|
767 |
+
self.last_stage = TFEfficientFormerLastStage(config, name="last_stage")
|
768 |
+
|
769 |
+
def call(
|
770 |
+
self,
|
771 |
+
hidden_states: tf.Tensor,
|
772 |
+
output_hidden_states: bool,
|
773 |
+
output_attentions: bool,
|
774 |
+
return_dict: bool,
|
775 |
+
training: bool = False,
|
776 |
+
) -> TFBaseModelOutput:
|
777 |
+
all_hidden_states = () if output_hidden_states else None
|
778 |
+
all_self_attentions = () if output_attentions else None
|
779 |
+
|
780 |
+
if output_hidden_states:
|
781 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
782 |
+
|
783 |
+
for layer_module in self.intermediate_stages:
|
784 |
+
hidden_states = layer_module(hidden_states, training=training)
|
785 |
+
|
786 |
+
if output_hidden_states:
|
787 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
788 |
+
|
789 |
+
layer_output = self.last_stage(hidden_states, output_attentions=output_attentions, training=training)
|
790 |
+
|
791 |
+
if output_attentions:
|
792 |
+
all_self_attentions = all_self_attentions + layer_output[1:]
|
793 |
+
|
794 |
+
if output_hidden_states:
|
795 |
+
all_hidden_states = all_hidden_states + (layer_output[0],)
|
796 |
+
|
797 |
+
if not return_dict:
|
798 |
+
return tuple(v for v in [layer_output[0], all_hidden_states, all_self_attentions] if v is not None)
|
799 |
+
|
800 |
+
return TFBaseModelOutput(
|
801 |
+
last_hidden_state=layer_output[0],
|
802 |
+
hidden_states=all_hidden_states,
|
803 |
+
attentions=all_self_attentions,
|
804 |
+
)
|
805 |
+
|
806 |
+
def build(self, input_shape=None):
|
807 |
+
if self.built:
|
808 |
+
return
|
809 |
+
self.built = True
|
810 |
+
if getattr(self, "last_stage", None) is not None:
|
811 |
+
with tf.name_scope(self.last_stage.name):
|
812 |
+
self.last_stage.build(None)
|
813 |
+
for layer in self.intermediate_stages:
|
814 |
+
with tf.name_scope(layer.name):
|
815 |
+
layer.build(None)
|
816 |
+
|
817 |
+
|
818 |
+
@keras_serializable
|
819 |
+
class TFEfficientFormerMainLayer(keras.layers.Layer):
|
820 |
+
config_class = EfficientFormerConfig
|
821 |
+
|
822 |
+
def __init__(self, config: EfficientFormerConfig, **kwargs) -> None:
|
823 |
+
super().__init__(**kwargs)
|
824 |
+
self.config = config
|
825 |
+
|
826 |
+
self.patch_embed = TFEfficientFormerConvStem(config, config.hidden_sizes[0], name="patch_embed")
|
827 |
+
self.encoder = TFEfficientFormerEncoder(config, name="encoder")
|
828 |
+
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
|
829 |
+
|
830 |
+
@unpack_inputs
|
831 |
+
def call(
|
832 |
+
self,
|
833 |
+
pixel_values: Optional[tf.Tensor] = None,
|
834 |
+
output_attentions: Optional[tf.Tensor] = None,
|
835 |
+
output_hidden_states: Optional[tf.Tensor] = None,
|
836 |
+
return_dict: Optional[bool] = None,
|
837 |
+
training: bool = False,
|
838 |
+
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor, ...]]:
|
839 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
840 |
+
|
841 |
+
output_hidden_states = (
|
842 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
843 |
+
)
|
844 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
845 |
+
|
846 |
+
if pixel_values is None:
|
847 |
+
raise ValueError("You have to specify pixel_values")
|
848 |
+
|
849 |
+
# When running on CPU, keras.layers.Conv2D and keras.layers.AveragePool2D do not
|
850 |
+
# support channels first NCHW format. A number of blocks contain both.
|
851 |
+
# So change the input format from (batch_size, num_channels, height, width) to
|
852 |
+
# (batch_size, height, width, num_channels) here.
|
853 |
+
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
|
854 |
+
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
|
855 |
+
embedding_output = self.patch_embed(pixel_values, training=training)
|
856 |
+
|
857 |
+
encoder_outputs = self.encoder(
|
858 |
+
hidden_states=embedding_output,
|
859 |
+
output_attentions=output_attentions,
|
860 |
+
output_hidden_states=output_hidden_states,
|
861 |
+
return_dict=return_dict,
|
862 |
+
training=training,
|
863 |
+
)
|
864 |
+
|
865 |
+
sequence_output = encoder_outputs[0]
|
866 |
+
sequence_output = self.layernorm(sequence_output, training=training)
|
867 |
+
|
868 |
+
# Change the hidden states from (batch_size, height, width, num_channels) to
|
869 |
+
# (batch_size, num_channels, height, width).
|
870 |
+
# The hidden states are in (batch_size, height, width, num_channels)
|
871 |
+
# shape after all stages except the MB3D blocks.
|
872 |
+
if output_hidden_states:
|
873 |
+
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1][:-1]]) + (
|
874 |
+
encoder_outputs[1][-1],
|
875 |
+
)
|
876 |
+
|
877 |
+
if not return_dict:
|
878 |
+
head_outputs = (sequence_output,)
|
879 |
+
return head_outputs + encoder_outputs[1:]
|
880 |
+
|
881 |
+
return TFBaseModelOutput(
|
882 |
+
last_hidden_state=sequence_output,
|
883 |
+
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
|
884 |
+
attentions=encoder_outputs.attentions,
|
885 |
+
)
|
886 |
+
|
887 |
+
def build(self, input_shape=None):
|
888 |
+
if self.built:
|
889 |
+
return
|
890 |
+
self.built = True
|
891 |
+
if getattr(self, "patch_embed", None) is not None:
|
892 |
+
with tf.name_scope(self.patch_embed.name):
|
893 |
+
self.patch_embed.build(None)
|
894 |
+
if getattr(self, "encoder", None) is not None:
|
895 |
+
with tf.name_scope(self.encoder.name):
|
896 |
+
self.encoder.build(None)
|
897 |
+
if getattr(self, "layernorm", None) is not None:
|
898 |
+
with tf.name_scope(self.layernorm.name):
|
899 |
+
self.layernorm.build([None, None, self.config.hidden_sizes[-1]])
|
900 |
+
|
901 |
+
|
902 |
+
class TFEfficientFormerPreTrainedModel(TFPreTrainedModel):
|
903 |
+
"""
|
904 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
905 |
+
models.
|
906 |
+
"""
|
907 |
+
|
908 |
+
config_class = EfficientFormerConfig
|
909 |
+
base_model_prefix = "efficientformer"
|
910 |
+
main_input_name = "pixel_values"
|
911 |
+
|
912 |
+
|
913 |
+
EFFICIENTFORMER_START_DOCSTRING = r"""
|
914 |
+
This model is a TensorFlow
|
915 |
+
[keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer). Use it as a regular
|
916 |
+
TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.
|
917 |
+
|
918 |
+
|
919 |
+
Parameters:
|
920 |
+
config ([`EfficientFormerConfig`]): Model configuration class with all the parameters of the model.
|
921 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
922 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
923 |
+
"""
|
924 |
+
|
925 |
+
EFFICIENTFORMER_INPUTS_DOCSTRING = r"""
|
926 |
+
Args:
|
927 |
+
pixel_values ((`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
928 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
929 |
+
[`EfficientFormerImageProcessor.__call__`] for details.
|
930 |
+
output_attentions (`bool`, *optional*):
|
931 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
932 |
+
tensors for more detail.
|
933 |
+
output_hidden_states (`bool`, *optional*):
|
934 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
935 |
+
more detail.
|
936 |
+
return_dict (`bool`, *optional*):
|
937 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
938 |
+
"""
|
939 |
+
|
940 |
+
|
941 |
+
@add_start_docstrings(
|
942 |
+
"The bare EfficientFormer Model transformer outputting raw hidden-states without any specific head on top.",
|
943 |
+
EFFICIENTFORMER_START_DOCSTRING,
|
944 |
+
)
|
945 |
+
class TFEfficientFormerModel(TFEfficientFormerPreTrainedModel):
|
946 |
+
def __init__(self, config: EfficientFormerConfig, **kwargs) -> None:
|
947 |
+
super().__init__(config, **kwargs)
|
948 |
+
|
949 |
+
self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer")
|
950 |
+
|
951 |
+
@unpack_inputs
|
952 |
+
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
|
953 |
+
@add_code_sample_docstrings(
|
954 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
955 |
+
output_type=TFBaseModelOutputWithPooling,
|
956 |
+
config_class=_CONFIG_FOR_DOC,
|
957 |
+
modality="vision",
|
958 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
959 |
+
)
|
960 |
+
def call(
|
961 |
+
self,
|
962 |
+
pixel_values: Optional[tf.Tensor] = None,
|
963 |
+
output_attentions: Optional[bool] = None,
|
964 |
+
output_hidden_states: Optional[bool] = None,
|
965 |
+
return_dict: Optional[bool] = None,
|
966 |
+
training: bool = False,
|
967 |
+
) -> Union[Tuple, TFBaseModelOutput]:
|
968 |
+
outputs = self.efficientformer(
|
969 |
+
pixel_values=pixel_values,
|
970 |
+
output_attentions=output_attentions,
|
971 |
+
output_hidden_states=output_hidden_states,
|
972 |
+
return_dict=return_dict,
|
973 |
+
training=training,
|
974 |
+
)
|
975 |
+
return outputs
|
976 |
+
|
977 |
+
def build(self, input_shape=None):
|
978 |
+
if self.built:
|
979 |
+
return
|
980 |
+
self.built = True
|
981 |
+
if getattr(self, "efficientformer", None) is not None:
|
982 |
+
with tf.name_scope(self.efficientformer.name):
|
983 |
+
self.efficientformer.build(None)
|
984 |
+
|
985 |
+
|
986 |
+
@add_start_docstrings(
|
987 |
+
"""
|
988 |
+
EfficientFormer Model transformer with an image classification head on top of pooled last hidden state, e.g. for
|
989 |
+
ImageNet.
|
990 |
+
""",
|
991 |
+
EFFICIENTFORMER_START_DOCSTRING,
|
992 |
+
)
|
993 |
+
class TFEfficientFormerForImageClassification(TFEfficientFormerPreTrainedModel, TFSequenceClassificationLoss):
|
994 |
+
def __init__(self, config: EfficientFormerConfig):
|
995 |
+
super().__init__(config)
|
996 |
+
|
997 |
+
self.num_labels = config.num_labels
|
998 |
+
self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer")
|
999 |
+
|
1000 |
+
# Classifier head
|
1001 |
+
self.classifier = (
|
1002 |
+
keras.layers.Dense(config.num_labels, name="classifier")
|
1003 |
+
if config.num_labels > 0
|
1004 |
+
else keras.layers.Activation("linear", name="classifier")
|
1005 |
+
)
|
1006 |
+
self.config = config
|
1007 |
+
|
1008 |
+
@unpack_inputs
|
1009 |
+
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
|
1010 |
+
@add_code_sample_docstrings(
|
1011 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
1012 |
+
output_type=TFImageClassifierOutput,
|
1013 |
+
config_class=_CONFIG_FOR_DOC,
|
1014 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
1015 |
+
)
|
1016 |
+
def call(
|
1017 |
+
self,
|
1018 |
+
pixel_values: Optional[tf.Tensor] = None,
|
1019 |
+
labels: Optional[tf.Tensor] = None,
|
1020 |
+
output_attentions: Optional[bool] = None,
|
1021 |
+
output_hidden_states: Optional[bool] = None,
|
1022 |
+
return_dict: Optional[bool] = None,
|
1023 |
+
training: bool = False,
|
1024 |
+
) -> Union[tf.Tensor, TFImageClassifierOutput]:
|
1025 |
+
r"""
|
1026 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1027 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
1028 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1029 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1030 |
+
"""
|
1031 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1032 |
+
|
1033 |
+
outputs = self.efficientformer(
|
1034 |
+
pixel_values=pixel_values,
|
1035 |
+
output_attentions=output_attentions,
|
1036 |
+
output_hidden_states=output_hidden_states,
|
1037 |
+
return_dict=return_dict,
|
1038 |
+
training=training,
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
sequence_output = outputs[0]
|
1042 |
+
|
1043 |
+
logits = self.classifier(tf.reduce_mean(sequence_output, axis=-2))
|
1044 |
+
|
1045 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1046 |
+
|
1047 |
+
if not return_dict:
|
1048 |
+
output = (logits,) + outputs[1:]
|
1049 |
+
return ((loss,) + output) if loss is not None else output
|
1050 |
+
|
1051 |
+
return TFImageClassifierOutput(
|
1052 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
1053 |
+
)
|
1054 |
+
|
1055 |
+
def build(self, input_shape=None):
|
1056 |
+
if self.built:
|
1057 |
+
return
|
1058 |
+
self.built = True
|
1059 |
+
if getattr(self, "efficientformer", None) is not None:
|
1060 |
+
with tf.name_scope(self.efficientformer.name):
|
1061 |
+
self.efficientformer.build(None)
|
1062 |
+
if getattr(self, "classifier", None) is not None:
|
1063 |
+
if hasattr(self.classifier, "name"):
|
1064 |
+
with tf.name_scope(self.classifier.name):
|
1065 |
+
self.classifier.build([None, None, self.config.hidden_sizes[-1]])
|
1066 |
+
|
1067 |
+
|
1068 |
+
@dataclass
|
1069 |
+
class TFEfficientFormerForImageClassificationWithTeacherOutput(ModelOutput):
|
1070 |
+
"""
|
1071 |
+
Args:
|
1072 |
+
Output type of [`EfficientFormerForImageClassificationWithTeacher`].
|
1073 |
+
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
|
1074 |
+
Prediction scores as the average of the cls_logits and distillation logits.
|
1075 |
+
cls_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
|
1076 |
+
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
|
1077 |
+
class token).
|
1078 |
+
distillation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
|
1079 |
+
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
|
1080 |
+
distillation token).
|
1081 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when
|
1082 |
+
`config.output_hidden_states=True`):
|
1083 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
1084 |
+
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
|
1085 |
+
the initial embedding outputs.
|
1086 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when
|
1087 |
+
`config.output_attentions=True`):
|
1088 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
1089 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
1090 |
+
the self-attention heads.
|
1091 |
+
"""
|
1092 |
+
|
1093 |
+
logits: tf.Tensor = None
|
1094 |
+
cls_logits: tf.Tensor = None
|
1095 |
+
distillation_logits: tf.Tensor = None
|
1096 |
+
hidden_states: Optional[Tuple[tf.Tensor]] = None
|
1097 |
+
attentions: Optional[Tuple[tf.Tensor]] = None
|
1098 |
+
|
1099 |
+
|
1100 |
+
@add_start_docstrings(
|
1101 |
+
"""
|
1102 |
+
EfficientFormer Model transformer with image classification heads on top (a linear layer on top of the final hidden
|
1103 |
+
state and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet.
|
1104 |
+
|
1105 |
+
.. warning::
|
1106 |
+
This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
|
1107 |
+
supported.
|
1108 |
+
""",
|
1109 |
+
EFFICIENTFORMER_START_DOCSTRING,
|
1110 |
+
)
|
1111 |
+
class TFEfficientFormerForImageClassificationWithTeacher(TFEfficientFormerPreTrainedModel):
|
1112 |
+
def __init__(self, config: EfficientFormerConfig) -> None:
|
1113 |
+
super().__init__(config)
|
1114 |
+
|
1115 |
+
self.num_labels = config.num_labels
|
1116 |
+
self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer")
|
1117 |
+
|
1118 |
+
# Classifier heads
|
1119 |
+
self.classifier = (
|
1120 |
+
keras.layers.Dense(config.num_labels, name="classifier")
|
1121 |
+
if config.num_labels > 0
|
1122 |
+
else keras.layers.Activation("linear", name="classifier")
|
1123 |
+
)
|
1124 |
+
self.distillation_classifier = (
|
1125 |
+
keras.layers.Dense(config.num_labels, name="distillation_classifier")
|
1126 |
+
if config.num_labels > 0
|
1127 |
+
else keras.layers.Activation("linear", name="distillation_classifier")
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
@unpack_inputs
|
1131 |
+
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
|
1132 |
+
@add_code_sample_docstrings(
|
1133 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
1134 |
+
output_type=TFEfficientFormerForImageClassificationWithTeacherOutput,
|
1135 |
+
config_class=_CONFIG_FOR_DOC,
|
1136 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
1137 |
+
)
|
1138 |
+
def call(
|
1139 |
+
self,
|
1140 |
+
pixel_values: Optional[tf.Tensor] = None,
|
1141 |
+
output_attentions: Optional[bool] = None,
|
1142 |
+
output_hidden_states: Optional[bool] = None,
|
1143 |
+
return_dict: Optional[bool] = None,
|
1144 |
+
training: bool = False,
|
1145 |
+
) -> Union[tuple, TFEfficientFormerForImageClassificationWithTeacherOutput]:
|
1146 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1147 |
+
|
1148 |
+
if training:
|
1149 |
+
raise Exception(
|
1150 |
+
"This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported."
|
1151 |
+
)
|
1152 |
+
|
1153 |
+
outputs = self.efficientformer(
|
1154 |
+
pixel_values=pixel_values,
|
1155 |
+
output_attentions=output_attentions,
|
1156 |
+
output_hidden_states=output_hidden_states,
|
1157 |
+
return_dict=return_dict,
|
1158 |
+
training=training,
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
sequence_output = outputs[0]
|
1162 |
+
|
1163 |
+
cls_logits = self.classifier(tf.reduce_mean(sequence_output, axis=-2))
|
1164 |
+
distillation_logits = self.distillation_classifier(tf.reduce_mean(sequence_output, axis=-2))
|
1165 |
+
logits = (cls_logits + distillation_logits) / 2
|
1166 |
+
|
1167 |
+
if not return_dict:
|
1168 |
+
output = (logits, cls_logits, distillation_logits) + outputs[1:]
|
1169 |
+
return output
|
1170 |
+
|
1171 |
+
return TFEfficientFormerForImageClassificationWithTeacherOutput(
|
1172 |
+
logits=logits,
|
1173 |
+
cls_logits=cls_logits,
|
1174 |
+
distillation_logits=distillation_logits,
|
1175 |
+
hidden_states=outputs.hidden_states,
|
1176 |
+
attentions=outputs.attentions,
|
1177 |
+
)
|
1178 |
+
|
1179 |
+
def build(self, input_shape=None):
|
1180 |
+
if self.built:
|
1181 |
+
return
|
1182 |
+
self.built = True
|
1183 |
+
if getattr(self, "efficientformer", None) is not None:
|
1184 |
+
with tf.name_scope(self.efficientformer.name):
|
1185 |
+
self.efficientformer.build(None)
|
1186 |
+
if getattr(self, "classifier", None) is not None:
|
1187 |
+
if hasattr(self.classifier, "name"):
|
1188 |
+
with tf.name_scope(self.classifier.name):
|
1189 |
+
self.classifier.build([None, None, self.config.hidden_sizes[-1]])
|
1190 |
+
if getattr(self, "distillation_classifier", None) is not None:
|
1191 |
+
if hasattr(self.distillation_classifier, "name"):
|
1192 |
+
with tf.name_scope(self.distillation_classifier.name):
|
1193 |
+
self.distillation_classifier.build([None, None, self.config.hidden_sizes[-1]])
|
llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__init__.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]}
|
20 |
+
|
21 |
+
try:
|
22 |
+
if not is_vision_available():
|
23 |
+
raise OptionalDependencyNotAvailable()
|
24 |
+
except OptionalDependencyNotAvailable:
|
25 |
+
pass
|
26 |
+
else:
|
27 |
+
_import_structure["feature_extraction_glpn"] = ["GLPNFeatureExtractor"]
|
28 |
+
_import_structure["image_processing_glpn"] = ["GLPNImageProcessor"]
|
29 |
+
|
30 |
+
try:
|
31 |
+
if not is_torch_available():
|
32 |
+
raise OptionalDependencyNotAvailable()
|
33 |
+
except OptionalDependencyNotAvailable:
|
34 |
+
pass
|
35 |
+
else:
|
36 |
+
_import_structure["modeling_glpn"] = [
|
37 |
+
"GLPN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
38 |
+
"GLPNForDepthEstimation",
|
39 |
+
"GLPNLayer",
|
40 |
+
"GLPNModel",
|
41 |
+
"GLPNPreTrainedModel",
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_vision_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
from .feature_extraction_glpn import GLPNFeatureExtractor
|
55 |
+
from .image_processing_glpn import GLPNImageProcessor
|
56 |
+
|
57 |
+
try:
|
58 |
+
if not is_torch_available():
|
59 |
+
raise OptionalDependencyNotAvailable()
|
60 |
+
except OptionalDependencyNotAvailable:
|
61 |
+
pass
|
62 |
+
else:
|
63 |
+
from .modeling_glpn import (
|
64 |
+
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
|
65 |
+
GLPNForDepthEstimation,
|
66 |
+
GLPNLayer,
|
67 |
+
GLPNModel,
|
68 |
+
GLPNPreTrainedModel,
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
else:
|
73 |
+
import sys
|
74 |
+
|
75 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.23 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/configuration_glpn.cpython-310.pyc
ADDED
Binary file (5.35 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/convert_glpn_to_pytorch.cpython-310.pyc
ADDED
Binary file (5.39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/feature_extraction_glpn.cpython-310.pyc
ADDED
Binary file (1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/image_processing_glpn.cpython-310.pyc
ADDED
Binary file (9.32 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/modeling_glpn.cpython-310.pyc
ADDED
Binary file (23.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/configuration_glpn.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GLPN model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class GLPNConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`GLPNModel`]. It is used to instantiate an GLPN
|
30 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
31 |
+
defaults will yield a similar configuration to that of the GLPN
|
32 |
+
[vinvino02/glpn-kitti](https://huggingface.co/vinvino02/glpn-kitti) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
num_channels (`int`, *optional*, defaults to 3):
|
39 |
+
The number of input channels.
|
40 |
+
num_encoder_blocks (`int`, *optional*, defaults to 4):
|
41 |
+
The number of encoder blocks (i.e. stages in the Mix Transformer encoder).
|
42 |
+
depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`):
|
43 |
+
The number of layers in each encoder block.
|
44 |
+
sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`):
|
45 |
+
Sequence reduction ratios in each encoder block.
|
46 |
+
hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`):
|
47 |
+
Dimension of each of the encoder blocks.
|
48 |
+
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`):
|
49 |
+
Patch size before each encoder block.
|
50 |
+
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
|
51 |
+
Stride before each encoder block.
|
52 |
+
num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`):
|
53 |
+
Number of attention heads for each attention layer in each block of the Transformer encoder.
|
54 |
+
mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4, 4]`):
|
55 |
+
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
|
56 |
+
encoder blocks.
|
57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
58 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
59 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
60 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
62 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
63 |
+
The dropout ratio for the attention probabilities.
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
67 |
+
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
|
68 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
69 |
+
The epsilon used by the layer normalization layers.
|
70 |
+
decoder_hidden_size (`int`, *optional*, defaults to 64):
|
71 |
+
The dimension of the decoder.
|
72 |
+
max_depth (`int`, *optional*, defaults to 10):
|
73 |
+
The maximum depth of the decoder.
|
74 |
+
head_in_index (`int`, *optional*, defaults to -1):
|
75 |
+
The index of the features to use in the head.
|
76 |
+
|
77 |
+
Example:
|
78 |
+
|
79 |
+
```python
|
80 |
+
>>> from transformers import GLPNModel, GLPNConfig
|
81 |
+
|
82 |
+
>>> # Initializing a GLPN vinvino02/glpn-kitti style configuration
|
83 |
+
>>> configuration = GLPNConfig()
|
84 |
+
|
85 |
+
>>> # Initializing a model from the vinvino02/glpn-kitti style configuration
|
86 |
+
>>> model = GLPNModel(configuration)
|
87 |
+
|
88 |
+
>>> # Accessing the model configuration
|
89 |
+
>>> configuration = model.config
|
90 |
+
```"""
|
91 |
+
|
92 |
+
model_type = "glpn"
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
num_channels=3,
|
97 |
+
num_encoder_blocks=4,
|
98 |
+
depths=[2, 2, 2, 2],
|
99 |
+
sr_ratios=[8, 4, 2, 1],
|
100 |
+
hidden_sizes=[32, 64, 160, 256],
|
101 |
+
patch_sizes=[7, 3, 3, 3],
|
102 |
+
strides=[4, 2, 2, 2],
|
103 |
+
num_attention_heads=[1, 2, 5, 8],
|
104 |
+
mlp_ratios=[4, 4, 4, 4],
|
105 |
+
hidden_act="gelu",
|
106 |
+
hidden_dropout_prob=0.0,
|
107 |
+
attention_probs_dropout_prob=0.0,
|
108 |
+
initializer_range=0.02,
|
109 |
+
drop_path_rate=0.1,
|
110 |
+
layer_norm_eps=1e-6,
|
111 |
+
decoder_hidden_size=64,
|
112 |
+
max_depth=10,
|
113 |
+
head_in_index=-1,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
super().__init__(**kwargs)
|
117 |
+
|
118 |
+
self.num_channels = num_channels
|
119 |
+
self.num_encoder_blocks = num_encoder_blocks
|
120 |
+
self.depths = depths
|
121 |
+
self.sr_ratios = sr_ratios
|
122 |
+
self.hidden_sizes = hidden_sizes
|
123 |
+
self.patch_sizes = patch_sizes
|
124 |
+
self.strides = strides
|
125 |
+
self.mlp_ratios = mlp_ratios
|
126 |
+
self.num_attention_heads = num_attention_heads
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
129 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
130 |
+
self.initializer_range = initializer_range
|
131 |
+
self.drop_path_rate = drop_path_rate
|
132 |
+
self.layer_norm_eps = layer_norm_eps
|
133 |
+
self.decoder_hidden_size = decoder_hidden_size
|
134 |
+
self.max_depth = max_depth
|
135 |
+
self.head_in_index = head_in_index
|
llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/convert_glpn_to_pytorch.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert GLPN checkpoints."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
from collections import OrderedDict
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import requests
|
23 |
+
import torch
|
24 |
+
from PIL import Image
|
25 |
+
|
26 |
+
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
|
27 |
+
from transformers.utils import logging
|
28 |
+
|
29 |
+
|
30 |
+
logging.set_verbosity_info()
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
def rename_keys(state_dict):
|
35 |
+
new_state_dict = OrderedDict()
|
36 |
+
for key, value in state_dict.items():
|
37 |
+
if key.startswith("module.encoder"):
|
38 |
+
key = key.replace("module.encoder", "glpn.encoder")
|
39 |
+
if key.startswith("module.decoder"):
|
40 |
+
key = key.replace("module.decoder", "decoder.stages")
|
41 |
+
if "patch_embed" in key:
|
42 |
+
# replace for example patch_embed1 by patch_embeddings.0
|
43 |
+
idx = key[key.find("patch_embed") + len("patch_embed")]
|
44 |
+
key = key.replace(f"patch_embed{idx}", f"patch_embeddings.{int(idx)-1}")
|
45 |
+
if "norm" in key:
|
46 |
+
key = key.replace("norm", "layer_norm")
|
47 |
+
if "glpn.encoder.layer_norm" in key:
|
48 |
+
# replace for example layer_norm1 by layer_norm.0
|
49 |
+
idx = key[key.find("glpn.encoder.layer_norm") + len("glpn.encoder.layer_norm")]
|
50 |
+
key = key.replace(f"layer_norm{idx}", f"layer_norm.{int(idx)-1}")
|
51 |
+
if "layer_norm1" in key:
|
52 |
+
key = key.replace("layer_norm1", "layer_norm_1")
|
53 |
+
if "layer_norm2" in key:
|
54 |
+
key = key.replace("layer_norm2", "layer_norm_2")
|
55 |
+
if "block" in key:
|
56 |
+
# replace for example block1 by block.0
|
57 |
+
idx = key[key.find("block") + len("block")]
|
58 |
+
key = key.replace(f"block{idx}", f"block.{int(idx)-1}")
|
59 |
+
if "attn.q" in key:
|
60 |
+
key = key.replace("attn.q", "attention.self.query")
|
61 |
+
if "attn.proj" in key:
|
62 |
+
key = key.replace("attn.proj", "attention.output.dense")
|
63 |
+
if "attn" in key:
|
64 |
+
key = key.replace("attn", "attention.self")
|
65 |
+
if "fc1" in key:
|
66 |
+
key = key.replace("fc1", "dense1")
|
67 |
+
if "fc2" in key:
|
68 |
+
key = key.replace("fc2", "dense2")
|
69 |
+
if "linear_pred" in key:
|
70 |
+
key = key.replace("linear_pred", "classifier")
|
71 |
+
if "linear_fuse" in key:
|
72 |
+
key = key.replace("linear_fuse.conv", "linear_fuse")
|
73 |
+
key = key.replace("linear_fuse.bn", "batch_norm")
|
74 |
+
if "linear_c" in key:
|
75 |
+
# replace for example linear_c4 by linear_c.3
|
76 |
+
idx = key[key.find("linear_c") + len("linear_c")]
|
77 |
+
key = key.replace(f"linear_c{idx}", f"linear_c.{int(idx)-1}")
|
78 |
+
if "bot_conv" in key:
|
79 |
+
key = key.replace("bot_conv", "0.convolution")
|
80 |
+
if "skip_conv1" in key:
|
81 |
+
key = key.replace("skip_conv1", "1.convolution")
|
82 |
+
if "skip_conv2" in key:
|
83 |
+
key = key.replace("skip_conv2", "2.convolution")
|
84 |
+
if "fusion1" in key:
|
85 |
+
key = key.replace("fusion1", "1.fusion")
|
86 |
+
if "fusion2" in key:
|
87 |
+
key = key.replace("fusion2", "2.fusion")
|
88 |
+
if "fusion3" in key:
|
89 |
+
key = key.replace("fusion3", "3.fusion")
|
90 |
+
if "fusion" in key and "conv" in key:
|
91 |
+
key = key.replace("conv", "convolutional_layer")
|
92 |
+
if key.startswith("module.last_layer_depth"):
|
93 |
+
key = key.replace("module.last_layer_depth", "head.head")
|
94 |
+
new_state_dict[key] = value
|
95 |
+
|
96 |
+
return new_state_dict
|
97 |
+
|
98 |
+
|
99 |
+
def read_in_k_v(state_dict, config):
|
100 |
+
# for each of the encoder blocks:
|
101 |
+
for i in range(config.num_encoder_blocks):
|
102 |
+
for j in range(config.depths[i]):
|
103 |
+
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
|
104 |
+
kv_weight = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.weight")
|
105 |
+
kv_bias = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.bias")
|
106 |
+
# next, add keys and values (in that order) to the state dict
|
107 |
+
state_dict[f"glpn.encoder.block.{i}.{j}.attention.self.key.weight"] = kv_weight[
|
108 |
+
: config.hidden_sizes[i], :
|
109 |
+
]
|
110 |
+
state_dict[f"glpn.encoder.block.{i}.{j}.attention.self.key.bias"] = kv_bias[: config.hidden_sizes[i]]
|
111 |
+
state_dict[f"glpn.encoder.block.{i}.{j}.attention.self.value.weight"] = kv_weight[
|
112 |
+
config.hidden_sizes[i] :, :
|
113 |
+
]
|
114 |
+
state_dict[f"glpn.encoder.block.{i}.{j}.attention.self.value.bias"] = kv_bias[config.hidden_sizes[i] :]
|
115 |
+
|
116 |
+
|
117 |
+
# We will verify our results on a COCO image
|
118 |
+
def prepare_img():
|
119 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
120 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
121 |
+
|
122 |
+
return image
|
123 |
+
|
124 |
+
|
125 |
+
@torch.no_grad()
|
126 |
+
def convert_glpn_checkpoint(checkpoint_path, pytorch_dump_folder_path, push_to_hub=False, model_name=None):
|
127 |
+
"""
|
128 |
+
Copy/paste/tweak model's weights to our GLPN structure.
|
129 |
+
"""
|
130 |
+
|
131 |
+
# load GLPN configuration (Segformer-B4 size)
|
132 |
+
config = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3])
|
133 |
+
|
134 |
+
# load image processor (only resize + rescale)
|
135 |
+
image_processor = GLPNImageProcessor()
|
136 |
+
|
137 |
+
# prepare image
|
138 |
+
image = prepare_img()
|
139 |
+
pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
|
140 |
+
|
141 |
+
logger.info("Converting model...")
|
142 |
+
|
143 |
+
# load original state dict
|
144 |
+
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
|
145 |
+
|
146 |
+
# rename keys
|
147 |
+
state_dict = rename_keys(state_dict)
|
148 |
+
|
149 |
+
# key and value matrices need special treatment
|
150 |
+
read_in_k_v(state_dict, config)
|
151 |
+
|
152 |
+
# create HuggingFace model and load state dict
|
153 |
+
model = GLPNForDepthEstimation(config)
|
154 |
+
model.load_state_dict(state_dict)
|
155 |
+
model.eval()
|
156 |
+
|
157 |
+
# forward pass
|
158 |
+
outputs = model(pixel_values)
|
159 |
+
predicted_depth = outputs.predicted_depth
|
160 |
+
|
161 |
+
# verify output
|
162 |
+
if model_name is not None:
|
163 |
+
if "nyu" in model_name:
|
164 |
+
expected_slice = torch.tensor(
|
165 |
+
[[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]]
|
166 |
+
)
|
167 |
+
elif "kitti" in model_name:
|
168 |
+
expected_slice = torch.tensor(
|
169 |
+
[[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]]
|
170 |
+
)
|
171 |
+
else:
|
172 |
+
raise ValueError(f"Unknown model name: {model_name}")
|
173 |
+
|
174 |
+
expected_shape = torch.Size([1, 480, 640])
|
175 |
+
|
176 |
+
assert predicted_depth.shape == expected_shape
|
177 |
+
assert torch.allclose(predicted_depth[0, :3, :3], expected_slice, atol=1e-4)
|
178 |
+
print("Looks ok!")
|
179 |
+
|
180 |
+
# finally, push to hub if required
|
181 |
+
if push_to_hub:
|
182 |
+
logger.info("Pushing model and image processor to the hub...")
|
183 |
+
model.push_to_hub(
|
184 |
+
repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
|
185 |
+
organization="nielsr",
|
186 |
+
commit_message="Add model",
|
187 |
+
use_temp_dir=True,
|
188 |
+
)
|
189 |
+
image_processor.push_to_hub(
|
190 |
+
repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
|
191 |
+
organization="nielsr",
|
192 |
+
commit_message="Add image processor",
|
193 |
+
use_temp_dir=True,
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
if __name__ == "__main__":
|
198 |
+
parser = argparse.ArgumentParser()
|
199 |
+
|
200 |
+
parser.add_argument(
|
201 |
+
"--checkpoint_path",
|
202 |
+
default=None,
|
203 |
+
type=str,
|
204 |
+
help="Path to the original PyTorch checkpoint (.pth file).",
|
205 |
+
)
|
206 |
+
parser.add_argument(
|
207 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
|
208 |
+
)
|
209 |
+
parser.add_argument(
|
210 |
+
"--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub."
|
211 |
+
)
|
212 |
+
parser.add_argument(
|
213 |
+
"--model_name",
|
214 |
+
default="glpn-kitti",
|
215 |
+
type=str,
|
216 |
+
help="Name of the model in case you're pushing to the hub.",
|
217 |
+
)
|
218 |
+
args = parser.parse_args()
|
219 |
+
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/feature_extraction_glpn.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for GLPN."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...utils import logging
|
20 |
+
from .image_processing_glpn import GLPNImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class GLPNFeatureExtractor(GLPNImageProcessor):
|
27 |
+
def __init__(self, *args, **kwargs) -> None:
|
28 |
+
warnings.warn(
|
29 |
+
"The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
|
30 |
+
" use GLPNImageProcessor instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
super().__init__(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/image_processing_glpn.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for GLPN."""
|
16 |
+
|
17 |
+
from typing import List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
|
22 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature
|
23 |
+
from ...image_transforms import resize, to_channel_dimension_format
|
24 |
+
from ...image_utils import (
|
25 |
+
ChannelDimension,
|
26 |
+
PILImageResampling,
|
27 |
+
get_image_size,
|
28 |
+
infer_channel_dimension_format,
|
29 |
+
is_scaled_image,
|
30 |
+
make_list_of_images,
|
31 |
+
to_numpy_array,
|
32 |
+
valid_images,
|
33 |
+
validate_kwargs,
|
34 |
+
validate_preprocess_arguments,
|
35 |
+
)
|
36 |
+
from ...utils import TensorType, logging
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
class GLPNImageProcessor(BaseImageProcessor):
|
43 |
+
r"""
|
44 |
+
Constructs a GLPN image processor.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
48 |
+
Whether to resize the image's (height, width) dimensions, rounding them down to the closest multiple of
|
49 |
+
`size_divisor`. Can be overridden by `do_resize` in `preprocess`.
|
50 |
+
size_divisor (`int`, *optional*, defaults to 32):
|
51 |
+
When `do_resize` is `True`, images are resized so their height and width are rounded down to the closest
|
52 |
+
multiple of `size_divisor`. Can be overridden by `size_divisor` in `preprocess`.
|
53 |
+
resample (`PIL.Image` resampling filter, *optional*, defaults to `Resampling.BILINEAR`):
|
54 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
|
55 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
56 |
+
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Can be
|
57 |
+
overridden by `do_rescale` in `preprocess`.
|
58 |
+
"""
|
59 |
+
|
60 |
+
model_input_names = ["pixel_values"]
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
do_resize: bool = True,
|
65 |
+
size_divisor: int = 32,
|
66 |
+
resample=PILImageResampling.BILINEAR,
|
67 |
+
do_rescale: bool = True,
|
68 |
+
**kwargs,
|
69 |
+
) -> None:
|
70 |
+
self.do_resize = do_resize
|
71 |
+
self.do_rescale = do_rescale
|
72 |
+
self.size_divisor = size_divisor
|
73 |
+
self.resample = resample
|
74 |
+
super().__init__(**kwargs)
|
75 |
+
self._valid_processor_keys = [
|
76 |
+
"images",
|
77 |
+
"do_resize",
|
78 |
+
"size_divisor",
|
79 |
+
"resample",
|
80 |
+
"do_rescale",
|
81 |
+
"return_tensors",
|
82 |
+
"data_format",
|
83 |
+
"input_data_format",
|
84 |
+
]
|
85 |
+
|
86 |
+
def resize(
|
87 |
+
self,
|
88 |
+
image: np.ndarray,
|
89 |
+
size_divisor: int,
|
90 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
91 |
+
data_format: Optional[ChannelDimension] = None,
|
92 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
93 |
+
**kwargs,
|
94 |
+
) -> np.ndarray:
|
95 |
+
"""
|
96 |
+
Resize the image, rounding the (height, width) dimensions down to the closest multiple of size_divisor.
|
97 |
+
|
98 |
+
If the image is of dimension (3, 260, 170) and size_divisor is 32, the image will be resized to (3, 256, 160).
|
99 |
+
|
100 |
+
Args:
|
101 |
+
image (`np.ndarray`):
|
102 |
+
The image to resize.
|
103 |
+
size_divisor (`int`):
|
104 |
+
The image is resized so its height and width are rounded down to the closest multiple of
|
105 |
+
`size_divisor`.
|
106 |
+
resample:
|
107 |
+
`PIL.Image` resampling filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
|
108 |
+
data_format (`ChannelDimension` or `str`, *optional*):
|
109 |
+
The channel dimension format for the output image. If `None`, the channel dimension format of the input
|
110 |
+
image is used. Can be one of:
|
111 |
+
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
112 |
+
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
113 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
114 |
+
The channel dimension format of the input image. If not set, the channel dimension format is inferred
|
115 |
+
from the input image. Can be one of:
|
116 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
117 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
`np.ndarray`: The resized image.
|
121 |
+
"""
|
122 |
+
height, width = get_image_size(image, channel_dim=input_data_format)
|
123 |
+
# Rounds the height and width down to the closest multiple of size_divisor
|
124 |
+
new_h = height // size_divisor * size_divisor
|
125 |
+
new_w = width // size_divisor * size_divisor
|
126 |
+
image = resize(
|
127 |
+
image,
|
128 |
+
(new_h, new_w),
|
129 |
+
resample=resample,
|
130 |
+
data_format=data_format,
|
131 |
+
input_data_format=input_data_format,
|
132 |
+
**kwargs,
|
133 |
+
)
|
134 |
+
return image
|
135 |
+
|
136 |
+
def preprocess(
|
137 |
+
self,
|
138 |
+
images: Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]],
|
139 |
+
do_resize: Optional[bool] = None,
|
140 |
+
size_divisor: Optional[int] = None,
|
141 |
+
resample=None,
|
142 |
+
do_rescale: Optional[bool] = None,
|
143 |
+
return_tensors: Optional[Union[TensorType, str]] = None,
|
144 |
+
data_format: ChannelDimension = ChannelDimension.FIRST,
|
145 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
146 |
+
**kwargs,
|
147 |
+
) -> BatchFeature:
|
148 |
+
"""
|
149 |
+
Preprocess the given images.
|
150 |
+
|
151 |
+
Args:
|
152 |
+
images (`PIL.Image.Image` or `TensorType` or `List[np.ndarray]` or `List[TensorType]`):
|
153 |
+
Images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
154 |
+
passing in images with pixel values between 0 and 1, set `do_normalize=False`.
|
155 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
156 |
+
Whether to resize the input such that the (height, width) dimensions are a multiple of `size_divisor`.
