applied-ai-018 commited on
Commit
82573e5
·
verified ·
1 Parent(s): 9fd7144

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/INSTALLER +1 -0
  2. llmeval-env/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/License.txt +1568 -0
  3. llmeval-env/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/METADATA +35 -0
  4. llmeval-env/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/RECORD +36 -0
  5. llmeval-env/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/WHEEL +5 -0
  6. llmeval-env/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/top_level.txt +1 -0
  7. llmeval-env/lib/python3.10/site-packages/pandas/__init__.py +367 -0
  8. llmeval-env/lib/python3.10/site-packages/pandas/_typing.py +525 -0
  9. llmeval-env/lib/python3.10/site-packages/pandas/_version.py +692 -0
  10. llmeval-env/lib/python3.10/site-packages/pandas/_version_meson.py +2 -0
  11. llmeval-env/lib/python3.10/site-packages/pandas/conftest.py +1965 -0
  12. llmeval-env/lib/python3.10/site-packages/pandas/core/__init__.py +0 -0
  13. llmeval-env/lib/python3.10/site-packages/pandas/core/__pycache__/apply.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/pandas/core/__pycache__/arraylike.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/pandas/core/__pycache__/config_init.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/pandas/core/__pycache__/missing.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/pandas/core/__pycache__/nanops.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/pandas/core/__pycache__/series.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/pandas/core/accessor.py +340 -0
  20. llmeval-env/lib/python3.10/site-packages/pandas/core/algorithms.py +1747 -0
  21. llmeval-env/lib/python3.10/site-packages/pandas/core/api.py +140 -0
  22. llmeval-env/lib/python3.10/site-packages/pandas/core/apply.py +2062 -0
  23. llmeval-env/lib/python3.10/site-packages/pandas/core/arraylike.py +530 -0
  24. llmeval-env/lib/python3.10/site-packages/pandas/core/base.py +1391 -0
  25. llmeval-env/lib/python3.10/site-packages/pandas/core/common.py +657 -0
  26. llmeval-env/lib/python3.10/site-packages/pandas/core/config_init.py +924 -0
  27. llmeval-env/lib/python3.10/site-packages/pandas/core/construction.py +824 -0
  28. llmeval-env/lib/python3.10/site-packages/pandas/core/flags.py +117 -0
  29. llmeval-env/lib/python3.10/site-packages/pandas/core/frame.py +0 -0
  30. llmeval-env/lib/python3.10/site-packages/pandas/core/generic.py +0 -0
  31. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__init__.py +0 -0
  32. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/__init__.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/accessors.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/api.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/base.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/category.cpython-310.pyc +0 -0
  37. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/datetimelike.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/datetimes.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/extension.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/frozen.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/interval.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/multi.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/period.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/range.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/timedeltas.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/accessors.py +643 -0
  47. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/api.py +388 -0
  48. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/base.py +0 -0
  49. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/category.py +513 -0
  50. llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/datetimelike.py +843 -0
llmeval-env/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
llmeval-env/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/License.txt ADDED
@@ -0,0 +1,1568 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ End User License Agreement
2
+ --------------------------
3
+
4
+
5
+ Preface
6
+ -------
7
+
8
+ The Software License Agreement in Chapter 1 and the Supplement
9
+ in Chapter 2 contain license terms and conditions that govern
10
+ the use of NVIDIA software. By accepting this agreement, you
11
+ agree to comply with all the terms and conditions applicable
12
+ to the product(s) included herein.
13
+
14
+
15
+ NVIDIA Driver
16
+
17
+
18
+ Description
19
+
20
+ This package contains the operating system driver and
21
+ fundamental system software components for NVIDIA GPUs.
22
+
23
+
24
+ NVIDIA CUDA Toolkit
25
+
26
+
27
+ Description
28
+
29
+ The NVIDIA CUDA Toolkit provides command-line and graphical
30
+ tools for building, debugging and optimizing the performance
31
+ of applications accelerated by NVIDIA GPUs, runtime and math
32
+ libraries, and documentation including programming guides,
33
+ user manuals, and API references.
34
+
35
+
36
+ Default Install Location of CUDA Toolkit
37
+
38
+ Windows platform:
39
+
40
+ %ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v#.#
41
+
42
+ Linux platform:
43
+
44
+ /usr/local/cuda-#.#
45
+
46
+ Mac platform:
47
+
48
+ /Developer/NVIDIA/CUDA-#.#
49
+
50
+
51
+ NVIDIA CUDA Samples
52
+
53
+
54
+ Description
55
+
56
+ This package includes over 100+ CUDA examples that demonstrate
57
+ various CUDA programming principles, and efficient CUDA
58
+ implementation of algorithms in specific application domains.
59
+
60
+
61
+ Default Install Location of CUDA Samples
62
+
63
+ Windows platform:
64
+
65
+ %ProgramData%\NVIDIA Corporation\CUDA Samples\v#.#
66
+
67
+ Linux platform:
68
+
69
+ /usr/local/cuda-#.#/samples
70
+
71
+ and
72
+
73
+ $HOME/NVIDIA_CUDA-#.#_Samples
74
+
75
+ Mac platform:
76
+
77
+ /Developer/NVIDIA/CUDA-#.#/samples
78
+
79
+
80
+ NVIDIA Nsight Visual Studio Edition (Windows only)
81
+
82
+
83
+ Description
84
+
85
+ NVIDIA Nsight Development Platform, Visual Studio Edition is a
86
+ development environment integrated into Microsoft Visual
87
+ Studio that provides tools for debugging, profiling, analyzing
88
+ and optimizing your GPU computing and graphics applications.
89
+
90
+
91
+ Default Install Location of Nsight Visual Studio Edition
92
+
93
+ Windows platform:
94
+
95
+ %ProgramFiles(x86)%\NVIDIA Corporation\Nsight Visual Studio Edition #.#
96
+
97
+
98
+ 1. License Agreement for NVIDIA Software Development Kits
99
+ ---------------------------------------------------------
100
+
101
+
102
+ Release Date: July 26, 2018
103
+ ---------------------------
104
+
105
+
106
+ Important NoticeRead before downloading, installing,
107
+ copying or using the licensed software:
108
+ -------------------------------------------------------
109
+
110
+ This license agreement, including exhibits attached
111
+ ("Agreement”) is a legal agreement between you and NVIDIA
112
+ Corporation ("NVIDIA") and governs your use of a NVIDIA
113
+ software development kit (“SDK”).
114
+
115
+ Each SDK has its own set of software and materials, but here
116
+ is a description of the types of items that may be included in
117
+ a SDK: source code, header files, APIs, data sets and assets
118
+ (examples include images, textures, models, scenes, videos,
119
+ native API input/output files), binary software, sample code,
120
+ libraries, utility programs, programming code and
121
+ documentation.
122
+
123
+ This Agreement can be accepted only by an adult of legal age
124
+ of majority in the country in which the SDK is used.
125
+
126
+ If you are entering into this Agreement on behalf of a company
127
+ or other legal entity, you represent that you have the legal
128
+ authority to bind the entity to this Agreement, in which case
129
+ “you” will mean the entity you represent.
130
+
131
+ If you don’t have the required age or authority to accept
132
+ this Agreement, or if you don’t accept all the terms and
133
+ conditions of this Agreement, do not download, install or use
134
+ the SDK.
135
+
136
+ You agree to use the SDK only for purposes that are permitted
137
+ by (a) this Agreement, and (b) any applicable law, regulation
138
+ or generally accepted practices or guidelines in the relevant
139
+ jurisdictions.
140
+
141
+
142
+ 1.1. License
143
+
144
+
145
+ 1.1.1. License Grant
146
+
147
+ Subject to the terms of this Agreement, NVIDIA hereby grants
148
+ you a non-exclusive, non-transferable license, without the
149
+ right to sublicense (except as expressly provided in this
150
+ Agreement) to:
151
+
152
+ 1. Install and use the SDK,
153
+
154
+ 2. Modify and create derivative works of sample source code
155
+ delivered in the SDK, and
156
+
157
+ 3. Distribute those portions of the SDK that are identified
158
+ in this Agreement as distributable, as incorporated in
159
+ object code format into a software application that meets
160
+ the distribution requirements indicated in this Agreement.
161
+
162
+
163
+ 1.1.2. Distribution Requirements
164
+
165
+ These are the distribution requirements for you to exercise
166
+ the distribution grant:
167
+
168
+ 1. Your application must have material additional
169
+ functionality, beyond the included portions of the SDK.
170
+
171
+ 2. The distributable portions of the SDK shall only be
172
+ accessed by your application.
173
+
174
+ 3. The following notice shall be included in modifications
175
+ and derivative works of sample source code distributed:
176
+ “This software contains source code provided by NVIDIA
177
+ Corporation.”
178
+
179
+ 4. Unless a developer tool is identified in this Agreement
180
+ as distributable, it is delivered for your internal use
181
+ only.
182
+
183
+ 5. The terms under which you distribute your application
184
+ must be consistent with the terms of this Agreement,
185
+ including (without limitation) terms relating to the
186
+ license grant and license restrictions and protection of
187
+ NVIDIA’s intellectual property rights. Additionally, you
188
+ agree that you will protect the privacy, security and
189
+ legal rights of your application users.
190
+
191
+ 6. You agree to notify NVIDIA in writing of any known or
192
+ suspected distribution or use of the SDK not in compliance
193
+ with the requirements of this Agreement, and to enforce
194
+ the terms of your agreements with respect to distributed
195
+ SDK.
196
+
197
+
198
+ 1.1.3. Authorized Users
199
+
200
+ You may allow employees and contractors of your entity or of
201
+ your subsidiary(ies) to access and use the SDK from your
202
+ secure network to perform work on your behalf.
203
+
204
+ If you are an academic institution you may allow users
205
+ enrolled or employed by the academic institution to access and
206
+ use the SDK from your secure network.
207
+
208
+ You are responsible for the compliance with the terms of this
209
+ Agreement by your authorized users. If you become aware that
210
+ your authorized users didn’t follow the terms of this
211
+ Agreement, you agree to take reasonable steps to resolve the
212
+ non-compliance and prevent new occurrences.
213
+
214
+
215
+ 1.1.4. Pre-Release SDK
216
+
217
+ The SDK versions identified as alpha, beta, preview or
218
+ otherwise as pre-release, may not be fully functional, may
219
+ contain errors or design flaws, and may have reduced or
220
+ different security, privacy, accessibility, availability, and
221
+ reliability standards relative to commercial versions of
222
+ NVIDIA software and materials. Use of a pre-release SDK may
223
+ result in unexpected results, loss of data, project delays or
224
+ other unpredictable damage or loss.
225
+
226
+ You may use a pre-release SDK at your own risk, understanding
227
+ that pre-release SDKs are not intended for use in production
228
+ or business-critical systems.
229
+
230
+ NVIDIA may choose not to make available a commercial version
231
+ of any pre-release SDK. NVIDIA may also choose to abandon
232
+ development and terminate the availability of a pre-release
233
+ SDK at any time without liability.
234
+
235
+
236
+ 1.1.5. Updates
237
+
238
+ NVIDIA may, at its option, make available patches, workarounds
239
+ or other updates to this SDK. Unless the updates are provided
240
+ with their separate governing terms, they are deemed part of
241
+ the SDK licensed to you as provided in this Agreement. You
242
+ agree that the form and content of the SDK that NVIDIA
243
+ provides may change without prior notice to you. While NVIDIA
244
+ generally maintains compatibility between versions, NVIDIA may
245
+ in some cases make changes that introduce incompatibilities in
246
+ future versions of the SDK.
247
+
248
+
249
+ 1.1.6. Third Party Licenses
250
+
251
+ The SDK may come bundled with, or otherwise include or be
252
+ distributed with, third party software licensed by a NVIDIA
253
+ supplier and/or open source software provided under an open
254
+ source license. Use of third party software is subject to the
255
+ third-party license terms, or in the absence of third party
256
+ terms, the terms of this Agreement. Copyright to third party
257
+ software is held by the copyright holders indicated in the
258
+ third-party software or license.
259
+
260
+
261
+ 1.1.7. Reservation of Rights
262
+
263
+ NVIDIA reserves all rights, title, and interest in and to the
264
+ SDK, not expressly granted to you under this Agreement.
265
+
266
+
267
+ 1.2. Limitations
268
+
269
+ The following license limitations apply to your use of the
270
+ SDK:
271
+
272
+ 1. You may not reverse engineer, decompile or disassemble,
273
+ or remove copyright or other proprietary notices from any
274
+ portion of the SDK or copies of the SDK.
275
+
276
+ 2. Except as expressly provided in this Agreement, you may
277
+ not copy, sell, rent, sublicense, transfer, distribute,
278
+ modify, or create derivative works of any portion of the
279
+ SDK. For clarity, you may not distribute or sublicense the
280
+ SDK as a stand-alone product.
281
+
282
+ 3. Unless you have an agreement with NVIDIA for this
283
+ purpose, you may not indicate that an application created
284
+ with the SDK is sponsored or endorsed by NVIDIA.
285
+
286
+ 4. You may not bypass, disable, or circumvent any
287
+ encryption, security, digital rights management or
288
+ authentication mechanism in the SDK.
289
+
290
+ 5. You may not use the SDK in any manner that would cause it
291
+ to become subject to an open source software license. As
292
+ examples, licenses that require as a condition of use,
293
+ modification, and/or distribution that the SDK be:
294
+
295
+ a. Disclosed or distributed in source code form;
296
+
297
+ b. Licensed for the purpose of making derivative works;
298
+ or
299
+
300
+ c. Redistributable at no charge.
301
+
302
+ 6. Unless you have an agreement with NVIDIA for this
303
+ purpose, you may not use the SDK with any system or
304
+ application where the use or failure of the system or
305
+ application can reasonably be expected to threaten or
306
+ result in personal injury, death, or catastrophic loss.
307
+ Examples include use in avionics, navigation, military,
308
+ medical, life support or other life critical applications.
309
+ NVIDIA does not design, test or manufacture the SDK for
310
+ these critical uses and NVIDIA shall not be liable to you
311
+ or any third party, in whole or in part, for any claims or
312
+ damages arising from such uses.
313
+
314
+ 7. You agree to defend, indemnify and hold harmless NVIDIA
315
+ and its affiliates, and their respective employees,
316
+ contractors, agents, officers and directors, from and
317
+ against any and all claims, damages, obligations, losses,
318
+ liabilities, costs or debt, fines, restitutions and
319
+ expenses (including but not limited to attorney’s fees
320
+ and costs incident to establishing the right of
321
+ indemnification) arising out of or related to your use of
322
+ the SDK outside of the scope of this Agreement, or not in
323
+ compliance with its terms.
324
+
325
+
326
+ 1.3. Ownership
327
+
328
+ 1. NVIDIA or its licensors hold all rights, title and
329
+ interest in and to the SDK and its modifications and
330
+ derivative works, including their respective intellectual
331
+ property rights, subject to your rights described in this
332
+ section. This SDK may include software and materials from
333
+ NVIDIA’s licensors, and these licensors are intended
334
+ third party beneficiaries that may enforce this Agreement
335
+ with respect to their intellectual property rights.
336
+
337
+ 2. You hold all rights, title and interest in and to your
338
+ applications and your derivative works of the sample
339
+ source code delivered in the SDK, including their
340
+ respective intellectual property rights, subject to
341
+ NVIDIA’s rights described in this section.
342
+
343
+ 3. You may, but don’t have to, provide to NVIDIA
344
+ suggestions, feature requests or other feedback regarding
345
+ the SDK, including possible enhancements or modifications
346
+ to the SDK. For any feedback that you voluntarily provide,
347
+ you hereby grant NVIDIA and its affiliates a perpetual,
348
+ non-exclusive, worldwide, irrevocable license to use,
349
+ reproduce, modify, license, sublicense (through multiple
350
+ tiers of sublicensees), and distribute (through multiple
351
+ tiers of distributors) it without the payment of any
352
+ royalties or fees to you. NVIDIA will use feedback at its
353
+ choice. NVIDIA is constantly looking for ways to improve
354
+ its products, so you may send feedback to NVIDIA through
355
+ the developer portal at https://developer.nvidia.com.
356
+
357
+
358
+ 1.4. No Warranties
359
+
360
+ THE SDK IS PROVIDED BY NVIDIA “AS IS” AND “WITH ALL
361
+ FAULTS.” TO THE MAXIMUM EXTENT PERMITTED BY LAW, NVIDIA AND
362
+ ITS AFFILIATES EXPRESSLY DISCLAIM ALL WARRANTIES OF ANY KIND
363
+ OR NATURE, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING,
364
+ BUT NOT LIMITED TO, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
365
+ FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, OR THE
366
+ ABSENCE OF ANY DEFECTS THEREIN, WHETHER LATENT OR PATENT. NO
367
+ WARRANTY IS MADE ON THE BASIS OF TRADE USAGE, COURSE OF
368
+ DEALING OR COURSE OF TRADE.
369
+
370
+
371
+ 1.5. Limitation of Liability
372
+
373
+ TO THE MAXIMUM EXTENT PERMITTED BY LAW, NVIDIA AND ITS
374
+ AFFILIATES SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
375
+ PUNITIVE OR CONSEQUENTIAL DAMAGES, OR ANY LOST PROFITS, LOSS
376
+ OF USE, LOSS OF DATA OR LOSS OF GOODWILL, OR THE COSTS OF
377
+ PROCURING SUBSTITUTE PRODUCTS, ARISING OUT OF OR IN CONNECTION
378
+ WITH THIS AGREEMENT OR THE USE OR PERFORMANCE OF THE SDK,
379
+ WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED UPON BREACH
380
+ OF CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE),
381
+ PRODUCT LIABILITY OR ANY OTHER CAUSE OF ACTION OR THEORY OF
382
+ LIABILITY. IN NO EVENT WILL NVIDIA’S AND ITS AFFILIATES
383
+ TOTAL CUMULATIVE LIABILITY UNDER OR ARISING OUT OF THIS
384
+ AGREEMENT EXCEED US$10.00. THE NATURE OF THE LIABILITY OR THE
385
+ NUMBER OF CLAIMS OR SUITS SHALL NOT ENLARGE OR EXTEND THIS
386
+ LIMIT.
387
+
388
+ These exclusions and limitations of liability shall apply
389
+ regardless if NVIDIA or its affiliates have been advised of
390
+ the possibility of such damages, and regardless of whether a
391
+ remedy fails its essential purpose. These exclusions and
392
+ limitations of liability form an essential basis of the
393
+ bargain between the parties, and, absent any of these
394
+ exclusions or limitations of liability, the provisions of this
395
+ Agreement, including, without limitation, the economic terms,
396
+ would be substantially different.
397
+
398
+
399
+ 1.6. Termination
400
+
401
+ 1. This Agreement will continue to apply until terminated by
402
+ either you or NVIDIA as described below.
403
+
404
+ 2. If you want to terminate this Agreement, you may do so by
405
+ stopping to use the SDK.
406
+
407
+ 3. NVIDIA may, at any time, terminate this Agreement if:
408
+
409
+ a. (i) you fail to comply with any term of this
410
+ Agreement and the non-compliance is not fixed within
411
+ thirty (30) days following notice from NVIDIA (or
412
+ immediately if you violate NVIDIA’s intellectual
413
+ property rights);
414
+
415
+ b. (ii) you commence or participate in any legal
416
+ proceeding against NVIDIA with respect to the SDK; or
417
+
418
+ c. (iii) NVIDIA decides to no longer provide the SDK in
419
+ a country or, in NVIDIA’s sole discretion, the
420
+ continued use of it is no longer commercially viable.
421
+
422
+ 4. Upon any termination of this Agreement, you agree to
423
+ promptly discontinue use of the SDK and destroy all copies
424
+ in your possession or control. Your prior distributions in
425
+ accordance with this Agreement are not affected by the
426
+ termination of this Agreement. Upon written request, you
427
+ will certify in writing that you have complied with your
428
+ commitments under this section. Upon any termination of
429
+ this Agreement all provisions survive except for the
430
+ license grant provisions.
431
+
432
+
433
+ 1.7. General
434
+
435
+ If you wish to assign this Agreement or your rights and
436
+ obligations, including by merger, consolidation, dissolution
437
+ or operation of law, contact NVIDIA to ask for permission. Any
438
+ attempted assignment not approved by NVIDIA in writing shall
439
+ be void and of no effect. NVIDIA may assign, delegate or
440
+ transfer this Agreement and its rights and obligations, and if
441
+ to a non-affiliate you will be notified.
442
+
443
+ You agree to cooperate with NVIDIA and provide reasonably
444
+ requested information to verify your compliance with this
445
+ Agreement.
446
+
447
+ This Agreement will be governed in all respects by the laws of
448
+ the United States and of the State of Delaware as those laws
449
+ are applied to contracts entered into and performed entirely
450
+ within Delaware by Delaware residents, without regard to the
451
+ conflicts of laws principles. The United Nations Convention on
452
+ Contracts for the International Sale of Goods is specifically
453
+ disclaimed. You agree to all terms of this Agreement in the
454
+ English language.
455
+
456
+ The state or federal courts residing in Santa Clara County,
457
+ California shall have exclusive jurisdiction over any dispute
458
+ or claim arising out of this Agreement. Notwithstanding this,
459
+ you agree that NVIDIA shall still be allowed to apply for
460
+ injunctive remedies or an equivalent type of urgent legal
461
+ relief in any jurisdiction.
462
+
463
+ If any court of competent jurisdiction determines that any
464
+ provision of this Agreement is illegal, invalid or
465
+ unenforceable, such provision will be construed as limited to
466
+ the extent necessary to be consistent with and fully
467
+ enforceable under the law and the remaining provisions will
468
+ remain in full force and effect. Unless otherwise specified,
469
+ remedies are cumulative.
470
+
471
+ Each party acknowledges and agrees that the other is an
472
+ independent contractor in the performance of this Agreement.
473
+
474
+ The SDK has been developed entirely at private expense and is
475
+ “commercial items” consisting of “commercial computer
476
+ software” and “commercial computer software
477
+ documentation” provided with RESTRICTED RIGHTS. Use,
478
+ duplication or disclosure by the U.S. Government or a U.S.
479
+ Government subcontractor is subject to the restrictions in
480
+ this Agreement pursuant to DFARS 227.7202-3(a) or as set forth
481
+ in subparagraphs (c)(1) and (2) of the Commercial Computer
482
+ Software - Restricted Rights clause at FAR 52.227-19, as
483
+ applicable. Contractor/manufacturer is NVIDIA, 2788 San Tomas
484
+ Expressway, Santa Clara, CA 95051.
485
+
486
+ The SDK is subject to United States export laws and
487
+ regulations. You agree that you will not ship, transfer or
488
+ export the SDK into any country, or use the SDK in any manner,
489
+ prohibited by the United States Bureau of Industry and
490
+ Security or economic sanctions regulations administered by the
491
+ U.S. Department of Treasury’s Office of Foreign Assets
492
+ Control (OFAC), or any applicable export laws, restrictions or
493
+ regulations. These laws include restrictions on destinations,
494
+ end users and end use. By accepting this Agreement, you
495
+ confirm that you are not a resident or citizen of any country
496
+ currently embargoed by the U.S. and that you are not otherwise
497
+ prohibited from receiving the SDK.
498
+
499
+ Any notice delivered by NVIDIA to you under this Agreement
500
+ will be delivered via mail, email or fax. You agree that any
501
+ notices that NVIDIA sends you electronically will satisfy any
502
+ legal communication requirements. Please direct your legal
503
+ notices or other correspondence to NVIDIA Corporation, 2788
504
+ San Tomas Expressway, Santa Clara, California 95051, United
505
+ States of America, Attention: Legal Department.
506
+
507
+ This Agreement and any exhibits incorporated into this
508
+ Agreement constitute the entire agreement of the parties with
509
+ respect to the subject matter of this Agreement and supersede
510
+ all prior negotiations or documentation exchanged between the
511
+ parties relating to this SDK license. Any additional and/or
512
+ conflicting terms on documents issued by you are null, void,
513
+ and invalid. Any amendment or waiver under this Agreement
514
+ shall be in writing and signed by representatives of both
515
+ parties.
516
+
517
+
518
+ 2. CUDA Toolkit Supplement to Software License Agreement for
519
+ NVIDIA Software Development Kits
520
+ ------------------------------------------------------------
521
+
522
+
523
+ Release date: August 16, 2018
524
+ -----------------------------
525
+
526
+ The terms in this supplement govern your use of the NVIDIA
527
+ CUDA Toolkit SDK under the terms of your license agreement
528
+ (“Agreement”) as modified by this supplement. Capitalized
529
+ terms used but not defined below have the meaning assigned to
530
+ them in the Agreement.
531
+
532
+ This supplement is an exhibit to the Agreement and is
533
+ incorporated as an integral part of the Agreement. In the
534
+ event of conflict between the terms in this supplement and the
535
+ terms in the Agreement, the terms in this supplement govern.
536
+
537
+
538
+ 2.1. License Scope
539
+
540
+ The SDK is licensed for you to develop applications only for
541
+ use in systems with NVIDIA GPUs.
542
+
543
+
544
+ 2.2. Distribution
545
+
546
+ The portions of the SDK that are distributable under the
547
+ Agreement are listed in Attachment A.
548
+
549
+
550
+ 2.3. Operating Systems
551
+
552
+ Those portions of the SDK designed exclusively for use on the
553
+ Linux or FreeBSD operating systems, or other operating systems
554
+ derived from the source code to these operating systems, may
555
+ be copied and redistributed for use in accordance with this
556
+ Agreement, provided that the object code files are not
557
+ modified in any way (except for unzipping of compressed
558
+ files).
559
+
560
+
561
+ 2.4. Audio and Video Encoders and Decoders
562
+
563
+ You acknowledge and agree that it is your sole responsibility
564
+ to obtain any additional third-party licenses required to
565
+ make, have made, use, have used, sell, import, and offer for
566
+ sale your products or services that include or incorporate any
567
+ third-party software and content relating to audio and/or
568
+ video encoders and decoders from, including but not limited
569
+ to, Microsoft, Thomson, Fraunhofer IIS, Sisvel S.p.A.,
570
+ MPEG-LA, and Coding Technologies. NVIDIA does not grant to you
571
+ under this Agreement any necessary patent or other rights with
572
+ respect to any audio and/or video encoders and decoders.
573
+
574
+
575
+ 2.5. Licensing
576
+
577
+ If the distribution terms in this Agreement are not suitable
578
+ for your organization, or for any questions regarding this
579
+ Agreement, please contact NVIDIA at
580
581
+
582
+
583
+ 2.6. Attachment A
584
+
585
+ The following portions of the SDK are distributable under the
586
+ Agreement:
587
+
588
+ Component
589
+
590
+ CUDA Runtime
591
+
592
+ Windows
593
+
594
+ cudart.dll, cudart_static.lib, cudadevrt.lib
595
+
596
+ Mac OSX
597
+
598
+ libcudart.dylib, libcudart_static.a, libcudadevrt.a
599
+
600
+ Linux
601
+
602
+ libcudart.so, libcudart_static.a, libcudadevrt.a
603
+
604
+ Android
605
+
606
+ libcudart.so, libcudart_static.a, libcudadevrt.a
607
+
608
+ Component
609
+
610
+ CUDA FFT Library
611
+
612
+ Windows
613
+
614
+ cufft.dll, cufftw.dll, cufft.lib, cufftw.lib
615
+
616
+ Mac OSX
617
+
618
+ libcufft.dylib, libcufft_static.a, libcufftw.dylib,
619
+ libcufftw_static.a
620
+
621
+ Linux
622
+
623
+ libcufft.so, libcufft_static.a, libcufftw.so,
624
+ libcufftw_static.a
625
+
626
+ Android
627
+
628
+ libcufft.so, libcufft_static.a, libcufftw.so,
629
+ libcufftw_static.a
630
+
631
+ Component
632
+
633
+ CUDA BLAS Library
634
+
635
+ Windows
636
+
637
+ cublas.dll, cublasLt.dll
638
+
639
+ Mac OSX
640
+
641
+ libcublas.dylib, libcublasLt.dylib, libcublas_static.a,
642
+ libcublasLt_static.a
643
+
644
+ Linux
645
+
646
+ libcublas.so, libcublasLt.so, libcublas_static.a,
647
+ libcublasLt_static.a
648
+
649
+ Android
650
+
651
+ libcublas.so, libcublasLt.so, libcublas_static.a,
652
+ libcublasLt_static.a
653
+
654
+ Component
655
+
656
+ NVIDIA "Drop-in" BLAS Library
657
+
658
+ Windows
659
+
660
+ nvblas.dll
661
+
662
+ Mac OSX
663
+
664
+ libnvblas.dylib
665
+
666
+ Linux
667
+
668
+ libnvblas.so
669
+
670
+ Component
671
+
672
+ CUDA Sparse Matrix Library
673
+
674
+ Windows
675
+
676
+ cusparse.dll, cusparse.lib
677
+
678
+ Mac OSX
679
+
680
+ libcusparse.dylib, libcusparse_static.a
681
+
682
+ Linux
683
+
684
+ libcusparse.so, libcusparse_static.a
685
+
686
+ Android
687
+
688
+ libcusparse.so, libcusparse_static.a
689
+
690
+ Component
691
+
692
+ CUDA Linear Solver Library
693
+
694
+ Windows
695
+
696
+ cusolver.dll, cusolver.lib
697
+
698
+ Mac OSX
699
+
700
+ libcusolver.dylib, libcusolver_static.a
701
+
702
+ Linux
703
+
704
+ libcusolver.so, libcusolver_static.a
705
+
706
+ Android
707
+
708
+ libcusolver.so, libcusolver_static.a
709
+
710
+ Component
711
+
712
+ CUDA Random Number Generation Library
713
+
714
+ Windows
715
+
716
+ curand.dll, curand.lib
717
+
718
+ Mac OSX
719
+
720
+ libcurand.dylib, libcurand_static.a
721
+
722
+ Linux
723
+
724
+ libcurand.so, libcurand_static.a
725
+
726
+ Android
727
+
728
+ libcurand.so, libcurand_static.a
729
+
730
+ Component
731
+
732
+ CUDA Accelerated Graph Library
733
+
734
+ Component
735
+
736
+ NVIDIA Performance Primitives Library
737
+
738
+ Windows
739
+
740
+ nppc.dll, nppc.lib, nppial.dll, nppial.lib, nppicc.dll,
741
+ nppicc.lib, nppicom.dll, nppicom.lib, nppidei.dll,
742
+ nppidei.lib, nppif.dll, nppif.lib, nppig.dll, nppig.lib,
743
+ nppim.dll, nppim.lib, nppist.dll, nppist.lib, nppisu.dll,
744
+ nppisu.lib, nppitc.dll, nppitc.lib, npps.dll, npps.lib
745
+
746
+ Mac OSX
747
+
748
+ libnppc.dylib, libnppc_static.a, libnppial.dylib,
749
+ libnppial_static.a, libnppicc.dylib, libnppicc_static.a,
750
+ libnppicom.dylib, libnppicom_static.a, libnppidei.dylib,
751
+ libnppidei_static.a, libnppif.dylib, libnppif_static.a,
752
+ libnppig.dylib, libnppig_static.a, libnppim.dylib,
753
+ libnppisu_static.a, libnppitc.dylib, libnppitc_static.a,
754
+ libnpps.dylib, libnpps_static.a
755
+
756
+ Linux
757
+
758
+ libnppc.so, libnppc_static.a, libnppial.so,
759
+ libnppial_static.a, libnppicc.so, libnppicc_static.a,
760
+ libnppicom.so, libnppicom_static.a, libnppidei.so,
761
+ libnppidei_static.a, libnppif.so, libnppif_static.a
762
+ libnppig.so, libnppig_static.a, libnppim.so,
763
+ libnppim_static.a, libnppist.so, libnppist_static.a,
764
+ libnppisu.so, libnppisu_static.a, libnppitc.so
765
+ libnppitc_static.a, libnpps.so, libnpps_static.a
766
+
767
+ Android
768
+
769
+ libnppc.so, libnppc_static.a, libnppial.so,
770
+ libnppial_static.a, libnppicc.so, libnppicc_static.a,
771
+ libnppicom.so, libnppicom_static.a, libnppidei.so,
772
+ libnppidei_static.a, libnppif.so, libnppif_static.a
773
+ libnppig.so, libnppig_static.a, libnppim.so,
774
+ libnppim_static.a, libnppist.so, libnppist_static.a,
775
+ libnppisu.so, libnppisu_static.a, libnppitc.so
776
+ libnppitc_static.a, libnpps.so, libnpps_static.a
777
+
778
+ Component
779
+
780
+ NVIDIA JPEG Library
781
+
782
+ Linux
783
+
784
+ libnvjpeg.so, libnvjpeg_static.a
785
+
786
+ Component
787
+
788
+ Internal common library required for statically linking to
789
+ cuBLAS, cuSPARSE, cuFFT, cuRAND, nvJPEG and NPP
790
+
791
+ Mac OSX
792
+
793
+ libculibos.a
794
+
795
+ Linux
796
+
797
+ libculibos.a
798
+
799
+ Component
800
+
801
+ NVIDIA Runtime Compilation Library and Header
802
+
803
+ All
804
+
805
+ nvrtc.h
806
+
807
+ Windows
808
+
809
+ nvrtc.dll, nvrtc-builtins.dll
810
+
811
+ Mac OSX
812
+
813
+ libnvrtc.dylib, libnvrtc-builtins.dylib
814
+
815
+ Linux
816
+
817
+ libnvrtc.so, libnvrtc-builtins.so
818
+
819
+ Component
820
+
821
+ NVIDIA Optimizing Compiler Library
822
+
823
+ Windows
824
+
825
+ nvvm.dll
826
+
827
+ Mac OSX
828
+
829
+ libnvvm.dylib
830
+
831
+ Linux
832
+
833
+ libnvvm.so
834
+
835
+ Component
836
+
837
+ NVIDIA Common Device Math Functions Library
838
+
839
+ Windows
840
+
841
+ libdevice.10.bc
842
+
843
+ Mac OSX
844
+
845
+ libdevice.10.bc
846
+
847
+ Linux
848
+
849
+ libdevice.10.bc
850
+
851
+ Component
852
+
853
+ CUDA Occupancy Calculation Header Library
854
+
855
+ All
856
+
857
+ cuda_occupancy.h
858
+
859
+ Component
860
+
861
+ CUDA Half Precision Headers
862
+
863
+ All
864
+
865
+ cuda_fp16.h, cuda_fp16.hpp
866
+
867
+ Component
868
+
869
+ CUDA Profiling Tools Interface (CUPTI) Library
870
+
871
+ Windows
872
+
873
+ cupti.dll
874
+
875
+ Mac OSX
876
+
877
+ libcupti.dylib
878
+
879
+ Linux
880
+
881
+ libcupti.so
882
+
883
+ Component
884
+
885
+ NVIDIA Tools Extension Library
886
+
887
+ Windows
888
+
889
+ nvToolsExt.dll, nvToolsExt.lib
890
+
891
+ Mac OSX
892
+
893
+ libnvToolsExt.dylib
894
+
895
+ Linux
896
+
897
+ libnvToolsExt.so
898
+
899
+ Component
900
+
901
+ NVIDIA CUDA Driver Libraries
902
+
903
+ Linux
904
+
905
+ libcuda.so, libnvidia-fatbinaryloader.so,
906
+ libnvidia-ptxjitcompiler.so
907
+
908
+ The NVIDIA CUDA Driver Libraries are only distributable in
909
+ applications that meet this criteria:
910
+
911
+ 1. The application was developed starting from a NVIDIA CUDA
912
+ container obtained from Docker Hub or the NVIDIA GPU
913
+ Cloud, and
914
+
915
+ 2. The resulting application is packaged as a Docker
916
+ container and distributed to users on Docker Hub or the
917
+ NVIDIA GPU Cloud only.
918
+
919
+
920
+ 2.7. Attachment B
921
+
922
+
923
+ Additional Licensing Obligations
924
+
925
+ The following third party components included in the SOFTWARE
926
+ are licensed to Licensee pursuant to the following terms and
927
+ conditions:
928
+
929
+ 1. Licensee's use of the GDB third party component is
930
+ subject to the terms and conditions of GNU GPL v3:
931
+
932
+ This product includes copyrighted third-party software licensed
933
+ under the terms of the GNU General Public License v3 ("GPL v3").
934
+ All third-party software packages are copyright by their respective
935
+ authors. GPL v3 terms and conditions are hereby incorporated into
936
+ the Agreement by this reference: http://www.gnu.org/licenses/gpl.txt
937
+
938
+ Consistent with these licensing requirements, the software
939
+ listed below is provided under the terms of the specified
940
+ open source software licenses. To obtain source code for
941
+ software provided under licenses that require
942
+ redistribution of source code, including the GNU General
943
+ Public License (GPL) and GNU Lesser General Public License
944
+ (LGPL), contact [email protected]. This offer is
945
+ valid for a period of three (3) years from the date of the
946
+ distribution of this product by NVIDIA CORPORATION.
947
+
948
+ Component License
949
+ CUDA-GDB GPL v3
950
+
951
+ 2. Licensee represents and warrants that any and all third
952
+ party licensing and/or royalty payment obligations in
953
+ connection with Licensee's use of the H.264 video codecs
954
+ are solely the responsibility of Licensee.
955
+
956
+ 3. Licensee's use of the Thrust library is subject to the
957
+ terms and conditions of the Apache License Version 2.0.
958
+ All third-party software packages are copyright by their
959
+ respective authors. Apache License Version 2.0 terms and
960
+ conditions are hereby incorporated into the Agreement by
961
+ this reference.
962
+ http://www.apache.org/licenses/LICENSE-2.0.html
963
+
964
+ In addition, Licensee acknowledges the following notice:
965
+ Thrust includes source code from the Boost Iterator,
966
+ Tuple, System, and Random Number libraries.
967
+
968
+ Boost Software License - Version 1.0 - August 17th, 2003
969
+ . . . .
970
+
971
+ Permission is hereby granted, free of charge, to any person or
972
+ organization obtaining a copy of the software and accompanying
973
+ documentation covered by this license (the "Software") to use,
974
+ reproduce, display, distribute, execute, and transmit the Software,
975
+ and to prepare derivative works of the Software, and to permit
976
+ third-parties to whom the Software is furnished to do so, all
977
+ subject to the following:
978
+
979
+ The copyright notices in the Software and this entire statement,
980
+ including the above license grant, this restriction and the following
981
+ disclaimer, must be included in all copies of the Software, in whole
982
+ or in part, and all derivative works of the Software, unless such
983
+ copies or derivative works are solely in the form of machine-executable
984
+ object code generated by a source language processor.
985
+
986
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
987
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
988
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
989
+ NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
990
+ ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR
991
+ OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING
992
+ FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
993
+ OTHER DEALINGS IN THE SOFTWARE.
994
+
995
+ 4. Licensee's use of the LLVM third party component is
996
+ subject to the following terms and conditions:
997
+
998
+ ======================================================
999
+ LLVM Release License
1000
+ ======================================================
1001
+ University of Illinois/NCSA
1002
+ Open Source License
1003
+
1004
+ Copyright (c) 2003-2010 University of Illinois at Urbana-Champaign.
1005
+ All rights reserved.
1006
+
1007
+ Developed by:
1008
+
1009
+ LLVM Team
1010
+
1011
+ University of Illinois at Urbana-Champaign
1012
+
1013
+ http://llvm.org
1014
+
1015
+ Permission is hereby granted, free of charge, to any person obtaining a copy
1016
+ of this software and associated documentation files (the "Software"), to
1017
+ deal with the Software without restriction, including without limitation the
1018
+ rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
1019
+ sell copies of the Software, and to permit persons to whom the Software is
1020
+ furnished to do so, subject to the following conditions:
1021
+
1022
+ * Redistributions of source code must retain the above copyright notice,
1023
+ this list of conditions and the following disclaimers.
