diff --git "a/env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_methods_invocations.py" "b/env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_methods_invocations.py" new file mode 100644--- /dev/null +++ "b/env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_methods_invocations.py" @@ -0,0 +1,22375 @@ +from functools import wraps, partial +from itertools import product, chain, islice +import itertools +import functools +import copy +import operator +import random +import unittest +import math +import enum + +import torch +import numpy as np +from torch import inf, nan + +from typing import Any, Dict, List, Tuple, Union, Sequence +from torch.testing import make_tensor +from torch.testing._internal.common_dtype import ( + _dispatch_dtypes, floating_types, floating_types_and, complex_types, floating_and_complex_types, + floating_and_complex_types_and, all_types_and_complex_and, all_types_and, all_types_and_complex, integral_types_and, + all_types, empty_types, complex_types_and, integral_types, custom_types +) +from torch.testing._internal.common_device_type import \ + (onlyCPU, onlyCUDA, onlyNativeDeviceTypes, disablecuDNN, skipCUDAIfNoMagma, skipCUDAIfNoMagmaAndNoCusolver, + skipCUDAIfNoCusolver, skipCPUIfNoLapack, skipCPUIfNoFFT, skipCUDAIf, precisionOverride, + skipCPUIfNoMklSparse, + toleranceOverride, tol) +from torch.testing._internal.common_cuda import ( + PLATFORM_SUPPORTS_FLASH_ATTENTION, SM53OrLater, SM80OrLater, SM90OrLater, with_tf32_off, TEST_CUDNN, + _get_torch_cuda_version, _get_torch_rocm_version, +) +from torch.testing._internal.common_utils import ( + make_fullrank_matrices_with_distinct_singular_values, + TEST_WITH_ROCM, IS_WINDOWS, IS_MACOS, TEST_SCIPY, + torch_to_numpy_dtype_dict, TEST_WITH_ASAN, + GRADCHECK_NONDET_TOL, freeze_rng_state, slowTest, TEST_WITH_SLOW, + TEST_WITH_TORCHINDUCTOR +) + +import torch._refs as refs # noqa: F401 +import torch._refs.nn.functional +import torch._refs.special +import torch._refs.linalg +import torch._prims as prims # noqa: F401 +from torch.utils import _pytree as pytree + + +from packaging import version + +from torch.testing._internal.opinfo.core import ( # noqa: F401 + L, + M, + S, + XS, + _NOTHING, + _getattr_qual, + DecorateInfo, + SampleInput, + ErrorInput, + AliasInfo, + NumericsFilter, + OpInfo, + _generate_reduction_inputs, + _generate_reduction_kwargs, + sample_inputs_reduction, + ReductionOpInfo, + reference_inputs_elementwise_binary, + make_error_inputs_elementwise_binary, + generate_elementwise_binary_tensors, + generate_elementwise_binary_arbitrarily_strided_tensors, + generate_elementwise_binary_small_value_tensors, + generate_elementwise_binary_large_value_tensors, + generate_elementwise_binary_extremal_value_tensors, + generate_elementwise_binary_broadcasting_tensors, + generate_elementwise_binary_with_scalar_samples, + generate_elementwise_binary_with_scalar_and_type_promotion_samples, + generate_elementwise_binary_noncontiguous_tensors, + sample_inputs_elementwise_binary, + BinaryUfuncInfo, + sample_inputs_elementwise_unary, + generate_elementwise_unary_tensors, + generate_elementwise_unary_small_value_tensors, + generate_elementwise_unary_large_value_tensors, + generate_elementwise_unary_extremal_value_tensors, + reference_inputs_elementwise_unary, + UnaryUfuncInfo, + sample_inputs_spectral_ops, + SpectralFuncType, + SpectralFuncInfo, + ShapeFuncInfo, + sample_inputs_foreach, + ForeachFuncInfo, + gradcheck_wrapper_hermitian_input, + gradcheck_wrapper_triangular_input, + gradcheck_wrapper_triangular_input_real_positive_diagonal, + gradcheck_wrapper_masked_operation, + gradcheck_wrapper_masked_pointwise_operation, + clone_sample, +) +from torch.testing._internal.opinfo.refs import ( # NOQA: F401 + _find_referenced_opinfo, + _inherit_constructor_args, + PythonRefInfo, + ReductionPythonRefInfo, + ElementwiseUnaryPythonRefInfo, + ElementwiseBinaryPythonRefInfo, +) +from torch.testing._internal.opinfo.utils import ( + np_unary_ufunc_integer_promotion_wrapper, + reference_reduction_numpy, + prod_numpy +) +from torch.testing._internal import opinfo +from torch.testing._internal.opinfo.definitions.linalg import ( + sample_inputs_linalg_cholesky, + sample_inputs_linalg_cholesky_inverse, + sample_inputs_cross, + sample_inputs_linalg_qr_geqrf, + sample_inputs_linalg_invertible, + sample_inputs_lu_solve, + sample_inputs_legacy_solve, + sample_inputs_svd, + sample_inputs_linalg_det_logdet_slogdet, + sample_inputs_linalg_lu, + sample_inputs_diagonal_diag_embed, + error_inputs_diagonal_diag_embed, +) +from torch.testing._internal.opinfo.definitions.special import ( + sample_inputs_i0_i1, + sample_inputs_polygamma, + reference_polygamma, +) +from torch.testing._internal.opinfo.definitions._masked import ( + sample_inputs_softmax_variant, +) +from torch.testing._internal.opinfo.definitions.sparse import ( + error_inputs_sparse_like_fns, + sample_inputs_sparse_like_fns, + error_inputs_sparse_mul, + sample_inputs_sparse_mul, + error_inputs_sparse_reduction_sum, + sample_inputs_sparse_reduction_sum +) + +if TEST_SCIPY: + from scipy import stats + import scipy.spatial + import scipy.special + + +# test if a tensor is close to an integer +def close_to_int(x, eps=0.1): + if x.is_complex(): + y = torch.abs(torch.view_as_complex(torch.frac(torch.view_as_real(x)))) + else: + y = torch.abs(torch.frac(x)) + return (y < eps) | (y > (1 - eps)) + + +def sample_inputs_slice(op_info, device, dtype, requires_grad, **kwargs): + + make_input = partial(make_tensor, device=device, dtype=dtype, + low=None, high=None, requires_grad=requires_grad) + + yield SampleInput(make_input(3), 0) + + yield SampleInput(make_input(20, 30, 40), dim=1, start=1, end=-2) + + yield SampleInput(make_input(20, 30, 40), dim=1, start=1, end=-2, step=3) + + yield SampleInput(make_input(20, 30, 40), dim=0, start=-10, end=-2, step=2) + + +def sample_inputs_tensor_split(op_info, device, dtype, requires_grad, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, + low=None, high=None, requires_grad=requires_grad) + + args_cases = ( + # Cases with tensor indices. + (torch.tensor([1, 2, 3]),), + (torch.tensor(1),), + (torch.tensor([1, 2, 3]), 1), + (torch.tensor([1, 4, 2, 5, 3, 6])[::2], 1), + # Cases with list of indices. + ((2, 4),), + ((2, 4), 1), + ((2, 4), -1), + # Cases with integer section. + (3,), + (3, 1), + (3, -1), + ) + + for args in args_cases: + yield SampleInput(make_input((S, S, S)), args=args) + + +def sample_inputs_hsplit(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, + low=None, high=None, requires_grad=requires_grad) + yield SampleInput(make_arg(6), 2) + yield SampleInput(make_arg(S, S, S), [1, 2, 3]) + +def sample_inputs_vsplit(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, + low=None, high=None, requires_grad=requires_grad) + yield SampleInput(make_arg(6, S), 2) + yield SampleInput(make_arg(S, S, S), [1, 2, 3]) + +def sample_inputs_dsplit(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, + low=None, high=None, requires_grad=requires_grad) + yield SampleInput(make_arg(S, S, S), [1, 2, 3]) + yield SampleInput(make_arg(S, S, 6), 2) + +def error_inputs_hsplit(op_info, device, **kwargs): + make_arg = partial(make_tensor, dtype=torch.float32, device=device) + err_msg1 = ("torch.hsplit requires a tensor with at least 1 dimension, " + "but got a tensor with 0 dimensions!") + yield ErrorInput(SampleInput(make_arg(()), 0), error_regex=err_msg1) + + err_msg2 = (f"torch.hsplit attempted to split along dimension 1, " + f"but the size of the dimension {S} " + f"is not divisible by the split_size 0!") + yield ErrorInput(SampleInput(make_arg((S, S, S)), 0), error_regex=err_msg2) + + # Incorrect type for indices_or_section argument + err_msg3 = ("received an invalid combination of arguments.") + yield ErrorInput( + SampleInput(make_arg((S, S, S)), "abc"), + error_type=TypeError, error_regex=err_msg3) + +def error_inputs_vsplit(op_info, device, **kwargs): + make_arg = partial(make_tensor, dtype=torch.float32, device=device) + err_msg1 = ("torch.vsplit requires a tensor with at least 2 dimension, " + "but got a tensor with 1 dimensions!") + yield ErrorInput(SampleInput(make_arg(S), 0), error_regex=err_msg1) + + err_msg2 = (f"torch.vsplit attempted to split along dimension 0, " + f"but the size of the dimension {S} " + f"is not divisible by the split_size 0!") + yield ErrorInput(SampleInput(make_arg(S, S, S), 0), + error_regex=err_msg2) + + # Incorrect type for indices_or_section argument + err_msg3 = ("received an invalid combination of arguments.") + yield ErrorInput(SampleInput(make_arg(S, S, S), "abc"), + error_type=TypeError, error_regex=err_msg3) + +def error_inputs_dsplit(op_info, device, **kwargs): + make_arg = partial(make_tensor, dtype=torch.float32, device=device) + err_msg1 = ("torch.dsplit requires a tensor with at least 3 dimension, " + "but got a tensor with 1 dimensions!") + yield ErrorInput(SampleInput(make_arg(S), 0), error_regex=err_msg1) + + err_msg2 = (f"torch.dsplit attempted to split along dimension 2, " + f"but the size of the dimension {S} " + f"is not divisible by the split_size 0!") + yield ErrorInput(SampleInput(make_arg(S, S, S), 0), error_regex=err_msg2) + + +def sample_inputs_as_strided(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # input shape, output shape, output stride, output storage offset + test_cases = ( + ((1,), (1,), (1,), 0), + ((3, 3), (2, 2), (1, 2), 0), + ((3, 3), (2, 2), (1, 2), 1), + ((16,), (2, 2, 2, 2), (1, 1, 1, 1), 0), + ((16,), (2, 1, 1, 2), (1, 7, 7, 1), 0), + ) + + for input_shape, output_shape, stride, storage_offset in test_cases: + input_t = make_arg(input_shape) + kwargs = dict(storage_offset=storage_offset) + yield SampleInput(input_t, args=(output_shape, stride), kwargs=kwargs) + +def sample_inputs_as_strided_partial_views(op_info, device, dtype, requires_grad, **kwargs): + def make_arg(): + base = make_tensor((20,), device=device, dtype=dtype) + return base[5:15].requires_grad_(requires_grad) + + # as_strided on offset, partial views + yield SampleInput(make_arg(), (2, 2), (1, 2)) + yield SampleInput(make_arg(), (2, 2), (1, 2), storage_offset=0) + yield SampleInput(make_arg(), (2, 2), (1, 2), storage_offset=10) + +def sample_inputs_as_strided_scatter(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # input shape, output shape, output stride, output storage offset + test_cases = [ + ((1,), (), (), 0), + ((1,), (1,), (1,), 0), + ((3, 3), (2, 2), (1, 2), 0), + ((3, 3), (2, 2), (1, 2), 1), + ((3, 3), (2, 2), (2, 1), 0), + # Scatter to larger dimensions + ((16,), (2, 2, 2, 2), (8, 4, 2, 1), 0), + # Scatter to larger dimensions with strides inverted + ((16,), (2, 1, 1, 2), (1, 2, 4, 8), 0), + ] + + for input_shape, output_shape, stride, storage_offset in test_cases: + input_t = make_arg(input_shape) + input_src = make_arg(output_shape) + yield SampleInput(input_t, input_src, output_shape, stride, storage_offset=storage_offset) + + +def error_inputs_as_strided_scatter(op_info, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float32, requires_grad=False) + + # Create a small tensor and try to scatter it out of bounds + input_t = make_arg([4, 4]) + input_src = make_arg([2, 2]) + yield ErrorInput( + SampleInput(input_t, input_src, [2, 2], [200, 200], storage_offset=0), + error_regex="itemsize 4 requiring a storage size of 1604 are out of bounds for storage of size 64" + ) + + +def sample_inputs_combinations(op_info, device, dtype, requires_grad, **kwargs): + inputs = ( + (0,), + (0, 1), + (0, 1, 2, 3), + ) + + rvals = [1, 2, 4] + + products = product(inputs, rvals, [False, True]) + + for input_data, r, with_replacement in products: + input_t = torch.tensor(input_data, device=device, dtype=dtype, requires_grad=requires_grad) + yield SampleInput(input_t, r=r, with_replacement=with_replacement) + +def sample_inputs_cartesian_prod(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(torch.tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # constructs 1-D tensors with varying number of elements + a = make_arg((0,)) + b = make_arg((0, 1)) + c = make_arg((0, 1, 2, 3)) + + # sample with only 1 tensor + yield SampleInput(a) + + # sample with 2 tensors + yield SampleInput(a, b) + + # sample with 3 tensors + yield SampleInput(a, b, c) + +def sample_inputs_cosine_similarity(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as input_shape, dict of dim and eps + cases: Tuple[tuple, dict] = ( # type: ignore[assignment] + ((S, S), {'dim': 1}), + ((S, 2), {'dim': -1}), + ((S,), {'dim': 0, 'eps': 0.5}), + ((), {'dim': 0}), + ((S, S, M), {'dim': 2}), + ((S, S), {}) + ) + + for input_shape, kwargs in cases: + yield SampleInput(make_arg(input_shape), args=(make_arg(input_shape),), kwargs=kwargs) + # Test for Broadcasting + yield SampleInput(make_arg((1, 2, 3)), args=(make_arg((2, 1, 3)),), kwargs={'dim': -1}) + yield SampleInput(make_arg((1, 2, 3)), args=(make_arg((2, 1, 3)),), kwargs={'dim': -2}) + yield SampleInput(make_arg((2, 3)), args=(make_arg((2, 1, 3)),), kwargs={'dim': -1}) + + +def sample_inputs_item(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=False) + + cases = ( + (), + (()), + (1), + ((1,)), + ) + + for shape in cases: + yield SampleInput(make_arg(shape)) + +def error_inputs_item(op, device, **kwargs): + make_arg = partial(make_tensor, dtype=torch.float32, device=device, requires_grad=False) + + cases = ( + (M), + ((S,)), + (S, S), + (S, M, L), + ) + + for shape in cases: + yield ErrorInput( + SampleInput(make_arg(shape)), error_type=RuntimeError, + error_regex="elements cannot be converted to Scalar") + + +def sample_inputs_batch_norm(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_arg_without_requires_grad = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + # Ordered as: input shape, kwargs for training, momentum, eps + cases: Tuple[Tuple[int], dict] = ( # type: ignore[assignment] + ((S, S, S), {'training': True, 'momentum': 0.5, 'eps': 0.6}), + ((3, 2, 4), {'training': False, 'momentum': -1.2}), + ((3, 1), {'training': True, 'momentum': 0.0}), + ((0,), {'training': True}), + ((0,), {'training': False}), + ((3, 2, 3, 4), {'training': True, 'momentum': -1.0, 'eps': 0.5}), + ((3, 2, 3, 4), {'training': False, 'momentum': -1.0, 'eps': 0.5}), + ((2, 1), {}), + ) + + for input_shape, kwargs in cases: + # args: running mean, running var, weight and bias should necessarily be of shape: (channels,) + channels = input_shape[1] if len(input_shape) > 1 else 0 + weight = make_arg(channels) if channels > 0 else None + bias = make_arg(channels) if channels > 0 else None + running_mean = make_arg_without_requires_grad(channels, low=0) + running_var = make_arg_without_requires_grad(channels, low=0) + + yield SampleInput( + make_arg(input_shape), + args=( + running_mean, + running_var, + weight, + bias + ), + kwargs=kwargs + ) + + # Checking for permutations of weights and biases as `None` + weights = [channels, None, None] + biases = [None, channels, None] + is_training = [True, False, False] + + for weight, bias, training in zip(weights, biases, is_training): + yield SampleInput( + make_arg(input_shape), + args=( + running_mean, + running_var, + make_arg(channels), + make_arg(channels) + ), + kwargs={'training': training} + ) + + # Test case for no optional kwargs + # running_mean and running_var are required in evaluation mode (training: False) but not in training mode + yield SampleInput(make_arg((1, 2, 3)), args=(None, None, None, None), kwargs={'training': True}) + +def sample_inputs_softmax_backward_data(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial( + make_tensor, device=device, dtype=dtype, requires_grad=requires_grad + ) + cases = [ + ((S,), 0), + ((S, S), 0), + ((S, M, S), -1), + ] + input_dtypes = [dtype] + if dtype == torch.float and device == 'cuda': + input_dtypes += [torch.float16] + + for (shape, dim), input_dtype in product(cases, input_dtypes): + input = make_arg(shape) + output = torch.nn.functional.softmax(input, dim=dim, dtype=input_dtype) + yield SampleInput(make_arg(shape), output, dim, input_dtype) + +def sample_inputs_native_batch_norm(op_info, device, dtype, requires_grad, **kwargs): + samples = sample_inputs_batch_norm(op_info, device, dtype, requires_grad, **kwargs) + for sample in samples: + # torch.native_batch_norm does not support 0 numel tensors + # IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1) + if sample.input.numel() == 0: + continue + args = sample.args + training = sample.kwargs.get('training', True) + momentum = sample.kwargs.get('momentum', 0.5) + eps = sample.kwargs.get('eps', 1e-5) + yield SampleInput(sample.input, args=(args[2], args[3], args[0], args[1], training, momentum, eps)) + + +def sample_inputs__native_batch_norm_legit(op_info, device, dtype, requires_grad, **kwargs): + samples = sample_inputs_batch_norm(op_info, device, dtype, requires_grad, **kwargs) + for sample in samples: + # torch.native_batch_norm does not support 0 numel tensors + # IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1) + if sample.input.numel() == 0: + continue + args = sample.args + training = sample.kwargs.get('training', True) + momentum = sample.kwargs.get('momentum', 0.5) + eps = sample.kwargs.get('eps', 1e-5) + if args[0] is not None and args[1] is not None: + yield SampleInput(sample.input, args=(args[2], args[3], args[0], args[1], training, momentum, eps)) + else: + yield SampleInput(sample.input, args=(args[2], args[3], training, momentum, eps)) + + +def sample_inputs_nn_activation_relu(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + cases = ( + (()), + ((S, )), + ((S, S)), + ((S, M, S)) + ) + + for shape in cases: + yield SampleInput(make_arg(shape)) + +def sample_inputs_prelu(op_info, device, dtype, requires_grad, **kwargs): + op_kwargs = op_info.sample_kwargs(device, dtype, None)[0] + yield from sample_inputs_elementwise_unary(op_info, device, dtype, requires_grad, + op_kwargs=op_kwargs) + + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + cases = ( + (()), + ((S, )), + ((S, S)), + ((S, M, S)) + ) + + for shape in cases: + for weight in [-1., 0., 0.8, 1.]: + weight_tensor = torch.tensor(weight, device=device, dtype=dtype, requires_grad=requires_grad) + yield SampleInput(make_arg(shape), args=(weight_tensor,)) + + channel_size = shape[1] if len(shape) >= 2 else 1 + yield SampleInput(make_arg(shape), args=(make_arg((channel_size,)),)) + + weight_tensor = torch.tensor(1., device=device, dtype=dtype, requires_grad=requires_grad) + + yield SampleInput(make_arg((S, S)), kwargs=dict(weight=weight_tensor,)) + yield SampleInput(make_arg((S, S)), kwargs=dict(weight=make_arg((S,)),)) + +def reference_inputs_prelu(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_prelu(op, device, dtype, requires_grad, **kwargs) + yield from reference_inputs_elementwise_unary(op, device, dtype, requires_grad, **kwargs) + +def sample_kwargs_prelu_scalar_weight(device, dtype, input): + weight = torch.rand(tuple(), device=device, dtype=dtype) + # NumPy does not support bfloat16, so we default to float32 (only for NumPy) in that case + if dtype == torch.bfloat16: + weight_cpu = weight.to(dtype=torch.float32, device="cpu") + else: + weight_cpu = weight.cpu() + np_weight = weight_cpu.numpy() + return ({'weight': weight}, {'weight': np_weight}) + +def error_inputs_prelu(op, device): + # Weight has numel != 1, but self.ndim is zero-dim tensor + inp = make_tensor(tuple(), device=device, dtype=torch.float32) + weight = make_tensor((2,), device=device, dtype=torch.float32) + yield ErrorInput(SampleInput(inp, kwargs={'weight': weight}), + error_regex="Not allow zero-dim input tensor.") + + # Weight has numel != 1, but numel does not match channel size + inp = make_tensor((2, 8, 3), device=device, dtype=torch.float32) + weight = make_tensor((9,), device=device, dtype=torch.float32) + yield ErrorInput(SampleInput(inp, kwargs={'weight': weight}), + error_regex="Mismatch of parameter numbers and input channel size.") + + # Weight is neither a scalar nor 1-D tensor + inp = make_tensor((2, 8, 3), device=device, dtype=torch.float32) + weight = make_tensor((2, 4), device=device, dtype=torch.float32) + yield ErrorInput(SampleInput(inp, kwargs={'weight': weight}), + error_regex="prelu: Expected `weight` to be a scalar or 1D tensor, but got: ndim = 2") + + # src and index tensors must have the same # of dimensions +def sample_inputs_norm(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # ord = inf is tested in inputs_norm_inf as it fails on some tests + cases = [ + ((S, S), (2,), '2'), + ((S, S), (0,), '0'), + ((S, S), (0.5,), '0_5'), + ((S, S), (1,), '1'), + ((S, S), (3,), '3'), + ((S, S), (-1,), 'neg_1'), + ((S, S), (-2,), 'neg_2'), + ((S, S), (-0.5,), 'neg_0_5'), + ((S, S), (-1.5,), 'neg_1_5'), + ] + + cases_nonzero_input = ( + ((S, S, S), (1.5,), '1_5_default'), + ((S, S, S), (1.5, 1), '1_5_dim'), + ((S, S, S), (1.5, -1), '1_5_neg_dim'), + ((S, S, S), (1.5, 1, True), 'keepdim_1_5_dim'), + ((S, S, S), (1.5, -1, True), 'keepdim_1_5_neg_dim'), + ) + + cases_posdim = ( + ((S, S), (-2, 1,), 'neg_2_dim'), + ((S, S), (-1, 1,), 'neg_1_dim'), + ((S, S), (0, 1,), '0_dim'), + ((S, S), (1, 1,), '1_dim'), + ((S, S), (2, 1,), '2_dim'), + ((S, S), (3, 1,), '3_dim'), + ((S, S, S), (2, 1), '2_dim'), + ((S, S, S), (3, 1), '3_dim'), + ((S, S, S), (2, 1, True), 'keepdim_2_dim'), + ((S, S, S), (3, 1, True), 'keepdim_3_dim'), + ((), (2, 0), '2_dim_scalar'), + ((), (3, 0), '3_dim_scalar'), + ((), (2, 0, True), 'keepdim_2_dim_scalar'), + ((), (3, 0, True), 'keepdim_3_dim_scalar'), + ) + + cases_negdim = ((shape, args[:1] + (-args[1],) + args[2:], name.replace("_dim", "_neg_dim")) + for shape, args, name in cases_posdim) + + for shape, args, name in itertools.chain(cases, cases_posdim, cases_negdim): + yield SampleInput(make_arg(shape), args=args, name=name) + + for shape, args, name in cases_nonzero_input: + yield SampleInput(make_arg(shape, exclude_zero=True), args=args, name=name) + + +def sample_inputs_norm_fro(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + cases = ( + ((S, S), (), 'default'), + ((S, S), ('fro',), 'fro_default'), + ((S, S), ('fro', [0, 1],), 'fro'), + ) + + for shape, args, name in cases: + yield SampleInput(make_arg(shape), args=args, name=name) + + +def sample_inputs_norm_nuc(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + cases = ( + ((S, S), ('nuc',), 'nuc'), + ((S, S, S), ('nuc', [1, 2]), 'nuc_batched'), + ) + + for shape, args, name in cases: + yield SampleInput(make_arg(shape), args=args, name=name) + + +def sample_inputs_norm_inf(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + cases = ( + ((S, S), (-inf,), '-inf'), + ((S, S), (inf,), 'inf'), + ((S, S), (inf, 1,), 'inf_2_dim'), + ((S, S), (inf, -1,), 'inf_2_neg_dim'), + ) + + for shape, args, name in cases: + yield SampleInput(make_arg(shape), args=args, name=name) + + +def sample_inputs_equal(op, device, dtype, requires_grad, **kwargs): + make_arg = partial( + make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + shapes = ( + ((), ()), + ((S,), ()), + ((), (S,)), + ((S, 1), (S,)), + ((M, S), ()), + ((S, S), (S, S)) + ) + + for shape_lhs, shape_rhs in shapes: + lhs = make_arg(shape_lhs) + rhs = make_arg(shape_rhs) + broadcasts_input = shape_lhs != torch.broadcast_shapes(shape_lhs, shape_rhs) + + yield SampleInput(lhs, args=(rhs,), broadcasts_input=broadcasts_input) + if shape_lhs == shape_rhs: + yield SampleInput(lhs, args=(lhs.clone().detach_(),)) + + + +def sample_inputs_jiterator(op, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + shapes = ( + ((), ()), + ((S,), ()), + ((S, 1), (S,)), + ((M, S), ()), + ((S, M, S), (M, S)), + ((S, M, S), (S, M, S)), + ((M, 1, S), (M, S)), + ((M, 1, S), (1, M, S)), + ((0, 1, 3), (0, 10, 3)) + ) + + num_inputs = kwargs.get('num_inputs') + sample_kwargs = kwargs.get('sample_kwargs', {}) + + for shape_lhs, shape_rhs in shapes: + lhs = make_arg(shape_lhs) + + args = [] + for i in range(num_inputs - 1): + args.append(make_arg(shape_rhs)) + broadcasts_input = (shape_lhs != torch.broadcast_shapes(shape_lhs, shape_rhs)) + + yield SampleInput(lhs, args=tuple(args), kwargs=sample_kwargs, broadcasts_input=broadcasts_input) + +def sample_inputs_broadcast_shapes(op, device, dtype, requires_grad, **kwargs): + shapes = ( + ((), ()), + ((S,), ()), + ((S, 1), (S,)), + ((S, 1), S), + ((M, S), ()), + ((S, M, S), (M, S)), + ((S, M, S), (S, M, S)), + ((M, 1, S), (M, S)), + ((M, 1, S), (1, M, S)), + ((0, 1, 3), (0, 10, 3)) + ) + + for shape in shapes: + inp, *arg0 = shape + yield SampleInput(inp, args=tuple(arg0)) + +def sample_inputs_add_sub(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_elementwise_binary(op, device, dtype, requires_grad, **kwargs) + + # Adds alpha kwarg cases + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + lhs = make_arg((S, S), **op.lhs_make_tensor_kwargs) + rhs = make_arg((S, S), **op.rhs_make_tensor_kwargs) + if dtype is not torch.bool: + yield SampleInput(lhs, args=(rhs,), kwargs={'alpha': 2}) + else: + yield SampleInput(lhs, args=(rhs,), kwargs={'alpha': True}) + neg_alpha = -3.125 if (dtype.is_floating_point or dtype.is_complex) else -3 + lhs = make_arg((S, S), **op.lhs_make_tensor_kwargs) + rhs = make_arg((S, S), **op.rhs_make_tensor_kwargs) + if dtype is not torch.bool: + yield SampleInput(lhs, args=(rhs,), kwargs={'alpha': neg_alpha}) + else: + yield SampleInput(lhs, args=(rhs,), kwargs={'alpha': False}) + +def error_inputs_arange(op, device, **kwargs): + yield ErrorInput(SampleInput(0, args=(3, 0)), error_type=RuntimeError, error_regex='step must be nonzer') + yield ErrorInput(SampleInput(0, args=(-3, 2)), error_type=RuntimeError, error_regex='bound inconsistent with step sign') + yield ErrorInput(SampleInput(0, args=(3, -2)), error_type=RuntimeError, error_regex='bound inconsistent with step sign') + yield ErrorInput(SampleInput(0, args=(float('inf'), 2)), error_type=RuntimeError, error_regex='unsupported range') + yield ErrorInput(SampleInput(float('-inf'), args=(1, 2)), error_type=RuntimeError, error_regex='unsupported range') + +def sample_inputs_arange(op, device, dtype, requires_grad, **kwargs): + int_samples = ( + # positive direction + (-1, 2, 2), + # negative direction + (2, -3, -1), + # start == end + (1, 1, 1), + (1, 1, -1), + # divides evenly + (0, -8, -4), + (1, 5, 2), + # bool + (False, True, True), + # default step + (0, 1, None), + # default start + (None, 3, None), + ) + + def to_float(start, end, step): + start = start + 0.1 if start is not None else None + end = end + 0.1 + step = float(step) if step is not None else None + return start, end, step + + float_samples = ( + # includes endpoint + (0., -8. - 1e-6, -4.), + (1., 5. + 1e-6, 2.), + (0., -8., -4.), + (1., 5., 2.), + *(to_float(start, end, step) for (start, end, step) in int_samples), + ) + + large_samples = ( + (0, 10000, None), + ) + + samples = int_samples + float_samples + if dtype not in (torch.int8, torch.uint8): + samples += large_samples + + for start, end, step in samples: + if start is None: + assert step is None + # Pass end as positional arg + yield SampleInput(end, kwargs={"dtype": dtype, "device": device}) + # (Similar to) calling torch.arange(end=3) + yield SampleInput(0, kwargs={"end": end, "dtype": dtype, "device": device}) + elif step is None: + yield SampleInput(start, args=(end,), kwargs={"dtype": dtype, "device": device}) + else: + yield SampleInput(start, args=(end, step), kwargs={"dtype": dtype, "device": device}) + + yield SampleInput(2) + yield SampleInput(1, args=(3, 1)) + +def sample_inputs_randn(op, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=False) + + shapes = ( + (M,), + (S, S) + ) + + for shape in shapes: + yield SampleInput(input=shape, kwargs=dict(dtype=dtype, device=device, requires_grad=requires_grad)) + +def sample_inputs_normal(op, device, dtype, requires_grad, **kwargs): + + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=False) + samples = ( + ((S, S), 0, 5), + ((S, S, S), -2, 0.5), + ) + for shape, mean, std in samples: + yield SampleInput(make_arg(shape), args=(mean, std)) + +def error_inputs_normal(op, device, **kwargs): + t = torch.zeros([10], device=device) + invalid_std = -1 + yield ErrorInput( + SampleInput(t, args=(0, invalid_std)), + error_type=RuntimeError, + error_regex=fr"normal expects std >= 0.0, but found std {invalid_std}", + ) + +def sample_inputs_cauchy(op, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=False) + samples = ( + ((M,), 0, 0.5), + ((S, S), 0, 1), + ((S, S, S), -2, 1), + ) + for shape, median, gamma in samples: + yield SampleInput(make_arg(shape), args=(median, gamma)) + + +def error_inputs_cauchy(op, device, **kwargs): + t = torch.zeros([10], device=device) + invalid_scale = 0 + yield ErrorInput( + SampleInput(t, args=(0, invalid_scale,)), + error_type=RuntimeError, + error_regex=fr"cauchy_ expects sigma > 0.0, but found sigma={invalid_scale}", + ) + + +def sample_inputs_exponential(op, device, dtype, requires_grad, **kwargs): + + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=False) + samples = ( + ((M,), 0.5), + ((S, S), 1), + ((S, S, S), 1.5), + ) + for shape, rate in samples: + yield SampleInput(make_arg(shape), args=(rate,)) + + +def error_inputs_exponential(op, device, **kwargs): + t = torch.zeros([10], device=device) + invalid_rate = 0 + yield ErrorInput( + SampleInput(t, args=(invalid_rate,)), + error_type=RuntimeError, + error_regex=fr"exponential_ expects lambda > 0.0, but found lambda={invalid_rate}", + ) + + +def sample_inputs_geometric(op, device, dtype, requires_grad, **kwargs): + + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=False) + samples = ( + ((M,), 0.2), + ((S, S), 0.5), + ((S, S, S), 0.8), + ) + for shape, rate in samples: + yield SampleInput(make_arg(shape), args=(rate,)) + + +def error_inputs_geometric(op, device, **kwargs): + t = torch.zeros([10], device=device) + neg_prob = -1 + yield ErrorInput( + SampleInput(t, args=(neg_prob,)), + error_type=RuntimeError, + error_regex=fr"geometric_ expects p to be in \(0, 1\), but got p={neg_prob}", + ) + + +def sample_inputs_log_normal(op, device, dtype, requires_grad, **kwargs): + + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=False) + samples = ( + ((M,), 0, 0.25), + ((S, S), 0.5, 1), + ((S, S, S), 0, 0.5), + ) + for shape, mean, std in samples: + yield SampleInput(make_arg(shape), args=(mean, std)) + + +def error_inputs_log_normal(op, device, **kwargs): + t = torch.zeros([10], device=device) + invalid_std = 0 + yield ErrorInput( + SampleInput(t, args=(0, invalid_std)), + error_type=RuntimeError, + error_regex=fr"log_normal_ expects std > 0.0, but found std={invalid_std}", + ) + + +def sample_inputs_uniform(op, device, dtype, requires_grad, **kwargs): + + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=False) + samples = ( + ((M,), -100, 100), + ((S, S), 0, 1), + ((S, S, S), 1, 2), + ) + for shape, hi, lo in samples: + yield SampleInput(make_arg(shape), args=(hi, lo)) + +def sample_inputs_ones_zeros(op, device, dtype, requires_grad, **kwargs): + # this is a bit messy, as we want the args to be tuples + # so if we pass size as a tuple, we have a tuple containing a tuple + sizes = ( + (M,), + (S, S), + ) + for size in sizes: + yield SampleInput(size, kwargs={'dtype': dtype, 'device': device}) + +def sample_inputs_full(op, device, dtype, requires_grad, **kwargs): + def get_val(dtype): + return make_tensor([], dtype=dtype, device="cpu").item() + + sizes = ( + (M,), + (S, S), + ) + fill_values = [get_val(dtype), get_val(torch.int)] + + for size, fill_value in product(sizes, fill_values): + yield SampleInput(size, fill_value, dtype=dtype, device=device) + + +def error_inputs_uniform(op, device, **kwargs): + t = torch.zeros([10], device=device) + yield ErrorInput( + SampleInput(t, args=(3, -1)), + error_type=RuntimeError, + error_regex=r"uniform_ expects to return a \[from, to\) range, but found from=3 > to=-1", + ) + + +def error_inputs_linspace(op, device, **kwargs): + yield ErrorInput(SampleInput(0, args=(3, -1)), error_type=RuntimeError, error_regex='number of steps must be non-negative') + yield ErrorInput( + SampleInput(0, args=(3, 1.)), + error_type=TypeError, + error_regex="received an invalid combination of arguments - got \\(int, int, float", + ) + yield ErrorInput( + SampleInput(torch.tensor([1, 1], device=device), args=(torch.tensor([3, 3], device=device), 1)), + error_type=RuntimeError, + error_regex="only supports 0-dimensional start and end tensors" + ) + + +def sample_inputs_linspace(op, device, dtype, requires_grad, **kwargs): + ends = (-3, 0, 1, 4, 50) + starts = (-2., 0, 4.3, 50) + nsteps = (0, 1, 50) + # Extra case to replicate off-by-one issue on CUDA + cases = list(product(starts, ends, nsteps)) + [(0, 7, 50)] + for start, end, nstep in cases: + if dtype == torch.uint8 and (end < 0 or start < 0): + continue + yield SampleInput(start, args=(end, nstep), kwargs={"dtype": dtype, "device": device}) + + yield SampleInput(1, args=(3, 1)) + + +def sample_inputs_linspace_tensor_overload(op, device, dtype, requires_grad, **kwargs): + ends = (-3, 0, 1, 4, 50) + starts = (-2., 0, 4.3, 50) + nsteps = (0, 1, 50) + is_start_end_tensors = ((True, True), (True, False), (False, True)) + make_arg = partial(torch.tensor, device=device, requires_grad=False) + + # Extra case to replicate off-by-one issue on CUDA + cases = list(product(starts, ends, nsteps, is_start_end_tensors)) + [(0, 7, 50, (True, True))] + for start, end, nstep, (is_start_tensor, is_end_tensor) in cases: + if dtype == torch.uint8 and (end < 0 or start < 0): + continue + + tensor_options = {"dtype": dtype, "device": device} + if is_start_tensor: + start = make_arg(start, dtype=torch.float32 if isinstance(start, float) else torch.int64) + if is_end_tensor: + end = make_arg(end, dtype=torch.float32 if isinstance(end, float) else torch.int64) + + yield SampleInput(start, args=(end, nstep), kwargs=tensor_options) + + yield SampleInput(1, args=(3, 1)) + + +def sample_inputs_logspace(op, device, dtype, requires_grad, **kwargs): + ends = (-3, 0, 1.2, 2, 4) + starts = (-2., 0, 1, 2, 4.3) + nsteps = (0, 1, 2, 4) + bases = (2., 1.1) if dtype in (torch.int8, torch.uint8) else (None, 2., 3., 1.1, 5.) + for start, end, nstep, base in product(starts, ends, nsteps, bases): + if dtype == torch.uint8 and end < 0 or start < 0: + continue + if nstep == 1 and isinstance(start, float) and not (dtype.is_complex or dtype.is_floating_point): + # https://github.com/pytorch/pytorch/issues/82242 + continue + if base is None: + yield SampleInput(start, args=(end, nstep), kwargs={"dtype": dtype, "device": device}) + else: + yield SampleInput(start, args=(end, nstep, base), kwargs={"dtype": dtype, "device": device}) + + yield SampleInput(1, args=(3, 1, 2.)) + + +def sample_inputs_logspace_tensor_overload(op, device, dtype, requires_grad, **kwargs): + ends = (-3, 0, 1.2, 2, 4) + starts = (-2., 0, 1, 2, 4.3) + nsteps = (0, 1, 2, 4) + bases = (2., 1.1) if dtype in (torch.int8, torch.uint8) else (None, 2., 3., 1.1, 5.) + is_start_end_tensors = ((True, True), (True, False), (False, True)) + make_arg = partial(torch.tensor, device=device) + for start, end, nstep, base, (is_start_tensor, is_end_tensor) in product(starts, ends, nsteps, bases, is_start_end_tensors): + if dtype == torch.uint8 and end < 0 or start < 0: + continue + if nstep == 1 and isinstance(start, float) and not (dtype.is_complex or dtype.is_floating_point): + # https://github.com/pytorch/pytorch/issues/82242 + continue + + tensor_options = {"dtype": dtype, "device": device} + + if (is_start_tensor): + start = make_arg(start, dtype=torch.float32 if isinstance(start, float) else torch.int64) + if (is_end_tensor): + end = make_arg(end, dtype=torch.float32 if isinstance(end, float) else torch.int64) + + if base is None: + yield SampleInput(start, args=(end, nstep), kwargs=tensor_options) + else: + yield SampleInput(start, args=(end, nstep, base), kwargs=tensor_options) + + yield SampleInput(1, args=(3, 1, 2.)) + + +def sample_inputs_isclose(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_elementwise_binary(op, device, dtype, requires_grad, **kwargs) + + # Creates additional inputs to test the rtol, atol, and equal_nan params + rtols = [0., 1e-7] + atols = [0., 1e-7] + equal_nans = [False, True] + + products = product(rtols, atols, equal_nans) + + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + for rtol, atol, equal_nan in products: + lhs = make_arg((S, S), **op.lhs_make_tensor_kwargs) + rhs = make_arg((S, S), **op.rhs_make_tensor_kwargs) + + yield SampleInput(lhs, args=(rhs,), + kwargs=dict(rtol=rtol, atol=atol, equal_nan=equal_nan)) + + +def error_inputs_isclose(op, device, **kwargs): + make_float_arg = partial(make_tensor, device=device, dtype=torch.float, requires_grad=False) + + yield ErrorInput(SampleInput(make_float_arg(()), args=(make_float_arg(()),), kwargs={'rtol': -0.4}), + error_type=RuntimeError, + error_regex='rtol must be greater than or equal to zero') + + yield ErrorInput(SampleInput(make_float_arg(()), args=(make_float_arg(()),), kwargs={'atol': -0.4}), + error_type=RuntimeError, + error_regex='atol must be greater than or equal to zero') + + +def sample_inputs_t(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + yield SampleInput(make_arg((1, 2))) + yield SampleInput(make_arg((2,))) + yield SampleInput(make_arg(())) + + +def sample_inputs_mm(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + def make_arg_conj(size): + return make_arg(size).conj().requires_grad_(requires_grad) + + first_shape, second_shape = (S, M), (M, S) + + yield SampleInput(make_arg(first_shape), args=(make_arg(second_shape),)) + + if dtype.is_complex: + yield SampleInput(make_arg(first_shape), args=(make_arg_conj(second_shape),)) + + +def sample_inputs_addmm(op_info, device, dtype, requires_grad, **kwargs): + alpha_val = kwargs.get('alpha', 2 + 3j if dtype.is_complex else 0.6) + beta_val = kwargs.get('beta', 1 + 2j if dtype.is_complex else 0.2) + tests_list = [ + ((2, 3), (2, 2), (2, 3), False) + ] + tests_with_lhs_broadcasting = [ + ((1,), (2, 2), (2, 3), True), + ((), (2, 2), (2, 3), True) + ] + test_cases = tests_list + tests_with_lhs_broadcasting # type: ignore[operator] + + kwargs = dict(alpha=alpha_val, beta=beta_val) + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + for shape_a, shape_b, shape_c, broadcasts_input in test_cases: + yield SampleInput( + make_arg(shape_a), + make_arg(shape_b), + make_arg(shape_c), + **kwargs, + ).with_metadata(broadcasts_input=broadcasts_input) + + if dtype.is_complex: + shape = (3, 3) + yield SampleInput( + make_arg(shape), + make_arg(shape, requires_grad=False).mH.requires_grad_(requires_grad), + make_arg(shape), + **kwargs, + ) + yield SampleInput( + make_arg(shape), + make_arg(shape), + make_arg(shape, requires_grad=False).mH.requires_grad_(requires_grad), + **kwargs, + ) + +def sample_inputs_sparse_sampled_addmm(op_info, device, dtype, requires_grad, **kwargs): + alpha = 2 + 3j if dtype.is_complex else 0.6 + beta = 1 + 2j if dtype.is_complex else 0.2 + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # sparse.sampled_addmm performs: alpha * (A @ B) * sparse_ones_like(C) + beta * C + for m, n, k in itertools.product([0, 5], repeat=3): + yield SampleInput( + torch.eye(m, n, device=device, dtype=dtype) + .to_sparse_csr() + .requires_grad_(requires_grad), + make_arg((m, k)), + make_arg((k, n)), + alpha=alpha, + beta=beta, + ) + +def sample_inputs_sparse_mm_reduce(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + reductions = ["sum", "mean", "amax", "amin"] + for m, k, reduce in product([5, 7], [3, 11], reductions): + yield SampleInput( + torch.eye(m, m) + .to(device=device, dtype=dtype) + .to_sparse_csr() + .requires_grad_(requires_grad), + make_arg((m, k)), + reduce, + ) + + +def sample_inputs_mv(self, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad) + yield SampleInput(make_arg(S, M), make_arg(M)) + +def sample_inputs_bmm(self, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad) + yield SampleInput(make_arg(M, S, M), make_arg(M, M, S)) + +def sample_inputs_dot_vdot(self, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + def make_arg_conj(size): + return make_arg(size).conj().requires_grad_(requires_grad) + + yield SampleInput(make_arg((S, )), make_arg((S, ))) + if dtype.is_complex: + # dot/vdot for (conj(input), conj(arg_tensor)) and (conj(input), arg_tensor) + # is tested in test_conj_view (which tests operations with only conjugated input tensor + # -- not conjugated arg tensors) + yield SampleInput(make_arg((S, )), make_arg_conj((S, ))) + + +def error_inputs_dot_vdot(op_info, device, is_ref=False, **kwargs): + make_input = partial(make_tensor, device=device, dtype=torch.float32) + + if not is_ref: + yield ErrorInput(SampleInput(make_input(1), args=(make_input(3, dtype=torch.float16),)), + error_regex='dot : expected both vectors to have same dtype') + yield ErrorInput(SampleInput(make_input(1, 1), args=(make_input(3),)), + error_regex='1D tensors expected') + yield ErrorInput(SampleInput(make_input(9), args=(make_input(3),)), + error_regex='inconsistent tensor size') + if device != "cpu" and not is_ref: + yield ErrorInput(SampleInput(make_input(3), args=(make_input(3, device="cpu"),)), + error_regex='Expected all tensors to be on the same device') + + +def sample_inputs_addmv(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + test_cases = (((S,), (S, M), (M,), 1, 1, False), + ((S,), (S, M), (M,), 0.2, 0.6, False), + ) + + test_cases_with_broadcast = (((1,), (S, M), (M,), 1, 1, True), + ((1,), (S, M), (M,), 0.2, 0.6, True), + ((), (S, M), (M,), 1, 1, True), + ((), (S, M), (M,), 0.2, 0.6, True), + ) + + cases = test_cases + test_cases_with_broadcast + + # addmv performs: beta * M + alpha * (mat @ vec) + for size, mat, vec, beta, alpha, broadcasts_input in cases: + yield SampleInput(make_arg(size), args=(make_arg(mat), make_arg(vec)), + kwargs=dict(beta=beta, alpha=alpha), broadcasts_input=broadcasts_input) + +def sample_inputs_addbmm(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # input_shape, batch1_shape, batch2_shape, beta_val, alpha_val, is_broadcasting + test_cases = [((S, M), (S, S, S), (S, S, M), 1, 1, False), + ((1,), (S, S, S), (S, S, M), 1, 1, True), + ((S, M), (S, S, S), (S, S, M), 0.6, 0.2, False), + ((1,), (S, S, S), (S, S, M), 0.6, 0.2, True), + ((), (S, S, S), (S, S, M), 1, 1, True), + ((), (S, S, S), (S, S, M), 0.6, 0.2, True), + ] + + for input_shape, batch1_shape, batch2_shape, beta, alpha, is_broadcasting in test_cases: + if dtype.is_complex: + beta_complex, alpha_complex = beta * (1 + 2j), alpha * (2 + 3j) + yield SampleInput(make_arg(input_shape), args=(make_arg(batch1_shape), make_arg(batch2_shape)), + kwargs=dict(beta=beta_complex, alpha=alpha_complex), broadcasts_input=is_broadcasting) + yield SampleInput(make_arg(input_shape), args=(make_arg(batch1_shape), make_arg(batch2_shape)), + kwargs=dict(beta=beta, alpha=alpha), broadcasts_input=is_broadcasting) + +def sample_inputs_addcmul_addcdiv(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + test_cases = [(((S, S), (S, S), (S, S)), False), + (((S, S), (S, 1), (1, S)), False), + (((1,), (S, S, 1), (1, S)), True), + (((), (), ()), False), + (((S, S), (), ()), True), + (((), (S, S, 1), (1, S)), True) + ] + + for input_args, broadcasts_input in test_cases: + # addcdiv should accept inputs with zero value + # Currently, it throws ZeroDivisionError when the denominator is zero + # TODO: exclude_zeros can be removed after https://github.com/pytorch/pytorch/issues/73638 is fixed + args = tuple(make_arg(arg, exclude_zero=True) if isinstance(arg, tuple) else arg + for arg in input_args) + yield SampleInput(*args).with_metadata(broadcasts_input=broadcasts_input) + + # addcdiv should accept inputs with zero value + # Currently, it throws ZeroDivisionError when the denominator is zero + # TODO: exclude_zeros can be removed after https://github.com/pytorch/pytorch/issues/73638 is fixed + args = tuple(make_arg(arg, exclude_zero=True) if isinstance(arg, tuple) else arg + for arg in input_args) + yield SampleInput( + *args, value=3.14 if dtype.is_floating_point or dtype.is_complex else 3 + ).with_metadata(broadcasts_input=broadcasts_input) + +def reference_inputs_addcmul_addcdiv(op_info, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_addcmul_addcdiv( + op_info, device, dtype, requires_grad, **kwargs) + + # type promotion cases + supported_dtypes = op_info.supported_dtypes(device) + make_arg = partial(make_tensor, device=device, requires_grad=requires_grad) + + types = ( + (torch.float64, torch.complex128), + (torch.bfloat16, torch.float32), + ) + + values = ( + None, + True, False, + 3.14, 3, + 1.0, 1, + 0.0, 0, + -3.14, -3, + 3.14 + 2.71j, + ) + + for (type2, type3), value in product(types, values): + if (type2 not in supported_dtypes or + type3 not in supported_dtypes): + continue + + # RuntimeError: value cannot be converted without overflow + if (type(value) is complex and + type2 is not torch.complex128): + continue + + arg1 = make_arg([5, 5], dtype=dtype) + arg2 = make_arg([5, 5], dtype=type2) + arg3 = make_arg([1, 5], dtype=type3) + + # TypeError: addcdiv(): argument 'value' must be Number, not NoneType + if value is not None: + yield SampleInput(arg1, args=(arg2, arg3), kwargs=dict(value=value)) + else: + yield SampleInput(arg1, args=(arg2, arg3)) + +def sample_inputs_baddbmm(op_info, device, dtype, requires_grad, **kwargs): + test_cases = [((S, S, M), (S, S, S), (S, S, M), 1, 1, False), + ((1,), (S, S, S), (S, S, M), 1, 1, True), + ((S, S, M), (S, S, S), (S, S, M), 0.6, 0.2, False), + ((1,), (S, S, S), (S, S, M), 0.6, 0.2, True), + ((), (S, S, S), (S, S, M), 1, 1, True), + ((), (S, S, S), (S, S, M), 0.6, 0.2, True), + ] + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad, low=None, high=None) + for (input_shape, batch1_shape, batch2_shape, alpha, beta, broadcasts_input) in test_cases: + yield SampleInput( + make_arg(input_shape), + make_arg(batch1_shape), + make_arg(batch2_shape), + beta=beta, + alpha=alpha + ).with_metadata(broadcasts_input=broadcasts_input) + + if dtype.is_complex: + yield SampleInput( + make_arg(input_shape), + make_arg(batch1_shape), + make_arg(batch2_shape), + beta=beta * (1 + 2j), + alpha=alpha * (2 + 3j), + ).with_metadata(broadcasts_input=broadcasts_input) + + if dtype.is_complex: + shapes = [(S, S, S), (S, M, S), (S, S, M)] + args = tuple(make_arg(s) for s in shapes) + yield SampleInput( + args[0].transpose_(-1, 1), + args[1].transpose(-1, 1).conj().requires_grad_(requires_grad), + args[2].transpose(-1, 1).conj().requires_grad_(requires_grad), + beta=beta * (1 + 2j), + alpha=alpha * (2 + 3j), + ) + +# TODO: add reduction kwargs +def sample_inputs_multilabel_soft_margin_loss(op_info, device, dtype, requires_grad, **kwargs): + _make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + shapes = ( + (S,), + (S, S), + ) + + for shape in shapes: + # Produce one with weight and one without. + yield SampleInput(_make_tensor(shape), args=(_make_tensor(shape, requires_grad=False),), kwargs={}) + yield SampleInput(_make_tensor(shape), args=(_make_tensor(shape, requires_grad=False),), + kwargs={'weight': _make_tensor(shape, requires_grad=False)}) + +def sample_inputs_addr(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial( + make_tensor, device=device, dtype=dtype, requires_grad=requires_grad, low=None, high=None + ) + yield SampleInput(make_arg(S, M), make_arg(S), make_arg(M)) + + yield SampleInput(make_arg(), make_arg(S), make_arg(M)).with_metadata(broadcasts_input=True) + + if dtype.is_complex: + alpha, beta = 0.1 + 0.3j, 0.4 + 0.6j + elif dtype.is_floating_point: + alpha, beta = 0.2, 0.6 + else: + alpha, beta = 2, 3 + + yield SampleInput(make_arg(S, M), make_arg(S), make_arg(M), beta=beta, alpha=alpha) + + yield SampleInput( + make_arg(), + make_arg(S), + make_arg(M), + beta=beta, + alpha=alpha, + ).with_metadata(broadcasts_input=True) + + # These samples fail gradcheck + if dtype.is_floating_point and not requires_grad: + tensor_options = dict(device=device, dtype=dtype, requires_grad=requires_grad) + yield SampleInput( + torch.tensor([[math.nan]], **tensor_options), + torch.tensor([0.0], **tensor_options), + torch.tensor([0.0], **tensor_options), + beta=0.0, + alpha=0.0, + ).with_metadata(broadcasts_input=True) + + yield SampleInput( + torch.tensor([[0.0]], **tensor_options), + torch.tensor([math.nan], **tensor_options), + torch.tensor([math.nan], **tensor_options), + beta=0.0, + alpha=0.0, + ).with_metadata(broadcasts_input=True) + +def sample_inputs_zero_(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + cases = ((), (S, S, S), (S,)) + + for shape in cases: + yield SampleInput(make_arg(shape)) + +def sample_inputs_multi_margin_loss(op_info, device, dtype, requires_grad, **kwargs): + _make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(_make_tensor, dtype=torch.long, requires_grad=False) + make_weight = partial(_make_tensor, requires_grad=False) + + inputs = ( + ((), make_target([], low=0, high=1), {}), + ((S,), make_target([], low=0, high=S), {"p": 1}), + ((S,), make_target([1], low=0, high=S), {"p": 2}), + ((S, M), make_target([S], low=0, high=M), {"margin": 1.0}), + ((S, M), make_target([S], low=0, high=M), {"margin": -3.14}), + ((M, S), make_target([M], low=0, high=S), {"weight": None}), + ((M, S), make_target([M], low=0, high=S), {"weight": make_weight([S], low=-10., high=10.)}), + ((M, S), make_target([M], low=0, high=S), {"reduction": "none"}), + ((M, S), make_target([M], low=0, high=S), {"reduction": "mean"}), + ((M, S), make_target([M], low=0, high=S), {"reduction": "sum"}), + ) + + for input_shape, target, kwargs in inputs: + yield SampleInput(_make_tensor(input_shape), args=(target,), kwargs=kwargs) + + +def reference_inputs_multi_margin_loss(op_info, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_multi_margin_loss(op_info, device, dtype, requires_grad, **kwargs) + _make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(_make_tensor, dtype=torch.long, requires_grad=False) + make_weight = partial(_make_tensor, requires_grad=False) + + inputs = ( + ((), make_target([], low=0, high=1)), + ((S,), make_target([], low=0, high=S)), + ((S,), make_target([1], low=0, high=S)), + ((M, S), make_target([M], low=0, high=S)), + ) + ps = (1, 2) + margins = (0, 7, -3.14) + weights = (False, True) + reductions = (None, "none", "mean", "sum") + + for (input_shape, target), p, margin, weight, reduction in product(inputs, ps, margins, weights, reductions): + input = _make_tensor(input_shape) + weight_shape = [input.size(-1)] if input.ndim > 0 else [1] + weight = make_weight(weight_shape, low=-10., high=10.) if weight else None + kwargs = {"p": p, "margin": margin, "weight": weight} + if reduction is not None: + kwargs["reduction"] = reduction + yield SampleInput(input, args=(target,), kwargs=kwargs) + + +def error_inputs_multi_margin_loss(op, device, **kwargs): + make_input = partial(make_tensor, device=device, dtype=torch.float32) + # invalid reduction + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(5,),), kwargs={'reduction': 'abc'}), + error_type=ValueError, error_regex='abc is not a valid value for reduction') + # invalid input + yield ErrorInput(SampleInput(make_input(5, 0), args=(make_input(5,),), kwargs={}), + error_type=RuntimeError, + error_regex=r'Expected non-empty vector or matrix with optional 0-dim batch size, but got: \[5, 0\]') + yield ErrorInput(SampleInput(make_input(0,), args=(make_input(5,),), kwargs={}), + error_type=RuntimeError, + error_regex=r'Expected non-empty vector or matrix with optional 0-dim batch size, but got: \[0\]') + # invalid target + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(5, 4),), kwargs={}), + error_type=RuntimeError, error_regex=r'inconsistent target size, expected 5 but got \[5, 4\]') + # invalid target dtype + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(5,),), kwargs={}), + error_type=RuntimeError, error_regex='expected scalar type Long but found Float') + # invalid weight + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(5,),), kwargs={'weight': make_input(())}), + error_type=ValueError, error_regex='weight must be one-dimensional') + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(5,),), kwargs={'weight': make_input(5, 4)}), + error_type=ValueError, error_regex='weight must be one-dimensional') + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(5,),), kwargs={'weight': make_input(5,)}), + error_type=RuntimeError, error_regex=r'inconsistent weight size, expected 4 but got \[5\]') + # invalid p + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(5,),), kwargs={'p': 3}), + error_type=ValueError, error_regex='only p == 1 and p == 2 supported') + + +def sample_inputs_logsumexp(self, device, dtype, requires_grad, **kwargs): + inputs = ( + ((), (0,), True), + ((S, S), (1,), True), + ((S, S), (1,), False), + ((S, S), (-2,), False), + ((S, S), (0, 1), False), + ) + # Test large inputs to check numerical stability + lows = (None, 1e3, 1e6) if dtype in (torch.float32, torch.float64) else (None,) + for low in lows: + high = low * 2 if low is not None else None + for shape, dim, keepdim in inputs: + t = make_tensor(shape, dtype=dtype, device=device, + low=low, high=high, + requires_grad=requires_grad) + yield SampleInput(t, dim, keepdim) + +def reference_inputs_logsumexp(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_logsumexp(op, device, dtype, requires_grad, **kwargs) + + # https://github.com/pytorch/pytorch/issues/91843 + t = torch.tensor([20, 30, 100], dtype=dtype, device=device, requires_grad=requires_grad) + yield SampleInput(t, 0, False) + + t = torch.tensor((), dtype=dtype, device=device, requires_grad=requires_grad) + yield SampleInput(t, 0, False) + + # tests masking + # https://github.com/pytorch/pytorch/pull/91860#pullrequestreview-1241344073 + t = torch.tensor(float("inf")) + yield SampleInput(t, 0, True) + +def sample_inputs_like_fns(self, device, dtype, requires_grad, **kwargs): + inputs = [ + ((), {}), + ((S, S), {}), + ((0, S, 0), {}), + ((S,), {'dtype': dtype, 'device': device}), + # Hard-code some dtypes/devices. We want to test cases where the + # (dtype, device) is different from the input's (dtype, device) + ((S,), {'dtype': torch.double}), + ((S,), {'device': 'cpu'}), + ((S,), {'dtype': torch.double, 'device': 'cpu'}), + ] + if torch.cuda.is_available(): + inputs.append(((S,), {'device': 'cuda'})) + + for shape, kwargs in inputs: + t = make_tensor(shape, dtype=dtype, device=device, + low=None, high=None, + requires_grad=requires_grad) + yield SampleInput(t, **kwargs) + +def reference_inputs_like_fns(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_like_fns(op, device, dtype, requires_grad, **kwargs) + + # shape + cases = ( + (), (0,), (1, 0), (1, 1, 4, 5), (5, 3, 0, 1), (1, 4, 3, 1, 1) + ) + + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + for shape in cases: + yield SampleInput(make_arg(shape)) + yield SampleInput(make_arg(shape).transpose(0, -1)) + yield SampleInput(make_arg(shape, noncontiguous=True)) + yield SampleInput(make_arg(shape, noncontiguous=True).transpose(0, -1)) + +def sample_inputs_multilabel_margin_loss(op_info, device, dtype, requires_grad, **kwargs): + _make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(_make_tensor, dtype=torch.long, requires_grad=False) + + inputs = ( + ([], make_target([], low=0, high=1), {}), + ([S], make_target([S], low=0, high=S), {}), + ([M, S], make_target([M, S], low=0, high=S), {}), + ([M, S], make_target([M, S], low=0, high=S), {"reduction": "none"}), + ([M, S], make_target([M, S], low=0, high=S), {"reduction": "mean"}), + ([M, S], make_target([M, S], low=0, high=S), {"reduction": "sum"}), + ) + + for shape, target, kwargs in inputs: + yield SampleInput(_make_tensor(shape), args=(target,), kwargs=kwargs) + + +def reference_inputs_multilabel_margin_loss(op_info, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_multilabel_margin_loss(op_info, device, dtype, requires_grad, **kwargs) + _make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(_make_tensor, dtype=torch.long, requires_grad=False) + make_target_tensor = partial(torch.tensor, device=device, dtype=torch.long, requires_grad=False) + + inputs = ( + # random tests including -1 target labels + ([], make_target([], low=-1, high=1)), + ([S], make_target([S], low=-1, high=S)), + ([M, S], make_target([M, S], low=-1, high=S)), + # repeated target labels and -1 (labels after the first -1 are ignored) + ([], make_target_tensor(-1)), + ([7], make_target_tensor([2, 0, 6, -1, 4, -1, 6])), + ([4, 5], make_target_tensor([[4, -1, 0, -1, 2], [0, 0, 4, 1, 4], [-1, 3, -1, 1, 0], [4, 3, 2, 1, 0]])), + ) + reductions = (None, "none", "mean", "sum") + + for (shape, target), reduction in product(inputs, reductions): + kwargs = {} + if reduction is not None: + kwargs["reduction"] = reduction + yield SampleInput(_make_tensor(shape), args=(target,), kwargs=kwargs) + + +def error_inputs_multilabel_margin_loss(op, device, **kwargs): + make_input = partial(make_tensor, device=device, dtype=torch.float32) + # invalid reduction + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(5, 4),), kwargs={'reduction': 'abc'}), + error_type=ValueError, error_regex='abc is not a valid value for reduction') + # invalid input + yield ErrorInput(SampleInput(make_input(5, 0), args=(make_input(5, 4),), kwargs={}), + error_type=RuntimeError, + error_regex=r'Expected non-empty vector or matrix with optional 0-dim batch size, but got: \[5, 0\]') + yield ErrorInput(SampleInput(make_input(0,), args=(make_input(0,),), kwargs={}), + error_type=RuntimeError, + error_regex=r'Expected non-empty vector or matrix with optional 0-dim batch size, but got: \[0\]') + # invalid target + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(4,),), kwargs={}), + error_type=RuntimeError, + error_regex=r'inconsistent target size: \[4\] for input of size: \[5, 4\]') + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input((),),), kwargs={}), + error_type=RuntimeError, + error_regex=r'inconsistent target size: \[\] for input of size: \[5, 4\]') + + +def get_independent_tensor(tensor): + return tensor.clone().requires_grad_(tensor.requires_grad) + +def sample_inputs_randint(self, device, dtype, requires_grad, **kwargs): + low = 2 + high = 10 + + for sample in sample_inputs_like_fns(self, device, dtype, requires_grad, **kwargs): + sample.kwargs.setdefault('device', device) + # With high + yield SampleInput(high, sample.input.shape, *sample.args, **sample.kwargs) + # With low and high + yield SampleInput(low, high, sample.input.shape, *sample.args, **sample.kwargs) + +def sample_inputs_randint_like(self, device, dtype, requires_grad, **kwargs): + low = 2 + high = 10 + + for sample in sample_inputs_like_fns(self, device, dtype, requires_grad, **kwargs): + # With high + yield SampleInput( + sample.input, + high, + *sample.args, + **sample.kwargs) + # With low and high + yield SampleInput( + get_independent_tensor(sample.input), + low, + high, + *sample.args, + **sample.kwargs) + +def sample_inputs_margin_ranking_loss(op_info, device, dtype, requires_grad, **kwargs): + _make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + shapes = ( + (), + (S,), + (S, S), + (S, S, S), + ) + + margins = (0., 1.) + reductions = ('sum', 'mean', 'none') + + for shape in shapes: + for margin, reduction in product(margins, reductions): + kwargs = {'margin': margin, 'reduction': reduction} + yield SampleInput(_make_tensor(shape), + args=(_make_tensor(shape, requires_grad=False), + _make_tensor(shape, requires_grad=False)), + kwargs=kwargs) + +def reference_inputs_margin_ranking_loss(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_margin_ranking_loss(op, device, dtype, requires_grad, **kwargs) + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + for reduction in ('sum', 'mean', 'none'): + if dtype.is_floating_point: # only supports ints and floats + # NaN propagation + inp1 = make_input((10, )) + inp1[2] = float('nan') + inp2 = make_input((10, )) + inp2[4] = float('nan') + target = make_input((10, )) + inp2[9] = float('nan') + yield SampleInput(inp1, args=(inp2, target), kwargs={'reduction': reduction}) + + # Inf handling + inp1 = make_input((10, )) + inp2[1] = float('inf') + inp2 = make_input((10, )) + inp2[4] = float('inf') + target = make_input((10, )) + inp2[7] = float('inf') + yield SampleInput(inp1, args=(inp2, target), kwargs={'reduction': reduction}) + + # Broadcasting + inp1 = make_input((5, 2)) + inp2 = make_input((5, 1)) + target = make_input((1, 2)) + yield SampleInput(inp1, args=(inp2, target), kwargs={'reduction': reduction}) + +def error_inputs_margin_ranking_loss(op, device, **kwargs): + make_input = partial(make_tensor, device=device, dtype=torch.float32) + # invalid reduction value. + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(5, 4), make_input(5, 4),), kwargs={'reduction': 'abc'}), + error_type=ValueError, error_regex='is not a valid value') + # invalid input shapes + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(5, 4), make_input(5,),)), + error_regex='margin_ranking_loss : All input tensors should') + +def sample_inputs_new_fns(self, device, dtype, requires_grad, *, is_strided=False, **kwargs): + # input_shape, output_shape, strides, kwargs + # lengths of output_shape and strides must be equal + inputs = [ + ((), (), (), {}), + ((S, S), (2, 0), (3, 4), {}), + ((0, S, 0), (3, 2, 2), (1, 2, 3), {}), + ((S,), (2, 3), (7, 8), {'dtype': dtype, 'device': device}), + # Hard-code some dtypes/devices. We want to test cases where the + # (dtype, device) is different from the input's (dtype, device) + ((S,), (10,), (S,), {'dtype': torch.double}), + ((S,), (1, 1, 12), (S, L, M), {'device': 'cpu'}), + ((S,), (2, 2, 2), (L, M, S), {'dtype': torch.double, 'device': 'cpu'}), + ] + if torch.cuda.is_available(): + inputs.append(((S,), (7, 2), (3, 4), {'device': 'cuda'})) + + for input_shape, output_shape, strides, kwargs in inputs: + t = make_tensor(input_shape, dtype=dtype, device=device, + low=None, high=None, + requires_grad=requires_grad) + if is_strided: + yield SampleInput(t, output_shape, strides, **kwargs) + else: + yield SampleInput(t, output_shape, **kwargs) + +def sample_inputs_empty_strided(op, device, dtype, requires_grad=False, **kwargs): + + inputs = [ + ((), (), {'dtype': dtype, 'device': device}), + ((S,), (4,), {'dtype': dtype, 'device': device}), + ((S, S), (2, 1), {'dtype': dtype, 'device': device}), + ((S, S, S), (2, 0, 1), {'dtype': dtype, 'device': device}), + ] + + for shape, strides, kwargs in inputs: + yield SampleInput(shape, strides, requires_grad=requires_grad, **kwargs) + +def sample_inputs_empty(op, device, dtype, requires_grad, **kwargs): + # shape + cases = ( + (), (0,), (1,), (1, 3, 5), (5, 3, 1), (1, 0, 5, 1), + ) + + for case in cases: + yield SampleInput(case, device=device, dtype=dtype, requires_grad=requires_grad) + +def sample_inputs_empty_permuted(op, device, dtype, requires_grad, **kwargs): + # shape + cases = ( + (), (0,), (1,), (1, 3, 5), (5, 3, 1), (1, 0, 5, 1), + ) + + for case in cases: + for layout in itertools.permutations(range(len(case))): + yield SampleInput(case, layout, device=device, dtype=dtype, requires_grad=requires_grad) + +def error_inputs_empty_permuted(op_info, device, **kwargs): + yield ErrorInput( + SampleInput((2,), args=((0, 1),)), + error_type=RuntimeError, + error_regex="Number of dimensions in size does not match the length of the physical_layout" + ) + yield ErrorInput( + SampleInput((2,), args=((3,),)), + error_type=RuntimeError, + error_regex="Dimension out of range" + ) + yield ErrorInput( + SampleInput((2, 3), args=((0, 0),)), + error_type=RuntimeError, + error_regex="Duplicate dim not allowed" + ) + +def sample_inputs_scalar_tensor(op, device, dtype, requires_grad, **kwargs): + # Not including a scalar tensor in vals because meta tests start failing due to + # lack of meta support for _local_scalar_dense + # torch.tensor(2, device=device) + vals = (-5, 0, 1) + + for item in vals: + yield SampleInput(item, device=device, dtype=dtype, requires_grad=requires_grad) + +def sample_inputs_eye(op, device, dtype, requires_grad, **kwargs): + # only ints >= 0 are allowed for both arguments, unless m is omitted + sizes = (None, 0, 1, 2, 3, 4, 7, L, M, S) + + for n, m in product(sizes, sizes): + if n is None: + continue + + # TODO: no layout + _kwargs = {'device': device, 'dtype': dtype, 'requires_grad': requires_grad} + if m is None: + yield SampleInput(n, args=(), kwargs=_kwargs) + else: + yield SampleInput(n, args=(m,), kwargs=_kwargs) + +def error_inputs_eye(op_info, device, **kwargs): + # TODO: no layout + _kwargs = {'device': device, 'dtype': torch.float32} + + yield ErrorInput( + SampleInput(-1, args=(), kwargs=_kwargs), + error_regex="n must be greater or equal to 0, got -1" + ) + + yield ErrorInput( + SampleInput(-7, args=(42,), kwargs=_kwargs), + error_regex="n must be greater or equal to 0, got -7" + ) + + yield ErrorInput( + SampleInput(0, args=(-3,), kwargs=_kwargs), + error_regex="m must be greater or equal to 0, got -3" + ) + + +def sample_inputs_new_full(self, device, dtype, requires_grad, **kwargs): + def get_val(dtype): + return make_tensor([], dtype=dtype, device="cpu").item() + + for sample in sample_inputs_new_fns(self, device, dtype, requires_grad, **kwargs): + # The scalar we are passing to new_full must be the same dtype + # as the one of the resulting tensor + use_dtype = sample.kwargs['dtype'] if 'dtype' in sample.kwargs else dtype + yield SampleInput( + sample.input, *sample.args, get_val(use_dtype), **sample.kwargs) + +def sample_inputs_full_like(self, device, dtype, requires_grad, **kwargs): + def get_val(dtype): + return make_tensor([], dtype=dtype, device="cpu").item() + + inputs = [ + ((), get_val(dtype), {}), + ((S, S), get_val(dtype), {}), + ((0, S, 0), get_val(dtype), {}), + ((S,), get_val(dtype), {'dtype': dtype, 'device': device}), + # Hard-code some dtypes/devices. We want to test cases where the + # (dtype, device) is different from the input's (dtype, device) + ((S,), get_val(torch.double), {'dtype': torch.double}), + ((S,), get_val(dtype), {'device': 'cpu'}), + ((S,), get_val(torch.double), {'dtype': torch.double, 'device': 'cpu'}), + ] + if torch.cuda.is_available(): + inputs.append(((S,), get_val(dtype), {'device': 'cuda'})) + + for shape, fill_value, kwargs in inputs: + t = make_tensor(shape, dtype=dtype, device=device, + low=None, high=None, + requires_grad=requires_grad) + yield SampleInput(t, fill_value, **kwargs) + +def sample_inputs_multinomial(self, device, dtype, requires_grad, **kwargs): + cases = [ + ([3], 3, {}), + ([10], 3, {}), + ([3, 10], 3, {}), + ([3], 3, dict(replacement=False)), + ([3], 3, dict(replacement=True)), + ([3, 4], 4, dict(replacement=True)), + ([3, 4], 4, dict(replacement=False)), + ] + + for shape, num_samples, kwargs in cases: + t = make_tensor(shape, dtype=dtype, device=device, + low=0, high=None, + requires_grad=requires_grad) + yield SampleInput(t, num_samples, **kwargs) + +def sample_inputs_normal_common(self, device, dtype, requires_grad, cases, **kwargs): + def get_value_or_make_tensor(value_or_shape): + if isinstance(value_or_shape, list): + return make_tensor(value_or_shape, dtype=dtype, device=device, + low=0, high=None, + requires_grad=requires_grad) + return value_or_shape + + for value_or_mean_shape, value_or_std_shape, kwargs in cases: + mean = get_value_or_make_tensor(value_or_mean_shape) + std = get_value_or_make_tensor(value_or_std_shape) + yield SampleInput(mean, std, **kwargs) + +def sample_inputs_normal_tensor_first(self, device, dtype, requires_grad, **kwargs): + # value_or_size, value_or_size, kwargs + cases = [ + ([], [], {}), + ([3], [3], {}), + ([3, 4, 2], [3, 4, 2], {}), + ([2, 3], 1.1, {}), + ([1, 2, 3], [5, 2, 3], {}), # broadcasting + ] + + return sample_inputs_normal_common(self, device, dtype, requires_grad, cases, **kwargs) + +def sample_inputs_normal_tensor_second(self, device, dtype, requires_grad, **kwargs): + yield SampleInput(1.6, 0.3, [2, 3], dtype=dtype, device=device) + yield SampleInput(1.6, 0.3, [2, 2, 2], dtype=dtype, layout=torch.strided, device=device) + yield SampleInput(2.7, make_tensor([4, 3], dtype=dtype, device=device, low=0, high=None, requires_grad=requires_grad)) + +def sample_inputs_bernoulli(self, device, dtype, requires_grad, **kwargs): + shapes = [ + [3], + [], + [0, 3], + [2, 3, 4], + ] + + for shape in shapes: + t = make_tensor(shape, dtype=dtype, device=device, + low=0, high=1, + requires_grad=requires_grad) + yield SampleInput(t) + +def error_inputs_bernoulli(op_info, device, **kwargs): + # more than one element of the written-to tensor refers to a single memory location + x = torch.rand((1,), device=device).expand((6,)) + err_msg = 'unsupported operation' + yield ErrorInput(SampleInput(torch.rand_like(x), kwargs={'out': x}), + error_regex=err_msg) + +def sample_inputs_logcumsumexp(self, device, dtype, requires_grad, **kwargs): + inputs = ( + ((S, S, S), 0), + ((S, S, S), 1), + ((), 0), + ) + + for large_number in (True, False): + for shape, dim in inputs: + t = make_tensor(shape, dtype=dtype, device=device, + low=None, high=None, + requires_grad=requires_grad) + + if large_number and t.dim() > 0: + t[0] = 10000 + yield SampleInput(t, dim) + +def sample_inputs_trace(self, device, dtype, requires_grad, **kwargs): + yield SampleInput( + make_tensor((S, S), dtype=dtype, device=device, + low=None, high=None, + requires_grad=requires_grad)) + + +def error_inputs_trace(op, device): + yield ErrorInput(SampleInput(make_tensor((3, 4, 5), dtype=torch.float32, device=device)), error_regex="expected a matrix") + + +def sample_inputs_renorm(self, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + cases = (((S, S, S), (2, 1, 0.5)), + ((S, S, S), (2, -1, 0.5)), + ((S, S, S), (1, 2, 3)), + ((S, S, S), (float('inf'), 2, 0.5)), + ) + + for shape, args in cases: + yield SampleInput(make_arg(shape), args=args) + + +def sample_inputs_transpose_swapdims(self, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + cases = (((1, 2, 3), (-1, -2)), + ((1, 2, 3), (-1, 2)), + ((1, 2, 3), (1, -2)), + ((1, 2, 3), (1, 2)), + ((), (0, 0)), + ((1, ), (0, 0)), + ((M, M), (0, 1)), + ((S, S, S), (2, 0)), ) + + for shape, args in cases: + yield SampleInput(make_arg(shape), args=args) + +def _numpy_ref_transpose(a, dim0, dim1): + if a.ndim <= 1: + return a + + return np.swapaxes(a, dim0, dim1) + +def sample_inputs_adjoint(self, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + shapes = ((1, 2, 3), (M, M), (S, S, S), (S, M, S), (M, S, M, S)) + return (SampleInput(make_arg(shape)) for shape in shapes) + +def sample_inputs_T(self, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + shapes = ((M, M), (M, L)) + return (SampleInput(make_arg(shape)) for shape in shapes) + +def error_inputs_T(self, device, has_ndims_error=False): + make_arg = partial(make_tensor, device=device, dtype=torch.float32) + + # Deprecated behavior in regular PyTorch, but throws an error in primTorch: + # https://github.com/pytorch/pytorch/issues/86968 + if has_ndims_error: + # ndims == 1 + yield ErrorInput(SampleInput(make_arg(M)), + error_regex=(r'The use of `x\.T` on tensors of dimension other than 0 or 2 ' + r'to reverse their shape is not supported\.')) + + # ndims > 2 + yield ErrorInput(SampleInput(make_arg(M, S, L)), + error_regex=(r'The use of `x\.T` on tensors of dimension other than 0 or 2 ' + r'to reverse their shape is not supported\.')) + + +def sample_inputs_singular_matrix_factors(op_info, device, dtype, requires_grad=False, **kwargs): + """ + This function produces two tensors of shape (*, m, k) and (*, n, k) with k <= min(m, n). + Their matrix product could be used to generate tensor of shape (*, m, n) of rank k. + """ + + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + batches = [(), (0, ), (2, ), (1, 1)] + size = [1, 5, 10] + + for batch, m, n in product(batches, size, size): + for k in range(min(3, m, n)): + a = make_arg((*batch, m, k)) + b = make_arg((*batch, n, k)) + yield SampleInput(a, b, **kwargs) + + +def sample_inputs_svd_lowrank(op_info, device, dtype, requires_grad=False, **kwargs): + for sample in sample_inputs_singular_matrix_factors(op_info, device, dtype, requires_grad, **kwargs): + *batch, m, k = sample.input.shape + *_, n, _ = sample.args[0].shape + + # NOTE: since svd_lowrank relies on non rank-revealing SVD, + # it inherits the problem of unstable behavior with repeated + # singular values including zeros. + # Since we want to avoid (repeated) zeros as singular values, + # we can only use k for q. + # This issues could be resolved with using a rank-revealing SVD + # which does not include "zero" singular values. + op_kwargs = { + 'q': k, + 'M': None + } + + # without M specified + yield clone_sample(sample, **op_kwargs) + + # now with M + # TODO: fix bug in the documentation for svd_lowrank: + # M has to be (*, m, n), and not (*, 1, n) as written + # in the documentation + op_kwargs['M'] = make_tensor((*batch, m, n), dtype=dtype, device=device, requires_grad=requires_grad) + yield clone_sample(sample, **op_kwargs) + +def chunk_iter(iterable, size): + it = iter(iterable) + while True: + chunk = tuple(islice(it, size)) + if not chunk: + break + yield chunk + +def sample_inputs_pca_lowrank(op_info, device, dtype, requires_grad=False, **kwargs): + # we reuse samples from svd_lowrank which come in group of two with + # kwarg['M'] = None and with kwarg['M'] = + samples = sample_inputs_svd_lowrank(op_info, device, dtype, requires_grad, **kwargs) + for s1, s2 in chunk_iter(samples, 2): + del s1.kwargs['M'] + del s2.kwargs['M'] + s1.kwargs['center'] = False + s2.kwargs['center'] = True + yield s1 + yield s2 + +def np_sinc_with_fp16_as_fp32(x): + # Wraps numpy's sinc function so that fp16 values are promoted to fp32 + # before sinc is invoked. Context: numpy's sinc returns NaN when evaluated + # at 0 for fp16. + if x.dtype == np.float16: + return np.sinc(x.astype(np.float32)) + else: + return np.sinc(x) + +def sample_inputs_broadcast_to(op_info, device, dtype, requires_grad, **kwargs): + test_cases = ( + ((S, 1, 1), (S, S, S)), + ((S, 1, S), (S, S, S)), + ((S, 1), (S, S, S)), + ((1,), (S, S, S)), + ((1, S), (1, 1, S)), + ((), ()), + ((), (1, 3, 2)), + ) + + return ( + SampleInput( + make_tensor(size, dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad), + shape, + ) for size, shape in test_cases) + +def sample_inputs_broadcast_tensors(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + test_cases: Tuple[tuple] = (((3,), (1, 2, 1), (1, 1), (5, 1, 1),),) + + for shape, *other_shapes in test_cases: + yield SampleInput(make_arg(shape), args=tuple(make_arg(s) for s in other_shapes)) + +def reference_inputs_broadcast_tensors(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_broadcast_tensors(op, device, dtype, requires_grad, **kwargs) + + m = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + n = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad, noncontiguous=True) + + cases = ( + ((), (1, 1), (1, 1, 7, 1), (3, 1, 1)), + ((3, 5, 6), (1, 3, 5, 6), (1, 1, 1, 1, 6), (8, 3, 5, 6)) + ) + + for a, b, c, d in cases: + yield SampleInput(m(a), args=(m(b), m(c), m(d))) + yield SampleInput(n(a), args=(n(b), n(c), n(d))) + +def sample_inputs_block_diag(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + test_cases: Tuple[tuple] = ( + ((1, S), (2, S), (3, S),), + ((S, 1), (S, 2), (S, 3),), + ((1,), (2,), (3,),), + ((2, S), (S,)) + ) + + for shape, *other_shapes in test_cases: + yield SampleInput(make_arg(shape), args=tuple(make_arg(s) for s in other_shapes)) + # We also want to test mixed complex-non-complex inputs to block_diag + if dtype == torch.complex32 or dtype == torch.complex64: + non_complex_dtype = torch.float32 if dtype == torch.complex32 else torch.float64 + make_arg_non_complex = partial(make_tensor, dtype=non_complex_dtype, device=device, requires_grad=requires_grad) + yield SampleInput(make_arg_non_complex(shape), args=tuple(make_arg(s) for s in other_shapes)) + +def sample_inputs_cdist(op_info, device, dtype, requires_grad, **kwargs): + small_S = 2 + test_cases = ( + ((S, S, 2), (S, S + 1, 2)), + ((S, S), (S, S)), + ((S, S, S), (S, S, S)), + ((3, 5), (3, 5)), + ((2, 3, 5), (2, 3, 5)), + ((1, 2, 3), (1, 2, 3)), + ((1, 1), (S, 1)), + ((0, 5), (4, 5)), + ((4, 5), (0, 5)), + ((0, 4, 5), (3, 5)), + ((4, 5), (0, 3, 5)), + ((0, 4, 5), (1, 3, 5)), + ((1, 4, 5), (0, 3, 5)), + # Using S here would make this one test take 9s + ((small_S, small_S, small_S + 1, 2), (small_S, small_S, small_S + 2, 2)), + ((small_S, 1, 1, small_S), (1, small_S, small_S)), + ((1, 1, small_S), (small_S, 1, small_S, small_S)), + ) + + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']: + # FIXME add an override for JIT and revert 0. back to 0 + # since it's accepted by eager + for p in [0., 1., 2., 3., 0.5, 1.5, 2.5, float("inf")]: + for t1_size, t2_size in test_cases: + # The args should never be non-contiguous as this is not supported in the backward + yield SampleInput(make_arg(t1_size), make_arg(t2_size), p, cm) + +def _fill_np(a, value): + a = a.copy() + a.fill(value) + return a + +def _fill_sample_kwargs(device, dtype, input): + if dtype is torch.bool: + value = True + else: + value = 3 + + return ({'value': value}, {'value': value}) + +def sample_inputs_comparison_ops(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_elementwise_binary(op, device, dtype, requires_grad, **kwargs) + + # Adds a sample input where both tensors have the same values + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + lhs = make_arg((S, S)) + yield SampleInput(lhs, args=(lhs.clone(),)) + +def sample_inputs_stack(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # shape x number of tensors + cases = ( + ((3, 4), 1), + ((1, 2, 1, 4), 3), + ((0, 1, 0), 2),) + + for shape, num_tensors in cases: + tensors = [] + for _ in range(num_tensors): + tensors.append(make_arg(shape)) + for dim in range(-1, len(shape) - 1): + yield SampleInput(tensors, args=(dim,)) + +def sample_inputs_cat_concat(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + cases: Tuple[tuple, tuple, dict] = ( # type: ignore[assignment] + ((S, S), (S, S), {'dim': -1}), + ((S, S), (S, S), {'dim': 1}), + ((M, S), (S, S), {'dim': 0}), # different shapes + ((1, 2, 3), (1, 2, 3), {'dim': -2}), + ((0,), (0,), {'dim': 0}), # empty tensor + ((0,), (S, S), {'dim': 1}), # empty tensor with unempty and dim=1 (special case for legacy_cat_wrap_dim) + ((0, S), (S, S), {'dim': 0}), + ((1,), (1,), {}) # dim not passed, fallback to default + ) + + for input_shape1, input_shape2, kwargs in cases: + yield SampleInput([make_arg(input_shape1), make_arg(input_shape2)], kwargs=kwargs) + + # from coat_lite_mini + yield SampleInput([make_arg((2, 2, 2, 2), memory_format=torch.channels_last)], args=(1,),) + +def error_inputs_cat(op_info, device, **kwargs): + + make_arg = partial(make_tensor, device=device, dtype=torch.float32) + + # error inputs for more than one element of the written-to tensor refer to a single memory location + yield ErrorInput(SampleInput([make_arg((S, S)), make_arg((S, S))], + kwargs={'out': make_arg((1, S)).expand((2 * S, S))}), + error_regex='unsupported operation') + + # error inputs for empty tensors + yield ErrorInput(SampleInput([], kwargs={'dim': 1}), + error_regex='non-empty list of Tensors') + + # error inputs for different sizes + yield ErrorInput(SampleInput([make_arg((S, S, L, L)), make_arg((S, 0, L - 1, L))], kwargs={'dim': 1}), + error_regex='Sizes of tensors must match except in dimension') + yield ErrorInput(SampleInput([make_arg((S, 0, L - 1, L)), make_arg((S, S, L, L))], kwargs={'dim': 1}), + error_regex='Sizes of tensors must match except in dimension') + + # error inputs for different dimensions + yield ErrorInput(SampleInput([make_arg((S - 1, 0)), make_arg((S, 0, L - 1, L))], kwargs={'dim': 1}), + error_regex='Tensors must have same number of dimensions') + yield ErrorInput(SampleInput([make_arg((S, 0, L - 1, L)), make_arg((S - 1, 0))], kwargs={'dim': 1}), + error_regex='Tensors must have same number of dimensions') + + # error inputs for same memory locations + x = torch.zeros((0), device=device) + y = torch.randn((4, 6), device=device) + + err_msg = "the written-to tensor refer to a single memory location" + + yield ErrorInput(SampleInput((x, y), kwargs={'dim': 0, 'out': x}), + error_regex=err_msg) + yield ErrorInput(SampleInput((x, y), kwargs={'dim': 0, 'out': y}), + error_regex=err_msg) + + z = torch.zeros((4, 6), device=device) + yield ErrorInput(SampleInput((y, z), kwargs={'out': z[:2, :]}), + error_regex=err_msg) + + # error inputs for different devices + if torch.device(device).type == 'cuda': + x_cuda = make_tensor((3, 3), device=device, dtype=torch.float32) + y_cpu = make_tensor((3, 3), device='cpu', dtype=torch.float32) + yield ErrorInput(SampleInput((x_cuda, y_cpu)), + error_regex='Expected all tensors to be on the same device') + + # error inputs for different input sizes for more than 2 tensors + yield ErrorInput(SampleInput([make_arg((L, 1)), make_arg((L, 1, 1)), make_arg((L, 1, 1))]), + error_regex='Tensors must have same number of dimensions') + + yield ErrorInput(SampleInput([make_arg((S, 1, M)), make_arg((S, 1, 1)), make_arg((S, M, 1))], + kwargs={'dim': 1}), + error_regex='Sizes of tensors must match') + + # error inputs for None input + yield ErrorInput(SampleInput((make_arg((S, 1, 1)), None)), error_type=TypeError, + error_regex='got None') + + # error inputs for zero-dimensional tensors + yield ErrorInput(SampleInput([make_arg(()), make_arg(())]), + error_regex='zero-dimensional.