|
157 |
+
size_divisor (`int`, *optional*, defaults to `self.size_divisor`):
|
158 |
+
When `do_resize` is `True`, images are resized so their height and width are rounded down to the
|
159 |
+
closest multiple of `size_divisor`.
|
160 |
+
resample (`PIL.Image` resampling filter, *optional*, defaults to `self.resample`):
|
161 |
+
`PIL.Image` resampling filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
|
162 |
+
an effect if `do_resize` is set to `True`.
|
163 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
164 |
+
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.).
|
165 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
166 |
+
The type of tensors to return. Can be one of:
|
167 |
+
- `None`: Return a list of `np.ndarray`.
|
168 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
169 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
170 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
171 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
172 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
173 |
+
The channel dimension format for the output image. Can be one of:
|
174 |
+
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
175 |
+
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
176 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
177 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
178 |
+
from the input image. Can be one of:
|
179 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
180 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
181 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
182 |
+
"""
|
183 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
184 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
185 |
+
size_divisor = size_divisor if size_divisor is not None else self.size_divisor
|
186 |
+
resample = resample if resample is not None else self.resample
|
187 |
+
|
188 |
+
images = make_list_of_images(images)
|
189 |
+
|
190 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
191 |
+
|
192 |
+
if not valid_images(images):
|
193 |
+
raise ValueError(
|
194 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
195 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
196 |
+
)
|
197 |
+
|
198 |
+
# Here, the rescale() method uses a constant rescale_factor. It does not need to be validated
|
199 |
+
# with a rescale_factor.
|
200 |
+
validate_preprocess_arguments(
|
201 |
+
do_resize=do_resize,
|
202 |
+
size=size_divisor, # Here, size_divisor is used as a parameter for optimal resizing instead of size.
|
203 |
+
resample=resample,
|
204 |
+
)
|
205 |
+
|
206 |
+
# All transformations expect numpy arrays.
|
207 |
+
images = [to_numpy_array(img) for img in images]
|
208 |
+
|
209 |
+
if is_scaled_image(images[0]) and do_rescale:
|
210 |
+
logger.warning_once(
|
211 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
212 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
213 |
+
)
|
214 |
+
|
215 |
+
if input_data_format is None:
|
216 |
+
# We assume that all images have the same channel dimension format.
|
217 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
218 |
+
|
219 |
+
if do_resize:
|
220 |
+
images = [
|
221 |
+
self.resize(image, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format)
|
222 |
+
for image in images
|
223 |
+
]
|
224 |
+
|
225 |
+
if do_rescale:
|
226 |
+
images = [self.rescale(image, scale=1 / 255, input_data_format=input_data_format) for image in images]
|
227 |
+
|
228 |
+
images = [
|
229 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
230 |
+
]
|
231 |
+
|
232 |
+
data = {"pixel_values": images}
|
233 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/glpn/modeling_glpn.py
ADDED
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch GLPN model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...modeling_outputs import BaseModelOutput, DepthEstimatorOutput
|
27 |
+
from ...modeling_utils import PreTrainedModel
|
28 |
+
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
29 |
+
from ...utils import (
|
30 |
+
add_code_sample_docstrings,
|
31 |
+
add_start_docstrings,
|
32 |
+
add_start_docstrings_to_model_forward,
|
33 |
+
logging,
|
34 |
+
replace_return_docstrings,
|
35 |
+
)
|
36 |
+
from .configuration_glpn import GLPNConfig
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
# General docstring
|
43 |
+
_CONFIG_FOR_DOC = "GLPNConfig"
|
44 |
+
|
45 |
+
# Base docstring
|
46 |
+
_CHECKPOINT_FOR_DOC = "vinvino02/glpn-kitti"
|
47 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 512, 15, 20]
|
48 |
+
|
49 |
+
|
50 |
+
from ..deprecated._archive_maps import GLPN_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
51 |
+
|
52 |
+
|
53 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
54 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
55 |
+
"""
|
56 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
57 |
+
|
58 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
59 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
60 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
61 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
62 |
+
argument.
|
63 |
+
"""
|
64 |
+
if drop_prob == 0.0 or not training:
|
65 |
+
return input
|
66 |
+
keep_prob = 1 - drop_prob
|
67 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
68 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
69 |
+
random_tensor.floor_() # binarize
|
70 |
+
output = input.div(keep_prob) * random_tensor
|
71 |
+
return output
|
72 |
+
|
73 |
+
|
74 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerDropPath
|
75 |
+
class GLPNDropPath(nn.Module):
|
76 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
77 |
+
|
78 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
79 |
+
super().__init__()
|
80 |
+
self.drop_prob = drop_prob
|
81 |
+
|
82 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
83 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
84 |
+
|
85 |
+
def extra_repr(self) -> str:
|
86 |
+
return "p={}".format(self.drop_prob)
|
87 |
+
|
88 |
+
|
89 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerOverlapPatchEmbeddings
|
90 |
+
class GLPNOverlapPatchEmbeddings(nn.Module):
|
91 |
+
"""Construct the overlapping patch embeddings."""
|
92 |
+
|
93 |
+
def __init__(self, patch_size, stride, num_channels, hidden_size):
|
94 |
+
super().__init__()
|
95 |
+
self.proj = nn.Conv2d(
|
96 |
+
num_channels,
|
97 |
+
hidden_size,
|
98 |
+
kernel_size=patch_size,
|
99 |
+
stride=stride,
|
100 |
+
padding=patch_size // 2,
|
101 |
+
)
|
102 |
+
|
103 |
+
self.layer_norm = nn.LayerNorm(hidden_size)
|
104 |
+
|
105 |
+
def forward(self, pixel_values):
|
106 |
+
embeddings = self.proj(pixel_values)
|
107 |
+
_, _, height, width = embeddings.shape
|
108 |
+
# (batch_size, num_channels, height, width) -> (batch_size, num_channels, height*width) -> (batch_size, height*width, num_channels)
|
109 |
+
# this can be fed to a Transformer layer
|
110 |
+
embeddings = embeddings.flatten(2).transpose(1, 2)
|
111 |
+
embeddings = self.layer_norm(embeddings)
|
112 |
+
return embeddings, height, width
|
113 |
+
|
114 |
+
|
115 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerEfficientSelfAttention
|
116 |
+
class GLPNEfficientSelfAttention(nn.Module):
|
117 |
+
"""SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT
|
118 |
+
paper](https://arxiv.org/abs/2102.12122)."""
|
119 |
+
|
120 |
+
def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
|
121 |
+
super().__init__()
|
122 |
+
self.hidden_size = hidden_size
|
123 |
+
self.num_attention_heads = num_attention_heads
|
124 |
+
|
125 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
126 |
+
raise ValueError(
|
127 |
+
f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
|
128 |
+
f"heads ({self.num_attention_heads})"
|
129 |
+
)
|
130 |
+
|
131 |
+
self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
|
132 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
133 |
+
|
134 |
+
self.query = nn.Linear(self.hidden_size, self.all_head_size)
|
135 |
+
self.key = nn.Linear(self.hidden_size, self.all_head_size)
|
136 |
+
self.value = nn.Linear(self.hidden_size, self.all_head_size)
|
137 |
+
|
138 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
139 |
+
|
140 |
+
self.sr_ratio = sequence_reduction_ratio
|
141 |
+
if sequence_reduction_ratio > 1:
|
142 |
+
self.sr = nn.Conv2d(
|
143 |
+
hidden_size, hidden_size, kernel_size=sequence_reduction_ratio, stride=sequence_reduction_ratio
|
144 |
+
)
|
145 |
+
self.layer_norm = nn.LayerNorm(hidden_size)
|
146 |
+
|
147 |
+
def transpose_for_scores(self, hidden_states):
|
148 |
+
new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
149 |
+
hidden_states = hidden_states.view(new_shape)
|
150 |
+
return hidden_states.permute(0, 2, 1, 3)
|
151 |
+
|
152 |
+
def forward(
|
153 |
+
self,
|
154 |
+
hidden_states,
|
155 |
+
height,
|
156 |
+
width,
|
157 |
+
output_attentions=False,
|
158 |
+
):
|
159 |
+
query_layer = self.transpose_for_scores(self.query(hidden_states))
|
160 |
+
|
161 |
+
if self.sr_ratio > 1:
|
162 |
+
batch_size, seq_len, num_channels = hidden_states.shape
|
163 |
+
# Reshape to (batch_size, num_channels, height, width)
|
164 |
+
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
|
165 |
+
# Apply sequence reduction
|
166 |
+
hidden_states = self.sr(hidden_states)
|
167 |
+
# Reshape back to (batch_size, seq_len, num_channels)
|
168 |
+
hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1)
|
169 |
+
hidden_states = self.layer_norm(hidden_states)
|
170 |
+
|
171 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
172 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
173 |
+
|
174 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
175 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
176 |
+
|
177 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
178 |
+
|
179 |
+
# Normalize the attention scores to probabilities.
|
180 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
181 |
+
|
182 |
+
# This is actually dropping out entire tokens to attend to, which might
|
183 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
184 |
+
attention_probs = self.dropout(attention_probs)
|
185 |
+
|
186 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
187 |
+
|
188 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
189 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
190 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
191 |
+
|
192 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
193 |
+
|
194 |
+
return outputs
|
195 |
+
|
196 |
+
|
197 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerSelfOutput
|
198 |
+
class GLPNSelfOutput(nn.Module):
|
199 |
+
def __init__(self, config, hidden_size):
|
200 |
+
super().__init__()
|
201 |
+
self.dense = nn.Linear(hidden_size, hidden_size)
|
202 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
203 |
+
|
204 |
+
def forward(self, hidden_states, input_tensor):
|
205 |
+
hidden_states = self.dense(hidden_states)
|
206 |
+
hidden_states = self.dropout(hidden_states)
|
207 |
+
return hidden_states
|
208 |
+
|
209 |
+
|
210 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerAttention with Segformer->GLPN
|
211 |
+
class GLPNAttention(nn.Module):
|
212 |
+
def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
|
213 |
+
super().__init__()
|
214 |
+
self.self = GLPNEfficientSelfAttention(
|
215 |
+
config=config,
|
216 |
+
hidden_size=hidden_size,
|
217 |
+
num_attention_heads=num_attention_heads,
|
218 |
+
sequence_reduction_ratio=sequence_reduction_ratio,
|
219 |
+
)
|
220 |
+
self.output = GLPNSelfOutput(config, hidden_size=hidden_size)
|
221 |
+
self.pruned_heads = set()
|
222 |
+
|
223 |
+
def prune_heads(self, heads):
|
224 |
+
if len(heads) == 0:
|
225 |
+
return
|
226 |
+
heads, index = find_pruneable_heads_and_indices(
|
227 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
228 |
+
)
|
229 |
+
|
230 |
+
# Prune linear layers
|
231 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
232 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
233 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
234 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
235 |
+
|
236 |
+
# Update hyper params and store pruned heads
|
237 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
238 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
239 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
240 |
+
|
241 |
+
def forward(self, hidden_states, height, width, output_attentions=False):
|
242 |
+
self_outputs = self.self(hidden_states, height, width, output_attentions)
|
243 |
+
|
244 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
245 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
246 |
+
return outputs
|
247 |
+
|
248 |
+
|
249 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerDWConv
|
250 |
+
class GLPNDWConv(nn.Module):
|
251 |
+
def __init__(self, dim=768):
|
252 |
+
super().__init__()
|
253 |
+
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
254 |
+
|
255 |
+
def forward(self, hidden_states, height, width):
|
256 |
+
batch_size, seq_len, num_channels = hidden_states.shape
|
257 |
+
hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width)
|
258 |
+
hidden_states = self.dwconv(hidden_states)
|
259 |
+
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
260 |
+
|
261 |
+
return hidden_states
|
262 |
+
|
263 |
+
|
264 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerMixFFN with Segformer->GLPN
|
265 |
+
class GLPNMixFFN(nn.Module):
|
266 |
+
def __init__(self, config, in_features, hidden_features=None, out_features=None):
|
267 |
+
super().__init__()
|
268 |
+
out_features = out_features or in_features
|
269 |
+
self.dense1 = nn.Linear(in_features, hidden_features)
|
270 |
+
self.dwconv = GLPNDWConv(hidden_features)
|
271 |
+
if isinstance(config.hidden_act, str):
|
272 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
273 |
+
else:
|
274 |
+
self.intermediate_act_fn = config.hidden_act
|
275 |
+
self.dense2 = nn.Linear(hidden_features, out_features)
|
276 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
277 |
+
|
278 |
+
def forward(self, hidden_states, height, width):
|
279 |
+
hidden_states = self.dense1(hidden_states)
|
280 |
+
hidden_states = self.dwconv(hidden_states, height, width)
|
281 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
282 |
+
hidden_states = self.dropout(hidden_states)
|
283 |
+
hidden_states = self.dense2(hidden_states)
|
284 |
+
hidden_states = self.dropout(hidden_states)
|
285 |
+
return hidden_states
|
286 |
+
|
287 |
+
|
288 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerLayer with Segformer->GLPN
|
289 |
+
class GLPNLayer(nn.Module):
|
290 |
+
"""This corresponds to the Block class in the original implementation."""
|
291 |
+
|
292 |
+
def __init__(self, config, hidden_size, num_attention_heads, drop_path, sequence_reduction_ratio, mlp_ratio):
|
293 |
+
super().__init__()
|
294 |
+
self.layer_norm_1 = nn.LayerNorm(hidden_size)
|
295 |
+
self.attention = GLPNAttention(
|
296 |
+
config,
|
297 |
+
hidden_size=hidden_size,
|
298 |
+
num_attention_heads=num_attention_heads,
|
299 |
+
sequence_reduction_ratio=sequence_reduction_ratio,
|
300 |
+
)
|
301 |
+
self.drop_path = GLPNDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
302 |
+
self.layer_norm_2 = nn.LayerNorm(hidden_size)
|
303 |
+
mlp_hidden_size = int(hidden_size * mlp_ratio)
|
304 |
+
self.mlp = GLPNMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size)
|
305 |
+
|
306 |
+
def forward(self, hidden_states, height, width, output_attentions=False):
|
307 |
+
self_attention_outputs = self.attention(
|
308 |
+
self.layer_norm_1(hidden_states), # in GLPN, layernorm is applied before self-attention
|
309 |
+
height,
|
310 |
+
width,
|
311 |
+
output_attentions=output_attentions,
|
312 |
+
)
|
313 |
+
|
314 |
+
attention_output = self_attention_outputs[0]
|
315 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
316 |
+
|
317 |
+
# first residual connection (with stochastic depth)
|
318 |
+
attention_output = self.drop_path(attention_output)
|
319 |
+
hidden_states = attention_output + hidden_states
|
320 |
+
|
321 |
+
mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width)
|
322 |
+
|
323 |
+
# second residual connection (with stochastic depth)
|
324 |
+
mlp_output = self.drop_path(mlp_output)
|
325 |
+
layer_output = mlp_output + hidden_states
|
326 |
+
|
327 |
+
outputs = (layer_output,) + outputs
|
328 |
+
|
329 |
+
return outputs
|
330 |
+
|
331 |
+
|
332 |
+
class GLPNEncoder(nn.Module):
|
333 |
+
def __init__(self, config):
|
334 |
+
super().__init__()
|
335 |
+
self.config = config
|
336 |
+
|
337 |
+
# stochastic depth decay rule
|
338 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
|
339 |
+
|
340 |
+
# patch embeddings
|
341 |
+
embeddings = []
|
342 |
+
for i in range(config.num_encoder_blocks):
|
343 |
+
embeddings.append(
|
344 |
+
GLPNOverlapPatchEmbeddings(
|
345 |
+
patch_size=config.patch_sizes[i],
|
346 |
+
stride=config.strides[i],
|
347 |
+
num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
|
348 |
+
hidden_size=config.hidden_sizes[i],
|
349 |
+
)
|
350 |
+
)
|
351 |
+
self.patch_embeddings = nn.ModuleList(embeddings)
|
352 |
+
|
353 |
+
# Transformer blocks
|
354 |
+
blocks = []
|
355 |
+
cur = 0
|
356 |
+
for i in range(config.num_encoder_blocks):
|
357 |
+
# each block consists of layers
|
358 |
+
layers = []
|
359 |
+
if i != 0:
|
360 |
+
cur += config.depths[i - 1]
|
361 |
+
for j in range(config.depths[i]):
|
362 |
+
layers.append(
|
363 |
+
GLPNLayer(
|
364 |
+
config,
|
365 |
+
hidden_size=config.hidden_sizes[i],
|
366 |
+
num_attention_heads=config.num_attention_heads[i],
|
367 |
+
drop_path=dpr[cur + j],
|
368 |
+
sequence_reduction_ratio=config.sr_ratios[i],
|
369 |
+
mlp_ratio=config.mlp_ratios[i],
|
370 |
+
)
|
371 |
+
)
|
372 |
+
blocks.append(nn.ModuleList(layers))
|
373 |
+
|
374 |
+
self.block = nn.ModuleList(blocks)
|
375 |
+
|
376 |
+
# Layer norms
|
377 |
+
self.layer_norm = nn.ModuleList(
|
378 |
+
[nn.LayerNorm(config.hidden_sizes[i]) for i in range(config.num_encoder_blocks)]
|
379 |
+
)
|
380 |
+
|
381 |
+
def forward(
|
382 |
+
self,
|
383 |
+
pixel_values,
|
384 |
+
output_attentions=False,
|
385 |
+
output_hidden_states=False,
|
386 |
+
return_dict=True,
|
387 |
+
):
|
388 |
+
all_hidden_states = () if output_hidden_states else None
|
389 |
+
all_self_attentions = () if output_attentions else None
|
390 |
+
|
391 |
+
batch_size = pixel_values.shape[0]
|
392 |
+
|
393 |
+
hidden_states = pixel_values
|
394 |
+
for idx, x in enumerate(zip(self.patch_embeddings, self.block, self.layer_norm)):
|
395 |
+
embedding_layer, block_layer, norm_layer = x
|
396 |
+
# first, obtain patch embeddings
|
397 |
+
hidden_states, height, width = embedding_layer(hidden_states)
|
398 |
+
# second, send embeddings through blocks
|
399 |
+
for i, blk in enumerate(block_layer):
|
400 |
+
layer_outputs = blk(hidden_states, height, width, output_attentions)
|
401 |
+
hidden_states = layer_outputs[0]
|
402 |
+
if output_attentions:
|
403 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
404 |
+
# third, apply layer norm
|
405 |
+
hidden_states = norm_layer(hidden_states)
|
406 |
+
# fourth, optionally reshape back to (batch_size, num_channels, height, width)
|
407 |
+
hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
|
408 |
+
if output_hidden_states:
|
409 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
410 |
+
|
411 |
+
if not return_dict:
|
412 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
413 |
+
return BaseModelOutput(
|
414 |
+
last_hidden_state=hidden_states,
|
415 |
+
hidden_states=all_hidden_states,
|
416 |
+
attentions=all_self_attentions,
|
417 |
+
)
|
418 |
+
|
419 |
+
|
420 |
+
class GLPNPreTrainedModel(PreTrainedModel):
|
421 |
+
"""
|
422 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
423 |
+
models.
|
424 |
+
"""
|
425 |
+
|
426 |
+
config_class = GLPNConfig
|
427 |
+
base_model_prefix = "glpn"
|
428 |
+
main_input_name = "pixel_values"
|
429 |
+
|
430 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerPreTrainedModel._init_weights
|
431 |
+
def _init_weights(self, module):
|
432 |
+
"""Initialize the weights"""
|
433 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
434 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
435 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
436 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
437 |
+
if module.bias is not None:
|
438 |
+
module.bias.data.zero_()
|
439 |
+
elif isinstance(module, nn.Embedding):
|
440 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
441 |
+
if module.padding_idx is not None:
|
442 |
+
module.weight.data[module.padding_idx].zero_()
|
443 |
+
elif isinstance(module, nn.LayerNorm):
|
444 |
+
module.bias.data.zero_()
|
445 |
+
module.weight.data.fill_(1.0)
|
446 |
+
|
447 |
+
|
448 |
+
GLPN_START_DOCSTRING = r"""
|
449 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
450 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
451 |
+
behavior.
|
452 |
+
|
453 |
+
Parameters:
|
454 |
+
config ([`GLPNConfig`]): Model configuration class with all the parameters of the model.
|
455 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
456 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
457 |
+
"""
|
458 |
+
|
459 |
+
GLPN_INPUTS_DOCSTRING = r"""
|
460 |
+
|
461 |
+
Args:
|
462 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
463 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
464 |
+
[`AutoImageProcessor`]. See [`GLPNImageProcessor.__call__`] for details.
|
465 |
+
|
466 |
+
output_attentions (`bool`, *optional*):
|
467 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
468 |
+
tensors for more detail.
|
469 |
+
output_hidden_states (`bool`, *optional*):
|
470 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
471 |
+
more detail.
|
472 |
+
return_dict (`bool`, *optional*):
|
473 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
474 |
+
"""
|
475 |
+
|
476 |
+
|
477 |
+
@add_start_docstrings(
|
478 |
+
"The bare GLPN encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.",
|
479 |
+
GLPN_START_DOCSTRING,
|
480 |
+
)
|
481 |
+
class GLPNModel(GLPNPreTrainedModel):
|
482 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerModel.__init__ with Segformer->GLPN
|
483 |
+
def __init__(self, config):
|
484 |
+
super().__init__(config)
|
485 |
+
self.config = config
|
486 |
+
|
487 |
+
# hierarchical Transformer encoder
|
488 |
+
self.encoder = GLPNEncoder(config)
|
489 |
+
|
490 |
+
# Initialize weights and apply final processing
|
491 |
+
self.post_init()
|
492 |
+
|
493 |
+
def _prune_heads(self, heads_to_prune):
|
494 |
+
"""
|
495 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
496 |
+
class PreTrainedModel
|
497 |
+
"""
|
498 |
+
for layer, heads in heads_to_prune.items():
|
499 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
500 |
+
|
501 |
+
@add_start_docstrings_to_model_forward(GLPN_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
502 |
+
@add_code_sample_docstrings(
|
503 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
504 |
+
output_type=BaseModelOutput,
|
505 |
+
config_class=_CONFIG_FOR_DOC,
|
506 |
+
modality="vision",
|
507 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
508 |
+
)
|
509 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerModel.forward
|
510 |
+
def forward(
|
511 |
+
self,
|
512 |
+
pixel_values: torch.FloatTensor,
|
513 |
+
output_attentions: Optional[bool] = None,
|
514 |
+
output_hidden_states: Optional[bool] = None,
|
515 |
+
return_dict: Optional[bool] = None,
|
516 |
+
) -> Union[Tuple, BaseModelOutput]:
|
517 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
518 |
+
output_hidden_states = (
|
519 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
520 |
+
)
|
521 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
522 |
+
|
523 |
+
encoder_outputs = self.encoder(
|
524 |
+
pixel_values,
|
525 |
+
output_attentions=output_attentions,
|
526 |
+
output_hidden_states=output_hidden_states,
|
527 |
+
return_dict=return_dict,
|
528 |
+
)
|
529 |
+
sequence_output = encoder_outputs[0]
|
530 |
+
|
531 |
+
if not return_dict:
|
532 |
+
return (sequence_output,) + encoder_outputs[1:]
|
533 |
+
|
534 |
+
return BaseModelOutput(
|
535 |
+
last_hidden_state=sequence_output,
|
536 |
+
hidden_states=encoder_outputs.hidden_states,
|
537 |
+
attentions=encoder_outputs.attentions,
|
538 |
+
)
|
539 |
+
|
540 |
+
|
541 |
+
class GLPNSelectiveFeatureFusion(nn.Module):
|
542 |
+
"""
|
543 |
+
Selective Feature Fusion module, as explained in the [paper](https://arxiv.org/abs/2201.07436) (section 3.4). This
|
544 |
+
module adaptively selects and integrates local and global features by attaining an attention map for each feature.
|
545 |
+
"""
|
546 |
+
|
547 |
+
def __init__(self, in_channel=64):
|
548 |
+
super().__init__()
|
549 |
+
|
550 |
+
self.convolutional_layer1 = nn.Sequential(
|
551 |
+
nn.Conv2d(in_channels=int(in_channel * 2), out_channels=in_channel, kernel_size=3, stride=1, padding=1),
|
552 |
+
nn.BatchNorm2d(in_channel),
|
553 |
+
nn.ReLU(),
|
554 |
+
)
|
555 |
+
|
556 |
+
self.convolutional_layer2 = nn.Sequential(
|
557 |
+
nn.Conv2d(in_channels=in_channel, out_channels=int(in_channel / 2), kernel_size=3, stride=1, padding=1),
|
558 |
+
nn.BatchNorm2d(int(in_channel / 2)),
|
559 |
+
nn.ReLU(),
|
560 |
+
)
|
561 |
+
|
562 |
+
self.convolutional_layer3 = nn.Conv2d(
|
563 |
+
in_channels=int(in_channel / 2), out_channels=2, kernel_size=3, stride=1, padding=1
|
564 |
+
)
|
565 |
+
|
566 |
+
self.sigmoid = nn.Sigmoid()
|
567 |
+
|
568 |
+
def forward(self, local_features, global_features):
|
569 |
+
# concatenate features along the channel dimension
|
570 |
+
features = torch.cat((local_features, global_features), dim=1)
|
571 |
+
# pass through convolutional layers
|
572 |
+
features = self.convolutional_layer1(features)
|
573 |
+
features = self.convolutional_layer2(features)
|
574 |
+
features = self.convolutional_layer3(features)
|
575 |
+
# apply sigmoid to get two-channel attention map
|
576 |
+
attn = self.sigmoid(features)
|
577 |
+
# construct hybrid features by adding element-wise
|
578 |
+
hybrid_features = local_features * attn[:, 0, :, :].unsqueeze(1) + global_features * attn[
|
579 |
+
:, 1, :, :
|
580 |
+
].unsqueeze(1)
|
581 |
+
|
582 |
+
return hybrid_features
|
583 |
+
|
584 |
+
|
585 |
+
class GLPNDecoderStage(nn.Module):
|
586 |
+
def __init__(self, in_channels, out_channels):
|
587 |
+
super().__init__()
|
588 |
+
should_skip = in_channels == out_channels
|
589 |
+
self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1) if not should_skip else nn.Identity()
|
590 |
+
self.fusion = GLPNSelectiveFeatureFusion(out_channels)
|
591 |
+
self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
|
592 |
+
|
593 |
+
def forward(self, hidden_state, residual=None):
|
594 |
+
hidden_state = self.convolution(hidden_state)
|
595 |
+
if residual is not None:
|
596 |
+
hidden_state = self.fusion(hidden_state, residual)
|
597 |
+
hidden_state = self.upsample(hidden_state)
|
598 |
+
|
599 |
+
return hidden_state
|
600 |
+
|
601 |
+
hidden_state = self.upsample(hidden_state)
|
602 |
+
return hidden_state
|
603 |
+
|
604 |
+
|
605 |
+
class GLPNDecoder(nn.Module):
|
606 |
+
def __init__(self, config):
|
607 |
+
super().__init__()
|
608 |
+
# we use features from end -> start
|
609 |
+
reserved_hidden_sizes = config.hidden_sizes[::-1]
|
610 |
+
out_channels = config.decoder_hidden_size
|
611 |
+
|
612 |
+
self.stages = nn.ModuleList(
|
613 |
+
[GLPNDecoderStage(hidden_size, out_channels) for hidden_size in reserved_hidden_sizes]
|
614 |
+
)
|
615 |
+
# don't fuse in first stage
|
616 |
+
self.stages[0].fusion = None
|
617 |
+
|
618 |
+
self.final_upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
|
619 |
+
|
620 |
+
def forward(self, hidden_states: List[torch.Tensor]) -> List[torch.Tensor]:
|
621 |
+
stage_hidden_states = []
|
622 |
+
stage_hidden_state = None
|
623 |
+
for hidden_state, stage in zip(hidden_states[::-1], self.stages):
|
624 |
+
stage_hidden_state = stage(hidden_state, stage_hidden_state)
|
625 |
+
stage_hidden_states.append(stage_hidden_state)
|
626 |
+
|
627 |
+
stage_hidden_states[-1] = self.final_upsample(stage_hidden_state)
|
628 |
+
|
629 |
+
return stage_hidden_states
|
630 |
+
|
631 |
+
|
632 |
+
class SiLogLoss(nn.Module):
|
633 |
+
r"""
|
634 |
+
Implements the Scale-invariant log scale loss [Eigen et al., 2014](https://arxiv.org/abs/1406.2283).
|
635 |
+
|
636 |
+
$$L=\frac{1}{n} \sum_{i} d_{i}^{2}-\frac{1}{2 n^{2}}\left(\sum_{i} d_{i}^{2}\right)$$ where $d_{i}=\log y_{i}-\log
|
637 |
+
y_{i}^{*}$.
|
638 |
+
|
639 |
+
"""
|
640 |
+
|
641 |
+
def __init__(self, lambd=0.5):
|
642 |
+
super().__init__()
|
643 |
+
self.lambd = lambd
|
644 |
+
|
645 |
+
def forward(self, pred, target):
|
646 |
+
valid_mask = (target > 0).detach()
|
647 |
+
diff_log = torch.log(target[valid_mask]) - torch.log(pred[valid_mask])
|
648 |
+
loss = torch.sqrt(torch.pow(diff_log, 2).mean() - self.lambd * torch.pow(diff_log.mean(), 2))
|
649 |
+
|
650 |
+
return loss
|
651 |
+
|
652 |
+
|
653 |
+
class GLPNDepthEstimationHead(nn.Module):
|
654 |
+
def __init__(self, config):
|
655 |
+
super().__init__()
|
656 |
+
|
657 |
+
self.config = config
|
658 |
+
|
659 |
+
channels = config.decoder_hidden_size
|
660 |
+
self.head = nn.Sequential(
|
661 |
+
nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1),
|
662 |
+
nn.ReLU(inplace=False),
|
663 |
+
nn.Conv2d(channels, 1, kernel_size=3, stride=1, padding=1),
|
664 |
+
)
|
665 |
+
|
666 |
+
def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor:
|
667 |
+
# use last features of the decoder
|
668 |
+
hidden_states = hidden_states[self.config.head_in_index]
|
669 |
+
|
670 |
+
hidden_states = self.head(hidden_states)
|
671 |
+
|
672 |
+
predicted_depth = torch.sigmoid(hidden_states) * self.config.max_depth
|
673 |
+
predicted_depth = predicted_depth.squeeze(dim=1)
|
674 |
+
|
675 |
+
return predicted_depth
|
676 |
+
|
677 |
+
|
678 |
+
@add_start_docstrings(
|
679 |
+
"""GLPN Model transformer with a lightweight depth estimation head on top e.g. for KITTI, NYUv2.""",
|
680 |
+
GLPN_START_DOCSTRING,
|
681 |
+
)
|
682 |
+
class GLPNForDepthEstimation(GLPNPreTrainedModel):
|
683 |
+
def __init__(self, config):
|
684 |
+
super().__init__(config)
|
685 |
+
|
686 |
+
self.glpn = GLPNModel(config)
|
687 |
+
self.decoder = GLPNDecoder(config)
|
688 |
+
self.head = GLPNDepthEstimationHead(config)
|
689 |
+
|
690 |
+
# Initialize weights and apply final processing
|
691 |
+
self.post_init()
|
692 |
+
|
693 |
+
@add_start_docstrings_to_model_forward(GLPN_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
694 |
+
@replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC)
|
695 |
+
def forward(
|
696 |
+
self,
|
697 |
+
pixel_values: torch.FloatTensor,
|
698 |
+
labels: Optional[torch.FloatTensor] = None,
|
699 |
+
output_attentions: Optional[bool] = None,
|
700 |
+
output_hidden_states: Optional[bool] = None,
|
701 |
+
return_dict: Optional[bool] = None,
|
702 |
+
) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]:
|
703 |
+
r"""
|
704 |
+
labels (`torch.FloatTensor` of shape `(batch_size, height, width)`, *optional*):
|
705 |
+
Ground truth depth estimation maps for computing the loss.
|
706 |
+
|
707 |
+
Returns:
|
708 |
+
|
709 |
+
Examples:
|
710 |
+
|
711 |
+
```python
|
712 |
+
>>> from transformers import AutoImageProcessor, GLPNForDepthEstimation
|
713 |
+
>>> import torch
|
714 |
+
>>> import numpy as np
|
715 |
+
>>> from PIL import Image
|
716 |
+
>>> import requests
|
717 |
+
|
718 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
719 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
720 |
+
|
721 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("vinvino02/glpn-kitti")
|
722 |
+
>>> model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-kitti")
|
723 |
+
|
724 |
+
>>> # prepare image for the model
|
725 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
726 |
+
|
727 |
+
>>> with torch.no_grad():
|
728 |
+
... outputs = model(**inputs)
|
729 |
+
... predicted_depth = outputs.predicted_depth
|
730 |
+
|
731 |
+
>>> # interpolate to original size
|
732 |
+
>>> prediction = torch.nn.functional.interpolate(
|
733 |
+
... predicted_depth.unsqueeze(1),
|
734 |
+
... size=image.size[::-1],
|
735 |
+
... mode="bicubic",
|
736 |
+
... align_corners=False,
|
737 |
+
... )
|
738 |
+
|
739 |
+
>>> # visualize the prediction
|
740 |
+
>>> output = prediction.squeeze().cpu().numpy()
|
741 |
+
>>> formatted = (output * 255 / np.max(output)).astype("uint8")
|
742 |
+
>>> depth = Image.fromarray(formatted)
|
743 |
+
```"""
|
744 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
745 |
+
output_hidden_states = (
|
746 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
747 |
+
)
|
748 |
+
|
749 |
+
outputs = self.glpn(
|
750 |
+
pixel_values,
|
751 |
+
output_attentions=output_attentions,
|
752 |
+
output_hidden_states=True, # we need the intermediate hidden states
|
753 |
+
return_dict=return_dict,
|
754 |
+
)
|
755 |
+
|
756 |
+
hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
757 |
+
|
758 |
+
out = self.decoder(hidden_states)
|
759 |
+
predicted_depth = self.head(out)
|
760 |
+
|
761 |
+
loss = None
|
762 |
+
if labels is not None:
|
763 |
+
loss_fct = SiLogLoss()
|
764 |
+
loss = loss_fct(predicted_depth, labels)
|
765 |
+
|
766 |
+
if not return_dict:
|
767 |
+
if output_hidden_states:
|
768 |
+
output = (predicted_depth,) + outputs[1:]
|
769 |
+
else:
|
770 |
+
output = (predicted_depth,) + outputs[2:]
|
771 |
+
return ((loss,) + output) if loss is not None else output
|
772 |
+
|
773 |
+
return DepthEstimatorOutput(
|
774 |
+
loss=loss,
|
775 |
+
predicted_depth=predicted_depth,
|
776 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
777 |
+
attentions=outputs.attentions,
|
778 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/__init__.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"],
|
21 |
+
}
|
22 |
+
|
23 |
+
try:
|
24 |
+
if not is_torch_available():
|
25 |
+
raise OptionalDependencyNotAvailable()
|
26 |
+
except OptionalDependencyNotAvailable:
|
27 |
+
pass
|
28 |
+
else:
|
29 |
+
_import_structure["modeling_gpt_neo"] = [
|
30 |
+
"GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",
|
31 |
+
"GPTNeoForCausalLM",
|
32 |
+
"GPTNeoForQuestionAnswering",
|
33 |
+
"GPTNeoForSequenceClassification",
|
34 |
+
"GPTNeoForTokenClassification",
|
35 |
+
"GPTNeoModel",
|
36 |
+
"GPTNeoPreTrainedModel",
|
37 |
+
"load_tf_weights_in_gpt_neo",
|
38 |
+
]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_flax_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_flax_gpt_neo"] = [
|
47 |
+
"FlaxGPTNeoForCausalLM",
|
48 |
+
"FlaxGPTNeoModel",
|
49 |
+
"FlaxGPTNeoPreTrainedModel",
|
50 |
+
]
|
51 |
+
|
52 |
+
|
53 |
+
if TYPE_CHECKING:
|
54 |
+
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
|
55 |
+
|
56 |
+
try:
|
57 |
+
if not is_torch_available():
|
58 |
+
raise OptionalDependencyNotAvailable()
|
59 |
+
except OptionalDependencyNotAvailable:
|
60 |
+
pass
|
61 |
+
else:
|
62 |
+
from .modeling_gpt_neo import (
|
63 |
+
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
|
64 |
+
GPTNeoForCausalLM,
|
65 |
+
GPTNeoForQuestionAnswering,
|
66 |
+
GPTNeoForSequenceClassification,
|
67 |
+
GPTNeoForTokenClassification,
|
68 |
+
GPTNeoModel,
|
69 |
+
GPTNeoPreTrainedModel,
|
70 |
+
load_tf_weights_in_gpt_neo,
|
71 |
+
)
|
72 |
+
|
73 |
+
try:
|
74 |
+
if not is_flax_available():
|
75 |
+
raise OptionalDependencyNotAvailable()
|
76 |
+
except OptionalDependencyNotAvailable:
|
77 |
+
pass
|
78 |
+
else:
|
79 |
+
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
|
80 |
+
|
81 |
+
|
82 |
+
else:
|
83 |
+
import sys
|
84 |
+
|
85 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/__pycache__/configuration_gpt_neo.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/__pycache__/convert_gpt_neo_mesh_tf_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.71 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/__pycache__/modeling_flax_gpt_neo.cpython-310.pyc
ADDED
Binary file (20.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/__pycache__/modeling_gpt_neo.cpython-310.pyc
ADDED
Binary file (37.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/configuration_gpt_neo.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GPT Neo model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Any, Mapping, Optional
|
19 |
+
|
20 |
+
from ... import PreTrainedTokenizer, TensorType, is_torch_available
|
21 |
+
from ...configuration_utils import PretrainedConfig
|
22 |
+
from ...onnx import OnnxConfigWithPast
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
from ..deprecated._archive_maps import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
30 |
+
|
31 |
+
|
32 |
+
class GPTNeoConfig(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a [`GPTNeoModel`]. It is used to instantiate a GPT
|
35 |
+
Neo model according to the specified arguments, defining the model architecture. Instantiating a configuration with
|
36 |
+
the defaults will yield a similar configuration to that of the GPTNeo
|
37 |
+
[EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) architecture.