1024
+
1025
+ * Redistributions in binary form must reproduce the above copyright
1026
+ notice, this list of conditions and the following disclaimers in the
1027
+ documentation and/or other materials provided with the distribution.
1028
+
1029
+ * Neither the names of the LLVM Team, University of Illinois at Urbana-
1030
+ Champaign, nor the names of its contributors may be used to endorse or
1031
+ promote products derived from this Software without specific prior
1032
+ written permission.
1033
+
1034
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
1035
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1036
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
1037
+ THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
1038
+ OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
1039
+ ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
1040
+ DEALINGS WITH THE SOFTWARE.
1041
+
1042
+ 5. Licensee's use (e.g. nvprof) of the PCRE third party
1043
+ component is subject to the following terms and
1044
+ conditions:
1045
+
1046
+ ------------
1047
+ PCRE LICENCE
1048
+ ------------
1049
+ PCRE is a library of functions to support regular expressions whose syntax
1050
+ and semantics are as close as possible to those of the Perl 5 language.
1051
+ Release 8 of PCRE is distributed under the terms of the "BSD" licence, as
1052
+ specified below. The documentation for PCRE, supplied in the "doc"
1053
+ directory, is distributed under the same terms as the software itself. The
1054
+ basic library functions are written in C and are freestanding. Also
1055
+ included in the distribution is a set of C++ wrapper functions, and a just-
1056
+ in-time compiler that can be used to optimize pattern matching. These are
1057
+ both optional features that can be omitted when the library is built.
1058
+
1059
+ THE BASIC LIBRARY FUNCTIONS
1060
+ ---------------------------
1061
+ Written by: Philip Hazel
1062
+ Email local part: ph10
1063
+ Email domain: cam.ac.uk
1064
+ University of Cambridge Computing Service,
1065
+ Cambridge, England.
1066
+ Copyright (c) 1997-2012 University of Cambridge
1067
+ All rights reserved.
1068
+
1069
+ PCRE JUST-IN-TIME COMPILATION SUPPORT
1070
+ -------------------------------------
1071
+ Written by: Zoltan Herczeg
1072
+ Email local part: hzmester
1073
+ Emain domain: freemail.hu
1074
+ Copyright(c) 2010-2012 Zoltan Herczeg
1075
+ All rights reserved.
1076
+
1077
+ STACK-LESS JUST-IN-TIME COMPILER
1078
+ --------------------------------
1079
+ Written by: Zoltan Herczeg
1080
+ Email local part: hzmester
1081
+ Emain domain: freemail.hu
1082
+ Copyright(c) 2009-2012 Zoltan Herczeg
1083
+ All rights reserved.
1084
+
1085
+ THE C++ WRAPPER FUNCTIONS
1086
+ -------------------------
1087
+ Contributed by: Google Inc.
1088
+ Copyright (c) 2007-2012, Google Inc.
1089
+ All rights reserved.
1090
+
1091
+ THE "BSD" LICENCE
1092
+ -----------------
1093
+ Redistribution and use in source and binary forms, with or without
1094
+ modification, are permitted provided that the following conditions are met:
1095
+
1096
+ * Redistributions of source code must retain the above copyright notice,
1097
+ this list of conditions and the following disclaimer.
1098
+
1099
+ * Redistributions in binary form must reproduce the above copyright
1100
+ notice, this list of conditions and the following disclaimer in the
1101
+ documentation and/or other materials provided with the distribution.
1102
+
1103
+ * Neither the name of the University of Cambridge nor the name of Google
1104
+ Inc. nor the names of their contributors may be used to endorse or
1105
+ promote products derived from this software without specific prior
1106
+ written permission.
1107
+
1108
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
1109
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1110
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1111
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
1112
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
1113
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
1114
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
1115
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
1116
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
1117
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
1118
+ POSSIBILITY OF SUCH DAMAGE.
1119
+
1120
+ 6. Some of the cuBLAS library routines were written by or
1121
+ derived from code written by Vasily Volkov and are subject
1122
+ to the Modified Berkeley Software Distribution License as
1123
+ follows:
1124
+
1125
+ Copyright (c) 2007-2009, Regents of the University of California
1126
+
1127
+ All rights reserved.
1128
+
1129
+ Redistribution and use in source and binary forms, with or without
1130
+ modification, are permitted provided that the following conditions are
1131
+ met:
1132
+ * Redistributions of source code must retain the above copyright
1133
+ notice, this list of conditions and the following disclaimer.
1134
+ * Redistributions in binary form must reproduce the above
1135
+ copyright notice, this list of conditions and the following
1136
+ disclaimer in the documentation and/or other materials provided
1137
+ with the distribution.
1138
+ * Neither the name of the University of California, Berkeley nor
1139
+ the names of its contributors may be used to endorse or promote
1140
+ products derived from this software without specific prior
1141
+ written permission.
1142
+
1143
+ THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
1144
+ IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
1145
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1146
+ DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
1147
+ INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
1148
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
1149
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
1150
+ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
1151
+ STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
1152
+ IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
1153
+ POSSIBILITY OF SUCH DAMAGE.
1154
+
1155
+ 7. Some of the cuBLAS library routines were written by or
1156
+ derived from code written by Davide Barbieri and are
1157
+ subject to the Modified Berkeley Software Distribution
1158
+ License as follows:
1159
+
1160
+ Copyright (c) 2008-2009 Davide Barbieri @ University of Rome Tor Vergata.
1161
+
1162
+ All rights reserved.
1163
+
1164
+ Redistribution and use in source and binary forms, with or without
1165
+ modification, are permitted provided that the following conditions are
1166
+ met:
1167
+ * Redistributions of source code must retain the above copyright
1168
+ notice, this list of conditions and the following disclaimer.
1169
+ * Redistributions in binary form must reproduce the above
1170
+ copyright notice, this list of conditions and the following
1171
+ disclaimer in the documentation and/or other materials provided
1172
+ with the distribution.
1173
+ * The name of the author may not be used to endorse or promote
1174
+ products derived from this software without specific prior
1175
+ written permission.
1176
+
1177
+ THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
1178
+ IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
1179
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1180
+ DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
1181
+ INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
1182
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
1183
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
1184
+ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
1185
+ STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
1186
+ IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
1187
+ POSSIBILITY OF SUCH DAMAGE.
1188
+
1189
+ 8. Some of the cuBLAS library routines were derived from
1190
+ code developed by the University of Tennessee and are
1191
+ subject to the Modified Berkeley Software Distribution
1192
+ License as follows:
1193
+
1194
+ Copyright (c) 2010 The University of Tennessee.
1195
+
1196
+ All rights reserved.
1197
+
1198
+ Redistribution and use in source and binary forms, with or without
1199
+ modification, are permitted provided that the following conditions are
1200
+ met:
1201
+ * Redistributions of source code must retain the above copyright
1202
+ notice, this list of conditions and the following disclaimer.
1203
+ * Redistributions in binary form must reproduce the above
1204
+ copyright notice, this list of conditions and the following
1205
+ disclaimer listed in this license in the documentation and/or
1206
+ other materials provided with the distribution.
1207
+ * Neither the name of the copyright holders nor the names of its
1208
+ contributors may be used to endorse or promote products derived
1209
+ from this software without specific prior written permission.
1210
+
1211
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1212
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1213
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
1214
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
1215
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1216
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1217
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
1218
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
1219
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
1220
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
1221
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
1222
+
1223
+ 9. Some of the cuBLAS library routines were written by or
1224
+ derived from code written by Jonathan Hogg and are subject
1225
+ to the Modified Berkeley Software Distribution License as
1226
+ follows:
1227
+
1228
+ Copyright (c) 2012, The Science and Technology Facilities Council (STFC).
1229
+
1230
+ All rights reserved.
1231
+
1232
+ Redistribution and use in source and binary forms, with or without
1233
+ modification, are permitted provided that the following conditions are
1234
+ met:
1235
+ * Redistributions of source code must retain the above copyright
1236
+ notice, this list of conditions and the following disclaimer.
1237
+ * Redistributions in binary form must reproduce the above
1238
+ copyright notice, this list of conditions and the following
1239
+ disclaimer in the documentation and/or other materials provided
1240
+ with the distribution.
1241
+ * Neither the name of the STFC nor the names of its contributors
1242
+ may be used to endorse or promote products derived from this
1243
+ software without specific prior written permission.
1244
+
1245
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1246
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1247
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
1248
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE STFC BE
1249
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
1250
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
1251
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
1252
+ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
1253
+ WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
1254
+ OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
1255
+ IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
1256
+
1257
+ 10. Some of the cuBLAS library routines were written by or
1258
+ derived from code written by Ahmad M. Abdelfattah, David
1259
+ Keyes, and Hatem Ltaief, and are subject to the Apache
1260
+ License, Version 2.0, as follows:
1261
+
1262
+ -- (C) Copyright 2013 King Abdullah University of Science and Technology
1263
+ Authors:
1264
+ Ahmad Abdelfattah ([email protected])
1265
+ David Keyes ([email protected])
1266
+ Hatem Ltaief ([email protected])
1267
+
1268
+ Redistribution and use in source and binary forms, with or without
1269
+ modification, are permitted provided that the following conditions
1270
+ are met:
1271
+
1272
+ * Redistributions of source code must retain the above copyright
1273
+ notice, this list of conditions and the following disclaimer.
1274
+ * Redistributions in binary form must reproduce the above copyright
1275
+ notice, this list of conditions and the following disclaimer in the
1276
+ documentation and/or other materials provided with the distribution.
1277
+ * Neither the name of the King Abdullah University of Science and
1278
+ Technology nor the names of its contributors may be used to endorse
1279
+ or promote products derived from this software without specific prior
1280
+ written permission.
1281
+
1282
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1283
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1284
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
1285
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
1286
+ HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1287
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1288
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
1289
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
1290
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
1291
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
1292
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
1293
+
1294
+ 11. Some of the cuSPARSE library routines were written by or
1295
+ derived from code written by Li-Wen Chang and are subject
1296
+ to the NCSA Open Source License as follows:
1297
+
1298
+ Copyright (c) 2012, University of Illinois.
1299
+
1300
+ All rights reserved.
1301
+
1302
+ Developed by: IMPACT Group, University of Illinois, http://impact.crhc.illinois.edu
1303
+
1304
+ Permission is hereby granted, free of charge, to any person obtaining
1305
+ a copy of this software and associated documentation files (the
1306
+ "Software"), to deal with the Software without restriction, including
1307
+ without limitation the rights to use, copy, modify, merge, publish,
1308
+ distribute, sublicense, and/or sell copies of the Software, and to
1309
+ permit persons to whom the Software is furnished to do so, subject to
1310
+ the following conditions:
1311
+ * Redistributions of source code must retain the above copyright
1312
+ notice, this list of conditions and the following disclaimer.
1313
+ * Redistributions in binary form must reproduce the above
1314
+ copyright notice, this list of conditions and the following
1315
+ disclaimers in the documentation and/or other materials provided
1316
+ with the distribution.
1317
+ * Neither the names of IMPACT Group, University of Illinois, nor
1318
+ the names of its contributors may be used to endorse or promote
1319
+ products derived from this Software without specific prior
1320
+ written permission.
1321
+
1322
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
1323
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
1324
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
1325
+ NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT
1326
+ HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
1327
+ IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
1328
+ IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
1329
+ SOFTWARE.
1330
+
1331
+ 12. Some of the cuRAND library routines were written by or
1332
+ derived from code written by Mutsuo Saito and Makoto
1333
+ Matsumoto and are subject to the following license:
1334
+
1335
+ Copyright (c) 2009, 2010 Mutsuo Saito, Makoto Matsumoto and Hiroshima
1336
+ University. All rights reserved.
1337
+
1338
+ Copyright (c) 2011 Mutsuo Saito, Makoto Matsumoto, Hiroshima
1339
+ University and University of Tokyo. All rights reserved.
1340
+
1341
+ Redistribution and use in source and binary forms, with or without
1342
+ modification, are permitted provided that the following conditions are
1343
+ met:
1344
+ * Redistributions of source code must retain the above copyright
1345
+ notice, this list of conditions and the following disclaimer.
1346
+ * Redistributions in binary form must reproduce the above
1347
+ copyright notice, this list of conditions and the following
1348
+ disclaimer in the documentation and/or other materials provided
1349
+ with the distribution.
1350
+ * Neither the name of the Hiroshima University nor the names of
1351
+ its contributors may be used to endorse or promote products
1352
+ derived from this software without specific prior written
1353
+ permission.
1354
+
1355
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1356
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1357
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
1358
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
1359
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1360
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1361
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
1362
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
1363
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
1364
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
1365
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
1366
+
1367
+ 13. Some of the cuRAND library routines were derived from
1368
+ code developed by D. E. Shaw Research and are subject to
1369
+ the following license:
1370
+
1371
+ Copyright 2010-2011, D. E. Shaw Research.
1372
+
1373
+ All rights reserved.
1374
+
1375
+ Redistribution and use in source and binary forms, with or without
1376
+ modification, are permitted provided that the following conditions are
1377
+ met:
1378
+ * Redistributions of source code must retain the above copyright
1379
+ notice, this list of conditions, and the following disclaimer.
1380
+ * Redistributions in binary form must reproduce the above
1381
+ copyright notice, this list of conditions, and the following
1382
+ disclaimer in the documentation and/or other materials provided
1383
+ with the distribution.
1384
+ * Neither the name of D. E. Shaw Research nor the names of its
1385
+ contributors may be used to endorse or promote products derived
1386
+ from this software without specific prior written permission.
1387
+
1388
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1389
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1390
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
1391
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
1392
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1393
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1394
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
1395
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
1396
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
1397
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
1398
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
1399
+
1400
+ 14. Some of the Math library routines were written by or
1401
+ derived from code developed by Norbert Juffa and are
1402
+ subject to the following license:
1403
+
1404
+ Copyright (c) 2015-2017, Norbert Juffa
1405
+ All rights reserved.
1406
+
1407
+ Redistribution and use in source and binary forms, with or without
1408
+ modification, are permitted provided that the following conditions
1409
+ are met:
1410
+
1411
+ 1. Redistributions of source code must retain the above copyright
1412
+ notice, this list of conditions and the following disclaimer.
1413
+
1414
+ 2. Redistributions in binary form must reproduce the above copyright
1415
+ notice, this list of conditions and the following disclaimer in the
1416
+ documentation and/or other materials provided with the distribution.
1417
+
1418
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1419
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1420
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
1421
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
1422
+ HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1423
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1424
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
1425
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
1426
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
1427
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
1428
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
1429
+
1430
+ 15. Licensee's use of the lz4 third party component is
1431
+ subject to the following terms and conditions:
1432
+
1433
+ Copyright (C) 2011-2013, Yann Collet.
1434
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
1435
+
1436
+ Redistribution and use in source and binary forms, with or without
1437
+ modification, are permitted provided that the following conditions are
1438
+ met:
1439
+
1440
+ * Redistributions of source code must retain the above copyright
1441
+ notice, this list of conditions and the following disclaimer.
1442
+ * Redistributions in binary form must reproduce the above
1443
+ copyright notice, this list of conditions and the following disclaimer
1444
+ in the documentation and/or other materials provided with the
1445
+ distribution.
1446
+
1447
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1448
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1449
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
1450
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
1451
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1452
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1453
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
1454
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
1455
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
1456
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
1457
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
1458
+
1459
+ 16. The NPP library uses code from the Boost Math Toolkit,
1460
+ and is subject to the following license:
1461
+
1462
+ Boost Software License - Version 1.0 - August 17th, 2003
1463
+ . . . .
1464
+
1465
+ Permission is hereby granted, free of charge, to any person or
1466
+ organization obtaining a copy of the software and accompanying
1467
+ documentation covered by this license (the "Software") to use,
1468
+ reproduce, display, distribute, execute, and transmit the Software,
1469
+ and to prepare derivative works of the Software, and to permit
1470
+ third-parties to whom the Software is furnished to do so, all
1471
+ subject to the following:
1472
+
1473
+ The copyright notices in the Software and this entire statement,
1474
+ including the above license grant, this restriction and the following
1475
+ disclaimer, must be included in all copies of the Software, in whole
1476
+ or in part, and all derivative works of the Software, unless such
1477
+ copies or derivative works are solely in the form of machine-executable
1478
+ object code generated by a source language processor.
1479
+
1480
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
1481
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
1482
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
1483
+ NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
1484
+ ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR
1485
+ OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING
1486
+ FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
1487
+ OTHER DEALINGS IN THE SOFTWARE.
1488
+
1489
+ 17. Portions of the Nsight Eclipse Edition is subject to the
1490
+ following license:
1491
+
1492
+ The Eclipse Foundation makes available all content in this plug-in
1493
+ ("Content"). Unless otherwise indicated below, the Content is provided
1494
+ to you under the terms and conditions of the Eclipse Public License
1495
+ Version 1.0 ("EPL"). A copy of the EPL is available at http://
1496
+ www.eclipse.org/legal/epl-v10.html. For purposes of the EPL, "Program"
1497
+ will mean the Content.
1498
+
1499
+ If you did not receive this Content directly from the Eclipse
1500
+ Foundation, the Content is being redistributed by another party
1501
+ ("Redistributor") and different terms and conditions may apply to your
1502
+ use of any object code in the Content. Check the Redistributor's
1503
+ license that was provided with the Content. If no such license exists,
1504
+ contact the Redistributor. Unless otherwise indicated below, the terms
1505
+ and conditions of the EPL still apply to any source code in the
1506
+ Content and such source code may be obtained at http://www.eclipse.org.
1507
+
1508
+ 18. Some of the cuBLAS library routines uses code from
1509
+ OpenAI, which is subject to the following license:
1510
+
1511
+ License URL
1512
+ https://github.com/openai/openai-gemm/blob/master/LICENSE
1513
+
1514
+ License Text
1515
+ The MIT License
1516
+
1517
+ Copyright (c) 2016 OpenAI (http://openai.com), 2016 Google Inc.
1518
+
1519
+ Permission is hereby granted, free of charge, to any person obtaining a copy
1520
+ of this software and associated documentation files (the "Software"), to deal
1521
+ in the Software without restriction, including without limitation the rights
1522
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
1523
+ copies of the Software, and to permit persons to whom the Software is
1524
+ furnished to do so, subject to the following conditions:
1525
+
1526
+ The above copyright notice and this permission notice shall be included in
1527
+ all copies or substantial portions of the Software.
1528
+
1529
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
1530
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1531
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
1532
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
1533
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
1534
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
1535
+ THE SOFTWARE.
1536
+
1537
+ 19. Licensee's use of the Visual Studio Setup Configuration
1538
+ Samples is subject to the following license:
1539
+
1540
+ The MIT License (MIT)
1541
+ Copyright (C) Microsoft Corporation. All rights reserved.
1542
+
1543
+ Permission is hereby granted, free of charge, to any person
1544
+ obtaining a copy of this software and associated documentation
1545
+ files (the "Software"), to deal in the Software without restriction,
1546
+ including without limitation the rights to use, copy, modify, merge,
1547
+ publish, distribute, sublicense, and/or sell copies of the Software,
1548
+ and to permit persons to whom the Software is furnished to do so,
1549
+ subject to the following conditions:
1550
+
1551
+ The above copyright notice and this permission notice shall be included
1552
+ in all copies or substantial portions of the Software.
1553
+
1554
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
1555
+ OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1556
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
1557
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
1558
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
1559
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
1560
+
1561
+ 20. Licensee's use of linmath.h header for CPU functions for
1562
+ GL vector/matrix operations from lunarG is subject to the
1563
+ Apache License Version 2.0.
1564
+
1565
+ 21. The DX12-CUDA sample uses the d3dx12.h header, which is
1566
+ subject to the MIT license .
1567
+
1568
+ -----------------
llmeval-env/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/METADATA ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: nvidia-nvtx-cu12
3
+ Version: 12.1.105
4
+ Summary: NVIDIA Tools Extension
5
+ Home-page: https://developer.nvidia.com/cuda-zone
6
+ Author: Nvidia CUDA Installer Team
7
+ Author-email: [email protected]
8
+ License: NVIDIA Proprietary Software
9
+ Keywords: cuda,nvidia,runtime,machine learning,deep learning
10
+ Classifier: Development Status :: 4 - Beta
11
+ Classifier: Intended Audience :: Developers
12
+ Classifier: Intended Audience :: Education
13
+ Classifier: Intended Audience :: Science/Research
14
+ Classifier: License :: Other/Proprietary License
15
+ Classifier: Natural Language :: English
16
+ Classifier: Programming Language :: Python :: 3
17
+ Classifier: Programming Language :: Python :: 3.5
18
+ Classifier: Programming Language :: Python :: 3.6
19
+ Classifier: Programming Language :: Python :: 3.7
20
+ Classifier: Programming Language :: Python :: 3.8
21
+ Classifier: Programming Language :: Python :: 3.9
22
+ Classifier: Programming Language :: Python :: 3.10
23
+ Classifier: Programming Language :: Python :: 3.11
24
+ Classifier: Programming Language :: Python :: 3 :: Only
25
+ Classifier: Topic :: Scientific/Engineering
26
+ Classifier: Topic :: Scientific/Engineering :: Mathematics
27
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
28
+ Classifier: Topic :: Software Development
29
+ Classifier: Topic :: Software Development :: Libraries
30
+ Classifier: Operating System :: Microsoft :: Windows
31
+ Classifier: Operating System :: POSIX :: Linux
32
+ Requires-Python: >=3
33
+ License-File: License.txt
34
+
35
+ A C-based API for annotating events, code ranges, and resources in your applications. Applications which integrate NVTX can use the Visual Profiler to capture and visualize these events and ranges.
llmeval-env/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/RECORD ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ nvidia/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ nvidia/__pycache__/__init__.cpython-310.pyc,,
3
+ nvidia/nvtx/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
+ nvidia/nvtx/__pycache__/__init__.cpython-310.pyc,,
5
+ nvidia/nvtx/include/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ nvidia/nvtx/include/__pycache__/__init__.cpython-310.pyc,,
7
+ nvidia/nvtx/include/nvToolsExt.h,sha256=OiT6v1G2-vlkYnpDQZjiGT1O-THDyk1gw2021qMRvQM,53680
8
+ nvidia/nvtx/include/nvToolsExtCuda.h,sha256=UDA1pbmvoRFmlJ11Et9tIMEztOtOVw-10mO27Q6K8jg,6009
9
+ nvidia/nvtx/include/nvToolsExtCudaRt.h,sha256=6IbgdRGObly53jzRqvsZ4FQoTrXJOJwSyCOLuXr9ncA,5192
10
+ nvidia/nvtx/include/nvToolsExtOpenCL.h,sha256=gETZH9ch_o6MYE_BYQ2pj9SSuxyAo1H4ptmRK-DMWSo,8360
11
+ nvidia/nvtx/include/nvToolsExtSync.h,sha256=wqONIiycUPaUUCzQBmCippilgKt8sOL9tpzG773u0nY,14562
12
+ nvidia/nvtx/include/nvtx3/nvToolsExt.h,sha256=TFEF3fx1043EwMdbS7FqvvavwK0koZeGrIOAsCrB12s,52247
13
+ nvidia/nvtx/include/nvtx3/nvToolsExtCuda.h,sha256=4ZbZHUMcmHRf4SdKB7nH0E3uHd_9ZhZBuwuWPItK-Vs,6204
14
+ nvidia/nvtx/include/nvtx3/nvToolsExtCudaRt.h,sha256=boW0zdYobNFFE9wwxCyzBGBLcSGtdbQ5osKjQGNC2E8,5393
15
+ nvidia/nvtx/include/nvtx3/nvToolsExtOpenCL.h,sha256=RPfsZl3lHAPIOCzTipmz07-vaiIO4cxelcx12EjB2L0,8563
16
+ nvidia/nvtx/include/nvtx3/nvToolsExtSync.h,sha256=C-HIVBaupxYom3BqMggQ_ePq1bxFhw8kXsOfYJKBWrI,14756
17
+ nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxImpl.h,sha256=jEnYF3MyLsD72euw2It3Bz0X0GK4Xv_htEd8BeIrPjY,23333
18
+ nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxImplCore.h,sha256=sYpWqZfYrjsMddxtezPX3qSTIbAOn4dlEoLiYQ9M2nM,9756
19
+ nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxImplCudaRt_v3.h,sha256=SoaiprvsI80yLmEAnlFX0iFufv6RtKjjMMrVwQZjjQI,4775
20
+ nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxImplCuda_v3.h,sha256=IEor-ISqComCRGVDdIzKBLU3eWCuDI0Igqz-eRKKcvg,5550
21
+ nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxImplOpenCL_v3.h,sha256=iPR2x74bJE3plFQBT9FWGBaTm4sC-Pll6WAjpKRnz7g,8275
22
+ nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxImplSync_v3.h,sha256=TqwQfEUVbwc58bpHioE13NMweFhOuHXNql65BnLzhvc,5022
23
+ nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxInit.h,sha256=foajOFacvLGx3BN5ntw5v8o4J3OY4hqkVZE5ZC0x3e4,14716
24
+ nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxInitDecls.h,sha256=-Qyxcy9CDXOBhEtYZ8L7iYd6daJ9aCeyQM48X0BafMM,9361
25
+ nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxInitDefs.h,sha256=dLhOV4knhNrmT2DnUNzXreOt_Qc6GAa3yIlmqJFCeVI,35432
26
+ nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxLinkOnce.h,sha256=Jp-z6LTz_p8fKRulcFfdcskIxzcZ6ybbHkGB9mpJa2M,3863
27
+ nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxTypes.h,sha256=jkbCwyvIP1G-Ef8SwYp4kDi69hjZbzaxKSk7ScgrNI8,17352
28
+ nvidia/nvtx/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
+ nvidia/nvtx/lib/__pycache__/__init__.cpython-310.pyc,,
30
+ nvidia/nvtx/lib/libnvToolsExt.so.1,sha256=hH148nXIzJdEKieAcyBL3BoACf_CVZv3JIxw2SEF39w,40136
31
+ nvidia_nvtx_cu12-12.1.105.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
32
+ nvidia_nvtx_cu12-12.1.105.dist-info/License.txt,sha256=rW9YU_ugyg0VnQ9Y1JrkmDDC-Mk_epJki5zpCttMbM0,59262
33
+ nvidia_nvtx_cu12-12.1.105.dist-info/METADATA,sha256=LP0Xeqykb8k4yxR2_JzTBqGwxALQERIJbbmP1k6-Z3Y,1660
34
+ nvidia_nvtx_cu12-12.1.105.dist-info/RECORD,,
35
+ nvidia_nvtx_cu12-12.1.105.dist-info/WHEEL,sha256=-kQi_VMfvRQozZJT7HUPMfY-5vLo0LVTmAylNJ3Ft98,106
36
+ nvidia_nvtx_cu12-12.1.105.dist-info/top_level.txt,sha256=fTkAtiFuL16nUrB9ytDDtpytz2t0B4NvYTnRzwAhO14,7
llmeval-env/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/WHEEL ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.37.1)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-manylinux1_x86_64
5
+
llmeval-env/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ nvidia
llmeval-env/lib/python3.10/site-packages/pandas/__init__.py ADDED
@@ -0,0 +1,367 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ import warnings
5
+
6
+ __docformat__ = "restructuredtext"
7
+
8
+ # Let users know if they're missing any of our hard dependencies
9
+ _hard_dependencies = ("numpy", "pytz", "dateutil")
10
+ _missing_dependencies = []
11
+
12
+ for _dependency in _hard_dependencies:
13
+ try:
14
+ __import__(_dependency)
15
+ except ImportError as _e: # pragma: no cover
16
+ _missing_dependencies.append(f"{_dependency}: {_e}")
17
+
18
+ if _missing_dependencies: # pragma: no cover
19
+ raise ImportError(
20
+ "Unable to import required dependencies:\n" + "\n".join(_missing_dependencies)
21
+ )
22
+ del _hard_dependencies, _dependency, _missing_dependencies
23
+
24
+ try:
25
+ # numpy compat
26
+ from pandas.compat import (
27
+ is_numpy_dev as _is_numpy_dev, # pyright: ignore[reportUnusedImport] # noqa: F401
28
+ )
29
+ except ImportError as _err: # pragma: no cover
30
+ _module = _err.name
31
+ raise ImportError(
32
+ f"C extension: {_module} not built. If you want to import "
33
+ "pandas from the source directory, you may need to run "
34
+ "'python setup.py build_ext' to build the C extensions first."
35
+ ) from _err
36
+
37
+ from pandas._config import (
38
+ get_option,
39
+ set_option,
40
+ reset_option,
41
+ describe_option,
42
+ option_context,
43
+ options,
44
+ )
45
+
46
+ # let init-time option registration happen
47
+ import pandas.core.config_init # pyright: ignore[reportUnusedImport] # noqa: F401
48
+
49
+ from pandas.core.api import (
50
+ # dtype
51
+ ArrowDtype,
52
+ Int8Dtype,
53
+ Int16Dtype,
54
+ Int32Dtype,
55
+ Int64Dtype,
56
+ UInt8Dtype,
57
+ UInt16Dtype,
58
+ UInt32Dtype,
59
+ UInt64Dtype,
60
+ Float32Dtype,
61
+ Float64Dtype,
62
+ CategoricalDtype,
63
+ PeriodDtype,
64
+ IntervalDtype,
65
+ DatetimeTZDtype,
66
+ StringDtype,
67
+ BooleanDtype,
68
+ # missing
69
+ NA,
70
+ isna,
71
+ isnull,
72
+ notna,
73
+ notnull,
74
+ # indexes
75
+ Index,
76
+ CategoricalIndex,
77
+ RangeIndex,
78
+ MultiIndex,
79
+ IntervalIndex,
80
+ TimedeltaIndex,
81
+ DatetimeIndex,
82
+ PeriodIndex,
83
+ IndexSlice,
84
+ # tseries
85
+ NaT,
86
+ Period,
87
+ period_range,
88
+ Timedelta,
89
+ timedelta_range,
90
+ Timestamp,
91
+ date_range,
92
+ bdate_range,
93
+ Interval,
94
+ interval_range,
95
+ DateOffset,
96
+ # conversion
97
+ to_numeric,
98
+ to_datetime,
99
+ to_timedelta,
100
+ # misc
101
+ Flags,
102
+ Grouper,
103
+ factorize,
104
+ unique,
105
+ value_counts,
106
+ NamedAgg,
107
+ array,
108
+ Categorical,
109
+ set_eng_float_format,
110
+ Series,
111
+ DataFrame,
112
+ )
113
+
114
+ from pandas.core.dtypes.dtypes import SparseDtype
115
+
116
+ from pandas.tseries.api import infer_freq
117
+ from pandas.tseries import offsets
118
+
119
+ from pandas.core.computation.api import eval
120
+
121
+ from pandas.core.reshape.api import (
122
+ concat,
123
+ lreshape,
124
+ melt,
125
+ wide_to_long,
126
+ merge,
127
+ merge_asof,
128
+ merge_ordered,
129
+ crosstab,
130
+ pivot,
131
+ pivot_table,
132
+ get_dummies,
133
+ from_dummies,
134
+ cut,
135
+ qcut,
136
+ )
137
+
138
+ from pandas import api, arrays, errors, io, plotting, tseries
139
+ from pandas import testing
140
+ from pandas.util._print_versions import show_versions
141
+
142
+ from pandas.io.api import (
143
+ # excel
144
+ ExcelFile,
145
+ ExcelWriter,
146
+ read_excel,
147
+ # parsers
148
+ read_csv,
149
+ read_fwf,
150
+ read_table,
151
+ # pickle
152
+ read_pickle,
153
+ to_pickle,
154
+ # pytables
155
+ HDFStore,
156
+ read_hdf,
157
+ # sql
158
+ read_sql,
159
+ read_sql_query,
160
+ read_sql_table,
161
+ # misc
162
+ read_clipboard,
163
+ read_parquet,
164
+ read_orc,
165
+ read_feather,
166
+ read_gbq,
167
+ read_html,
168
+ read_xml,
169
+ read_json,
170
+ read_stata,
171
+ read_sas,
172
+ read_spss,
173
+ )
174
+
175
+ from pandas.io.json._normalize import json_normalize
176
+
177
+ from pandas.util._tester import test
178
+
179
+ # use the closest tagged version if possible
180
+ _built_with_meson = False
181
+ try:
182
+ from pandas._version_meson import ( # pyright: ignore [reportMissingImports]
183
+ __version__,
184
+ __git_version__,
185
+ )
186
+
187
+ _built_with_meson = True
188
+ except ImportError:
189
+ from pandas._version import get_versions
190
+
191
+ v = get_versions()
192
+ __version__ = v.get("closest-tag", v["version"])
193
+ __git_version__ = v.get("full-revisionid")
194
+ del get_versions, v
195
+
196
+ # GH#55043 - deprecation of the data_manager option
197
+ if "PANDAS_DATA_MANAGER" in os.environ:
198
+ warnings.warn(
199
+ "The env variable PANDAS_DATA_MANAGER is set. The data_manager option is "
200
+ "deprecated and will be removed in a future version. Only the BlockManager "
201
+ "will be available. Unset this environment variable to silence this warning.",
202
+ FutureWarning,
203
+ stacklevel=2,
204
+ )
205
+
206
+ del warnings, os
207
+
208
+ # module level doc-string
209
+ __doc__ = """
210
+ pandas - a powerful data analysis and manipulation library for Python
211
+ =====================================================================
212
+
213
+ **pandas** is a Python package providing fast, flexible, and expressive data
214
+ structures designed to make working with "relational" or "labeled" data both
215
+ easy and intuitive. It aims to be the fundamental high-level building block for
216
+ doing practical, **real world** data analysis in Python. Additionally, it has
217
+ the broader goal of becoming **the most powerful and flexible open source data
218
+ analysis / manipulation tool available in any language**. It is already well on
219
+ its way toward this goal.
220
+
221
+ Main Features
222
+ -------------
223
+ Here are just a few of the things that pandas does well:
224
+
225
+ - Easy handling of missing data in floating point as well as non-floating
226
+ point data.
227
+ - Size mutability: columns can be inserted and deleted from DataFrame and
228
+ higher dimensional objects
229
+ - Automatic and explicit data alignment: objects can be explicitly aligned
230
+ to a set of labels, or the user can simply ignore the labels and let
231
+ `Series`, `DataFrame`, etc. automatically align the data for you in
232
+ computations.
233
+ - Powerful, flexible group by functionality to perform split-apply-combine
234
+ operations on data sets, for both aggregating and transforming data.
235
+ - Make it easy to convert ragged, differently-indexed data in other Python
236
+ and NumPy data structures into DataFrame objects.
237
+ - Intelligent label-based slicing, fancy indexing, and subsetting of large
238
+ data sets.
239
+ - Intuitive merging and joining data sets.
240
+ - Flexible reshaping and pivoting of data sets.
241
+ - Hierarchical labeling of axes (possible to have multiple labels per tick).
242
+ - Robust IO tools for loading data from flat files (CSV and delimited),
243
+ Excel files, databases, and saving/loading data from the ultrafast HDF5
244
+ format.
245
+ - Time series-specific functionality: date range generation and frequency
246
+ conversion, moving window statistics, date shifting and lagging.
247
+ """
248
+
249
+ # Use __all__ to let type checkers know what is part of the public API.
250
+ # Pandas is not (yet) a py.typed library: the public API is determined
251
+ # based on the documentation.
252
+ __all__ = [
253
+ "ArrowDtype",
254
+ "BooleanDtype",
255
+ "Categorical",
256
+ "CategoricalDtype",
257
+ "CategoricalIndex",
258
+ "DataFrame",
259
+ "DateOffset",
260
+ "DatetimeIndex",
261
+ "DatetimeTZDtype",
262
+ "ExcelFile",
263
+ "ExcelWriter",
264
+ "Flags",
265
+ "Float32Dtype",
266
+ "Float64Dtype",
267
+ "Grouper",
268
+ "HDFStore",
269
+ "Index",
270
+ "IndexSlice",
271
+ "Int16Dtype",
272
+ "Int32Dtype",
273
+ "Int64Dtype",
274
+ "Int8Dtype",
275
+ "Interval",
276
+ "IntervalDtype",
277
+ "IntervalIndex",
278
+ "MultiIndex",
279
+ "NA",
280
+ "NaT",
281
+ "NamedAgg",
282
+ "Period",
283
+ "PeriodDtype",
284
+ "PeriodIndex",
285
+ "RangeIndex",
286
+ "Series",
287
+ "SparseDtype",
288
+ "StringDtype",
289
+ "Timedelta",
290
+ "TimedeltaIndex",
291
+ "Timestamp",
292
+ "UInt16Dtype",
293
+ "UInt32Dtype",
294
+ "UInt64Dtype",
295
+ "UInt8Dtype",
296
+ "api",
297
+ "array",
298
+ "arrays",
299
+ "bdate_range",
300
+ "concat",
301
+ "crosstab",
302
+ "cut",
303
+ "date_range",
304
+ "describe_option",
305
+ "errors",
306
+ "eval",
307
+ "factorize",
308
+ "get_dummies",
309
+ "from_dummies",
310
+ "get_option",
311
+ "infer_freq",
312
+ "interval_range",
313
+ "io",
314
+ "isna",
315
+ "isnull",
316
+ "json_normalize",
317
+ "lreshape",
318
+ "melt",
319
+ "merge",
320
+ "merge_asof",
321
+ "merge_ordered",
322
+ "notna",
323
+ "notnull",
324
+ "offsets",
325
+ "option_context",
326
+ "options",
327
+ "period_range",
328
+ "pivot",
329
+ "pivot_table",
330
+ "plotting",
331
+ "qcut",
332
+ "read_clipboard",
333
+ "read_csv",
334
+ "read_excel",
335
+ "read_feather",
336
+ "read_fwf",
337
+ "read_gbq",
338
+ "read_hdf",
339
+ "read_html",
340
+ "read_json",
341
+ "read_orc",
342
+ "read_parquet",
343
+ "read_pickle",
344
+ "read_sas",
345
+ "read_spss",
346
+ "read_sql",
347
+ "read_sql_query",
348
+ "read_sql_table",
349
+ "read_stata",
350
+ "read_table",
351
+ "read_xml",
352
+ "reset_option",
353
+ "set_eng_float_format",
354
+ "set_option",
355
+ "show_versions",
356
+ "test",
357
+ "testing",
358
+ "timedelta_range",
359
+ "to_datetime",
360
+ "to_numeric",
361
+ "to_pickle",
362
+ "to_timedelta",
363
+ "tseries",
364
+ "unique",
365
+ "value_counts",
366
+ "wide_to_long",
367
+ ]
llmeval-env/lib/python3.10/site-packages/pandas/_typing.py ADDED
@@ -0,0 +1,525 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from collections.abc import (
4
+ Hashable,
5
+ Iterator,
6
+ Mapping,
7
+ MutableMapping,
8
+ Sequence,
9
+ )
10
+ from datetime import (
11
+ date,
12
+ datetime,
13
+ timedelta,
14
+ tzinfo,
15
+ )
16
+ from os import PathLike
17
+ import sys
18
+ from typing import (
19
+ TYPE_CHECKING,
20
+ Any,
21
+ Callable,
22
+ Literal,
23
+ Optional,
24
+ Protocol,
25
+ Type as type_t,
26
+ TypeVar,
27
+ Union,
28
+ overload,
29
+ )
30
+
31
+ import numpy as np
32
+
33
+ # To prevent import cycles place any internal imports in the branch below
34
+ # and use a string literal forward reference to it in subsequent types
35
+ # https://mypy.readthedocs.io/en/latest/common_issues.html#import-cycles
36
+ if TYPE_CHECKING:
37
+ import numpy.typing as npt
38
+
39
+ from pandas._libs import (
40
+ NaTType,
41
+ Period,
42
+ Timedelta,
43
+ Timestamp,
44
+ )
45
+ from pandas._libs.tslibs import BaseOffset
46
+
47
+ from pandas.core.dtypes.dtypes import ExtensionDtype
48
+
49
+ from pandas import Interval
50
+ from pandas.arrays import (
51
+ DatetimeArray,
52
+ TimedeltaArray,
53
+ )
54
+ from pandas.core.arrays.base import ExtensionArray
55
+ from pandas.core.frame import DataFrame
56
+ from pandas.core.generic import NDFrame
57
+ from pandas.core.groupby.generic import (
58
+ DataFrameGroupBy,
59
+ GroupBy,
60
+ SeriesGroupBy,
61
+ )
62
+ from pandas.core.indexes.base import Index
63
+ from pandas.core.internals import (
64
+ ArrayManager,
65
+ BlockManager,
66
+ SingleArrayManager,
67
+ SingleBlockManager,
68
+ )
69
+ from pandas.core.resample import Resampler
70
+ from pandas.core.series import Series
71
+ from pandas.core.window.rolling import BaseWindow
72
+
73
+ from pandas.io.formats.format import EngFormatter
74
+ from pandas.tseries.holiday import AbstractHolidayCalendar
75
+
76
+ ScalarLike_co = Union[
77
+ int,
78
+ float,
79
+ complex,
80
+ str,
81
+ bytes,
82
+ np.generic,
83
+ ]
84
+
85
+ # numpy compatible types
86
+ NumpyValueArrayLike = Union[ScalarLike_co, npt.ArrayLike]
87
+ # Name "npt._ArrayLikeInt_co" is not defined [name-defined]
88
+ NumpySorter = Optional[npt._ArrayLikeInt_co] # type: ignore[name-defined]
89
+
90
+ from typing import SupportsIndex
91
+
92
+ if sys.version_info >= (3, 10):
93
+ from typing import TypeGuard # pyright: ignore[reportUnusedImport]
94
+ else:
95
+ from typing_extensions import TypeGuard # pyright: ignore[reportUnusedImport]
96
+
97
+ if sys.version_info >= (3, 11):
98
+ from typing import Self # pyright: ignore[reportUnusedImport]
99
+ else:
100
+ from typing_extensions import Self # pyright: ignore[reportUnusedImport]
101
+ else:
102
+ npt: Any = None
103
+ Self: Any = None
104
+ TypeGuard: Any = None
105
+
106
+ HashableT = TypeVar("HashableT", bound=Hashable)
107
+ MutableMappingT = TypeVar("MutableMappingT", bound=MutableMapping)
108
+
109
+ # array-like
110
+
111
+ ArrayLike = Union["ExtensionArray", np.ndarray]
112
+ AnyArrayLike = Union[ArrayLike, "Index", "Series"]
113
+ TimeArrayLike = Union["DatetimeArray", "TimedeltaArray"]
114
+
115
+ # list-like
116
+
117
+ # from https://github.com/hauntsaninja/useful_types
118
+ # includes Sequence-like objects but excludes str and bytes
119
+ _T_co = TypeVar("_T_co", covariant=True)
120
+
121
+
122
+ class SequenceNotStr(Protocol[_T_co]):
123
+ @overload
124
+ def __getitem__(self, index: SupportsIndex, /) -> _T_co:
125
+ ...