*cannot be concatenated') + + # error inputs for different dtype of out tensors + d = make_tensor((2, 3), device=device, dtype=torch.double) + x = make_tensor((2, 3), device=device, dtype=torch.float32) + yield ErrorInput(SampleInput(x, kwargs={'out': d}), error_type=TypeError, + error_regex='invalid combination of arguments') + +def reference_inputs_cat(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_cat_concat(op, device, dtype, requires_grad, **kwargs) + + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Noncontiguous type promoting tensors + a = make_arg((3, 4, 2)) + b = make_arg((3, 2, 2), noncontiguous=True, dtype=torch.double) + c = make_arg((3, 3, 2), dtype=torch.float16).permute(1, 0, 2) + + yield SampleInput((a, b, c), kwargs={'dim': 1}) + + # Special 1D tensor with dim length of 0 case + a = make_arg((0,)) + b = make_arg((3, 2, 2)) + + yield SampleInput((a, b, a)) + yield SampleInput((a, a, a)) + +def _elementwise_type_promo_np(*args, type_promotion_kind): + def _maybe_torch(x): + if isinstance(x, np.ndarray): + return torch.from_numpy(x) + return x + + flattened = pytree.arg_tree_leaves(*args) + transformed = tuple(_maybe_torch(a) for a in flattened) + result_dtype, _ = prims.utils.elementwise_dtypes( + *transformed, + type_promotion_kind=type_promotion_kind) + return torch_to_numpy_dtype_dict[result_dtype] + +def _cat_np(input_seq, dim=0): + inputs = tuple(a for a in input_seq if not (a.ndim == 1 and a.size == 0)) + + if len(inputs) == 0: + np_dtype = _elementwise_type_promo_np( + input_seq, + type_promotion_kind=prims.utils.ELEMENTWISE_TYPE_PROMOTION_KIND.NO_OPMATH) + return np.empty(0, dtype=np_dtype) + + return np.concatenate(inputs, axis=dim) + +def _floor_divide_np(a, b): + dtype = _elementwise_type_promo_np( + a, + b, + type_promotion_kind=prims.utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT) + if isinstance(a, np.ndarray): + a = a.astype(dtype) + if isinstance(b, np.ndarray): + b = b.astype(dtype) + return np.floor_divide(a, b) + +def sample_inputs_hstack_dstack_vstack(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + tensor_shapes = ( + # First Tensor being 1-D is special + # case for hstack + ((S,), (S,), (S,)), + ((S, S), (S, S), (S, S)), + ) + for s1, s2, s3 in tensor_shapes: + tensors = (make_arg(s1,), make_arg(s2,), make_arg(s3)) + yield SampleInput(tensors) + +def error_inputs_hstack_dstack_vstack(op, device): + make_arg = partial(make_tensor, dtype=torch.int32, device=device, requires_grad=False) + tensor_shapes = ( + ((S,), (S, S, S, S), (S,)), + ) + for s1, s2, s3 in tensor_shapes: + tensors = (make_arg(s1,), make_arg(s2,), make_arg(s3)) + # Different dimension tensor + yield ErrorInput(SampleInput(tensors), error_regex="Tensors must have same number of dimensions") + + # empty tensor list + yield ErrorInput(SampleInput(()), error_regex="expects a non-empty TensorList") + +def sample_inputs_unbind(op_info, device, dtype, requires_grad, **kwargs): + # Note: we don't do any tests where we unbind along 0-length dims + # because in that case unbind returns and empty tuple, and that breaks + # some assumptions in some backward tests in test_ops.py + shape_dims = (((S,), 0), + ((S, S), 0), + ((S, S), 1), + ((S, S), -1), + ((S, 0, S), 0), + ((S, S, S), 1), + ) + for shape, dim in shape_dims: + yield SampleInput(make_tensor(shape, dtype=dtype, device=device, + requires_grad=requires_grad), + args=(dim,)) + +def error_inputs_unbind(op_info, device): + make_arg = partial(make_tensor, dtype=torch.int32, device=device, requires_grad=False) + yield ErrorInput(SampleInput(make_arg(()), args=(0,)), error_type=IndexError, + error_regex="Dimension specified as 0 but tensor has no dimensions") + yield ErrorInput(SampleInput(make_arg((2,)), args=(2,)), error_type=IndexError, + error_regex="Dimension out of range") + +def reference_unbind(t, dim): + """A numpy implementation of torch.unbind""" + return tuple(s.squeeze(dim) for s in np.split(t, t.shape[dim], dim)) + +def sample_inputs_gather(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad, low=None, high=None) + yield SampleInput( + make_arg((M, S)), + 0, + gather_variable((S, S), 1, M, True, device=device)) + yield SampleInput( + make_arg((M, S)), + 1, + gather_variable((M, S // 2), 0, S, True, device=device)) + # Empty index tensor case, see: https://github.com/pytorch/pytorch/pull/65006 + yield SampleInput( + make_arg((S,)), + 0, + torch.tensor([], dtype=torch.uint8, device=device)) + # 0D tensor case + yield SampleInput( + make_arg(()), + 0, + torch.tensor([0], dtype=torch.int64, device=device)) + yield SampleInput( + make_arg(()), + 0, + torch.tensor(0, dtype=torch.int64, device=device)) + +def _fill_indices(idx, dim, dim_size, elems_per_row, m, n, o): + for i in range(1 if dim == 0 else m): + for j in range(1 if dim == 1 else n): + for k in range(1 if dim == 2 else o): + ii = [i, j, k] + ii[dim] = slice(0, idx.size(dim) + 1) + idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row] + +def error_inputs_gather(op_info, device, **kwargs): + # src is [1, 2] + # [3, 4] + src = torch.tensor(((1, 2), (3, 4)), device=device, dtype=torch.float32) + + # idx is [0, 0] + # [1, 0] + idx = torch.tensor(((0, 0), (1, 0)), device=device, dtype=torch.long) + + # Index should be smaller than self except on dimension 1 + bad_src = make_tensor((1, 1), device=device, dtype=torch.float32) + yield ErrorInput(SampleInput(bad_src, args=(1, idx,)), + error_regex="Size does not match at dimension 0") + + # Index must have long dtype + bad_idx = idx.to(torch.int32) + yield ErrorInput(SampleInput(src, args=(1, bad_idx)), + error_regex="Expected dtype int64 for index") + + # TODO: FIXME + # out.dtype must match src.dtype + # Creates new src & idx since SampleInputs can't share tensors + src = torch.tensor(((1, 2), (3, 4)), device=device, dtype=torch.float32) + idx = torch.tensor(((0, 0), (1, 0)), device=device, dtype=torch.long) + out = torch.empty((2, 2), device=device, dtype=torch.float64) + yield ErrorInput(SampleInput(src, args=(1, idx), kwargs={'out': out}), + error_regex="Expected out tensor to have dtype") + + # src and index tensors must have the same # of dimensions + # idx too few dimensions + src = torch.tensor(((1, 2), (3, 4)), device=device, dtype=torch.float32) + idx = torch.tensor((0, 0), device=device, dtype=torch.long) + yield ErrorInput(SampleInput(src, args=(1, idx)), + error_regex="Index tensor must have the same number of dimensions") + + # src too few dimensions + src = torch.tensor((1, 2), device=device, dtype=torch.float32) + idx = torch.tensor(((0, 0), (1, 0)), device=device, dtype=torch.long) + yield ErrorInput(SampleInput(src, args=(0, idx)), + error_regex="Index tensor must have the same number of dimensions") + + # index out of bounds + # NOTE: this ErrorInput is guarded because bounds checking does not occur on CUDA devices + if torch.device(device).type == 'cpu': + src = torch.tensor(((1, 2), (3, 4)), device=device, dtype=torch.float32) + idx = torch.tensor(((0, 23), (1, 0)), device=device, dtype=torch.long) + yield ErrorInput(SampleInput(src, args=(1, idx,)), + error_regex="index 23 is out of bounds for dimension") + + x = torch.rand((1,), device=device).expand((3,)) + src = torch.rand((6,), device=device) + ind = torch.tensor([2, 1, 0], device=device, dtype=torch.int64) + + yield ErrorInput(SampleInput(src, args=(0, ind,), kwargs=dict(out=x)), + error_type=RuntimeError, + error_regex='unsupported operation') + + yield ErrorInput(SampleInput(src, args=(0, ind,), kwargs=dict(out=src)), + error_type=RuntimeError, + error_regex='unsupported operation') + + yield ErrorInput(SampleInput(ind.clone(), args=(0, ind[1:],), kwargs=dict(out=ind[:1])), + error_type=RuntimeError, + error_regex='unsupported operation') + +def error_inputs_take(op_info, device, **kwargs): + x = torch.rand((1,), device=device).expand((3,)) + src = torch.rand((6,), device=device) + ind = torch.tensor([2, 1, 0], device=device, dtype=torch.int64) + + yield ErrorInput(SampleInput(src, args=(ind,), kwargs=dict(out=x)), + error_type=RuntimeError, + error_regex='unsupported operation') + + yield ErrorInput(SampleInput(src, args=(ind,), kwargs=dict(out=src)), + error_type=RuntimeError, + error_regex='unsupported operation') + + yield ErrorInput(SampleInput(ind.clone(), args=(ind[1:],), kwargs=dict(out=ind[:-1])), + error_type=RuntimeError, + error_regex='unsupported operation') + +# Error inputs for scatter +def error_inputs_scatter_and_scatter_add(op_info, device, **kwargs): + # Error when self.dtype != src.dtype (and src is not a scalar) + src = make_tensor((2, 5), device=device, dtype=torch.float32) + idx = torch.tensor(((0, 1), (1, 2)), device=device, dtype=torch.long) + dst = torch.zeros((3, 5), device=device, dtype=torch.double) + yield ErrorInput(SampleInput(dst, args=(0, idx, src)), + error_regex="Expected self.dtype to be equal to src.dtype") + + # Index dtype must be long + src = make_tensor((2, 5), device=device, dtype=torch.float32) + idx = torch.tensor(((0, 1), (1, 2)), device=device, dtype=torch.int32) + dst = torch.zeros((3, 5), device=device, dtype=torch.float32) + yield ErrorInput(SampleInput(dst, args=(0, idx, src)), + error_regex="Expected dtype int64 for index") + + # Index and destination must have the same number of dimensions + src = make_tensor((2, 5), device=device, dtype=torch.float32) + idx = torch.tensor(((0, 1), (1, 2)), device=device, dtype=torch.long) + dst = torch.zeros((3, 5, 3), device=device, dtype=torch.float32) + yield ErrorInput(SampleInput(dst, args=(0, idx, src)), + error_regex="Index tensor must have the same number of dimensions as self tensor") + + # Index and src must have the same number of dimensions when src is not a scalar + src = make_tensor((2, 5, 2), device=device, dtype=torch.float32) + idx = torch.tensor(((34, 1), (1, 2)), device=device, dtype=torch.long) + dst = torch.zeros((3, 5), device=device, dtype=torch.float32) + yield ErrorInput(SampleInput(dst, args=(0, idx, src)), + error_regex="Index tensor must have the same number of dimensions as src tensor") + + # Index out of bounds + # NOTE: this ErrorInput is guarded because bounds checking does not occur on CUDA devices + if torch.device(device).type == 'cpu': + src = make_tensor((2, 5), device=device, dtype=torch.float32) + idx = torch.tensor(((34, 1), (1, 2)), device=device, dtype=torch.long) + dst = torch.zeros((3, 5), device=device, dtype=torch.float32) + yield ErrorInput(SampleInput(dst, args=(0, idx, src)), + error_regex="index 34 is out of bounds for dimension 0 with size 3") + +def error_inputs_renorm(op_info, device, **kwargs): + zero_d = torch.randn((), device=device) + yield ErrorInput(SampleInput(zero_d, args=(0.5, 0, 1.0)), error_type=RuntimeError, + error_regex="needs at least 2 dimensions, got 0 dimensions") + + +def error_inputs_ormqr(op_info, device, **kwargs): + zero_d = torch.randn((), device=device) + yield ErrorInput(SampleInput(zero_d, args=(zero_d, zero_d)), error_type=RuntimeError, + error_regex="input must have at least 2 dimensions") + + # https://github.com/pytorch/pytorch/issues/85218 + tensor_0 = torch.full((5, 0,), 1, device=device) + tensor_1 = torch.full((5,), 1, device=device) + tensor_2 = torch.full((5, 5,), 1, device=device) + bool_3 = True + bool_4 = True + yield ErrorInput(SampleInput(tensor_0, args=(tensor_1, tensor_2, bool_3, bool_4)), error_type=RuntimeError, + error_regex=r"tau.shape\[-1\] must be less than or equal to input.shape\[-1\]") + + +def error_inputs_diag(op_info, device, **kwargs): + zero_d = torch.randn((), device=device) + yield ErrorInput(SampleInput(zero_d, args=(0,)), error_type=RuntimeError, + error_regex="1D or 2D") + zero_d = torch.randn(1, 1, 1, device=device) + yield ErrorInput(SampleInput(zero_d, args=(0,)), error_type=RuntimeError, + error_regex="1D or 2D") + +def error_inputs_embedding(op_info, device, **kwargs): + indices = torch.rand(2, 2, device=device).long() + weights = [ + torch.tensor(1.0, device=device), + torch.tensor(1.0, device=device).reshape(1, 1, 1), + ] + + for weight in weights: + yield ErrorInput(SampleInput(weight, args=(indices,)), error_type=RuntimeError, + error_regex="'weight' must be 2-D") + + +def error_inputs_t(op_info, device, **kwargs): + yield ErrorInput( + SampleInput(torch.randn(2, 3, 4, 5, device=device)), + error_regex="expects a tensor with <= 2", + ) + + +def error_inputs_multinomial(op_info, device, **kwargs): + x = torch.empty(1, 2, 3, dtype=torch.double, device=device) + yield ErrorInput(SampleInput(x, args=(2,)), + error_regex="prob_dist must be 1 or 2 dim") + + x = torch.empty(1, 2, dtype=torch.long, device=device) + yield ErrorInput(SampleInput(x, args=(2,)), + error_regex="multinomial only supports floating-point dtypes for input") + + x = torch.empty(1, 2, dtype=torch.double, device=device) + y = torch.empty(1, 2, dtype=torch.double, device=device) + yield ErrorInput(SampleInput(x, args=(2,), kwargs=dict(out=y)), + error_regex="multinomial expects Long tensor out") + + x = torch.empty(2, dtype=torch.double, device=device) + yield ErrorInput(SampleInput(x, args=(0,)), + error_regex="cannot sample n_sample <= 0 samples") + + x = torch.empty(2, dtype=torch.double, device=device) + yield ErrorInput(SampleInput(x, args=(-1,)), + error_regex="cannot sample n_sample <= 0 samples") + + x = torch.empty(2, dtype=torch.double, device=device) + yield ErrorInput(SampleInput(x, args=(3, False,)), + error_regex="cannot sample n_sample > prob_dist") + + x = torch.empty(16777217, dtype=torch.double, device=device) + yield ErrorInput(SampleInput(x, args=(3,)), + error_regex="number of categories cannot exceed") + + inputs = ((1., -1., 1.), (1., inf, 1.), (1., -inf, 1.), (1., 1., nan)) + + err_msg1 = "probability tensor contains either `inf`, `nan` or element < 0" + err_msg2 = "invalid multinomial distribution" + + rep_arg = (False, True) if torch.device(device).type == 'cpu' else (False,) + + for rep in rep_arg: + kwargs = {'num_samples': 2, 'replacement': rep} + + for shape in inputs: + # error case when input tensor contains `inf`, `nan` or negative element + yield ErrorInput(SampleInput(torch.tensor(shape), kwargs=kwargs), + error_regex=err_msg1 if rep is False else err_msg2) + + # error case for the invalid multinomial distribution (sum of probabilities <= 0), 1-D input + x = torch.zeros(3, device=device) + yield ErrorInput(SampleInput(x, kwargs=kwargs), + error_regex=err_msg2) + + # error case for the invalid multinomial distribution (sum of probabilities <= 0), 2-D input + x = torch.zeros(3, 3, device=device) + yield ErrorInput(SampleInput(x, kwargs=kwargs), + error_regex=err_msg2) + + # error case for the invalid multinomial distribution + x[1, :] = 1 + yield ErrorInput(SampleInput(x, kwargs=kwargs), + error_regex=err_msg2) + +def error_inputs_gradient(op_info, device, **kwargs): + for dtype in [torch.long, torch.float32, torch.complex64]: + t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], device=device, dtype=dtype) + + dim = (1, 0) + spacing = [0.1] + yield ErrorInput(SampleInput(t, kwargs=dict(spacing=spacing, dim=dim, edge_order=1)), + error_type=RuntimeError, + error_regex='torch.gradient expected spacing to be unspecified, a scalar ') + + yield ErrorInput(SampleInput(t, kwargs=dict(edge_order=3)), + error_type=RuntimeError, + error_regex='torch.gradient only supports edge_order=1 and edge_order=2.') + + dim = (1, 1) + spacing = 0.1 + yield ErrorInput(SampleInput(t, kwargs=dict(spacing=spacing, dim=dim, edge_order=1)), + error_type=RuntimeError, + error_regex='dim 1 appears multiple times in the list of dims') + + dim = (0, 1) + coordinates = [torch.tensor([1, 2, 4], device='cpu'), torch.tensor([1, 2, 4], device='meta')] + yield ErrorInput(SampleInput(t, kwargs=dict(spacing=coordinates, dim=dim, edge_order=1)), + error_type=RuntimeError, + error_regex='torch.gradient expected each tensor to be on the same device,') + + yield ErrorInput(SampleInput(t, kwargs=dict(dim=3)), + error_type=IndexError, error_regex='') + + t = torch.tensor([[1], [2], [3]]) + yield ErrorInput(SampleInput(t, kwargs=dict(edge_order=1)), + error_type=RuntimeError, + error_regex='torch.gradient expected each dimension size to be at least') + + t = torch.tensor([[1, 2], [3, 4]]) + yield ErrorInput(SampleInput(t, kwargs=dict(edge_order=2)), + error_type=RuntimeError, + error_regex='torch.gradient expected each dimension size to be at least') + +def error_inputs_rrelu(op_info, device, **kwargs): + input = make_tensor((S, S), device=device, dtype=torch.float32) + yield ErrorInput(SampleInput(input, kwargs={'lower': 0.3, 'upper': 0.1}), + error_regex='Lower bound should be less than or equal to the upper bound') + +def error_inputs_masked_select(op_info, device, **kwargs): + x = torch.rand((1,), device=device).expand((3,)) + y = torch.rand((6,), device=device) + mask = torch.tensor([True, False, True, True, False, False], device=device) + + yield ErrorInput(SampleInput(y, args=(mask,), kwargs=dict(out=x)), + error_type=RuntimeError, + error_regex='unsupported operation') + + yield ErrorInput(SampleInput(y, args=(mask,), kwargs=dict(out=y)), + error_type=RuntimeError, + error_regex='unsupported operation') + + yield ErrorInput(SampleInput(mask.clone(), args=(mask,), kwargs=dict(out=mask)), + error_type=RuntimeError, + error_regex='unsupported operation') + +def error_inputs_median(op_info, device, **kwargs): + x = torch.tensor([[[[[[[[[[[[[[[[[[[[[[[[[nan], + [nan]]]]]]]]]]]]]]]]]]]]]]]]], device=device) + if device == 'cuda': + yield ErrorInput(SampleInput(x, kwargs=dict(dim=(-1))), + error_type=RuntimeError, + error_regex='CUDA Tensors cannot have more than 25 dimensions') + else: + return + + +def error_inputs_index_select(op_info, device, **kwargs): + x = torch.rand((1, 6), device=device).expand((2, 6)) + y = torch.rand((3, 6), device=device) + ind = torch.tensor([0, 1], dtype=torch.int64, device=device) + + yield ErrorInput(SampleInput(y, args=(1, ind,), kwargs=dict(out=x)), + error_type=RuntimeError, + error_regex='unsupported operation') + +def error_inputs_index_add(op_info, device, **kwargs): + result = torch.tensor([[1., 2.], [4., 5.], [7., 8.]]) + source = torch.tensor([2., 4.]) + + yield ErrorInput(SampleInput(result, args=(0, torch.tensor([0, 2]), source)), + error_type=RuntimeError, + error_regex=r'source tensor shape must match self tensor shape, ' + r'excluding the specified dimension. Got self.shape = \[3, 2\] source.shape = \[2\]') + +def error_inputs_logcumsumexp(op_info, device, **kwargs): + dim = 3 + srcs = [torch.randn(5, 2, device=device), torch.randn(0, 2, device=device)] + for src in srcs: + yield ErrorInput(SampleInput(src, args=(dim,)), + error_type=IndexError, + error_regex='Dimension out of range') + +def sample_inputs_take_along_dim(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad, low=None, high=None) + yield SampleInput( + make_arg((S, S)), gather_variable((S, S), 1, S, True, device=device), 0) + + # `indices` broadcast + yield SampleInput( + make_arg((S, S)), gather_variable((1, S // 2), 0, S, True, device=device), 1) + + # `self` broadcast + yield SampleInput( + make_arg((1, S)), gather_variable((S, S // 2), 0, S, True, device=device), 1) + + # without `dim` arg + yield SampleInput( + make_arg((S, S)), gather_variable((S, S // 2), 0, S, True, device=device)) + + +def error_inputs_aminmax_amax_amin(op_info, device, is_ref=False, **kwargs): + + # Error Inputs for zero-dim tensors, when 'dim' arg is not provided. + shape = (S, 0, S) + err_msg_amax_amin = "reduction" + err_msg_aminmax = "cannot compute aminmax over an empty dimension as the operation has no identity" + if op_info.name in ['amax', 'amin', '_refs.amax', '_refs.amin']: + yield ErrorInput(SampleInput(torch.rand(shape, device=device)), error_regex=err_msg_amax_amin) + elif op_info.name in ['aminmax']: + yield ErrorInput(SampleInput(torch.rand(shape, device=device)), error_regex=err_msg_aminmax) + + # Error Inputs for tensors with more than 64 dimension + sizes = [1] * 65 + err_msg1 = "only tensors with up to 64 dims are supported" + yield ErrorInput(SampleInput(torch.randn(sizes, device=device), kwargs={'dim': -1}), + error_regex=err_msg1) + yield ErrorInput(SampleInput(torch.randn(sizes, device=device), kwargs={'dim': 64}), + error_regex=err_msg1) + + # Error Inputs for repeated 'dim' + if op_info.name in ['amax', 'amin', '_refs.amax', '_refs.amin']: + dims = [(0, 0), (0, -4)] + err_msg2 = "in the list of dims" + x = torch.randn(S, S, S, S, device=device) + for dim in dims: + yield ErrorInput(SampleInput(x, kwargs={'dim': dim}), error_regex=err_msg2) + + # Error Input for illegal dtype + input5 = torch.randn(L, L, dtype=torch.float32, device=device) + max_values = torch.empty(L, dtype=torch.float32, device=device) + min_values = torch.empty(L, dtype=torch.double, device=device) + illegal_values = torch.empty(L, dtype=torch.int, device=device) + + # Unlike regular PyTorch, amax and amin refs don't require input and out + # dtypes to match exactly: + # https://github.com/pytorch/pytorch/pull/87765#pullrequestreview-1162023824 + if is_ref: + err_msg_amax_amin2 = ("Attempting to cast from torch.float32 to out tensor with dtype " + "torch.int32, but this can't be cast because it is not safe!") + else: + err_msg_amax_amin2 = ("Expected the dtype for input and out to match, but got Float " + "for input's dtype and Int for out's dtype.") + err_msg_aminmax2 = "Expected out tensor to have dtype float, but got double instead" + + if op_info.name in ['amax', 'amin', '_refs.amax', '_refs.amin']: + yield ErrorInput(SampleInput(input5, kwargs={'dim': 0, 'out': illegal_values}), + error_regex=err_msg_amax_amin2) + elif op_info.name in ['aminmax']: + yield ErrorInput(SampleInput(input5, kwargs={'dim': 0, 'out': (max_values, min_values)}), + error_regex=err_msg_aminmax2) + + # Error Inputs for functions to raise an error on specified zero'd dimension as reduction dim + err_msg3 = "reduction" + # FIXME: eager and ref impl throw different types of errors + error_type = IndexError if 'refs' not in op_info.name else RuntimeError + yield ErrorInput(SampleInput(torch.rand(shape, device=device), kwargs={'dim': 1}), + error_type=error_type, error_regex=err_msg3) + +def sample_inputs_aminmax(op_info, device, dtype, requires_grad, **kwargs): + test_cases: Tuple[tuple, dict] = ( # type: ignore[assignment] + ((S, S, S), {}), + ((S, S, S), {'dim': 1}), + ((S, S, S), {'dim': 1, 'keepdim': True}), + ((), {'dim': 0}), + ((), {}), + ((), {'dim': 0, 'keepdim': True}), + ((S, 0, S), {'dim': 0}), + ) + + for shape, kwargs in test_cases: + yield SampleInput( + make_tensor(shape, dtype=dtype, device=device, requires_grad=requires_grad), + **kwargs) + +def error_inputs_diff(op_info, device, **kwargs): + t = torch.rand((1, 3), device=device) + n = -1 + yield ErrorInput(SampleInput(t, args=(n, ), kwargs=kwargs), + error_type=RuntimeError, + error_regex=f'order must be non-negative but got {n}') + +def sample_inputs_diff(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + test_cases = ( + ((1,), 0, None, None), + ((S,), 0, None, None), + ((S, 1), 0, None, None), + ((S, 1), 1, None, None), + ((S, S), 0, None, None), + ((S, S), 1, None, None), + ((S, S), 0, (1, S), (2, S)), + ((S, S), 0, None, (2, S)), + ((XS, XS, XS), 1, None, None), + ((XS, XS, XS), 2, None, None), + ((XS, XS, XS), 1, (XS, 1, XS), (XS, 1, XS)), + ((XS, XS, XS), 2, (XS, XS, 1), (XS, XS, 1)), + ((XS, XS, XS), 2, (XS, XS, XS), (XS, XS, XS)),) + + sample_inputs = [] + for size, dim, size_prepend, size_append in test_cases: + prepend_size = 0 if (size_prepend is None) else size_prepend[dim] + append_size = 0 if (size_append is None) else size_append[dim] + dim_size = size[dim] + prepend_size + append_size + for n in range(dim_size): + input_tensor = make_arg(size) + prepend = make_arg(size_prepend) if size_prepend else None + append = make_arg(size_append) if size_append else None + yield SampleInput(input_tensor, n, dim, prepend, append) + + # add some samples with n > dim_size + yield SampleInput(make_arg((XS, XS, XS)), S + 1, 1) + yield SampleInput(make_arg((XS, XS, XS)), S * 3 + 2, 2, make_arg((XS, XS, XS)), make_arg((XS, XS, XS))) + +def sample_inputs_histogram(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + sizes = ((), (S,), (S, S), (S, S, S), (S, 1, S), (S, 0, S)) + + for size, bin_ct, weighted, density in product(sizes, range(1, 5), [False, True], [False, True]): + input_tensor = make_arg(size) + weight_tensor = make_arg(size) if weighted else None + + yield SampleInput(input_tensor, bin_ct, + weight=weight_tensor, density=density) + + bins_tensor = make_arg((bin_ct + 1,)) + yield SampleInput(input_tensor, bins_tensor, + weight=weight_tensor, density=density) + +def sample_inputs_histogramdd(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + sizes = ((S, S), (S, S, S), (S, 1, S), (S, 0, S)) + bin_ct_patterns = ((1, 1, 1, 1, 1), (2, 3, 2, 3, 2), (3, 2, 3, 2, 3)) + + for size, bin_ct_pattern, weighted, density in product(sizes, bin_ct_patterns, [False, True], [False, True]): + input_tensor = make_arg(size) + bin_ct = bin_ct_pattern[:size[-1]] + weight_tensor = make_arg(size[:-1]) if weighted else None + + yield SampleInput(input_tensor, bin_ct, + weight=weight_tensor, density=density) + + bins_tensor = [make_arg(ct + 1) for ct in bin_ct] + yield SampleInput(input_tensor, bins_tensor, + weight=weight_tensor, density=density) + +def error_inputs_histogramdd(opinfo, device, **kwargs): + invalid_bins = [1, 1, 1, 1, 1] + make_arg = partial(make_tensor, dtype=torch.float, device=device, requires_grad=False) + msg = "histogramdd: The size of bins must be equal to the innermost dimension of the input." + yield ErrorInput(SampleInput(make_arg(5, 6), invalid_bins), error_regex=msg) + +def sample_inputs_histc(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + sizes = ((), (S,), (S, S), (S, S, S), (S, 1, S), (S, 0, S)) + + for size, min, max in product(sizes, [0, -10], [0, 10]): + # construct sample input omitting bins arg + yield SampleInput(make_arg(size), min=min, max=max) + + # construct sample inputs with a few different bins values + for bins in [1, 3, 10]: + yield SampleInput(make_arg(size), bins=bins, min=min, max=max) + +def sample_inputs_bincount(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + for size, weighted in product((S, M), [False, True]): + input_tensor = torch.randint(0, size, (size,), dtype=dtype, device=device) + weight_tensor = make_arg((size,)) if weighted else None + + max_val = int(input_tensor.max().item()) + + for minlength in [0, max_val // 2, max_val, 2 * max_val]: + yield SampleInput( + input_tensor, weights=weight_tensor, minlength=minlength) + +def sample_inputs_bucketize(op_info, device, dtype, requires_grad, reference_inputs_mode=False, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + sizes = (((), S), ((S,), S), ((S, S), S), ((S, S, S), S), ((S, 1, S), S), ((S, 0, S), S)) + + if reference_inputs_mode: + sizes += (((256,), 128), ((128,), 256), ((32, 32), 11), ((32, 4, 32), 33)) + + for (input_shape, nb), out_int32, right in product(sizes, [False, True], [False, True]): + input_tensor = make_arg(input_shape) + boundaries = make_arg(nb).msort() + + yield SampleInput(input_tensor, boundaries, + out_int32=out_int32, right=right) + +reference_inputs_bucketize = partial(sample_inputs_bucketize, reference_inputs_mode=True) + +def error_inputs_bucketize(opinfo, device, **kwargs): + make_arg = partial(make_tensor, dtype=torch.float, device=device, requires_grad=False) + yield ErrorInput(SampleInput(make_arg((S, S, S)), make_arg((S, S))), + error_regex="boundaries tensor must be 1 dimension") + +def sample_inputs_searchsorted(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + # (unsorted tensor size, (input sizes,), is_scalar) + sizes = ( + ((0,), ((0,),), False), + ((M,), ((), (M,), (M, M)), False), + ((0, 0), ((0, 0),), False), + ((M, M), ((M, M),), False), + ((0, 0, 0), ((0, 0, 0),), False), + ((M, M, M), ((M, M, M),), False), + ((L,), ((),), True), + ) + + for (size, input_sizes, is_scalar), noncontiguous, out_int32, right in product( + sizes, [False, True], [False, True], [False, True] + ): + unsorted_tensor = make_arg(size, noncontiguous=noncontiguous) + for input_size in input_sizes: + input = make_arg(input_size, noncontiguous=noncontiguous) + if is_scalar: + input = input.item() + if np.prod(size) == 0: + boundary_tensor = unsorted_tensor + sorter = make_tensor(size, dtype=torch.int64, device=device, noncontiguous=noncontiguous) + else: + boundary_tensor, sorter = torch.sort(unsorted_tensor) + side = "right" if right else "left" + + yield SampleInput(boundary_tensor, input, out_int32=out_int32, right=right) + yield SampleInput(boundary_tensor, input, out_int32=out_int32, side=side) + + yield SampleInput(unsorted_tensor, input, out_int32=out_int32, right=right, sorter=sorter) + yield SampleInput(unsorted_tensor, input, out_int32=out_int32, side=side, sorter=sorter) + +def sample_inputs_gradient(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad, low=None, high=None) + test_cases_float = ( + ((S,), None, None, 1), + ((S,), 2., None, 1), + ((S, S), None, None, 2), + ((S, S), [2.0, 2.1], None, 1), + ((S, S), [2.0, 2.1], (0, 1), 1), + ((4, 4, 4), [2., 1.], (0, 1), 2), + ) + for size, spacing, dim, edge_order in test_cases_float: + t = make_arg(size) + yield SampleInput(t, dim=dim, spacing=spacing, edge_order=edge_order) + + test_cases_tensor = ( + ((3, 3, 3), ((1.1, 2.0, 3.5), (4.0, 2, 6.0)), (0, -1), 1), + ((3, 3, 3), ((1.0, 3.0, 2.0), (8.0, 6.0, 1.0)), (0, 1), 2), + ) + for size, coordinates, dim, edge_order in test_cases_tensor: + t = make_arg(size) + coordinates_tensor_list = [] + for coords in coordinates: + # `coords` will always contain floating point values and Python 3.10 does not support this + # implicit conversion to an integer using `__int__` + # TODO: this can be simplified after https://github.com/pytorch/pytorch/issues/69316 is fixed + a = torch.tensor(coords, device=device) + coordinates_tensor_list.append(a.to(dtype)) + yield SampleInput(t, dim=dim, spacing=coordinates_tensor_list, edge_order=edge_order) + +def sample_inputs_getitem(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + test_args = [ + ([1, 2],), + (slice(0, 3),), + ([slice(0, 3), 1],), + ([[0, 2, 3], [1, 3, 3], [0, 0, 2]],), + ([[0, 0, 3], [1, 1, 3], [0, 0, 2]],), + ([slice(None), slice(None), [0, 3]],), + ([slice(None), [0, 3], slice(None)],), + ([[0, 3], slice(None), slice(None)],), + ([[0, 3], [1, 2], slice(None)],), + ([[0, 3], ],), + ([[0, 3], slice(None)],), + ([[0, 3], Ellipsis],), + ([[0, 2, 3], [1, 3, 3], torch.LongTensor([0, 0, 2])],), + (index_variable(2, S, device=device),), + (mask_not_all_zeros((S,)),), + ] + + for args in test_args: + yield SampleInput(make_arg((S, S, S)), args=args) + + yield SampleInput(make_arg((S, S, S, S)), args=([slice(None), [0, 1], slice(None), [0, 1]],)) + +def sample_inputs_index_put(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + for accumulate in [False, True]: + # Test with indices arg + yield SampleInput( + make_arg((S, S,)), + (index_variable(2, S, device=device),), + make_arg((2, S)), + accumulate=accumulate) + + # Test with mask arg + mask = torch.zeros(S, dtype=torch.bool) if accumulate else mask_not_all_zeros((S,)) + yield SampleInput( + make_arg((S, S)), (mask, ), make_arg((S,)), accumulate=accumulate) + +def sample_inputs_sort(op_info, device, dtype, requires_grad, **kwargs): + def small_3d_unique(): + res = torch.randperm(S * S * S, dtype=torch.int64, device=device).view(S, S, S) + res = res.to(dtype).requires_grad_(requires_grad) + return res + + def large_1d_unique(): + res = torch.randperm(L * L * L, dtype=torch.int64, device=device) + res = res.to(dtype).requires_grad_(requires_grad) + return res + + # Test case for large tensor. + yield SampleInput(large_1d_unique()) + + # Test cases for small 3d tensors. + # Imitates legacy tests from test/test_torch.py + dims = range(-3, 3) + flag = [True, False] + for dim, descending, stable in product(dims, flag, flag): + # default schema without stable sort + yield SampleInput(small_3d_unique(), dim, descending) + # schema with stable sort, no CUDA support yet + if torch.device(device).type == 'cpu': + yield SampleInput( + small_3d_unique(), dim=dim, descending=descending, stable=stable) + + # Test cases for scalar tensor + tensor_opt = dict(dtype=dtype, device=device, requires_grad=requires_grad) + yield SampleInput(torch.tensor(1, **tensor_opt)) + yield SampleInput(torch.tensor(1, **tensor_opt), 0) + yield SampleInput(torch.tensor(1, **tensor_opt), 0, True) + + # Test cases for empty tensor + yield SampleInput(torch.tensor((), **tensor_opt)) + yield SampleInput(torch.tensor((), **tensor_opt), 0) + yield SampleInput(torch.tensor((), **tensor_opt), 0, True) + + # Test cases for stable sort + yield SampleInput(small_3d_unique(), stable=True) + yield SampleInput(small_3d_unique(), dim=0, stable=True) + yield SampleInput(small_3d_unique(), dim=0, descending=True, stable=True) + +def sample_inputs_threshold(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + sizes = ((), (S,), (S, S), (S, S, S)) + for x_size in sizes: + # threshold and values args must be numbers + yield SampleInput(make_arg(x_size), make_arg(()).item(), make_arg(()).item()) + +def sample_inputs_unique(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + sizes = ((), (S,), (S, S), (S, S, S), (S, 1, S), (S, 0, S)) + + for shape, sorted, return_inverse, return_counts, dim in \ + product(sizes, [False, True], [False, True], [False, True], [None, -2, -1, 0, 1, 2]): + # torch.unique cannot be called if the input tensor has a zero dimension which isn't the selected dim + if 0 in shape and shape.index(0) is not dim: + continue + + # skip invalid dim args + if dim is not None and (dim < -len(shape) or dim >= len(shape)): + continue + + kwargs = dict(sorted=sorted, return_inverse=return_inverse, return_counts=return_counts, dim=dim) + + # construct a test case with only one distinct value + input_t = torch.zeros(shape, dtype=dtype, device=device, requires_grad=requires_grad) + yield SampleInput(input_t, **kwargs) + + # construct a test case with mixed 0s and 1s + input_t = make_arg(shape, dtype=torch.bool, requires_grad=False)\ + .to(dtype).requires_grad_(requires_grad) + yield SampleInput(input_t, **kwargs) + + # construct a test case with many different values + yield SampleInput(make_arg(shape), **kwargs) + +def sample_inputs_unique_consecutive(*args, **kwargs): + for sample_input in sample_inputs_unique(*args, **kwargs): + if not sample_input.kwargs["sorted"]: + sample_input.kwargs.pop("sorted") + yield sample_input + +def sample_inputs_adaptive_avg_pool1d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as (input shape, output size) + cases = ( + ((0, 8, 8), (5,)), + ((3, 8, 8), 5), + ((3, 8, 8), 1) + ) + + for input_shape, output_size in cases: + # Batched + yield SampleInput(make_arg(input_shape), args=(output_size,)) + # Unbatched + yield SampleInput(make_arg(input_shape[1:]), args=(output_size,)) + + +def error_inputs_adaptive_avg_pool1d(opinfo, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float32) + + # error inputs for empty output + yield ErrorInput(SampleInput(make_arg((1, 2, 3)), output_size=()), + error_regex="'output_size' should contain one int") + + # error inputs for output_size lesser than 0 + yield ErrorInput(SampleInput(make_arg((1, 1, 1)), output_size=(-1,)), + error_regex="elements of output_size must be greater than or equal to 0") + + +def sample_inputs_adaptive_avg_pool2d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as (input shape, output size) + cases = ( + ((1, 8, 8, 8), (5, 7)), + ((2, 8, 8, 8), (None, 7)), + ((1, 8, 4, 3), (5, None)), + ((1, 8, 4, 3), (None, None)), + ((1, 8, 4, 3), (5)), + ) + + for input_shape, output_size in cases: + # Batched + yield SampleInput(make_arg(input_shape), args=(output_size,)) + # Unbatched + yield SampleInput(make_arg(input_shape[1:]), args=(output_size,)) + + +def error_inputs_adaptive_avg_pool2d(opinfo, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float32) + + # error inputs for incorrect input dimension + yield ErrorInput(SampleInput(make_arg((2, 2)), output_size=(2, 2)), + error_type=ValueError, error_regex="Input dimension should be at least 3") + + # error inputs for empty output + yield ErrorInput(SampleInput(make_arg((1, 2, 3, 4)), output_size=()), + error_regex="output_size must be 2") + + # error inputs for output_size lesser than 0 + yield ErrorInput(SampleInput(make_arg((1, 1, 1, 1)), output_size=(-1, 0)), + error_regex="elements of output_size must be greater than or equal to 0") + + +def sample_inputs_adaptive_avg_pool3d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as (input shape, output size) + cases = ( + ((0, 8, 8, 8, 8), (5, 7, 4)), + ((1, 8, 4, 3, 7), (None, None, None)), + ((1, 8, 4, 3, 7), (1, 1, 1)), + ((3, 3, 8, 8, 6), (5, 7, None)), + ((1, 3, 8, 8, 6), (5, None, 2)), + ((3, 3, 8, 8, 6), (None, 3, 2)), + ) + + for input_shape, output_size in cases: + # Batched + yield SampleInput(make_arg(input_shape), args=(output_size,)) + # Unbatched + yield SampleInput(make_arg(input_shape[1:]), args=(output_size,)) + + +def error_inputs_adaptive_avg_pool3d(opinfo, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float32) + + # error inputs for incorrect input dimension + yield ErrorInput(SampleInput(make_arg((2, 2, 2)), output_size=(2, 2, 2)), + error_type=ValueError, error_regex="Input dimension should be at least 4") + + # error inputs for empty output + yield ErrorInput(SampleInput(make_arg((1, 2, 3, 4)), output_size=()), + error_regex="output_size must be 3") + + # error inputs for output_size lesser than 0 + yield ErrorInput(SampleInput(make_arg((1, 1, 1, 1, 1)), output_size=(-1, 0, 2)), + error_regex="elements of output_size must be greater than or equal to 0") + + +def sample_inputs_adaptive_max_pool1d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as (input shape, output size) + cases = ( + # ((0, 8, 8), (5,)), + # 0 batch size doesn't work, cannot reshape tensor of 0 elements into shape [0, 8, -1] + ((3, 4, 4), 3), + ((3, 4, 4), 1) + ) + + for shapes, return_idx in product(cases, (True, False)): + # Batched + yield SampleInput(make_arg(shapes[0]), args=(shapes[1], return_idx)) + # Unbatched + yield SampleInput(make_arg(shapes[0][1:]), args=(shapes[1], return_idx)) + + +def error_inputs_adaptive_max_pool1d(opinfo, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float32) + + # error inputs for empty output + yield ErrorInput(SampleInput(make_arg((1, 2, 3)), output_size=()), + error_regex="'output_size' should contain one int") + + # error inputs for output_size lesser than 0 + yield ErrorInput(SampleInput(make_arg((1, 1, 1)), output_size=(-1,)), + error_regex="Trying to create tensor with negative dimension") + +def sample_inputs_adaptive_max_pool2d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as (input shape, output size) + cases = ( + # ((0, 8, 8, 8), (5, 7)), + # 0 batch size doesn't work, cannot reshape tensor of 0 elements into shape [0, 8, -1] + ((1, 4, 4, 4), (2, 3)), + ((2, 4, 4, 4), (None, 3)), + ((2, 4, 4, 4), (1, 1)), + ((1, 4, 4, 3), (3, None)), + ((1, 4, 4, 3), (None, None)), + ((1, 4, 4, 3), (3)), + ) + + for shapes, return_idx in product(cases, (True, False)): + # Batched + yield SampleInput(make_arg(shapes[0]), args=(shapes[1], return_idx)) + # Unbatched + yield SampleInput(make_arg(shapes[0][1:]), args=(shapes[1], return_idx)) + +def error_inputs_adaptive_max_pool2d(opinfo, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float32) + + # error inputs for incorrect input dimension + yield ErrorInput(SampleInput(make_arg((2, 2)), output_size=(2, 2)), + error_type=ValueError, error_regex="Input dimension should be at least 3") + + # error inputs for empty output + yield ErrorInput(SampleInput(make_arg((1, 2, 3, 4)), output_size=()), + error_regex="internal error") + + # error inputs for output_size lesser than 0 + yield ErrorInput(SampleInput(make_arg((1, 1, 1, 1)), output_size=(-1, 0)), + error_regex="Trying to create tensor with negative dimension") + + +def sample_inputs_adaptive_max_pool3d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as (input shape, output size) + cases = ( + # ((0, 8, 8, 8, 8), (5, 7, 4)), + # 0 batch size doesn't work, cannot reshape tensor of 0 elements into shape [0, 8, -1] + ((1, 4, 4, 3, 5), (None, None, None)), + ((1, 4, 4, 3, 5), (1, 1, 1)), + ((3, 3, 4, 4, 6), (2, 3, None)), + ((1, 3, 4, 4, 6), (3, None, 2)), + ((3, 3, 4, 4, 6), (None, 3, 2)), + ) + + for shapes, return_idx in product(cases, (True, False)): + # Batched + yield SampleInput(make_arg(shapes[0]), args=(shapes[1], return_idx)) + # Unbatched + yield SampleInput(make_arg(shapes[0][1:]), args=(shapes[1], return_idx)) + +def error_inputs_adaptive_max_pool3d(opinfo, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float32) + + # error inputs for incorrect input dimension + yield ErrorInput(SampleInput(make_arg((2, 2, 2)), output_size=(2, 2, 2)), + error_type=ValueError, error_regex="Input dimension should be at least 4") + + # error inputs for empty output + yield ErrorInput(SampleInput(make_arg((1, 2, 3, 4)), output_size=()), + error_regex="internal error") + + # error inputs for output_size lesser than 0 + yield ErrorInput(SampleInput(make_arg((1, 1, 1, 1, 1)), output_size=(-1, 0, 2)), + error_regex="Trying to create tensor with negative dimension") + + +class _TestParamsMaxPoolBase: + + def __init__(self): + self.kwargs = { + 'kernel_size': [3], + 'stride': [2, None], + 'ceil_mode': [True, False], + 'padding': [0, 1], + 'dilation': [1], + 'return_indices': [True, False] + } + + self.shapes = [ + [1, 2, None], # batch + [2], # channels + [3, 6] # signal + ] + + def _gen_shape(self): + for shape in product(*self.shapes): + # shape[0] is None indicates missing batch dimension + if shape[0] is None: + shape = shape[1:] + + yield shape, torch.contiguous_format + # only 2d (N, C, H, W) rank 4 tensors support channels_last memory format + if len(self.shapes) == 4 and len(shape) == 4: + yield shape, torch.channels_last + + def _gen_kwargs(self): + keys = self.kwargs.keys() + for values in product(*self.kwargs.values()): + yield dict(zip(keys, values)) + + def gen_input_params(self): + yield from product(self._gen_shape(), self._gen_kwargs()) + +class _TestParamsMaxPool1d(_TestParamsMaxPoolBase): + + def __init__(self): + super().__init__() + self.kwargs['kernel_size'] += [(3,)] + self.kwargs['stride'] += [(2,)] + self.kwargs['padding'] += [(1,)] + self.kwargs['dilation'] += [(1,)] + +class _TestParamsMaxPool2d(_TestParamsMaxPoolBase): + + def __init__(self): + super().__init__() + self.kwargs['kernel_size'] += [(3, 2)] + self.kwargs['stride'] += [(2, 1)] + self.kwargs['padding'] += [(1, 1)] + self.kwargs['dilation'] += [(1, 2)] + + self.shapes.append([6]) + +class _TestParamsMaxPool3d(_TestParamsMaxPoolBase): + + def __init__(self): + super().__init__() + self.kwargs['kernel_size'] += [(3, 2, 3)] + self.kwargs['stride'] += [(2, 1, 2)] + self.kwargs['dilation'] += [(1, 2, 1)] + + self.shapes.append([6]) + self.shapes.append([5]) + +def sample_inputs_max_pool(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + params_generator_type_dict = { + 'nn.functional.max_pool1d': _TestParamsMaxPool1d, + 'nn.functional.max_pool2d': _TestParamsMaxPool2d, + 'nn.functional.max_pool3d': _TestParamsMaxPool3d, + 'max_pool2d_with_indices_backward': _TestParamsMaxPool2d, + } + + params_generator = params_generator_type_dict[op_info.name]() + for (shape, memory_format), kwargs in params_generator.gen_input_params(): + arg = make_arg(shape).to(memory_format=memory_format).requires_grad_(requires_grad) + yield SampleInput(arg, kwargs=kwargs) + +def max_pool2d_backward(*args, kernel_size=(), stride=(), padding=(0,), dilation=(1,), ceil_mode=False, **kwargs): + out, indices = torch.nn.functional.max_pool2d_with_indices( + *args, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode, return_indices=True) + grad_out = torch.ones_like(out) + if stride is None: + stride = kernel_size + out_b = torch.ops.aten.max_pool2d_with_indices_backward.default( + grad_out, *args, kernel_size, stride, padding, dilation, ceil_mode, indices) + return out_b + +def error_inputs_max_pool1d(op_info, device, **kwargs): + # Toggle requires_grad because `max_pool1d` has different path + # based on whether `requires_grad` is set or not. + for requires_grad in (True, False): + make_arg = partial(make_tensor, device=device, dtype=torch.float, requires_grad=requires_grad) + # error inputs when pad is negative + x = make_arg((0, 1, 49)) + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 50, 'padding': -1, 'return_indices': True}), + error_regex='pad must be non-negative') + + # error inputs when pad > kernel_size / 2 + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 50, 'padding': 4, 'return_indices': True}), + error_regex='pad should be at most half of kernel size') + + # error inputs for input tensor + error_msg = r'Expected 2D or 3D \(batch mode\) tensor with optional 0 dim batch size for input' + yield ErrorInput(SampleInput(make_arg((), requires_grad=requires_grad), kwargs={'kernel_size': 1}), + error_regex=error_msg) + + # error inputs for empty input + yield ErrorInput(SampleInput(torch.tensor([], device=device, requires_grad=requires_grad), + kwargs={'kernel_size': 1}), + error_regex=error_msg) + + # error: unbatched input with 0 sized non-batch dims. + yield ErrorInput(SampleInput(make_arg((0, 10), requires_grad=requires_grad), + kwargs={'kernel_size': 1}), + error_regex=error_msg) + + # error: batched input with 0 sized non-batch dims. + yield ErrorInput(SampleInput(make_arg((1, 10, 0), requires_grad=requires_grad), + kwargs={'kernel_size': 1}), + error_regex=error_msg) + + # error inputs for empty input with stride=0 + error_msg = 'stride must be greater than zero, but got 0' + yield ErrorInput(SampleInput(make_arg((3, 3, 3)), kwargs={'kernel_size': 1, 'stride': 0}), + error_regex=error_msg) + + # error inputs for empty input with dilation=0 + error_msg = 'dilation must be greater than zero, but got 0' + yield ErrorInput(SampleInput(make_arg((3, 3, 3)), + kwargs={'kernel_size': 1, 'stride': 1, 'padding': 0, 'dilation': 0}), + error_regex=error_msg) + + # error inputs for invalid output size + error_msg = 'Invalid computed output size: -2' + yield ErrorInput(SampleInput(make_arg((2, 2, 2)), + kwargs={'kernel_size': 5, 'stride': 1, 'padding': 0, 'dilation': 1}), + error_regex=error_msg) + + # error inputs when kernel_size=0 + error_msg = 'kernel_size must be greater than zero' + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 0}), + error_regex=error_msg) + + # error inputs for strides > 0 + error_msg = 'stride must be greater than zero' + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 0}), + error_regex=error_msg) + + +def error_inputs_max_pool2d(op_info, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float, requires_grad=False) + # error inputs when pad is negative + x = make_arg((0, 1, 49)) + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 50, 'padding': -1, 'return_indices': True}), + error_regex='pad must be non-negative') + # 2-dimensional kernel + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': (3, 2), 'stride': 50, 'padding': -1, 'return_indices': True}), + error_regex='pad must be non-negative') + + # error inputs when pad > kernel_size / 2 (kernel_size : int) + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 50, 'padding': 4, 'return_indices': True}), + error_regex='pad should be at most half of kernel size') + + # error inputs when pad > kernel_size / 2 (kernel_size : tuple) + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': (3, 2), 'stride': 50, 'padding': 4, 'return_indices': True}), + error_regex='pad should be at most half of kernel size') + + # error: unbatched input with 0 sized non-batch dims. + err_msg = r'Expected 3D or 4D \(batch mode\) tensor with optional 0 dim batch size for input' + yield ErrorInput(SampleInput(make_arg((1, 0, 10)), + kwargs={'kernel_size': 1}), + error_regex=err_msg) + + # error: batched input with 0 sized non-batch dims. + yield ErrorInput(SampleInput(make_arg((2, 1, 10, 0)), + kwargs={'kernel_size': 1}), + error_regex=err_msg) + + +def error_inputs_max_pool3d(op_info, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float, requires_grad=False) + # error inputs when pad is negative + x = make_arg((0, 1, 49, 50)) + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 50, 'padding': -1, 'return_indices': True}), + error_regex='pad must be non-negative') + # 3-dimensional kernel + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': (3, 2, 2), 'stride': 50, + 'padding': -1, 'return_indices': True}), + error_regex='pad must be non-negative') + + # error inputs when pad > kernel_size / 2 (kernel_size: int) + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 50, 'padding': 4, 'return_indices': True}), + error_regex='pad should be at most half of kernel size') + + # error inputs when pad > kernel_size / 2 (kernel_size: tuple) + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': (3, 2, 2), 'stride': 50, + 'padding': 4, 'return_indices': True}), + error_regex='pad should be at most half of kernel size') + + # error: unbatched input with 0 sized non-batch dims. + err_msg = r'Expected input\'s non-batch dimensions to have positive length' + yield ErrorInput(SampleInput(make_arg((0, 1, 2, 10)), + kwargs={'kernel_size': 1}), + error_regex=err_msg) + + # error: batched inputs with 0 sized non-batch dims. + yield ErrorInput(SampleInput(make_arg((2, 1, 0, 1, 2)), + kwargs={'kernel_size': 1}), + error_regex=err_msg) + + +def sample_inputs_normalize(self, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, low=-1, high=1, device=device, dtype=dtype, requires_grad=requires_grad) + + cases: Tuple[Tuple[int], dict] = ( # type: ignore[assignment] + ((2, 1, 4, 5), {'p': 1., 'dim': 2}), + ((2, 3, 4, 5), {'p': 2., 'dim': 1}), + ((1, 2, 4, 5), {'p': 0.5, 'dim': 0}), + ((1, 3, 4, 5), {'p': -1., 'dim': 1}), + ((1, 3, 4, 5), {'p': 0., 'dim': -1}), + ((), {'p': 1.2, 'dim': 0}), + ((2, 3, 4, 5), {}), + ((2, 3, 4, 5), {'eps': 1e-4})) + + for input_shape, kwargs in cases: + yield SampleInput(make_arg(input_shape), kwargs=kwargs) + + +def complex_conv(fn, input_size, weight, grad_output, stride, padding, dilation, groups): + # conv(W, x, b) = conv(Wr, xr, br) - conv(Wi, xi, 0) + i(conv(Wi, xr, bi) + conv(Wr, xi, 0)) + # a = conv(Wr, xr, br), + # b = conv(Wi, xi, 0), + # c = conv(Wr + Wi, xr + xi, br + bi) + # conv(W, x, b) = a - b + i(c - a - b) + + grad_output_ = torch.view_as_real(grad_output) + grad_output_r = grad_output_[..., 0] + grad_output_i = grad_output_[..., 1] + + weight_ = torch.view_as_real(weight) + weight_r = weight_[..., 0] + weight_i = weight_[..., 1] + + a = fn(input_size, weight_r, grad_output_r, stride, padding, dilation, groups) + b = fn(input_size, weight_i, grad_output_i, stride, padding, dilation, groups) + c = fn(input_size, weight_r + weight_i, grad_output_r + grad_output_i, stride, padding, dilation, groups) + + return (a - b) + 1j * (c - a - b) + + +def conv_transpose_ref(input, weight, bias, stride=1, padding=0, + output_padding=0, dilation=1, groups=1, + fn=None): + # Derivative of `conv` is `conv_transpose`. + # To verify the correctness of `conv_transpose`, + # we rely `torch.nn.grad` implementation (which is tested in test_nn.py) + # for floating dtypes. + + assert fn is not None + + grad_fn_map = {torch.nn.functional.conv_transpose1d: torch.nn.grad.conv1d_input, + torch.nn.functional.conv_transpose2d: torch.nn.grad.conv2d_input, + torch.nn.functional.conv_transpose3d: torch.nn.grad.conv3d_input} + batched_dim_map = {torch.nn.functional.conv_transpose1d: 3, + torch.nn.functional.conv_transpose2d: 4, + torch.nn.functional.conv_transpose3d: 5} + + # Input for `ref` is ndarray. + input, weight = torch.from_numpy(input), torch.from_numpy(weight) + + is_batched = len(input.shape) == batched_dim_map[fn] + if not is_batched: + input = input.unsqueeze(0) + + if bias is not None: + bias = torch.from_numpy(bias) + unsqueeze_dims = input.ndim - 2 + for _ in range(unsqueeze_dims): + bias = bias.unsqueeze(1) + + grad_output = input + # Get the input shape for grad_fn. + conv_transpose_output = fn(grad_output.to('meta'), weight.to('meta'), None, + stride=stride, padding=padding, output_padding=output_padding, + groups=groups, dilation=dilation) + input_size = conv_transpose_output.shape + + grad_fn = grad_fn_map[fn] + if weight.dtype.is_complex: + out = complex_conv(grad_fn, input_size, weight, grad_output, stride, padding, dilation, groups) + else: # Floating + out = grad_fn(input_size, weight, grad_output, stride, padding, dilation, groups) + + if bias is not None: + out = out + bias + + return out.squeeze(0) if not is_batched else out + + +def sample_inputs_conv_transpose1d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as shapes for input, weight, bias + # and a dict of values of (stride, padding, output_padding, groups, dilation) + cases: Tuple[Tuple[int], Tuple[int], Tuple[int], dict] = ( # type: ignore[assignment] + ((1, 3, 4), (3, 3, 3), (3,), + {'stride': (2,), 'padding': 2, 'output_padding': (1,), 'groups': 1}), + ((2, 2, 4), (2, 2, 4), (4,), + {'stride': (3,), 'padding': (1,), 'output_padding': (2,), 'groups': 2, 'dilation': (4,)}), + ((1, 1, 4), (1, 1, 4), (1,), + {'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1, 'dilation': (2,)}), + ((1, 1, 4), (1, 2, 3), None, + {'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1}), + ((1, 4, 5), (4, 8, 3), None, + {}) + ) + + for input_shape, weight, bias, kwargs in cases: + # Batched + yield SampleInput(make_arg(input_shape), args=( + make_arg(weight), + make_arg(bias) if bias is not None else bias + ), kwargs=kwargs) + # Unbatched + yield SampleInput(make_arg(input_shape[1:]), args=( + make_arg(weight), + make_arg(bias) if bias is not None else bias + ), kwargs=kwargs) + + +def sample_inputs_conv_transpose2d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as shapes for input, weight, bias + # and a dict of values of (stride, padding, output_padding, groups, dilation) + cases: Tuple[Tuple[int], Tuple[int], Tuple[int], dict] = ( # type: ignore[assignment] + ((1, 3, 4, 4), (3, 3, 3, 3), (3,), + {'stride': (2, 2), 'padding': 2, 'output_padding': (1, 1), 'groups': 1}), + ((2, 2, 4, 4), (2, 2, 4, 5), (4,), + {'stride': (3, 2), 'padding': (1, 2), 'output_padding': (2, 3), 'groups': 2, 'dilation': (4, 4)}), + ((1, 1, 4, 5), (1, 1, 4, 3), (1,), + {'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1, 'dilation': (2, 3)}), + ((1, 1, 4, 3), (1, 2, 3, 4), None, + {'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1}), + ((2, 4, 4, 4), (4, 1, 3, 3), None, {'groups': 4}), + ((1, 2, 5, 5), (2, 4, 3, 3), None, {}) + ) + + for input_shape, weight, bias, kwargs in cases: + # Batched + yield SampleInput(make_arg(input_shape), args=( + make_arg(weight), + make_arg(bias) if bias is not None else bias + ), kwargs=kwargs) + # Unbatched + yield SampleInput(make_arg(input_shape[1:]), args=( + make_arg(weight), + make_arg(bias) if bias is not None else bias + ), kwargs=kwargs) + +def sample_inputs_conv_transpose3d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as shapes for input, weight, bias + # and a dict of values of (stride, padding, output_padding, groups, dilation) + cases: Tuple[Tuple[int], Tuple[int], Tuple[int], dict] = ( # type: ignore[assignment] + ((1, 3, 4, 4, 4), (3, 3, 3, 3, 3), (3,), + {'stride': (2, 2, 2), 'padding': 2, 'output_padding': (1, 1, 1), 'groups': 1}), + ((2, 2, 4, 4, 4), (2, 2, 4, 5, 6), (4,), + {'stride': (3, 2, 1), 'padding': (1, 2, 3), 'output_padding': (2, 3, 1), 'groups': 2, 'dilation': (4, 4, 4)}), + ((1, 1, 4, 5, 2), (1, 1, 4, 3, 1), (1,), + {'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1, 'dilation': (2, 3, 2)}), + ((1, 1, 4, 3, 4), (1, 2, 3, 4, 5), None, + {'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1}), + ((1, 4, 5, 5, 5), (4, 8, 3, 3, 3), None, + {}) + ) + + for input_shape, weight, bias, kwargs in cases: + # Batched + yield SampleInput(make_arg(input_shape), args=( + make_arg(weight), + make_arg(bias) if bias is not None else bias + ), kwargs=kwargs) + # Unbatched + yield SampleInput(make_arg(input_shape[1:]), args=( + make_arg(weight), + make_arg(bias) if bias is not None else bias + ), kwargs=kwargs) + + +def sample_inputs_conv1d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as shapes for input, weight, bias, + # and a dict of values of (stride, padding, dilation, groups) + cases: Tuple = ( + ((1, 3, 4), (3, 3, 3), (3,), {'stride': (2,), 'padding': 2, 'groups': 1}), + ((2, 4, 8), (2, 2, 3), (2,), {'stride': 3, 'padding': 1, 'groups': 2, 'dilation': 2}), + ((1, 4, 5), (1, 4, 3), None, {'stride': (2,), 'padding': 'valid'}), + ((2, 2, 4), (2, 1, 4), (2,), {'stride': (1,), 'padding': 'same', 'groups': 2, 'dilation': (2,)}), + # With defaults + ((1, 4, 5), (3, 4, 3), None, {}), + ) + + for input_shape, weight, bias, kwargs in cases: + # Batched + yield SampleInput(make_arg(input_shape), args=( + make_arg(weight), + make_arg(bias) if bias is not None else bias + ), kwargs=kwargs) + # Unbatched + yield SampleInput(make_arg(input_shape[1:]), args=( + make_arg(weight), + make_arg(bias) if bias is not None else bias + ), kwargs=kwargs) + + +def error_inputs_conv1d(opinfo, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float64) + make_int_arg = partial(make_tensor, device=device, dtype=torch.int64) + make_complex_arg = partial(make_tensor, device=device, dtype=torch.complex128) + + # error inputs for different dtypes of input tensor and bias + yield ErrorInput( + SampleInput(make_int_arg((1, 1, 4)), args=(make_int_arg((1, 1, 2)), make_arg((1,)))), + error_regex="should be the same") + + # error inputs for different dtypes of input tensor and bias + yield ErrorInput( + SampleInput(make_arg((1, 1, 4)), args=(make_arg((1, 1, 2)), make_complex_arg((1,)))), + error_regex="should be the same") + + # error inputs for negative strides + yield ErrorInput( + SampleInput(make_arg((1, 1, 4)), args=(make_arg((1, 2, 2)), make_arg((1,))), + kwargs={'stride': (-1,)}), error_regex="non-positive stride is not supported") + + # error inputs for negative padding + yield ErrorInput( + SampleInput(make_arg((1, 1, 4)), args=(make_arg((1, 2, 2)), make_arg((1,))), + kwargs={'padding': (-1,)}), error_regex="negative padding is not supported") + + # error inputs for negative dilation + yield ErrorInput( + SampleInput(make_arg((1, 1, 4)), args=(make_arg((1, 1, 2)), make_arg((1,))), + kwargs={'dilation': (-1,)}), error_regex="dilation should be greater than zero") + + # FIXME: https://github.com/pytorch/pytorch/issues/85656 + # error inputs for bias shape not equal to the output channels + # yield ErrorInput(SampleInput(make_arg((1, 1, 4)), args=(make_arg((1, 1, 3)), make_arg((2,)))), + # error_regex="expected bias to be 1-dimensional with 1 elements") + + # error inputs for input.ndim != weight.ndim + yield ErrorInput(SampleInput(make_arg((1, 1, 4)), args=(make_arg((1, 2)), make_arg((1,)))), + error_regex="weight should have at least three dimensions") + + # error inputs for the weight[0] are less than the number of groups + yield ErrorInput( + SampleInput(make_arg((2, 2, 4)), args=(make_arg((2, 2, 2)), make_arg((2,))), + kwargs={'padding': 'same', 'groups': 3}), error_regex="expected weight to be at least 3 at dimension 0") + + # error inputs for the weight[0] are less than the number of groups + yield ErrorInput( + SampleInput(make_arg((2, 2, 4)), args=(make_arg((2, 2, 2)), make_arg((2,))), + kwargs={'groups': 3}), error_regex="expected weight to be at least 3 at dimension 0") + + # error inputs for invalid groups + yield ErrorInput( + SampleInput(make_arg((2, 2, 4)), args=(make_arg((2, 2, 2)), make_arg((2,))), + kwargs={'padding': 'same', 'groups': -1}), error_regex="non-positive groups is not supported") + + # error inputs for invalid groups + yield ErrorInput( + SampleInput(make_arg((2, 2, 4)), args=(make_arg((2, 2, 2)), make_arg((2,))), + kwargs={'padding': 'same', 'groups': 0}), error_regex="non-positive groups is not supported") + + +def error_inputs_conv2d(opinfo, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float64) + make_int_arg = partial(make_tensor, device=device, dtype=torch.int64) + make_complex_arg = partial(make_tensor, device=device, dtype=torch.complex128) + + # error inputs for different dtypes of input tensor and bias + yield ErrorInput( + SampleInput(make_int_arg((2, 4, 4)), args=(make_int_arg((3, 2, 3, 3)), make_arg((3,)))), + error_regex="should be the same") + + # error inputs for different dtypes of input tensor and bias + yield ErrorInput( + SampleInput(make_arg((2, 4, 4)), args=(make_arg((3, 2, 3, 3)), make_complex_arg((3,)))), + error_regex="should be the same") + + # error inputs for negative strides + yield ErrorInput( + SampleInput(make_arg((1, 1, 4, 4)), args=(make_arg((1, 2, 2, 3)), make_arg((1,))), + kwargs={'stride': (-1,)}), error_regex="non-positive stride is not supported") + + # error inputs for negative padding + yield ErrorInput( + SampleInput(make_arg((1, 1, 4, 3)), args=(make_arg((1, 2, 2, 4)), make_arg((1,))), + kwargs={'padding': (-1,)}), error_regex="negative padding is not supported") + + # error inputs for negative dilation + yield ErrorInput( + SampleInput(make_arg((1, 1, 4, 2)), args=(make_arg((1, 1, 2, 5)), make_arg((1,))), + kwargs={'dilation': (-1,)}), error_regex="dilation should be greater than zero") + + # FIXME: https://github.com/pytorch/pytorch/issues/85656 + # error inputs for bias shape not equal to the output channels + # yield ErrorInput(SampleInput(make_arg((1, 1, 4, 4)), args=(make_arg((1, 1, 3, 2)), make_arg((2,)))), + # error_regex="expected bias to be 1-dimensional with 1 elements") + + # error inputs for input.ndim != weight.ndim + yield ErrorInput( + SampleInput(make_arg((1, 1, 4, 3)), args=(make_arg((1, 2, 2)), make_arg((1,))), + kwargs={'padding': 'same'}), error_regex="Expected 3-dimensional input for 3-dimensional weight") + + # error inputs for the weight[0] are less than the number of groups + yield ErrorInput( + SampleInput(make_arg((2, 2, 4, 3)), args=(make_arg((2, 2, 1, 3)), make_arg((2,))), + kwargs={'groups': 3}), error_regex="expected weight to be at least 3 at dimension 0") + + # error inputs for groups the weight[0] are less than the number of groups + yield ErrorInput( + SampleInput(make_arg((2, 2, 4, 3)), args=(make_arg((2, 2, 1, 3)), make_arg((2,))), + kwargs={'padding': 'same', 'groups': 3}), error_regex="expected weight to be at least 3 at dimension 0") + + # error inputs for invalid groups + yield ErrorInput( + SampleInput(make_arg((2, 2, 4, 5)), args=(make_arg((2, 2, 1, 4)), make_arg((2,))), + kwargs={'padding': 'same', 'groups': -1}), error_regex="non-positive groups is not supported") + + # error inputs for invalid groups + yield ErrorInput( + SampleInput(make_arg((2, 2, 4, 3)), args=(make_arg((2, 2, 4, 3)), make_arg((2,))), + kwargs={'padding': 'same', 'groups': 0}), error_regex="non-positive groups is not supported") + + +def sample_inputs_conv2d(op_info, device, dtype, requires_grad, jit_fail_sample=False, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as shapes for input, weight, bias + # and a dict of values of (stride, padding, groups, dilation) + cases: Tuple = ( + ((1, 3, 4, 4), (3, 3, 3, 3), (3,), + {'stride': (2, 2), 'padding': 2, 'groups': 1}), + ((2, 4, 8, 8), (2, 2, 3, 3), (2,), + {'stride': (3, 2), 'padding': (2, 1), 'groups': 2, 'dilation': (4, 4)}), + ((1, 4, 5, 5), (1, 4, 2, 3), (1,), + {'stride': 2, 'padding': 1, 'groups': 1, 'dilation': (2, 3)}), + ((1, 4, 5, 5), (1, 4, 2, 3), (1,), + {'stride': 2, 'padding': 1, 'groups': 1, 'dilation': (2, 3)}), + ((1, 2, 4, 3), (4, 2, 3, 4), None, + {'stride': 2, 'padding': 1, 'groups': 1}), + ((1, 4, 5, 5), (1, 4, 2, 3), (1,), + {'stride': 2, 'padding': "valid"}), + ((1, 4, 5, 5), (1, 4, 2, 3), (1,), + {'stride': 1, 'padding': "same", 'dilation': 3}), + # Below are the group related samples from common_nn.py + ((2, 4, 6, 6), (4, 1, 3, 3), (4,), {'groups': 4}), + ((2, 4, 6, 6), (8, 1, 3, 3), (8,), {'groups': 4}), + ((2, 4, 6, 6), (8, 1, 3, 3), None, {'groups': 4}), + ((2, 4, 6, 6), (4, 1, 3, 3), (4,), {'groups': 4, 'stride': (3, 2)}), + ((2, 4, 6, 6), (4, 1, 3, 3), (4,), {'groups': 4, 'padding': (1, 1)}), + ((2, 4, 5, 5), (4, 1, 2, 2), (4,), {'groups': 4, 'dilation': (2, 2)}), + ((2, 4, 6, 5), (6, 2, 3, 2), (6,), {'groups': 2}), + # With defaults + ((1, 4, 5, 5), (3, 4, 3, 3), None, {}), + ) + + for input_shape, weight, bias, kwargs in cases: + # Batched + yield SampleInput(make_arg(input_shape), args=( + make_arg(weight), + make_arg(bias) if bias is not None else bias + ), kwargs=kwargs) + # Unbatched + yield SampleInput(make_arg(input_shape[1:]), args=( + make_arg(weight), + make_arg(bias) if bias is not None else bias + ), kwargs=kwargs) + + +def sample_inputs_conv3d(opinfo, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as shapes for input, weight, bias + # and dict of values of (stride, padding, dilation, groups) + cases: Tuple = ( + ((1, 1, 4, 4, 4), (1, 1, 1, 1, 1), (1,), {'padding': 'same'}), + ((1, 1, 4, 4, 4), (1, 1, 4, 4, 4), (1,), {'stride': (2, 2, 2)}), + ((1, 1, 5, 5, 5), (1, 1, 3, 3, 3), (1,), {'dilation': 2}), + ((1, 1, 1, 1, 10), (1, 1, 1, 1, 4), None, {'padding': 'valid'}), + ((1, 1, 10, 11, 12), (1, 1, 1, 2, 5), None, {'padding': 'same'}), + ((1, 1, 10, 11, 12), (1, 1, 1, 2, 5), None, {'padding': 'same', 'dilation': 2}), + ((1, 1, 10, 11, 12), (1, 1, 4, 4, 4), None, {'padding': 'same', 'dilation': 3}), + ((1, 1, 1, 1, 10), (1, 1, 1, 1, 4), None, {'padding': 'valid'}), + ((3, 9, 3, 1, 9), (3, 3, 3, 1, 9), (3,), {'groups': 3}), + ((3, 9, 3, 1, 9), (3, 3, 3, 1, 9), (3,), {'stride': (2, 2, 2), 'dilation': 1, 'groups': 3}), + ) + + for input_shape, weight, bias, kwargs in cases: + # Batched + yield SampleInput(make_arg(input_shape), args=( + make_arg(weight), + make_arg(bias) if bias is not None else bias + ), kwargs=kwargs) + # Unbatched + yield SampleInput(make_arg(input_shape[1:]), args=( + make_arg(weight), + make_arg(bias) if bias is not None else bias + ), kwargs=kwargs) + + +def error_inputs_conv3d(opinfo, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float64) + make_int_arg = partial(make_tensor, device=device, dtype=torch.int64) + make_complex_arg = partial(make_tensor, device=device, dtype=torch.complex128) + + # error inputs for different dtypes of input tensor and bias + yield ErrorInput( + SampleInput(make_int_arg((1, 1, 4, 4, 4)), args=(make_int_arg((1, 1, 2, 2, 2)), make_arg((1,)))), + error_regex="should be the same") + + # error inputs for different dtypes of input tensor and bias + yield ErrorInput( + SampleInput(make_arg((1, 1, 4, 4, 4)), args=(make_arg((1, 1, 2, 2, 2)), make_complex_arg((1,)))), + error_regex="should be the same") + + # error inputs for negative strides + yield ErrorInput( + SampleInput(make_arg((1, 1, 4, 4, 4)), args=(make_arg((1, 1, 2, 2, 2)), make_arg((1,))), + kwargs={'stride': (-1,)}), error_regex="non-positive stride is not supported") + + # error inputs for negative padding + yield ErrorInput( + SampleInput(make_arg((1, 1, 4, 4, 4)), args=(make_arg((1, 1, 2, 2, 2)), make_arg((1,))), + kwargs={'padding': (-1,)}), error_regex="negative padding is not supported") + + # error inputs for negative dilation + yield ErrorInput( + SampleInput(make_arg((1, 1, 4, 4, 4)), args=(make_arg((1, 1, 2, 2, 2)), make_arg((1,))), + kwargs={'dilation': (-1,)}), error_regex="dilation should be greater than zero") + + # FIXME: https://github.com/pytorch/pytorch/issues/85656 + # error inputs for bias shape not equal to the output channels + # yield ErrorInput(SampleInput(make_arg((1, 1, 4, 4, 4)), args=(make_arg((1, 1, 3, 3, 3)), make_arg((2,)))), + # error_regex="expected bias to be 1-dimensional with 1 elements") + + # error inputs for input.ndim != weight.ndim + yield ErrorInput( + SampleInput(make_arg((1, 1, 3, 4, 5)), args=(make_arg((1, 1, 4, 3)), make_arg((1,))), + kwargs={'padding': 'same'}), error_regex="Expected 4-dimensional input for 4-dimensional weight") + + # error inputs for the weight[0] are less than the number of groups + yield ErrorInput( + SampleInput(make_arg((2, 2, 3, 4, 5)), args=(make_arg((2, 2, 4, 3, 3)), + make_arg((2,))), kwargs={'groups': 3}), + error_regex="expected weight to be at least 3 at dimension 0") + + # error inputs for the weight[0] are less than the number of groups + yield ErrorInput( + SampleInput(make_arg((2, 2, 3, 4, 5)), args=(make_arg((2, 2, 4, 3, 3)), + make_arg((2,))), kwargs={'padding': 'same', 'groups': 3}), + error_regex="expected weight to be at least 3 at dimension 0") + + # error inputs for invalid groups + yield ErrorInput( + SampleInput(make_arg((2, 2, 3, 4, 5)), args=(make_arg((2, 2, 4, 3, 3)), + make_arg((2,))), kwargs={'padding': 'same', 'groups': 0}), + error_regex="non-positive groups is not supported") + + # error inputs for padding='same' not supported by strided convolutions + yield ErrorInput( + SampleInput(make_arg((18, 27, 9, 1, 9)), args=(make_arg((9, 9, 9, 1, 9)), + make_arg((9,))), kwargs={'stride': 2, 'padding': 'same', 'groups': 3}), + error_regex="padding='same' is not supported for strided convolutions") + + +def sample_inputs_group_norm(opinfo, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as input shape, num groups, and kwargs for eps + cases: Tuple[Tuple[int], int, float] = ( # type: ignore[assignment] + ((1, 6, 3), 2, {'eps' : 0.5}), + ((2, 6, 3), 2, {'eps' : -0.5}), + ((1, 3), 1, {'eps' : 1e-5}), + ((0, 2), 1, {'eps' : 1e-5}), + ((S, S, S), 1, {'eps' : 0.5}), + ) + + # num_channels is inferred to be input.shape[1] dimension + for input_shape, num_groups, kwargs in cases: + # Shape of weight and bias should be the same as num_channels + channels = input_shape[1] if len(input_shape) > 1 else 0 + weight_tensor = make_arg(channels) + bias_tensor = make_arg(channels) + + # Checking for permutations of weights and biases as `None` + weights = [weight_tensor, None] + biases = [bias_tensor, None] + for weight, bias in itertools.product(weights, biases): + kwargs = { + 'weight': weight, + 'bias': bias, + **kwargs + } + yield SampleInput(make_arg(input_shape), num_groups, **kwargs) + + # Without any optional args + yield SampleInput(make_arg((1, 2)), args=(1,)) + +def reference_inputs_group_norm(op_info, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_group_norm( + op_info, device, dtype, requires_grad, **kwargs) + + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as input shape, num groups, and kwargs for eps + cases: Tuple[Tuple[int], int, float] = ( # type: ignore[assignment] + ((20, 6, 10, 10), 3, {'eps' : 1e-5}), + # equivalent with InstanceNorm + # GroupNorm(C, num_groups=C) == InstanceNorm(num_features=C) + ((20, 6, 10, 10), 6, {'eps' : 1e-5}), + # equivalent with LayerNorm + # GroupNorm(C, num_groups=1, affine=False) == LayerNorm(normalized_shape=[C, H, W], elementwise_affine=False) + ((20, 6, 10, 10), 1, {'eps' : 1e-5}), + ) + + # num_channels is inferred to be input.shape[1] dimension + for input_shape, num_groups, kwargs in cases: + # Shape of weight and bias should be the same as num_channels + channels = input_shape[1] if len(input_shape) > 1 else 0 + input_tensor = make_arg(input_shape) + weight_tensor = make_arg(channels) + bias_tensor = make_arg(channels) + + # Checking for permutations of weights and biases as `None` + weights = [weight_tensor, None] + biases = [bias_tensor, None] + for weight, bias in itertools.product(weights, biases): + kwargs = { + 'weight': weight, + 'bias': bias, + **kwargs + } + yield SampleInput(input_tensor, num_groups, **kwargs) + + +def sample_inputs_instance_norm(opinfo, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_arg_without_requires_grad = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + # Ordered as: input shape, kwargs for momentum, eps + cases: Tuple[Tuple[int], dict] = ( # type: ignore[assignment] + ((S, S, S), {'momentum': 0.5, 'eps': 0.6}), + ((S, S, S), {'momentum': 0.5, 'eps': 0.6, 'use_input_stats': True}), + ((3, 2, 4), {'momentum': -1.2}), + ((3, 2, 4), {'momentum': 0.0}), + ((3, 2, 3, 4), {'momentum': -1.0, 'eps': 0.5}), + ((3, 2, 3, 4), {'momentum': -1.0, 'eps': 0.5}), + ) + + for input_shape, kwargs in cases: + # args: running mean, running var, weight and bias should necessarily be of shape: (channels,) + channels = input_shape[1] + weight = make_arg(channels) + bias = make_arg(channels) + running_mean = make_arg_without_requires_grad(channels, low=0) + running_var = make_arg_without_requires_grad(channels, low=0) + new_kwargs = { + 'running_mean': running_mean, + 'running_var': running_var, + 'weight': weight, + 'bias': bias, + **kwargs + } + + yield SampleInput( + make_arg(input_shape), + args=(), + kwargs=new_kwargs + ) + + # Checking for permutations of weights and biases as `None` + # instance_norm assumes that if there's a bias, there's a weight + weights = [channels, None] + biases = [None, None] + + for weight_channels, bias_channels in zip(weights, biases): + running_mean = make_arg_without_requires_grad(channels, low=0) + running_var = make_arg_without_requires_grad(channels, low=0) + yield SampleInput( + make_arg(input_shape), + args=(), + kwargs={ + 'running_mean': running_mean, + 'running_var': running_var, + 'weight': make_arg(weight_channels) if weight_channels is not None else None, + 'bias': make_arg(bias_channels) if bias_channels is not None else None + } + ) + + # Test case for no optional kwargs + yield SampleInput(make_arg((1, 2, 3)), kwargs={}) + + +def sample_inputs_layer_norm(opinfo, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as input shape, normalized_shape and a kwarg dict for eps + cases: Tuple[Tuple[int], Tuple[int], dict] = ( # type: ignore[assignment] + ((1, 2, 3), (1, 2, 3), {'eps': 0.5}), + ((2, 2, 3), (2, 3), {'eps': -0.5}), + ((1,), (1,), {}), + ((1, 2), (2,), {}), + ((0, 1), (1,), {}), + ) + + for input_shape, normalized_shape, kwargs in cases: + # Shape of weight and bias should be the same as normalized_shape + weight = make_arg(normalized_shape) + bias = make_arg(normalized_shape) + yield SampleInput( + make_arg(input_shape), + args=(normalized_shape, weight, bias), + kwargs=kwargs + ) + # Without any optional args + yield SampleInput(make_arg((1, 2)), args=((2,),)) + + # TODO: @krshrimali, once to_numpy method in SampleInput class is modified to take None inputs, + # enable these inputs; see https://github.com/pytorch/pytorch/pull/63276#discussion_r691950400 + + # With weight and a `None` bias + # yield SampleInput(make_arg((1, 2)), args=((2,), make_arg((2,)), None)) + + # With `None` weight and bias (tests failing for this, see the link above) + # yield SampleInput(make_arg((1, 2)), args=((2,), None, make_arg((2,)))) + + +def sample_inputs_native_layer_norm(opinfo, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as input shape, normalized_shape, eps + cases: Tuple[Tuple[int], Tuple[int], float] = ( # type: ignore[assignment] + ((1, 2, 3), (1, 2, 3), 0.5), + ((2, 2, 3), (2, 3), -0.5), + ((1,), (1,), 1e-5), + ((1, 2), (2,), 1e-5), + ((0, 1), (1,), 1e-5), + ) + + for input_shape, normalized_shape, eps in cases: + # Shape of weight and bias should be the same as normalized_shape + weight = make_arg(normalized_shape) + bias = make_arg(normalized_shape) + yield SampleInput( + make_arg(input_shape), + args=(normalized_shape, weight, bias, eps), + ) + yield SampleInput( + make_arg(input_shape), + args=(normalized_shape, None, bias, eps), + ) + yield SampleInput( + make_arg(input_shape), + args=(normalized_shape, weight, None, eps), + ) + yield SampleInput( + make_arg(input_shape), + args=(normalized_shape, None, None, eps), + ) + +def error_inputs_group_norm(opinfo, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float32, requires_grad=False) + + # check that input has minimum number of dimensions + err_msg1 = "Expected at least 2 dimensions for input tensor but received" + s1 = SampleInput(make_arg(1), args=(1,)) + yield ErrorInput(s1, error_regex=err_msg1) + + # check that the channels dimension is compatible with number of groups + err_msg2 = "Expected number of channels in input to be divisible by num_groups, but got input of shape" + s2 = SampleInput(make_arg((2, 7, 4)), args=(2,)) + yield ErrorInput(s2, error_regex=err_msg2) + +def error_inputs_native_layer_norm(opinfo, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float32, requires_grad=False) + input_shape = (1, 2, 3) + + err_msg1 = "Expected normalized_shape to be at least 1-dimensional" + s1 = SampleInput( + make_arg(input_shape), args=(tuple(), None, None, 1e-5) + ) + yield ErrorInput(s1, error_regex=err_msg1) + + normalized_shape = (1, 2, 3) + weight = make_arg((1, 2)) + err_msg2 = "Expected weight to be of same shape as normalized_shape" + s2 = SampleInput( + make_arg(input_shape), args=(normalized_shape, weight, None, 1e-5) + ) + yield ErrorInput(s2, error_regex=err_msg2) + + bias = make_arg((1, 2)) + err_msg3 = "Expected bias to be of same shape as normalized_shape" + s3 = SampleInput( + make_arg(input_shape), args=(normalized_shape, None, bias, 1e-5) + ) + yield ErrorInput(s3, error_regex=err_msg3) + + err_msg4 = "Given normalized_shape=" + s4 = SampleInput( + make_arg((2, 2, 3)), args=((2, 2), None, None, 1e-5) + ) + yield ErrorInput(s4, error_regex=err_msg4) + + +def sample_inputs_local_response_norm(opinfo, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Ordered as input shape, size and a kwarg dict for alpha, beta, and k + cases: Tuple[Tuple[int], Tuple[int], dict] = ( # type: ignore[assignment] + ((1, 6, 3), 2, {'alpha': 3e-05, 'beta': 0.5, 'k': 1.25}), + ((1, 6, 3), 2, {'beta': 0.5, 'k': 1.25}), + ((1, 6, 3), 2, {'alpha': 3e-05, 'k': 1.25}), + ((1, 6, 3), 2, {'alpha': 3e-05, 'beta': 0.5}), + ((1, 6, 3), 2, {'alpha': 3e-05}), + ((1, 6, 3), 2, {'beta': 0.5}), + ((1, 6, 3), 2, {'k': 1.25}), + ((1, 6, 3), 2, {}), + ((2, 6, 3), 2, {'alpha': 3e-05, 'beta': 0.5, 'k': 1.25}), + ((1, 1, 2), 1, {'alpha': 3e-05, 'beta': 0.5, 'k': 1.25}), + ((0, 1, 2), 1, {'alpha': 3e-05, 'beta': 0.5, 'k': 1.25}), + ) + + for input_shape, size, kwargs in cases: + yield SampleInput(make_arg(input_shape), args=(size,), kwargs=kwargs) + +def sample_inputs_hardswish(self, device, dtype, requires_grad, **kwargs): + N = 5 + # make sure we are testing -3 -> 3 range. default is -10 -> 10 so maybe unnecessary ? + make_arg = partial(make_tensor, device=device, dtype=dtype, + requires_grad=requires_grad, low=-5, high=5) + return (SampleInput(make_arg((N * 2, N * 2))) for _ in range(1, N)) + +def sample_inputs_linear(self, device, dtype, requires_grad, **kwargs): + features_options = [[3, 4], [8, 8]] + batch_options: List[List[int]] = [ + [], # no batch + [0], + [8], + [2, 3], + ] + create_tensor = partial(make_tensor, device=device, dtype=dtype, + requires_grad=requires_grad, low=-2, high=2) + + for has_bias, (in_feat, out_feat), batch_shape in \ + itertools.product([True, False], features_options, batch_options): + input_tensor = create_tensor(batch_shape + [in_feat]) + weight = create_tensor([out_feat, in_feat]) + if not has_bias: + yield SampleInput(input_tensor, weight) + continue + + bias = create_tensor([out_feat]) + yield SampleInput(input_tensor, weight, bias) + +def sample_inputs_bilinear(self, device, dtype, requires_grad, **kwargs): + features_options = [[3, 4, 5], [8, 8, 8]] + batch_options: List[List[int]] = [ + [], # no batch + [0], + [8], + [2, 3], + ] + create_tensor = partial(make_tensor, device=device, dtype=dtype, + requires_grad=requires_grad, low=-2, high=2) + + for has_bias, (in_feat1, in_feat2, out_feat), batch_shape in \ + itertools.product([True, False], features_options, batch_options): + input_tensor1 = create_tensor(batch_shape + [in_feat1]) + input_tensor2 = create_tensor(batch_shape + [in_feat2]) + weight = create_tensor([out_feat, in_feat1, in_feat2]) + if not has_bias: + yield SampleInput(input_tensor1, input_tensor2, weight) + continue + bias = create_tensor([out_feat]) + yield SampleInput(input_tensor1, input_tensor2, weight, bias) + +def sample_inputs_glu(self, device, dtype, requires_grad, **kwargs): + features_options = [[2], [2, 4], [8, 8], [3, 6, 8], [1, 4, 6, 7]] + batch_options: List[List[int]] = [ + [], # no batch + [0], + [8], + [2, 3], + ] + create_tensor = partial(make_tensor, device=device, dtype=dtype, + requires_grad=requires_grad, low=-2, high=2) + + for features, batch_shape in itertools.product(features_options, batch_options): + ndim = len(features) + len(batch_shape) + for dim in range(ndim): + input_tensor = create_tensor(batch_shape + features) + dim_size = input_tensor.size(dim) + if dim_size > 0 and dim_size % 2 == 0: + yield SampleInput(input_tensor, dim) + +def sample_inputs_interpolate(mode, self, device, dtype, requires_grad, **kwargs): + N, C = 2, 3 + D = 4 + S = 3 + L = 5 + + align_corners_options: Tuple[Any, ...] = (None,) + if mode in ('linear', 'bilinear', 'bicubic', 'trilinear'): + align_corners_options = (True, False, None) + ranks_for_mode = { + 'nearest': [1, 2, 3], + 'nearest-exact': [1, 2, 3], + 'linear': [1], + 'bilinear': [2], + 'bicubic': [2], + 'trilinear': [3], + 'area': [1, 2, 3] + } + + def shape(size, rank, with_batch_channel=True): + if with_batch_channel: + return tuple([N, C] + ([size] * rank)) + return tuple([size] * rank) + + if mode in ('bilinear', 'bicubic') and dtype == torch.uint8: + make_arg = partial( + make_tensor, + device=device, + dtype=dtype, + requires_grad=requires_grad, + # we pick more realistic upper bound 256 instead of default 10 for uint8 dtype + high=256 if dtype == torch.uint8 else None, + ) + # provide few samples for a more close to typical image processing usage + rank = 2 + for memory_format in [torch.contiguous_format, torch.channels_last]: + yield SampleInput( + make_arg(shape(270, rank), memory_format=memory_format), + shape(130, rank, False), + scale_factor=None, + mode=mode, + align_corners=False, + ) + + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + for align_corners in align_corners_options: + for rank in ranks_for_mode[mode]: + yield SampleInput( + make_arg(shape(D, rank)), + shape(S, rank, False), + scale_factor=None, + mode=mode, + align_corners=align_corners, + ) + yield SampleInput( + make_arg(shape(D, rank)), + shape(L, rank, False), + scale_factor=None, + mode=mode, + align_corners=align_corners, + ) + for recompute_scale_factor in [False, True]: + for scale_factor in [1.7, 0.6]: + yield SampleInput( + make_arg(shape(D, rank)), + size=None, + scale_factor=scale_factor, + mode=mode, + align_corners=align_corners, + recompute_scale_factor=recompute_scale_factor, + ) + +def reference_inputs_interpolate(mode, self, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_interpolate(mode, self, device, dtype, requires_grad, **kwargs) + + if mode in ('bilinear', 'bicubic'): + make_arg = partial( + make_tensor, + device=device, + dtype=dtype, + requires_grad=requires_grad, + # we pick more realistic upper bound 256 instead of default 10 for uint8 dtype + high=256 if dtype == torch.uint8 else None, + ) + # provide few samples for more typical image processing usage + for memory_format in [torch.contiguous_format, torch.channels_last]: + for aa in [True, False]: + yield SampleInput( + make_arg((2, 3, 345, 456), memory_format=memory_format), + (270, 270), + scale_factor=None, + mode=mode, + align_corners=False, + antialias=aa, + ) + +def sample_inputs_upsample(mode, self, device, dtype, requires_grad, **kwargs): + N, C = 2, 3 + D = 4 + S = 3 + L = 5 + + ranks_for_mode = { + 'nearest': [1, 2, 3], + 'bilinear': [2], + } + + def shape(size, rank, with_batch_channel=True): + if with_batch_channel: + return torch.Size([N, C] + ([size] * rank)) + return torch.Size([size] * rank) + + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + for rank in ranks_for_mode[mode]: + yield SampleInput(make_arg(shape(D, rank)), size=shape(S, rank, False)) + yield SampleInput(make_arg(shape(D, rank)), size=shape(L, rank, False)) + yield SampleInput(make_arg(shape(D, rank)), scale_factor=1.7) + yield SampleInput(make_arg(shape(D, rank)), scale_factor=0.6) + +def reference_inputs_upsample(mode, self, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_upsample(mode, self, device, dtype, requires_grad, **kwargs) + + if mode in ('bilinear', ): + make_arg = partial( + make_tensor, + device=device, + dtype=dtype, + requires_grad=requires_grad, + # we pick more realistic upper bound 256 instead of default 10 for uint8 dtype + high=256 if dtype == torch.uint8 else None, + ) + # provide a single sample for more typical image processing usage + for memory_format in [torch.contiguous_format, torch.channels_last]: + yield SampleInput( + make_arg((2, 3, 345, 456), memory_format=memory_format), + (270, 270), + ) + +def sample_inputs_upsample_aa(mode, self, device, dtype, requires_grad, **kwargs): + N = 6 + C = 3 + H = 10 + W = 20 + S = 3 + L = 5 + + input_tensor = make_tensor(torch.Size([N, C, H, W]), device=device, dtype=dtype, requires_grad=requires_grad) + + yield SampleInput(input_tensor, output_size=torch.Size([S, S]), align_corners=False, scale_factors=None) + yield SampleInput(input_tensor, output_size=torch.Size([L, L]), align_corners=False, scale_factors=None) + yield SampleInput(input_tensor, output_size=None, align_corners=False, scale_factors=[1.7, 0.9]) + yield SampleInput(input_tensor, output_size=None, align_corners=True, scale_factors=[0.8, 1.0]) + + yield SampleInput(input_tensor, output_size=torch.Size([S, S]), align_corners=False, scales_h=None, scales_w=None) + yield SampleInput(input_tensor, output_size=torch.Size([S, S]), align_corners=False, scales_h=1.7, scales_w=0.9) + yield SampleInput(input_tensor, output_size=torch.Size([S, S]), align_corners=True, scales_h=1.7, scales_w=0.9) + +def sample_inputs_gelu(self, device, dtype, requires_grad, **kwargs): + N = 5 + for _ in range(1, N): + for approximate in ['none', 'tanh']: + yield SampleInput( + make_tensor((N * 2, N * 2), device=device, dtype=dtype, + requires_grad=requires_grad, low=-3, high=3), + approximate=approximate) + + +def error_inputs_gelu(op, device, **kwargs): + # Tests that gelu errors out when passed an approximation we don't know. + yield ErrorInput(SampleInput(make_tensor((), dtype=torch.float, device=device), kwargs={"approximate": "asdf"}), + error_regex="approximate argument must be either") + + +def sample_inputs_max_min_reduction_with_dim(op_info, device, dtype, requires_grad, **kwargs): + inputs = [] + args_for_reduction_with_dim = ( + ((S, S, S), (1,),), + ((S, S, S), (1, True, ),), + ((), (0,),), + ((), (0, True,),), + ) + return ((SampleInput(make_tensor(input_tensor, dtype=dtype, device=device, + low=None, high=None, + requires_grad=requires_grad), + *args)) + for input_tensor, args in args_for_reduction_with_dim) + +def sample_inputs_max_min_reduction_no_dim(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad, low=None, high=None) + yield SampleInput(make_arg((S, S, S))) + yield SampleInput(make_arg(())) + +def _generate_nan_reduction_inputs(device, dtype, requires_grad, **kwargs): + yield from _generate_reduction_inputs(device, dtype, requires_grad) + # NaN only exists for floating point numbers + if dtype.is_complex or dtype.is_floating_point: + yield torch.tensor([2, torch.nan, -1], device=device, dtype=dtype, requires_grad=requires_grad) + yield torch.tensor([[torch.nan, 2], [0, 1]], device=device, dtype=dtype, requires_grad=requires_grad) + +def sample_inputs_nan_reduction(supports_multiple_dims): + # Generates sample inputs for reduction ops that contain the input tensor + # and dim and keepdim kwargs. If a reduction op needs to test additional + # args/kwargs then create a separate sample_inputs function + def fn(op_info, device, dtype, requires_grad, **kwargs): + for t in _generate_nan_reduction_inputs(device, dtype, requires_grad): + # Add case without dim and keepdim kwargs + yield SampleInput(t.clone().requires_grad_(requires_grad)) + for kwargs in _generate_reduction_kwargs(t.ndim, supports_multiple_dims): + yield SampleInput(t.clone().requires_grad_(requires_grad), **kwargs) + + return fn + +def sample_inputs_reduction_quantile(op_info, device, dtype, requires_grad, **kwargs): + test_quantiles = (0.5, make_tensor((2,), dtype=dtype, device=device, low=0, high=1, requires_grad=requires_grad)) + test_interpolations = ['linear', 'midpoint'] + + for quantiles in test_quantiles: + for t in _generate_reduction_inputs(device, dtype, requires_grad): + # Add case without dim and keepdim kwargs + input = t.clone().requires_grad_(requires_grad) + yield SampleInput(input, quantiles) + for kwargs in _generate_reduction_kwargs(t.ndim, supports_multiple_dims=False): + # Interpolation kwarg for now is only supported when providing both dim and keepdim + kwargs.setdefault('dim', 0) + kwargs.setdefault('keepdim', False) + for interpolation in test_interpolations: + kwargs['interpolation'] = interpolation + input = t.clone().requires_grad_(requires_grad) + yield SampleInput(input, quantiles, **kwargs) + +def sample_inputs_reduction_count_nonzero(*args, **kwargs): + """Sample inputs for count_nonzero""" + # count_nonzero does not support keepdim yet + for sample in sample_inputs_reduction(*args, **kwargs): + sample.kwargs.pop('keepdim', None) + yield sample + +def sample_inputs_leaky_relu(op_info, device, dtype, requires_grad, **kwargs): + N = 10 + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + return (SampleInput(make_arg((N, N))) for _ in range(1, N)) + +def sample_inputs_fractional_max_pool2d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Order: input_shape, kernel_size + cases = (((1, 3, 9, 9), 3), + ((1, 3, 9, 9), (4, 4)), + ((1, 3, 9, 9), (6, 6)), + ((2, 3, 9, 9), (3, 3)), + ((1, 1, 4, 4), (2, 2)), + ((1, 2, 6, 6), (4, 4))) + + for input_shape, kernel_size in cases: + for return_indices in [False, True]: + # test case passing a single output size + yield SampleInput( + make_arg(input_shape), + kernel_size, + output_size=2, + return_indices=return_indices, + ) + + # test case passing a tuple output size + yield SampleInput( + make_arg(input_shape), + kernel_size, + output_size=(2, 3), + return_indices=return_indices, + ) + + # test case passing an output ratio + yield SampleInput( + make_arg(input_shape), + kernel_size, + output_ratio=(0.5, 0.5), + return_indices=return_indices, + ) + +def sample_inputs_fractional_max_pool3d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Order: input_shape, kernel_size + cases = (((2, 3, 5, 5, 5), (2, 2, 2)), + ((1, 2, 6, 5, 4), 2), + ((1, 2, 5, 6, 5), (2, 3, 2)), + ((1, 2, 6, 6, 6), (2, 3, 2)), + ((1, 1, 7, 6, 7), (2, 3, 4)), + ((1, 1, 4, 5, 4), (2, 2, 1)), + ((1, 1, 8, 7, 6), (4, 3, 2)), + ((0, 1, 4, 5, 4), (2, 2, 1))) + + for input_shape, kernel_size in cases: + for return_indices in [False, True]: + # test case passing a single output size + yield SampleInput( + make_arg(input_shape), + kernel_size, + output_size=2, + return_indices=return_indices, + ) + + # test case passing a tuple output size + yield SampleInput( + make_arg(input_shape), + kernel_size, + output_size=(2, 3, 2), + return_indices=return_indices, + ) + + # test case passing an output ratio + yield SampleInput( + make_arg(input_shape), + kernel_size, + output_ratio=(0.5, 0.5, 0.5), + return_indices=return_indices, + ) + +def sample_inputs_avgpool2d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Order: input_shape, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override + cases = (((1, 3, 9, 9), 3, 1, 1, True, False, 2), + ((1, 3, 9, 9), (4, 4), (2, 3), 1, True, False, 2), + ((1, 3, 9, 9), (6, 6), (3, 3), (2, 3), True, True, 2), + ((2, 3, 9, 9), (3, 3), (1, 1), (1, ), True, False, 2), + ((1, 1, 4, 4), (2, 2), (), (0, ), False, True, -2), + ((1, 2, 6, 6), (4, 4), (2, 2), (2, ), True, True, None)) + + for input_shape, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override in cases: + yield SampleInput(make_arg(input_shape), + args=(kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override)) + # Case with just input_shape and kernel_size + yield SampleInput(make_arg((1, 3, 9, 9)), args=((3, 3))) + +def sample_inputs_avgpool1d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Order: input_shape, kernel_size, kwargs + cases: List[Tuple[Tuple[int, ...], Union[int, Tuple[int, ...]], Dict]] = [ + ((2, 3, 9), (3,), {}), + ((1, 3, 9), 3, dict(stride=1, padding=1, ceil_mode=True, count_include_pad=False)), + ((1, 3, 9), (6,), dict(stride=(3,), padding=(2,), ceil_mode=True, count_include_pad=True)), + ((2, 3, 9), (3,), dict(stride=(1,), padding=(1,), ceil_mode=False, count_include_pad=True)), + ((0, 3, 9), (6,), dict(stride=(3,), padding=(2,), ceil_mode=False, count_include_pad=True)), + ((1, 2, 9), (7,), dict(stride=(3,), padding=(2,), ceil_mode=False)), + ((1, 2, 9), (7,), dict(stride=(3,), padding=(3,), ceil_mode=True)), + ((1, 2, 9), (7,), dict(stride=(3,), ceil_mode=False)), + ((1, 2, 9), (7,), dict(stride=(3,), ceil_mode=True)), + ] + + for input_shape, kernel_size, kwargs in cases: + yield SampleInput(make_arg(input_shape), args=(kernel_size,), kwargs=kwargs) + +def sample_inputs_avgpool3d(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Order: input_shape, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override + cases: List[Tuple[Tuple[int, ...], Union[int, Tuple[int, ...]], Dict]] = [ + ((2, 3, 3, 4, 4), (2, 2, 2), {}), + ((1, 2, 4, 4, 4), 2, dict(stride=1, padding=1, ceil_mode=True, + count_include_pad=False, divisor_override=2)), + ((1, 2, 5, 5, 5), (2, 3, 4), dict(stride=(1, 2, 2), padding=(0, 1, 2), ceil_mode=True, + count_include_pad=True, divisor_override=2)), + ((1, 2, 5, 5, 5), (2, 3, 4), dict(stride=(1, 2, 2), padding=(0, 1, 2), ceil_mode=False)), + ((1, 1, 7, 5, 7), (6, 3, 4), dict(stride=(2, 3, 2), padding=(3, 1, 0), ceil_mode=False, + count_include_pad=False, divisor_override=2)), + ((1, 1, 4, 5, 4), (2, 2, 3), dict(stride=(2, 2, 1), padding=0, ceil_mode=False, + count_include_pad=True, divisor_override=-2)), + ((1, 1, 6, 5, 6), (4, 5, 6), dict(stride=(2, 3, 2), padding=2, ceil_mode=True, + count_include_pad=True, divisor_override=None)), + ((0, 1, 4, 5, 4), (2, 3, 1), dict(stride=(2, 1, 2), padding=0, ceil_mode=False, + count_include_pad=True, divisor_override=None)), + ] + + for input_shape, kernel_size, kwargs in cases: + yield SampleInput(make_arg(input_shape), args=(kernel_size,), kwargs=kwargs) + +def error_inputs_avg_pool1d(op_info, device, **kwargs): + # error inputs when pad is negative + x = torch.rand([0, 1, 49], dtype=torch.float32) + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 50, 'padding': -1}), + error_regex='pad must be non-negative') + + # error inputs when pad > kernel_size / 2 + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 50, 'padding': 4}), + error_regex='pad should be at most half of kernel size') + +def error_inputs_avg_pool2d(op_info, device, **kwargs): + # error inputs when pad is negative + x = torch.rand([0, 1, 49], dtype=torch.float32) + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 50, 'padding': -1}), + error_regex='pad must be non-negative') + # 2-dimensional kernel + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': (3, 2), 'stride': 50, 'padding': -1}), + error_regex='pad must be non-negative') + + # error inputs when pad > kernel_size / 2 + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 50, 'padding': 4}), + error_regex='pad should be at most half of kernel size') + # 2-dimensional kernel + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': (3, 2), 'stride': 50, 'padding': 4}), + error_regex='pad should be at most half of kernel size') + + # error inputs for zero divisor + x = torch.zeros(3, 3, 3) + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': (2, 2), 'divisor_override': 0}), + error_regex='divisor must be not zero') + +def error_inputs_avg_pool3d(op_info, device, **kwargs): + # error inputs when pad is negative + x = torch.rand([0, 1, 49, 50], dtype=torch.float32) + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 50, 'padding': -1}), + error_regex='pad must be non-negative') + # 3-dimensional kernel + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': (3, 2, 2), 'stride': 50, 'padding': -1}), + error_regex='pad must be non-negative') + + # error inputs when pad > kernel_size / 2 + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 50, 'padding': 4}), + error_regex='pad should be at most half of kernel size') + # 3-dimensional kernel + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': (3, 2, 2), 'stride': 50, 'padding': 4}), + error_regex='pad should be at most half of kernel size') + + # error inputs for zero divisor + x = torch.zeros(3, 3, 3, 3) + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': (2, 2, 2), 'divisor_override': 0}), + error_regex='divisor must be not zero') + + # error inputs for invalid input dimension + x = torch.rand([0, 1, 49], dtype=torch.float32) + yield ErrorInput(SampleInput(x, kwargs={'kernel_size': 2, 'stride': 50, 'padding': 0}), + error_regex='non-empty 4D or 5D') + + +def sample_inputs_to(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + # test_multiple_devices_to_cuda would fail if we use a different device than given + devices = [device] + if torch.device(device).type == 'cpu': + devices = [torch.device('cpu'), torch.device('cuda:0')] if torch.cuda.is_available() else devices + memory_formats = [torch.preserve_format, torch.channels_last] + + # TODO: can't switch `to.device` overload to use positional arguments + # https://github.com/pytorch/pytorch/issues/84265 + # to.device overload + for device, nb, cp, mem_f in product(devices, [True, False], [True, False], memory_formats): + kwargs = { + "memory_format": mem_f, + } + yield SampleInput(make_arg((S, S, S, S)), args=(device, torch.float64, nb, cp), kwargs=kwargs) + + # to.dtype overload + for nb, cp, mem_f in product([True, False], [True, False], memory_formats): + kwargs = { + "memory_format": mem_f, + } + yield SampleInput(make_arg((S, S, S, S)), args=(torch.float64, nb, cp), kwargs=kwargs) + + # to.other overload + for device, nb, cp, mem_f in product(devices, [True, False], [True, False], memory_formats): + kwargs = { + "memory_format": mem_f, + } + other = make_arg((S, S, S, S), dtype=torch.float64, device=device) + yield SampleInput(make_arg((S, S, S, S)), args=(other, nb, cp), kwargs=kwargs) + + +def sample_inputs_topk(op_info, device, dtype, requires_grad, **kwargs): + def get_tensor_input(size): + return make_tensor(size, dtype=dtype, device=device, requires_grad=requires_grad) + + yield SampleInput(get_tensor_input((S, M, S)), 3) + yield SampleInput(get_tensor_input((S, M, S)), 3, 1) + yield SampleInput(get_tensor_input((S, M, S)), 3, -2) + yield SampleInput(get_tensor_input((S, M, S)), 3, 1, True) + yield SampleInput(get_tensor_input((S, M, S)), 3, -2, True) + yield SampleInput(get_tensor_input((S, M, S)), 3, 1, True, True) + yield SampleInput(get_tensor_input((S, M, S)), 3, -2, True, True) + + yield SampleInput(get_tensor_input(()), 1) + yield SampleInput(get_tensor_input(()), 1, 0) + yield SampleInput(get_tensor_input(()), 1, -1) + yield SampleInput(get_tensor_input(()), 1, 0, True) + yield SampleInput(get_tensor_input(()), 1, -1, True) + yield SampleInput(get_tensor_input(()), 1, 0, True, True) + yield SampleInput(get_tensor_input(()), 1, -1, True, True) + +def sample_inputs_outer(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + yield SampleInput(make_arg(S), make_arg(M)) + +def sample_inputs_dist(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + sizes = ((S, S, S), (S,), (S, 1, S), (), (S, S)) + ps = (2, 4) + + for size_x, size_y, p in product(sizes, sizes, ps): + yield SampleInput(make_arg(size_x), args=(make_arg(size_y), p)) + +# Missing to test the nondeterminism of the operation +# https://github.com/pytorch/pytorch/issues/53352 +def sample_inputs_index(op_info, device, dtype, requires_grad, reference=False, **kwargs): + # target.index_select(dim, idx) + select = "index_select" in op_info.name + # target.index_add(dim, idx, source, *, alpha=1) + add = "index_add" in op_info.name + # target.index_copy(dim, idx, source) + copy = "index_copy" in op_info.name + # target.index_fill(dim, idx, value) + fill = "index_fill" in op_info.name + + # Extended reference inputs. We generate that exercise atomic adds / writing + # several times to one location + if reference: + make_arg = partial(torch.ones, device=device, dtype=dtype, requires_grad=requires_grad) + make_idx = partial(torch.zeros, device=device, dtype=torch.int64) + else: + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + # idx They need to be different for copy and add to be deterministic + if copy or add: + make_idx = partial(torch.randperm, device=device, dtype=torch.int64) + else: + def make_idx(n): + return make_tensor((n,), device=device, dtype=torch.int64, low=0, high=n) + + shapes = [(), (1,), (S, S)] + # extra parameter for add + if add: + if dtype == torch.bool: + alphas = (True, False) + else: + alphas = (-1, 0, 2) + else: + alphas = (None,) + + if fill: + # A weird number to catch errors. + # The former one tests `index_fill.int_Scalar`, and the latter one tests `index_fill.int_Tensor`. + values = (make_arg((1,)).item(), make_arg(())) + else: + values = (None,) + + for shape, alpha, value in product(shapes, alphas, values): + t = make_arg(shape) + args = [] + + # dim. We handle the scalar case + dim = -1 if t.ndim == 2 else 0 + args.append(dim) + + idx = make_idx(t.shape[dim] if t.ndim != 0 else 1) + args.append(idx) + + # source + if copy or add: + args.append(make_arg(shape)) + elif fill: + args.append(value) + + args = tuple(args) + kwargs = {} if alpha is None else {"alpha": alpha} + + yield SampleInput(t, args=args, kwargs=kwargs) + +def sample_inputs_index_reduce(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + def make_idx(n, m): + return make_tensor((n,), device=device, dtype=torch.int64, low=0, high=m) + + shapes = [((), ()), ((1,), (1,)), ((S, S), (S, M)), ((S, S, S), (S, M, S))] + include_selfs = (True, False) + reduces = ('prod', 'mean', 'amin', 'amax') + + for shape, include_self, reduce in product(shapes, include_selfs, reduces): + self_shape, src_shape = shape + # dim. We handle the scalar case + dim = 1 if len(self_shape) >= 2 else 0 + idx = make_idx(src_shape[dim] if len(src_shape) != 0 else 1, + self_shape[dim] if len(self_shape) != 0 else 1) + args = (dim, idx, make_arg(src_shape), reduce) + yield SampleInput(make_arg(self_shape), + args=args, + kwargs={'include_self' : include_self}) + + # Sample inputs to test edge cases for backward + if requires_grad: + # Check that gradients are propagated correctly for prod when zeros in self/src are reduced + # This sample tests gradients for the following cases + # (a) 1 zero reduced (from source (self[0, 1]), from self (self[0, 0])) + # (b) 2 zeros reduced (1 from src and 1 from self (self[1, 0], self[1, 1]) + # (c) no zeros reduced (self[2, 1], self[2, 2]) + # (d) 2 zeros reduced (both from src) is tested in test/test_autograd.py + # test_scatter_index_reduce_prod_gradgrad_error as this case is not supported for gradgrad + input = torch.tensor([[0, 13], [0, 0], [15, 19]], dtype=dtype, device=device, requires_grad=requires_grad) + src = torch.tensor([[2, 0], [0, 0], [2, 3], [2, 2]], dtype=dtype, device=device, requires_grad=requires_grad) + idx = torch.tensor([0, 1, 2, 0], dtype=torch.long, device=device) + + yield SampleInput(input, + args=(0, idx, src, 'prod'), + kwargs={'include_self': True}) + +def sample_inputs_mode(op_info, device, dtype, requires_grad, **kwargs): + args = ( + ((S, S, S), (),), + ((S, S, S), (1, ),), + ((S, S, S), (1, True, ),), + ((), (),), + ((), (0,),), + ((), (0, True,),), + # Non-fused mode kernel on CUDA + ((3000,), ()), + ) + make_arg = partial(make_tensor, dtype=dtype, device=device, + requires_grad=requires_grad, low=None, high=None) + return (SampleInput(make_arg(input_tensor), *args) + for input_tensor, args in args) + +# Missing to test the nondeterminism of the operation +# https://github.com/pytorch/pytorch/issues/53352 +def sample_inputs_put(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + make_idx = partial(make_tensor, low=0, dtype=torch.int64, device=device, requires_grad=False) + + S = 3 + + # Generic inputs + idx = torch.randperm(S * S, device=device, dtype=torch.int64)[:S] + idx_list = [idx, -idx - 1] + for idx, acc in product(idx_list, (True, False)): + yield SampleInput(input=make_arg((S, S)), + args=(idx.clone(), + make_arg((S,)), + acc)) + + # Scalar cases + scalar_sizes = [(), (1,)] + tgt_gen = (make_arg(size) for size in scalar_sizes) + idx_gen = (make_idx(size, high=1) for size in scalar_sizes) + src_gen = (make_arg(size) for size in scalar_sizes) + for tgt, idx, src, acc in product(tgt_gen, idx_gen, src_gen, (True, False)): + yield SampleInput(input=tgt.clone().requires_grad_(requires_grad), + args=(idx.clone(), + src.clone().requires_grad_(requires_grad), + acc)) + + # Empty cases + tgt_sizes = [(0,), (), (1,), (3, 2)] + tgt_gen = (make_arg(size) for size in tgt_sizes) + idx = make_idx((0,), high=1) + src = make_arg((0,)) + for tgt, acc in product(tgt_gen, (True, False)): + yield SampleInput(input=tgt.clone().requires_grad_(requires_grad), + args=(idx.clone(), + src.clone().requires_grad_(requires_grad), + acc)) + +def sample_inputs_take(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + make_idx = partial(make_tensor, low=0, dtype=torch.int64, device=device, requires_grad=False) + + S = 3 + + # Generic inputs: take S elements out of S * S + index = make_idx((S,), high=(S * S)) + for idx in (index, -index - 1): + yield SampleInput(input=make_arg((S, S)), args=(idx,)) + + # Scalar cases + scalar_sizes = [(), (1,)] + src_gen = (make_arg(size) for size in scalar_sizes) + idx_gen = (make_idx(size, high=1) for size in scalar_sizes) + for src, idx in product(src_gen, idx_gen): + yield SampleInput(input=src.clone().requires_grad_(requires_grad), + args=(idx.clone(),)) + + # Empty cases + src_sizes = [(0,), (), (1,), (3, 2)] + src_gen = (make_arg(size) for size in src_sizes) + + idx = make_idx((0,), high=1) + for src in src_gen: + yield SampleInput(input=src.clone().requires_grad_(requires_grad), + args=(idx.clone(),)) + +def sample_movedim_moveaxis(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad) + yield SampleInput(make_arg((4, 3, 2, 1)), [0, 1, 2, 3], [3, 2, 1, 0]) + yield SampleInput(make_arg((4, 3, 2, 1)), [0, -1, -2, -3], [-3, -2, -1, -0]) + +def reference_movedim_moveaxis(op_info, device, dtype, requires_grad, **kwargs): + yield from sample_movedim_moveaxis(op_info, device, dtype, requires_grad, **kwargs) + + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # shape, source, destination + args = ( + # empty inputs + ((), (), ()), + # int inputs, negative + ((3, 5, 7, 2), -2, 1), + # swap bounds + ((3, 5, 7, 2), (-1, 0), (0, -1)), + # non-sequential, negative + ((2, 3, 4, 5, 6), (3, -3, 4), (1, 0, -1)), + # idempotence, negative + ((2, 3, 4, 5, 6), (-3, 4, 3, 1), (-3, 4, 3, 1)), + # reverse, sequential, positive + ((6, 2, 3, 5, 4), (4, 3, 2, 1, 0), (0, 1, 2, 3, 4)), + # reverse, non-sequential + ((6, 2, 3, 5, 4), (-3, -2, -4, -5, -1), (2, 1, 3, 4, 0)), + # reverse, sequential, negative + ((6, 2, 3, 5, 4), (4, -2, 2, -4, -5), (-5, 1, 2, -2, -1)), + ) + + for shape, source, destination in args: + yield SampleInput(make_arg(shape), args=(source, destination)) + +def error_movedim_moveaxis(op_info, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float32) + + # source length < destination length + yield ErrorInput( + SampleInput(make_arg(2, 3, 4, 5, 6), args=((3, -3), (1, 0, -1))), + error_regex=(r"movedim: Invalid source or destination dims: source " + r"\(\[3, -3\] dims\) should contain the same number of " + r"dims as destination \(\[1, 0, -1\] dims\)"), + ) + + # source length > destination length + yield ErrorInput( + SampleInput(make_arg(2, 3, 4, 5, 6), args=((3, -3, 4), (1, 0))), + error_regex=(r"movedim: Invalid source or destination dims: source " + r"\(\[3, -3, 4\] dims\) should contain the same number of " + r"dims as destination \(\[1, 0\] dims\)"), + ) + + # repeated source dim, with negative indices + yield ErrorInput( + SampleInput(make_arg(2, 3, 4, 5, 6), args=((0, 4, -5), (1, 0, 2))), + error_regex=r"movedim: repeated dim in `source` \(\[0, 4, -5\]\)", + ) + + # repeated destination dim, with negative indices + yield ErrorInput( + SampleInput(make_arg(2, 3, 4, 5, 6), args=((1, 0, 2), (0, 4, -5))), + error_regex=r"movedim: repeated dim in `destination` \(\[0, 4, -5\]\)", + ) + + # repeated dim (both), with negative indices + yield ErrorInput( + SampleInput(make_arg(2, 3, 4, 5, 6), args=((1, 0, -4), (0, 4, -5))), + error_regex=r"movedim: repeated dim in `source` \(\[1, 0, -4\]\)", + ) + + # out of bounds source inputs, with negative indices + yield ErrorInput( + SampleInput(make_arg(2, 3, 4, 5, 6), args=((0, 1, -6), (1, 4, 2))), + error_regex=r"Dimension out of range \(expected to be in range of \[-5, 4\], but got -6\)", + error_type=IndexError, + ) + + # out of bounds destination inputs, with negative indices + yield ErrorInput( + SampleInput(make_arg(2, 3, 4, 5, 6), args=((1, 4, 2), (0, 1, -6))), + error_regex=r"Dimension out of range \(expected