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
|
43 |
+
Args:
|
44 |
+
vocab_size (`int`, *optional*, defaults to 50257):
|
45 |
+
Vocabulary size of the GPT Neo model. Defines the number of different tokens that can be represented by the
|
46 |
+
`inputs_ids` passed when calling [`GPTNeoModel`]. Vocabulary size of the model. Defines the different
|
47 |
+
tokens that can be represented by the *inputs_ids* passed to the forward method of [`GPTNeoModel`].
|
48 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
49 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
50 |
+
just in case (e.g., 512 or 1024 or 2048).
|
51 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
52 |
+
Dimensionality of the encoder layers and the pooler layer.
|
53 |
+
num_layers (`int`, *optional*, defaults to 24):
|
54 |
+
Number of hidden layers in the Transformer encoder.
|
55 |
+
attention_types (`List`, *optional*, defaults to `[[['global', 'local'], 12]]`):
|
56 |
+
The type of attention for each layer in a `List` of the following format `[[["attention_type"],
|
57 |
+
num_layerss]]` e.g. for a 24 layer model `[[["global"], 24]]` or `[[["global", "local"], 12]]` Choose the
|
58 |
+
value of `attention_type` from `["global", "local"]`
|
59 |
+
num_heads (`int`, *optional*, defaults to 16):
|
60 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
61 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
62 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
63 |
+
window_size (`int`, *optional*, defaults to 256):
|
64 |
+
The size of the sliding window for local attention.
|
65 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
66 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
67 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
68 |
+
resid_dropout (`float`, *optional*, defaults to 0.0):
|
69 |
+
Residual dropout used in the attention pattern.
|
70 |
+
embed_dropout (`float`, *optional*, defaults to 0.0):
|
71 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
72 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
73 |
+
The dropout ratio for the attention probabilities.
|
74 |
+
classifier_dropout (`float`, *optional*, defaults to 0.1):
|
75 |
+
Argument used when doing token classification, used in the model [`GPTNeoForTokenClassification`]. The
|
76 |
+
dropout ratio for the hidden layer.
|
77 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
78 |
+
The epsilon used by the layer normalization layers.
|
79 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
80 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
81 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
82 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
83 |
+
relevant if `config.is_decoder=True`.
|
84 |
+
bos_token_id (`int`, *optional*, defaults to 50256):
|
85 |
+
The id of the beginning of sentence token in the vocabulary.
|
86 |
+
eos_token_id (`int`, *optional*, defaults to 50256):
|
87 |
+
The id of the end of sentence token in the vocabulary.
|
88 |
+
|
89 |
+
Example:
|
90 |
+
|
91 |
+
```python
|
92 |
+
>>> from transformers import GPTNeoConfig, GPTNeoModel
|
93 |
+
|
94 |
+
>>> # Initializing a GPTNeo EleutherAI/gpt-neo-1.3B style configuration
|
95 |
+
>>> configuration = GPTNeoConfig()
|
96 |
+
|
97 |
+
>>> # Initializing a model (with random weights) from the EleutherAI/gpt-neo-1.3B style configuration
|
98 |
+
>>> model = GPTNeoModel(configuration)
|
99 |
+
|
100 |
+
>>> # Accessing the model configuration
|
101 |
+
>>> configuration = model.config
|
102 |
+
```"""
|
103 |
+
|
104 |
+
model_type = "gpt_neo"
|
105 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
106 |
+
attribute_map = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
vocab_size=50257,
|
111 |
+
max_position_embeddings=2048,
|
112 |
+
hidden_size=2048,
|
113 |
+
num_layers=24,
|
114 |
+
attention_types=[[["global", "local"], 12]],
|
115 |
+
num_heads=16,
|
116 |
+
intermediate_size=None,
|
117 |
+
window_size=256,
|
118 |
+
activation_function="gelu_new",
|
119 |
+
resid_dropout=0.0,
|
120 |
+
embed_dropout=0.0,
|
121 |
+
attention_dropout=0.0,
|
122 |
+
classifier_dropout=0.1,
|
123 |
+
layer_norm_epsilon=1e-5,
|
124 |
+
initializer_range=0.02,
|
125 |
+
use_cache=True,
|
126 |
+
bos_token_id=50256,
|
127 |
+
eos_token_id=50256,
|
128 |
+
**kwargs,
|
129 |
+
):
|
130 |
+
self.vocab_size = vocab_size
|
131 |
+
self.max_position_embeddings = max_position_embeddings
|
132 |
+
self.hidden_size = hidden_size
|
133 |
+
self.num_layers = num_layers
|
134 |
+
self.num_heads = num_heads
|
135 |
+
self.intermediate_size = intermediate_size
|
136 |
+
self.window_size = window_size
|
137 |
+
self.activation_function = activation_function
|
138 |
+
self.resid_dropout = resid_dropout
|
139 |
+
self.embed_dropout = embed_dropout
|
140 |
+
self.attention_dropout = attention_dropout
|
141 |
+
self.classifier_dropout = classifier_dropout
|
142 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
143 |
+
self.initializer_range = initializer_range
|
144 |
+
self.use_cache = use_cache
|
145 |
+
|
146 |
+
self.bos_token_id = bos_token_id
|
147 |
+
self.eos_token_id = eos_token_id
|
148 |
+
|
149 |
+
self.attention_types = attention_types
|
150 |
+
self.attention_layers = self.expand_attention_types_params(attention_types)
|
151 |
+
|
152 |
+
if len(self.attention_layers) != self.num_layers:
|
153 |
+
raise ValueError(
|
154 |
+
"Configuration for convolutional module is incorrect. "
|
155 |
+
"It is required that `len(config.attention_layers)` == `config.num_layers` "
|
156 |
+
f"but is `len(config.attention_layers) = {len(self.attention_layers)}`, "
|
157 |
+
f"`config.num_layers = {self.num_layers}`. "
|
158 |
+
"`config.attention_layers` is prepared using `config.attention_types`. "
|
159 |
+
"Please verify the value of `config.attention_types` argument."
|
160 |
+
)
|
161 |
+
|
162 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
163 |
+
|
164 |
+
@staticmethod
|
165 |
+
def expand_attention_types_params(attention_types):
|
166 |
+
attentions = []
|
167 |
+
for item in attention_types:
|
168 |
+
for _ in range(item[1]):
|
169 |
+
attentions.extend(item[0])
|
170 |
+
return attentions
|
171 |
+
|
172 |
+
|
173 |
+
def custom_unfold(input, dimension, size, step):
|
174 |
+
"""Custom torch.Tensor.unfold implementation to enable the export to ONNX."""
|
175 |
+
import torch
|
176 |
+
|
177 |
+
shape = input.size()
|
178 |
+
rank = len(shape)
|
179 |
+
sizedim = shape[dimension]
|
180 |
+
|
181 |
+
low_indices = torch.arange(0, sizedim, step)
|
182 |
+
min_length = torch.div(sizedim - size, step, rounding_mode="floor") + 1
|
183 |
+
indices = torch.arange(size) + low_indices[:min_length][:, None]
|
184 |
+
|
185 |
+
s = [slice(None)] * rank
|
186 |
+
s[dimension] = indices
|
187 |
+
sliced = input[s]
|
188 |
+
|
189 |
+
perm = list(range(0, rank + 1))
|
190 |
+
perm.append(perm.pop(dimension + 1))
|
191 |
+
|
192 |
+
return sliced.permute(perm)
|
193 |
+
|
194 |
+
|
195 |
+
def custom_get_block_length_and_num_blocks(seq_length, window_size):
|
196 |
+
"""
|
197 |
+
Custom implementation for GPTNeoAttentionMixin._get_block_length_and_num_blocks to enable the export to ONNX as
|
198 |
+
original implementation uses Python variables and control flow.
|
199 |
+
"""
|
200 |
+
import torch
|
201 |
+
|
202 |
+
candidates = torch.arange(1, window_size)
|
203 |
+
remainders = torch.remainder(seq_length, candidates)
|
204 |
+
divisor_indices = remainders == 0
|
205 |
+
divisors = candidates[divisor_indices]
|
206 |
+
largest_divisor = torch.max(divisors)
|
207 |
+
return largest_divisor, torch.div(seq_length, largest_divisor, rounding_mode="floor")
|
208 |
+
|
209 |
+
|
210 |
+
class GPTNeoOnnxConfig(OnnxConfigWithPast):
|
211 |
+
@property
|
212 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
213 |
+
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
214 |
+
if self.use_past:
|
215 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
216 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
217 |
+
else:
|
218 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
219 |
+
|
220 |
+
return common_inputs
|
221 |
+
|
222 |
+
@property
|
223 |
+
def num_attention_heads(self) -> int:
|
224 |
+
return self._config.num_heads
|
225 |
+
|
226 |
+
def generate_dummy_inputs(
|
227 |
+
self,
|
228 |
+
tokenizer: PreTrainedTokenizer,
|
229 |
+
batch_size: int = -1,
|
230 |
+
seq_length: int = -1,
|
231 |
+
is_pair: bool = False,
|
232 |
+
framework: Optional[TensorType] = None,
|
233 |
+
) -> Mapping[str, Any]:
|
234 |
+
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
235 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
236 |
+
)
|
237 |
+
|
238 |
+
# We need to order the input in the way they appears in the forward()
|
239 |
+
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
240 |
+
|
241 |
+
# Need to add the past_keys
|
242 |
+
if self.use_past:
|
243 |
+
if not is_torch_available():
|
244 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
245 |
+
else:
|
246 |
+
import torch
|
247 |
+
|
248 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
249 |
+
# Not using the same length for past_key_values
|
250 |
+
past_key_values_length = seqlen + 2
|
251 |
+
past_shape = (
|
252 |
+
batch,
|
253 |
+
self.num_attention_heads,
|
254 |
+
past_key_values_length,
|
255 |
+
self._config.hidden_size // self.num_attention_heads,
|
256 |
+
)
|
257 |
+
ordered_inputs["past_key_values"] = [
|
258 |
+
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
|
259 |
+
]
|
260 |
+
|
261 |
+
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
262 |
+
if self.use_past:
|
263 |
+
mask_dtype = ordered_inputs["attention_mask"].dtype
|
264 |
+
ordered_inputs["attention_mask"] = torch.cat(
|
265 |
+
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
266 |
+
)
|
267 |
+
|
268 |
+
return ordered_inputs
|
269 |
+
|
270 |
+
@property
|
271 |
+
def default_onnx_opset(self) -> int:
|
272 |
+
return 13
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/convert_gpt_neo_mesh_tf_to_pytorch.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Eleuther AI and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert GPT Neo checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
|
21 |
+
from transformers import GPTNeoConfig, GPTNeoForCausalLM, load_tf_weights_in_gpt_neo
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logging.set_verbosity_info()
|
26 |
+
|
27 |
+
|
28 |
+
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path):
|
29 |
+
# Initialise PyTorch model
|
30 |
+
config_json = json.load(open(config_file, "r"))
|
31 |
+
config = GPTNeoConfig(
|
32 |
+
hidden_size=config_json["n_embd"],
|
33 |
+
num_layers=config_json["n_layer"],
|
34 |
+
num_heads=config_json["n_head"],
|
35 |
+
attention_types=config_json["attention_types"],
|
36 |
+
max_position_embeddings=config_json["n_positions"],
|
37 |
+
resid_dropout=config_json["res_dropout"],
|
38 |
+
embed_dropout=config_json["embed_dropout"],
|
39 |
+
attention_dropout=config_json["attn_dropout"],
|
40 |
+
)
|
41 |
+
print(f"Building PyTorch model from configuration: {config}")
|
42 |
+
model = GPTNeoForCausalLM(config)
|
43 |
+
|
44 |
+
# Load weights from tf checkpoint
|
45 |
+
load_tf_weights_in_gpt_neo(model, config, tf_checkpoint_path)
|
46 |
+
|
47 |
+
# Save pytorch-model
|
48 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
49 |
+
model.save_pretrained(pytorch_dump_path)
|
50 |
+
|
51 |
+
|
52 |
+
if __name__ == "__main__":
|
53 |
+
parser = argparse.ArgumentParser()
|
54 |
+
# Required parameters
|
55 |
+
parser.add_argument(
|
56 |
+
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
57 |
+
)
|
58 |
+
parser.add_argument(
|
59 |
+
"--config_file",
|
60 |
+
default=None,
|
61 |
+
type=str,
|
62 |
+
required=True,
|
63 |
+
help=(
|
64 |
+
"The config json file corresponding to the pre-trained mesh-tf model. \n"
|
65 |
+
"This specifies the model architecture."
|
66 |
+
),
|
67 |
+
)
|
68 |
+
parser.add_argument(
|
69 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
70 |
+
)
|
71 |
+
args = parser.parse_args()
|
72 |
+
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/modeling_flax_gpt_neo.py
ADDED
@@ -0,0 +1,684 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Eleuther AI and The Google Flax Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from functools import partial
|
17 |
+
from typing import Optional, Tuple
|
18 |
+
|
19 |
+
import flax.linen as nn
|
20 |
+
import jax
|
21 |
+
import jax.numpy as jnp
|
22 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
23 |
+
from flax.linen import combine_masks, make_causal_mask
|
24 |
+
from flax.linen.attention import dot_product_attention_weights
|
25 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
26 |
+
from jax import lax
|
27 |
+
|
28 |
+
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
|
29 |
+
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
|
30 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
31 |
+
from .configuration_gpt_neo import GPTNeoConfig
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
_CONFIG_FOR_DOC = "GPTNeoConfig"
|
37 |
+
_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neo-1.3B"
|
38 |
+
|
39 |
+
|
40 |
+
GPT_NEO_START_DOCSTRING = r"""
|
41 |
+
|
42 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
43 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
44 |
+
etc.)
|
45 |
+
|
46 |
+
This model is also a Flax Linen
|
47 |
+
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
|
48 |
+
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
|
49 |
+
|
50 |
+
Finally, this model supports inherent JAX features such as:
|
51 |
+
|
52 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
53 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
54 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
55 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
56 |
+
|
57 |
+
Parameters:
|
58 |
+
config ([`GPTNeoConfig`]): Model configuration class with all the parameters of the model.
|
59 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
60 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
61 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
62 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
63 |
+
`jax.numpy.bfloat16` (on TPUs).
|
64 |
+
|
65 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
66 |
+
specified all the computation will be performed with the given `dtype`.
|
67 |
+
|
68 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
69 |
+
parameters.**
|
70 |
+
|
71 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
72 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
73 |
+
"""
|
74 |
+
|
75 |
+
GPT_NEO_INPUTS_DOCSTRING = r"""
|
76 |
+
Args:
|
77 |
+
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
|
78 |
+
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
|
79 |
+
|
80 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
81 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
82 |
+
|
83 |
+
[What are input IDs?](../glossary#input-ids)
|
84 |
+
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
85 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
86 |
+
|
87 |
+
- 1 for tokens that are **not masked**,
|
88 |
+
- 0 for tokens that are **masked**.
|
89 |
+
|
90 |
+
[What are attention masks?](../glossary#attention-mask)
|
91 |
+
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
92 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
93 |
+
config.max_position_embeddings - 1]`.
|
94 |
+
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
|
95 |
+
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
|
96 |
+
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
|
97 |
+
output_attentions (`bool`, *optional*):
|
98 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
99 |
+
tensors for more detail.
|
100 |
+
output_hidden_states (`bool`, *optional*):
|
101 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
102 |
+
more detail.
|
103 |
+
return_dict (`bool`, *optional*):
|
104 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
105 |
+
"""
|
106 |
+
|
107 |
+
|
108 |
+
class FlaxGPTNeoSelfAttention(nn.Module):
|
109 |
+
config: GPTNeoConfig
|
110 |
+
attention_type: str
|
111 |
+
dtype: jnp.dtype = jnp.float32
|
112 |
+
|
113 |
+
def setup(self):
|
114 |
+
config = self.config
|
115 |
+
self.embed_dim = config.hidden_size
|
116 |
+
self.num_heads = config.num_attention_heads
|
117 |
+
self.head_dim = self.embed_dim // self.num_heads
|
118 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
119 |
+
raise ValueError(
|
120 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and "
|
121 |
+
f"`num_heads`: {self.num_heads})."
|
122 |
+
)
|
123 |
+
|
124 |
+
self.attn_dropout = nn.Dropout(config.attention_dropout)
|
125 |
+
self.resid_dropout = nn.Dropout(config.resid_dropout)
|
126 |
+
|
127 |
+
dense = partial(
|
128 |
+
nn.Dense,
|
129 |
+
self.embed_dim,
|
130 |
+
dtype=self.dtype,
|
131 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
132 |
+
)
|
133 |
+
|
134 |
+
self.q_proj, self.k_proj, self.v_proj = dense(use_bias=False), dense(use_bias=False), dense(use_bias=False)
|
135 |
+
self.out_proj = dense()
|
136 |
+
|
137 |
+
self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
|
138 |
+
if self.attention_type == "local":
|
139 |
+
self.causal_mask = self.causal_mask ^ jnp.tril(self.causal_mask, -config.window_size)
|
140 |
+
|
141 |
+
def _split_heads(self, hidden_states):
|
142 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
|
143 |
+
|
144 |
+
def _merge_heads(self, hidden_states):
|
145 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
146 |
+
|
147 |
+
@nn.compact
|
148 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
149 |
+
"""
|
150 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
151 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
152 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
153 |
+
"""
|
154 |
+
# detect if we're initializing by absence of existing cache data.
|
155 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
156 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
157 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
158 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
159 |
+
|
160 |
+
if is_initialized:
|
161 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
162 |
+
# update key, value caches with our new 1d spatial slices
|
163 |
+
cur_index = cache_index.value
|
164 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
165 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
166 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
167 |
+
cached_key.value = key
|
168 |
+
cached_value.value = value
|
169 |
+
num_updated_cache_vectors = query.shape[1]
|
170 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
171 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
|
172 |
+
pad_mask = jnp.broadcast_to(
|
173 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
174 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
175 |
+
)
|
176 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
177 |
+
return key, value, attention_mask
|
178 |
+
|
179 |
+
def __call__(
|
180 |
+
self,
|
181 |
+
hidden_states,
|
182 |
+
attention_mask=None,
|
183 |
+
deterministic: bool = True,
|
184 |
+
init_cache: bool = False,
|
185 |
+
output_attentions: bool = False,
|
186 |
+
):
|
187 |
+
query = self.q_proj(hidden_states) * jnp.sqrt(self.head_dim).astype(self.dtype)
|
188 |
+
key = self.k_proj(hidden_states)
|
189 |
+
value = self.v_proj(hidden_states)
|
190 |
+
|
191 |
+
query = self._split_heads(query)
|
192 |
+
key = self._split_heads(key)
|
193 |
+
value = self._split_heads(value)
|
194 |
+
|
195 |
+
query_length, key_length = query.shape[1], key.shape[1]
|
196 |
+
|
197 |
+
if self.has_variable("cache", "cached_key"):
|
198 |
+
mask_shift = self.variables["cache"]["cache_index"]
|
199 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
200 |
+
causal_mask = lax.dynamic_slice(
|
201 |
+
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
205 |
+
|
206 |
+
batch_size = hidden_states.shape[0]
|
207 |
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
208 |
+
|
209 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
210 |
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
211 |
+
|
212 |
+
dropout_rng = None
|
213 |
+
if not deterministic and self.config.attention_dropout > 0.0:
|
214 |
+
dropout_rng = self.make_rng("dropout")
|
215 |
+
|
216 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
217 |
+
# and cache the keys and values step by step.
|
218 |
+
if self.has_variable("cache", "cached_key") or init_cache:
|
219 |
+
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
|
220 |
+
|
221 |
+
# transform boolean mask into float mask
|
222 |
+
attention_bias = lax.select(
|
223 |
+
attention_mask > 0,
|
224 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
225 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
226 |
+
)
|
227 |
+
|
228 |
+
# usual dot product attention
|
229 |
+
attn_weights = dot_product_attention_weights(
|
230 |
+
query,
|
231 |
+
key,
|
232 |
+
bias=attention_bias,
|
233 |
+
dropout_rng=dropout_rng,
|
234 |
+
dropout_rate=self.config.attention_dropout,
|
235 |
+
deterministic=deterministic,
|
236 |
+
dtype=self.dtype,
|
237 |
+
precision=None,
|
238 |
+
)
|
239 |
+
|
240 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
|
241 |
+
attn_output = self._merge_heads(attn_output)
|
242 |
+
attn_output = self.out_proj(attn_output)
|
243 |
+
attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
|
244 |
+
|
245 |
+
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
246 |
+
return outputs
|
247 |
+
|
248 |
+
|
249 |
+
class FlaxGPTNeoAttention(nn.Module):
|
250 |
+
config: GPTNeoConfig
|
251 |
+
layer_id: int = 0
|
252 |
+
dtype: jnp.dtype = jnp.float32
|
253 |
+
|
254 |
+
def setup(self):
|
255 |
+
attention_type = self.config.attention_layers[self.layer_id]
|
256 |
+
self.attention = FlaxGPTNeoSelfAttention(self.config, attention_type, dtype=self.dtype)
|
257 |
+
|
258 |
+
def __call__(
|
259 |
+
self,
|
260 |
+
hidden_states,
|
261 |
+
attention_mask=None,
|
262 |
+
deterministic: bool = True,
|
263 |
+
init_cache: bool = False,
|
264 |
+
output_attentions: bool = False,
|
265 |
+
):
|
266 |
+
return self.attention(
|
267 |
+
hidden_states,
|
268 |
+
attention_mask=attention_mask,
|
269 |
+
deterministic=deterministic,
|
270 |
+
init_cache=init_cache,
|
271 |
+
output_attentions=output_attentions,
|
272 |
+
)
|
273 |
+
|
274 |
+
|
275 |
+
class FlaxGPTNeoMLP(nn.Module):
|
276 |
+
config: GPTNeoConfig
|
277 |
+
intermediate_size: int
|
278 |
+
dtype: jnp.dtype = jnp.float32
|
279 |
+
|
280 |
+
def setup(self):
|
281 |
+
embed_dim = self.config.hidden_size
|
282 |
+
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
|
283 |
+
self.c_fc = nn.Dense(self.intermediate_size, dtype=self.dtype, kernel_init=kernel_init)
|
284 |
+
self.c_proj = nn.Dense(embed_dim, dtype=self.dtype, kernel_init=kernel_init)
|
285 |
+
self.act = ACT2FN[self.config.activation_function]
|
286 |
+
self.dropout = nn.Dropout(rate=self.config.resid_dropout)
|
287 |
+
|
288 |
+
def __call__(self, hidden_states, deterministic: bool = True):
|
289 |
+
hidden_states = self.c_fc(hidden_states)
|
290 |
+
hidden_states = self.act(hidden_states)
|
291 |
+
hidden_states = self.c_proj(hidden_states)
|
292 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
293 |
+
return hidden_states
|
294 |
+
|
295 |
+
|
296 |
+
class FlaxGPTNeoBlock(nn.Module):
|
297 |
+
config: GPTNeoConfig
|
298 |
+
layer_id: int = 0
|
299 |
+
dtype: jnp.dtype = jnp.float32
|
300 |
+
|
301 |
+
def setup(self):
|
302 |
+
hidden_size = self.config.hidden_size
|
303 |
+
inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * hidden_size
|
304 |
+
|
305 |
+
self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
306 |
+
self.attn = FlaxGPTNeoAttention(self.config, layer_id=self.layer_id, dtype=self.dtype)
|
307 |
+
self.ln_2 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
308 |
+
self.mlp = FlaxGPTNeoMLP(self.config, inner_dim, dtype=self.dtype)
|
309 |
+
|
310 |
+
def __call__(
|
311 |
+
self,
|
312 |
+
hidden_states,
|
313 |
+
attention_mask=None,
|
314 |
+
deterministic: bool = True,
|
315 |
+
init_cache: bool = False,
|
316 |
+
output_attentions: bool = False,
|
317 |
+
):
|
318 |
+
residual = hidden_states
|
319 |
+
hidden_states = self.ln_1(hidden_states)
|
320 |
+
outputs = self.attn(
|
321 |
+
hidden_states,
|
322 |
+
attention_mask=attention_mask,
|
323 |
+
deterministic=deterministic,
|
324 |
+
init_cache=init_cache,
|
325 |
+
output_attentions=output_attentions,
|
326 |
+
)
|
327 |
+
# residual connection
|
328 |
+
attn_output = outputs[0]
|
329 |
+
hidden_states = attn_output + residual
|
330 |
+
|
331 |
+
residual = hidden_states
|
332 |
+
hidden_states = self.ln_2(hidden_states)
|
333 |
+
feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic)
|
334 |
+
# residual connection
|
335 |
+
hidden_states = residual + feed_forward_hidden_states
|
336 |
+
|
337 |
+
return (hidden_states,) + outputs[1:]
|
338 |
+
|
339 |
+
|
340 |
+
class FlaxGPTNeoPreTrainedModel(FlaxPreTrainedModel):
|
341 |
+
"""
|
342 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
343 |
+
models.
|
344 |
+
"""
|
345 |
+
|
346 |
+
config_class = GPTNeoConfig
|
347 |
+
base_model_prefix = "transformer"
|
348 |
+
module_class: nn.Module = None
|
349 |
+
|
350 |
+
def __init__(
|
351 |
+
self,
|
352 |
+
config: GPTNeoConfig,
|
353 |
+
input_shape: Tuple = (1, 1),
|
354 |
+
seed: int = 0,
|
355 |
+
dtype: jnp.dtype = jnp.float32,
|
356 |
+
_do_init: bool = True,
|
357 |
+
**kwargs,
|
358 |
+
):
|
359 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
360 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
361 |
+
|
362 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
363 |
+
# init input tensors
|
364 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
365 |
+
attention_mask = jnp.ones_like(input_ids)
|
366 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
|
367 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
368 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
369 |
+
|
370 |
+
random_params = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"]
|
371 |
+
|
372 |
+
if params is not None:
|
373 |
+
random_params = flatten_dict(unfreeze(random_params))
|
374 |
+
params = flatten_dict(unfreeze(params))
|
375 |
+
for missing_key in self._missing_keys:
|
376 |
+
params[missing_key] = random_params[missing_key]
|
377 |
+
self._missing_keys = set()
|
378 |
+
return freeze(unflatten_dict(params))
|
379 |
+
else:
|
380 |
+
return random_params
|
381 |
+
|
382 |
+
def init_cache(self, batch_size, max_length):
|
383 |
+
r"""
|
384 |
+
Args:
|
385 |
+
batch_size (`int`):
|
386 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
387 |
+
max_length (`int`):
|
388 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
389 |
+
cache.
|
390 |
+
"""
|
391 |
+
# init input variables to retrieve cache
|
392 |
+
input_ids = jnp.ones((batch_size, max_length))
|
393 |
+
attention_mask = jnp.ones_like(input_ids)
|
394 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
395 |
+
|
396 |
+
init_variables = self.module.init(
|
397 |
+
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
|
398 |
+
)
|
399 |
+
return unfreeze(init_variables["cache"])
|
400 |
+
|
401 |
+
@add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
|
402 |
+
def __call__(
|
403 |
+
self,
|
404 |
+
input_ids,
|
405 |
+
attention_mask=None,
|
406 |
+
position_ids=None,
|
407 |
+
params: dict = None,
|
408 |
+
past_key_values: dict = None,
|
409 |
+
dropout_rng: jax.random.PRNGKey = None,
|
410 |
+
train: bool = False,
|
411 |
+
output_attentions: Optional[bool] = None,
|
412 |
+
output_hidden_states: Optional[bool] = None,
|
413 |
+
return_dict: Optional[bool] = None,
|
414 |
+
):
|
415 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
416 |
+
output_hidden_states = (
|
417 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
418 |
+
)
|
419 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
420 |
+
|
421 |
+
batch_size, sequence_length = input_ids.shape
|
422 |
+
|
423 |
+
if position_ids is None:
|
424 |
+
if past_key_values is not None:
|
425 |
+
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
|
426 |
+
|
427 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
428 |
+
|
429 |
+
if attention_mask is None:
|
430 |
+
attention_mask = jnp.ones((batch_size, sequence_length))
|
431 |
+
|
432 |
+
# Handle any PRNG if needed
|
433 |
+
rngs = {}
|
434 |
+
if dropout_rng is not None:
|
435 |
+
rngs["dropout"] = dropout_rng
|
436 |
+
|
437 |
+
inputs = {"params": params or self.params}
|
438 |
+
|
439 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPTNeoAttention module
|
440 |
+
if past_key_values:
|
441 |
+
inputs["cache"] = past_key_values
|
442 |
+
mutable = ["cache"]
|
443 |
+
else:
|
444 |
+
mutable = False
|
445 |
+
|
446 |
+
outputs = self.module.apply(
|
447 |
+
inputs,
|
448 |
+
jnp.array(input_ids, dtype="i4"),
|
449 |
+
jnp.array(attention_mask, dtype="i4"),
|
450 |
+
jnp.array(position_ids, dtype="i4"),
|
451 |
+
not train,
|
452 |
+
False,
|
453 |
+
output_attentions,
|
454 |
+
output_hidden_states,
|
455 |
+
return_dict,
|
456 |
+
rngs=rngs,
|
457 |
+
mutable=mutable,
|
458 |
+
)
|
459 |
+
|
460 |
+
# add updated cache to model output
|
461 |
+
if past_key_values is not None and return_dict:
|
462 |
+
outputs, past_key_values = outputs
|
463 |
+
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
|
464 |
+
return outputs
|
465 |
+
elif past_key_values is not None and not return_dict:
|
466 |
+
outputs, past_key_values = outputs
|
467 |
+
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
|
468 |
+
|
469 |
+
return outputs
|
470 |
+
|
471 |
+
|
472 |
+
class FlaxGPTNeoBlockCollection(nn.Module):
|
473 |
+
config: GPTNeoConfig
|
474 |
+
dtype: jnp.dtype = jnp.float32
|
475 |
+
|
476 |
+
def setup(self):
|
477 |
+
self.blocks = [
|
478 |
+
FlaxGPTNeoBlock(self.config, layer_id=i, name=str(i), dtype=self.dtype)
|
479 |
+
for i in range(self.config.num_hidden_layers)
|
480 |
+
]
|
481 |
+
|
482 |
+
def __call__(
|
483 |
+
self,
|
484 |
+
hidden_states,
|
485 |
+
attention_mask=None,
|
486 |
+
deterministic: bool = True,
|
487 |
+
init_cache: bool = False,
|
488 |
+
output_attentions: bool = False,
|
489 |
+
output_hidden_states: bool = False,
|
490 |
+
return_dict: bool = True,
|
491 |
+
):
|
492 |
+
all_attentions = () if output_attentions else None
|
493 |
+
all_hidden_states = () if output_hidden_states else None
|
494 |
+
|
495 |
+
for block in self.blocks:
|
496 |
+
if output_hidden_states:
|
497 |
+
all_hidden_states += (hidden_states,)
|
498 |
+
|
499 |
+
layer_outputs = block(
|
500 |
+
hidden_states,
|
501 |
+
attention_mask,
|
502 |
+
deterministic=deterministic,
|
503 |
+
init_cache=init_cache,
|
504 |
+
output_attentions=output_attentions,
|
505 |
+
)
|
506 |
+
hidden_states = layer_outputs[0]
|
507 |
+
|
508 |
+
if output_attentions:
|
509 |
+
all_attentions += (layer_outputs[1],)
|
510 |
+
|
511 |
+
# this contains possible `None` values - `FlaxGPTNeoModule` will filter them out
|
512 |
+
outputs = (hidden_states, all_hidden_states, all_attentions)
|
513 |
+
|
514 |
+
return outputs
|
515 |
+
|
516 |
+
|
517 |
+
class FlaxGPTNeoModule(nn.Module):
|
518 |
+
config: GPTNeoConfig
|
519 |
+
dtype: jnp.dtype = jnp.float32
|
520 |
+
|
521 |
+
def setup(self):
|
522 |
+
self.embed_dim = self.config.hidden_size
|
523 |
+
embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range)
|
524 |
+
self.wte = nn.Embed(
|
525 |
+
self.config.vocab_size,
|
526 |
+
self.embed_dim,
|
527 |
+
embedding_init=embedding_init,
|
528 |
+
)
|
529 |
+
self.wpe = nn.Embed(
|
530 |
+
self.config.max_position_embeddings,
|
531 |
+
self.embed_dim,
|
532 |
+
embedding_init=embedding_init,
|
533 |
+
)
|
534 |
+
self.dropout = nn.Dropout(rate=self.config.embed_dropout)
|
535 |
+
self.h = FlaxGPTNeoBlockCollection(self.config, dtype=self.dtype)
|
536 |
+
self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
537 |
+
|
538 |
+
def __call__(
|
539 |
+
self,
|
540 |
+
input_ids,
|
541 |
+
attention_mask,
|
542 |
+
position_ids,
|
543 |
+
deterministic=True,
|
544 |
+
init_cache: bool = False,
|
545 |
+
output_attentions: bool = False,
|
546 |
+
output_hidden_states: bool = False,
|
547 |
+
return_dict: bool = True,
|
548 |
+
):
|
549 |
+
input_embeds = self.wte(input_ids.astype("i4"))
|
550 |
+
position_embeds = self.wpe(position_ids.astype("i4"))
|
551 |
+
|
552 |
+
hidden_states = input_embeds + position_embeds
|
553 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
554 |
+
|
555 |
+
outputs = self.h(
|
556 |
+
hidden_states,
|
557 |
+
attention_mask,
|
558 |
+
deterministic=deterministic,
|
559 |
+
init_cache=init_cache,
|
560 |
+
output_attentions=output_attentions,
|
561 |
+
output_hidden_states=output_hidden_states,
|
562 |
+
return_dict=return_dict,
|
563 |
+
)
|
564 |
+
|
565 |
+
hidden_states = outputs[0]
|
566 |
+
hidden_states = self.ln_f(hidden_states)
|
567 |
+
|
568 |
+
hidden_states = outputs[0]
|
569 |
+
hidden_states = self.ln_f(hidden_states)
|
570 |
+
|
571 |
+
if output_hidden_states:
|
572 |
+
all_hidden_states = outputs[1] + (hidden_states,)
|
573 |
+
outputs = (hidden_states, all_hidden_states) + outputs[2:]
|
574 |
+
else:
|
575 |
+
outputs = (hidden_states,) + outputs[1:]
|
576 |
+
|
577 |
+
if not return_dict:
|
578 |
+
return tuple(v for v in outputs if v is not None)
|
579 |
+
|
580 |
+
return FlaxBaseModelOutput(
|
581 |
+
last_hidden_state=hidden_states,
|
582 |
+
hidden_states=outputs[1],
|
583 |
+
attentions=outputs[-1],
|
584 |
+
)
|
585 |
+
|
586 |
+
|
587 |
+
@add_start_docstrings(
|
588 |
+
"The bare GPTNeo Model transformer outputting raw hidden-states without any specific head on top.",
|
589 |
+
GPT_NEO_START_DOCSTRING,
|
590 |
+
)
|
591 |
+
class FlaxGPTNeoModel(FlaxGPTNeoPreTrainedModel):
|
592 |
+
module_class = FlaxGPTNeoModule
|
593 |
+
|
594 |
+
|
595 |
+
append_call_sample_docstring(FlaxGPTNeoModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
|
596 |
+
|
597 |
+
|
598 |
+
class FlaxGPTNeoForCausalLMModule(nn.Module):
|
599 |
+
config: GPTNeoConfig
|
600 |
+
dtype: jnp.dtype = jnp.float32
|
601 |
+
|
602 |
+
def setup(self):
|
603 |
+
self.transformer = FlaxGPTNeoModule(self.config, dtype=self.dtype)
|
604 |
+
self.lm_head = nn.Dense(
|
605 |
+
self.config.vocab_size,
|
606 |
+
use_bias=False,
|
607 |
+
dtype=self.dtype,
|
608 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
609 |
+
)
|
610 |
+
|
611 |
+
def __call__(
|
612 |
+
self,
|
613 |
+
input_ids,
|
614 |
+
attention_mask,
|
615 |
+
position_ids,
|
616 |
+
deterministic: bool = True,
|
617 |
+
init_cache: bool = False,
|
618 |
+
output_attentions: bool = False,
|
619 |
+
output_hidden_states: bool = False,
|
620 |
+
return_dict: bool = True,
|
621 |
+
):
|
622 |
+
outputs = self.transformer(
|
623 |
+
input_ids,
|
624 |
+
attention_mask,
|
625 |
+
position_ids,
|
626 |
+
deterministic=deterministic,
|
627 |
+
init_cache=init_cache,
|
628 |
+
output_attentions=output_attentions,
|
629 |
+
output_hidden_states=output_hidden_states,
|
630 |
+
return_dict=return_dict,
|
631 |
+
)
|
632 |
+
|
633 |
+
hidden_states = outputs[0]
|
634 |
+
|
635 |
+
if self.config.tie_word_embeddings:
|
636 |
+
shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T
|
637 |
+
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
|
638 |
+
else:
|
639 |
+
lm_logits = self.lm_head(hidden_states)
|
640 |
+
|
641 |
+
if not return_dict:
|
642 |
+
return (lm_logits,) + outputs[1:]
|
643 |
+
|
644 |
+
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
645 |
+
|
646 |
+
|
647 |
+
@add_start_docstrings(
|
648 |
+
"""
|
649 |
+
The GPTNeo Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
650 |
+
embeddings).
|
651 |
+
""",
|
652 |
+
GPT_NEO_START_DOCSTRING,
|
653 |
+
)
|
654 |
+
class FlaxGPTNeoForCausalLM(FlaxGPTNeoPreTrainedModel):
|
655 |
+
module_class = FlaxGPTNeoForCausalLMModule
|
656 |
+
|
657 |
+
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
|
658 |
+
# initializing the cache
|
659 |
+
batch_size, seq_length = input_ids.shape
|
660 |
+
|
661 |
+
past_key_values = self.init_cache(batch_size, max_length)
|
662 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
663 |
+
# But since GPTNeo uses a causal mask, those positions are masked anyways.
|
664 |
+
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
665 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
666 |
+
if attention_mask is not None:
|
667 |
+
position_ids = attention_mask.cumsum(axis=-1) - 1
|
668 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
|
669 |
+
else:
|
670 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
671 |
+
|
672 |
+
return {
|
673 |
+
"past_key_values": past_key_values,
|
674 |
+
"attention_mask": extended_attention_mask,
|
675 |
+
"position_ids": position_ids,
|
676 |
+
}
|
677 |
+
|
678 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
679 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
680 |
+
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
|
681 |
+
return model_kwargs
|
682 |
+
|
683 |
+
|
684 |
+
append_call_sample_docstring(FlaxGPTNeoForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neo/modeling_gpt_neo.py
ADDED
@@ -0,0 +1,1346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Eleuther AI and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch GPT Neo model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
29 |
+
from ...modeling_outputs import (
|
30 |
+
BaseModelOutputWithPast,
|
31 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
32 |
+
CausalLMOutputWithCrossAttentions,
|
33 |
+
CausalLMOutputWithPast,
|
34 |
+
QuestionAnsweringModelOutput,
|
35 |
+
SequenceClassifierOutputWithPast,
|
36 |
+
TokenClassifierOutput,
|
37 |
+
)
|
38 |
+
from ...modeling_utils import PreTrainedModel
|
39 |
+
from ...pytorch_utils import is_torch_greater_or_equal_than_1_13
|
40 |
+
from ...utils import (
|
41 |
+
add_code_sample_docstrings,
|
42 |
+
add_start_docstrings,
|
43 |
+
add_start_docstrings_to_model_forward,
|
44 |
+
is_flash_attn_2_available,
|
45 |
+
is_flash_attn_greater_or_equal_2_10,
|
46 |
+
is_torch_fx_available,
|
47 |
+
logging,
|
48 |
+
)
|
49 |
+
from .configuration_gpt_neo import GPTNeoConfig
|
50 |
+
|
51 |
+
|
52 |
+
if is_flash_attn_2_available():
|
53 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
54 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
55 |
+
|
56 |
+
|
57 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
58 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
59 |
+
if is_torch_fx_available():
|
60 |
+
if not is_torch_greater_or_equal_than_1_13:
|
61 |
+
import torch.fx
|
62 |
+
|
63 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
64 |
+
|
65 |
+
|
66 |
+
logger = logging.get_logger(__name__)
|
67 |
+
|
68 |
+
_CONFIG_FOR_DOC = "GPTNeoConfig"
|
69 |
+
|
70 |
+
|
71 |
+
from ..deprecated._archive_maps import GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
72 |
+
|
73 |
+
|
74 |
+
_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neo-1.3B"
|
75 |
+
|
76 |
+
|
77 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
78 |
+
def _get_unpad_data(attention_mask):
|
79 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
80 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
81 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
82 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
83 |
+
return (
|
84 |
+
indices,
|
85 |
+
cu_seqlens,
|
86 |
+
max_seqlen_in_batch,
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
def load_tf_weights_in_gpt_neo(model, config, gpt_neo_checkpoint_path):
|
91 |
+
"""Load tf checkpoints in a pytorch model"""
|
92 |
+
try:
|
93 |
+
import re
|
94 |
+
|
95 |
+
import tensorflow as tf
|
96 |
+
except ImportError:
|
97 |
+
logger.error(
|
98 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
99 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
100 |
+
)
|
101 |
+
raise
|
102 |
+
tf_path = os.path.abspath(gpt_neo_checkpoint_path)
|
103 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
104 |
+
# Load weights from TF model
|
105 |
+
init_vars = tf.train.list_variables(tf_path)
|
106 |
+
names = []
|
107 |
+
arrays = []
|
108 |
+
for name, shape in init_vars:
|
109 |
+
if "global_step" not in name and "adam" not in name:
|
110 |
+
array = tf.train.load_variable(tf_path, name)
|
111 |
+
array = tf.dtypes.cast(array.squeeze(), tf.float32).numpy()
|
112 |
+
name = name.replace("attn/q", "attn/attention/q_proj/w")
|
113 |
+
name = name.replace("attn/k", "attn/attention/k_proj/w")
|
114 |
+
name = name.replace("attn/v", "attn/attention/v_proj/w")
|
115 |
+
name = name.replace("attn/o", "attn/attention/out_proj/w")
|
116 |
+
name = name.replace("norm_1", "ln_1")
|
117 |
+
name = name.replace("norm_2", "ln_2")
|
118 |
+
name = name.replace("attn/compute_output_bias/o_b", "attn/attention/out_proj/b")
|
119 |
+
name = name.replace("conv1d_main/c_fc/kernel", "c_fc/w")
|
120 |
+
name = name.replace("conv1d_main/c_fc/bias", "c_fc/b")
|
121 |
+
name = name.replace("conv1d_main/c_proj/kernel", "c_proj/w")
|
122 |
+
name = name.replace("conv1d_main/c_proj/bias", "c_proj/b")
|
123 |
+
|
124 |
+
names.append(name)
|
125 |
+
arrays.append(array)
|
126 |
+
|
127 |
+
for name, array in zip(names, arrays):
|
128 |
+
name = name[5:] # skip "gpt2/"
|
129 |
+
name = name.split("/")
|
130 |
+
pointer = model.transformer
|
131 |
+
for m_name in name:
|
132 |
+
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
133 |
+
scope_names = re.split(r"(\d+)", m_name)
|
134 |
+
else:
|
135 |
+
scope_names = [m_name]
|
136 |
+
if scope_names[0] == "w" or scope_names[0] == "g":
|
137 |
+
pointer = getattr(pointer, "weight")
|
138 |
+
elif scope_names[0] == "b":
|
139 |
+
pointer = getattr(pointer, "bias")
|
140 |
+
elif scope_names[0] == "wpe" or scope_names[0] == "wte":
|
141 |
+
pointer = getattr(pointer, scope_names[0])
|
142 |
+
pointer = getattr(pointer, "weight")
|
143 |
+
else:
|
144 |
+
pointer = getattr(pointer, scope_names[0])
|
145 |
+
if len(scope_names) >= 2:
|
146 |
+
num = int(scope_names[1])
|
147 |
+
pointer = pointer[num]
|
148 |
+
|
149 |
+
if name[-1] == "w" and name[-2] in ["out_proj", "k_proj", "q_proj", "v_proj", "c_proj", "c_fc"]:
|
150 |
+
array = array.transpose()
|
151 |
+
|
152 |
+
if name == ["wte"]:
|
153 |
+
# if vocab is padded, then trim off the padding embeddings
|
154 |
+
array = array[: config.vocab_size]
|
155 |
+
|
156 |
+
if pointer.shape != array.shape:
|
157 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched {name}")
|
158 |
+
|
159 |
+
print(f"Initialize PyTorch weight {name}")
|
160 |
+
pointer.data = torch.from_numpy(array)
|
161 |
+
|
162 |
+
# init the final linear layer using word embeddings
|
163 |
+
embs = model.transformer.wte.weight
|
164 |
+
lin = nn.Linear(embs.size()[1], embs.size()[0], bias=False)
|
165 |
+
lin.weight = embs
|
166 |
+
model.set_output_embeddings(lin)
|
167 |
+
return model
|
168 |
+
|
169 |
+
|
170 |
+
class GPTNeoSelfAttention(nn.Module):
|
171 |
+
def __init__(self, config, attention_type):
|
172 |
+
super().__init__()
|
173 |
+
self.config = config
|
174 |
+
|
175 |
+
max_positions = config.max_position_embeddings
|
176 |
+
bias = torch.tril(torch.ones((max_positions, max_positions), dtype=bool)).view(
|
177 |
+
1, 1, max_positions, max_positions
|
178 |
+
)
|
179 |
+
|
180 |
+
# local causal self attention is a sliding window where each token can only attend to the previous
|
181 |
+
# window_size tokens. This is implemented by updating the causal mask such that for each token
|
182 |
+
# all other tokens are masked except the previous window_size tokens.
|
183 |
+
if attention_type == "local":
|
184 |
+
bias = torch.bitwise_xor(bias, torch.tril(bias, -config.window_size))
|
185 |
+
|
186 |
+
self.register_buffer("bias", bias, persistent=False)
|
187 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
|
188 |
+
|
189 |
+
self.attn_dropout = nn.Dropout(float(config.attention_dropout))
|
190 |
+
self.resid_dropout = nn.Dropout(float(config.resid_dropout))
|
191 |
+
self.is_causal = True
|
192 |
+
|
193 |
+
self.embed_dim = config.hidden_size
|
194 |
+
self.num_heads = config.num_heads
|
195 |
+
self.head_dim = self.embed_dim // self.num_heads
|
196 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
197 |
+
raise ValueError(
|
198 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
199 |
+
f" {self.num_heads})."