126
+
127
+ @overload
128
+ def __getitem__(self, index: slice, /) -> Sequence[_T_co]:
129
+ ...
130
+
131
+ def __contains__(self, value: object, /) -> bool:
132
+ ...
133
+
134
+ def __len__(self) -> int:
135
+ ...
136
+
137
+ def __iter__(self) -> Iterator[_T_co]:
138
+ ...
139
+
140
+ def index(self, value: Any, /, start: int = 0, stop: int = ...) -> int:
141
+ ...
142
+
143
+ def count(self, value: Any, /) -> int:
144
+ ...
145
+
146
+ def __reversed__(self) -> Iterator[_T_co]:
147
+ ...
148
+
149
+
150
+ ListLike = Union[AnyArrayLike, SequenceNotStr, range]
151
+
152
+ # scalars
153
+
154
+ PythonScalar = Union[str, float, bool]
155
+ DatetimeLikeScalar = Union["Period", "Timestamp", "Timedelta"]
156
+ PandasScalar = Union["Period", "Timestamp", "Timedelta", "Interval"]
157
+ Scalar = Union[PythonScalar, PandasScalar, np.datetime64, np.timedelta64, date]
158
+ IntStrT = TypeVar("IntStrT", bound=Union[int, str])
159
+
160
+
161
+ # timestamp and timedelta convertible types
162
+
163
+ TimestampConvertibleTypes = Union[
164
+ "Timestamp", date, np.datetime64, np.int64, float, str
165
+ ]
166
+ TimestampNonexistent = Union[
167
+ Literal["shift_forward", "shift_backward", "NaT", "raise"], timedelta
168
+ ]
169
+ TimedeltaConvertibleTypes = Union[
170
+ "Timedelta", timedelta, np.timedelta64, np.int64, float, str
171
+ ]
172
+ Timezone = Union[str, tzinfo]
173
+
174
+ ToTimestampHow = Literal["s", "e", "start", "end"]
175
+
176
+ # NDFrameT is stricter and ensures that the same subclass of NDFrame always is
177
+ # used. E.g. `def func(a: NDFrameT) -> NDFrameT: ...` means that if a
178
+ # Series is passed into a function, a Series is always returned and if a DataFrame is
179
+ # passed in, a DataFrame is always returned.
180
+ NDFrameT = TypeVar("NDFrameT", bound="NDFrame")
181
+
182
+ NumpyIndexT = TypeVar("NumpyIndexT", np.ndarray, "Index")
183
+
184
+ AxisInt = int
185
+ Axis = Union[AxisInt, Literal["index", "columns", "rows"]]
186
+ IndexLabel = Union[Hashable, Sequence[Hashable]]
187
+ Level = Hashable
188
+ Shape = tuple[int, ...]
189
+ Suffixes = tuple[Optional[str], Optional[str]]
190
+ Ordered = Optional[bool]
191
+ JSONSerializable = Optional[Union[PythonScalar, list, dict]]
192
+ Frequency = Union[str, "BaseOffset"]
193
+ Axes = ListLike
194
+
195
+ RandomState = Union[
196
+ int,
197
+ np.ndarray,
198
+ np.random.Generator,
199
+ np.random.BitGenerator,
200
+ np.random.RandomState,
201
+ ]
202
+
203
+ # dtypes
204
+ NpDtype = Union[str, np.dtype, type_t[Union[str, complex, bool, object]]]
205
+ Dtype = Union["ExtensionDtype", NpDtype]
206
+ AstypeArg = Union["ExtensionDtype", "npt.DTypeLike"]
207
+ # DtypeArg specifies all allowable dtypes in a functions its dtype argument
208
+ DtypeArg = Union[Dtype, dict[Hashable, Dtype]]
209
+ DtypeObj = Union[np.dtype, "ExtensionDtype"]
210
+
211
+ # converters
212
+ ConvertersArg = dict[Hashable, Callable[[Dtype], Dtype]]
213
+
214
+ # parse_dates
215
+ ParseDatesArg = Union[
216
+ bool, list[Hashable], list[list[Hashable]], dict[Hashable, list[Hashable]]
217
+ ]
218
+
219
+ # For functions like rename that convert one label to another
220
+ Renamer = Union[Mapping[Any, Hashable], Callable[[Any], Hashable]]
221
+
222
+ # to maintain type information across generic functions and parametrization
223
+ T = TypeVar("T")
224
+
225
+ # used in decorators to preserve the signature of the function it decorates
226
+ # see https://mypy.readthedocs.io/en/stable/generics.html#declaring-decorators
227
+ FuncType = Callable[..., Any]
228
+ F = TypeVar("F", bound=FuncType)
229
+
230
+ # types of vectorized key functions for DataFrame::sort_values and
231
+ # DataFrame::sort_index, among others
232
+ ValueKeyFunc = Optional[Callable[["Series"], Union["Series", AnyArrayLike]]]
233
+ IndexKeyFunc = Optional[Callable[["Index"], Union["Index", AnyArrayLike]]]
234
+
235
+ # types of `func` kwarg for DataFrame.aggregate and Series.aggregate
236
+ AggFuncTypeBase = Union[Callable, str]
237
+ AggFuncTypeDict = MutableMapping[
238
+ Hashable, Union[AggFuncTypeBase, list[AggFuncTypeBase]]
239
+ ]
240
+ AggFuncType = Union[
241
+ AggFuncTypeBase,
242
+ list[AggFuncTypeBase],
243
+ AggFuncTypeDict,
244
+ ]
245
+ AggObjType = Union[
246
+ "Series",
247
+ "DataFrame",
248
+ "GroupBy",
249
+ "SeriesGroupBy",
250
+ "DataFrameGroupBy",
251
+ "BaseWindow",
252
+ "Resampler",
253
+ ]
254
+
255
+ PythonFuncType = Callable[[Any], Any]
256
+
257
+ # filenames and file-like-objects
258
+ AnyStr_co = TypeVar("AnyStr_co", str, bytes, covariant=True)
259
+ AnyStr_contra = TypeVar("AnyStr_contra", str, bytes, contravariant=True)
260
+
261
+
262
+ class BaseBuffer(Protocol):
263
+ @property
264
+ def mode(self) -> str:
265
+ # for _get_filepath_or_buffer
266
+ ...
267
+
268
+ def seek(self, __offset: int, __whence: int = ...) -> int:
269
+ # with one argument: gzip.GzipFile, bz2.BZ2File
270
+ # with two arguments: zip.ZipFile, read_sas
271
+ ...
272
+
273
+ def seekable(self) -> bool:
274
+ # for bz2.BZ2File
275
+ ...
276
+
277
+ def tell(self) -> int:
278
+ # for zip.ZipFile, read_stata, to_stata
279
+ ...
280
+
281
+
282
+ class ReadBuffer(BaseBuffer, Protocol[AnyStr_co]):
283
+ def read(self, __n: int = ...) -> AnyStr_co:
284
+ # for BytesIOWrapper, gzip.GzipFile, bz2.BZ2File
285
+ ...
286
+
287
+
288
+ class WriteBuffer(BaseBuffer, Protocol[AnyStr_contra]):
289
+ def write(self, __b: AnyStr_contra) -> Any:
290
+ # for gzip.GzipFile, bz2.BZ2File
291
+ ...
292
+
293
+ def flush(self) -> Any:
294
+ # for gzip.GzipFile, bz2.BZ2File
295
+ ...
296
+
297
+
298
+ class ReadPickleBuffer(ReadBuffer[bytes], Protocol):
299
+ def readline(self) -> bytes:
300
+ ...
301
+
302
+
303
+ class WriteExcelBuffer(WriteBuffer[bytes], Protocol):
304
+ def truncate(self, size: int | None = ...) -> int:
305
+ ...
306
+
307
+
308
+ class ReadCsvBuffer(ReadBuffer[AnyStr_co], Protocol):
309
+ def __iter__(self) -> Iterator[AnyStr_co]:
310
+ # for engine=python
311
+ ...
312
+
313
+ def fileno(self) -> int:
314
+ # for _MMapWrapper
315
+ ...
316
+
317
+ def readline(self) -> AnyStr_co:
318
+ # for engine=python
319
+ ...
320
+
321
+ @property
322
+ def closed(self) -> bool:
323
+ # for enine=pyarrow
324
+ ...
325
+
326
+
327
+ FilePath = Union[str, "PathLike[str]"]
328
+
329
+ # for arbitrary kwargs passed during reading/writing files
330
+ StorageOptions = Optional[dict[str, Any]]
331
+
332
+
333
+ # compression keywords and compression
334
+ CompressionDict = dict[str, Any]
335
+ CompressionOptions = Optional[
336
+ Union[Literal["infer", "gzip", "bz2", "zip", "xz", "zstd", "tar"], CompressionDict]
337
+ ]
338
+
339
+ # types in DataFrameFormatter
340
+ FormattersType = Union[
341
+ list[Callable], tuple[Callable, ...], Mapping[Union[str, int], Callable]
342
+ ]
343
+ ColspaceType = Mapping[Hashable, Union[str, int]]
344
+ FloatFormatType = Union[str, Callable, "EngFormatter"]
345
+ ColspaceArgType = Union[
346
+ str, int, Sequence[Union[str, int]], Mapping[Hashable, Union[str, int]]
347
+ ]
348
+
349
+ # Arguments for fillna()
350
+ FillnaOptions = Literal["backfill", "bfill", "ffill", "pad"]
351
+ InterpolateOptions = Literal[
352
+ "linear",
353
+ "time",
354
+ "index",
355
+ "values",
356
+ "nearest",
357
+ "zero",
358
+ "slinear",
359
+ "quadratic",
360
+ "cubic",
361
+ "barycentric",
362
+ "polynomial",
363
+ "krogh",
364
+ "piecewise_polynomial",
365
+ "spline",
366
+ "pchip",
367
+ "akima",
368
+ "cubicspline",
369
+ "from_derivatives",
370
+ ]
371
+
372
+ # internals
373
+ Manager = Union[
374
+ "ArrayManager", "SingleArrayManager", "BlockManager", "SingleBlockManager"
375
+ ]
376
+ SingleManager = Union["SingleArrayManager", "SingleBlockManager"]
377
+ Manager2D = Union["ArrayManager", "BlockManager"]
378
+
379
+ # indexing
380
+ # PositionalIndexer -> valid 1D positional indexer, e.g. can pass
381
+ # to ndarray.__getitem__
382
+ # ScalarIndexer is for a single value as the index
383
+ # SequenceIndexer is for list like or slices (but not tuples)
384
+ # PositionalIndexerTuple is extends the PositionalIndexer for 2D arrays
385
+ # These are used in various __getitem__ overloads
386
+ # TODO(typing#684): add Ellipsis, see
387
+ # https://github.com/python/typing/issues/684#issuecomment-548203158
388
+ # https://bugs.python.org/issue41810
389
+ # Using List[int] here rather than Sequence[int] to disallow tuples.
390
+ ScalarIndexer = Union[int, np.integer]
391
+ SequenceIndexer = Union[slice, list[int], np.ndarray]
392
+ PositionalIndexer = Union[ScalarIndexer, SequenceIndexer]
393
+ PositionalIndexerTuple = tuple[PositionalIndexer, PositionalIndexer]
394
+ PositionalIndexer2D = Union[PositionalIndexer, PositionalIndexerTuple]
395
+ if TYPE_CHECKING:
396
+ TakeIndexer = Union[Sequence[int], Sequence[np.integer], npt.NDArray[np.integer]]
397
+ else:
398
+ TakeIndexer = Any
399
+
400
+ # Shared by functions such as drop and astype
401
+ IgnoreRaise = Literal["ignore", "raise"]
402
+
403
+ # Windowing rank methods
404
+ WindowingRankType = Literal["average", "min", "max"]
405
+
406
+ # read_csv engines
407
+ CSVEngine = Literal["c", "python", "pyarrow", "python-fwf"]
408
+
409
+ # read_json engines
410
+ JSONEngine = Literal["ujson", "pyarrow"]
411
+
412
+ # read_xml parsers
413
+ XMLParsers = Literal["lxml", "etree"]
414
+
415
+ # read_html flavors
416
+ HTMLFlavors = Literal["lxml", "html5lib", "bs4"]
417
+
418
+ # Interval closed type
419
+ IntervalLeftRight = Literal["left", "right"]
420
+ IntervalClosedType = Union[IntervalLeftRight, Literal["both", "neither"]]
421
+
422
+ # datetime and NaTType
423
+ DatetimeNaTType = Union[datetime, "NaTType"]
424
+ DateTimeErrorChoices = Union[IgnoreRaise, Literal["coerce"]]
425
+
426
+ # sort_index
427
+ SortKind = Literal["quicksort", "mergesort", "heapsort", "stable"]
428
+ NaPosition = Literal["first", "last"]
429
+
430
+ # Arguments for nsmalles and n_largest
431
+ NsmallestNlargestKeep = Literal["first", "last", "all"]
432
+
433
+ # quantile interpolation
434
+ QuantileInterpolation = Literal["linear", "lower", "higher", "midpoint", "nearest"]
435
+
436
+ # plotting
437
+ PlottingOrientation = Literal["horizontal", "vertical"]
438
+
439
+ # dropna
440
+ AnyAll = Literal["any", "all"]
441
+
442
+ # merge
443
+ MergeHow = Literal["left", "right", "inner", "outer", "cross"]
444
+ MergeValidate = Literal[
445
+ "one_to_one",
446
+ "1:1",
447
+ "one_to_many",
448
+ "1:m",
449
+ "many_to_one",
450
+ "m:1",
451
+ "many_to_many",
452
+ "m:m",
453
+ ]
454
+
455
+ # join
456
+ JoinHow = Literal["left", "right", "inner", "outer"]
457
+ JoinValidate = Literal[
458
+ "one_to_one",
459
+ "1:1",
460
+ "one_to_many",
461
+ "1:m",
462
+ "many_to_one",
463
+ "m:1",
464
+ "many_to_many",
465
+ "m:m",
466
+ ]
467
+
468
+ # reindex
469
+ ReindexMethod = Union[FillnaOptions, Literal["nearest"]]
470
+
471
+ MatplotlibColor = Union[str, Sequence[float]]
472
+ TimeGrouperOrigin = Union[
473
+ "Timestamp", Literal["epoch", "start", "start_day", "end", "end_day"]
474
+ ]
475
+ TimeAmbiguous = Union[Literal["infer", "NaT", "raise"], "npt.NDArray[np.bool_]"]
476
+ TimeNonexistent = Union[
477
+ Literal["shift_forward", "shift_backward", "NaT", "raise"], timedelta
478
+ ]
479
+ DropKeep = Literal["first", "last", False]
480
+ CorrelationMethod = Union[
481
+ Literal["pearson", "kendall", "spearman"], Callable[[np.ndarray, np.ndarray], float]
482
+ ]
483
+ AlignJoin = Literal["outer", "inner", "left", "right"]
484
+ DtypeBackend = Literal["pyarrow", "numpy_nullable"]
485
+
486
+ TimeUnit = Literal["s", "ms", "us", "ns"]
487
+ OpenFileErrors = Literal[
488
+ "strict",
489
+ "ignore",
490
+ "replace",
491
+ "surrogateescape",
492
+ "xmlcharrefreplace",
493
+ "backslashreplace",
494
+ "namereplace",
495
+ ]
496
+
497
+ # update
498
+ UpdateJoin = Literal["left"]
499
+
500
+ # applymap
501
+ NaAction = Literal["ignore"]
502
+
503
+ # from_dict
504
+ FromDictOrient = Literal["columns", "index", "tight"]
505
+
506
+ # to_gbc
507
+ ToGbqIfexist = Literal["fail", "replace", "append"]
508
+
509
+ # to_stata
510
+ ToStataByteorder = Literal[">", "<", "little", "big"]
511
+
512
+ # ExcelWriter
513
+ ExcelWriterIfSheetExists = Literal["error", "new", "replace", "overlay"]
514
+
515
+ # Offsets
516
+ OffsetCalendar = Union[np.busdaycalendar, "AbstractHolidayCalendar"]
517
+
518
+ # read_csv: usecols
519
+ UsecolsArgType = Union[
520
+ SequenceNotStr[Hashable],
521
+ range,
522
+ AnyArrayLike,
523
+ Callable[[HashableT], bool],
524
+ None,
525
+ ]
llmeval-env/lib/python3.10/site-packages/pandas/_version.py ADDED
@@ -0,0 +1,692 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file helps to compute a version number in source trees obtained from
2
+ # git-archive tarball (such as those provided by githubs download-from-tag
3
+ # feature). Distribution tarballs (built by setup.py sdist) and build
4
+ # directories (produced by setup.py build) will contain a much shorter file
5
+ # that just contains the computed version number.
6
+
7
+ # This file is released into the public domain.
8
+ # Generated by versioneer-0.28
9
+ # https://github.com/python-versioneer/python-versioneer
10
+
11
+ """Git implementation of _version.py."""
12
+
13
+ import errno
14
+ import functools
15
+ import os
16
+ import re
17
+ import subprocess
18
+ import sys
19
+ from typing import Callable
20
+
21
+
22
+ def get_keywords():
23
+ """Get the keywords needed to look up the version information."""
24
+ # these strings will be replaced by git during git-archive.
25
+ # setup.py/versioneer.py will grep for the variable names, so they must
26
+ # each be defined on a line of their own. _version.py will just call
27
+ # get_keywords().
28
+ git_refnames = "$Format:%d$"
29
+ git_full = "$Format:%H$"
30
+ git_date = "$Format:%ci$"
31
+ keywords = {"refnames": git_refnames, "full": git_full, "date": git_date}
32
+ return keywords
33
+
34
+
35
+ class VersioneerConfig:
36
+ """Container for Versioneer configuration parameters."""
37
+
38
+
39
+ def get_config():
40
+ """Create, populate and return the VersioneerConfig() object."""
41
+ # these strings are filled in when 'setup.py versioneer' creates
42
+ # _version.py
43
+ cfg = VersioneerConfig()
44
+ cfg.VCS = "git"
45
+ cfg.style = "pep440"
46
+ cfg.tag_prefix = "v"
47
+ cfg.parentdir_prefix = "pandas-"
48
+ cfg.versionfile_source = "pandas/_version.py"
49
+ cfg.verbose = False
50
+ return cfg
51
+
52
+
53
+ class NotThisMethod(Exception):
54
+ """Exception raised if a method is not valid for the current scenario."""
55
+
56
+
57
+ LONG_VERSION_PY: dict[str, str] = {}
58
+ HANDLERS: dict[str, dict[str, Callable]] = {}
59
+
60
+
61
+ def register_vcs_handler(vcs, method): # decorator
62
+ """Create decorator to mark a method as the handler of a VCS."""
63
+
64
+ def decorate(f):
65
+ """Store f in HANDLERS[vcs][method]."""
66
+ if vcs not in HANDLERS:
67
+ HANDLERS[vcs] = {}
68
+ HANDLERS[vcs][method] = f
69
+ return f
70
+
71
+ return decorate
72
+
73
+
74
+ def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None):
75
+ """Call the given command(s)."""
76
+ assert isinstance(commands, list)
77
+ process = None
78
+
79
+ popen_kwargs = {}
80
+ if sys.platform == "win32":
81
+ # This hides the console window if pythonw.exe is used
82
+ startupinfo = subprocess.STARTUPINFO()
83
+ startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW
84
+ popen_kwargs["startupinfo"] = startupinfo
85
+
86
+ for command in commands:
87
+ dispcmd = str([command] + args)
88
+ try:
89
+ # remember shell=False, so use git.cmd on windows, not just git
90
+ process = subprocess.Popen(
91
+ [command] + args,
92
+ cwd=cwd,
93
+ env=env,
94
+ stdout=subprocess.PIPE,
95
+ stderr=(subprocess.PIPE if hide_stderr else None),
96
+ **popen_kwargs,
97
+ )
98
+ break
99
+ except OSError:
100
+ e = sys.exc_info()[1]
101
+ if e.errno == errno.ENOENT:
102
+ continue
103
+ if verbose:
104
+ print(f"unable to run {dispcmd}")
105
+ print(e)
106
+ return None, None
107
+ else:
108
+ if verbose:
109
+ print(f"unable to find command, tried {commands}")
110
+ return None, None
111
+ stdout = process.communicate()[0].strip().decode()
112
+ if process.returncode != 0:
113
+ if verbose:
114
+ print(f"unable to run {dispcmd} (error)")
115
+ print(f"stdout was {stdout}")
116
+ return None, process.returncode
117
+ return stdout, process.returncode
118
+
119
+
120
+ def versions_from_parentdir(parentdir_prefix, root, verbose):
121
+ """Try to determine the version from the parent directory name.
122
+
123
+ Source tarballs conventionally unpack into a directory that includes both
124
+ the project name and a version string. We will also support searching up
125
+ two directory levels for an appropriately named parent directory
126
+ """
127
+ rootdirs = []
128
+
129
+ for _ in range(3):
130
+ dirname = os.path.basename(root)
131
+ if dirname.startswith(parentdir_prefix):
132
+ return {
133
+ "version": dirname[len(parentdir_prefix) :],
134
+ "full-revisionid": None,
135
+ "dirty": False,
136
+ "error": None,
137
+ "date": None,
138
+ }
139
+ rootdirs.append(root)
140
+ root = os.path.dirname(root) # up a level
141
+
142
+ if verbose:
143
+ print(
144
+ f"Tried directories {str(rootdirs)} \
145
+ but none started with prefix {parentdir_prefix}"
146
+ )
147
+ raise NotThisMethod("rootdir doesn't start with parentdir_prefix")
148
+
149
+
150
+ @register_vcs_handler("git", "get_keywords")
151
+ def git_get_keywords(versionfile_abs):
152
+ """Extract version information from the given file."""
153
+ # the code embedded in _version.py can just fetch the value of these
154
+ # keywords. When used from setup.py, we don't want to import _version.py,
155
+ # so we do it with a regexp instead. This function is not used from
156
+ # _version.py.
157
+ keywords = {}
158
+ try:
159
+ with open(versionfile_abs, encoding="utf-8") as fobj:
160
+ for line in fobj:
161
+ if line.strip().startswith("git_refnames ="):
162
+ mo = re.search(r'=\s*"(.*)"', line)
163
+ if mo:
164
+ keywords["refnames"] = mo.group(1)
165
+ if line.strip().startswith("git_full ="):
166
+ mo = re.search(r'=\s*"(.*)"', line)
167
+ if mo:
168
+ keywords["full"] = mo.group(1)
169
+ if line.strip().startswith("git_date ="):
170
+ mo = re.search(r'=\s*"(.*)"', line)
171
+ if mo:
172
+ keywords["date"] = mo.group(1)
173
+ except OSError:
174
+ pass
175
+ return keywords
176
+
177
+
178
+ @register_vcs_handler("git", "keywords")
179
+ def git_versions_from_keywords(keywords, tag_prefix, verbose):
180
+ """Get version information from git keywords."""
181
+ if "refnames" not in keywords:
182
+ raise NotThisMethod("Short version file found")
183
+ date = keywords.get("date")
184
+ if date is not None:
185
+ # Use only the last line. Previous lines may contain GPG signature
186
+ # information.
187
+ date = date.splitlines()[-1]
188
+
189
+ # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant
190
+ # datestamp. However we prefer "%ci" (which expands to an "ISO-8601
191
+ # -like" string, which we must then edit to make compliant), because
192
+ # it's been around since git-1.5.3, and it's too difficult to
193
+ # discover which version we're using, or to work around using an
194
+ # older one.
195
+ date = date.strip().replace(" ", "T", 1).replace(" ", "", 1)
196
+ refnames = keywords["refnames"].strip()
197
+ if refnames.startswith("$Format"):
198
+ if verbose:
199
+ print("keywords are unexpanded, not using")
200
+ raise NotThisMethod("unexpanded keywords, not a git-archive tarball")
201
+ refs = {r.strip() for r in refnames.strip("()").split(",")}
202
+ # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of
203
+ # just "foo-1.0". If we see a "tag: " prefix, prefer those.
204
+ TAG = "tag: "
205
+ tags = {r[len(TAG) :] for r in refs if r.startswith(TAG)}
206
+ if not tags:
207
+ # Either we're using git < 1.8.3, or there really are no tags. We use
208
+ # a heuristic: assume all version tags have a digit. The old git %d
209
+ # expansion behaves like git log --decorate=short and strips out the
210
+ # refs/heads/ and refs/tags/ prefixes that would let us distinguish
211
+ # between branches and tags. By ignoring refnames without digits, we
212
+ # filter out many common branch names like "release" and
213
+ # "stabilization", as well as "HEAD" and "master".
214
+ tags = {r for r in refs if re.search(r"\d", r)}
215
+ if verbose:
216
+ print(f"discarding '{','.join(refs - tags)}', no digits")
217
+ if verbose:
218
+ print(f"likely tags: {','.join(sorted(tags))}")
219
+ for ref in sorted(tags):
220
+ # sorting will prefer e.g. "2.0" over "2.0rc1"
221
+ if ref.startswith(tag_prefix):
222
+ r = ref[len(tag_prefix) :]
223
+ # Filter out refs that exactly match prefix or that don't start
224
+ # with a number once the prefix is stripped (mostly a concern
225
+ # when prefix is '')
226
+ if not re.match(r"\d", r):
227
+ continue
228
+ if verbose:
229
+ print(f"picking {r}")
230
+ return {
231
+ "version": r,
232
+ "full-revisionid": keywords["full"].strip(),
233
+ "dirty": False,
234
+ "error": None,
235
+ "date": date,
236
+ }
237
+ # no suitable tags, so version is "0+unknown", but full hex is still there
238
+ if verbose:
239
+ print("no suitable tags, using unknown + full revision id")
240
+ return {
241
+ "version": "0+unknown",
242
+ "full-revisionid": keywords["full"].strip(),
243
+ "dirty": False,
244
+ "error": "no suitable tags",
245
+ "date": None,
246
+ }
247
+
248
+
249
+ @register_vcs_handler("git", "pieces_from_vcs")
250
+ def git_pieces_from_vcs(tag_prefix, root, verbose, runner=run_command):
251
+ """Get version from 'git describe' in the root of the source tree.
252
+
253
+ This only gets called if the git-archive 'subst' keywords were *not*
254
+ expanded, and _version.py hasn't already been rewritten with a short
255
+ version string, meaning we're inside a checked out source tree.
256
+ """
257
+ GITS = ["git"]
258
+ if sys.platform == "win32":
259
+ GITS = ["git.cmd", "git.exe"]
260
+
261
+ # GIT_DIR can interfere with correct operation of Versioneer.
262
+ # It may be intended to be passed to the Versioneer-versioned project,
263
+ # but that should not change where we get our version from.
264
+ env = os.environ.copy()
265
+ env.pop("GIT_DIR", None)
266
+ runner = functools.partial(runner, env=env)
267
+
268
+ _, rc = runner(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=not verbose)
269
+ if rc != 0:
270
+ if verbose:
271
+ print(f"Directory {root} not under git control")
272
+ raise NotThisMethod("'git rev-parse --git-dir' returned error")
273
+
274
+ # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty]
275
+ # if there isn't one, this yields HEX[-dirty] (no NUM)
276
+ describe_out, rc = runner(
277
+ GITS,
278
+ [
279
+ "describe",
280
+ "--tags",
281
+ "--dirty",
282
+ "--always",
283
+ "--long",
284
+ "--match",
285
+ f"{tag_prefix}[[:digit:]]*",
286
+ ],
287
+ cwd=root,
288
+ )
289
+ # --long was added in git-1.5.5
290
+ if describe_out is None:
291
+ raise NotThisMethod("'git describe' failed")
292
+ describe_out = describe_out.strip()
293
+ full_out, rc = runner(GITS, ["rev-parse", "HEAD"], cwd=root)
294
+ if full_out is None:
295
+ raise NotThisMethod("'git rev-parse' failed")
296
+ full_out = full_out.strip()
297
+
298
+ pieces = {}
299
+ pieces["long"] = full_out
300
+ pieces["short"] = full_out[:7] # maybe improved later
301
+ pieces["error"] = None
302
+
303
+ branch_name, rc = runner(GITS, ["rev-parse", "--abbrev-ref", "HEAD"], cwd=root)
304
+ # --abbrev-ref was added in git-1.6.3
305
+ if rc != 0 or branch_name is None:
306
+ raise NotThisMethod("'git rev-parse --abbrev-ref' returned error")
307
+ branch_name = branch_name.strip()
308
+
309
+ if branch_name == "HEAD":
310
+ # If we aren't exactly on a branch, pick a branch which represents
311
+ # the current commit. If all else fails, we are on a branchless
312
+ # commit.
313
+ branches, rc = runner(GITS, ["branch", "--contains"], cwd=root)
314
+ # --contains was added in git-1.5.4
315
+ if rc != 0 or branches is None:
316
+ raise NotThisMethod("'git branch --contains' returned error")
317
+ branches = branches.split("\n")
318
+
319
+ # Remove the first line if we're running detached
320
+ if "(" in branches[0]:
321
+ branches.pop(0)
322
+
323
+ # Strip off the leading "* " from the list of branches.
324
+ branches = [branch[2:] for branch in branches]
325
+ if "master" in branches:
326
+ branch_name = "master"
327
+ elif not branches:
328
+ branch_name = None
329
+ else:
330
+ # Pick the first branch that is returned. Good or bad.
331
+ branch_name = branches[0]
332
+
333
+ pieces["branch"] = branch_name
334
+
335
+ # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty]
336
+ # TAG might have hyphens.
337
+ git_describe = describe_out
338
+
339
+ # look for -dirty suffix
340
+ dirty = git_describe.endswith("-dirty")
341
+ pieces["dirty"] = dirty
342
+ if dirty:
343
+ git_describe = git_describe[: git_describe.rindex("-dirty")]
344
+
345
+ # now we have TAG-NUM-gHEX or HEX
346
+
347
+ if "-" in git_describe:
348
+ # TAG-NUM-gHEX
349
+ mo = re.search(r"^(.+)-(\d+)-g([0-9a-f]+)$", git_describe)
350
+ if not mo:
351
+ # unparsable. Maybe git-describe is misbehaving?
352
+ pieces["error"] = f"unable to parse git-describe output: '{describe_out}'"
353
+ return pieces
354
+
355
+ # tag
356
+ full_tag = mo.group(1)
357
+ if not full_tag.startswith(tag_prefix):
358
+ if verbose:
359
+ fmt = "tag '%s' doesn't start with prefix '%s'"
360
+ print(fmt % (full_tag, tag_prefix))
361
+ pieces[
362
+ "error"
363
+ ] = f"tag '{full_tag}' doesn't start with prefix '{tag_prefix}'"
364
+ return pieces
365
+ pieces["closest-tag"] = full_tag[len(tag_prefix) :]
366
+
367
+ # distance: number of commits since tag
368
+ pieces["distance"] = int(mo.group(2))
369
+
370
+ # commit: short hex revision ID
371
+ pieces["short"] = mo.group(3)
372
+
373
+ else:
374
+ # HEX: no tags
375
+ pieces["closest-tag"] = None
376
+ out, rc = runner(GITS, ["rev-list", "HEAD", "--left-right"], cwd=root)
377
+ pieces["distance"] = len(out.split()) # total number of commits
378
+
379
+ # commit date: see ISO-8601 comment in git_versions_from_keywords()
380
+ date = runner(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip()
381
+ # Use only the last line. Previous lines may contain GPG signature
382
+ # information.
383
+ date = date.splitlines()[-1]
384
+ pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1)
385
+
386
+ return pieces
387
+
388
+
389
+ def plus_or_dot(pieces) -> str:
390
+ """Return a + if we don't already have one, else return a ."""
391
+ if "+" in pieces.get("closest-tag", ""):
392
+ return "."
393
+ return "+"
394
+
395
+
396
+ def render_pep440(pieces):
397
+ """Build up version string, with post-release "local version identifier".
398
+
399
+ Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you
400
+ get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty
401
+
402
+ Exceptions:
403
+ 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty]
404
+ """
405
+ if pieces["closest-tag"]:
406
+ rendered = pieces["closest-tag"]
407
+ if pieces["distance"] or pieces["dirty"]:
408
+ rendered += plus_or_dot(pieces)
409
+ rendered += f"{pieces['distance']}.g{pieces['short']}"
410
+ if pieces["dirty"]:
411
+ rendered += ".dirty"
412
+ else:
413
+ # exception #1
414
+ rendered = f"0+untagged.{pieces['distance']}.g{pieces['short']}"
415
+ if pieces["dirty"]:
416
+ rendered += ".dirty"
417
+ return rendered
418
+
419
+
420
+ def render_pep440_branch(pieces):
421
+ """TAG[[.dev0]+DISTANCE.gHEX[.dirty]] .
422
+
423
+ The ".dev0" means not master branch. Note that .dev0 sorts backwards
424
+ (a feature branch will appear "older" than the master branch).
425
+
426
+ Exceptions:
427
+ 1: no tags. 0[.dev0]+untagged.DISTANCE.gHEX[.dirty]
428
+ """
429
+ if pieces["closest-tag"]:
430
+ rendered = pieces["closest-tag"]
431
+ if pieces["distance"] or pieces["dirty"]:
432
+ if pieces["branch"] != "master":
433
+ rendered += ".dev0"
434
+ rendered += plus_or_dot(pieces)
435
+ rendered += f"{pieces['distance']}.g{pieces['short']}"
436
+ if pieces["dirty"]:
437
+ rendered += ".dirty"
438
+ else:
439
+ # exception #1
440
+ rendered = "0"
441
+ if pieces["branch"] != "master":
442
+ rendered += ".dev0"
443
+ rendered += f"+untagged.{pieces['distance']}.g{pieces['short']}"
444
+ if pieces["dirty"]:
445
+ rendered += ".dirty"
446
+ return rendered
447
+
448
+
449
+ def pep440_split_post(ver):
450
+ """Split pep440 version string at the post-release segment.
451
+
452
+ Returns the release segments before the post-release and the
453
+ post-release version number (or -1 if no post-release segment is present).
454
+ """
455
+ vc = str.split(ver, ".post")
456
+ return vc[0], int(vc[1] or 0) if len(vc) == 2 else None
457
+
458
+
459
+ def render_pep440_pre(pieces):
460
+ """TAG[.postN.devDISTANCE] -- No -dirty.
461
+
462
+ Exceptions:
463
+ 1: no tags. 0.post0.devDISTANCE
464
+ """
465
+ if pieces["closest-tag"]:
466
+ if pieces["distance"]:
467
+ # update the post release segment
468
+ tag_version, post_version = pep440_split_post(pieces["closest-tag"])
469
+ rendered = tag_version
470
+ if post_version is not None:
471
+ rendered += f".post{post_version + 1}.dev{pieces['distance']}"
472
+ else:
473
+ rendered += f".post0.dev{pieces['distance']}"
474
+ else:
475
+ # no commits, use the tag as the version
476
+ rendered = pieces["closest-tag"]
477
+ else:
478
+ # exception #1
479
+ rendered = f"0.post0.dev{pieces['distance']}"
480
+ return rendered
481
+
482
+
483
+ def render_pep440_post(pieces):
484
+ """TAG[.postDISTANCE[.dev0]+gHEX] .
485
+
486
+ The ".dev0" means dirty. Note that .dev0 sorts backwards
487
+ (a dirty tree will appear "older" than the corresponding clean one),
488
+ but you shouldn't be releasing software with -dirty anyways.
489
+
490
+ Exceptions:
491
+ 1: no tags. 0.postDISTANCE[.dev0]
492
+ """
493
+ if pieces["closest-tag"]:
494
+ rendered = pieces["closest-tag"]
495
+ if pieces["distance"] or pieces["dirty"]:
496
+ rendered += f".post{pieces['distance']}"
497
+ if pieces["dirty"]:
498
+ rendered += ".dev0"
499
+ rendered += plus_or_dot(pieces)
500
+ rendered += f"g{pieces['short']}"
501
+ else:
502
+ # exception #1
503
+ rendered = f"0.post{pieces['distance']}"
504
+ if pieces["dirty"]:
505
+ rendered += ".dev0"
506
+ rendered += f"+g{pieces['short']}"
507
+ return rendered
508
+
509
+
510
+ def render_pep440_post_branch(pieces):
511
+ """TAG[.postDISTANCE[.dev0]+gHEX[.dirty]] .
512
+
513
+ The ".dev0" means not master branch.