to be in range of \[-5, 4\], but got -6\)", + error_type=IndexError, + ) + + # out of bounds source input, int + yield ErrorInput( + SampleInput(make_arg(2, 3, 4, 5, 6), args=(-6, 1)), + error_regex=r"Dimension out of range \(expected to be in range of \[-5, 4\], but got -6\)", + error_type=IndexError, + ) + + # out of bounds destination input, int + yield ErrorInput( + SampleInput(make_arg(2, 3, 4, 5, 6), args=(3, -6)), + error_regex=r"Dimension out of range \(expected to be in range of \[-5, 4\], but got -6\)", + error_type=IndexError, + ) + +def sample_repeat_tile(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + rep_dims = ((), (0, ), (1, ), (0, 2), (1, 1), (2, 3), (2, 3, 2), (0, 2, 3), (2, 1, 1, 1),) + shapes = ((), (0,), (2,), (3, 0), (3, 2), (3, 0, 1)) + + if requires_grad: + # Tests for variant_consistency_jit, grad, gradgrad + # are slower. Use smaller bags of `rep_dims` and `shapes` + # in this case. + rep_dims = ((), (0, ), (0, 2), (1, 1), (2, 3), (1, 3, 2), (3, 1, 1)) # type: ignore[assignment] + shapes = ((), (0,), (2,), (3, 2)) # type: ignore[assignment] + + is_repeat_op = op_info.name in ['repeat', '_refs.repeat'] + for rep_dim, shape in product(rep_dims, shapes): + # `torch.repeat` errors for `len(rep_dims) < t.dim()`, + # so we filter such combinations. + if is_repeat_op and len(rep_dim) < len(shape): + continue + yield SampleInput(make_arg(shape), rep_dim) + + +def sample_inputs_narrow_narrow_copy(op_info, device, dtype, requires_grad, *, is_narrow, **kwargs): + shapes_and_args = ( + ((S, S, S), 1, 2, 2), + ((S, S, S), -1, 2, 2), + ((S, S, S), 1, 0, 0), + ((S, S, S), -1, 0, 0), + ((S, S, S), 2, 1, 2), + ) + + for shape, dim, start, length in shapes_and_args: + tensor = make_tensor(shape, dtype=dtype, device=device, low=None, high=None, + requires_grad=requires_grad) + yield SampleInput(tensor, dim, start, length) + # narrow also accepts the start argument being a Tensor + if is_narrow: + yield SampleInput(tensor, dim, torch.tensor(start), length) + +def reference_inputs_narrow_narrow_copy(op_info, device, dtype, requires_grad, *, is_narrow, **kwargs): + yield from sample_inputs_narrow_narrow_copy(op_info, device, dtype, requires_grad, is_narrow=is_narrow, **kwargs) + + shapes_and_args = ( + # 1-dim + ((M,), 0, 0, 0), # 0 elems from the left + ((M,), -1, -1, 0), # 0 elems from the right + ((M,), 0, 5, 3), # 3 elems from the left + ((M,), 0, -5, 2), # 2 elems from the right + ((M,), -1, 0, M), # M elems from the left + ((M,), 0, -M, M), # M elems from the right + + # 2-dim + ((M, S), 1, 0, 0), # dim 1, 0 elems from the left + ((S, M), -2, -1, 0), # dim 0, 0 elems from the right + ((L, S), 1, 2, 3), # dim 1, 3 elems from the left + ((L, S), -1, 3, 2), # dim 1, 2 elems from the left + ((M, L), 0, 0, M), # dim 0, M elems from the left + ((M, L), -1, -L, L), # dim 1, L elems from the right + + # 3-dim + ((L, M, S), 2, 0, 0), # dim 2, 0 elems from the left + ((M, S, L), -1, -1, 0), # dim 2, 0 elems from the right + ((S, L, M), 2, 0, M), # dim 2, M elems from the left + ((L, S, M), -1, -M, M), # dim 2, M elems from the right + ((S, L, M), 1, 0, 0), # dim 1, 0 elems from the left + ((S, L, M), 0, 2, 1), # dim 0, 1 elem from the left + ((M, S, M), -1, -5, 4), # dim 2, 4 elems from the right + ) + + for shape, dim, start, length in shapes_and_args: + tensor = make_tensor(shape, dtype=dtype, device=device, low=None, high=None, + requires_grad=requires_grad) + yield SampleInput(tensor, dim, start, length) + # narrow also accepts the start argument being a Tensor + if is_narrow: + yield SampleInput(tensor, dim, torch.tensor(start), length) + +def error_inputs_narrow_narrow_copy(op_info, device, *, is_narrow, is_ref): + make_arg = partial(make_tensor, device=device, dtype=torch.float32) + + # 0-dim + yield ErrorInput(SampleInput(make_arg(()), 0, 0, 1), + error_type=RuntimeError, + error_regex=r"narrow\(\) cannot be applied to a 0-dim tensor\.") + + # out of bounds dim + if not is_narrow and not is_ref and torch.device(device).type == 'cpu': + # narrow_copy_dense_cpu_out + yield ErrorInput(SampleInput(make_arg((M, S, L)), 3, 0, 0), + error_type=RuntimeError, + error_regex=r"Expected dim < static_cast\(self_sizes.size\(\)\) to be true, but got false\.") + else: + yield ErrorInput(SampleInput(make_arg((M, S, L)), 3, 0, 0), + error_type=IndexError, + error_regex=r"Dimension out of range \(expected to be in range of \[-3, 2\], but got 3\)") + # out of bounds dim (negative) + yield ErrorInput(SampleInput(make_arg((L, S, M)), -4, 0, 0), + error_type=IndexError, + error_regex=r"Dimension out of range \(expected to be in range of \[-3, 2\], but got -4\)") + + # out of bounds start + yield ErrorInput(SampleInput(make_arg((L, M, S)), 1, M + 1, 0), + error_type=IndexError, + error_regex=r"start out of range \(expected to be in range of \[-10, 10\], but got 11\)") + # out of bounds start (negative) + yield ErrorInput(SampleInput(make_arg((L, M, S)), 1, -M - 1, 0), + error_type=IndexError, + error_regex=r"start out of range \(expected to be in range of \[-10, 10\], but got -11\)") + + # out of bounds length + yield ErrorInput(SampleInput(make_arg((S, L, M)), 2, 0, M + 1), + error_type=RuntimeError, + error_regex=r"start \(0\) \+ length \(11\) exceeds dimension size \(10\)\.") + # out of bounds length (negative) + if not is_narrow and not is_ref and torch.device(device).type == 'cpu': + # narrow_copy_dense_cpu_out + yield ErrorInput(SampleInput(make_arg((M,)), 0, 0, -1), + error_type=RuntimeError, + error_regex=r"start \(0\) \+ length \(-1\) exceeds dimension size \(10\)\.") + else: + yield ErrorInput(SampleInput(make_arg((M,)), 0, 0, -1), + error_type=RuntimeError, + error_regex=r"narrow\(\): length must be non-negative\.") + + # Test Tensor overload that was added for XLA. Start must be an 0-dim + # integral Tensor. narrow_copy doesn't have this overload. + # https://github.com/pytorch/pytorch/issues/31558 + if is_narrow: + # *1-dim* integral Tensor + yield ErrorInput(SampleInput(make_arg((L, M, S)), 1, make_arg(S, dtype=torch.int), 2), + error_type=RuntimeError, + error_regex=r"start must be an 0-dim integral Tensor\.") + + # 0-dim *bool* Tensor (bools are not allowed) + yield ErrorInput(SampleInput(make_arg((L, M, S)), -3, make_arg((), dtype=torch.bool), 3), + error_type=RuntimeError, + error_regex=r"start must be an 0-dim integral Tensor\.") + + +def sample_trapezoid(op_info, device, dtype, requires_grad, **kwargs): + y_shape_x_shape_and_kwargs = [ + ((2, 3), (2, 3), {}), + ((2, 3), (2, 3), {'dim': 1}), + ((6,), (6,), {}), + ((6,), None, {}), + # When 'trapezoid' is called with an empty input, it does not produce an output with requires_grad + # See Issue #{61619} + # ((6,0), (6,0), {}), + ((2, 3), (1, 3), {}), + ((3, 3), (3, 3), {}), + ((3, 3), (3, 3), {'dim': -2}), + ((5,), None, {'dx': 2.0}), + ((2, 2), None, {'dx': 3.0}) + ] + make_arg = partial(make_tensor, dtype=dtype, device=device, low=None, high=None, + requires_grad=requires_grad) + for y_shape, x_shape, kwarg in y_shape_x_shape_and_kwargs: + y_tensor = make_arg(y_shape) + if x_shape is not None: + x_tensor = make_arg(x_shape) + yield SampleInput(y_tensor, x_tensor, **kwarg) + else: + yield SampleInput(y_tensor, **kwarg) + +def sample_cumulative_trapezoid(op_info, device, dtype, requires_grad, **kwargs): + + y_shape_x_shape_and_kwargs = [ + ((2, 3), (2, 3), {}), + ((2, 3), (2, 3), {'dim': 1}), + ((6,), (6,), {}), + ((6,), None, {}), + # When 'cumulative_trapezoid' is called with an empty input, it does not produce an output with requires_grad + # See Issue #{61619} + # ((6,0), (6,0), {}), + ((2, 3), (1, 3), {}), + ((3, 3), (3, 3), {}), + ((3, 3), (3, 3), {'dim': -2}), + ((5,), None, {'dx': 2.0}), + ((2, 2), None, {'dx': 3.0}) + ] + make_arg = partial(make_tensor, device=device, dtype=dtype, + requires_grad=requires_grad, low=None, high=None) + for y_shape, x_shape, kwarg in y_shape_x_shape_and_kwargs: + y_tensor = make_arg(y_shape) + if x_shape is not None: + x_tensor = make_arg(x_shape) + yield SampleInput(y_tensor, x_tensor, **kwarg) + else: + yield SampleInput(y_tensor, **kwarg) + +def sample_unsqueeze(op_info, device, dtype, requires_grad, **kwargs): + shapes_and_axes = [ + ((3, 4, 5), 0), + ((3, 4, 5), 1), + ((3, 4, 5), 3), + ((3, 4, 5), -1), + ((3, 4, 5), -3), + ((), 0), + ((), -1), + ((1,), 0), + ((1,), -1), + ] + + for shape, axis in shapes_and_axes: + tensor = make_tensor(shape, dtype=dtype, device=device, low=None, high=None, + requires_grad=requires_grad) + yield SampleInput(tensor, axis) + + +def sample_inputs_nn_unfold(op_info, device, dtype, requires_grad, **kwargs): + shapes = ((0, 1, 5, 5), (2, 3, 5, 5)) + kernel_sizes = (2, (2, 2), (2, 3)) + dilations = (1, 2, (1, 2)) + paddings = (0, 1, (1, 2)) + strides = (1, 2, (1, 2)) + + cases = product(shapes, kernel_sizes, dilations, paddings, strides) + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + for shape, kernel_size, dilation, padding, stride in cases: + tensor = make_arg(shape) + yield SampleInput(tensor, kernel_size, dilation, padding, stride) + + # With default args + yield SampleInput(make_arg((1, 1, 5, 5)), (3, 3)) + + +def sample_inputs_squeeze(op_info, device, dtype, requires_grad, **kwargs): + shapes_and_args = ( + ((S, 1, S, 1), ()), + ((1, 1, 1, 1), ()), + ((1, 1, 1, 1), (0,)), + ((S, 1, S, 1), (1,)), + ((S, 1, S, 1), (-1,)), + ((S, 1, S, 1), (2,)), + ((S, 1, S, 1), (-2,)), + ((), (0, )), + ) + + for shape, args in shapes_and_args: + tensor = make_tensor(shape, dtype=dtype, device=device, low=None, high=None, + requires_grad=requires_grad) + + yield SampleInput(tensor, args=args) + + +def sample_inputs_squeeze_multiple(op_info, device, dtype, requires_grad, **kwargs): + shapes_and_args = ( + ((1, 1, 1, 1), ()), + ((S, 1, S, 1), (1,)), + ((S, 1, S, 1), (-1,)), + ((S, 1, S, 1), (1, 3)), + ((S, 1, S, 1), (1, 2,)), + ((), (0,)), + ) + + for shape, dims in shapes_and_args: + tensor = make_tensor(shape, dtype=dtype, device=device, low=None, high=None, + requires_grad=requires_grad) + + yield SampleInput(tensor, dims) + + +def _squeeze_ref(x, axis=None): + # NumPy doesn't allow squeezing scalars + if x.ndim == 0: + return x + + if isinstance(axis, Sequence): + # Numpy doesn't allow specifying non-singular dimensions + axis = tuple(a for a in axis if x.shape[a] == 1) + + if isinstance(axis, int) and x.shape[axis] != 1: + return x + + return np.squeeze(x, axis) + +def sample_inputs_nn_pad(op_info, device, dtype, requires_grad, mode, **kwargs): + assert mode in ('constant', 'reflect', 'replicate', 'circular') + if mode in ['reflect', 'replicate']: + cases: tuple = ( # ignore + ((1, 3), (1, 2)), + ((1, 3), (0, 1)), + ((0, 3, 3), (1, 2)), + ((0, 3, 3), (0, 1)), + ((1, 3, 3), (1, 2)), + ((1, 3, 3), (0, 1)), + ((1, 3, 3), (0, 2, 0, 1)), + ((0, 3, 3, 3), (0, 2, 0, 1)), + ((3, 3, 5, 5), (0, 2, 0, 1)), + ((3, 3, 5, 5), (1, 1, 1, 1, 1, 1)), + ((1, 3, 3, 3, 3), (1, 1, 1, 1, 1, 1)), + ((1, 3, 4, 4), (-1, 1, -2, 1)), + ) + elif mode == 'constant': + cases = ( + ((1, 3), (1, 2)), + ((1, 3), (0, 1)), + ((1, 3), (0, 2, 0, 1)), + ((0, 3, 3), (1, 2)), + ((0, 3, 3), (0, 1)), + ((0, 3, 3), (0, 2, 0, 1)), + ((0, 3, 3), (1, 1, 1, 1, 1, 1)), + ((1, 3, 3), (1, 2)), + ((1, 3, 3), (0, 1)), + ((1, 3, 3), (0, 2, 0, 1)), + ((1, 3, 3), (1, 1, 1, 1, 1, 1)), + ((0, 3, 3, 3), (1, 2)), + ((0, 3, 3, 3), (0, 1)), + ((0, 3, 3, 3), (0, 2, 0, 1)), + ((0, 3, 3, 3), (1, 1, 1, 1, 1, 1)), + ((3, 3, 5, 5), (1, 2)), + ((3, 3, 5, 5), (0, 1)), + ((3, 3, 5, 5), (0, 2, 0, 1)), + ((3, 3, 5, 5), (1, 1, 1, 1, 1, 1)), + ((1, 3, 3, 3, 3), (1, 2)), + ((1, 3, 3, 3, 3), (0, 1)), + ((1, 3, 3, 3, 3), (0, 2, 0, 1)), + ((1, 3, 3, 3, 3), (1, 1, 1, 1, 1, 1)), + ((1, 3, 4, 4), (-1, 1, -2, 1)), + ) + else: # mode == 'circular' + if dtype == torch.bool: + # test_dtypes fails on ASAN with for the case ab + # runtime error: load of value 190, which is not a valid value for type 'bool' + # Reference: https://github.com/pytorch/pytorch/pull/62814#issuecomment-894156562 + # Reference Issue: https://github.com/pytorch/pytorch/issues/63034 + cases = ( + ((2, 3, 3), (1, 2)), + ((1, 3, 3), (1, 2)), + ) + else: + cases = ( + ((0, 3, 3), (1, 2)), + ((0, 3, 3), (0, 1)), + ((1, 3, 3), (1, 2)), + ((1, 3, 3), (0, 1)), + ((0, 3, 3, 3), (0, 2, 0, 1)), + ((3, 3, 5, 5), (0, 2, 0, 1)), + ((1, 3, 3, 3, 3), (1, 1, 1, 1, 1, 1)), + ((1, 3, 4, 4), (-1, 1, -2, 1)), + ) + + make_inp = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + if mode == 'constant': + # Default args + yield SampleInput(make_inp((1, 3, 3)), args=((2, 2),)) + + if mode in ['reflect', 'replicate', 'circular']: + for shape, pad in cases: + yield SampleInput(make_inp(shape), args=(pad, mode)) + else: # mode == 'constant' + for pad_value in (1., 2.): + for shape, pad in cases: + yield SampleInput(make_inp(shape), args=(pad, mode, pad_value)) + +def sample_inputs_nn_pad_replicate_negative(op_info, device, dtype, requires_grad, **kwargs): + cases: tuple = ( + ((5, 3, 4, 4), (-4, 5, 0, 0)), + ((6, 2, 4, 4), (0, 0, 2, -4)), + ((5, 6, 4, 4), (5, -4, -4, 3)), + ((4, 2, 5, 5), (-2, -1, 4, 6)), + ((2, 6, 5, 5), (8, -1, -1, -3)), + ((8, 1, 5, 5), (-2, -1, -1, -3)), + ) + make_inp = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + for shape, pad in cases: + yield SampleInput(make_inp(shape), args=(pad, 'replicate')) + +def sample_inputs_constant_pad_nd(op_info, device, dtype, *args, **kwargs): + # Inherit sample inputs from nn.pad, but transform them to fit + # constant_pad_nd's interface + nn_samples = sample_inputs_nn_pad(op_info, device, dtype, *args, + mode='constant', **kwargs) + + # NOTE: primTorch is more strict about the type of the fill value argument + # So we must cast it to the correct dtype + from torch._prims_common import dtype_to_type + scalar_type = dtype_to_type(dtype) + + def drop_mode_argument(input, pad, mode=None, value=None): + if value is None: + return SampleInput(input, args=(pad,)) + else: + return SampleInput(input, args=(pad, scalar_type(value))) + + for sample in nn_samples: + yield drop_mode_argument(sample.input, *sample.args, **sample.kwargs) + +def sample_inputs_repeat_interleave(op_info, device, dtype, requires_grad, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + yield SampleInput(make_input(()), repeats=2) + yield SampleInput(make_input((2, 3, 4)), repeats=2) + yield SampleInput(make_input((2, 3, 4)), repeats=2, dim=1) + yield SampleInput(make_input((2, 3, 4)), repeats=torch.arange(3, device=device), dim=1) + + +def sample_inputs_stft(op_info, device, dtype, requires_grad, **kwargs): + def mt(shape, **kwargs): + return make_tensor(shape, device=device, dtype=dtype, + requires_grad=requires_grad, **kwargs) + + yield SampleInput(mt(100), n_fft=10, return_complex=True) + yield SampleInput(mt(100), n_fft=10, return_complex=False) + if dtype.is_complex: + yield SampleInput(mt(100), n_fft=10) + + for center in [False, True]: + yield SampleInput(mt(10), n_fft=7, center=center, return_complex=True) + yield SampleInput(mt((10, 100)), n_fft=16, hop_length=4, + center=center, return_complex=True) + + window = mt(16, low=.5, high=2.0) + yield SampleInput( + mt((2, 100)), kwargs=dict(n_fft=16, window=window, return_complex=True, center=center)) + yield SampleInput( + mt((3, 100)), kwargs=dict(n_fft=16, window=window, return_complex=True, center=center)) + if not dtype.is_complex: + yield SampleInput( + mt((10, 100)), n_fft=16, window=window, onesided=False, + return_complex=True) + + +def sample_inputs_istft(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + def mt(shape, **kwargs): + real_shape = shape if dtype.is_complex else shape + (2,) + return make_arg(real_shape, **kwargs) + + yield SampleInput(mt((10, 2)), kwargs=dict(n_fft=10)) + yield SampleInput(mt((6, 3)), kwargs=dict(n_fft=6, onesided=False)) + yield SampleInput(mt((6, 4)), kwargs=dict(n_fft=10, onesided=True)) + + for center in [False, True]: + yield SampleInput(mt((10, 10, 6)), kwargs=dict(n_fft=10, center=center)) + yield SampleInput(mt((1, 9, 10)), kwargs=dict(n_fft=16, hop_length=4, center=center)) + + window = make_arg(10, low=.5, high=2.0) + yield SampleInput(mt((10, 10, 6)), kwargs=dict( + n_fft=10, window=window, center=center, return_complex=dtype.is_complex)) + yield SampleInput(mt((10, 10, 10)), kwargs=dict( + n_fft=10, window=window[:8], win_length=8, center=center, return_complex=True)) + + real_window = window if not dtype.is_complex else window.real + yield SampleInput(mt((10, 5, 6)), kwargs=dict(n_fft=8, window=real_window[:8], center=center)) + +def sample_inputs_ormqr(op_info, device, dtype, requires_grad, **kwargs): + # create a helper function wrapping `make_tensor` + make_input = partial(make_tensor, dtype=dtype, device=device, low=-1, high=1) + + batches = [(), (0, ), (2, ), (2, 1)] + ns = [5, 2, 0] + tf = [True, False] + for batch, (m, n), left, transpose in product(batches, product(ns, ns), tf, tf): + input = make_input((*batch, m, n)) + reflectors, tau = torch.geqrf(input) + reflectors.requires_grad_(requires_grad) + tau.requires_grad_(requires_grad) + other_matrix_shape = (m, n) if left else (n, m) + other = make_input((*batch, *other_matrix_shape), requires_grad=requires_grad) + yield SampleInput(reflectors, tau, other, left=left, transpose=transpose) + + +def sample_inputs_cholesky_solve(op_info, device, dtype, requires_grad=False, **kwargs): + cholesky_inverse_samples = sample_inputs_linalg_cholesky_inverse( + op_info, device, dtype, requires_grad=False + ) + + for sample in cholesky_inverse_samples: + psd_matrix = sample.input + sample.input = make_tensor(psd_matrix.shape, dtype=dtype, device=device, requires_grad=requires_grad, low=None, high=None) + sample.args = (psd_matrix.requires_grad_(requires_grad),) + yield sample + + +def sample_inputs_lu(op_info, device, dtype, requires_grad=False, **kwargs): + make_arg = partial(make_fullrank_matrices_with_distinct_singular_values, + dtype=dtype, device=device, requires_grad=requires_grad) + + # not needed once OpInfo tests support Iterables + batch_shapes = ((), (3,), (3, 3)) + for batch_shape, get_infos, size_delta in product(batch_shapes, (True, False), (-2, -1, 0, +1, +2)): + shape = batch_shape + (S + size_delta, S) + input = make_arg(*shape) + yield SampleInput(input, args=(True, get_infos)) + + +def sample_inputs_lu_unpack(op_info, device, dtype, requires_grad=False, **kwargs): + def out_fn(output): + return output[1], output[2] + + for lu_sample in sample_inputs_linalg_lu(op_info, device, dtype, requires_grad, **kwargs): + lu_data, pivots = torch.linalg.lu_factor(lu_sample.input) + lu_data.requires_grad_(requires_grad) + yield SampleInput(lu_data, pivots).with_metadata(output_process_fn_grad=out_fn) + + +def sample_inputs_roll(op_info, device, dtype, requires_grad=False, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + args = ((0, 0), (1, 2), (0, 2), (2, 0), (-1, 0), (10000, 1), (2,), ((1, 2, -1), (0, 1, 2))) + + for arg in args: + yield SampleInput(make_arg((0, 0, 0)), args=arg) + yield SampleInput(make_arg((S, S, S)), args=arg) + + # Scalar tensor + yield SampleInput(make_arg(()), args=(10, )) + +def error_inputs_roll(op_info, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float32) + err_msg1 = "`shifts` required" + s1 = SampleInput(make_arg((S,)), ()) + yield ErrorInput(s1, error_regex=err_msg1) + + err_msg2 = ("shifts and dimensions must align") + s2 = SampleInput(make_arg((S, S)), (2, 1), 0) + yield ErrorInput(s2, error_regex=err_msg2) + + err_msg3 = ("out of range") + s3 = SampleInput(make_arg((S, )), 0, 2) + yield ErrorInput(s3, error_regex=err_msg3, error_type=IndexError) + + err_msg4 = ("Dimension specified as 0") + s4 = SampleInput(make_arg(()), 0, 0) + yield ErrorInput(s4, error_regex=err_msg4, error_type=IndexError) + +def sample_inputs_rot90(op_info, device, dtype, requires_grad=False, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + args = itertools.product(range(-5, 6), [(0, 1), (1, 2), (1, -1)]) + + yield SampleInput(make_arg((S, S, S))) + for arg in args: + yield SampleInput(make_arg((S, S, S)), args=arg) + + +def error_inputs_rot90(op_info, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float32) + err_msg1 = "expected total rotation dims" + s1 = SampleInput(make_arg((S, S)), dims=(0,)) + yield ErrorInput(s1, error_regex=err_msg1) + + err_msg2 = "expected total dims >= 2" + s2 = SampleInput(make_arg((S,))) + yield ErrorInput(s2, error_regex=err_msg2) + + err_msg3 = "expected rotation dims to be different" + s3 = SampleInput(make_arg((S, S)), dims=(1, 1)) + yield ErrorInput(s3, error_regex=err_msg3) + + +def sample_inputs_std_var(op_info, device, dtype, requires_grad, **kwargs): + tensor_nd = partial(make_tensor, (S, S, S), device=device, dtype=dtype, + requires_grad=requires_grad) + tensor_1d = partial(make_tensor, (S,), device=device, dtype=dtype, + requires_grad=requires_grad) + + yield SampleInput(tensor_nd()) + yield SampleInput(tensor_nd(), dim=1) + yield SampleInput(tensor_nd(), dim=1, unbiased=True, keepdim=True) + yield SampleInput(tensor_1d(), dim=0, unbiased=True, keepdim=True) + yield SampleInput(tensor_1d(), dim=0, unbiased=False, keepdim=False) + + yield SampleInput(tensor_nd(), dim=(1,), correction=1.3) + yield SampleInput(tensor_nd(), dim=(1,), correction=S // 2) + yield SampleInput(tensor_nd(), dim=None, correction=0, keepdim=True) + yield SampleInput(tensor_nd(), dim=None, correction=None) + yield SampleInput(tensor_nd(), correction=0, keepdim=True) + yield SampleInput(make_tensor(3, 4, 5, device=device, dtype=dtype, requires_grad=requires_grad), dim=-3) + + +def sample_inputs_std_var_unbiased(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, + requires_grad=requires_grad) + + # Test var_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor) + yield SampleInput(make_arg((S, S)), True) + yield SampleInput(make_arg((S,)), False) + + +def _generate_correlation_inputs(device, dtype, requires_grad, **kwargs): + shapes = [(2,), (1, 2), (3, 2), (2, 3)] + for shape in shapes: + yield make_tensor(shape, dtype=dtype, device=device, requires_grad=requires_grad) + + +def sample_inputs_corrcoef(op_info, device, dtype, requires_grad, **kwargs): + return (SampleInput(t) for t in _generate_correlation_inputs(device, dtype, requires_grad)) + + +def sample_inputs_cov(op_info, device, dtype, requires_grad, **kwargs): + for t in _generate_correlation_inputs(device, dtype, requires_grad): + yield SampleInput(t) + num_observations = t.numel() if t.ndimension() < 2 else t.size(1) + fweights = make_tensor((num_observations,), dtype=torch.int, device=device, low=1, high=10) + aweights = make_tensor((num_observations,), dtype=torch.float, device=device, low=0, high=1, requires_grad=requires_grad) + for correction, fw, aw in product(range(num_observations), [None, fweights], [None, aweights]): + yield SampleInput(t.clone().requires_grad_(requires_grad), + correction=correction, fweights=fw, aweights=aw) + + +def error_inputs_cov(op_info, device, **kwargs): + a = torch.rand(S, device=device) + yield ErrorInput( + SampleInput(torch.rand(S, S, S, device=device)), + error_regex="expected input to have two or fewer dimensions") + yield ErrorInput( + SampleInput(a, fweights=torch.rand(S, S, device=device)), + error_regex="expected fweights to have one or fewer dimensions") + yield ErrorInput( + SampleInput(a, aweights=torch.rand(S, S, device=device)), + error_regex="expected aweights to have one or fewer dimensions") + yield ErrorInput( + SampleInput(a, fweights=torch.rand(S, device=device)), + error_regex="expected fweights to have integral dtype") + yield ErrorInput( + SampleInput(a, aweights=torch.tensor([1, 1], device=device)), + error_regex="expected aweights to have floating point dtype") + yield ErrorInput( + SampleInput(a, fweights=torch.tensor([1], device=device)), + error_regex="expected fweights to have the same numel") + yield ErrorInput( + SampleInput(a, aweights=torch.rand(1, device=device)), + error_regex="expected aweights to have the same numel") + yield ErrorInput( + SampleInput(a, fweights=torch.tensor([-1, -2, -3, -4 , -5], device=device)), + error_regex="fweights cannot be negative") + yield ErrorInput( + SampleInput(a, aweights=torch.tensor([-1., -2., -3., -4., -5.], device=device)), + error_regex="aweights cannot be negative") + + +def sample_inputs_permute(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + cases = [((1, 2, 3, 4), (0, 2, 3, 1)), + ((1, 2, 3, 4), (0, -2, -1, 1)), + ((), ()), + ((1, 2, 3, 4), (2, 1, 3, 0))] + + for shape, args in cases: + yield SampleInput(make_arg(shape), args=(args,)) + +def reference_inputs_permute(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_permute(op, device, dtype, requires_grad, **kwargs) + + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + cases = ( + ((), ()), + ((1,), (0,)), + ((2, 2), (1, 0)), + ((2, 2), (0, 1)), + ((2, 0, 1), (0, 2, 1)), + ((3, 4, 2), (2, 1, 0)), + ((3, 4, 2), (1, 0, 2)), + ((3, 4, 2), (0, 1, 2)), + ) + + # Adds tricky permutations and permutations with noncontiguity + for shape, permutation in cases: + for p in itertools.permutations(permutation): + a = make_arg(shape).permute(p) + yield SampleInput(a, args=(permutation,)) + + a = make_arg(shape, noncontiguous=True).permute(p) + yield SampleInput(a, args=(permutation,)) + +def error_inputs_softshrink(op, device, **kwargs): + yield ErrorInput(SampleInput(make_tensor((1,), dtype=torch.float, device=device), kwargs={"lambd": -0.5}), + error_regex="lambda must be greater or equal to 0, but found to be -0.5") + +def sample_inputs_softshrink(op_info, device, dtype, requires_grad=False, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # The additional sample is to check additional values of lambd beyond the default + # value (what is already checked by sample_inputs_elementwise_unary) + for lbda in (0., 0.5): + yield SampleInput(make_arg(S, S), kwargs={"lambd": lbda}) + + yield from sample_inputs_elementwise_unary(op_info, device, dtype, requires_grad) + +def sample_inputs_hardshrink(op_info, device, dtype, requires_grad=False, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # The additional sample is to check additional values of lambd beyond the default + # value (what is already checked by sample_inputs_elementwise_unary) + # Note that unlike softshrink, lambd is allowed to be negative for hardshrink + for lbda in (-0.5, 0., 0.5): + yield SampleInput(make_arg(S, S), kwargs={"lambd": lbda}) + + yield from sample_inputs_elementwise_unary(op_info, device, dtype, requires_grad) + + +def sample_inputs_hardtanh(op_info, device, dtype, requires_grad=False, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # The additional sample is to check additional values of min_val and max_val beyond the default + # value (what is already checked by sample_inputs_elementwise_unary) + for max_val, min_val in ((-0.5, 0.5), (0.5, -0.5), (0., 0.)): + yield SampleInput(make_arg(S, S), kwargs={"min_val": min_val, "max_val": max_val}) + + yield from sample_inputs_elementwise_unary(op_info, device, dtype, requires_grad) + + +def sample_inputs_einsum(op_info, device, dtype, requires_grad=False, **kwargs): + def c(t): + return t.clone().requires_grad_(requires_grad) + + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + x = make_arg((3,)) + y = make_arg((4,)) + A = make_arg((2, 3,)) + B = make_arg((1, 3,)) + C = make_arg((1, 2, 3,)) + D = make_arg((1, 3, 4,)) + E = make_arg((4, 4,)) + H = make_arg((3, 3,)) + I = make_arg((1, 3, 1,)) + + # Vector operations + yield SampleInput([c(x)], 'i->') # sum + yield SampleInput([c(x), c(y)], 'i,j->ij') # outer + + # Matrix operations + yield SampleInput([c(A)], "ij->i") # col sum + yield SampleInput([c(A), c(B)], "ij,kj->ik") # matmul + yield SampleInput([c(A), c(E)], "ij,Ab->ijAb") # matrix outer product + + # Tensor operations + yield SampleInput([c(C), c(D)], "aij,ajk->aik") # batch matmul + yield SampleInput([c(D), c(E)], "aij,jk->aik") # tensor matrix contraction + yield SampleInput([c(C), c(B)], "ijk,ik->j") # non contiguous + + # Test diagonals + yield SampleInput([c(I)], 'iji->j') # non-contiguous trace + + # Test ellipsis + yield SampleInput([c(H)], "i...->...") + yield SampleInput([c(C), c(x)], '...ik, ...j -> ij') + + +def sample_inputs_flip(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + sizes = ((S, M, S), (S, 0, M)) + all_dims = ((0, 1, 2), (0,), (0, 2), (-1,), ()) + + for size, dims in product(sizes, all_dims): + yield SampleInput(make_arg(size), kwargs={"dims": dims}) + +def sample_inputs_fliplr_flipud(op_info, device, dtype, requires_grad, **kwargs): + shapes = [ + (S, M, S), + (S, 0, M), + ] + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + return (SampleInput(make_arg(shape, low=None, high=None)) for shape in shapes) + +def error_inputs_fliplr(op, device, **kwargs): + yield ErrorInput(SampleInput(make_tensor((1,), dtype=torch.float, device=device)), + error_regex="Input must be >= 2-d.") + +def error_inputs_flipud(op, device, **kwargs): + yield ErrorInput(SampleInput(make_tensor((), dtype=torch.float, device=device)), + error_regex="Input must be >= 1-d.") + +def sample_inputs_clamp(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, low=None, high=None, requires_grad=requires_grad) + shape = (S, M, S) + + yield SampleInput(make_arg(shape), args=(make_arg(shape), make_arg(shape))) + yield SampleInput(make_arg(shape), args=(make_arg(shape[1:]), make_arg(shape[1:]))) + yield SampleInput(make_arg(shape), args=(make_arg((S, 1, S)),)) + yield SampleInput(make_arg(shape), args=(None, make_arg(shape))) + yield SampleInput(make_arg(shape), args=(make_arg(shape), None)) + +def reference_inputs_elementwise_ternary(op, device, dtype, requires_grad, *, sample_inputs_func, supports_scalars=False, **kwargs): + yield from sample_inputs_func(op, device, dtype, requires_grad, **kwargs) + + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_scalar_tensor = partial(make_tensor, (), device='cpu', dtype=dtype, requires_grad=requires_grad) + supported_dtypes = op.supported_dtypes(device) + + # broadcasting and oncontiguous cases + cases = ( + ((4, 4), (4, 4), (4, 4)), + ((4, 4), (1, 4, 4), (4, 4)), + ((4, 4), (1, 4, 4), (4, 1, 4)), + ((4, 4, 1), (1, 4, 4), (4, 4)), + ((4, 1), (1, 4, 4), (1, 4)), + ((4, 4), (), (4, 4)), + ((4, 4), (), ()), + ((), (4, 4), (1, 4, 4)), + ) + + for a, b, c in cases: + yield SampleInput(make_arg(a), args=(make_arg(b), make_arg(c))) + yield SampleInput(make_arg(a, noncontiguous=True), + args=(make_arg(b).transpose(0, -1), make_arg(c, noncontiguous=True).transpose(0, -1))) + + # scalar cases + if supports_scalars: + cases = [ + ((), 1, 2,), + ((), 1., 2), + ((4, 4), 1., 2,), + ((3, 4), make_scalar_tensor(), make_scalar_tensor()), + ] + + if torch.complex64 in supported_dtypes: + cases.extend([ + ((3, 1, 4), complex(1, 2), 3.), + ]) + + for a, b, c in cases: + yield SampleInput(make_arg(a), args=(b, c)) + + # type promotion cases + # int x float + if torch.float in supported_dtypes and torch.long in supported_dtypes: + a = make_arg((), dtype=torch.long) + b = make_arg((1, 4), dtype=torch.float) + c = make_arg((3, 4)) + + cases = ( + (a, b, c), + (c, a, b), + ) + + for a, b, c in cases: + yield SampleInput(a, args=(b, c)) + + # NaN propagation + if dtype.is_floating_point or dtype.is_complex: + nan = float('nan') if dtype.is_floating_point else complex(float('nan'), float('nan')) + + a = make_arg((12,)) + a[4] = nan + a[7] = nan + b = make_arg((12,)) + b[1] = nan + b[7] = nan + c = make_arg((12,)) + c[9] = nan + + yield SampleInput(a, args=(b, c)) + + +def _clamp_min_numpy(a, min=None): + return np.maximum(a, min) + + +def _clamp_max_numpy(a, max=None): + return np.minimum(a, max) + + +def _clamp_numpy(a, min=None, max=None): + if min is None: + return np.minimum(a, max) + if max is None: + return np.maximum(a, min) + + return np.minimum(max, np.maximum(a, min)) + + +def sample_inputs_cumprod(op_info, device, dtype, requires_grad, **kwargs): + def make_arg(shape): + # shrink values to be in the interval [-1, +1] for better precision in gradgradcheck + return make_tensor(shape, dtype=dtype, device=device, low=-1, high=+1, requires_grad=requires_grad) + + def prod_zeros(dim_select): + assert len(dim_select) == 2 + result = make_arg(3 * (S,)) + result.narrow(dim_select[0], 0, 1).narrow(dim_select[1], 1, 1).zero_() + result.narrow(dim_select[0], 2, 1).narrow(dim_select[1], 3, 1).zero_() + result.narrow(dim_select[0], 4, 1).narrow(dim_select[1], 3, 1).zero_() + return result + + for dim in range(3): + yield SampleInput(make_arg((S, S, S)), args=(dim,)) + # Scalar tensors and empty tensor + for size in [(), (1,), (0,)]: + yield SampleInput(make_arg(size), args=(0,)) + + yield SampleInput(prod_zeros([0, 1]), args=(1,)) + yield SampleInput(prod_zeros([0, 2]), args=(1,)) + yield SampleInput(prod_zeros([1, 2]), args=(1,)) + + # test dtype kwarg + yield SampleInput(prod_zeros([1, 2]), args=(1,), kwargs={'dtype': dtype}) + +def sample_inputs_view_as_complex(op_info, device, dtype, requires_grad, **kwargs): + yield SampleInput(make_tensor((S, 2), dtype=dtype, device=device, requires_grad=requires_grad)) + +def sample_inputs_view_as_real(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + sizes = ((S, S), ()) + return (SampleInput(make_arg(size)) for size in sizes) + +def error_inputs_complex(op_info, device, is_ref=False, **kwargs): + make_arg = partial(make_tensor, dtype=torch.float32, device=device) + + if is_ref: + error_float = "Expected both inputs to be Half, Float or Double tensors but got torch.float32 and torch.int32" + error_dtype = "Expected object of scalar type torch.float32 but got scalar type torch.float64 for second argument" + error_out = "Expected out tensor to have dtype torch.complex128 but got torch.complex64 instead" + else: + error_float = "Expected both inputs to be Half, Float or Double tensors but got Float and Int" + error_dtype = "Expected object of scalar type Float but got scalar type Double for second argument" + error_out = "Expected object of scalar type ComplexDouble but got scalar type ComplexFloat for argument 'out'" + + yield ErrorInput(SampleInput(make_arg(M, S), make_arg(M, S, dtype=torch.int)), + error_type=RuntimeError, error_regex=error_float) + + yield ErrorInput(SampleInput(make_arg(M, S), make_arg(M, S, dtype=torch.float64)), + error_type=RuntimeError, error_regex=error_dtype) + + yield ErrorInput(SampleInput(make_arg(M, S, dtype=torch.float64), make_arg(M, S, dtype=torch.float64), + out=make_arg(M, S, dtype=torch.complex64)), + error_type=RuntimeError, error_regex=error_out) + +def sample_inputs_logaddexp(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + shape = (S, S) + yield SampleInput(make_arg(shape), make_arg(shape)) + +def sample_inputs_prod(op_info, device, dtype, requires_grad, **kwargs): + def make_arg(shape): + # shrink values to be in the interval [-1, +1] for better precision in gradgradcheck + return make_tensor(shape, dtype=dtype, device=device, low=-1, high=+1, requires_grad=requires_grad) + + def prod_single_zero(): + result = make_arg(2 * (S,)) + result[0, 1] = 0 + return result + + for sample in sample_inputs_cumprod(op_info, device, dtype, requires_grad): + # only Tensor, ignore other inputs + yield SampleInput(sample.input.clone().requires_grad_(requires_grad)) + yield sample + + # Generates samples with keepdim = True + for sample in sample_inputs_cumprod(op_info, device, dtype, requires_grad): + sample.kwargs['keepdim'] = True + yield sample + + yield SampleInput(prod_single_zero()) + yield SampleInput(make_arg((3, 3, 3)), args=(1,)) + yield SampleInput(make_arg((3, 3, 3)), args=(1,), kwargs={'keepdim': True}) + + yield SampleInput(make_arg((3, 0)), args=(1,)) + yield SampleInput(make_arg((3, 0)), args=(1,), kwargs={'keepdim': True}) + yield SampleInput(torch.tensor([2., 3, 0, 0], dtype=dtype, device=device, requires_grad=requires_grad)) + + # test zero scalar tensor + zero = make_arg(()) + zero.zero_() + yield SampleInput(zero.clone().requires_grad_(requires_grad)) + yield SampleInput(zero.clone().requires_grad_(requires_grad), args=(0,)) + yield SampleInput(zero.clone().requires_grad_(requires_grad), + args=(0,), + kwargs={'keepdim': True}) + +def error_inputs_neg(op_info, device, **kwargs): + si = SampleInput(torch.tensor((False, True), device=device)) + msg = ("Negation, the `\\-` operator, on a bool tensor is not supported." + " If you are trying to invert a mask, use the `\\~` or" + " `logical_not\\(\\)` operator instead.") + yield ErrorInput(si, error_regex=msg) + +def sample_inputs_diag(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad, low=None, high=None) + yield SampleInput(make_arg(M)) + + tensors = ( + make_arg((M, M)), + make_arg((3, 5)), + make_arg((5, 3)), + ) + + args = ((), (2,), (-2,), (1,), (2,)) + + for tensor, arg in product(tensors, args): + yield SampleInput(tensor.clone().requires_grad_(requires_grad), *arg) + +def reference_inputs_diagonal_diag_embed(op_info, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_diagonal_diag_embed( + op_info, device, dtype, requires_grad, **kwargs) + + make_arg = partial( + make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + shapes1d = ((0,), (1,)) + shapes2d = ((L, M),) + shapes3d = ((L, M, S),) + + kwargs1d = {} + + kwargs2d = ( + # dim1 > dim2 is allowed + dict(dim1=1, dim2=0), + # negative dims are allowed + dict(dim1=-2, dim2=-1), + # out of bounds offset should return an empty tensor in diagonal and + # offset the diagonal in diag_embed + dict(offset=100), + ) + + kwargs3d = kwargs2d + ( + # make sure we can use non-sequential dims + dict(offset=-1, dim1=0, dim2=2), + ) + + samples1d = product(shapes1d, kwargs1d) + samples2d = product(shapes2d, kwargs2d) + samples3d = product(shapes3d, kwargs3d) + + for shape, kwargs in chain(samples1d, samples2d, samples3d): + if 'diagonal' in op_info.name: + # these are error inputs for diagonal + if shape in ((0,), (1,)): + continue + yield SampleInput(input=make_arg(shape), kwargs=kwargs) + + +def sample_inputs_diagonal_scatter(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + # Shapes for 2D Tensors + shapes_2d = ((M, M), (3, 5), (5, 3)) + + # Shapes for 3D Tensors + shapes_3d = ((M, M, M),) + + args_2d = ((), (2,), (-2,), (1,)) + args_3d = ((1, 1, 2), (2, 0, 1), (-2, 0, 1)) + + for input_shape, arg in chain(product(shapes_2d, args_2d), product(shapes_3d, args_3d)): + input_ = make_arg(input_shape) + # We can programmatically figure out the right shape for src: + # It should be the same size as input.diagonal(other_args...) + if not isinstance(arg, tuple): + arg_tuple = (arg,) + else: + arg_tuple = arg + src_shape = input_.diagonal(*arg_tuple).size() + src = make_arg(src_shape) + yield SampleInput(input_, args=(src, *arg_tuple)) + + +def sample_inputs_to_sparse(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + yield SampleInput(make_arg((S, S))).with_metadata(output_process_fn_grad=lambda x: x.to_dense()) + yield SampleInput(make_arg((S, S)), 1).with_metadata(output_process_fn_grad=lambda x: x.to_dense()) + +def sample_inputs_cross_entropy(op_info, device, dtype, requires_grad, **kwargs): + batch_size, num_classes = shape = (2, 3) + reductions = ("mean", "sum", "none") + + input_shape_and_kwargs: List[Tuple[Tuple[int, ...], Dict[str, Any]]] = [ + (shape, {}), + ((*shape, 1), {}), + ((*shape, 1, 2), {}), + ((*shape, 1, 2, 3), {}), + *[(shape, dict(reduction=reduction)) for reduction in reductions], + *[ + ( + shape, + dict( + weight=make_tensor((num_classes,), device=device, dtype=dtype), + reduction=reduction, + ), + ) + for reduction in reductions + ], + (shape, dict(ignore_index=1)), + ] + + for (input_shape, kwargs), probabilities_target in itertools.product(input_shape_and_kwargs, (False, True)): + input = make_tensor(input_shape, device=device, dtype=dtype, requires_grad=requires_grad) + + if probabilities_target: + # ignore_index is not supported for probabilities target + if "ignore_index" in kwargs: + continue + + target = make_tensor( + input_shape, + low=0, + high=1, + device=device, + dtype=dtype, + requires_grad=requires_grad, + ) + else: + target = make_tensor( + (batch_size, *input_shape[2:]), + low=0, + high=num_classes, + device=device, + dtype=torch.long, + ) + + if "ignore_index" in kwargs and torch.all(target == kwargs["ignore_index"]): + # make sure at least one item in target is not ignored + target[0] = random.sample(sorted(set(range(num_classes)) - {kwargs["ignore_index"]}), 1)[0] + + yield SampleInput(input, target, **kwargs) + + +def sample_inputs_logit(op_info, device, dtype, requires_grad, **kwargs): + low, high = op_info.domain + + # Note: Operator is very sensitive at points near the + # start and end of domain and leads to NaN for float16 + # if domain_eps is 1e-5. + if dtype.is_floating_point or dtype.is_complex: + domain_eps = op_info._domain_eps if dtype != torch.float16 else 3e-2 + + low = low + domain_eps + high = high - domain_eps + + make_arg = partial(make_tensor, dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad) + + yield SampleInput(make_arg((S, S, S))) + yield SampleInput(make_arg((S, S, S)), 0.2) + yield SampleInput(make_arg(())) + yield SampleInput(make_arg(()), 0.2) + +def sample_inputs_isin(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + # isin has two paths based on the size of elements and test_elements. + # if elements.numel() < 10 * pow(test_elements.numel(), 0.145): + yield SampleInput(make_arg((L,)), args=(make_arg((S,)),)) + # else: + yield SampleInput(make_arg((S,)), args=(make_arg((L,)),)) + +def sample_inputs_masked_scatter(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + yield SampleInput(make_arg((S, S)), args=(torch.randn(S, S, device=device) > 0, make_arg((S, S)))) + yield SampleInput(make_arg((S, S)), args=(torch.randn((S,), device=device) > 0, make_arg((S, S)))) + yield SampleInput(make_arg((S, S)), args=(bernoulli_scalar().to(device), make_arg((S, S)))) + yield SampleInput(make_arg((S,)), + args=(torch.randn(S, S, device=device) > 0, make_arg((S, S))), + broadcasts_input=True) + +def error_inputs_masked_scatter(op_info, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float) + for mask_dtype in [torch.float, torch.uint8]: + yield ErrorInput(SampleInput(make_arg(1, 3), args=(torch.ones(1, 3, device=device, dtype=mask_dtype), + make_arg(3, 4))), + error_regex=r"masked_scatter_ only supports boolean masks") + +def sample_inputs_masked_fill(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + yield SampleInput(make_arg((S, S)), args=(torch.randn(S, S, device=device) > 0, 10)) + yield SampleInput(make_arg((S, S)), args=(torch.randn(S, S, device=device) > 0, make_arg(()))) + yield SampleInput(make_arg((S, S)), args=(torch.randn(S, device=device) > 0, 10)) + yield SampleInput(make_arg(()), args=(torch.randn((), device=device) > 0, 10)) + yield SampleInput(make_arg(()), args=(torch.randn((), device=device) > 0, make_arg(()))) + yield SampleInput(make_arg((S, S)), args=(torch.randn((), device=device) > 0, 10)) + + yield SampleInput(make_arg((S,)), + args=(torch.randn(S, S, device=device) > 0, make_arg(())), + broadcasts_input=True) + yield SampleInput(make_arg((S,)), + args=(torch.randn(S, S, device=device) > 0, 10), + broadcasts_input=True) + + if torch.device(device).type == 'cuda': + # `self` and `mask` on CUDA but `value` is a CPU scalar tensor. + yield SampleInput(make_arg((S, S)), args=(torch.randn(S, S, device=device) > 0, torch.randn(()))) + +def error_inputs_masked_fill(op_info, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float, requires_grad=False) + # `value` is not a 0-D tensor. + yield ErrorInput(SampleInput(make_arg((2, 2)), args=(make_arg(()) > 0, make_arg((1,)))), + error_regex="only supports a 0-dimensional value tensor, but got tensor with 1 dimension") + # downcasting complex value (scalar overload) + yield ErrorInput(SampleInput(make_arg((2, 2)), args=(make_arg(()) > 0, 1j)), + error_regex=r"value cannot be converted to type .* without overflow") + # downcasting complex value (tensor overload) + yield ErrorInput(SampleInput(torch.ones(2, dtype=torch.long, device=device), + args=(make_arg(()) > 0, torch.tensor(1j, device=device))), + error_regex=r"value cannot be converted to type .* without overflow") + + if torch.device(device).type == 'cuda': + # `self` and `mask` on CPU but `value` is a CUDA scalar tensor. + yield ErrorInput(SampleInput(torch.randn((S, S), device='cpu'), + args=(torch.randn(S, S, device='cpu') > 0, + torch.randn((), device='cuda'))), + error_regex=r"to be on same device") + + +def sample_inputs_masked_select(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial( + make_tensor, device=device, dtype=dtype, requires_grad=requires_grad, low=None, high=None) + + yield SampleInput(make_arg((M, M)), torch.randn(M, M, device=device) > 0) + + yield SampleInput(make_arg((M, M)), torch.randn((M,), device=device) > 0) + yield SampleInput(make_arg((M,)), torch.randn((M, M), device=device) > 0) + + yield SampleInput(make_arg((M, 1, M)), torch.randn((M, M), device=device) > 0) + + yield SampleInput(make_arg(()), torch.tensor(1, device=device, dtype=torch.bool)) + + yield SampleInput(make_arg((M, M)), torch.tensor(1, device=device, dtype=torch.bool)) + + yield SampleInput(make_arg(()), torch.randn((M, M), device=device) > 0) + +def sample_inputs_matrix_exp(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + yield SampleInput(make_arg((S, S))) + yield SampleInput(make_arg((S, S, S))) + +def sample_inputs_matmul(op_info, device, dtype, requires_grad, is_rmatmul=False, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, low=None, + high=None, requires_grad=requires_grad) + test_cases = (((L,), (L,)), + ((S, M), (M,)), + ((M,), (M, S)), + ((S, M), (M, S)), + ((S, 0), (0, M)), + ((S, S, M), (M,)), + ((S, S, M), (M, S)), + ((S, S, 0), (0, S)), + ((M,), (S, M, S)), + ((S, M), (S, M, S)), + ((0, 0), (S, 0, 0)), + ((S, S, M, M), (S, S, M, S)), + ((S, S, M, M), (M,)), + ((M,), (S, S, M, S)), + ((S, S, S), (1, S, S)) + ) + for lhs_shape, rhs_shape in test_cases: + lhs = make_arg(lhs_shape) + rhs = make_arg(rhs_shape) + if not is_rmatmul: + yield SampleInput(lhs, rhs) + else: + yield SampleInput(rhs, lhs) + + +def sample_inputs_meshgrid(op_info: OpInfo, device: torch.device, dtype: torch.dtype, + requires_grad: bool, + *, variant: str, **kwargs) -> List[SampleInput]: + if variant == 'variadic': + def make_inputs( + tensors: List[torch.Tensor]) -> Tuple[Union[torch.Tensor, + List[torch.Tensor]], + Tuple[torch.Tensor, ...]]: + return tensors + elif variant == 'list': + def make_inputs( + tensors: List[torch.Tensor]) -> Tuple[Union[torch.Tensor, + List[torch.Tensor]], + Tuple[torch.Tensor, ...]]: + return [tensors] + else: + raise ValueError( + 'Unsupported variant, must be one of {"variadic", "list"}. ' + f'Got "{variant}".') + + SCALAR = torch.Size([]) + VECTOR = torch.Size([3]) + test_cases: List[List[torch.Size]] = [ + [SCALAR], + [VECTOR], + [VECTOR, SCALAR], + [VECTOR, SCALAR, VECTOR], + [VECTOR, SCALAR, VECTOR, SCALAR], + ] + + for shapes, indexing in itertools.product(test_cases, {'xy', 'ij'}): + args = make_inputs( + [make_tensor(shape, dtype=dtype, device=device, requires_grad=requires_grad) + for shape in shapes]) + yield SampleInput(*args, indexing=indexing) + + +def sample_inputs_mvlgamma(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + tensor_shapes = ((S, S), ()) + ns = (1, 2, 3, 4, 5) + + # Since the accepted lower bound for input + # to mvlgamma depends on `p` argument, + # the following function computes the lower bound + # which we pass to `make_tensor`. + def compute_min_val(p): + return (p - 1.) / 2 + + for shape, n in product(tensor_shapes, ns): + min_val = compute_min_val(n) + if not dtype.is_floating_point: + # Round-up minimum value for integral dtypes + min_val += 1 + else: + min_val += 2 * torch.finfo(dtype).eps + yield SampleInput(make_arg(shape, low=min_val), args=(n,)) + + +# Since `mvlgamma` has multiple entries, +# there are multiple common skips for the additional +# entries. Following function is a helper to that end. +def skips_mvlgamma(skip_redundant=False): + skips = ( + # outside domain values are hard error for mvlgamma op. + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_float_domains'), + DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', + 'test_reference_numerics_extremal'), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=(torch.float16, torch.int8)), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_small', + dtypes=(torch.int8,)), + ) + if skip_redundant: + # Redundant tests + skips = skips + ( # type: ignore[assignment] + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestJit'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'), + ) + return skips + + +# To test reference numerics against multiple values of argument `p`, +# we make multiple OpInfo entries with each entry corresponding to different value of p. +# We run the op tests from test_ops.py only for `p=1` to avoid redundancy in testing. +def make_mvlgamma_opinfo(variant_test_name, domain, skips, sample_kwargs): + return UnaryUfuncInfo('mvlgamma', + ref=reference_mvlgamma if TEST_SCIPY else None, + aliases=('special.multigammaln',), + variant_test_name=variant_test_name, + domain=domain, + decorators=(precisionOverride({torch.float16: 5e-2}),), + dtypes=all_types_and(torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.float16), + sample_inputs_func=sample_inputs_mvlgamma, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + skips=skips, + sample_kwargs=sample_kwargs) + + +def sample_inputs_cumulative_ops(op_info, device, dtype, requires_grad, supports_dtype_kwargs=True, **kwargs): + def _make_tensor_helper(shape, low=None, high=None): + return make_tensor(shape, dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad) + + yield SampleInput(_make_tensor_helper((S, S, S)), 0) + yield SampleInput(_make_tensor_helper((S, S, S)), 1) + yield SampleInput(_make_tensor_helper(()), 0) + + if supports_dtype_kwargs: + # NOTE: if `dtype` is not same as input, then inplace variants fail with + # `provided dtype must match the dtype of self tensor in cumsum` + yield SampleInput(_make_tensor_helper((S, S, S)), 1, dtype=dtype) + + +def sample_inputs_unfold(op_info, device, dtype, requires_grad, **kwargs): + test_cases = ( + ((), (0, 1, 1)), + ((S, S, S, S), (0, 3, 1)), + ((S, S, S, S), (1, 3, 1)), + ((S, S, S, S), (2, 3, 1)), + ((S, S, S, S), (3, 3, 1)), + ((S, S, S, S), (0, 3, 2)), + ((S, S, S, S), (1, 3, 2)), + ((S, S, S, S), (2, 3, 2)), + ((S, S, S, S), (3, 3, 2)), + ((S, S, S, S), (0, 4, 1)), + ((S, S, S, S), (1, 4, 1)), + ((S, S, S, S), (2, 4, 1)), + ((S, S, S, S), (3, 4, 1)), + ((M,), (0, 3, 1)), + ((M,), (0, 3, 2)), + ((M,), (0, 3, 3)), + ((1000,), (0, 3, 11)), + ((1000,), (0, 2, 27)), + ((10, 10), (0, 1, 2)), + ((10, 10), (1, 2, 3)), + ((10, 10), (1, 2, 2)), + ((S, S, S), (2, 3, 2)), + ) + + for shape, arguments in test_cases: + yield SampleInput(make_tensor(shape, dtype=dtype, device=device, + low=None, high=None, + requires_grad=requires_grad), + *arguments) + +def sample_inputs_split(op_info, device, dtype, requires_grad, *, list_args=False, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + if list_args: + cases = ( + ((S, S, S), (torch.Size([int(S / 3), S - int(S / 3) * 2, int(S / 3)]),)), + ((S, S, S), (torch.Size([int(S / 2), S - int(S / 2) * 2, int(S / 2)]), 2),), + ((S, S, S), (torch.Size([int(S / 2), S - int(S / 2) * 2, int(S / 2)]), -2),) + ) + else: + cases = ( # type: ignore[assignment] + ((S, S, S), (2,)), + ((S, S, S), (S, 1)), + ) + + for shape, args in cases: + yield SampleInput(make_arg(shape), args=args) + + +def sample_inputs_split_with_sizes(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + cases = (((S, S, S), (torch.Size([int(S / 3), S - int(S / 3) * 2, int(S / 3)]),)), + ((S, S, S), (torch.Size([int(S / 3), S - int(S / 3), 0]),)), + ((S, S, S), (torch.Size([int(S / 3), S - int(S / 3) * 2, int(S / 3)]), 2)), + ((S, S, S), (torch.Size([int(S / 3), S - int(S / 3) * 2, int(S / 3)]), -2)), + ) + + for shape, args in cases: + yield SampleInput(make_arg(shape), args=args) + + +def sample_inputs_msort(op_info, device, dtype, requires_grad, **kwargs): + def apply_grad(t): + if dtype in floating_types_and(torch.float16, torch.bfloat16): + t.requires_grad_(requires_grad) + + def large_1d_unique(dtype, device): + res = torch.randperm(L * L * L, dtype=torch.int64, device=device) + res = res.to(dtype) + apply_grad(res) + return res + + # Test case for large tensor. + yield SampleInput(large_1d_unique(dtype, device)) + + yield SampleInput(make_tensor((S, M, S), dtype=dtype, device=device, + low=None, high=None, + requires_grad=requires_grad)) + +def sample_inputs_lerp(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + # no broadcast + yield SampleInput(make_arg((S, S)), make_arg((S, S)), 0.4) + # broadcast rhs + yield SampleInput(make_arg((S, S)), make_arg((S,)), 0.4) + # scalar tensor + yield SampleInput(make_arg(()), make_arg(()), 0.4) + # broadcast rhs scalar-tensor + yield SampleInput(make_arg((S, S)), make_arg(()), 0.4) + # broadcast rhs with weight tensor + yield SampleInput(make_arg((S, S)), make_arg((S,)), make_arg((S, S))) + # broadcast rhs and weight tensor + yield SampleInput(make_arg((S, S)), make_arg((S, 1)), make_arg((S,))) + # broadcast lhs + yield SampleInput(make_arg((S,)), make_arg((S, S)), 0.4).with_metadata(broadcasts_input=True) + # scalar broadcast_lhs + yield SampleInput(make_arg(()), make_arg((S, S)), 0.4).with_metadata(broadcasts_input=True) + # broadcast all + yield SampleInput(make_arg((S, 1)), make_arg((S, S)), 0.4).with_metadata(broadcasts_input=True) + # tensor broadcast all + yield SampleInput(make_arg((S, 1)), make_arg((S, S)), make_arg((S, 1))).with_metadata( + broadcasts_input=True) + # no broadcast with weight tensor + yield SampleInput(make_arg((S, S)), make_arg((S, S)), make_arg((S, S))) + # broadcast lhs with weight tensor + yield SampleInput(make_arg((S,)), make_arg((S, S)), make_arg((S, S))).with_metadata( + broadcasts_input=True) + # broadcast lhs and weight tensor + yield SampleInput(make_arg((S,)), make_arg((S, S, S)), make_arg((S, S))).with_metadata( + broadcasts_input=True) + # broadcast lhs and weight tensor variant + yield SampleInput(make_arg((S, S)), make_arg((S, S, S)), make_arg((S,))).with_metadata( + broadcasts_input=True) + + if dtype.is_complex: + # no broadcast + yield SampleInput(make_arg((S, S)), make_arg((S, S)), 0.4j) + yield SampleInput(make_arg((S, S)), make_arg((S, S)), 1.2 + 0.1j) + # broadcast rhs + yield SampleInput(make_arg((S, S)), make_arg((S,)), 0.4j) + yield SampleInput(make_arg((S, S)), make_arg((S, S)), 5.4 + 9j) + # scalar tensor + yield SampleInput(make_arg(()), make_arg(()), 0.4j) + yield SampleInput(make_arg(()), make_arg(()), 6.1 + 0.004j) + # broadcast rhs scalar-tensor + yield SampleInput(make_arg((S, S)), make_arg(()), 0.4j) + yield SampleInput(make_arg((S, S)), make_arg(()), 1 + 2j) + +def sample_inputs_tensordot(self, device, dtype, requires_grad, **kwargs): + cases = ( + ((2, 2, 2), (2, 2, 2), (2)), + ((2, 2, 1), (2, 1, 2), ([0, 1], [2, 0])), + ) + for first_shape, second_shape, dims in cases: + yield SampleInput(make_tensor(first_shape, dtype=dtype, device=device, + requires_grad=requires_grad), + make_tensor(second_shape, dtype=dtype, device=device, + requires_grad=requires_grad), + dims=dims) + +def sample_inputs_kron(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial( + make_tensor, dtype=dtype, device=device, requires_grad=requires_grad, low=None, high=None) + test_cases = ( + ((S, S), (M, L)), + ) + + for input_shape, other_shape in test_cases: + input = make_arg(input_shape) + other = make_arg(other_shape) + yield SampleInput(input, other) + +def sample_inputs_inner(self, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + yield SampleInput(make_arg(S), make_arg(S)) + yield SampleInput(make_arg(), make_arg(S, S)) + +def sample_inputs_scatter(op_info, device, dtype, requires_grad, **kwargs): + def _tensor(shape, dtype=dtype, low=None, high=None): + return make_tensor(shape, dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad) + + def _gather(shape, index_dim, max_indices): + return gather_variable(shape, index_dim, max_indices, device=device) + + zero = torch.tensor(0, dtype=torch.long, device=device) + test_cases = ( + (_tensor((M, S)), (0, _gather((S, S), 1, M), _tensor((S, S)))), + (_tensor((M, S)), (1, _gather((S, S), 0, S), _tensor((S, S)))), + (_tensor((M, S)), (-1, _gather((S, S), 0, S), _tensor((S, S)))), + (_tensor((M, S)), (0, _gather((M, S // 2), 1, M), _tensor((M, S // 2)))), + (_tensor((M, S)), (1, _gather((M, S // 2), 0, S), _tensor((M, S // 2)))), + (_tensor((M, S)), (-1, _gather((M, S // 2), 0, S), _tensor((M, S // 2)))), + (_tensor(()), (0, zero.clone().detach(), _tensor(()))), + (_tensor(()), (0, zero.clone().detach(), 2.5)), + ) + + for tensor, args in test_cases: + yield SampleInput(tensor, *args) + + if not requires_grad: + yield SampleInput(tensor.clone().detach(), *args, reduce='add') + + if dtype.is_floating_point: + yield SampleInput(tensor.clone().detach(), *args, reduce='multiply') + +def sample_inputs_scatter_add(op_info, device, dtype, requires_grad, **kwargs): + def _tensor(shape, dtype=dtype, low=None, high=None): + return make_tensor(shape, dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad) + + def _gather(shape, index_dim, max_indices): + return gather_variable(shape, index_dim, max_indices, device=device) + + zero = torch.tensor(0, dtype=torch.long, device=device) + yield SampleInput(_tensor((M, S)), 0, _gather((S, S), 1, M), _tensor((S, S))) + yield SampleInput(_tensor((M, S)), 1, _gather((S, S), 0, S), _tensor((S, S))) + yield SampleInput(_tensor((M, S)), -1, _gather((S, S), 0, S), _tensor((S, S))) + yield SampleInput(_tensor((M, S)), 0, _gather((M, S // 2), 1, M), _tensor((M, S // 2))) + yield SampleInput(_tensor((M, S)), 1, _gather((M, S // 2), 0, S), _tensor((M, S // 2))) + yield SampleInput(_tensor((M, S)), -1, _gather((M, S // 2), 0, S), _tensor((M, S // 2))) + yield SampleInput(_tensor(()), 0, zero.clone().detach(), _tensor(())) + +def sample_inputs_scatter_reduce(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + gather = partial(gather_variable, device=device) + + zero = torch.tensor(0, dtype=torch.long, device=device) + test_cases = ( + ((M, S), 0, gather((S, S), 1, M), (S, S)), + ((M, S), 1, gather((S, S), 0, S), (S, S)), + ((M, S), -1, gather((S, S), 0, S), (S, S)), + ((M, S), 0, gather((M, S // 2), 1, M), (M, S // 2)), + ((M, S), 1, gather((M, S // 2), 0, S), (M, S // 2)), + ((M, S), -1, gather((M, S // 2), 0, S), (M, S // 2)), + ((), 0, zero.clone().detach(), ()), + ) + + reduce = op_info.variant_test_name + for (inp_shape, dim, index, src_shape), include_self in product(test_cases, [False, True, False]): + yield SampleInput(make_arg(inp_shape), + args=(dim, index, make_arg(src_shape), reduce), + kwargs={'include_self': include_self}) + + + # Sample inputs to test edge cases for backward + # Check that gradients are propagated correctly for prod when zeros in self/src are reduced + if requires_grad and reduce == 'prod': + # This sample tests gradients for the following cases + # (a) 1 zero reduced (from src (self[0, 1], self[1, 1]), from self (self[0, 0], self[2, 0])) + # (b) 2 zeros reduced (1 from src and 1 from self (self[1, 0]) + # (c) no zeros reduced (self([2, 1])) + # (d) 2 zeros reduced (both from src) is tested in test/test_autograd.py + # test_scatter_index_reduce_prod_gradgrad_error as this case is not supported for gradgrad + input = torch.tensor([[0, 13], [0, 17], [0, 19]], dtype=dtype, device=device, requires_grad=requires_grad) + src = torch.tensor([[0, 1, 2, 3], [0, 4, 0, 1], [2, 3, 5, 6]], dtype=dtype, device=device, requires_grad=requires_grad) + idx = torch.tensor([[1, 1, 0, 0], [0, 0, 1, 1], [0, 0, 0, 1]], dtype=torch.long, device=device) + + yield SampleInput(input, + args=(1, idx, src, reduce), + kwargs={'include_self': True}) + +def sample_inputs_segment_reduce(op_info, device, dtype, requires_grad, *, mode='lengths', **kwargs): + def _tensor(shape, dtype=dtype, low=None, high=None): + return make_tensor(shape, dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad) + + zero = torch.tensor(0, dtype=torch.long, device=device) + test_cases = ( + # inp_shape, dim, lengths, unsafe + ((S,), 0, [0, 1, 2, 2], False), + ((S,), 0, [0, 1, 2, 2], True), + ((S,), 0, [2, 0, 3, 0], False), + ((S, S), 0, [0, 1, 2, 2], False), + # test when lengths do not sum to dim size + ((M, S, S), 0, [1, 2, 0, 6, 0], True), + # test for higher dimensions + ((S, S), 1, [[0, 1, 2, 2] for _ in range(S)], False), + ((S, S), 1, [[2, 0, 3, 0], [0, 1, 2, 2], [3, 0, 2, 0], [1, 1, 1, 2], [0, 1, 2, 2]], False), + ((S, S, S), 1, [[0, 1, 2, 2] for _ in range(S)], False), + ((S, S, S), 1, [[2, 0, 3, 0], [0, 1, 2, 2], [3, 0, 2, 0], [1, 1, 1, 2], [0, 1, 2, 2]], False), + ) + + reductions = ["max", "mean", "min", "sum", "prod"] + for args, reduce, initial in product(test_cases, reductions, [1, 2]): + inp_shape, dim, lengths, unsafe = args + lengths_t = torch.tensor(lengths, dtype=torch.long, device=device) + sample_input_kwargs = {'axis': dim, 'unsafe': unsafe, 'initial': initial} + if mode == 'lengths': + sample_input_kwargs['lengths'] = lengths_t + elif mode == 'offsets': + zeros_shape = list(lengths_t.shape) + zeros_shape[dim] = 1 + offsets_t = torch.cat((lengths_t.new_zeros(zeros_shape), lengths_t), dim).cumsum_(dim) + sample_input_kwargs['offsets'] = offsets_t + else: + raise RuntimeError(f"mode most be one of 'offsets' or 'lengths' got '{mode}'.") + yield SampleInput(_tensor(inp_shape), + args=(reduce,), + kwargs=sample_input_kwargs) + + +def sample_inputs_ravel(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, + low=None, high=None, requires_grad=requires_grad) + yield SampleInput(make_arg((S, S, S))) + yield SampleInput(make_arg(())) + yield SampleInput(make_arg((S, S, S), noncontiguous=True)) + +def sample_inputs_unravel_index(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, + low=None, high=None, requires_grad=requires_grad) + yield SampleInput( + torch.tensor( + [[3, 8, 13], [0, 5, 10]], + device=device, + dtype=dtype), + (4, 5)) + yield SampleInput( + torch.tensor([[3, 8, 13], [0, 5, 10]], device=device, dtype=dtype), + (4, 2**30)) + yield SampleInput( + torch.tensor([[3, 8, 13], [0, 5, 10]], device=device, dtype=dtype), + (2**30, 4)) + yield SampleInput( + torch.tensor(2, device=device, dtype=dtype), + (2, 2)) + max_val = 2**(8 * dtype.itemsize - (1 if dtype.is_signed else 0)) - 1 + yield SampleInput( + torch.tensor(max_val - 1, device=device, dtype=dtype), + (1, max_val)) + yield SampleInput( + torch.tensor([22, 41, 37], device=device, dtype=dtype), + (7, 6)) + yield SampleInput( + torch.tensor(min(1621, max_val), device=device, dtype=dtype), + (6, 7, 8, 9)) + yield SampleInput( + torch.tensor([], device=device, dtype=dtype), + (10, 3, 5)) + yield SampleInput( + torch.tensor( + [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0]], + device=device, + dtype=dtype), + (5, 8)) + yield SampleInput( + torch.tensor( + [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0], [1, 3, 1, 0, 9, 5]], + device=device, + dtype=dtype), + (5, 8, 10)) + yield SampleInput( + torch.tensor(0, device=device, dtype=dtype), + ()) + + a = np.array([[2, 4, 5, 6], [7, 8, 1, 15]]) + b = np.array([[3, 2, 7, 6], [10, 12, 8, 9]]) + _, i1, i2 = np.intersect1d(a, b, assume_unique=True, return_indices=True) + yield SampleInput(torch.tensor(i1, device=device, dtype=dtype), a.shape) + yield SampleInput(torch.tensor(i2, device=device, dtype=dtype), b.shape) + + a = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]]) + b = np.array([[3, 2, 7, 7], [10, 12, 8, 7]]) + _, i1, i2 = np.intersect1d(a, b, return_indices=True) + yield SampleInput(torch.tensor(i1, device=device, dtype=dtype), a.shape) + yield SampleInput(torch.tensor(i2, device=device, dtype=dtype), b.shape) + + +def sample_inputs_tril_triu(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + cases = (((M, M), ()), + ((M, M), (2,),), + ((M, S), ()), + ((M, S), (-1,)), + ((M, M), (2,),), + ((S, M, S), ()), + ((S, M, S), (2,)), + ((3, 3, S, S), ()),) + + for shape, args in cases: + yield SampleInput(make_arg(shape), args=args) + +def error_inputs_tril_triu(opinfo, device, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=torch.float32) + + # error inputs for input.ndim <= 2 + yield ErrorInput(SampleInput(make_arg((4,))), error_regex="input tensor must have at least 2 dimensions") + +def sample_inputs_trilu_indices(op_info, device, dtype, requires_grad, **kwargs): + # (row, col, offset) + args_list = ((0, 0), + (20, 0), + (0, 20), + (20, 21, 0), + (20, 21, 7), + (20, 21, -7), + # Large test cases below are deliberately commented out to speed up CI + # tests and to avoid OOM error. When modifying implementations of + # tril_indices and triu_indices, please enable these tests and make sure + # they pass. + # (2, 68435455, 3), + # (5000, 5000), + # (5000, 5000, 1234), + # (5000, 5000, -1233), + ) + for args in args_list: + yield SampleInput(args[0], args=args[1:], kwargs={"dtype": dtype, "device": device}) + +def sample_inputs_clone_contiguous(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + yield SampleInput(make_arg((S, M, S))) + yield SampleInput(make_arg(())) + +def reference_inputs_clone_contiguous(op, device, dtype, requires_grad, **kwargs): + # NOTE: the default memory format for clone is torch.preserve_format, for contiguous it's torch.contiguous_format + # This exploits that default to test torch.preserve_format for clone, without causing an error when testing contiguous + yield from sample_inputs_clone_contiguous(op, device, dtype, requires_grad, **kwargs) + + shapes = ( + (3, 5, 6), + (1, 1, 3, 5, 6), + (1, 1, 3, 5, 6, 1, 1), + (1, 0, 3, 5, 0, 2), + (1, 0, 3, 5, 0, 0, 1, 1, 2), + (), + ) + + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + for shape in shapes: + yield SampleInput(make_arg(shape)) + yield SampleInput(make_arg(shape).transpose(0, -1)) + yield SampleInput(make_arg(shape, noncontiguous=True)) + yield SampleInput(make_arg(shape, noncontiguous=True).transpose(0, -1)) + + yield SampleInput(make_arg(shape), kwargs={'memory_format': torch.contiguous_format}) + yield SampleInput(make_arg(shape).transpose(0, -1), kwargs={'memory_format': torch.contiguous_format}) + yield SampleInput(make_arg(shape, noncontiguous=True), kwargs={'memory_format': torch.contiguous_format}) + yield SampleInput(make_arg(shape, noncontiguous=True).transpose(0, -1), kwargs={'memory_format': torch.contiguous_format}) + + # shape, strides, offset + strided_cases = ( + ((5, 6, 2), (1, 1, 7), 2), + ((5, 5, 4), (1, 1, 7), 2), + ((5, 5, 2), (4, 5, 7), 3), + ((5, 5, 2), (5, 5, 7), 3), + ((5, 5, 2), (5, 5, 5), 3), + ((9, 5, 2), (0, 1, 7), 3), + ) + + for shape, strides, offset in strided_cases: + yield SampleInput(make_arg(500,).as_strided(shape, strides, offset)) + yield SampleInput(make_arg(500,).as_strided(shape, strides, offset), kwargs={'memory_format': torch.contiguous_format}) + + # channels last 2D + yield SampleInput(make_arg((2, 2, 2, 2)), kwargs={'memory_format': torch.channels_last}) + a = make_arg((2, 2, 2, 2)).permute(0, 3, 1, 2) + yield SampleInput(a, kwargs={'memory_format': torch.channels_last}) + + # channels last 3D + yield SampleInput(make_arg((2, 2, 2, 2, 2)), kwargs={'memory_format': torch.channels_last_3d}) + a = make_arg((2, 2, 2, 2, 2)).permute(0, 4, 1, 2, 3) + yield SampleInput(a, kwargs={'memory_format': torch.channels_last_3d}) + + +def sample_inputs_sum_to_size(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + # list of tuples (shape, shape) defining the shapes of the input and output tensors + sample_shapes = [ + ((), ()), + ((S,), (1,)), + ((S, S), (1, 1)), + ((S, S), (1, S)), + ((S, S), (S, S)), + ((S, S, S), (S, 1, S)), + ] + + for input_shape, output_shape in sample_shapes: + yield SampleInput(make_arg(input_shape), args=(output_shape,)) + if output_shape == (): + continue + yield SampleInput(make_arg(input_shape), args=(list(output_shape),)) + yield SampleInput(make_arg(input_shape), args=(*output_shape,)) + + +def error_inputs_sum_to_size(op_info, device, **kwargs): + shape = (M, S, M) + err_msg = "is not expandable to size" + si = SampleInput(make_tensor(shape, device=device, dtype=torch.float32), args=(M, M)) + yield ErrorInput(si, error_regex=err_msg) + + shape = (M + 1, S, S, M) + err_msg = "is not expandable to size" + si = SampleInput(make_tensor(shape, device=device, dtype=torch.float32), args=(M + 1, 1)) + yield ErrorInput(si, error_regex=err_msg) + + +def sample_inputs_resize_ops(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device) + cases = (((S, S, S), (S * S, S)), + ((), ()), + ((), (1, 1, 1)), + ) + + for shape, args_or_shape in cases: + # Update `args` based on operator + if op_info.name == 'resize_': + # resize_ takes shape/tuple of ints, + args = (args_or_shape, ) + elif op_info.name == 'resize_as_': + # resize_as_ takes another tensor + args = (make_arg(shape, requires_grad=False), ) # type:ignore[assignment] + else: + raise ValueError("sample_inputs_resize_ops is being used with incorrect operator") + + yield SampleInput(make_arg(shape, requires_grad=requires_grad), args=args) + +def sample_inputs_view_reshape(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + cases = ( + # a, b, is_tensor_supported + ((S, S, S), (S * S, S), True), + ((S * S, S), (S, S, S), True), + ((S * S, S), (S, -1, S), False), # neg index + ((S * S * 2, S), (S, -1), False), # neg index + ((S,), (S,), True), + ((), (), False), # empty + ((), (1,), True), + ) + + for a, b, is_tensor_supported in cases: + # skip unsupported cases + if kwargs.get("tensor_arg") and not is_tensor_supported: + continue + + # convert to tensor + if kwargs.get("tensor_arg"): + b = make_arg(b, requires_grad=False) + + yield SampleInput(make_arg(a), args=(b,)) + +def reference_inputs_view_reshape(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_view_reshape(op, device, dtype, requires_grad, **kwargs) + + cases = ( + # a, b, is_tensor_supported + ((125,), (25, 5), True), + ((25, 25), (1, 5, 5, 1, 5, 1, 5, 1), True), + ((16, 32), (2, 4, 1, 4, 4, 1, 4), True), + ((16, 12), (12, 16), True), + ((1, 16, 12), (12, 16), True), + ((1, 5, 1, 5), (25, 1), True), + ((2, 4, 2), (4, 4), True), + ((1, 4), (1, 1, 2, 1, 2), True), + ((3, 5, 7), (7, 5, 3), True), + ((1,), (), False), # empty + ((5, 0, 2, 3), (5, 0, 2, 3), True), + ((2, 1, 0, 3, 1), (5, 0), True), + ((1,), (), False), # empty + ((4, 5, 6), (4, 5, 6, 1, 1, 1), True), + ((), (1, 1, 1, 1), False), # empty + ) + + irreversible_cases = ( + ((), (-1,), False), # neg index, empty + ((4, 7, 9, 1, 1), (1, 4, 3, -1, 1), False), # neg index + ) + + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + for a, b, is_tensor_supported in cases: + # skip unsupported cases + if kwargs.get("tensor_arg") and not is_tensor_supported: + continue + + if kwargs.get("tensor_arg"): + # convert to tensor + yield SampleInput(make_arg(a), args=(make_arg(b, requires_grad=False),)) + yield SampleInput(make_arg(b), args=(make_arg(a, requires_grad=False),)) + else: + yield SampleInput(make_arg(a), args=(b,)) + yield SampleInput(make_arg(b), args=(a,)) + + for a, b, is_tensor_supported in irreversible_cases: + # skip unsupported cases + if kwargs.get("tensor_arg") and not is_tensor_supported: + continue + + # convert to tensor + if kwargs.get("tensor_arg"): + b = make_arg(b, requires_grad=False) + + yield SampleInput(make_arg(a), args=(b,)) + +def error_inputs_view_reshape(op, device, **kwargs): + + cases = ( + # a, b, is_tensor_supported + # Reshape to different numel + ((2,), (), False), # empty + ((1, 3, 0), (), False), # empty + ((4, 3), (4, 2), True), + ((1, 3, 5), (5, 2, 2), True), + # No valid inference + ((1, 3, 5), (5, -1, 2), False), # neg index + # Two inferred shapes + ((1, 3, 5), (5, -1, -1), False), # neg index + ((1), (0, -1), False), # neg index + ((0, 5), (0, -1), False), # neg index + ) + + make_arg = partial(make_tensor, dtype=torch.float32, device=device, requires_grad=False) + for a, b, is_tensor_supported in cases: + # skip unsupported cases + if kwargs.get("tensor_arg") and not is_tensor_supported: + continue + + if b == (5, -1, -1): + error_regex = "only one dimension can be inferred" + elif a == (0, 5): + error_regex = (r"cannot reshape tensor of 0 elements into shape " + r"\[0, -1\] because the unspecified dimension size " + r"-1 can be any value and is ambiguous") + else: + # to avoid having issues with a regex + shape = ', '.join(map(str, b)) + size = a if type(a) is int else functools.reduce(operator.mul, a, 1) + error_regex = rf"shape '\[{shape}\]' is invalid for input of size {size}" + + # convert to tensor + if kwargs.get("tensor_arg"): + b = make_arg(b, requires_grad=False) + + yield ErrorInput(SampleInput(make_arg(a), args=(b,)), error_type=Exception, + error_regex=error_regex) + + +def sample_inputs_atleast1d2d3d(op_info, device, dtype, requires_grad, **kwargs): + input_list = [] + shapes = ((S, S, S, S), (S, S, S), (S, S), (S, ), (),) + make_tensor_partial = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + for shape in shapes: + yield SampleInput(make_tensor_partial(shape)) + yield SampleInput([make_tensor_partial(shape) for shape in shapes]) + +def sample_inputs_column_stack(op_info, device, dtype, requires_grad, **kwargs): + cases: Tuple[tuple, tuple] = ( # type: ignore[assignment] + ((S, 2, 1), (S, 3, 1)), + ((S), (S, 5)), ((), (1, S)) + ) + make_tensor_partial = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + for shape1, shape2 in cases: + yield SampleInput([make_tensor_partial(shape1), make_tensor_partial(shape2)]) + +def sample_inputs_flatten(op_info, device, dtype, requires_grad, **kwargs): + shapes = ((S, S, S), (S, S), (S, ), (),) + make_tensor_partial = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + for shape in shapes: + yield SampleInput(make_tensor_partial(shape)) + if len(shape) > 1: + yield SampleInput(make_tensor_partial(shape), start_dim=1, end_dim=-1) + +def reference_inputs_flatten(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_flatten(op, device, dtype, requires_grad, **kwargs) + + # shape x start_dim x end_dim + cases = ( + ((5, 4, 0, 1, 3, 7), 1, 3), + ((5, 4, 0, 1, 3, 7), 4, 5), + ((5, 4, 1, 1, 3, 7), 2, 3), + ((), 0, -1), + ((1,), 0, -1), + ((3, 7, 5), 1, 2), + ((4, 5), 1, 1), + ((1, 5, 5, 1, 5, 1, 5, 1), 0, 2), + ((1, 5, 5, 1, 5, 1, 5, 1), 3, -1), + ((1, 5, 5, 1, 5, 7, 5, 1), -2, -1), + ((2, 4, 2), 0, 1), + ((4, 2, 2), 1, 2), + ((0, 3, 4, 5), 1, 3), + ) + + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + for shape, start, end in cases: + yield SampleInput(make_arg(shape), args=(start, end,)) + yield SampleInput(make_arg(shape, noncontiguous=True).transpose(0, -1), args=(start, end,)) + yield SampleInput(make_arg(shape).transpose(0, -1), args=(start, end,)) + +def sample_inputs_unflatten(op_info, device, dtype, requires_grad, **kwargs): + # in_shape, dim, sizes + args = (((8,), 0, (8,)), + ((8,), 0, (4, 2)), + ((8,), -1, (2, 2, 2)), + ((8,), -1, (-1, 2)), + ((3, 6, 2), 1, (2, 3)), + ((3, 6, 2), -2, (2, 3)), + ((3, 6, 2), -2, (-1, 3)), + ((3, 2, 12), 2, (3, 2, 2)), + ((4, 0), 0, (2, 2)), + ((4, 0), 1, (2, 0, 0, 0)), + ) + make_tensor_partial = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + for in_shape, dim, sizes in args: + yield SampleInput(make_tensor_partial(in_shape), args=(dim, sizes)) + + +def sample_inputs_select(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + cases = (((S, S, S), (1, 2)), + ((S, S, S), (-1, 2)), + ((S, S, S), (-1, -1)), + ((S, S, S), (1, -1)), + ((S,), (0, 2)) + ) + + for shape, args in cases: + yield SampleInput(make_arg(shape), args=args) + + +def sample_inputs_select_scatter(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + cases = (((S, S, S), (S, S), (1, 2)), + ((S, S, S), (S, S), (-1, 2)), + ((S, S, S), (S, S), (-1, -1)), + ((S, S, S), (S, S), (1, -1)), + ((S,), (), (0, 2)) + ) + + for input_shape, src_shape, args in cases: + input_ = make_arg(input_shape) + src = make_arg(src_shape) + yield SampleInput(input_, args=(src, *args)) + + +def sample_inputs_slice_scatter(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + cases = (((L, L, L), (L, L, L,), (0, 0, L, 1)), + ((L, L, L), (L // 2, L, L,), (0, L // 2, L, 1)), + ((L, L, L), (L // 4, L, L,), (0, L // 2, L, 2)), + ((L, L, L), (L, L, L,), (1, 0, L, 1)), + ((L, L, L), (L, L // 2, L,), (1, L // 2, L, 1)), + ((L, L, L), (L, L // 4, L,), (1, L // 2, L, 2)), + ((L, L, L), (L, L, L,), (2, 0, L, 1)), + ((L, L, L), (L, L, L // 2,), (2, L // 2, L, 1)), + ((L, L, L), (L, L, L // 4,), (2, L // 2, L, 2)), + ) + + for input_shape, src_shape, args in cases: + input_ = make_arg(input_shape) + src = make_arg(src_shape) + yield SampleInput(input_, args=(src, *args)) + +def sample_inputs_expand(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + cases = (((S, 1, 1), (S, S, S)), + ((S, 1, S), (S, S, S)), + ((S, 1, S), (-1, S, -1)), + ((S, 1, S), (-1, S, S)), + ((S, 1), (S, S, S)), + ((1,), (S, S, S)), + ((1, S), (1, 1, S)), + ((), ()), + ((), (1, 3, 2)), + ) + + for case in cases: + shape, args = case + yield SampleInput(make_arg(shape), args=(args,)) + +def sample_inputs_conversion(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + shapes = ((), + (2, 3)) + memory_format_options = [None, torch.contiguous_format] + + for shape, memory_format in itertools.product(shapes, memory_format_options): + yield SampleInput(make_arg(shape), + kwargs={'memory_format': memory_format} if memory_format else {}) + yield SampleInput(make_arg((2, 3, 2, 3)), kwargs={'memory_format': torch.channels_last}) + +def sample_inputs_expand_as(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device) + + cases = (((S, 1, 1), (S, S, S)), + ((), ()), + ((), (1, 1)), + ) + + for shape, shape_other in cases: + yield SampleInput(make_arg(shape, requires_grad=requires_grad), + args=(make_arg(shape_other, requires_grad=False),)) + + +def sample_inputs_where(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + def make_bool_mask(shape): + # Make sure atleast one element is nonzero, + # except for empty tensor + mask_t = make_tensor(shape, dtype=torch.bool, device=device, requires_grad=False) + + if mask_t.numel() == 0: + return mask_t + elif mask_t.numel() == 1: + mask_t.fill_(True) + return mask_t + + if mask_t.sum() == 0: + def random_index(shape): + return tuple(random.randrange(0, max_idx) for max_idx in shape) + + mask_t[random_index(mask_t.shape)] = True + return mask_t + + return mask_t + + cases = (((M, M), (M, M), (M, M), False), + ((M, 1, M), (M, M), (M, M, 1), True), + ((), (), (), False), + ((M, 1, M), (), (M, M, 1), True), + ((), (M, M), (), True), + ((), (2), (1, 1), True), + ) + + for shape, mask_shape, other_shape, broadcasts_input in cases: + yield SampleInput(make_arg(shape), + args=(make_bool_mask(mask_shape), make_arg(other_shape)), + broadcasts_input=broadcasts_input) + +# TODO: add reference inputs for where(condition) signature +def reference_inputs_where(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_where(op, device, dtype, requires_grad, **kwargs) + + make_cond = partial(make_tensor, dtype=torch.bool, device=device, requires_grad=requires_grad) + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + # noncontiguous + c = make_cond((10, 3), noncontiguous=True) + a = make_arg((10, 1), noncontiguous=True) + b = make_arg((3, 10, 3)).transpose(0, -1) + + # NOTE that the OpInfo for where takes samples of the form a, cond, b + yield SampleInput(a, args=(c, b)) + + # type promoting + other_dtype = torch.double if dtype is not torch.double else torch.long + c = make_cond((10, 3), noncontiguous=True) + a = make_arg((10, 1), dtype=torch.long) + b = make_arg((10, 1)) + + yield SampleInput(a, args=(c, b)) + + # two python scalars + c = make_cond((10, 3), noncontiguous=True) + a = make_arg((1,)).item() + b = make_arg((1,)).item() + + yield SampleInput(a, args=(c, b)) + + # NaN propagation + if dtype.is_floating_point or dtype.is_complex: + if dtype.is_floating_point: + nan = float('nan') + else: + # dtype.is_complex + nan = complex(float('nan'), float('nan')) + c = make_cond((1, 10, 3)) + a = make_arg((10, 3), noncontiguous=True) + a[2, 1] = nan + b = make_arg((1, 3)) + b[0, 2] = nan + + yield SampleInput(a, args=(c, b)) + + # Python scalars type promotion + for scalar in (0, 0.0, 2j, False): + yield SampleInput(scalar, args=(c, b)) + yield SampleInput(a, args=(c, scalar)) + + +def error_inputs_where(op_info, device, **kwargs): + shape = (S,) + err_msg = "Expected all tensors to be on the same device" + for devices in product(('cpu', device), repeat=3): + if len(set(devices)) == 2: + si = SampleInput(make_tensor(shape, device=devices[0], dtype=torch.float32), + args=(make_tensor(shape, dtype=torch.bool, device=devices[1]), + make_tensor(shape, device=devices[2], dtype=torch.float32))) + yield ErrorInput(si, error_regex=err_msg) + +def sample_inputs_nonzero(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + sizes = ((), (S,), (S, S), (S, S, S), (S, 1, S), (S, 0, S)) + + inputs = [] + for shape in sizes: + # construct input without any non-zero elements + zeros = torch.zeros(shape, dtype=dtype, device=device, requires_grad=requires_grad) + inputs.append(zeros) + + # construct input with mixed zero and non-zero elements + mixed = make_arg(shape).requires_grad_(False) + mask_t = make_tensor(shape, dtype=torch.bool, device=device, requires_grad=False) + mixed[mask_t] = 0 + inputs.append(mixed) + + for input_t, as_tuple in product(inputs, [False, True]): + yield SampleInput(input_t.clone().requires_grad_(requires_grad), + kwargs=dict(as_tuple=as_tuple)) + +def sample_inputs_nonzero_static(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + sizes = ((), (S,), (S, S), (S, S, S), (S, 1, S), (S, 0, S)) + + inputs = [] + for shape in sizes: + # construct input without any non-zero elements + zeros = torch.zeros(shape, dtype=dtype, device=device, requires_grad=requires_grad) + inputs.append(zeros) + + # construct input with mixed zero and non-zero elements + mixed = make_arg(shape).requires_grad_(False) + mask_t = make_tensor(shape, dtype=torch.bool, device=device, requires_grad=False) + mixed[mask_t] = 0 + inputs.append(mixed) + + nonzero_sizes = [0, 1, XS, S, M] + + for input_t, nonzero_size in product(inputs, nonzero_sizes): + yield SampleInput(input_t.clone().requires_grad_(requires_grad), + kwargs=dict(size=nonzero_size)) + +def sample_inputs_chunk(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + cases = (((S, S, S), (2,)), + ((S, S, S), (S, 1)), + ((S, S, S), (S, -1))) + + for case in cases: + shape, args = case + yield SampleInput(make_arg(shape), args=args) + +def reference_inputs_chunk(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_chunk(op, device, dtype, requires_grad, **kwargs) + + make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad) + + # shape x chunks x dim + cases = ( + ((13, 9, 11), 17, -1), + ((13, 9, 11), 11, -1), + ((13,), 12, -1), + ((15,), 12, -1), + ((15,), 7, 0), + ((15,), 9, 0), + ((3, 7), 9, 1), + ((3, 7), 9, 0), + ((3, 7), 2, 0), + ((3, 7), 3, 0), + ((3, 7), 1, 0), + ((3, 7), 1, 1), + ((4, 4), 2, 0), + ) + + for shape, chunks, dim in cases: + yield SampleInput(make_arg(shape), args=(chunks, dim)) + +def sample_inputs_kthvalue(op_info, device, dtype, requires_grad, **kwargs): + def _tensor(shape, dtype=dtype, low=None, high=None): + return make_tensor(shape, dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad) + + test_cases = [ + ((S, S, S), (2,)), + ((S, S, S), (2, 1,)), + ((S, S, S), (2, -1,)), + ((S, S, S), (2, 1, True,)), + ((S, S, S), (2, -1, True,)), + ((S,), (2, 0,)), + ((S,), (2, 0, True,)), + ((), (1,)), + ((), (1, 0,)), + ((), (1, 0, True)), + ] + + yield from (SampleInput(_tensor(tensor), *args) for tensor, args in test_cases) + +def error_inputs_kthvalue(op_info, device, **kwargs): + # tests overlapping output fails + t = make_tensor(10, dtype=torch.float32, device=device) + indices = torch.empty((), device=device, dtype=torch.long) + yield ErrorInput(SampleInput(t, 5, out=(t, indices)), + error_regex="unsupported operation") + + k_out_of_range_err = "selected number k out of range for dimension" + yield ErrorInput(SampleInput(torch.randn(2, 2, device=device), 3, 0), + error_regex=k_out_of_range_err) + yield ErrorInput(SampleInput(torch.randn(2, 2, device=device), 3), + error_regex=k_out_of_range_err) + yield ErrorInput(SampleInput(torch.tensor(2, device=device), 3), + error_regex=k_out_of_range_err) + +def sample_inputs_dropout(op_info, device, dtype, requires_grad, *, + train=None, valid_input_dim=None, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + if valid_input_dim: + cases = ((S,) * i for i in valid_input_dim) + else: + cases = ((S, S), (S,), ()) + p_vals = [0.0, 0.5, 1.0] + # This is to handle special case for feature_alpha_dropout which has different + # supported dtypes depending on `train` parameter + training_vals = [train] if train is not None else [True, False] + + for case, p, training in product(cases, p_vals, training_vals): + yield SampleInput(make_arg(case), p=p, training=training) + yield SampleInput(make_arg(case)) + +def sample_inputs_dropout_backward(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_mask = partial(make_tensor, device=device, dtype=torch.bool, requires_grad=False) + + cases = ((S, S, S, S), (S,), ()) + scale_vals = [0.0, 1.0, 2.0] + + for case, scale in product(cases, scale_vals): + yield SampleInput(make_arg(case), make_mask(case), scale) + +def sample_inputs_embedding_bag(op_info, device, dtype, requires_grad, **kwargs): + def make_input(shape): + return make_tensor(shape, device=device, dtype=dtype, requires_grad=requires_grad) + + def make_long_input(shape, *, low, high, noncontiguous=False): + return make_tensor(shape, device=device, dtype=torch.long, low=low, high=high, + noncontiguous=noncontiguous) + + def make_per_sample_weight(flag, idx): + # a tensor of float / double weights, or None + # to indicate all weights should be taken to be 1 + if flag: + return make_input(idx.shape) + return None + + offsets = torch.tensor([0, 3], device=device, dtype=torch.long) + for generate_per_sample_weight in (True, False): + for mode in ('sum', 'mean', 'max'): + # per_sample_weights is only supported for mode='sum' (got mode='****') + if generate_per_sample_weight and mode in ('mean', 'max'): + continue + + # 1-D index tensor + idx = make_long_input((S,), low=0, high=M) + per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx) + yield SampleInput(make_input((M, S)), args=(idx,), + kwargs={'offsets': offsets, 'mode': mode, + 'per_sample_weights': per_sample_weights}) + + idx = make_long_input((S,), low=0, high=M, noncontiguous=True) + per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx) + yield SampleInput(make_input((M, S)), args=(idx,), + kwargs={'offsets': offsets, 'mode': mode, + 'per_sample_weights': per_sample_weights}) + + # bag with zero length + idx = make_long_input((S,), low=0, high=M, noncontiguous=True) + per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx) + yield SampleInput(make_input((M, S)), args=(idx,), + kwargs={'offsets': torch.tensor([0, 0, 3], device=device, dtype=torch.long), + 'mode': mode, + 'per_sample_weights': per_sample_weights}) + + # 2-D index tensor + idx = make_long_input((S, S), low=0, high=M) + per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx) + yield SampleInput(make_input((M, S)), args=(idx,), + kwargs={'mode': mode, 'per_sample_weights': per_sample_weights}) + + idx = make_long_input((S, S), low=0, high=M, noncontiguous=True) + per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx) + yield SampleInput(make_input((M, S)), args=(idx,), + kwargs={'mode': mode, 'per_sample_weights': per_sample_weights}) + + # The gradient vector at `padding_idx` is not updated. + # Negative padding_idx + idx = make_long_input((6,), low=0, high=S) + idx[0] = 4 + idx[4] = 4 + per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx) + yield SampleInput(make_input((S, S)), args=(idx,), + kwargs={'padding_idx': -1, 'offsets': offsets, + 'mode': mode, 'per_sample_weights': per_sample_weights},) + + idx = make_long_input((3, 3), low=0, high=S) + # Positive padding_idx + idx[0, 0] = 2 + idx[1, 1] = 2 + per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx) + yield SampleInput(make_input((S, S)), args=(idx,), + kwargs={'padding_idx': 2, 'mode': mode, + 'per_sample_weights': per_sample_weights},) + + idx = make_long_input((6, ), low=0, high=S) + weights = make_input((S, S)) + offsets_ = torch.tensor([0, 3, 6], device=device, dtype=torch.long) + per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx) + yield SampleInput(weights, args=(idx,), + kwargs={'mode': mode, 'offsets': offsets_, 'include_last_offset': True},) + + if not requires_grad: + # Following inputs return different gradient from the numerical gradient. + # This is expected and relevant tests are present in `test_nn.py`. + + # Due to inplace renorming of weight, the numerical gradient doesn't match the + # analytical gradient. + idx = make_long_input((2, 2), low=0, high=S) + weights = make_input((S, S)) * 2 + per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx) + yield SampleInput(weights, args=(idx,), + kwargs={'max_norm': 1., 'mode': mode, + 'per_sample_weights': per_sample_weights},) + + idx = make_long_input((6, ), low=0, high=S) + weights = make_input((S, S)) * 2 + per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx) + yield SampleInput(weights, args=(idx,), + kwargs={'max_norm': 1., 'norm_type': 1.0, + 'mode': mode, 'offsets': offsets, + 'per_sample_weights': per_sample_weights},) + + if mode != 'max': + # Scale the gradient based on the inverse frequency of a particular index. + # Note : smax mode does not support sparse weights + idx = make_long_input((2, 2), low=0, high=S) + idx[0, 0] = 1 + idx[0, 1] = 1 + weights = make_input((S, S)) + per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx) + yield SampleInput(weights, args=(idx,), + kwargs={'scale_grad_by_freq': True, 'mode': mode, + 'per_sample_weights': per_sample_weights},) + + # gradcheck not implemented for sparse tensors. + # Note : max mode does not support sparse weights + idx = make_long_input((6, ), low=0, high=S) + weights = make_input((S, S)) + per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx) + yield SampleInput(weights, args=(idx,), + kwargs={'sparse': True, 'offsets': offsets, + 'mode': mode, 'per_sample_weights': per_sample_weights}) + + idx = make_long_input((6, ), low=0, high=S) + idx[0] = 1 # freq more than 1 + idx[1] = 1 # freq more than 1 + idx[3] = 0 # padding_idx + weights = make_input((S, S)) * 2 + per_sample_weights = make_per_sample_weight(generate_per_sample_weight, idx) + yield SampleInput(weights, args=(idx,), + kwargs={'sparse': True, 'scale_grad_by_freq': True, 'padding_idx': 0, + 'max_norm': 1., 'offsets': offsets, + 'mode': mode, 'per_sample_weights': per_sample_weights}) + + +def sample_inputs_embedding(op_info, device, dtype, requires_grad, **kwargs): + def make_input(shape): + return make_tensor(shape, device=device, dtype=dtype, requires_grad=requires_grad) + + def make_long_input(shape, *, low, high): + return make_tensor(shape, device=device, dtype=torch.long, low=low, high=high) + + # 0-D index tensor + idx = make_long_input((), low=0, high=M) + yield SampleInput(make_input((M, S)), args=(idx,),) + + # 1-D index tensor + idx = make_long_input((S,), low=0, high=M) + yield SampleInput(make_input((M, S)), args=(idx,),) + + # 2-D index tensor + idx = make_long_input((S, S), low=0, high=M) + yield SampleInput(make_input((M, S)), args=(idx,),) + + if not requires_grad: + # Following inputs return different gradient from the numerical gradient. + # This is expected and relevant tests are present in `test_nn.py`. + + # The gradient vector at `padding_idx` is not updated. + idx = make_long_input((2, 2), low=0, high=S) + idx[0, 0] = 2 + idx[1, 1] = 2 + yield SampleInput(make_input((S, S)), args=(idx,), kwargs={'padding_idx': 2},) + + idx = make_long_input((2, 2), low=0, high=S) + idx[0, 0] = 4 + idx[1, 1] = 4 + yield SampleInput(make_input((S, S)), args=(idx,), kwargs={'padding_idx': -1},) + + # Due to inplace renorming of weight, the numerical gradient doesn't match the + # analytical gradient. + idx = make_long_input((2, 2), low=0, high=S) + weights = make_input((S, S)) * 2 + yield SampleInput(weights, args=(idx,), kwargs={'max_norm': 1.},) + + idx = make_long_input((2, 2), low=0, high=S) + weights = make_input((S, S)) * 2 + yield SampleInput(weights, args=(idx,), kwargs={'max_norm': 1., 'norm_type': 1.0},) + + # Scale the gradient based on the inverse frequency of a particular index. + idx = make_long_input((2, 2), low=0, high=S) + idx[0, 0] = 1 + idx[0, 1] = 1 + weights = make_input((S, S)) + yield SampleInput(weights, args=(idx,), kwargs={'scale_grad_by_freq': True},) + + # gradcheck not implemented for sparse tensors. + idx = make_long_input((2, 2), low=0, high=S) + weights = make_input((S, S)) + yield SampleInput(weights, args=(idx,), kwargs={'sparse': True}) + + idx = make_long_input((3, 3), low=0, high=S) + idx[0, 0] = 1 # freq more than 1 + idx[0, 1] = 1 # freq more than 1 + idx[1, 0] = 0 # padding_idx + weights = make_input((S, S)) * 2 + yield SampleInput(weights, args=(idx,), + kwargs={'sparse': True, 'scale_grad_by_freq': True, + 'padding_idx': 0, 'max_norm': 1.