|
200 |
+
)
|
201 |
+
|
202 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
203 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
204 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
205 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
|
206 |
+
|
207 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
208 |
+
"""
|
209 |
+
Splits hidden_size dim into attn_head_size and num_heads
|
210 |
+
"""
|
211 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
212 |
+
tensor = tensor.view(new_shape)
|
213 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
214 |
+
|
215 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
216 |
+
"""
|
217 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
218 |
+
"""
|
219 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
220 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
221 |
+
return tensor.view(new_shape)
|
222 |
+
|
223 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
224 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
225 |
+
query = query.to(torch.float32)
|
226 |
+
key = key.to(torch.float32)
|
227 |
+
|
228 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
229 |
+
|
230 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
231 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
232 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
233 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
234 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
235 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
236 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
237 |
+
|
238 |
+
if attention_mask is not None:
|
239 |
+
# Apply the attention mask
|
240 |
+
attn_weights = attn_weights + attention_mask
|
241 |
+
|
242 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
243 |
+
attn_weights = attn_weights.to(value.dtype)
|
244 |
+
attn_weights = self.attn_dropout(attn_weights)
|
245 |
+
|
246 |
+
# Mask heads if we want to
|
247 |
+
if head_mask is not None:
|
248 |
+
attn_weights = attn_weights * head_mask
|
249 |
+
|
250 |
+
attn_output = torch.matmul(attn_weights, value)
|
251 |
+
|
252 |
+
return attn_output, attn_weights
|
253 |
+
|
254 |
+
def forward(
|
255 |
+
self,
|
256 |
+
hidden_states,
|
257 |
+
attention_mask=None,
|
258 |
+
layer_past=None,
|
259 |
+
head_mask=None,
|
260 |
+
use_cache=False,
|
261 |
+
output_attentions=False,
|
262 |
+
):
|
263 |
+
query = self.q_proj(hidden_states)
|
264 |
+
key = self.k_proj(hidden_states)
|
265 |
+
value = self.v_proj(hidden_states)
|
266 |
+
|
267 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
268 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
269 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
270 |
+
|
271 |
+
if layer_past is not None:
|
272 |
+
past_key = layer_past[0]
|
273 |
+
past_value = layer_past[1]
|
274 |
+
key = torch.cat((past_key, key), dim=-2)
|
275 |
+
value = torch.cat((past_value, value), dim=-2)
|
276 |
+
|
277 |
+
if use_cache is True:
|
278 |
+
present = (key, value)
|
279 |
+
else:
|
280 |
+
present = None
|
281 |
+
|
282 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
283 |
+
|
284 |
+
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
285 |
+
attn_output = self.out_proj(attn_output)
|
286 |
+
attn_output = self.resid_dropout(attn_output)
|
287 |
+
|
288 |
+
outputs = (attn_output, present)
|
289 |
+
if output_attentions:
|
290 |
+
outputs += (attn_weights,)
|
291 |
+
|
292 |
+
return outputs # a, present, (attentions)
|
293 |
+
|
294 |
+
|
295 |
+
class GPTNeoFlashAttention2(GPTNeoSelfAttention):
|
296 |
+
"""
|
297 |
+
GPTNeo flash attention module. This module inherits from `GPTNeoSelfAttention` as the weights of the module stays
|
298 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
299 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
300 |
+
"""
|
301 |
+
|
302 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
303 |
+
def __init__(self, *args, **kwargs):
|
304 |
+
super().__init__(*args, **kwargs)
|
305 |
+
|
306 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
307 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
308 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
309 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
310 |
+
|
311 |
+
def forward(
|
312 |
+
self,
|
313 |
+
hidden_states,
|
314 |
+
attention_mask=None,
|
315 |
+
layer_past=None,
|
316 |
+
head_mask=None,
|
317 |
+
use_cache=False,
|
318 |
+
output_attentions=False,
|
319 |
+
):
|
320 |
+
bsz, _, _ = hidden_states.size()
|
321 |
+
|
322 |
+
query = self.q_proj(hidden_states)
|
323 |
+
key = self.k_proj(hidden_states)
|
324 |
+
value = self.v_proj(hidden_states)
|
325 |
+
|
326 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
327 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
328 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
329 |
+
|
330 |
+
if layer_past is not None:
|
331 |
+
past_key = layer_past[0]
|
332 |
+
past_value = layer_past[1]
|
333 |
+
key = torch.cat((past_key, key), dim=-2)
|
334 |
+
value = torch.cat((past_value, value), dim=-2)
|
335 |
+
|
336 |
+
if use_cache is True:
|
337 |
+
present = (key, value)
|
338 |
+
else:
|
339 |
+
present = None
|
340 |
+
|
341 |
+
query_length = query.shape[2]
|
342 |
+
tgt_len = key.shape[2]
|
343 |
+
|
344 |
+
# Flash attention requires the input to have the shape
|
345 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
346 |
+
query = query.transpose(1, 2).view(bsz, query_length, self.num_heads, self.head_dim)
|
347 |
+
key = key.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
|
348 |
+
value = value.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
|
349 |
+
|
350 |
+
attn_dropout = self.config.attention_dropout if self.training else 0.0
|
351 |
+
|
352 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
353 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
354 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
355 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
356 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
357 |
+
|
358 |
+
if query.dtype == torch.float32:
|
359 |
+
if torch.is_autocast_enabled():
|
360 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
361 |
+
# Handle the case where the model is quantized
|
362 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
363 |
+
target_dtype = self.config._pre_quantization_dtype
|
364 |
+
else:
|
365 |
+
target_dtype = self.q_proj.weight.dtype
|
366 |
+
|
367 |
+
logger.warning_once(
|
368 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
369 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
370 |
+
f" {target_dtype}."
|
371 |
+
)
|
372 |
+
|
373 |
+
query = query.to(target_dtype)
|
374 |
+
key = key.to(target_dtype)
|
375 |
+
value = value.to(target_dtype)
|
376 |
+
|
377 |
+
attn_output = self._flash_attention_forward(
|
378 |
+
query, key, value, attention_mask, query_length, dropout=attn_dropout, softmax_scale=1.0
|
379 |
+
)
|
380 |
+
|
381 |
+
attn_weights_reshaped = attn_output.reshape(bsz, query_length, self.num_heads * self.head_dim)
|
382 |
+
attn_output = self.out_proj(attn_weights_reshaped)
|
383 |
+
attn_output = self.resid_dropout(attn_output)
|
384 |
+
|
385 |
+
outputs = (attn_output, present)
|
386 |
+
if output_attentions:
|
387 |
+
outputs += (attn_weights_reshaped,)
|
388 |
+
|
389 |
+
return outputs
|
390 |
+
|
391 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
392 |
+
def _flash_attention_forward(
|
393 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
394 |
+
):
|
395 |
+
"""
|
396 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
397 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
398 |
+
|
399 |
+
Args:
|
400 |
+
query_states (`torch.Tensor`):
|
401 |
+
Input query states to be passed to Flash Attention API
|
402 |
+
key_states (`torch.Tensor`):
|
403 |
+
Input key states to be passed to Flash Attention API
|
404 |
+
value_states (`torch.Tensor`):
|
405 |
+
Input value states to be passed to Flash Attention API
|
406 |
+
attention_mask (`torch.Tensor`):
|
407 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
408 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
409 |
+
dropout (`float`):
|
410 |
+
Attention dropout
|
411 |
+
softmax_scale (`float`, *optional*):
|
412 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
413 |
+
"""
|
414 |
+
if not self._flash_attn_uses_top_left_mask:
|
415 |
+
causal = self.is_causal
|
416 |
+
else:
|
417 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
418 |
+
causal = self.is_causal and query_length != 1
|
419 |
+
|
420 |
+
# Contains at least one padding token in the sequence
|
421 |
+
if attention_mask is not None:
|
422 |
+
batch_size = query_states.shape[0]
|
423 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
424 |
+
query_states, key_states, value_states, attention_mask, query_length
|
425 |
+
)
|
426 |
+
|
427 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
428 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
429 |
+
|
430 |
+
attn_output_unpad = flash_attn_varlen_func(
|
431 |
+
query_states,
|
432 |
+
key_states,
|
433 |
+
value_states,
|
434 |
+
cu_seqlens_q=cu_seqlens_q,
|
435 |
+
cu_seqlens_k=cu_seqlens_k,
|
436 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
437 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
438 |
+
dropout_p=dropout,
|
439 |
+
softmax_scale=softmax_scale,
|
440 |
+
causal=causal,
|
441 |
+
)
|
442 |
+
|
443 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
444 |
+
else:
|
445 |
+
attn_output = flash_attn_func(
|
446 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
447 |
+
)
|
448 |
+
|
449 |
+
return attn_output
|
450 |
+
|
451 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
452 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
453 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
454 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
455 |
+
|
456 |
+
key_layer = index_first_axis(
|
457 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
458 |
+
)
|
459 |
+
value_layer = index_first_axis(
|
460 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
461 |
+
)
|
462 |
+
if query_length == kv_seq_len:
|
463 |
+
query_layer = index_first_axis(
|
464 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
465 |
+
)
|
466 |
+
cu_seqlens_q = cu_seqlens_k
|
467 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
468 |
+
indices_q = indices_k
|
469 |
+
elif query_length == 1:
|
470 |
+
max_seqlen_in_batch_q = 1
|
471 |
+
cu_seqlens_q = torch.arange(
|
472 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
473 |
+
) # There is a memcpy here, that is very bad.
|
474 |
+
indices_q = cu_seqlens_q[:-1]
|
475 |
+
query_layer = query_layer.squeeze(1)
|
476 |
+
else:
|
477 |
+
# The -q_len: slice assumes left padding.
|
478 |
+
attention_mask = attention_mask[:, -query_length:]
|
479 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
480 |
+
|
481 |
+
return (
|
482 |
+
query_layer,
|
483 |
+
key_layer,
|
484 |
+
value_layer,
|
485 |
+
indices_q,
|
486 |
+
(cu_seqlens_q, cu_seqlens_k),
|
487 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
488 |
+
)
|
489 |
+
|
490 |
+
|
491 |
+
GPT_NEO_ATTENTION_CLASSES = {
|
492 |
+
"eager": GPTNeoSelfAttention,
|
493 |
+
"flash_attention_2": GPTNeoFlashAttention2,
|
494 |
+
}
|
495 |
+
|
496 |
+
|
497 |
+
class GPTNeoAttention(nn.Module):
|
498 |
+
def __init__(self, config, layer_id=0):
|
499 |
+
super().__init__()
|
500 |
+
self.layer_id = layer_id
|
501 |
+
self.attention_layers = config.attention_layers
|
502 |
+
self.attention_type = self.attention_layers[layer_id]
|
503 |
+
|
504 |
+
if self.attention_type in ["global", "local"]:
|
505 |
+
self.attention = GPT_NEO_ATTENTION_CLASSES[config._attn_implementation](config, self.attention_type)
|
506 |
+
else:
|
507 |
+
raise NotImplementedError(
|
508 |
+
"Only attn layer types 'global' and 'local' exist, but got `config.attention_layers`: "
|
509 |
+
f"{config.attention_layers}. Select attn layer types from ['global', 'local'] only."
|
510 |
+
)
|
511 |
+
|
512 |
+
def forward(
|
513 |
+
self,
|
514 |
+
hidden_states,
|
515 |
+
layer_past=None,
|
516 |
+
attention_mask=None,
|
517 |
+
head_mask=None,
|
518 |
+
use_cache=False,
|
519 |
+
output_attentions=False,
|
520 |
+
):
|
521 |
+
return self.attention(
|
522 |
+
hidden_states,
|
523 |
+
attention_mask=attention_mask,
|
524 |
+
layer_past=layer_past,
|
525 |
+
head_mask=head_mask,
|
526 |
+
use_cache=use_cache,
|
527 |
+
output_attentions=output_attentions,
|
528 |
+
)
|
529 |
+
|
530 |
+
|
531 |
+
class GPTNeoMLP(nn.Module):
|
532 |
+
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * hidden_size
|
533 |
+
super().__init__()
|
534 |
+
embed_dim = config.hidden_size
|
535 |
+
self.c_fc = nn.Linear(embed_dim, intermediate_size)
|
536 |
+
self.c_proj = nn.Linear(intermediate_size, embed_dim)
|
537 |
+
self.act = ACT2FN[config.activation_function]
|
538 |
+
self.dropout = nn.Dropout(float(config.resid_dropout))
|
539 |
+
|
540 |
+
def forward(self, hidden_states):
|
541 |
+
hidden_states = self.c_fc(hidden_states)
|
542 |
+
hidden_states = self.act(hidden_states)
|
543 |
+
hidden_states = self.c_proj(hidden_states)
|
544 |
+
hidden_states = self.dropout(hidden_states)
|
545 |
+
return hidden_states
|
546 |
+
|
547 |
+
|
548 |
+
class GPTNeoBlock(nn.Module):
|
549 |
+
def __init__(self, config, layer_id):
|
550 |
+
super().__init__()
|
551 |
+
hidden_size = config.hidden_size
|
552 |
+
inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
|
553 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
554 |
+
self.attn = GPTNeoAttention(config, layer_id)
|
555 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
556 |
+
self.mlp = GPTNeoMLP(inner_dim, config)
|
557 |
+
|
558 |
+
def forward(
|
559 |
+
self,
|
560 |
+
hidden_states,
|
561 |
+
layer_past=None,
|
562 |
+
attention_mask=None,
|
563 |
+
head_mask=None,
|
564 |
+
use_cache=False,
|
565 |
+
output_attentions=False,
|
566 |
+
):
|
567 |
+
residual = hidden_states
|
568 |
+
hidden_states = self.ln_1(hidden_states)
|
569 |
+
attn_outputs = self.attn(
|
570 |
+
hidden_states,
|
571 |
+
layer_past=layer_past,
|
572 |
+
attention_mask=attention_mask,
|
573 |
+
head_mask=head_mask,
|
574 |
+
use_cache=use_cache,
|
575 |
+
output_attentions=output_attentions,
|
576 |
+
)
|
577 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
578 |
+
outputs = attn_outputs[1:]
|
579 |
+
# residual connection
|
580 |
+
hidden_states = attn_output + residual
|
581 |
+
|
582 |
+
residual = hidden_states
|
583 |
+
hidden_states = self.ln_2(hidden_states)
|
584 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
585 |
+
# residual connection
|
586 |
+
hidden_states = residual + feed_forward_hidden_states
|
587 |
+
|
588 |
+
if use_cache:
|
589 |
+
outputs = (hidden_states,) + outputs
|
590 |
+
else:
|
591 |
+
outputs = (hidden_states,) + outputs[1:]
|
592 |
+
|
593 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
594 |
+
|
595 |
+
|
596 |
+
class GPTNeoPreTrainedModel(PreTrainedModel):
|
597 |
+
"""
|
598 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
599 |
+
models.
|
600 |
+
"""
|
601 |
+
|
602 |
+
config_class = GPTNeoConfig
|
603 |
+
load_tf_weights = load_tf_weights_in_gpt_neo
|
604 |
+
base_model_prefix = "transformer"
|
605 |
+
supports_gradient_checkpointing = True
|
606 |
+
_no_split_modules = ["GPTNeoBlock"]
|
607 |
+
_skip_keys_device_placement = "past_key_values"
|
608 |
+
_supports_flash_attn_2 = True
|
609 |
+
|
610 |
+
def __init__(self, *inputs, **kwargs):
|
611 |
+
super().__init__(*inputs, **kwargs)
|
612 |
+
|
613 |
+
def _init_weights(self, module):
|
614 |
+
"""Initialize the weights."""
|
615 |
+
if isinstance(module, (nn.Linear,)):
|
616 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
617 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
618 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
619 |
+
if module.bias is not None:
|
620 |
+
module.bias.data.zero_()
|
621 |
+
elif isinstance(module, nn.Embedding):
|
622 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
623 |
+
if module.padding_idx is not None:
|
624 |
+
module.weight.data[module.padding_idx].zero_()
|
625 |
+
elif isinstance(module, nn.LayerNorm):
|
626 |
+
module.bias.data.zero_()
|
627 |
+
module.weight.data.fill_(1.0)
|
628 |
+
|
629 |
+
|
630 |
+
GPT_NEO_START_DOCSTRING = r"""
|
631 |
+
|
632 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
633 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
634 |
+
etc.)
|
635 |
+
|
636 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
637 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
638 |
+
and behavior.
|
639 |
+
|
640 |
+
Parameters:
|
641 |
+
config ([`GPTNeoConfig`]): Model configuration class with all the parameters of the model.
|
642 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
643 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
644 |
+
"""
|
645 |
+
|
646 |
+
GPT_NEO_INPUTS_DOCSTRING = r"""
|
647 |
+
Args:
|
648 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
649 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
650 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
651 |
+
sequence tokens in the vocabulary.
|
652 |
+
|
653 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
654 |
+
`input_ids`.
|
655 |
+
|
656 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
657 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
658 |
+
|
659 |
+
[What are input IDs?](../glossary#input-ids)
|
660 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_layers`):
|
661 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
662 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
663 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
664 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
665 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
666 |
+
|
667 |
+
- 1 for tokens that are **not masked**,
|
668 |
+
- 0 for tokens that are **masked**.
|
669 |
+
|
670 |
+
[What are attention masks?](../glossary#attention-mask)
|
671 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
672 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
673 |
+
1]`:
|
674 |
+
|
675 |
+
- 0 corresponds to a *sentence A* token,
|
676 |
+
- 1 corresponds to a *sentence B* token.
|
677 |
+
|
678 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
679 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
680 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
681 |
+
config.max_position_embeddings - 1]`.
|
682 |
+
|
683 |
+
[What are position IDs?](../glossary#position-ids)
|
684 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
685 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
686 |
+
|
687 |
+
- 1 indicates the head is **not masked**,
|
688 |
+
- 0 indicates the head is **masked**.
|
689 |
+
|
690 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
691 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
692 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
693 |
+
model's internal embedding lookup matrix.
|
694 |
+
|
695 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
696 |
+
`past_key_values`).
|
697 |
+
use_cache (`bool`, *optional*):
|
698 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
699 |
+
`past_key_values`).
|
700 |
+
output_attentions (`bool`, *optional*):
|
701 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
702 |
+
tensors for more detail.
|
703 |
+
output_hidden_states (`bool`, *optional*):
|
704 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
705 |
+
more detail.
|
706 |
+
return_dict (`bool`, *optional*):
|
707 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
708 |
+
"""
|
709 |
+
|
710 |
+
|
711 |
+
@add_start_docstrings(
|
712 |
+
"The bare GPT Neo Model transformer outputting raw hidden-states without any specific head on top.",
|
713 |
+
GPT_NEO_START_DOCSTRING,
|
714 |
+
)
|
715 |
+
class GPTNeoModel(GPTNeoPreTrainedModel):
|
716 |
+
def __init__(self, config):
|
717 |
+
super().__init__(config)
|
718 |
+
|
719 |
+
self.embed_dim = config.hidden_size
|
720 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
721 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
722 |
+
self.drop = nn.Dropout(float(config.embed_dropout))
|
723 |
+
self.h = nn.ModuleList([GPTNeoBlock(config, layer_id=i) for i in range(config.num_layers)])
|
724 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
725 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
726 |
+
|
727 |
+
self.gradient_checkpointing = False
|
728 |
+
# Initialize weights and apply final processing
|
729 |
+
self.post_init()
|
730 |
+
|
731 |
+
def get_input_embeddings(self):
|
732 |
+
return self.wte
|
733 |
+
|
734 |
+
def set_input_embeddings(self, new_embeddings):
|
735 |
+
self.wte = new_embeddings
|
736 |
+
|
737 |
+
@add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
|
738 |
+
@add_code_sample_docstrings(
|
739 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
740 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
741 |
+
config_class=_CONFIG_FOR_DOC,
|
742 |
+
)
|
743 |
+
def forward(
|
744 |
+
self,
|
745 |
+
input_ids: Optional[torch.Tensor] = None,
|
746 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
747 |
+
attention_mask: Optional[torch.Tensor] = None,
|
748 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
749 |
+
position_ids: Optional[torch.Tensor] = None,
|
750 |
+
head_mask: Optional[torch.Tensor] = None,
|
751 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
752 |
+
use_cache: Optional[bool] = None,
|
753 |
+
output_attentions: Optional[bool] = None,
|
754 |
+
output_hidden_states: Optional[bool] = None,
|
755 |
+
return_dict: Optional[bool] = None,
|
756 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
757 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
758 |
+
output_hidden_states = (
|
759 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
760 |
+
)
|
761 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
762 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
763 |
+
|
764 |
+
if input_ids is not None and inputs_embeds is not None:
|
765 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
766 |
+
elif input_ids is not None:
|
767 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
768 |
+
input_shape = input_ids.size()
|
769 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
770 |
+
elif inputs_embeds is not None:
|
771 |
+
input_shape = inputs_embeds.size()[:-1]
|
772 |
+
else:
|
773 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
774 |
+
|
775 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
776 |
+
|
777 |
+
if token_type_ids is not None:
|
778 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
779 |
+
|
780 |
+
if past_key_values is None:
|
781 |
+
past_length = 0
|
782 |
+
past_key_values = tuple([None] * len(self.h))
|
783 |
+
else:
|
784 |
+
past_length = past_key_values[0][0].size(-2)
|
785 |
+
|
786 |
+
if position_ids is None:
|
787 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
788 |
+
position_ids = position_ids.unsqueeze(0)
|
789 |
+
|
790 |
+
# Prepare head mask if needed
|
791 |
+
# 1.0 in head_mask indicate we keep the head
|
792 |
+
# attention_probs has shape bsz x num_heads x N x N
|
793 |
+
# head_mask has shape n_layer x batch x num_heads x N x N
|
794 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
795 |
+
|
796 |
+
if inputs_embeds is None:
|
797 |
+
inputs_embeds = self.wte(input_ids)
|
798 |
+
position_embeds = self.wpe(position_ids)
|
799 |
+
hidden_states = inputs_embeds + position_embeds
|
800 |
+
|
801 |
+
# Attention mask.
|
802 |
+
if self._use_flash_attention_2:
|
803 |
+
# 2d mask is passed through the layers
|
804 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
805 |
+
else:
|
806 |
+
# 4d mask is passed through the layers
|
807 |
+
attention_mask = _prepare_4d_causal_attention_mask(attention_mask, input_shape, inputs_embeds, past_length)
|
808 |
+
|
809 |
+
if token_type_ids is not None:
|
810 |
+
token_type_embeds = self.wte(token_type_ids)
|
811 |
+
hidden_states = hidden_states + token_type_embeds
|
812 |
+
|
813 |
+
hidden_states = self.drop(hidden_states)
|
814 |
+
|
815 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
816 |
+
|
817 |
+
if self.gradient_checkpointing and self.training:
|
818 |
+
if use_cache:
|
819 |
+
logger.warning_once(
|
820 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
821 |
+
)
|
822 |
+
use_cache = False
|
823 |
+
|
824 |
+
presents = () if use_cache else None
|
825 |
+
all_self_attentions = () if output_attentions else None
|
826 |
+
all_hidden_states = () if output_hidden_states else None
|
827 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
828 |
+
if output_hidden_states:
|
829 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
830 |
+
|
831 |
+
if self.gradient_checkpointing and self.training:
|
832 |
+
outputs = self._gradient_checkpointing_func(
|
833 |
+
block.__call__,
|
834 |
+
hidden_states,
|
835 |
+
None,
|
836 |
+
attention_mask,
|
837 |
+
head_mask[i],
|
838 |
+
use_cache,
|
839 |
+
output_attentions,
|
840 |
+
)
|
841 |
+
else:
|
842 |
+
outputs = block(
|
843 |
+
hidden_states,
|
844 |
+
layer_past=layer_past,
|
845 |
+
attention_mask=attention_mask,
|
846 |
+
head_mask=head_mask[i],
|
847 |
+
use_cache=use_cache,
|
848 |
+
output_attentions=output_attentions,
|
849 |
+
)
|
850 |
+
|
851 |
+
hidden_states = outputs[0]
|
852 |
+
if use_cache is True:
|
853 |
+
presents = presents + (outputs[1],)
|
854 |
+
|
855 |
+
if output_attentions:
|
856 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
857 |
+
|
858 |
+
hidden_states = self.ln_f(hidden_states)
|
859 |
+
|
860 |
+
hidden_states = hidden_states.view(output_shape)
|
861 |
+
# Add last hidden state
|
862 |
+
if output_hidden_states:
|
863 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
864 |
+
|
865 |
+
if not return_dict:
|
866 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
867 |
+
|
868 |
+
return BaseModelOutputWithPast(
|
869 |
+
last_hidden_state=hidden_states,
|
870 |
+
past_key_values=presents,
|
871 |
+
hidden_states=all_hidden_states,
|
872 |
+
attentions=all_self_attentions,
|
873 |
+
)
|
874 |
+
|
875 |
+
|
876 |
+
@add_start_docstrings(
|
877 |
+
"""
|
878 |
+
The GPT Neo Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
879 |
+
embeddings).
|
880 |
+
""",
|
881 |
+
GPT_NEO_START_DOCSTRING,
|
882 |
+
)
|
883 |
+
class GPTNeoForCausalLM(GPTNeoPreTrainedModel):
|
884 |
+
_tied_weights_keys = ["lm_head.weight"]
|
885 |
+
|
886 |
+
def __init__(self, config):
|
887 |
+
super().__init__(config)
|
888 |
+
self.transformer = GPTNeoModel(config)
|
889 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
890 |
+
|
891 |
+
# Initialize weights and apply final processing
|
892 |
+
self.post_init()
|
893 |
+
|
894 |
+
def get_output_embeddings(self):
|
895 |
+
return self.lm_head
|
896 |
+
|
897 |
+
def set_output_embeddings(self, new_embeddings):
|
898 |
+
self.lm_head = new_embeddings
|
899 |
+
|
900 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
901 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
902 |
+
# Omit tokens covered by past_key_values
|
903 |
+
if past_key_values:
|
904 |
+
past_length = past_key_values[0][0].shape[2]
|
905 |
+
|
906 |
+
# Some generation methods already pass only the last input ID
|
907 |
+
if input_ids.shape[1] > past_length:
|
908 |
+
remove_prefix_length = past_length
|
909 |
+
else:
|
910 |
+
# Default to old behavior: keep only final ID
|
911 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
912 |
+
|
913 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
914 |
+
if token_type_ids is not None:
|
915 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
916 |
+
|
917 |
+
attention_mask = kwargs.get("attention_mask", None)
|
918 |
+
position_ids = kwargs.get("position_ids", None)
|
919 |
+
|
920 |
+
if attention_mask is not None and position_ids is None:
|
921 |
+
# create position_ids on the fly for batch generation
|
922 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
923 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
924 |
+
if past_key_values:
|
925 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
926 |
+
|
927 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
928 |
+
if inputs_embeds is not None and past_key_values is None:
|
929 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
930 |
+
else:
|
931 |
+
model_inputs = {"input_ids": input_ids}
|
932 |
+
|
933 |
+
model_inputs.update(
|
934 |
+
{
|
935 |
+
"past_key_values": past_key_values,
|
936 |
+
"use_cache": kwargs.get("use_cache"),
|
937 |
+
"position_ids": position_ids,
|
938 |
+
"attention_mask": attention_mask,
|
939 |
+
"token_type_ids": token_type_ids,
|
940 |
+
}
|
941 |
+
)
|
942 |
+
|
943 |
+
return model_inputs
|
944 |
+
|
945 |
+
@add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
|
946 |
+
@add_code_sample_docstrings(
|
947 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
948 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
949 |
+
config_class=_CONFIG_FOR_DOC,
|
950 |
+
)
|
951 |
+
def forward(
|
952 |
+
self,
|
953 |
+
input_ids: Optional[torch.Tensor] = None,
|
954 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
955 |
+
attention_mask: Optional[torch.Tensor] = None,
|
956 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
957 |
+
position_ids: Optional[torch.Tensor] = None,
|
958 |
+
head_mask: Optional[torch.Tensor] = None,
|
959 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
960 |
+
labels: Optional[torch.Tensor] = None,
|
961 |
+
use_cache: Optional[bool] = None,
|
962 |
+
output_attentions: Optional[bool] = None,
|
963 |
+
output_hidden_states: Optional[bool] = None,
|
964 |
+
return_dict: Optional[bool] = None,
|
965 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
966 |
+
r"""
|
967 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
968 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
969 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
970 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
971 |
+
"""
|
972 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
973 |
+
|
974 |
+
transformer_outputs = self.transformer(
|
975 |
+
input_ids,
|
976 |
+
past_key_values=past_key_values,
|
977 |
+
attention_mask=attention_mask,
|
978 |
+
token_type_ids=token_type_ids,
|
979 |
+
position_ids=position_ids,
|
980 |
+
head_mask=head_mask,
|
981 |
+
inputs_embeds=inputs_embeds,
|
982 |
+
use_cache=use_cache,
|
983 |
+
output_attentions=output_attentions,
|
984 |
+
output_hidden_states=output_hidden_states,
|
985 |
+
return_dict=return_dict,
|
986 |
+
)
|
987 |
+
hidden_states = transformer_outputs[0]
|
988 |
+
|
989 |
+
lm_logits = self.lm_head(hidden_states)
|
990 |
+
|
991 |
+
loss = None
|
992 |
+
if labels is not None:
|
993 |
+
# move labels to correct device to enable model parallelism
|
994 |
+
labels = labels.to(lm_logits.device)
|
995 |
+
# Compute loss in fp32 to match with mesh-tf version
|
996 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
997 |
+
lm_logits = lm_logits.to(torch.float32)
|
998 |
+
|
999 |
+
# Shift so that tokens < n predict n
|
1000 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1001 |
+
shift_labels = labels[..., 1:].contiguous()
|
1002 |
+
# Flatten the tokens
|
1003 |
+
loss_fct = CrossEntropyLoss()
|
1004 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1005 |
+
|
1006 |
+
lm_logits = lm_logits.to(hidden_states.dtype)
|
1007 |
+
loss = loss.to(hidden_states.dtype)
|
1008 |
+
|
1009 |
+
if not return_dict:
|
1010 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1011 |
+
return ((loss,) + output) if loss is not None else output
|
1012 |
+
|
1013 |
+
return CausalLMOutputWithPast(
|
1014 |
+
loss=loss,
|
1015 |
+
logits=lm_logits,
|
1016 |
+
past_key_values=transformer_outputs.past_key_values,
|
1017 |
+
hidden_states=transformer_outputs.hidden_states,
|
1018 |
+
attentions=transformer_outputs.attentions,
|
1019 |
+
)
|
1020 |
+
|
1021 |
+
@staticmethod
|
1022 |
+
def _reorder_cache(
|
1023 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
1024 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
1025 |
+
"""
|
1026 |
+
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
1027 |
+
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1028 |
+
beam_idx at every generation step.
|
1029 |
+
"""
|
1030 |
+
return tuple(
|
1031 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
1032 |
+
for layer_past in past_key_values
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
|
1036 |
+
@add_start_docstrings(
|
1037 |
+
"""
|
1038 |
+
The GPTNeo Model transformer with a sequence classification head on top (linear layer).
|
1039 |
+
|
1040 |
+
[`GPTNeoForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1041 |
+
(e.g. GPT-1) do.
|
1042 |
+
|
1043 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1044 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1045 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1046 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1047 |
+
each row of the batch).
|
1048 |
+
""",
|
1049 |
+
GPT_NEO_START_DOCSTRING,
|
1050 |
+
)
|
1051 |
+
class GPTNeoForSequenceClassification(GPTNeoPreTrainedModel):
|
1052 |
+
def __init__(self, config):
|
1053 |
+
super().__init__(config)
|
1054 |
+
self.num_labels = config.num_labels
|
1055 |
+
self.transformer = GPTNeoModel(config)
|
1056 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1057 |
+
|
1058 |
+
# Initialize weights and apply final processing
|
1059 |
+
self.post_init()
|
1060 |
+
|
1061 |
+
@add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
|
1062 |
+
@add_code_sample_docstrings(
|
1063 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1064 |
+
output_type=SequenceClassifierOutputWithPast,
|
1065 |
+
config_class=_CONFIG_FOR_DOC,
|
1066 |
+
)
|
1067 |
+
def forward(
|
1068 |
+
self,
|
1069 |
+
input_ids: Optional[torch.Tensor] = None,
|
1070 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
1071 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1072 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1073 |
+
position_ids: Optional[torch.Tensor] = None,
|
1074 |
+
head_mask: Optional[torch.Tensor] = None,
|
1075 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1076 |
+
labels: Optional[torch.Tensor] = None,
|
1077 |
+
use_cache: Optional[bool] = None,
|
1078 |
+
output_attentions: Optional[bool] = None,
|
1079 |
+
output_hidden_states: Optional[bool] = None,
|
1080 |
+
return_dict: Optional[bool] = None,
|
1081 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
1082 |
+
r"""
|
1083 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1084 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1085 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1086 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1087 |
+
"""
|
1088 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1089 |
+
|
1090 |
+
transformer_outputs = self.transformer(
|
1091 |
+
input_ids,
|
1092 |
+
past_key_values=past_key_values,
|
1093 |
+
attention_mask=attention_mask,
|
1094 |
+
token_type_ids=token_type_ids,
|
1095 |
+
position_ids=position_ids,
|
1096 |
+
head_mask=head_mask,
|
1097 |
+
inputs_embeds=inputs_embeds,
|
1098 |
+
use_cache=use_cache,
|
1099 |
+
output_attentions=output_attentions,
|
1100 |
+
output_hidden_states=output_hidden_states,
|
1101 |
+
return_dict=return_dict,
|
1102 |
+
)
|
1103 |
+
hidden_states = transformer_outputs[0]
|
1104 |
+
logits = self.score(hidden_states)
|
1105 |
+
|
1106 |
+
if input_ids is not None:
|
1107 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
1108 |
+
else:
|
1109 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
1110 |
+
|
1111 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1112 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1113 |
+
if self.config.pad_token_id is None:
|
1114 |
+
sequence_lengths = -1
|
1115 |
+
else:
|
1116 |
+
if input_ids is not None:
|
1117 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1118 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1119 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1120 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1121 |
+
else:
|
1122 |
+
sequence_lengths = -1
|
1123 |
+
logger.warning(
|
1124 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1125 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1126 |
+
)
|
1127 |
+
|
1128 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1129 |
+
|
1130 |
+
loss = None
|
1131 |
+
if labels is not None:
|
1132 |
+
if self.config.problem_type is None:
|
1133 |
+
if self.num_labels == 1:
|
1134 |
+
self.config.problem_type = "regression"
|
1135 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1136 |
+
self.config.problem_type = "single_label_classification"
|
1137 |
+
else:
|
1138 |
+
self.config.problem_type = "multi_label_classification"
|
1139 |
+
|
1140 |
+
if self.config.problem_type == "regression":
|
1141 |
+
loss_fct = MSELoss()
|
1142 |
+
if self.num_labels == 1:
|
1143 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1144 |
+
else:
|
1145 |
+
loss = loss_fct(pooled_logits, labels)
|
1146 |
+
elif self.config.problem_type == "single_label_classification":
|
1147 |
+
loss_fct = CrossEntropyLoss()
|
1148 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1149 |
+
elif self.config.problem_type == "multi_label_classification":
|
1150 |
+
loss_fct = BCEWithLogitsLoss()
|
1151 |
+
loss = loss_fct(pooled_logits, labels)
|
1152 |
+
if not return_dict:
|
1153 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1154 |
+
return ((loss,) + output) if loss is not None else output
|
1155 |
+
|
1156 |
+
return SequenceClassifierOutputWithPast(
|
1157 |
+
loss=loss,
|
1158 |
+
logits=pooled_logits,
|
1159 |
+
past_key_values=transformer_outputs.past_key_values,
|
1160 |
+
hidden_states=transformer_outputs.hidden_states,
|
1161 |
+
attentions=transformer_outputs.attentions,
|
1162 |
+
)
|
1163 |
+
|
1164 |
+
|
1165 |
+
@add_start_docstrings(
|
1166 |
+
"""
|
1167 |
+
GPT Neo model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1168 |
+
Named-Entity-Recognition (NER) tasks.
|
1169 |
+
""",
|
1170 |
+
GPT_NEO_START_DOCSTRING,
|
1171 |
+
)
|
1172 |
+
class GPTNeoForTokenClassification(GPTNeoPreTrainedModel):
|
1173 |
+
def __init__(self, config):
|
1174 |
+
super().__init__(config)
|
1175 |
+
self.num_labels = config.num_labels
|
1176 |
+
|
1177 |
+
self.transformer = GPTNeoModel(config)
|
1178 |
+
self.dropout = nn.Dropout(config.classifier_dropout)
|
1179 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1180 |
+
|
1181 |
+
# Initialize weights and apply final processing
|
1182 |
+
self.post_init()
|
1183 |
+
|
1184 |
+
@add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
|
1185 |
+
@add_code_sample_docstrings(
|
1186 |
+
checkpoint="EleutherAI/gpt-neo-125m",
|
1187 |
+
output_type=TokenClassifierOutput,
|
1188 |
+
config_class=_CONFIG_FOR_DOC,
|
1189 |
+
expected_loss=0.25,
|
1190 |
+
)
|
1191 |
+
def forward(
|
1192 |
+
self,
|
1193 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1194 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1195 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1196 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1197 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1198 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1199 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1200 |
+
labels: Optional[torch.LongTensor] = None,
|
1201 |
+
use_cache: Optional[bool] = None,
|
1202 |
+
output_attentions: Optional[bool] = None,
|
1203 |
+
output_hidden_states: Optional[bool] = None,
|
1204 |
+
return_dict: Optional[bool] = None,
|
1205 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1206 |
+
r"""
|
1207 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1208 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1209 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1210 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1211 |
+
"""
|
1212 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1213 |
+
|
1214 |
+
transformer_outputs = self.transformer(
|
1215 |
+
input_ids,
|
1216 |
+
past_key_values=past_key_values,
|
1217 |
+
attention_mask=attention_mask,
|
1218 |
+
token_type_ids=token_type_ids,
|
1219 |
+
position_ids=position_ids,
|
1220 |
+
head_mask=head_mask,
|
1221 |
+
inputs_embeds=inputs_embeds,
|
1222 |
+
use_cache=use_cache,
|
1223 |
+
output_attentions=output_attentions,
|
1224 |
+
output_hidden_states=output_hidden_states,
|
1225 |
+
return_dict=return_dict,
|
1226 |
+
)
|
1227 |
+
|
1228 |
+
hidden_states = transformer_outputs[0]
|
1229 |
+
hidden_states = self.dropout(hidden_states)
|
1230 |
+
logits = self.classifier(hidden_states)
|
1231 |
+
|
1232 |
+
loss = None
|
1233 |
+
if labels is not None:
|
1234 |
+
labels = labels.to(logits.device)
|
1235 |
+
loss_fct = CrossEntropyLoss()
|
1236 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1237 |
+
|
1238 |
+
if not return_dict:
|
1239 |
+
output = (logits,) + transformer_outputs[2:]
|
1240 |
+
return ((loss,) + output) if loss is not None else output
|
1241 |
+
|
1242 |
+
return TokenClassifierOutput(
|
1243 |
+
loss=loss,
|
1244 |
+
logits=logits,
|
1245 |
+
hidden_states=transformer_outputs.hidden_states,
|
1246 |
+
attentions=transformer_outputs.attentions,
|
1247 |
+
)
|
1248 |
+
|
1249 |
+
|
1250 |
+
@add_start_docstrings(
|
1251 |
+
"""
|
1252 |
+
The GPT-Neo Model transformer with a span classification head on top for extractive question-answering tasks like
|
1253 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1254 |
+
""",
|
1255 |
+
GPT_NEO_START_DOCSTRING,
|
1256 |
+
)
|
1257 |
+
class GPTNeoForQuestionAnswering(GPTNeoPreTrainedModel):
|
1258 |
+
def __init__(self, config):
|
1259 |
+
super().__init__(config)
|
1260 |
+
self.num_labels = config.num_labels
|
1261 |
+
self.transformer = GPTNeoModel(config)
|
1262 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1263 |
+
|
1264 |
+
# Initialize weights and apply final processing
|
1265 |
+
self.post_init()
|
1266 |
+
|
1267 |
+
@add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1268 |
+
@add_code_sample_docstrings(
|
1269 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1270 |
+
output_type=QuestionAnsweringModelOutput,
|
1271 |
+
config_class=_CONFIG_FOR_DOC,
|
1272 |
+
real_checkpoint=_CHECKPOINT_FOR_DOC,
|
1273 |
+
)
|
1274 |
+
def forward(
|
1275 |
+
self,
|
1276 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1277 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1278 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1279 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1280 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1281 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1282 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1283 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1284 |
+
output_attentions: Optional[bool] = None,
|
1285 |
+
output_hidden_states: Optional[bool] = None,
|
1286 |
+
return_dict: Optional[bool] = None,
|
1287 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1288 |
+
r"""
|
1289 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1290 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1291 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1292 |
+
are not taken into account for computing the loss.