514
+
515
+ Exceptions:
516
+ 1: no tags. 0.postDISTANCE[.dev0]+gHEX[.dirty]
517
+ """
518
+ if pieces["closest-tag"]:
519
+ rendered = pieces["closest-tag"]
520
+ if pieces["distance"] or pieces["dirty"]:
521
+ rendered += f".post{pieces['distance']}"
522
+ if pieces["branch"] != "master":
523
+ rendered += ".dev0"
524
+ rendered += plus_or_dot(pieces)
525
+ rendered += f"g{pieces['short']}"
526
+ if pieces["dirty"]:
527
+ rendered += ".dirty"
528
+ else:
529
+ # exception #1
530
+ rendered = f"0.post{pieces['distance']}"
531
+ if pieces["branch"] != "master":
532
+ rendered += ".dev0"
533
+ rendered += f"+g{pieces['short']}"
534
+ if pieces["dirty"]:
535
+ rendered += ".dirty"
536
+ return rendered
537
+
538
+
539
+ def render_pep440_old(pieces):
540
+ """TAG[.postDISTANCE[.dev0]] .
541
+
542
+ The ".dev0" means dirty.
543
+
544
+ Exceptions:
545
+ 1: no tags. 0.postDISTANCE[.dev0]
546
+ """
547
+ if pieces["closest-tag"]:
548
+ rendered = pieces["closest-tag"]
549
+ if pieces["distance"] or pieces["dirty"]:
550
+ rendered += f"0.post{pieces['distance']}"
551
+ if pieces["dirty"]:
552
+ rendered += ".dev0"
553
+ else:
554
+ # exception #1
555
+ rendered = f"0.post{pieces['distance']}"
556
+ if pieces["dirty"]:
557
+ rendered += ".dev0"
558
+ return rendered
559
+
560
+
561
+ def render_git_describe(pieces):
562
+ """TAG[-DISTANCE-gHEX][-dirty].
563
+
564
+ Like 'git describe --tags --dirty --always'.
565
+
566
+ Exceptions:
567
+ 1: no tags. HEX[-dirty] (note: no 'g' prefix)
568
+ """
569
+ if pieces["closest-tag"]:
570
+ rendered = pieces["closest-tag"]
571
+ if pieces["distance"]:
572
+ rendered += f"-{pieces['distance']}-g{pieces['short']}"
573
+ else:
574
+ # exception #1
575
+ rendered = pieces["short"]
576
+ if pieces["dirty"]:
577
+ rendered += "-dirty"
578
+ return rendered
579
+
580
+
581
+ def render_git_describe_long(pieces):
582
+ """TAG-DISTANCE-gHEX[-dirty].
583
+
584
+ Like 'git describe --tags --dirty --always -long'.
585
+ The distance/hash is unconditional.
586
+
587
+ Exceptions:
588
+ 1: no tags. HEX[-dirty] (note: no 'g' prefix)
589
+ """
590
+ if pieces["closest-tag"]:
591
+ rendered = pieces["closest-tag"]
592
+ rendered += f"-{pieces['distance']}-g{pieces['short']}"
593
+ else:
594
+ # exception #1
595
+ rendered = pieces["short"]
596
+ if pieces["dirty"]:
597
+ rendered += "-dirty"
598
+ return rendered
599
+
600
+
601
+ def render(pieces, style):
602
+ """Render the given version pieces into the requested style."""
603
+ if pieces["error"]:
604
+ return {
605
+ "version": "unknown",
606
+ "full-revisionid": pieces.get("long"),
607
+ "dirty": None,
608
+ "error": pieces["error"],
609
+ "date": None,
610
+ }
611
+
612
+ if not style or style == "default":
613
+ style = "pep440" # the default
614
+
615
+ if style == "pep440":
616
+ rendered = render_pep440(pieces)
617
+ elif style == "pep440-branch":
618
+ rendered = render_pep440_branch(pieces)
619
+ elif style == "pep440-pre":
620
+ rendered = render_pep440_pre(pieces)
621
+ elif style == "pep440-post":
622
+ rendered = render_pep440_post(pieces)
623
+ elif style == "pep440-post-branch":
624
+ rendered = render_pep440_post_branch(pieces)
625
+ elif style == "pep440-old":
626
+ rendered = render_pep440_old(pieces)
627
+ elif style == "git-describe":
628
+ rendered = render_git_describe(pieces)
629
+ elif style == "git-describe-long":
630
+ rendered = render_git_describe_long(pieces)
631
+ else:
632
+ raise ValueError(f"unknown style '{style}'")
633
+
634
+ return {
635
+ "version": rendered,
636
+ "full-revisionid": pieces["long"],
637
+ "dirty": pieces["dirty"],
638
+ "error": None,
639
+ "date": pieces.get("date"),
640
+ }
641
+
642
+
643
+ def get_versions():
644
+ """Get version information or return default if unable to do so."""
645
+ # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have
646
+ # __file__, we can work backwards from there to the root. Some
647
+ # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which
648
+ # case we can only use expanded keywords.
649
+
650
+ cfg = get_config()
651
+ verbose = cfg.verbose
652
+
653
+ try:
654
+ return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose)
655
+ except NotThisMethod:
656
+ pass
657
+
658
+ try:
659
+ root = os.path.realpath(__file__)
660
+ # versionfile_source is the relative path from the top of the source
661
+ # tree (where the .git directory might live) to this file. Invert
662
+ # this to find the root from __file__.
663
+ for _ in cfg.versionfile_source.split("/"):
664
+ root = os.path.dirname(root)
665
+ except NameError:
666
+ return {
667
+ "version": "0+unknown",
668
+ "full-revisionid": None,
669
+ "dirty": None,
670
+ "error": "unable to find root of source tree",
671
+ "date": None,
672
+ }
673
+
674
+ try:
675
+ pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose)
676
+ return render(pieces, cfg.style)
677
+ except NotThisMethod:
678
+ pass
679
+
680
+ try:
681
+ if cfg.parentdir_prefix:
682
+ return versions_from_parentdir(cfg.parentdir_prefix, root, verbose)
683
+ except NotThisMethod:
684
+ pass
685
+
686
+ return {
687
+ "version": "0+unknown",
688
+ "full-revisionid": None,
689
+ "dirty": None,
690
+ "error": "unable to compute version",
691
+ "date": None,
692
+ }
llmeval-env/lib/python3.10/site-packages/pandas/_version_meson.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ __version__="2.2.2"
2
+ __git_version__="d9cdd2ee5a58015ef6f4d15c7226110c9aab8140"
llmeval-env/lib/python3.10/site-packages/pandas/conftest.py ADDED
@@ -0,0 +1,1965 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file is very long and growing, but it was decided to not split it yet, as
3
+ it's still manageable (2020-03-17, ~1.1k LoC). See gh-31989
4
+
5
+ Instead of splitting it was decided to define sections here:
6
+ - Configuration / Settings
7
+ - Autouse fixtures
8
+ - Common arguments
9
+ - Missing values & co.
10
+ - Classes
11
+ - Indices
12
+ - Series'
13
+ - DataFrames
14
+ - Operators & Operations
15
+ - Data sets/files
16
+ - Time zones
17
+ - Dtypes
18
+ - Misc
19
+ """
20
+ from __future__ import annotations
21
+
22
+ from collections import abc
23
+ from datetime import (
24
+ date,
25
+ datetime,
26
+ time,
27
+ timedelta,
28
+ timezone,
29
+ )
30
+ from decimal import Decimal
31
+ import operator
32
+ import os
33
+ from typing import (
34
+ TYPE_CHECKING,
35
+ Callable,
36
+ )
37
+
38
+ from dateutil.tz import (
39
+ tzlocal,
40
+ tzutc,
41
+ )
42
+ import hypothesis
43
+ from hypothesis import strategies as st
44
+ import numpy as np
45
+ import pytest
46
+ from pytz import (
47
+ FixedOffset,
48
+ utc,
49
+ )
50
+
51
+ from pandas._config.config import _get_option
52
+
53
+ import pandas.util._test_decorators as td
54
+
55
+ from pandas.core.dtypes.dtypes import (
56
+ DatetimeTZDtype,
57
+ IntervalDtype,
58
+ )
59
+
60
+ import pandas as pd
61
+ from pandas import (
62
+ CategoricalIndex,
63
+ DataFrame,
64
+ Interval,
65
+ IntervalIndex,
66
+ Period,
67
+ RangeIndex,
68
+ Series,
69
+ Timedelta,
70
+ Timestamp,
71
+ date_range,
72
+ period_range,
73
+ timedelta_range,
74
+ )
75
+ import pandas._testing as tm
76
+ from pandas.core import ops
77
+ from pandas.core.indexes.api import (
78
+ Index,
79
+ MultiIndex,
80
+ )
81
+ from pandas.util.version import Version
82
+
83
+ if TYPE_CHECKING:
84
+ from collections.abc import (
85
+ Hashable,
86
+ Iterator,
87
+ )
88
+
89
+ try:
90
+ import pyarrow as pa
91
+ except ImportError:
92
+ has_pyarrow = False
93
+ else:
94
+ del pa
95
+ has_pyarrow = True
96
+
97
+ import zoneinfo
98
+
99
+ try:
100
+ zoneinfo.ZoneInfo("UTC")
101
+ except zoneinfo.ZoneInfoNotFoundError:
102
+ zoneinfo = None # type: ignore[assignment]
103
+
104
+
105
+ # ----------------------------------------------------------------
106
+ # Configuration / Settings
107
+ # ----------------------------------------------------------------
108
+ # pytest
109
+
110
+
111
+ def pytest_addoption(parser) -> None:
112
+ parser.addoption(
113
+ "--no-strict-data-files",
114
+ action="store_false",
115
+ help="Don't fail if a test is skipped for missing data file.",
116
+ )
117
+
118
+
119
+ def ignore_doctest_warning(item: pytest.Item, path: str, message: str) -> None:
120
+ """Ignore doctest warning.
121
+
122
+ Parameters
123
+ ----------
124
+ item : pytest.Item
125
+ pytest test item.
126
+ path : str
127
+ Module path to Python object, e.g. "pandas.core.frame.DataFrame.append". A
128
+ warning will be filtered when item.name ends with in given path. So it is
129
+ sufficient to specify e.g. "DataFrame.append".
130
+ message : str
131
+ Message to be filtered.
132
+ """
133
+ if item.name.endswith(path):
134
+ item.add_marker(pytest.mark.filterwarnings(f"ignore:{message}"))
135
+
136
+
137
+ def pytest_collection_modifyitems(items, config) -> None:
138
+ is_doctest = config.getoption("--doctest-modules") or config.getoption(
139
+ "--doctest-cython", default=False
140
+ )
141
+
142
+ # Warnings from doctests that can be ignored; place reason in comment above.
143
+ # Each entry specifies (path, message) - see the ignore_doctest_warning function
144
+ ignored_doctest_warnings = [
145
+ ("is_int64_dtype", "is_int64_dtype is deprecated"),
146
+ ("is_interval_dtype", "is_interval_dtype is deprecated"),
147
+ ("is_period_dtype", "is_period_dtype is deprecated"),
148
+ ("is_datetime64tz_dtype", "is_datetime64tz_dtype is deprecated"),
149
+ ("is_categorical_dtype", "is_categorical_dtype is deprecated"),
150
+ ("is_sparse", "is_sparse is deprecated"),
151
+ ("DataFrameGroupBy.fillna", "DataFrameGroupBy.fillna is deprecated"),
152
+ ("NDFrame.replace", "The 'method' keyword"),
153
+ ("NDFrame.replace", "Series.replace without 'value'"),
154
+ ("NDFrame.clip", "Downcasting behavior in Series and DataFrame methods"),
155
+ ("Series.idxmin", "The behavior of Series.idxmin"),
156
+ ("Series.idxmax", "The behavior of Series.idxmax"),
157
+ ("SeriesGroupBy.fillna", "SeriesGroupBy.fillna is deprecated"),
158
+ ("SeriesGroupBy.idxmin", "The behavior of Series.idxmin"),
159
+ ("SeriesGroupBy.idxmax", "The behavior of Series.idxmax"),
160
+ # Docstring divides by zero to show behavior difference
161
+ ("missing.mask_zero_div_zero", "divide by zero encountered"),
162
+ (
163
+ "to_pydatetime",
164
+ "The behavior of DatetimeProperties.to_pydatetime is deprecated",
165
+ ),
166
+ (
167
+ "pandas.core.generic.NDFrame.bool",
168
+ "(Series|DataFrame).bool is now deprecated and will be removed "
169
+ "in future version of pandas",
170
+ ),
171
+ (
172
+ "pandas.core.generic.NDFrame.first",
173
+ "first is deprecated and will be removed in a future version. "
174
+ "Please create a mask and filter using `.loc` instead",
175
+ ),
176
+ (
177
+ "Resampler.fillna",
178
+ "DatetimeIndexResampler.fillna is deprecated",
179
+ ),
180
+ (
181
+ "DataFrameGroupBy.fillna",
182
+ "DataFrameGroupBy.fillna with 'method' is deprecated",
183
+ ),
184
+ (
185
+ "DataFrameGroupBy.fillna",
186
+ "DataFrame.fillna with 'method' is deprecated",
187
+ ),
188
+ ("read_parquet", "Passing a BlockManager to DataFrame is deprecated"),
189
+ ]
190
+
191
+ if is_doctest:
192
+ for item in items:
193
+ for path, message in ignored_doctest_warnings:
194
+ ignore_doctest_warning(item, path, message)
195
+
196
+
197
+ hypothesis_health_checks = [hypothesis.HealthCheck.too_slow]
198
+ if Version(hypothesis.__version__) >= Version("6.83.2"):
199
+ hypothesis_health_checks.append(hypothesis.HealthCheck.differing_executors)
200
+
201
+ # Hypothesis
202
+ hypothesis.settings.register_profile(
203
+ "ci",
204
+ # Hypothesis timing checks are tuned for scalars by default, so we bump
205
+ # them from 200ms to 500ms per test case as the global default. If this
206
+ # is too short for a specific test, (a) try to make it faster, and (b)
207
+ # if it really is slow add `@settings(deadline=...)` with a working value,
208
+ # or `deadline=None` to entirely disable timeouts for that test.
209
+ # 2022-02-09: Changed deadline from 500 -> None. Deadline leads to
210
+ # non-actionable, flaky CI failures (# GH 24641, 44969, 45118, 44969)
211
+ deadline=None,
212
+ suppress_health_check=tuple(hypothesis_health_checks),
213
+ )
214
+ hypothesis.settings.load_profile("ci")
215
+
216
+ # Registering these strategies makes them globally available via st.from_type,
217
+ # which is use for offsets in tests/tseries/offsets/test_offsets_properties.py
218
+ for name in "MonthBegin MonthEnd BMonthBegin BMonthEnd".split():
219
+ cls = getattr(pd.tseries.offsets, name)
220
+ st.register_type_strategy(
221
+ cls, st.builds(cls, n=st.integers(-99, 99), normalize=st.booleans())
222
+ )
223
+
224
+ for name in "YearBegin YearEnd BYearBegin BYearEnd".split():
225
+ cls = getattr(pd.tseries.offsets, name)
226
+ st.register_type_strategy(
227
+ cls,
228
+ st.builds(
229
+ cls,
230
+ n=st.integers(-5, 5),
231
+ normalize=st.booleans(),
232
+ month=st.integers(min_value=1, max_value=12),
233
+ ),
234
+ )
235
+
236
+ for name in "QuarterBegin QuarterEnd BQuarterBegin BQuarterEnd".split():
237
+ cls = getattr(pd.tseries.offsets, name)
238
+ st.register_type_strategy(
239
+ cls,
240
+ st.builds(
241
+ cls,
242
+ n=st.integers(-24, 24),
243
+ normalize=st.booleans(),
244
+ startingMonth=st.integers(min_value=1, max_value=12),
245
+ ),
246
+ )
247
+
248
+
249
+ # ----------------------------------------------------------------
250
+ # Autouse fixtures
251
+ # ----------------------------------------------------------------
252
+
253
+
254
+ # https://github.com/pytest-dev/pytest/issues/11873
255
+ # Would like to avoid autouse=True, but cannot as of pytest 8.0.0
256
+ @pytest.fixture(autouse=True)
257
+ def add_doctest_imports(doctest_namespace) -> None:
258
+ """
259
+ Make `np` and `pd` names available for doctests.
260
+ """
261
+ doctest_namespace["np"] = np
262
+ doctest_namespace["pd"] = pd
263
+
264
+
265
+ @pytest.fixture(autouse=True)
266
+ def configure_tests() -> None:
267
+ """
268
+ Configure settings for all tests and test modules.
269
+ """
270
+ pd.set_option("chained_assignment", "raise")
271
+
272
+
273
+ # ----------------------------------------------------------------
274
+ # Common arguments
275
+ # ----------------------------------------------------------------
276
+ @pytest.fixture(params=[0, 1, "index", "columns"], ids=lambda x: f"axis={repr(x)}")
277
+ def axis(request):
278
+ """
279
+ Fixture for returning the axis numbers of a DataFrame.
280
+ """
281
+ return request.param
282
+
283
+
284
+ axis_frame = axis
285
+
286
+
287
+ @pytest.fixture(params=[1, "columns"], ids=lambda x: f"axis={repr(x)}")
288
+ def axis_1(request):
289
+ """
290
+ Fixture for returning aliases of axis 1 of a DataFrame.
291
+ """
292
+ return request.param
293
+
294
+
295
+ @pytest.fixture(params=[True, False, None])
296
+ def observed(request):
297
+ """
298
+ Pass in the observed keyword to groupby for [True, False]
299
+ This indicates whether categoricals should return values for
300
+ values which are not in the grouper [False / None], or only values which
301
+ appear in the grouper [True]. [None] is supported for future compatibility
302
+ if we decide to change the default (and would need to warn if this
303
+ parameter is not passed).
304
+ """
305
+ return request.param
306
+
307
+
308
+ @pytest.fixture(params=[True, False, None])
309
+ def ordered(request):
310
+ """
311
+ Boolean 'ordered' parameter for Categorical.
312
+ """
313
+ return request.param
314
+
315
+
316
+ @pytest.fixture(params=[True, False])
317
+ def skipna(request):
318
+ """
319
+ Boolean 'skipna' parameter.
320
+ """
321
+ return request.param
322
+
323
+
324
+ @pytest.fixture(params=["first", "last", False])
325
+ def keep(request):
326
+ """
327
+ Valid values for the 'keep' parameter used in
328
+ .duplicated or .drop_duplicates
329
+ """
330
+ return request.param
331
+
332
+
333
+ @pytest.fixture(params=["both", "neither", "left", "right"])
334
+ def inclusive_endpoints_fixture(request):
335
+ """
336
+ Fixture for trying all interval 'inclusive' parameters.
337
+ """
338
+ return request.param
339
+
340
+
341
+ @pytest.fixture(params=["left", "right", "both", "neither"])
342
+ def closed(request):
343
+ """
344
+ Fixture for trying all interval closed parameters.
345
+ """
346
+ return request.param
347
+
348
+
349
+ @pytest.fixture(params=["left", "right", "both", "neither"])
350
+ def other_closed(request):
351
+ """
352
+ Secondary closed fixture to allow parametrizing over all pairs of closed.
353
+ """
354
+ return request.param
355
+
356
+
357
+ @pytest.fixture(
358
+ params=[
359
+ None,
360
+ "gzip",
361
+ "bz2",
362
+ "zip",
363
+ "xz",
364
+ "tar",
365
+ pytest.param("zstd", marks=td.skip_if_no("zstandard")),
366
+ ]
367
+ )
368
+ def compression(request):
369
+ """
370
+ Fixture for trying common compression types in compression tests.
371
+ """
372
+ return request.param
373
+
374
+
375
+ @pytest.fixture(
376
+ params=[
377
+ "gzip",
378
+ "bz2",
379
+ "zip",
380
+ "xz",
381
+ "tar",
382
+ pytest.param("zstd", marks=td.skip_if_no("zstandard")),
383
+ ]
384
+ )
385
+ def compression_only(request):
386
+ """
387
+ Fixture for trying common compression types in compression tests excluding
388
+ uncompressed case.
389
+ """
390
+ return request.param
391
+
392
+
393
+ @pytest.fixture(params=[True, False])
394
+ def writable(request):
395
+ """
396
+ Fixture that an array is writable.
397
+ """
398
+ return request.param
399
+
400
+
401
+ @pytest.fixture(params=["inner", "outer", "left", "right"])
402
+ def join_type(request):
403
+ """
404
+ Fixture for trying all types of join operations.
405
+ """
406
+ return request.param
407
+
408
+
409
+ @pytest.fixture(params=["nlargest", "nsmallest"])
410
+ def nselect_method(request):
411
+ """
412
+ Fixture for trying all nselect methods.
413
+ """
414
+ return request.param
415
+
416
+
417
+ # ----------------------------------------------------------------
418
+ # Missing values & co.
419
+ # ----------------------------------------------------------------
420
+ @pytest.fixture(params=tm.NULL_OBJECTS, ids=lambda x: type(x).__name__)
421
+ def nulls_fixture(request):
422
+ """
423
+ Fixture for each null type in pandas.
424
+ """
425
+ return request.param
426
+
427
+
428
+ nulls_fixture2 = nulls_fixture # Generate cartesian product of nulls_fixture
429
+
430
+
431
+ @pytest.fixture(params=[None, np.nan, pd.NaT])
432
+ def unique_nulls_fixture(request):
433
+ """
434
+ Fixture for each null type in pandas, each null type exactly once.
435
+ """
436
+ return request.param
437
+
438
+
439
+ # Generate cartesian product of unique_nulls_fixture:
440
+ unique_nulls_fixture2 = unique_nulls_fixture
441
+
442
+
443
+ @pytest.fixture(params=tm.NP_NAT_OBJECTS, ids=lambda x: type(x).__name__)
444
+ def np_nat_fixture(request):
445
+ """
446
+ Fixture for each NaT type in numpy.
447
+ """
448
+ return request.param
449
+
450
+
451
+ # Generate cartesian product of np_nat_fixture:
452
+ np_nat_fixture2 = np_nat_fixture
453
+
454
+
455
+ # ----------------------------------------------------------------
456
+ # Classes
457
+ # ----------------------------------------------------------------
458
+
459
+
460
+ @pytest.fixture(params=[DataFrame, Series])
461
+ def frame_or_series(request):
462
+ """
463
+ Fixture to parametrize over DataFrame and Series.
464
+ """
465
+ return request.param
466
+
467
+
468
+ @pytest.fixture(params=[Index, Series], ids=["index", "series"])
469
+ def index_or_series(request):
470
+ """
471
+ Fixture to parametrize over Index and Series, made necessary by a mypy
472
+ bug, giving an error:
473
+
474
+ List item 0 has incompatible type "Type[Series]"; expected "Type[PandasObject]"
475
+
476
+ See GH#29725
477
+ """
478
+ return request.param
479
+
480
+
481
+ # Generate cartesian product of index_or_series fixture:
482
+ index_or_series2 = index_or_series
483
+
484
+
485
+ @pytest.fixture(params=[Index, Series, pd.array], ids=["index", "series", "array"])
486
+ def index_or_series_or_array(request):
487
+ """
488
+ Fixture to parametrize over Index, Series, and ExtensionArray
489
+ """
490
+ return request.param
491
+
492
+
493
+ @pytest.fixture(params=[Index, Series, DataFrame, pd.array], ids=lambda x: x.__name__)
494
+ def box_with_array(request):
495
+ """
496
+ Fixture to test behavior for Index, Series, DataFrame, and pandas Array
497
+ classes
498
+ """
499
+ return request.param
500
+
501
+
502
+ box_with_array2 = box_with_array
503
+
504
+
505
+ @pytest.fixture
506
+ def dict_subclass() -> type[dict]:
507
+ """
508
+ Fixture for a dictionary subclass.
509
+ """
510
+
511
+ class TestSubDict(dict):
512
+ def __init__(self, *args, **kwargs) -> None:
513
+ dict.__init__(self, *args, **kwargs)
514
+
515
+ return TestSubDict
516
+
517
+
518
+ @pytest.fixture
519
+ def non_dict_mapping_subclass() -> type[abc.Mapping]:
520
+ """
521
+ Fixture for a non-mapping dictionary subclass.
522
+ """
523
+
524
+ class TestNonDictMapping(abc.Mapping):
525
+ def __init__(self, underlying_dict) -> None:
526
+ self._data = underlying_dict
527
+
528
+ def __getitem__(self, key):
529
+ return self._data.__getitem__(key)
530
+
531
+ def __iter__(self) -> Iterator:
532
+ return self._data.__iter__()
533
+
534
+ def __len__(self) -> int:
535
+ return self._data.__len__()
536
+
537
+ return TestNonDictMapping
538
+
539
+
540
+ # ----------------------------------------------------------------
541
+ # Indices
542
+ # ----------------------------------------------------------------
543
+ @pytest.fixture
544
+ def multiindex_year_month_day_dataframe_random_data():
545
+ """
546
+ DataFrame with 3 level MultiIndex (year, month, day) covering
547
+ first 100 business days from 2000-01-01 with random data
548
+ """
549
+ tdf = DataFrame(
550
+ np.random.default_rng(2).standard_normal((100, 4)),
551
+ columns=Index(list("ABCD"), dtype=object),
552
+ index=date_range("2000-01-01", periods=100, freq="B"),
553
+ )
554
+ ymd = tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum()
555
+ # use int64 Index, to make sure things work
556
+ ymd.index = ymd.index.set_levels([lev.astype("i8") for lev in ymd.index.levels])
557
+ ymd.index.set_names(["year", "month", "day"], inplace=True)
558
+ return ymd
559
+
560
+
561
+ @pytest.fixture
562
+ def lexsorted_two_level_string_multiindex() -> MultiIndex:
563
+ """
564
+ 2-level MultiIndex, lexsorted, with string names.
565
+ """
566
+ return MultiIndex(
567
+ levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
568
+ codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
569
+ names=["first", "second"],
570
+ )
571
+
572
+
573
+ @pytest.fixture
574
+ def multiindex_dataframe_random_data(
575
+ lexsorted_two_level_string_multiindex,
576
+ ) -> DataFrame:
577
+ """DataFrame with 2 level MultiIndex with random data"""
578
+ index = lexsorted_two_level_string_multiindex
579
+ return DataFrame(
580
+ np.random.default_rng(2).standard_normal((10, 3)),
581
+ index=index,
582
+ columns=Index(["A", "B", "C"], name="exp"),
583
+ )
584
+
585
+
586
+ def _create_multiindex():
587
+ """
588
+ MultiIndex used to test the general functionality of this object
589
+ """
590
+
591
+ # See Also: tests.multi.conftest.idx
592
+ major_axis = Index(["foo", "bar", "baz", "qux"])
593
+ minor_axis = Index(["one", "two"])
594
+
595
+ major_codes = np.array([0, 0, 1, 2, 3, 3])
596
+ minor_codes = np.array([0, 1, 0, 1, 0, 1])
597
+ index_names = ["first", "second"]
598
+ return MultiIndex(
599
+ levels=[major_axis, minor_axis],
600
+ codes=[major_codes, minor_codes],
601
+ names=index_names,
602
+ verify_integrity=False,
603
+ )
604
+
605
+
606
+ def _create_mi_with_dt64tz_level():
607
+ """
608
+ MultiIndex with a level that is a tzaware DatetimeIndex.
609
+ """
610
+ # GH#8367 round trip with pickle
611
+ return MultiIndex.from_product(
612
+ [[1, 2], ["a", "b"], date_range("20130101", periods=3, tz="US/Eastern")],
613
+ names=["one", "two", "three"],
614
+ )
615
+
616
+
617
+ indices_dict = {
618
+ "string": Index([f"pandas_{i}" for i in range(100)]),
619
+ "datetime": date_range("2020-01-01", periods=100),
620
+ "datetime-tz": date_range("2020-01-01", periods=100, tz="US/Pacific"),
621
+ "period": period_range("2020-01-01", periods=100, freq="D"),
622
+ "timedelta": timedelta_range(start="1 day", periods=100, freq="D"),
623
+ "range": RangeIndex(100),
624
+ "int8": Index(np.arange(100), dtype="int8"),
625
+ "int16": Index(np.arange(100), dtype="int16"),
626
+ "int32": Index(np.arange(100), dtype="int32"),
627
+ "int64": Index(np.arange(100), dtype="int64"),
628
+ "uint8": Index(np.arange(100), dtype="uint8"),
629
+ "uint16": Index(np.arange(100), dtype="uint16"),
630
+ "uint32": Index(np.arange(100), dtype="uint32"),
631
+ "uint64": Index(np.arange(100), dtype="uint64"),
632
+ "float32": Index(np.arange(100), dtype="float32"),
633
+ "float64": Index(np.arange(100), dtype="float64"),
634
+ "bool-object": Index([True, False] * 5, dtype=object),
635
+ "bool-dtype": Index([True, False] * 5, dtype=bool),
636
+ "complex64": Index(
637
+ np.arange(100, dtype="complex64") + 1.0j * np.arange(100, dtype="complex64")
638
+ ),
639
+ "complex128": Index(
640
+ np.arange(100, dtype="complex128") + 1.0j * np.arange(100, dtype="complex128")
641
+ ),
642
+ "categorical": CategoricalIndex(list("abcd") * 25),
643
+ "interval": IntervalIndex.from_breaks(np.linspace(0, 100, num=101)),
644
+ "empty": Index([]),
645
+ "tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])),
646
+ "mi-with-dt64tz-level": _create_mi_with_dt64tz_level(),
647
+ "multi": _create_multiindex(),
648
+ "repeats": Index([0, 0, 1, 1, 2, 2]),
649
+ "nullable_int": Index(np.arange(100), dtype="Int64"),
650
+ "nullable_uint": Index(np.arange(100), dtype="UInt16"),
651
+ "nullable_float": Index(np.arange(100), dtype="Float32"),
652
+ "nullable_bool": Index(np.arange(100).astype(bool), dtype="boolean"),
653
+ "string-python": Index(
654
+ pd.array([f"pandas_{i}" for i in range(100)], dtype="string[python]")
655
+ ),
656
+ }
657
+ if has_pyarrow:
658
+ idx = Index(pd.array([f"pandas_{i}" for i in range(100)], dtype="string[pyarrow]"))
659
+ indices_dict["string-pyarrow"] = idx
660
+
661
+
662
+ @pytest.fixture(params=indices_dict.keys())
663
+ def index(request):
664
+ """
665
+ Fixture for many "simple" kinds of indices.
666
+
667
+ These indices are unlikely to cover corner cases, e.g.
668
+ - no names
669
+ - no NaTs/NaNs
670
+ - no values near implementation bounds
671
+ - ...
672
+ """
673
+ # copy to avoid mutation, e.g. setting .name
674
+ return indices_dict[request.param].copy()
675
+
676
+
677
+ # Needed to generate cartesian product of indices
678
+ index_fixture2 = index
679
+
680
+
681
+ @pytest.fixture(
682
+ params=[
683
+ key for key, value in indices_dict.items() if not isinstance(value, MultiIndex)
684
+ ]
685
+ )
686
+ def index_flat(request):
687
+ """
688
+ index fixture, but excluding MultiIndex cases.
689
+ """
690
+ key = request.param
691
+ return indices_dict[key].copy()
692
+
693
+
694
+ # Alias so we can test with cartesian product of index_flat
695
+ index_flat2 = index_flat
696
+
697
+
698
+ @pytest.fixture(
699
+ params=[
700
+ key
701
+ for key, value in indices_dict.items()
702
+ if not (
703
+ key.startswith(("int", "uint", "float"))
704
+ or key in ["range", "empty", "repeats", "bool-dtype"]
705
+ )
706
+ and not isinstance(value, MultiIndex)
707
+ ]
708
+ )
709
+ def index_with_missing(request):
710
+ """
711
+ Fixture for indices with missing values.
712
+
713
+ Integer-dtype and empty cases are excluded because they cannot hold missing
714
+ values.
715
+
716
+ MultiIndex is excluded because isna() is not defined for MultiIndex.
717
+ """
718
+
719
+ # GH 35538. Use deep copy to avoid illusive bug on np-dev
720
+ # GHA pipeline that writes into indices_dict despite copy
721
+ ind = indices_dict[request.param].copy(deep=True)
722
+ vals = ind.values.copy()
723
+ if request.param in ["tuples", "mi-with-dt64tz-level", "multi"]:
724
+ # For setting missing values in the top level of MultiIndex
725
+ vals = ind.tolist()
726
+ vals[0] = (None,) + vals[0][1:]
727
+ vals[-1] = (None,) + vals[-1][1:]
728
+ return MultiIndex.from_tuples(vals)
729
+ else:
730
+ vals[0] = None
731
+ vals[-1] = None
732
+ return type(ind)(vals)
733
+
734
+
735
+ # ----------------------------------------------------------------
736
+ # Series'
737
+ # ----------------------------------------------------------------
738
+ @pytest.fixture
739
+ def string_series() -> Series:
740
+ """
741
+ Fixture for Series of floats with Index of unique strings
742
+ """
743
+ return Series(
744
+ np.arange(30, dtype=np.float64) * 1.1,
745
+ index=Index([f"i_{i}" for i in range(30)], dtype=object),
746
+ name="series",
747
+ )
748
+
749
+
750
+ @pytest.fixture
751
+ def object_series() -> Series:
752
+ """
753
+ Fixture for Series of dtype object with Index of unique strings
754
+ """
755
+ data = [f"foo_{i}" for i in range(30)]
756
+ index = Index([f"bar_{i}" for i in range(30)], dtype=object)
757
+ return Series(data, index=index, name="objects", dtype=object)
758
+
759
+
760
+ @pytest.fixture
761
+ def datetime_series() -> Series:
762
+ """
763
+ Fixture for Series of floats with DatetimeIndex
764
+ """
765
+ return Series(
766
+ np.random.default_rng(2).standard_normal(30),
767
+ index=date_range("2000-01-01", periods=30, freq="B"),
768
+ name="ts",
769
+ )
770
+
771
+
772
+ def _create_series(index):
773
+ """Helper for the _series dict"""
774
+ size = len(index)
775
+ data = np.random.default_rng(2).standard_normal(size)
776
+ return Series(data, index=index, name="a", copy=False)
777
+
778
+
779
+ _series = {
780
+ f"series-with-{index_id}-index": _create_series(index)
781
+ for index_id, index in indices_dict.items()
782
+ }
783
+
784
+
785
+ @pytest.fixture
786
+ def series_with_simple_index(index) -> Series:
787
+ """
788
+ Fixture for tests on series with changing types of indices.
789
+ """
790
+ return _create_series(index)
791
+
792
+
793
+ _narrow_series = {
794
+ f"{dtype.__name__}-series": Series(
795
+ range(30), index=[f"i-{i}" for i in range(30)], name="a", dtype=dtype
796
+ )
797
+ for dtype in tm.NARROW_NP_DTYPES
798
+ }
799
+
800
+
801
+ _index_or_series_objs = {**indices_dict, **_series, **_narrow_series}
802
+
803
+
804
+ @pytest.fixture(params=_index_or_series_objs.keys())
805
+ def index_or_series_obj(request):
806
+ """
807
+ Fixture for tests on indexes, series and series with a narrow dtype
808
+ copy to avoid mutation, e.g. setting .name
809
+ """
810
+ return _index_or_series_objs[request.param].copy(deep=True)
811
+
812
+
813
+ _typ_objects_series = {
814
+ f"{dtype.__name__}-series": Series(dtype) for dtype in tm.PYTHON_DATA_TYPES
815
+ }
816
+
817
+
818
+ _index_or_series_memory_objs = {
819
+ **indices_dict,
820
+ **_series,
821
+ **_narrow_series,
822
+ **_typ_objects_series,
823
+ }
824
+
825
+
826
+ @pytest.fixture(params=_index_or_series_memory_objs.keys())
827
+ def index_or_series_memory_obj(request):
828
+ """
829
+ Fixture for tests on indexes, series, series with a narrow dtype and
830
+ series with empty objects type
831
+ copy to avoid mutation, e.g. setting .name
832
+ """
833
+ return _index_or_series_memory_objs[request.param].copy(deep=True)
834
+
835
+
836
+ # ----------------------------------------------------------------
837
+ # DataFrames
838
+ # ----------------------------------------------------------------
839
+ @pytest.fixture
840
+ def int_frame() -> DataFrame:
841
+ """
842
+ Fixture for DataFrame of ints with index of unique strings
843
+
844
+ Columns are ['A', 'B', 'C', 'D']
845
+ """
846
+ return DataFrame(
847
+ np.ones((30, 4), dtype=np.int64),
848
+ index=Index([f"foo_{i}" for i in range(30)], dtype=object),
849
+ columns=Index(list("ABCD"), dtype=object),
850
+ )
851
+
852
+
853
+ @pytest.fixture
854
+ def float_frame() -> DataFrame:
855
+ """
856
+ Fixture for DataFrame of floats with index of unique strings
857
+
858
+ Columns are ['A', 'B', 'C', 'D'].
859
+ """
860
+ return DataFrame(
861
+ np.random.default_rng(2).standard_normal((30, 4)),
862
+ index=Index([f"foo_{i}" for i in range(30)]),
863
+ columns=Index(list("ABCD")),
864
+ )
865
+
866
+
867
+ @pytest.fixture
868
+ def rand_series_with_duplicate_datetimeindex() -> Series:
869
+ """
870
+ Fixture for Series with a DatetimeIndex that has duplicates.
871
+ """
872
+ dates = [
873
+ datetime(2000, 1, 2),
874
+ datetime(2000, 1, 2),
875
+ datetime(2000, 1, 2),
876
+ datetime(2000, 1, 3),
877
+ datetime(2000, 1, 3),
878
+ datetime(2000, 1, 3),
879
+ datetime(2000, 1, 4),
880
+ datetime(2000, 1, 4),
881
+ datetime(2000, 1, 4),
882
+ datetime(2000, 1, 5),
883
+ ]
884
+
885
+ return Series(np.random.default_rng(2).standard_normal(len(dates)), index=dates)
886
+
887
+
888
+ # ----------------------------------------------------------------
889
+ # Scalars
890
+ # ----------------------------------------------------------------
891
+ @pytest.fixture(
892
+ params=[
893
+ (Interval(left=0, right=5), IntervalDtype("int64", "right")),
894
+ (Interval(left=0.1, right=0.5), IntervalDtype("float64", "right")),
895
+ (Period("2012-01", freq="M"), "period[M]"),
896
+ (Period("2012-02-01", freq="D"), "period[D]"),
897
+ (
898
+ Timestamp("2011-01-01", tz="US/Eastern"),
899
+ DatetimeTZDtype(unit="s", tz="US/Eastern"),
900
+ ),
901
+ (Timedelta(seconds=500), "timedelta64[ns]"),
902
+ ]
903
+ )
904
+ def ea_scalar_and_dtype(request):
905
+ return request.param
906
+
907
+
908
+ # ----------------------------------------------------------------
909
+ # Operators & Operations
910
+ # ----------------------------------------------------------------
911
+
912
+
913
+ @pytest.fixture(params=tm.arithmetic_dunder_methods)
914
+ def all_arithmetic_operators(request):
915
+ """
916
+ Fixture for dunder names for common arithmetic operations.
917
+ """
918
+ return request.param
919
+
920
+
921
+ @pytest.fixture(
922
+ params=[
923
+ operator.add,
924
+ ops.radd,
925
+ operator.sub,
926
+ ops.rsub,
927
+ operator.mul,
928
+ ops.rmul,
929
+ operator.truediv,
930
+ ops.rtruediv,
931
+ operator.floordiv,
932
+ ops.rfloordiv,
933
+ operator.mod,
934
+ ops.rmod,
935
+ operator.pow,
936
+ ops.rpow,
937
+ operator.eq,
938
+ operator.ne,
939
+ operator.lt,
940
+ operator.le,
941
+ operator.gt,
942
+ operator.ge,
943
+ operator.and_,
944
+ ops.rand_,
945
+ operator.xor,
946
+ ops.rxor,
947
+ operator.or_,
948
+ ops.ror_,
949
+ ]
950
+ )
951
+ def all_binary_operators(request):
952
+ """
953
+ Fixture for operator and roperator arithmetic, comparison, and logical ops.