}) + + +def sample_inputs_one_hot(op_info, device, dtype, requires_grad, **kwargs): + def make_input(shape, *, low, high): + return make_tensor(shape, device=device, dtype=dtype, low=low, high=high, requires_grad=requires_grad) + + shapes = ((), (S,), (L, M, S)) + num_classess = (-1, 10) + + return ( + SampleInput( + make_input( + shape, + low=0, + high=10 if num_classes == -1 else num_classes // 2, + ), + kwargs=dict(num_classes=num_classes), + ) + for shape, num_classes in itertools.product(shapes, num_classess) + ) + + +def sample_inputs_loss(op_info, device, dtype, requires_grad, **kwargs): + rhs_requires_grad = kwargs.get('rhs_requires_grad', requires_grad) + _make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + # Although most losses also support the reduce and size_average combination instead of reduce, the former is + # deprecated since 0.4.1 and thus is not tested + shapes_and_kwargs = ( + ((), None), + ((S,), dict(reduction="mean")), + ((S,), dict(reduction="sum")), + ((S,), dict(reduction="none")), + ((S, S), None), + ((S, S, S), None), + ) + + for shape, kwargs in shapes_and_kwargs: + yield SampleInput(_make_tensor(shape), + args=(_make_tensor(shape, requires_grad=rhs_requires_grad),), + kwargs=kwargs) + +def sample_inputs_grid_sample(op_info, device, dtype, requires_grad, **kwargs): + # We get better tests if we change the range of the values to something like [-2,2] + # because for grid (second tensor argument) the "useful" range is [-1,1] and this way + # you get a better combination of out-of-range and in-range test cases + _make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad, + low=-2, high=2) + + batch_size = 2 + num_channels = 3 + modes = ("bilinear", "nearest") + align_cornerss = (False, True) + padding_modes = ("zeros", "border", "reflection") + + for dim in (2, 3): + + modes_ = (*modes, "bicubic") if dim == 2 else modes + + for mode, padding_mode, align_corners in itertools.product(modes_, padding_modes, align_cornerss): + yield SampleInput( + _make_tensor((batch_size, num_channels, *[S] * dim)), + _make_tensor((batch_size, *[S] * dim, dim)), + mode=mode, + padding_mode=padding_mode, + align_corners=align_corners, + ) + +def reference_inputs_grid_sample(op_info, device, dtype, requires_grad, **kwargs): + + batch_size = 2 + num_channels = 3 + height = 345 + width = 456 + modes = ("bilinear", "nearest", "bicubic") + align_cornerss = (False, True) + padding_modes = ('zeros', 'border', 'reflection') + + # Create an affine transformation matrix + a = torch.deg2rad(torch.tensor(45.0)) + ca, sa = torch.cos(a), torch.sin(a) # rotation angles + s1, s2 = 1.23, 1.34 # scales + + theta = torch.tensor([[ + [ca / s1, sa, 0.0], + [-sa, ca / s2, 0.0], + ]], dtype=dtype, device=device) + theta = theta.expand(batch_size, 2, 3).contiguous() + + x = torch.arange(batch_size * num_channels * height * width, device=device) + x = x.reshape(batch_size, num_channels, height, width).to(torch.uint8) + x = x.to(dtype=dtype) + x.requires_grad_(requires_grad) + + for mode, padding_mode, align_corners in itertools.product(modes, padding_modes, align_cornerss): + grid = torch.nn.functional.affine_grid( + theta, size=(batch_size, num_channels, height, width), align_corners=align_corners + ) + yield SampleInput( + x, + grid, + mode, + padding_mode, + align_corners, + ) + +def sample_inputs_grid_sampler_2d(op_info, device, dtype, requires_grad, **kwargs): + # We get better tests if we change the range of the values to something like [-2,2] + # because for grid (second tensor argument) the "useful" range is [-1,1] and this way + # you get a better combination of out-of-range and in-range test cases + _make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad, + low=-2, high=2) + + batch_size = 2 + num_channels = 3 + modes = (0, 1, 2) + align_cornerss = (False, True) + padding_modes = (0, 1, 2) + + for mode, padding_mode, align_corners in itertools.product(modes, padding_modes, align_cornerss): + yield SampleInput( + _make_tensor((batch_size, num_channels, S, L)), + _make_tensor((batch_size, M + 3, M, 2)), + mode, + padding_mode, + align_corners, + ) + +def sample_inputs_cosine_embedding_loss(op_info, device, dtype, requires_grad, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + def make_target(shape): + shape = () if len(shape) == 1 else (shape[0], ) + t = torch.randint(0, 2, shape, device=device, dtype=torch.long) + # Label with -1 or 1 + t = t * 2 - 1 + target = t.to(dtype=dtype).detach_().requires_grad_(requires_grad) + return target + + shapes = ((S, S), (S,)) + reductions = ('none', 'mean', 'sum') + for s, r in product(shapes, reductions): + yield SampleInput( + make_input(s), + args=(make_input(s), make_target(s)), + kwargs=dict(reduction=r, margin=random.uniform(-1, 1)) + ) + +def sample_inputs_ctc_loss(op_info, device, dtype, requires_grad, **kwargs): + input_length = 50 + batch = 16 + num_char = 20 + target_length = 30 + + def make_log_probs(s): + t = make_tensor(s, device=device, dtype=dtype) + log_probs = t.log_softmax(2).to(device=device, dtype=dtype).detach().requires_grad_(requires_grad=requires_grad) + return log_probs + + reductions = ('none', 'mean', 'sum') + zero_inf = (True, False) + lengths_type = (list, torch.Tensor) + for r, z, lt in product(reductions, zero_inf, lengths_type): + log_probs = make_log_probs((input_length, batch, num_char)) + targets = torch.randint(1, num_char, (batch, target_length), dtype=torch.long, device=device) + input_lengths = torch.full((batch, ), input_length, dtype=torch.long, device=device) + target_lengths = torch.randint(10, target_length, (batch, ), dtype=torch.long, device=device) + + # Dont generate int[] types if reduction = "Mean" since this results in non composite compliant calls + # to ctc_loss.IntList since a tensor needs to be created from the target lengths. + # Creating such a tensor requires the use of pointers to copy data from int[] -> torch.Tensor + # e.g. via std::copy. Similarly symbolic/real tracing with fx will also not work + if lt is list and r in ["none", "sum"]: + input_lengths = input_lengths.tolist() + target_lengths = target_lengths.tolist() + + yield SampleInput(log_probs, args=(targets, input_lengths, target_lengths,), kwargs=dict(reduction=r, zero_infinity=z)) + +def sample_inputs_nll_loss(op_info, device, dtype, requires_grad, **kwargs): + shape = (2, 3) + num_classes = shape[1] + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + # FIXME: Derivative wrt. weight not implemented + make_weight = partial(make_tensor, num_classes, device=device, dtype=dtype, requires_grad=False) + + def make_target(shape, zeros=False): + s = (shape[0], *shape[2:]) if len(shape) > 1 else () + if zeros: + return torch.zeros(s, device=device, dtype=torch.long) + else: + return make_tensor(s, + low=0, + high=shape[1] if len(shape) > 1 else shape[0], + device=device, + dtype=torch.long) + + + def gen_shape_kwargs(): + # Batched, non-batched and 2d + shapes = (shape, (num_classes,), shape + (2, 2)) + reductions = ('none', 'mean', 'sum') + for reduction, s in product(reductions, shapes): + yield make_input(s), make_target(s), dict(reduction=reduction) + yield make_input(s), make_target(s), dict(weight=make_weight(), reduction=reduction) + yield make_input(s), make_target(s), dict(weight=make_weight(low=0), reduction=reduction) + yield make_input(s), make_target(s), dict(weight=make_weight(high=0), reduction=reduction) + t = make_target(s) + ignore = num_classes // 2 + # If "mean", nll returns NaN, so it's not differentiable at those points + if t.eq(ignore).all() and reduction == "mean": + t.fill_(0) + yield make_input(s), t, dict(ignore_index=num_classes // 2, reduction=reduction) + yield make_input(s), t, dict(ignore_index=num_classes // 2, reduction=reduction, weight=make_weight()) + # Test ignoring all the targets + # If "mean", nll returns NaN, so it's not differentiable at those points + if reduction != "mean": + yield make_input(s), make_target(s, zeros=True), dict(ignore_index=0, reduction=reduction) + + for input, target, kwargs in gen_shape_kwargs(): + yield SampleInput(input, args=(target,), kwargs=kwargs) + + target = torch.tensor([-1, 2], device=device, dtype=torch.long) + yield SampleInput(make_input(shape), args=(target,), kwargs={'ignore_index': -1}) + + +def sample_inputs_binary_cross_entropy_with_logits( + op_info, device, dtype, requires_grad, **kwargs +): + make = partial(make_tensor, device=device, dtype=dtype) + make_prob = partial(make, low=0, high=1) + reductions = ("mean", "sum", "none") + + def make_weight_shape_kwargs(): + kwargs = [] + for shape in ((1,), (1, S), (S), (S, S)): + kwargs.extend([((S, S), dict(reduction=reduction, weight=make(shape))) for reduction in reductions]) + return kwargs + + shapes_and_kwargs = [ + *[(shape, None) for shape in ((), (1,), (S,), (S, S), (S, S, S))], + *[((S, S), dict(reduction=reduction)) for reduction in reductions], + *make_weight_shape_kwargs(), + *[((S, S), dict(reduction=reduction, pos_weight=make((S,), low=0))) for reduction in reductions], + *[((S, S), dict(reduction=reduction, weight=make((S, S)), pos_weight=make((S,), low=0))) for reduction in reductions], + ] + + for shape, kwargs in shapes_and_kwargs: + yield SampleInput( + make(shape, requires_grad=requires_grad), + args=(make_prob(shape, requires_grad=requires_grad),), + kwargs=kwargs, + ) + +def sample_inputs_argwhere(op_info, device, dtype, requires_grad, **kwargs): + yield SampleInput(torch.tensor([1, 0, 2, 0], dtype=dtype, device=device, requires_grad=requires_grad)) + mask = torch.tensor([[0, 1, 0, 1, 0], + [1, 1, 1, 1, 0], + [0, 0, 0, 1, 0], + [1, 0, 1, 1, 0], + [1, 0, 0, 1, 0]], dtype=torch.bool, device=device) + t = make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad) + t[mask] = 0 + yield SampleInput(t) + + t = make_tensor((S, S), dtype=dtype, device=device, requires_grad=requires_grad, noncontiguous=True) + t[mask] = 0 + yield SampleInput(t) + + t = make_tensor((S, 0), dtype=dtype, device=device, requires_grad=requires_grad) + yield SampleInput(t) + + yield SampleInput(torch.zeros((S,), dtype=dtype, device=device, requires_grad=requires_grad)) + yield SampleInput(make_tensor((), dtype=dtype, device=device, requires_grad=requires_grad)) + +def _generate_sample_shape_reduction(): + shapes = ((S,), (S, S), (S, S, S)) + reductions = ('none', 'mean', 'sum') + yield from product(shapes, reductions) + +def sample_inputs_gaussian_nll_loss(op_info, device, dtype, requires_grad, **kwargs): + _make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + # Set low slightly above 0 so gradcheck doesn't accidentally dip below 0 + make_var = partial(make_tensor, low=0.1, device=device, dtype=dtype, requires_grad=requires_grad) + + def gen_shape(shape): + yield shape + # Broadcast + yield (*shape[:-1], 1) + yield shape[:-1] + + def gen_shape_kwargs(): + for s, r in _generate_sample_shape_reduction(): + for t_s, v_s in product(gen_shape(s), gen_shape(s)): + yield _make_tensor(s), _make_tensor(t_s), make_var(v_s), dict(reduction=r) + yield ( + _make_tensor(s), _make_tensor(t_s), make_var(v_s), + dict(full=True, reduction=r) + ) + yield ( + _make_tensor(s), _make_tensor(t_s), make_var(v_s), + dict(eps=random.uniform(1e-6, 1e-3), reduction=r) + ) + yield ( + _make_tensor(s), _make_tensor(t_s), make_var(v_s), + dict(full=True, eps=random.uniform(1e-6, 1e-3), reduction=r) + ) + + for input, target, var, kwargs in gen_shape_kwargs(): + yield SampleInput(input, args=(target, var, ), kwargs=kwargs) + +def error_inputs_gaussian_nll_loss(op_info, device, **kwargs): + _make = partial(make_tensor, device=device, dtype=torch.float32) + + # invalid reduction value + yield ErrorInput(SampleInput(_make(10, 2, 3), _make(10, 2, 3), _make((10, 2, 3), low=0), reduction="abc"), + error_type=ValueError, error_regex="abc is not valid") + + # var is of incorrect shape + yield ErrorInput(SampleInput(_make(10, 2, 3), _make(10, 2, 3), _make((10, 2, 2), low=0)), + error_type=ValueError, error_regex="var is of incorrect size") + + # target is of incorrect shape + yield ErrorInput(SampleInput(_make(10, 2, 3), _make(10, 2, 2), _make((10, 2, 3), low=0)), + error_type=RuntimeError, + error_regex=(r"The size of tensor a \(3\) must match the size of tensor b \(2\) " + r"at non-singleton dimension 2")) + +def _generate_sample_inputs_nn_loss(op_info, device, dtype, requires_grad, **kwargs): + _make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + for s, r in _generate_sample_shape_reduction(): + yield _make_tensor(s), _make_tensor(s), dict(reduction=r) + +def sample_inputs_hinge_embedding_loss(op_info, device, dtype, requires_grad, **kwargs): + for input, target, d in _generate_sample_inputs_nn_loss(op_info, device, dtype, requires_grad, **kwargs): + # target should contain either 1 or -1 as per docs + mask = torch.rand_like(target) > 0.5 + target[mask] = 1 + target[~mask] = -1 + d['margin'] = random.uniform(-9, 9) + yield SampleInput(input, args=(target, ), kwargs=d) + + # scalar input and target. + _make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + yield SampleInput(_make_tensor(()), args=(_make_tensor(()), )) + +def error_inputs_hinge_embedding_loss(op, device, **kwargs): + make_input = partial(make_tensor, device=device, dtype=torch.float32) + # invalid reduction value + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(5, 4),), kwargs={'reduction': 'abc'}), + error_type=ValueError, error_regex='is not a valid value') + +def reference_inputs_hinge_embedding_loss(op, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_hinge_embedding_loss(op, device, dtype, requires_grad, **kwargs) + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + for reduction in ('sum', 'mean', 'none'): + if dtype.is_floating_point: # only supports ints and floats + # NaN propagation + inp = make_input((10, )) + inp[2] = float('nan') + target = make_input((10, )) + # target should contain either 1 or -1 as per docs + mask = torch.rand_like(target) > 0.5 + target[mask] = -1 + target[~mask] = 1 + yield SampleInput(inp, args=(target,), kwargs={'reduction': reduction}) + + # Inf Handling + inp = make_input((10, )) + inp[4] = float('inf') + target = make_input((10, )) + mask = torch.rand_like(target) > 0.5 + target[mask] = -1 + target[~mask] = 1 + yield SampleInput(inp, args=(target,), kwargs={'reduction': reduction}) + + # Broadcasting + inp = make_input((5, 5)) + target = make_input((1, 5)) + mask = torch.rand_like(target) > 0.5 + target[mask] = -1 + target[~mask] = 1 + yield SampleInput(inp, args=(target,), kwargs={'reduction': reduction}) + +def sample_inputs_huber_loss(op_info, device, dtype, requires_grad, **kwargs): + for input, target, d in _generate_sample_inputs_nn_loss(op_info, device, dtype, requires_grad, **kwargs): + d['delta'] = random.uniform(1e-3, 9) + yield SampleInput(input, args=(target, ), kwargs=d) + +def error_inputs_huber_loss(op, device, **kwargs): + make_input = partial(make_tensor, device=device, dtype=torch.float32) + # invalid reduction value + err = 'is not a valid value for reduction' + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(5, 4),), kwargs={'reduction': 'abc'}), + error_type=ValueError, error_regex=err) + # delta <= 0 + for delta in (0, -1): + err = 'huber_loss does not support non-positive values for delta.' + yield ErrorInput(SampleInput(make_input(5, 4), args=(make_input(5, 4),), kwargs={'delta': delta}), + error_type=RuntimeError, error_regex=err) + +def sample_inputs_poisson_nll_loss(op_info, device, dtype, requires_grad, **kwargs): + _make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + def gen_shape_kwargs(): + for s, r in _generate_sample_shape_reduction(): + for li in (True, False): + for f in (True, False): + i1 = _make_tensor(s) + i2 = _make_tensor(s) + # For Poisson NLL Loss, + # target is assumed to be from + # Poisson Distribution which + # always has positive samples + t1 = _make_tensor(s, low=0) + t2 = _make_tensor(s, low=0) + + if not li: + i1.abs_() + i2.abs_() + t1.abs_() + t2.abs_() + + yield ( + i1, t1, + dict(log_input=li, full=f, reduction=r) + ) + yield ( + i2, t2, + dict(log_input=li, full=f, + eps=random.uniform(1e-8, 1e-3), + reduction=r) + ) + + for input, target, kwargs in gen_shape_kwargs(): + yield SampleInput(input, args=(target, ), kwargs=kwargs) + + # test INT_TO_FLOAT promotion + if dtype.is_complex: + for d in (torch.bool, torch.int64): + yield SampleInput(_make_tensor(dtype=dtype), args=(_make_tensor(dtype=d),)) + yield SampleInput(_make_tensor(dtype=d), args=(_make_tensor(dtype=dtype),)) + +def error_inputs_poisson_nll_loss(op_info, device, **kwargs): + make = partial(make_tensor, device=device, dtype=torch.float32) + + # invalid reduction value + yield ErrorInput(SampleInput(make(5, 4), args=(make(5, 4),), + kwargs={'reduction': 'abc'}), + error_type=ValueError, + error_regex='abc is not a valid value for reduction') + # invalid input shapes + yield ErrorInput(SampleInput(make(5, 4), args=(make(5,),)), + error_regex=(r'(Attempting to broadcast a dimension of length|' + r'The size of tensor a \(5\) must match the ' + r'size of tensor b \(4\) at non-singleton ' + r'dimension 1)')) + +def error_inputs_soft_margin_loss(op_info, device, **kwargs): + make = partial(make_tensor, device=device, dtype=torch.float32) + + # invalid reduction value + yield ErrorInput(SampleInput(make(5, 4), args=(make(5, 4),), + kwargs={'reduction': 'abc'}), + error_type=ValueError, + error_regex='abc is not a valid value for reduction') + # invalid input shapes + yield ErrorInput(SampleInput(make(5, 4), args=(make(5,),)), + error_regex=(r'(Attempting to broadcast a dimension of length|' + r'The size of tensor a \(4\) must match the ' + r'size of tensor b \(5\) at non-singleton ' + r'dimension 1)')) + +def sample_inputs_triplet_margin_loss(op_info, device, dtype, requires_grad, with_distance=False, **kwargs): + make = partial(make_tensor, (S, M), device=device, dtype=dtype, requires_grad=requires_grad) + + kwargss = ( + *[dict(margin=margin) for margin in (1e-6, 1.0, 10.0)], + dict(swap=True), + *[dict(reduction=reduction) for reduction in ("mean", "sum", "none")], + ) + + for kwargs in kwargss: + input = make() + args = (make(), make()) + if with_distance: + kwargs["distance_function"] = torch.nn.PairwiseDistance() + yield SampleInput(input, args=args, kwargs=kwargs) + +def error_inputs_triplet_margin_loss(op_info, device, **kwargs): + make_input = partial(make_tensor, device=device, dtype=torch.float32) + + samples = ( + # input, args, kwargs, error_type, error_regex + # invalid reduction + (make_input(3, 4), (make_input(3, 4), make_input(3, 4)), + dict(reduction="abc"), + ValueError, "abc is not a valid value for reduction"), + + # shape mismatch + (make_input(3, 5), (make_input(3, 4), make_input(3, 4)), + dict(), + RuntimeError, + (r'(Attempting to broadcast a dimension of length|' + r"The size of tensor a \(5\) must match the size of tensor b \(4\) " + r"at non-singleton dimension 1)")), + (make_input(3, 4), (make_input(3, 5), make_input(3, 4)), + dict(), + RuntimeError, + (r'(Attempting to broadcast a dimension of length|' + r"The size of tensor a \(4\) must match the size of tensor b \(5\) " + r"at non-singleton dimension 1)")), + (make_input(3, 4), (make_input(3, 4), make_input(3, 5)), + dict(), + RuntimeError, + (r'(Attempting to broadcast a dimension of length|' + r"The size of tensor a \(4\) must match the size of tensor b \(5\) " + r"at non-singleton dimension 1)")), + + # different dimensions + (make_input(3,), (make_input(3, 4), make_input(3, 4)), + dict(), + RuntimeError, + (r"The anchor, positive, and negative tensors are expected to have " + r"the same number of dimensions, but got: anchor 1D, positive 2D, " + r"and negative 2D inputs")), + (make_input(3, 4), (make_input(3,), make_input(3, 4)), + dict(), + RuntimeError, + (r"The anchor, positive, and negative tensors are expected to have " + r"the same number of dimensions, but got: anchor 2D, positive 1D, " + r"and negative 2D inputs")), + (make_input(3, 4), (make_input(3, 4), make_input(3,)), + dict(), + RuntimeError, + (r"The anchor, positive, and negative tensors are expected to have " + r"the same number of dimensions, but got: anchor 2D, positive 2D, " + r"and negative 1D inputs")), + ) + + for input, args, kwargs, error_type, error_regex in samples: + yield ErrorInput(SampleInput(input, args=args, kwargs=kwargs), + error_type=error_type, error_regex=error_regex) + +def sample_inputs_scaled_mm(op_info, device, dtype, requires_grad, **kwargs): + make_mat_e4m3 = partial(make_tensor, device=device, dtype=torch.float8_e4m3fn, requires_grad=requires_grad) + make_mat_e5m2 = partial(make_tensor, device=device, dtype=torch.float8_e5m2, requires_grad=requires_grad) + M, N, K = 15, 32, 16 + samples = [] + # two e4m3 + mat1 = make_mat_e4m3((M, K)) + mat2 = make_mat_e4m3((K, N)).t().contiguous().t() + samples.append(SampleInput(mat1, mat2)) + # mat1 e4m3 mat2 e5m2 + mat1 = make_mat_e4m3((M, K)) + mat2 = make_mat_e5m2((K, N)).t().contiguous().t() + samples.append(SampleInput(mat1, mat2)) + # mat1 e5m2 mat2 e4m3 + mat1 = make_mat_e5m2((M, K)) + mat2 = make_mat_e4m3((K, N)).t().contiguous().t() + samples.append(SampleInput(mat1, mat2)) + + yield from samples + +def sample_inputs_scaled_dot_product_attention(op_info, device, dtype, requires_grad, **kwargs): + make = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + batch, seq_q, seq_kv, num_heads, head_dim = 4, 3, 6, 4, 8 + + dim_3_q_shape = (batch, seq_q, head_dim) + dim_3_kv_shape = (batch, seq_kv, head_dim) + dim_4_q_shape = (batch, num_heads, seq_q, head_dim) + dim_4_kv_shape = (batch, num_heads, seq_kv, head_dim) + + broadcast_tuple = ((num_heads, seq_q, head_dim), (batch, num_heads, seq_kv, head_dim)) + + qkv_shapes = [(dim_3_q_shape, dim_3_kv_shape), (dim_4_q_shape, dim_4_kv_shape), broadcast_tuple] + samples = [] + for qkv_shape, is_causal, dropout_p in product( + qkv_shapes, [True, False], [0.0, 0.5]): + shape_q, shape_kv = qkv_shape + samples.append(SampleInput( + make(shape_q), + make(shape_kv), + make(shape_kv), + is_causal=is_causal, + dropout_p=dropout_p + )) + + # Add non standard shapes + diff_v_head_dim = SampleInput( + make((batch, num_heads, seq_q, head_dim)), + make((batch, num_heads, seq_kv, head_dim)), + make((batch, num_heads, seq_kv, head_dim + 8)), + is_causal=is_causal, + dropout_p=dropout_p + ) + + # Add an attn_mask + samples.append( + SampleInput( + make((batch, num_heads, seq_q, head_dim)), + make((batch, num_heads, seq_kv, head_dim)), + make((batch, num_heads, seq_kv, head_dim)), + attn_mask=make((seq_q, seq_kv)), + is_causal=False, + dropout_p=0.0) + ) + + yield from samples + + +def sample_inputs_efficient_attention_forward(op_info, device, dtype, requires_grad, **kwargs): + make = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + batch, num_heads, head_dim = 4, 4, 8 + seq_q = 11 + seq_kv = 32 + + dim_4_q_shape = (batch, num_heads, seq_q, head_dim) + dim_4_kv_shape = (batch, num_heads, seq_kv, head_dim) + + qkv_shapes = [(dim_4_q_shape, dim_4_kv_shape)] + samples = [] + mask_types = [1, 2] # UpperLeft, LowerRight + scales = [None, 1.0] + + for qkv_shape, is_causal, dropout_p, mask_type, scale in product( + qkv_shapes, [True, False], [0.0, 0.5], mask_types, scales): + shape_q, shape_kv = qkv_shape + samples.append(SampleInput( + make(shape_q).transpose(1, 2), + make(shape_kv).transpose(1, 2), + make(shape_kv).transpose(1, 2), + bias=None, + cu_seqlens_q=None, + cu_seqlens_k=None, + max_seqlen_q=None, + dropout_p=dropout_p, + custom_mask_type=mask_type, + compute_log_sumexp=requires_grad, + scale=scale, + causal_diagonal=None, + seqlen_k=None + )) + + # Add non standard shapes + diff_v_head_dim = SampleInput( + make((batch, seq_q, num_heads, head_dim)), + make((batch, seq_kv, num_heads, head_dim)), + make((batch, seq_kv, num_heads, head_dim + 8)), + bias=None, + cu_seqlens_q=None, + cu_seqlens_k=None, + max_seqlen_q=None, + dropout_p=dropout_p, + custom_mask_type=0, # No Mask + compute_log_sumexp=requires_grad, + scale=None, + causal_diagonal=None, + seqlen_k=None + ) + + # Add an attn_mask + samples.append( + SampleInput( + make((batch, seq_q, num_heads, head_dim)), + make((batch, seq_kv, num_heads, head_dim)), + make((batch, seq_kv, num_heads, head_dim)), + bias=make(batch, num_heads, seq_q, seq_kv), + cu_seqlens_q=None, + cu_seqlens_k=None, + max_seqlen_q=None, + dropout_p=dropout_p, + custom_mask_type=0, # No Mask + compute_log_sumexp=requires_grad, + scale=None, + causal_diagonal=None, + seqlen_k=None + ) + ) + + yield from samples + +def sample_inputs_flash_attention_forward(op_info, device, dtype, requires_grad, **kwargs): + make = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + batch, num_heads, head_dim = 4, 4, 8 + seq_q = 11 + seq_kv = 32 + + dim_4_q_shape = (batch, num_heads, seq_q, head_dim) + dim_4_kv_shape = (batch, num_heads, seq_kv, head_dim) + + qkv_shapes = [(dim_4_q_shape, dim_4_kv_shape)] + samples = [] + scales = [None, 1.0] + + for qkv_shape, is_causal, dropout_p, scale in product( + qkv_shapes, [True, False], [0.0, 0.5], scales): + shape_q, shape_kv = qkv_shape + samples.append(SampleInput( + make(shape_q).transpose(1, 2), + make(shape_kv).transpose(1, 2), + make(shape_kv).transpose(1, 2), + cum_seq_q=None, + cum_seq_k=None, + max_q=seq_q, + max_k=seq_kv, + dropout_p=dropout_p, + is_causal=is_causal, + return_debug_mask=False, + scale=scale, + )) + + yield from samples + +def sample_inputs_pairwise_distance(op_info, device, dtype, requires_grad, **kwargs): + make = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + shape = (3,) + batched_shape = (2, *shape) + shapes_and_kwargs = [ + (shape, None), + (batched_shape, None), + (shape, dict(keepdim=True)), + (batched_shape, dict(keepdim=True)), + (shape, dict(p=5.0)), + (shape, dict(p=-1.0)), + (shape, dict(eps=1.0)), + ] + + return ( + SampleInput(make(shape), args=(make(shape),), kwargs=kwargs) for shape, kwargs in shapes_and_kwargs + ) + +def sample_inputs_pixel_shuffle(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + yield from ( + SampleInput(make_arg((1, 9, 2, 2)), upscale_factor=upscale_factor) + for upscale_factor in (1, 3) + ) + yield from ( + SampleInput(make_arg(shape), upscale_factor=1) + for shape in [ + (1, 0, 1, 1), + (1, 1, 0, 1), + (1, 1, 1, 0), + ] + ) + +def sample_inputs_pixel_unshuffle(op_info, device, dtype, requires_grad, **kwargs): + make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + yield from ( + SampleInput(make_arg((1, 1, 6, 6)), downscale_factor=downscale_factor) + for downscale_factor in (1, 3) + ) + yield from ( + SampleInput(make_arg(shape), downscale_factor=1) + for shape in [ + (1, 0, 1, 1), + (1, 1, 0, 1), + (1, 1, 1, 0), + ] + ) + +def sample_inputs_binary_cross_entropy(op_info, device, dtype, requires_grad, logits=False, **kwargs): + make = partial(make_tensor, device=device, dtype=dtype) + # Lower bounds must be greater than 'eps' defined in gradcheck.py::gradgradcheck() -> eps + # otherwise perturbation calculation causes Tensor value to become negative triggering + # a device-side hardware assertion + make_prob = partial(make, low=1e-6, high=1) + + reductions = ("mean", "sum", "none") + + shapes_and_kwargs = [ + *[(shape, None) for shape in ((), (1,), (S,), (S, S), (S, S, S))], + *[((S, S), dict(reduction=reduction)) for reduction in reductions], + *[((S, S), dict(reduction=reduction, weight=make((S, S)))) for reduction in reductions], + ] + + if logits: + shapes_and_kwargs.extend( + [((S, S), dict(reduction=reduction, pos_weight=make((S,), low=0))) for reduction in reductions] + ) + + for shape, kwargs in shapes_and_kwargs: + yield SampleInput( + (make if logits else make_prob)(shape, requires_grad=requires_grad), + args=(make_prob(shape, requires_grad=requires_grad),), + kwargs=kwargs, + ) + +def sample_inputs_allclose(op_info, device, dtype, requires_grad, **kwargs): + sample_shapes = [(), (S), (S, S, S)] + atols = [1e-2, 1e-16] + rtols = [1e-1, 0.5] + eps = 1e-8 + for s, rtol, atol in product(sample_shapes, rtols, atols): + # close sample + t = make_tensor(s, device=device, dtype=dtype, requires_grad=requires_grad) + close = (t + atol).detach().requires_grad_(requires_grad) + yield SampleInput(t, close, rtol=rtol, atol=atol) + + # random sample + a = make_tensor(s, device=device, dtype=dtype, requires_grad=requires_grad) + b = make_tensor(s, device=device, dtype=dtype, requires_grad=requires_grad) + yield SampleInput(a, b, rtol=rtol, atol=atol) + + +def sample_inputs_l1_loss(op_info, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_loss(op_info, device, dtype, requires_grad, **kwargs) + + # test COMPLEX_TO_FLOAT promotion + if dtype.is_complex: + make = partial(make_tensor, (), device=device, requires_grad=requires_grad) + yield SampleInput(make(dtype=dtype), args=(make(dtype=torch.double),)) + yield SampleInput(make(dtype=torch.double), args=(make(dtype=dtype),)) + +def error_inputs_l1_loss(op_info, device, **kwargs): + make = partial(make_tensor, device=device, dtype=torch.float32) + + # invalid reduction value + yield ErrorInput(SampleInput(make(5, 4), args=(make(5, 4),), + kwargs={'reduction': 'abc'}), + error_type=ValueError, + error_regex='abc is not a valid value for reduction') + # invalid input shapes + yield ErrorInput(SampleInput(make(5, 4), args=(make(5,),)), + error_regex=(r'(Attempting to broadcast a dimension of length|' + r'The size of tensor a \(4\) must match the ' + r'size of tensor b \(5\) at non-singleton ' + r'dimension 1)') + ) + +def sample_inputs_smooth_l1_loss(op_info, device, dtype, requires_grad, **kwargs): + yield from sample_inputs_loss(op_info, device, dtype, requires_grad, **kwargs) + + make = partial(make_tensor, (S, S), device=device, dtype=dtype, requires_grad=requires_grad) + + # This test case always triggers the smooth condition, since absolute difference of input and target + # is smaller than beta + yield SampleInput(make(low=0, high=2), args=(make(low=-2, high=0),), kwargs=dict(beta=5)) + yield SampleInput(make(), args=(make(),), kwargs=dict(beta=0)) + +def sample_inputs_kl_div(op_info, device, dtype, requires_grad, **kwargs): + # kl_div works with inputs in [0, 1] (aka the pdf of a probability measure) + # Then log [0, 1] = (-inf, 0], so this is the log space + make_arg = partial(make_tensor, low=0., device=device, dtype=dtype, requires_grad=requires_grad) + + def make_log(shape): + out = torch.nn.functional.log_softmax(make_arg(shape), -1) + out.requires_grad_(requires_grad) + return out + + def make_prob(shape): + out = torch.nn.functional.softmax(make_arg(shape), -1) + out.requires_grad_(requires_grad) + return out + + shapes = ((2,), (2, 3)) + reductions = ("none", "mean", "batchmean", "sum") + for shape, reduction, log_target in product(shapes, reductions, (True, False)): + input = make_log(shape) + target = make_log(shape) if log_target else make_prob(shape) + yield SampleInput(input, args=(target,), kwargs=dict(reduction=reduction, log_target=log_target)) + +def sample_inputs_pdist(op_info, device, dtype, requires_grad, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + yield from (SampleInput(make_input((n, m))) for n, m in itertools.product((1, S), repeat=2)) + yield from (SampleInput(make_input((S, S)), kwargs=dict(p=p)) for p in (0.0, 1.0, 2.0, 10.0, float("inf"))) + +def reference_pdist(input, p=2): + pdist = scipy.spatial.distance.pdist + if p == 0: + output = pdist(input, "hamming") * input.shape[1] + elif p == float("inf"): + output = pdist(input, lambda x, y: np.abs(x - y).max()) + else: + output = pdist(input, "minkowski", p=p) + return output.astype(input.dtype) + +def sample_inputs_diagflat(op_info, device, dtype, requires_grad, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + yield SampleInput(make_input(())) + yield SampleInput(make_input((2,))) + yield SampleInput(make_input((2, 2))) + yield SampleInput(make_input((2,)), offset=1) + yield SampleInput(make_input((2,)), offset=-1) + +def sample_inputs_max_unpool(op_info, device, dtype, requires_grad, **kwargs): + unpool_name_to_pool_method_dict = { + 'nn.functional.max_unpool1d': torch.nn.functional.max_pool1d, + 'nn.functional.max_unpool2d': torch.nn.functional.max_pool2d, + 'nn.functional.max_unpool3d': torch.nn.functional.max_pool3d + } + + unpool_name_to_dim = { + 'nn.functional.max_unpool1d': 1, + 'nn.functional.max_unpool2d': 2, + 'nn.functional.max_unpool3d': 3 + } + + unpool_to_pool_name_dict = {k: f'nn.functional.{v.__name__}' for k, v in unpool_name_to_pool_method_dict.items()} + + pool_dim = unpool_name_to_dim[op_info.name] + pool_method = unpool_name_to_pool_method_dict[op_info.name] + + pool_op_info = copy.copy(op_info) + pool_op_info.name = unpool_to_pool_name_dict[op_info.name] + + for sample in sample_inputs_max_pool(pool_op_info, device, dtype, requires_grad, **kwargs): + # shapes (C, ...) do not work as of now, + # see https://github.com/pytorch/pytorch/issues/68337 + # TODO: remove once the issue is resolved + if sample.input.dim() != pool_dim + 2: + continue + + # No dilation > 1 for max_unpool, + # see https://github.com/pytorch/pytorch/issues/68420 + if sample.kwargs['dilation'] != 1: + continue + + # Can't unpool without indices + if sample.kwargs['return_indices']: + pool, indices = pool_method(sample.input, **sample.kwargs) + # arg has to be a leaf + arg = pool.detach().requires_grad_(requires_grad) + sample_kwargs = { + 'kernel_size': sample.kwargs['kernel_size'], + 'stride': sample.kwargs['stride'], + 'padding': sample.kwargs['padding'], + # output_size could be None but we specify it explicitly + # to compensate for the information lose in pool due + # to the floor/ceil operation used to compute the shapes + 'output_size': sample.input.size() + } + + yield SampleInput(arg, args=(indices,), kwargs=sample_kwargs) + +def sample_inputs_max_unpool_grad(op_info, device, dtype, requires_grad, **kwargs): + for sample in sample_inputs_max_unpool(op_info, device, dtype, requires_grad, **kwargs): + indices = sample.args[0] + # The samples for max_unpool are generated with max_pool. + # It could be that a single element from the max_pool's + # input is mapped to several locations in its output. + # This situation leads to failed gradchecks because + # the finite difference algorithm perturbs the elements + # of the output one by one, and not in classes of + # equivalences determined by whether two elements + # in the output are coming from the same location in the + # input (simply put, they have the same corresponding index). + # So, there are two ways to resolve this issue: + # 1. Extract a perturbation for one element and apply it all + # the elements from the same equivalence class, or + # 2. Make sure that the equivalence classes are all singletons, + # i.e. the index tensor has to be comprised of only unique + # indices. + # Here we go with the solution 2, the easiest of all. + if indices.unique().numel() == indices.numel(): + yield sample + +def sample_inputs_multi_head_attention_forward(opinfo, device, dtype, requires_grad, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + if requires_grad: + # backward tests would take too long to complete, causing the job timeout. + bsz = 2 + is_batcheds = (True,) + use_separate_proj_weights = (False,) + emb_sizes = (2,) + src_lens = (XS,) + tgt_lens = (XS,) + heads = (2,) + dropouts = (0.5,) + mask_types = ("2d",) + else: + bsz = 2 + is_batcheds = (False, True) + use_separate_proj_weights = (False, True) + emb_sizes = (2, 4) + src_lens = (XS,) + tgt_lens = (XS, S) + heads = (1, 2) + dropouts = (0.0, 0.5) + mask_types = (None, "2d", "3d") + + for is_batched, use_separate_proj_weight, mask_type, emb_size, src_len, tgt_len, num_heads, dropout_p in itertools.product( + is_batcheds, use_separate_proj_weights, mask_types, emb_sizes, src_lens, tgt_lens, heads, dropouts + ): + attn_mask = None + if mask_type == "2d": + attn_mask = make_input(src_len, tgt_len) + elif mask_type == "3d": + attn_mask = make_input((bsz if is_batched else 1) * num_heads, src_len, tgt_len) + + if is_batched: + q = make_input(src_len, bsz, emb_size) + k = make_input(tgt_len, bsz, emb_size) + v = make_input(tgt_len, bsz, emb_size) + else: + q = make_input(src_len, emb_size) + k = make_input(tgt_len, emb_size) + v = make_input(tgt_len, emb_size) + if use_separate_proj_weight: + in_proj_weight = None + q_proj_weight = make_input(emb_size, emb_size) + k_proj_weight = make_input(emb_size, emb_size) + v_proj_weight = make_input(emb_size, emb_size) + else: + in_proj_weight = make_input(emb_size * 3, emb_size) + q_proj_weight = None + k_proj_weight = None + v_proj_weight = None + + bias_k = make_input(emb_size) + bias_v = make_input(emb_size) + in_proj_bias = make_input(emb_size * 3) + out_proj_weight = make_input(emb_size, emb_size) + out_proj_bias = make_input(emb_size) + sample_args = ( + k, v, emb_size, num_heads, in_proj_weight, + in_proj_bias, bias_k, bias_v, False, + dropout_p, out_proj_weight, out_proj_bias + ) + sample_kwargs = { + "q_proj_weight" : q_proj_weight, + "k_proj_weight" : k_proj_weight, + "v_proj_weight" : v_proj_weight, + "attn_mask" : attn_mask, + "training" : True if dropout_p > 0.0 else False, + "use_separate_proj_weight" : use_separate_proj_weight + } + + yield SampleInput(q, args=sample_args, kwargs=sample_kwargs) + + +# Includes some values such that N * N won't be a multiple of 4, +# which should ensure we test the vectorized and non-vectorized +# kernel code paths. +NUM_SIZE0_TENSORS = 10000 +foreach_num_tensors = [20, 23] if not TEST_WITH_SLOW else [23, 30, 300] +_foreach_inputs_default_kwargs = {"noncontiguous": False, "same_size": False, "low": None, "high": None} + + +class ForeachRightmostArgType(enum.Enum): + TensorList = enum.auto() + ScalarList = enum.auto() + Scalar = enum.auto() + Tensor = enum.auto() + + +class ForeachSampleInput(SampleInput): + # For TensorList Scalar/Tensor, we compute the reference + # by converting it into TensorList ScalarList/TensorList and + # then converting into multiple Tensor Scalar/Tensor. + # ref_args contains the args converted to TensorList ScalarList/TensorList + ref_args: Any + disable_fastpath: bool + + def __init__(self, *args, disable_fastpath=False, ref_args=None, **kwargs): + super().__init__(*args, **kwargs) + self.ref_args = ref_args or self.args + self.disable_fastpath = disable_fastpath + + +class foreach_inputs_sample_func: + def __init__( + self, + arity: int, + rightmost_supports_scalar: bool, + rightmost_supports_scalarlist: bool, + rightmost_supports_tensor: bool = False, + ) -> None: + self.arity = arity + self._set_rightmost_arg_types( + rightmost_supports_scalar, rightmost_supports_scalarlist, rightmost_supports_tensor, + ) + + def _set_rightmost_arg_types( + self, + rightmost_supports_scalar: bool, + rightmost_supports_scalarlist: bool, + rightmost_supports_tensor: bool, + ) -> None: + self._rightmost_arg_types = [ForeachRightmostArgType.TensorList] + if self.arity > 1: + if rightmost_supports_scalar: + self._rightmost_arg_types.append(ForeachRightmostArgType.Scalar) + if rightmost_supports_scalarlist: + self._rightmost_arg_types.append(ForeachRightmostArgType.ScalarList) + if rightmost_supports_tensor: + self._rightmost_arg_types.append(ForeachRightmostArgType.Tensor) + + def _sample_rightmost_arg(self, opinfo, rightmost_arg_type, device, dtype, num_tensors, **_foreach_inputs_kwargs): + if rightmost_arg_type == ForeachRightmostArgType.TensorList: + return [sample_inputs_foreach(None, device, dtype, num_tensors, **_foreach_inputs_kwargs)] + if rightmost_arg_type == ForeachRightmostArgType.Tensor: + return [make_tensor( + (), device=device, dtype=dtype, + noncontiguous=_foreach_inputs_kwargs["noncontiguous"], + requires_grad=_foreach_inputs_kwargs.get("requires_grad", False), + )] + should_use_simpler_scalars = opinfo.name == "_foreach_pow" and dtype in (torch.float16, torch.bfloat16) + + def sample_float(): + s = random.random() + if should_use_simpler_scalars: + return 1.0 if s > 0.5 else 2.0 + else: + return 1.0 - s + + high = 2 if should_use_simpler_scalars else 9 + if rightmost_arg_type == ForeachRightmostArgType.ScalarList: + return [ + [random.randint(0, high) + 1 for _ in range(num_tensors)], + [sample_float() for _ in range(num_tensors)], + [complex(sample_float(), sample_float()) for _ in range(num_tensors)], + [True for _ in range(num_tensors)], + [1, 2.0, 3.0 + 4.5j] + [3.0 for _ in range(num_tensors - 3)], + [True, 1, 2.0, 3.0 + 4.5j] + [3.0 for _ in range(num_tensors - 4)], + ] + if rightmost_arg_type == ForeachRightmostArgType.Scalar: + return ( + random.randint(1, high + 1), + sample_float(), + True, + complex(sample_float(), sample_float()), + ) + raise AssertionError(f"Invalid rightmost_arg_type of {rightmost_arg_type}") + + def _should_disable_fastpath(self, opinfo, rightmost_arg, rightmost_arg_type, dtype): + if self.arity == 1: + if "foreach_abs" in opinfo.name and dtype in complex_types(): + return True + # unary + if opinfo.ref in (torch.abs, torch.neg): + return False + return dtype in integral_types_and(torch.bool) + if self.arity < 2 or rightmost_arg_type == ForeachRightmostArgType.Tensor: + return None + if "foreach_pow" in opinfo.name and dtype in integral_types(): + return True + if rightmost_arg_type == ForeachRightmostArgType.TensorList: + disable_fastpath = "foreach_div" in opinfo.name and dtype in integral_types_and(torch.bool) + if "foreach_add" in opinfo.name and dtype == torch.bool: + disable_fastpath = True + return disable_fastpath + elif rightmost_arg_type == ForeachRightmostArgType.Scalar: + disable_fastpath = "foreach_div" in opinfo.name and dtype in integral_types_and(torch.bool) + if isinstance(rightmost_arg, bool): + disable_fastpath |= dtype == torch.bool + if opinfo.ref in (torch.add, torch.mul): + disable_fastpath = False + elif isinstance(rightmost_arg, int): + disable_fastpath |= dtype == torch.bool + elif isinstance(rightmost_arg, float): + disable_fastpath |= dtype in integral_types_and(torch.bool) + elif isinstance(rightmost_arg, complex): + disable_fastpath |= dtype not in complex_types() + else: + raise AssertionError(f"Invalid scalar of type {rightmost_arg_type} - {rightmost_arg}") + return disable_fastpath + elif rightmost_arg_type == ForeachRightmostArgType.ScalarList: + disable_fastpath = opinfo.ref == torch.div and dtype in integral_types_and(torch.bool) + elmt_t = type(rightmost_arg[0]) + has_same_type = all(isinstance(v, elmt_t) for v in rightmost_arg) + if not has_same_type: + return dtype not in complex_types() + if isinstance(rightmost_arg[0], bool): + if ("foreach_add" in opinfo.name or "foreach_mul" in opinfo.name) and dtype == torch.bool: + disable_fastpath = False + elif isinstance(rightmost_arg[0], int): + disable_fastpath |= dtype == torch.bool + elif isinstance(rightmost_arg[0], float): + disable_fastpath |= dtype in integral_types_and(torch.bool) + elif isinstance(rightmost_arg[0], complex): + disable_fastpath |= dtype not in complex_types() + else: + raise AssertionError(f"Invalid scalarlist of {rightmost_arg}") + return disable_fastpath + else: + raise AssertionError(f"Invalid rightmost_arg_type of {rightmost_arg_type}") + + def _sample_kwargs(self, opinfo, rightmost_arg, rightmost_arg_type, dtype): + kwargs = {} + if rightmost_arg_type == ForeachRightmostArgType.TensorList and opinfo.supports_alpha_param: + if dtype in integral_types_and(torch.bool): + kwargs["alpha"] = 3 + elif dtype.is_complex: + kwargs["alpha"] = complex(3, 3) + else: + kwargs["alpha"] = 3.14 + if self.arity > 1: + kwargs["disable_fastpath"] = self._should_disable_fastpath(opinfo, rightmost_arg, rightmost_arg_type, dtype) + return kwargs + + def sample_zero_size_tensor_inputs(self, opinfo, device, dtype, requires_grad, **kwargs): + assert "num_input_tensors" not in kwargs + _foreach_inputs_kwargs = {k: kwargs.pop(k, v) for k, v in _foreach_inputs_default_kwargs.items()} + _foreach_inputs_kwargs["requires_grad"] = requires_grad + for rightmost_arg_type in self._rightmost_arg_types: + zero_size_foreach_inputs_kwargs = copy.deepcopy(_foreach_inputs_kwargs) + zero_size_foreach_inputs_kwargs["zero_size"] = True + input = sample_inputs_foreach(None, device, dtype, NUM_SIZE0_TENSORS, **zero_size_foreach_inputs_kwargs) + if self.arity > 1: + args = [ + sample_inputs_foreach(None, device, dtype, NUM_SIZE0_TENSORS, **zero_size_foreach_inputs_kwargs) + for _ in range(self.arity - 2) + ] + args.append( + self._sample_rightmost_arg( + opinfo, ForeachRightmostArgType.TensorList, device, dtype, NUM_SIZE0_TENSORS, + **zero_size_foreach_inputs_kwargs)[0]) + kwargs = self._sample_kwargs( + opinfo, args[-1], ForeachRightmostArgType.TensorList, dtype, zero_size=True) + else: + args = [] + kwargs = {} + if opinfo.ref in (torch.abs, torch.neg): + kwargs["disable_fastpath"] = False + else: + kwargs["disable_fastpath"] = dtype in integral_types_and(torch.bool) + yield ForeachSampleInput(input, *args, **kwargs) + + def __call__(self, opinfo, device, dtype, requires_grad, **kwargs): + num_input_tensors_specified = "num_input_tensors" in kwargs + num_input_tensors = kwargs.pop("num_input_tensors") if num_input_tensors_specified else foreach_num_tensors + assert isinstance(num_input_tensors, list) + _foreach_inputs_kwargs = {k: kwargs.pop(k, v) for k, v in _foreach_inputs_default_kwargs.items()} + _foreach_inputs_kwargs["requires_grad"] = requires_grad + _foreach_inputs_kwargs["zero_size"] = False + + # add empty tensor interspersion to test fully fixing #100701 + for num_tensors, rightmost_arg_type, intersperse_empty_tensors in itertools.product( + num_input_tensors, self._rightmost_arg_types, (True, False)): + if intersperse_empty_tensors and (num_tensors != max(num_input_tensors) or str(device) == 'cpu'): + # generate interspersed empty tensors for only 1 N on non-cpu device to lessen redundancy + continue + _foreach_inputs_kwargs["intersperse_empty_tensors"] = intersperse_empty_tensors + input = sample_inputs_foreach( + None, device, dtype, num_tensors, **_foreach_inputs_kwargs) + args = [] + if self.arity > 1: + args = [ + sample_inputs_foreach( + None, device, dtype, num_tensors, **_foreach_inputs_kwargs) + for _ in range(self.arity - 2) + ] + rightmost_arg_list = self._sample_rightmost_arg( + opinfo, rightmost_arg_type, device, dtype, num_tensors, + **_foreach_inputs_kwargs) + for rightmost_arg in rightmost_arg_list: + args.append(rightmost_arg) + kwargs = self._sample_kwargs(opinfo, rightmost_arg, rightmost_arg_type, dtype) + ref_args = args + if rightmost_arg_type in (ForeachRightmostArgType.Scalar, ForeachRightmostArgType.Tensor): + ref_args = args[:-1] + [[args[-1] for _ in range(num_tensors)]] + sample = ForeachSampleInput(input, *args, ref_args=ref_args, **kwargs) + yield sample + args.pop() + else: + yield ForeachSampleInput( + input, + *args, + disable_fastpath=self._should_disable_fastpath(opinfo, None, None, dtype), + ) + + +class foreach_norm_sample_func(foreach_inputs_sample_func): + def sample_zero_size_tensor_inputs(self, opinfo, device, dtype, requires_grad, **kwargs): + assert "num_input_tensors" not in kwargs + _foreach_inputs_kwargs = {k: kwargs.pop(k, v) for k, v in _foreach_inputs_default_kwargs.items()} + _foreach_inputs_kwargs["requires_grad"] = requires_grad + for ord in (0, 1, 2, -1, -2): + input = sample_inputs_foreach(None, device, dtype, NUM_SIZE0_TENSORS, zero_size=True, **_foreach_inputs_kwargs) + disable_fastpath = True + if ord in (1, 2) and dtype in floating_types_and(torch.half, torch.bfloat16): + disable_fastpath = False + yield ForeachSampleInput(input, ord=ord, disable_fastpath=disable_fastpath) + + def __call__(self, opinfo, device, dtype, requires_grad, **kwargs): + num_input_tensors = kwargs.pop("num_input_tensors", foreach_num_tensors) + assert isinstance(num_input_tensors, list) + _foreach_inputs_kwargs = {k: kwargs.pop(k, v) for k, v in _foreach_inputs_default_kwargs.items()} + _foreach_inputs_kwargs["requires_grad"] = requires_grad + + for num_tensors, ord in product(num_input_tensors, (0, 1, 2, -1, -2)): + input = sample_inputs_foreach(None, device, dtype, num_tensors, zero_size=False, **_foreach_inputs_kwargs) + disable_fastpath = True + if ord in (1, 2) and dtype in floating_types_and(torch.half, torch.bfloat16): + disable_fastpath = False + yield ForeachSampleInput(input, ord=ord, disable_fastpath=disable_fastpath) + + +class foreach_lerp_sample_func(foreach_inputs_sample_func): + def _sample_rightmost_arg(self, opinfo, rightmost_arg_type, device, dtype, num_tensors, **_foreach_inputs_kwargs): + if rightmost_arg_type == ForeachRightmostArgType.TensorList: + return [sample_inputs_foreach(None, device, dtype, num_tensors, **_foreach_inputs_kwargs)] + if rightmost_arg_type == ForeachRightmostArgType.ScalarList: + return [ + [random.randint(0, 9) + 1 for _ in range(num_tensors)], + [1.0 - random.random() for _ in range(num_tensors)], + [complex(1.0 - random.random(), 1.0 - random.random()) for _ in range(num_tensors)], + [True for _ in range(num_tensors)], + [1, 2.0, 3.0 + 4.5j] + [3.0 for _ in range(num_tensors - 3)], + [True, 1, 2.0, 3.0 + 4.5j] + [3.0 for _ in range(num_tensors - 4)], + ] + if rightmost_arg_type == ForeachRightmostArgType.Scalar: + return [random.random()] + raise AssertionError(f"Invalid rightmost_arg_type of {rightmost_arg_type}") + + +class foreach_pointwise_sample_func(foreach_inputs_sample_func): + + def __init__( + self, + arity: int = 3, + rightmost_supports_scalar: bool = False, + rightmost_supports_scalarlist: bool = False, + ): + super().__init__(arity, rightmost_supports_scalar, rightmost_supports_scalarlist) + + def _should_disable_fastpath(self, opinfo, rightmost_arg, rightmost_arg_type, dtype): + return dtype in integral_types_and(torch.bool) and opinfo.ref in (torch.addcmul,) + + def sample_zero_size_tensor_inputs(self, opinfo, device, dtype, requires_grad, **kwargs): + assert "num_input_tensors" not in kwargs + _foreach_inputs_kwargs = {k: kwargs.pop(k, v) for k, v in _foreach_inputs_default_kwargs.items()} + _foreach_inputs_kwargs["requires_grad"] = requires_grad + # zero_size tensor + input = sample_inputs_foreach(None, device, dtype, NUM_SIZE0_TENSORS, zero_size=True, **_foreach_inputs_kwargs) + args = [ + sample_inputs_foreach(None, device, dtype, NUM_SIZE0_TENSORS, zero_size=True, **_foreach_inputs_kwargs) + for _ in range(2) + ] + if "scalars" in kwargs: + del kwargs["scalars"] + kwargs.update(self._sample_kwargs(opinfo, args[-1], ForeachRightmostArgType.TensorList, dtype)) + yield ForeachSampleInput(input, *args, **kwargs) + + def __call__(self, opinfo, device, dtype, requires_grad, **kwargs): + num_input_tensors_specified = "num_input_tensors" in kwargs + num_input_tensors = kwargs.pop("num_input_tensors") if num_input_tensors_specified else foreach_num_tensors + assert isinstance(num_input_tensors, list) + _foreach_inputs_kwargs = {k: kwargs.pop(k, v) for k, v in _foreach_inputs_default_kwargs.items()} + _foreach_inputs_kwargs["requires_grad"] = requires_grad + + for num_tensors, rightmost_arg_type in itertools.product(num_input_tensors, self._rightmost_arg_types): + input = sample_inputs_foreach(None, device, dtype, num_tensors, zero_size=False, **_foreach_inputs_kwargs) + args = [ + sample_inputs_foreach(None, device, dtype, num_tensors, zero_size=False, **_foreach_inputs_kwargs) + for _ in range(2 - int(rightmost_arg_type == ForeachRightmostArgType.TensorList)) + ] + rightmost_arg_list = self._sample_rightmost_arg( + opinfo, rightmost_arg_type, device, dtype, num_tensors, zero_size=False, **_foreach_inputs_kwargs) + for rightmost_arg in rightmost_arg_list: + kwargs = {} + if rightmost_arg_type == ForeachRightmostArgType.TensorList: + args.append(rightmost_arg) + elif rightmost_arg_type in [ForeachRightmostArgType.Tensor, ForeachRightmostArgType.ScalarList]: + kwargs["scalars"] = rightmost_arg + else: + kwargs["value"] = rightmost_arg + kwargs.update(self._sample_kwargs(opinfo, rightmost_arg, rightmost_arg_type, dtype)) + assert len(args) == 2, f"{len(args)=}" + sample = ForeachSampleInput(input, *args, **kwargs) + yield sample + if rightmost_arg_type == ForeachRightmostArgType.TensorList: + args.pop() + + +foreach_unary_op_db: List[OpInfo] = [ + ForeachFuncInfo( + 'exp', + foreach_inputs_sample_func(1, False, False), + backward_requires_result=True, + ), + ForeachFuncInfo( + 'acos', + foreach_inputs_sample_func(1, False, False), + ), + ForeachFuncInfo( + 'asin', + foreach_inputs_sample_func(1, False, False), + ), + ForeachFuncInfo( + 'atan', + foreach_inputs_sample_func(1, False, False), + ), + ForeachFuncInfo( + 'cos', + foreach_inputs_sample_func(1, False, False), + ), + ForeachFuncInfo( + 'cosh', + foreach_inputs_sample_func(1, False, False), + ), + ForeachFuncInfo( + 'log', + foreach_inputs_sample_func(1, False, False), + ), + ForeachFuncInfo( + 'log10', + foreach_inputs_sample_func(1, False, False), + ), + ForeachFuncInfo( + 'log2', + foreach_inputs_sample_func(1, False, False), + ), + ForeachFuncInfo( + 'tan', + foreach_inputs_sample_func(1, False, False), + backward_requires_result=True, + decorators=( + # due to https://github.com/pytorch/pytorch/pull/102427 enabling jiterator for complex + DecorateInfo( + toleranceOverride( + { + torch.complex64: tol(atol=3e-04, rtol=2e-05) + } + ), + 'TestForeach', + 'test_parity', + device_type='cuda' + ), + ), + ), + ForeachFuncInfo( + 'tanh', + foreach_inputs_sample_func(1, False, False), + backward_requires_result=True, + decorators=( + DecorateInfo( + toleranceOverride( + {torch.complex64: tol(atol=5e-03, rtol=1e-04)} + ), + 'TestForeach', + 'test_parity', + device_type='cuda' + ), + ), + ), + ForeachFuncInfo( + 'sin', + foreach_inputs_sample_func(1, False, False), + ), + ForeachFuncInfo( + 'sinh', + foreach_inputs_sample_func(1, False, False), + ), + ForeachFuncInfo( + 'neg', + foreach_inputs_sample_func(1, False, False), + dtypes=all_types_and_complex(), + dtypesIfCUDA=all_types_and_complex(), + ), + ForeachFuncInfo( + 'sqrt', + foreach_inputs_sample_func(1, False, False), + dtypes=floating_and_complex_types_and(torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.half), + backward_requires_result=True, + ), + ForeachFuncInfo( + 'ceil', + foreach_inputs_sample_func(1, False, False), + dtypes=all_types_and(torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.half, torch.bfloat16), + ), + ForeachFuncInfo( + 'erf', + foreach_inputs_sample_func(1, False, False), + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + ), + ForeachFuncInfo( + 'erfc', + foreach_inputs_sample_func(1, False, False), + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + ), + ForeachFuncInfo( + 'expm1', + foreach_inputs_sample_func(1, False, False), + dtypes=floating_and_complex_types_and(torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16), + backward_requires_result=True, + ), + ForeachFuncInfo( + 'floor', + foreach_inputs_sample_func(1, False, False), + dtypes=all_types_and(torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.half, torch.bfloat16), + ), + ForeachFuncInfo( + 'log1p', + foreach_inputs_sample_func(1, False, False), + dtypes=floating_and_complex_types_and(torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.half), + ), + ForeachFuncInfo( + 'round', + foreach_inputs_sample_func(1, False, False), + dtypes=all_types_and(torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.half, torch.bfloat16), + ), + ForeachFuncInfo( + 'frac', + foreach_inputs_sample_func(1, False, False), + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + ), + ForeachFuncInfo( + 'reciprocal', + foreach_inputs_sample_func(1, False, False), + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half), + backward_requires_result=True, + ), + ForeachFuncInfo( + 'sigmoid', + foreach_inputs_sample_func(1, False, False), + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half), + backward_requires_result=True, + ), + ForeachFuncInfo( + 'trunc', + foreach_inputs_sample_func(1, False, False), + dtypes=all_types_and(torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.half, torch.bfloat16), + ), + ForeachFuncInfo( + 'abs', + foreach_inputs_sample_func(1, False, False), + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half), + dtypesIfCUDA=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool), + supports_fwgrad_bwgrad=True, + skips=( + DecorateInfo(unittest.skip("In-place abs not supported for complex tensors"), "TestMeta", + "test_dispatch_symbolic_meta_inplace", dtypes=complex_types()), + DecorateInfo(unittest.skip("In-place abs not supported for complex tensors"), "TestMeta", + "test_dispatch_meta_inplace", dtypes=complex_types()), + DecorateInfo(unittest.skip("In-place abs not supported for complex tensors"), "TestMeta", + "test_meta_inplace", dtypes=complex_types()), + ), + ), + ForeachFuncInfo( + 'zero', + foreach_inputs_sample_func(1, False, False), + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half), + supports_out=False, + ), + ForeachFuncInfo( + 'sign', + foreach_inputs_sample_func(1, False, False), + dtypes=floating_types_and(torch.bool, torch.bfloat16, torch.half), + dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16), + ), + ForeachFuncInfo( + 'lgamma', + foreach_inputs_sample_func(1, False, False), + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.half), + dtypesIfCUDA=all_types_and(torch.bool, torch.float16), + skips=( + DecorateInfo(unittest.skip("In-place lgamma not supported for integral tensors"), "TestMeta", + "test_dispatch_symbolic_meta_inplace", dtypes=integral_types_and(torch.bool)), + DecorateInfo(unittest.skip("In-place lgamma not supported for integral tensors"), "TestMeta", + "test_dispatch_meta_inplace", dtypes=integral_types_and(torch.bool)), + DecorateInfo(unittest.skip("In-place lgamma not supported for integral tensors"), "TestMeta", + "test_meta_inplace", dtypes=integral_types_and(torch.bool)), + ), + ), +] + +foreach_binary_op_db: List[OpInfo] = [ + ForeachFuncInfo( + "add", + foreach_inputs_sample_func(2, True, True, True), + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + supports_alpha_param=True, + skips=( + # These tests fail with aten._local_scalar_dense not being implemented. + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_inplace"), + # Samples have complex types and inplace only works if the dtype is complex. + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_inplace", + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16)), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace", + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16)), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace_all_strides", + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16)), + ), + ), + ForeachFuncInfo( + "sub", + foreach_inputs_sample_func(2, True, True), + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + supports_alpha_param=True, + skips=( + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace_all_strides"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides"), + ), + ), + ForeachFuncInfo( + "mul", + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + sample_inputs_func=foreach_inputs_sample_func(2, True, True, True), + skips=( + # Samples have complex types and inplace only works if the dtype is complex. + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_inplace", + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16)), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace", + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16)), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_inplace", + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16)), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace_all_strides", + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16)), + ), + ), + ForeachFuncInfo( + "div", + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + sample_inputs_func=foreach_inputs_sample_func(2, True, True, True), + skips=( + # Samples have complex types and inplace only works if the dtype is complex. + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_inplace", + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16)), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace", + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16)), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_inplace", + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16)), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace_all_strides", + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16)), + # fails with div_cpu is not implemented with ComplexHalf + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_outplace", + dtypes=(torch.float16,), device_type='cpu'), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace", + dtypes=(torch.float16,), device_type='cpu'), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_outplace", + dtypes=(torch.float16,), device_type='cpu'), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides", + dtypes=(torch.float16,), device_type='cpu'), + ), + ), + ForeachFuncInfo( + "clamp_min", + foreach_inputs_sample_func(2, True, True), + dtypes=all_types_and(torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bfloat16, torch.float16), + skips=( + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace_all_strides"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides"), + ), + ), + ForeachFuncInfo( + "clamp_max", + foreach_inputs_sample_func(2, True, True), + dtypes=all_types_and(torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bfloat16, torch.float16), + skips=( + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace_all_strides"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides"), + ), + ), + # note(crcrpar): forward ad not implemented. + ForeachFuncInfo( + "minimum", + foreach_inputs_sample_func(2, True, True), + dtypes=all_types_and(torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bfloat16, torch.float16), + supports_forward_ad=False, + supports_inplace_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace_all_strides"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides"), + ), + ), + # note(crcrpar): forward ad not implemented. + ForeachFuncInfo( + "maximum", + foreach_inputs_sample_func(2, True, True), + dtypes=all_types_and(torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bfloat16, torch.float16), + supports_forward_ad=False, + supports_inplace_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace_all_strides"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides"), + ), + ), + ForeachFuncInfo( + "pow", + dtypes=all_types_and(torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bfloat16, torch.float16), + supports_alpha_param=False, + supports_scalar_self_arg=True, + sample_inputs_func=foreach_inputs_sample_func(2, True, True), + supports_autograd=True, + skips=( + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace_all_strides"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides"), + ), + supports_forward_ad=True, + backward_requires_result=True, + ), + ForeachFuncInfo( + "copy", + foreach_inputs_sample_func(2, False, False), + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half), + supports_out=False, + supports_forward_ad=False, + supports_autograd=False, + ) +] + +foreach_pointwise_op_db: List[ForeachFuncInfo] = [ + ForeachFuncInfo( + "addcmul", + foreach_pointwise_sample_func(4, True, True), + dtypes=all_types_and_complex(), + dtypesIfCUDA=all_types_and_complex_and(torch.half, torch.bfloat16), + skips=( + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace_all_strides"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides"), + ), + ), + ForeachFuncInfo( + "addcdiv", + sample_inputs_func=foreach_pointwise_sample_func(4, True, True), + dtypes=all_types_and_complex(), + dtypesIfCUDA=all_types_and_complex_and(torch.half, torch.bfloat16), + skips=( + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace_all_strides"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides"), + ), + ), +] + +foreach_reduce_op_db: List[ForeachFuncInfo] = [ + ForeachFuncInfo( + "norm", + foreach_norm_sample_func(1, False, False), + dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16), + skips=( + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_inplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_meta_outplace"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_inplace_all_strides"), + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides"), + ), + ), +] + +foreach_other_op_db: List[ForeachFuncInfo] = [ + ForeachFuncInfo( + "lerp", + foreach_lerp_sample_func(3, True, False), + dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16), + dtypesIfROCM=floating_and_complex_types_and(torch.half, torch.bfloat16), + ), +] + +def reference_sign(x): + if x.dtype == np.bool_: + # `np.sign` doesn't support `bool`. + # >>> np.sign(True) + # ufunc 'sign' did not contain a loop + # with signature matching types dtype('bool') -> dtype('bool') + return np.sign(x, dtype=np.uint8).astype(np.bool_) + return np.sign(x) + + +def reference_sgn(x): + # NumPy doesn't have an equivalent to `torch.sgn` when the dtype is complex. + # For complex inputs, `np.sign` returns sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j. + # while `torch.sgn` returns, 0 if abs(input) == 0 else input/abs(input) + if x.dtype not in [np.complex64, np.complex128]: + return reference_sign(x) + + out = (x / np.abs(x)) + if out.ndim == 0: + # Handle x == 0 case + if (x == 0): + # Can't assign to np.complex object + # So make a new one. + return np.array(complex(0, 0), dtype=x.dtype) + return out + + # Handle x == 0 case + mask = (x == 0) + out[mask] = complex(0, 0) + return out + + +def reference_sigmoid(x): + # 'scipy.special.expit' not supported for the input types + if x.dtype in [np.complex64, np.complex128]: + return (1 / (1 + np.exp(-x))) + return scipy.special.expit(x) + + +def reference_logsigmoid(x): + return np.where( + x < 0, + x - np.log1p(np.exp(x)), + -np.log1p(np.exp(-x))) + + +def reference_hardsigmoid(x): + intermediate = x / 6 + 0.5 + y = np.clip(intermediate, 0, None) + return np.where(y > 1, 1, y).astype(x.dtype) + + +def reference_lgamma(x): + # scipy.special.gammaln returns `-inf` when input is `-inf`. + # While Pytorch, C and C++, all return `inf` when input is `-inf`. + # Reference: + # https://en.cppreference.com/w/cpp/numeric/math/lgamma + # https://en.cppreference.com/w/c/numeric/math/lgamma + + # To handle the above discrepancy, + # we replace -inf with inf so values + # that were originally -inf map to inf as expected + if x.dtype.kind == 'f': + x = np.where(x == float('-inf'), np.array(float('inf'), dtype=x.dtype), x) + + out = scipy.special.gammaln(x) + + if x.dtype == np.float16: + # `scipy.special.gammaln` returns output of float32 when input is float16, + # while `torch.lgamma` preserves `float16`. But due to smaller range of float16, + # Pytorch version outputs `inf` while SciPy returns finite values. + out = out.astype(np.float16) + + return out + + +def reference_mvlgamma(x, d): + if x.dtype == np.float16: + return scipy.special.multigammaln(x, d).astype(np.float16) + + return scipy.special.multigammaln(x, d) + +def reference_softplus(input, beta=1, threshold=20): + non_linear = input * beta <= threshold + output = input.copy() + output[non_linear] = np.log(1 + np.exp(beta * input[non_linear])) / beta + return output + +def reference_gelu(X, *, approximate='none'): + def _gelu_ref(X): + return X * stats.norm.cdf(X) + + def _tanh_gelu_ref(X): + M_SQRT_2_PI = math.sqrt(2 / math.pi) + Z = M_SQRT_2_PI * (X + 0.044715 * np.power(X, 3.0)) + return 0.5 * X * (1.0 + np.tanh(Z)) + + if approximate == 'tanh': + return _tanh_gelu_ref(X) + else: + return _gelu_ref(X) + + +def reference_one_hot(a: np.ndarray, num_classes: int = -1) -> np.ndarray: + if num_classes == -1: + num_classes = int(np.amax(a) + 1) + + idcs = a.reshape(-1) + np.arange(0, a.size, dtype=np.int64) * num_classes + one_hot = np.zeros((a.size, num_classes), dtype=a.dtype) + np.put(one_hot, idcs, 1) + return one_hot.reshape(*a.shape, -1) + + +def reference_mse_loss(input, target, reduction="mean"): + se = (input - target) ** 2 + if reduction == "mean": + return np.mean(se) + elif reduction == "sum": + return np.sum(se) + else: # reduction == "none" + return se + + +def wrapper_set_seed(op, *args, **kwargs): + """Wrapper to set seed manually for some functions like dropout + See: https://github.com/pytorch/pytorch/pull/62315#issuecomment-896143189 for more details. + """ + with freeze_rng_state(): + torch.manual_seed(42) + output = op(*args, **kwargs) + + if isinstance(output, torch.Tensor) and output.device.type == "lazy": + # We need to call mark step inside freeze_rng_state so that numerics + # match eager execution + torch._lazy.mark_step() + + return output + + +def reference_layer_norm(inp: np.ndarray, normalized_shape: Tuple[int], weight=None, bias=None, eps=1e-5): + return reference_native_layer_norm(inp, normalized_shape, weight, bias, eps)[0] + + +def reference_native_layer_norm(inp: np.ndarray, normalized_shape: Tuple[int], weight, bias, eps): + feature_size = np.prod(normalized_shape) + inp_view = inp.reshape(-1, feature_size) # type: ignore[call-overload] + mean = inp_view.mean(axis=-1, keepdims=True) + var = inp_view.var(axis=-1, ddof=0, keepdims=True) + Y = (inp_view - mean) / np.sqrt(var + eps) + if weight is None and bias is not None: + Y = Y + bias.reshape(-1) + elif weight is not None and bias is None: + Y = Y * weight.reshape(-1) + elif weight is not None and bias is not None: + Y = Y * weight.reshape(-1) + bias.reshape(-1) + axis = inp.ndim - len(normalized_shape) + stat_shape = inp.shape[:axis] + (1,) * len(normalized_shape) + return Y.reshape(*inp.shape), mean.reshape(stat_shape), (1.0 / np.sqrt(var + eps)).reshape(stat_shape) + + +def reference_group_norm(inp: np.ndarray, num_groups: int, weight=None, bias=None, eps=1e-5): + inp_view = inp + if np.prod(inp.shape) != 0: + inp_view = inp.reshape((inp.shape[0], num_groups, -1)) + mean = inp_view.mean(axis=-1, keepdims=True) + var = inp_view.var(axis=-1, ddof=0, keepdims=True) + Y = (inp_view - mean) / np.sqrt(var + eps) + Y = Y.reshape(inp.shape) + if weight is not None: + # weight is a vector of length equal to the channel + if len(Y.shape) > 2: + weight = np.expand_dims(weight, [0] + [idx + 2 for idx in range(inp.ndim - 2)]) + Y = Y * weight + if bias is not None: + # bias is a vector of length equal to the channel + if len(Y.shape) > 2: + bias = np.expand_dims(bias, [0] + [idx + 2 for idx in range(inp.ndim - 2)]) + Y = Y + bias + return Y + + +# using a custom reference function since numpy only has a string side arg (instead of right and side) and doesn't +# have an out_int32 arg. Additionally, numpy doesn't support searchsorted with ND arrays, so this splits those into +# stacked 1D cases +def reference_searchsorted(sorted_sequence, boundary, out_int32=False, right=False, side='left', sorter=None): + side = 'right' if (right or side == 'right') else 'left' + if len(sorted_sequence.shape) == 1 : + ret = np.searchsorted(sorted_sequence, boundary, side=side, sorter=sorter) + return ret.astype(np.int32) if out_int32 else ret + elif sorted_sequence.shape[0] == 0: + if sorter is not None: + sorter = sorter.flatten() + ret = np.searchsorted(sorted_sequence.flatten(), boundary.flatten(), side=side, sorter=sorter) + ret = ret.astype(np.int32) if out_int32 else ret + return ret.reshape(boundary.shape) + else: + # numpy searchsorted only supports 1D inputs so we split up ND inputs + orig_shape = boundary.shape + num_splits = np.prod(sorted_sequence.shape[:-1]) + splits = range(0, num_splits) + sorted_sequence, boundary = sorted_sequence.reshape(num_splits, -1), boundary.reshape(num_splits, -1) + if sorter is not None: + sorter = sorter.reshape(num_splits, -1) + + split_sequence = [sorted_sequence[i] for i in splits] + split_boundary = [boundary[i] for i in splits] + split_sorter = [sorter[i] if (sorter is not None) else None for i in splits] + + split_ret = [np.searchsorted(s_seq, b, side=side, sorter=s_sort) + for (s_seq, b, s_sort) in zip(split_sequence, split_boundary, split_sorter)] + split_ret = [i.astype(np.int32) for i in split_ret] if out_int32 else split_ret + return np.stack(split_ret).reshape(orig_shape) + +def loss_reference_reduction_wrapper(fn): + def wrapper(input, target, *, size_average=None, reduce=None, reduction="mean", **other_kwargs): + if size_average is not None or reduce is not None: + raise RuntimeError( + "The keyword arguments 'size_average' and 'reduce' are deprecated and not supported by this wrapper" + ) + output = fn(input, target, **other_kwargs) + if reduction == "mean": + return np.mean(output) + elif reduction == "sum": + return np.sum(output) + else: # reduction == "none" + return output + + return wrapper + +@loss_reference_reduction_wrapper +def reference_smooth_l1_loss(input, target, beta=1.0): + diff = input - target + abs_diff = np.abs(diff) + above_threshold = abs_diff >= beta + + loss = np.empty_like(input) + loss[above_threshold] = abs_diff[above_threshold] - 0.5 * beta + loss[~above_threshold] = diff[~above_threshold] ** 2 / (2 * beta) + + return loss + +def reference_std_var(f): + """Forwards unbiased/correction kwargs as NumPy's equivalent ddof""" + g = reference_reduction_numpy(f) + + @wraps(g) + def wrapper(x: np.ndarray, *args, **kwargs): + assert not ('unbiased' in kwargs and 'correction' in kwargs) + + if 'unbiased' in kwargs: + kwargs['ddof'] = int(kwargs.pop('unbiased')) + elif 'correction' in kwargs: + kwargs['ddof'] = kwargs.pop('correction') + + return g(x, *args, **kwargs) + + return wrapper + +def generate_std_var_kwargs(t: torch.Tensor, **kwargs): + """Generates unbiased/correction kwargs for std/var operators""" + yield ((), {'unbiased': True}) + yield ((), {'unbiased': False}) + + # Currently, calling std with correction is only enabled when + # both dim and keepdim are provided. + if 'dim' in kwargs and 'keepdim' in kwargs: + yield ((), {'correction': 0}) + yield ((), {'correction': 1}) + + numel = torch.tensor(t.shape)[kwargs.get('dim')].prod() + yield ((), {'correction': numel // 2}) + +def error_inputs_mean(op_info, device, is_ref=False, **kwargs): + if is_ref: + err_msg1 = (r"mean\(\): could not infer output dtype. " + r"Input dtype must be either a floating point or complex dtype. " + r"Got: torch.int64") + else: + err_msg1 = (r"mean\(\): could not infer output dtype. " + r"Input dtype must be either a floating point or complex dtype. " + r"Got: Long") + yield ErrorInput( + SampleInput(make_tensor((3, 4, 5), dtype=torch.int64, device=device), []), + error_regex=err_msg1, + ) + + if is_ref: + err_msg2 = (r"mean\(\): could not infer output dtype. " + r"Optional dtype must be either a floating point or complex dtype. " + r"Got: torch.int64") + else: + err_msg2 = (r"mean\(\): could not infer output dtype. " + r"Optional dtype must be either a floating point or complex dtype. " + r"Got: Long") + yield ErrorInput( + SampleInput( + make_tensor((3, 4, 5), dtype=torch.float32, device=device), + [], + dtype=torch.int64), + error_regex=err_msg2 + ) + + if is_ref: + err_msg3 = "Expected out tensor to have dtype torch.float64, but got torch.float32 instead" + else: + err_msg3 = "Expected out tensor to have dtype double, but got float instead" + yield ErrorInput( + SampleInput( + make_tensor((3, 4, 5), dtype=torch.int64, device=device), + [], + dtype=torch.float64, + out=make_tensor([], dtype=torch.float32, device=device), + ), + error_regex=err_msg3 + ) + +# numpy implementation of torch.flatten +# unfortunately there's no np.flatten. we figure out the desired shape and call np.reshape +def reference_flatten(input, start_dim=0, end_dim=-1): + in_shape = input.shape + in_rank = len(in_shape) + for d in start_dim, end_dim: + if not ((in_rank == 0 and d in (-1, 0)) or -in_rank <= d < in_rank): + raise IndexError(f"Dimension out of range (expected to be in range of [{-in_rank}, {in_rank-1}], but got {d}") + end_dim = end_dim if end_dim >= 0 else in_rank + end_dim + start_dim = start_dim if start_dim >= 0 else in_rank + start_dim + if in_rank == 0: + end_dim = start_dim + if end_dim < start_dim: + raise RuntimeError("flatten() has invalid args: start_dim cannot come after end_dim") + flatten_bit_dim = functools.reduce(operator.mul, in_shape[start_dim:end_dim + 1], 1) + out_shape = in_shape[:start_dim] + (flatten_bit_dim,) + in_shape[end_dim + 1:] + return np.reshape(input, out_shape) + +# Operator database (sorted alphabetically) +op_db: List[OpInfo] = [ + UnaryUfuncInfo('abs', + aliases=('absolute', ), + ref=np.abs, + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.chalf), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + skips=( + DecorateInfo(unittest.skip("In-place abs not supported for complex tensors"), 'TestBwdGradients', + 'test_inplace_grad', dtypes=(torch.cdouble,)), + DecorateInfo(unittest.skip("In-place abs not supported for complex tensors"), 'TestBwdGradients', + 'test_inplace_gradgrad', dtypes=(torch.cdouble,)), + DecorateInfo(unittest.skip("In-place abs not supported for complex tensors"), 'TestFwdGradients', + 'test_inplace_forward_mode_AD', dtypes=(torch.cdouble,)), + DecorateInfo(unittest.skip("In-place abs not supported for complex tensors"), "TestSparseUnaryUfuncs", + "test_inplace", dtypes=(torch.cdouble, torch.cfloat, torch.chalf)), + # Reference: https://github.com/pytorch/pytorch/issues/49224 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small', + dtypes=[torch.int8], active_if=TEST_WITH_ASAN), + # TODO: Fix test_out_arg_all_dtypes as torch.empty_like(expected_output) where expected_output=op(input) + # We can break the logic of the loop over all possible types but it is OK. + # https://github.com/pytorch/pytorch/blob/master/test/test_unary_ufuncs.py#L440-L449 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_out_arg_all_dtypes', + dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_meta_inplace', + dtypes=(torch.cdouble, torch.cfloat, torch.chalf)), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_meta_inplace', + dtypes=(torch.cdouble, torch.cfloat, torch.chalf)), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_symbolic_meta_inplace', + dtypes=(torch.cdouble, torch.cfloat, torch.chalf)), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_symbolic_meta_inplace_all_strides', + dtypes=(torch.cdouble, torch.cfloat, torch.chalf)), + ), + supports_fwgrad_bwgrad=True, + assert_autodiffed=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + supports_forward_ad=True), + # NOTE: CPU complex acos produces incorrect outputs (https://github.com/pytorch/pytorch/issues/42952) + UnaryUfuncInfo('acos', + aliases=('arccos', ), + ref=np.arccos, + domain=(-1, 1), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + decorators=(precisionOverride({torch.float16: 1e-2, + torch.bfloat16: 1e-1, + torch.complex64: 1e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal', + device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS), + # Failing with wrong imaginary sign on at least some Windows jobs + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + # Failing with wrong imaginary sign on at least some Windows jobs + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_fn_grad', + dtypes=[torch.cdouble], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_method_grad', + dtypes=[torch.cdouble], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_inplace_grad', + dtypes=[torch.cdouble], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_forward_mode_AD', + dtypes=[torch.cdouble], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_inplace_forward_mode_AD', + dtypes=[torch.cdouble], active_if=IS_WINDOWS),)), + # NOTE: the derivative for inplace acosh is not implemented + UnaryUfuncInfo('acosh', + aliases=('arccosh', ), + ref=np.arccosh, + domain=(1, None), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + decorators=(precisionOverride({torch.bfloat16: 5e-2}),), + supports_inplace_autograd=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal', + device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + # Failing with wrong imaginary sign on at least some Windows jobs + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + ), + # acosh is not defined at x < 1 (real) + reference_numerics_filter=NumericsFilter( + condition=lambda x: (x < 1 if not x.is_complex() else torch.zeros_like(x, dtype=torch.bool)), + safe_val=2)), + BinaryUfuncInfo('add', + # NumPy has no builtin reference for the alpha kwarg, but it is easy enough to emulate + ref=lambda input, other, *, alpha=1: np.add(input, other) if alpha == 1 \ + else np.add(input, np.multiply(alpha, other)), + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, + torch.float16, torch.chalf), + assert_autodiffed=True, + sample_inputs_func=sample_inputs_add_sub, + supports_fwgrad_bwgrad=True, + supports_forward_ad=True, + supports_two_python_scalars=True, + decorators=( + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=1e-2, rtol=0)}), + 'TestBinaryUfuncs', 'test_reference_numerics'), + ), + skips=( + # boolean alpha not handled properly + DecorateInfo(unittest.expectedFailure, + 'TestNNCOpInfo', + 'test_nnc_correctness', + dtypes=(torch.bool,)), + DecorateInfo(unittest.skip("Skipped!"), + 'TestCommon', + 'test_numpy_refs', + dtypes=(torch.complex128,)), + DecorateInfo(unittest.skip("Skipped!"), + 'TestBinaryUfuncs', + 'test_reference_numerics_extremal_values', + dtypes=(torch.complex64, torch.complex128)), + )), + OpInfo('item', + op=lambda inp, *args, **kwargs: wrapper_set_seed(torch.Tensor.item, inp, *args, **kwargs), + ref=np.ndarray.item, + method_variant=None, + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16, torch.chalf, torch.bool), + supports_out=False, + supports_autograd=False, + error_inputs_func=error_inputs_item, + sample_inputs_func=sample_inputs_item, + skips=( + # Error testing item function variant + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', + dtypes=(torch.float32, torch.complex64)), + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # RuntimeError: Composite compliance check failed with the above error. + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'), + # Booleans mismatch: AssertionError: False is not true + DecorateInfo(unittest.expectedFailure, 'TestFakeTensor', 'test_fake_autocast'), + # Booleans mismatch: AssertionError: False is not true + DecorateInfo(unittest.expectedFailure, 'TestFakeTensor', 'test_fake'), + )), + OpInfo('arange', + dtypes=all_types_and(torch.bfloat16, torch.float16), + supports_out=True, + supports_autograd=False, + is_factory_function=True, + error_inputs_func=error_inputs_arange, + sample_inputs_func=sample_inputs_arange, + skips=( + # https://github.com/pytorch/pytorch/issues/81774 + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + + # Lazy tensor failures + DecorateInfo(unittest.expectedFailure, 'TestLazyOpInfo', 'test_dispatched_to_lazy'), + DecorateInfo(unittest.skip("Skipped!"), 'TestLazyOpInfo', 'test_correctness'), + DecorateInfo(unittest.skip("Skipped!"), 'TestLazyOpInfo', 'test_correctness_with_reusing_ir'), + + # Exception raised from analyzeImpl at ../torch/csrc/jit/ir/alias_analysis.cpp:608 + # We don't have an op for aten::arange but it isn't a special case. + # Argument types: bool, bool, bool, int, int, Device, boo + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness'), + + # Captured graph does not contain aten::arange (succeeds on complex!) + # g: graph(): + # %25 : Long(1, strides=[1], requires_grad=0, device=cpu) = prim::Constant[value={1}]() + # return (%25) + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)), + + # UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + )), + OpInfo('cauchy', + op=lambda inp, *args, **kwargs: wrapper_set_seed(torch.Tensor.cauchy_, inp, *args, **kwargs), + inplace_variant=torch.Tensor.cauchy_, + dtypes=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_autograd=False, + sample_inputs_func=sample_inputs_cauchy, + error_inputs_func=error_inputs_cauchy, + skips=( + # Tests that assume input tensor has a meaningful effect on output tensor + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + + # vmap: calling random operator not supported + DecorateInfo(unittest.skip("Test expects tensor input"), "TestVmapOperatorsOpInfo", "test_vmap_exhaustive"), + DecorateInfo(unittest.skip("Test expects tensor input"), "TestVmapOperatorsOpInfo", "test_op_has_batch_rule"), + + DecorateInfo(unittest.skip("make_traced() doesn't set seed properly!"), 'TestCommon', 'test_python_ref_executor'), + + DecorateInfo(unittest.expectedFailure, 'TestDecomp', 'test_quick'), + )), + OpInfo('exponential', + op=lambda inp, *args, **kwargs: wrapper_set_seed(torch.Tensor.exponential_, inp, *args, **kwargs), + inplace_variant=torch.Tensor.exponential_, + dtypes=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_autograd=False, + sample_inputs_func=sample_inputs_exponential, + error_inputs_func=error_inputs_exponential, + skips=( + # Tests that assume input tensor has a meaningful effect on output tensor + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + + # vmap: calling random operator not supported + DecorateInfo(unittest.expectedFailure, "TestVmapOperatorsOpInfo", "test_vmap_exhaustive"), + DecorateInfo(unittest.expectedFailure, "TestVmapOperatorsOpInfo", "test_op_has_batch_rule"), + + DecorateInfo(unittest.expectedFailure, 'TestDecomp', 'test_quick'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + )), + OpInfo('geometric', + op=lambda inp, *args, **kwargs: wrapper_set_seed(torch.Tensor.geometric_, inp, *args, **kwargs), + inplace_variant=torch.Tensor.geometric_, + dtypes=floating_types_and(torch.float16, torch.bfloat16, torch.int8, torch.int16, torch.int32, torch.int64, torch.uint8), + supports_out=False, + supports_autograd=False, + sample_inputs_func=sample_inputs_geometric, + error_inputs_func=error_inputs_geometric, + skips=( + # Tests that assume input tensor has a meaningful effect on output tensor + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + + # vmap: calling random operator not supported + DecorateInfo(unittest.skip("Test expects tensor input"), "TestVmapOperatorsOpInfo", "test_vmap_exhaustive"), + DecorateInfo(unittest.skip("Test expects tensor input"), "TestVmapOperatorsOpInfo", "test_op_has_batch_rule"), + + DecorateInfo(unittest.expectedFailure, 'TestDecomp', 'test_quick'), + )), + OpInfo('log_normal', + op=lambda inp, *args, **kwargs: wrapper_set_seed(torch.Tensor.log_normal_, inp, *args, **kwargs), + inplace_variant=torch.Tensor.log_normal_, + dtypes=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_autograd=False, + sample_inputs_func=sample_inputs_log_normal, + error_inputs_func=error_inputs_log_normal, + skips=( + # Tests that assume input tensor has a meaningful effect on output tensor + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + + # vmap: calling random operator not supported + DecorateInfo(unittest.skip("Test expects tensor input"), "TestVmapOperatorsOpInfo", "test_vmap_exhaustive"), + DecorateInfo(unittest.skip("Test expects tensor input"), "TestVmapOperatorsOpInfo", "test_op_has_batch_rule"), + DecorateInfo(unittest.expectedFailure, 'TestDecomp', 'test_quick'), + )), + OpInfo('normal', + variant_test_name='in_place', + op=lambda inp, *args, **kwargs: wrapper_set_seed(torch.Tensor.normal_, inp, *args, **kwargs), + inplace_variant=torch.Tensor.normal_, + dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_autograd=False, + sample_inputs_func=sample_inputs_normal, + error_inputs_func=error_inputs_normal, + skips=( + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.skip("Test expects tensor input"), "TestCommon", "test_noncontiguous_samples"), + + # Tests that assume input tensor has a meaningful effect on output tensor + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestDecomp', 'test_quick'), + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # vmap: calling random operator not supported + DecorateInfo(unittest.skip("Test expects tensor input"), "TestVmapOperatorsOpInfo", "test_vmap_exhaustive"), + DecorateInfo(unittest.skip("Test expects tensor input"), "TestVmapOperatorsOpInfo", "test_op_has_batch_rule"), + )), + OpInfo('uniform', + op=lambda inp, *args, **kwargs: wrapper_set_seed(torch.Tensor.uniform_, inp, *args, **kwargs), + method_variant=None, + inplace_variant=torch.Tensor.uniform_, + dtypes=floating_and_complex_types_and(torch.bfloat16, torch.float16), + supports_out=False, + supports_autograd=False, + is_factory_function=False, + sample_inputs_func=sample_inputs_uniform, + error_inputs_func=error_inputs_uniform, + skips=( + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # Tests that assume input tensor has a meaningful effect on output tensor + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # aten.uniform was not decomposed + DecorateInfo(unittest.expectedFailure, 'TestDecomp', 'test_quick'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + )), + BinaryUfuncInfo('clamp_max', + ref=_clamp_max_numpy, + dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16), + supports_forward_ad=True, + supports_rhs_python_scalar=False, + supports_fwgrad_bwgrad=True, + rhs_make_tensor_kwargs=dict(exclude_zero=False), + skips=( + # RuntimeError: "max_elementwise_cuda" not implemented for 'ComplexFloat' + DecorateInfo(unittest.expectedFailure, + 'TestBinaryUfuncs', + 'test_type_promotion', + device_type='cuda'), + # dispatch to lazy test failed + DecorateInfo(unittest.expectedFailure, 'TestLazyOpInfo', 'test_dispatched_to_lazy'), + # test error disabled since rhs non-tensor python scalar is supported + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_errors'), + )), + BinaryUfuncInfo('clamp_min', + ref=_clamp_min_numpy, + dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16), + supports_forward_ad=True, + supports_rhs_python_scalar=False, + supports_fwgrad_bwgrad=True, + rhs_make_tensor_kwargs=dict(exclude_zero=False), + skips=( + # RuntimeError: "min_elementwise_cuda" not implemented for 'ComplexFloat' + DecorateInfo(unittest.expectedFailure, + 'TestBinaryUfuncs', + 'test_type_promotion', + device_type='cuda'), + # dispatch to lazy test failed + DecorateInfo(unittest.expectedFailure, 'TestLazyOpInfo', 'test_dispatched_to_lazy'), + # test error disabled since rhs non-tensor python scalar is supported + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_errors'), + )), + BinaryUfuncInfo('mul', + aliases=('multiply',), + dtypes=all_types_and_complex_and(torch.chalf, torch.float16, torch.bfloat16, torch.bool), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_two_python_scalars=True, + error_inputs_sparse_func=error_inputs_sparse_mul, + sample_inputs_sparse_coo_func=partial(sample_inputs_sparse_mul, layout=torch.sparse_coo), + sample_inputs_sparse_csr_func=partial(sample_inputs_sparse_mul, layout=torch.sparse_csr), + sample_inputs_sparse_csc_func=partial(sample_inputs_sparse_mul, layout=torch.sparse_csc), + sample_inputs_sparse_bsr_func=partial(sample_inputs_sparse_mul, layout=torch.sparse_bsr), + sample_inputs_sparse_bsc_func=partial(sample_inputs_sparse_mul, layout=torch.sparse_bsc)), + BinaryUfuncInfo('sub', + # NumPy has no builtin reference for the alpha kwarg, but it is easy enough to emulate + ref=lambda input, other, *, alpha=1: np.subtract(input, np.multiply(alpha, other)), + aliases=('subtract',), + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16, torch.chalf), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_add_sub, + supports_two_python_scalars=True, + decorators=( + DecorateInfo( + toleranceOverride({torch.float16: tol(atol=1e-2, rtol=0), + torch.bfloat16: tol(atol=1e-5, rtol=5e-3), + torch.complex32: tol(atol=1e-5, rtol=1e-3)}), + 'TestBinaryUfuncs', 'test_reference_numerics'), + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=1e-2, rtol=0)}), + 'TestCommon', 'test_complex_half_reference_testing', device_type='cpu'), + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=5e-3, rtol=0)}), + 'TestDecomp', 'test_comprehensive', device_type='cpu'), + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=5e-3, rtol=0)}), + 'TestDecomp', 'test_quick', device_type='cpu'), + ), + skips=( + DecorateInfo(unittest.skip("Skipped!"), + 'TestBinaryUfuncs', + 'test_reference_numerics', + dtypes=(torch.uint8,)), + DecorateInfo(unittest.skip("Skipped!"), + 'TestBinaryUfuncs', + 'test_reference_numerics_small_values', + dtypes=(torch.uint8,)), + )), + OpInfo('addmm', + # This addmm OpInfo is for when alpha and beta are not both equal to 1. + # alpha=beta=1 is tested in the following opinfo, because that special case will + # trigger addmm being decomposed by a jit pass. + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + dtypesIfROCM=floating_and_complex_types_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + sample_inputs_func=sample_inputs_addmm, + skips=( + # Issue with conj and torch dispatch, see https://github.com/pytorch/pytorch/issues/82479 + DecorateInfo( + unittest.skip("Skipped!"), + 'TestSchemaCheckModeOpInfo', + 'test_schema_correctness', + dtypes=(torch.complex64, torch.complex128)), + )), + OpInfo('addmm', + # When alpha=beta=1 as compile-time constants, JIT will decompose addmm into mm and add. + variant_test_name='decomposed', + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + autodiff_nonfusible_nodes=['aten::add', 'aten::mm'], + sample_inputs_func=partial(sample_inputs_addmm, alpha=1, beta=1), + skips=( + # Issue with conj and torch dispatch, see https://github.com/pytorch/pytorch/issues/82479 + DecorateInfo( + unittest.skip("Skipped!"), + 'TestSchemaCheckModeOpInfo', + 'test_schema_correctness', + dtypes=(torch.complex64, torch.complex128)), + # https://github.com/pytorch/pytorch/issues/71784 + DecorateInfo(unittest.skip('Skipped!'), 'TestNNCOpInfo', 'test_nnc_correctness', + device_type='cpu', dtypes=(torch.float16,)), + )), + OpInfo('addmv', + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.complex64, torch.complex128, + torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + decorators=[ + DecorateInfo( + toleranceOverride({torch.half: tol(atol=1e-5, rtol=3e-3)}), + 'TestInductorOpInfo', 'test_comprehensive', device_type='cpu'), + ], + sample_inputs_func=sample_inputs_addmv), + OpInfo('addbmm', + ref=lambda M, batch1, batch2, beta=1, alpha=1: np.add(np.multiply(np.asarray(beta, dtype=M.dtype), M), + np.multiply(np.asarray(alpha, dtype=batch1.dtype), + np.sum(np.matmul(batch1, batch2), axis=0))), + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, + *[torch.bfloat16] + if SM53OrLater or TEST_WITH_ROCM else []), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + decorators=[ + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1.3e-05, rtol=1.3e-05), + torch.complex64: tol(atol=1e-05, rtol=1.2e-03)}), + 'TestCommon', 'test_numpy_refs'), + # MPS has slightly worse precision. Is this acceptable? + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1.3e-04, rtol=1.3e-04), + torch.complex64: tol(atol=1e-05, rtol=1.2e-03)}), + 'TestCommon', 'test_numpy_ref_mps'), + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1e-5, rtol=1e-5)}), + 'TestConsistency', + 'test_output_match', + ), + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1.5e-05, rtol=1e-05)}), + 'TestCommon', 'test_out'), + DecorateInfo( + toleranceOverride({torch.half: tol(atol=6e-3, rtol=6e-3)}), + 'TestInductorOpInfo', 'test_comprehensive', device_type='cpu'), + ], + skips=( + # NVIDIA only assures that bfloat16 is supported by bmm if SM >= 5.3 + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes', device_type='cuda', active_if=not SM53OrLater), + # addbmm does not correctly warn when resizing out= inputs + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + # https://github.com/pytorch/pytorch/issues/55907 + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'), + ), + sample_inputs_func=sample_inputs_addbmm), + OpInfo('baddbmm', + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.complex64, torch.complex128, + torch.bfloat16), + backward_dtypesIfCUDA=floating_types_and(torch.float16, + *[torch.bfloat16] if SM53OrLater or TEST_WITH_ROCM else [], + torch.complex64, torch.complex128), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + decorators=[ + DecorateInfo( + toleranceOverride({torch.complex64: tol(atol=1e-05, rtol=1.2e-03)}), + 'TestCommon', 'test_variant_consistency_eager', device_type='cuda'), + DecorateInfo( + toleranceOverride({torch.complex64: tol(atol=1e-05, rtol=1.2e-03)}), + 'TestMathBits', 'test_conj_view', device_type='cuda'), + ], + sample_inputs_func=sample_inputs_baddbmm, + skips=( + # Issue with conj and torch dispatch, see https://github.com/pytorch/pytorch/issues/82479 + DecorateInfo( + unittest.skip("Skipped!"), + 'TestSchemaCheckModeOpInfo', + 'test_schema_correctness', + dtypes=(torch.complex64, torch.complex128)), + )), + OpInfo('dot', + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16), + assert_autodiffed=True, + sample_inputs_func=sample_inputs_dot_vdot, + error_inputs_func=error_inputs_dot_vdot, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # Issue with conj and torch dispatch, see https://github.com/pytorch/pytorch/issues/82479 + DecorateInfo( + unittest.skip("Skipped!"), + 'TestSchemaCheckModeOpInfo', + 'test_schema_correctness', + dtypes=(torch.complex64, torch.complex128)), + )), + OpInfo('vdot', + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_dot_vdot, + error_inputs_func=error_inputs_dot_vdot, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # Issue with conj and torch dispatch, see https://github.com/pytorch/pytorch/issues/82479 + DecorateInfo( + unittest.skip("Skipped!"), + 'TestSchemaCheckModeOpInfo', + 'test_schema_correctness', + dtypes=(torch.complex64, torch.complex128)), + )), + OpInfo('bmm', + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, + *[torch.bfloat16] + if SM53OrLater or TEST_WITH_ROCM else []), + assert_autodiffed=True, + assert_jit_shape_analysis=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # NVIDIA only assures that bfloat16 is supported by bmm if SM >= 5.3 + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes', device_type='cuda', active_if=not SM53OrLater), + DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-5, rtol=1e-5)}), + "TestCommon", "test_out") + ), + sample_inputs_func=sample_inputs_bmm), + OpInfo('mv', + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_mv), + OpInfo('addr', + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + # Reference: https://github.com/pytorch/pytorch/issues/50747 + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/50747 + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager', + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16)), + ), + sample_inputs_func=sample_inputs_addr, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL), + OpInfo('addcmul', + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # TODO: update sample inputs with for_inplace_variant kwarg to support this test + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + ), + sample_inputs_func=sample_inputs_addcmul_addcdiv, + reference_inputs_func=partial( + reference_inputs_elementwise_ternary, sample_inputs_func=reference_inputs_addcmul_addcdiv)), + OpInfo('addcdiv', + dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # TODO: update sample inputs with for_inplace_variant kwarg to support this test + DecorateInfo(unittest.expectedFailure, + 'TestCommon', + 'test_variant_consistency_eager'), + ), + sample_inputs_func=sample_inputs_addcmul_addcdiv, + reference_inputs_func=partial( + reference_inputs_elementwise_ternary, sample_inputs_func=reference_inputs_addcmul_addcdiv)), + UnaryUfuncInfo('asin', + aliases=('arcsin', ), + ref=np.arcsin, + domain=(-1, 1), + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + decorators=[ + DecorateInfo( + toleranceOverride({torch.float16: tol(atol=1e-05, rtol=1e-03)}), + 'TestUnaryUfuncs', device_type='cuda'), + precisionOverride({torch.bfloat16: 1e-2}), + ], + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped! sparse backward not supported"), + 'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'), + )), + # NOTE: derivative for inplace asinh is not implemented + UnaryUfuncInfo('asinh', + aliases=('arcsinh', ), + ref=np.arcsinh, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + decorators=(precisionOverride({torch.bfloat16: 5e-2}),), + supports_inplace_autograd=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + promotes_int_to_float=True, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped! sparse backward not supported"), + 'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'), + )), + UnaryUfuncInfo('atan', + aliases=('arctan', ), + ref=np.arctan, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + promotes_int_to_float=True, + decorators=(precisionOverride({torch.bfloat16: 1e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small', + active_if=TEST_WITH_ROCM, device_type='cuda', dtypes=[torch.complex64, torch.complex128]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + active_if=TEST_WITH_ROCM, device_type='cuda', dtypes=[torch.complex128]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cfloat, torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cuda', dtypes=[torch.cfloat, torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped! sparse backward not supported"), + 'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'), + )), + BinaryUfuncInfo('atan2', + aliases=('arctan2',), + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.half), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + supports_rhs_python_scalar=False, + skips=( + # Incorrectly attempts to use a scalar for the second argument + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_jit_alias_remapping'), + )), + UnaryUfuncInfo('atanh', + aliases=('arctanh', ), + ref=np.arctanh, + domain=(-1, 1), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + decorators=(precisionOverride({torch.bfloat16: 1e-2}),), + supports_inplace_autograd=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + promotes_int_to_float=True, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cfloat, torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cuda', dtypes=[torch.cfloat], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped! sparse backward not supported"), + 'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + active_if=TEST_WITH_ROCM, device_type='cuda', dtypes=[torch.complex128]), + )), + OpInfo('allclose', + dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16), + ref=np.allclose, + supports_autograd=False, + supports_forward_ad=False, + sample_inputs_func=sample_inputs_allclose, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCudaFuserOpInfo'), + ), + supports_out=False), + OpInfo('broadcast_to', + ref=np.broadcast_to, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_broadcast_to), + OpInfo('broadcast_shapes', + op=torch.broadcast_shapes, + ref=np.broadcast_shapes if np.lib.NumpyVersion(np.