|
1293 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1294 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1295 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1296 |
+
are not taken into account for computing the loss.
|
1297 |
+
"""
|
1298 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1299 |
+
|
1300 |
+
outputs = self.transformer(
|
1301 |
+
input_ids,
|
1302 |
+
attention_mask=attention_mask,
|
1303 |
+
token_type_ids=token_type_ids,
|
1304 |
+
position_ids=position_ids,
|
1305 |
+
head_mask=head_mask,
|
1306 |
+
inputs_embeds=inputs_embeds,
|
1307 |
+
output_attentions=output_attentions,
|
1308 |
+
output_hidden_states=output_hidden_states,
|
1309 |
+
return_dict=return_dict,
|
1310 |
+
)
|
1311 |
+
|
1312 |
+
sequence_output = outputs[0]
|
1313 |
+
|
1314 |
+
logits = self.qa_outputs(sequence_output)
|
1315 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1316 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1317 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1318 |
+
|
1319 |
+
total_loss = None
|
1320 |
+
if start_positions is not None and end_positions is not None:
|
1321 |
+
# If we are on multi-GPU, split add a dimension
|
1322 |
+
if len(start_positions.size()) > 1:
|
1323 |
+
start_positions = start_positions.squeeze(-1)
|
1324 |
+
if len(end_positions.size()) > 1:
|
1325 |
+
end_positions = end_positions.squeeze(-1)
|
1326 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1327 |
+
ignored_index = start_logits.size(1)
|
1328 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1329 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1330 |
+
|
1331 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1332 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1333 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1334 |
+
total_loss = (start_loss + end_loss) / 2
|
1335 |
+
|
1336 |
+
if not return_dict:
|
1337 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1338 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1339 |
+
|
1340 |
+
return QuestionAnsweringModelOutput(
|
1341 |
+
loss=total_loss,
|
1342 |
+
start_logits=start_logits,
|
1343 |
+
end_logits=end_logits,
|
1344 |
+
hidden_states=outputs.hidden_states,
|
1345 |
+
attentions=outputs.attentions,
|
1346 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/grounding_dino/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.32 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/grounding_dino/__pycache__/configuration_grounding_dino.cpython-310.pyc
ADDED
Binary file (12.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/grounding_dino/__pycache__/convert_grounding_dino_to_hf.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/grounding_dino/__pycache__/image_processing_grounding_dino.cpython-310.pyc
ADDED
Binary file (48.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/grounding_dino/__pycache__/modeling_grounding_dino.cpython-310.pyc
ADDED
Binary file (112 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/grounding_dino/__pycache__/processing_grounding_dino.cpython-310.pyc
ADDED
Binary file (8.07 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlm/modeling_tf_layoutlm.py
ADDED
@@ -0,0 +1,1685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 LayoutLM model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import math
|
21 |
+
import warnings
|
22 |
+
from typing import Dict, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
import tensorflow as tf
|
26 |
+
|
27 |
+
from ...activations_tf import get_tf_activation
|
28 |
+
from ...modeling_tf_outputs import (
|
29 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
TFBaseModelOutputWithPoolingAndCrossAttentions,
|
31 |
+
TFMaskedLMOutput,
|
32 |
+
TFQuestionAnsweringModelOutput,
|
33 |
+
TFSequenceClassifierOutput,
|
34 |
+
TFTokenClassifierOutput,
|
35 |
+
)
|
36 |
+
from ...modeling_tf_utils import (
|
37 |
+
TFMaskedLanguageModelingLoss,
|
38 |
+
TFModelInputType,
|
39 |
+
TFPreTrainedModel,
|
40 |
+
TFQuestionAnsweringLoss,
|
41 |
+
TFSequenceClassificationLoss,
|
42 |
+
TFTokenClassificationLoss,
|
43 |
+
get_initializer,
|
44 |
+
keras,
|
45 |
+
keras_serializable,
|
46 |
+
unpack_inputs,
|
47 |
+
)
|
48 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
49 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
50 |
+
from .configuration_layoutlm import LayoutLMConfig
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CONFIG_FOR_DOC = "LayoutLMConfig"
|
56 |
+
|
57 |
+
|
58 |
+
from ..deprecated._archive_maps import TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
59 |
+
|
60 |
+
|
61 |
+
class TFLayoutLMEmbeddings(keras.layers.Layer):
|
62 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
63 |
+
|
64 |
+
def __init__(self, config: LayoutLMConfig, **kwargs):
|
65 |
+
super().__init__(**kwargs)
|
66 |
+
|
67 |
+
self.config = config
|
68 |
+
self.hidden_size = config.hidden_size
|
69 |
+
self.max_position_embeddings = config.max_position_embeddings
|
70 |
+
self.max_2d_position_embeddings = config.max_2d_position_embeddings
|
71 |
+
self.initializer_range = config.initializer_range
|
72 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
73 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
74 |
+
|
75 |
+
def build(self, input_shape=None):
|
76 |
+
with tf.name_scope("word_embeddings"):
|
77 |
+
self.weight = self.add_weight(
|
78 |
+
name="weight",
|
79 |
+
shape=[self.config.vocab_size, self.hidden_size],
|
80 |
+
initializer=get_initializer(self.initializer_range),
|
81 |
+
)
|
82 |
+
|
83 |
+
with tf.name_scope("token_type_embeddings"):
|
84 |
+
self.token_type_embeddings = self.add_weight(
|
85 |
+
name="embeddings",
|
86 |
+
shape=[self.config.type_vocab_size, self.hidden_size],
|
87 |
+
initializer=get_initializer(self.initializer_range),
|
88 |
+
)
|
89 |
+
|
90 |
+
with tf.name_scope("position_embeddings"):
|
91 |
+
self.position_embeddings = self.add_weight(
|
92 |
+
name="embeddings",
|
93 |
+
shape=[self.max_position_embeddings, self.hidden_size],
|
94 |
+
initializer=get_initializer(self.initializer_range),
|
95 |
+
)
|
96 |
+
|
97 |
+
with tf.name_scope("x_position_embeddings"):
|
98 |
+
self.x_position_embeddings = self.add_weight(
|
99 |
+
name="embeddings",
|
100 |
+
shape=[self.max_2d_position_embeddings, self.hidden_size],
|
101 |
+
initializer=get_initializer(self.initializer_range),
|
102 |
+
)
|
103 |
+
|
104 |
+
with tf.name_scope("y_position_embeddings"):
|
105 |
+
self.y_position_embeddings = self.add_weight(
|
106 |
+
name="embeddings",
|
107 |
+
shape=[self.max_2d_position_embeddings, self.hidden_size],
|
108 |
+
initializer=get_initializer(self.initializer_range),
|
109 |
+
)
|
110 |
+
|
111 |
+
with tf.name_scope("h_position_embeddings"):
|
112 |
+
self.h_position_embeddings = self.add_weight(
|
113 |
+
name="embeddings",
|
114 |
+
shape=[self.max_2d_position_embeddings, self.hidden_size],
|
115 |
+
initializer=get_initializer(self.initializer_range),
|
116 |
+
)
|
117 |
+
|
118 |
+
with tf.name_scope("w_position_embeddings"):
|
119 |
+
self.w_position_embeddings = self.add_weight(
|
120 |
+
name="embeddings",
|
121 |
+
shape=[self.max_2d_position_embeddings, self.hidden_size],
|
122 |
+
initializer=get_initializer(self.initializer_range),
|
123 |
+
)
|
124 |
+
|
125 |
+
if self.built:
|
126 |
+
return
|
127 |
+
self.built = True
|
128 |
+
if getattr(self, "LayerNorm", None) is not None:
|
129 |
+
with tf.name_scope(self.LayerNorm.name):
|
130 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
131 |
+
|
132 |
+
def call(
|
133 |
+
self,
|
134 |
+
input_ids: tf.Tensor = None,
|
135 |
+
bbox: tf.Tensor = None,
|
136 |
+
position_ids: tf.Tensor = None,
|
137 |
+
token_type_ids: tf.Tensor = None,
|
138 |
+
inputs_embeds: tf.Tensor = None,
|
139 |
+
training: bool = False,
|
140 |
+
) -> tf.Tensor:
|
141 |
+
"""
|
142 |
+
Applies embedding based on inputs tensor.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
146 |
+
"""
|
147 |
+
assert not (input_ids is None and inputs_embeds is None)
|
148 |
+
|
149 |
+
if input_ids is not None:
|
150 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
151 |
+
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
|
152 |
+
|
153 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
154 |
+
|
155 |
+
if token_type_ids is None:
|
156 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
157 |
+
|
158 |
+
if position_ids is None:
|
159 |
+
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
|
160 |
+
|
161 |
+
if position_ids is None:
|
162 |
+
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
|
163 |
+
|
164 |
+
if bbox is None:
|
165 |
+
bbox = bbox = tf.fill(input_shape + [4], value=0)
|
166 |
+
try:
|
167 |
+
left_position_embeddings = tf.gather(self.x_position_embeddings, bbox[:, :, 0])
|
168 |
+
upper_position_embeddings = tf.gather(self.y_position_embeddings, bbox[:, :, 1])
|
169 |
+
right_position_embeddings = tf.gather(self.x_position_embeddings, bbox[:, :, 2])
|
170 |
+
lower_position_embeddings = tf.gather(self.y_position_embeddings, bbox[:, :, 3])
|
171 |
+
except IndexError as e:
|
172 |
+
raise IndexError("The `bbox`coordinate values should be within 0-1000 range.") from e
|
173 |
+
h_position_embeddings = tf.gather(self.h_position_embeddings, bbox[:, :, 3] - bbox[:, :, 1])
|
174 |
+
w_position_embeddings = tf.gather(self.w_position_embeddings, bbox[:, :, 2] - bbox[:, :, 0])
|
175 |
+
|
176 |
+
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
|
177 |
+
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
|
178 |
+
final_embeddings = (
|
179 |
+
inputs_embeds
|
180 |
+
+ position_embeds
|
181 |
+
+ token_type_embeds
|
182 |
+
+ left_position_embeddings
|
183 |
+
+ upper_position_embeddings
|
184 |
+
+ right_position_embeddings
|
185 |
+
+ lower_position_embeddings
|
186 |
+
+ h_position_embeddings
|
187 |
+
+ w_position_embeddings
|
188 |
+
)
|
189 |
+
final_embeddings = self.LayerNorm(inputs=final_embeddings)
|
190 |
+
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
|
191 |
+
|
192 |
+
return final_embeddings
|
193 |
+
|
194 |
+
|
195 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->LayoutLM
|
196 |
+
class TFLayoutLMSelfAttention(keras.layers.Layer):
|
197 |
+
def __init__(self, config: LayoutLMConfig, **kwargs):
|
198 |
+
super().__init__(**kwargs)
|
199 |
+
|
200 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
201 |
+
raise ValueError(
|
202 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
|
203 |
+
f"of attention heads ({config.num_attention_heads})"
|
204 |
+
)
|
205 |
+
|
206 |
+
self.num_attention_heads = config.num_attention_heads
|
207 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
208 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
209 |
+
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
|
210 |
+
|
211 |
+
self.query = keras.layers.Dense(
|
212 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
|
213 |
+
)
|
214 |
+
self.key = keras.layers.Dense(
|
215 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
|
216 |
+
)
|
217 |
+
self.value = keras.layers.Dense(
|
218 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
|
219 |
+
)
|
220 |
+
self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
|
221 |
+
|
222 |
+
self.is_decoder = config.is_decoder
|
223 |
+
self.config = config
|
224 |
+
|
225 |
+
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
|
226 |
+
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
|
227 |
+
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
|
228 |
+
|
229 |
+
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
|
230 |
+
return tf.transpose(tensor, perm=[0, 2, 1, 3])
|
231 |
+
|
232 |
+
def call(
|
233 |
+
self,
|
234 |
+
hidden_states: tf.Tensor,
|
235 |
+
attention_mask: tf.Tensor,
|
236 |
+
head_mask: tf.Tensor,
|
237 |
+
encoder_hidden_states: tf.Tensor,
|
238 |
+
encoder_attention_mask: tf.Tensor,
|
239 |
+
past_key_value: Tuple[tf.Tensor],
|
240 |
+
output_attentions: bool,
|
241 |
+
training: bool = False,
|
242 |
+
) -> Tuple[tf.Tensor]:
|
243 |
+
batch_size = shape_list(hidden_states)[0]
|
244 |
+
mixed_query_layer = self.query(inputs=hidden_states)
|
245 |
+
|
246 |
+
# If this is instantiated as a cross-attention module, the keys
|
247 |
+
# and values come from an encoder; the attention mask needs to be
|
248 |
+
# such that the encoder's padding tokens are not attended to.
|
249 |
+
is_cross_attention = encoder_hidden_states is not None
|
250 |
+
|
251 |
+
if is_cross_attention and past_key_value is not None:
|
252 |
+
# reuse k,v, cross_attentions
|
253 |
+
key_layer = past_key_value[0]
|
254 |
+
value_layer = past_key_value[1]
|
255 |
+
attention_mask = encoder_attention_mask
|
256 |
+
elif is_cross_attention:
|
257 |
+
key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
|
258 |
+
value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
|
259 |
+
attention_mask = encoder_attention_mask
|
260 |
+
elif past_key_value is not None:
|
261 |
+
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
|
262 |
+
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
|
263 |
+
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
|
264 |
+
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
|
265 |
+
else:
|
266 |
+
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
|
267 |
+
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
|
268 |
+
|
269 |
+
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
|
270 |
+
|
271 |
+
if self.is_decoder:
|
272 |
+
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
|
273 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
274 |
+
# key/value_states (first "if" case)
|
275 |
+
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
|
276 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
277 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
278 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
279 |
+
past_key_value = (key_layer, value_layer)
|
280 |
+
|
281 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
282 |
+
# (batch size, num_heads, seq_len_q, seq_len_k)
|
283 |
+
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
|
284 |
+
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
|
285 |
+
attention_scores = tf.divide(attention_scores, dk)
|
286 |
+
|
287 |
+
if attention_mask is not None:
|
288 |
+
# Apply the attention mask is (precomputed for all layers in TFLayoutLMModel call() function)
|
289 |
+
attention_scores = tf.add(attention_scores, attention_mask)
|
290 |
+
|
291 |
+
# Normalize the attention scores to probabilities.
|
292 |
+
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
|
293 |
+
|
294 |
+
# This is actually dropping out entire tokens to attend to, which might
|
295 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
296 |
+
attention_probs = self.dropout(inputs=attention_probs, training=training)
|
297 |
+
|
298 |
+
# Mask heads if we want to
|
299 |
+
if head_mask is not None:
|
300 |
+
attention_probs = tf.multiply(attention_probs, head_mask)
|
301 |
+
|
302 |
+
attention_output = tf.matmul(attention_probs, value_layer)
|
303 |
+
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
|
304 |
+
|
305 |
+
# (batch_size, seq_len_q, all_head_size)
|
306 |
+
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
|
307 |
+
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
|
308 |
+
|
309 |
+
if self.is_decoder:
|
310 |
+
outputs = outputs + (past_key_value,)
|
311 |
+
return outputs
|
312 |
+
|
313 |
+
def build(self, input_shape=None):
|
314 |
+
if self.built:
|
315 |
+
return
|
316 |
+
self.built = True
|
317 |
+
if getattr(self, "query", None) is not None:
|
318 |
+
with tf.name_scope(self.query.name):
|
319 |
+
self.query.build([None, None, self.config.hidden_size])
|
320 |
+
if getattr(self, "key", None) is not None:
|
321 |
+
with tf.name_scope(self.key.name):
|
322 |
+
self.key.build([None, None, self.config.hidden_size])
|
323 |
+
if getattr(self, "value", None) is not None:
|
324 |
+
with tf.name_scope(self.value.name):
|
325 |
+
self.value.build([None, None, self.config.hidden_size])
|
326 |
+
|
327 |
+
|
328 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->LayoutLM
|
329 |
+
class TFLayoutLMSelfOutput(keras.layers.Layer):
|
330 |
+
def __init__(self, config: LayoutLMConfig, **kwargs):
|
331 |
+
super().__init__(**kwargs)
|
332 |
+
|
333 |
+
self.dense = keras.layers.Dense(
|
334 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
335 |
+
)
|
336 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
337 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
338 |
+
self.config = config
|
339 |
+
|
340 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
341 |
+
hidden_states = self.dense(inputs=hidden_states)
|
342 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
343 |
+
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
|
344 |
+
|
345 |
+
return hidden_states
|
346 |
+
|
347 |
+
def build(self, input_shape=None):
|
348 |
+
if self.built:
|
349 |
+
return
|
350 |
+
self.built = True
|
351 |
+
if getattr(self, "dense", None) is not None:
|
352 |
+
with tf.name_scope(self.dense.name):
|
353 |
+
self.dense.build([None, None, self.config.hidden_size])
|
354 |
+
if getattr(self, "LayerNorm", None) is not None:
|
355 |
+
with tf.name_scope(self.LayerNorm.name):
|
356 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
357 |
+
|
358 |
+
|
359 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->LayoutLM
|
360 |
+
class TFLayoutLMAttention(keras.layers.Layer):
|
361 |
+
def __init__(self, config: LayoutLMConfig, **kwargs):
|
362 |
+
super().__init__(**kwargs)
|
363 |
+
|
364 |
+
self.self_attention = TFLayoutLMSelfAttention(config, name="self")
|
365 |
+
self.dense_output = TFLayoutLMSelfOutput(config, name="output")
|
366 |
+
|
367 |
+
def prune_heads(self, heads):
|
368 |
+
raise NotImplementedError
|
369 |
+
|
370 |
+
def call(
|
371 |
+
self,
|
372 |
+
input_tensor: tf.Tensor,
|
373 |
+
attention_mask: tf.Tensor,
|
374 |
+
head_mask: tf.Tensor,
|
375 |
+
encoder_hidden_states: tf.Tensor,
|
376 |
+
encoder_attention_mask: tf.Tensor,
|
377 |
+
past_key_value: Tuple[tf.Tensor],
|
378 |
+
output_attentions: bool,
|
379 |
+
training: bool = False,
|
380 |
+
) -> Tuple[tf.Tensor]:
|
381 |
+
self_outputs = self.self_attention(
|
382 |
+
hidden_states=input_tensor,
|
383 |
+
attention_mask=attention_mask,
|
384 |
+
head_mask=head_mask,
|
385 |
+
encoder_hidden_states=encoder_hidden_states,
|
386 |
+
encoder_attention_mask=encoder_attention_mask,
|
387 |
+
past_key_value=past_key_value,
|
388 |
+
output_attentions=output_attentions,
|
389 |
+
training=training,
|
390 |
+
)
|
391 |
+
attention_output = self.dense_output(
|
392 |
+
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
|
393 |
+
)
|
394 |
+
# add attentions (possibly with past_key_value) if we output them
|
395 |
+
outputs = (attention_output,) + self_outputs[1:]
|
396 |
+
|
397 |
+
return outputs
|
398 |
+
|
399 |
+
def build(self, input_shape=None):
|
400 |
+
if self.built:
|
401 |
+
return
|
402 |
+
self.built = True
|
403 |
+
if getattr(self, "self_attention", None) is not None:
|
404 |
+
with tf.name_scope(self.self_attention.name):
|
405 |
+
self.self_attention.build(None)
|
406 |
+
if getattr(self, "dense_output", None) is not None:
|
407 |
+
with tf.name_scope(self.dense_output.name):
|
408 |
+
self.dense_output.build(None)
|
409 |
+
|
410 |
+
|
411 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->LayoutLM
|
412 |
+
class TFLayoutLMIntermediate(keras.layers.Layer):
|
413 |
+
def __init__(self, config: LayoutLMConfig, **kwargs):
|
414 |
+
super().__init__(**kwargs)
|
415 |
+
|
416 |
+
self.dense = keras.layers.Dense(
|
417 |
+
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
418 |
+
)
|
419 |
+
|
420 |
+
if isinstance(config.hidden_act, str):
|
421 |
+
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
|
422 |
+
else:
|
423 |
+
self.intermediate_act_fn = config.hidden_act
|
424 |
+
self.config = config
|
425 |
+
|
426 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
427 |
+
hidden_states = self.dense(inputs=hidden_states)
|
428 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
429 |
+
|
430 |
+
return hidden_states
|
431 |
+
|
432 |
+
def build(self, input_shape=None):
|
433 |
+
if self.built:
|
434 |
+
return
|
435 |
+
self.built = True
|
436 |
+
if getattr(self, "dense", None) is not None:
|
437 |
+
with tf.name_scope(self.dense.name):
|
438 |
+
self.dense.build([None, None, self.config.hidden_size])
|
439 |
+
|
440 |
+
|
441 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->LayoutLM
|
442 |
+
class TFLayoutLMOutput(keras.layers.Layer):
|
443 |
+
def __init__(self, config: LayoutLMConfig, **kwargs):
|
444 |
+
super().__init__(**kwargs)
|
445 |
+
|
446 |
+
self.dense = keras.layers.Dense(
|
447 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
448 |
+
)
|
449 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
450 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
451 |
+
self.config = config
|
452 |
+
|
453 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
454 |
+
hidden_states = self.dense(inputs=hidden_states)
|
455 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
456 |
+
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
|
457 |
+
|
458 |
+
return hidden_states
|
459 |
+
|
460 |
+
def build(self, input_shape=None):
|
461 |
+
if self.built:
|
462 |
+
return
|
463 |
+
self.built = True
|
464 |
+
if getattr(self, "dense", None) is not None:
|
465 |
+
with tf.name_scope(self.dense.name):
|
466 |
+
self.dense.build([None, None, self.config.intermediate_size])
|
467 |
+
if getattr(self, "LayerNorm", None) is not None:
|
468 |
+
with tf.name_scope(self.LayerNorm.name):
|
469 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
470 |
+
|
471 |
+
|
472 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->LayoutLM
|
473 |
+
class TFLayoutLMLayer(keras.layers.Layer):
|
474 |
+
def __init__(self, config: LayoutLMConfig, **kwargs):
|
475 |
+
super().__init__(**kwargs)
|
476 |
+
|
477 |
+
self.attention = TFLayoutLMAttention(config, name="attention")
|
478 |
+
self.is_decoder = config.is_decoder
|
479 |
+
self.add_cross_attention = config.add_cross_attention
|
480 |
+
if self.add_cross_attention:
|
481 |
+
if not self.is_decoder:
|
482 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
483 |
+
self.crossattention = TFLayoutLMAttention(config, name="crossattention")
|
484 |
+
self.intermediate = TFLayoutLMIntermediate(config, name="intermediate")
|
485 |
+
self.bert_output = TFLayoutLMOutput(config, name="output")
|
486 |
+
|
487 |
+
def call(
|
488 |
+
self,
|
489 |
+
hidden_states: tf.Tensor,
|
490 |
+
attention_mask: tf.Tensor,
|
491 |
+
head_mask: tf.Tensor,
|
492 |
+
encoder_hidden_states: tf.Tensor | None,
|
493 |
+
encoder_attention_mask: tf.Tensor | None,
|
494 |
+
past_key_value: Tuple[tf.Tensor] | None,
|
495 |
+
output_attentions: bool,
|
496 |
+
training: bool = False,
|
497 |
+
) -> Tuple[tf.Tensor]:
|
498 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
499 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
500 |
+
self_attention_outputs = self.attention(
|
501 |
+
input_tensor=hidden_states,
|
502 |
+
attention_mask=attention_mask,
|
503 |
+
head_mask=head_mask,
|
504 |
+
encoder_hidden_states=None,
|
505 |
+
encoder_attention_mask=None,
|
506 |
+
past_key_value=self_attn_past_key_value,
|
507 |
+
output_attentions=output_attentions,
|
508 |
+
training=training,
|
509 |
+
)
|
510 |
+
attention_output = self_attention_outputs[0]
|
511 |
+
|
512 |
+
# if decoder, the last output is tuple of self-attn cache
|
513 |
+
if self.is_decoder:
|
514 |
+
outputs = self_attention_outputs[1:-1]
|
515 |
+
present_key_value = self_attention_outputs[-1]
|
516 |
+
else:
|
517 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
518 |
+
|
519 |
+
cross_attn_present_key_value = None
|
520 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
521 |
+
if not hasattr(self, "crossattention"):
|
522 |
+
raise ValueError(
|
523 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
524 |
+
" by setting `config.add_cross_attention=True`"
|
525 |
+
)
|
526 |
+
|
527 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
528 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
529 |
+
cross_attention_outputs = self.crossattention(
|
530 |
+
input_tensor=attention_output,
|
531 |
+
attention_mask=attention_mask,
|
532 |
+
head_mask=head_mask,
|
533 |
+
encoder_hidden_states=encoder_hidden_states,
|
534 |
+
encoder_attention_mask=encoder_attention_mask,
|
535 |
+
past_key_value=cross_attn_past_key_value,
|
536 |
+
output_attentions=output_attentions,
|
537 |
+
training=training,
|
538 |
+
)
|
539 |
+
attention_output = cross_attention_outputs[0]
|
540 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
541 |
+
|
542 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
543 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
544 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
545 |
+
|
546 |
+
intermediate_output = self.intermediate(hidden_states=attention_output)
|
547 |
+
layer_output = self.bert_output(
|
548 |
+
hidden_states=intermediate_output, input_tensor=attention_output, training=training
|
549 |
+
)
|
550 |
+
outputs = (layer_output,) + outputs # add attentions if we output them
|
551 |
+
|
552 |
+
# if decoder, return the attn key/values as the last output
|
553 |
+
if self.is_decoder:
|
554 |
+
outputs = outputs + (present_key_value,)
|
555 |
+
|
556 |
+
return outputs
|
557 |
+
|
558 |
+
def build(self, input_shape=None):
|
559 |
+
if self.built:
|
560 |
+
return
|
561 |
+
self.built = True
|
562 |
+
if getattr(self, "attention", None) is not None:
|
563 |
+
with tf.name_scope(self.attention.name):
|
564 |
+
self.attention.build(None)
|
565 |
+
if getattr(self, "intermediate", None) is not None:
|
566 |
+
with tf.name_scope(self.intermediate.name):
|
567 |
+
self.intermediate.build(None)
|
568 |
+
if getattr(self, "bert_output", None) is not None:
|
569 |
+
with tf.name_scope(self.bert_output.name):
|
570 |
+
self.bert_output.build(None)
|
571 |
+
if getattr(self, "crossattention", None) is not None:
|
572 |
+
with tf.name_scope(self.crossattention.name):
|
573 |
+
self.crossattention.build(None)
|
574 |
+
|
575 |
+
|
576 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->LayoutLM
|
577 |
+
class TFLayoutLMEncoder(keras.layers.Layer):
|
578 |
+
def __init__(self, config: LayoutLMConfig, **kwargs):
|
579 |
+
super().__init__(**kwargs)
|
580 |
+
self.config = config
|
581 |
+
self.layer = [TFLayoutLMLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
|
582 |
+
|
583 |
+
def call(
|
584 |
+
self,
|
585 |
+
hidden_states: tf.Tensor,
|
586 |
+
attention_mask: tf.Tensor,
|
587 |
+
head_mask: tf.Tensor,
|
588 |
+
encoder_hidden_states: tf.Tensor | None,
|
589 |
+
encoder_attention_mask: tf.Tensor | None,
|
590 |
+
past_key_values: Tuple[Tuple[tf.Tensor]] | None,
|
591 |
+
use_cache: Optional[bool],
|
592 |
+
output_attentions: bool,
|
593 |
+
output_hidden_states: bool,
|
594 |
+
return_dict: bool,
|
595 |
+
training: bool = False,
|
596 |
+
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
|
597 |
+
all_hidden_states = () if output_hidden_states else None
|
598 |
+
all_attentions = () if output_attentions else None
|
599 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
600 |
+
|
601 |
+
next_decoder_cache = () if use_cache else None
|
602 |
+
for i, layer_module in enumerate(self.layer):
|
603 |
+
if output_hidden_states:
|
604 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
605 |
+
|
606 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
607 |
+
|
608 |
+
layer_outputs = layer_module(
|
609 |
+
hidden_states=hidden_states,
|
610 |
+
attention_mask=attention_mask,
|
611 |
+
head_mask=head_mask[i],
|
612 |
+
encoder_hidden_states=encoder_hidden_states,
|
613 |
+
encoder_attention_mask=encoder_attention_mask,
|
614 |
+
past_key_value=past_key_value,
|
615 |
+
output_attentions=output_attentions,
|
616 |
+
training=training,
|
617 |
+
)
|
618 |
+
hidden_states = layer_outputs[0]
|
619 |
+
|
620 |
+
if use_cache:
|
621 |
+
next_decoder_cache += (layer_outputs[-1],)
|
622 |
+
|
623 |
+
if output_attentions:
|
624 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
625 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
626 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
627 |
+
|
628 |
+
# Add last layer
|
629 |
+
if output_hidden_states:
|
630 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
631 |
+
|
632 |
+
if not return_dict:
|
633 |
+
return tuple(
|
634 |
+
v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
|
635 |
+
)
|
636 |
+
|
637 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
638 |
+
last_hidden_state=hidden_states,
|
639 |
+
past_key_values=next_decoder_cache,
|
640 |
+
hidden_states=all_hidden_states,
|
641 |
+
attentions=all_attentions,
|
642 |
+
cross_attentions=all_cross_attentions,
|
643 |
+
)
|
644 |
+
|
645 |
+
def build(self, input_shape=None):
|
646 |
+
if self.built:
|
647 |
+
return
|
648 |
+
self.built = True
|
649 |
+
if getattr(self, "layer", None) is not None:
|
650 |
+
for layer in self.layer:
|
651 |
+
with tf.name_scope(layer.name):
|
652 |
+
layer.build(None)
|
653 |
+
|
654 |
+
|
655 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->LayoutLM
|
656 |
+
class TFLayoutLMPooler(keras.layers.Layer):
|
657 |
+
def __init__(self, config: LayoutLMConfig, **kwargs):
|
658 |
+
super().__init__(**kwargs)
|
659 |
+
|
660 |
+
self.dense = keras.layers.Dense(
|
661 |
+
units=config.hidden_size,
|
662 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
663 |
+
activation="tanh",
|
664 |
+
name="dense",
|
665 |
+
)
|
666 |
+
self.config = config
|
667 |
+
|
668 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
669 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
670 |
+
# to the first token.
|
671 |
+
first_token_tensor = hidden_states[:, 0]
|
672 |
+
pooled_output = self.dense(inputs=first_token_tensor)
|
673 |
+
|
674 |
+
return pooled_output
|
675 |
+
|
676 |
+
def build(self, input_shape=None):
|
677 |
+
if self.built:
|
678 |
+
return
|
679 |
+
self.built = True
|
680 |
+
if getattr(self, "dense", None) is not None:
|
681 |
+
with tf.name_scope(self.dense.name):
|
682 |
+
self.dense.build([None, None, self.config.hidden_size])
|
683 |
+
|
684 |
+
|
685 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->LayoutLM
|
686 |
+
class TFLayoutLMPredictionHeadTransform(keras.layers.Layer):
|
687 |
+
def __init__(self, config: LayoutLMConfig, **kwargs):
|
688 |
+
super().__init__(**kwargs)
|
689 |
+
|
690 |
+
self.dense = keras.layers.Dense(
|
691 |
+
units=config.hidden_size,
|
692 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
693 |
+
name="dense",
|
694 |
+
)
|
695 |
+
|
696 |
+
if isinstance(config.hidden_act, str):
|
697 |
+
self.transform_act_fn = get_tf_activation(config.hidden_act)
|
698 |
+
else:
|
699 |
+
self.transform_act_fn = config.hidden_act
|
700 |
+
|
701 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
702 |
+
self.config = config
|
703 |
+
|
704 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
705 |
+
hidden_states = self.dense(inputs=hidden_states)
|
706 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
707 |
+
hidden_states = self.LayerNorm(inputs=hidden_states)
|
708 |
+
|
709 |
+
return hidden_states
|
710 |
+
|
711 |
+
def build(self, input_shape=None):
|
712 |
+
if self.built:
|
713 |
+
return
|
714 |
+
self.built = True
|
715 |
+
if getattr(self, "dense", None) is not None:
|
716 |
+
with tf.name_scope(self.dense.name):
|
717 |
+
self.dense.build([None, None, self.config.hidden_size])
|
718 |
+
if getattr(self, "LayerNorm", None) is not None:
|
719 |
+
with tf.name_scope(self.LayerNorm.name):
|
720 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
721 |
+
|
722 |
+
|
723 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->LayoutLM
|
724 |
+
class TFLayoutLMLMPredictionHead(keras.layers.Layer):
|
725 |
+
def __init__(self, config: LayoutLMConfig, input_embeddings: keras.layers.Layer, **kwargs):
|
726 |
+
super().__init__(**kwargs)
|
727 |
+
|
728 |
+
self.config = config
|
729 |
+
self.hidden_size = config.hidden_size
|
730 |
+
|
731 |
+
self.transform = TFLayoutLMPredictionHeadTransform(config, name="transform")
|
732 |
+
|
733 |
+
# The output weights are the same as the input embeddings, but there is
|
734 |
+
# an output-only bias for each token.
|
735 |
+
self.input_embeddings = input_embeddings
|
736 |
+
|
737 |
+
def build(self, input_shape=None):
|
738 |
+
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
|
739 |
+
|
740 |
+
if self.built:
|
741 |
+
return
|
742 |
+
self.built = True
|
743 |
+
if getattr(self, "transform", None) is not None:
|
744 |
+
with tf.name_scope(self.transform.name):
|
745 |
+
self.transform.build(None)
|
746 |
+
|
747 |
+
def get_output_embeddings(self) -> keras.layers.Layer:
|
748 |
+
return self.input_embeddings
|
749 |
+
|
750 |
+
def set_output_embeddings(self, value: tf.Variable):
|
751 |
+
self.input_embeddings.weight = value
|
752 |
+
self.input_embeddings.vocab_size = shape_list(value)[0]
|
753 |
+
|
754 |
+
def get_bias(self) -> Dict[str, tf.Variable]:
|
755 |
+
return {"bias": self.bias}
|
756 |
+
|
757 |
+
def set_bias(self, value: tf.Variable):
|
758 |
+
self.bias = value["bias"]
|
759 |
+
self.config.vocab_size = shape_list(value["bias"])[0]
|
760 |
+
|
761 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
762 |
+
hidden_states = self.transform(hidden_states=hidden_states)
|
763 |
+
seq_length = shape_list(hidden_states)[1]
|
764 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
|
765 |
+
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
|
766 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
|
767 |
+
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
|
768 |
+
|
769 |
+
return hidden_states
|
770 |
+
|
771 |
+
|
772 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->LayoutLM
|
773 |
+
class TFLayoutLMMLMHead(keras.layers.Layer):
|
774 |
+
def __init__(self, config: LayoutLMConfig, input_embeddings: keras.layers.Layer, **kwargs):
|
775 |
+
super().__init__(**kwargs)
|
776 |
+
|
777 |
+
self.predictions = TFLayoutLMLMPredictionHead(config, input_embeddings, name="predictions")
|
778 |
+
|
779 |
+
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
|
780 |
+
prediction_scores = self.predictions(hidden_states=sequence_output)
|
781 |
+
|
782 |
+
return prediction_scores
|
783 |
+
|
784 |
+
def build(self, input_shape=None):
|
785 |
+
if self.built:
|
786 |
+
return
|
787 |
+
self.built = True
|
788 |
+
if getattr(self, "predictions", None) is not None:
|
789 |
+
with tf.name_scope(self.predictions.name):
|
790 |
+
self.predictions.build(None)
|
791 |
+
|
792 |
+
|
793 |
+
@keras_serializable
|
794 |
+
class TFLayoutLMMainLayer(keras.layers.Layer):
|
795 |
+
config_class = LayoutLMConfig
|
796 |
+
|
797 |
+
def __init__(self, config: LayoutLMConfig, add_pooling_layer: bool = True, **kwargs):
|
798 |
+
super().__init__(**kwargs)
|
799 |
+
|
800 |
+
self.config = config
|
801 |
+
|
802 |
+
self.embeddings = TFLayoutLMEmbeddings(config, name="embeddings")
|
803 |
+
self.encoder = TFLayoutLMEncoder(config, name="encoder")
|
804 |
+
self.pooler = TFLayoutLMPooler(config, name="pooler") if add_pooling_layer else None
|
805 |
+
|
806 |
+
def get_input_embeddings(self) -> keras.layers.Layer:
|
807 |
+
return self.embeddings
|
808 |
+
|
809 |
+
def set_input_embeddings(self, value: tf.Variable):
|
810 |
+
self.embeddings.weight = value
|
811 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
812 |
+
|
813 |
+
def _prune_heads(self, heads_to_prune):
|
814 |
+
"""
|
815 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
816 |
+
class PreTrainedModel
|
817 |
+
"""
|
818 |
+
raise NotImplementedError
|
819 |
+
|
820 |
+
@unpack_inputs
|
821 |
+
def call(
|
822 |
+
self,
|
823 |
+
input_ids: TFModelInputType | None = None,
|
824 |
+
bbox: np.ndarray | tf.Tensor | None = None,
|
825 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
826 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
827 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
828 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
829 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
830 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
831 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
832 |
+
output_attentions: Optional[bool] = None,
|
833 |
+
output_hidden_states: Optional[bool] = None,
|
834 |
+
return_dict: Optional[bool] = None,
|
835 |
+
training: bool = False,
|
836 |
+
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
|
837 |
+
if input_ids is not None and inputs_embeds is not None:
|
838 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
839 |
+
elif input_ids is not None:
|
840 |
+
input_shape = shape_list(input_ids)
|
841 |
+
elif inputs_embeds is not None:
|
842 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
843 |
+
else:
|
844 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
845 |
+
|
846 |
+
if attention_mask is None:
|
847 |
+
attention_mask = tf.fill(dims=input_shape, value=1)
|
848 |
+
|
849 |
+
if token_type_ids is None:
|
850 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
851 |
+
if bbox is None:
|
852 |
+
bbox = tf.fill(dims=input_shape + [4], value=0)
|
853 |
+
|
854 |
+
embedding_output = self.embeddings(
|
855 |
+
input_ids=input_ids,
|
856 |
+
bbox=bbox,
|
857 |
+
position_ids=position_ids,
|
858 |
+
token_type_ids=token_type_ids,
|
859 |
+
inputs_embeds=inputs_embeds,
|
860 |
+
training=training,
|
861 |
+
)
|
862 |
+
|
863 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
864 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
865 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
866 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
867 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
868 |
+
extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
|
869 |
+
|
870 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
871 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
872 |
+
# positions we want to attend and -10000.0 for masked positions.
|
873 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
874 |
+
# effectively the same as removing these entirely.
|
875 |
+
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
|
876 |
+
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
|
877 |
+
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
|
878 |
+
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
|
879 |
+
|
880 |
+
# Prepare head mask if needed
|
881 |
+
# 1.0 in head_mask indicate we keep the head
|
882 |
+
# attention_probs has shape bsz x n_heads x N x N
|
883 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
884 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
885 |
+
if head_mask is not None:
|
886 |
+
raise NotImplementedError
|
887 |
+
else:
|
888 |
+
head_mask = [None] * self.config.num_hidden_layers
|
889 |
+
|
890 |
+
encoder_outputs = self.encoder(
|
891 |
+
hidden_states=embedding_output,
|
892 |
+
attention_mask=extended_attention_mask,
|
893 |
+
head_mask=head_mask,
|
894 |
+
# Need to pass these required positional arguments to `Encoder`
|
895 |
+
encoder_hidden_states=encoder_hidden_states,
|
896 |
+
encoder_attention_mask=None,
|
897 |
+
past_key_values=None,
|
898 |
+
use_cache=False,
|
899 |
+
output_attentions=output_attentions,
|
900 |
+
output_hidden_states=output_hidden_states,
|
901 |
+
return_dict=return_dict,
|
902 |
+
training=training,
|
903 |
+
)
|
904 |
+
|
905 |
+
sequence_output = encoder_outputs[0]
|
906 |
+
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
|
907 |
+
|
908 |
+
if not return_dict:
|
909 |
+
return (
|
910 |
+
sequence_output,
|
911 |
+
pooled_output,
|
912 |
+
) + encoder_outputs[1:]
|
913 |
+
|
914 |
+
return TFBaseModelOutputWithPoolingAndCrossAttentions(
|
915 |
+
last_hidden_state=sequence_output,
|
916 |
+
pooler_output=pooled_output,
|
917 |
+
hidden_states=encoder_outputs.hidden_states,
|
918 |
+
attentions=encoder_outputs.attentions,
|
919 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
920 |
+
)
|
921 |
+
|
922 |
+
def build(self, input_shape=None):
|
923 |
+
if self.built:
|
924 |
+
return
|
925 |
+
self.built = True
|
926 |
+
if getattr(self, "embeddings", None) is not None:
|
927 |
+
with tf.name_scope(self.embeddings.name):
|
928 |
+
self.embeddings.build(None)
|
929 |
+
if getattr(self, "encoder", None) is not None:
|
930 |
+
with tf.name_scope(self.encoder.name):
|
931 |
+
self.encoder.build(None)
|
932 |
+
if getattr(self, "pooler", None) is not None:
|
933 |
+
with tf.name_scope(self.pooler.name):
|
934 |
+
self.pooler.build(None)
|
935 |
+
|
936 |
+
|
937 |
+
class TFLayoutLMPreTrainedModel(TFPreTrainedModel):
|
938 |
+
"""
|
939 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
940 |
+
models.