954
+ """
955
+ return request.param
956
+
957
+
958
+ @pytest.fixture(
959
+ params=[
960
+ operator.add,
961
+ ops.radd,
962
+ operator.sub,
963
+ ops.rsub,
964
+ operator.mul,
965
+ ops.rmul,
966
+ operator.truediv,
967
+ ops.rtruediv,
968
+ operator.floordiv,
969
+ ops.rfloordiv,
970
+ operator.mod,
971
+ ops.rmod,
972
+ operator.pow,
973
+ ops.rpow,
974
+ ]
975
+ )
976
+ def all_arithmetic_functions(request):
977
+ """
978
+ Fixture for operator and roperator arithmetic functions.
979
+
980
+ Notes
981
+ -----
982
+ This includes divmod and rdivmod, whereas all_arithmetic_operators
983
+ does not.
984
+ """
985
+ return request.param
986
+
987
+
988
+ _all_numeric_reductions = [
989
+ "count",
990
+ "sum",
991
+ "max",
992
+ "min",
993
+ "mean",
994
+ "prod",
995
+ "std",
996
+ "var",
997
+ "median",
998
+ "kurt",
999
+ "skew",
1000
+ "sem",
1001
+ ]
1002
+
1003
+
1004
+ @pytest.fixture(params=_all_numeric_reductions)
1005
+ def all_numeric_reductions(request):
1006
+ """
1007
+ Fixture for numeric reduction names.
1008
+ """
1009
+ return request.param
1010
+
1011
+
1012
+ _all_boolean_reductions = ["all", "any"]
1013
+
1014
+
1015
+ @pytest.fixture(params=_all_boolean_reductions)
1016
+ def all_boolean_reductions(request):
1017
+ """
1018
+ Fixture for boolean reduction names.
1019
+ """
1020
+ return request.param
1021
+
1022
+
1023
+ _all_reductions = _all_numeric_reductions + _all_boolean_reductions
1024
+
1025
+
1026
+ @pytest.fixture(params=_all_reductions)
1027
+ def all_reductions(request):
1028
+ """
1029
+ Fixture for all (boolean + numeric) reduction names.
1030
+ """
1031
+ return request.param
1032
+
1033
+
1034
+ @pytest.fixture(
1035
+ params=[
1036
+ operator.eq,
1037
+ operator.ne,
1038
+ operator.gt,
1039
+ operator.ge,
1040
+ operator.lt,
1041
+ operator.le,
1042
+ ]
1043
+ )
1044
+ def comparison_op(request):
1045
+ """
1046
+ Fixture for operator module comparison functions.
1047
+ """
1048
+ return request.param
1049
+
1050
+
1051
+ @pytest.fixture(params=["__le__", "__lt__", "__ge__", "__gt__"])
1052
+ def compare_operators_no_eq_ne(request):
1053
+ """
1054
+ Fixture for dunder names for compare operations except == and !=
1055
+
1056
+ * >=
1057
+ * >
1058
+ * <
1059
+ * <=
1060
+ """
1061
+ return request.param
1062
+
1063
+
1064
+ @pytest.fixture(
1065
+ params=["__and__", "__rand__", "__or__", "__ror__", "__xor__", "__rxor__"]
1066
+ )
1067
+ def all_logical_operators(request):
1068
+ """
1069
+ Fixture for dunder names for common logical operations
1070
+
1071
+ * |
1072
+ * &
1073
+ * ^
1074
+ """
1075
+ return request.param
1076
+
1077
+
1078
+ _all_numeric_accumulations = ["cumsum", "cumprod", "cummin", "cummax"]
1079
+
1080
+
1081
+ @pytest.fixture(params=_all_numeric_accumulations)
1082
+ def all_numeric_accumulations(request):
1083
+ """
1084
+ Fixture for numeric accumulation names
1085
+ """
1086
+ return request.param
1087
+
1088
+
1089
+ # ----------------------------------------------------------------
1090
+ # Data sets/files
1091
+ # ----------------------------------------------------------------
1092
+ @pytest.fixture
1093
+ def strict_data_files(pytestconfig):
1094
+ """
1095
+ Returns the configuration for the test setting `--no-strict-data-files`.
1096
+ """
1097
+ return pytestconfig.getoption("--no-strict-data-files")
1098
+
1099
+
1100
+ @pytest.fixture
1101
+ def datapath(strict_data_files: str) -> Callable[..., str]:
1102
+ """
1103
+ Get the path to a data file.
1104
+
1105
+ Parameters
1106
+ ----------
1107
+ path : str
1108
+ Path to the file, relative to ``pandas/tests/``
1109
+
1110
+ Returns
1111
+ -------
1112
+ path including ``pandas/tests``.
1113
+
1114
+ Raises
1115
+ ------
1116
+ ValueError
1117
+ If the path doesn't exist and the --no-strict-data-files option is not set.
1118
+ """
1119
+ BASE_PATH = os.path.join(os.path.dirname(__file__), "tests")
1120
+
1121
+ def deco(*args):
1122
+ path = os.path.join(BASE_PATH, *args)
1123
+ if not os.path.exists(path):
1124
+ if strict_data_files:
1125
+ raise ValueError(
1126
+ f"Could not find file {path} and --no-strict-data-files is not set."
1127
+ )
1128
+ pytest.skip(f"Could not find {path}.")
1129
+ return path
1130
+
1131
+ return deco
1132
+
1133
+
1134
+ # ----------------------------------------------------------------
1135
+ # Time zones
1136
+ # ----------------------------------------------------------------
1137
+ TIMEZONES = [
1138
+ None,
1139
+ "UTC",
1140
+ "US/Eastern",
1141
+ "Asia/Tokyo",
1142
+ "dateutil/US/Pacific",
1143
+ "dateutil/Asia/Singapore",
1144
+ "+01:15",
1145
+ "-02:15",
1146
+ "UTC+01:15",
1147
+ "UTC-02:15",
1148
+ tzutc(),
1149
+ tzlocal(),
1150
+ FixedOffset(300),
1151
+ FixedOffset(0),
1152
+ FixedOffset(-300),
1153
+ timezone.utc,
1154
+ timezone(timedelta(hours=1)),
1155
+ timezone(timedelta(hours=-1), name="foo"),
1156
+ ]
1157
+ if zoneinfo is not None:
1158
+ TIMEZONES.extend(
1159
+ [
1160
+ zoneinfo.ZoneInfo("US/Pacific"), # type: ignore[list-item]
1161
+ zoneinfo.ZoneInfo("UTC"), # type: ignore[list-item]
1162
+ ]
1163
+ )
1164
+ TIMEZONE_IDS = [repr(i) for i in TIMEZONES]
1165
+
1166
+
1167
+ @td.parametrize_fixture_doc(str(TIMEZONE_IDS))
1168
+ @pytest.fixture(params=TIMEZONES, ids=TIMEZONE_IDS)
1169
+ def tz_naive_fixture(request):
1170
+ """
1171
+ Fixture for trying timezones including default (None): {0}
1172
+ """
1173
+ return request.param
1174
+
1175
+
1176
+ @td.parametrize_fixture_doc(str(TIMEZONE_IDS[1:]))
1177
+ @pytest.fixture(params=TIMEZONES[1:], ids=TIMEZONE_IDS[1:])
1178
+ def tz_aware_fixture(request):
1179
+ """
1180
+ Fixture for trying explicit timezones: {0}
1181
+ """
1182
+ return request.param
1183
+
1184
+
1185
+ # Generate cartesian product of tz_aware_fixture:
1186
+ tz_aware_fixture2 = tz_aware_fixture
1187
+
1188
+
1189
+ _UTCS = ["utc", "dateutil/UTC", utc, tzutc(), timezone.utc]
1190
+ if zoneinfo is not None:
1191
+ _UTCS.append(zoneinfo.ZoneInfo("UTC"))
1192
+
1193
+
1194
+ @pytest.fixture(params=_UTCS)
1195
+ def utc_fixture(request):
1196
+ """
1197
+ Fixture to provide variants of UTC timezone strings and tzinfo objects.
1198
+ """
1199
+ return request.param
1200
+
1201
+
1202
+ utc_fixture2 = utc_fixture
1203
+
1204
+
1205
+ @pytest.fixture(params=["s", "ms", "us", "ns"])
1206
+ def unit(request):
1207
+ """
1208
+ datetime64 units we support.
1209
+ """
1210
+ return request.param
1211
+
1212
+
1213
+ unit2 = unit
1214
+
1215
+
1216
+ # ----------------------------------------------------------------
1217
+ # Dtypes
1218
+ # ----------------------------------------------------------------
1219
+ @pytest.fixture(params=tm.STRING_DTYPES)
1220
+ def string_dtype(request):
1221
+ """
1222
+ Parametrized fixture for string dtypes.
1223
+
1224
+ * str
1225
+ * 'str'
1226
+ * 'U'
1227
+ """
1228
+ return request.param
1229
+
1230
+
1231
+ @pytest.fixture(
1232
+ params=[
1233
+ "string[python]",
1234
+ pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
1235
+ ]
1236
+ )
1237
+ def nullable_string_dtype(request):
1238
+ """
1239
+ Parametrized fixture for string dtypes.
1240
+
1241
+ * 'string[python]'
1242
+ * 'string[pyarrow]'
1243
+ """
1244
+ return request.param
1245
+
1246
+
1247
+ @pytest.fixture(
1248
+ params=[
1249
+ "python",
1250
+ pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")),
1251
+ pytest.param("pyarrow_numpy", marks=td.skip_if_no("pyarrow")),
1252
+ ]
1253
+ )
1254
+ def string_storage(request):
1255
+ """
1256
+ Parametrized fixture for pd.options.mode.string_storage.
1257
+
1258
+ * 'python'
1259
+ * 'pyarrow'
1260
+ * 'pyarrow_numpy'
1261
+ """
1262
+ return request.param
1263
+
1264
+
1265
+ @pytest.fixture(
1266
+ params=[
1267
+ "numpy_nullable",
1268
+ pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")),
1269
+ ]
1270
+ )
1271
+ def dtype_backend(request):
1272
+ """
1273
+ Parametrized fixture for pd.options.mode.string_storage.
1274
+
1275
+ * 'python'
1276
+ * 'pyarrow'
1277
+ """
1278
+ return request.param
1279
+
1280
+
1281
+ # Alias so we can test with cartesian product of string_storage
1282
+ string_storage2 = string_storage
1283
+
1284
+
1285
+ @pytest.fixture(params=tm.BYTES_DTYPES)
1286
+ def bytes_dtype(request):
1287
+ """
1288
+ Parametrized fixture for bytes dtypes.
1289
+
1290
+ * bytes
1291
+ * 'bytes'
1292
+ """
1293
+ return request.param
1294
+
1295
+
1296
+ @pytest.fixture(params=tm.OBJECT_DTYPES)
1297
+ def object_dtype(request):
1298
+ """
1299
+ Parametrized fixture for object dtypes.
1300
+
1301
+ * object
1302
+ * 'object'
1303
+ """
1304
+ return request.param
1305
+
1306
+
1307
+ @pytest.fixture(
1308
+ params=[
1309
+ "object",
1310
+ "string[python]",
1311
+ pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
1312
+ pytest.param("string[pyarrow_numpy]", marks=td.skip_if_no("pyarrow")),
1313
+ ]
1314
+ )
1315
+ def any_string_dtype(request):
1316
+ """
1317
+ Parametrized fixture for string dtypes.
1318
+ * 'object'
1319
+ * 'string[python]'
1320
+ * 'string[pyarrow]'
1321
+ """
1322
+ return request.param
1323
+
1324
+
1325
+ @pytest.fixture(params=tm.DATETIME64_DTYPES)
1326
+ def datetime64_dtype(request):
1327
+ """
1328
+ Parametrized fixture for datetime64 dtypes.
1329
+
1330
+ * 'datetime64[ns]'
1331
+ * 'M8[ns]'
1332
+ """
1333
+ return request.param
1334
+
1335
+
1336
+ @pytest.fixture(params=tm.TIMEDELTA64_DTYPES)
1337
+ def timedelta64_dtype(request):
1338
+ """
1339
+ Parametrized fixture for timedelta64 dtypes.
1340
+
1341
+ * 'timedelta64[ns]'
1342
+ * 'm8[ns]'
1343
+ """
1344
+ return request.param
1345
+
1346
+
1347
+ @pytest.fixture
1348
+ def fixed_now_ts() -> Timestamp:
1349
+ """
1350
+ Fixture emits fixed Timestamp.now()
1351
+ """
1352
+ return Timestamp( # pyright: ignore[reportGeneralTypeIssues]
1353
+ year=2021, month=1, day=1, hour=12, minute=4, second=13, microsecond=22
1354
+ )
1355
+
1356
+
1357
+ @pytest.fixture(params=tm.FLOAT_NUMPY_DTYPES)
1358
+ def float_numpy_dtype(request):
1359
+ """
1360
+ Parameterized fixture for float dtypes.
1361
+
1362
+ * float
1363
+ * 'float32'
1364
+ * 'float64'
1365
+ """
1366
+ return request.param
1367
+
1368
+
1369
+ @pytest.fixture(params=tm.FLOAT_EA_DTYPES)
1370
+ def float_ea_dtype(request):
1371
+ """
1372
+ Parameterized fixture for float dtypes.
1373
+
1374
+ * 'Float32'
1375
+ * 'Float64'
1376
+ """
1377
+ return request.param
1378
+
1379
+
1380
+ @pytest.fixture(params=tm.ALL_FLOAT_DTYPES)
1381
+ def any_float_dtype(request):
1382
+ """
1383
+ Parameterized fixture for float dtypes.
1384
+
1385
+ * float
1386
+ * 'float32'
1387
+ * 'float64'
1388
+ * 'Float32'
1389
+ * 'Float64'
1390
+ """
1391
+ return request.param
1392
+
1393
+
1394
+ @pytest.fixture(params=tm.COMPLEX_DTYPES)
1395
+ def complex_dtype(request):
1396
+ """
1397
+ Parameterized fixture for complex dtypes.
1398
+
1399
+ * complex
1400
+ * 'complex64'
1401
+ * 'complex128'
1402
+ """
1403
+ return request.param
1404
+
1405
+
1406
+ @pytest.fixture(params=tm.SIGNED_INT_NUMPY_DTYPES)
1407
+ def any_signed_int_numpy_dtype(request):
1408
+ """
1409
+ Parameterized fixture for signed integer dtypes.
1410
+
1411
+ * int
1412
+ * 'int8'
1413
+ * 'int16'
1414
+ * 'int32'
1415
+ * 'int64'
1416
+ """
1417
+ return request.param
1418
+
1419
+
1420
+ @pytest.fixture(params=tm.UNSIGNED_INT_NUMPY_DTYPES)
1421
+ def any_unsigned_int_numpy_dtype(request):
1422
+ """
1423
+ Parameterized fixture for unsigned integer dtypes.
1424
+
1425
+ * 'uint8'
1426
+ * 'uint16'
1427
+ * 'uint32'
1428
+ * 'uint64'
1429
+ """
1430
+ return request.param
1431
+
1432
+
1433
+ @pytest.fixture(params=tm.ALL_INT_NUMPY_DTYPES)
1434
+ def any_int_numpy_dtype(request):
1435
+ """
1436
+ Parameterized fixture for any integer dtype.
1437
+
1438
+ * int
1439
+ * 'int8'
1440
+ * 'uint8'
1441
+ * 'int16'
1442
+ * 'uint16'
1443
+ * 'int32'
1444
+ * 'uint32'
1445
+ * 'int64'
1446
+ * 'uint64'
1447
+ """
1448
+ return request.param
1449
+
1450
+
1451
+ @pytest.fixture(params=tm.ALL_INT_EA_DTYPES)
1452
+ def any_int_ea_dtype(request):
1453
+ """
1454
+ Parameterized fixture for any nullable integer dtype.
1455
+
1456
+ * 'UInt8'
1457
+ * 'Int8'
1458
+ * 'UInt16'
1459
+ * 'Int16'
1460
+ * 'UInt32'
1461
+ * 'Int32'
1462
+ * 'UInt64'
1463
+ * 'Int64'
1464
+ """
1465
+ return request.param
1466
+
1467
+
1468
+ @pytest.fixture(params=tm.ALL_INT_DTYPES)
1469
+ def any_int_dtype(request):
1470
+ """
1471
+ Parameterized fixture for any nullable integer dtype.
1472
+
1473
+ * int
1474
+ * 'int8'
1475
+ * 'uint8'
1476
+ * 'int16'
1477
+ * 'uint16'
1478
+ * 'int32'
1479
+ * 'uint32'
1480
+ * 'int64'
1481
+ * 'uint64'
1482
+ * 'UInt8'
1483
+ * 'Int8'
1484
+ * 'UInt16'
1485
+ * 'Int16'
1486
+ * 'UInt32'
1487
+ * 'Int32'
1488
+ * 'UInt64'
1489
+ * 'Int64'
1490
+ """
1491
+ return request.param
1492
+
1493
+
1494
+ @pytest.fixture(params=tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES)
1495
+ def any_numeric_ea_dtype(request):
1496
+ """
1497
+ Parameterized fixture for any nullable integer dtype and
1498
+ any float ea dtypes.
1499
+
1500
+ * 'UInt8'
1501
+ * 'Int8'
1502
+ * 'UInt16'
1503
+ * 'Int16'
1504
+ * 'UInt32'
1505
+ * 'Int32'
1506
+ * 'UInt64'
1507
+ * 'Int64'
1508
+ * 'Float32'
1509
+ * 'Float64'
1510
+ """
1511
+ return request.param
1512
+
1513
+
1514
+ # Unsupported operand types for + ("List[Union[str, ExtensionDtype, dtype[Any],
1515
+ # Type[object]]]" and "List[str]")
1516
+ @pytest.fixture(
1517
+ params=tm.ALL_INT_EA_DTYPES
1518
+ + tm.FLOAT_EA_DTYPES
1519
+ + tm.ALL_INT_PYARROW_DTYPES_STR_REPR
1520
+ + tm.FLOAT_PYARROW_DTYPES_STR_REPR # type: ignore[operator]
1521
+ )
1522
+ def any_numeric_ea_and_arrow_dtype(request):
1523
+ """
1524
+ Parameterized fixture for any nullable integer dtype and
1525
+ any float ea dtypes.
1526
+
1527
+ * 'UInt8'
1528
+ * 'Int8'
1529
+ * 'UInt16'
1530
+ * 'Int16'
1531
+ * 'UInt32'
1532
+ * 'Int32'
1533
+ * 'UInt64'
1534
+ * 'Int64'
1535
+ * 'Float32'
1536
+ * 'Float64'
1537
+ * 'uint8[pyarrow]'
1538
+ * 'int8[pyarrow]'
1539
+ * 'uint16[pyarrow]'
1540
+ * 'int16[pyarrow]'
1541
+ * 'uint32[pyarrow]'
1542
+ * 'int32[pyarrow]'
1543
+ * 'uint64[pyarrow]'
1544
+ * 'int64[pyarrow]'
1545
+ * 'float32[pyarrow]'
1546
+ * 'float64[pyarrow]'
1547
+ """
1548
+ return request.param
1549
+
1550
+
1551
+ @pytest.fixture(params=tm.SIGNED_INT_EA_DTYPES)
1552
+ def any_signed_int_ea_dtype(request):
1553
+ """
1554
+ Parameterized fixture for any signed nullable integer dtype.
1555
+
1556
+ * 'Int8'
1557
+ * 'Int16'
1558
+ * 'Int32'
1559
+ * 'Int64'
1560
+ """
1561
+ return request.param
1562
+
1563
+
1564
+ @pytest.fixture(params=tm.ALL_REAL_NUMPY_DTYPES)
1565
+ def any_real_numpy_dtype(request):
1566
+ """
1567
+ Parameterized fixture for any (purely) real numeric dtype.
1568
+
1569
+ * int
1570
+ * 'int8'
1571
+ * 'uint8'
1572
+ * 'int16'
1573
+ * 'uint16'
1574
+ * 'int32'
1575
+ * 'uint32'
1576
+ * 'int64'
1577
+ * 'uint64'
1578
+ * float
1579
+ * 'float32'
1580
+ * 'float64'
1581
+ """
1582
+ return request.param
1583
+
1584
+
1585
+ @pytest.fixture(params=tm.ALL_REAL_DTYPES)
1586
+ def any_real_numeric_dtype(request):
1587
+ """
1588
+ Parameterized fixture for any (purely) real numeric dtype.
1589
+
1590
+ * int
1591
+ * 'int8'
1592
+ * 'uint8'
1593
+ * 'int16'
1594
+ * 'uint16'
1595
+ * 'int32'
1596
+ * 'uint32'
1597
+ * 'int64'
1598
+ * 'uint64'
1599
+ * float
1600
+ * 'float32'
1601
+ * 'float64'
1602
+
1603
+ and associated ea dtypes.
1604
+ """
1605
+ return request.param
1606
+
1607
+
1608
+ @pytest.fixture(params=tm.ALL_NUMPY_DTYPES)
1609
+ def any_numpy_dtype(request):
1610
+ """
1611
+ Parameterized fixture for all numpy dtypes.
1612
+
1613
+ * bool
1614
+ * 'bool'
1615
+ * int
1616
+ * 'int8'
1617
+ * 'uint8'
1618
+ * 'int16'
1619
+ * 'uint16'
1620
+ * 'int32'
1621
+ * 'uint32'
1622
+ * 'int64'
1623
+ * 'uint64'
1624
+ * float
1625
+ * 'float32'
1626
+ * 'float64'
1627
+ * complex
1628
+ * 'complex64'
1629
+ * 'complex128'
1630
+ * str
1631
+ * 'str'
1632
+ * 'U'
1633
+ * bytes
1634
+ * 'bytes'
1635
+ * 'datetime64[ns]'
1636
+ * 'M8[ns]'
1637
+ * 'timedelta64[ns]'
1638
+ * 'm8[ns]'
1639
+ * object
1640
+ * 'object'
1641
+ """
1642
+ return request.param
1643
+
1644
+
1645
+ @pytest.fixture(params=tm.ALL_REAL_NULLABLE_DTYPES)
1646
+ def any_real_nullable_dtype(request):
1647
+ """
1648
+ Parameterized fixture for all real dtypes that can hold NA.
1649
+
1650
+ * float
1651
+ * 'float32'
1652
+ * 'float64'
1653
+ * 'Float32'
1654
+ * 'Float64'
1655
+ * 'UInt8'
1656
+ * 'UInt16'
1657
+ * 'UInt32'
1658
+ * 'UInt64'
1659
+ * 'Int8'
1660
+ * 'Int16'
1661
+ * 'Int32'
1662
+ * 'Int64'
1663
+ * 'uint8[pyarrow]'
1664
+ * 'uint16[pyarrow]'
1665
+ * 'uint32[pyarrow]'
1666
+ * 'uint64[pyarrow]'
1667
+ * 'int8[pyarrow]'
1668
+ * 'int16[pyarrow]'
1669
+ * 'int32[pyarrow]'
1670
+ * 'int64[pyarrow]'
1671
+ * 'float[pyarrow]'
1672
+ * 'double[pyarrow]'
1673
+ """
1674
+ return request.param
1675
+
1676
+
1677
+ @pytest.fixture(params=tm.ALL_NUMERIC_DTYPES)
1678
+ def any_numeric_dtype(request):
1679
+ """
1680
+ Parameterized fixture for all numeric dtypes.
1681
+
1682
+ * int
1683
+ * 'int8'
1684
+ * 'uint8'
1685
+ * 'int16'
1686
+ * 'uint16'
1687
+ * 'int32'
1688
+ * 'uint32'
1689
+ * 'int64'
1690
+ * 'uint64'
1691
+ * float
1692
+ * 'float32'
1693
+ * 'float64'
1694
+ * complex
1695
+ * 'complex64'
1696
+ * 'complex128'
1697
+ * 'UInt8'
1698
+ * 'Int8'
1699
+ * 'UInt16'
1700
+ * 'Int16'
1701
+ * 'UInt32'
1702
+ * 'Int32'
1703
+ * 'UInt64'
1704
+ * 'Int64'
1705
+ * 'Float32'
1706
+ * 'Float64'
1707
+ """
1708
+ return request.param
1709
+
1710
+
1711
+ # categoricals are handled separately
1712
+ _any_skipna_inferred_dtype = [
1713
+ ("string", ["a", np.nan, "c"]),
1714
+ ("string", ["a", pd.NA, "c"]),
1715
+ ("mixed", ["a", pd.NaT, "c"]), # pd.NaT not considered valid by is_string_array
1716
+ ("bytes", [b"a", np.nan, b"c"]),
1717
+ ("empty", [np.nan, np.nan, np.nan]),
1718
+ ("empty", []),
1719
+ ("mixed-integer", ["a", np.nan, 2]),
1720
+ ("mixed", ["a", np.nan, 2.0]),
1721
+ ("floating", [1.0, np.nan, 2.0]),
1722
+ ("integer", [1, np.nan, 2]),
1723
+ ("mixed-integer-float", [1, np.nan, 2.0]),
1724
+ ("decimal", [Decimal(1), np.nan, Decimal(2)]),
1725
+ ("boolean", [True, np.nan, False]),
1726
+ ("boolean", [True, pd.NA, False]),
1727
+ ("datetime64", [np.datetime64("2013-01-01"), np.nan, np.datetime64("2018-01-01")]),
1728
+ ("datetime", [Timestamp("20130101"), np.nan, Timestamp("20180101")]),
1729
+ ("date", [date(2013, 1, 1), np.nan, date(2018, 1, 1)]),
1730
+ ("complex", [1 + 1j, np.nan, 2 + 2j]),
1731
+ # The following dtype is commented out due to GH 23554
1732
+ # ('timedelta64', [np.timedelta64(1, 'D'),
1733
+ # np.nan, np.timedelta64(2, 'D')]),
1734
+ ("timedelta", [timedelta(1), np.nan, timedelta(2)]),
1735
+ ("time", [time(1), np.nan, time(2)]),
1736
+ ("period", [Period(2013), pd.NaT, Period(2018)]),
1737
+ ("interval", [Interval(0, 1), np.nan, Interval(0, 2)]),
1738
+ ]
1739
+ ids, _ = zip(*_any_skipna_inferred_dtype) # use inferred type as fixture-id
1740
+
1741
+
1742
+ @pytest.fixture(params=_any_skipna_inferred_dtype, ids=ids)
1743
+ def any_skipna_inferred_dtype(request):
1744
+ """
1745
+ Fixture for all inferred dtypes from _libs.lib.infer_dtype
1746
+
1747
+ The covered (inferred) types are:
1748
+ * 'string'
1749
+ * 'empty'
1750
+ * 'bytes'
1751
+ * 'mixed'
1752
+ * 'mixed-integer'
1753
+ * 'mixed-integer-float'
1754
+ * 'floating'
1755
+ * 'integer'
1756
+ * 'decimal'
1757
+ * 'boolean'
1758
+ * 'datetime64'
1759
+ * 'datetime'
1760
+ * 'date'
1761
+ * 'timedelta'
1762
+ * 'time'
1763
+ * 'period'
1764
+ * 'interval'
1765
+
1766
+ Returns
1767
+ -------
1768
+ inferred_dtype : str
1769
+ The string for the inferred dtype from _libs.lib.infer_dtype
1770
+ values : np.ndarray
1771
+ An array of object dtype that will be inferred to have
1772
+ `inferred_dtype`
1773
+
1774
+ Examples
1775
+ --------
1776
+ >>> from pandas._libs import lib
1777
+ >>>
1778
+ >>> def test_something(any_skipna_inferred_dtype):
1779
+ ... inferred_dtype, values = any_skipna_inferred_dtype
1780
+ ... # will pass
1781
+ ... assert lib.infer_dtype(values, skipna=True) == inferred_dtype
1782
+ """
1783
+ inferred_dtype, values = request.param
1784
+ values = np.array(values, dtype=object) # object dtype to avoid casting
1785
+
1786
+ # correctness of inference tested in tests/dtypes/test_inference.py
1787
+ return inferred_dtype, values
1788
+
1789
+
1790
+ # ----------------------------------------------------------------
1791
+ # Misc
1792
+ # ----------------------------------------------------------------
1793
+ @pytest.fixture
1794
+ def ip():
1795
+ """
1796
+ Get an instance of IPython.InteractiveShell.
1797
+
1798
+ Will raise a skip if IPython is not installed.
1799
+ """
1800
+ pytest.importorskip("IPython", minversion="6.0.0")
1801
+ from IPython.core.interactiveshell import InteractiveShell
1802
+
1803
+ # GH#35711 make sure sqlite history file handle is not leaked
1804
+ from traitlets.config import Config # isort:skip
1805
+
1806
+ c = Config()
1807
+ c.HistoryManager.hist_file = ":memory:"
1808
+
1809
+ return InteractiveShell(config=c)
1810
+
1811
+
1812
+ @pytest.fixture(params=["bsr", "coo", "csc", "csr", "dia", "dok", "lil"])
1813
+ def spmatrix(request):
1814
+ """
1815
+ Yields scipy sparse matrix classes.
1816
+ """
1817
+ sparse = pytest.importorskip("scipy.sparse")
1818
+
1819
+ return getattr(sparse, request.param + "_matrix")
1820
+
1821
+
1822
+ @pytest.fixture(
1823
+ params=[
1824
+ getattr(pd.offsets, o)
1825
+ for o in pd.offsets.__all__
1826
+ if issubclass(getattr(pd.offsets, o), pd.offsets.Tick) and o != "Tick"
1827
+ ]
1828
+ )
1829
+ def tick_classes(request):
1830
+ """
1831
+ Fixture for Tick based datetime offsets available for a time series.
1832
+ """
1833
+ return request.param
1834
+
1835
+
1836
+ @pytest.fixture(params=[None, lambda x: x])
1837
+ def sort_by_key(request):
1838
+ """
1839
+ Simple fixture for testing keys in sorting methods.
1840
+ Tests None (no key) and the identity key.
1841
+ """
1842
+ return request.param
1843
+
1844
+
1845
+ @pytest.fixture(
1846
+ params=[
1847
+ ("foo", None, None),
1848
+ ("Egon", "Venkman", None),
1849
+ ("NCC1701D", "NCC1701D", "NCC1701D"),
1850
+ # possibly-matching NAs
1851
+ (np.nan, np.nan, np.nan),
1852
+ (np.nan, pd.NaT, None),
1853
+ (np.nan, pd.NA, None),
1854
+ (pd.NA, pd.NA, pd.NA),
1855
+ ]
1856
+ )
1857
+ def names(request) -> tuple[Hashable, Hashable, Hashable]:
1858
+ """
1859
+ A 3-tuple of names, the first two for operands, the last for a result.
1860
+ """
1861
+ return request.param
1862
+
1863
+
1864
+ @pytest.fixture(params=[tm.setitem, tm.loc, tm.iloc])
1865
+ def indexer_sli(request):
1866
+ """
1867
+ Parametrize over __setitem__, loc.__setitem__, iloc.__setitem__
1868
+ """
1869
+ return request.param
1870
+
1871
+
1872
+ @pytest.fixture(params=[tm.loc, tm.iloc])
1873
+ def indexer_li(request):
1874
+ """
1875
+ Parametrize over loc.__getitem__, iloc.__getitem__
1876
+ """
1877
+ return request.param
1878
+
1879
+
1880
+ @pytest.fixture(params=[tm.setitem, tm.iloc])
1881
+ def indexer_si(request):
1882
+ """
1883
+ Parametrize over __setitem__, iloc.__setitem__
1884
+ """
1885
+ return request.param
1886
+
1887
+
1888
+ @pytest.fixture(params=[tm.setitem, tm.loc])
1889
+ def indexer_sl(request):
1890
+ """
1891
+ Parametrize over __setitem__, loc.__setitem__
1892
+ """
1893
+ return request.param
1894
+
1895
+
1896
+ @pytest.fixture(params=[tm.at, tm.loc])
1897
+ def indexer_al(request):
1898
+ """
1899
+ Parametrize over at.__setitem__, loc.__setitem__
1900
+ """
1901
+ return request.param
1902
+
1903
+
1904
+ @pytest.fixture(params=[tm.iat, tm.iloc])
1905
+ def indexer_ial(request):
1906
+ """
1907
+ Parametrize over iat.__setitem__, iloc.__setitem__
1908
+ """
1909
+ return request.param
1910
+
1911
+
1912
+ @pytest.fixture
1913
+ def using_array_manager() -> bool:
1914
+ """
1915
+ Fixture to check if the array manager is being used.
1916
+ """
1917
+ return _get_option("mode.data_manager", silent=True) == "array"
1918
+
1919
+
1920
+ @pytest.fixture
1921
+ def using_copy_on_write() -> bool:
1922
+ """
1923
+ Fixture to check if Copy-on-Write is enabled.
1924
+ """
1925
+ return (
1926
+ pd.options.mode.copy_on_write is True
1927
+ and _get_option("mode.data_manager", silent=True) == "block"
1928
+ )
1929
+
1930
+
1931
+ @pytest.fixture
1932
+ def warn_copy_on_write() -> bool:
1933
+ """
1934
+ Fixture to check if Copy-on-Write is in warning mode.
1935
+ """
1936
+ return (
1937
+ pd.options.mode.copy_on_write == "warn"
1938
+ and _get_option("mode.data_manager", silent=True) == "block"
1939
+ )
1940
+
1941
+
1942
+ @pytest.fixture
1943
+ def using_infer_string() -> bool:
1944
+ """
1945
+ Fixture to check if infer string option is enabled.
1946
+ """
1947
+ return pd.options.future.infer_string is True
1948
+
1949
+
1950
+ warsaws = ["Europe/Warsaw", "dateutil/Europe/Warsaw"]
1951
+ if zoneinfo is not None:
1952
+ warsaws.append(zoneinfo.ZoneInfo("Europe/Warsaw")) # type: ignore[arg-type]
1953
+
1954
+
1955
+ @pytest.fixture(params=warsaws)
1956
+ def warsaw(request) -> str:
1957
+ """
1958
+ tzinfo for Europe/Warsaw using pytz, dateutil, or zoneinfo.
1959
+ """
1960
+ return request.param
1961
+
1962
+
1963
+ @pytest.fixture()
1964
+ def arrow_string_storage():
1965
+ return ("pyarrow", "pyarrow_numpy")
llmeval-env/lib/python3.10/site-packages/pandas/core/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/core/__pycache__/apply.cpython-310.pyc ADDED
Binary file (49.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/__pycache__/arraylike.cpython-310.pyc ADDED
Binary file (14.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/__pycache__/config_init.cpython-310.pyc ADDED
Binary file (20.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/__pycache__/missing.cpython-310.pyc ADDED
Binary file (26.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/__pycache__/nanops.cpython-310.pyc ADDED
Binary file (37 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/__pycache__/series.cpython-310.pyc ADDED
Binary file (176 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/accessor.py ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+
3
+ accessor.py contains base classes for implementing accessor properties
4
+ that can be mixed into or pinned onto other pandas classes.
5
+
6
+ """
7
+ from __future__ import annotations
8
+
9
+ from typing import (
10
+ Callable,
11
+ final,
12
+ )
13
+ import warnings
14
+
15
+ from pandas.util._decorators import doc
16
+ from pandas.util._exceptions import find_stack_level
17
+
18
+
19
+ class DirNamesMixin:
20
+ _accessors: set[str] = set()
21
+ _hidden_attrs: frozenset[str] = frozenset()
22
+
23
+ @final
24
+ def _dir_deletions(self) -> set[str]:
25
+ """
26
+ Delete unwanted __dir__ for this object.
27
+ """
28
+ return self._accessors | self._hidden_attrs
29
+
30
+ def _dir_additions(self) -> set[str]:
31
+ """
32
+ Add additional __dir__ for this object.
33
+ """
34
+ return {accessor for accessor in self._accessors if hasattr(self, accessor)}
35
+
36
+ def __dir__(self) -> list[str]:
37
+ """
38
+ Provide method name lookup and completion.
39
+
40
+ Notes
41
+ -----
42
+ Only provide 'public' methods.
43
+ """
44
+ rv = set(super().__dir__())
45
+ rv = (rv - self._dir_deletions()) | self._dir_additions()
46
+ return sorted(rv)
47
+
48
+
49
+ class PandasDelegate:
50
+ """
51
+ Abstract base class for delegating methods/properties.
52
+ """
53
+
54
+ def _delegate_property_get(self, name: str, *args, **kwargs):
55
+ raise TypeError(f"You cannot access the property {name}")
56
+
57
+ def _delegate_property_set(self, name: str, value, *args, **kwargs):
58
+ raise TypeError(f"The property {name} cannot be set")
59
+
60
+ def _delegate_method(self, name: str, *args, **kwargs):
61
+ raise TypeError(f"You cannot call method {name}")
62
+
63
+ @classmethod
64
+ def _add_delegate_accessors(
65
+ cls,
66
+ delegate,
67
+ accessors: list[str],
68
+ typ: str,
69
+ overwrite: bool = False,
70
+ accessor_mapping: Callable[[str], str] = lambda x: x,
71
+ raise_on_missing: bool = True,
72
+ ) -> None:
73
+ """
74
+ Add accessors to cls from the delegate class.
75
+
76
+ Parameters
77
+ ----------
78
+ cls
79
+ Class to add the methods/properties to.
80
+ delegate
81
+ Class to get methods/properties and doc-strings.
82
+ accessors : list of str
83
+ List of accessors to add.
84
+ typ : {'property', 'method'}
85
+ overwrite : bool, default False
86
+ Overwrite the method/property in the target class if it exists.
87
+ accessor_mapping: Callable, default lambda x: x
88
+ Callable to map the delegate's function to the cls' function.
89
+ raise_on_missing: bool, default True
90
+ Raise if an accessor does not exist on delegate.
91
+ False skips the missing accessor.
92
+ """
93
+
94
+ def _create_delegator_property(name: str):
95
+ def _getter(self):
96
+ return self._delegate_property_get(name)
97
+
98
+ def _setter(self, new_values):
99
+ return self._delegate_property_set(name, new_values)
100
+
101
+ _getter.__name__ = name
102
+ _setter.__name__ = name
103
+
104
+ return property(
105
+ fget=_getter,
106
+ fset=_setter,
107
+ doc=getattr(delegate, accessor_mapping(name)).__doc__,
108
+ )
109
+
110
+ def _create_delegator_method(name: str):
111
+ def f(self, *args, **kwargs):
112
+ return self._delegate_method(name, *args, **kwargs)
113
+
114
+ f.__name__ = name
115
+ f.__doc__ = getattr(delegate, accessor_mapping(name)).__doc__
116
+
117
+ return f
118
+
119
+ for name in accessors:
120
+ if (
121
+ not raise_on_missing
122
+ and getattr(delegate, accessor_mapping(name), None) is None
123
+ ):
124
+ continue
125
+
126
+ if typ == "property":
127
+ f = _create_delegator_property(name)
128
+ else:
129
+ f = _create_delegator_method(name)
130
+
131
+ # don't overwrite existing methods/properties
132
+ if overwrite or not hasattr(cls, name):
133
+ setattr(cls, name, f)
134
+
135
+
136
+ def delegate_names(
137
+ delegate,
138
+ accessors: list[str],
139
+ typ: str,
140
+ overwrite: bool = False,
141
+ accessor_mapping: Callable[[str], str] = lambda x: x,
142
+ raise_on_missing: bool = True,
143
+ ):
144
+ """
145
+ Add delegated names to a class using a class decorator. This provides
146
+ an alternative usage to directly calling `_add_delegate_accessors`
147
+ below a class definition.