__version__) >= '1.20.0' else None, + dtypes=_dispatch_dtypes((torch.float32,)), + supports_out=False, + supports_gradgrad=False, + assert_autodiffed=False, + supports_autograd=False, + supports_scripting=False, + sample_inputs_func=sample_inputs_broadcast_shapes, + skips=( + # https://github.com/pytorch/pytorch/issues/64997 + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # skip dtype tests since broadcast_shape is not device dependent. + # having dtypes limited to torch.float32 would cause test_dtypes to report unexpected success + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_dtypes'), + # skip these tests since we have non tensor input + DecorateInfo(unittest.skip('Skipped!'), "TestCommon", "test_noncontiguous_samples"), + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.skip('Skipped!'), 'TestJit', 'test_variant_consistency_jit'), + )), + OpInfo('broadcast_tensors', + ref=np.broadcast_arrays, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_broadcast_tensors, + reference_inputs_func=reference_inputs_broadcast_tensors, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + skips=( + # https://github.com/pytorch/pytorch/issues/64997 + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # JIT does not support variadic tensors. + # RuntimeError: input->type()->kind() == TypeKind::OptionalType + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252, + # please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.float32]), + )), + OpInfo('block_diag', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # Default batching rule in core doesn't work for ops with TensorList args + check_batched_forward_grad=False, + skips=( + # https://github.com/pytorch/pytorch/issues/64997 + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # JIT does not support variadic tensors. + # RuntimeError: input->type()->kind() == TypeKind::OptionalType + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252, + # please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.float32]), + ), + sample_inputs_func=sample_inputs_block_diag), + UnaryUfuncInfo('bitwise_not', + ref=np.bitwise_not, + dtypes=integral_types_and(torch.bool), + operator_variant=operator.invert, + supports_autograd=False), + BinaryUfuncInfo('bitwise_left_shift', + op=torch.bitwise_left_shift, + dtypes=integral_types(), + dtypesIfCUDA=integral_types(), + operator_variant=operator.lshift, + inplace_operator_variant=operator.ilshift, + supports_autograd=False, + supports_one_python_scalar=True, + rhs_make_tensor_kwargs=dict(low=0), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_type_promotion'), + # https://github.com/pytorch/pytorch/issues/70904 + DecorateInfo(unittest.skip("Some inputs produce undefined outputs"), 'TestCommon', 'test_compare_cpu'), + )), + BinaryUfuncInfo('bitwise_right_shift', + op=torch.bitwise_right_shift, + dtypes=integral_types(), + dtypesIfCUDA=integral_types(), + operator_variant=operator.rshift, + inplace_operator_variant=operator.irshift, + supports_autograd=False, + supports_one_python_scalar=True, + rhs_make_tensor_kwargs=dict(low=0), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_type_promotion'), + # https://github.com/pytorch/pytorch/issues/70904 + DecorateInfo(unittest.skip("Some inputs produce undefined outputs"), 'TestCommon', 'test_compare_cpu'), + )), + OpInfo('combinations', + op=torch.combinations, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + supports_out=False, + sample_inputs_func=sample_inputs_combinations), + OpInfo('cartesian_prod', + op=torch.cartesian_prod, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_cartesian_prod, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # RuntimeError: input->type()->kind() == TypeKind::OptionalType + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270 + DecorateInfo(unittest.expectedFailure, + 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)), + )), + OpInfo('cdist', + dtypes=floating_types(), + supports_out=False, + supports_gradgrad=False, + assert_autodiffed=False, + sample_inputs_func=sample_inputs_cdist), + UnaryUfuncInfo('ceil', + ref=np.ceil, + dtypes=all_types_and(torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + DecorateInfo(unittest.expectedFailure, + 'TestNNCOpInfo', + 'test_nnc_correctness', + dtypes=tuple(t for t in integral_types() if t != torch.uint8)), + ), + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + assert_autodiffed=True), + OpInfo('cholesky', + dtypes=floating_and_complex_types(), + sample_inputs_func=sample_inputs_linalg_cholesky, + gradcheck_wrapper=gradcheck_wrapper_hermitian_input, + decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],), + OpInfo('cholesky_inverse', + dtypes=floating_and_complex_types(), + backward_dtypes=floating_and_complex_types(), + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_fwgrad_bwgrad=True, + supports_forward_ad=True, + check_batched_gradgrad=True, + sample_inputs_func=sample_inputs_linalg_cholesky_inverse, + gradcheck_wrapper=gradcheck_wrapper_triangular_input_real_positive_diagonal, + decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack], + skips=( + # Strides are not the same! Original strides were ((4, 2, 1),) and strides are now ((4, 1, 2),) + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'),)), + OpInfo('cholesky_solve', + op=torch.cholesky_solve, + dtypes=floating_and_complex_types(), + sample_inputs_func=sample_inputs_cholesky_solve, + check_batched_gradgrad=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + gradcheck_wrapper=lambda *args, **kwargs: gradcheck_wrapper_triangular_input(*args, idx=1, **kwargs), + decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack]), + OpInfo('chunk', + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + sample_inputs_func=sample_inputs_chunk, + reference_inputs_func=reference_inputs_chunk, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False), + OpInfo('unsafe_chunk', + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + sample_inputs_func=sample_inputs_chunk, + check_batched_forward_grad=False, + reference_inputs_func=reference_inputs_chunk, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False), + OpInfo('clone', + ref=np.copy, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + sample_inputs_func=sample_inputs_clone_contiguous, + reference_inputs_func=reference_inputs_clone_contiguous, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + skips=( + # TypeError: _copy_dispatcher() got an unexpected keyword argument 'memory_format' + # (NumPy reference needs to be extended with memory_format) + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_numpy_ref'), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_numpy_ref_mps'), + ),), + OpInfo('contiguous', + op=lambda x, *args, **kwargs: x.contiguous(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + sample_inputs_func=sample_inputs_clone_contiguous, + reference_inputs_func=reference_inputs_clone_contiguous, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + autodiff_fusible_nodes=['aten::contiguous'], + assert_jit_shape_analysis=True, + supports_out=False, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + )), + OpInfo('sum_to_size', + op=lambda x, *args, **kwargs: x.sum_to_size(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_sum_to_size, + error_inputs_func=error_inputs_sum_to_size, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float,)), + )), + OpInfo('clamp', + aliases=('clip',), + ref=_clamp_numpy, + dtypes=all_types_and(torch.bfloat16, torch.half), + sample_inputs_func=sample_inputs_clamp, + reference_inputs_func=partial(reference_inputs_elementwise_ternary, sample_inputs_func=sample_inputs_clamp), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # NNC appear to not handle boolean clamp + DecorateInfo(unittest.expectedFailure, + 'TestNNCOpInfo', + 'test_nnc_correctness', + dtypes=(torch.bool,)), + )), + UnaryUfuncInfo('positive', + ref=np.positive, + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + ), + UnaryUfuncInfo('conj', + ref=np.conj, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, + torch.half, torch.chalf), + supports_sparse=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + supports_out=False), + UnaryUfuncInfo('conj_physical', + decomp_aten_name='_conj_physical', + ref=np.conj, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, + torch.half, torch.chalf), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + skips=( + # RuntimeError: inputSet && outputSet + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":118, + # please report a bug to PyTorch. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32, )), + DecorateInfo(unittest.skip("Skipped! conj_physical_ not implemented for sparse"), + 'TestSparseUnaryUfuncs', 'test_inplace'), + )), + OpInfo('resolve_conj', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_view_as_real, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + ), + OpInfo('resolve_neg', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + sample_inputs_func=sample_inputs_view_as_real, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + ), + OpInfo('view_as_real', + dtypes=complex_types(), + supports_forward_ad=True, + supports_out=False, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_view_as_real, + test_conjugated_samples=False, + ), + OpInfo('view_as_complex', + dtypes=floating_types_and(torch.half), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + test_neg_view=False, + sample_inputs_func=sample_inputs_view_as_complex, + skips=( + # RuntimeError: Tensor must have a last dimension with stride 1 + DecorateInfo(unittest.expectedFailure, "TestCommon", "test_noncontiguous_samples"), + # RuntimeError: "eq_cpu" not implemented for 'ComplexHalf' + DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness', dtypes=(torch.half,)), + # RuntimeError: view size is not compatible with input tensor's size and stride + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides"), + )), + BinaryUfuncInfo('complex', + dtypes=floating_types_and(torch.half), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_rhs_python_scalar=False, + error_inputs_func=error_inputs_complex, + skips=( + # Tests don't account for complex's type promotion semantics + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out', device_type='mps'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_binary_ufuncs_mixed_dtype'),)), + BinaryUfuncInfo('copysign', + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + promotes_int_to_float=True, + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True), + OpInfo('corrcoef', + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_corrcoef, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + skips=( + # Issue with conj and torch dispatch, see https://github.com/pytorch/pytorch/issues/82479 + DecorateInfo( + unittest.skip("Skipped!"), + 'TestSchemaCheckModeOpInfo', + 'test_schema_correctness', + dtypes=(torch.complex64, torch.complex128)), + ), + supports_out=False), + UnaryUfuncInfo('cos', + ref=np.cos, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + handles_large_floats=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + decorators=(precisionOverride({torch.bfloat16: 1e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=(torch.cfloat, torch.cdouble,), device_type='cpu', active_if=IS_WINDOWS), + # This fails on CUDA but passes on ROCm + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=(torch.cdouble,), device_type='cuda'), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', + dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS), + # AssertionError: Tensor-likes are not close! + # Greatest absolute difference: nan at index (700,) (up to 1e-05 allowed) + # Greatest relative difference: nan at index (700,) (up to 0.001 allowed) + DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cuda', + dtypes=(torch.chalf,), active_if=IS_WINDOWS), + )), + UnaryUfuncInfo('cosh', + ref=np_unary_ufunc_integer_promotion_wrapper(np.cosh), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/48641 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.int8]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=[torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', + dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', + dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS), + # AssertionError: Tensor-likes are not close! + # Greatest absolute difference: nan at index (6000,) (up to 1e-05 allowed) + # Greatest relative difference: nan at index (6000,) (up to 0.001 allowed) + DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cuda', + dtypes=(torch.chalf,), active_if=IS_WINDOWS), + )), + OpInfo('cov', + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_cov, + error_inputs_func=error_inputs_cov, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # Issue with conj and torch dispatch, see https://github.com/pytorch/pytorch/issues/82479 + DecorateInfo( + unittest.skip("Skipped!"), + 'TestSchemaCheckModeOpInfo', + 'test_schema_correctness', + dtypes=(torch.complex64, torch.complex128)), + # Float did not match double + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients', 'test_fn_grad'), + # Jacobian mismatch + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients', 'test_fn_gradgrad'), + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', 'test_forward_mode_AD'), + DecorateInfo(unittest.skip("Barely fails"), 'TestFwdGradients', 'test_fn_fwgrad_bwgrad'), + # JIT test not working for tensor kwargs (https://github.com/pytorch/pytorch/issues/58507) + # RuntimeError: + # undefined value tensor: + # File "", line 3 + # def the_method(i0): + # return torch.cov(i0, correction=0, fweights=None, aweights=tensor([0.0518, 0.4681], dtype=torch.float32, requires_grad=True)) # noqa: B950 + # ~~~~~~ <--- HERE + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + )), + OpInfo('cross', + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_cross, + supports_fwgrad_bwgrad=True, + supports_out=True, + supports_forward_ad=True), + OpInfo('cumsum', + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # cumsum does not handle correctly out= dtypes + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + ), + sample_inputs_func=sample_inputs_cumulative_ops), + OpInfo('cumprod', + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # cumprod does not handle correctly out= dtypes + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + ), + # gradgradcheck fails in fast_mode=True: #56275 + sample_inputs_func=sample_inputs_cumprod, + gradcheck_fast_mode=False), + OpInfo('cummax', + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + sample_inputs_func=partial(sample_inputs_cumulative_ops, supports_dtype_kwargs=False), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + ), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL), + OpInfo('cummin', + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + sample_inputs_func=partial(sample_inputs_cumulative_ops, supports_dtype_kwargs=False), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + ), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL), + UnaryUfuncInfo('deg2rad', + ref=np.radians, + decorators=(precisionOverride({torch.bfloat16: 7e-1, + torch.float16: 7e-1}),), + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + promotes_int_to_float=True), + OpInfo('diff', + op=torch.diff, + # np.diff has np._NoValue as default values for prepend and append, compare_with_reference breaks if prepend/append + # are set as None when converting to numpy + ref=lambda input, n=1, dim=-1, prepend=np._NoValue, append=np._NoValue: ( + np.diff(input, n, dim, np._NoValue if prepend is None else prepend, np._NoValue if append is None else append) + ), + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_diff, + error_inputs_func=error_inputs_diff, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + skips=( + )), + BinaryUfuncInfo('div', + aliases=('divide',), + variant_test_name='no_rounding_mode', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + promotes_int_to_float=True, + supports_fwgrad_bwgrad=True, + supports_two_python_scalars=True, + assert_autodiffed=True, + rhs_make_tensor_kwargs=dict(exclude_zero=True),), + BinaryUfuncInfo('div', + aliases=('divide',), + variant_test_name='trunc_rounding', + dtypes=all_types_and(torch.half, torch.bfloat16), + sample_inputs_func=partial(sample_inputs_elementwise_binary, sample_kwargs=dict(rounding_mode="trunc")), + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_two_python_scalars=True, + assert_autodiffed=True, + rhs_make_tensor_kwargs=dict(exclude_zero=True), + decorators=( + # See https://github.com/pytorch/pytorch/issues/111126 + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion'), + ), + skips=( + # RuntimeError: MALFORMED INPUT: Unhandled node kind (in computeValue): aten::div + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_working'), + )), + BinaryUfuncInfo('div', + aliases=('divide',), + variant_test_name='floor_rounding', + dtypes=all_types_and(torch.half, torch.bfloat16), + sample_inputs_func=partial(sample_inputs_elementwise_binary, sample_kwargs=dict(rounding_mode="floor")), + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_two_python_scalars=True, + assert_autodiffed=True, + rhs_make_tensor_kwargs=dict(exclude_zero=True), + decorators=( + # See https://github.com/pytorch/pytorch/issues/111126 + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion'), + ), + skips=( + # RuntimeError: MALFORMED INPUT: Unhandled node kind (in computeValue): aten::div + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_working'), + )), + BinaryUfuncInfo('true_divide', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_forward_ad=True, + promotes_int_to_float=True, + supports_fwgrad_bwgrad=True, + supports_two_python_scalars=True, + rhs_make_tensor_kwargs=dict(exclude_zero=True)), + OpInfo('equal', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + ref=lambda input, other: (input == other).all(), + sample_inputs_func=sample_inputs_equal, + supports_autograd=False, + supports_tracing=False, + skips=( + )), + UnaryUfuncInfo('exp', + ref=np_unary_ufunc_integer_promotion_wrapper(np.exp), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/48010 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + ), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True), + OpInfo('expand', + op=lambda self, shape: self.expand(shape), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_expand, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + supports_out=False, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + )), + OpInfo('expand_as', + op=lambda self, other: self.expand_as(other), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_expand_as, + supports_out=False, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),), + ), + OpInfo('diag', + ref=np.diag, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_diag, + error_inputs_func=error_inputs_diag), + OpInfo('diag_embed', + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + supports_out=False, + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_diagonal_diag_embed, + reference_inputs_func=reference_inputs_diagonal_diag_embed, + error_inputs_func=error_inputs_diagonal_diag_embed), + OpInfo('diagonal', + aten_backward_name='diagonal_backward', + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_diagonal_diag_embed, + reference_inputs_func=reference_inputs_diagonal_diag_embed, + error_inputs_func=error_inputs_diagonal_diag_embed), + OpInfo('diagonal_copy', + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_diagonal_diag_embed, + reference_inputs_func=reference_inputs_diagonal_diag_embed, + error_inputs_func=error_inputs_diagonal_diag_embed), + OpInfo('diagonal_scatter', + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_diagonal_scatter), + BinaryUfuncInfo('eq', + ref=np.equal, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + always_returns_bool=True, + supports_autograd=False, + sample_inputs_func=sample_inputs_comparison_ops, + skips=( + )), + BinaryUfuncInfo('fmax', + op=torch.fmax, + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_rhs_python_scalar=False, + skips=( + # RuntimeError: "max_elementwise_cuda" not implemented for 'ComplexFloat' + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_type_promotion'), + )), + BinaryUfuncInfo('fmin', + op=torch.fmin, + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_rhs_python_scalar=False, + skips=( + # RuntimeError: "min_elementwise_cuda" not implemented for 'ComplexFloat' + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_type_promotion'), + )), + BinaryUfuncInfo('fmod', + ref=np.fmod, + dtypes=all_types_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16), + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=None, + rhs_make_tensor_kwargs={'exclude_zero': True}, + decorators=( + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_contig_vs_every_other', + dtypes=(torch.bfloat16,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_non_contig', + dtypes=(torch.bfloat16,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics', + dtypes=(torch.bfloat16,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics_small_values', + dtypes=(torch.uint8,)), + )), + BinaryUfuncInfo('remainder', + ref=np.remainder, + dtypes=all_types_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16), + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=None, + operator_variant=operator.mod, + inplace_operator_variant=operator.imod, + supports_one_python_scalar=True, + rhs_make_tensor_kwargs={'exclude_zero': True}, + decorators=( + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_contig_vs_every_other', + dtypes=(torch.bfloat16,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_non_contig', + dtypes=(torch.bfloat16,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics', + dtypes=(torch.bfloat16,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics_small_values', + dtypes=(torch.uint8,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', + 'test_nnc_correctness', + dtypes=(torch.bfloat16,)), + # Fails on XLA + # False is not true : Tensors failed to compare as equal! + # Attempted to compare equality of tensors with different dtypes + DecorateInfo(unittest.skip("Skipped!"), 'TestOpInfo', device_type='xla', dtypes=(torch.long,)), + )), + UnaryUfuncInfo('frac', + ref=lambda x: np.modf(x)[0], + dtypes=floating_types_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + dtypes=(torch.bfloat16, torch.float16, torch.float32, torch.float64)), + # 76047 + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness', + dtypes=(torch.bfloat16, torch.float32, torch.float64)), + )), + OpInfo('stft', + decorators=[ + skipCPUIfNoFFT, + DecorateInfo(unittest.skip("Skipped! stft does not match the native function"), + 'TestJit', 'test_variant_consistency_jit'), + ], + dtypes=floating_and_complex_types(), + sample_inputs_func=sample_inputs_stft, + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_forward_grad=False, + check_batched_grad=False, + check_batched_gradgrad=False, + supports_out=False, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + ), + OpInfo('istft', + dtypes=complex_types(), + sample_inputs_func=sample_inputs_istft, + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_forward_grad=False, + check_batched_grad=False, + check_batched_gradgrad=False, + supports_out=False, + decorators=( + DecorateInfo(unittest.skip("Skipped! istft does not match the native function"), + 'TestJit', 'test_variant_consistency_jit'), + ), + skips=( + skipCPUIfNoFFT, + # gradcheck fails on ROCm (gh-68429) + # grad is computed improperly (probably for weights tensor) + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients', 'test_fn_grad'), + # Pre-existing condition (calls .item); needs to be fixed + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'), + )), + UnaryUfuncInfo('floor', + ref=np.floor, + dtypes=all_types_and(torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + DecorateInfo(unittest.expectedFailure, + 'TestNNCOpInfo', + 'test_nnc_correctness', + dtypes=tuple(t for t in integral_types() if t != torch.uint8)), + ), + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + assert_autodiffed=True), + OpInfo('flip', + op=torch.flip, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_flip, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False), + OpInfo('fliplr', + op=torch.fliplr, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_fliplr_flipud, + error_inputs_func=error_inputs_fliplr, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False), + OpInfo('flipud', + op=torch.flipud, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_fliplr_flipud, + error_inputs_func=error_inputs_flipud, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False), + OpInfo('sparse.sampled_addmm', + dtypes=floating_and_complex_types(), + supports_autograd=True, + sample_inputs_func=sample_inputs_sparse_sampled_addmm, + decorators=[ + skipCUDAIf(not ((_get_torch_cuda_version() >= (11, 3)) + or (_get_torch_rocm_version() >= (5, 2))), + "cusparseSDDMM was added in 11.2.1"), + skipCPUIfNoMklSparse, ], + skips=( + # NotImplementedError: Tensors of type SparseCsrTensorImpl do not have is_contiguous + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_noncontiguous_samples'), + # RuntimeError: Sparse CSR tensors do not have strides. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'), + DecorateInfo(unittest.skip("Skipped!"), 'TestTags', 'test_tags'), + # RuntimeError: sampled_addmm: Expected result to have sparse csr layout, but got Strided + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out_warning'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_operator'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_backward'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_conj_view'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # RuntimeError: unsupported memory format option Preserve + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # RuntimeError: sparse_mask does not support automatic differentiation for outputs with complex dtype + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_fn_fwgrad_bwgrad'), + # ValueError: Sparse output is not supported at gradcheck yet. Please call to_dense(masked_grad=...) ... + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_fn_grad'), + # RuntimeError: sparse_mask does not support automatic differentiation for outputs with complex dtype. + # RuntimeError: Sparse CSR tensors do not have is_contiguous + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_fn_gradgrad'), + # ValueError: Sparse output is not supported at gradcheck yet. Please call to_dense(masked_grad=...) ... + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_forward_mode_AD'), + )), + OpInfo('sparse.mm', + dtypes=floating_types_and(torch.bfloat16), + variant_test_name='reduce', + supports_autograd=True, + supports_out=False, + supports_gradgrad=False, + supports_forward_ad=False, + sample_inputs_func=sample_inputs_sparse_mm_reduce, + decorators=[onlyCPU], + skips=( + # NotImplementedError: Tensors of type SparseCsrTensorImpl do not have is_contiguous + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_noncontiguous_samples'), + # RuntimeError: Sparse CSR tensors do not have strides. + DecorateInfo(unittest.skip("Skipped!"), 'TestTags', 'test_tags'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_operator'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_backward'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_conj_view'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # RuntimeError: unsupported memory format option Preserve + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # ValueError: Sparse output is not supported at gradcheck yet. Please call to_dense(masked_grad=...) ... + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_fn_fwgrad_bwgrad'), + # RuntimeError: Sparse CSR tensors do not have is_contiguou + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_fn_grad'), + # ValueError: Sparse output is not supported at gradcheck yet. Please call to_dense(masked_grad=...) ... + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_fn_gradgrad'), + # RuntimeError: Sparse CSR tensors do not have strides + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_forward_mode_AD'), + # ValueError: Sparse output is not supported at gradcheck yet. Please call to_dense(masked_grad=...) ... + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_fn_fail_gradgrad'), + )), + UnaryUfuncInfo('i0', + ref=np_unary_ufunc_integer_promotion_wrapper( + scipy.special.i0) if TEST_SCIPY else None, + aliases=('special.i0',), + decorators=(precisionOverride({torch.bfloat16: 3e-1, + torch.float16: 5e-1}),), + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + backward_dtypes=floating_types(), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + sample_inputs_func=sample_inputs_i0_i1, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=(torch.int8,)), + )), + BinaryUfuncInfo('floor_divide', + ref=_floor_divide_np, + dtypes=all_types_and(torch.half, torch.bfloat16), + supports_autograd=False, + rhs_make_tensor_kwargs=dict(exclude_zero=True), + supports_two_python_scalars=True, + skips=( + # AssertionError: Results of original model and exported/imported version of model differed + DecorateInfo(unittest.skip('Skipped!'), 'TestJit', 'test_variant_consistency_jit'), + # bfloat16 floor_divide compared with a float32 reference works inconsistently + DecorateInfo(unittest.skip('Skipped!'), 'TestBinaryUfuncs', + dtypes=(torch.bfloat16,)), + # int8 floor divide has different results for -128 // -1 vs. NumPy + DecorateInfo(unittest.skip('Skipped!'), 'TestBinaryUfuncs', 'test_reference_numerics_small_values', + dtypes=(torch.int8,)), + # The following tests fails on some jobs + DecorateInfo(unittest.skip('Skipped!'), 'TestBinaryUfuncs', 'test_reference_numerics_extremal_values', + dtypes=(torch.float16,)), + DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-3, rtol=5e-3)}), + 'TestBinaryUfuncs', 'test_reference_numerics'), + )), + UnaryUfuncInfo('frexp', + op=torch.frexp, + ref=np.frexp, + dtypes=floating_types_and(torch.half, torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half), + # skip testing torch.frexp as it is not supported by ROCm platform yet + decorators=[], + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # skips below tests as torch.frexp returns tuple-like (mantissa, exponent) as outputs, + # while theses tests currently requires output to a single tensor. + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_batch_vs_slicing'), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_contig_vs_every_other'), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_contig_vs_transposed'), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_non_contig_expand'), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_variant_consistency'), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_out_arg_all_dtypes'), + + # skips test_reference_numerics due to error in Windows CI. + # The np.frexp returns exponent as np.intc dtype on Windows platform, + # and np.intc does not have the correspond torch dtype + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small', + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + active_if=IS_WINDOWS), + )), + UnaryUfuncInfo('log1p', + ref=np.log1p, + aliases=('special.log1p',), + domain=(-1, None), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + decorators=(precisionOverride({torch.bfloat16: 1e-1}),), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + assert_autodiffed=True, + promotes_int_to_float=True), + BinaryUfuncInfo('ge', + ref=np.greater_equal, + aliases=('greater_equal',), + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16), + always_returns_bool=True, + supports_autograd=False, + skips=( + )), + OpInfo('geqrf', + dtypes=floating_and_complex_types(), + sample_inputs_func=sample_inputs_linalg_qr_geqrf, + decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack], + supports_autograd=False, + skips=( + # FIXME: geqrf can't forward with complex inputs that require grad + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_dtypes'), + # Strides are not the same! + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + )), + BinaryUfuncInfo('gt', + ref=np.greater, + aliases=('greater',), + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16), + always_returns_bool=True, + supports_autograd=False, + skips=( + )), + UnaryUfuncInfo('imag', + ref=np.imag, + dtypes=complex_types_and(torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/issues/66357 + # RuntimeError: view_as_real doesn't work on unresolved conjugated tensors. + check_batched_forward_grad=False, + skips=( + # Skip since real and imag don't have out variants. + DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_out_arg_all_dtypes'), + )), + OpInfo('gradient', + dtypes=floating_and_complex_types_and(torch.int8, torch.int16, + torch.int32, torch.int64, + torch.bfloat16, torch.half), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # following tests give a runtime error with undefined value tensor + # see discussion : https://github.com/pytorch/pytorch/issues/56660 + # RuntimeError: + # Arguments for call are not valid. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32, torch.complex64)), # noqa: B950 + DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCudaFuserOpInfo'), + ), + supports_inplace_autograd=False, + sample_inputs_func=sample_inputs_gradient, + error_inputs_func=error_inputs_gradient), + OpInfo('isin', + dtypes=all_types(), + dtypesIfCUDA=all_types_and(torch.half), + supports_autograd=False, + sample_inputs_func=sample_inputs_isin), + OpInfo('kthvalue', + dtypes=all_types_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=all_types_and(torch.float16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_kthvalue, + error_inputs_func=error_inputs_kthvalue), + BinaryUfuncInfo('le', + ref=np.less_equal, + aliases=('less_equal',), + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16), + always_returns_bool=True, + supports_autograd=False, + skips=( + )), + OpInfo('linspace', + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16), + is_factory_function=True, + supports_out=True, + supports_autograd=False, + error_inputs_func=error_inputs_linspace, + sample_inputs_func=sample_inputs_linspace, + skips=( + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + + # Same failure as arange: cannot find linspace in captured graph + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)), + + # UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + # UserWarning: CUDA caching allocator reports a memory leak not verified by the driver API + # in __main__.TestJitCUDA.test_variant_consistency_jit_logspace_cuda_complex64! + # Caching allocator allocated memory was 0 and is now reported as 307200 on device 0. + # CUDA driver allocated memory was 1254555648 and is now 1242955776. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', + dtypes=(torch.cfloat,), device_type="cuda"), + )), + OpInfo('linspace', + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16), + is_factory_function=True, + supports_out=True, + supports_autograd=False, + error_inputs_func=error_inputs_linspace, + sample_inputs_func=sample_inputs_linspace_tensor_overload, + variant_test_name="tensor_overload", + skips=( + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # TypeError: 'int' object is not subscriptable + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + + # Same failure as arange: cannot find linspace in captured graph + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)), + + # UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + # UserWarning: CUDA caching allocator reports a memory leak not verified by the driver API + # in __main__.TestJitCUDA.test_variant_consistency_jit_logspace_cuda_complex64! + # Caching allocator allocated memory was 0 and is now reported as 307200 on device 0. + # CUDA driver allocated memory was 1254555648 and is now 1242955776. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', + dtypes=(torch.cfloat,), device_type="cuda"), + )), + OpInfo('logspace', + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16), + is_factory_function=True, + supports_out=True, + supports_autograd=False, + error_inputs_func=error_inputs_linspace, + sample_inputs_func=sample_inputs_logspace, + skips=( + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + # Same failure as arange: cannot find linspace in captured graph + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)), + + # UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + + # Off-by-one issue when casting floats to ints + DecorateInfo(unittest.expectedFailure, 'TestDecomp', 'test_quick', + dtypes=(torch.int16, torch.int32, torch.int64), device_type="cuda"), + DecorateInfo(unittest.expectedFailure, 'TestDecomp', 'test_comprehensive', + dtypes=(torch.int16, torch.int32, torch.int64), device_type="cuda"), + # UserWarning: CUDA caching allocator reports a memory leak not verified by the driver API + # in __main__.TestJitCUDA.test_variant_consistency_jit_logspace_cuda_complex64! + # Caching allocator allocated memory was 0 and is now reported as 307200 on device 0. + # CUDA driver allocated memory was 1254555648 and is now 1242955776. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', + dtypes=(torch.cfloat,), device_type="cuda"), + )), + OpInfo('logspace', + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16), + is_factory_function=True, + supports_out=True, + supports_autograd=False, + error_inputs_func=error_inputs_linspace, + sample_inputs_func=sample_inputs_logspace_tensor_overload, + variant_test_name="tensor_overload", + skips=( + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # TypeError: 'int' object is not subscriptable + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + # Same failure as arange: cannot find linspace in captured graph + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)), + + # UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + + # Off-by-one issue when casting floats to ints + DecorateInfo(unittest.expectedFailure, 'TestDecomp', 'test_quick', + dtypes=(torch.int16, torch.int32, torch.int64), device_type="cuda"), + DecorateInfo(unittest.expectedFailure, 'TestDecomp', 'test_comprehensive', + dtypes=(torch.int16, torch.int32, torch.int64), device_type="cuda"), + # UserWarning: CUDA caching allocator reports a memory leak not verified by the driver API + # in __main__.TestJitCUDA.test_variant_consistency_jit_logspace_cuda_complex64! + # Caching allocator allocated memory was 0 and is now reported as 307200 on device 0. + # CUDA driver allocated memory was 1254555648 and is now 1242955776. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', + dtypes=(torch.cfloat,), device_type="cuda"), + )), + UnaryUfuncInfo('log', + ref=np.log, + domain=(0, None), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + backward_dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16, torch.chalf), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + decorators=(precisionOverride({torch.bfloat16: 5e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=IS_WINDOWS), + ), + # log(z)->-inf for |z|->0 + reference_numerics_filter=NumericsFilter(condition=lambda x: torch.abs(x) < 0.1, safe_val=1)), + UnaryUfuncInfo('log10', + ref=np.log10, + domain=(0, None), + decorators=(precisionOverride({torch.bfloat16: 5e-2}),), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=IS_WINDOWS), + ), + # log10(z)->-inf for |z|->0 + reference_numerics_filter=NumericsFilter(condition=lambda x: torch.abs(x) < 0.1, safe_val=1)), + UnaryUfuncInfo('log2', + ref=np.log2, + domain=(0, None), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + decorators=(precisionOverride({torch.bfloat16: 1e-1}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + dtypes=[torch.cfloat, torch.cdouble]), + ), + # log2(z)->-inf for |z|->0 + reference_numerics_filter=NumericsFilter(condition=lambda x: torch.abs(x) < 0.1, safe_val=1)), + BinaryUfuncInfo('ldexp', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_inplace_autograd=False, + promotes_int_to_float=True, + supports_out=True, + supports_rhs_python_scalar=False, + skips=( + # RuntimeError: mul(): functions with out=... arguments don't support + # automatic differentiation, but one of the arguments requires grad + # https://github.com/pytorch/pytorch/issues/68966 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + ), + decorators=[ + DecorateInfo( + toleranceOverride({ + torch.complex64: tol(atol=1e-05, rtol=1e-05) + }), + 'TestCommon', device_type='cpu', + ), + ], ), + BinaryUfuncInfo('logaddexp', + dtypes=floating_and_complex_types_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16), + dtypesIfROCM=floating_types_and(torch.bfloat16, torch.float16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_rhs_python_scalar=False, + skips=( + # TODO: FIXME: RuntimeError: not implemented for 'ComplexFloat' + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion', device_type='cuda'), + )), + OpInfo('logaddexp2', + dtypes=floating_types_and(torch.bfloat16, torch.half), + dtypesIfCUDA=floating_types_and(torch.bfloat16), + dtypesIfROCM=floating_types_and(torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_logaddexp), + UnaryUfuncInfo('logical_not', + ref=np.logical_not, + decorators=(precisionOverride({torch.bfloat16: 7e-1, + torch.float16: 5e-1}),), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_autograd=False, + skips=( + # The function variant always returns BoolTensor + # while the inplace variant preserves the input dtype. + # >>> t = torch.randn(3) + # >>> torch.logical_not(t) + # tensor([False, False, False]) + # >>> torch.logical_not(t).dtype + # torch.bool + # >>> t.logical_not_().dtype + # torch.float32 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_variant_consistency', + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16)), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager', + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16)), + )), + BinaryUfuncInfo('lt', + ref=np.less, + aliases=('less',), + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16), + always_returns_bool=True, + supports_autograd=False, + skips=( + )), + OpInfo('lu_unpack', + op=torch.lu_unpack, + dtypes=floating_and_complex_types(), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=(skipCPUIfNoLapack,), + sample_inputs_func=sample_inputs_lu_unpack), + OpInfo('lu', + op=torch.lu, + dtypes=floating_and_complex_types(), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_lu, + decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack], + skips=( + # we skip jit tests because `lu` is a torch function + # RuntimeError: + # 'Tensor (inferred)' object has no attribute or method 'lu'.: + # File "", line 3 + # def the_method(i0): + # return i0.lu(True, True) + # ~~~~~ <--- HERE + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # RuntimeError not raised: Expected RuntimeError when calling with input.device=cpu and out.device=cuda + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + # UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + )), + OpInfo('lu_solve', + op=torch.lu_solve, + dtypes=floating_and_complex_types(), + supports_forward_ad=True, + # See https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_lu_solve, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out', + device_type='mps', dtypes=[torch.float32]), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager', + device_type='mps', dtypes=[torch.float32]), + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', + device_type='mps', dtypes=[torch.float32]), + DecorateInfo(unittest.skip("Tests different backward paths"), + "TestCommon", "test_floating_inputs_are_differentiable"),), + decorators=[skipCPUIfNoLapack, skipCUDAIfNoMagmaAndNoCusolver]), + OpInfo('masked_fill', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + sample_inputs_func=sample_inputs_masked_fill, + error_inputs_func=error_inputs_masked_fill, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_forward_grad=False, + supports_out=False), + OpInfo('masked_scatter', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_masked_scatter, + error_inputs_func=error_inputs_masked_scatter, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + supports_out=False, + skips=( + )), + OpInfo('masked_select', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_masked_select, + error_inputs_func=error_inputs_masked_select, + skips=( + # Compiler issue on ROCm. Might need to skip until ROCm5.5 + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_non_standard_bool_values', + dtypes=[torch.bool], active_if=TEST_WITH_ROCM), + )), + OpInfo('matrix_exp', + dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16), + aliases=('linalg.matrix_exp',), + sample_inputs_func=sample_inputs_matrix_exp, + # Needs to construct a 2nx2n matrix by copy_ ing into it + check_batched_grad=False, + check_batched_gradgrad=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + skips=( + # mexp does not support bf16 and fp16 + DecorateInfo(unittest.skip('Skipped!'), 'TestInductorOpInfo', 'test_comprehensive', + dtypes=[torch.half], device_type="cpu"), + ), + supports_out=False, + ), + OpInfo('matmul', + aliases=('linalg.matmul',), + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, + *[torch.bfloat16] + if SM53OrLater or TEST_WITH_ROCM else []), + assert_autodiffed=True, + assert_jit_shape_analysis=True, + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_forward_grad=False, + sample_inputs_func=partial(sample_inputs_matmul, is_rmatmul=False), + decorators=[ + # NVIDIA only assures that bfloat16 is supported by bmm if SM >= 5.3 + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes', device_type='cuda', active_if=not SM53OrLater), + # ROCm intermittently fails the test with standard atol/rtol + DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-4, rtol=0)}), + 'TestCommon', 'test_noncontiguous_samples', device_type='cuda', + active_if=TEST_WITH_ROCM), + DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-4, rtol=0)}), + 'TestCommon', 'test_out', device_type='cuda', + active_if=TEST_WITH_ROCM), + # mv for the sample with shapes (S, S, M, M), (M,) has some variance in the + # backward on CPU + DecorateInfo(toleranceOverride({torch.float32: tol(atol=0, rtol=1e-5)}), + 'TestCommon', 'test_noncontiguous_samples', + device_type='cpu'), + DecorateInfo( + toleranceOverride({ + torch.float32: tol(atol=1e-5, rtol=1e-5), + torch.complex64: tol(atol=1e-5, rtol=1e-5), + }), + "TestDecomp", "test_comprehensive", device_type="cuda", + ), + ], + skips=( + # Strides are not the same! + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + # https://github.com/pytorch/pytorch/issues/67470 + DecorateInfo(unittest.skip("67470!"), + 'TestCommon', 'test_noncontiguous_samples', + device_type='cpu', dtypes=(torch.long,)), + # AssertionError: False is not true : Tensors failed to compare as equal! + DecorateInfo(unittest.skip("Skipped!"), 'TestOpInfo', + device_type='xla', dtypes=(torch.long,)), + # https://github.com/pytorch/pytorch/issues/71774 + DecorateInfo(unittest.skip('Skipped!'), 'TestNNCOpInfo', 'test_nnc_correctness', + device_type='cpu', dtypes=(torch.long,)), + )), + OpInfo('max', + variant_test_name='reduction_with_dim', + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + sample_inputs_func=sample_inputs_max_min_reduction_with_dim, + supports_fwgrad_bwgrad=True, + skips=( + ), + supports_forward_ad=True), + OpInfo('max', + variant_test_name='reduction_no_dim', + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + supports_out=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_max_min_reduction_no_dim, + skips=( + )), + OpInfo('median', + dtypes=all_types_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=all_types_and(torch.float16), + # TODO: some signatures of median do support out + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + error_inputs_func=error_inputs_median, + sample_inputs_func=partial(sample_inputs_reduction, supports_multiple_dims=False)), + OpInfo('nanmedian', + dtypes=all_types_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=all_types_and(torch.float16), + # TODO: some signatures of nanmedian do support out + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=partial(sample_inputs_reduction, supports_multiple_dims=False)), + OpInfo('var_mean', + dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_std_var, + # TODO: some signatures of var_mean do support out + supports_out=False, + supports_forward_ad=True, + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + decorators=( + DecorateInfo(toleranceOverride({torch.float64: tol(atol=2e-7, rtol=2e-7)}), + "TestDecomp", "test_comprehensive", device_type="cuda"), + )), + OpInfo('var_mean', + variant_test_name='unbiased', + dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_std_var_unbiased, + # TODO: some signatures of var_mean do support out + supports_out=False, + supports_forward_ad=True, + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + decorators=( + DecorateInfo(toleranceOverride({torch.float64: tol(atol=2e-7, rtol=2e-7)}), + "TestDecomp", "test_comprehensive", device_type="cuda"), + )), + OpInfo('std_mean', + dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_std_var, + # TODO: some signatures of std_mean do support out + supports_out=False, + supports_forward_ad=True, + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + decorators=( + DecorateInfo(toleranceOverride({torch.float64: tol(atol=2e-7, rtol=2e-7)}), + "TestDecomp", "test_comprehensive", device_type="cuda"), + )), + OpInfo('std_mean', + variant_test_name='unbiased', + dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_std_var_unbiased, + # TODO: some signatures of var_mean do support out + supports_out=False, + supports_forward_ad=True, + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + decorators=( + DecorateInfo(toleranceOverride({torch.float64: tol(atol=2e-7, rtol=2e-7)}), + "TestDecomp", "test_comprehensive", device_type="cuda"), + )), + OpInfo('meshgrid', + variant_test_name='variadic_tensors', + ref=np.meshgrid, + dtypes=all_types_and_complex_and(torch.bfloat16, torch.bool, torch.float16), + sample_inputs_func=partial(sample_inputs_meshgrid, variant='variadic'), + skips=[ + # JIT does not support variadic tensors. + # RuntimeError: input->type()->kind() == TypeKind::OptionalType + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252, + # please report a bug to PyTorch. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # meshgrid is defined in torch.functional to take a + # variadic list of tensors. Variadic parameters are not + # compatible with the normalize operator tests. + DecorateInfo(unittest.skip("Skipped!"), 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # Skip operator schema test because this is a functional and not an operator + DecorateInfo(unittest.skip("Skipped!"), 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'), + ], + supports_out=False, + supports_fwgrad_bwgrad=True, + supports_forward_ad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False,), + OpInfo('meshgrid', + variant_test_name='list_of_tensors', + # Unlike the variant above, we do not use np.meshgrid as a + # ref since it does not officially support list of numpy + # arrays. + dtypes=all_types_and_complex_and(torch.bfloat16, torch.bool, torch.float16), + sample_inputs_func=partial(sample_inputs_meshgrid, variant='list'), + skips=[ + # meshgrid is defined in torch.functional to take a + # variadic list of tensors. Variadic parameters are not + # compatible with the normalize operator tests. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + ], + assert_autodiffed=True, + supports_out=False, + autodiff_nonfusible_nodes=[], + supports_fwgrad_bwgrad=True, + supports_forward_ad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False,), + OpInfo('min', + variant_test_name='reduction_with_dim', + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + sample_inputs_func=sample_inputs_max_min_reduction_with_dim, + supports_fwgrad_bwgrad=True, + supports_forward_ad=True, + skips=( + )), + OpInfo('min', + variant_test_name='reduction_no_dim', + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + supports_out=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_max_min_reduction_no_dim, + skips=( + )), + OpInfo('quantile', + dtypes=floating_types(), + sample_inputs_func=sample_inputs_reduction_quantile, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/issues/66357 + # Relies on copy_ to broadcast, but the forward AD path calls broadcast_to which + # does not have a batching rule in core + check_batched_forward_grad=False), + OpInfo('nanquantile', + dtypes=floating_types(), + sample_inputs_func=sample_inputs_reduction_quantile, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/issues/66357 + # Relies on copy_ to broadcast, but the forward AD path calls broadcast_to which + # does not have a batching rule in core + check_batched_forward_grad=False), + BinaryUfuncInfo( + 'max', + aliases=('maximum',), + variant_test_name='binary', + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=True, + ref=np.maximum, + supports_rhs_python_scalar=False, + skips=( + # Incorrectly attempts to use a scalar for the second argument + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_jit_alias_remapping'), + # TODO: FIXME: RuntimeError: "max_elementwise_cuda" not implemented for 'ComplexFloat' + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion', device_type='cuda'), + )), + BinaryUfuncInfo( + 'maximum', + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + ref=np.maximum, + supports_rhs_python_scalar=False, + skips=( + # TODO: FIXME: RuntimeError: "max_elementwise_cuda" not implemented for 'ComplexFloat' + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion', device_type='cuda'), + )), + BinaryUfuncInfo( + 'min', + aliases=('minimum',), + variant_test_name='binary', + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=True, + ref=np.minimum, + supports_rhs_python_scalar=False, + skips=( + # Incorrectly attempts to use a scalar for the second argument + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_jit_alias_remapping'), + # TODO: FIXME: RuntimeError: "min_elementwise_cuda" not implemented for 'ComplexFloat' + DecorateInfo(unittest.expectedFailure, + 'TestBinaryUfuncs', + 'test_type_promotion', + device_type='cuda'), + )), + BinaryUfuncInfo( + 'minimum', + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + ref=np.minimum, + supports_rhs_python_scalar=False, + skips=( + # TODO: FIXME: RuntimeError: "min_elementwise_cuda" not implemented for 'ComplexFloat' + DecorateInfo(unittest.expectedFailure, + 'TestBinaryUfuncs', + 'test_type_promotion', + device_type='cuda'), + ), + ), + BinaryUfuncInfo('logical_and', + ref=np.logical_and, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_autograd=False, + always_returns_bool=True, + supports_rhs_python_scalar=False), + BinaryUfuncInfo('logical_or', + ref=np.logical_or, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_autograd=False, + always_returns_bool=True, + supports_rhs_python_scalar=False), + BinaryUfuncInfo('logical_xor', + ref=np.logical_xor, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_autograd=False, + always_returns_bool=True, + supports_rhs_python_scalar=False, + skips=( + )), + BinaryUfuncInfo('bitwise_and', + ref=np.bitwise_and, + dtypes=integral_types_and(torch.bool), + operator_variant=operator.and_, + inplace_operator_variant=operator.iand, + supports_autograd=False, + supports_one_python_scalar=True, + skips=( + # RuntimeError: "bitwise_and_cuda" not implemented for 'Half' + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', + 'test_type_promotion', device_type='cuda'), + )), + BinaryUfuncInfo('bitwise_or', + ref=np.bitwise_or, + dtypes=integral_types_and(torch.bool), + operator_variant=operator.or_, + inplace_operator_variant=operator.ior, + supports_autograd=False, + supports_one_python_scalar=True, + skips=( + # TODO: FIXME: RuntimeError: "bitwise_or_cuda" not implemented for 'Half' + DecorateInfo(unittest.expectedFailure, + 'TestBinaryUfuncs', + 'test_type_promotion', + device_type='cuda'), + )), + BinaryUfuncInfo('bitwise_xor', + ref=np.bitwise_xor, + dtypes=integral_types_and(torch.bool), + operator_variant=operator.xor, + inplace_operator_variant=operator.ixor, + supports_autograd=False, + supports_one_python_scalar=True, + skips=( + # TODO: FIXME: RuntimeError: "bitwise_xor_cuda" not implemented for 'Half' + DecorateInfo(unittest.expectedFailure, + 'TestBinaryUfuncs', + 'test_type_promotion', + device_type='cuda'), + )), + BinaryUfuncInfo('heaviside', + ref=lambda a, b: ( + # necessary because np.heaviside incorrectly returns float64 when passed args of dtype int64 + np.int64(np.heaviside(a, b)) if a.dtype == np.int64 and b.dtype == np.int64 else np.heaviside(a, b) + ), + dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16), + supports_autograd=False, + supports_rhs_python_scalar=False, + skips=( + # RuntimeError: heaviside is not yet implemented for tensors with different dtypes. + DecorateInfo(unittest.expectedFailure, + 'TestBinaryUfuncs', + 'test_type_promotion'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_binary_ufuncs_mixed_dtype'), + # PyTorch's heaviside does not appear to propagate NaNs + DecorateInfo(unittest.skip("Skipped!"), + 'TestBinaryUfuncs', + 'test_reference_numerics_extremal_values'), + )), + BinaryUfuncInfo('lcm', + ref=np.lcm, + dtypes=integral_types_and(), + supports_autograd=False, + supports_rhs_python_scalar=False), + BinaryUfuncInfo('gcd', + ref=np.gcd, + dtypes=integral_types_and(), + supports_autograd=False, + supports_rhs_python_scalar=False, + skips=( + DecorateInfo(unittest.expectedFailure, + 'TestBinaryUfuncs', + 'test_reference_numerics_small_values', + dtypes=(torch.int8,)),)), + BinaryUfuncInfo('isclose', + ref=np.isclose, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_isclose, + error_inputs_func=error_inputs_isclose, + supports_autograd=False, + supports_out=False, + supports_rhs_python_scalar=False, + skips=( + DecorateInfo(unittest.expectedFailure, + 'TestCommon', + 'test_numpy_refs', dtypes=(torch.complex128,)), + # RuntimeError: Short did not match Int + DecorateInfo(unittest.expectedFailure, + 'TestBinaryUfuncs', + 'test_type_promotion'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_binary_ufuncs_mixed_dtype'), + DecorateInfo(unittest.skip("Skipped!"), + 'TestBinaryUfuncs', + 'test_reference_numerics_extremal_values'), + )), + # `softmax` supports different dtypes based on whether `dtype` argument, + # is passed or not. Hence two OpInfo entries, one with dtype and other without. + # https://github.com/pytorch/pytorch/issues/68752 + OpInfo('softmax', + aliases=('special.softmax', 'nn.functional.softmax',), + aten_name='softmax', + aten_backward_name='_softmax_backward_data', + dtypes=floating_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_softmax_variant, + assert_jit_shape_analysis=True, + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=True), + OpInfo('softmax', + aliases=('special.softmax', 'nn.functional.softmax',), + variant_test_name="with_dtype", + aten_name='softmax', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + sample_inputs_func=partial(sample_inputs_softmax_variant, with_dtype=True), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=True), + OpInfo( + '_softmax_backward_data', + op=torch.ops.aten._softmax_backward_data, + aten_name='_softmax_backward_data', + dtypes=floating_types_and(torch.bfloat16, torch.float16), + sample_inputs_func=sample_inputs_softmax_backward_data, + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_noncontiguous_samples', device_type='cpu'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)), + ), + ), + # `softmin` supports different dtypes based on whether `dtype` argument, + # is passed or not. Hence two OpInfo entries, one with dtype and other without. + # https://github.com/pytorch/pytorch/issues/68752 + OpInfo('nn.functional.softmin', + aten_name='softmin', + dtypes=floating_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_softmax_variant, + assert_jit_shape_analysis=False, + assert_autodiffed=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False), + OpInfo('nn.functional.softmin', + variant_test_name="with_dtype", + aten_name='softmin', + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + sample_inputs_func=partial(sample_inputs_softmax_variant, with_dtype=True), + assert_autodiffed=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False), + OpInfo( + "nn.functional.cross_entropy", + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_cross_entropy, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + decorators=( + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1e-5, rtol=1e-3)}), + "TestJit", + "test_variant_consistency_jit", + device_type="cpu", + ), + ), + skips=( + # AssertionError: False is not true : Scalars failed to compare as equal! 0 != 1536 + # test_ops.TestJitCUDA.test_variant_consistency_jit_nn_functional_cross_entropy_cuda_float32 leaked + # 1536 bytes CUDA memory on device 0 + DecorateInfo( + unittest.expectedFailure, + "TestJit", + "test_variant_consistency_jit", + device_type="cuda", + ), + ) + ), + OpInfo('nn.functional.normalize', + dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_normalize, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True), + OpInfo('aminmax', + ref=lambda x, dim=None, keepdim=False: (np.amin(x, axis=dim, keepdims=keepdim), np.amax(x, axis=dim, keepdims=keepdim)), + dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16), + decorators=(onlyNativeDeviceTypes,), + supports_autograd=False, + sample_inputs_func=sample_inputs_aminmax, + error_inputs_func=error_inputs_aminmax_amax_amin), + OpInfo('as_strided', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # vmap does not support inplace views + check_inplace_batched_forward_grad=False, + sample_inputs_func=sample_inputs_as_strided, + skips=( + # Note: This xfail is fine -- it's inherent to how as_strided works + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_noncontiguous_samples'), + # AssertionError: False is not true : Scalars failed to compare as equal! + DecorateInfo(unittest.skip("Errors when storage_offset is included"), + 'TestCommon', 'test_variant_consistency_eager'), + # Not close + DecorateInfo(unittest.skip("Errors when storage_offset is included"), + 'TestCommon', 'test_complex_half_reference_testing'), + # Not close + DecorateInfo(unittest.skip("Errors when storage_offset is included"), 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.skip("Errors when storage_offset is included"), 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.skip("Numerous errors"), 'TestFwdGradients'), + DecorateInfo(unittest.skip("Numerous errors"), 'TestBwdGradients'), + )), + OpInfo('as_strided', + variant_test_name='partial_views', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # vmap does not support inplace views + check_inplace_batched_forward_grad=False, + sample_inputs_func=sample_inputs_as_strided_partial_views, + skips=( + # Note: This xfail is fine -- it's inherent to how as_strided works + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_noncontiguous_samples'), + # RuntimeError: This operator is not Composite Compliant: the + # storage_offset of the tensor was modified directly without + # going through the PyTorch dispatcher. + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'), + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'), + + # These fail because the test changes the input's in-memory layout + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_complex_half_reference_testing'), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_compare_cpu'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', 'test_fn_fwgrad_bwgrad', + dtypes=(torch.complex64, torch.complex128)), + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', 'test_forward_mode_AD'), + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', 'test_inplace_forward_mode_AD'), + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients', 'test_inplace_grad'), + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients', 'test_inplace_gradgrad'), + DecorateInfo(unittest.expectedFailure, 'TestProxyTensorOpInfo', + 'test_make_fx_symbolic_exhaustive_inplace'), + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness'), + # Fail but are also flaky + DecorateInfo(unittest.skip("Test changes in memory layout"), 'TestMathBits'), + DecorateInfo(unittest.skip("Modifies input strides and storage_offset"), 'TestCommon', + 'test_non_standard_bool_values'), + # RuntimeError: setStorage: sizes [2, 2], strides [1, 2], storage offset 10, and itemsize 2 requiring a + # storage size of 28 are out of bounds for storage of size 20 + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_meta_inplace'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_meta_inplace'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_symbolic_meta_inplace'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_symbolic_meta_inplace_all_strides'), + )), + OpInfo('as_strided_scatter', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # vmap does not support inplace views + check_inplace_batched_forward_grad=False, + sample_inputs_func=sample_inputs_as_strided_scatter, + error_inputs_func=error_inputs_as_strided_scatter, + skips=( + DecorateInfo(unittest.skip('Works for int64, fails for everything else'), 'TestCommon', 'test_noncontiguous_samples'), # noqa: B950 + DecorateInfo(unittest.skip('Fails in most cases, passes on LAZY for some reason'), 'TestCommon', 'test_variant_consistency_eager'), # noqa: B950 + DecorateInfo(unittest.skip('Fails on cuda + rocm'), 'TestCommon', 'test_complex_half_reference_testing'), + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients', 'test_fn_grad'), + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', 'test_forward_mode_AD'), + DecorateInfo(unittest.skip('Passes on complex128 and float64 only'), 'TestFwdGradients', 'test_fn_fwgrad_bwgrad'), + # AssertionError: Tensor-likes are not close! (new_empty_strided.default) + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), 'TestDecomp', 'test_comprehensive'),)), + OpInfo('native_layer_norm', + aten_name='native_layer_norm', + ref=reference_native_layer_norm, + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + assert_jit_shape_analysis=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_native_layer_norm, + error_inputs_func=error_inputs_native_layer_norm, + skips=( + # IndexError: tuple index out of range + DecorateInfo(unittest.skip('Skipped!'), 'TestFwdGradients', 'test_forward_mode_AD'), + # Tests fail when weight=None and bias is defined + # https://github.com/pytorch/pytorch/issues/79705 + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients', 'test_fn_gradgrad'), + # JIT test also tries to compute double backward, which fails + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip("Unsupported on MPS for now"), 'TestCommon', 'test_numpy_ref_mps'), + )), + OpInfo('native_batch_norm', + aten_name='native_batch_norm', + dtypes=floating_types_and(torch.float16, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + sample_inputs_func=sample_inputs_native_batch_norm, + skips=( + # NotImplementedError: Could not run + # 'aten::native_batch_norm.out' with arguments from the 'CPU' backend. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning', device_type="cpu"), + # RuntimeError: out_invstd.dim() == 1 && out_invstd.is_contiguous() && out_invstd.sizes()[0] + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out', device_type="cuda"), + # Problem with _get_numerical_jacobian + # IndexError: tuple index out of range + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_forward_mode_AD'), + # RuntimeError: deepEquals(input.iValue, deepCopiedInput) INTERNAL ASSERT FAILED + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # https://github.com/pytorch/pytorch/issues/85960 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_compare_cpu'), + # AssertionError: Booleans mismatch: True is not False + DecorateInfo(unittest.skip("Skipped!"), 'TestFakeTensor', 'test_fake_autocast'), + DecorateInfo(unittest.skip("Skipped!"), 'TestFakeTensor', 'test_fake'), + DecorateInfo(toleranceOverride({torch.float32: tol(atol=5e-5, rtol=5e-5)}), + "TestCompositeCompliance", "test_forward_ad"), + ) + ), + OpInfo('_native_batch_norm_legit', + aten_name='_native_batch_norm_legit', + dtypes=floating_types_and(torch.float16, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + sample_inputs_func=sample_inputs__native_batch_norm_legit, + skips=( + # NotImplementedError: Could not run + # 'aten::native_batch_norm.out' with arguments from the 'CPU' backend. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning', device_type="cpu"), + # RuntimeError: out_invstd.dim() == 1 && out_invstd.is_contiguous() && out_invstd.sizes()[0] + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out', device_type="cuda"), + # Problem with _get_numerical_jacobian + # IndexError: tuple index out of range + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_forward_mode_AD'), + # RuntimeError: deepEquals(input.iValue, deepCopiedInput) INTERNAL ASSERT FAILED + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # https://github.com/pytorch/pytorch/issues/85960 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_compare_cpu'), + DecorateInfo(toleranceOverride({torch.float32: tol(atol=5e-5, rtol=5e-5)}), + "TestCompositeCompliance", "test_forward_ad"), + ) + ), + OpInfo('nn.functional.cosine_similarity', + aten_name="cosine_similarity", + dtypes=floating_types_and(torch.half, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_cosine_similarity), + OpInfo('nn.functional.adaptive_avg_pool1d', + dtypes=floating_types_and(torch.half, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + error_inputs_func=error_inputs_adaptive_avg_pool1d, + sample_inputs_func=sample_inputs_adaptive_avg_pool1d), + OpInfo('nn.functional.adaptive_avg_pool2d', + dtypes=floating_types_and(torch.half, torch.bfloat16), + decorators=( + # RuntimeError: + # adaptive_avg_pool2d(Tensor input, int[2] output_size) -> (Tensor): + # Expected a value of type 'List[int]' for argument 'output_size' but + # instead found type 'Tuple[NoneType, int]'. : + # File "", line 3 + # def the_method(i0): + # return torch.nn.functional.adaptive_avg_pool2d(i0, (None, 7)) + # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + ), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + error_inputs_func=error_inputs_adaptive_avg_pool2d, + sample_inputs_func=sample_inputs_adaptive_avg_pool2d), + OpInfo('nn.functional.adaptive_avg_pool3d', + dtypes=floating_types_and(torch.half, torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + decorators=( + # RuntimeError: + # adaptive_avg_pool3d(Tensor input, int[3] output_size) -> (Tensor): + # Expected a value of type 'List[int]' for argument 'output_size' but + # instead found type 'Tuple[NoneType, NoneType, NoneType]'. : + # File "", line 3 + # + # def the_method(i0): + # return torch.nn.functional.adaptive_avg_pool3d(i0, (None, None, None)) + # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE + # + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + ), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + error_inputs_func=error_inputs_adaptive_avg_pool3d, + sample_inputs_func=sample_inputs_adaptive_avg_pool3d), + OpInfo('nn.functional.adaptive_max_pool1d', + dtypes=floating_types_and(torch.half, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # got: Batching rule not implemented for aten::flatten.using_ints + check_batched_forward_grad=False, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + error_inputs_func=error_inputs_adaptive_max_pool1d, + sample_inputs_func=sample_inputs_adaptive_max_pool1d), + OpInfo('nn.functional.adaptive_max_pool2d', + dtypes=floating_types_and(torch.half, torch.bfloat16), + decorators=( + # RuntimeError: + # adaptive_max_pool2d(Tensor input, int[2] output_size) -> (Tensor): + # Expected a value of type 'List[int]' for argument 'output_size' but + # instead found type 'Tuple[NoneType, int]'. : + # File "", line 3 + # def the_method(i0): + # return torch.nn.functional.adaptive_max_pool2d(i0, (None, 7)) + # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + ), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # got: Batching rule not implemented for aten::flatten.using_ints + check_batched_forward_grad=False, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + error_inputs_func=error_inputs_adaptive_max_pool2d, + sample_inputs_func=sample_inputs_adaptive_max_pool2d), + OpInfo('nn.functional.adaptive_max_pool3d', + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + decorators=( + # RuntimeError: + # adaptive_max_pool3d(Tensor input, int[3] output_size) -> (Tensor): + # Expected a value of type 'List[int]' for argument 'output_size' but + # instead found type 'Tuple[NoneType, NoneType, NoneType]'. : + # File "", line 3 + # + # def the_method(i0): + # return torch.nn.functional.adaptive_max_pool3d(i0, (None, None, None)) + # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE + # + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + ), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # got: Batching rule not implemented for aten::flatten.using_ints + check_batched_forward_grad=False, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + error_inputs_func=error_inputs_adaptive_max_pool3d, + sample_inputs_func=sample_inputs_adaptive_max_pool3d), + OpInfo('nn.functional.avg_pool1d', + aten_name='avg_pool1d', + supports_autograd=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=floating_types_and(torch.int64, torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + error_inputs_func=error_inputs_avg_pool1d, + sample_inputs_func=sample_inputs_avgpool1d), + OpInfo('nn.functional.avg_pool3d', + aten_name='avg_pool3d', + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=floating_types_and(torch.int64), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + error_inputs_func=error_inputs_avg_pool3d, + sample_inputs_func=sample_inputs_avgpool3d, + skips=( + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out', device_type='cpu'), + )), + OpInfo( + "nn.functional.binary_cross_entropy_with_logits", + aten_name="binary_cross_entropy_with_logits", + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + dtypes=floating_types_and(torch.half, torch.bfloat16), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + sample_inputs_func=sample_inputs_binary_cross_entropy_with_logits, + skips=( + DecorateInfo( + unittest.skip("Skipped!"), + 'TestJit', + 'test_variant_consistency_jit', + dtypes=(torch.float32,) + ), + ), + ), + UnaryUfuncInfo( + 'nn.functional.relu', + aten_name="relu", + ref=lambda a: np.where(a <= 0, 0, a), + supports_autograd=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + dtypes=all_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_nn_activation_relu, + supports_out=False, + supports_fwgrad_bwgrad=True, + supports_forward_ad=True), + OpInfo('nn.functional.conv_transpose1d', + # `ref` for this function is backward of + # corresponding `conv*d` + ref=partial(conv_transpose_ref, fn=torch.nn.functional.conv_transpose1d), + aten_name='conv_transpose1d', + aliases=('conv_transpose1d',), + dtypes=floating_and_complex_types_and(torch.int64, torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.chalf, + torch.bfloat16), + sample_inputs_func=sample_inputs_conv_transpose1d, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + decorators=( + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1.3e-06), }), + 'TestCommon', 'test_variant_consistency_eager', device_type='cuda'), + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=5e-2, rtol=5e-2), }), + 'TestCommon', 'test_complex_half_reference_testing'), + DecorateInfo( + toleranceOverride({torch.float: tol(atol=1.5e-5, rtol=1.5e-5), }), + 'TestCommon', 'test_numpy_ref_mps'), + DecorateInfo( + toleranceOverride({torch.half: tol(atol=1e-3, rtol=2e-3), }), + 'TestInductorOpInfo', 'test_comprehensive', device_type='cpu'), + ), + skips=( + # Reason for Skip: https://github.com/pytorch/pytorch/pull/79694#issuecomment-1186949486 + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', + dtypes=(torch.complex64,)), + # RuntimeError: UNSUPPORTED DTYPE: complex + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness', + dtypes=(torch.complex64, torch.complex128)), + # RuntimeError: !lhs.isAliasOf(rhs)INTERNAL ASSERT FAILED at + # "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":104, please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', + dtypes=(torch.float,)), + # RuntimeError: "slow_conv2d_cpu_grad_input" not implemented for 'Long' + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_numpy_ref', + dtypes=(torch.int64,)), + ), + supports_out=False,), + OpInfo('nn.functional.conv_transpose2d', + aten_name='conv_transpose2d', + aliases=('conv_transpose2d',), + # `ref` for this function is backward of + # corresponding `conv*d` + ref=partial(conv_transpose_ref, fn=torch.nn.functional.conv_transpose2d), + dtypes=floating_and_complex_types_and(torch.int64, torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.chalf, + torch.bfloat16), + sample_inputs_func=sample_inputs_conv_transpose2d, + # Runs very slowly on slow-gradcheck for complex. + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + decorators=[ + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1.3e-06), }), + 'TestCommon', 'test_variant_consistency_eager', device_type='cuda'), + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=2e-05, rtol=5e-05), }), + 'TestCommon', 'test_noncontiguous_samples', device_type='cuda'), + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=8e-2, rtol=8e-2), }), + 'TestCommon', 'test_complex_half_reference_testing'), + DecorateInfo( + toleranceOverride({torch.half: tol(atol=1e-3, rtol=2e-3), }), + 'TestInductorOpInfo', 'test_comprehensive', device_type='cpu')], + skips=( + # RuntimeError: !lhs.isAliasOf(rhs)INTERNAL ASSERT FAILED at + # "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":104, please report a bug to PyTorch. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # RuntimeError: UNSUPPORTED DTYPE: complex + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness', + dtypes=(torch.complex64, torch.complex128)), + # RuntimeError: "slow_conv2d_cpu_grad_input" not implemented for 'Long' + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_numpy_ref', + dtypes=(torch.int64,)), + # Reference: https://github.com/pytorch/pytorch/issues/86356 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_numpy_ref', + dtypes=(torch.double, torch.cdouble)), + DecorateInfo(unittest.skip("Unsupported on MPS for now"), 'TestCommon', 'test_numpy_ref_mps'), + # AssertionError: None mismatch: torch.complex64 is not None + DecorateInfo(unittest.expectedFailure, 'TestDtypeCustomRules', 'test_custom_rules', + dtypes=(torch.complex64, torch.complex128)), + ), + supports_out=False,), + OpInfo('nn.functional.conv_transpose3d', + aten_name='conv_transpose3d', + aliases=('conv_transpose3d',), + # `ref` for this function is backward of + # corresponding `conv*d` + ref=partial(conv_transpose_ref, fn=torch.nn.functional.conv_transpose3d), + dtypes=floating_and_complex_types_and(torch.int64, torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and( + torch.float16, torch.chalf, torch.bfloat16), + sample_inputs_func=sample_inputs_conv_transpose3d, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + # Runs very slowly on slow-gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + decorators=[ + DecorateInfo( + toleranceOverride({torch.float16: tol(atol=5e-2, rtol=5e-2), }), + 'TestInductorOpInfo', 'test_comprehensive', device_type='cuda'), + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1.3e-06), + torch.complex64: tol(atol=1.3e-04, rtol=1.3e-05)}), + 'TestCommon', 'test_variant_consistency_eager', device_type='cuda'), + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=2e-04, rtol=2e-04), }), + 'TestCompositeCompliance', 'test_operator', device_type='cuda'), + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1.3e-04, rtol=1.3e-06), + torch.complex64: tol(atol=1.3e-04, rtol=1.3e-05)}), + 'TestCommon', 'test_noncontiguous_samples', device_type='cuda'), + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1e-04, rtol=2e-05), }), + 'TestCompositeCompliance', 'test_forward_ad', device_type='cuda', + active_if=TEST_CUDNN), + DecorateInfo( + toleranceOverride({torch.complex64: tol(atol=1e-4, rtol=1e-4)}), + "TestMathBits", "test_conj_view", device_type='cuda'), + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=9e-2, rtol=9e-2), }), + 'TestCommon', 'test_complex_half_reference_testing'), + DecorateInfo( + toleranceOverride({torch.half: tol(atol=1e-3, rtol=2e-1), }), + 'TestInductorOpInfo', 'test_comprehensive', device_type='cpu')], + skips=( + # RuntimeError: !lhs.isAliasOf(rhs)INTERNAL ASSERT FAILED at + # "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":104, please report a bug to PyTorch. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # RuntimeError: "slow_conv3d_cpu_grad_input" not implemented for 'Long' + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_numpy_ref', + dtypes=(torch.int64,)), + # Reference: https://github.com/pytorch/pytorch/issues/86356 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_numpy_ref', + dtypes=(torch.double, torch.cdouble)), + DecorateInfo(unittest.skip("Unsupported on MPS for now"), 'TestCommon', 'test_numpy_ref_mps'), + # RuntimeError: UNSUPPORTED DTYPE: complex + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness', + dtypes=(torch.complex64, torch.complex128)), + DecorateInfo(unittest.skip('Skipped for ROCm!'), 'TestCommon', 'test_complex_half_reference_testing', + dtypes=[torch.complex32], active_if=TEST_WITH_ROCM), + ), + supports_out=False,), + OpInfo('nn.functional.conv1d', + aliases=('conv1d',), + aten_name='conv1d', + dtypes=floating_and_complex_types_and(torch.int64, torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.chalf, + torch.bfloat16), + sample_inputs_func=sample_inputs_conv1d, + error_inputs_func=error_inputs_conv1d, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + decorators=( + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=1e-2, rtol=5e-2)}), + 'TestCommon', 'test_complex_half_reference_testing' + ), + DecorateInfo( + toleranceOverride({torch.float16: tol(atol=2e-3, rtol=1e-3)}), + 'TestInductorOpInfo', 'test_comprehensive', device_type='cuda', + ), + ), + skips=( + # RuntimeError: !lhs.isAliasOf(rhs)INTERNAL ASSERT FAILED at + # "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":103, please report a bug to PyTorch. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # Ref: https://github.com/pytorch/pytorch/issues/75309 + # AssertionError: None mismatch: torch.complex128 is not None + DecorateInfo(unittest.expectedFailure, 'TestDtypeCustomRules', + 'test_custom_rules', dtypes=(torch.complex64, torch.complex128)), + # Ref: https://github.com/pytorch/pytorch/issues/75309 + # RuntimeError: UNSUPPORTED DTYPE: complex + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', + 'test_nnc_correctness', dtypes=(torch.complex64, torch.complex128)), + ), + supports_expanded_weight=True, + supports_out=False,), + OpInfo('nn.functional.conv2d', + aliases=('conv2d',), + aten_name='conv2d', + dtypes=floating_and_complex_types_and(torch.int64, torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.chalf, + torch.bfloat16), + sample_inputs_func=partial(sample_inputs_conv2d), + error_inputs_func=error_inputs_conv2d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + decorators=( + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=6e-2, rtol=5e-2)}), + 'TestCommon', 'test_complex_half_reference_testing', + ), + ), + skips=( + # RuntimeError: !lhs.isAliasOf(rhs)INTERNAL ASSERT FAILED at + # "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":103, please report a bug to PyTorch. + DecorateInfo(unittest.skip("Works on some configs!"), 'TestJit', 'test_variant_consistency_jit'), + # Ref: https://github.com/pytorch/pytorch/issues/75309 + # AssertionError: None mismatch: torch.complex128 is not None + DecorateInfo(unittest.expectedFailure, 'TestDtypeCustomRules', + 'test_custom_rules', dtypes=(torch.complex64, torch.complex128)), + # RuntimeError: UNSUPPORTED DTYPE: complex + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', + 'test_nnc_correctness', dtypes=(torch.complex64, torch.complex128)), + ), + supports_expanded_weight=True, + supports_out=False,), + OpInfo('nn.functional.conv3d', + aliases=('conv3d',), + aten_name='conv3d', + dtypes=floating_and_complex_types_and(torch.int64, torch.bfloat16, torch.float16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.chalf, torch.bfloat16), + sample_inputs_func=sample_inputs_conv3d, + error_inputs_func=error_inputs_conv3d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + decorators=( + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=6e-2, rtol=5e-2)}), + 'TestCommon', 'test_complex_half_reference_testing', + ), + ), + skips=( + # RuntimeError: !lhs.isAliasOf(rhs) INTERNAL ASSERT FAILED at + # "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":103, please report a bug to PyTorch. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # RuntimeError: UNSUPPORTED DTYPE: complex + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', + 'test_nnc_correctness', dtypes=(torch.complex64, torch.complex128)), + # RuntimeError: Conv3D is not supported on MPS + DecorateInfo(unittest.expectedFailure, 'TestConsistency'), + # AssertionError: Tensor-likes are not close! + # break slow tests + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_compare_cpu'), + ), + supports_expanded_weight=True, + supports_out=False,), + OpInfo('nn.functional.group_norm', + aten_name='group_norm', + aliases=('group_norm',), + ref=reference_group_norm, + dtypes=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + error_inputs_func=error_inputs_group_norm, + decorators=[ + # RuntimeError: Cannot insert a Tensor that requires grad as a constant. + # Consider making it a parameter or input, or detaching the gradient + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)) + ], + sample_inputs_func=sample_inputs_group_norm, + reference_inputs_func=reference_inputs_group_norm, + supports_expanded_weight=True,), + OpInfo('nn.functional.instance_norm', + # no ref because instance_norm will often have numerical instability (large numbers or nan) + dtypes=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + decorators=[ + # RuntimeError: Cannot insert a Tensor that requires grad as a constant. + # Consider making it a parameter or input, or detaching the gradient + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)), + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad', + active_if=TEST_WITH_ROCM) + ], + sample_inputs_func=sample_inputs_instance_norm, + supports_expanded_weight=True,), + OpInfo('nn.functional.layer_norm', + aten_name='layer_norm', + aten_backward_name='layer_norm_backward', + aliases=('layer_norm',), + ref=reference_layer_norm, + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + decorators=[ + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1e-05, rtol=1e-03)}), + 'TestCommon', 'test_numpy_refs' + ), + DecorateInfo(unittest.skip("Bug in MPS backend!"), 'TestCommon', 'test_numpy_ref_mps'), + ], + sample_inputs_func=sample_inputs_layer_norm, + supports_expanded_weight=True,), + OpInfo('nn.functional.local_response_norm', + dtypes=floating_types_and(torch.int64, torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + decorators=[ + # RuntimeError: falseINTERNAL ASSERT FAILED at + # "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)), + ], + sample_inputs_func=sample_inputs_local_response_norm,), + OpInfo('constant_pad_nd', + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half), + sample_inputs_func=sample_inputs_constant_pad_nd, + supports_out=False, + skips=( + # bool can't be passed to Scalar arguments in JIT tracer because + # BoolType is not a subtype of ScalarType. + DecorateInfo( + unittest.expectedFailure, 'TestNNCOpInfo', + 'test_nnc_correctness', dtypes=(torch.bool,)), + )), + OpInfo('nn.functional.pad', + variant_test_name='constant', + aten_name='constant_pad_nd', + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half), + sample_inputs_func=partial(sample_inputs_nn_pad, mode='constant'), + supports_out=False), + OpInfo('nn.functional.pad', + variant_test_name='reflect', + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=all_types_and_complex_and(torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.half, torch.bfloat16), + sample_inputs_func=partial(sample_inputs_nn_pad, mode='reflect'), + skips=( + # Doesn't have a corresponding aten operator. + # RuntimeError: falseINTERNAL ASSERT FAILED at + # "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, please report a bug to PyTorch. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)), + ), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + supports_out=False), + OpInfo('nn.functional.pad', + variant_test_name='replicate', + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=all_types_and_complex_and(torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.half, torch.bfloat16), + sample_inputs_func=partial(sample_inputs_nn_pad, mode='replicate'), + skips=( + # Doesn't have a corresponding aten operator. + # RuntimeError: falseINTERNAL ASSERT FAILED at + # "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, please report a bug to PyTorch. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)), + ), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + supports_out=False), + OpInfo('nn.functional.pad', + variant_test_name='replicate_negative', + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=all_types_and_complex_and(torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_nn_pad_replicate_negative, + skips=( + # Doesn't have a corresponding aten operator. + # RuntimeError: falseINTERNAL ASSERT FAILED at + # "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, please report a bug to PyTorch. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)), + # Some negative padding cases cause a segfault on MPS + DecorateInfo(unittest.skip("Not fully supported on MPS"), 'TestConsistency'), + ), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + supports_out=False), + OpInfo('nn.functional.pad', + variant_test_name='circular', + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half), + sample_inputs_func=partial(sample_inputs_nn_pad, mode='circular'), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_grad=False, + # https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + skips=( + # Doesn't have a corresponding aten operator. + # RuntimeError: falseINTERNAL ASSERT FAILED at + # "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, please report a bug to PyTorch. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)), + # Difference from is larger with decomposition new_empty_strided.default than original on output 0 + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), 'TestDecomp', 'test_comprehensive'), + ), + supports_out=False), + OpInfo('nn.functional.hardswish', + aten_name="hardswish", + aten_backward_name='hardswish_backward', + supports_autograd=True, + assert_autodiffed=True, + sample_inputs_func=sample_inputs_hardswish, + dtypes=floating_types_and(torch.bfloat16, torch.half), + supports_gradgrad=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + autodiff_nonfusible_nodes=["aten::hardswish"]), + OpInfo('nn.functional.unfold', + aten_name='im2col', + dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_nn_unfold, + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + skips=( + # NOTE: this failure may not reproduce consistently on different systems + # false INTERNAL ASSERT FAILED at "...torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185 + DecorateInfo(unittest.skip("Internal assert failed!"), 'TestJit', 'test_variant_consistency_jit'), + )), + OpInfo('nn.functional.interpolate', + aten_name="interpolate", + variant_test_name='nearest', + supports_autograd=True, + supports_fwgrad_bwgrad=True, + supports_forward_ad=True, + dtypes=floating_types_and(torch.uint8, torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16, torch.uint8), + sample_inputs_func=partial(sample_inputs_interpolate, 'nearest'), + skips=( + # RuntimeError: false + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, + # please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + ), + supports_out=False), + OpInfo('nn.functional.interpolate', + aten_name="interpolate", + variant_test_name='nearest-exact', + supports_autograd=True, + supports_fwgrad_bwgrad=True, + supports_forward_ad=True, + dtypes=floating_types_and(torch.uint8), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16, torch.uint8), + sample_inputs_func=partial(sample_inputs_interpolate, 'nearest-exact'), + skips=( + # RuntimeError: false + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, + # please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # RuntimeError: aten::_upsample_nearest_exact*d hit the vmap fallback which is currently disabled + DecorateInfo(unittest.expectedFailure, 'TestOperators', 'test_vmapjvpall_has_batch_rule'), + DecorateInfo(unittest.expectedFailure, 'TestOperators', 'test_vmapvjp_has_batch_rule'), + DecorateInfo(unittest.expectedFailure, 'TestVmapOperatorsOpInfo', 'test_op_has_batch_rule'), + # NotImplementedError: The operator 'aten::_upsample_nearest_exact3d.out' is not currently implemented + # for the MPS device. + DecorateInfo(unittest.expectedFailure, 'TestConsistency'), + ), + supports_out=False), + OpInfo('nn.functional.interpolate', + aten_name="interpolate", + variant_test_name='linear', + supports_autograd=True, + supports_fwgrad_bwgrad=True, + supports_forward_ad=True, + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + sample_inputs_func=partial(sample_inputs_interpolate, 'linear'), + skips=( + # RuntimeError: false + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, + # please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + ), + supports_out=False), + OpInfo('nn.functional.interpolate', + aten_name="interpolate", + variant_test_name='bilinear', + supports_fwgrad_bwgrad=True, + supports_autograd=True, + supports_forward_ad=True, + dtypes=floating_types_and(torch.uint8, torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + sample_inputs_func=partial(sample_inputs_interpolate, 'bilinear'), + reference_inputs_func=partial(reference_inputs_interpolate, 'bilinear'), + skips=( + # RuntimeError: false + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, + # please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + ), + supports_out=False), + OpInfo('nn.functional.interpolate', + aten_name="interpolate", + variant_test_name='bicubic', + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=floating_types_and(torch.uint8, torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + sample_inputs_func=partial(sample_inputs_interpolate, 'bicubic'), + reference_inputs_func=partial(reference_inputs_interpolate, 'bicubic'), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + skips=( + # RuntimeError: false + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, + # please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + ), + supports_out=False), + OpInfo('nn.functional.interpolate', + aten_name="interpolate", + variant_test_name='trilinear', + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + sample_inputs_func=partial(sample_inputs_interpolate, 'trilinear'), + skips=( + # RuntimeError: false + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, + # please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + ), + supports_out=False), + OpInfo('nn.functional.interpolate', + aten_name="interpolate", + variant_test_name='area', + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=floating_types_and(torch.half, torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + sample_inputs_func=partial(sample_inputs_interpolate, 'area'), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + skips=( + # RuntimeError: false + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, + # please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + ), + supports_out=False), + OpInfo('nn.functional.upsample_bilinear', + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=floating_types_and(torch.uint8, torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + sample_inputs_func=partial(sample_inputs_upsample, 'bilinear'), + reference_inputs_func=partial(reference_inputs_upsample, 'bilinear'), + skips=( + # RuntimeError: false + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, + # please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + ), + supports_out=False), + OpInfo('_upsample_bilinear2d_aa', + op=torch.ops.aten._upsample_bilinear2d_aa, + aten_name='_upsample_bilinear2d_aa', + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=floating_types_and(torch.uint8), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + sample_inputs_func=partial(sample_inputs_upsample_aa, 'bilinear'), + supports_out=False, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.expectedFailure, 'TestDTensorOps', 'test_dtensor_op_db'), + DecorateInfo(unittest.expectedFailure, 'TestEagerFusionOpInfo', 'test_aot_autograd_symbolic_exhaustive'), + DecorateInfo(unittest.expectedFailure, 'TestInductorOpInfo', 'test_comprehensive'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + )), + OpInfo( + "nn.functional.soft_margin_loss", + dtypes=floating_types_and(torch.half, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + # doesn't support grad on target + sample_inputs_func=partial(sample_inputs_loss, rhs_requires_grad=False), + error_inputs_func=error_inputs_soft_margin_loss, + ), + OpInfo('nn.functional.upsample_nearest', + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=floating_types_and(torch.uint8, torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.uint8, torch.bfloat16), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + sample_inputs_func=partial(sample_inputs_upsample, 'nearest'), + skips=( + # RuntimeError: false + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, + # please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + ), + supports_out=False), + OpInfo( + "nn.functional.margin_ranking_loss", + dtypes=all_types_and(torch.half, torch.bfloat16), + supports_out=False, + sample_inputs_func=sample_inputs_margin_ranking_loss, + error_inputs_func=error_inputs_margin_ranking_loss, + reference_inputs_func=reference_inputs_margin_ranking_loss, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True), + OpInfo( + "nn.functional.multi_margin_loss", + dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16), + supports_out=False, + supports_gradgrad=False, + sample_inputs_func=sample_inputs_multi_margin_loss, + reference_inputs_func=reference_inputs_multi_margin_loss, + error_inputs_func=error_inputs_multi_margin_loss, + decorators=( + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1e-4, rtol=1e-4)}), + "TestJit", + "test_variant_consistency_jit", + ), + ), + ), + OpInfo( + "nn.functional.multilabel_margin_loss", + dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16), + supports_out=False, + supports_gradgrad=False, + sample_inputs_func=sample_inputs_multilabel_margin_loss, + reference_inputs_func=reference_inputs_multilabel_margin_loss, + error_inputs_func=error_inputs_multilabel_margin_loss, + ), + OpInfo('nn.functional.leaky_relu', + aliases=None, + aten_name="leaky_relu", + aten_backward_name='leaky_relu_backward', + sample_inputs_func=sample_inputs_leaky_relu, + dtypes=floating_types_and(torch.bfloat16, torch.float16), + inplace_variant=lambda x, negative_slope=0.01: + torch.nn.functional.leaky_relu(x, negative_slope, inplace=True), + supports_autograd=True, + assert_autodiffed=True, + supports_gradgrad=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + autodiff_nonfusible_nodes=["aten::leaky_relu"]), + OpInfo( + "nn.functional.multilabel_soft_margin_loss", + supports_out=False, + dtypes=floating_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_multilabel_soft_margin_loss, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + decorators=( + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1e-4, rtol=1e-4)}), + "TestJit", + "test_variant_consistency_jit", + ), + ), + skips=( + # AssertionError: False is not true : Scalars failed to compare as equal! 0 != 4096 + # __main__.TestJitCUDA.test_variant_consistency_jit_nn_functional_multilabel_soft_margin_loss_cuda_float32 + # leaked 4096 bytes CUDA memory on device 0 + DecorateInfo( + # Skip instead of expectedFailure because this fails + # locally for me but passes in CI. + unittest.skip("Skipped!"), + "TestJit", + "test_variant_consistency_jit", + device_type="cuda", + ), + ), + ), + OpInfo('nn.functional.avg_pool2d', + aten_name='avg_pool2d', + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=floating_types_and(torch.int64, torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + error_inputs_func=error_inputs_avg_pool2d, + sample_inputs_func=sample_inputs_avgpool2d, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out', device_type='cuda'), + )), + OpInfo('nn.functional.fractional_max_pool2d', + supports_autograd=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + op=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.fractional_max_pool2d, input, *args, **kwargs), + # vmap does not support random operations + check_batched_forward_grad=False, + dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.float16), + test_neg_view=False, + sample_inputs_func=sample_inputs_fractional_max_pool2d, + decorators=( + # FIXME: AssertionError: False is not true : Tensors failed to compare as equal! + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # RuntimeError: input->type()->kind() == TypeKind::OptionalType + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270 + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit')), + skips=( + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'),)), + OpInfo('nn.functional.fractional_max_pool3d', + supports_autograd=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + op=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.fractional_max_pool3d, input, *args, **kwargs), + # vmap does not support random operations + check_batched_forward_grad=False, + dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.float16), + test_neg_view=False, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + sample_inputs_func=sample_inputs_fractional_max_pool3d, + decorators=( + # FIXME: both derivatives are implemented incorrectly + # https://github.com/pytorch/pytorch/issues/69322 + # FIXME: AssertionError: False is not true : Tensors failed to compare as equal! + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # RuntimeError: input->type()->kind() == TypeKind::OptionalType + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270 + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit')), + skips=( + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'),)), + OpInfo('nn.functional.max_pool1d', + aten_name='max_pool1d', + supports_autograd=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # got: Batching rule not implemented for aten::flatten.using_ints + check_batched_forward_grad=False, + # TODO: add shape checks + assert_jit_shape_analysis=False, + dtypes=floating_types_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + skips=( + # Pre-existing condition; Needs to be fixed + DecorateInfo(unittest.skip("Works on some configs"), 'TestNNCOpInfo', + 'test_nnc_correctness', dtypes=(torch.bfloat16,)), + # RuntimeError: The tensor has a non-zero number of elements, but its data is not allocated yet. + # Caffe2 uses a lazy allocation, so you will need to call mutable_data() or raw_mutable_data() + # to actually allocate memory + DecorateInfo(unittest.skip("Skipped!"), 'TestTags', 'test_tags'), + ), + error_inputs_func=error_inputs_max_pool1d, + sample_inputs_func=sample_inputs_max_pool), + OpInfo('nn.functional.max_pool2d', + aten_name='max_pool2d', + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + # Vmap is not happy with non-contiguous (channels_last) inputs + check_batched_gradgrad=False, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # got: Batching rule not implemented for aten::flatten.using_ints + check_batched_forward_grad=False, + assert_jit_shape_analysis=True, + dtypes=all_types_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + error_inputs_func=error_inputs_max_pool2d, + sample_inputs_func=sample_inputs_max_pool), + OpInfo('max_pool2d_with_indices_backward', + op=max_pool2d_backward, + # We've defined a custom op, so there's no corresponding aten op + aten_name=None, + method_variant=None, + inplace_variant=None, + operator_variant=None, + inplace_operator_variant=None, + check_batched_gradgrad=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_forward_grad=False, + assert_jit_shape_analysis=False, + dtypes=floating_types_and(torch.bfloat16, torch.float16), + sample_inputs_func=sample_inputs_max_pool, + skips=( + # We've defined a custom op here, and we don't handle the case where we receive an out kwarg + DecorateInfo(unittest.skip("Skipped!"), "TestCommon", "test_out"), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # object has no attribute max_pool2d_with_indices_backward (It's not available on torch -- so expected) + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit') + )), + OpInfo('nn.functional.max_pool3d', + aten_name='max_pool3d', + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # got: Batching rule not implemented for aten::flatten.using_ints + check_batched_forward_grad=False, + # TODO: add shape checks + assert_jit_shape_analysis=False, + dtypes=all_types_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + # TODO: investigate nondeterminism + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + error_inputs_func=error_inputs_max_pool3d, + sample_inputs_func=sample_inputs_max_pool), + OpInfo('nn.functional.max_unpool1d', + aten_name='max_unpool1d', + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + assert_jit_shape_analysis=False, + dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.float16), + sample_inputs_func=sample_inputs_max_unpool, + skips=( + # Gradients are tested in `variant_test_name=grad` below. + # We skip tests here because there is non-determinism in backward + # with gather, when there are writes into the same memory location, + # and if there are several indices pointing to the same memory, + # gradcheck is oblivious about that and cannot perturb them all at once + # (see sample_inputs_max_unpool_grad to find out more). + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_fn_grad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_fn_gradgrad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_forward_mode_AD', + active_if=(not IS_MACOS)), + DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_forward_ad', + device_type='cpu'), + )), + OpInfo('nn.functional.max_unpool1d', + variant_test_name='grad', + aten_name='max_unpool1d', + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + assert_jit_shape_analysis=False, + dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.float16), + sample_inputs_func=sample_inputs_max_unpool_grad), + OpInfo('nn.functional.max_unpool2d', + aten_name='max_unpool2d', + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + assert_jit_shape_analysis=False, + dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.float16), + sample_inputs_func=sample_inputs_max_unpool, + skips=( + # Gradients are tested in `variant_test_name=grad` below. + # We skip tests here because there is non-determinism in backward + # with gather, when there are writes into the same memory location, + # and if there are several indices pointing to the same memory, + # gradcheck is oblivious about that and cannot perturb them all at once + # (see sample_inputs_max_unpool_grad to find out more). + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_forward_mode_AD', + active_if=(not IS_MACOS)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_fn_gradgrad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_fn_grad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_forward_ad'), + )), + OpInfo('nn.functional.max_unpool2d', + variant_test_name='grad', + aten_name='max_unpool2d', + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # Vmap is not happy with non-contiguous (channels_last) inputs + check_batched_grad=False, + supports_out=False, + assert_jit_shape_analysis=False, + dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.float16), + sample_inputs_func=sample_inputs_max_unpool_grad), + OpInfo('nn.functional.max_unpool3d', + aten_name='max_unpool3d', + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + assert_jit_shape_analysis=False, + dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.float16), + sample_inputs_func=sample_inputs_max_unpool, + skips=( + # Gradients are tested in `variant_test_name=grad` below. + # We skip tests here because there is non-determinism in backward + # with gather, when there are writes into the same memory location, + # and if there are several indices pointing to the same memory, + # gradcheck is oblivious about that and cannot perturb them all at once + # (see sample_inputs_max_unpool_grad to find out more). + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_forward_mode_AD', + active_if=(not IS_MACOS)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_fn_gradgrad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_fn_grad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_forward_ad'), + )), + OpInfo('nn.functional.max_unpool3d', + variant_test_name='grad', + aten_name='max_unpool3d', + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + assert_jit_shape_analysis=False, + dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.float16), + sample_inputs_func=sample_inputs_max_unpool_grad), + OpInfo('nn.functional.linear', + aten_name='linear', + supports_autograd=True, + supports_gradgrad=True, + sample_inputs_func=sample_inputs_linear, + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + dtypesIfROCM=floating_and_complex_types_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16), + backward_dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16), + # linear calls mm under the hood which is nondeterministic on CUDA + # https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html#torch.use_deterministic_algorithms + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + supports_expanded_weight=True, + decorators=( + # Strides are not the same! + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + )), + OpInfo('nn.functional.bilinear', + aten_name='bilinear', + supports_autograd=True, + sample_inputs_func=sample_inputs_bilinear, + dtypes=all_types_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.float16, + *[torch.bfloat16] if SM53OrLater or TEST_WITH_ROCM else []), + decorators=( + DecorateInfo(toleranceOverride({torch.float16: tol(atol=5e-05, rtol=1e-03)}), + 'TestInductorOpInfo', 'test_comprehensive', device_type='cpu'), + ), + skips=( + # NVIDIA only assures that bfloat16 is supported by bmm if SM >= 5.3 + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes', device_type='cuda', active_if=not SM53OrLater), + DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness', dtypes=(torch.bfloat16,)), + ), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False), + OpInfo('nn.functional.glu', + aten_name='glu', + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + sample_inputs_func=sample_inputs_glu, + dtypes=floating_types_and(torch.bfloat16, torch.float16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False), + UnaryUfuncInfo( + 'nn.functional.elu', + aten_backward_name='elu_backward', + ref=lambda x, alpha=1.0, inplace=False: + np.maximum(0., x) + np.minimum(0., alpha * (np.exp(x) - 1)), + dtypes=floating_types_and(torch.bfloat16, torch.float16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_autograd=True, + assert_autodiffed=False, + supports_gradgrad=True, + supports_out=False, + sample_kwargs=lambda device, dtype, input: + ({'alpha': 0.8}, {'alpha': 0.8}), + inplace_variant=lambda x, alpha=1.0: + torch.nn.functional.elu(x, alpha, inplace=True), + decorators=[ + DecorateInfo( + toleranceOverride({ + torch.float16: tol(atol=1e-03, rtol=1.2e-03), + torch.bfloat16: tol(atol=1e-03, rtol=1.2e-03) + }), + 'TestUnaryUfuncs', device_type='cuda', + ), ], + ), + # Marked as a Unary function because it has some rather odd broadcasting semantics in its + # second argument + UnaryUfuncInfo( + 'nn.functional.prelu', + aten_backward_name='_prelu_kernel_backward', + ref=lambda x, weight: + np.maximum(0., x) + np.minimum(0., x) * + (weight if x.ndim == 1 else weight.reshape([weight.size if i == 1 else 1 for i in range(0, x.ndim)])), + dtypes=floating_types_and(torch.bfloat16, torch.float16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_autograd=True, + assert_autodiffed=False, + supports_gradgrad=True, + supports_out=False, + # test_reference_numerics only tests the case when the weight tensor is a scalar + sample_kwargs=sample_kwargs_prelu_scalar_weight, + error_inputs_func=error_inputs_prelu, + sample_inputs_func=sample_inputs_prelu, + reference_inputs_func=reference_inputs_prelu, + decorators=[ + # RuntimeError: Cannot insert a Tensor that requires grad as a constant. + # Consider making it a parameter or input, or detaching the gradient + # https://github.com/pytorch/pytorch/issues/68752 + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), ], + ), + UnaryUfuncInfo( + 'nn.functional.celu', + ref=lambda x, alpha=1.0, inplace=False: + np.maximum(0., x) + np.minimum(0., alpha * (np.exp(x / alpha) - 1)), + dtypes=floating_types_and(torch.bfloat16, torch.float16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_autograd=True, + assert_autodiffed=False, + supports_gradgrad=True, + supports_out=False, + sample_kwargs=lambda device, dtype, input: + ({'alpha': 0.8}, {'alpha': 0.8}), + inplace_variant=lambda x, alpha=1.0: + torch.nn.functional.celu(x, alpha, inplace=True), + decorators=[ + DecorateInfo( + toleranceOverride({ + torch.float16: tol(atol=1e-03, rtol=1.2e-03), + torch.bfloat16: tol(atol=1e-03, rtol=1.2e-03) + }), + 'TestUnaryUfuncs', device_type='cuda', + ), ], + ), + UnaryUfuncInfo( + 'nn.functional.rrelu', + aten_backward_name='rrelu_with_noise_backward', + op=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.rrelu, input, *args, **kwargs), + inplace_variant=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.rrelu, input, *args, inplace=True, **kwargs), + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + gradcheck_wrapper=wrapper_set_seed, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + sample_kwargs=lambda device, dtype, input: + (dict(lower=0., upper=1., training=True), dict(lower=0., upper=1., training=True)), + sample_inputs_func=partial(sample_inputs_elementwise_unary, op_kwargs=dict(lower=0., upper=1., training=True)), + error_inputs_func=error_inputs_rrelu, + decorators=( + DecorateInfo( + toleranceOverride({ + torch.float16: tol(atol=1e-03, rtol=1.2e-03), + torch.bfloat16: tol(atol=1e-03, rtol=1.2e-03) + }), + 'TestUnaryUfuncs', device_type='cuda', + ),), + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # lambda impl + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # In-place operations do not play well with forward AD + # https://github.com/pytorch/pytorch/issues/77447 + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', + 'test_inplace_forward_mode_AD'), + # The noise vector that's generated in these tests is not the same elementwise + DecorateInfo(unittest.skip("Different noise"), 'TestUnaryUfuncs', 'test_batch_vs_slicing'), + DecorateInfo(unittest.skip("Different noise"), 'TestUnaryUfuncs', 'test_contig_vs_every_other'), + DecorateInfo(unittest.skip("Different noise"), 'TestUnaryUfuncs', 'test_non_contig_expand'), + DecorateInfo(unittest.skip("Different noise"), 'TestUnaryUfuncs', 'test_contig_vs_transposed'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'))), + UnaryUfuncInfo( + 'nn.functional.selu', + ref=lambda x, inplace=False: + 1.0507009873554804934193349852946 * ( + np.maximum(0., x) + np.minimum(0., 1.6732632423543772848170429916717 * (np.exp(x) - 1)) + ), + dtypes=floating_types_and(torch.bfloat16, torch.float16), + supports_forward_ad=True, # depends on 'elu' + supports_fwgrad_bwgrad=True, + supports_autograd=True, + assert_autodiffed=False, + supports_gradgrad=True, + supports_out=False, + inplace_variant=lambda x: torch.nn.functional.selu(x, inplace=True), + decorators=[ + DecorateInfo( + toleranceOverride({ + torch.float16: tol(atol=1e-2, rtol=1.8e-2), + torch.bfloat16: tol(atol=1e-2, rtol=1.8e-2) + }), + 'TestUnaryUfuncs', device_type='cuda', + ), ], + ), + OpInfo( + 'torch._scaled_mm', + sample_inputs_func=sample_inputs_scaled_mm, + dtypes=empty_types(), + dtypesIfCUDA=empty_types() + (torch.float8_e4m3fn,), + supports_out=True, + supports_forward_ad=False, + supports_autograd=False, + decorators=[skipCUDAIf(not SM90OrLater or TEST_WITH_ROCM, 'Requires CUDA SM >= 9.0')], + skips=() + ), + OpInfo( + 'nn.functional.scaled_dot_product_attention', + op=lambda *args, **kwargs: + wrapper_set_seed(torch.nn.functional.scaled_dot_product_attention, *args, **kwargs), + sample_inputs_func=sample_inputs_scaled_dot_product_attention, + dtypes=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=False, + supports_fwgrad_bwgrad=True, + check_batched_forward_grad=False, + decorators=[DecorateInfo(toleranceOverride( + {torch.float32: tol(atol=5e-05, rtol=5e-6)}), 'TestCommon',), ], + skips=( + # When attn mask is a composite tensor this fails backward by returning a none + DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_backward', device_type='cuda'), + # This is only failing on Linux Bionic 3.10 Cuda 11.6 + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes', + device_type='cuda', active_if=_get_torch_cuda_version() >= (11, 6)), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_noncontiguous_samples', + dtypes=(torch.float32,)), + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # Forward works for dtype=float64 which is the math path + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_forward_mode_AD'), + # Not implemented for Forward AD + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_fn_fwgrad_bwgrad', + device_type='cpu'), + # Not implemented for backward derivative + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients', 'test_fn_gradgrad', + device_type='cpu'), + # CPU and CUDA have inconsistencies for intermediate outputs + DecorateInfo(unittest.skip("Skipped!"), 'TestMeta', 'test_dispatch_meta_outplace', + device_type='cpu'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMeta', 'test_dispatch_symbolic_meta_outplace', + device_type='cpu'), + # When changing input from Tensor to CompositeCompliantTensor, input.requires_grad() changes from true to false + DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_backward', + device_type='cpu'), + # OpInfo was implemented with a lambda + DecorateInfo(unittest.skip("Skipped!"), 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # TODO Need to understand what this is testing and why it doesn't work + DecorateInfo(unittest.skip("Skipped"), 'TestDecomp', 'test_comprehensive'), + DecorateInfo(unittest.skip('output is non-deterministic (when dropout_p > 0)'), 'TestCommon', 'test_compare_cpu'), + # TODO skip this for now since we can't skip on runtime arch support + DecorateInfo(unittest.skip('This is '), 'TestInductorOpInfo', 'test_comprehensive'), + # skip for sm < 80 + DecorateInfo(unittest.skip("Skipped!"), 'TestSchemaCheckModeOpInfo', 'test_schema_correctness', + device_type='cuda', dtypes=(torch.bfloat16,), active_if=not SM80OrLater),), + ), + OpInfo( + 'torch.ops.aten._flash_attention_forward', + sample_inputs_func=sample_inputs_flash_attention_forward, + dtypes=empty_types(), + dtypesIfCUDA=custom_types(torch.float16) + if not SM80OrLater + else custom_types(torch.float16, torch.bfloat16), + supports_out=False, + supports_autograd=True, + supports_fwgrad_bwgrad=False, + supports_forward_ad=False, + check_batched_forward_grad=False, + decorators=[skipCUDAIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "This platform doesn't support Flash Attention")], + skips=( + # Device mismatch due to philox seed and offset + DecorateInfo(unittest.expectedFailure, 'TestFakeTensor', 'test_fake_autocast', device_type='cuda'), + DecorateInfo(unittest.expectedFailure, 'TestFakeTensor', 'test_fake', device_type='cuda'), + # Checking the scalar value of the philox seed and offset + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator', device_type='cuda'), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_noncontiguous_samples', device_type='cuda'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', device_type='cuda'), + # None Mismatch Tensor + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward', device_type='cuda'), + ) + ), + OpInfo( + 'torch.ops.aten._efficient_attention_forward', + sample_inputs_func=sample_inputs_efficient_attention_forward, + dtypes=empty_types(), + dtypesIfCUDA=custom_types(torch.float16, torch.float32) + if not SM80OrLater + else custom_types(torch.float16, torch.float32, torch.bfloat16), + supports_out=False, + supports_autograd=True, + supports_fwgrad_bwgrad=False, + supports_forward_ad=False, + check_batched_forward_grad=False, + decorators=[skipCUDAIf(TEST_WITH_ROCM, "ROCm doesn't support efficient attention")], + skips=( + # Device mismatch due to philox seed and offset + DecorateInfo(unittest.expectedFailure, 'TestFakeTensor', 'test_fake_autocast', device_type='cuda'), + DecorateInfo(unittest.expectedFailure, 'TestFakeTensor', 'test_fake', device_type='cuda'), + # Checking the scaler value of the philox seed and offset + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator', device_type='cuda'), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_noncontiguous_samples', device_type='cuda'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', device_type='cuda'), + # None Mismatch Tensor + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward', device_type='cuda'), + ) + ), + UnaryUfuncInfo( + 'nn.functional.silu', + aten_backward_name='silu_backward', + ref=lambda x, inplace=False: x / (1 + np.exp(-x)), + dtypes=floating_types_and(torch.bfloat16, torch.float16), + supports_forward_ad=True, + supports_autograd=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=True, + supports_out=False, + inplace_variant=lambda x: torch.nn.functional.silu(x, inplace=True), + decorators=[ + DecorateInfo( + toleranceOverride({ + torch.float16: tol(atol=1e-3, rtol=1e-3), + torch.bfloat16: tol(atol=1e-4, rtol=1e-4) + }), + 'TestUnaryUfuncs', device_type='cuda', + ), ], + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal', + dtypes=(torch.cfloat,), device_type='cpu'), + ), + autodiff_nonfusible_nodes=["aten::silu"], + ), + # TODO: combine this with the nn.functional.silu OpInfo when + # complex autodiff for silu is supported or when + # the forward bug is fixed + # Note: silu errors when given inputs that require grad + # but it doesn't support grad in their dtype + # This is why the dtypes list above passes test_dtypes, + # because it's getting lucky and failing in forward + # because test_dtypes sets requires_grad to True + # THIS IS A BUG + UnaryUfuncInfo( + 'nn.functional.silu', + variant_test_name='complex', + ref=lambda x, inplace=False: + x / (1 + np.exp(-x)), + dtypes=complex_types(), + dtypesIfCUDA=complex_types(), + supports_forward_ad=False, + supports_autograd=False, + assert_autodiffed=False, + supports_out=False, + inplace_variant=lambda x: torch.nn.functional.silu(x, inplace=True), + decorators=[ + DecorateInfo( + toleranceOverride({ + torch.float16: tol(atol=1e-3, rtol=1e-3), + torch.bfloat16: tol(atol=1e-4, rtol=1e-4) + }), + 'TestUnaryUfuncs', device_type='cuda', + ), ], + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal', + dtypes=(torch.cfloat,)), + # FIXME: intentionally misreports dtypes + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_dtypes'), + # FIXME: numpy reference diverges: Comparing (nan+nanj) and (-0+0j) + DecorateInfo(unittest.skip("Skipped!"), + 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=(torch.complex64, torch.cdouble)), + DecorateInfo(unittest.skip("Skipped!"), + 'TestUnaryUfuncs', 'test_reference_numerics_small', + dtypes=(torch.complex64,)), + DecorateInfo(unittest.skip("Skipped!"), + 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + dtypes=(torch.complex64,)))), + UnaryUfuncInfo( + 'nn.functional.hardsigmoid', + aten_backward_name='hardsigmoid_backward', + ref=reference_hardsigmoid, + dtypes=floating_types_and(torch.bfloat16, torch.float16), + supports_autograd=True, + assert_autodiffed=False, + supports_gradgrad=False, + supports_forward_ad=True, + supports_out=False, + inplace_variant=partial(torch.nn.functional.hardsigmoid, inplace=True), + decorators=[ + DecorateInfo( + toleranceOverride({torch.float16: tol(atol=1e-04, rtol=0.001)}), 'TestUnaryUfuncs', device_type='cuda',), ], + skips=[ + # still want to test that first derivative works though second derivative isn't supported + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients', "test_inplace_gradgrad"), + # produces 0 instead of nan on ROCM + DecorateInfo(unittest.expectedFailure, + 'TestUnaryUfuncs', "test_reference_numerics_extremal", + device_type='cuda', + active_if=(TEST_WITH_ROCM)), ] + ), + UnaryUfuncInfo( + 'nn.functional.logsigmoid', + aten_name="log_sigmoid", + aten_backward_name='log_sigmoid_backward', + ref=reference_logsigmoid, + dtypes=floating_types_and(torch.half, torch.bfloat16), + supports_autograd=True, + assert_autodiffed=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_gradgrad=True, + # autodiff_nonfusible_nodes=["aten::log_sigmoid"], + decorators=[ + DecorateInfo( + precisionOverride({torch.float16: 1e-2, torch.bfloat16: 5e-3}), + 'TestUnaryUfuncs', 'test_reference_numerics_small'), + DecorateInfo( + precisionOverride({torch.float16: 1e-2, torch.bfloat16: 5e-3}), + 'TestUnaryUfuncs', 'test_reference_numerics_large'), + DecorateInfo( + precisionOverride({torch.float16: 1e-2, torch.bfloat16: 5e-3}), + 'TestUnaryUfuncs', 'test_reference_numerics_extremal'), + ], + skips=( + # Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning', device_type='cpu'), + ), + ), + UnaryUfuncInfo( + 'nn.functional.mish', + aten_backward_name='mish_backward', + ref=lambda x: x * np.tanh(reference_softplus(x)), + dtypes=floating_types_and(torch.bfloat16, torch.float16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_autograd=True, + assert_autodiffed=False, + supports_gradgrad=True, + supports_out=False, + inplace_variant=partial(torch.nn.functional.mish, inplace=True), + decorators=[ + DecorateInfo( + toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-03)}), 'TestUnaryUfuncs',), ], + ), + UnaryUfuncInfo( + 'nn.functional.softsign', + ref=lambda x: x / (np.abs(x) + 1), + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.float16, torch.bfloat16, torch.bool), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_autograd=True, + assert_autodiffed=False, + supports_gradgrad=True, + supports_out=False, + decorators=[ + DecorateInfo( + toleranceOverride({torch.float16: tol(atol=1e-03, rtol=1.3e-04)}), 'TestUnaryUfuncs',), ], + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small', + dtypes=(torch.int, torch.int8)),), + ), + UnaryUfuncInfo( + 'nn.functional.tanhshrink', + ref=lambda x: x - np.tanh(x), + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_autograd=True, + assert_autodiffed=False, + supports_gradgrad=True, + supports_out=False, + decorators=[ + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo( + toleranceOverride({torch.bfloat16: tol(atol=1e-02, rtol=1.6e-02)}), 'TestUnaryUfuncs',), + DecorateInfo(toleranceOverride({torch.complex64: tol(atol=6e-04, rtol=1e-05), + torch.bfloat16: tol(atol=1e-02, rtol=1.6e-02)}), + 'TestUnaryUfuncs', 'test_reference_numerics_extremal', device_type='cuda'), + ], + skips=( + # in each case, pytorch will produce a nan while numpy will not + DecorateInfo(unittest.skip("Fails on some jobs works on others!"), + 'TestUnaryUfuncs', "test_reference_numerics_large", + dtypes=(torch.complex64, torch.complex128), active_if=(IS_MACOS)), + DecorateInfo(unittest.skip("Fails on some jobs works on others!"), + 'TestUnaryUfuncs', "test_reference_numerics_extremal", + dtypes=(torch.complex64, torch.complex128), device_type='cpu', + active_if=(IS_MACOS or IS_WINDOWS)), + ), + # tan(j * pi/2 * odd_number) is nan which also make tanhshrink nan. + reference_numerics_filter=NumericsFilter( + condition=lambda x: (close_to_int(x / (math.pi * 0.5j)) + if x.is_complex() else x.new_tensor(False, dtype=torch.bool)), + safe_val=0) + ), + UnaryUfuncInfo( + 'nn.functional.threshold', + ref=lambda x, threshold, value: np.where(x <= threshold, value, x).astype(x.dtype), + dtypes=all_types_and(torch.half, torch.bfloat16), + inplace_variant=lambda x, threshold, value: + torch.nn.functional.threshold(x, threshold, value, inplace=True), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=False, + supports_gradgrad=True, + supports_out=False, + sample_kwargs=lambda device, dtype, input: ({'threshold': float.fromhex('0x1.3ap-3'), + 'value': -9}, + {'threshold': float.fromhex('0x1.3ap-3'), + 'value': -9}), + # TODO(whc) should not need sample_inputs_func, but without it + # kwargs aren't being hooked up properly + sample_inputs_func=sample_inputs_threshold, + ), + OpInfo( + "nn.functional.triplet_margin_loss", + sample_inputs_func=sample_inputs_triplet_margin_loss, + error_inputs_func=error_inputs_triplet_margin_loss, + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + ), + OpInfo( + "nn.functional.triplet_margin_with_distance_loss", + sample_inputs_func=partial(sample_inputs_triplet_margin_loss, with_distance=True), + error_inputs_func=error_inputs_triplet_margin_loss, + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # This test cannot handle a callable passed to `distance_function`. If we would use + # `distance_function=None`, the test would pass fine. + DecorateInfo( + unittest.expectedFailure, + "TestJit", + "test_variant_consistency_jit", + ), + DecorateInfo( + unittest.expectedFailure, + "TestNormalizeOperators", + "test_normalize_operator_exhaustive", + ), + ), + ), + BinaryUfuncInfo('nextafter', + dtypes=floating_types_and(torch.bfloat16, torch.half), + dtypesIfCUDA=floating_types_and(torch.bfloat16), + supports_autograd=False, + supports_rhs_python_scalar=False), + OpInfo( + "to", + op=lambda x, *args, **kwargs: x.to(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16, torch.bool), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + sample_inputs_func=sample_inputs_to, + skips=( + # RuntimeError: undefined value cpu + DecorateInfo( + unittest.skip("Skipped!"), + "TestJit", + "test_variant_consistency_jit", + device_type="cpu", + ), + # NotImplementedError: Cannot copy out of meta tensor; no data! + DecorateInfo( + unittest.skip("Skipped!"), + "TestMeta", + "test_meta_outplace", + ), + # https://github.com/pytorch/pytorch/issues/84335 + DecorateInfo( + unittest.skip("Skipped!"), + "TestProxyTensorOpInfo", + "test_make_fx_symbolic_exhaustive", + ), + DecorateInfo( + unittest.skip("Skipped!"), + "TestNormalizeOperators", + "test_normalize_operator_exhaustive", + ), + ), + ), + OpInfo('topk', + dtypes=all_types_and(torch.bfloat16, torch.float16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + sample_inputs_func=sample_inputs_topk), + # Multiple variants for batch_norm to test with and without cuDNN disabled + # See https://github.com/pytorch/pytorch/pull/63218#discussion_r688549391 for more details + OpInfo('nn.functional.batch_norm', + aten_name='batch_norm', + dtypes=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + sample_inputs_func=sample_inputs_batch_norm, + skips=( + # see https://github.com/pytorch/pytorch/issues/71286 + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness'), + DecorateInfo(unittest.skip('Skipped!'), 'TestNNCOpInfo', 'test_nnc_correctness', + device_type='cpu', dtypes=(torch.bfloat16, torch.float16)), + # Trying to use forward AD with miopen_batch_norm that does not support it + # because it has not been implemented yet. + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad', + device_type="cuda", active_if=TEST_WITH_ROCM), + DecorateInfo(toleranceOverride({torch.float32: tol(atol=5e-05, rtol=1e-05)}), + 'TestCompositeCompliance', 'test_forward_ad', device_type="cpu"), + )), + # This variant tests batch_norm with cuDNN disabled only on CUDA devices + OpInfo('nn.functional.batch_norm', + variant_test_name='without_cudnn', + aten_name='batch_norm', + dtypes=empty_types(), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + decorators=[onlyCUDA, disablecuDNN], + skips=( + DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-03, rtol=1e-04)}), + 'TestJit', 'test_variant_consistency_jit'), + ), + sample_inputs_func=sample_inputs_batch_norm), + OpInfo( + "nn.functional.binary_cross_entropy", + aten_backward_name='binary_cross_entropy_backward', + sample_inputs_func=sample_inputs_binary_cross_entropy, + dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + gradcheck_fast_mode=False, + supports_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + decorators=( + # RuntimeError: expected int at position 0, but got: Tensor + DecorateInfo( + unittest.skip("Skipped!"), + "TestCudaFuserOpInfo", + ), + # RuntimeError: expected int at position 0, but got: Tensor + DecorateInfo( + unittest.skip("Skipped!"), + "TestNNCOpInfo", + "test_nnc_correctness", + ), + DecorateInfo( + toleranceOverride({torch.float32: tol(atol=1e-3, rtol=1e-3)}), + "TestJit", + "test_variant_consistency_jit", + ), + # RuntimeError: output with shape [] doesn't match the broadcast shape [5, 5] + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_meta_outplace'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_symbolic_meta_outplace'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_symbolic_meta_outplace_all_strides'), + ), + skips=( + # RuntimeError: expected int at position 0, but got: Tensor + DecorateInfo( + unittest.expectedFailure, + "TestJit", + "test_variant_consistency_jit", + ), + ), + ), + # We have to add 2 OpInfo entry for `igamma` and `igammac`.First is the + # standard entry, second is to run gradcheck tests on the second argument. + BinaryUfuncInfo('igamma', + dtypes=floating_types_and(torch.bfloat16, torch.float16), + aliases=('torch.special.gammainc',), + dtypesIfCUDA=floating_types(), + # TODO: FIXME + supports_rhs_python_scalar=False, + supports_autograd=False, + skips=( + # FIXME: incorrectly tries to pass a rhs scalar + DecorateInfo(unittest.expectedFailure, 'TestJit', + 'test_jit_alias_remapping'), + )), + # TODO: FIXME, ideally by implemented grad for both inputs + # BinaryUfuncInfo('igamma', + # variant_test_name='grad_other', + # # Since autograd formula is implemented only for other and + # # gradcheck test verifies the formula for input in SampleInput, + # # we permute the arguments. + # op=lambda self, other, **kwargs: torch.igamma(other, self, **kwargs), + # inplace_variant=None, + # method_variant=None, + # supports_rhs_python_scalar=False, + # rhs_make_tensor_kwargs=dict(requires_grad=False), + # dtypes=floating_types_and(torch.bfloat16, torch.float16), + # backward_dtypesIfCPU=floating_types_and(torch.bfloat16), + # dtypesIfCUDA=floating_types(), + # backward_dtypesIfCUDA=floating_types(), + # supports_inplace_autograd=False, + # skips=( + # # Derivative wrt first tensor not implemented + # DecorateInfo(unittest.expectedFailure, "TestCommon", + # "test_floating_inputs_are_differentiable"),"), + # # test does not work with passing lambda for op + # # AssertionError: False is not true : Tensors failed to compare as equal! + # DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # # test fails are we permute the arguments function variant + # # but not for inplace or method. + # DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'), + # # TypeError: igamma(): argument 'input' (position 1) must be Tensor, not float + # DecorateInfo(unittest.skip('Skipped!'), 'TestBinaryUfuncs'), + # )), + BinaryUfuncInfo('igammac', + dtypes=floating_types_and(torch.bfloat16, torch.float16), + aliases=('torch.special.gammaincc',), + dtypesIfCUDA=floating_types(), + supports_autograd=False, + supports_rhs_python_scalar=False, + skips=( + # FIXME: incorrectly tries to pass a rhs scalar + DecorateInfo(unittest.expectedFailure, 'TestJit', + 'test_jit_alias_remapping'), + )), + # TODO: FIXME, ideally by implementing grad for both inputs + # BinaryUfuncInfo('igammac', + # variant_test_name='grad_other', + # # Since autograd formula is implemented only for other and + # # gradcheck test verifies the formula for input in SampleInput, + # # we permute the arguments + # op=lambda self, other, **kwargs: torch.igammac(other, self, **kwargs), + # inplace_variant=None, + # method_variant=None, + # supports_rhs_python_scalar=False, + # rhs_make_tensor_kwargs=dict(requires_grad=False), + # dtypes=floating_types_and(torch.bfloat16, torch.float16), + # backward_dtypesIfCPU=floating_types_and(torch.bfloat16), + # dtypesIfCUDA=floating_types(), + # backward_dtypesIfCUDA=floating_types(), + # supports_inplace_autograd=False, + # decorators=[ + # # Derivative wrt first tensor not implemented + # DecorateInfo(unittest.expectedFailure, "TestCommon", + # "test_floating_inputs_are_differentiable"), + # ], + # skips=( + # # test does not work with passing lambda for op + # # AssertionError: False is not true : Tensors failed to compare as equal! + # DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # # test fails are we permute the arguments function variant + # # but not for inplace or method. + # DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'), + # # TypeError: igammac(): argument 'input' (position 1) must be Tensor, not float + # DecorateInfo(unittest.skip('Skipped!'), 'TestBinaryUfuncs'), + # )), + UnaryUfuncInfo('nn.functional.softshrink', + aten_name="softshrink", + aten_backward_name='softshrink_backward', + dtypes=floating_types_and(torch.bfloat16, torch.float16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=False, + sample_inputs_func=sample_inputs_softshrink, + error_inputs_func=error_inputs_softshrink), + UnaryUfuncInfo('nn.functional.hardshrink', + aten_name="hardshrink", + aten_backward_name='hardshrink_backward', + dtypes=floating_types_and(torch.bfloat16, torch.float16), + assert_autodiffed=True, + sample_inputs_func=sample_inputs_hardshrink, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + autodiff_nonfusible_nodes=["aten::hardshrink"]), + UnaryUfuncInfo('nn.functional.hardtanh', + aten_name="hardtanh", + aten_backward_name='hardtanh_backward', + dtypes=floating_types_and(torch.int8, torch.int16, torch.int32, torch.int64, torch.half, torch.bfloat16), + backward_dtypes=all_types_and(torch.half, torch.bfloat16), + backward_dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + assert_autodiffed=True, + sample_inputs_func=sample_inputs_hardtanh, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + autodiff_nonfusible_nodes=["aten::hardtanh"]), + OpInfo('nn.functional.gelu', + aten_name="gelu", + aten_backward_name='gelu_backward', + ref=reference_gelu if TEST_SCIPY else None, + error_inputs_func=error_inputs_gelu, + supports_autograd=True, + assert_autodiffed=True, + sample_inputs_func=sample_inputs_gelu, + dtypes=floating_types_and(torch.bfloat16, torch.half), + supports_gradgrad=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + autodiff_nonfusible_nodes=["aten::gelu"], + skips=( + # AssertionError: Tensor-likes are not close! + # May not replicate in CI + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'), + DecorateInfo(unittest.skip("Unsupported on MPS for now"), 'TestCommon', 'test_numpy_ref_mps'), + )), + UnaryUfuncInfo('nn.functional.relu6', + aten_name="relu6", + dtypes=all_types_and(torch.half, torch.bfloat16), + backward_dtypes=floating_types_and(torch.half, torch.bfloat16), + assert_autodiffed=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + autodiff_nonfusible_nodes=["aten::relu6"]), + OpInfo('mm', + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_mm, + skips=( + # Issue with conj and torch dispatch, see https://github.com/pytorch/pytorch/issues/82479 + DecorateInfo( + unittest.skip("Skipped!"), + 'TestSchemaCheckModeOpInfo', + 'test_schema_correctness', + dtypes=(torch.complex64, torch.complex128)), + )), + OpInfo('mode', + op=torch.mode, + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # Resized a non-empty tensor but did not warn about it + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + ), + sample_inputs_func=sample_inputs_mode,), + make_mvlgamma_opinfo(variant_test_name='mvlgamma_p_1', + domain=(1, None), + skips=skips_mvlgamma(), + sample_kwargs=lambda device, dtype, input: ({'p': 1}, {'d': 1})), + make_mvlgamma_opinfo(variant_test_name='mvlgamma_p_3', + domain=(2, None), + skips=skips_mvlgamma(), + sample_kwargs=lambda device, dtype, input: ({'p': 3}, {'d': 3})), + make_mvlgamma_opinfo(variant_test_name='mvlgamma_p_5', + domain=(3, None), + skips=skips_mvlgamma(), + sample_kwargs=lambda device, dtype, input: ({'p': 5}, {'d': 5})), + BinaryUfuncInfo('ne', + ref=np.not_equal, + aliases=('not_equal',), + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + always_returns_bool=True, + supports_autograd=False, + skips=( + )), + OpInfo('narrow', + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=partial(sample_inputs_narrow_narrow_copy, is_narrow=True), + reference_inputs_func=partial(reference_inputs_narrow_narrow_copy, is_narrow=True), + error_inputs_func=partial(error_inputs_narrow_narrow_copy, is_narrow=True, is_ref=False), + skips=( + # Use of .item() + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'), + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'), + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + )), + OpInfo('narrow_copy', + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + supports_out=True, + supports_forward_ad=False, + supports_fwgrad_bwgrad=False, + supports_autograd=False, + # https://github.com/pytorch/pytorch/issues/86931 + sample_inputs_func=partial(sample_inputs_narrow_narrow_copy, is_narrow=False), + reference_inputs_func=partial(reference_inputs_narrow_narrow_copy, is_narrow=False), + error_inputs_func=partial(error_inputs_narrow_narrow_copy, is_narrow=False, is_ref=False), + skips=( + # https://github.com/pytorch/pytorch/issues/84577 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + # Lazy tensor failures: mutating and aliasing ops should all have codegen'd kernels + DecorateInfo(unittest.expectedFailure, 'TestLazyOpInfo', 'test_correctness'), + DecorateInfo(unittest.expectedFailure, 'TestLazyOpInfo', 'test_correctness_with_reusing_ir'), + # Could not run 'aten::narrow_copy.out' with arguments from the 'CUDA' backend + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_meta_outplace', + device_type='cuda'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_meta_outplace', + device_type='cuda'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_symbolic_meta_outplace', + device_type='cuda'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_symbolic_meta_outplace_all_strides'), + )), + OpInfo('view_copy', + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16), + ref=lambda x, newshape: np.reshape(x, newshape).copy(), + supports_out=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_autograd=True, + sample_inputs_func=sample_inputs_view_reshape, + error_inputs_func=error_inputs_view_reshape), + UnaryUfuncInfo('neg', + aliases=('negative', ), + ref=np.negative, + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.chalf), + error_inputs_func=error_inputs_neg, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + assert_autodiffed=True), + OpInfo('dist', + op=torch.dist, + dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + # torch.autograd.gradcheck.GradcheckError: While computing batched gradients, got: + # Could not allocate memory to change Tensor SizesAndStrides! + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_dist), + OpInfo('outer', + op=torch.outer, + aliases=('ger', ), + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_outer,), + OpInfo('ormqr', + op=torch.ormqr, + dtypes=floating_and_complex_types(), + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_forward_ad=False, + supports_fwgrad_bwgrad=False, + sample_inputs_func=sample_inputs_ormqr, + error_inputs_func=error_inputs_ormqr, + decorators=[skipCUDAIfNoCusolver, skipCPUIfNoLapack], + skips=( + # Strides are not the same! + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + )), + OpInfo('permute', + ref=np.transpose, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_out=False, + assert_autodiffed=True, + autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused + autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused + assert_jit_shape_analysis=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_varargs=True, + sample_inputs_func=sample_inputs_permute, + reference_inputs_func=reference_inputs_permute), + BinaryUfuncInfo('pow', + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.half, torch.bfloat16, torch.chalf), + ref=np.power, + # Due to AVX2 currently not being fully supported for Float16, log_vml_cpu can't be enabled + # for Float16, causing this test to fail. pow's autograd for Float16 is thus currently + # unsupported on CPU. + backward_dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16), + backward_dtypesIfCUDA=floating_and_complex_types_and(torch.bfloat16, torch.half, torch.chalf), + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_inplace_autograd=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=True, + supports_one_python_scalar=True, + # Integer types do not support negative exponentes + rhs_make_tensor_kwargs=dict(low=0), + # Raising negative real numbers to fractional powers is not supported + lhs_make_tensor_kwargs=dict(low=0), + decorators=( + DecorateInfo(toleranceOverride({torch.complex64: tol(atol=1e-4, rtol=1.3e-05)}), + 'TestBinaryUfuncs', 'test_reference_numerics'), + DecorateInfo(toleranceOverride({torch.complex64: tol(atol=1e-4, rtol=1.3e-05), + torch.complex128: tol(atol=1e-4, rtol=1.3e-05)}), + 'TestBinaryUfuncs', 'test_scalar_support'), + ), + skips=( + # Skipping integers because they are being raised to negative powers causing an error + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_reference_numerics_small_values', + dtypes=[torch.int8, torch.int16, torch.int32, torch.int64]), + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_reference_numerics_large_values', + dtypes=[torch.int16, torch.int32, torch.int64]), + # FIXME Complex values error with: Greatest absolute difference: nan at index + # Ref: https://github.com/pytorch/pytorch/issues/76853 + # For `chalf`, reference computation in `numpy` is computed in `cfloat`. + # Output of `chalf` saturates to `inf` quicker than reference due to its small range + # which leads to failure of this test. + DecorateInfo(unittest.skip("Skipped!"), 'TestDecomp', 'test_quick', + dtypes=(torch.complex32,), active_if=TEST_WITH_ROCM), + DecorateInfo(unittest.skip("Skipped!"), 'TestDecomp', 'test_comprehensive', + dtypes=(torch.complex32,), active_if=TEST_WITH_ROCM), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_complex_half_reference_testing', + dtypes=(torch.complex32,), active_if=TEST_WITH_ROCM), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_batch_vs_slicing', + dtypes=(torch.complex32,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_non_contig', + dtypes=(torch.complex32,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_reference_numerics', + dtypes=(torch.complex32,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_reference_numerics_small_values', + dtypes=(torch.complex32, torch.complex64, torch.complex128)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_reference_numerics_large_values', + dtypes=(torch.complex32, torch.complex64, torch.complex128)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_reference_numerics_extremal_values', + dtypes=(torch.complex32, torch.complex64, torch.complex128)), + )), + BinaryUfuncInfo('float_power', + ref=np.float_power, + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool), + promotes_int_to_float=True, + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_one_python_scalar=True, + # Integer types do not support negative exponentes + rhs_make_tensor_kwargs=dict(low=0), + # Raising negative real numbers to fractional powers is not supported + lhs_make_tensor_kwargs=dict(low=0), + decorators=( + DecorateInfo(toleranceOverride({torch.complex64: tol(atol=1e-4, rtol=1.3e-05), + torch.complex128: tol(atol=1e-4, rtol=1.3e-05)}), + 'TestBinaryUfuncs', 'test_scalar_support'), + ), + skips=( + # FIXME + # AssertionError: Object comparison failed: torch.float64 != torch.float32 + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_type_promotion'), + # -3.43399e+38 is outside the range of representable values of type 'float' + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # Complex values error with: Greatest absolute difference: nan at index + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_reference_numerics_small_values', + dtypes=[torch.complex64, torch.complex128]), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_reference_numerics_large_values', + dtypes=[torch.complex64, torch.complex128]), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_reference_numerics_extremal_values', + dtypes=[torch.complex64, torch.complex128]), + # Inplace always promotes to double and thus other floating dtypes are not supported + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_meta_inplace', + dtypes=[torch.bfloat16, torch.float16, torch.float32]), + )), + OpInfo('qr', + op=torch.qr, + dtypes=floating_and_complex_types(), + sample_inputs_func=sample_inputs_linalg_qr_geqrf, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # In-place ops + check_batched_gradgrad=False, + decorators=[skipCUDAIfNoCusolver, skipCPUIfNoLapack]), + UnaryUfuncInfo('rad2deg', + ref=np.degrees, + decorators=(precisionOverride({torch.bfloat16: 7e-1, + torch.float16: 7e-1}),), + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + promotes_int_to_float=True), + UnaryUfuncInfo('real', + ref=np.real, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + skips=( + # Skip since real and imag don't have out variants. + DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_out_arg_all_dtypes'), + )), + OpInfo( + "roll", + ref=np.roll, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half, torch.chalf), + error_inputs_func=error_inputs_roll, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_roll, + decorators=(onlyNativeDeviceTypes,), + ), + OpInfo( + "rot90", + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half), + error_inputs_func=error_inputs_rot90, + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_rot90, + ), + # To test reference numerics against multiple values of argument `decimals`, + # we make multiple OpInfo entries with each entry corresponding to different value of decimals. + UnaryUfuncInfo('round', + ref=np.round, + aliases=('special.round',), + dtypes=all_types_and(torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + DecorateInfo(unittest.expectedFailure, + 'TestNNCOpInfo', + 'test_nnc_correctness', + dtypes=tuple(t for t in integral_types() if t != torch.uint8)), + DecorateInfo(unittest.skip("Skipped!"), + 'TestNNCOpInfo', + 'test_nnc_correctness', + dtypes=(torch.bfloat16,)), + ), + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + assert_autodiffed=True, + ), + UnaryUfuncInfo('round', + ref=np.round, + variant_test_name='decimals_0', + aliases=('special.round',), + dtypes=floating_types_and(torch.half, torch.bfloat16), + sample_kwargs=lambda device, dtype, input: ({'decimals': 0}, {'decimals': 0}), + sample_inputs_func=partial(sample_inputs_elementwise_unary, op_kwargs={'decimals': 0}), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=False, + supports_sparse_csr=False), + UnaryUfuncInfo('round', + ref=np.round, + variant_test_name='decimals_3', + aliases=('special.round',), + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + sample_kwargs=lambda device, dtype, input: ({'decimals': 3}, {'decimals': 3}), + sample_inputs_func=partial(sample_inputs_elementwise_unary, op_kwargs={'decimals': 3}), + skips=( + # test_ops already tested for this overload with `decimals_0` opinfo entry + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'), + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestJit'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits'), + DecorateInfo(toleranceOverride({torch.bfloat16: tol(atol=1e-3, rtol=0.016)}), + "TestUnaryUfuncs", "test_reference_numerics_extremal", + device_type="cuda"), + DecorateInfo(toleranceOverride({torch.bfloat16: tol(atol=1e-3, rtol=0.016)}), + "TestUnaryUfuncs", "test_reference_numerics_normal", + device_type="cuda"), + ), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=False, + supports_sparse_csr=False), + UnaryUfuncInfo('round', + ref=np.round, + variant_test_name='decimals_neg_3', + aliases=('special.round',), + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + sample_kwargs=lambda device, dtype, input: ({'decimals': -3}, {'decimals': -3}), + sample_inputs_func=partial(sample_inputs_elementwise_unary, op_kwargs={'decimals': -3}), + skips=( + # test_ops already tested for this overload with `decimals_0` opinfo entry + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'), + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestJit'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits'), + ), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=False, + supports_sparse_csr=False), + UnaryUfuncInfo('sin', + ref=np.sin, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + handles_large_floats=False, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + skips=( + # Fails on CUDA but passes on ROCm + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=(torch.cdouble,), device_type='cuda'), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + dtypes=(torch.cfloat, torch.cdouble,), device_type='cpu', active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=(torch.cfloat, torch.cdouble,), device_type='cpu', active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped! sparse backward not supported"), + 'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'), + ), + decorators=(precisionOverride({torch.bfloat16: 1e-2}),)), + UnaryUfuncInfo('sinc', + ref=np_sinc_with_fp16_as_fp32, + aliases=('special.sinc',), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + handles_large_floats=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + decorators=(precisionOverride({torch.bfloat16: 1e-2, + torch.float16: 1e-2}),), + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/49133 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small', + dtypes=[torch.cfloat]), + )), + UnaryUfuncInfo('sinh', + ref=np_unary_ufunc_integer_promotion_wrapper(np.sinh), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + promotes_int_to_float=True, + decorators=(precisionOverride({torch.float16: 1e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=(IS_MACOS or IS_WINDOWS)), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=(IS_MACOS or IS_WINDOWS)), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=(torch.cdouble,)), + # Reference: https://github.com/pytorch/pytorch/issues/48641 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.int8]), + DecorateInfo(unittest.skip("Skipped! sparse backward not supported"), + 'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'), + )), + UnaryUfuncInfo('sign', + ref=reference_sign, + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.half), + dtypesIfCUDA=all_types_and(torch.bool, torch.bfloat16, torch.half), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/41245 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + dtypes=[torch.bfloat16, torch.float16, torch.float32, torch.float64]), + )), + UnaryUfuncInfo('sgn', + ref=reference_sgn, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half, torch.chalf), + backward_dtypes=floating_and_complex_types_and(torch.bfloat16, torch.half), + backward_dtypesIfCUDA=floating_and_complex_types_and(torch.bfloat16, torch.half, torch.chalf), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/41245 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + dtypes=[torch.bfloat16, torch.float16, torch.float32, torch.float64]), + DecorateInfo(unittest.skip("Skipped! sparse backward not supported"), + 'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'), + )), + OpInfo('split', + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool, torch.chalf), + sample_inputs_func=partial(sample_inputs_split, list_args=False), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused + autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused + assert_autodiffed=True), + OpInfo('split', + # Cannot declare this aten_name because of + # test_variant_consistency_jit_split_list_args_cpu_float32 + decomp_aten_name='split_with_sizes', + variant_test_name='list_args', + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool), + sample_inputs_func=partial(sample_inputs_split, list_args=True), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False), + # `unsafe_split` supports only `int` for split_size argument + OpInfo('unsafe_split', + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool, torch.chalf), + sample_inputs_func=partial(sample_inputs_split, list_args=False), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused + autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused + assert_autodiffed=True, + check_batched_forward_grad=False), + OpInfo('split_with_sizes', + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool, torch.chalf), + sample_inputs_func=sample_inputs_split_with_sizes, + autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused + autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=True), + BinaryUfuncInfo('__radd__', + op=torch.Tensor.__radd__, + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool), + supports_out=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',), + + ), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + autodiff_nonfusible_nodes=['aten::add'],), + BinaryUfuncInfo('__rdiv__', + op=torch.Tensor.__rdiv__, + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool), + promotes_int_to_float=True, + lhs_make_tensor_kwargs={'exclude_zero': True}, + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + skips=( + # https://github.com/pytorch/pytorch/issues/76806 + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion'), + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',), + ), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=True, + autodiff_nonfusible_nodes=['aten::mul', 'aten::reciprocal'],), + BinaryUfuncInfo('__rmul__', + op=torch.Tensor.__rmul__, + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool), + supports_out=False, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',), + ), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + autodiff_nonfusible_nodes=['aten::mul'],), + BinaryUfuncInfo('__rand__', + op=torch.Tensor.__rand__, + dtypes=integral_types_and(torch.bool), + supports_out=False, + supports_autograd=False, + supports_forward_ad=True, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + )), + BinaryUfuncInfo('__ror__', + op=torch.Tensor.__ror__, + dtypes=integral_types_and(torch.bool), + supports_out=False, + supports_autograd=False, + supports_forward_ad=True, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + )), + BinaryUfuncInfo('__rxor__', + op=torch.Tensor.__rxor__, + dtypes=integral_types_and(torch.bool), + supports_out=False, + supports_autograd=False, + supports_forward_ad=True, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + )), + OpInfo('__rmatmul__', + op=torch.Tensor.__rmatmul__, + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, + *[torch.bfloat16] + if SM53OrLater or TEST_WITH_ROCM else []), + assert_autodiffed=True, + sample_inputs_func=partial(sample_inputs_matmul, is_rmatmul=True), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_forward_grad=False, + decorators=( + # NVIDIA only assures that bfloat16 is supported by bmm if SM >= 5.3 + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes', device_type='cuda', active_if=not SM53OrLater), + DecorateInfo(toleranceOverride({torch.complex64: tol(atol=1e-05, rtol=1.2e-03)}), + 'TestMathBits', 'test_conj_view'), + DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-05, rtol=1.2e-03)}), + 'TestCommon', 'test_noncontiguous_samples'), + DecorateInfo(toleranceOverride({torch.complex64: tol(atol=1e-05, rtol=1e-05)}), + "TestDecomp", "test_comprehensive", device_type="cuda", + active_if=TEST_WITH_ROCM), + ), + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',), + # https://github.com/pytorch/pytorch/issues/67470 + DecorateInfo(unittest.skip("67470!"), + 'TestCommon', 'test_noncontiguous_samples', + device_type='cpu', dtypes=(torch.long,)), + # Fails on XLA. + # AssertionError: False is not true : Tensors failed to compare as equal + DecorateInfo(unittest.skip("Skipped!"), 'TestOpInfo', device_type='xla', dtypes=(torch.long,)), + # https://github.com/pytorch/pytorch/issues/71774 + DecorateInfo(unittest.skip('Skipped!'), 'TestNNCOpInfo', 'test_nnc_correctness', + device_type='cpu', dtypes=(torch.long,)), + )), + BinaryUfuncInfo('__rmod__', + op=torch.Tensor.__rmod__, + dtypes=floating_types_and(torch.bfloat16, torch.half,), + dtypesIfCUDA=all_types_and(torch.bfloat16, torch.half), + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_one_python_scalar=True, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',), + ), + # Support autograd after torch.remainder(Tensor, Tensor) supports + # autograd of the second argument. + # https://github.com/pytorch/pytorch/pull/58476/files#r637167630 + # supports_autograd=False, + assert_autodiffed=True, + autodiff_nonfusible_nodes=['aten::remainder'],), + BinaryUfuncInfo('__rpow__', + op=torch.Tensor.__rpow__, + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half), + # Reference: https://github.com/pytorch/pytorch/issues/54774 + # "log2" "_vml_cpu" not implemented for Half + backward_dtypes=all_types_and_complex_and(torch.bfloat16, torch.half), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_one_python_scalar=True, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',), + # TODO: FIXME tolerance is too high + DecorateInfo(unittest.skip('Skipped!'), 'TestFwdGradients'), + DecorateInfo(unittest.skip('Skipped!'), 'TestBwdGradients'), + ), + assert_autodiffed=True, + autodiff_nonfusible_nodes=['aten::pow'],), + BinaryUfuncInfo('__rsub__', + op=torch.Tensor.__rsub__, + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + supports_one_python_scalar=True, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit',), + ), + assert_autodiffed=True, + autodiff_nonfusible_nodes=['aten::rsub'],), + BinaryUfuncInfo('rsub', + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + supports_inplace_autograd=False, + assert_autodiffed=None, + sample_inputs_func=sample_inputs_add_sub), + OpInfo('select', + aten_backward_name='select_backward', + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool, torch.chalf), + sample_inputs_func=sample_inputs_select, + assert_jit_shape_analysis=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False), + OpInfo('select_scatter', + dtypes=all_types_and(torch.bfloat16, torch.half, torch.bool), + sample_inputs_func=sample_inputs_select_scatter, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False), + OpInfo('slice', + op=torch.ops.aten.slice.Tensor, + dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool, torch.chalf), + sample_inputs_func=sample_inputs_slice, + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_scripting=False, + supports_inplace_autograd=False, + supports_out=False), + OpInfo('slice_scatter', + dtypes=all_types_and(torch.bfloat16, torch.half, torch.bool), + sample_inputs_func=sample_inputs_slice_scatter, + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False), + UnaryUfuncInfo('signbit', + ref=np.signbit, + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.half), + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + supports_autograd=False,), + UnaryUfuncInfo('tan', + ref=np.tan, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + decorators=(DecorateInfo( + toleranceOverride({torch.complex64: tol(atol=1e-04, rtol=1e-05)}), + 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cuda'),), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + promotes_int_to_float=True, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=(IS_MACOS or IS_WINDOWS)), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=(IS_MACOS or IS_WINDOWS)), + DecorateInfo(unittest.skip("Skipped! sparse backward not supported"), + 'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'), + ), + # tan(pi/2 * odd_number) is nan + reference_numerics_filter=NumericsFilter( + condition=lambda x: close_to_int(x / (math.pi * 0.5)), safe_val=math.pi)), + UnaryUfuncInfo('tanh', + ref=np.tanh, + aten_backward_name='tanh_backward', + aliases=('nn.functional.tanh',), + decorators=(precisionOverride({torch.bfloat16: 1e-2}), + DecorateInfo( + toleranceOverride({torch.complex64: tol(atol=1e-04, rtol=2e-05)}), + 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cuda'),), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + assert_jit_shape_analysis=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + promotes_int_to_float=True, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=(IS_MACOS or IS_WINDOWS)), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=(IS_MACOS or IS_WINDOWS)), + DecorateInfo(unittest.skip("Skipped! sparse backward not supported"), + 'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'), + ), + # tan(j * pi/2 * odd_number) is nan + reference_numerics_filter=NumericsFilter( + condition=lambda x: (close_to_int(x / (math.pi * 0.5j)) + if x.is_complex() else x.new_tensor(False, dtype=torch.bool)), + safe_val=0)), + OpInfo('tensor_split', + ref=np.array_split, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # Pre-existing condition; Needs to be fixed + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'), + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'), + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'), + ), + sample_inputs_func=sample_inputs_tensor_split,), + OpInfo('hsplit', + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.bfloat16, torch.float16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_hsplit, + error_inputs_func=error_inputs_hsplit,), + OpInfo('vsplit', + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.bfloat16, torch.float16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_vsplit, + error_inputs_func=error_inputs_vsplit,), + OpInfo('dsplit', + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.bfloat16, torch.float16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_dsplit, + error_inputs_func=error_inputs_dsplit,), + OpInfo('triangular_solve', + op=torch.triangular_solve, + dtypes=floating_and_complex_types(), + sample_inputs_func=sample_inputs_legacy_solve, + check_batched_gradgrad=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + gradcheck_wrapper=lambda *args, **kwargs: gradcheck_wrapper_triangular_input(*args, idx=1, **kwargs), + decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack], + skips=( + # AssertionError: Scalars are not equal! + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + # Gradcheck fails + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', 'test_fn_fwgrad_bwgrad', + dtypes=floating_and_complex_types()), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out', + device_type='mps', dtypes=[torch.float32]), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager', + device_type='mps', dtypes=[torch.float32]), + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', + device_type='mps', dtypes=[torch.float32]), + )), + UnaryUfuncInfo('trunc', + aliases=('fix', ), + ref=np.trunc, + dtypes=all_types_and(torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + skips=( + DecorateInfo(unittest.expectedFailure, + 'TestNNCOpInfo', + 'test_nnc_correctness', + dtypes=tuple(t for t in integral_types() if t != torch.uint8)), + ), + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + assert_autodiffed=True), + UnaryUfuncInfo('exp2', + aliases=('special.exp2', ), + ref=np_unary_ufunc_integer_promotion_wrapper(np.exp2), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=[torch.cdouble]), + # Reference: https://github.com/pytorch/pytorch/issues/48010 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + )), + UnaryUfuncInfo('expm1', + aliases=('special.expm1', ), + ref=np_unary_ufunc_integer_promotion_wrapper(np.expm1), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + promotes_int_to_float=True, + assert_autodiffed=True, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cuda', dtypes=[torch.complex128]), + DecorateInfo(unittest.skip("Skipped! sparse backward not supported"), + 'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'), + )), + UnaryUfuncInfo('nan_to_num', + ref=np.nan_to_num, + dtypes=all_types_and(torch.half, torch.bool, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.half, torch.bool, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse=True, + skips=( + DecorateInfo(unittest.skip("Skipped! sparse backward not supported"), + 'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'), + ), + # Passing numpy_kwargs via sample_kwargs, as numpy does comparison + # with BFloat16 in float, since it currently doesn't support BFloat16. + # Ref: https://github.com/pytorch/pytorch/issues/57982#issuecomment-839150556 + sample_kwargs=lambda device, dtype, input: ({}, + {'posinf': torch.finfo(torch.bfloat16).max, + 'neginf': torch.finfo(torch.bfloat16).min}) + if dtype is torch.bfloat16 else ({}, {})), + UnaryUfuncInfo('reciprocal', + ref=np_unary_ufunc_integer_promotion_wrapper(np.reciprocal), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/45690 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + dtypes=[torch.cfloat, torch.cdouble]), + )), + UnaryUfuncInfo('rsqrt', + ref=lambda x: np.reciprocal(np.sqrt(x)), + domain=(0, None), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + decorators=(precisionOverride({torch.half: 5e-2}),), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + dtypes=(torch.cfloat, torch.cdouble)), + # AssertionError: Tensor-likes are not close! + # Greatest absolute difference: nan at index (700,) (up to 0.01 allowed) + # Greatest relative difference: nan at index (700,) (up to 0.001 allowed) + DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=(torch.chalf,)), + )), + UnaryUfuncInfo('sqrt', + ref=np.sqrt, + supports_sparse=True, + domain=(0, None), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + decorators=( + precisionOverride({torch.bfloat16: 7e-2}), + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=1e-2, rtol=0)}), + 'TestUnaryUfuncs', 'test_reference_numerics_large'), + ), + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/47358 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + device_type='cpu', dtypes=(torch.cfloat, torch.cdouble), + active_if=IS_MACOS), + DecorateInfo(unittest.skip("Skipped! sparse backward not supported"), + 'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'), + )), + UnaryUfuncInfo('square', + ref=np.square, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + decorators=(precisionOverride({torch.complex64: 3e-4, torch.bfloat16: 3e-1}),), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/52549 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=[torch.cfloat, torch.cdouble]), + # >>> t = torch.tensor(complex(-0.01, float("inf"))) + # >>> np.square(t.numpy()) + # (-inf-infj) + # >>> t.square() + # tensor(-inf-infj) + # >>> t.cuda().square() + # tensor(inf+nanj, device='cuda:0') + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_meta_inplace', + dtypes=[torch.bool]), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_meta_inplace', + dtypes=[torch.bool]), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_symbolic_meta_inplace', + dtypes=[torch.bool]), + ),), + OpInfo('lerp', + dtypes=floating_and_complex_types_and(torch.bfloat16, torch.half), + dtypesIfCUDA=floating_and_complex_types_and(torch.chalf, torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_lerp, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=True), + UnaryUfuncInfo('angle', + ref=np.angle, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool), + decorators=(precisionOverride({torch.float16: 1e-2, + torch.bfloat16: 1e-2}),), + backward_dtypes=floating_and_complex_types_and(torch.bfloat16, torch.float16), + backward_dtypesIfCUDA=floating_and_complex_types_and(torch.chalf), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + supports_complex_to_float=True, + skips=( + # Ref: https://github.com/pytorch/pytorch/issues/78413 + DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_reference_numerics_small', + dtypes=(torch.bfloat16, torch.float16, torch.float32, torch.float64),), + )), + UnaryUfuncInfo('isfinite', + ref=np.isfinite, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + supports_out=False, + supports_autograd=False), + UnaryUfuncInfo('isinf', + ref=np.isinf, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + supports_out=False, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + supports_autograd=False), + UnaryUfuncInfo('isposinf', + ref=np.isposinf, + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16), + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + supports_autograd=False), + UnaryUfuncInfo('isneginf', + ref=np.isneginf, + dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16), + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + supports_autograd=False), + UnaryUfuncInfo('isreal', + ref=np.isreal, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + supports_out=False, + supports_autograd=False), + UnaryUfuncInfo('isnan', + ref=np.isnan, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + supports_out=False, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + supports_autograd=False), + OpInfo('einsum', + # we need this lambda because SampleInput expects tensor input as the first argument + # TODO(@heitorschueroff) update SampleInput to handle such cases + op=lambda tensors, equation: torch.einsum(equation, tensors), + dtypes=all_types_and_complex_and(torch.half, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16), + backward_dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_forward_grad=False, + # See https://github.com/pytorch/pytorch/issues/66357 + sample_inputs_func=sample_inputs_einsum, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # test does not work with passing lambda for op + # there's a test `test_einsum` in `test_jit.py` to handle this case + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + )), + OpInfo('svd', + op=torch.svd, + dtypes=floating_and_complex_types(), + sample_inputs_func=sample_inputs_svd, + # Runs very slowly on slow-gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_forward_grad=False, + # We're using at::allclose, which does not have a batching rule + check_batched_grad=False, + check_batched_gradgrad=False, + decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack, with_tf32_off], + skips=( + # Issue with conj and torch dispatch, see https://github.com/pytorch/pytorch/issues/82479 + DecorateInfo( + unittest.skip("Skipped!"), + 'TestSchemaCheckModeOpInfo', + 'test_schema_correctness', + dtypes=(torch.complex64, torch.complex128)), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out', + device_type='mps', dtypes=[torch.float32]), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager', + device_type='mps', dtypes=[torch.float32]), + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', + device_type='mps', dtypes=[torch.float32]), + DecorateInfo(unittest.skip("Skipped!"), 'TestFakeTensor', 'test_fake_crossref_backward_amp', + device_type='cuda', dtypes=[torch.float32], active_if=TEST_WITH_ROCM), + DecorateInfo(unittest.skip("Skipped!"), 'TestFakeTensor', 'test_fake_crossref_backward_no_amp', + device_type='cuda', dtypes=[torch.float32], active_if=TEST_WITH_ROCM), + )), + OpInfo('svd_lowrank', + op=lambda *args, **kwargs: wrapper_set_seed( + lambda a, b, **kwargs: torch.svd_lowrank(a @ b.mT, **kwargs), + *args, **kwargs + ), + dtypes=floating_types(), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + check_batched_grad=False, + check_batched_gradgrad=False, + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + supports_forward_ad=True, + sample_inputs_func=sample_inputs_svd_lowrank, + decorators=[skipCUDAIfNoCusolver, skipCPUIfNoLapack, with_tf32_off, + DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-03, rtol=1e-03)}), + 'TestCommon', 'test_noncontiguous_samples', + device_type='cuda')], + skips=( + # test does not work with passing lambda for op + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + DecorateInfo(slowTest, 'TestCompositeCompliance', 'test_forward_ad'), + )), + OpInfo('pca_lowrank', + op=lambda *args, **kwargs: wrapper_set_seed( + lambda a, b, **kwargs: torch.pca_lowrank(a @ b.mT, **kwargs), + *args, **kwargs + ), + dtypes=floating_types(), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + check_batched_forward_grad=False, + check_batched_grad=False, + check_batched_gradgrad=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_pca_lowrank, + decorators=[skipCUDAIfNoCusolver, skipCPUIfNoLapack, with_tf32_off, + DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-03, rtol=1e-03)}), + 'TestCommon', 'test_noncontiguous_samples', + device_type='cuda')], + skips=( + # test does not work with passing lambda for op + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + )), + BinaryUfuncInfo('polar', + dtypes=floating_types(), + # this function is undefined if 'abs' values are <0 + supports_forward_ad=True, + lhs_make_tensor_kwargs=dict(low=0), + supports_rhs_python_scalar=False, + skips=( + # RuntimeError: Expected object of scalar type Float but got scalar type Double for second argument + DecorateInfo(unittest.skip('Skipped!'), 'TestBinaryUfuncs', 'test_type_promotion'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_binary_ufuncs_mixed_dtype'), + # GradcheckError: Jacobian computed with forward mode mismatch for output 0 with respect to input 0 + # Numerical: + # tensor([[0.]], dtype=torch.float64) + # Analytical: + # tensor([[-0.0047]], dtype=torch.float64, grad_fn=) + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', 'test_fn_fwgrad_bwgrad'), + )), + # TODO(@kshitij12345): Refactor similar to `mvlgamma` entries. + # To test reference numerics against multiple values of argument `n`, + # we make multiple OpInfo entries with each entry corresponding to different value of n (currently 0 to 4). + # We run the op tests from test_ops.py only for `n=0` to avoid redundancy in testing. + UnaryUfuncInfo('polygamma', + op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs), + variant_test_name='polygamma_n_0', + ref=reference_polygamma if TEST_SCIPY else None, + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bool, torch.half), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + sample_inputs_func=sample_inputs_polygamma, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + ), + sample_kwargs=lambda device, dtype, input: ({'n': 0}, {'n': 0})), + UnaryUfuncInfo('polygamma', + op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs), + variant_test_name='polygamma_n_1', + ref=reference_polygamma if TEST_SCIPY else None, + dtypes=all_types_and(torch.bool, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bool, torch.half), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + sample_inputs_func=sample_inputs_polygamma, + skips=( + # Redundant tests + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestJit'), + DecorateInfo(unittest.skip("Skipped!"), 'TestNormalizeOperators'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'), + # Mismatch: https://github.com/pytorch/pytorch/issues/55357 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal'), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large'), + ), + sample_kwargs=lambda device, dtype, input: ({'n': 1}, {'n': 1}), + # polygamma functions have multiple singularities at x <= 0 + reference_numerics_filter=NumericsFilter(condition=lambda x: x < 0.1, safe_val=1)), + UnaryUfuncInfo('polygamma', + op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs), + variant_test_name='polygamma_n_2', + ref=reference_polygamma if TEST_SCIPY else None, + dtypes=all_types_and(torch.bool, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bool, torch.half), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + sample_inputs_func=sample_inputs_polygamma, + skips=( + # Redundant tests + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestJit'), + DecorateInfo(unittest.skip("Skipped!"), 'TestNormalizeOperators'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'), + # Mismatch: https://github.com/pytorch/pytorch/issues/55357 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),), + sample_kwargs=lambda device, dtype, input: ({'n': 2}, {'n': 2}), + # polygamma functions have multiple singularities at x <= 0 + reference_numerics_filter=NumericsFilter(condition=lambda x: x < 0.1, safe_val=1)), + UnaryUfuncInfo('polygamma', + op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs), + variant_test_name='polygamma_n_3', + ref=reference_polygamma if TEST_SCIPY else None, + dtypes=all_types_and(torch.bool, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bool, torch.half), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + sample_inputs_func=sample_inputs_polygamma, + skips=( + # Redundant tests + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestJit'), + DecorateInfo(unittest.skip("Skipped!"), 'TestNormalizeOperators'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'), + # Mismatch: https://github.com/pytorch/pytorch/issues/55357 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),), + sample_kwargs=lambda device, dtype, input: ({'n': 3}, {'n': 3}), + # polygamma functions have multiple singularities at x <= 0 + reference_numerics_filter=NumericsFilter(condition=lambda x: x < 0.1, safe_val=1)), + UnaryUfuncInfo('polygamma', + op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs), + variant_test_name='polygamma_n_4', + ref=reference_polygamma if TEST_SCIPY else None, + decorators=(precisionOverride({torch.float16: 5e-4, torch.float32: 5e-4}),), + dtypes=all_types_and(torch.bool, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bool, torch.half), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + sample_inputs_func=sample_inputs_polygamma, + skips=( + # Redundant tests + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestJit'), + DecorateInfo(unittest.skip("Skipped!"), 'TestNormalizeOperators'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'), + # Mismatch: https://github.com/pytorch/pytorch/issues/55357 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),), + sample_kwargs=lambda device, dtype, input: ({'n': 4}, {'n': 4}), + # polygamma functions have multiple singularities at x <= 0 + reference_numerics_filter=NumericsFilter(condition=lambda x: x < 0.1, safe_val=1)), + OpInfo('ravel', + ref=np.ravel, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_ravel, + ), + OpInfo('unravel_index', + ref=np.unravel_index, + dtypes=integral_types_and(), + supports_out=False, + supports_autograd=False, + sample_inputs_func=sample_inputs_unravel_index, + ), + OpInfo('reshape', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + sample_inputs_func=sample_inputs_view_reshape, + reference_inputs_func=reference_inputs_view_reshape, + error_inputs_func=error_inputs_view_reshape, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + ), + OpInfo('reshape_as', + op=lambda x, other: x.reshape_as(other), + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + sample_inputs_func=partial(sample_inputs_view_reshape, tensor_arg=True), + reference_inputs_func=partial(reference_inputs_view_reshape, tensor_arg=True), + error_inputs_func=partial(error_inputs_view_reshape, tensor_arg=True), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + )), + OpInfo('view', + op=lambda x, shape: x.view(shape), + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + sample_inputs_func=sample_inputs_view_reshape, + reference_inputs_func=reference_inputs_view_reshape, + error_inputs_func=error_inputs_view_reshape, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: view size is not compatible with input tensor's size and stride + # (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead. + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides"), + )), + OpInfo('view_as', + op=lambda x, other: x.view_as(other), + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=partial(sample_inputs_view_reshape, tensor_arg=True), + reference_inputs_func=partial(reference_inputs_view_reshape, tensor_arg=True), + error_inputs_func=partial(error_inputs_view_reshape, tensor_arg=True), + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: view size is not compatible with input tensor's size and stride + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides") + )), + OpInfo('atleast_1d', + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_atleast1d2d3d, + skips=( + # JIT does not support variadic tensors. + # RuntimeError: input->type()->kind() == TypeKind::OptionalType + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252, + # please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.float32]), + ), + ), + OpInfo('atleast_2d', + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.float32]), + ), + sample_inputs_func=sample_inputs_atleast1d2d3d, + ), + OpInfo('atleast_3d', + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.float32]), + ), + sample_inputs_func=sample_inputs_atleast1d2d3d, + ), + OpInfo('flatten', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + ref=reference_flatten, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_flatten, + reference_inputs_func=reference_inputs_flatten, + ), + OpInfo('unflatten', + op=torch.unflatten, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_unflatten, + ), + OpInfo('column_stack', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"),), + sample_inputs_func=sample_inputs_column_stack,), + OpInfo('pinverse', + op=torch.pinverse, + dtypes=floating_and_complex_types(), + check_batched_grad=False, + check_batched_gradgrad=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + supports_out=False, + sample_inputs_func=sample_inputs_linalg_invertible, + decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack], + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager', + device_type='mps', dtypes=[torch.float32]), + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', + device_type='mps', dtypes=[torch.float32]), + )), + OpInfo('gather', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_gather, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + error_inputs_func=error_inputs_gather, + ), + OpInfo('index_fill', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.complex32), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + skips=( + # RuntimeError: Mismatch on aten._unique.default: Shapes torch.Size([2]) and torch.Size([1]) are not equal! + DecorateInfo(unittest.expectedFailure, 'TestFakeTensor', 'test_fake_crossref_backward_no_amp'), + # RuntimeError: Mismatch on aten._unique.default: Shapes torch.Size([2]) and torch.Size([1]) are not equal! + DecorateInfo(unittest.expectedFailure, 'TestFakeTensor', 'test_fake_crossref_backward_amp'), + ), + sample_inputs_func=sample_inputs_index, + reference_inputs_func=partial(sample_inputs_index, reference=True)), + OpInfo('index_copy', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.complex32), + supports_out=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_index, + reference_inputs_func=partial(sample_inputs_index, reference=True), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL), + OpInfo('index_select', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + backward_dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16, torch.chalf), + sample_inputs_func=sample_inputs_index, + reference_inputs_func=partial(sample_inputs_index, reference=True), + error_inputs_func=error_inputs_index_select, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL), + OpInfo('index_add', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_out=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_index, + reference_inputs_func=partial(sample_inputs_index, reference=True), + error_inputs_func=error_inputs_index_add, + skips=( + # boolean alpha not handled properly + DecorateInfo(unittest.expectedFailure, + 'TestNNCOpInfo', + 'test_nnc_correctness', + dtypes=(torch.bool,)), + ), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL), + OpInfo('index_reduce', + dtypes=all_types_and(torch.float16, torch.bfloat16), + supports_out=True, + sample_inputs_func=sample_inputs_index_reduce), + OpInfo('__getitem__', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_inplace_autograd=False, + supports_scripting=False, + op=torch.Tensor.