|
941 |
+
"""
|
942 |
+
|
943 |
+
config_class = LayoutLMConfig
|
944 |
+
base_model_prefix = "layoutlm"
|
945 |
+
|
946 |
+
@property
|
947 |
+
def input_signature(self):
|
948 |
+
signature = super().input_signature
|
949 |
+
signature["bbox"] = tf.TensorSpec(shape=(None, None, 4), dtype=tf.int32, name="bbox")
|
950 |
+
return signature
|
951 |
+
|
952 |
+
|
953 |
+
LAYOUTLM_START_DOCSTRING = r"""
|
954 |
+
|
955 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
956 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
957 |
+
etc.)
|
958 |
+
|
959 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
960 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
961 |
+
behavior.
|
962 |
+
|
963 |
+
<Tip>
|
964 |
+
|
965 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
966 |
+
|
967 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
968 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
969 |
+
|
970 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
971 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
972 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
973 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
974 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
975 |
+
positional argument:
|
976 |
+
|
977 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
978 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
979 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
980 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
981 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
982 |
+
|
983 |
+
Note that when creating models and layers with
|
984 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
985 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
986 |
+
|
987 |
+
</Tip>
|
988 |
+
|
989 |
+
Args:
|
990 |
+
config ([`LayoutLMConfig`]): Model configuration class with all the parameters of the model.
|
991 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
992 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
993 |
+
"""
|
994 |
+
|
995 |
+
LAYOUTLM_INPUTS_DOCSTRING = r"""
|
996 |
+
Args:
|
997 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
|
998 |
+
Indices of input sequence tokens in the vocabulary.
|
999 |
+
|
1000 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
1001 |
+
[`PreTrainedTokenizer.encode`] for details.
|
1002 |
+
|
1003 |
+
[What are input IDs?](../glossary#input-ids)
|
1004 |
+
bbox (`Numpy array` or `tf.Tensor` of shape `({0}, 4)`, *optional*):
|
1005 |
+
Bounding Boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings-
|
1006 |
+
1]`.
|
1007 |
+
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
1008 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1009 |
+
|
1010 |
+
- 1 for tokens that are **not masked**,
|
1011 |
+
- 0 for tokens that are **masked**.
|
1012 |
+
|
1013 |
+
[What are attention masks?](../glossary#attention-mask)
|
1014 |
+
token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
1015 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
1016 |
+
1]`:
|
1017 |
+
|
1018 |
+
- 0 corresponds to a *sentence A* token,
|
1019 |
+
- 1 corresponds to a *sentence B* token.
|
1020 |
+
|
1021 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
1022 |
+
position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
1023 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1024 |
+
config.max_position_embeddings - 1]`.
|
1025 |
+
|
1026 |
+
[What are position IDs?](../glossary#position-ids)
|
1027 |
+
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1028 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
1029 |
+
|
1030 |
+
- 1 indicates the head is **not masked**,
|
1031 |
+
- 0 indicates the head is **masked**.
|
1032 |
+
|
1033 |
+
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
1034 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1035 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1036 |
+
model's internal embedding lookup matrix.
|
1037 |
+
output_attentions (`bool`, *optional*):
|
1038 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1039 |
+
tensors for more detail.
|
1040 |
+
output_hidden_states (`bool`, *optional*):
|
1041 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1042 |
+
more detail.
|
1043 |
+
return_dict (`bool`, *optional*):
|
1044 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1045 |
+
training (`bool`, *optional*, defaults to `False`):
|
1046 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
1047 |
+
behaviors between training and evaluation).
|
1048 |
+
"""
|
1049 |
+
|
1050 |
+
|
1051 |
+
@add_start_docstrings(
|
1052 |
+
"The bare LayoutLM Model transformer outputting raw hidden-states without any specific head on top.",
|
1053 |
+
LAYOUTLM_START_DOCSTRING,
|
1054 |
+
)
|
1055 |
+
class TFLayoutLMModel(TFLayoutLMPreTrainedModel):
|
1056 |
+
def __init__(self, config: LayoutLMConfig, *inputs, **kwargs):
|
1057 |
+
super().__init__(config, *inputs, **kwargs)
|
1058 |
+
|
1059 |
+
self.layoutlm = TFLayoutLMMainLayer(config, name="layoutlm")
|
1060 |
+
|
1061 |
+
@unpack_inputs
|
1062 |
+
@add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1063 |
+
@replace_return_docstrings(
|
1064 |
+
output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC
|
1065 |
+
)
|
1066 |
+
def call(
|
1067 |
+
self,
|
1068 |
+
input_ids: TFModelInputType | None = None,
|
1069 |
+
bbox: np.ndarray | tf.Tensor | None = None,
|
1070 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1071 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1072 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1073 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1074 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1075 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
1076 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1077 |
+
output_attentions: Optional[bool] = None,
|
1078 |
+
output_hidden_states: Optional[bool] = None,
|
1079 |
+
return_dict: Optional[bool] = None,
|
1080 |
+
training: Optional[bool] = False,
|
1081 |
+
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
|
1082 |
+
r"""
|
1083 |
+
Returns:
|
1084 |
+
|
1085 |
+
Examples:
|
1086 |
+
|
1087 |
+
```python
|
1088 |
+
>>> from transformers import AutoTokenizer, TFLayoutLMModel
|
1089 |
+
>>> import tensorflow as tf
|
1090 |
+
|
1091 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
|
1092 |
+
>>> model = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased")
|
1093 |
+
|
1094 |
+
>>> words = ["Hello", "world"]
|
1095 |
+
>>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782]
|
1096 |
+
|
1097 |
+
>>> token_boxes = []
|
1098 |
+
>>> for word, box in zip(words, normalized_word_boxes):
|
1099 |
+
... word_tokens = tokenizer.tokenize(word)
|
1100 |
+
... token_boxes.extend([box] * len(word_tokens))
|
1101 |
+
>>> # add bounding boxes of cls + sep tokens
|
1102 |
+
>>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]
|
1103 |
+
|
1104 |
+
>>> encoding = tokenizer(" ".join(words), return_tensors="tf")
|
1105 |
+
>>> input_ids = encoding["input_ids"]
|
1106 |
+
>>> attention_mask = encoding["attention_mask"]
|
1107 |
+
>>> token_type_ids = encoding["token_type_ids"]
|
1108 |
+
>>> bbox = tf.convert_to_tensor([token_boxes])
|
1109 |
+
|
1110 |
+
>>> outputs = model(
|
1111 |
+
... input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids
|
1112 |
+
... )
|
1113 |
+
|
1114 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1115 |
+
```"""
|
1116 |
+
outputs = self.layoutlm(
|
1117 |
+
input_ids=input_ids,
|
1118 |
+
bbox=bbox,
|
1119 |
+
attention_mask=attention_mask,
|
1120 |
+
token_type_ids=token_type_ids,
|
1121 |
+
position_ids=position_ids,
|
1122 |
+
head_mask=head_mask,
|
1123 |
+
inputs_embeds=inputs_embeds,
|
1124 |
+
output_attentions=output_attentions,
|
1125 |
+
output_hidden_states=output_hidden_states,
|
1126 |
+
return_dict=return_dict,
|
1127 |
+
training=training,
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
return outputs
|
1131 |
+
|
1132 |
+
def build(self, input_shape=None):
|
1133 |
+
if self.built:
|
1134 |
+
return
|
1135 |
+
self.built = True
|
1136 |
+
if getattr(self, "layoutlm", None) is not None:
|
1137 |
+
with tf.name_scope(self.layoutlm.name):
|
1138 |
+
self.layoutlm.build(None)
|
1139 |
+
|
1140 |
+
|
1141 |
+
@add_start_docstrings("""LayoutLM Model with a `language modeling` head on top.""", LAYOUTLM_START_DOCSTRING)
|
1142 |
+
class TFLayoutLMForMaskedLM(TFLayoutLMPreTrainedModel, TFMaskedLanguageModelingLoss):
|
1143 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1144 |
+
_keys_to_ignore_on_load_unexpected = [
|
1145 |
+
r"pooler",
|
1146 |
+
r"cls.seq_relationship",
|
1147 |
+
r"cls.predictions.decoder.weight",
|
1148 |
+
r"nsp___cls",
|
1149 |
+
]
|
1150 |
+
|
1151 |
+
def __init__(self, config: LayoutLMConfig, *inputs, **kwargs):
|
1152 |
+
super().__init__(config, *inputs, **kwargs)
|
1153 |
+
|
1154 |
+
if config.is_decoder:
|
1155 |
+
logger.warning(
|
1156 |
+
"If you want to use `TFLayoutLMForMaskedLM` make sure `config.is_decoder=False` for "
|
1157 |
+
"bi-directional self-attention."
|
1158 |
+
)
|
1159 |
+
|
1160 |
+
self.layoutlm = TFLayoutLMMainLayer(config, add_pooling_layer=True, name="layoutlm")
|
1161 |
+
self.mlm = TFLayoutLMMLMHead(config, input_embeddings=self.layoutlm.embeddings, name="mlm___cls")
|
1162 |
+
|
1163 |
+
def get_lm_head(self) -> keras.layers.Layer:
|
1164 |
+
return self.mlm.predictions
|
1165 |
+
|
1166 |
+
def get_prefix_bias_name(self) -> str:
|
1167 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
1168 |
+
return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name
|
1169 |
+
|
1170 |
+
@unpack_inputs
|
1171 |
+
@add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1172 |
+
@replace_return_docstrings(output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
|
1173 |
+
def call(
|
1174 |
+
self,
|
1175 |
+
input_ids: TFModelInputType | None = None,
|
1176 |
+
bbox: np.ndarray | tf.Tensor | None = None,
|
1177 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1178 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1179 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1180 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1181 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1182 |
+
output_attentions: Optional[bool] = None,
|
1183 |
+
output_hidden_states: Optional[bool] = None,
|
1184 |
+
return_dict: Optional[bool] = None,
|
1185 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1186 |
+
training: Optional[bool] = False,
|
1187 |
+
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
|
1188 |
+
r"""
|
1189 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
1190 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1191 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1192 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1193 |
+
|
1194 |
+
Returns:
|
1195 |
+
|
1196 |
+
Examples:
|
1197 |
+
|
1198 |
+
```python
|
1199 |
+
>>> from transformers import AutoTokenizer, TFLayoutLMForMaskedLM
|
1200 |
+
>>> import tensorflow as tf
|
1201 |
+
|
1202 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
|
1203 |
+
>>> model = TFLayoutLMForMaskedLM.from_pretrained("microsoft/layoutlm-base-uncased")
|
1204 |
+
|
1205 |
+
>>> words = ["Hello", "[MASK]"]
|
1206 |
+
>>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782]
|
1207 |
+
|
1208 |
+
>>> token_boxes = []
|
1209 |
+
>>> for word, box in zip(words, normalized_word_boxes):
|
1210 |
+
... word_tokens = tokenizer.tokenize(word)
|
1211 |
+
... token_boxes.extend([box] * len(word_tokens))
|
1212 |
+
>>> # add bounding boxes of cls + sep tokens
|
1213 |
+
>>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]
|
1214 |
+
|
1215 |
+
>>> encoding = tokenizer(" ".join(words), return_tensors="tf")
|
1216 |
+
>>> input_ids = encoding["input_ids"]
|
1217 |
+
>>> attention_mask = encoding["attention_mask"]
|
1218 |
+
>>> token_type_ids = encoding["token_type_ids"]
|
1219 |
+
>>> bbox = tf.convert_to_tensor([token_boxes])
|
1220 |
+
|
1221 |
+
>>> labels = tokenizer("Hello world", return_tensors="tf")["input_ids"]
|
1222 |
+
|
1223 |
+
>>> outputs = model(
|
1224 |
+
... input_ids=input_ids,
|
1225 |
+
... bbox=bbox,
|
1226 |
+
... attention_mask=attention_mask,
|
1227 |
+
... token_type_ids=token_type_ids,
|
1228 |
+
... labels=labels,
|
1229 |
+
... )
|
1230 |
+
|
1231 |
+
>>> loss = outputs.loss
|
1232 |
+
```"""
|
1233 |
+
outputs = self.layoutlm(
|
1234 |
+
input_ids=input_ids,
|
1235 |
+
bbox=bbox,
|
1236 |
+
attention_mask=attention_mask,
|
1237 |
+
token_type_ids=token_type_ids,
|
1238 |
+
position_ids=position_ids,
|
1239 |
+
head_mask=head_mask,
|
1240 |
+
inputs_embeds=inputs_embeds,
|
1241 |
+
output_attentions=output_attentions,
|
1242 |
+
output_hidden_states=output_hidden_states,
|
1243 |
+
return_dict=return_dict,
|
1244 |
+
training=training,
|
1245 |
+
)
|
1246 |
+
sequence_output = outputs[0]
|
1247 |
+
prediction_scores = self.mlm(sequence_output=sequence_output, training=training)
|
1248 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
|
1249 |
+
|
1250 |
+
if not return_dict:
|
1251 |
+
output = (prediction_scores,) + outputs[2:]
|
1252 |
+
return ((loss,) + output) if loss is not None else output
|
1253 |
+
|
1254 |
+
return TFMaskedLMOutput(
|
1255 |
+
loss=loss,
|
1256 |
+
logits=prediction_scores,
|
1257 |
+
hidden_states=outputs.hidden_states,
|
1258 |
+
attentions=outputs.attentions,
|
1259 |
+
)
|
1260 |
+
|
1261 |
+
def build(self, input_shape=None):
|
1262 |
+
if self.built:
|
1263 |
+
return
|
1264 |
+
self.built = True
|
1265 |
+
if getattr(self, "layoutlm", None) is not None:
|
1266 |
+
with tf.name_scope(self.layoutlm.name):
|
1267 |
+
self.layoutlm.build(None)
|
1268 |
+
if getattr(self, "mlm", None) is not None:
|
1269 |
+
with tf.name_scope(self.mlm.name):
|
1270 |
+
self.mlm.build(None)
|
1271 |
+
|
1272 |
+
|
1273 |
+
@add_start_docstrings(
|
1274 |
+
"""
|
1275 |
+
LayoutLM Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1276 |
+
pooled output) e.g. for GLUE tasks.
|
1277 |
+
""",
|
1278 |
+
LAYOUTLM_START_DOCSTRING,
|
1279 |
+
)
|
1280 |
+
class TFLayoutLMForSequenceClassification(TFLayoutLMPreTrainedModel, TFSequenceClassificationLoss):
|
1281 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1282 |
+
_keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"]
|
1283 |
+
_keys_to_ignore_on_load_missing = [r"dropout"]
|
1284 |
+
|
1285 |
+
def __init__(self, config: LayoutLMConfig, *inputs, **kwargs):
|
1286 |
+
super().__init__(config, *inputs, **kwargs)
|
1287 |
+
|
1288 |
+
self.num_labels = config.num_labels
|
1289 |
+
|
1290 |
+
self.layoutlm = TFLayoutLMMainLayer(config, name="layoutlm")
|
1291 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
1292 |
+
self.classifier = keras.layers.Dense(
|
1293 |
+
units=config.num_labels,
|
1294 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1295 |
+
name="classifier",
|
1296 |
+
)
|
1297 |
+
self.config = config
|
1298 |
+
|
1299 |
+
@unpack_inputs
|
1300 |
+
@add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1301 |
+
@replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
1302 |
+
def call(
|
1303 |
+
self,
|
1304 |
+
input_ids: TFModelInputType | None = None,
|
1305 |
+
bbox: np.ndarray | tf.Tensor | None = None,
|
1306 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1307 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1308 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1309 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1310 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1311 |
+
output_attentions: Optional[bool] = None,
|
1312 |
+
output_hidden_states: Optional[bool] = None,
|
1313 |
+
return_dict: Optional[bool] = None,
|
1314 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1315 |
+
training: Optional[bool] = False,
|
1316 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
1317 |
+
r"""
|
1318 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
1319 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1320 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1321 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1322 |
+
|
1323 |
+
Returns:
|
1324 |
+
|
1325 |
+
Examples:
|
1326 |
+
|
1327 |
+
```python
|
1328 |
+
>>> from transformers import AutoTokenizer, TFLayoutLMForSequenceClassification
|
1329 |
+
>>> import tensorflow as tf
|
1330 |
+
|
1331 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
|
1332 |
+
>>> model = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased")
|
1333 |
+
|
1334 |
+
>>> words = ["Hello", "world"]
|
1335 |
+
>>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782]
|
1336 |
+
|
1337 |
+
>>> token_boxes = []
|
1338 |
+
>>> for word, box in zip(words, normalized_word_boxes):
|
1339 |
+
... word_tokens = tokenizer.tokenize(word)
|
1340 |
+
... token_boxes.extend([box] * len(word_tokens))
|
1341 |
+
>>> # add bounding boxes of cls + sep tokens
|
1342 |
+
>>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]
|
1343 |
+
|
1344 |
+
>>> encoding = tokenizer(" ".join(words), return_tensors="tf")
|
1345 |
+
>>> input_ids = encoding["input_ids"]
|
1346 |
+
>>> attention_mask = encoding["attention_mask"]
|
1347 |
+
>>> token_type_ids = encoding["token_type_ids"]
|
1348 |
+
>>> bbox = tf.convert_to_tensor([token_boxes])
|
1349 |
+
>>> sequence_label = tf.convert_to_tensor([1])
|
1350 |
+
|
1351 |
+
>>> outputs = model(
|
1352 |
+
... input_ids=input_ids,
|
1353 |
+
... bbox=bbox,
|
1354 |
+
... attention_mask=attention_mask,
|
1355 |
+
... token_type_ids=token_type_ids,
|
1356 |
+
... labels=sequence_label,
|
1357 |
+
... )
|
1358 |
+
|
1359 |
+
>>> loss = outputs.loss
|
1360 |
+
>>> logits = outputs.logits
|
1361 |
+
```"""
|
1362 |
+
outputs = self.layoutlm(
|
1363 |
+
input_ids=input_ids,
|
1364 |
+
bbox=bbox,
|
1365 |
+
attention_mask=attention_mask,
|
1366 |
+
token_type_ids=token_type_ids,
|
1367 |
+
position_ids=position_ids,
|
1368 |
+
head_mask=head_mask,
|
1369 |
+
inputs_embeds=inputs_embeds,
|
1370 |
+
output_attentions=output_attentions,
|
1371 |
+
output_hidden_states=output_hidden_states,
|
1372 |
+
return_dict=return_dict,
|
1373 |
+
training=training,
|
1374 |
+
)
|
1375 |
+
pooled_output = outputs[1]
|
1376 |
+
pooled_output = self.dropout(inputs=pooled_output, training=training)
|
1377 |
+
logits = self.classifier(inputs=pooled_output)
|
1378 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1379 |
+
|
1380 |
+
if not return_dict:
|
1381 |
+
output = (logits,) + outputs[2:]
|
1382 |
+
return ((loss,) + output) if loss is not None else output
|
1383 |
+
|
1384 |
+
return TFSequenceClassifierOutput(
|
1385 |
+
loss=loss,
|
1386 |
+
logits=logits,
|
1387 |
+
hidden_states=outputs.hidden_states,
|
1388 |
+
attentions=outputs.attentions,
|
1389 |
+
)
|
1390 |
+
|
1391 |
+
def build(self, input_shape=None):
|
1392 |
+
if self.built:
|
1393 |
+
return
|
1394 |
+
self.built = True
|
1395 |
+
if getattr(self, "layoutlm", None) is not None:
|
1396 |
+
with tf.name_scope(self.layoutlm.name):
|
1397 |
+
self.layoutlm.build(None)
|
1398 |
+
if getattr(self, "classifier", None) is not None:
|
1399 |
+
with tf.name_scope(self.classifier.name):
|
1400 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1401 |
+
|
1402 |
+
|
1403 |
+
@add_start_docstrings(
|
1404 |
+
"""
|
1405 |
+
LayoutLM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1406 |
+
Named-Entity-Recognition (NER) tasks.
|
1407 |
+
""",
|
1408 |
+
LAYOUTLM_START_DOCSTRING,
|
1409 |
+
)
|
1410 |
+
class TFLayoutLMForTokenClassification(TFLayoutLMPreTrainedModel, TFTokenClassificationLoss):
|
1411 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1412 |
+
_keys_to_ignore_on_load_unexpected = [
|
1413 |
+
r"pooler",
|
1414 |
+
r"mlm___cls",
|
1415 |
+
r"nsp___cls",
|
1416 |
+
r"cls.predictions",
|
1417 |
+
r"cls.seq_relationship",
|
1418 |
+
]
|
1419 |
+
_keys_to_ignore_on_load_missing = [r"dropout"]
|
1420 |
+
|
1421 |
+
def __init__(self, config: LayoutLMConfig, *inputs, **kwargs):
|
1422 |
+
super().__init__(config, *inputs, **kwargs)
|
1423 |
+
|
1424 |
+
self.num_labels = config.num_labels
|
1425 |
+
|
1426 |
+
self.layoutlm = TFLayoutLMMainLayer(config, add_pooling_layer=True, name="layoutlm")
|
1427 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
1428 |
+
self.classifier = keras.layers.Dense(
|
1429 |
+
units=config.num_labels,
|
1430 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1431 |
+
name="classifier",
|
1432 |
+
)
|
1433 |
+
self.config = config
|
1434 |
+
|
1435 |
+
@unpack_inputs
|
1436 |
+
@add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1437 |
+
@replace_return_docstrings(output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
1438 |
+
def call(
|
1439 |
+
self,
|
1440 |
+
input_ids: TFModelInputType | None = None,
|
1441 |
+
bbox: np.ndarray | tf.Tensor | None = None,
|
1442 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1443 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1444 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1445 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1446 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1447 |
+
output_attentions: Optional[bool] = None,
|
1448 |
+
output_hidden_states: Optional[bool] = None,
|
1449 |
+
return_dict: Optional[bool] = None,
|
1450 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1451 |
+
training: Optional[bool] = False,
|
1452 |
+
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
|
1453 |
+
r"""
|
1454 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
1455 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1456 |
+
|
1457 |
+
Returns:
|
1458 |
+
|
1459 |
+
Examples:
|
1460 |
+
|
1461 |
+
```python
|
1462 |
+
>>> import tensorflow as tf
|
1463 |
+
>>> from transformers import AutoTokenizer, TFLayoutLMForTokenClassification
|
1464 |
+
|
1465 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
|
1466 |
+
>>> model = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased")
|
1467 |
+
|
1468 |
+
>>> words = ["Hello", "world"]
|
1469 |
+
>>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782]
|
1470 |
+
|
1471 |
+
>>> token_boxes = []
|
1472 |
+
>>> for word, box in zip(words, normalized_word_boxes):
|
1473 |
+
... word_tokens = tokenizer.tokenize(word)
|
1474 |
+
... token_boxes.extend([box] * len(word_tokens))
|
1475 |
+
>>> # add bounding boxes of cls + sep tokens
|
1476 |
+
>>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]
|
1477 |
+
|
1478 |
+
>>> encoding = tokenizer(" ".join(words), return_tensors="tf")
|
1479 |
+
>>> input_ids = encoding["input_ids"]
|
1480 |
+
>>> attention_mask = encoding["attention_mask"]
|
1481 |
+
>>> token_type_ids = encoding["token_type_ids"]
|
1482 |
+
>>> bbox = tf.convert_to_tensor([token_boxes])
|
1483 |
+
>>> token_labels = tf.convert_to_tensor([1, 1, 0, 0])
|
1484 |
+
|
1485 |
+
>>> outputs = model(
|
1486 |
+
... input_ids=input_ids,
|
1487 |
+
... bbox=bbox,
|
1488 |
+
... attention_mask=attention_mask,
|
1489 |
+
... token_type_ids=token_type_ids,
|
1490 |
+
... labels=token_labels,
|
1491 |
+
... )
|
1492 |
+
|
1493 |
+
>>> loss = outputs.loss
|
1494 |
+
>>> logits = outputs.logits
|
1495 |
+
```"""
|
1496 |
+
outputs = self.layoutlm(
|
1497 |
+
input_ids=input_ids,
|
1498 |
+
bbox=bbox,
|
1499 |
+
attention_mask=attention_mask,
|
1500 |
+
token_type_ids=token_type_ids,
|
1501 |
+
position_ids=position_ids,
|
1502 |
+
head_mask=head_mask,
|
1503 |
+
inputs_embeds=inputs_embeds,
|
1504 |
+
output_attentions=output_attentions,
|
1505 |
+
output_hidden_states=output_hidden_states,
|
1506 |
+
return_dict=return_dict,
|
1507 |
+
training=training,
|
1508 |
+
)
|
1509 |
+
sequence_output = outputs[0]
|
1510 |
+
sequence_output = self.dropout(inputs=sequence_output, training=training)
|
1511 |
+
logits = self.classifier(inputs=sequence_output)
|
1512 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1513 |
+
|
1514 |
+
if not return_dict:
|
1515 |
+
output = (logits,) + outputs[2:]
|
1516 |
+
return ((loss,) + output) if loss is not None else output
|
1517 |
+
|
1518 |
+
return TFTokenClassifierOutput(
|
1519 |
+
loss=loss,
|
1520 |
+
logits=logits,
|
1521 |
+
hidden_states=outputs.hidden_states,
|
1522 |
+
attentions=outputs.attentions,
|
1523 |
+
)
|
1524 |
+
|
1525 |
+
def build(self, input_shape=None):
|
1526 |
+
if self.built:
|
1527 |
+
return
|
1528 |
+
self.built = True
|
1529 |
+
if getattr(self, "layoutlm", None) is not None:
|
1530 |
+
with tf.name_scope(self.layoutlm.name):
|
1531 |
+
self.layoutlm.build(None)
|
1532 |
+
if getattr(self, "classifier", None) is not None:
|
1533 |
+
with tf.name_scope(self.classifier.name):
|
1534 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1535 |
+
|
1536 |
+
|
1537 |
+
@add_start_docstrings(
|
1538 |
+
"""
|
1539 |
+
LayoutLM Model with a span classification head on top for extractive question-answering tasks such as
|
1540 |
+
[DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the final hidden-states output to compute `span
|
1541 |
+
start logits` and `span end logits`).
|
1542 |
+
""",
|
1543 |
+
LAYOUTLM_START_DOCSTRING,
|
1544 |
+
)
|
1545 |
+
class TFLayoutLMForQuestionAnswering(TFLayoutLMPreTrainedModel, TFQuestionAnsweringLoss):
|
1546 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1547 |
+
_keys_to_ignore_on_load_unexpected = [
|
1548 |
+
r"pooler",
|
1549 |
+
r"mlm___cls",
|
1550 |
+
r"nsp___cls",
|
1551 |
+
r"cls.predictions",
|
1552 |
+
r"cls.seq_relationship",
|
1553 |
+
]
|
1554 |
+
|
1555 |
+
def __init__(self, config: LayoutLMConfig, *inputs, **kwargs):
|
1556 |
+
super().__init__(config, *inputs, **kwargs)
|
1557 |
+
self.num_labels = config.num_labels
|
1558 |
+
|
1559 |
+
self.layoutlm = TFLayoutLMMainLayer(config, add_pooling_layer=True, name="layoutlm")
|
1560 |
+
self.qa_outputs = keras.layers.Dense(
|
1561 |
+
units=config.num_labels,
|
1562 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1563 |
+
name="qa_outputs",
|
1564 |
+
)
|
1565 |
+
self.config = config
|
1566 |
+
|
1567 |
+
@unpack_inputs
|
1568 |
+
@add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1569 |
+
@replace_return_docstrings(output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
|
1570 |
+
def call(
|
1571 |
+
self,
|
1572 |
+
input_ids: TFModelInputType | None = None,
|
1573 |
+
bbox: np.ndarray | tf.Tensor | None = None,
|
1574 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1575 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1576 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1577 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1578 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1579 |
+
output_attentions: Optional[bool] = None,
|
1580 |
+
output_hidden_states: Optional[bool] = None,
|
1581 |
+
return_dict: Optional[bool] = None,
|
1582 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
1583 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
1584 |
+
training: Optional[bool] = False,
|
1585 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
1586 |
+
r"""
|
1587 |
+
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
1588 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1589 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1590 |
+
are not taken into account for computing the loss.
|
1591 |
+
end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
1592 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1593 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1594 |
+
are not taken into account for computing the loss.
|
1595 |
+
|
1596 |
+
Returns:
|
1597 |
+
|
1598 |
+
Examples:
|
1599 |
+
|
1600 |
+
```python
|
1601 |
+
>>> import tensorflow as tf
|
1602 |
+
>>> from transformers import AutoTokenizer, TFLayoutLMForQuestionAnswering
|
1603 |
+
>>> from datasets import load_dataset
|
1604 |
+
|
1605 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("impira/layoutlm-document-qa", add_prefix_space=True)
|
1606 |
+
>>> model = TFLayoutLMForQuestionAnswering.from_pretrained("impira/layoutlm-document-qa", revision="1e3ebac")
|
1607 |
+
|
1608 |
+
>>> dataset = load_dataset("nielsr/funsd", split="train")
|
1609 |
+
>>> example = dataset[0]
|
1610 |
+
>>> question = "what's his name?"
|
1611 |
+
>>> words = example["words"]
|
1612 |
+
>>> boxes = example["bboxes"]
|
1613 |
+
|
1614 |
+
>>> encoding = tokenizer(
|
1615 |
+
... question.split(), words, is_split_into_words=True, return_token_type_ids=True, return_tensors="tf"
|
1616 |
+
... )
|
1617 |
+
>>> bbox = []
|
1618 |
+
>>> for i, s, w in zip(encoding.input_ids[0], encoding.sequence_ids(0), encoding.word_ids(0)):
|
1619 |
+
... if s == 1:
|
1620 |
+
... bbox.append(boxes[w])
|
1621 |
+
... elif i == tokenizer.sep_token_id:
|
1622 |
+
... bbox.append([1000] * 4)
|
1623 |
+
... else:
|
1624 |
+
... bbox.append([0] * 4)
|
1625 |
+
>>> encoding["bbox"] = tf.convert_to_tensor([bbox])
|
1626 |
+
|
1627 |
+
>>> word_ids = encoding.word_ids(0)
|
1628 |
+
>>> outputs = model(**encoding)
|
1629 |
+
>>> loss = outputs.loss
|
1630 |
+
>>> start_scores = outputs.start_logits
|
1631 |
+
>>> end_scores = outputs.end_logits
|
1632 |
+
>>> start, end = word_ids[tf.math.argmax(start_scores, -1)[0]], word_ids[tf.math.argmax(end_scores, -1)[0]]
|
1633 |
+
>>> print(" ".join(words[start : end + 1]))
|
1634 |
+
M. Hamann P. Harper, P. Martinez
|
1635 |
+
```"""
|
1636 |
+
|
1637 |
+
outputs = self.layoutlm(
|
1638 |
+
input_ids=input_ids,
|
1639 |
+
bbox=bbox,
|
1640 |
+
attention_mask=attention_mask,
|
1641 |
+
token_type_ids=token_type_ids,
|
1642 |
+
position_ids=position_ids,
|
1643 |
+
head_mask=head_mask,
|
1644 |
+
inputs_embeds=inputs_embeds,
|
1645 |
+
output_attentions=output_attentions,
|
1646 |
+
output_hidden_states=output_hidden_states,
|
1647 |
+
return_dict=return_dict,
|
1648 |
+
training=training,
|
1649 |
+
)
|
1650 |
+
|
1651 |
+
sequence_output = outputs[0]
|
1652 |
+
|
1653 |
+
logits = self.qa_outputs(inputs=sequence_output)
|
1654 |
+
start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1)
|
1655 |
+
start_logits = tf.squeeze(input=start_logits, axis=-1)
|
1656 |
+
end_logits = tf.squeeze(input=end_logits, axis=-1)
|
1657 |
+
loss = None
|
1658 |
+
|
1659 |
+
if start_positions is not None and end_positions is not None:
|
1660 |
+
labels = {"start_position": start_positions}
|
1661 |
+
labels["end_position"] = end_positions
|
1662 |
+
loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
|
1663 |
+
|
1664 |
+
if not return_dict:
|
1665 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1666 |
+
return ((loss,) + output) if loss is not None else output
|
1667 |
+
|
1668 |
+
return TFQuestionAnsweringModelOutput(
|
1669 |
+
loss=loss,
|
1670 |
+
start_logits=start_logits,
|
1671 |
+
end_logits=end_logits,
|
1672 |
+
hidden_states=outputs.hidden_states,
|
1673 |
+
attentions=outputs.attentions,
|
1674 |
+
)
|
1675 |
+
|
1676 |
+
def build(self, input_shape=None):
|
1677 |
+
if self.built:
|
1678 |
+
return
|
1679 |
+
self.built = True
|
1680 |
+
if getattr(self, "layoutlm", None) is not None:
|
1681 |
+
with tf.name_scope(self.layoutlm.name):
|
1682 |
+
self.layoutlm.build(None)
|
1683 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1684 |
+
with tf.name_scope(self.qa_outputs.name):
|
1685 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlm/tokenization_layoutlm.py
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for model LayoutLM."""
|
16 |
+
|
17 |
+
import collections
|
18 |
+
import os
|
19 |
+
import unicodedata
|
20 |
+
from typing import List, Optional, Tuple
|
21 |
+
|
22 |
+
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
29 |
+
|
30 |
+
|
31 |
+
# Copied from transformers.models.bert.tokenization_bert.load_vocab
|
32 |
+
def load_vocab(vocab_file):
|
33 |
+
"""Loads a vocabulary file into a dictionary."""
|
34 |
+
vocab = collections.OrderedDict()
|
35 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
36 |
+
tokens = reader.readlines()
|
37 |
+
for index, token in enumerate(tokens):
|
38 |
+
token = token.rstrip("\n")
|
39 |
+
vocab[token] = index
|
40 |
+
return vocab
|
41 |
+
|
42 |
+
|
43 |
+
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
|
44 |
+
def whitespace_tokenize(text):
|
45 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
46 |
+
text = text.strip()
|
47 |
+
if not text:
|
48 |
+
return []
|
49 |
+
tokens = text.split()
|
50 |
+
return tokens
|
51 |
+
|
52 |
+
|
53 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with Bert->LayoutLM,BERT->LayoutLM
|
54 |
+
class LayoutLMTokenizer(PreTrainedTokenizer):
|
55 |
+
r"""
|
56 |
+
Construct a LayoutLM tokenizer. Based on WordPiece.
|
57 |
+
|
58 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
59 |
+
this superclass for more information regarding those methods.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
vocab_file (`str`):
|
63 |
+
File containing the vocabulary.
|
64 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not to lowercase the input when tokenizing.
|
66 |
+
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not to do basic tokenization before WordPiece.
|
68 |
+
never_split (`Iterable`, *optional*):
|
69 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
70 |
+
`do_basic_tokenize=True`
|
71 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
72 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
73 |
+
token instead.
|
74 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
75 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
76 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
77 |
+
token of a sequence built with special tokens.
|
78 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
79 |
+
The token used for padding, for example when batching sequences of different lengths.
|
80 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
81 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
82 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
83 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
84 |
+
The token used for masking values. This is the token used when training this model with masked language
|
85 |
+
modeling. This is the token which the model will try to predict.
|
86 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
87 |
+
Whether or not to tokenize Chinese characters.
|
88 |
+
|
89 |
+
This should likely be deactivated for Japanese (see this
|
90 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
91 |
+
strip_accents (`bool`, *optional*):
|
92 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
93 |
+
value for `lowercase` (as in the original LayoutLM).
|
94 |
+
"""
|
95 |
+
|
96 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
vocab_file,
|
101 |
+
do_lower_case=True,
|
102 |
+
do_basic_tokenize=True,
|
103 |
+
never_split=None,
|
104 |
+
unk_token="[UNK]",
|
105 |
+
sep_token="[SEP]",
|
106 |
+
pad_token="[PAD]",
|
107 |
+
cls_token="[CLS]",
|
108 |
+
mask_token="[MASK]",
|
109 |
+
tokenize_chinese_chars=True,
|
110 |
+
strip_accents=None,
|
111 |
+
**kwargs,
|
112 |
+
):
|
113 |
+
if not os.path.isfile(vocab_file):
|
114 |
+
raise ValueError(
|
115 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
116 |
+
" model use `tokenizer = LayoutLMTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
117 |
+
)
|
118 |
+
self.vocab = load_vocab(vocab_file)
|
119 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
120 |
+
self.do_basic_tokenize = do_basic_tokenize
|
121 |
+
if do_basic_tokenize:
|
122 |
+
self.basic_tokenizer = BasicTokenizer(
|
123 |
+
do_lower_case=do_lower_case,
|
124 |
+
never_split=never_split,
|
125 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
126 |
+
strip_accents=strip_accents,
|
127 |
+
)
|
128 |
+
|
129 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
130 |
+
|
131 |
+
super().__init__(
|
132 |
+
do_lower_case=do_lower_case,
|
133 |
+
do_basic_tokenize=do_basic_tokenize,
|
134 |
+
never_split=never_split,
|
135 |
+
unk_token=unk_token,
|
136 |
+
sep_token=sep_token,
|
137 |
+
pad_token=pad_token,
|
138 |
+
cls_token=cls_token,
|
139 |
+
mask_token=mask_token,
|
140 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
141 |
+
strip_accents=strip_accents,
|
142 |
+
**kwargs,
|
143 |
+
)
|
144 |
+
|
145 |
+
@property
|
146 |
+
def do_lower_case(self):
|
147 |
+
return self.basic_tokenizer.do_lower_case
|
148 |
+
|
149 |
+
@property
|
150 |
+
def vocab_size(self):
|
151 |
+
return len(self.vocab)
|
152 |
+
|
153 |
+
def get_vocab(self):
|
154 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
155 |
+
|
156 |
+
def _tokenize(self, text, split_special_tokens=False):
|
157 |
+
split_tokens = []
|
158 |
+
if self.do_basic_tokenize:
|
159 |
+
for token in self.basic_tokenizer.tokenize(
|
160 |
+
text, never_split=self.all_special_tokens if not split_special_tokens else None
|
161 |
+
):
|
162 |
+
# If the token is part of the never_split set
|
163 |
+
if token in self.basic_tokenizer.never_split:
|
164 |
+
split_tokens.append(token)
|
165 |
+
else:
|
166 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
167 |
+
else:
|
168 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
169 |
+
return split_tokens
|
170 |
+
|
171 |
+
def _convert_token_to_id(self, token):
|
172 |
+
"""Converts a token (str) in an id using the vocab."""
|
173 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
174 |
+
|
175 |
+
def _convert_id_to_token(self, index):
|
176 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
177 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
178 |
+
|
179 |
+
def convert_tokens_to_string(self, tokens):
|
180 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
181 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
182 |
+
return out_string
|
183 |
+
|
184 |
+
def build_inputs_with_special_tokens(
|
185 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
186 |
+
) -> List[int]:
|
187 |
+
"""
|
188 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
189 |
+
adding special tokens. A LayoutLM sequence has the following format:
|
190 |
+
|
191 |
+
- single sequence: `[CLS] X [SEP]`
|
192 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
193 |
+
|
194 |
+
Args:
|
195 |
+
token_ids_0 (`List[int]`):
|
196 |
+
List of IDs to which the special tokens will be added.
|
197 |
+
token_ids_1 (`List[int]`, *optional*):
|
198 |
+
Optional second list of IDs for sequence pairs.