148
+
149
+ Parameters
150
+ ----------
151
+ delegate : object
152
+ The class to get methods/properties & doc-strings.
153
+ accessors : Sequence[str]
154
+ List of accessor to add.
155
+ typ : {'property', 'method'}
156
+ overwrite : bool, default False
157
+ Overwrite the method/property in the target class if it exists.
158
+ accessor_mapping: Callable, default lambda x: x
159
+ Callable to map the delegate's function to the cls' function.
160
+ raise_on_missing: bool, default True
161
+ Raise if an accessor does not exist on delegate.
162
+ False skips the missing accessor.
163
+
164
+ Returns
165
+ -------
166
+ callable
167
+ A class decorator.
168
+
169
+ Examples
170
+ --------
171
+ @delegate_names(Categorical, ["categories", "ordered"], "property")
172
+ class CategoricalAccessor(PandasDelegate):
173
+ [...]
174
+ """
175
+
176
+ def add_delegate_accessors(cls):
177
+ cls._add_delegate_accessors(
178
+ delegate,
179
+ accessors,
180
+ typ,
181
+ overwrite=overwrite,
182
+ accessor_mapping=accessor_mapping,
183
+ raise_on_missing=raise_on_missing,
184
+ )
185
+ return cls
186
+
187
+ return add_delegate_accessors
188
+
189
+
190
+ # Ported with modifications from xarray; licence at LICENSES/XARRAY_LICENSE
191
+ # https://github.com/pydata/xarray/blob/master/xarray/core/extensions.py
192
+ # 1. We don't need to catch and re-raise AttributeErrors as RuntimeErrors
193
+ # 2. We use a UserWarning instead of a custom Warning
194
+
195
+
196
+ class CachedAccessor:
197
+ """
198
+ Custom property-like object.
199
+
200
+ A descriptor for caching accessors.
201
+
202
+ Parameters
203
+ ----------
204
+ name : str
205
+ Namespace that will be accessed under, e.g. ``df.foo``.
206
+ accessor : cls
207
+ Class with the extension methods.
208
+
209
+ Notes
210
+ -----
211
+ For accessor, The class's __init__ method assumes that one of
212
+ ``Series``, ``DataFrame`` or ``Index`` as the
213
+ single argument ``data``.
214
+ """
215
+
216
+ def __init__(self, name: str, accessor) -> None:
217
+ self._name = name
218
+ self._accessor = accessor
219
+
220
+ def __get__(self, obj, cls):
221
+ if obj is None:
222
+ # we're accessing the attribute of the class, i.e., Dataset.geo
223
+ return self._accessor
224
+ accessor_obj = self._accessor(obj)
225
+ # Replace the property with the accessor object. Inspired by:
226
+ # https://www.pydanny.com/cached-property.html
227
+ # We need to use object.__setattr__ because we overwrite __setattr__ on
228
+ # NDFrame
229
+ object.__setattr__(obj, self._name, accessor_obj)
230
+ return accessor_obj
231
+
232
+
233
+ @doc(klass="", others="")
234
+ def _register_accessor(name: str, cls):
235
+ """
236
+ Register a custom accessor on {klass} objects.
237
+
238
+ Parameters
239
+ ----------
240
+ name : str
241
+ Name under which the accessor should be registered. A warning is issued
242
+ if this name conflicts with a preexisting attribute.
243
+
244
+ Returns
245
+ -------
246
+ callable
247
+ A class decorator.
248
+
249
+ See Also
250
+ --------
251
+ register_dataframe_accessor : Register a custom accessor on DataFrame objects.
252
+ register_series_accessor : Register a custom accessor on Series objects.
253
+ register_index_accessor : Register a custom accessor on Index objects.
254
+
255
+ Notes
256
+ -----
257
+ When accessed, your accessor will be initialized with the pandas object
258
+ the user is interacting with. So the signature must be
259
+
260
+ .. code-block:: python
261
+
262
+ def __init__(self, pandas_object): # noqa: E999
263
+ ...
264
+
265
+ For consistency with pandas methods, you should raise an ``AttributeError``
266
+ if the data passed to your accessor has an incorrect dtype.
267
+
268
+ >>> pd.Series(['a', 'b']).dt
269
+ Traceback (most recent call last):
270
+ ...
271
+ AttributeError: Can only use .dt accessor with datetimelike values
272
+
273
+ Examples
274
+ --------
275
+ In your library code::
276
+
277
+ import pandas as pd
278
+
279
+ @pd.api.extensions.register_dataframe_accessor("geo")
280
+ class GeoAccessor:
281
+ def __init__(self, pandas_obj):
282
+ self._obj = pandas_obj
283
+
284
+ @property
285
+ def center(self):
286
+ # return the geographic center point of this DataFrame
287
+ lat = self._obj.latitude
288
+ lon = self._obj.longitude
289
+ return (float(lon.mean()), float(lat.mean()))
290
+
291
+ def plot(self):
292
+ # plot this array's data on a map, e.g., using Cartopy
293
+ pass
294
+
295
+ Back in an interactive IPython session:
296
+
297
+ .. code-block:: ipython
298
+
299
+ In [1]: ds = pd.DataFrame({{"longitude": np.linspace(0, 10),
300
+ ...: "latitude": np.linspace(0, 20)}})
301
+ In [2]: ds.geo.center
302
+ Out[2]: (5.0, 10.0)
303
+ In [3]: ds.geo.plot() # plots data on a map
304
+ """
305
+
306
+ def decorator(accessor):
307
+ if hasattr(cls, name):
308
+ warnings.warn(
309
+ f"registration of accessor {repr(accessor)} under name "
310
+ f"{repr(name)} for type {repr(cls)} is overriding a preexisting "
311
+ f"attribute with the same name.",
312
+ UserWarning,
313
+ stacklevel=find_stack_level(),
314
+ )
315
+ setattr(cls, name, CachedAccessor(name, accessor))
316
+ cls._accessors.add(name)
317
+ return accessor
318
+
319
+ return decorator
320
+
321
+
322
+ @doc(_register_accessor, klass="DataFrame")
323
+ def register_dataframe_accessor(name: str):
324
+ from pandas import DataFrame
325
+
326
+ return _register_accessor(name, DataFrame)
327
+
328
+
329
+ @doc(_register_accessor, klass="Series")
330
+ def register_series_accessor(name: str):
331
+ from pandas import Series
332
+
333
+ return _register_accessor(name, Series)
334
+
335
+
336
+ @doc(_register_accessor, klass="Index")
337
+ def register_index_accessor(name: str):
338
+ from pandas import Index
339
+
340
+ return _register_accessor(name, Index)
llmeval-env/lib/python3.10/site-packages/pandas/core/algorithms.py ADDED
@@ -0,0 +1,1747 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Generic data algorithms. This module is experimental at the moment and not
3
+ intended for public consumption
4
+ """
5
+ from __future__ import annotations
6
+
7
+ import decimal
8
+ import operator
9
+ from textwrap import dedent
10
+ from typing import (
11
+ TYPE_CHECKING,
12
+ Literal,
13
+ cast,
14
+ )
15
+ import warnings
16
+
17
+ import numpy as np
18
+
19
+ from pandas._libs import (
20
+ algos,
21
+ hashtable as htable,
22
+ iNaT,
23
+ lib,
24
+ )
25
+ from pandas._typing import (
26
+ AnyArrayLike,
27
+ ArrayLike,
28
+ AxisInt,
29
+ DtypeObj,
30
+ TakeIndexer,
31
+ npt,
32
+ )
33
+ from pandas.util._decorators import doc
34
+ from pandas.util._exceptions import find_stack_level
35
+
36
+ from pandas.core.dtypes.cast import (
37
+ construct_1d_object_array_from_listlike,
38
+ np_find_common_type,
39
+ )
40
+ from pandas.core.dtypes.common import (
41
+ ensure_float64,
42
+ ensure_object,
43
+ ensure_platform_int,
44
+ is_array_like,
45
+ is_bool_dtype,
46
+ is_complex_dtype,
47
+ is_dict_like,
48
+ is_extension_array_dtype,
49
+ is_float_dtype,
50
+ is_integer,
51
+ is_integer_dtype,
52
+ is_list_like,
53
+ is_object_dtype,
54
+ is_signed_integer_dtype,
55
+ needs_i8_conversion,
56
+ )
57
+ from pandas.core.dtypes.concat import concat_compat
58
+ from pandas.core.dtypes.dtypes import (
59
+ BaseMaskedDtype,
60
+ CategoricalDtype,
61
+ ExtensionDtype,
62
+ NumpyEADtype,
63
+ )
64
+ from pandas.core.dtypes.generic import (
65
+ ABCDatetimeArray,
66
+ ABCExtensionArray,
67
+ ABCIndex,
68
+ ABCMultiIndex,
69
+ ABCSeries,
70
+ ABCTimedeltaArray,
71
+ )
72
+ from pandas.core.dtypes.missing import (
73
+ isna,
74
+ na_value_for_dtype,
75
+ )
76
+
77
+ from pandas.core.array_algos.take import take_nd
78
+ from pandas.core.construction import (
79
+ array as pd_array,
80
+ ensure_wrapped_if_datetimelike,
81
+ extract_array,
82
+ )
83
+ from pandas.core.indexers import validate_indices
84
+
85
+ if TYPE_CHECKING:
86
+ from pandas._typing import (
87
+ ListLike,
88
+ NumpySorter,
89
+ NumpyValueArrayLike,
90
+ )
91
+
92
+ from pandas import (
93
+ Categorical,
94
+ Index,
95
+ Series,
96
+ )
97
+ from pandas.core.arrays import (
98
+ BaseMaskedArray,
99
+ ExtensionArray,
100
+ )
101
+
102
+
103
+ # --------------- #
104
+ # dtype access #
105
+ # --------------- #
106
+ def _ensure_data(values: ArrayLike) -> np.ndarray:
107
+ """
108
+ routine to ensure that our data is of the correct
109
+ input dtype for lower-level routines
110
+
111
+ This will coerce:
112
+ - ints -> int64
113
+ - uint -> uint64
114
+ - bool -> uint8
115
+ - datetimelike -> i8
116
+ - datetime64tz -> i8 (in local tz)
117
+ - categorical -> codes
118
+
119
+ Parameters
120
+ ----------
121
+ values : np.ndarray or ExtensionArray
122
+
123
+ Returns
124
+ -------
125
+ np.ndarray
126
+ """
127
+
128
+ if not isinstance(values, ABCMultiIndex):
129
+ # extract_array would raise
130
+ values = extract_array(values, extract_numpy=True)
131
+
132
+ if is_object_dtype(values.dtype):
133
+ return ensure_object(np.asarray(values))
134
+
135
+ elif isinstance(values.dtype, BaseMaskedDtype):
136
+ # i.e. BooleanArray, FloatingArray, IntegerArray
137
+ values = cast("BaseMaskedArray", values)
138
+ if not values._hasna:
139
+ # No pd.NAs -> We can avoid an object-dtype cast (and copy) GH#41816
140
+ # recurse to avoid re-implementing logic for eg bool->uint8
141
+ return _ensure_data(values._data)
142
+ return np.asarray(values)
143
+
144
+ elif isinstance(values.dtype, CategoricalDtype):
145
+ # NB: cases that go through here should NOT be using _reconstruct_data
146
+ # on the back-end.
147
+ values = cast("Categorical", values)
148
+ return values.codes
149
+
150
+ elif is_bool_dtype(values.dtype):
151
+ if isinstance(values, np.ndarray):
152
+ # i.e. actually dtype == np.dtype("bool")
153
+ return np.asarray(values).view("uint8")
154
+ else:
155
+ # e.g. Sparse[bool, False] # TODO: no test cases get here
156
+ return np.asarray(values).astype("uint8", copy=False)
157
+
158
+ elif is_integer_dtype(values.dtype):
159
+ return np.asarray(values)
160
+
161
+ elif is_float_dtype(values.dtype):
162
+ # Note: checking `values.dtype == "float128"` raises on Windows and 32bit
163
+ # error: Item "ExtensionDtype" of "Union[Any, ExtensionDtype, dtype[Any]]"
164
+ # has no attribute "itemsize"
165
+ if values.dtype.itemsize in [2, 12, 16]: # type: ignore[union-attr]
166
+ # we dont (yet) have float128 hashtable support
167
+ return ensure_float64(values)
168
+ return np.asarray(values)
169
+
170
+ elif is_complex_dtype(values.dtype):
171
+ return cast(np.ndarray, values)
172
+
173
+ # datetimelike
174
+ elif needs_i8_conversion(values.dtype):
175
+ npvalues = values.view("i8")
176
+ npvalues = cast(np.ndarray, npvalues)
177
+ return npvalues
178
+
179
+ # we have failed, return object
180
+ values = np.asarray(values, dtype=object)
181
+ return ensure_object(values)
182
+
183
+
184
+ def _reconstruct_data(
185
+ values: ArrayLike, dtype: DtypeObj, original: AnyArrayLike
186
+ ) -> ArrayLike:
187
+ """
188
+ reverse of _ensure_data
189
+
190
+ Parameters
191
+ ----------
192
+ values : np.ndarray or ExtensionArray
193
+ dtype : np.dtype or ExtensionDtype
194
+ original : AnyArrayLike
195
+
196
+ Returns
197
+ -------
198
+ ExtensionArray or np.ndarray
199
+ """
200
+ if isinstance(values, ABCExtensionArray) and values.dtype == dtype:
201
+ # Catch DatetimeArray/TimedeltaArray
202
+ return values
203
+
204
+ if not isinstance(dtype, np.dtype):
205
+ # i.e. ExtensionDtype; note we have ruled out above the possibility
206
+ # that values.dtype == dtype
207
+ cls = dtype.construct_array_type()
208
+
209
+ values = cls._from_sequence(values, dtype=dtype)
210
+
211
+ else:
212
+ values = values.astype(dtype, copy=False)
213
+
214
+ return values
215
+
216
+
217
+ def _ensure_arraylike(values, func_name: str) -> ArrayLike:
218
+ """
219
+ ensure that we are arraylike if not already
220
+ """
221
+ if not isinstance(values, (ABCIndex, ABCSeries, ABCExtensionArray, np.ndarray)):
222
+ # GH#52986
223
+ if func_name != "isin-targets":
224
+ # Make an exception for the comps argument in isin.
225
+ warnings.warn(
226
+ f"{func_name} with argument that is not not a Series, Index, "
227
+ "ExtensionArray, or np.ndarray is deprecated and will raise in a "
228
+ "future version.",
229
+ FutureWarning,
230
+ stacklevel=find_stack_level(),
231
+ )
232
+
233
+ inferred = lib.infer_dtype(values, skipna=False)
234
+ if inferred in ["mixed", "string", "mixed-integer"]:
235
+ # "mixed-integer" to ensure we do not cast ["ss", 42] to str GH#22160
236
+ if isinstance(values, tuple):
237
+ values = list(values)
238
+ values = construct_1d_object_array_from_listlike(values)
239
+ else:
240
+ values = np.asarray(values)
241
+ return values
242
+
243
+
244
+ _hashtables = {
245
+ "complex128": htable.Complex128HashTable,
246
+ "complex64": htable.Complex64HashTable,
247
+ "float64": htable.Float64HashTable,
248
+ "float32": htable.Float32HashTable,
249
+ "uint64": htable.UInt64HashTable,
250
+ "uint32": htable.UInt32HashTable,
251
+ "uint16": htable.UInt16HashTable,
252
+ "uint8": htable.UInt8HashTable,
253
+ "int64": htable.Int64HashTable,
254
+ "int32": htable.Int32HashTable,
255
+ "int16": htable.Int16HashTable,
256
+ "int8": htable.Int8HashTable,
257
+ "string": htable.StringHashTable,
258
+ "object": htable.PyObjectHashTable,
259
+ }
260
+
261
+
262
+ def _get_hashtable_algo(values: np.ndarray):
263
+ """
264
+ Parameters
265
+ ----------
266
+ values : np.ndarray
267
+
268
+ Returns
269
+ -------
270
+ htable : HashTable subclass
271
+ values : ndarray
272
+ """
273
+ values = _ensure_data(values)
274
+
275
+ ndtype = _check_object_for_strings(values)
276
+ hashtable = _hashtables[ndtype]
277
+ return hashtable, values
278
+
279
+
280
+ def _check_object_for_strings(values: np.ndarray) -> str:
281
+ """
282
+ Check if we can use string hashtable instead of object hashtable.
283
+
284
+ Parameters
285
+ ----------
286
+ values : ndarray
287
+
288
+ Returns
289
+ -------
290
+ str
291
+ """
292
+ ndtype = values.dtype.name
293
+ if ndtype == "object":
294
+ # it's cheaper to use a String Hash Table than Object; we infer
295
+ # including nulls because that is the only difference between
296
+ # StringHashTable and ObjectHashtable
297
+ if lib.is_string_array(values, skipna=False):
298
+ ndtype = "string"
299
+ return ndtype
300
+
301
+
302
+ # --------------- #
303
+ # top-level algos #
304
+ # --------------- #
305
+
306
+
307
+ def unique(values):
308
+ """
309
+ Return unique values based on a hash table.
310
+
311
+ Uniques are returned in order of appearance. This does NOT sort.
312
+
313
+ Significantly faster than numpy.unique for long enough sequences.
314
+ Includes NA values.
315
+
316
+ Parameters
317
+ ----------
318
+ values : 1d array-like
319
+
320
+ Returns
321
+ -------
322
+ numpy.ndarray or ExtensionArray
323
+
324
+ The return can be:
325
+
326
+ * Index : when the input is an Index
327
+ * Categorical : when the input is a Categorical dtype
328
+ * ndarray : when the input is a Series/ndarray
329
+
330
+ Return numpy.ndarray or ExtensionArray.
331
+
332
+ See Also
333
+ --------
334
+ Index.unique : Return unique values from an Index.
335
+ Series.unique : Return unique values of Series object.
336
+
337
+ Examples
338
+ --------
339
+ >>> pd.unique(pd.Series([2, 1, 3, 3]))
340
+ array([2, 1, 3])
341
+
342
+ >>> pd.unique(pd.Series([2] + [1] * 5))
343
+ array([2, 1])
344
+
345
+ >>> pd.unique(pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")]))
346
+ array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]')
347
+
348
+ >>> pd.unique(
349
+ ... pd.Series(
350
+ ... [
351
+ ... pd.Timestamp("20160101", tz="US/Eastern"),
352
+ ... pd.Timestamp("20160101", tz="US/Eastern"),
353
+ ... ]
354
+ ... )
355
+ ... )
356
+ <DatetimeArray>
357
+ ['2016-01-01 00:00:00-05:00']
358
+ Length: 1, dtype: datetime64[ns, US/Eastern]
359
+
360
+ >>> pd.unique(
361
+ ... pd.Index(
362
+ ... [
363
+ ... pd.Timestamp("20160101", tz="US/Eastern"),
364
+ ... pd.Timestamp("20160101", tz="US/Eastern"),
365
+ ... ]
366
+ ... )
367
+ ... )
368
+ DatetimeIndex(['2016-01-01 00:00:00-05:00'],
369
+ dtype='datetime64[ns, US/Eastern]',
370
+ freq=None)
371
+
372
+ >>> pd.unique(np.array(list("baabc"), dtype="O"))
373
+ array(['b', 'a', 'c'], dtype=object)
374
+
375
+ An unordered Categorical will return categories in the
376
+ order of appearance.
377
+
378
+ >>> pd.unique(pd.Series(pd.Categorical(list("baabc"))))
379
+ ['b', 'a', 'c']
380
+ Categories (3, object): ['a', 'b', 'c']
381
+
382
+ >>> pd.unique(pd.Series(pd.Categorical(list("baabc"), categories=list("abc"))))
383
+ ['b', 'a', 'c']
384
+ Categories (3, object): ['a', 'b', 'c']
385
+
386
+ An ordered Categorical preserves the category ordering.
387
+
388
+ >>> pd.unique(
389
+ ... pd.Series(
390
+ ... pd.Categorical(list("baabc"), categories=list("abc"), ordered=True)
391
+ ... )
392
+ ... )
393
+ ['b', 'a', 'c']
394
+ Categories (3, object): ['a' < 'b' < 'c']
395
+
396
+ An array of tuples
397
+
398
+ >>> pd.unique(pd.Series([("a", "b"), ("b", "a"), ("a", "c"), ("b", "a")]).values)
399
+ array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object)
400
+ """
401
+ return unique_with_mask(values)
402
+
403
+
404
+ def nunique_ints(values: ArrayLike) -> int:
405
+ """
406
+ Return the number of unique values for integer array-likes.
407
+
408
+ Significantly faster than pandas.unique for long enough sequences.
409
+ No checks are done to ensure input is integral.
410
+
411
+ Parameters
412
+ ----------
413
+ values : 1d array-like
414
+
415
+ Returns
416
+ -------
417
+ int : The number of unique values in ``values``
418
+ """
419
+ if len(values) == 0:
420
+ return 0
421
+ values = _ensure_data(values)
422
+ # bincount requires intp
423
+ result = (np.bincount(values.ravel().astype("intp")) != 0).sum()
424
+ return result
425
+
426
+
427
+ def unique_with_mask(values, mask: npt.NDArray[np.bool_] | None = None):
428
+ """See algorithms.unique for docs. Takes a mask for masked arrays."""
429
+ values = _ensure_arraylike(values, func_name="unique")
430
+
431
+ if isinstance(values.dtype, ExtensionDtype):
432
+ # Dispatch to extension dtype's unique.
433
+ return values.unique()
434
+
435
+ original = values
436
+ hashtable, values = _get_hashtable_algo(values)
437
+
438
+ table = hashtable(len(values))
439
+ if mask is None:
440
+ uniques = table.unique(values)
441
+ uniques = _reconstruct_data(uniques, original.dtype, original)
442
+ return uniques
443
+
444
+ else:
445
+ uniques, mask = table.unique(values, mask=mask)
446
+ uniques = _reconstruct_data(uniques, original.dtype, original)
447
+ assert mask is not None # for mypy
448
+ return uniques, mask.astype("bool")
449
+
450
+
451
+ unique1d = unique
452
+
453
+
454
+ _MINIMUM_COMP_ARR_LEN = 1_000_000
455
+
456
+
457
+ def isin(comps: ListLike, values: ListLike) -> npt.NDArray[np.bool_]:
458
+ """
459
+ Compute the isin boolean array.
460
+
461
+ Parameters
462
+ ----------
463
+ comps : list-like
464
+ values : list-like
465
+
466
+ Returns
467
+ -------
468
+ ndarray[bool]
469
+ Same length as `comps`.
470
+ """
471
+ if not is_list_like(comps):
472
+ raise TypeError(
473
+ "only list-like objects are allowed to be passed "
474
+ f"to isin(), you passed a `{type(comps).__name__}`"
475
+ )
476
+ if not is_list_like(values):
477
+ raise TypeError(
478
+ "only list-like objects are allowed to be passed "
479
+ f"to isin(), you passed a `{type(values).__name__}`"
480
+ )
481
+
482
+ if not isinstance(values, (ABCIndex, ABCSeries, ABCExtensionArray, np.ndarray)):
483
+ orig_values = list(values)
484
+ values = _ensure_arraylike(orig_values, func_name="isin-targets")
485
+
486
+ if (
487
+ len(values) > 0
488
+ and values.dtype.kind in "iufcb"
489
+ and not is_signed_integer_dtype(comps)
490
+ ):
491
+ # GH#46485 Use object to avoid upcast to float64 later
492
+ # TODO: Share with _find_common_type_compat
493
+ values = construct_1d_object_array_from_listlike(orig_values)
494
+
495
+ elif isinstance(values, ABCMultiIndex):
496
+ # Avoid raising in extract_array
497
+ values = np.array(values)
498
+ else:
499
+ values = extract_array(values, extract_numpy=True, extract_range=True)
500
+
501
+ comps_array = _ensure_arraylike(comps, func_name="isin")
502
+ comps_array = extract_array(comps_array, extract_numpy=True)
503
+ if not isinstance(comps_array, np.ndarray):
504
+ # i.e. Extension Array
505
+ return comps_array.isin(values)
506
+
507
+ elif needs_i8_conversion(comps_array.dtype):
508
+ # Dispatch to DatetimeLikeArrayMixin.isin
509
+ return pd_array(comps_array).isin(values)
510
+ elif needs_i8_conversion(values.dtype) and not is_object_dtype(comps_array.dtype):
511
+ # e.g. comps_array are integers and values are datetime64s
512
+ return np.zeros(comps_array.shape, dtype=bool)
513
+ # TODO: not quite right ... Sparse/Categorical
514
+ elif needs_i8_conversion(values.dtype):
515
+ return isin(comps_array, values.astype(object))
516
+
517
+ elif isinstance(values.dtype, ExtensionDtype):
518
+ return isin(np.asarray(comps_array), np.asarray(values))
519
+
520
+ # GH16012
521
+ # Ensure np.isin doesn't get object types or it *may* throw an exception
522
+ # Albeit hashmap has O(1) look-up (vs. O(logn) in sorted array),
523
+ # isin is faster for small sizes
524
+ if (
525
+ len(comps_array) > _MINIMUM_COMP_ARR_LEN
526
+ and len(values) <= 26
527
+ and comps_array.dtype != object
528
+ ):
529
+ # If the values include nan we need to check for nan explicitly
530
+ # since np.nan it not equal to np.nan
531
+ if isna(values).any():
532
+
533
+ def f(c, v):
534
+ return np.logical_or(np.isin(c, v).ravel(), np.isnan(c))
535
+
536
+ else:
537
+ f = lambda a, b: np.isin(a, b).ravel()
538
+
539
+ else:
540
+ common = np_find_common_type(values.dtype, comps_array.dtype)
541
+ values = values.astype(common, copy=False)
542
+ comps_array = comps_array.astype(common, copy=False)
543
+ f = htable.ismember
544
+
545
+ return f(comps_array, values)
546
+
547
+
548
+ def factorize_array(
549
+ values: np.ndarray,
550
+ use_na_sentinel: bool = True,
551
+ size_hint: int | None = None,
552
+ na_value: object = None,
553
+ mask: npt.NDArray[np.bool_] | None = None,
554
+ ) -> tuple[npt.NDArray[np.intp], np.ndarray]:
555
+ """
556
+ Factorize a numpy array to codes and uniques.
557
+
558
+ This doesn't do any coercion of types or unboxing before factorization.
559
+
560
+ Parameters
561
+ ----------
562
+ values : ndarray
563
+ use_na_sentinel : bool, default True
564
+ If True, the sentinel -1 will be used for NaN values. If False,
565
+ NaN values will be encoded as non-negative integers and will not drop the
566
+ NaN from the uniques of the values.
567
+ size_hint : int, optional
568
+ Passed through to the hashtable's 'get_labels' method
569
+ na_value : object, optional
570
+ A value in `values` to consider missing. Note: only use this
571
+ parameter when you know that you don't have any values pandas would
572
+ consider missing in the array (NaN for float data, iNaT for
573
+ datetimes, etc.).
574
+ mask : ndarray[bool], optional
575
+ If not None, the mask is used as indicator for missing values
576
+ (True = missing, False = valid) instead of `na_value` or
577
+ condition "val != val".
578
+
579
+ Returns
580
+ -------
581
+ codes : ndarray[np.intp]
582
+ uniques : ndarray
583
+ """
584
+ original = values
585
+ if values.dtype.kind in "mM":
586
+ # _get_hashtable_algo will cast dt64/td64 to i8 via _ensure_data, so we
587
+ # need to do the same to na_value. We are assuming here that the passed
588
+ # na_value is an appropriately-typed NaT.
589
+ # e.g. test_where_datetimelike_categorical
590
+ na_value = iNaT
591
+
592
+ hash_klass, values = _get_hashtable_algo(values)
593
+
594
+ table = hash_klass(size_hint or len(values))
595
+ uniques, codes = table.factorize(
596
+ values,
597
+ na_sentinel=-1,
598
+ na_value=na_value,
599
+ mask=mask,
600
+ ignore_na=use_na_sentinel,
601
+ )
602
+
603
+ # re-cast e.g. i8->dt64/td64, uint8->bool
604
+ uniques = _reconstruct_data(uniques, original.dtype, original)
605
+
606
+ codes = ensure_platform_int(codes)
607
+ return codes, uniques
608
+
609
+
610
+ @doc(
611
+ values=dedent(
612
+ """\
613
+ values : sequence
614
+ A 1-D sequence. Sequences that aren't pandas objects are
615
+ coerced to ndarrays before factorization.
616
+ """
617
+ ),
618
+ sort=dedent(
619
+ """\
620
+ sort : bool, default False
621
+ Sort `uniques` and shuffle `codes` to maintain the
622
+ relationship.
623
+ """
624
+ ),
625
+ size_hint=dedent(
626
+ """\
627
+ size_hint : int, optional
628
+ Hint to the hashtable sizer.
629
+ """
630
+ ),
631
+ )
632
+ def factorize(
633
+ values,
634
+ sort: bool = False,
635
+ use_na_sentinel: bool = True,
636
+ size_hint: int | None = None,
637
+ ) -> tuple[np.ndarray, np.ndarray | Index]:
638
+ """
639
+ Encode the object as an enumerated type or categorical variable.
640
+
641
+ This method is useful for obtaining a numeric representation of an
642
+ array when all that matters is identifying distinct values. `factorize`
643
+ is available as both a top-level function :func:`pandas.factorize`,
644
+ and as a method :meth:`Series.factorize` and :meth:`Index.factorize`.
645
+
646
+ Parameters
647
+ ----------
648
+ {values}{sort}
649
+ use_na_sentinel : bool, default True
650
+ If True, the sentinel -1 will be used for NaN values. If False,
651
+ NaN values will be encoded as non-negative integers and will not drop the
652
+ NaN from the uniques of the values.
653
+
654
+ .. versionadded:: 1.5.0
655
+ {size_hint}\
656
+
657
+ Returns
658
+ -------
659
+ codes : ndarray
660
+ An integer ndarray that's an indexer into `uniques`.
661
+ ``uniques.take(codes)`` will have the same values as `values`.
662
+ uniques : ndarray, Index, or Categorical
663
+ The unique valid values. When `values` is Categorical, `uniques`
664
+ is a Categorical. When `values` is some other pandas object, an
665
+ `Index` is returned. Otherwise, a 1-D ndarray is returned.
666
+
667
+ .. note::
668
+
669
+ Even if there's a missing value in `values`, `uniques` will
670
+ *not* contain an entry for it.
671
+
672
+ See Also
673
+ --------
674
+ cut : Discretize continuous-valued array.
675
+ unique : Find the unique value in an array.
676
+
677
+ Notes
678
+ -----
679
+ Reference :ref:`the user guide <reshaping.factorize>` for more examples.
680
+
681
+ Examples
682
+ --------
683
+ These examples all show factorize as a top-level method like
684
+ ``pd.factorize(values)``. The results are identical for methods like
685
+ :meth:`Series.factorize`.
686
+
687
+ >>> codes, uniques = pd.factorize(np.array(['b', 'b', 'a', 'c', 'b'], dtype="O"))
688
+ >>> codes
689
+ array([0, 0, 1, 2, 0])
690
+ >>> uniques
691
+ array(['b', 'a', 'c'], dtype=object)
692
+
693
+ With ``sort=True``, the `uniques` will be sorted, and `codes` will be
694
+ shuffled so that the relationship is the maintained.
695
+
696
+ >>> codes, uniques = pd.factorize(np.array(['b', 'b', 'a', 'c', 'b'], dtype="O"),
697
+ ... sort=True)
698
+ >>> codes
699
+ array([1, 1, 0, 2, 1])
700
+ >>> uniques
701
+ array(['a', 'b', 'c'], dtype=object)
702
+
703
+ When ``use_na_sentinel=True`` (the default), missing values are indicated in
704
+ the `codes` with the sentinel value ``-1`` and missing values are not
705
+ included in `uniques`.
706
+
707
+ >>> codes, uniques = pd.factorize(np.array(['b', None, 'a', 'c', 'b'], dtype="O"))
708
+ >>> codes
709
+ array([ 0, -1, 1, 2, 0])
710
+ >>> uniques
711
+ array(['b', 'a', 'c'], dtype=object)
712
+
713
+ Thus far, we've only factorized lists (which are internally coerced to
714
+ NumPy arrays). When factorizing pandas objects, the type of `uniques`
715
+ will differ. For Categoricals, a `Categorical` is returned.
716
+
717
+ >>> cat = pd.Categorical(['a', 'a', 'c'], categories=['a', 'b', 'c'])
718
+ >>> codes, uniques = pd.factorize(cat)
719
+ >>> codes
720
+ array([0, 0, 1])
721
+ >>> uniques
722
+ ['a', 'c']
723
+ Categories (3, object): ['a', 'b', 'c']
724
+
725
+ Notice that ``'b'`` is in ``uniques.categories``, despite not being
726
+ present in ``cat.values``.
727
+
728
+ For all other pandas objects, an Index of the appropriate type is
729
+ returned.
730
+
731
+ >>> cat = pd.Series(['a', 'a', 'c'])
732
+ >>> codes, uniques = pd.factorize(cat)
733
+ >>> codes
734
+ array([0, 0, 1])
735
+ >>> uniques
736
+ Index(['a', 'c'], dtype='object')
737
+
738
+ If NaN is in the values, and we want to include NaN in the uniques of the
739
+ values, it can be achieved by setting ``use_na_sentinel=False``.
740
+
741
+ >>> values = np.array([1, 2, 1, np.nan])
742
+ >>> codes, uniques = pd.factorize(values) # default: use_na_sentinel=True
743
+ >>> codes
744
+ array([ 0, 1, 0, -1])
745
+ >>> uniques
746
+ array([1., 2.])
747
+
748
+ >>> codes, uniques = pd.factorize(values, use_na_sentinel=False)
749
+ >>> codes
750
+ array([0, 1, 0, 2])
751
+ >>> uniques
752
+ array([ 1., 2., nan])
753
+ """
754
+ # Implementation notes: This method is responsible for 3 things
755
+ # 1.) coercing data to array-like (ndarray, Index, extension array)
756
+ # 2.) factorizing codes and uniques
757
+ # 3.) Maybe boxing the uniques in an Index
758
+ #
759
+ # Step 2 is dispatched to extension types (like Categorical). They are
760
+ # responsible only for factorization. All data coercion, sorting and boxing
761
+ # should happen here.
762
+ if isinstance(values, (ABCIndex, ABCSeries)):
763
+ return values.factorize(sort=sort, use_na_sentinel=use_na_sentinel)
764
+
765
+ values = _ensure_arraylike(values, func_name="factorize")
766
+ original = values
767
+
768
+ if (
769
+ isinstance(values, (ABCDatetimeArray, ABCTimedeltaArray))
770
+ and values.freq is not None
771
+ ):
772
+ # The presence of 'freq' means we can fast-path sorting and know there
773
+ # aren't NAs
774
+ codes, uniques = values.factorize(sort=sort)
775
+ return codes, uniques
776
+
777
+ elif not isinstance(values, np.ndarray):
778
+ # i.e. ExtensionArray
779
+ codes, uniques = values.factorize(use_na_sentinel=use_na_sentinel)
780
+
781
+ else:
782
+ values = np.asarray(values) # convert DTA/TDA/MultiIndex
783
+
784
+ if not use_na_sentinel and values.dtype == object:
785
+ # factorize can now handle differentiating various types of null values.
786
+ # These can only occur when the array has object dtype.
787
+ # However, for backwards compatibility we only use the null for the
788
+ # provided dtype. This may be revisited in the future, see GH#48476.
789
+ null_mask = isna(values)
790
+ if null_mask.any():
791
+ na_value = na_value_for_dtype(values.dtype, compat=False)
792
+ # Don't modify (potentially user-provided) array
793
+ values = np.where(null_mask, na_value, values)
794
+
795
+ codes, uniques = factorize_array(
796
+ values,
797
+ use_na_sentinel=use_na_sentinel,
798
+ size_hint=size_hint,
799
+ )
800
+
801
+ if sort and len(uniques) > 0:
802
+ uniques, codes = safe_sort(
803
+ uniques,
804
+ codes,
805
+ use_na_sentinel=use_na_sentinel,
806
+ assume_unique=True,
807
+ verify=False,
808
+ )
809
+
810
+ uniques = _reconstruct_data(uniques, original.dtype, original)
811
+
812
+ return codes, uniques
813
+
814
+
815
+ def value_counts(
816
+ values,
817
+ sort: bool = True,
818
+ ascending: bool = False,
819
+ normalize: bool = False,
820
+ bins=None,
821
+ dropna: bool = True,
822
+ ) -> Series:
823
+ """
824
+ Compute a histogram of the counts of non-null values.
825
+
826
+ Parameters
827
+ ----------
828
+ values : ndarray (1-d)
829
+ sort : bool, default True
830
+ Sort by values
831
+ ascending : bool, default False
832
+ Sort in ascending order
833
+ normalize: bool, default False
834
+ If True then compute a relative histogram
835
+ bins : integer, optional
836
+ Rather than count values, group them into half-open bins,
837
+ convenience for pd.cut, only works with numeric data
838
+ dropna : bool, default True
839
+ Don't include counts of NaN
840
+
841
+ Returns
842
+ -------
843
+ Series
844
+ """
845
+ warnings.warn(
846
+ # GH#53493
847
+ "pandas.value_counts is deprecated and will be removed in a "
848
+ "future version. Use pd.Series(obj).value_counts() instead.",
849
+ FutureWarning,
850
+ stacklevel=find_stack_level(),
851
+ )
852
+ return value_counts_internal(
853
+ values,
854
+ sort=sort,
855
+ ascending=ascending,
856
+ normalize=normalize,
857
+ bins=bins,
858
+ dropna=dropna,
859
+ )
860
+
861
+
862
+ def value_counts_internal(
863
+ values,
864
+ sort: bool = True,
865
+ ascending: bool = False,
866
+ normalize: bool = False,
867
+ bins=None,
868
+ dropna: bool = True,
869
+ ) -> Series:
870
+ from pandas import (
871
+ Index,
872
+ Series,
873
+ )
874
+
875
+ index_name = getattr(values, "name", None)
876
+ name = "proportion" if normalize else "count"
877
+
878
+ if bins is not None:
879
+ from pandas.core.reshape.tile import cut
880
+
881
+ if isinstance(values, Series):
882
+ values = values._values
883
+
884
+ try:
885
+ ii = cut(values, bins, include_lowest=True)
886
+ except TypeError as err:
887
+ raise TypeError("bins argument only works with numeric data.") from err
888
+
889
+ # count, remove nulls (from the index), and but the bins
890
+ result = ii.value_counts(dropna=dropna)
891
+ result.name = name
892
+ result = result[result.index.notna()]
893
+ result.index = result.index.astype("interval")
894
+ result = result.sort_index()
895
+
896
+ # if we are dropna and we have NO values
897
+ if dropna and (result._values == 0).all():
898
+ result = result.iloc[0:0]
899
+
900
+ # normalizing is by len of all (regardless of dropna)
901
+ counts = np.array([len(ii)])
902
+
903
+ else:
904
+ if is_extension_array_dtype(values):
905
+ # handle Categorical and sparse,
906
+ result = Series(values, copy=False)._values.value_counts(dropna=dropna)
907
+ result.name = name
908
+ result.index.name = index_name
909
+ counts = result._values
910
+ if not isinstance(counts, np.ndarray):
911
+ # e.g. ArrowExtensionArray
912
+ counts = np.asarray(counts)
913
+
914
+ elif isinstance(values, ABCMultiIndex):
915
+ # GH49558
916
+ levels = list(range(values.nlevels))
917
+ result = (
918
+ Series(index=values, name=name)
919
+ .groupby(level=levels, dropna=dropna)
920
+ .size()
921
+ )
922
+ result.index.names = values.names
923
+ counts = result._values
924
+
925
+ else:
926
+ values = _ensure_arraylike(values, func_name="value_counts")
927
+ keys, counts, _ = value_counts_arraylike(values, dropna)
928
+ if keys.dtype == np.float16:
929
+ keys = keys.astype(np.float32)
930
+
931
+ # For backwards compatibility, we let Index do its normal type
932
+ # inference, _except_ for if if infers from object to bool.