__getitem__, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # AssertionError: False is not true : Scalars failed to compare as equal! 0 != 104448 + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', device_type='cuda'),), + sample_inputs_func=sample_inputs_getitem), + OpInfo('index_put', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_out=False, + supports_inplace_autograd=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + test_neg_view=False, + sample_inputs_func=sample_inputs_index_put, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.skip("Skipped"), 'TestBwdGradients', 'test_fn_grad', dtypes=[torch.float64], + device_type='cuda', active_if=(TEST_WITH_ROCM and TEST_WITH_TORCHINDUCTOR)), + )), + OpInfo('sort', + dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_sort, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + )), + OpInfo('unique', + dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bool, torch.float16), + sample_inputs_func=sample_inputs_unique, + supports_out=False, + supports_autograd=False, + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('Output order is undefined when sorted=False'), 'TestCommon', 'test_compare_cpu'), + )), + OpInfo('unique_consecutive', + dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bool, torch.float16), + sample_inputs_func=sample_inputs_unique_consecutive, + supports_out=False, + supports_autograd=False, + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + )), + OpInfo('put', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_forward_grad=False, + check_batched_gradgrad=False, # vmap complains of the sizes + sample_inputs_func=sample_inputs_put), + OpInfo('take', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + check_batched_grad=False, # vmap complains of the sizes + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_take, + error_inputs_func=error_inputs_take), + OpInfo('scatter', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_scatter, + error_inputs_func=error_inputs_scatter_and_scatter_add), + UnaryUfuncInfo( + 'bfloat16', + op=lambda x, *args, **kwargs: x.bfloat16(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_conversion, + skips=( + # autograd tests don't handle operators that change dtype + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients'), + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients'), + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: attribute lookup is not defined on builtin + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'), + )), + UnaryUfuncInfo( + 'bool', + op=lambda x, *args, **kwargs: x.bool(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_conversion, + supports_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: attributis not defined on builtin + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + )), + UnaryUfuncInfo( + 'byte', + op=lambda x, *args, **kwargs: x.byte(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_out=False, + sample_inputs_func=sample_inputs_conversion, + # The autograd test runner cannot handle functions that change dtype + supports_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: attribute lookup is not defined on builtin + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('Overflow when downcasting signed type is undefined'), 'TestCommon', 'test_compare_cpu'), + )), + UnaryUfuncInfo( + 'char', + op=lambda x, *args, **kwargs: x.char(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_conversion, + # The autograd test runner cannot handle functions that change dtype + supports_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: attribute lookup is not defined on builtin + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('Overflow when downcasting signed type is undefined'), 'TestCommon', 'test_compare_cpu'), + )), + UnaryUfuncInfo( + 'double', + op=lambda x, *args, **kwargs: x.double(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_conversion, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: attribute lookup is not defined on builtin + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + )), + UnaryUfuncInfo( + 'float', + op=lambda x, *args, **kwargs: x.float(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_conversion, + skips=( + # autograd tests don't handle operators that change dtype + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients'), + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients'), + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: attribute lookup is not defined on builtin + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + )), + UnaryUfuncInfo( + 'half', + op=lambda x, *args, **kwargs: x.half(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_out=False, + sample_inputs_func=sample_inputs_conversion, + supports_autograd=True, + skips=( + # autograd tests don't handle operators that change dtype + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients'), + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients'), + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: attribute lookup is not defined on builtin + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + )), + UnaryUfuncInfo( + 'int', + op=lambda x, *args, **kwargs: x.int(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_out=False, + sample_inputs_func=sample_inputs_conversion, + supports_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: attribute lookup is not defined on builtin + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('Overflow when downcasting signed type is undefined'), 'TestCommon', 'test_compare_cpu'), + )), + UnaryUfuncInfo( + 'long', + op=lambda x, *args, **kwargs: x.long(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_conversion, + supports_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: attribute lookup is not defined on builtin + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('Overflow when downcasting signed type is undefined'), 'TestCommon', 'test_compare_cpu'), + )), + UnaryUfuncInfo( + 'short', + op=lambda x, *args, **kwargs: x.short(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_out=False, + sample_inputs_func=sample_inputs_conversion, + supports_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: attribute lookup is not defined on builtin + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('Overflow when downcasting signed type is undefined'), 'TestCommon', 'test_compare_cpu'), + )), + UnaryUfuncInfo( + 'cdouble', + op=torch.Tensor.cdouble, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_conversion, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: attribute lookup is not defined on builtin + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'), + )), + UnaryUfuncInfo( + 'cfloat', + op=torch.Tensor.cfloat, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_conversion, + skips=( + # autograd tests don't handle operators that change dtype + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients'), + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients'), + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # RuntimeError: attribute lookup is not defined on builtin + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'), + )), + UnaryUfuncInfo( + 'chalf', + op=lambda x, *args, **kwargs: x.chalf(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_conversion, + skips=( + # autograd tests don't handle operators that change dtype + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients'), + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients'), + # use of lambda doesn't work with test_normalize_operator_exhaustive + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # RuntimeError: "sum_cpu" not implemented for 'ComplexHalf' + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager', + device_type='cpu'), + # TypeError: 'int' object is not iterable + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # RuntimeError: "sum_cpu" not implemented for 'ComplexHalf' + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view', + device_type='cpu'), + # RuntimeError: "sum_cpu" not implemented for 'ComplexHalf' + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view', + device_type='cpu'), + # RuntimeError: "sum_cpu" not implemented for 'ComplexHalf' + # RuntimeError: "neg_conj_cuda" not implemented for 'ComplexHalf' + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + ) + ), + OpInfo('empty_like', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_like_fns, + reference_inputs_func=reference_inputs_like_fns, + supports_autograd=False, + skips=( + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), + "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_noncontiguous_samples'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_conj_view'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCudaFuserOpInfo'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_complex_half_reference_testing'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_non_standard_bool_values'), + DecorateInfo(unittest.skip("Expected: empty_like is not comparable"), 'TestCompositeCompliance', + 'test_operator'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + )), + OpInfo('zeros_like', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_like_fns, + supports_autograd=False, + error_inputs_sparse_func=error_inputs_sparse_like_fns, + sample_inputs_sparse_coo_func=partial(sample_inputs_sparse_like_fns, layout=torch.sparse_coo), + sample_inputs_sparse_csr_func=partial(sample_inputs_sparse_like_fns, layout=torch.sparse_csr), + sample_inputs_sparse_csc_func=partial(sample_inputs_sparse_like_fns, layout=torch.sparse_csc), + sample_inputs_sparse_bsr_func=partial(sample_inputs_sparse_like_fns, layout=torch.sparse_bsr), + sample_inputs_sparse_bsc_func=partial(sample_inputs_sparse_like_fns, layout=torch.sparse_bsc), + skips=( + )), + OpInfo('ones_like', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_like_fns, + supports_autograd=False, + skips=( + )), + OpInfo('randn', + dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16, torch.complex32), + op=lambda *args, **kwargs: wrapper_set_seed(torch.randn, *args, **kwargs), + supports_out=True, + sample_inputs_func=sample_inputs_randn, + supports_autograd=False, + skips=( + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.skip("Test expects tensor input"), "TestCommon", "test_noncontiguous_samples"), + DecorateInfo(unittest.skip("Test expects tensor input"), "TestVmapOperatorsOpInfo", "test_vmap_exhaustive"), + DecorateInfo(unittest.skip("Test expects tensor input"), "TestVmapOperatorsOpInfo", "test_op_has_batch_rule"), + # CPU randn generates different values based on the strides of out tensor + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out', device_type='cpu'), + # randn fails to warn when resizing its out tensor + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # Tests that assume input tensor has a meaningful effect on output tensor + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.expectedFailure, 'TestDecomp', 'test_quick'), + )), + OpInfo('randn_like', + dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16, torch.complex32), + op=lambda inp, *args, **kwargs: + wrapper_set_seed(torch.randn_like, inp, *args, **kwargs), + supports_out=False, + sample_inputs_func=sample_inputs_like_fns, + supports_autograd=False, + error_inputs_sparse_func=error_inputs_sparse_like_fns, + sample_inputs_sparse_coo_func=partial(sample_inputs_sparse_like_fns, layout=torch.sparse_coo), + sample_inputs_sparse_csr_func=partial(sample_inputs_sparse_like_fns, layout=torch.sparse_csr), + sample_inputs_sparse_csc_func=partial(sample_inputs_sparse_like_fns, layout=torch.sparse_csc), + sample_inputs_sparse_bsr_func=partial(sample_inputs_sparse_like_fns, layout=torch.sparse_bsr), + sample_inputs_sparse_bsc_func=partial(sample_inputs_sparse_like_fns, layout=torch.sparse_bsc), + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip("Expected: randn_like is not comparable between dtypes"), + 'TestCommon', 'test_complex_half_reference_testing'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + )), + OpInfo('rand_like', + dtypes=floating_types_and(torch.half, torch.bfloat16, torch.complex32, torch.complex64, torch.complex128), + op=lambda inp, *args, **kwargs: + wrapper_set_seed(torch.randn_like, inp, *args, **kwargs), + supports_out=False, + sample_inputs_func=sample_inputs_like_fns, + supports_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip("Expected: randn_like is not comparable between dtypes"), + 'TestCommon', 'test_complex_half_reference_testing'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + )), + OpInfo('randint', + dtypes=all_types_and(torch.half, torch.bfloat16), + op=lambda *args, **kwargs: + wrapper_set_seed(torch.randint, *args, **kwargs), + supports_out=False, + sample_inputs_func=sample_inputs_randint, + supports_autograd=False, + skips=( + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.skip("Test expects tensor input"), "TestCommon", "test_noncontiguous_samples"), + DecorateInfo(unittest.skip("Test expects tensor input"), "TestVmapOperatorsOpInfo", "test_vmap_exhaustive"), + DecorateInfo(unittest.skip("Test expects tensor input"), "TestVmapOperatorsOpInfo", "test_op_has_batch_rule"), + # CPU randint generates different values based on the strides of out tensor + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + # randint fails to warn when resizing its out tensor + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # Tests that assume input tensor has a meaningful effect on output tensor + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # Might need to skip until ROCm5.5 + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_multiple_devices', + dtypes=[torch.float32, torch.int64], active_if=TEST_WITH_ROCM), + )), + OpInfo('randint_like', + dtypes=all_types_and(torch.half, torch.bfloat16), + op=lambda inp, *args, **kwargs: + wrapper_set_seed(torch.randint_like, inp, *args, **kwargs), + supports_out=False, + sample_inputs_func=sample_inputs_randint_like, + supports_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + )), + OpInfo('full_like', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + supports_out=False, + sample_inputs_func=sample_inputs_full_like, + supports_autograd=False, + skips=( + )), + OpInfo('new_zeros', + op=lambda x, *args, **kwargs: x.new_zeros(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_new_fns, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + ), + supports_autograd=False), + OpInfo('new_ones', + op=lambda x, *args, **kwargs: x.new_ones(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_new_fns, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + ), + supports_autograd=False), + OpInfo('ones', + op=torch.ones, + supports_autograd=False, + supports_varargs=True, + is_factory_function=True, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=True, + sample_inputs_func=sample_inputs_ones_zeros, + skips=( + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + + # Same failure as arange: cannot find linspace in captured graph + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + + # UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + )), + OpInfo('zeros', + op=torch.zeros, + supports_autograd=False, + is_factory_function=True, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=True, + sample_inputs_func=sample_inputs_ones_zeros, + skips=( + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + + # Same failure as arange: cannot find linspace in captured graph + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + + # UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + )), + OpInfo('full', + op=torch.full, + supports_autograd=False, + is_factory_function=True, + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=True, + sample_inputs_func=sample_inputs_full, + skips=( + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + # Same failure as arange: cannot find linspace in captured graph + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + # RuntimeError: UNSUPPORTED DTYPE: bool + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness', dtypes=(torch.bool,)), + )), + OpInfo('new_empty', + op=lambda x, *args, **kwargs: x.new_empty(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_new_fns, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_noncontiguous_samples'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_conj_view'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCudaFuserOpInfo'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_non_standard_bool_values'), + DecorateInfo(unittest.skip("Expected: new_empty is not comparable"), 'TestCompositeCompliance', + 'test_operator'), + DecorateInfo(unittest.skip("Expected: new_empty is not comparable"), + 'TestCommon', 'test_complex_half_reference_testing'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + ), + supports_autograd=False), + OpInfo('new_empty_strided', + op=lambda x, *args, **kwargs: x.new_empty_strided(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=partial(sample_inputs_new_fns, is_strided=True), + supports_autograd=False, + skips=( + # FX failed to normalize op + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # Lazy tensor failures + DecorateInfo(unittest.skip("Skipped!"), 'TestLazyOpInfo', 'test_correctness'), + DecorateInfo(unittest.skip("Skipped!"), 'TestLazyOpInfo', 'test_correctness_with_reusing_ir'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestCommon', 'test_noncontiguous_samples'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestMathBits', 'test_neg_conj_view'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestCommon', 'test_non_standard_bool_values'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestCommon', 'test_complex_half_reference_testing'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestCompositeCompliance', 'test_operator'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestDecomp', 'test_comprehensive'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestDecomp', 'test_quick'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestProxyTensorOpInfo', 'test_make_fx_exhaustive'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestProxyTensorOpInfo', 'test_make_fx_fake_exhaustive'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive'), + DecorateInfo(unittest.skip("Expected: new_empty_strided is not comparable"), + 'TestNNCOpInfo', 'test_nnc_correctness'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + )), + OpInfo('empty_strided', + op=lambda inp, *args, **kwargs: wrapper_set_seed(torch.empty_strided, inp, *args, **kwargs), + dtypes=all_types_and_complex_and(torch.bfloat16, torch.bool, torch.half), + supports_out=False, + supports_autograd=False, + sample_inputs_func=sample_inputs_empty_strided, + skips=( + # FX failed to normalize op - add the op to the op_skip list. + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_noncontiguous_samples'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_non_standard_bool_values'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_conj_view'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_compare_cpu'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), 'TestCompositeCompliance', 'test_operator'), + # Lazy tensor failures + DecorateInfo(unittest.skip("Expected: empty is not comparable"), 'TestLazyOpInfo'), + # RuntimeError: unsupported operation: more than one element of the written-to tensor refers to a single + # memory location. Please clone() the tensor before performing the operation. + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_meta_outplace'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_symbolic_meta_outplace'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_dispatch_symbolic_meta_outplace_all_strides'), + )), + OpInfo('empty', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + sample_inputs_func=sample_inputs_empty, + supports_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_noncontiguous_samples'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_conj_view'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCudaFuserOpInfo'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_non_standard_bool_values'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), 'TestCompositeCompliance', + 'test_operator'), + # requires_grad doesn't exist in the jit schema + DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_out'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_out_warning'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestLazyOpInfo'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', 'test_complex_half_reference_testing'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + )), + OpInfo('eye', + dtypes=all_types_and_complex_and(torch.bool, torch.half), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_eye, + error_inputs_func=error_inputs_eye, + supports_out=True, + supports_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # TODO: same as this? + # https://github.com/pytorch/pytorch/issues/81774 + # also see: arange, new_full + # fails to match any schemas despite working in the interpreter + DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'), + # fails to match any schemas despite working in the interpreter + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # skip these tests since we have non tensor input + DecorateInfo(unittest.skip('Skipped!'), "TestCommon", "test_noncontiguous_samples"), + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_conj_view'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'), + # UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + )), + OpInfo('empty_permuted', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + sample_inputs_func=sample_inputs_empty_permuted, + error_inputs_func=error_inputs_empty_permuted, + supports_out=False, + supports_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_noncontiguous_samples'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_conj_view'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestNNCOpInfo', 'test_nnc_correctness'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCudaFuserOpInfo'), + # Empty tensor data is garbage so it's hard to make comparisons with it. + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_non_standard_bool_values'), + DecorateInfo(unittest.skip("Expected: empty_permuted is not comparable"), 'TestCompositeCompliance', + 'test_operator'), + # requires_grad doesn't exist in the jit schema + DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'), + DecorateInfo(unittest.skip("Expected: empty_permuted is not comparable"), + 'TestCommon', + 'test_out'), + DecorateInfo(unittest.skip("Expected: empty_permuted is not comparable"), + 'TestCommon', + 'test_out_warning'), + DecorateInfo(unittest.skip("Expected: empty_permuted is not comparable"), + 'TestLazyOpInfo'), + DecorateInfo(unittest.skip("Expected: empty_permuted is not comparable"), + 'TestCommon', 'test_complex_half_reference_testing'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + )), + OpInfo('scalar_tensor', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + sample_inputs_func=sample_inputs_scalar_tensor, + supports_autograd=False, + supports_out=False, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # fails to match any schemas despite working in the interpreter + DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'), + # fails to match any schemas despite working in the interpreter + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # skip these tests since we have non tensor input + DecorateInfo(unittest.skip('Skipped!'), "TestCommon", "test_noncontiguous_samples"), + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_conj_view'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'), + )), + OpInfo('new_full', + op=lambda x, *args, **kwargs: x.new_full(*args, **kwargs), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_out=False, + sample_inputs_func=sample_inputs_new_full, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + ), + supports_autograd=False), + OpInfo('multinomial', + op=lambda inp, *args, **kwargs: + wrapper_set_seed(torch.multinomial, inp, *args, **kwargs), + method_variant=lambda inp, *args, **kwargs: + wrapper_set_seed(torch.Tensor.multinomial, inp, *args, **kwargs), + dtypes=floating_types_and(torch.bfloat16, torch.half), + dtypesIfCUDA=floating_types_and(torch.half), + supports_out=True, + sample_inputs_func=sample_inputs_multinomial, + error_inputs_func=error_inputs_multinomial, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # Strides are not the same! + # This may not be reproducible in CI + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'), + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu')), + supports_autograd=False), + OpInfo('normal', + op=lambda inp, *args, **kwargs: + wrapper_set_seed(torch.normal, inp, *args, **kwargs), + # The inplace variant (Tensor.normal_) is different from torch.normal + inplace_variant=None, + dtypes=floating_types_and(torch.bfloat16, torch.half), + dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.half), + supports_out=True, + sample_inputs_func=sample_inputs_normal_tensor_first, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # Tensor-likes are not close! + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + # Computed gradient is incorrect -- would be an exfail but gradgrad somehow passes + DecorateInfo(unittest.skip("Gradients are incorrect!"), 'TestFwdGradients'), + DecorateInfo(unittest.skip("Gradients are incorrect!"), 'TestBwdGradients'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + # RuntimeError: Difference from {dtype} is larger with decomposition + DecorateInfo(unittest.skip("Skipped!"), 'TestDecomp', 'test_comprehensive'), + DecorateInfo(unittest.skip("Skipped!"), 'TestDecomp', 'test_quick'), + # The inplace variant (Tensor.normal_) is different from torch.normal + # inplace varaint Tensor.normal_ is decomposed using randn_like() + DecorateInfo(unittest.skip("Skipped!"), 'TestMeta', 'test_dispatch_symbolic_meta_outplace_all_strides'))), + OpInfo('normal', + # This has its own variant b/c OpInfos assume the first arg is a Tensor but it is not here + variant_test_name='number_mean', + op=lambda std, mean, *args, **kwargs: + wrapper_set_seed(torch.normal, mean, std, *args, **kwargs), + # The inplace variant (Tensor.normal_) is different from torch.normal + inplace_variant=None, + dtypes=floating_types_and(torch.bfloat16, torch.half), + dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.half), + supports_out=True, + sample_inputs_func=sample_inputs_normal_tensor_second, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_noncontiguous_samples'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out_warning'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_backward'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestBwdGradients'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_compare_cpu'), + DecorateInfo(unittest.skip("Skipped!"), 'TestEagerFusionOpInfo'), + DecorateInfo(unittest.skip("Skipped!"), 'TestOperators'), + # AssertionError + DecorateInfo(unittest.skip("Skipped!"), 'TestDecomp', 'test_comprehensive'), + # AssertionError + DecorateInfo(unittest.skip("Skipped!"), 'TestDecomp', 'test_quick'), + # AssertionError in CUDA variant + DecorateInfo(unittest.skip("Skipped!"), 'TestFakeTensor', device_type='cuda'), + DecorateInfo(unittest.skip("Skipped!"), 'TestDeviceUtils', 'test_device_mode_ops'))), + OpInfo('bernoulli', + op=lambda inp, *args, **kwargs: + wrapper_set_seed(torch.bernoulli, inp, *args, **kwargs), + # The inplace variant (Tensor.bernoulli_) is different from torch.bernoulli + inplace_variant=None, + method_variant=lambda inp, *args, **kwargs: + wrapper_set_seed(torch.Tensor.bernoulli, inp, *args, **kwargs), + dtypes=floating_types_and(torch.bfloat16, torch.half), + supports_out=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_bernoulli, + error_inputs_func=error_inputs_bernoulli, + skips=( + # vmap: We do not yet support calling random operations inside of vmap + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', 'test_forward_mode_AD'), + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # Expected RuntimeError when doing an unsafe cast from a result of + # dtype torch.float32 into an out= with dtype torch.lon + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + # UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'))), + OpInfo('scatter_add', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_scatter_add, + error_inputs_func=error_inputs_scatter_and_scatter_add, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + ), + OpInfo('stack', + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_stack, + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # https://github.com/pytorch/pytorch/issues/77046 + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + ), + ), + OpInfo('hstack', + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_hstack_dstack_vstack, + error_inputs_func=error_inputs_hstack_dstack_vstack, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + ), + BinaryUfuncInfo('hypot', + dtypes=floating_types_and(torch.bfloat16, torch.half), + dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_rhs_python_scalar=False), + OpInfo('histogram', + dtypes=floating_types(), + dtypesIfCUDA=_dispatch_dtypes(), # histogram is only implemented on CPU + sample_inputs_func=sample_inputs_histogram, + supports_autograd=False, + skips=( + # JIT tests don't work with Tensor keyword arguments + # https://github.com/pytorch/pytorch/issues/58507 + # RuntimeError: + # undefined value tensor: + # File "", line 3 + # def the_method(i0): + # return torch.histogram(i0, 1, weight=tensor(-0.5735, dtype=torch.float32), density=False) + # ~~~~~~ <--- HERE + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # Not Implemented on XLA. + DecorateInfo(unittest.skip("Skipped!"), 'TestOpInfo', device_type='xla'), + )), + OpInfo('histogramdd', + dtypes=floating_types(), + dtypesIfCUDA=_dispatch_dtypes(), # histogramdd is only implemented on CPU + sample_inputs_func=sample_inputs_histogramdd, + error_inputs_func=error_inputs_histogramdd, + supports_autograd=False, + skips=( + # Not implemented on CUDA + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_errors', device_type='cuda'), + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # JIT tests don't work with Tensor keyword arguments + # https://github.com/pytorch/pytorch/issues/58507 + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + )), + OpInfo('histc', + dtypes=floating_types_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=floating_types_and(torch.int8, torch.int16, torch.int32, torch.int64), + sample_inputs_func=sample_inputs_histc, + supports_out=True, + supports_autograd=False, + skips=( + # CUDA histc returns a float tensor but does not correctly warn when passed an integral out tensor + # "AssertionError: RuntimeError not raised : Expected RuntimeError when doing an unsafe cast + # from a result of dtype torch.float32 into an out= with dtype torch.long" + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out', device_type='cuda'), + )), + OpInfo('bincount', + dtypes=integral_types_and(), + sample_inputs_func=sample_inputs_bincount, + supports_out=False, + supports_autograd=False, + skips=( + # JIT tests don't work with Tensor keyword arguments + # https://github.com/pytorch/pytorch/issues/58507 + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + )), + OpInfo('bucketize', + dtypes=all_types_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bfloat16, torch.float16), + sample_inputs_func=sample_inputs_bucketize, + reference_inputs_func=reference_inputs_bucketize, + error_inputs_func=error_inputs_bucketize, + supports_autograd=False, + skips=( + # JIT tests don't work with Tensor keyword arguments + DecorateInfo(unittest.skip("Expected failure!"), 'TestJit', 'test_variant_consistency_jit'), + )), + OpInfo('searchsorted', + dtypes=all_types_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=all_types_and(torch.bfloat16, torch.float16), + sample_inputs_func=sample_inputs_searchsorted, + supports_autograd=False, + ref=reference_searchsorted, + skips=( + # JIT tests don't work with Tensor keyword arguments + # https://github.com/pytorch/pytorch/issues/58507 + DecorateInfo(unittest.skip("Expected failure!"), 'TestJit', 'test_variant_consistency_jit'), + )), + OpInfo('cat', + ref=_cat_np, + aliases=('concat', 'concatenate'), + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.complex32), + sample_inputs_func=sample_inputs_cat_concat, + reference_inputs_func=reference_inputs_cat, + error_inputs_func=error_inputs_cat, + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + assert_autodiffed=True, + skips=( + # https://github.com/pytorch/pytorch/issues/89353 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_numpy_ref_mps'), + # RuntimeError: Arguments for call not valid. + # Expected a value of type 'List[Tensor]' for argument + # 'tensors' but instead found type 'Tensor (inferred)'. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_jit_alias_remapping'), + # see https://github.com/pytorch/pytorch/issues/71286 + DecorateInfo(unittest.expectedFailure, 'TestNNCOpInfo', 'test_nnc_correctness'), + # see https://github.com/pytorch/pytorch/issues/99806 + # RuntimeError: The size of tensor a (25) must match the size of tensor b (0) at non-singleton dimension 0. + DecorateInfo(unittest.expectedFailure, 'TestBwdGradients', 'test_fn_gradgrad'), + )), + OpInfo('unbind', + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16), + ref=reference_unbind, + sample_inputs_func=sample_inputs_unbind, + error_inputs_func=error_inputs_unbind, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_gradgrad=True, + supports_out=False, + ), + OpInfo('vstack', + aliases=('row_stack',), + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_hstack_dstack_vstack, + error_inputs_func=error_inputs_hstack_dstack_vstack, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # RuntimeError: _fn() Expected a value of type + # 'Tensor (inferred)' for argument 't0' but instead found type 'tuple'. + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_jit_alias_remapping'),)), + OpInfo('dstack', + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_hstack_dstack_vstack, + error_inputs_func=error_inputs_hstack_dstack_vstack, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + ), + OpInfo('unfold', + op=lambda x, *args: x.unfold(*args), + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + backward_dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_gradgrad=False, + # See https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # Skip operator schema test because this is a functional and not an operator + DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'), + ), + sample_inputs_func=sample_inputs_unfold), + OpInfo('unfold_copy', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + backward_dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_gradgrad=False, + # See https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_unfold), + OpInfo('msort', + dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16), + check_batched_gradgrad=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_msort, + skips=( + )), + OpInfo('movedim', + aliases=('moveaxis',), + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_movedim_moveaxis, + reference_inputs_func=reference_movedim_moveaxis, + error_inputs_func=error_movedim_moveaxis), + OpInfo('renorm', + dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_renorm, + error_inputs_func=error_inputs_renorm, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # RuntimeError: Difference from float64 is larger with decomposition + # linalg_vector_norm.default than original on output 0. + # Original max diff: 2.560596747969157e-07, + # Decomp max diff: 1.8187482915266173e-06 + DecorateInfo(unittest.skip("Inconsistent accuracy"), 'TestDecomp', 'test_comprehensive', + device_type='cpu', dtypes=(torch.float16,)), + )), + ShapeFuncInfo('repeat', + op=lambda x, dims: x.repeat(dims), + ref=np.tile, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_repeat_tile, + skips=( + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + )), + OpInfo('squeeze', + ref=_squeeze_ref, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_out=False, + assert_autodiffed=True, + autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused + autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused + assert_jit_shape_analysis=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # vmap does not support inplace views + check_inplace_batched_forward_grad=False, + # https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_squeeze), + OpInfo('squeeze', + ref=_squeeze_ref, + variant_test_name="multiple", + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_out=False, + assert_autodiffed=True, + autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused + autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # vmap does not support inplace views + check_inplace_batched_forward_grad=False, + # https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_squeeze_multiple), + UnaryUfuncInfo( + 'fill', + ref=_fill_np, + method_variant=None, + sample_kwargs=_fill_sample_kwargs, + sample_inputs_func=partial(sample_inputs_elementwise_unary, op_kwargs={'value': True}), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16), + supports_out=False, + skips=( + # JIT has issue when op is passed as lambda + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip("No fill_ op"), 'TestCudaFuserOpInfo'), + DecorateInfo(unittest.skip("No fill_ op"), 'TestNNCOpInfo'), + )), + OpInfo('resize_', + op=lambda x, shape: x.clone().resize_(shape), + method_variant=None, + inplace_variant=torch.Tensor.resize_, + # the test fails because resize_ doesn't work with imag views as expected by the test + # https://github.com/pytorch/pytorch/issues/65945 + test_neg_view=False, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + supports_out=False, + supports_autograd=False, + skips=( + # Cannot resize variables that require grad + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_dtypes'), + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + DecorateInfo(unittest.skip("Allowed exception"), 'TestCompositeCompliance', 'test_operator'), + ), + sample_inputs_func=sample_inputs_resize_ops), + OpInfo('resize_as_', + op=lambda x, other: torch.resize_as_(x.clone(), other), + method_variant=None, + inplace_variant=torch.Tensor.resize_as_, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + supports_out=False, + supports_autograd=False, + skips=( + # Cannot resize variables that require grad + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_dtypes'), + DecorateInfo(unittest.skip('Allowed exemption'), 'TestCompositeCompliance', 'test_operator'), + ), + sample_inputs_func=sample_inputs_resize_ops), + OpInfo('take_along_dim', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + supports_inplace_autograd=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_take_along_dim, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + decorators=( + # RuntimeError: view size is not compatible with input tensor's size and stride + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides"), + )), + ShapeFuncInfo('tile', + ref=np.tile, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_repeat_tile), + OpInfo('trapz', # TODO: in the future, 'trapz' should be made a proper alias of 'trapezoid' + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_trapezoid), + OpInfo('trapezoid', + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_trapezoid), + OpInfo('cumulative_trapezoid', + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + supports_out=False, + sample_inputs_func=sample_cumulative_trapezoid,), + OpInfo('unsqueeze', + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + # vmap does not support inplace views + check_inplace_batched_forward_grad=False, + assert_jit_shape_analysis=True, + assert_autodiffed=True, + autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused + autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused + sample_inputs_func=sample_unsqueeze), + BinaryUfuncInfo('xlogy', + aliases=('special.xlogy',), + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + promotes_int_to_float=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_one_python_scalar=True, + # We don't test 0 as the gradient will be NaN and it'll break + rhs_make_tensor_kwargs=dict(low=0.01)), + OpInfo('zero_', + op=lambda x: torch.zero_(x.clone()), + method_variant=None, + inplace_variant=torch.Tensor.zero_, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_gradgrad=True, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + ), + sample_inputs_func=sample_inputs_zero_), + OpInfo('logsumexp', + aliases=('special.logsumexp',), + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + gradcheck_fast_mode=False, + sample_inputs_func=sample_inputs_logsumexp, + reference_inputs_func=reference_inputs_logsumexp), + OpInfo('trace', + dtypes=all_types_and_complex(), + dtypesIfCUDA=all_types_and_complex_and(torch.chalf, torch.bool, torch.half, torch.bfloat16), + error_inputs_func=error_inputs_trace, + supports_inplace_autograd=False, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_trace), + OpInfo('transpose', + ref=_numpy_ref_transpose, + aliases=('swapdims', 'swapaxes'), + assert_jit_shape_analysis=True, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # vmap does not support inplace views + check_inplace_batched_forward_grad=False, + sample_inputs_func=sample_inputs_transpose_swapdims), + OpInfo('T', + op=lambda x: x.T, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, "TestJit", "test_variant_consistency_jit"),), + sample_inputs_func=sample_inputs_T, + error_inputs_func=error_inputs_T), + OpInfo('H', + op=lambda x: x.H, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half, torch.chalf), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, "TestJit", "test_variant_consistency_jit"),), + sample_inputs_func=sample_inputs_T), + OpInfo('mT', + op=lambda x: x.mT, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half, torch.chalf), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, "TestJit", "test_variant_consistency_jit"),), + sample_inputs_func=sample_inputs_adjoint), + OpInfo('mH', + op=lambda x: x.mH, + aliases=('adjoint',), + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half, torch.chalf), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, "TestJit", "test_variant_consistency_jit"),), + sample_inputs_func=sample_inputs_adjoint), + OpInfo('tril', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + error_inputs_func=error_inputs_tril_triu, + sample_inputs_func=sample_inputs_tril_triu), + OpInfo('triu', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + error_inputs_func=error_inputs_tril_triu, + sample_inputs_func=sample_inputs_tril_triu), + OpInfo('triu_indices', + dtypes=_dispatch_dtypes((torch.int32, torch.int64)), + sample_inputs_func=sample_inputs_trilu_indices, + ref=lambda h, w, ofs=0, dtype=torch.long, device='cpu' : np.array(np.triu_indices(h, ofs, w), dtype=dtype), + supports_out=False, + supports_autograd=False, + skips=( + # skip these tests since we have non tensor input + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_noncontiguous_samples'), + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.skip('Skipped!'), 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('Skipped!'), 'TestMathBits', 'test_neg_view'), + )), + OpInfo('tril_indices', + dtypes=_dispatch_dtypes((torch.int32, torch.int64)), + sample_inputs_func=sample_inputs_trilu_indices, + ref=lambda h, w, ofs=0, dtype=torch.long, device='cpu' : np.array(np.tril_indices(h, ofs, w), dtype=dtype), + supports_out=False, + supports_autograd=False, + skips=( + # skip these tests since we have non tensor input + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_noncontiguous_samples'), + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.skip('Skipped!'), 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('Skipped!'), 'TestMathBits', 'test_neg_view'), + )), + OpInfo('kron', + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_inplace_autograd=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_kron, + decorators=( + # RuntimeError: view size is not compatible with input tensor's size and stride + DecorateInfo(unittest.expectedFailure, "TestMeta", "test_dispatch_symbolic_meta_outplace_all_strides"), + )), + OpInfo('inner', + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16), + dtypesIfROCM=floating_and_complex_types_and(torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_inner, + ), + OpInfo('tensordot', + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16), + dtypesIfROCM=floating_and_complex_types_and(torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + sample_inputs_func=sample_inputs_tensordot, + skips=( + # Skip operator schema test because this is a functional and not an operator. + # Reference: https://github.com/pytorch/pytorch/issues/54574 + DecorateInfo(unittest.skip("Skipped!"), 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'), + ) + ), + OpInfo('to_sparse', + op=lambda x, *args: x.to_sparse(*args), + sample_inputs_func=sample_inputs_to_sparse, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + backward_dtypes=floating_types(), + backward_dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_sparse_csr=True, + supports_sparse_csc=True, + check_batched_grad=False, + check_batched_gradgrad=False, + skips=( + # NotImplementedError: Could not run 'aten::normal_' with arguments from the 'SparseCPU' backend + DecorateInfo(unittest.skip(""), 'TestCommon', 'test_noncontiguous_samples'), + # TODO: FIXME: complex inputs requiring grad error in forward + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes'), + # lambda impl + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # Allowed exception: sparse tensors don't have strides + DecorateInfo(unittest.skip("Allowed exception"), 'TestCompositeCompliance', 'test_operator'), + DecorateInfo(unittest.skip("Allowed exception"), 'TestCompositeCompliance', 'test_backward'), + DecorateInfo(unittest.skip("Allowed exception"), 'TestTags', 'test_tags'), + # TODO: implement csr.to_sparse(sample_dim) where sampled_dim is 1. + DecorateInfo(unittest.skip("csr.to_sparse(1) not implemented. Skipped!"), + 'TestSparseCSR', 'test_sparse_csr_consistency'), + # Compiler issue on ROCm. Might need to skip until ROCm5.5 + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_non_standard_bool_values', + dtypes=[torch.bool], active_if=TEST_WITH_ROCM), + ) + ), + OpInfo('logcumsumexp', + dtypes=floating_and_complex_types_and(torch.bfloat16, torch.half), + backward_dtypes=floating_and_complex_types_and(torch.bfloat16), + backward_dtypesIfCUDA=floating_and_complex_types_and(torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # AssertionError: UserWarning not triggered : Resized a non-empty tensor but did not warn about it. + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning', device_type='cuda'), + # RuntimeError: "max_values_cpu" not implemented for 'ComplexDouble' + # Falling back to non-numerically stablized exp, causing nan in the results. + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', 'test_forward_mode_AD', dtypes=[torch.complex128]), + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', 'test_fn_fwgrad_bwgrad', dtypes=[torch.complex128]), + ), + sample_inputs_func=sample_inputs_logcumsumexp, + error_inputs_func=error_inputs_logcumsumexp), + UnaryUfuncInfo('sigmoid', + aliases=('special.expit', 'nn.functional.sigmoid'), + aten_backward_name='sigmoid_backward', + ref=reference_sigmoid if TEST_SCIPY else None, + decorators=(precisionOverride({torch.float16: 1e-2, + torch.complex64: 1e-1, + torch.bfloat16: 1e-2}),), + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/56012 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + dtypes=[torch.complex64, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=[torch.chalf, torch.complex64, torch.cdouble])), + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.complex32, torch.bool, torch.half, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + assert_autodiffed=True, + # sigmoid(z) = 1 / (1 + exp(-z)), at z = j * pi * odd_number, the denominator is zero + reference_numerics_filter=NumericsFilter( + condition=lambda x: (close_to_int(x / (math.pi * 1j)) + if x.is_complex() else x.new_tensor(False, dtype=torch.bool)), + safe_val=0)), + UnaryUfuncInfo('digamma', + ref=scipy.special.digamma if TEST_SCIPY else None, + aliases=('special.psi', 'special.digamma',), + decorators=(precisionOverride({torch.float16: 5e-1}),), + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bool, torch.half), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True), + UnaryUfuncInfo('erf', + ref=scipy.special.erf if TEST_SCIPY else None, + aliases=('special.erf', ), + decorators=(precisionOverride({torch.float16: 1e-2, + torch.bfloat16: 1e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped! sparse backward not supported"), + 'TestSparseUnaryUfuncs', 'test_sparse_fn_grad'), + + ), + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + assert_jit_shape_analysis=True, + supports_sparse=True, + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True), + UnaryUfuncInfo('erfc', + ref=scipy.special.erfc if TEST_SCIPY else None, + aliases=('special.erfc', ), + decorators=(precisionOverride({torch.float16: 1e-2, + torch.bfloat16: 1e-2}),), + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + assert_autodiffed=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True), + UnaryUfuncInfo('erfinv', + ref=scipy.special.erfinv if TEST_SCIPY else None, + aliases=('special.erfinv', ), + decorators=(precisionOverride({torch.float16: 1e-2, + torch.bfloat16: 1e-2, + torch.float32: 1e-4}),), + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16), + supports_sparse_csr=True, + supports_sparse_csc=True, + supports_sparse_bsr=True, + supports_sparse_bsc=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + domain=(-1, 1), + skips=( + # Reference: https://github.com/pytorch/pytorch/pull/49155#issuecomment-742664611 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + active_if=TEST_SCIPY and version.parse(scipy.__version__) < version.parse("1.4.0")), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + active_if=TEST_SCIPY and version.parse(scipy.__version__) < version.parse("1.4.0")), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_small', + active_if=TEST_SCIPY and version.parse(scipy.__version__) < version.parse("1.4.0")), + )), + OpInfo("nn.functional.smooth_l1_loss", + ref=reference_smooth_l1_loss, + sample_inputs_func=sample_inputs_smooth_l1_loss, + dtypes=floating_types_and(torch.float16, torch.bfloat16), + backward_dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.float16), + backward_dtypesIfCUDA=floating_types_and(torch.float16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # RuntimeError: input->type()->kind() == TypeKind::OptionalTypeINTERNAL ASSERT FAILED + # at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270, please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, "TestJit", "test_variant_consistency_jit"),)), + OpInfo( + "nn.functional.l1_loss", + ref=loss_reference_reduction_wrapper(lambda input, target: np.abs(input - target)), + sample_inputs_func=sample_inputs_l1_loss, + error_inputs_func=error_inputs_l1_loss, + dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # RuntimeError: input->type()->kind() == TypeKind::OptionalTypeINTERNAL ASSERT FAILED + # at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270, please report a bug to PyTorch. + DecorateInfo( + unittest.expectedFailure, + "TestJit", + "test_variant_consistency_jit", + dtypes=(torch.float32,), + ), + ), + ), + UnaryUfuncInfo('lgamma', + ref=reference_lgamma if TEST_SCIPY else None, + aliases=('special.gammaln', ), + decorators=(precisionOverride({torch.float16: 7e-1}),), + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.bool, torch.half), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + skips=( + # Reference: https://github.com/pytorch/pytorch/pull/50140#issuecomment-756150214 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + dtypes=[torch.float32, torch.float64], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=[torch.float32, torch.float64], active_if=IS_WINDOWS), + ), + # lgamma have multiple singularities at x <= 0 + reference_numerics_filter=NumericsFilter(condition=lambda x: x < 0.1, safe_val=1)), + OpInfo( + 'logdet', + dtypes=floating_and_complex_types(), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_linalg_det_logdet_slogdet, + decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack]), + # `log_softmax` supports different dtypes based on whether `dtype` argument, + # is passed or not. Hence two OpInfo entries, one with dtype and other without. + OpInfo( + 'log_softmax', + aliases=('special.log_softmax', 'nn.functional.log_softmax'), + supports_out=True, + aten_backward_name='_log_softmax_backward_data', + dtypes=floating_types_and(torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_softmax_variant, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=True), + OpInfo( + 'log_softmax', + variant_test_name='with_dtype', + aliases=('special.log_softmax', 'nn.functional.log_softmax'), + supports_out=True, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + sample_inputs_func=partial(sample_inputs_softmax_variant, with_dtype=True), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=True), + UnaryUfuncInfo('logit', + aten_backward_name='logit_backward', + ref=scipy.special.logit if TEST_SCIPY else None, + domain=(0, 1), + aliases=('special.logit', ), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_float=True, + decorators=(precisionOverride({torch.bfloat16: 5e-1, + torch.float16: 5e-1}),), + dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_logit), + OpInfo('where', + # Currently only the `input` is tested in gradcheck. + # If we pass `condition` first, none of the input which supports + # autograd will be tested. Hence the following lambda. + op=lambda self, condition, other: torch.where(condition, self, other), + ref=lambda self, condition, other: np.where(condition, self, other), + sample_inputs_func=sample_inputs_where, + reference_inputs_func=reference_inputs_where, + error_inputs_func=error_inputs_where, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + decorators=( + DecorateInfo(onlyCUDA, "TestCommon", 'test_errors'),), + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + ), + dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.chalf)), + OpInfo('nonzero', + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + sample_inputs_func=sample_inputs_nonzero, + supports_autograd=False, + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # nonzero(): argument 'out' must be Tensor, not tuple + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + # https://github.com/pytorch/pytorch/issues/67458 + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # nonzero is not raising a warning when the out is resized + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + # Can't find schemas for this operator for some reason + DecorateInfo(unittest.expectedFailure, 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'), + # Compiler issue on ROCm. Might need to skip until ROCm5.5 + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_non_standard_bool_values', + dtypes=[torch.bool], active_if=TEST_WITH_ROCM), + )), + OpInfo('nonzero_static', + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16, torch.chalf), + sample_inputs_func=sample_inputs_nonzero_static, + supports_out=False, + supports_autograd=False, + decorators=[onlyCPU], + skips=( + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out_warning'), + DecorateInfo(unittest.expectedFailure, 'TestDTensorOps', 'test_dtensor_op_db'), + DecorateInfo(unittest.expectedFailure, 'TestInductorOpInfo', 'test_comprehensive'), + DecorateInfo(unittest.expectedFailure, 'TestVmapOperatorsOpInfo', 'test_op_has_batch_rule'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_non_standard_bool_values', + dtypes=[torch.bool], active_if=TEST_WITH_ROCM), + )), + # Following tests are for jiterator's python interface + # Jiterator can be used to author elementwise CUDA kernel + # jiterator._create_jit_fn returns a callable that behaves like a regular pytorch op + # See create_jit_fn in jiterator.py for more information + UnaryUfuncInfo( + 'jiterator_unary', + op=torch.cuda.jiterator._create_jit_fn("template T unary(T x) { return x * x + x; }"), + ref=lambda x: x * x + x, + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16, torch.bool), + supports_out=False, + supports_autograd=False, # jiterator ops doesn't have backward defined + decorators=[ + onlyCUDA, + DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}), + 'TestUnaryUfuncs', 'test_reference_numerics_extremal'), + DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}), + 'TestUnaryUfuncs', 'test_reference_numerics_hard'), + DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}), + 'TestUnaryUfuncs', 'test_reference_numerics_normal'), + DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-02)}), + 'TestUnaryUfuncs', 'test_reference_numerics_small'), + ], + skips=( + # Jiterator ops doesn't support neg or conj view + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + # Jiterator ops doesn't support CompositeCompliantTensor + # Following test should expectedFailure, but it's causing cascading failures in CUDA, thus skipped + DecorateInfo(unittest.skip("skip"), 'TestCompositeCompliance', 'test_operator'), + # Skip reference_numerics tests for bool type, as the defined function doesn't work for bool + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal', + dtypes=[torch.bool]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard', + dtypes=[torch.bool]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal', + dtypes=[torch.bool]), + # ROCm generates -inf+infj instead of nan+infj for complex64 for some of the results + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_large', + dtypes=[torch.complex64], active_if=TEST_WITH_ROCM), + # Expected failure: torch.jiterator_unary is not a valid op + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # Skip Nvfuser + DecorateInfo(unittest.skip('Skipped!'), 'TestCudaFuserOpInfo'), + ) + ), + BinaryUfuncInfo( + 'jiterator_binary', + op=torch.cuda.jiterator._create_jit_fn( + "template T binary(T x, T y, T alpha) { return x + alpha * y; }", alpha=1), + ref=lambda input, other, *, alpha=1: np.add(input, other) if alpha == 1 \ + else np.add(input, np.multiply(alpha, other)), + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16, torch.bool), + sample_inputs_func=partial(sample_inputs_jiterator, num_inputs=2, alpha=-3.14), + supports_out=False, + supports_autograd=False, # jiterator ops doesn't have backward defined + supports_rhs_python_scalar=False, + decorators=[onlyCUDA], + skips=( + # Jiterator ops doesn't support neg or conj view + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + # Jiterator ops doesn't support CompositeCompliantTensor + # Following test should expectedFailure, but it's causing cascading failures in CUDA, thus skipped + DecorateInfo(unittest.skip("skip"), 'TestCompositeCompliance', 'test_operator'), + # Expected failure: torch.jiterator_binary is not a valid op + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # Skip Nvfuser + DecorateInfo(unittest.skip('Skipped!'), 'TestCudaFuserOpInfo'), + ) + ), + OpInfo( + 'jiterator_4inputs_with_extra_args', + op=torch.cuda.jiterator._create_jit_fn( + "template T binary(T i0, T i1, T i2, T i3, T alpha, T beta) { return alpha * i0 + beta * i1 + i2 + i3; }", + alpha=1, beta=1), + ref=lambda i0, i1, i2, i3, *, alpha=1, beta=1: alpha * i0 + beta * i1 + i2 + i3, + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16, torch.bool), + sample_inputs_func=partial(sample_inputs_jiterator, num_inputs=4, alpha=3.14, beta=-4.20), + supports_out=False, + supports_autograd=False, # jiterator ops doesn't have backward defined + decorators=[onlyCUDA], + skips=( + # Jiterator ops doesn't support neg or conj view + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + # Jiterator ops doesn't support CompositeCompliantTensor + # Following test should expectedFailure, but it's causing cascading failures in CUDA, thus skipped + DecorateInfo(unittest.skip("skip"), 'TestCompositeCompliance', 'test_operator'), + # Expected failure: torch.jiterator_4inputs_with_extra_args is not a valid op + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # Skip Nvfuser + DecorateInfo(unittest.skip('Skipped!'), 'TestCudaFuserOpInfo'), + ) + ), + BinaryUfuncInfo( + 'jiterator_binary_return_by_ref', + op=torch.cuda.jiterator._create_multi_output_jit_fn( + """ + template + void binary_return_by_ref(T i0, T i1, T& out0) { + out0 = i0 + i1; + } + """, + num_outputs=1), + ref=lambda i0, i1: i0 + i1, + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16, torch.bool), + sample_inputs_func=partial(sample_inputs_jiterator, num_inputs=2, alpha=-0.42), + supports_out=False, + supports_autograd=False, # jiterator ops doesn't have backward defined + supports_rhs_python_scalar=False, + decorators=[onlyCUDA], + skips=( + # Jiterator ops doesn't support neg or conj view + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + # Jiterator ops doesn't support CompositeCompliantTensor + # Following test should expectedFailure, but it's causing cascading failures in CUDA, thus skipped + DecorateInfo(unittest.skip("skip"), 'TestCompositeCompliance', 'test_operator'), + # Expected failure: torch.jiterator_4inputs_with_extra_args is not a valid op + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # Skip Nvfuser + DecorateInfo(unittest.skip('Skipped!'), 'TestCudaFuserOpInfo'), + ) + ), + OpInfo( + 'jiterator_2inputs_2outputs', + op=torch.cuda.jiterator._create_multi_output_jit_fn( + """ + template + void binary_2outputs(T i0, T i1, T& out0, T& out1) { + out0 = i0 + i1; + out1 = i0 - i1; + } + """, + num_outputs=2), + ref=lambda i0, i1, *, alpha=1: (i0 + i1, i0 - i1), + dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16, torch.bool), + sample_inputs_func=partial(sample_inputs_jiterator, num_inputs=2), + supports_out=False, + supports_autograd=False, # jiterator ops doesn't have backward defined + decorators=[onlyCUDA], + skips=( + # Jiterator ops doesn't support neg or conj view + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + # Jiterator ops doesn't support CompositeCompliantTensor + # Following test should expectedFailure, but it's causing cascading failures in CUDA, thus skipped + DecorateInfo(unittest.skip("skip"), 'TestCompositeCompliance', 'test_operator'), + # Expected failure: torch.jiterator_4inputs_with_extra_args is not a valid op + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # Skip Nvfuser + DecorateInfo(unittest.skip('Skipped!'), 'TestCudaFuserOpInfo'), + ) + ), + # `torch.norm` has multiple code paths depending on the value of `p`. + # These paths have different dtype support. Also JIT supports, + # most variants but not all of them. So we split the OpInfo entries, + # for `norm` based on the code-paths and JIT support. + OpInfo( + "norm", + sample_inputs_func=sample_inputs_norm, + dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16), + # TODO Benchmark again with the new implementation + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + check_batched_forward_grad=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # Dispatches in Python to vector_norm. Not sure how to make this test happy + # Happens to pass on complex64. Also a mystery + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', + dtypes=(torch.float32,)),) + ), + OpInfo('norm', + variant_test_name='nuc', + sample_inputs_func=sample_inputs_norm_nuc, + decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack], + check_batched_gradgrad=False, + # torch.autograd.gradcheck.GradcheckError: While computing batched gradients + # got: Could not allocate memory to change Tensor SizesAndStrides! + check_batched_forward_grad=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=floating_and_complex_types(), + dtypesIfCUDA=floating_and_complex_types(), + skips=( + # Dispatches in Python to matrix_norm. Not sure how to make this test happy + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', + dtypes=(torch.complex64, torch.float32,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestFakeTensor', 'test_fake_crossref_backward_amp', + device_type='cuda', dtypes=[torch.float32], active_if=TEST_WITH_ROCM), + DecorateInfo(unittest.skip("Skipped!"), 'TestFakeTensor', 'test_fake_crossref_backward_no_amp', + device_type='cuda', dtypes=[torch.float32], active_if=TEST_WITH_ROCM),) + ), + OpInfo('norm', + variant_test_name='fro', + sample_inputs_func=sample_inputs_norm_fro, + dtypes=floating_and_complex_types_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16), + supports_forward_ad=True, + # torch.autograd.gradcheck.GradcheckError: While computing batched gradients + # got: Could not allocate memory to change Tensor SizesAndStrides! + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + skips=( + # MPS has some mild accuracy issues for float16. We divide the tolerances by 10 + DecorateInfo( + toleranceOverride({torch.float16: tol(atol=1e-4, rtol=0.01)}), + 'TestConsistency', + 'test_output_match', + + ), + # Issue with conj and torch dispatch, see https://github.com/pytorch/pytorch/issues/82479 + DecorateInfo( + unittest.skip("Skipped!"), + 'TestSchemaCheckModeOpInfo', + 'test_schema_correctness', + dtypes=(torch.complex64, torch.complex128)), + # Dispatches in Python to vector_norm. Not sure how to make this test happy + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', + dtypes=(torch.complex64, torch.float32,)),) + ), + OpInfo( + "norm", + variant_test_name="inf", + sample_inputs_func=sample_inputs_norm_inf, + dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16), + supports_forward_ad=True, + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + # fast gradcheck produces NaNs + gradcheck_fast_mode=False, + skips=( + DecorateInfo( + toleranceOverride({torch.float16: tol(atol=2e-3, rtol=1e-3)}), + 'TestInductorOpInfo', 'test_comprehensive', device_type='cuda', + ), + # Dispatches in Python to vector_norm. Not sure how to make this test happy + # Happens to pass on complex64. Also a mystery + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit', + dtypes=(torch.float32,)) + ), + ), + OpInfo('t', + sample_inputs_func=sample_inputs_t, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + # vmap does not support inplace views + check_inplace_batched_forward_grad=False, + autodiff_fusible_nodes=[], # aliases inputs, shouldn't be fused + autodiff_nonfusible_nodes=[], # aliases inputs, shouldn't be fused + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + assert_autodiffed=True, + error_inputs_func=error_inputs_t), + OpInfo( + "nn.functional.dropout", + op=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.dropout, input, *args, **kwargs), + dtypes=floating_types_and(torch.float16, torch.bfloat16), + skips=( + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # Probably because we have used lambda for the op here + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # inplace variant dispatches to dropout kernel, while on CUDA + # the op dispatches to _fused_dropout (with a few more conditions) + # hence, different values and this skip here + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view', device_type='cuda'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu')), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # https://github.com/pytorch/pytorch/issues/66357 + check_batched_forward_grad=False, + supports_out=False, + sample_inputs_func=sample_inputs_dropout, + inplace_variant=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.dropout, input, *args, **kwargs, inplace=True)), + OpInfo( + "native_dropout_backward", + op=torch.ops.aten.native_dropout_backward.default, + aten_name="native_dropout_backward", + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + sample_inputs_func=sample_inputs_dropout_backward, + skips=( + DecorateInfo(unittest.skip('Skipped!'), 'TestJit', 'test_variant_consistency_jit'), + # Lazy tensor failures + DecorateInfo(unittest.skip('Skipped!'), 'TestLazyOpInfo', 'test_dispatched_to_lazy'), + # These tests fail only when built with ASAN + DecorateInfo(unittest.skip("Fails with ASAN"), 'TestLazyOpInfo', 'test_correctness', active_if=TEST_WITH_ASAN), + DecorateInfo( + unittest.skip("Fails with ASAN"), + 'TestLazyOpInfo', + 'test_correctness_with_reusing_ir', + active_if=TEST_WITH_ASAN + ), + ), + ), + OpInfo( + "nn.functional.dropout2d", + op=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.dropout2d, input, *args, **kwargs), + dtypes=floating_types_and(torch.float16, torch.bfloat16), + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu')), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + check_batched_forward_grad=False, + # As per the docs, valid input dims are (3, 4) + sample_inputs_func=partial(sample_inputs_dropout, valid_input_dim=(3, 4)), + inplace_variant=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.dropout2d, input, *args, **kwargs, inplace=True)), + OpInfo( + "nn.functional.dropout3d", + op=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.dropout3d, input, *args, **kwargs), + dtypes=floating_types_and(torch.float16, torch.bfloat16), + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu')), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + check_batched_forward_grad=False, + # As per the docs, valid input dims are (4, 5) + sample_inputs_func=partial(sample_inputs_dropout, valid_input_dim=(4, 5)), + inplace_variant=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.dropout3d, input, *args, **kwargs, inplace=True)), + OpInfo( + "nn.functional.alpha_dropout", + op=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.alpha_dropout, input, *args, **kwargs), + dtypes=floating_types_and(torch.float16, torch.bfloat16), + gradcheck_wrapper=wrapper_set_seed, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + sample_inputs_func=sample_inputs_dropout, + check_batched_forward_grad=False, + inplace_variant=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.alpha_dropout, input, *args, **kwargs, inplace=True), + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # AssertionError: Tensor-likes are not close! + # Fails in cuda11.7 + # Error Log: https://github.com/pytorch/pytorch/actions/runs/3440108478/jobs/5738475757 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_compare_cpu', device_type='cuda'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),),), + # In training mode, feature_alpha_dropout currently doesn't support inputs of complex dtype + # unlike when `train=False`, it supports complex inputs, hence 2 OpInfos to cover all cases + OpInfo( + "nn.functional.feature_alpha_dropout", + op=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.feature_alpha_dropout, input, *args, **kwargs), + variant_test_name="with_train", + dtypes=floating_types_and(torch.float16, torch.bfloat16), + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + # torch.autograd.gradcheck.GradcheckError: While computing batched gradients, got: + # vmap: We do not yet support calling random operations inside of vmap. + # Please perform random operations outside of vmap as a workaround + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', "test_forward_mode_AD"), + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', "test_inplace_forward_mode_AD"), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu')), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + # As per the docs, valid input dims are (4, 5) + sample_inputs_func=partial(sample_inputs_dropout, train=True, valid_input_dim=(4, 5)), + inplace_variant=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.feature_alpha_dropout, input, *args, **kwargs, inplace=True)), + OpInfo( + "nn.functional.feature_alpha_dropout", + op=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.feature_alpha_dropout, input, *args, **kwargs), + variant_test_name="without_train", + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),), + gradcheck_wrapper=wrapper_set_seed, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + supports_out=False, + sample_inputs_func=partial(sample_inputs_dropout, train=False), + inplace_variant=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.feature_alpha_dropout, input, *args, **kwargs, inplace=True)), + OpInfo( + "nn.functional.one_hot", + ref=reference_one_hot, + supports_out=False, + dtypes=_dispatch_dtypes((torch.int64,)), + sample_inputs_func=sample_inputs_one_hot, + ), + OpInfo( + "nn.functional.embedding", + aten_backward_name="embedding_dense_backward", + # We use lambda to reshuffle the positional arguments. + # This is because currently only the `input` field of SampleInput + # is tested in gradient tests. + op=lambda weight, idx, **kwargs: torch.nn.functional.embedding(idx, weight, **kwargs), + dtypes=floating_types_and(torch.bfloat16, torch.float16), + sample_inputs_func=sample_inputs_embedding, + error_inputs_func=error_inputs_embedding, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # Fails on CI https://github.com/pytorch/pytorch/issues/85377 + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_compare_cpu'), + # Reference: https://github.com/pytorch/pytorch/issues/67084 + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view', device_type='cuda'), + # Not a problem: embedding does weird stuff to its input (it renormalizes) + DecorateInfo(unittest.skip('Allowed exemption'), 'TestCompositeCompliance', 'test_operator'), + ), + supports_expanded_weight=True, + supports_out=False, + ), + OpInfo( + "nn.functional.embedding_bag", + # We use lambda to reshuffle the positional arguments. + # This is because currently only the `input` field of SampleInput + # is tested in gradient tests. + op=lambda weight, idx, **kwargs: torch.nn.functional.embedding_bag(idx, weight, **kwargs), + dtypes=floating_types_and(torch.bfloat16, torch.float16), + dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16), + # backward is not supported for mode `max` and dtype `bfloat16` + backward_dtypesIfCUDA=floating_types_and(torch.float16), + sample_inputs_func=sample_inputs_embedding_bag, + skips=( + # lambda impl + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.expectedFailure, 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'), + # Not a problem: embedding_bag does weird stuff to its input (it renormalizes) + DecorateInfo(unittest.skip('Allowed exemption'), 'TestCompositeCompliance', 'test_operator'), + ), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + supports_out=False, + supports_gradgrad=False, + ), + OpInfo( + "nn.functional.multi_head_attention_forward", + op=lambda input, *args, **kwargs: + wrapper_set_seed(torch.nn.functional.multi_head_attention_forward, input, *args, **kwargs), + dtypes=floating_types_and(torch.bfloat16, torch.float16), + sample_inputs_func=sample_inputs_multi_head_attention_forward, + skips=( + # Tensor-likes are not close + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_noncontiguous_samples', dtypes=(torch.float32,)), + DecorateInfo(toleranceOverride({torch.float32: tol(atol=5e-3, rtol=0)}), 'TestDecomp', 'test_comprehensive'), + + # TODO skip this for now since we can't skip on runtime arch support (taken from scaled_dot_product_attention) + DecorateInfo(unittest.skip("Skipped!"), 'TestInductorOpInfo', 'test_comprehensive'), + # randomness + DecorateInfo(unittest.skip("Skipped!"), 'TestFwdGradients', 'test_forward_mode_AD'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + # lambda impl + # AssertionError: JIT Test does not execute any logic + DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.expectedFailure, "TestNormalizeOperators", "test_normalize_operator_exhaustive"), + # tests running very slowly break slow tests, so we skip them instead of using `slowTest`. + DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_forward_ad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCompositeCompliance', 'test_operator'), + DecorateInfo( + unittest.skip("Skipped - baddbmm decomp does not have enough precision for 16-bit float"), + 'TestDecomp', + 'test_comprehensive', + dtypes=(torch.bfloat16, torch.float16), + ), + DecorateInfo( + unittest.skip("Skipped - baddbmm decomp does not have enough precision for 16-bit float"), + 'TestDecomp', + 'test_quick', + dtypes=(torch.bfloat16, torch.float16))), + supports_out=False, + supports_gradgrad=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + ), + UnaryUfuncInfo( + "nn.functional.softplus", + aten_backward_name='softplus_backward', + ref=reference_softplus, + sample_kwargs=lambda device, dtype, input: ({'beta': 3, 'threshold': .2}, {'beta': 3, 'threshold': .2}), + sample_inputs_func=partial(sample_inputs_elementwise_unary, op_kwargs={'beta': 3, 'threshold': .2}), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=floating_types_and(torch.bfloat16, torch.float16), + decorators=( + DecorateInfo( + toleranceOverride + ({ + torch.half: tol(atol=1e-2, rtol=1e-2), + torch.bfloat16: tol(atol=1e-2, rtol=1e-2), + }), + 'TestUnaryUfuncs'), + ), + ), + OpInfo( + "nn.functional.mse_loss", + aten_backward_name='mse_loss_backward', + ref=loss_reference_reduction_wrapper(lambda input, target: (input - target) ** 2), + sample_inputs_func=sample_inputs_loss, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + dtypes=floating_types_and(torch.float16), + backward_dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16), + backward_dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16), + skips=( + # RuntimeError: input->type()->kind() == TypeKind::OptionalType + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252, + # please report a bug to PyTorch. + DecorateInfo(unittest.expectedFailure, "TestJit", "test_variant_consistency_jit", dtypes=(torch.float32,),), + ), + ), + OpInfo( + "nn.functional.grid_sample", + dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + sample_inputs_func=sample_inputs_grid_sample, + reference_inputs_func=reference_inputs_grid_sample, + supports_gradgrad=False, + gradcheck_nondet_tol=1e-15), + # TODO: delete this OpInfo once we add meta support for grid_sampler_3d + OpInfo( + "grid_sampler_2d", + dtypes=floating_types(), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + sample_inputs_func=sample_inputs_grid_sampler_2d, + supports_gradgrad=False, + gradcheck_nondet_tol=1e-15), + OpInfo( + "argwhere", + ref=np.argwhere, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + supports_out=False, + supports_autograd=False, + sample_inputs_func=sample_inputs_argwhere, + skips=( + # Compiler issue on ROCm. Might need to skip until ROCm5.5 + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_non_standard_bool_values', + dtypes=[torch.bool], active_if=TEST_WITH_ROCM), + ), + ), + ReductionOpInfo( + 'all', + identity=True, + supports_autograd=False, + result_dtype=torch.bool, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + ref=reference_reduction_numpy(np.all), + skips=( + # FIXME: uint8 input returns uint8 instead of bool + DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_result_dtype', dtypes=[torch.uint8]), + ), + ), + ReductionOpInfo( + 'any', + identity=False, + supports_autograd=False, + result_dtype=torch.bool, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + ref=reference_reduction_numpy(np.any), + skips=( + # FIXME: uint8 input returns uint8 instead of bool + DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_result_dtype', dtypes=[torch.uint8]), + ), + ), + ReductionOpInfo( + 'amax', + nan_policy='propagate', + supports_forward_ad=True, + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + ref=reference_reduction_numpy(np.amax), + skips=( + # FIXME: reduces all dimensions when dim=[] + DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty'), + DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'), + ), + error_inputs_func=error_inputs_aminmax_amax_amin, + ), + ReductionOpInfo( + 'amin', + nan_policy='propagate', + supports_forward_ad=True, + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + ref=reference_reduction_numpy(np.amin), + skips=( + # FIXME: reduces all dimensions when dim=[] + DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty'), + DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'), + ), + error_inputs_func=error_inputs_aminmax_amax_amin, + ), + ReductionOpInfo( + 'argmax', + supports_multiple_dims=False, + supports_autograd=False, + assert_jit_shape_analysis=True, + result_dtype=torch.int64, + dtypes=all_types_and(torch.float16, torch.bfloat16), + ref=reference_reduction_numpy(np.argmax, supports_keepdims=False), + ), + ReductionOpInfo( + 'argmin', + supports_multiple_dims=False, + supports_autograd=False, + result_dtype=torch.int64, + dtypes=all_types_and(torch.float16, torch.bfloat16), + ref=reference_reduction_numpy(np.argmin, supports_keepdims=False), + ), + ReductionOpInfo( + 'count_nonzero', + identity=0, + supports_out=False, + supports_autograd=False, + result_dtype=torch.int64, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_reduction_count_nonzero, + ref=reference_reduction_numpy(np.count_nonzero), + skips=( + # FIXME: count_nonzero does not accept keepdim kwarg + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_single_keepdim'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_multi_keepdim'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_multi_unsorted_keepdim'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_offbounds_keepdim'), + # FIXME: dim=[] reduces all dimensions + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'), + ), + ), + ReductionOpInfo( + 'mean', + nan_policy='propagate', + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # FIXME: mean needs 'dim' parameter when using the 'out' overload. + # Adding it with 'generate_args_kwargs' does not work, since these also get passed + # onto the reference implementations. + supports_out=False, + assert_autodiffed=True, + assert_jit_shape_analysis=True, + promotes_int_to_float=True, + dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16), + ref=reference_reduction_numpy(np.mean), + error_inputs_func=error_inputs_mean, + skips=( + # FIXME: mean does not support passing keepdim without passing dim + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'), + # FIXME: mean reduces all dimensions when dim=[] + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'), + # FIXME: improve precision + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input', + dtypes=[torch.float16]), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_extremal_values', + device_type='cuda', dtypes=[torch.complex64]), + ), + ), + ReductionOpInfo( + 'nanmean', + nan_policy='omit', + assert_autodiffed=True, + promotes_int_to_float=True, + supports_forward_ad=True, + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + dtypes=floating_types_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16, torch.chalf), + sample_inputs_func=sample_inputs_nan_reduction(supports_multiple_dims=True), + ref=reference_reduction_numpy(np.nanmean), + skips=( + # AssertionError: False is not true : + # Failure in testing nodes' autodifferentiation. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # FIXME: prod reduces all dimensions when dim=[] + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'), + # FIXME: improve precision + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input', + dtypes=[torch.float16]), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values', + device_type='cuda', dtypes=[torch.float16]), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_extremal_values', + device_type='cuda', dtypes=[torch.complex64]), + ), + ), + ReductionOpInfo( + 'std', + nan_policy='propagate', + supports_out=True, + complex_to_real=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=True, + promotes_int_to_float=True, + check_batched_forward_grad=False, + dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_std_var, + ref=reference_std_var(np.std), + generate_args_kwargs=generate_std_var_kwargs, + skips=( + # FIXME: cannot specify keepdim without dim + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'), + # FIXME: dim=[] reduces all dimensions + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'), + # FIXME: improve precision + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input', + dtypes=(torch.float16,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values', + dtypes=(torch.float16,)), + ), + ), + ReductionOpInfo( + 'std', + variant_test_name='unbiased', + nan_policy='propagate', + supports_out=False, + complex_to_real=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=True, + promotes_int_to_float=True, + check_batched_forward_grad=False, + dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_std_var_unbiased, + skips=( + # FIXME: dim=[] reduces all dimensions + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'), + ), + ), + ReductionOpInfo( + 'var', + nan_policy='propagate', + supports_out=True, + assert_autodiffed=True, + promotes_int_to_float=True, + complex_to_real=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + check_batched_forward_grad=False, + dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_std_var, + ref=reference_std_var(np.var), + generate_args_kwargs=generate_std_var_kwargs, + skips=( + # FIXME: cannot specify keepdim without dim + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'), + # FIXME: dim=[] reduces all dimensions + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'), + # FIXME: improve precision + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values'), + # NumPy is giving NaN for this + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_large_input'), + ), + ), + ReductionOpInfo( + 'var', + variant_test_name='unbiased', + nan_policy='propagate', + supports_out=False, + complex_to_real=True, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_autodiffed=True, + promotes_int_to_float=True, + check_batched_forward_grad=False, + dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16), + dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16), + sample_inputs_func=sample_inputs_std_var_unbiased, + skips=( + # FIXME: dim=[] reduces all dimensions + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'), + ), + ), + ReductionOpInfo( + 'prod', + identity=1, + nan_policy='propagate', + supports_multiple_dims=False, + # https://github.com/pytorch/pytorch/issues/80411 + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_int64=True, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + sample_inputs_func=sample_inputs_prod, + ref=prod_numpy, + skips=( + # FIXME: prod does not support passing keepdim without passing dim + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'), + # FIXME: prod reduces all dimensions when dim=[] + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'), + # FIXME: prod does not support passing None to dim + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input', + dtypes=[torch.float16, torch.complex64]), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values', + dtypes=[torch.uint8, torch.float16, torch.complex64]), + # FIXME: ValueError: The data in MaskedTensor a and Tensor b do not match + DecorateInfo(unittest.skip("Skipped!"), 'TestOperators', 'test_reduction_all', + dtypes=[torch.float16]), + ), + ), + ReductionOpInfo( + 'sum', + identity=0, + nan_policy='propagate', + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + promotes_int_to_int64=True, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + ref=reference_reduction_numpy(np.sum), + error_inputs_sparse_func=error_inputs_sparse_reduction_sum, + sample_inputs_sparse_coo_func=partial(sample_inputs_sparse_reduction_sum, layout=torch.sparse_coo), + sample_inputs_sparse_csr_func=partial(sample_inputs_sparse_reduction_sum, layout=torch.sparse_csr), + sample_inputs_sparse_csc_func=partial(sample_inputs_sparse_reduction_sum, layout=torch.sparse_csc), + sample_inputs_sparse_bsr_func=partial(sample_inputs_sparse_reduction_sum, layout=torch.sparse_bsr), + sample_inputs_sparse_bsc_func=partial(sample_inputs_sparse_reduction_sum, layout=torch.sparse_bsc), + skips=( + # FIXME: sum does not support passing keepdim without passing dim + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'), + # FIXME: sum reduces all dimensions when dim=[] + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'), + # FIXME: improve precision + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input', + dtypes=[torch.float16]), + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values', + dtypes=[torch.float16]), + DecorateInfo(unittest.skip("Skipped!"), 'TestOperators', 'test_reduction_all', + dtypes=[torch.float32]), + ), + ), + ReductionOpInfo( + 'nansum', + identity=0, + nan_policy='omit', + supports_out=True, + promotes_int_to_int64=True, + supports_forward_ad=True, + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + sample_inputs_func=sample_inputs_nan_reduction(supports_multiple_dims=True), + ref=reference_reduction_numpy(np.nansum), + skips=( + # please report a bug to PyTorch. + DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'), + # FIXME: nansum reduces all dimensions when dim=[] + DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty'), + DecorateInfo(unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'), + # FIXME: flaky test so skipped instead of xfailed + # possibly bad low precision reference in numpy + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input', + dtypes=[torch.float16]), + ), + ), + OpInfo( + "nn.functional.ctc_loss", + dtypes=floating_types(), + supports_out=False, + sample_inputs_func=sample_inputs_ctc_loss, + skips=( + # https://github.com/pytorch/pytorch/issues/67462 + # torch.autograd.gradcheck.GradcheckError: Jacobian mismatch for output 0 with respect to input 0 + DecorateInfo( + unittest.expectedFailure, + "TestBwdGradients", + "test_fn_grad", + dtypes=(torch.float64,), + ), + # RuntimeError: derivative for aten::_ctc_loss_backward is not implemented + DecorateInfo( + unittest.expectedFailure, + "TestBwdGradients", + "test_fn_gradgrad", + dtypes=(torch.float64,), + ), + # RuntimeError: derivative for aten::_ctc_loss_backward is not implemented + DecorateInfo( + unittest.skip("Skipped!"), + "TestJit", + "test_variant_consistency_jit", + dtypes=(torch.float32,), + ), + # Ref: https://github.com/pytorch/pytorch/issues/85231 + DecorateInfo(unittest.skip("Fails with ASAN"), + 'TestProxyTensorOpInfo', + 'test_make_fx_fake_exhaustive', active_if=TEST_WITH_ASAN), + ), + ), + OpInfo( + "nn.functional.cosine_embedding_loss", + dtypes=all_types_and(torch.half, torch.bfloat16, torch.bool), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_cosine_embedding_loss, + ), + OpInfo( + "nn.functional.nll_loss", + dtypes=floating_types_and(torch.bfloat16), + dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + sample_inputs_func=sample_inputs_nll_loss, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + assert_jit_shape_analysis=True, + skips=( + # RuntimeError: + # undefined value tensor: + # File "", line 3 + # def the_method(i0, i1): + # return torch.nn.functional.nll_loss(i0, i1, weight=tensor([8.4784, 1.7658, 4.3228], dtype=torch.float32)) + # ~~~~~~ <--- HERE + DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit", dtypes=(torch.float32,),), + ), + ), + OpInfo( + "nn.functional.gaussian_nll_loss", + dtypes=floating_types_and(torch.half, torch.bfloat16), + # Runs very slowly on slow gradcheck - alternatively reduce input sizes + gradcheck_fast_mode=True, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_gaussian_nll_loss, + error_inputs_func=error_inputs_gaussian_nll_loss, + skips=( + # Pre-existing condition (calls .item); needs to be fixed + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'), + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'), + # Pre-existing condition (calls .item); needs to be fixed + DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator'), + # JIT does not support variadic tensors. + # RuntimeError: input->type()->kind() == TypeKind::OptionalType + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270, + # please report a bug to PyTorch. + DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit", dtypes=(torch.float32,),), + ), + ), + OpInfo( + "nn.functional.hinge_embedding_loss", + dtypes=floating_types_and(torch.half, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_hinge_embedding_loss, + error_inputs_func=error_inputs_hinge_embedding_loss, + reference_inputs_func=reference_inputs_hinge_embedding_loss, + ), + OpInfo( + "nn.functional.huber_loss", + aten_backward_name='huber_loss_backward', + dtypes=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + sample_inputs_func=sample_inputs_huber_loss, + error_inputs_func=error_inputs_huber_loss, + skips=( + # JIT does not support variadic tensors. + # RuntimeError: input->type()->kind() == TypeKind::OptionalType + # INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":270, + # please report a bug to PyTorch. + DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit", dtypes=(torch.float32,),), + ) + ), + OpInfo( + "nn.functional.pdist", + ref=reference_pdist, + sample_inputs_func=sample_inputs_pdist, + dtypes=floating_types(), + supports_out=False, + supports_gradgrad=False, + skips=( + DecorateInfo(unittest.skip("Unsupported on MPS for now"), 'TestCommon', 'test_numpy_ref_mps'), + ) + ), + OpInfo( + "nn.functional.poisson_nll_loss", + dtypes=all_types_and(torch.half, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_poisson_nll_loss, + error_inputs_func=error_inputs_poisson_nll_loss, + ), + OpInfo( + "argsort", + dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_sort, + supports_out=False, + supports_autograd=False, + skips=( + DecorateInfo( + unittest.skip("Skipped!"), + "TestJit", + "test_variant_consistency_jit", + dtypes=(torch.float32,), + ), + ), + ), + OpInfo( + "repeat_interleave", + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16, torch.chalf), + backward_dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16, torch.chalf), + sample_inputs_func=sample_inputs_repeat_interleave, + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + skips=( + DecorateInfo( + unittest.skip("Skipped!"), + "TestJit", + "test_variant_consistency_jit", + dtypes=(torch.float32, torch.complex64), + ), + ), + ), + OpInfo( + "nn.functional.pairwise_distance", + ref=lambda a, b, p=2.0, eps=1e-6, keepdim=False: ( + np.sum(np.abs(a - b + eps) ** p, axis=-1, keepdims=keepdim) ** (1 / p) + ), + sample_inputs_func=sample_inputs_pairwise_distance, + dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + DecorateInfo( + unittest.skip("Skipped!"), + "TestJit", + "test_variant_consistency_jit", + dtypes=(torch.float32, torch.complex64), + ), + ), + ), + OpInfo( + "nn.functional.pixel_shuffle", + sample_inputs_func=sample_inputs_pixel_shuffle, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + DecorateInfo( + unittest.skip("Skipped!"), + "TestJit", + "test_variant_consistency_jit", + dtypes=(torch.float32, torch.complex64), + ), + ), + ), + OpInfo( + "nn.functional.pixel_unshuffle", + sample_inputs_func=sample_inputs_pixel_unshuffle, + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + skips=( + DecorateInfo( + unittest.skip("Skipped!"), + "TestJit", + "test_variant_consistency_jit", + dtypes=(torch.float32, torch.complex64), + ), + ), + ), + OpInfo( + "nn.functional.kl_div", + sample_inputs_func=sample_inputs_kl_div, + dtypes=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + ), + OpInfo( + "diagflat", + ref=lambda input, offset=0: np.diagflat(input, k=offset), + sample_inputs_func=sample_inputs_diagflat, + dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16), + dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + supports_out=False, + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + # See https://github.com/pytorch/pytorch/pull/78358 + check_batched_forward_grad=False, + ), + OpInfo( + 'scatter_reduce', + variant_test_name='sum', + # complex not added to dtypes as complex gradients are not properly handled + # and scatter_reduce hasn't been added to the whitelist in gen_variable_type yet + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_scatter_reduce, + ), + OpInfo( + 'scatter_reduce', + variant_test_name='prod', + # complex not added to dtypes as complex gradients are not properly handled + # and scatter_reduce hasn't been added to the whitelist in gen_variable_type yet + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16), + sample_inputs_func=sample_inputs_scatter_reduce, + skips=( + # Not implemented + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', 'test_forward_mode_AD'), + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', 'test_inplace_forward_mode_AD'), + DecorateInfo(unittest.expectedFailure, 'TestFwdGradients', 'test_fn_fwgrad_bwgrad'), + ), + ), + OpInfo( + 'scatter_reduce', + variant_test_name='mean', + # complex not added to dtypes as complex gradients are not properly handled + # and scatter_reduce hasn't been added to the whitelist in gen_variable_type yet + dtypes=all_types_and(torch.float16, torch.bfloat16), + dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16), + supports_forward_ad=True, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_scatter_reduce, + ), + OpInfo( + 'scatter_reduce', + variant_test_name='amin', + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16), + supports_forward_ad=True, + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_scatter_reduce, + ), + OpInfo( + 'scatter_reduce', + variant_test_name='amax', + dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool), + dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16), + supports_forward_ad=True, + check_batched_forward_grad=False, + supports_fwgrad_bwgrad=True, + sample_inputs_func=sample_inputs_scatter_reduce, + ), + OpInfo( + '_segment_reduce', + aten_name='segment_reduce', + variant_test_name='lengths', + dtypes=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + # RuntimeError: derivative for aten::_segment_reduce_backward is not implemented + supports_gradgrad=False, + sample_inputs_func=sample_inputs_segment_reduce, + skips=( + # FIXME: CUDA driver API confirmed a leak in + # __main__.TestJitCUDA.test_variant_consistency_jit_segment_reduce_cuda_float32 + DecorateInfo( + unittest.skip("Skipped!"), + "TestJit", + "test_variant_consistency_jit", + device_type="cuda", + ), + ), + ), + OpInfo( + '_segment_reduce', + aten_name='segment_reduce', + variant_test_name='offsets', + dtypes=floating_types_and(torch.float16, torch.bfloat16), + supports_out=False, + # RuntimeError: derivative for aten::_segment_reduce_backward is not implemented + supports_gradgrad=False, + sample_inputs_func=partial(sample_inputs_segment_reduce, mode='offsets'), + skips=( + # FIXME: CUDA driver API confirmed a leak in + # __main__.TestJitCUDA.test_variant_consistency_jit_segment_reduce_cuda_float32 + DecorateInfo( + unittest.skip("Skipped!"), + "TestJit", + "test_variant_consistency_jit", + device_type="cuda", + ), + ), + ), +] +op_db += opinfo.definitions.op_db + + +# Separate registry for experimental Python Reference OpInfos. +python_ref_db = [ + # + # Elementwise Unary OpInfos + # + ElementwiseUnaryPythonRefInfo( + "_refs.abs", + torch_opinfo_name="abs", + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/49224 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_small', + dtypes=[torch.int8], active_if=TEST_WITH_ASAN), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.acos", + torch_opinfo_name="acos", + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_normal', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + # Failing with wrong imaginary sign on at least some Windows jobs + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_small', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + # Failing with wrong imaginary sign on at least some Windows jobs + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + ) + ), + ElementwiseUnaryPythonRefInfo( + "_refs.acosh", + torch_opinfo_name="acosh", + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_normal', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + # Failing with wrong imaginary sign on at least some Windows jobs + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_small', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.asin", + torch_opinfo_name="asin", + decorators=[ + DecorateInfo( + toleranceOverride({torch.float16: tol(atol=1e-05, rtol=1e-03)}), + 'TestUnaryUfuncs', device_type='cuda'), + precisionOverride({torch.bfloat16: 1e-2}), + ], + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.asinh", + torch_opinfo_name="asinh", + decorators=(precisionOverride({torch.bfloat16: 5e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_small', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_normal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cuda', dtypes=[torch.cdouble], + active_if=IS_WINDOWS), + ), + ), + PythonRefInfo( + "_refs.lerp", + torch_opinfo_name="lerp", + ), + PythonRefInfo( + "_refs.ones", + torch_opinfo_name="ones", + skips=( + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + ), + ), + PythonRefInfo( + "_refs.zeros", + torch_opinfo_name="zeros", + skips=( + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + ), + ), + PythonRefInfo( + "_refs.cauchy", + torch_opinfo_name="cauchy", + decorators=( + # TODO: RuntimeError: no _refs support for torch.rand_like + DecorateInfo(unittest.skip("TODO: RuntimeError: no _refs support for torch.rand_like"), + 'TestCommon', + 'test_python_ref'), + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip("Expected: cauchy is not comparable"), + 'TestCommon', + 'test_out'), + DecorateInfo(unittest.skip("Expected: cauchy is not comparable"), + 'TestCommon', + 'test_out_warning'), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_executor'), + DecorateInfo(unittest.skip("Expected: cauchy is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + ) + ), + PythonRefInfo( + "_refs.exponential", + torch_opinfo_name="exponential", + supports_out=True, + decorators=( + # dtypes that do not support check_uniform_bounds of rand_like + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_meta', + dtypes=(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64)), + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_dtypes'), + + # TODO: RuntimeError: no _refs support for torch.rand_like + DecorateInfo(unittest.skip("TODO: RuntimeError: no _refs support for torch.rand_like"), + 'TestCommon', + 'test_python_ref'), + + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip("Expected: exponential is not comparable"), + 'TestCommon', + 'test_out'), + DecorateInfo(unittest.skip("Expected: exponential is not comparable"), + 'TestCommon', + 'test_out_warning'), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_executor'), + DecorateInfo(unittest.skip("Expected: exponential is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + ) + ), + PythonRefInfo( + "_refs.geometric", + torch_opinfo_name="geometric", + supports_out=True, + decorators=( + # dtypes that do not support check_uniform_bounds of rand_like + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_dtypes'), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_meta', + dtypes=(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64)), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64)), + + # TODO: RuntimeError: no _refs support for torch.rand_like + DecorateInfo(unittest.skip("TODO: RuntimeError: no _refs support for torch.rand_like"), + 'TestCommon', + 'test_python_ref'), + DecorateInfo(unittest.skip("Expected: geometric is not comparable"), + 'TestCommon', + 'test_python_ref_executor', device_type='cuda'), + + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip("Expected: geometric is not comparable"), + 'TestCommon', + 'test_out'), + DecorateInfo(unittest.skip("Expected: geometric is not comparable"), + 'TestCommon', + 'test_out_warning'), + DecorateInfo(unittest.skip("Expected: geometric is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + ) + ), + PythonRefInfo( + "_refs.log_normal", + torch_opinfo_name="log_normal", + supports_out=True, + decorators=( + # TODO: RuntimeError: no _refs support for torch.rand_like + DecorateInfo(unittest.skip("TODO: RuntimeError: no _refs support for torch.rand_like"), + 'TestCommon', + 'test_python_ref'), + DecorateInfo(unittest.skip("Expected: log_normal is not comparable"), + 'TestCommon', + 'test_python_ref_executor', device_type='cuda'), + + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip("Expected: log_normal is not comparable"), + 'TestCommon', + 'test_out'), + DecorateInfo(unittest.skip("Expected: log_normal is not comparable"), + 'TestCommon', + 'test_out_warning'), + DecorateInfo(unittest.skip("Expected: log_normal is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + ) + ), + PythonRefInfo( + "_refs.normal", + torch_opinfo_name="normal", + supports_out=True, + decorators=( + # TODO: RuntimeError: no _refs support for torch.rand_like + DecorateInfo(unittest.skip("TODO: RuntimeError: no _refs support for torch.rand_like"), + 'TestCommon', + 'test_python_ref'), + + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip("Expected: normal is not comparable"), + 'TestCommon', + 'test_out'), + DecorateInfo(unittest.skip("Expected: normal is not comparable"), + 'TestCommon', + 'test_out_warning'), + DecorateInfo(unittest.skip("Expected: normal is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip("Expected: normal is not comparable"), 'TestDecomp', 'test_comprehensive'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + DecorateInfo(unittest.skip("make_traced() doesn't set seed properly!"), 'TestCommon', 'test_python_ref_executor'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + ) + ), + PythonRefInfo( + "_refs.normal", + torch_opinfo_name="normal", + torch_opinfo_variant_name="number_mean", + supports_out=True, + decorators=( + # TODO: RuntimeError: no _refs support for torch.rand_like + DecorateInfo(unittest.skip("TODO: RuntimeError: no _refs support for torch.rand_like"), + 'TestCommon', + 'test_python_ref'), + + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip("Expected: normal is not comparable"), + 'TestCommon', + 'test_out'), + DecorateInfo(unittest.skip("Expected: normal is not comparable"), + 'TestCommon', + 'test_out_warning'), + DecorateInfo(unittest.skip("Expected: normal is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip("Expected: normal is not comparable"), 'TestDecomp', 'test_comprehensive'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + DecorateInfo(unittest.skip("make_traced() doesn't set seed properly!"), 'TestCommon', 'test_python_ref_executor'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + ) + ), + PythonRefInfo( + "_refs.normal_", + op=torch.Tensor.normal_, + torch_opinfo_name="normal", + torch_opinfo_variant_name="in_place", + supports_out=False, + decorators=( + # TODO: RuntimeError: no _refs support for torch.rand_like + DecorateInfo(unittest.skip("TODO: RuntimeError: no _refs support for torch.rand_like"), + 'TestCommon', + 'test_python_ref'), + + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip("Expected: normal is not comparable"), + 'TestCommon', + 'test_out'), + DecorateInfo(unittest.skip("Expected: normal is not comparable"), + 'TestCommon', + 'test_out_warning'), + DecorateInfo(unittest.skip("Expected: normal is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip("Expected: normal is not comparable"), 'TestDecomp', 'test_comprehensive'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + DecorateInfo(unittest.skip("make_traced() doesn't set seed properly!"), 'TestCommon', 'test_python_ref_executor'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + ) + ), + PythonRefInfo( + "_refs.arange", + torch_opinfo_name="arange", + skips=( + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + ), + ), + PythonRefInfo( + "_refs.linspace", + torch_opinfo_name="linspace", + skips=( + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + + # cpu implementation is wrong on some integral types + # https://github.com/pytorch/pytorch/issues/81996 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64), device_type="cpu"), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref', + dtypes=(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64), device_type="cpu"), + + # cuda implementation is off-by-one on some inputs due to precision issues + # https://github.com/pytorch/pytorch/issues/82230 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64), + device_type="cuda"), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref', + dtypes=(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64), + device_type="cuda"), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_executor', + dtypes=(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64), + device_type="cuda"), + ), + ), + PythonRefInfo( + "_refs.linspace", + torch_opinfo_name="linspace", + torch_opinfo_variant_name="tensor_overload", + skips=( + # TypeError: 'int' object is not subscriptable + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + + # cpu implementation is wrong on some integral types + # https://github.com/pytorch/pytorch/issues/81996 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64), device_type="cpu"), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref', + dtypes=(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64), device_type="cpu"), + + # cuda implementation is off-by-one on some inputs due to precision issues + # https://github.com/pytorch/pytorch/issues/82230 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64), + device_type="cuda"), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref', + dtypes=(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64), + device_type="cuda"), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_executor', + dtypes=(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64), + device_type="cuda"), + ), + ), + PythonRefInfo( + "_refs.logspace", + torch_opinfo_name="logspace", + skips=( + # Tests that assume input is a tensor or sequence of tensors + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_conj_view'), + + # Off-by-one issue when casting floats to ints + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.int16, torch.int32, torch.int64), + device_type="cuda"), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref', + dtypes=(torch.int16, torch.int32, torch.int64), + device_type="cuda"), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_executor', + dtypes=(torch.int16, torch.int32, torch.int64), + device_type="cuda"), + ), + ), + PythonRefInfo( + "_refs.logspace", + torch_opinfo_name="logspace", + torch_opinfo_variant_name="tensor_overload", + skips=( + # TypeError: 'int' object is not subscriptable + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.expectedFailure, 'TestMathBits', 'test_conj_view'), + + # Off-by-one issue when casting floats to ints + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.int16, torch.int32, torch.int64), + device_type="cuda"), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref', + dtypes=(torch.int16, torch.int32, torch.int64), + device_type="cuda"), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_executor', + dtypes=(torch.int16, torch.int32, torch.int64), + device_type="cuda"), + ), + ), + PythonRefInfo( + "_refs.meshgrid", + torch_opinfo_name="meshgrid", + torch_opinfo_variant_name="variadic_tensors", + ), + PythonRefInfo( + "_refs.take_along_dim", + torch_opinfo_name="take_along_dim", + skips=( + DecorateInfo(unittest.expectedFailure, + 'TestCommon', + 'test_python_ref'), + ), + ), + PythonRefInfo( + "_refs.to", + torch_opinfo_name="to", + ), + PythonRefInfo( + "_refs.triu", + torch_opinfo_name="triu", + ), + PythonRefInfo( + "_refs.tril", + torch_opinfo_name="tril", + ), + PythonRefInfo( + "_refs.triu_indices", + torch_opinfo_name="triu_indices", + # the implementation uses torch.stack that violates view consistency + validate_view_consistency=False, + skips=( + # skip these tests since we have non tensor input + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_noncontiguous_samples'), + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.skip('Skipped!'), 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('Skipped!'), 'TestMathBits', 'test_neg_view'), + )), + PythonRefInfo( + "_refs.tril_indices", + torch_opinfo_name="tril_indices", + # the implementation uses torch.stack that violates view consistency + validate_view_consistency=False, + skips=( + # skip these tests since we have non tensor input + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_noncontiguous_samples'), + DecorateInfo(unittest.skip('Skipped!'), 'TestCommon', 'test_variant_consistency_eager'), + DecorateInfo(unittest.skip('Skipped!'), 'TestJit', 'test_variant_consistency_jit'), + DecorateInfo(unittest.skip('Skipped!'), 'TestMathBits', 'test_neg_view'), + )), + PythonRefInfo( + "_refs.meshgrid", + torch_opinfo_name="meshgrid", + torch_opinfo_variant_name="list_of_tensors", + ), + PythonRefInfo( + "_refs.movedim", + aliases=('moveaxis',), + torch_opinfo_name="movedim", + ), + PythonRefInfo( + "_refs.bucketize", + torch_opinfo_name="bucketize", + skips=( + # RuntimeError: It appears that you're trying to get value out of a tracing tensor with + # aten._local_scalar_dense.default - erroring out! [...] + # triggered by mid_val = boundaries[mid] + DecorateInfo(unittest.expectedFailure, "TestCommon", "test_python_ref_executor"), + ) + ), + PythonRefInfo( + "_refs.equal", + torch_opinfo_name="equal", + skips=( + # RuntimeError: Cannot cast FakeTensor to number + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_meta',), + ) + ), + ElementwiseUnaryPythonRefInfo( + "_refs.atan", + torch_opinfo_name="atan", + decorators=(precisionOverride({torch.bfloat16: 1e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_small', + active_if=TEST_WITH_ROCM, device_type='cuda', + dtypes=[torch.complex64, torch.complex128]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + active_if=TEST_WITH_ROCM, device_type='cuda', + dtypes=[torch.complex128]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_small', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cfloat, torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cuda', dtypes=[torch.cfloat, torch.cdouble], + active_if=IS_WINDOWS), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.atanh", + torch_opinfo_name="atanh", + decorators=(precisionOverride({torch.bfloat16: 1e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_small', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cfloat, torch.cdouble], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cuda', dtypes=[torch.cfloat], + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + active_if=TEST_WITH_ROCM, device_type='cuda', + dtypes=[torch.complex128]), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.bitwise_not", + torch_opinfo_name="bitwise_not", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.ceil", + torch_opinfo_name="ceil", + # Fails on int32 + # https://github.com/pytorch/pytorch/issues/85258 + ), + PythonRefInfo( + "_refs.item", + torch_opinfo_name="item", + skips=( + # RuntimeError: Cannot cast FakeTensor(FakeTensor(..., device='meta', size=()), cpu) to number + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_meta'), + # ValueError: Can't convert a tensor with 10 elements to a number! + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_errors'),), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.conj_physical", + torch_opinfo_name="conj_physical", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.cos", + torch_opinfo_name="cos", + decorators=(precisionOverride({torch.bfloat16: 1e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=(torch.cfloat, torch.cdouble,), device_type='cpu', + active_if=IS_WINDOWS), + # This fails on CUDA but passes on ROCm + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=(torch.cdouble,), device_type='cuda'), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', + dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS), + # AssertionError: Tensor-likes are not close! + # Greatest absolute difference: nan at index (700,) (up to 1e-05 allowed) + # Greatest relative difference: nan at index (700,) (up to 0.001 allowed) + DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cuda', + dtypes=(torch.chalf,), active_if=IS_WINDOWS), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.cosh", + torch_opinfo_name="cosh", + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/48641 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.int8]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=[torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', + dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', + dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS), + # AssertionError: Tensor-likes are not close! + # Greatest absolute difference: nan at index (6000,) (up to 1e-05 allowed) + # Greatest relative difference: nan at index (6000,) (up to 0.001 allowed) + DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cuda', + dtypes=(torch.chalf,), active_if=IS_WINDOWS), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.digamma", + torch_opinfo_name="digamma", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.erf", + torch_opinfo_name="erf", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.erfinv", + torch_opinfo_name="erfinv", + decorators=(precisionOverride({torch.float16: 1e-2, + torch.bfloat16: 1e-2, + torch.float32: 1e-4}),), + skips=( + # Reference: https://github.com/pytorch/pytorch/pull/49155#issuecomment-742664611 + DecorateInfo( + unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + active_if=TEST_SCIPY and version.parse(scipy.__version__) < version.parse("1.4.0")), + DecorateInfo( + unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + active_if=TEST_SCIPY and version.parse(scipy.__version__) < version.parse("1.4.0")), + DecorateInfo( + unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_small', + active_if=TEST_SCIPY and version.parse(scipy.__version__) < version.parse("1.4.0")), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.erfc", + torch_opinfo_name="erfc", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.exp", + torch_opinfo_name="exp", + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/48010 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.expm1", + torch_opinfo_name="expm1", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.exp2", + torch_opinfo_name="exp2", + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=[torch.cdouble]), + # Reference: https://github.com/pytorch/pytorch/issues/48010 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.fill", + torch_opinfo_name="fill", + supports_out=True, + ), + ElementwiseUnaryPythonRefInfo( + "_refs.floor", + torch_opinfo_name="floor", + # Fails on int32 + # https://github.com/pytorch/pytorch/issues/85258 + ), + ElementwiseUnaryPythonRefInfo( + "_refs.frac", + torch_opinfo_name="frac", + skips=( + DecorateInfo( + unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + dtypes=(torch.bfloat16, torch.float16, torch.float32, torch.float64)), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.imag", + torch_opinfo_name="imag", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.isfinite", + torch_opinfo_name="isfinite", + supports_out=True, + ), + ElementwiseUnaryPythonRefInfo( + "_refs.isinf", + torch_opinfo_name="isinf", + supports_out=True, + ), + ElementwiseUnaryPythonRefInfo( + "_refs.isposinf", + torch_opinfo_name="isposinf", + supports_out=True, + ), + ElementwiseUnaryPythonRefInfo( + "_refs.isneginf", + torch_opinfo_name="isneginf", + supports_out=True, + ), + ElementwiseUnaryPythonRefInfo( + "_refs.isnan", + torch_opinfo_name="isnan", + supports_out=True, + ), + ElementwiseUnaryPythonRefInfo( + "_refs.isreal", + torch_opinfo_name="isreal", + supports_out=True, + ), + ElementwiseUnaryPythonRefInfo( + "_refs.i0", + torch_opinfo_name="i0", + decorators=(precisionOverride({torch.bfloat16: 3e-1, + torch.float16: 5e-1}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), + 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=(torch.int8,)), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.lgamma", + torch_opinfo_name="lgamma", + decorators=(precisionOverride({torch.float16: 7e-1}),), + skips=( + # Reference: https://github.com/pytorch/pytorch/pull/50140#issuecomment-756150214 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + dtypes=[torch.float32, torch.float64], active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=[torch.float32, torch.float64], active_if=IS_WINDOWS), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.special.multigammaln", + torch_opinfo_name="mvlgamma", + torch_opinfo_variant_name="mvlgamma_p_1", + skips=skips_mvlgamma(), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.special.multigammaln", + torch_opinfo_name="mvlgamma", + torch_opinfo_variant_name="mvlgamma_p_3", + skips=skips_mvlgamma(), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.special.multigammaln", + torch_opinfo_name="mvlgamma", + torch_opinfo_variant_name="mvlgamma_p_5", + skips=skips_mvlgamma(), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.log", + torch_opinfo_name="log", + decorators=(precisionOverride({torch.bfloat16: 5e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=IS_WINDOWS), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.log1p", + torch_opinfo_name="log1p", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.log10", + torch_opinfo_name="log10", + decorators=(precisionOverride({torch.bfloat16: 5e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=IS_WINDOWS), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.log2", + torch_opinfo_name="log2", + decorators=(precisionOverride({torch.bfloat16: 1e-1}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + dtypes=[torch.cfloat, torch.cdouble]), + ), + ), + PythonRefInfo( + "_refs.logsumexp", + torch_opinfo_name="logsumexp", + # When keepdim=False logsumexp function uses squeeze operation + # that is not yet exposed in nvFuser's Python API. + ), + PythonRefInfo( + "_refs.log_softmax", + torch_opinfo_name="log_softmax", + torch_opinfo_variant_name="with_dtype", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nan_to_num", + torch_opinfo_name="nan_to_num", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.neg", + torch_opinfo_name="neg", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.positive", + torch_opinfo_name="positive", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.real", + torch_opinfo_name="real", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.reciprocal", + torch_opinfo_name="reciprocal", + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/45690 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + dtypes=[torch.cfloat, torch.cdouble]), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.round", + torch_opinfo_name="round", + # Fails on int32 + # https://github.com/pytorch/pytorch/issues/85258 + skips=( + DecorateInfo(toleranceOverride({torch.bfloat16: tol(atol=1e-3, rtol=0.016)}), + "TestUnaryUfuncs", "test_reference_numerics_extremal", + device_type="cuda"), + DecorateInfo(toleranceOverride({torch.bfloat16: tol(atol=1e-3, rtol=0.016)}), + "TestUnaryUfuncs", "test_reference_numerics_normal", + device_type="cuda"), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.rsqrt", + torch_opinfo_name="rsqrt", + decorators=(precisionOverride({torch.half: 5e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + dtypes=(torch.cfloat, torch.cdouble)), + # AssertionError: Tensor-likes are not close! + # Greatest absolute difference: nan at index (700,) (up to 0.01 allowed) + # Greatest relative difference: nan at index (700,) (up to 0.001 allowed) + DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=(torch.chalf,)), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.sigmoid", + torch_opinfo_name="sigmoid", + aliases=('_refs.special.expit',), + # Reference: https://github.com/pytorch/pytorch/issues/56012 + handles_complex_extremal_values=False, + handles_large_floats=False, + decorators=(precisionOverride({torch.float16: 1e-2, + torch.complex64: 1e-1, + torch.bfloat16: 1e-2}),), + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/56012 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + dtypes=[torch.complex64, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=[torch.chalf, torch.complex64, torch.cdouble]) + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.sign", + torch_opinfo_name="sign", + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/41245 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + dtypes=[torch.bfloat16, torch.float16, torch.float32, + torch.float64]), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.sgn", + torch_opinfo_name="sgn", + # This is an issue with the vectorised abs on CPU + handles_complex_extremal_values=False, + handles_large_floats=False, + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/41245 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + dtypes=[torch.bfloat16, torch.float16, torch.float32, + torch.float64]), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.signbit", + torch_opinfo_name="signbit", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.sin", + torch_opinfo_name="sin", + decorators=(precisionOverride({torch.bfloat16: 1e-2}),), + skips=( + # Fails on CUDA but passes on ROCm + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=(torch.cdouble,), device_type='cuda'), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + dtypes=(torch.cfloat, torch.cdouble,), device_type='cpu', + active_if=IS_WINDOWS), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=(torch.cfloat, torch.cdouble,), device_type='cpu', + active_if=IS_WINDOWS), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.sinc", + torch_opinfo_name="sinc", + decorators=(precisionOverride({torch.bfloat16: 1e-2, + torch.float16: 1e-2}),), + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/49133 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_small', + dtypes=[torch.cfloat]), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.sinh", + torch_opinfo_name="sinh", + decorators=(precisionOverride({torch.float16: 1e-2}),), + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=(IS_MACOS or IS_WINDOWS)), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=(IS_MACOS or IS_WINDOWS)), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=(torch.cdouble,)), + # Reference: https://github.com/pytorch/pytorch/issues/48641 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.int8]), + ), + ), + PythonRefInfo( + "_refs.softmax", + torch_opinfo_name="softmax", + torch_opinfo_variant_name="with_dtype", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.sqrt", + torch_opinfo_name="sqrt", + decorators=( + precisionOverride({torch.bfloat16: 7e-2}), + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=1e-2, rtol=0)}), + 'TestUnaryUfuncs', 'test_reference_numerics_large'), + ), + skips=( + # Reference: https://github.com/pytorch/pytorch/issues/47358 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=(torch.cfloat, torch.cdouble), + active_if=IS_MACOS), + # Reference: https://github.com/pytorch/pytorch/pull/47293#issuecomment-721774436 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=(torch.bfloat16,)), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.square", + torch_opinfo_name="square", + decorators=(precisionOverride({torch.complex64: 3e-4, torch.bfloat16: 3e-1}),), + skips=( + # AssertionError: Reference result was farther (2.2417024338305655e-07) from the precise computation + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_python_ref_executor', dtypes=(torch.complex64,)), + # Reference: https://github.com/pytorch/pytorch/issues/52549 + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cuda', dtypes=[torch.cfloat, torch.cdouble]), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.tan", + torch_opinfo_name="tan", + decorators=[ + DecorateInfo( + toleranceOverride({torch.complex64: tol(atol=1e-04, rtol=1e-05)}), + 'TestUnaryUfuncs', 'test_reference_numerics_extremal', device_type='cuda'), + ], + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=(IS_MACOS or IS_WINDOWS)), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=(IS_MACOS or IS_WINDOWS)), + ) + ), + ElementwiseUnaryPythonRefInfo( + "_refs.tanh", + torch_opinfo_name="tanh", + decorators=[ + DecorateInfo( + toleranceOverride({torch.complex64: tol(atol=1e-04, rtol=2e-05)}), + 'TestUnaryUfuncs', 'test_reference_numerics_extremal', device_type='cuda'), + ], + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_extremal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=(IS_MACOS or IS_WINDOWS)), + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_large', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble], + active_if=(IS_MACOS or IS_WINDOWS)), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.trunc", + torch_opinfo_name="trunc", + # Fails on int32 + # https://github.com/pytorch/pytorch/issues/85258 + ), + PythonRefInfo( + "_refs.special.log_softmax", + torch_opinfo_name="log_softmax", # alias + torch_opinfo_variant_name="with_dtype", + supports_out=False, + ), + PythonRefInfo( + "_refs.special.softmax", + torch_opinfo_name="softmax", # alias + torch_opinfo_variant_name="with_dtype", + supports_out=False, + ), + # + # Elementwise Unary Special OpInfos + # + ElementwiseUnaryPythonRefInfo( + "_refs.special.logit", + torch_opinfo_name="logit", + ), + # + # Elementwise Unary nn.functional OpInfos + # + PythonRefInfo( + "_refs.nn.functional.alpha_dropout", + torch_opinfo_name="nn.functional.alpha_dropout", + decorators=( + DecorateInfo(unittest.skip("Expected: dropout is not comparable"), + 'TestCommon', + 'test_python_ref'), + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip("Expected: dropout is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip("Expected: dropout is not comparable"), + 'TestCommon', + 'test_python_ref_executor', device_type='cuda'), + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip("Expected: dropout is not comparable"), + 'TestMathBits', + 'test_neg_view'), + # AssertionError: Tensor-likes are not close! + DecorateInfo(unittest.skip("Expected: dropout is not comparable"), + 'TestCommon', + 'test_compare_cpu'), + ) + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nn.functional.celu", + torch_opinfo_name="nn.functional.celu", + supports_out=True, + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nn.functional.threshold", + torch_opinfo_name="nn.functional.threshold", + supports_out=True, + ), + PythonRefInfo( + "_refs.nn.functional.dropout", + torch_opinfo_name="nn.functional.dropout", + decorators=( + DecorateInfo(unittest.skip("Expected: dropout is not comparable"), + 'TestCommon', + 'test_python_ref'), + DecorateInfo(unittest.skip("Expected: dropout is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip("Expected: dropout is not comparable"), + 'TestCommon', + 'test_out'), + DecorateInfo(unittest.skip("Expected: dropout is not comparable"), + 'TestCommon', + 'test_out_warning'), + DecorateInfo(unittest.skip("Expected: dropout is not comparable"), + 'TestMathBits', + 'test_conj_view'), + DecorateInfo(unittest.skip("Expected: dropout is not comparable"), + 'TestMathBits', + 'test_neg_conj_view'), + DecorateInfo(unittest.skip("Expected: dropout is not comparable"), + 'TestMathBits', + 'test_neg_view'), + # dropout is not comparable + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_executor'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + ) + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nn.functional.elu", + torch_opinfo_name="nn.functional.elu", + supports_out=True, + decorators=[ + DecorateInfo( + toleranceOverride({ + torch.float16: tol(atol=1e-03, rtol=1.2e-03), + torch.bfloat16: tol(atol=1e-03, rtol=1.2e-03) + }), + 'TestUnaryUfuncs', device_type='cuda', + ), ], + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nn.functional.hardtanh", + torch_opinfo_name="nn.functional.hardtanh", + supports_out=True, + ), + PythonRefInfo( # TODO: Port this to an UnaryOpInfo + "_refs.nn.functional.gelu", + torch_opinfo_name="nn.functional.gelu", + ), + PythonRefInfo( + "_refs.nn.functional.layer_norm", + torch_opinfo_name="nn.functional.layer_norm", + skips=( + # Reference result was farther (3.5762786809723224e-07) from the precise computation + # than the torch result was (2.5068410824946596e-07)! + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_python_ref', + dtypes=(torch.float32,), device_type='cpu'), + ), + ), + PythonRefInfo( + "_refs.nn.functional.glu", + torch_opinfo_name="nn.functional.glu", + supports_out=True, + ), + PythonRefInfo( + "_refs.nn.functional.pairwise_distance", + torch_opinfo_name="nn.functional.pairwise_distance", + supports_out=True, + ), + PythonRefInfo( + "_refs.nn.functional.pdist", + torch_opinfo_name="nn.functional.pdist", + supports_out=True, + skips=( + # RunTimeError: no _refs support for torch.Tensor.index_select + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref'), + )), + PythonRefInfo( + "_refs.nn.functional.leaky_relu", + torch_opinfo_name="nn.functional.leaky_relu", + supports_out=True, + ), + PythonRefInfo( + "_refs.nn.functional.log_softmax", + torch_opinfo_name="log_softmax", # alias + torch_opinfo_variant_name="with_dtype", + supports_out=False, + ), + PythonRefInfo( + "_refs.nn.functional.poisson_nll_loss", + torch_opinfo_name="nn.functional.poisson_nll_loss", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nn.functional.prelu", + torch_opinfo_name="nn.functional.prelu", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nn.functional.relu", + torch_opinfo_name="nn.functional.relu", + supports_out=True, + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nn.functional.relu6", + torch_opinfo_name="nn.functional.relu6", + supports_out=True, + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nn.functional.mish", + torch_opinfo_name="nn.functional.mish", + supports_out=True, + decorators=[ + DecorateInfo( + toleranceOverride({torch.float16: tol(atol=1e-02, rtol=1e-03)}), + 'TestUnaryUfuncs',), ], + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nn.functional.selu", + torch_opinfo_name="nn.functional.selu", + supports_out=True, + decorators=[ + DecorateInfo( + toleranceOverride({ + torch.float16: tol(atol=1e-2, rtol=1.8e-2), + torch.bfloat16: tol(atol=1e-2, rtol=1.8e-2) + }), + 'TestUnaryUfuncs', device_type='cuda', + ), ], + ), + PythonRefInfo( + "_refs.nn.functional.softmax", + torch_opinfo_name="softmax", # alias + torch_opinfo_variant_name="with_dtype", + supports_out=False, + ), + PythonRefInfo( + "_refs.nn.functional.softmin", + torch_opinfo_name="nn.functional.softmin", + torch_opinfo_variant_name="with_dtype", + supports_out=False, + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nn.functional.softplus", + torch_opinfo_name="nn.functional.softplus", + ), + PythonRefInfo( + "_refs.nn.functional.l1_loss", + torch_opinfo_name="nn.functional.l1_loss", + ), + PythonRefInfo( + "_refs.nn.functional.margin_ranking_loss", + torch_opinfo_name="nn.functional.margin_ranking_loss", + ), + PythonRefInfo( + "_refs.nn.functional.mse_loss", + torch_opinfo_name="nn.functional.mse_loss", + ), + PythonRefInfo( + "_refs.nn.functional.smooth_l1_loss", + torch_opinfo_name="nn.functional.smooth_l1_loss", + ), + PythonRefInfo( + "_refs.nn.functional.hinge_embedding_loss", + torch_opinfo_name="nn.functional.hinge_embedding_loss", + ), + PythonRefInfo( + "_refs.nn.functional.nll_loss", + torch_opinfo_name="nn.functional.nll_loss", + # The corresponding PyTorch op doesn't support out. But the ref is + # registered as a decomp and ATen has an out variant. + supports_out=True, + # For simpler indexing, we flatten target indices, then reshape the result tensor. + # This creates inconsistent view state with reference impl. + validate_view_consistency=False, + skips=( + # RuntimeError: It appears that you're trying to get value out of a tracing tensor - erroring out! + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref_executor', device_type="cuda" + ), + ), + ), + PythonRefInfo( + "_refs.nn.functional.huber_loss", + torch_opinfo_name="nn.functional.huber_loss", + # The corresponding PyTorch op doesn't support out. But the ref is + # registered as a decomp and ATen has an out variant. + supports_out=True, + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nn.functional.tanhshrink", + torch_opinfo_name="nn.functional.tanhshrink", + decorators=[ + DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', + 'test_reference_numerics_normal', + device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]), + DecorateInfo( + toleranceOverride({torch.bfloat16: tol(atol=1e-02, rtol=1.6e-02), + torch.complex64: tol(atol=6e-04, rtol=1e-05)}), + 'TestUnaryUfuncs', 'test_reference_numerics_extremal', device_type='cuda'), + ], + skips=( + # in each case, pytorch will produce a nan while numpy will not + DecorateInfo(unittest.skip("Fails on some jobs works on others!"), + 'TestUnaryUfuncs', "test_reference_numerics_large", + dtypes=(torch.complex64, torch.complex128), + active_if=(IS_MACOS)), + DecorateInfo(unittest.skip("Fails on some jobs works on others!"), + 'TestUnaryUfuncs', "test_reference_numerics_extremal", + dtypes=(torch.complex64, torch.complex128), + device_type='cpu', + active_if=(IS_MACOS or IS_WINDOWS)), + ), + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nn.functional.hardshrink", + torch_opinfo_name="nn.functional.hardshrink", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.nn.functional.softshrink", + torch_opinfo_name="nn.functional.softshrink", + ), + # + # Elementwise Binary Reference OpInfos + # + ElementwiseBinaryPythonRefInfo( + "_refs.add", + torch_opinfo_name="add", + # https://github.com/pytorch/pytorch/issues/76944 + supports_two_python_scalars=True, + supports_one_python_scalar=True, + decorators=( + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=1e-2, rtol=0)}), + 'TestBinaryUfuncs', 'test_reference_numerics'), + ), + skips=( + DecorateInfo(unittest.skip("Skipped!"), + 'TestBinaryUfuncs', + 'test_reference_numerics_extremal_values', + dtypes=(torch.complex64, torch.complex128)), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.atan2", + torch_opinfo_name="atan2", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.bitwise_and", + torch_opinfo_name="bitwise_and", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.bitwise_left_shift", + torch_opinfo_name="bitwise_left_shift", + skips=( + # https://github.com/pytorch/pytorch/issues/70904 + DecorateInfo(unittest.skip("Some inputs produce undefined outputs"), 'TestCommon', 'test_compare_cpu'), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.bitwise_right_shift", + torch_opinfo_name="bitwise_right_shift", + skips=( + # # https://github.com/pytorch/pytorch/issues/70904 + DecorateInfo(unittest.skip("Skipped some inputs produce undefined outputs"), 'TestCommon', 'test_compare_cpu'), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.bitwise_or", + torch_opinfo_name="bitwise_or", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.bitwise_xor", + torch_opinfo_name="bitwise_xor", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.copysign", + torch_opinfo_name="copysign", + skips=( + # RuntimeError: Expected divisor (b) to be on the same device (cuda:0) as dividend (a), but it is found on cpu! + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_type_promotion'), + # FIXME output 0: meta disagrees with real impl + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_binary_ufuncs_mixed_dtype'), + ) + ), + ElementwiseBinaryPythonRefInfo( + "_refs.div", + torch_opinfo_name="div", + torch_opinfo_variant_name="no_rounding_mode", + # https://github.com/pytorch/pytorch/issues/76944 + supports_two_python_scalars=True, + supports_one_python_scalar=True, + skips=( + # NotImplementedError: argument of type: + DecorateInfo( + unittest.skip("Skipped!"), 'TestCommon', 'test_python_ref_executor', + dtypes=(torch.complex32, torch.complex64, torch.complex128,) + ), + # Reference result was farther (0.7433461727239705) from the precise + # computation than the torch result was (nan)! + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref', + dtypes=(torch.complex32,), device_type="cuda" + ), + # Reference result was farther (0.7433461727239705) from the precise + # computation than the torch result was (nan)! + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.complex32,), device_type="cuda" + ), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.div", + torch_opinfo_name="div", + torch_opinfo_variant_name="trunc_rounding", + # https://github.com/pytorch/pytorch/issues/76944 + supports_two_python_scalars=True, + supports_one_python_scalar=True, + decorators=( + # See https://github.com/pytorch/pytorch/issues/111126 + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion'), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.div", + torch_opinfo_name="div", + torch_opinfo_variant_name="floor_rounding", + # https://github.com/pytorch/pytorch/issues/76944 + supports_two_python_scalars=True, + supports_one_python_scalar=True, + decorators=( + # See https://github.com/pytorch/pytorch/issues/111126 + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion'), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.eq", + torch_opinfo_name="eq", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.float_power", + torch_opinfo_name="float_power", + skips=( + # Test doesn't account for float -> double type promotion + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion'), + # Complex values error with: Greatest absolute difference: nan at index + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics_small_values', + dtypes=[torch.complex64, torch.complex128]), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics_large_values', + dtypes=[torch.complex64, torch.complex128]), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics_extremal_values', + dtypes=[torch.complex64, torch.complex128]), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.logaddexp", + torch_opinfo_name="logaddexp", + skips=( + # failure due to mismatch in edge cases, which boils down to what torch.exp(inf + infj) should be + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref', device_type='cpu', + dtypes=(torch.complex64, torch.complex128)), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_torch_fallback', device_type='cpu', + dtypes=(torch.complex64, torch.complex128)), + ), + ), + PythonRefInfo( + "_refs.logaddexp2", + torch_opinfo_name="logaddexp2", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.floor_divide", + torch_opinfo_name="floor_divide", + rhs_make_tensor_kwargs=dict(exclude_zero=True), + # https://github.com/pytorch/pytorch/issues/76944 + supports_two_python_scalars=True, + supports_one_python_scalar=True, + # bfloat16 floor_divide compared with a float32 reference works inconsistently + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_python_ref', + dtypes=(torch.bfloat16,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.bfloat16,)), + # bfloat16 floor_divide compared with a float32 reference works inconsistently + DecorateInfo(unittest.skip('Skipped!'), 'TestBinaryUfuncs', + dtypes=(torch.bfloat16,)), + # int8 floor divide has different results for -128 // -1 vs. NumPy + DecorateInfo(unittest.skip('Skipped!'), 'TestBinaryUfuncs', + 'test_reference_numerics_small_values', + dtypes=(torch.int8,)), + # The following tests fails on some jobs + DecorateInfo(unittest.skip('Skipped!'), 'TestBinaryUfuncs', + 'test_reference_numerics_extremal_values', + dtypes=(torch.float16,)), + DecorateInfo(toleranceOverride({torch.float16: tol(atol=1e-3, rtol=5e-3)}), + 'TestBinaryUfuncs', 'test_reference_numerics'), + # FIXME output 0: meta disagrees with real impl + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_binary_ufuncs_mixed_dtype'), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.fmax", + torch_opinfo_name="fmax", + supports_rhs_python_scalar=False, + ), + ElementwiseBinaryPythonRefInfo( + "_refs.fmin", + torch_opinfo_name="fmin", + supports_rhs_python_scalar=False, + ), + ElementwiseBinaryPythonRefInfo( + "_refs.fmod", + torch_opinfo_name="fmod", + rhs_make_tensor_kwargs={'exclude_zero': True}, + supports_rhs_python_scalar=True, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_python_ref', + dtypes=(torch.bfloat16,), device_type='cpu'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.bfloat16,), device_type='cpu'), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_contig_vs_every_other', + dtypes=(torch.bfloat16,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_non_contig', + dtypes=(torch.bfloat16,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics', + dtypes=(torch.bfloat16,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics_small_values', + dtypes=(torch.uint8,)), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.gcd", + torch_opinfo_name="gcd", + skips=( + DecorateInfo(unittest.expectedFailure, + 'TestBinaryUfuncs', + 'test_reference_numerics_small_values', + dtypes=(torch.int8,)), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.ge", + torch_opinfo_name="ge", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.gt", + torch_opinfo_name="gt", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.heaviside", + torch_opinfo_name="heaviside", + supports_rhs_python_scalar=False, + skips=( + # PyTorch's heaviside does not appear to propagate NaNs + DecorateInfo(unittest.skip("Skipped!"), + 'TestBinaryUfuncs', + 'test_reference_numerics_extremal_values'), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.hypot", + torch_opinfo_name="hypot", + supports_rhs_python_scalar=False, + ), + ElementwiseBinaryPythonRefInfo( + "_refs.igamma", + torch_opinfo_name="igamma", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.igammac", + torch_opinfo_name="igammac", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.isclose", + torch_opinfo_name="isclose", + skips=( + # Intentional xfail -- isclose does not type promote + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_binary_ufuncs_mixed_dtype'), + DecorateInfo(unittest.skip("Skipped!"), + 'TestBinaryUfuncs', + 'test_reference_numerics_extremal_values'), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.lcm", + torch_opinfo_name="lcm", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.le", + torch_opinfo_name="le", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.logical_and", + torch_opinfo_name="logical_and", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.logical_not", + torch_opinfo_name="logical_not", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.logical_or", + torch_opinfo_name="logical_or", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.logical_xor", + torch_opinfo_name="logical_xor", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.lt", + torch_opinfo_name="lt", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.maximum", + torch_opinfo_name="maximum", + skips=( + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_errors'), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.minimum", + torch_opinfo_name="minimum", + skips=( + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_errors'), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.mul", + torch_opinfo_name="mul", + # https://github.com/pytorch/pytorch/issues/76944 + supports_two_python_scalars=True, + supports_one_python_scalar=True, + skips=( + # Reference result was farther (0.0) from the precise computation + # than the torch result was (nan)! + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref_executor', + dtypes=(torch.complex32,), + ), + # Reference result was farther (0.0) from the precise computation + # than the torch result was (nan)! + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref', + dtypes=(torch.complex32,), device_type='cuda' + ), + # Reference result was farther (0.0) from the precise computation + # than the torch result was (nan)! + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.complex32,), device_type='cuda' + ), + ) + ), + ElementwiseBinaryPythonRefInfo( + "_refs.ne", + torch_opinfo_name="ne", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.nextafter", + torch_opinfo_name="nextafter", + ), + ElementwiseBinaryPythonRefInfo( + "_refs.pow", + torch_opinfo_name="pow", + decorators=( + DecorateInfo( + toleranceOverride({torch.complex64: tol(atol=1e-4, rtol=1.3e-05)}), + 'TestBinaryUfuncs', 'test_reference_numerics'), + DecorateInfo( + toleranceOverride({torch.complex64: tol(atol=1e-4, rtol=1.3e-05), + torch.complex128: tol(atol=1e-4, rtol=1.3e-05)}), + 'TestBinaryUfuncs', 'test_scalar_support'), + ), + skips=( + # Reference result was farther (inf) from the precise + # computation than the torch result was (nan)! + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref_executor', + dtypes=(torch.complex32,), + ), + # Reference result was farther (inf) from the precise + # computation than the torch result was (nan)! + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref', + dtypes=(torch.complex32,), device_type="cuda" + ), + # Reference result was farther (inf) from the precise + # computation than the torch result was (nan)! + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.complex32,), device_type="cuda" + ), + # Skipping integers because they are being raised to negative powers causing an error + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', + 'test_reference_numerics_small_values', + dtypes=[torch.int8, torch.int16, torch.int32, torch.int64]), + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', + 'test_reference_numerics_large_values', + dtypes=[torch.int16, torch.int32, torch.int64]), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics', + dtypes=(torch.complex32,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics_small_values', + dtypes=(torch.complex32, torch.complex64, torch.complex128)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics_large_values', + dtypes=(torch.complex32, torch.complex64, torch.complex128)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics_extremal_values', + dtypes=(torch.complex32, torch.complex64, torch.complex128)), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.remainder", + torch_opinfo_name="remainder", + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_python_ref', + dtypes=(torch.bfloat16,), device_type='cpu'), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.bfloat16,), device_type='cpu'), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics', + dtypes=(torch.bfloat16,)), + DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', + 'test_reference_numerics_small_values', + dtypes=(torch.uint8,)), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.rsub", + torch_opinfo_name="rsub", + # https://github.com/pytorch/pytorch/issues/76944 + skips=( + # Reference result was farther (nan) from the precise computation than + # the torch result was (nan)! + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref', + dtypes=(torch.chalf,), device_type='cpu'), + # Reference result was farther (nan) from the precise computation than + # the torch result was (nan)! + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.chalf,), device_type='cpu'), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.sub", + torch_opinfo_name="sub", + # https://github.com/pytorch/pytorch/issues/76944 + supports_two_python_scalars=True, + supports_one_python_scalar=True, + decorators=( + DecorateInfo( + toleranceOverride({torch.float16: tol(atol=1e-2, rtol=0), + torch.bfloat16: tol(atol=1e-5, rtol=5e-3), + torch.complex32: tol(atol=1e-5, rtol=1e-3)}), + 'TestBinaryUfuncs', 'test_reference_numerics'), + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=1e-2, rtol=0)}), + 'TestCommon', 'test_complex_half_reference_testing', device_type='cpu'), + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=5e-3, rtol=0)}), + 'TestDecomp', 'test_comprehensive', device_type='cpu'), + DecorateInfo( + toleranceOverride({torch.chalf: tol(atol=5e-3, rtol=0)}), + 'TestDecomp', 'test_quick', device_type='cpu'), + ), + skips=( + DecorateInfo(unittest.skip("Skipped!"), + 'TestBinaryUfuncs', + 'test_reference_numerics', + dtypes=(torch.uint8,)), + DecorateInfo(unittest.skip("Skipped!"), + 'TestBinaryUfuncs', + 'test_reference_numerics_small_values', + dtypes=(torch.uint8,)), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.true_divide", + torch_opinfo_name="true_divide", + # https://github.com/pytorch/pytorch/issues/76944 + supports_two_python_scalars=True, + supports_one_python_scalar=True, + skips=( + # Reference result was farther (0.7433461727239705) from the precise + # computation than the torch result was (nan)! + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref_executor', + dtypes=(torch.complex32,), + ), + # Reference result was farther (0.7433461727239705) from the precise + # computation than the torch result was (nan)! + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref', + dtypes=(torch.complex32,), device_type="cuda" + ), + # Reference result was farther (0.7433461727239705) from the precise + # computation than the torch result was (nan)! + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.complex32,), device_type="cuda" + ), + ), + ), + # + # Elementwise Ternary Reference OpInfos + # + PythonRefInfo( + "_refs.addcdiv", + torch_opinfo_name="addcdiv", + ), + PythonRefInfo( + "_refs.addcmul", + torch_opinfo_name="addcmul", + skips=( + # Reference result was farther (1.3343989849090576e-05) + # from the precise computation than the torch result + # was (9.592622518539429e-06)! + # FIXME: enable dtype-based tolerances in test_ops.py:TestCommon._ref_test_helper + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_python_ref', + dtypes=(torch.float16,), device_type="cpu"), + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_python_ref_torch_fallback', + dtypes=(torch.float16,), device_type="cpu"), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.clamp_min", + torch_opinfo_name="clamp_min", + skips=( + # test error disabled since rhs non-tensor python scalar is supported + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_errors'), + ), + ), + ElementwiseBinaryPythonRefInfo( + "_refs.clamp_max", + torch_opinfo_name="clamp_max", + skips=( + # test error disabled since rhs non-tensor python scalar is supported + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_errors'), + ), + ), + PythonRefInfo( + "_refs.clamp", + torch_opinfo_name="clamp", + ), + PythonRefInfo( + "_refs.nn.functional.triplet_margin_loss", + torch_opinfo_name="nn.functional.triplet_margin_loss", + supports_out=False, + # TODO: Uses minimum and clamp + skips=( + # AssertionError: Tensor-likes are not close! + # Greatest absolute difference: 6.103515625e-05 at index (4,) (up to 1e-05 allowed) + # Greatest relative difference: 8.519846983548175e-06 at index (4,) (up to 1.3e-06 allowed) + DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_python_ref', + dtypes=(torch.uint8,), device_type="cpu"), + ) + ), + ElementwiseBinaryPythonRefInfo( + "_refs.xlogy", + torch_opinfo_name="xlogy", + supports_one_python_scalar=True, + ), + # + # Elementwise Binary Special OpInfos + # + ElementwiseBinaryPythonRefInfo( + "_refs.special.xlog1py", + torch_opinfo_name="special.xlog1py", + supports_one_python_scalar=True, + ), + # + # Data Conversion & Data Movement Opinfos + # + ElementwiseUnaryPythonRefInfo( + "_refs._conversions.bfloat16", + torch_opinfo_name="bfloat16", + # TODO: If self already has the correct dtype and device, then self is + # returned ignoring memory_format. + # https://github.com/pytorch/pytorch/issues/86558 + validate_view_consistency=False, + ), + ElementwiseUnaryPythonRefInfo( + "_refs._conversions.bool", + torch_opinfo_name="bool", + # TODO: If self already has the correct dtype and device, then self is + # returned ignoring memory_format. + # https://github.com/pytorch/pytorch/issues/86558 + validate_view_consistency=False, + ), + ElementwiseUnaryPythonRefInfo( + "_refs._conversions.byte", + torch_opinfo_name="byte", + # TODO: If self already has the correct dtype and device, then self is + # returned ignoring memory_format. + # https://github.com/pytorch/pytorch/issues/86558 + validate_view_consistency=False, + skips=( + DecorateInfo(unittest.skip('Overflow when downcasting signed type is undefined'), 'TestCommon', 'test_compare_cpu'), + ) + ), + ElementwiseUnaryPythonRefInfo( + "_refs._conversions.char", + torch_opinfo_name="char", + # TODO: If self already has the correct dtype and device, then self is + # returned ignoring memory_format. + # https://github.com/pytorch/pytorch/issues/86558 + validate_view_consistency=False, + skips=( + DecorateInfo(unittest.skip('Overflow when downcasting signed type is undefined'), 'TestCommon', 'test_compare_cpu'), + ) + ), + ElementwiseBinaryPythonRefInfo( + "_refs._conversions.complex", + torch_opinfo_name="complex", + error_inputs_func=partial(error_inputs_complex, is_ref=True), + skips=( + # Tests don't account for complex's type promotion semantics + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_binary_ufuncs_mixed_dtype'), + ) + ), + ElementwiseBinaryPythonRefInfo( + "_refs._conversions.polar", + torch_opinfo_name="polar", + skips=( + # Tests don't account for complex's type promotion semantics + DecorateInfo(unittest.expectedFailure, 'TestBinaryUfuncs', 'test_type_promotion'), + DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_binary_ufuncs_mixed_dtype'), + ) + ), + ElementwiseUnaryPythonRefInfo( + "_refs._conversions.double", + torch_opinfo_name="double", + # TODO: If self already has the correct dtype and device, then self is + # returned ignoring memory_format. + # https://github.com/pytorch/pytorch/issues/86558 + validate_view_consistency=False, + ), + ElementwiseUnaryPythonRefInfo( + "_refs._conversions.float", + torch_opinfo_name="float", + # TODO: If self already has the correct dtype and device, then self is + # returned ignoring memory_format. + # https://github.com/pytorch/pytorch/issues/86558 + validate_view_consistency=False, + ), + ElementwiseUnaryPythonRefInfo( + "_refs._conversions.half", + torch_opinfo_name="half", + # TODO: If self already has the correct dtype and device, then self is + # returned ignoring memory_format. + # https://github.com/pytorch/pytorch/issues/86558 + validate_view_consistency=False, + ), + ElementwiseUnaryPythonRefInfo( + "_refs._conversions.int", + torch_opinfo_name="int", + # TODO: If self already has the correct dtype and device, then self is + # returned ignoring memory_format. + # https://github.com/pytorch/pytorch/issues/86558 + validate_view_consistency=False, + skips=( + DecorateInfo(unittest.skip('Overflow when downcasting signed type is undefined'), 'TestCommon', 'test_compare_cpu'), + ) + ), + ElementwiseUnaryPythonRefInfo( + "_refs._conversions.long", + torch_opinfo_name="long", + # TODO: If self already has the correct dtype and device, then self is + # returned ignoring memory_format. + # https://github.com/pytorch/pytorch/issues/86558 + validate_view_consistency=False, + skips=( + DecorateInfo(unittest.skip('Overflow when downcasting signed type is undefined'), 'TestCommon', 'test_compare_cpu'), + ) + ), + ElementwiseUnaryPythonRefInfo( + "_refs._conversions.short", + torch_opinfo_name="short", + # TODO: If self already has the correct dtype and device, then self is + # returned ignoring memory_format. + # https://github.com/pytorch/pytorch/issues/86558 + validate_view_consistency=False, + skips=( + DecorateInfo(unittest.skip('Overflow when downcasting signed type is undefined'), 'TestCommon', 'test_compare_cpu'), + ) + ), + ElementwiseUnaryPythonRefInfo( + "_refs._conversions.chalf", + torch_opinfo_name="chalf", + # TODO: If self already has the correct dtype and device, then self is + # returned ignoring memory_format. + # https://github.com/pytorch/pytorch/issues/86558 + validate_view_consistency=False, + ), + ElementwiseUnaryPythonRefInfo( + "_refs._conversions.cfloat", + torch_opinfo_name="cfloat", + # TODO: If self already has the correct dtype and device, then self is + # returned ignoring memory_format. + # https://github.com/pytorch/pytorch/issues/86558 + validate_view_consistency=False, + ), + ElementwiseUnaryPythonRefInfo( + "_refs._conversions.cdouble", + torch_opinfo_name="cdouble", + # TODO: If self already has the correct dtype and device, then self is + # returned ignoring memory_format. + # https://github.com/pytorch/pytorch/issues/86558 + validate_view_consistency=False, + ), + PythonRefInfo( + "_refs.clone", + torch_opinfo_name="clone", + ), + # + # View & Shape OpInfos + # + PythonRefInfo( + "_refs.atleast_1d", + torch_opinfo_name="atleast_1d", + validate_view_consistency=False, + ), + PythonRefInfo( + "_refs.atleast_2d", + torch_opinfo_name="atleast_2d", + validate_view_consistency=False, + ), + PythonRefInfo( + "_refs.atleast_3d", + torch_opinfo_name="atleast_3d", + validate_view_consistency=False, + ), + PythonRefInfo( + "_refs.as_strided", + torch_opinfo_name="as_strided", + # FIXME: doesn't support chalf + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + skips=( + # cloned_mutable_input.is_same(returned_output) INTERNAL ASSERT FAILED + DecorateInfo(unittest.skip("Errors when storage_offset is included"), 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.skip("Errors when storage_offset is included"), 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.skip("Errors when storage_offset is included"), 'TestMathBits', 'test_neg_conj_view'), + ), + ), + PythonRefInfo( + "_refs.as_strided", + torch_opinfo_name="as_strided", + torch_opinfo_variant_name="partial_views", + # FIXME: doesn't support chalf + dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16), + skips=( + # cloned_mutable_input.is_same(returned_output) INTERNAL ASSERT FAILED + DecorateInfo(unittest.skip("Errors when storage_offset is included"), 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.skip("Errors when storage_offset is included"), 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.skip("Errors when storage_offset is included"), 'TestMathBits', 'test_neg_conj_view'), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_compare_cpu'), + ), + ), + PythonRefInfo( + "_refs.as_strided_scatter", + torch_opinfo_name="as_strided_scatter", + # returns a view of an intermediate tensor (as_strided) + validate_view_consistency=False, + ), + PythonRefInfo( + "_refs.broadcast_shapes", + torch_opinfo_name="broadcast_shapes", + ), + PythonRefInfo( + "_refs.broadcast_tensors", + torch_opinfo_name="broadcast_tensors", + ), + PythonRefInfo( + "_refs.broadcast_to", + torch_opinfo_name="broadcast_to", + ), + PythonRefInfo( + "_refs.cat", + torch_opinfo_name="cat", + skips=( + # FIXME: AssertionError: RuntimeError not raised + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_errors'), + ), + ), + PythonRefInfo( + "_refs.chunk", + torch_opinfo_name="chunk", + ), + PythonRefInfo( + "_refs.column_stack", + torch_opinfo_name="column_stack", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.conj", + torch_opinfo_name="conj", + ), + PythonRefInfo( + "_refs.constant_pad_nd", + torch_opinfo_name="constant_pad_nd", + ), + PythonRefInfo( + "_refs.contiguous", + torch_opinfo_name="contiguous", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.deg2rad", + torch_opinfo_name="deg2rad", + decorators=(precisionOverride({torch.bfloat16: 7e-1, + torch.float16: 7e-1}),), + ), + PythonRefInfo( + "_refs.dsplit", + torch_opinfo_name="dsplit", + ), + PythonRefInfo( + "_refs.diag", + torch_opinfo_name="diag", + ), + PythonRefInfo( + "_refs.diagonal", + torch_opinfo_name="diagonal", + ), + PythonRefInfo( + "_refs.diagonal_copy", + torch_opinfo_name="diagonal_copy", + ), + PythonRefInfo( + "_refs.diagonal_scatter", + torch_opinfo_name="diagonal_scatter", + supports_out=True, + # returns a view of an intermediate tensor (as_strided) + validate_view_consistency=False, + ), + PythonRefInfo( + "_refs.diag_embed", + torch_opinfo_name="diag_embed", + supports_out=True, + ), + PythonRefInfo( + "_refs.dstack", + torch_opinfo_name="dstack", + skips=( + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_errors'), + ), + ), + PythonRefInfo( + "_refs.expand", + torch_opinfo_name="expand", + ), + PythonRefInfo( + "_refs.expand_as", + torch_opinfo_name="expand_as", + ), + PythonRefInfo( + "_refs.flatten", + torch_opinfo_name="flatten", + ), + PythonRefInfo( + "_refs.flip", + torch_opinfo_name="flip", + ), + PythonRefInfo( + "_refs.fliplr", + torch_opinfo_name="fliplr", + ), + PythonRefInfo( + "_refs.flipud", + torch_opinfo_name="flipud", + ), + PythonRefInfo( + "_refs.hstack", + torch_opinfo_name="hstack", + skips=( + # https://github.com/pytorch/pytorch/issues/78613 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_errors'), + ), + ), + PythonRefInfo( + "_refs.narrow", + torch_opinfo_name="narrow", + error_inputs_func=partial(error_inputs_narrow_narrow_copy, is_narrow=True, is_ref=True), + ), + PythonRefInfo( + "_refs.narrow_copy", + torch_opinfo_name="narrow_copy", + supports_out=True, + error_inputs_func=partial(error_inputs_narrow_narrow_copy, is_narrow=False, is_ref=True), + ), + PythonRefInfo( + "_refs.nn.functional.group_norm", + torch_opinfo_name="nn.functional.group_norm", + validate_view_consistency=False, + ), + PythonRefInfo( + "_refs.native_layer_norm", + torch_opinfo_name="native_layer_norm", + skips=( + DecorateInfo(unittest.skip("Skipped!"), "TestCommon", "test_python_ref", + device_type="cpu", dtypes=(torch.float32,)), + DecorateInfo(unittest.skip("Skipped!"), "TestCommon", "test_python_ref_torch_fallback", + device_type="cpu", dtypes=(torch.float32,)), + ), + ), + PythonRefInfo( + "_refs.permute", + torch_opinfo_name="permute", + ), + ElementwiseUnaryPythonRefInfo( + "_refs.rad2deg", + torch_opinfo_name="rad2deg", + decorators=(precisionOverride({torch.bfloat16: 7e-1, + torch.float16: 7e-1}),), + ), + PythonRefInfo( + "_refs.ravel", + torch_opinfo_name="ravel", + ), + PythonRefInfo( + "_refs.renorm", + torch_opinfo_name="renorm", + ), + PythonRefInfo( + "_refs.repeat", + torch_opinfo_name="repeat", + validate_view_consistency=False, + ), + PythonRefInfo( + "_refs.reshape", + torch_opinfo_name="reshape", + ), + PythonRefInfo( + "_refs.reshape_as", + torch_opinfo_name="reshape_as", + ), + PythonRefInfo( + "_refs.roll", + torch_opinfo_name="roll", + validate_view_consistency=False, + ), + PythonRefInfo( + "_refs.rot90", + torch_opinfo_name="rot90", + validate_view_consistency=False, + ), + PythonRefInfo( + "_refs.stack", + torch_opinfo_name="stack", + validate_view_consistency=False, + ), + PythonRefInfo( + "_refs.squeeze", + torch_opinfo_name="squeeze", + ), + PythonRefInfo( + "_refs.squeeze", + torch_opinfo_name="squeeze", + torch_opinfo_variant_name="multiple", + ), + PythonRefInfo( + "_refs.tensor_split", + torch_opinfo_name="tensor_split", + skips=( + # TensorMeta doesn't support tolist + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_meta'), + # RuntimeError: no _refs support for torch.Tensor.tolist + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref'), + ), + ), + PythonRefInfo( + "_refs.hsplit", + torch_opinfo_name="hsplit", + ), + PythonRefInfo( + "_refs.vsplit", + torch_opinfo_name="vsplit", + ), + PythonRefInfo( + "_refs.dot", + torch_opinfo_name="dot", + error_inputs_func=partial(error_inputs_dot_vdot, is_ref=True), + # .conj() does not set ._is_view() correctly in ATen + validate_view_consistency=False, + skips=( + # RuntimeError: no _refs support for torch.Tensor.is_conj + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref', dtypes=[torch.complex64, torch.complex128]), + ), + ), + PythonRefInfo( + "_refs.vdot", + torch_opinfo_name="vdot", + error_inputs_func=partial(error_inputs_dot_vdot, is_ref=True), + # .conj() does not set ._is_view() correctly in ATen + validate_view_consistency=False, + skips=( + # RuntimeError: no _refs support for torch.Tensor.is_conj + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref', dtypes=[torch.complex64, torch.complex128]), + ), + ), + PythonRefInfo( + "_refs.transpose", + torch_opinfo_name="transpose", + ), + PythonRefInfo( + "_refs.t", + torch_opinfo_name="t", + ), + PythonRefInfo( + "_refs.T", + torch_opinfo_name="T", + error_inputs_func=partial(error_inputs_T, has_ndims_error=True), + ), + PythonRefInfo( + "_refs.unfold", + torch_opinfo_name="unfold", + ), + PythonRefInfo( + "_refs.unfold_copy", + torch_opinfo_name="unfold_copy", + supports_out=True, + ), + PythonRefInfo( + "_refs.unsqueeze", + torch_opinfo_name="unsqueeze", + ), + PythonRefInfo( + "_refs.view", + torch_opinfo_name="view", + ), + PythonRefInfo( + "_refs.view_as", + torch_opinfo_name="view_as", + ), + PythonRefInfo( + "_refs.vstack", + torch_opinfo_name="vstack", + skips=( + # https://github.com/pytorch/pytorch/issues/78613 + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_errors'), + ), + ), + PythonRefInfo( + "_refs.unflatten", + torch_opinfo_name="unflatten", + ), + PythonRefInfo( + "_refs.unbind", + torch_opinfo_name="unbind", + ), + # + # Reduction Reference OpInfos + # + ReductionPythonRefInfo( + "_refs.all", + torch_opinfo_name="all", + skips=( + # FIXME: uint8 input returns uint8 instead of bool + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_result_dtype', + dtypes=[torch.uint8]), + ), + ), + ReductionPythonRefInfo( + "_refs.amax", + torch_opinfo_name="amax", + error_inputs_func=partial(error_inputs_aminmax_amax_amin, is_ref=True), + skips=( + # FIXME: reduces all dimensions when dim=[] + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_dim_empty'), + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'), + ), + ), + ReductionPythonRefInfo( + "_refs.amin", + torch_opinfo_name="amin", + error_inputs_func=partial(error_inputs_aminmax_amax_amin, is_ref=True), + skips=( + # FIXME: reduces all dimensions when dim=[] + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_dim_empty'), + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'), + ), + ), + ReductionPythonRefInfo( + "_refs.any", + torch_opinfo_name="any", + skips=( + # FIXME: uint8 input returns uint8 instead of bool + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_result_dtype', + dtypes=[torch.uint8]), + ), + ), + ReductionPythonRefInfo( + "_refs.count_nonzero", + torch_opinfo_name="count_nonzero", + skips=( + # FIXME: count_nonzero does not accept keepdim kwarg + DecorateInfo( + unittest.skip("Skipped!"), 'TestReductions', + 'test_dim_default_keepdim'), + DecorateInfo( + unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'), + DecorateInfo( + unittest.skip("Skipped!"), 'TestReductions', 'test_dim_single_keepdim'), + DecorateInfo( + unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'), + DecorateInfo( + unittest.skip("Skipped!"), 'TestReductions', 'test_dim_multi_keepdim'), + DecorateInfo( + unittest.skip("Skipped!"), 'TestReductions', + 'test_dim_multi_unsorted_keepdim'), + # FIXME: dim=[] reduces all dimensions + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'), + ), + ), + ReductionPythonRefInfo( + "_refs.mean", + torch_opinfo_name="mean", + supports_out=True, + error_inputs_func=partial(error_inputs_mean, is_ref=True), + skips=( + # FIXME: reduces all dimensions when dim=[] + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_dim_empty'), + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'), + ), + ), + ReductionPythonRefInfo( + "_refs.std", + torch_opinfo_name="std", + supports_out=True, + skips=( + # FIXME: reduces all dimensions when dim=[] + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_dim_empty'), + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'), + # FIXME: improve precision + DecorateInfo( + unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input', + dtypes=(torch.float16,)), + DecorateInfo( + unittest.skip("Skipped!"), 'TestReductions', + 'test_ref_duplicate_values', + dtypes=(torch.float16,)), + ), + ), + # std_mean and var_mean are not ReductionInfos + PythonRefInfo( + "_refs.std_mean", + torch_opinfo_name="std_mean", + ), + ReductionPythonRefInfo( + "_refs.sum", + torch_opinfo_name="sum", + supports_out=True, + skips=( + # FIXME: doesn't test out behavior properly for this operator + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + # FIXME: mean reduces all dimensions when dim=[] + DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'), + DecorateInfo( + unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'), + # FIXME: improve precision + DecorateInfo( + unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input', + dtypes=[torch.float16]), + DecorateInfo( + unittest.skip("Skipped!"), 'TestReductions', + 'test_ref_duplicate_values', + dtypes=[torch.float16]), + DecorateInfo( + unittest.skip("Skipped!"), 'TestOperators', 'test_reduction_all', + dtypes=[torch.float32]), + ), + ), + PythonRefInfo( + "_refs.cumsum", + torch_opinfo_name="cumsum", + supports_out=True, + skips=( + # doesn't test out behavior properly for this operator + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + ), + ), + PythonRefInfo( + "_refs.cumprod", + torch_opinfo_name="cumprod", + supports_out=True, + skips=( + # doesn't test out behavior properly for this operator + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + ), + ), + PythonRefInfo( + "_refs.sum_to_size", + torch_opinfo_name="sum_to_size", + validate_view_consistency=False, + ), + ReductionPythonRefInfo( + "_refs.prod", + torch_opinfo_name="prod", + supports_out=True, + supports_multiple_dims=True, + skips=( + # FIXME: doesn't test out behavior properly for this operator + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out'), + # FIXME: reduces all dimensions when dim=[] + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_dim_empty'), + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'), + # FIXME: improve precision + DecorateInfo( + unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input', + dtypes=[torch.float16, torch.complex64]), + ), + ), + ReductionPythonRefInfo( + "_refs.var", + torch_opinfo_name="var", + supports_out=True, + skips=( + # FIXME: reduces all dimensions when dim=[] + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_dim_empty'), + DecorateInfo( + unittest.expectedFailure, 'TestReductions', 'test_dim_empty_keepdim'), + # FIXME: improve precision + DecorateInfo( + unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input'), + ), + ), + PythonRefInfo( + "_refs.var_mean", + torch_opinfo_name="var_mean", + validate_view_consistency=False, + ), + # + # Linear Algebra Operators + # + PythonRefInfo( + "_refs.addr", + torch_opinfo_name="addr", + decorators=( + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref',), + ), + ), + PythonRefInfo( + "_refs.trace", + torch_opinfo_name="trace", + ), + PythonRefInfo( + "_refs.norm", + torch_opinfo_name="norm", + supports_out=True, + # Uses vector_norm inside and vector_norm is affected by + # https://github.com/pytorch/pytorch/issues/77216 + validate_view_consistency=False, + ), + # + # Tensor Creation Reference OpInfos + # + PythonRefInfo( + "_refs.empty", + torch_opinfo_name="empty", + skips=( + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_python_ref'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_out'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_out_warning'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestMathBits', + 'test_conj_view'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestMathBits', + 'test_neg_conj_view'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestMathBits', + 'test_neg_view'), + # FIXME: shouldn't check empty results + DecorateInfo(unittest.skip("Can't check result for empty"), 'TestCommon', 'test_python_ref_executor'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + ), + ), + PythonRefInfo( + "_refs.empty_like", + torch_opinfo_name="empty_like", + skips=( + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_python_ref'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_out'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_out_warning'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestMathBits', + 'test_conj_view'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestMathBits', + 'test_neg_conj_view'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestMathBits', + 'test_neg_view'), + # FIXME: should not compare results of empty_like + DecorateInfo(unittest.skip("Can't check result for empty_like"), 'TestCommon', 'test_python_ref_executor'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + ), + ), + PythonRefInfo( + "_refs.randn", + torch_opinfo_name="randn", + op=lambda *args, **kwargs: wrapper_set_seed(refs.randn, *args, **kwargs), + skips=( + # see https://github.com/pytorch/pytorch/issues/85121 + DecorateInfo(unittest.skip("make_traced() doesn't set seed properly!"), + 'TestCommon', + 'test_python_ref_executor'), + # These tests expect the input to be a tensor or a sequence of tensors + DecorateInfo(unittest.skip("Test expects tensor input"), "TestCommon", "test_noncontiguous_samples"), + DecorateInfo(unittest.skip("Test expects tensor input"), 'TestMathBits', 'test_neg_view'), + DecorateInfo(unittest.skip("Test expects tensor input"), 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.skip("Test expects tensor input"), 'TestMathBits', 'test_neg_conj_view'), + ), + ), + PythonRefInfo( + "_refs.eye", + torch_opinfo_name="eye", + skips=( + # skip these tests since we have non tensor input + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_conj_view'), + DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'), + ), + ), + PythonRefInfo( + "_refs.new_empty", + torch_opinfo_name="new_empty", + skips=( + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_python_ref'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_out'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestCommon', + 'test_out_warning'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestMathBits', + 'test_conj_view'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestMathBits', + 'test_neg_conj_view'), + DecorateInfo(unittest.skip("Expected: empty is not comparable"), + 'TestMathBits', + 'test_neg_view'), + # FIXME: should not compare results of empty_like + DecorateInfo(unittest.skip("Can't check result for new_empty"), 'TestCommon', 'test_python_ref_executor'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + ), + ), + PythonRefInfo( + "_refs.new_empty_strided", + torch_opinfo_name="new_empty_strided", + skips=( + DecorateInfo(unittest.skip("Expected: empty_strided is not comparable"), + 'TestCommon', + 'test_python_ref'), + DecorateInfo(unittest.skip("Expected: empty_strided is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip("Expected: empty_strided is not comparable"), + 'TestMathBits', + 'test_conj_view'), + DecorateInfo(unittest.skip("Expected: empty_strided is not comparable"), + 'TestMathBits', + 'test_neg_conj_view'), + DecorateInfo(unittest.skip("Expected: empty_strided is not comparable"), + 'TestMathBits', + 'test_neg_view'), + DecorateInfo(unittest.skip("Expected: empty_strided is not comparable"), + 'TestCommon', + 'test_python_ref_executor'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + + ), + ), + PythonRefInfo( + "_refs.empty_strided", + torch_opinfo_name="empty_strided", + skips=( + DecorateInfo(unittest.skip("Expected: empty_strided is not comparable"), + 'TestCommon', + 'test_python_ref'), + DecorateInfo(unittest.skip("Expected: empty_strided is not comparable"), + 'TestCommon', + 'test_python_ref_torch_fallback'), + DecorateInfo(unittest.skip("Expected: empty_strided is not comparable"), + 'TestMathBits', + 'test_conj_view'), + DecorateInfo(unittest.skip("Expected: empty_strided is not comparable"), + 'TestMathBits', + 'test_neg_conj_view'), + DecorateInfo(unittest.skip("Expected: empty_strided is not comparable"), + 'TestMathBits', + 'test_neg_view'), + DecorateInfo(unittest.skip("Expected: empty_strided is not comparable"), + 'TestCommon', + 'test_python_ref_executor'), + DecorateInfo(unittest.skip('output is non-deterministic'), 'TestCommon', 'test_compare_cpu'), + ), + ), + PythonRefInfo( + "_refs.new_full", + torch_opinfo_name="new_full", + ), + PythonRefInfo( + "_refs.new_ones", + torch_opinfo_name="new_ones", + ), + PythonRefInfo( + "_refs.new_zeros", + torch_opinfo_name="new_zeros", + ), + # + # Conditional Reference OpInfos + # + PythonRefInfo( + "_refs.masked_fill", + torch_opinfo_name="masked_fill", + skips=( + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_errors'), + ), + ), + PythonRefInfo( + "_refs.where", + torch_opinfo_name="where", + op=lambda self, condition, other: refs.where(condition, self, other), + skips=( + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_errors', device_type='cuda'), + ), + ), + PythonRefInfo( + "_refs.index_select", + torch_opinfo_name="index_select", + # empty_strided + skips=( + # no _refs support for Tensor.__setitem__ + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref'), + # Sample out= with a stride of zero. This _out operation checks that the input has no + # inner overlap + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_errors'),) + ), + PythonRefInfo( + "_refs.index_copy", + torch_opinfo_name="index_copy", + # empty_strided + skips=( + # no _refs support for Tensor.__setitem__ + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref'), + ), + ), + PythonRefInfo( + "_refs.index_add", + torch_opinfo_name="index_add", + # empty_strided + skips=( + # no _refs support for Tensor.__setitem__ + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref'), + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref_errors'), + ), + ), + PythonRefInfo( + "_refs.index_fill", + torch_opinfo_name="index_fill", + # empty_strided + skips=( + # no _refs support for Tensor.__setitem__ + DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref'),) + ), + # + # Test-related functions + # + PythonRefInfo( + "_refs.allclose", + torch_opinfo_name="allclose", + ), + # + # Misc functions + # + PythonRefInfo( + "_refs.stft", + torch_opinfo_name="stft", + skips=[ + # RuntimeError: no _refs support for aten.pad + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref' + ), + ], + ), + PythonRefInfo( + "_refs.istft", + torch_opinfo_name="istft", + skips=[ + # RuntimeError: no _refs support for aten.unfold_backward + DecorateInfo( + unittest.expectedFailure, 'TestCommon', 'test_python_ref' + ), + ], + ), + PythonRefInfo( + "_refs.view_as_complex", + torch_opinfo_name="view_as_complex", + ), +] +python_ref_db += opinfo.definitions.python_ref_db + +# Common operator groupings +ops_and_refs = op_db + python_ref_db +unary_ufuncs = [op for op in ops_and_refs if isinstance(op, UnaryUfuncInfo)] +binary_ufuncs = [op for op in ops_and_refs if isinstance(op, BinaryUfuncInfo)] +binary_ufuncs_and_refs = tuple(op for op in ops_and_refs if isinstance(op, BinaryUfuncInfo)) +spectral_funcs = [op for op in ops_and_refs if isinstance(op, SpectralFuncInfo)] +sparse_unary_ufuncs = [op for op in op_db if isinstance(op, UnaryUfuncInfo) and op.supports_sparse] +sparse_csr_unary_ufuncs = [op for op in op_db if isinstance(op, UnaryUfuncInfo) and op.supports_sparse_csr] +sparse_reduction_ops = [op for op in op_db if isinstance(op, ReductionOpInfo) and op.supports_sparse] +shape_funcs = [op for op in ops_and_refs if isinstance(op, ShapeFuncInfo)] +reduction_ops = [op for op in ops_and_refs if isinstance(op, ReductionOpInfo)] +reference_filtered_ops = [op for op in reduction_ops if op.ref is not None] +reference_masked_ops = [op for op in reference_filtered_ops if op.name.startswith('masked.')] +sparse_masked_reduction_ops = [op for op in sparse_reduction_ops if op.name.startswith('masked.')] + +# TODO: review porting these to make_tensor +def index_variable(shape, max_indices, device=torch.device('cpu')): + if not isinstance(shape, tuple): + shape = (shape,) + index = torch.rand(*shape, dtype=torch.double, device=device).mul_(max_indices).floor_().long() + return index + +def gather_variable(shape, index_dim, max_indices, duplicate=False, device=torch.device('cpu')): + assert len(shape) == 2 + assert index_dim < 2 + batch_dim = 1 - index_dim + index = torch.zeros(*shape, dtype=torch.long, device=device) + for i in range(shape[index_dim]): + index.select(index_dim, i).copy_( + torch.randperm(max_indices, device=device)[:shape[batch_dim]]) + if duplicate: + index.select(batch_dim, 0).copy_(index.select(batch_dim, 1)) + return index + +def bernoulli_scalar(): + return torch.tensor(0, dtype=torch.bool).bernoulli_() + +def mask_not_all_zeros(shape): + assert len(shape) > 0 + while True: + result = torch.randn(shape).gt(0) + if result.sum() > 0: + return result + +# Copied from functorch +def xfail(op_name, variant_name='', *, device_type=None, dtypes=None): + return (op_name, variant_name, device_type, dtypes, True) + + +def skip(op_name, variant_name='', *, device_type=None, dtypes=None): + return (op_name, variant_name, device_type, dtypes, False) + + +def skipOps(test_case_name, base_test_name, to_skip): + all_opinfos = op_db + for xfail in to_skip: + op_name, variant_name, device_type, dtypes, expected_failure = xfail + matching_opinfos = [o for o in all_opinfos + if o.name == op_name and o.variant_test_name == variant_name] + assert len(matching_opinfos) >= 1, f"Couldn't find OpInfo for {xfail}" + for op in matching_opinfos: + decorators = list(op.decorators) + if expected_failure: + decorator = DecorateInfo(unittest.expectedFailure, + test_case_name, base_test_name, + device_type=device_type, dtypes=dtypes) + decorators.append(decorator) + else: + decorator = DecorateInfo(unittest.skip("Skipped!"), + test_case_name, base_test_name, + device_type=device_type, dtypes=dtypes) + decorators.append(decorator) + op.decorators = tuple(decorators) + + # This decorator doesn't modify fn in any way + def wrapped(fn): + return fn + return wrapped