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
202 |
+
"""
|
203 |
+
if token_ids_1 is None:
|
204 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
205 |
+
cls = [self.cls_token_id]
|
206 |
+
sep = [self.sep_token_id]
|
207 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
208 |
+
|
209 |
+
def get_special_tokens_mask(
|
210 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
211 |
+
) -> List[int]:
|
212 |
+
"""
|
213 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
214 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
215 |
+
|
216 |
+
Args:
|
217 |
+
token_ids_0 (`List[int]`):
|
218 |
+
List of IDs.
|
219 |
+
token_ids_1 (`List[int]`, *optional*):
|
220 |
+
Optional second list of IDs for sequence pairs.
|
221 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
222 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
226 |
+
"""
|
227 |
+
|
228 |
+
if already_has_special_tokens:
|
229 |
+
return super().get_special_tokens_mask(
|
230 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
231 |
+
)
|
232 |
+
|
233 |
+
if token_ids_1 is not None:
|
234 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
235 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
236 |
+
|
237 |
+
def create_token_type_ids_from_sequences(
|
238 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
239 |
+
) -> List[int]:
|
240 |
+
"""
|
241 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A LayoutLM sequence
|
242 |
+
pair mask has the following format:
|
243 |
+
|
244 |
+
```
|
245 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
246 |
+
| first sequence | second sequence |
|
247 |
+
```
|
248 |
+
|
249 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
250 |
+
|
251 |
+
Args:
|
252 |
+
token_ids_0 (`List[int]`):
|
253 |
+
List of IDs.
|
254 |
+
token_ids_1 (`List[int]`, *optional*):
|
255 |
+
Optional second list of IDs for sequence pairs.
|
256 |
+
|
257 |
+
Returns:
|
258 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
259 |
+
"""
|
260 |
+
sep = [self.sep_token_id]
|
261 |
+
cls = [self.cls_token_id]
|
262 |
+
if token_ids_1 is None:
|
263 |
+
return len(cls + token_ids_0 + sep) * [0]
|
264 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
265 |
+
|
266 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
267 |
+
index = 0
|
268 |
+
if os.path.isdir(save_directory):
|
269 |
+
vocab_file = os.path.join(
|
270 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
271 |
+
)
|
272 |
+
else:
|
273 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
274 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
275 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
276 |
+
if index != token_index:
|
277 |
+
logger.warning(
|
278 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
279 |
+
" Please check that the vocabulary is not corrupted!"
|
280 |
+
)
|
281 |
+
index = token_index
|
282 |
+
writer.write(token + "\n")
|
283 |
+
index += 1
|
284 |
+
return (vocab_file,)
|
285 |
+
|
286 |
+
|
287 |
+
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
288 |
+
class BasicTokenizer(object):
|
289 |
+
"""
|
290 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
291 |
+
|
292 |
+
Args:
|
293 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
294 |
+
Whether or not to lowercase the input when tokenizing.
|
295 |
+
never_split (`Iterable`, *optional*):
|
296 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
297 |
+
`do_basic_tokenize=True`
|
298 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
299 |
+
Whether or not to tokenize Chinese characters.
|
300 |
+
|
301 |
+
This should likely be deactivated for Japanese (see this
|
302 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
303 |
+
strip_accents (`bool`, *optional*):
|
304 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
305 |
+
value for `lowercase` (as in the original BERT).
|
306 |
+
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
307 |
+
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
308 |
+
the full context of the words, such as contractions.
|
309 |
+
"""
|
310 |
+
|
311 |
+
def __init__(
|
312 |
+
self,
|
313 |
+
do_lower_case=True,
|
314 |
+
never_split=None,
|
315 |
+
tokenize_chinese_chars=True,
|
316 |
+
strip_accents=None,
|
317 |
+
do_split_on_punc=True,
|
318 |
+
):
|
319 |
+
if never_split is None:
|
320 |
+
never_split = []
|
321 |
+
self.do_lower_case = do_lower_case
|
322 |
+
self.never_split = set(never_split)
|
323 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
324 |
+
self.strip_accents = strip_accents
|
325 |
+
self.do_split_on_punc = do_split_on_punc
|
326 |
+
|
327 |
+
def tokenize(self, text, never_split=None):
|
328 |
+
"""
|
329 |
+
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
330 |
+
|
331 |
+
Args:
|
332 |
+
never_split (`List[str]`, *optional*)
|
333 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
334 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
335 |
+
"""
|
336 |
+
# union() returns a new set by concatenating the two sets.
|
337 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
338 |
+
text = self._clean_text(text)
|
339 |
+
|
340 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
341 |
+
# models. This is also applied to the English models now, but it doesn't
|
342 |
+
# matter since the English models were not trained on any Chinese data
|
343 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
344 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
345 |
+
# words in the English Wikipedia.).
|
346 |
+
if self.tokenize_chinese_chars:
|
347 |
+
text = self._tokenize_chinese_chars(text)
|
348 |
+
# prevents treating the same character with different unicode codepoints as different characters
|
349 |
+
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
350 |
+
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
351 |
+
split_tokens = []
|
352 |
+
for token in orig_tokens:
|
353 |
+
if token not in never_split:
|
354 |
+
if self.do_lower_case:
|
355 |
+
token = token.lower()
|
356 |
+
if self.strip_accents is not False:
|
357 |
+
token = self._run_strip_accents(token)
|
358 |
+
elif self.strip_accents:
|
359 |
+
token = self._run_strip_accents(token)
|
360 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
361 |
+
|
362 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
363 |
+
return output_tokens
|
364 |
+
|
365 |
+
def _run_strip_accents(self, text):
|
366 |
+
"""Strips accents from a piece of text."""
|
367 |
+
text = unicodedata.normalize("NFD", text)
|
368 |
+
output = []
|
369 |
+
for char in text:
|
370 |
+
cat = unicodedata.category(char)
|
371 |
+
if cat == "Mn":
|
372 |
+
continue
|
373 |
+
output.append(char)
|
374 |
+
return "".join(output)
|
375 |
+
|
376 |
+
def _run_split_on_punc(self, text, never_split=None):
|
377 |
+
"""Splits punctuation on a piece of text."""
|
378 |
+
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
379 |
+
return [text]
|
380 |
+
chars = list(text)
|
381 |
+
i = 0
|
382 |
+
start_new_word = True
|
383 |
+
output = []
|
384 |
+
while i < len(chars):
|
385 |
+
char = chars[i]
|
386 |
+
if _is_punctuation(char):
|
387 |
+
output.append([char])
|
388 |
+
start_new_word = True
|
389 |
+
else:
|
390 |
+
if start_new_word:
|
391 |
+
output.append([])
|
392 |
+
start_new_word = False
|
393 |
+
output[-1].append(char)
|
394 |
+
i += 1
|
395 |
+
|
396 |
+
return ["".join(x) for x in output]
|
397 |
+
|
398 |
+
def _tokenize_chinese_chars(self, text):
|
399 |
+
"""Adds whitespace around any CJK character."""
|
400 |
+
output = []
|
401 |
+
for char in text:
|
402 |
+
cp = ord(char)
|
403 |
+
if self._is_chinese_char(cp):
|
404 |
+
output.append(" ")
|
405 |
+
output.append(char)
|
406 |
+
output.append(" ")
|
407 |
+
else:
|
408 |
+
output.append(char)
|
409 |
+
return "".join(output)
|
410 |
+
|
411 |
+
def _is_chinese_char(self, cp):
|
412 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
413 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
414 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
415 |
+
#
|
416 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
417 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
418 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
419 |
+
# space-separated words, so they are not treated specially and handled
|
420 |
+
# like the all of the other languages.
|
421 |
+
if (
|
422 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
423 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
424 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
425 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
426 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
427 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
428 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
429 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
430 |
+
): #
|
431 |
+
return True
|
432 |
+
|
433 |
+
return False
|
434 |
+
|
435 |
+
def _clean_text(self, text):
|
436 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
437 |
+
output = []
|
438 |
+
for char in text:
|
439 |
+
cp = ord(char)
|
440 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
441 |
+
continue
|
442 |
+
if _is_whitespace(char):
|
443 |
+
output.append(" ")
|
444 |
+
else:
|
445 |
+
output.append(char)
|
446 |
+
return "".join(output)
|
447 |
+
|
448 |
+
|
449 |
+
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
|
450 |
+
class WordpieceTokenizer(object):
|
451 |
+
"""Runs WordPiece tokenization."""
|
452 |
+
|
453 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
454 |
+
self.vocab = vocab
|
455 |
+
self.unk_token = unk_token
|
456 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
457 |
+
|
458 |
+
def tokenize(self, text):
|
459 |
+
"""
|
460 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
461 |
+
tokenization using the given vocabulary.
|
462 |
+
|
463 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
text: A single token or whitespace separated tokens. This should have
|
467 |
+
already been passed through *BasicTokenizer*.
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
A list of wordpiece tokens.
|
471 |
+
"""
|
472 |
+
|
473 |
+
output_tokens = []
|
474 |
+
for token in whitespace_tokenize(text):
|
475 |
+
chars = list(token)
|
476 |
+
if len(chars) > self.max_input_chars_per_word:
|
477 |
+
output_tokens.append(self.unk_token)
|
478 |
+
continue
|
479 |
+
|
480 |
+
is_bad = False
|
481 |
+
start = 0
|
482 |
+
sub_tokens = []
|
483 |
+
while start < len(chars):
|
484 |
+
end = len(chars)
|
485 |
+
cur_substr = None
|
486 |
+
while start < end:
|
487 |
+
substr = "".join(chars[start:end])
|
488 |
+
if start > 0:
|
489 |
+
substr = "##" + substr
|
490 |
+
if substr in self.vocab:
|
491 |
+
cur_substr = substr
|
492 |
+
break
|
493 |
+
end -= 1
|
494 |
+
if cur_substr is None:
|
495 |
+
is_bad = True
|
496 |
+
break
|
497 |
+
sub_tokens.append(cur_substr)
|
498 |
+
start = end
|
499 |
+
|
500 |
+
if is_bad:
|
501 |
+
output_tokens.append(self.unk_token)
|
502 |
+
else:
|
503 |
+
output_tokens.extend(sub_tokens)
|
504 |
+
return output_tokens
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus_x/__init__.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"],
|
21 |
+
}
|
22 |
+
|
23 |
+
try:
|
24 |
+
if not is_torch_available():
|
25 |
+
raise OptionalDependencyNotAvailable()
|
26 |
+
except OptionalDependencyNotAvailable:
|
27 |
+
pass
|
28 |
+
else:
|
29 |
+
_import_structure["modeling_pegasus_x"] = [
|
30 |
+
"PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST",
|
31 |
+
"PegasusXForConditionalGeneration",
|
32 |
+
"PegasusXModel",
|
33 |
+
"PegasusXPreTrainedModel",
|
34 |
+
]
|
35 |
+
|
36 |
+
|
37 |
+
if TYPE_CHECKING:
|
38 |
+
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_torch_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
from .modeling_pegasus_x import (
|
47 |
+
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
|
48 |
+
PegasusXForConditionalGeneration,
|
49 |
+
PegasusXModel,
|
50 |
+
PegasusXPreTrainedModel,
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
else:
|
55 |
+
import sys
|
56 |
+
|
57 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus_x/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (951 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus_x/__pycache__/configuration_pegasus_x.cpython-310.pyc
ADDED
Binary file (7.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus_x/__pycache__/modeling_pegasus_x.cpython-310.pyc
ADDED
Binary file (49.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus_x/configuration_pegasus_x.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022, Google and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PEGASUS-X model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class PegasusXConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`PegasusXModel`]. It is used to instantiate a
|
30 |
+
PEGASUS-X model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the PEGASUS-X
|
32 |
+
[google/pegasus-x-large](https://huggingface.co/google/pegasus-x-large) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 96103):
|
40 |
+
Vocabulary size of the PEGASUS-X model. Defines the number of different tokens that can be represented by
|
41 |
+
the `inputs_ids` passed when calling [`PegasusXModel`].
|
42 |
+
d_model (`int`, *optional*, defaults to 1024):
|
43 |
+
Dimension of the layers and the pooler layer.
|
44 |
+
encoder_layers (`int`, *optional*, defaults to 16):
|
45 |
+
Number of encoder layers.
|
46 |
+
decoder_layers (`int`, *optional*, defaults to 16):
|
47 |
+
Number of decoder layers.
|
48 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
49 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
50 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
51 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
52 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
53 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
54 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
55 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
56 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
57 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
58 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
59 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
60 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
61 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
62 |
+
The dropout ratio for the attention probabilities.
|
63 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio for activations inside the fully connected layer.
|
65 |
+
max_position_embeddings (`int`, *optional*, defaults to 16384):
|
66 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
67 |
+
just in case (e.g., 512 or 1024 or 2048).
|
68 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
69 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
70 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
71 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
72 |
+
for more details.
|
73 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
74 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
75 |
+
for more details.
|
76 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether or not the model should return the last key/values attentions (not used by all models)
|
78 |
+
forced_eos_token_id (`int`, *optional*, defaults to 1):
|
79 |
+
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
80 |
+
`eos_token_id`.
|
81 |
+
num_global_tokens (`int`, *optional*, defaults to 128):
|
82 |
+
Number of global tokens to use for the encoder
|
83 |
+
block_size (`int`, *optional*, defaults to 512):
|
84 |
+
Block size for encoder local attention. Sequence length should be an exact multiple of block size.
|
85 |
+
block_size must be a multiple of 2 if stagger_local_block is True
|
86 |
+
stagger_local_block (`bool`, *optional*, defaults to `True`):
|
87 |
+
Whether to stagger every other local attention by half a block
|
88 |
+
|
89 |
+
Example:
|
90 |
+
|
91 |
+
```python
|
92 |
+
>>> from transformers import PegasusXConfig, PegasusXModel
|
93 |
+
|
94 |
+
>>> # Initializing a PEGASUS google/pegasus-x-large style configuration
|
95 |
+
>>> configuration = PegasusXConfig()
|
96 |
+
|
97 |
+
>>> # Initializing a model (with random weights) from the google/pegasus-x-large style configuration
|
98 |
+
>>> model = PegasusXModel(configuration)
|
99 |
+
|
100 |
+
>>> # Accessing the model configuration
|
101 |
+
>>> configuration = model.config
|
102 |
+
```"""
|
103 |
+
|
104 |
+
model_type = "pegasus_x"
|
105 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
106 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
vocab_size=96103,
|
111 |
+
max_position_embeddings=16384,
|
112 |
+
encoder_layers=16,
|
113 |
+
encoder_ffn_dim=4096,
|
114 |
+
encoder_attention_heads=16,
|
115 |
+
decoder_layers=16,
|
116 |
+
decoder_ffn_dim=4096,
|
117 |
+
decoder_attention_heads=16,
|
118 |
+
encoder_layerdrop=0.0,
|
119 |
+
decoder_layerdrop=0.0,
|
120 |
+
use_cache=True,
|
121 |
+
is_encoder_decoder=True,
|
122 |
+
activation_function="gelu",
|
123 |
+
d_model=1024,
|
124 |
+
dropout=0.1,
|
125 |
+
attention_dropout=0.0,
|
126 |
+
activation_dropout=0.0,
|
127 |
+
init_std=0.02,
|
128 |
+
decoder_start_token_id=0,
|
129 |
+
scale_embedding=True,
|
130 |
+
pad_token_id=0,
|
131 |
+
eos_token_id=1,
|
132 |
+
forced_eos_token_id=1,
|
133 |
+
num_global_tokens=32,
|
134 |
+
block_size=512,
|
135 |
+
stagger_local_blocks=True,
|
136 |
+
**kwargs,
|
137 |
+
):
|
138 |
+
self.vocab_size = vocab_size
|
139 |
+
self.max_position_embeddings = max_position_embeddings
|
140 |
+
self.d_model = d_model
|
141 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
142 |
+
self.encoder_layers = encoder_layers
|
143 |
+
self.encoder_attention_heads = encoder_attention_heads
|
144 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
145 |
+
self.decoder_layers = decoder_layers
|
146 |
+
self.decoder_attention_heads = decoder_attention_heads
|
147 |
+
self.dropout = dropout
|
148 |
+
self.attention_dropout = attention_dropout
|
149 |
+
self.activation_dropout = activation_dropout
|
150 |
+
self.activation_function = activation_function
|
151 |
+
self.init_std = init_std
|
152 |
+
self.encoder_layerdrop = encoder_layerdrop
|
153 |
+
self.decoder_layerdrop = decoder_layerdrop
|
154 |
+
self.use_cache = use_cache
|
155 |
+
self.num_hidden_layers = encoder_layers
|
156 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
157 |
+
|
158 |
+
self.num_global_tokens = num_global_tokens
|
159 |
+
self.block_size = block_size
|
160 |
+
self.stagger_local_blocks = stagger_local_blocks
|
161 |
+
|
162 |
+
super().__init__(
|
163 |
+
pad_token_id=pad_token_id,
|
164 |
+
eos_token_id=eos_token_id,
|
165 |
+
is_encoder_decoder=is_encoder_decoder,
|
166 |
+
decoder_start_token_id=decoder_start_token_id,
|
167 |
+
forced_eos_token_id=forced_eos_token_id,
|
168 |
+
**kwargs,
|
169 |
+
)
|
170 |
+
|
171 |
+
@property
|
172 |
+
def num_attention_heads(self) -> int:
|
173 |
+
return self.encoder_attention_heads
|
174 |
+
|
175 |
+
@property
|
176 |
+
def hidden_size(self) -> int:
|
177 |
+
return self.d_model
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pegasus_x/modeling_pegasus_x.py
ADDED
@@ -0,0 +1,1627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022, Google and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch PEGASUS-X model."""
|
16 |
+
|
17 |
+
import dataclasses
|
18 |
+
import math
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import CrossEntropyLoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
|
29 |
+
from ...modeling_outputs import (
|
30 |
+
BaseModelOutput,
|
31 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
32 |
+
Seq2SeqLMOutput,
|
33 |
+
Seq2SeqModelOutput,
|
34 |
+
)
|
35 |
+
from ...modeling_utils import PreTrainedModel
|
36 |
+
from ...utils import (
|
37 |
+
add_end_docstrings,
|
38 |
+
add_start_docstrings,
|
39 |
+
add_start_docstrings_to_model_forward,
|
40 |
+
logging,
|
41 |
+
replace_return_docstrings,
|
42 |
+
)
|
43 |
+
from .configuration_pegasus_x import PegasusXConfig
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
_CHECKPOINT_FOR_DOC = "google/pegasus-x-base"
|
49 |
+
_CONFIG_FOR_DOC = "PegasusXConfig"
|
50 |
+
|
51 |
+
|
52 |
+
from ..deprecated._archive_maps import PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
53 |
+
|
54 |
+
|
55 |
+
@dataclasses.dataclass
|
56 |
+
class DimensionInfo:
|
57 |
+
"""Wrapper for dimension info."""
|
58 |
+
|
59 |
+
batch_size: int # batch size
|
60 |
+
seq_len: int # token length
|
61 |
+
block_size: int # block size
|
62 |
+
num_heads: int # num heads
|
63 |
+
hidden_dim: int # hidden dim
|
64 |
+
dim_per_head: int # dim per head
|
65 |
+
num_blocks: int # num blocks
|
66 |
+
global_len: int # global length
|
67 |
+
padded_seq_len: int # padded token seq length
|
68 |
+
|
69 |
+
# Note: Compared to the original Flax implementation, we will pad the token representations to
|
70 |
+
# a multiple of block size at the start of the encoder layers, so T=P always.
|
71 |
+
|
72 |
+
|
73 |
+
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
|
74 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
75 |
+
"""
|
76 |
+
Shift input ids one token to the right.
|
77 |
+
"""
|
78 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
79 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
80 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
81 |
+
|
82 |
+
if pad_token_id is None:
|
83 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
84 |
+
# replace possible -100 values in labels by `pad_token_id`
|
85 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
86 |
+
|
87 |
+
return shifted_input_ids
|
88 |
+
|
89 |
+
|
90 |
+
class PegasusXSinusoidalPositionalEmbedding(nn.Module):
|
91 |
+
"""This module produces sinusoidal positional embeddings of any length."""
|
92 |
+
|
93 |
+
def __init__(self, embed_dim, max_scale: int = 10000.0):
|
94 |
+
super().__init__()
|
95 |
+
self.embed_dim = embed_dim
|
96 |
+
self.max_scale = max_scale
|
97 |
+
|
98 |
+
@torch.no_grad()
|
99 |
+
def forward(self, input_embeds: torch.Tensor, past_key_values_length: int = 0) -> torch.Tensor:
|
100 |
+
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
|
101 |
+
batch_size, seq_len = input_embeds.shape[:2]
|
102 |
+
positions = torch.arange(
|
103 |
+
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=input_embeds.device
|
104 |
+
)[:, None]
|
105 |
+
pe = torch.zeros((seq_len, self.embed_dim), device=input_embeds.device, dtype=input_embeds.dtype)
|
106 |
+
half_d_feature = self.embed_dim // 2
|
107 |
+
div_term = torch.exp(
|
108 |
+
torch.arange(half_d_feature, device=input_embeds.device, dtype=torch.int64).type_as(input_embeds)
|
109 |
+
* -(np.log(float(self.max_scale)) / (half_d_feature - 1))
|
110 |
+
)
|
111 |
+
pe[:, :half_d_feature] = torch.sin(positions * div_term)
|
112 |
+
pe[:, half_d_feature:] = torch.cos(positions * div_term)
|
113 |
+
return pe[None].expand(batch_size, -1, -1)
|
114 |
+
|
115 |
+
|
116 |
+
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PegasusX
|
117 |
+
class PegasusXAttention(nn.Module):
|
118 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
119 |
+
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
embed_dim: int,
|
123 |
+
num_heads: int,
|
124 |
+
dropout: float = 0.0,
|
125 |
+
is_decoder: bool = False,
|
126 |
+
bias: bool = True,
|
127 |
+
is_causal: bool = False,
|
128 |
+
config: Optional[PegasusXConfig] = None,
|
129 |
+
):
|
130 |
+
super().__init__()
|
131 |
+
self.embed_dim = embed_dim
|
132 |
+
self.num_heads = num_heads
|
133 |
+
self.dropout = dropout
|
134 |
+
self.head_dim = embed_dim // num_heads
|
135 |
+
self.config = config
|
136 |
+
|
137 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
138 |
+
raise ValueError(
|
139 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
140 |
+
f" and `num_heads`: {num_heads})."
|
141 |
+
)
|
142 |
+
self.scaling = self.head_dim**-0.5
|
143 |
+
self.is_decoder = is_decoder
|
144 |
+
self.is_causal = is_causal
|
145 |
+
|
146 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
147 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
148 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
149 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
150 |
+
|
151 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
152 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
153 |
+
|
154 |
+
def forward(
|
155 |
+
self,
|
156 |
+
hidden_states: torch.Tensor,
|
157 |
+
key_value_states: Optional[torch.Tensor] = None,
|
158 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
159 |
+
attention_mask: Optional[torch.Tensor] = None,
|
160 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
161 |
+
output_attentions: bool = False,
|
162 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
163 |
+
"""Input shape: Batch x Time x Channel"""
|
164 |
+
|
165 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
166 |
+
# for the decoder
|
167 |
+
is_cross_attention = key_value_states is not None
|
168 |
+
|
169 |
+
bsz, tgt_len, _ = hidden_states.size()
|
170 |
+
|
171 |
+
# get query proj
|
172 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
173 |
+
# get key, value proj
|
174 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
175 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
176 |
+
# the provided `key_value_states` to support prefix tuning
|
177 |
+
if (
|
178 |
+
is_cross_attention
|
179 |
+
and past_key_value is not None
|
180 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
181 |
+
):
|
182 |
+
# reuse k,v, cross_attentions
|
183 |
+
key_states = past_key_value[0]
|
184 |
+
value_states = past_key_value[1]
|
185 |
+
elif is_cross_attention:
|
186 |
+
# cross_attentions
|
187 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
188 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
189 |
+
elif past_key_value is not None:
|
190 |
+
# reuse k, v, self_attention
|
191 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
192 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
193 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
194 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
195 |
+
else:
|
196 |
+
# self_attention
|
197 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
198 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
199 |
+
|
200 |
+
if self.is_decoder:
|
201 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
202 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
203 |
+
# key/value_states (first "if" case)
|
204 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
205 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
206 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
207 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
208 |
+
past_key_value = (key_states, value_states)
|
209 |
+
|
210 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
211 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
212 |
+
key_states = key_states.reshape(*proj_shape)
|
213 |
+
value_states = value_states.reshape(*proj_shape)
|
214 |
+
|
215 |
+
src_len = key_states.size(1)
|
216 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
217 |
+
|
218 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
219 |
+
raise ValueError(
|
220 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
221 |
+
f" {attn_weights.size()}"
|
222 |
+
)
|
223 |
+
|
224 |
+
if attention_mask is not None:
|
225 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
226 |
+
raise ValueError(
|
227 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
228 |
+
)
|
229 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
230 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
231 |
+
|
232 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
233 |
+
|
234 |
+
if layer_head_mask is not None:
|
235 |
+
if layer_head_mask.size() != (self.num_heads,):
|
236 |
+
raise ValueError(
|
237 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
238 |
+
f" {layer_head_mask.size()}"
|
239 |
+
)
|
240 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
241 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
242 |
+
|
243 |
+
if output_attentions:
|
244 |
+
# this operation is a bit awkward, but it's required to
|
245 |
+
# make sure that attn_weights keeps its gradient.
|
246 |
+
# In order to do so, attn_weights have to be reshaped
|
247 |
+
# twice and have to be reused in the following
|
248 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
249 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
250 |
+
else:
|
251 |
+
attn_weights_reshaped = None
|
252 |
+
|
253 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
254 |
+
|
255 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
256 |
+
|
257 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
258 |
+
raise ValueError(
|
259 |
+
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
260 |
+
f" {attn_output.size()}"
|
261 |
+
)
|
262 |
+
|
263 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
264 |
+
attn_output = attn_output.transpose(1, 2)
|
265 |
+
|
266 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
267 |
+
# partitioned across GPUs when using tensor-parallelism.
|
268 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
269 |
+
|
270 |
+
attn_output = self.out_proj(attn_output)
|
271 |
+
|
272 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
273 |
+
|
274 |
+
|
275 |
+
class PegasusXGlobalLocalAttention(nn.Module):
|
276 |
+
"""Global + Local attention. For use with Encoder only."""
|
277 |
+
|
278 |
+
def __init__(
|
279 |
+
self,
|
280 |
+
embed_dim: int,
|
281 |
+
num_heads: int,
|
282 |
+
block_size: int,
|
283 |
+
dropout: float = 0.0,
|
284 |
+
is_decoder: bool = False,
|
285 |
+
):
|
286 |
+
super().__init__()
|
287 |
+
self.embed_dim = embed_dim
|
288 |
+
self.num_heads = num_heads
|
289 |
+
self.block_size = block_size
|
290 |
+
self.dropout = dropout
|
291 |
+
self.head_dim = embed_dim // num_heads
|
292 |
+
|
293 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
294 |
+
raise ValueError(
|
295 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
296 |
+
f" and `num_heads`: {num_heads})."
|
297 |
+
)
|
298 |
+
self.scaling = self.head_dim**-0.5
|
299 |
+
self.is_decoder = is_decoder
|
300 |
+
|
301 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
|
302 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=False)
|
303 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=False)
|
304 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=False)
|
305 |
+
|
306 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
307 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
308 |
+
|
309 |
+
def forward(
|
310 |
+
self,
|
311 |
+
token_hidden_states: torch.Tensor,
|
312 |
+
global_hidden_states: torch.Tensor,
|
313 |
+
attention_mask: Optional[torch.Tensor] = None,
|
314 |
+
output_attentions: bool = False,
|
315 |
+
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
316 |
+
"""Input shape: Batch x Time x Channel"""
|
317 |
+
dim = DimensionInfo(
|
318 |
+
batch_size=token_hidden_states.shape[0],
|
319 |
+
seq_len=token_hidden_states.shape[1],
|
320 |
+
block_size=self.block_size,
|
321 |
+
num_heads=self.num_heads,
|
322 |
+
hidden_dim=token_hidden_states.shape[2],
|
323 |
+
dim_per_head=self.head_dim,
|
324 |
+
num_blocks=token_hidden_states.shape[1] // self.block_size,
|
325 |
+
global_len=global_hidden_states.shape[1],
|
326 |
+
padded_seq_len=token_hidden_states.shape[1],
|
327 |
+
)
|
328 |
+
|
329 |
+
# [batch_size, num_heads, padded_seq_len, dim_per_head]
|
330 |
+
local_q = self._shape(
|
331 |
+
self.q_proj(token_hidden_states) * self.scaling,
|
332 |
+
seq_len=dim.padded_seq_len,
|
333 |
+
bsz=dim.batch_size,
|
334 |
+
)
|
335 |
+
local_k = self._shape(
|
336 |
+
self.k_proj(token_hidden_states),
|
337 |
+
seq_len=dim.padded_seq_len,
|
338 |
+
bsz=dim.batch_size,
|
339 |
+
)
|
340 |
+
local_v = self._shape(
|
341 |
+
self.v_proj(token_hidden_states),
|
342 |
+
seq_len=dim.padded_seq_len,
|
343 |
+
bsz=dim.batch_size,
|
344 |
+
)
|
345 |
+
|
346 |
+
# [batch_size, num_heads, global_len, dim_per_head]
|
347 |
+
global_q = self._shape(
|
348 |
+
self.q_proj(global_hidden_states) * self.scaling,
|
349 |
+
seq_len=dim.global_len,
|
350 |
+
bsz=dim.batch_size,
|
351 |
+
)
|
352 |
+
global_k = self._shape(
|
353 |
+
self.k_proj(global_hidden_states),
|
354 |
+
seq_len=dim.global_len,
|
355 |
+
bsz=dim.batch_size,
|
356 |
+
)
|
357 |
+
global_v = self._shape(
|
358 |
+
self.v_proj(global_hidden_states),
|
359 |
+
seq_len=dim.global_len,
|
360 |
+
bsz=dim.batch_size,
|
361 |
+
)
|
362 |
+
|
363 |
+
global_attn_output, global_attn_probs = self.compute_global_attention_representations(
|
364 |
+
global_q=global_q,
|
365 |
+
global_k=global_k,
|
366 |
+
global_v=global_v,
|
367 |
+
local_k=local_k,
|
368 |
+
local_v=local_v,
|
369 |
+
mask=attention_mask,
|
370 |
+
dim=dim,
|
371 |
+
)
|
372 |
+
local_attn_output, local_attn_probs = self.compute_local_attention_representations(
|
373 |
+
global_k=global_k,
|
374 |
+
global_v=global_v,
|
375 |
+
local_q=local_q,
|
376 |
+
local_k=local_k,
|
377 |
+
local_v=local_v,
|
378 |
+
mask=attention_mask,
|
379 |
+
dim=dim,
|
380 |
+
)
|
381 |
+
|
382 |
+
# [batch_size, global_len, hidden_dim]
|
383 |
+
global_attn_output = (
|
384 |
+
global_attn_output.transpose(1, 2).contiguous().view(dim.batch_size, dim.global_len, dim.hidden_dim)
|
385 |
+
)
|
386 |
+
# [batch_size, global_len, hidden_dim]
|
387 |
+
global_attn_output = self.out_proj(global_attn_output)
|
388 |
+
# [batch_size, num_heads, block_size, num_heads, dim_per_head]
|
389 |
+
local_attn_output = local_attn_output.permute(0, 2, 3, 1, 4).contiguous()
|
390 |
+
# [batch_size, padded_seq_len, hidden_dim]
|
391 |
+
local_attn_output = local_attn_output.view(dim.batch_size, dim.padded_seq_len, dim.hidden_dim)
|
392 |
+
# [batch_size, padded_seq_len, hidden_dim]
|
393 |
+
local_attn_output = self.out_proj(local_attn_output)
|
394 |
+
|
395 |
+
if output_attentions:
|
396 |
+
attn_probs = {"global": global_attn_probs, "local": local_attn_probs}
|
397 |
+
else:
|
398 |
+
attn_probs = None
|
399 |
+
|
400 |
+
return local_attn_output, global_attn_output, attn_probs
|
401 |
+
|
402 |
+
def compute_global_attention_representations(
|
403 |
+
self, global_q, global_k, global_v, local_k, local_v, mask, dim: DimensionInfo
|
404 |
+
):
|
405 |
+
"""Compute attention representations for global tokens.
|
406 |
+
|
407 |
+
Global tokens will attend to both global tokens as well as all input sequence tokens. Because the input
|
408 |
+
sequence tokens are arranged in blocks for local attention, we unblock them and compute attention.
|
409 |
+
|
410 |
+
Args:
|
411 |
+
global_q (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
|
412 |
+
query vectors from global tokens
|
413 |
+
global_k (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
|
414 |
+
key vectors from global tokens
|
415 |
+
global_v (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
|
416 |
+
value vectors from global tokens
|
417 |
+
local_k (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
|
418 |
+
key vectors from local tokens
|
419 |
+
local_v (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
|
420 |
+
value vectors from local tokens
|
421 |
+
mask (`torch.FloatTensor`) of shape [batch_size, padded_seq_len]: attention mask
|
422 |
+
dim (DimensionInfo): DimensionInfo wrapper for dimensions
|
423 |
+
|
424 |
+
Returns:
|
425 |
+
output of shape `[batch_sizes, length, features]`. where length will be padded to a multiple of block_size
|
426 |
+
"""
|
427 |
+
# [batch_size, num_heads, global_len+padded_seq_len, dim_per_head]
|
428 |
+
global_and_local_k = torch.cat([global_k, local_k], dim=2)
|
429 |
+
# [batch_size, num_heads, global_len+padded_seq_len, dim_per_head]
|
430 |
+
global_and_local_v = torch.cat([global_v, local_v], dim=2)
|
431 |
+
|
432 |
+
# [batch_size, global_len+padded_seq_len]
|
433 |
+
extended_mask = nn.functional.pad(mask, pad=(dim.global_len, 0), value=0)
|
434 |
+
|
435 |
+
# [batch_size, num_heads, global_len, global_len+padded_seq_len]
|
436 |
+
attn_weights = torch.einsum("BHGF,BHXF->BHGX", global_q, global_and_local_k)
|
437 |
+
attn_weights = attn_weights + extended_mask[:, None, None, :]
|
438 |
+
attn_probs = nn.functional.softmax(attn_weights, dim=-1)
|
439 |
+
attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training)
|
440 |
+
|
441 |
+
# [batch_size, num_heads, global_len, F]
|
442 |
+
attn_output = torch.einsum("BHGX,BHXF->BHGF", attn_probs, global_and_local_v)
|
443 |
+
return attn_output, attn_probs
|
444 |
+
|
445 |
+
def compute_local_attention_representations(
|
446 |
+
self, global_k, global_v, local_q, local_k, local_v, mask, dim: DimensionInfo
|
447 |
+
):
|
448 |
+
"""Compute attention representations for local tokens.
|
449 |
+
|
450 |
+
Local tokens will attend to both global tokens as well as all other tokens within the same local block. Hence,
|
451 |
+
we need to tile and concatenate the global tokens to every local block
|
452 |
+
|
453 |
+
Args:
|
454 |
+
global_k (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
|
455 |
+
key vectors from global tokens
|
456 |
+
global_v (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
|
457 |
+
value vectors from global tokens
|
458 |
+
local_q (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
|
459 |
+
query vectors from local tokens
|
460 |
+
local_k (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
|
461 |
+
key vectors from local tokens
|
462 |
+
local_v (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
|
463 |
+
value vectors from local tokens
|
464 |
+
mask (`torch.FloatTensor`) of shape [batch_size, padded_seq_len]: attention mask
|
465 |
+
dim (DimensionInfo): DimensionInfo wrapper for dimensions
|
466 |
+
|
467 |
+
Returns:
|
468 |
+
output of shape `[batch_sizes, length, features]`. where length will be padded to a multiple of block_size
|
469 |
+
"""
|
470 |
+
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
|
471 |
+
blocked_local_q = local_q.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head)
|
472 |
+
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
|
473 |
+
blocked_local_k = local_k.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head)
|
474 |
+
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
|
475 |
+
blocked_local_v = local_v.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head)
|
476 |
+
|
477 |
+
# [batch_size, num_blocks, global_len+block_size]
|
478 |
+
extended_mask = nn.functional.pad(
|
479 |
+
mask.view(dim.batch_size, dim.num_blocks, dim.block_size),
|
480 |
+
pad=(dim.global_len, 0),
|
481 |
+
value=0,
|
482 |
+
)
|
483 |
+
|
484 |
+
# [batch_size, num_heads, num_blocks, block_size, global_len]
|
485 |
+
blocked_local2global = torch.einsum("BHNKF,BHGF->BHNKG", blocked_local_q, global_k)
|
486 |
+
# [batch_size, num_heads, num_blocks, block_size, block_size]
|
487 |
+
blocked_local2local = torch.einsum("BHNKF,BHNXF->BHNKX", blocked_local_q, blocked_local_k)
|
488 |
+
|
489 |
+
# [batch_size, num_heads, num_blocks, block_size, global_len+block_size]
|
490 |
+
attn_weights = torch.cat([blocked_local2global, blocked_local2local], dim=-1)
|
491 |
+
attn_weights = attn_weights + extended_mask[:, None, :, None, :]
|
492 |
+
attn_probs = nn.functional.softmax(attn_weights, dim=-1)
|
493 |
+
attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training)
|
494 |
+
|
495 |
+
# [batch_size, num_heads, num_blocks, block_size, global_len]
|
496 |
+
local2global_attn_probs = attn_probs[:, :, :, :, : dim.global_len]
|
497 |
+
# [batch_size, num_heads, num_blocks, block_size, block_size]
|
498 |
+
local2local_attn_probs = attn_probs[:, :, :, :, dim.global_len :]
|
499 |
+
|
500 |
+
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
|
501 |
+
local2global_attn_output = torch.einsum("BHNKG,BHGF->BHNKF", local2global_attn_probs, global_v)
|
502 |
+
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
|
503 |
+
local2local_attn_output = torch.einsum("BHNKX,BHNXF->BHNKF", local2local_attn_probs, blocked_local_v)
|
504 |
+
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
|
505 |
+
attn_output = local2global_attn_output + local2local_attn_output
|
506 |
+
return attn_output, attn_probs
|
507 |
+
|
508 |
+
|
509 |
+
class PegasusXEncoderLayer(nn.Module):
|
510 |
+
def __init__(self, stagger_blocks_this_layer: bool, config: PegasusXConfig):
|
511 |
+
super().__init__()
|
512 |
+
self.embed_dim = config.d_model
|
513 |
+
self.self_attn = PegasusXGlobalLocalAttention(
|
514 |
+
embed_dim=self.embed_dim,
|
515 |
+
num_heads=config.encoder_attention_heads,
|
516 |
+
block_size=config.block_size,
|
517 |
+
dropout=config.attention_dropout,
|
518 |
+
)
|
519 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
520 |
+
self.global_self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
521 |
+
self.dropout = config.dropout
|
522 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
523 |
+
self.activation_dropout = config.activation_dropout
|
524 |
+
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
525 |
+
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
526 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
527 |
+
self.stagger_blocks_this_layer = stagger_blocks_this_layer
|
528 |
+
self.block_size = config.block_size
|
529 |
+
|
530 |
+
def forward(
|
531 |
+
self,
|
532 |
+
hidden_states: torch.Tensor,
|
533 |
+
global_hidden_states: torch.Tensor,
|
534 |
+
attention_mask: torch.Tensor,
|
535 |
+
output_attentions: bool = False,
|
536 |
+
) -> torch.Tensor:
|
537 |
+
"""
|
538 |
+
Args:
|
539 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
|
540 |
+
global_hidden_states (`torch.FloatTensor`): global token hidden states
|
541 |
+
*(seq_len, num_global_tokens, embed_dim)*
|
542 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
543 |
+
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
544 |
+
output_attentions (`bool`, *optional*):
|
545 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
546 |
+
returned tensors for more detail.
|
547 |
+
"""
|
548 |
+
residual = hidden_states
|
549 |
+
global_residual = global_hidden_states
|
550 |
+
|
551 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
552 |
+
global_hidden_states = self.global_self_attn_layer_norm(global_hidden_states)
|
553 |
+
|
554 |
+
if self.stagger_blocks_this_layer:
|
555 |
+
# Pad the blocks to simulate staggering
|
556 |
+
hidden_states, attention_mask = self.pad_local_tokens(
|
557 |
+
hidden_states=hidden_states, attention_mask=attention_mask, block_size=self.block_size
|
558 |
+
)
|
559 |
+
|
560 |
+
hidden_states, global_hidden_states, attn_weights = self.self_attn(
|
561 |
+
token_hidden_states=hidden_states,
|
562 |
+
global_hidden_states=global_hidden_states,
|
563 |
+
attention_mask=attention_mask,
|
564 |
+
output_attentions=output_attentions,
|
565 |
+
)
|
566 |
+
|
567 |
+
if self.stagger_blocks_this_layer:
|
568 |
+
# Undo the padding
|
569 |
+
hidden_states = self.unpad_local_tokens(padded_hidden_states=hidden_states, block_size=self.block_size)
|
570 |
+
|
571 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
572 |
+
hidden_states = residual + hidden_states
|
573 |
+
|
574 |
+
global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training)
|
575 |
+
global_hidden_states = global_residual + global_hidden_states
|
576 |
+
|
577 |
+
residual = hidden_states
|
578 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
579 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
580 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
581 |
+
hidden_states = self.fc2(hidden_states)
|
582 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
583 |
+
hidden_states = residual + hidden_states
|
584 |
+
|
585 |
+
global_residual = global_hidden_states
|
586 |
+
global_hidden_states = self.final_layer_norm(global_hidden_states)
|
587 |
+
global_hidden_states = self.activation_fn(self.fc1(global_hidden_states))
|
588 |
+
global_hidden_states = nn.functional.dropout(
|
589 |
+
global_hidden_states, p=self.activation_dropout, training=self.training
|
590 |
+
)
|
591 |
+
global_hidden_states = self.fc2(global_hidden_states)
|
592 |
+
global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training)
|
593 |
+
global_hidden_states = global_residual + global_hidden_states
|
594 |
+
outputs = (hidden_states, global_hidden_states)
|
595 |
+
|
596 |
+
if output_attentions:
|
597 |
+
outputs += (attn_weights,)
|
598 |
+
|
599 |
+
return outputs
|
600 |
+
|
601 |
+
@classmethod
|
602 |
+
def pad_local_tokens(cls, hidden_states, attention_mask, block_size):
|
603 |
+
# hidden_states: [batch_size, seq_len, hidden_dim]
|
604 |
+
pad_size = block_size // 2
|
605 |
+
mask_min_value = torch.finfo(hidden_states.dtype).min
|
606 |
+
padded_hidden_states = torch.nn.functional.pad(
|
607 |
+
hidden_states,
|
608 |
+
pad=(0, 0, pad_size, pad_size),
|
609 |
+
)
|
610 |
+
padded_mask = torch.nn.functional.pad(
|
611 |
+
attention_mask,
|
612 |
+
pad=(pad_size, pad_size),
|
613 |
+
value=mask_min_value,
|
614 |
+
)
|
615 |
+
return padded_hidden_states, padded_mask
|
616 |
+
|
617 |
+
@classmethod
|
618 |
+
def unpad_local_tokens(cls, padded_hidden_states, block_size):
|
619 |
+
# padded_hidden_states: [batch_size, padded seq_len, hidden_dim]
|
620 |
+
pad_size = block_size // 2
|
621 |
+
return padded_hidden_states[:, pad_size:-pad_size, :]
|
622 |
+
|
623 |
+
|
624 |
+
class PegasusXDecoderLayer(nn.Module):
|
625 |
+
def __init__(self, config: PegasusXConfig):
|
626 |
+
super().__init__()
|
627 |
+
self.embed_dim = config.d_model
|
628 |
+
|
629 |
+
self.self_attn = PegasusXAttention(
|
630 |
+
embed_dim=self.embed_dim,
|
631 |
+
num_heads=config.decoder_attention_heads,
|
632 |
+
dropout=config.attention_dropout,
|
633 |
+
is_decoder=True,
|
634 |
+
bias=False,
|
635 |
+
)
|
636 |
+
self.dropout = config.dropout
|
637 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
638 |
+
self.activation_dropout = config.activation_dropout
|
639 |
+
|
640 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
641 |
+
self.encoder_attn = PegasusXAttention(
|
642 |
+
self.embed_dim,
|
643 |
+
config.decoder_attention_heads,
|
644 |
+
dropout=config.attention_dropout,
|
645 |
+
is_decoder=True,
|
646 |
+
bias=False,
|
647 |
+
)
|
648 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
649 |
+
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
650 |
+
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
|
651 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
652 |
+
|
653 |
+
def forward(
|
654 |
+
self,
|
655 |
+
hidden_states: torch.Tensor,
|
656 |
+
attention_mask: Optional[torch.Tensor] = None,
|
657 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
658 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
659 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
660 |
+
output_attentions: Optional[bool] = False,
|
661 |
+
use_cache: Optional[bool] = True,
|
662 |
+
) -> torch.Tensor:
|
663 |
+
"""
|
664 |
+
Args:
|
665 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
|
666 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
667 |
+
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
668 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
669 |
+
cross attention input to the layer of shape *(seq_len, batch, embed_dim)*
|
670 |
+
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
671 |
+
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
672 |
+
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
|
673 |
+
output_attentions (`bool`, *optional*):
|
674 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
675 |
+
returned tensors for more detail.