933
+ idx = Index(keys)
934
+ if idx.dtype == bool and keys.dtype == object:
935
+ idx = idx.astype(object)
936
+ elif (
937
+ idx.dtype != keys.dtype # noqa: PLR1714 # # pylint: disable=R1714
938
+ and idx.dtype != "string[pyarrow_numpy]"
939
+ ):
940
+ warnings.warn(
941
+ # GH#56161
942
+ "The behavior of value_counts with object-dtype is deprecated. "
943
+ "In a future version, this will *not* perform dtype inference "
944
+ "on the resulting index. To retain the old behavior, use "
945
+ "`result.index = result.index.infer_objects()`",
946
+ FutureWarning,
947
+ stacklevel=find_stack_level(),
948
+ )
949
+ idx.name = index_name
950
+
951
+ result = Series(counts, index=idx, name=name, copy=False)
952
+
953
+ if sort:
954
+ result = result.sort_values(ascending=ascending)
955
+
956
+ if normalize:
957
+ result = result / counts.sum()
958
+
959
+ return result
960
+
961
+
962
+ # Called once from SparseArray, otherwise could be private
963
+ def value_counts_arraylike(
964
+ values: np.ndarray, dropna: bool, mask: npt.NDArray[np.bool_] | None = None
965
+ ) -> tuple[ArrayLike, npt.NDArray[np.int64], int]:
966
+ """
967
+ Parameters
968
+ ----------
969
+ values : np.ndarray
970
+ dropna : bool
971
+ mask : np.ndarray[bool] or None, default None
972
+
973
+ Returns
974
+ -------
975
+ uniques : np.ndarray
976
+ counts : np.ndarray[np.int64]
977
+ """
978
+ original = values
979
+ values = _ensure_data(values)
980
+
981
+ keys, counts, na_counter = htable.value_count(values, dropna, mask=mask)
982
+
983
+ if needs_i8_conversion(original.dtype):
984
+ # datetime, timedelta, or period
985
+
986
+ if dropna:
987
+ mask = keys != iNaT
988
+ keys, counts = keys[mask], counts[mask]
989
+
990
+ res_keys = _reconstruct_data(keys, original.dtype, original)
991
+ return res_keys, counts, na_counter
992
+
993
+
994
+ def duplicated(
995
+ values: ArrayLike,
996
+ keep: Literal["first", "last", False] = "first",
997
+ mask: npt.NDArray[np.bool_] | None = None,
998
+ ) -> npt.NDArray[np.bool_]:
999
+ """
1000
+ Return boolean ndarray denoting duplicate values.
1001
+
1002
+ Parameters
1003
+ ----------
1004
+ values : np.ndarray or ExtensionArray
1005
+ Array over which to check for duplicate values.
1006
+ keep : {'first', 'last', False}, default 'first'
1007
+ - ``first`` : Mark duplicates as ``True`` except for the first
1008
+ occurrence.
1009
+ - ``last`` : Mark duplicates as ``True`` except for the last
1010
+ occurrence.
1011
+ - False : Mark all duplicates as ``True``.
1012
+ mask : ndarray[bool], optional
1013
+ array indicating which elements to exclude from checking
1014
+
1015
+ Returns
1016
+ -------
1017
+ duplicated : ndarray[bool]
1018
+ """
1019
+ values = _ensure_data(values)
1020
+ return htable.duplicated(values, keep=keep, mask=mask)
1021
+
1022
+
1023
+ def mode(
1024
+ values: ArrayLike, dropna: bool = True, mask: npt.NDArray[np.bool_] | None = None
1025
+ ) -> ArrayLike:
1026
+ """
1027
+ Returns the mode(s) of an array.
1028
+
1029
+ Parameters
1030
+ ----------
1031
+ values : array-like
1032
+ Array over which to check for duplicate values.
1033
+ dropna : bool, default True
1034
+ Don't consider counts of NaN/NaT.
1035
+
1036
+ Returns
1037
+ -------
1038
+ np.ndarray or ExtensionArray
1039
+ """
1040
+ values = _ensure_arraylike(values, func_name="mode")
1041
+ original = values
1042
+
1043
+ if needs_i8_conversion(values.dtype):
1044
+ # Got here with ndarray; dispatch to DatetimeArray/TimedeltaArray.
1045
+ values = ensure_wrapped_if_datetimelike(values)
1046
+ values = cast("ExtensionArray", values)
1047
+ return values._mode(dropna=dropna)
1048
+
1049
+ values = _ensure_data(values)
1050
+
1051
+ npresult, res_mask = htable.mode(values, dropna=dropna, mask=mask)
1052
+ if res_mask is not None:
1053
+ return npresult, res_mask # type: ignore[return-value]
1054
+
1055
+ try:
1056
+ npresult = np.sort(npresult)
1057
+ except TypeError as err:
1058
+ warnings.warn(
1059
+ f"Unable to sort modes: {err}",
1060
+ stacklevel=find_stack_level(),
1061
+ )
1062
+
1063
+ result = _reconstruct_data(npresult, original.dtype, original)
1064
+ return result
1065
+
1066
+
1067
+ def rank(
1068
+ values: ArrayLike,
1069
+ axis: AxisInt = 0,
1070
+ method: str = "average",
1071
+ na_option: str = "keep",
1072
+ ascending: bool = True,
1073
+ pct: bool = False,
1074
+ ) -> npt.NDArray[np.float64]:
1075
+ """
1076
+ Rank the values along a given axis.
1077
+
1078
+ Parameters
1079
+ ----------
1080
+ values : np.ndarray or ExtensionArray
1081
+ Array whose values will be ranked. The number of dimensions in this
1082
+ array must not exceed 2.
1083
+ axis : int, default 0
1084
+ Axis over which to perform rankings.
1085
+ method : {'average', 'min', 'max', 'first', 'dense'}, default 'average'
1086
+ The method by which tiebreaks are broken during the ranking.
1087
+ na_option : {'keep', 'top'}, default 'keep'
1088
+ The method by which NaNs are placed in the ranking.
1089
+ - ``keep``: rank each NaN value with a NaN ranking
1090
+ - ``top``: replace each NaN with either +/- inf so that they
1091
+ there are ranked at the top
1092
+ ascending : bool, default True
1093
+ Whether or not the elements should be ranked in ascending order.
1094
+ pct : bool, default False
1095
+ Whether or not to the display the returned rankings in integer form
1096
+ (e.g. 1, 2, 3) or in percentile form (e.g. 0.333..., 0.666..., 1).
1097
+ """
1098
+ is_datetimelike = needs_i8_conversion(values.dtype)
1099
+ values = _ensure_data(values)
1100
+
1101
+ if values.ndim == 1:
1102
+ ranks = algos.rank_1d(
1103
+ values,
1104
+ is_datetimelike=is_datetimelike,
1105
+ ties_method=method,
1106
+ ascending=ascending,
1107
+ na_option=na_option,
1108
+ pct=pct,
1109
+ )
1110
+ elif values.ndim == 2:
1111
+ ranks = algos.rank_2d(
1112
+ values,
1113
+ axis=axis,
1114
+ is_datetimelike=is_datetimelike,
1115
+ ties_method=method,
1116
+ ascending=ascending,
1117
+ na_option=na_option,
1118
+ pct=pct,
1119
+ )
1120
+ else:
1121
+ raise TypeError("Array with ndim > 2 are not supported.")
1122
+
1123
+ return ranks
1124
+
1125
+
1126
+ # ---- #
1127
+ # take #
1128
+ # ---- #
1129
+
1130
+
1131
+ def take(
1132
+ arr,
1133
+ indices: TakeIndexer,
1134
+ axis: AxisInt = 0,
1135
+ allow_fill: bool = False,
1136
+ fill_value=None,
1137
+ ):
1138
+ """
1139
+ Take elements from an array.
1140
+
1141
+ Parameters
1142
+ ----------
1143
+ arr : array-like or scalar value
1144
+ Non array-likes (sequences/scalars without a dtype) are coerced
1145
+ to an ndarray.
1146
+
1147
+ .. deprecated:: 2.1.0
1148
+ Passing an argument other than a numpy.ndarray, ExtensionArray,
1149
+ Index, or Series is deprecated.
1150
+
1151
+ indices : sequence of int or one-dimensional np.ndarray of int
1152
+ Indices to be taken.
1153
+ axis : int, default 0
1154
+ The axis over which to select values.
1155
+ allow_fill : bool, default False
1156
+ How to handle negative values in `indices`.
1157
+
1158
+ * False: negative values in `indices` indicate positional indices
1159
+ from the right (the default). This is similar to :func:`numpy.take`.
1160
+
1161
+ * True: negative values in `indices` indicate
1162
+ missing values. These values are set to `fill_value`. Any other
1163
+ negative values raise a ``ValueError``.
1164
+
1165
+ fill_value : any, optional
1166
+ Fill value to use for NA-indices when `allow_fill` is True.
1167
+ This may be ``None``, in which case the default NA value for
1168
+ the type (``self.dtype.na_value``) is used.
1169
+
1170
+ For multi-dimensional `arr`, each *element* is filled with
1171
+ `fill_value`.
1172
+
1173
+ Returns
1174
+ -------
1175
+ ndarray or ExtensionArray
1176
+ Same type as the input.
1177
+
1178
+ Raises
1179
+ ------
1180
+ IndexError
1181
+ When `indices` is out of bounds for the array.
1182
+ ValueError
1183
+ When the indexer contains negative values other than ``-1``
1184
+ and `allow_fill` is True.
1185
+
1186
+ Notes
1187
+ -----
1188
+ When `allow_fill` is False, `indices` may be whatever dimensionality
1189
+ is accepted by NumPy for `arr`.
1190
+
1191
+ When `allow_fill` is True, `indices` should be 1-D.
1192
+
1193
+ See Also
1194
+ --------
1195
+ numpy.take : Take elements from an array along an axis.
1196
+
1197
+ Examples
1198
+ --------
1199
+ >>> import pandas as pd
1200
+
1201
+ With the default ``allow_fill=False``, negative numbers indicate
1202
+ positional indices from the right.
1203
+
1204
+ >>> pd.api.extensions.take(np.array([10, 20, 30]), [0, 0, -1])
1205
+ array([10, 10, 30])
1206
+
1207
+ Setting ``allow_fill=True`` will place `fill_value` in those positions.
1208
+
1209
+ >>> pd.api.extensions.take(np.array([10, 20, 30]), [0, 0, -1], allow_fill=True)
1210
+ array([10., 10., nan])
1211
+
1212
+ >>> pd.api.extensions.take(np.array([10, 20, 30]), [0, 0, -1], allow_fill=True,
1213
+ ... fill_value=-10)
1214
+ array([ 10, 10, -10])
1215
+ """
1216
+ if not isinstance(arr, (np.ndarray, ABCExtensionArray, ABCIndex, ABCSeries)):
1217
+ # GH#52981
1218
+ warnings.warn(
1219
+ "pd.api.extensions.take accepting non-standard inputs is deprecated "
1220
+ "and will raise in a future version. Pass either a numpy.ndarray, "
1221
+ "ExtensionArray, Index, or Series instead.",
1222
+ FutureWarning,
1223
+ stacklevel=find_stack_level(),
1224
+ )
1225
+
1226
+ if not is_array_like(arr):
1227
+ arr = np.asarray(arr)
1228
+
1229
+ indices = ensure_platform_int(indices)
1230
+
1231
+ if allow_fill:
1232
+ # Pandas style, -1 means NA
1233
+ validate_indices(indices, arr.shape[axis])
1234
+ result = take_nd(
1235
+ arr, indices, axis=axis, allow_fill=True, fill_value=fill_value
1236
+ )
1237
+ else:
1238
+ # NumPy style
1239
+ result = arr.take(indices, axis=axis)
1240
+ return result
1241
+
1242
+
1243
+ # ------------ #
1244
+ # searchsorted #
1245
+ # ------------ #
1246
+
1247
+
1248
+ def searchsorted(
1249
+ arr: ArrayLike,
1250
+ value: NumpyValueArrayLike | ExtensionArray,
1251
+ side: Literal["left", "right"] = "left",
1252
+ sorter: NumpySorter | None = None,
1253
+ ) -> npt.NDArray[np.intp] | np.intp:
1254
+ """
1255
+ Find indices where elements should be inserted to maintain order.
1256
+
1257
+ Find the indices into a sorted array `arr` (a) such that, if the
1258
+ corresponding elements in `value` were inserted before the indices,
1259
+ the order of `arr` would be preserved.
1260
+
1261
+ Assuming that `arr` is sorted:
1262
+
1263
+ ====== ================================
1264
+ `side` returned index `i` satisfies
1265
+ ====== ================================
1266
+ left ``arr[i-1] < value <= self[i]``
1267
+ right ``arr[i-1] <= value < self[i]``
1268
+ ====== ================================
1269
+
1270
+ Parameters
1271
+ ----------
1272
+ arr: np.ndarray, ExtensionArray, Series
1273
+ Input array. If `sorter` is None, then it must be sorted in
1274
+ ascending order, otherwise `sorter` must be an array of indices
1275
+ that sort it.
1276
+ value : array-like or scalar
1277
+ Values to insert into `arr`.
1278
+ side : {'left', 'right'}, optional
1279
+ If 'left', the index of the first suitable location found is given.
1280
+ If 'right', return the last such index. If there is no suitable
1281
+ index, return either 0 or N (where N is the length of `self`).
1282
+ sorter : 1-D array-like, optional
1283
+ Optional array of integer indices that sort array a into ascending
1284
+ order. They are typically the result of argsort.
1285
+
1286
+ Returns
1287
+ -------
1288
+ array of ints or int
1289
+ If value is array-like, array of insertion points.
1290
+ If value is scalar, a single integer.
1291
+
1292
+ See Also
1293
+ --------
1294
+ numpy.searchsorted : Similar method from NumPy.
1295
+ """
1296
+ if sorter is not None:
1297
+ sorter = ensure_platform_int(sorter)
1298
+
1299
+ if (
1300
+ isinstance(arr, np.ndarray)
1301
+ and arr.dtype.kind in "iu"
1302
+ and (is_integer(value) or is_integer_dtype(value))
1303
+ ):
1304
+ # if `arr` and `value` have different dtypes, `arr` would be
1305
+ # recast by numpy, causing a slow search.
1306
+ # Before searching below, we therefore try to give `value` the
1307
+ # same dtype as `arr`, while guarding against integer overflows.
1308
+ iinfo = np.iinfo(arr.dtype.type)
1309
+ value_arr = np.array([value]) if is_integer(value) else np.array(value)
1310
+ if (value_arr >= iinfo.min).all() and (value_arr <= iinfo.max).all():
1311
+ # value within bounds, so no overflow, so can convert value dtype
1312
+ # to dtype of arr
1313
+ dtype = arr.dtype
1314
+ else:
1315
+ dtype = value_arr.dtype
1316
+
1317
+ if is_integer(value):
1318
+ # We know that value is int
1319
+ value = cast(int, dtype.type(value))
1320
+ else:
1321
+ value = pd_array(cast(ArrayLike, value), dtype=dtype)
1322
+ else:
1323
+ # E.g. if `arr` is an array with dtype='datetime64[ns]'
1324
+ # and `value` is a pd.Timestamp, we may need to convert value
1325
+ arr = ensure_wrapped_if_datetimelike(arr)
1326
+
1327
+ # Argument 1 to "searchsorted" of "ndarray" has incompatible type
1328
+ # "Union[NumpyValueArrayLike, ExtensionArray]"; expected "NumpyValueArrayLike"
1329
+ return arr.searchsorted(value, side=side, sorter=sorter) # type: ignore[arg-type]
1330
+
1331
+
1332
+ # ---- #
1333
+ # diff #
1334
+ # ---- #
1335
+
1336
+ _diff_special = {"float64", "float32", "int64", "int32", "int16", "int8"}
1337
+
1338
+
1339
+ def diff(arr, n: int, axis: AxisInt = 0):
1340
+ """
1341
+ difference of n between self,
1342
+ analogous to s-s.shift(n)
1343
+
1344
+ Parameters
1345
+ ----------
1346
+ arr : ndarray or ExtensionArray
1347
+ n : int
1348
+ number of periods
1349
+ axis : {0, 1}
1350
+ axis to shift on
1351
+ stacklevel : int, default 3
1352
+ The stacklevel for the lost dtype warning.
1353
+
1354
+ Returns
1355
+ -------
1356
+ shifted
1357
+ """
1358
+
1359
+ n = int(n)
1360
+ na = np.nan
1361
+ dtype = arr.dtype
1362
+
1363
+ is_bool = is_bool_dtype(dtype)
1364
+ if is_bool:
1365
+ op = operator.xor
1366
+ else:
1367
+ op = operator.sub
1368
+
1369
+ if isinstance(dtype, NumpyEADtype):
1370
+ # NumpyExtensionArray cannot necessarily hold shifted versions of itself.
1371
+ arr = arr.to_numpy()
1372
+ dtype = arr.dtype
1373
+
1374
+ if not isinstance(arr, np.ndarray):
1375
+ # i.e ExtensionArray
1376
+ if hasattr(arr, f"__{op.__name__}__"):
1377
+ if axis != 0:
1378
+ raise ValueError(f"cannot diff {type(arr).__name__} on axis={axis}")
1379
+ return op(arr, arr.shift(n))
1380
+ else:
1381
+ raise TypeError(
1382
+ f"{type(arr).__name__} has no 'diff' method. "
1383
+ "Convert to a suitable dtype prior to calling 'diff'."
1384
+ )
1385
+
1386
+ is_timedelta = False
1387
+ if arr.dtype.kind in "mM":
1388
+ dtype = np.int64
1389
+ arr = arr.view("i8")
1390
+ na = iNaT
1391
+ is_timedelta = True
1392
+
1393
+ elif is_bool:
1394
+ # We have to cast in order to be able to hold np.nan
1395
+ dtype = np.object_
1396
+
1397
+ elif dtype.kind in "iu":
1398
+ # We have to cast in order to be able to hold np.nan
1399
+
1400
+ # int8, int16 are incompatible with float64,
1401
+ # see https://github.com/cython/cython/issues/2646
1402
+ if arr.dtype.name in ["int8", "int16"]:
1403
+ dtype = np.float32
1404
+ else:
1405
+ dtype = np.float64
1406
+
1407
+ orig_ndim = arr.ndim
1408
+ if orig_ndim == 1:
1409
+ # reshape so we can always use algos.diff_2d
1410
+ arr = arr.reshape(-1, 1)
1411
+ # TODO: require axis == 0
1412
+
1413
+ dtype = np.dtype(dtype)
1414
+ out_arr = np.empty(arr.shape, dtype=dtype)
1415
+
1416
+ na_indexer = [slice(None)] * 2
1417
+ na_indexer[axis] = slice(None, n) if n >= 0 else slice(n, None)
1418
+ out_arr[tuple(na_indexer)] = na
1419
+
1420
+ if arr.dtype.name in _diff_special:
1421
+ # TODO: can diff_2d dtype specialization troubles be fixed by defining
1422
+ # out_arr inside diff_2d?
1423
+ algos.diff_2d(arr, out_arr, n, axis, datetimelike=is_timedelta)
1424
+ else:
1425
+ # To keep mypy happy, _res_indexer is a list while res_indexer is
1426
+ # a tuple, ditto for lag_indexer.
1427
+ _res_indexer = [slice(None)] * 2
1428
+ _res_indexer[axis] = slice(n, None) if n >= 0 else slice(None, n)
1429
+ res_indexer = tuple(_res_indexer)
1430
+
1431
+ _lag_indexer = [slice(None)] * 2
1432
+ _lag_indexer[axis] = slice(None, -n) if n > 0 else slice(-n, None)
1433
+ lag_indexer = tuple(_lag_indexer)
1434
+
1435
+ out_arr[res_indexer] = op(arr[res_indexer], arr[lag_indexer])
1436
+
1437
+ if is_timedelta:
1438
+ out_arr = out_arr.view("timedelta64[ns]")
1439
+
1440
+ if orig_ndim == 1:
1441
+ out_arr = out_arr[:, 0]
1442
+ return out_arr
1443
+
1444
+
1445
+ # --------------------------------------------------------------------
1446
+ # Helper functions
1447
+
1448
+
1449
+ # Note: safe_sort is in algorithms.py instead of sorting.py because it is
1450
+ # low-dependency, is used in this module, and used private methods from
1451
+ # this module.
1452
+ def safe_sort(
1453
+ values: Index | ArrayLike,
1454
+ codes: npt.NDArray[np.intp] | None = None,
1455
+ use_na_sentinel: bool = True,
1456
+ assume_unique: bool = False,
1457
+ verify: bool = True,
1458
+ ) -> AnyArrayLike | tuple[AnyArrayLike, np.ndarray]:
1459
+ """
1460
+ Sort ``values`` and reorder corresponding ``codes``.
1461
+
1462
+ ``values`` should be unique if ``codes`` is not None.
1463
+ Safe for use with mixed types (int, str), orders ints before strs.
1464
+
1465
+ Parameters
1466
+ ----------
1467
+ values : list-like
1468
+ Sequence; must be unique if ``codes`` is not None.
1469
+ codes : np.ndarray[intp] or None, default None
1470
+ Indices to ``values``. All out of bound indices are treated as
1471
+ "not found" and will be masked with ``-1``.
1472
+ use_na_sentinel : bool, default True
1473
+ If True, the sentinel -1 will be used for NaN values. If False,
1474
+ NaN values will be encoded as non-negative integers and will not drop the
1475
+ NaN from the uniques of the values.
1476
+ assume_unique : bool, default False
1477
+ When True, ``values`` are assumed to be unique, which can speed up
1478
+ the calculation. Ignored when ``codes`` is None.
1479
+ verify : bool, default True
1480
+ Check if codes are out of bound for the values and put out of bound
1481
+ codes equal to ``-1``. If ``verify=False``, it is assumed there
1482
+ are no out of bound codes. Ignored when ``codes`` is None.
1483
+
1484
+ Returns
1485
+ -------
1486
+ ordered : AnyArrayLike
1487
+ Sorted ``values``
1488
+ new_codes : ndarray
1489
+ Reordered ``codes``; returned when ``codes`` is not None.
1490
+
1491
+ Raises
1492
+ ------
1493
+ TypeError
1494
+ * If ``values`` is not list-like or if ``codes`` is neither None
1495
+ nor list-like
1496
+ * If ``values`` cannot be sorted
1497
+ ValueError
1498
+ * If ``codes`` is not None and ``values`` contain duplicates.
1499
+ """
1500
+ if not isinstance(values, (np.ndarray, ABCExtensionArray, ABCIndex)):
1501
+ raise TypeError(
1502
+ "Only np.ndarray, ExtensionArray, and Index objects are allowed to "
1503
+ "be passed to safe_sort as values"
1504
+ )
1505
+
1506
+ sorter = None
1507
+ ordered: AnyArrayLike
1508
+
1509
+ if (
1510
+ not isinstance(values.dtype, ExtensionDtype)
1511
+ and lib.infer_dtype(values, skipna=False) == "mixed-integer"
1512
+ ):
1513
+ ordered = _sort_mixed(values)
1514
+ else:
1515
+ try:
1516
+ sorter = values.argsort()
1517
+ ordered = values.take(sorter)
1518
+ except (TypeError, decimal.InvalidOperation):
1519
+ # Previous sorters failed or were not applicable, try `_sort_mixed`
1520
+ # which would work, but which fails for special case of 1d arrays
1521
+ # with tuples.
1522
+ if values.size and isinstance(values[0], tuple):
1523
+ # error: Argument 1 to "_sort_tuples" has incompatible type
1524
+ # "Union[Index, ExtensionArray, ndarray[Any, Any]]"; expected
1525
+ # "ndarray[Any, Any]"
1526
+ ordered = _sort_tuples(values) # type: ignore[arg-type]
1527
+ else:
1528
+ ordered = _sort_mixed(values)
1529
+
1530
+ # codes:
1531
+
1532
+ if codes is None:
1533
+ return ordered
1534
+
1535
+ if not is_list_like(codes):
1536
+ raise TypeError(
1537
+ "Only list-like objects or None are allowed to "
1538
+ "be passed to safe_sort as codes"
1539
+ )
1540
+ codes = ensure_platform_int(np.asarray(codes))
1541
+
1542
+ if not assume_unique and not len(unique(values)) == len(values):
1543
+ raise ValueError("values should be unique if codes is not None")
1544
+
1545
+ if sorter is None:
1546
+ # mixed types
1547
+ # error: Argument 1 to "_get_hashtable_algo" has incompatible type
1548
+ # "Union[Index, ExtensionArray, ndarray[Any, Any]]"; expected
1549
+ # "ndarray[Any, Any]"
1550
+ hash_klass, values = _get_hashtable_algo(values) # type: ignore[arg-type]
1551
+ t = hash_klass(len(values))
1552
+ t.map_locations(values)
1553
+ sorter = ensure_platform_int(t.lookup(ordered))
1554
+
1555
+ if use_na_sentinel:
1556
+ # take_nd is faster, but only works for na_sentinels of -1
1557
+ order2 = sorter.argsort()
1558
+ if verify:
1559
+ mask = (codes < -len(values)) | (codes >= len(values))
1560
+ codes[mask] = 0
1561
+ else:
1562
+ mask = None
1563
+ new_codes = take_nd(order2, codes, fill_value=-1)
1564
+ else:
1565
+ reverse_indexer = np.empty(len(sorter), dtype=int)
1566
+ reverse_indexer.put(sorter, np.arange(len(sorter)))
1567
+ # Out of bound indices will be masked with `-1` next, so we
1568
+ # may deal with them here without performance loss using `mode='wrap'`
1569
+ new_codes = reverse_indexer.take(codes, mode="wrap")
1570
+
1571
+ if use_na_sentinel:
1572
+ mask = codes == -1
1573
+ if verify:
1574
+ mask = mask | (codes < -len(values)) | (codes >= len(values))
1575
+
1576
+ if use_na_sentinel and mask is not None:
1577
+ np.putmask(new_codes, mask, -1)
1578
+
1579
+ return ordered, ensure_platform_int(new_codes)
1580
+
1581
+
1582
+ def _sort_mixed(values) -> AnyArrayLike:
1583
+ """order ints before strings before nulls in 1d arrays"""
1584
+ str_pos = np.array([isinstance(x, str) for x in values], dtype=bool)
1585
+ null_pos = np.array([isna(x) for x in values], dtype=bool)
1586
+ num_pos = ~str_pos & ~null_pos
1587
+ str_argsort = np.argsort(values[str_pos])
1588
+ num_argsort = np.argsort(values[num_pos])
1589
+ # convert boolean arrays to positional indices, then order by underlying values
1590
+ str_locs = str_pos.nonzero()[0].take(str_argsort)
1591
+ num_locs = num_pos.nonzero()[0].take(num_argsort)
1592
+ null_locs = null_pos.nonzero()[0]
1593
+ locs = np.concatenate([num_locs, str_locs, null_locs])
1594
+ return values.take(locs)
1595
+
1596
+
1597
+ def _sort_tuples(values: np.ndarray) -> np.ndarray:
1598
+ """
1599
+ Convert array of tuples (1d) to array of arrays (2d).
1600
+ We need to keep the columns separately as they contain different types and
1601
+ nans (can't use `np.sort` as it may fail when str and nan are mixed in a
1602
+ column as types cannot be compared).
1603
+ """
1604
+ from pandas.core.internals.construction import to_arrays
1605
+ from pandas.core.sorting import lexsort_indexer
1606
+
1607
+ arrays, _ = to_arrays(values, None)
1608
+ indexer = lexsort_indexer(arrays, orders=True)
1609
+ return values[indexer]
1610
+
1611
+
1612
+ def union_with_duplicates(
1613
+ lvals: ArrayLike | Index, rvals: ArrayLike | Index
1614
+ ) -> ArrayLike | Index:
1615
+ """
1616
+ Extracts the union from lvals and rvals with respect to duplicates and nans in
1617
+ both arrays.
1618
+
1619
+ Parameters
1620
+ ----------
1621
+ lvals: np.ndarray or ExtensionArray
1622
+ left values which is ordered in front.
1623
+ rvals: np.ndarray or ExtensionArray
1624
+ right values ordered after lvals.
1625
+
1626
+ Returns
1627
+ -------
1628
+ np.ndarray or ExtensionArray
1629
+ Containing the unsorted union of both arrays.
1630
+
1631
+ Notes
1632
+ -----
1633
+ Caller is responsible for ensuring lvals.dtype == rvals.dtype.
1634
+ """
1635
+ from pandas import Series
1636
+
1637
+ with warnings.catch_warnings():
1638
+ # filter warning from object dtype inference; we will end up discarding
1639
+ # the index here, so the deprecation does not affect the end result here.
1640
+ warnings.filterwarnings(
1641
+ "ignore",
1642
+ "The behavior of value_counts with object-dtype is deprecated",
1643
+ category=FutureWarning,
1644
+ )
1645
+ l_count = value_counts_internal(lvals, dropna=False)
1646
+ r_count = value_counts_internal(rvals, dropna=False)
1647
+ l_count, r_count = l_count.align(r_count, fill_value=0)
1648
+ final_count = np.maximum(l_count.values, r_count.values)
1649
+ final_count = Series(final_count, index=l_count.index, dtype="int", copy=False)
1650
+ if isinstance(lvals, ABCMultiIndex) and isinstance(rvals, ABCMultiIndex):
1651
+ unique_vals = lvals.append(rvals).unique()
1652
+ else:
1653
+ if isinstance(lvals, ABCIndex):
1654
+ lvals = lvals._values
1655
+ if isinstance(rvals, ABCIndex):
1656
+ rvals = rvals._values
1657
+ # error: List item 0 has incompatible type "Union[ExtensionArray,
1658
+ # ndarray[Any, Any], Index]"; expected "Union[ExtensionArray,
1659
+ # ndarray[Any, Any]]"
1660
+ combined = concat_compat([lvals, rvals]) # type: ignore[list-item]
1661
+ unique_vals = unique(combined)
1662
+ unique_vals = ensure_wrapped_if_datetimelike(unique_vals)
1663
+ repeats = final_count.reindex(unique_vals).values
1664
+ return np.repeat(unique_vals, repeats)
1665
+
1666
+
1667
+ def map_array(
1668
+ arr: ArrayLike,
1669
+ mapper,
1670
+ na_action: Literal["ignore"] | None = None,
1671
+ convert: bool = True,
1672
+ ) -> np.ndarray | ExtensionArray | Index:
1673
+ """
1674
+ Map values using an input mapping or function.
1675
+
1676
+ Parameters
1677
+ ----------
1678
+ mapper : function, dict, or Series
1679
+ Mapping correspondence.
1680
+ na_action : {None, 'ignore'}, default None
1681
+ If 'ignore', propagate NA values, without passing them to the
1682
+ mapping correspondence.
1683
+ convert : bool, default True
1684
+ Try to find better dtype for elementwise function results. If
1685
+ False, leave as dtype=object.
1686
+
1687
+ Returns
1688
+ -------
1689
+ Union[ndarray, Index, ExtensionArray]
1690
+ The output of the mapping function applied to the array.
1691
+ If the function returns a tuple with more than one element
1692
+ a MultiIndex will be returned.
1693
+ """
1694
+ if na_action not in (None, "ignore"):
1695
+ msg = f"na_action must either be 'ignore' or None, {na_action} was passed"
1696
+ raise ValueError(msg)
1697
+
1698
+ # we can fastpath dict/Series to an efficient map
1699
+ # as we know that we are not going to have to yield
1700
+ # python types
1701
+ if is_dict_like(mapper):
1702
+ if isinstance(mapper, dict) and hasattr(mapper, "__missing__"):
1703
+ # If a dictionary subclass defines a default value method,
1704
+ # convert mapper to a lookup function (GH #15999).
1705
+ dict_with_default = mapper
1706
+ mapper = lambda x: dict_with_default[
1707
+ np.nan if isinstance(x, float) and np.isnan(x) else x
1708
+ ]
1709
+ else:
1710
+ # Dictionary does not have a default. Thus it's safe to
1711
+ # convert to an Series for efficiency.
1712
+ # we specify the keys here to handle the
1713
+ # possibility that they are tuples
1714
+
1715
+ # The return value of mapping with an empty mapper is
1716
+ # expected to be pd.Series(np.nan, ...). As np.nan is
1717
+ # of dtype float64 the return value of this method should
1718
+ # be float64 as well
1719
+ from pandas import Series
1720
+
1721
+ if len(mapper) == 0:
1722
+ mapper = Series(mapper, dtype=np.float64)
1723
+ else:
1724
+ mapper = Series(mapper)
1725
+
1726
+ if isinstance(mapper, ABCSeries):
1727
+ if na_action == "ignore":
1728
+ mapper = mapper[mapper.index.notna()]
1729
+
1730
+ # Since values were input this means we came from either
1731
+ # a dict or a series and mapper should be an index
1732
+ indexer = mapper.index.get_indexer(arr)
1733
+ new_values = take_nd(mapper._values, indexer)
1734
+
1735
+ return new_values
1736
+
1737
+ if not len(arr):
1738
+ return arr.copy()
1739
+
1740
+ # we must convert to python types
1741
+ values = arr.astype(object, copy=False)
1742
+ if na_action is None:
1743
+ return lib.map_infer(values, mapper, convert=convert)
1744
+ else:
1745
+ return lib.map_infer_mask(
1746
+ values, mapper, mask=isna(values).view(np.uint8), convert=convert
1747
+ )
llmeval-env/lib/python3.10/site-packages/pandas/core/api.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas._libs import (
2
+ NaT,
3
+ Period,
4
+ Timedelta,
5
+ Timestamp,
6
+ )
7
+ from pandas._libs.missing import NA
8
+
9
+ from pandas.core.dtypes.dtypes import (
10
+ ArrowDtype,
11
+ CategoricalDtype,
12
+ DatetimeTZDtype,
13
+ IntervalDtype,
14
+ PeriodDtype,
15
+ )
16
+ from pandas.core.dtypes.missing import (
17
+ isna,
18
+ isnull,
19
+ notna,
20
+ notnull,
21
+ )
22
+
23
+ from pandas.core.algorithms import (
24
+ factorize,
25
+ unique,
26
+ value_counts,
27
+ )
28
+ from pandas.core.arrays import Categorical
29
+ from pandas.core.arrays.boolean import BooleanDtype
30
+ from pandas.core.arrays.floating import (
31
+ Float32Dtype,
32
+ Float64Dtype,
33
+ )
34
+ from pandas.core.arrays.integer import (
35
+ Int8Dtype,
36
+ Int16Dtype,
37
+ Int32Dtype,
38
+ Int64Dtype,
39
+ UInt8Dtype,
40
+ UInt16Dtype,
41
+ UInt32Dtype,
42
+ UInt64Dtype,
43
+ )
44
+ from pandas.core.arrays.string_ import StringDtype
45
+ from pandas.core.construction import array
46
+ from pandas.core.flags import Flags
47
+ from pandas.core.groupby import (
48
+ Grouper,
49
+ NamedAgg,
50
+ )
51
+ from pandas.core.indexes.api import (
52
+ CategoricalIndex,
53
+ DatetimeIndex,
54
+ Index,
55
+ IntervalIndex,
56
+ MultiIndex,
57
+ PeriodIndex,
58
+ RangeIndex,
59
+ TimedeltaIndex,
60
+ )
61
+ from pandas.core.indexes.datetimes import (
62
+ bdate_range,
63
+ date_range,
64
+ )
65
+ from pandas.core.indexes.interval import (
66
+ Interval,
67
+ interval_range,
68
+ )
69
+ from pandas.core.indexes.period import period_range
70
+ from pandas.core.indexes.timedeltas import timedelta_range
71
+ from pandas.core.indexing import IndexSlice
72
+ from pandas.core.series import Series
73
+ from pandas.core.tools.datetimes import to_datetime
74
+ from pandas.core.tools.numeric import to_numeric
75
+ from pandas.core.tools.timedeltas import to_timedelta
76
+
77
+ from pandas.io.formats.format import set_eng_float_format
78
+ from pandas.tseries.offsets import DateOffset
79
+
80
+ # DataFrame needs to be imported after NamedAgg to avoid a circular import
81
+ from pandas.core.frame import DataFrame # isort:skip
82
+
83
+ __all__ = [
84
+ "array",
85
+ "ArrowDtype",
86
+ "bdate_range",
87
+ "BooleanDtype",
88
+ "Categorical",
89
+ "CategoricalDtype",
90
+ "CategoricalIndex",
91
+ "DataFrame",
92
+ "DateOffset",
93
+ "date_range",
94
+ "DatetimeIndex",
95
+ "DatetimeTZDtype",
96
+ "factorize",
97
+ "Flags",
98
+ "Float32Dtype",
99
+ "Float64Dtype",
100
+ "Grouper",
101
+ "Index",
102
+ "IndexSlice",
103
+ "Int16Dtype",
104
+ "Int32Dtype",
105
+ "Int64Dtype",
106
+ "Int8Dtype",
107
+ "Interval",
108
+ "IntervalDtype",
109
+ "IntervalIndex",
110
+ "interval_range",
111
+ "isna",
112
+ "isnull",
113
+ "MultiIndex",
114
+ "NA",
115
+ "NamedAgg",
116
+ "NaT",
117
+ "notna",
118
+ "notnull",
119
+ "Period",
120
+ "PeriodDtype",
121
+ "PeriodIndex",
122
+ "period_range",
123
+ "RangeIndex",
124
+ "Series",
125
+ "set_eng_float_format",
126
+ "StringDtype",
127
+ "Timedelta",
128
+ "TimedeltaIndex",
129
+ "timedelta_range",
130
+ "Timestamp",
131
+ "to_datetime",
132
+ "to_numeric",
133
+ "to_timedelta",
134
+ "UInt16Dtype",
135
+ "UInt32Dtype",
136
+ "UInt64Dtype",
137
+ "UInt8Dtype",
138
+ "unique",
139
+ "value_counts",
140
+ ]
llmeval-env/lib/python3.10/site-packages/pandas/core/apply.py ADDED
@@ -0,0 +1,2062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import abc
4
+ from collections import defaultdict
5
+ import functools
6
+ from functools import partial
7
+ import inspect
8
+ from typing import (
9
+ TYPE_CHECKING,
10
+ Any,
11
+ Callable,
12
+ Literal,
13
+ cast,
14
+ )
15
+ import warnings
16
+
17
+ import numpy as np
18
+
19
+ from pandas._config import option_context
20
+
21
+ from pandas._libs import lib
22
+ from pandas._libs.internals import BlockValuesRefs
23
+ from pandas._typing import (
24
+ AggFuncType,
25
+ AggFuncTypeBase,
26
+ AggFuncTypeDict,
27
+ AggObjType,
28
+ Axis,
29
+ AxisInt,
30
+ NDFrameT,
31
+ npt,
32
+ )
33
+ from pandas.compat._optional import import_optional_dependency
34
+ from pandas.errors import SpecificationError
35
+ from pandas.util._decorators import cache_readonly
36
+ from pandas.util._exceptions import find_stack_level
37
+
38
+ from pandas.core.dtypes.cast import is_nested_object
39
+ from pandas.core.dtypes.common import (
40
+ is_dict_like,
41
+ is_extension_array_dtype,
42
+ is_list_like,
43
+ is_numeric_dtype,
44
+ is_sequence,
45
+ )
46
+ from pandas.core.dtypes.dtypes import (
47
+ CategoricalDtype,
48
+ ExtensionDtype,
49
+ )
50
+ from pandas.core.dtypes.generic import (
51
+ ABCDataFrame,
52
+ ABCNDFrame,
53
+ ABCSeries,
54
+ )
55
+
56
+ from pandas.core._numba.executor import generate_apply_looper
57
+ import pandas.core.common as com
58
+ from pandas.core.construction import ensure_wrapped_if_datetimelike
59
+
60
+ if TYPE_CHECKING:
61
+ from collections.abc import (
62
+ Generator,
63
+ Hashable,
64
+ Iterable,
65
+ MutableMapping,
66
+ Sequence,
67
+ )
68
+
69
+ from pandas import (
70
+ DataFrame,
71
+ Index,
72
+ Series,
73
+ )
74
+ from pandas.core.groupby import GroupBy
75
+ from pandas.core.resample import Resampler
76
+ from pandas.core.window.rolling import BaseWindow
77
+
78
+
79
+ ResType = dict[int, Any]
80
+
81
+
82
+ def frame_apply(
83
+ obj: DataFrame,
84
+ func: AggFuncType,
85
+ axis: Axis = 0,
86
+ raw: bool = False,
87
+ result_type: str | None = None,
88
+ by_row: Literal[False, "compat"] = "compat",
89
+ engine: str = "python",
90
+ engine_kwargs: dict[str, bool] | None = None,
91
+ args=None,
92
+ kwargs=None,
93
+ ) -> FrameApply:
94
+ """construct and return a row or column based frame apply object"""
95
+ axis = obj._get_axis_number(axis)
96
+ klass: type[FrameApply]
97
+ if axis == 0:
98
+ klass = FrameRowApply
99
+ elif axis == 1:
100
+ klass = FrameColumnApply
101
+
102
+ _, func, _, _ = reconstruct_func(func, **kwargs)
103
+ assert func is not None
104
+
105
+ return klass(
106
+ obj,
107
+ func,
108
+ raw=raw,
109
+ result_type=result_type,
110
+ by_row=by_row,
111
+ engine=engine,
112
+ engine_kwargs=engine_kwargs,
113
+ args=args,
114
+ kwargs=kwargs,
115
+ )
116
+
117
+
118
+ class Apply(metaclass=abc.ABCMeta):
119
+ axis: AxisInt
120
+
121
+ def __init__(
122
+ self,
123
+ obj: AggObjType,
124
+ func: AggFuncType,
125
+ raw: bool,
126
+ result_type: str | None,
127
+ *,
128
+ by_row: Literal[False, "compat", "_compat"] = "compat",
129
+ engine: str = "python",
130
+ engine_kwargs: dict[str, bool] | None = None,
131
+ args,
132
+ kwargs,
133
+ ) -> None:
134
+ self.obj = obj
135
+ self.raw = raw
136
+
137
+ assert by_row is False or by_row in ["compat", "_compat"]
138
+ self.by_row = by_row
139
+
140
+ self.args = args or ()
141
+ self.kwargs = kwargs or {}
142
+
143
+ self.engine = engine
144
+ self.engine_kwargs = {} if engine_kwargs is None else engine_kwargs
145
+
146
+ if result_type not in [None, "reduce", "broadcast", "expand"]:
147
+ raise ValueError(
148
+ "invalid value for result_type, must be one "
149
+ "of {None, 'reduce', 'broadcast', 'expand'}"
150
+ )
151
+
152
+ self.result_type = result_type
153
+
154
+ self.func = func
155
+
156
+ @abc.abstractmethod
157
+ def apply(self) -> DataFrame | Series:
158
+ pass
159
+
160
+ @abc.abstractmethod
161
+ def agg_or_apply_list_like(
162
+ self, op_name: Literal["agg", "apply"]
163
+ ) -> DataFrame | Series:
164
+ pass
165
+
166
+ @abc.abstractmethod
167
+ def agg_or_apply_dict_like(
168
+ self, op_name: Literal["agg", "apply"]
169
+ ) -> DataFrame | Series:
170
+ pass
171
+
172
+ def agg(self) -> DataFrame | Series | None:
173
+ """
174
+ Provide an implementation for the aggregators.