|
676 |
+
use_cache: Whether to us KV cache for decoding
|
677 |
+
"""
|
678 |
+
residual = hidden_states
|
679 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
680 |
+
|
681 |
+
# Self Attention
|
682 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
683 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
684 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
685 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
686 |
+
hidden_states=hidden_states,
|
687 |
+
past_key_value=self_attn_past_key_value,
|
688 |
+
attention_mask=attention_mask,
|
689 |
+
output_attentions=output_attentions,
|
690 |
+
)
|
691 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
692 |
+
hidden_states = residual + hidden_states
|
693 |
+
|
694 |
+
# Cross-Attention Block
|
695 |
+
cross_attn_present_key_value = None
|
696 |
+
cross_attn_weights = None
|
697 |
+
if encoder_hidden_states is not None:
|
698 |
+
residual = hidden_states
|
699 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
700 |
+
|
701 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
702 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
703 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
704 |
+
hidden_states=hidden_states,
|
705 |
+
key_value_states=encoder_hidden_states,
|
706 |
+
attention_mask=encoder_attention_mask,
|
707 |
+
past_key_value=cross_attn_past_key_value,
|
708 |
+
output_attentions=output_attentions,
|
709 |
+
)
|
710 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
711 |
+
hidden_states = residual + hidden_states
|
712 |
+
|
713 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
714 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
715 |
+
|
716 |
+
# Fully Connected
|
717 |
+
residual = hidden_states
|
718 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
719 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
720 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
721 |
+
hidden_states = self.fc2(hidden_states)
|
722 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
723 |
+
hidden_states = residual + hidden_states
|
724 |
+
|
725 |
+
outputs = (hidden_states,)
|
726 |
+
|
727 |
+
if output_attentions:
|
728 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
729 |
+
|
730 |
+
if use_cache:
|
731 |
+
outputs += (present_key_value,)
|
732 |
+
|
733 |
+
return outputs
|
734 |
+
|
735 |
+
|
736 |
+
class PegasusXPreTrainedModel(PreTrainedModel):
|
737 |
+
config_class = PegasusXConfig
|
738 |
+
base_model_prefix = "model"
|
739 |
+
supports_gradient_checkpointing = True
|
740 |
+
_no_split_modules = [r"PegasusXEncoderLayer", r"PegasusXDecoderLayer"]
|
741 |
+
|
742 |
+
def _init_weights(self, module):
|
743 |
+
std = self.config.init_std
|
744 |
+
if isinstance(module, nn.Linear):
|
745 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
746 |
+
if module.bias is not None:
|
747 |
+
module.bias.data.zero_()
|
748 |
+
elif isinstance(module, nn.Embedding):
|
749 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
750 |
+
|
751 |
+
|
752 |
+
PEGASUS_X_START_DOCSTRING = r"""
|
753 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
754 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
755 |
+
etc.)
|
756 |
+
|
757 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
758 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
759 |
+
and behavior.
|
760 |
+
|
761 |
+
Parameters:
|
762 |
+
config ([`PegasusXConfig`]):
|
763 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
764 |
+
load the weights associated with the model, only the configuration. Check out the
|
765 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
766 |
+
"""
|
767 |
+
|
768 |
+
PEGASUS_X_GENERATION_EXAMPLE = r"""
|
769 |
+
Summarization example:
|
770 |
+
|
771 |
+
```python
|
772 |
+
>>> from transformers import AutoTokenizer, PegasusXForConditionalGeneration
|
773 |
+
|
774 |
+
>>> model = PegasusXForConditionalGeneration.from_pretrained("google/pegasus-x-base")
|
775 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-x-large")
|
776 |
+
|
777 |
+
>>> ARTICLE_TO_SUMMARIZE = (
|
778 |
+
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
|
779 |
+
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
|
780 |
+
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
|
781 |
+
... )
|
782 |
+
>>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="pt")
|
783 |
+
|
784 |
+
>>> # Generate Summary
|
785 |
+
>>> summary_ids = model.generate(inputs["input_ids"])
|
786 |
+
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
787 |
+
"California's largest electricity provider has turned off power to hundreds of thousands of customers."
|
788 |
+
```
|
789 |
+
"""
|
790 |
+
|
791 |
+
PEGASUS_X_INPUTS_DOCSTRING = r"""
|
792 |
+
Args:
|
793 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
794 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
795 |
+
it.
|
796 |
+
|
797 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
798 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
799 |
+
|
800 |
+
[What are input IDs?](../glossary#input-ids)
|
801 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
802 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
803 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
804 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
805 |
+
|
806 |
+
- 1 for tokens that are **not masked**,
|
807 |
+
- 0 for tokens that are **masked**.
|
808 |
+
|
809 |
+
[What are attention masks?](../glossary#attention-mask)
|
810 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
811 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
812 |
+
|
813 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
814 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
815 |
+
|
816 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
817 |
+
|
818 |
+
PEGASUS-X uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
|
819 |
+
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
820 |
+
`past_key_values`).
|
821 |
+
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
822 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
823 |
+
be used by default.
|
824 |
+
|
825 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
826 |
+
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
827 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
828 |
+
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
829 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
830 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
831 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
832 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
833 |
+
|
834 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
835 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
836 |
+
|
837 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
838 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
839 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
840 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
841 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
842 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
843 |
+
than the model's internal embedding lookup matrix.
|
844 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
845 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
846 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
847 |
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
848 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
849 |
+
|
850 |
+
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
|
851 |
+
of `inputs_embeds`.
|
852 |
+
use_cache (`bool`, *optional*):
|
853 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
854 |
+
`past_key_values`).
|
855 |
+
output_attentions (`bool`, *optional*):
|
856 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
857 |
+
tensors for more detail.
|
858 |
+
output_hidden_states (`bool`, *optional*):
|
859 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
860 |
+
more detail.
|
861 |
+
return_dict (`bool`, *optional*):
|
862 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
863 |
+
"""
|
864 |
+
|
865 |
+
|
866 |
+
class PegasusXEncoder(PegasusXPreTrainedModel):
|
867 |
+
"""
|
868 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
869 |
+
[`PegasusXEncoderLayer`].
|
870 |
+
|
871 |
+
Args:
|
872 |
+
config: PegasusXConfig
|
873 |
+
embed_tokens (nn.Embedding): output embedding
|
874 |
+
"""
|
875 |
+
|
876 |
+
def __init__(self, config: PegasusXConfig, embed_tokens: Optional[nn.Embedding] = None):
|
877 |
+
super().__init__(config)
|
878 |
+
|
879 |
+
self.dropout = config.dropout
|
880 |
+
self.layerdrop = config.encoder_layerdrop
|
881 |
+
|
882 |
+
embed_dim = config.d_model
|
883 |
+
self.max_source_positions = config.max_position_embeddings
|
884 |
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
885 |
+
|
886 |
+
if embed_tokens is not None:
|
887 |
+
self.embed_tokens = embed_tokens
|
888 |
+
else:
|
889 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim)
|
890 |
+
|
891 |
+
self.embed_global = nn.Embedding(config.num_global_tokens, embed_dim)
|
892 |
+
self.embed_positions = PegasusXSinusoidalPositionalEmbedding(embed_dim)
|
893 |
+
self.layers = nn.ModuleList(
|
894 |
+
[
|
895 |
+
PegasusXEncoderLayer(
|
896 |
+
stagger_blocks_this_layer=i % 2 == 1 and config.stagger_local_blocks, config=config
|
897 |
+
)
|
898 |
+
for i in range(config.encoder_layers)
|
899 |
+
]
|
900 |
+
)
|
901 |
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
902 |
+
|
903 |
+
self.gradient_checkpointing = False
|
904 |
+
# Initialize weights and apply final processing
|
905 |
+
self.post_init()
|
906 |
+
|
907 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
908 |
+
"""
|
909 |
+
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
|
910 |
+
config.max_position_embeddings`.
|
911 |
+
|
912 |
+
Arguments:
|
913 |
+
new_num_position_embeddings (`int`):
|
914 |
+
The number of new position embeddings. If position embeddings are learned, increasing the size will add
|
915 |
+
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
|
916 |
+
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
|
917 |
+
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
|
918 |
+
will remove vectors from the end.
|
919 |
+
"""
|
920 |
+
logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
|
921 |
+
self.config.max_position_embeddings = new_num_position_embeddings
|
922 |
+
|
923 |
+
self.embed_positions = PegasusXSinusoidalPositionalEmbedding(self.config.d_model)
|
924 |
+
self.embed_positions.to(self.device)
|
925 |
+
|
926 |
+
def get_position_embeddings(self) -> nn.Embedding:
|
927 |
+
"""
|
928 |
+
Returns the position embeddings matrix
|
929 |
+
"""
|
930 |
+
return self.embed_positions
|
931 |
+
|
932 |
+
def forward(
|
933 |
+
self,
|
934 |
+
input_ids=None,
|
935 |
+
attention_mask=None,
|
936 |
+
inputs_embeds=None,
|
937 |
+
output_attentions=None,
|
938 |
+
output_hidden_states=None,
|
939 |
+
return_dict=None,
|
940 |
+
):
|
941 |
+
r"""
|
942 |
+
Args:
|
943 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
944 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
945 |
+
provide it.
|
946 |
+
|
947 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
948 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
949 |
+
|
950 |
+
[What are input IDs?](../glossary#input-ids)
|
951 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
952 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
953 |
+
|
954 |
+
- 1 for tokens that are **not masked**,
|
955 |
+
- 0 for tokens that are **masked**.
|
956 |
+
|
957 |
+
[What are attention masks?](../glossary#attention-mask)
|
958 |
+
|
959 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
960 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
961 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
962 |
+
than the model's internal embedding lookup matrix.
|
963 |
+
output_attentions (`bool`, *optional*):
|
964 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
965 |
+
returned tensors for more detail.
|
966 |
+
output_hidden_states (`bool`, *optional*):
|
967 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
968 |
+
for more detail.
|
969 |
+
return_dict (`bool`, *optional*):
|
970 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
971 |
+
"""
|
972 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
973 |
+
output_hidden_states = (
|
974 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
975 |
+
)
|
976 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
977 |
+
|
978 |
+
# retrieve input_ids and inputs_embeds
|
979 |
+
if input_ids is not None and inputs_embeds is not None:
|
980 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
981 |
+
elif input_ids is not None:
|
982 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
983 |
+
input_shape = input_ids.size()
|
984 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
985 |
+
elif inputs_embeds is not None:
|
986 |
+
input_shape = inputs_embeds.size()[:-1]
|
987 |
+
else:
|
988 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
989 |
+
|
990 |
+
if inputs_embeds is None:
|
991 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
992 |
+
|
993 |
+
embed_pos = self.embed_positions(inputs_embeds)
|
994 |
+
|
995 |
+
hidden_states = inputs_embeds + embed_pos
|
996 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
997 |
+
|
998 |
+
batch_size, seq_len, _ = hidden_states.shape
|
999 |
+
|
1000 |
+
# Setup mask
|
1001 |
+
if attention_mask is None:
|
1002 |
+
attention_mask = torch.ones(*input_shape, dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
1003 |
+
attention_mask = attention_mask.to(dtype=hidden_states.dtype)
|
1004 |
+
mask_min_value = torch.finfo(hidden_states.dtype).min
|
1005 |
+
inverted_mask = 1.0 - attention_mask
|
1006 |
+
attention_mask = inverted_mask.masked_fill(
|
1007 |
+
inverted_mask.to(torch.bool),
|
1008 |
+
mask_min_value,
|
1009 |
+
)
|
1010 |
+
|
1011 |
+
# padding to block_size
|
1012 |
+
if seq_len % self.config.block_size != 0:
|
1013 |
+
pad_len = self.config.block_size - seq_len % self.config.block_size
|
1014 |
+
hidden_states = nn.functional.pad(hidden_states, pad=(0, 0, 0, pad_len), value=0)
|
1015 |
+
attention_mask = nn.functional.pad(attention_mask, pad=(0, pad_len), value=mask_min_value)
|
1016 |
+
|
1017 |
+
# Global tokens
|
1018 |
+
global_hidden_states = self.embed_global(
|
1019 |
+
torch.arange(self.config.num_global_tokens, device=hidden_states.device)[None].expand(batch_size, -1)
|
1020 |
+
)
|
1021 |
+
|
1022 |
+
encoder_states = () if output_hidden_states else None
|
1023 |
+
all_attentions = () if output_attentions else None
|
1024 |
+
|
1025 |
+
for idx, encoder_layer in enumerate(self.layers):
|
1026 |
+
if output_hidden_states:
|
1027 |
+
encoder_states = encoder_states + (hidden_states,)
|
1028 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1029 |
+
to_drop = False
|
1030 |
+
if self.training:
|
1031 |
+
dropout_probability = torch.rand([])
|
1032 |
+
if dropout_probability < self.layerdrop: # skip the layer
|
1033 |
+
to_drop = True
|
1034 |
+
|
1035 |
+
if to_drop:
|
1036 |
+
layer_outputs = (None, None)
|
1037 |
+
else:
|
1038 |
+
if self.gradient_checkpointing and self.training:
|
1039 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1040 |
+
encoder_layer.__call__,
|
1041 |
+
hidden_states,
|
1042 |
+
global_hidden_states,
|
1043 |
+
attention_mask,
|
1044 |
+
output_attentions,
|
1045 |
+
)
|
1046 |
+
else:
|
1047 |
+
layer_outputs = encoder_layer(
|
1048 |
+
hidden_states,
|
1049 |
+
global_hidden_states,
|
1050 |
+
attention_mask,
|
1051 |
+
output_attentions=output_attentions,
|
1052 |
+
)
|
1053 |
+
|
1054 |
+
hidden_states = layer_outputs[0]
|
1055 |
+
global_hidden_states = layer_outputs[1]
|
1056 |
+
|
1057 |
+
if output_attentions:
|
1058 |
+
all_attentions = all_attentions + (layer_outputs[2],)
|
1059 |
+
|
1060 |
+
# Undo padding-to-block-size
|
1061 |
+
hidden_states = hidden_states[:, :seq_len]
|
1062 |
+
|
1063 |
+
hidden_states = self.layer_norm(hidden_states)
|
1064 |
+
|
1065 |
+
if output_hidden_states:
|
1066 |
+
encoder_states = encoder_states + ((hidden_states, global_hidden_states),)
|
1067 |
+
|
1068 |
+
if not return_dict:
|
1069 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
1070 |
+
return BaseModelOutput(
|
1071 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
1072 |
+
)
|
1073 |
+
|
1074 |
+
|
1075 |
+
class PegasusXDecoder(PegasusXPreTrainedModel):
|
1076 |
+
"""
|
1077 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`PegasusDecoderLayer`]
|
1078 |
+
|
1079 |
+
Args:
|
1080 |
+
config: PegasusXConfig
|
1081 |
+
embed_tokens (nn.Embedding): output embedding
|
1082 |
+
"""
|
1083 |
+
|
1084 |
+
def __init__(self, config: PegasusXConfig, embed_tokens: Optional[nn.Embedding] = None):
|
1085 |
+
super().__init__(config)
|
1086 |
+
self.dropout = config.dropout
|
1087 |
+
self.layerdrop = config.decoder_layerdrop
|
1088 |
+
self.max_target_positions = config.max_position_embeddings
|
1089 |
+
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
|
1090 |
+
|
1091 |
+
if embed_tokens is not None:
|
1092 |
+
self.embed_tokens = embed_tokens
|
1093 |
+
else:
|
1094 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model)
|
1095 |
+
|
1096 |
+
self.embed_positions = PegasusXSinusoidalPositionalEmbedding(config.d_model)
|
1097 |
+
self.layers = nn.ModuleList([PegasusXDecoderLayer(config) for _ in range(config.decoder_layers)])
|
1098 |
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
1099 |
+
|
1100 |
+
self.gradient_checkpointing = False
|
1101 |
+
# Initialize weights and apply final processing
|
1102 |
+
self.post_init()
|
1103 |
+
|
1104 |
+
def get_input_embeddings(self):
|
1105 |
+
return self.embed_tokens
|
1106 |
+
|
1107 |
+
def set_input_embeddings(self, value):
|
1108 |
+
self.embed_tokens = value
|
1109 |
+
|
1110 |
+
def forward(
|
1111 |
+
self,
|
1112 |
+
input_ids=None,
|
1113 |
+
attention_mask=None,
|
1114 |
+
encoder_hidden_states=None,
|
1115 |
+
encoder_attention_mask=None,
|
1116 |
+
past_key_values=None,
|
1117 |
+
inputs_embeds=None,
|
1118 |
+
use_cache=None,
|
1119 |
+
output_attentions=None,
|
1120 |
+
output_hidden_states=None,
|
1121 |
+
return_dict=None,
|
1122 |
+
):
|
1123 |
+
r"""
|
1124 |
+
Args:
|
1125 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1126 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
1127 |
+
provide it.
|
1128 |
+
|
1129 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1130 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1131 |
+
|
1132 |
+
[What are input IDs?](../glossary#input-ids)
|
1133 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1134 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1135 |
+
|
1136 |
+
- 1 for tokens that are **not masked**,
|
1137 |
+
- 0 for tokens that are **masked**.
|
1138 |
+
|
1139 |
+
[What are attention masks?](../glossary#attention-mask)
|
1140 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
1141 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
1142 |
+
of the decoder.
|
1143 |
+
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
1144 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
1145 |
+
selected in `[0, 1]`:
|
1146 |
+
|
1147 |
+
- 1 for tokens that are **not masked**,
|
1148 |
+
- 0 for tokens that are **masked**.
|
1149 |
+
|
1150 |
+
[What are attention masks?](../glossary#attention-mask)
|
1151 |
+
|
1152 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1153 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1154 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
1155 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
1156 |
+
|
1157 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
1158 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1159 |
+
|
1160 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
1161 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
1162 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1163 |
+
inputs_embeds (`torch.FloatTensor` of
|
1164 |
+
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
|
1165 |
+
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
|
1166 |
+
control over how to convert `input_ids` indices into associated vectors than the model's internal
|
1167 |
+
embedding lookup matrix.
|
1168 |
+
output_attentions (`bool`, *optional*):
|
1169 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1170 |
+
returned tensors for more detail.
|
1171 |
+
output_hidden_states (`bool`, *optional*):
|
1172 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1173 |
+
for more detail.
|
1174 |
+
return_dict (`bool`, *optional*):
|
1175 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1176 |
+
"""
|
1177 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1178 |
+
output_hidden_states = (
|
1179 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1180 |
+
)
|
1181 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1182 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1183 |
+
|
1184 |
+
# retrieve input_ids and inputs_embeds
|
1185 |
+
if input_ids is not None and inputs_embeds is not None:
|
1186 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1187 |
+
elif input_ids is not None:
|
1188 |
+
input_shape = input_ids.size()
|
1189 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1190 |
+
elif inputs_embeds is not None:
|
1191 |
+
input_shape = inputs_embeds.size()[:-1]
|
1192 |
+
else:
|
1193 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1194 |
+
|
1195 |
+
# past_key_values_length
|
1196 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1197 |
+
|
1198 |
+
if inputs_embeds is None:
|
1199 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1200 |
+
|
1201 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1202 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
1203 |
+
)
|
1204 |
+
|
1205 |
+
# expand encoder attention mask
|
1206 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1207 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1208 |
+
encoder_attention_mask = _prepare_4d_attention_mask(
|
1209 |
+
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
# embed positions
|
1213 |
+
positions = self.embed_positions(inputs_embeds, past_key_values_length)
|
1214 |
+
|
1215 |
+
positions = positions.to(inputs_embeds.device)
|
1216 |
+
|
1217 |
+
hidden_states = inputs_embeds + positions
|
1218 |
+
|
1219 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
1220 |
+
|
1221 |
+
if self.gradient_checkpointing and self.training:
|
1222 |
+
if use_cache:
|
1223 |
+
logger.warning_once(
|
1224 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1225 |
+
)
|
1226 |
+
use_cache = False
|
1227 |
+
|
1228 |
+
# decoder layers
|
1229 |
+
all_hidden_states = () if output_hidden_states else None
|
1230 |
+
all_self_attns = () if output_attentions else None
|
1231 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
1232 |
+
next_decoder_cache = () if use_cache else None
|
1233 |
+
|
1234 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1235 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1236 |
+
if output_hidden_states:
|
1237 |
+
all_hidden_states += (hidden_states,)
|
1238 |
+
if self.training:
|
1239 |
+
dropout_probability = torch.rand([])
|
1240 |
+
if dropout_probability < self.layerdrop:
|
1241 |
+
continue
|
1242 |
+
|
1243 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1244 |
+
|
1245 |
+
if self.gradient_checkpointing and self.training:
|
1246 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1247 |
+
decoder_layer.__call__,
|
1248 |
+
hidden_states,
|
1249 |
+
attention_mask,
|
1250 |
+
encoder_hidden_states,
|
1251 |
+
encoder_attention_mask,
|
1252 |
+
None,
|
1253 |
+
output_attentions,
|
1254 |
+
use_cache,
|
1255 |
+
)
|
1256 |
+
else:
|
1257 |
+
layer_outputs = decoder_layer(
|
1258 |
+
hidden_states,
|
1259 |
+
attention_mask=attention_mask,
|
1260 |
+
encoder_hidden_states=encoder_hidden_states,
|
1261 |
+
encoder_attention_mask=encoder_attention_mask,
|
1262 |
+
past_key_value=past_key_value,
|
1263 |
+
output_attentions=output_attentions,
|
1264 |
+
use_cache=use_cache,
|
1265 |
+
)
|
1266 |
+
hidden_states = layer_outputs[0]
|
1267 |
+
|
1268 |
+
if use_cache:
|
1269 |
+
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
|
1270 |
+
|
1271 |
+
if output_attentions:
|
1272 |
+
all_self_attns += (layer_outputs[1],)
|
1273 |
+
|
1274 |
+
if encoder_hidden_states is not None:
|
1275 |
+
all_cross_attentions += (layer_outputs[2],)
|
1276 |
+
|
1277 |
+
hidden_states = self.layer_norm(hidden_states)
|
1278 |
+
|
1279 |
+
# add hidden states from the last decoder layer
|
1280 |
+
if output_hidden_states:
|
1281 |
+
all_hidden_states += (hidden_states,)
|
1282 |
+
|
1283 |
+
next_cache = next_decoder_cache if use_cache else None
|
1284 |
+
if not return_dict:
|
1285 |
+
return tuple(
|
1286 |
+
v
|
1287 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
|
1288 |
+
if v is not None
|
1289 |
+
)
|
1290 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1291 |
+
last_hidden_state=hidden_states,
|
1292 |
+
past_key_values=next_cache,
|
1293 |
+
hidden_states=all_hidden_states,
|
1294 |
+
attentions=all_self_attns,
|
1295 |
+
cross_attentions=all_cross_attentions,
|
1296 |
+
)
|
1297 |
+
|
1298 |
+
|
1299 |
+
@add_start_docstrings(
|
1300 |
+
"The bare PEGASUS-X Model outputting raw hidden-states without any specific head on top.",
|
1301 |
+
PEGASUS_X_START_DOCSTRING,
|
1302 |
+
)
|
1303 |
+
class PegasusXModel(PegasusXPreTrainedModel):
|
1304 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
|
1305 |
+
|
1306 |
+
def __init__(self, config: PegasusXConfig):
|
1307 |
+
super().__init__(config)
|
1308 |
+
|
1309 |
+
vocab_size = config.vocab_size
|
1310 |
+
self.shared = nn.Embedding(vocab_size, config.d_model)
|
1311 |
+
|
1312 |
+
self.encoder = PegasusXEncoder(config, self.shared)
|
1313 |
+
self.decoder = PegasusXDecoder(config, self.shared)
|
1314 |
+
|
1315 |
+
# Initialize weights and apply final processing
|
1316 |
+
self.post_init()
|
1317 |
+
|
1318 |
+
def get_input_embeddings(self):
|
1319 |
+
return self.shared
|
1320 |
+
|
1321 |
+
def set_input_embeddings(self, value):
|
1322 |
+
self.shared = value
|
1323 |
+
self.encoder.embed_tokens = self.shared
|
1324 |
+
self.decoder.embed_tokens = self.shared
|
1325 |
+
|
1326 |
+
def get_encoder(self):
|
1327 |
+
return self.encoder
|
1328 |
+
|
1329 |
+
def get_decoder(self):
|
1330 |
+
return self.decoder
|
1331 |
+
|
1332 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
1333 |
+
"""
|
1334 |
+
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
|
1335 |
+
config.max_position_embeddings`.
|
1336 |
+
|
1337 |
+
Arguments:
|
1338 |
+
new_num_position_embeddings (`int`):
|
1339 |
+
The number of new position embeddings. If position embeddings are learned, increasing the size will add
|
1340 |
+
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
|
1341 |
+
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
|
1342 |
+
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
|
1343 |
+
will remove vectors from the end.
|
1344 |
+
"""
|
1345 |
+
self.config.max_position_embeddings = new_num_position_embeddings
|
1346 |
+
self.encoder.resize_position_embeddings(new_num_position_embeddings)
|
1347 |
+
self.decoder.resize_position_embeddings(new_num_position_embeddings)
|
1348 |
+
|
1349 |
+
def get_position_embeddings(self) -> Tuple[nn.Embedding]:
|
1350 |
+
"""
|
1351 |
+
Returns the position embeddings matrix
|
1352 |
+
"""
|
1353 |
+
return (self.encoder.get_position_embeddings(), self.decoder.get_position_embeddings())
|
1354 |
+
|
1355 |
+
@add_start_docstrings_to_model_forward(PEGASUS_X_INPUTS_DOCSTRING)
|
1356 |
+
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
|
1357 |
+
def forward(
|
1358 |
+
self,
|
1359 |
+
input_ids: Optional[torch.Tensor] = None,
|
1360 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1361 |
+
decoder_input_ids: Optional[torch.Tensor] = None,
|
1362 |
+
decoder_attention_mask: Optional[torch.Tensor] = None,
|
1363 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
1364 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
1365 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1366 |
+
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
1367 |
+
use_cache: Optional[bool] = None,
|
1368 |
+
output_attentions: Optional[bool] = None,
|
1369 |
+
output_hidden_states: Optional[bool] = None,
|
1370 |
+
return_dict: Optional[bool] = None,
|
1371 |
+
) -> Union[Tuple, Seq2SeqModelOutput]:
|
1372 |
+
r"""
|
1373 |
+
Returns:
|
1374 |
+
|
1375 |
+
Example:
|
1376 |
+
|
1377 |
+
```python
|
1378 |
+
>>> from transformers import AutoTokenizer, PegasusModel
|
1379 |
+
|
1380 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-x-large")
|
1381 |
+
>>> model = PegasusModel.from_pretrained("google/pegasus-x-large")
|
1382 |
+
|
1383 |
+
>>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
|
1384 |
+
>>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt")
|
1385 |
+
>>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)
|
1386 |
+
|
1387 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1388 |
+
>>> list(last_hidden_states.shape)
|
1389 |
+
[1, 4, 1024]
|
1390 |
+
```"""
|
1391 |
+
|
1392 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1393 |
+
output_hidden_states = (
|
1394 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1395 |
+
)
|
1396 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1397 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1398 |
+
|
1399 |
+
if encoder_outputs is None:
|
1400 |
+
encoder_outputs = self.encoder(
|
1401 |
+
input_ids=input_ids,
|
1402 |
+
attention_mask=attention_mask,
|
1403 |
+
inputs_embeds=inputs_embeds,
|
1404 |
+
output_attentions=output_attentions,
|
1405 |
+
output_hidden_states=output_hidden_states,
|
1406 |
+
return_dict=return_dict,
|
1407 |
+
)
|
1408 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
1409 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1410 |
+
encoder_outputs = BaseModelOutput(
|
1411 |
+
last_hidden_state=encoder_outputs[0],
|
1412 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1413 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1414 |
+
)
|
1415 |
+
|
1416 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
1417 |
+
decoder_outputs = self.decoder(
|
1418 |
+
input_ids=decoder_input_ids,
|
1419 |
+
attention_mask=decoder_attention_mask,
|
1420 |
+
encoder_hidden_states=encoder_outputs[0],
|
1421 |
+
encoder_attention_mask=attention_mask,
|
1422 |
+
past_key_values=past_key_values,
|
1423 |
+
inputs_embeds=decoder_inputs_embeds,
|
1424 |
+
use_cache=use_cache,
|
1425 |
+
output_attentions=output_attentions,
|
1426 |
+
output_hidden_states=output_hidden_states,
|
1427 |
+
return_dict=return_dict,
|
1428 |
+
)
|
1429 |
+
|
1430 |
+
if not return_dict:
|
1431 |
+
return decoder_outputs + encoder_outputs
|
1432 |
+
|
1433 |
+
return Seq2SeqModelOutput(
|
1434 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1435 |
+
past_key_values=decoder_outputs.past_key_values,
|
1436 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1437 |
+
decoder_attentions=decoder_outputs.attentions,
|
1438 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1439 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1440 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1441 |
+
encoder_attentions=encoder_outputs.attentions,
|
1442 |
+
)
|
1443 |
+
|
1444 |
+
|
1445 |
+
@add_start_docstrings("The PEGASUS-X for conditional generation (e.g. summarization).", PEGASUS_X_START_DOCSTRING)
|
1446 |
+
class PegasusXForConditionalGeneration(PegasusXPreTrainedModel):
|
1447 |
+
base_model_prefix = "model"
|
1448 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
|
1449 |
+
|
1450 |
+
def __init__(self, config: PegasusXConfig):
|
1451 |
+
super().__init__(config)
|
1452 |
+
self.model = PegasusXModel(config)
|
1453 |
+
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
|
1454 |
+
|
1455 |
+
# Initialize weights and apply final processing
|
1456 |
+
self.post_init()
|
1457 |
+
|
1458 |
+
def get_encoder(self):
|
1459 |
+
return self.model.get_encoder()
|
1460 |
+
|
1461 |
+
def get_decoder(self):
|
1462 |
+
return self.model.get_decoder()
|
1463 |
+
|
1464 |
+
def get_output_embeddings(self):
|
1465 |
+
return self.lm_head
|
1466 |
+
|
1467 |
+
def set_output_embeddings(self, new_embeddings):
|
1468 |
+
self.lm_head = new_embeddings
|
1469 |
+
|
1470 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
1471 |
+
"""
|
1472 |
+
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
|
1473 |
+
config.max_position_embeddings`.
|
1474 |
+
|
1475 |
+
Arguments:
|
1476 |
+
new_num_position_embeddings (`int`):
|
1477 |
+
The number of new position embeddings. If position embeddings are learned, increasing the size will add
|
1478 |
+
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
|
1479 |
+
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
|
1480 |
+
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
|
1481 |
+
will remove vectors from the end.
|
1482 |
+
"""
|
1483 |
+
self.config.max_position_embeddings = new_num_position_embeddings
|
1484 |
+
self.model.encoder.resize_position_embeddings(new_num_position_embeddings)
|
1485 |
+
self.model.decoder.resize_position_embeddings(new_num_position_embeddings)
|
1486 |
+
|
1487 |
+
def get_position_embeddings(self) -> Tuple[nn.Embedding]:
|
1488 |
+
"""
|
1489 |
+
Returns the position embeddings matrix
|
1490 |
+
"""
|
1491 |
+
return (self.model.encoder.get_position_embeddings(), self.model.decoder.get_position_embeddings())
|
1492 |
+
|
1493 |
+
@add_start_docstrings_to_model_forward(PEGASUS_X_INPUTS_DOCSTRING)
|
1494 |
+
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1495 |
+
@add_end_docstrings(PEGASUS_X_GENERATION_EXAMPLE)
|
1496 |
+
def forward(
|
1497 |
+
self,
|
1498 |
+
input_ids: Optional[torch.Tensor] = None,
|
1499 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1500 |
+
decoder_input_ids: Optional[torch.Tensor] = None,
|
1501 |
+
decoder_attention_mask: Optional[torch.Tensor] = None,
|
1502 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
1503 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
1504 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1505 |
+
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
1506 |
+
labels: Optional[torch.Tensor] = None,
|
1507 |
+
use_cache: Optional[bool] = None,
|
1508 |
+
output_attentions: Optional[bool] = None,
|
1509 |
+
output_hidden_states: Optional[bool] = None,
|
1510 |
+
return_dict: Optional[bool] = None,
|
1511 |
+
) -> Union[Tuple, Seq2SeqLMOutput]:
|
1512 |
+
r"""
|
1513 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1514 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1515 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1516 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1517 |
+
|
1518 |
+
Returns:
|
1519 |
+
|
1520 |
+
"""
|
1521 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1522 |
+
|
1523 |
+
if labels is not None:
|
1524 |
+
if use_cache:
|
1525 |
+
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
|
1526 |
+
use_cache = False
|
1527 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1528 |
+
decoder_input_ids = shift_tokens_right(
|
1529 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
1530 |
+
)
|
1531 |
+
|
1532 |
+
outputs = self.model(
|
1533 |
+
input_ids,
|
1534 |
+
attention_mask=attention_mask,
|
1535 |
+
decoder_input_ids=decoder_input_ids,
|
1536 |
+
encoder_outputs=encoder_outputs,
|
1537 |
+
decoder_attention_mask=decoder_attention_mask,
|
1538 |
+
past_key_values=past_key_values,
|
1539 |
+
inputs_embeds=inputs_embeds,
|
1540 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1541 |
+
use_cache=use_cache,
|
1542 |
+
output_attentions=output_attentions,
|
1543 |
+
output_hidden_states=output_hidden_states,
|
1544 |
+
return_dict=return_dict,
|
1545 |
+
)
|
1546 |
+
lm_logits = self.lm_head(outputs[0])
|
1547 |
+
|
1548 |
+
masked_lm_loss = None
|
1549 |
+
if labels is not None:
|
1550 |
+
loss_fct = CrossEntropyLoss()
|
1551 |
+
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
1552 |
+
|
1553 |
+
if not return_dict:
|
1554 |
+
output = (lm_logits,) + outputs[1:]
|
1555 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1556 |
+
|
1557 |
+
return Seq2SeqLMOutput(
|
1558 |
+
loss=masked_lm_loss,
|
1559 |
+
logits=lm_logits,
|
1560 |
+
past_key_values=outputs.past_key_values,
|
1561 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1562 |
+
decoder_attentions=outputs.decoder_attentions,
|
1563 |
+
cross_attentions=outputs.cross_attentions,
|
1564 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1565 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1566 |
+
encoder_attentions=outputs.encoder_attentions,
|
1567 |
+
)
|
1568 |
+
|
1569 |
+
def prepare_inputs_for_generation(
|
1570 |
+
self,
|
1571 |
+
decoder_input_ids,
|
1572 |
+
past_key_values=None,
|
1573 |
+
attention_mask=None,
|
1574 |
+
use_cache=None,
|
1575 |
+
encoder_outputs=None,
|
1576 |
+
**kwargs,
|
1577 |
+
):
|
1578 |
+
# cut decoder_input_ids if past is used
|
1579 |
+
if past_key_values is not None:
|
1580 |
+
past_length = past_key_values[0][0].shape[2]
|
1581 |
+
|
1582 |
+
# Some generation methods already pass only the last input ID
|
1583 |
+
if decoder_input_ids.shape[1] > past_length:
|
1584 |
+
remove_prefix_length = past_length
|
1585 |
+
else:
|
1586 |
+
# Default to old behavior: keep only final ID
|
1587 |
+
remove_prefix_length = decoder_input_ids.shape[1] - 1
|
1588 |
+
|
1589 |
+
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
|
1590 |
+
|
1591 |
+
return {
|
1592 |
+
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
1593 |
+
"encoder_outputs": encoder_outputs,
|
1594 |
+
"past_key_values": past_key_values,
|
1595 |
+
"decoder_input_ids": decoder_input_ids,
|
1596 |
+
"attention_mask": attention_mask,
|
1597 |
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
1598 |
+
}
|
1599 |
+
|
1600 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
1601 |
+
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
|
1602 |
+
|
1603 |
+
@staticmethod
|
1604 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1605 |
+
reordered_past = ()
|
1606 |
+
for layer_past in past_key_values:
|
1607 |
+
# cached cross_attention states don't have to be reordered -> they are always the same
|
1608 |
+
reordered_past += (
|
1609 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
|
1610 |
+
+ layer_past[2:],
|
1611 |
+
)
|
1612 |
+
return reordered_past
|
1613 |
+
|
1614 |
+
|
1615 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->PegasusX
|
1616 |
+
class PegasusXDecoderWrapper(PegasusXPreTrainedModel):
|
1617 |
+
"""
|
1618 |
+
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
|
1619 |
+
used in combination with the [`EncoderDecoderModel`] framework.
|
1620 |
+
"""
|
1621 |
+
|
1622 |
+
def __init__(self, config):
|
1623 |
+
super().__init__(config)
|
1624 |
+
self.decoder = PegasusXDecoder(config)
|
1625 |
+
|
1626 |
+
def forward(self, *args, **kwargs):
|
1627 |
+
return self.decoder(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/udop/__init__.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_sentencepiece_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_udop": ["UDOP_PRETRAINED_CONFIG_ARCHIVE_MAP", "UdopConfig"],
|
28 |
+
"processing_udop": ["UdopProcessor"],
|
29 |
+
}
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_sentencepiece_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["tokenization_udop"] = ["UdopTokenizer"]
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_tokenizers_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["tokenization_udop_fast"] = ["UdopTokenizerFast"]
|
46 |
+
|
47 |
+
try:
|
48 |
+
if not is_torch_available():
|
49 |
+
raise OptionalDependencyNotAvailable()
|
50 |
+
except OptionalDependencyNotAvailable:
|
51 |
+
pass
|
52 |
+
else:
|
53 |
+
_import_structure["modeling_udop"] = [
|
54 |
+
"UDOP_PRETRAINED_MODEL_ARCHIVE_LIST",
|
55 |
+
"UdopForConditionalGeneration",
|
56 |
+
"UdopPreTrainedModel",
|
57 |
+
"UdopModel",
|
58 |
+
"UdopEncoderModel",
|
59 |
+
]
|
60 |
+
|
61 |
+
if TYPE_CHECKING:
|
62 |
+
from .configuration_udop import UDOP_PRETRAINED_CONFIG_ARCHIVE_MAP, UdopConfig
|
63 |
+
from .processing_udop import UdopProcessor
|
64 |
+
|
65 |
+
try:
|
66 |
+
if not is_sentencepiece_available():
|
67 |
+
raise OptionalDependencyNotAvailable()
|
68 |
+
except OptionalDependencyNotAvailable:
|
69 |
+
pass
|
70 |
+
else:
|
71 |
+
from .tokenization_udop import UdopTokenizer
|
72 |
+
|
73 |
+
try:
|
74 |
+
if not is_tokenizers_available():
|
75 |
+
raise OptionalDependencyNotAvailable()
|
76 |
+
except OptionalDependencyNotAvailable:
|
77 |
+
pass
|
78 |
+
else:
|
79 |
+
from .tokenization_udop_fast import UdopTokenizerFast
|
80 |
+
|
81 |
+
try:
|
82 |
+
if not is_torch_available():
|
83 |
+
raise OptionalDependencyNotAvailable()
|
84 |
+
except OptionalDependencyNotAvailable:
|
85 |
+
pass
|
86 |
+
else:
|
87 |
+
from .modeling_udop import (
|
88 |
+
UDOP_PRETRAINED_MODEL_ARCHIVE_LIST,
|
89 |
+
UdopEncoderModel,
|
90 |
+
UdopForConditionalGeneration,
|
91 |
+
UdopModel,
|
92 |
+
UdopPreTrainedModel,
|
93 |
+
)
|
94 |
+
|
95 |
+
else:
|
96 |
+
import sys
|
97 |
+
|
98 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|