175
+
176
+ Returns
177
+ -------
178
+ Result of aggregation, or None if agg cannot be performed by
179
+ this method.
180
+ """
181
+ obj = self.obj
182
+ func = self.func
183
+ args = self.args
184
+ kwargs = self.kwargs
185
+
186
+ if isinstance(func, str):
187
+ return self.apply_str()
188
+
189
+ if is_dict_like(func):
190
+ return self.agg_dict_like()
191
+ elif is_list_like(func):
192
+ # we require a list, but not a 'str'
193
+ return self.agg_list_like()
194
+
195
+ if callable(func):
196
+ f = com.get_cython_func(func)
197
+ if f and not args and not kwargs:
198
+ warn_alias_replacement(obj, func, f)
199
+ return getattr(obj, f)()
200
+
201
+ # caller can react
202
+ return None
203
+
204
+ def transform(self) -> DataFrame | Series:
205
+ """
206
+ Transform a DataFrame or Series.
207
+
208
+ Returns
209
+ -------
210
+ DataFrame or Series
211
+ Result of applying ``func`` along the given axis of the
212
+ Series or DataFrame.
213
+
214
+ Raises
215
+ ------
216
+ ValueError
217
+ If the transform function fails or does not transform.
218
+ """
219
+ obj = self.obj
220
+ func = self.func
221
+ axis = self.axis
222
+ args = self.args
223
+ kwargs = self.kwargs
224
+
225
+ is_series = obj.ndim == 1
226
+
227
+ if obj._get_axis_number(axis) == 1:
228
+ assert not is_series
229
+ return obj.T.transform(func, 0, *args, **kwargs).T
230
+
231
+ if is_list_like(func) and not is_dict_like(func):
232
+ func = cast(list[AggFuncTypeBase], func)
233
+ # Convert func equivalent dict
234
+ if is_series:
235
+ func = {com.get_callable_name(v) or v: v for v in func}
236
+ else:
237
+ func = {col: func for col in obj}
238
+
239
+ if is_dict_like(func):
240
+ func = cast(AggFuncTypeDict, func)
241
+ return self.transform_dict_like(func)
242
+
243
+ # func is either str or callable
244
+ func = cast(AggFuncTypeBase, func)
245
+ try:
246
+ result = self.transform_str_or_callable(func)
247
+ except TypeError:
248
+ raise
249
+ except Exception as err:
250
+ raise ValueError("Transform function failed") from err
251
+
252
+ # Functions that transform may return empty Series/DataFrame
253
+ # when the dtype is not appropriate
254
+ if (
255
+ isinstance(result, (ABCSeries, ABCDataFrame))
256
+ and result.empty
257
+ and not obj.empty
258
+ ):
259
+ raise ValueError("Transform function failed")
260
+ # error: Argument 1 to "__get__" of "AxisProperty" has incompatible type
261
+ # "Union[Series, DataFrame, GroupBy[Any], SeriesGroupBy,
262
+ # DataFrameGroupBy, BaseWindow, Resampler]"; expected "Union[DataFrame,
263
+ # Series]"
264
+ if not isinstance(result, (ABCSeries, ABCDataFrame)) or not result.index.equals(
265
+ obj.index # type: ignore[arg-type]
266
+ ):
267
+ raise ValueError("Function did not transform")
268
+
269
+ return result
270
+
271
+ def transform_dict_like(self, func) -> DataFrame:
272
+ """
273
+ Compute transform in the case of a dict-like func
274
+ """
275
+ from pandas.core.reshape.concat import concat
276
+
277
+ obj = self.obj
278
+ args = self.args
279
+ kwargs = self.kwargs
280
+
281
+ # transform is currently only for Series/DataFrame
282
+ assert isinstance(obj, ABCNDFrame)
283
+
284
+ if len(func) == 0:
285
+ raise ValueError("No transform functions were provided")
286
+
287
+ func = self.normalize_dictlike_arg("transform", obj, func)
288
+
289
+ results: dict[Hashable, DataFrame | Series] = {}
290
+ for name, how in func.items():
291
+ colg = obj._gotitem(name, ndim=1)
292
+ results[name] = colg.transform(how, 0, *args, **kwargs)
293
+ return concat(results, axis=1)
294
+
295
+ def transform_str_or_callable(self, func) -> DataFrame | Series:
296
+ """
297
+ Compute transform in the case of a string or callable func
298
+ """
299
+ obj = self.obj
300
+ args = self.args
301
+ kwargs = self.kwargs
302
+
303
+ if isinstance(func, str):
304
+ return self._apply_str(obj, func, *args, **kwargs)
305
+
306
+ if not args and not kwargs:
307
+ f = com.get_cython_func(func)
308
+ if f:
309
+ warn_alias_replacement(obj, func, f)
310
+ return getattr(obj, f)()
311
+
312
+ # Two possible ways to use a UDF - apply or call directly
313
+ try:
314
+ return obj.apply(func, args=args, **kwargs)
315
+ except Exception:
316
+ return func(obj, *args, **kwargs)
317
+
318
+ def agg_list_like(self) -> DataFrame | Series:
319
+ """
320
+ Compute aggregation in the case of a list-like argument.
321
+
322
+ Returns
323
+ -------
324
+ Result of aggregation.
325
+ """
326
+ return self.agg_or_apply_list_like(op_name="agg")
327
+
328
+ def compute_list_like(
329
+ self,
330
+ op_name: Literal["agg", "apply"],
331
+ selected_obj: Series | DataFrame,
332
+ kwargs: dict[str, Any],
333
+ ) -> tuple[list[Hashable] | Index, list[Any]]:
334
+ """
335
+ Compute agg/apply results for like-like input.
336
+
337
+ Parameters
338
+ ----------
339
+ op_name : {"agg", "apply"}
340
+ Operation being performed.
341
+ selected_obj : Series or DataFrame
342
+ Data to perform operation on.
343
+ kwargs : dict
344
+ Keyword arguments to pass to the functions.
345
+
346
+ Returns
347
+ -------
348
+ keys : list[Hashable] or Index
349
+ Index labels for result.
350
+ results : list
351
+ Data for result. When aggregating with a Series, this can contain any
352
+ Python objects.
353
+ """
354
+ func = cast(list[AggFuncTypeBase], self.func)
355
+ obj = self.obj
356
+
357
+ results = []
358
+ keys = []
359
+
360
+ # degenerate case
361
+ if selected_obj.ndim == 1:
362
+ for a in func:
363
+ colg = obj._gotitem(selected_obj.name, ndim=1, subset=selected_obj)
364
+ args = (
365
+ [self.axis, *self.args]
366
+ if include_axis(op_name, colg)
367
+ else self.args
368
+ )
369
+ new_res = getattr(colg, op_name)(a, *args, **kwargs)
370
+ results.append(new_res)
371
+
372
+ # make sure we find a good name
373
+ name = com.get_callable_name(a) or a
374
+ keys.append(name)
375
+
376
+ else:
377
+ indices = []
378
+ for index, col in enumerate(selected_obj):
379
+ colg = obj._gotitem(col, ndim=1, subset=selected_obj.iloc[:, index])
380
+ args = (
381
+ [self.axis, *self.args]
382
+ if include_axis(op_name, colg)
383
+ else self.args
384
+ )
385
+ new_res = getattr(colg, op_name)(func, *args, **kwargs)
386
+ results.append(new_res)
387
+ indices.append(index)
388
+ # error: Incompatible types in assignment (expression has type "Any |
389
+ # Index", variable has type "list[Any | Callable[..., Any] | str]")
390
+ keys = selected_obj.columns.take(indices) # type: ignore[assignment]
391
+
392
+ return keys, results
393
+
394
+ def wrap_results_list_like(
395
+ self, keys: Iterable[Hashable], results: list[Series | DataFrame]
396
+ ):
397
+ from pandas.core.reshape.concat import concat
398
+
399
+ obj = self.obj
400
+
401
+ try:
402
+ return concat(results, keys=keys, axis=1, sort=False)
403
+ except TypeError as err:
404
+ # we are concatting non-NDFrame objects,
405
+ # e.g. a list of scalars
406
+ from pandas import Series
407
+
408
+ result = Series(results, index=keys, name=obj.name)
409
+ if is_nested_object(result):
410
+ raise ValueError(
411
+ "cannot combine transform and aggregation operations"
412
+ ) from err
413
+ return result
414
+
415
+ def agg_dict_like(self) -> DataFrame | Series:
416
+ """
417
+ Compute aggregation in the case of a dict-like argument.
418
+
419
+ Returns
420
+ -------
421
+ Result of aggregation.
422
+ """
423
+ return self.agg_or_apply_dict_like(op_name="agg")
424
+
425
+ def compute_dict_like(
426
+ self,
427
+ op_name: Literal["agg", "apply"],
428
+ selected_obj: Series | DataFrame,
429
+ selection: Hashable | Sequence[Hashable],
430
+ kwargs: dict[str, Any],
431
+ ) -> tuple[list[Hashable], list[Any]]:
432
+ """
433
+ Compute agg/apply results for dict-like input.
434
+
435
+ Parameters
436
+ ----------
437
+ op_name : {"agg", "apply"}
438
+ Operation being performed.
439
+ selected_obj : Series or DataFrame
440
+ Data to perform operation on.
441
+ selection : hashable or sequence of hashables
442
+ Used by GroupBy, Window, and Resample if selection is applied to the object.
443
+ kwargs : dict
444
+ Keyword arguments to pass to the functions.
445
+
446
+ Returns
447
+ -------
448
+ keys : list[hashable]
449
+ Index labels for result.
450
+ results : list
451
+ Data for result. When aggregating with a Series, this can contain any
452
+ Python object.
453
+ """
454
+ from pandas.core.groupby.generic import (
455
+ DataFrameGroupBy,
456
+ SeriesGroupBy,
457
+ )
458
+
459
+ obj = self.obj
460
+ is_groupby = isinstance(obj, (DataFrameGroupBy, SeriesGroupBy))
461
+ func = cast(AggFuncTypeDict, self.func)
462
+ func = self.normalize_dictlike_arg(op_name, selected_obj, func)
463
+
464
+ is_non_unique_col = (
465
+ selected_obj.ndim == 2
466
+ and selected_obj.columns.nunique() < len(selected_obj.columns)
467
+ )
468
+
469
+ if selected_obj.ndim == 1:
470
+ # key only used for output
471
+ colg = obj._gotitem(selection, ndim=1)
472
+ results = [getattr(colg, op_name)(how, **kwargs) for _, how in func.items()]
473
+ keys = list(func.keys())
474
+ elif not is_groupby and is_non_unique_col:
475
+ # key used for column selection and output
476
+ # GH#51099
477
+ results = []
478
+ keys = []
479
+ for key, how in func.items():
480
+ indices = selected_obj.columns.get_indexer_for([key])
481
+ labels = selected_obj.columns.take(indices)
482
+ label_to_indices = defaultdict(list)
483
+ for index, label in zip(indices, labels):
484
+ label_to_indices[label].append(index)
485
+
486
+ key_data = [
487
+ getattr(selected_obj._ixs(indice, axis=1), op_name)(how, **kwargs)
488
+ for label, indices in label_to_indices.items()
489
+ for indice in indices
490
+ ]
491
+
492
+ keys += [key] * len(key_data)
493
+ results += key_data
494
+ else:
495
+ # key used for column selection and output
496
+ results = [
497
+ getattr(obj._gotitem(key, ndim=1), op_name)(how, **kwargs)
498
+ for key, how in func.items()
499
+ ]
500
+ keys = list(func.keys())
501
+
502
+ return keys, results
503
+
504
+ def wrap_results_dict_like(
505
+ self,
506
+ selected_obj: Series | DataFrame,
507
+ result_index: list[Hashable],
508
+ result_data: list,
509
+ ):
510
+ from pandas import Index
511
+ from pandas.core.reshape.concat import concat
512
+
513
+ obj = self.obj
514
+
515
+ # Avoid making two isinstance calls in all and any below
516
+ is_ndframe = [isinstance(r, ABCNDFrame) for r in result_data]
517
+
518
+ if all(is_ndframe):
519
+ results = dict(zip(result_index, result_data))
520
+ keys_to_use: Iterable[Hashable]
521
+ keys_to_use = [k for k in result_index if not results[k].empty]
522
+ # Have to check, if at least one DataFrame is not empty.
523
+ keys_to_use = keys_to_use if keys_to_use != [] else result_index
524
+ if selected_obj.ndim == 2:
525
+ # keys are columns, so we can preserve names
526
+ ktu = Index(keys_to_use)
527
+ ktu._set_names(selected_obj.columns.names)
528
+ keys_to_use = ktu
529
+
530
+ axis: AxisInt = 0 if isinstance(obj, ABCSeries) else 1
531
+ result = concat(
532
+ {k: results[k] for k in keys_to_use},
533
+ axis=axis,
534
+ keys=keys_to_use,
535
+ )
536
+ elif any(is_ndframe):
537
+ # There is a mix of NDFrames and scalars
538
+ raise ValueError(
539
+ "cannot perform both aggregation "
540
+ "and transformation operations "
541
+ "simultaneously"
542
+ )
543
+ else:
544
+ from pandas import Series
545
+
546
+ # we have a list of scalars
547
+ # GH 36212 use name only if obj is a series
548
+ if obj.ndim == 1:
549
+ obj = cast("Series", obj)
550
+ name = obj.name
551
+ else:
552
+ name = None
553
+
554
+ result = Series(result_data, index=result_index, name=name)
555
+
556
+ return result
557
+
558
+ def apply_str(self) -> DataFrame | Series:
559
+ """
560
+ Compute apply in case of a string.
561
+
562
+ Returns
563
+ -------
564
+ result: Series or DataFrame
565
+ """
566
+ # Caller is responsible for checking isinstance(self.f, str)
567
+ func = cast(str, self.func)
568
+
569
+ obj = self.obj
570
+
571
+ from pandas.core.groupby.generic import (
572
+ DataFrameGroupBy,
573
+ SeriesGroupBy,
574
+ )
575
+
576
+ # Support for `frame.transform('method')`
577
+ # Some methods (shift, etc.) require the axis argument, others
578
+ # don't, so inspect and insert if necessary.
579
+ method = getattr(obj, func, None)
580
+ if callable(method):
581
+ sig = inspect.getfullargspec(method)
582
+ arg_names = (*sig.args, *sig.kwonlyargs)
583
+ if self.axis != 0 and (
584
+ "axis" not in arg_names or func in ("corrwith", "skew")
585
+ ):
586
+ raise ValueError(f"Operation {func} does not support axis=1")
587
+ if "axis" in arg_names:
588
+ if isinstance(obj, (SeriesGroupBy, DataFrameGroupBy)):
589
+ # Try to avoid FutureWarning for deprecated axis keyword;
590
+ # If self.axis matches the axis we would get by not passing
591
+ # axis, we safely exclude the keyword.
592
+
593
+ default_axis = 0
594
+ if func in ["idxmax", "idxmin"]:
595
+ # DataFrameGroupBy.idxmax, idxmin axis defaults to self.axis,
596
+ # whereas other axis keywords default to 0
597
+ default_axis = self.obj.axis
598
+
599
+ if default_axis != self.axis:
600
+ self.kwargs["axis"] = self.axis
601
+ else:
602
+ self.kwargs["axis"] = self.axis
603
+ return self._apply_str(obj, func, *self.args, **self.kwargs)
604
+
605
+ def apply_list_or_dict_like(self) -> DataFrame | Series:
606
+ """
607
+ Compute apply in case of a list-like or dict-like.
608
+
609
+ Returns
610
+ -------
611
+ result: Series, DataFrame, or None
612
+ Result when self.func is a list-like or dict-like, None otherwise.
613
+ """
614
+
615
+ if self.engine == "numba":
616
+ raise NotImplementedError(
617
+ "The 'numba' engine doesn't support list-like/"
618
+ "dict likes of callables yet."
619
+ )
620
+
621
+ if self.axis == 1 and isinstance(self.obj, ABCDataFrame):
622
+ return self.obj.T.apply(self.func, 0, args=self.args, **self.kwargs).T
623
+
624
+ func = self.func
625
+ kwargs = self.kwargs
626
+
627
+ if is_dict_like(func):
628
+ result = self.agg_or_apply_dict_like(op_name="apply")
629
+ else:
630
+ result = self.agg_or_apply_list_like(op_name="apply")
631
+
632
+ result = reconstruct_and_relabel_result(result, func, **kwargs)
633
+
634
+ return result
635
+
636
+ def normalize_dictlike_arg(
637
+ self, how: str, obj: DataFrame | Series, func: AggFuncTypeDict
638
+ ) -> AggFuncTypeDict:
639
+ """
640
+ Handler for dict-like argument.
641
+
642
+ Ensures that necessary columns exist if obj is a DataFrame, and
643
+ that a nested renamer is not passed. Also normalizes to all lists
644
+ when values consists of a mix of list and non-lists.
645
+ """
646
+ assert how in ("apply", "agg", "transform")
647
+
648
+ # Can't use func.values(); wouldn't work for a Series
649
+ if (
650
+ how == "agg"
651
+ and isinstance(obj, ABCSeries)
652
+ and any(is_list_like(v) for _, v in func.items())
653
+ ) or (any(is_dict_like(v) for _, v in func.items())):
654
+ # GH 15931 - deprecation of renaming keys
655
+ raise SpecificationError("nested renamer is not supported")
656
+
657
+ if obj.ndim != 1:
658
+ # Check for missing columns on a frame
659
+ from pandas import Index
660
+
661
+ cols = Index(list(func.keys())).difference(obj.columns, sort=True)
662
+ if len(cols) > 0:
663
+ raise KeyError(f"Column(s) {list(cols)} do not exist")
664
+
665
+ aggregator_types = (list, tuple, dict)
666
+
667
+ # if we have a dict of any non-scalars
668
+ # eg. {'A' : ['mean']}, normalize all to
669
+ # be list-likes
670
+ # Cannot use func.values() because arg may be a Series
671
+ if any(isinstance(x, aggregator_types) for _, x in func.items()):
672
+ new_func: AggFuncTypeDict = {}
673
+ for k, v in func.items():
674
+ if not isinstance(v, aggregator_types):
675
+ new_func[k] = [v]
676
+ else:
677
+ new_func[k] = v
678
+ func = new_func
679
+ return func
680
+
681
+ def _apply_str(self, obj, func: str, *args, **kwargs):
682
+ """
683
+ if arg is a string, then try to operate on it:
684
+ - try to find a function (or attribute) on obj
685
+ - try to find a numpy function
686
+ - raise
687
+ """
688
+ assert isinstance(func, str)
689
+
690
+ if hasattr(obj, func):
691
+ f = getattr(obj, func)
692
+ if callable(f):
693
+ return f(*args, **kwargs)
694
+
695
+ # people may aggregate on a non-callable attribute
696
+ # but don't let them think they can pass args to it
697
+ assert len(args) == 0
698
+ assert len([kwarg for kwarg in kwargs if kwarg not in ["axis"]]) == 0
699
+ return f
700
+ elif hasattr(np, func) and hasattr(obj, "__array__"):
701
+ # in particular exclude Window
702
+ f = getattr(np, func)
703
+ return f(obj, *args, **kwargs)
704
+ else:
705
+ msg = f"'{func}' is not a valid function for '{type(obj).__name__}' object"
706
+ raise AttributeError(msg)
707
+
708
+
709
+ class NDFrameApply(Apply):
710
+ """
711
+ Methods shared by FrameApply and SeriesApply but
712
+ not GroupByApply or ResamplerWindowApply
713
+ """
714
+
715
+ obj: DataFrame | Series
716
+
717
+ @property
718
+ def index(self) -> Index:
719
+ return self.obj.index
720
+
721
+ @property
722
+ def agg_axis(self) -> Index:
723
+ return self.obj._get_agg_axis(self.axis)
724
+
725
+ def agg_or_apply_list_like(
726
+ self, op_name: Literal["agg", "apply"]
727
+ ) -> DataFrame | Series:
728
+ obj = self.obj
729
+ kwargs = self.kwargs
730
+
731
+ if op_name == "apply":
732
+ if isinstance(self, FrameApply):
733
+ by_row = self.by_row
734
+
735
+ elif isinstance(self, SeriesApply):
736
+ by_row = "_compat" if self.by_row else False
737
+ else:
738
+ by_row = False
739
+ kwargs = {**kwargs, "by_row": by_row}
740
+
741
+ if getattr(obj, "axis", 0) == 1:
742
+ raise NotImplementedError("axis other than 0 is not supported")
743
+
744
+ keys, results = self.compute_list_like(op_name, obj, kwargs)
745
+ result = self.wrap_results_list_like(keys, results)
746
+ return result
747
+
748
+ def agg_or_apply_dict_like(
749
+ self, op_name: Literal["agg", "apply"]
750
+ ) -> DataFrame | Series:
751
+ assert op_name in ["agg", "apply"]
752
+ obj = self.obj
753
+
754
+ kwargs = {}
755
+ if op_name == "apply":
756
+ by_row = "_compat" if self.by_row else False
757
+ kwargs.update({"by_row": by_row})
758
+
759
+ if getattr(obj, "axis", 0) == 1:
760
+ raise NotImplementedError("axis other than 0 is not supported")
761
+
762
+ selection = None
763
+ result_index, result_data = self.compute_dict_like(
764
+ op_name, obj, selection, kwargs
765
+ )
766
+ result = self.wrap_results_dict_like(obj, result_index, result_data)
767
+ return result
768
+
769
+
770
+ class FrameApply(NDFrameApply):
771
+ obj: DataFrame
772
+
773
+ def __init__(
774
+ self,
775
+ obj: AggObjType,
776
+ func: AggFuncType,
777
+ raw: bool,
778
+ result_type: str | None,
779
+ *,
780
+ by_row: Literal[False, "compat"] = False,
781
+ engine: str = "python",
782
+ engine_kwargs: dict[str, bool] | None = None,
783
+ args,
784
+ kwargs,
785
+ ) -> None:
786
+ if by_row is not False and by_row != "compat":
787
+ raise ValueError(f"by_row={by_row} not allowed")
788
+ super().__init__(
789
+ obj,
790
+ func,
791
+ raw,
792
+ result_type,
793
+ by_row=by_row,
794
+ engine=engine,
795
+ engine_kwargs=engine_kwargs,
796
+ args=args,
797
+ kwargs=kwargs,
798
+ )
799
+
800
+ # ---------------------------------------------------------------
801
+ # Abstract Methods
802
+
803
+ @property
804
+ @abc.abstractmethod
805
+ def result_index(self) -> Index:
806
+ pass
807
+
808
+ @property
809
+ @abc.abstractmethod
810
+ def result_columns(self) -> Index:
811
+ pass
812
+
813
+ @property
814
+ @abc.abstractmethod
815
+ def series_generator(self) -> Generator[Series, None, None]:
816
+ pass
817
+
818
+ @staticmethod
819
+ @functools.cache
820
+ @abc.abstractmethod
821
+ def generate_numba_apply_func(
822
+ func, nogil=True, nopython=True, parallel=False
823
+ ) -> Callable[[npt.NDArray, Index, Index], dict[int, Any]]:
824
+ pass
825
+
826
+ @abc.abstractmethod
827
+ def apply_with_numba(self):
828
+ pass
829
+
830
+ def validate_values_for_numba(self):
831
+ # Validate column dtyps all OK
832
+ for colname, dtype in self.obj.dtypes.items():
833
+ if not is_numeric_dtype(dtype):
834
+ raise ValueError(
835
+ f"Column {colname} must have a numeric dtype. "
836
+ f"Found '{dtype}' instead"
837
+ )
838
+ if is_extension_array_dtype(dtype):
839
+ raise ValueError(
840
+ f"Column {colname} is backed by an extension array, "
841
+ f"which is not supported by the numba engine."
842
+ )
843
+
844
+ @abc.abstractmethod
845
+ def wrap_results_for_axis(
846
+ self, results: ResType, res_index: Index
847
+ ) -> DataFrame | Series:
848
+ pass
849
+
850
+ # ---------------------------------------------------------------
851
+
852
+ @property
853
+ def res_columns(self) -> Index:
854
+ return self.result_columns
855
+
856
+ @property
857
+ def columns(self) -> Index:
858
+ return self.obj.columns
859
+
860
+ @cache_readonly
861
+ def values(self):
862
+ return self.obj.values
863
+
864
+ def apply(self) -> DataFrame | Series:
865
+ """compute the results"""
866
+
867
+ # dispatch to handle list-like or dict-like
868
+ if is_list_like(self.func):
869
+ if self.engine == "numba":
870
+ raise NotImplementedError(
871
+ "the 'numba' engine doesn't support lists of callables yet"
872
+ )
873
+ return self.apply_list_or_dict_like()
874
+
875
+ # all empty
876
+ if len(self.columns) == 0 and len(self.index) == 0:
877
+ return self.apply_empty_result()
878
+
879
+ # string dispatch
880
+ if isinstance(self.func, str):
881
+ if self.engine == "numba":
882
+ raise NotImplementedError(
883
+ "the 'numba' engine doesn't support using "
884
+ "a string as the callable function"
885
+ )
886
+ return self.apply_str()
887
+
888
+ # ufunc
889
+ elif isinstance(self.func, np.ufunc):
890
+ if self.engine == "numba":
891
+ raise NotImplementedError(
892
+ "the 'numba' engine doesn't support "
893
+ "using a numpy ufunc as the callable function"
894
+ )
895
+ with np.errstate(all="ignore"):
896
+ results = self.obj._mgr.apply("apply", func=self.func)
897
+ # _constructor will retain self.index and self.columns
898
+ return self.obj._constructor_from_mgr(results, axes=results.axes)
899
+
900
+ # broadcasting
901
+ if self.result_type == "broadcast":
902
+ if self.engine == "numba":
903
+ raise NotImplementedError(
904
+ "the 'numba' engine doesn't support result_type='broadcast'"
905
+ )
906
+ return self.apply_broadcast(self.obj)
907
+
908
+ # one axis empty
909
+ elif not all(self.obj.shape):
910
+ return self.apply_empty_result()
911
+
912
+ # raw
913
+ elif self.raw:
914
+ return self.apply_raw(engine=self.engine, engine_kwargs=self.engine_kwargs)
915
+
916
+ return self.apply_standard()
917
+
918
+ def agg(self):
919
+ obj = self.obj
920
+ axis = self.axis
921
+
922
+ # TODO: Avoid having to change state
923
+ self.obj = self.obj if self.axis == 0 else self.obj.T
924
+ self.axis = 0
925
+
926
+ result = None
927
+ try:
928
+ result = super().agg()
929
+ finally:
930
+ self.obj = obj
931
+ self.axis = axis
932
+
933
+ if axis == 1:
934
+ result = result.T if result is not None else result
935
+
936
+ if result is None:
937
+ result = self.obj.apply(self.func, axis, args=self.args, **self.kwargs)
938
+
939
+ return result
940
+
941
+ def apply_empty_result(self):
942
+ """
943
+ we have an empty result; at least 1 axis is 0
944
+
945
+ we will try to apply the function to an empty
946
+ series in order to see if this is a reduction function
947
+ """
948
+ assert callable(self.func)
949
+
950
+ # we are not asked to reduce or infer reduction
951
+ # so just return a copy of the existing object
952
+ if self.result_type not in ["reduce", None]:
953
+ return self.obj.copy()
954
+
955
+ # we may need to infer
956
+ should_reduce = self.result_type == "reduce"
957
+
958
+ from pandas import Series
959
+
960
+ if not should_reduce:
961
+ try:
962
+ if self.axis == 0:
963
+ r = self.func(
964
+ Series([], dtype=np.float64), *self.args, **self.kwargs
965
+ )
966
+ else:
967
+ r = self.func(
968
+ Series(index=self.columns, dtype=np.float64),
969
+ *self.args,
970
+ **self.kwargs,
971
+ )
972
+ except Exception:
973
+ pass
974
+ else:
975
+ should_reduce = not isinstance(r, Series)
976
+
977
+ if should_reduce:
978
+ if len(self.agg_axis):
979
+ r = self.func(Series([], dtype=np.float64), *self.args, **self.kwargs)
980
+ else:
981
+ r = np.nan
982
+
983
+ return self.obj._constructor_sliced(r, index=self.agg_axis)
984
+ else:
985
+ return self.obj.copy()
986
+
987
+ def apply_raw(self, engine="python", engine_kwargs=None):
988
+ """apply to the values as a numpy array"""
989
+
990
+ def wrap_function(func):
991
+ """
992
+ Wrap user supplied function to work around numpy issue.
993
+
994
+ see https://github.com/numpy/numpy/issues/8352
995
+ """
996
+
997
+ def wrapper(*args, **kwargs):
998
+ result = func(*args, **kwargs)
999
+ if isinstance(result, str):
1000
+ result = np.array(result, dtype=object)
1001
+ return result
1002
+
1003
+ return wrapper
1004
+
1005
+ if engine == "numba":
1006
+ engine_kwargs = {} if engine_kwargs is None else engine_kwargs
1007
+
1008
+ # error: Argument 1 to "__call__" of "_lru_cache_wrapper" has
1009
+ # incompatible type "Callable[..., Any] | str | list[Callable
1010
+ # [..., Any] | str] | dict[Hashable,Callable[..., Any] | str |
1011
+ # list[Callable[..., Any] | str]]"; expected "Hashable"
1012
+ nb_looper = generate_apply_looper(
1013
+ self.func, **engine_kwargs # type: ignore[arg-type]
1014
+ )
1015
+ result = nb_looper(self.values, self.axis)
1016
+ # If we made the result 2-D, squeeze it back to 1-D
1017
+ result = np.squeeze(result)
1018
+ else:
1019
+ result = np.apply_along_axis(
1020
+ wrap_function(self.func),
1021
+ self.axis,
1022
+ self.values,
1023
+ *self.args,
1024
+ **self.kwargs,
1025
+ )
1026
+
1027
+ # TODO: mixed type case
1028
+ if result.ndim == 2:
1029
+ return self.obj._constructor(result, index=self.index, columns=self.columns)
1030
+ else:
1031
+ return self.obj._constructor_sliced(result, index=self.agg_axis)
1032
+
1033
+ def apply_broadcast(self, target: DataFrame) -> DataFrame:
1034
+ assert callable(self.func)
1035
+
1036
+ result_values = np.empty_like(target.values)
1037
+
1038
+ # axis which we want to compare compliance
1039
+ result_compare = target.shape[0]
1040
+
1041
+ for i, col in enumerate(target.columns):
1042
+ res = self.func(target[col], *self.args, **self.kwargs)
1043
+ ares = np.asarray(res).ndim
1044
+
1045
+ # must be a scalar or 1d
1046
+ if ares > 1:
1047
+ raise ValueError("too many dims to broadcast")
1048
+ if ares == 1:
1049
+ # must match return dim
1050
+ if result_compare != len(res):
1051
+ raise ValueError("cannot broadcast result")
1052
+
1053
+ result_values[:, i] = res
1054
+
1055
+ # we *always* preserve the original index / columns
1056
+ result = self.obj._constructor(
1057
+ result_values, index=target.index, columns=target.columns
1058
+ )
1059
+ return result
1060
+
1061
+ def apply_standard(self):
1062
+ if self.engine == "python":
1063
+ results, res_index = self.apply_series_generator()
1064
+ else:
1065
+ results, res_index = self.apply_series_numba()
1066
+
1067
+ # wrap results
1068
+ return self.wrap_results(results, res_index)
1069
+
1070
+ def apply_series_generator(self) -> tuple[ResType, Index]:
1071
+ assert callable(self.func)
1072
+
1073
+ series_gen = self.series_generator
1074
+ res_index = self.result_index
1075
+
1076
+ results = {}
1077
+
1078
+ with option_context("mode.chained_assignment", None):
1079
+ for i, v in enumerate(series_gen):
1080
+ # ignore SettingWithCopy here in case the user mutates
1081
+ results[i] = self.func(v, *self.args, **self.kwargs)
1082
+ if isinstance(results[i], ABCSeries):
1083
+ # If we have a view on v, we need to make a copy because
1084
+ # series_generator will swap out the underlying data
1085
+ results[i] = results[i].copy(deep=False)
1086
+
1087
+ return results, res_index
1088
+
1089
+ def apply_series_numba(self):
1090
+ if self.engine_kwargs.get("parallel", False):
1091
+ raise NotImplementedError(
1092
+ "Parallel apply is not supported when raw=False and engine='numba'"
1093
+ )
1094
+ if not self.obj.index.is_unique or not self.columns.is_unique:
1095
+ raise NotImplementedError(
1096
+ "The index/columns must be unique when raw=False and engine='numba'"
1097
+ )
1098
+ self.validate_values_for_numba()
1099
+ results = self.apply_with_numba()
1100
+ return results, self.result_index
1101
+
1102
+ def wrap_results(self, results: ResType, res_index: Index) -> DataFrame | Series:
1103
+ from pandas import Series
1104
+
1105
+ # see if we can infer the results
1106
+ if len(results) > 0 and 0 in results and is_sequence(results[0]):
1107
+ return self.wrap_results_for_axis(results, res_index)
1108
+
1109
+ # dict of scalars
1110
+
1111
+ # the default dtype of an empty Series is `object`, but this
1112
+ # code can be hit by df.mean() where the result should have dtype
1113
+ # float64 even if it's an empty Series.
1114
+ constructor_sliced = self.obj._constructor_sliced
1115
+ if len(results) == 0 and constructor_sliced is Series:
1116
+ result = constructor_sliced(results, dtype=np.float64)
1117
+ else:
1118
+ result = constructor_sliced(results)
1119
+ result.index = res_index
1120
+
1121
+ return result
1122
+
1123
+ def apply_str(self) -> DataFrame | Series:
1124
+ # Caller is responsible for checking isinstance(self.func, str)
1125
+ # TODO: GH#39993 - Avoid special-casing by replacing with lambda
1126
+ if self.func == "size":
1127
+ # Special-cased because DataFrame.size returns a single scalar
1128
+ obj = self.obj
1129
+ value = obj.shape[self.axis]
1130
+ return obj._constructor_sliced(value, index=self.agg_axis)
1131
+ return super().apply_str()
1132
+
1133
+
1134
+ class FrameRowApply(FrameApply):
1135
+ axis: AxisInt = 0
1136
+
1137
+ @property
1138
+ def series_generator(self) -> Generator[Series, None, None]:
1139
+ return (self.obj._ixs(i, axis=1) for i in range(len(self.columns)))
1140
+
1141
+ @staticmethod
1142
+ @functools.cache
1143
+ def generate_numba_apply_func(
1144
+ func, nogil=True, nopython=True, parallel=False
1145
+ ) -> Callable[[npt.NDArray, Index, Index], dict[int, Any]]:
1146
+ numba = import_optional_dependency("numba")
1147
+ from pandas import Series
1148
+
1149
+ # Import helper from extensions to cast string object -> np strings
1150
+ # Note: This also has the side effect of loading our numba extensions
1151
+ from pandas.core._numba.extensions import maybe_cast_str
1152
+
1153
+ jitted_udf = numba.extending.register_jitable(func)
1154
+
1155
+ # Currently the parallel argument doesn't get passed through here
1156
+ # (it's disabled) since the dicts in numba aren't thread-safe.
1157
+ @numba.jit(nogil=nogil, nopython=nopython, parallel=parallel)
1158
+ def numba_func(values, col_names, df_index):
1159
+ results = {}
1160
+ for j in range(values.shape[1]):
1161
+ # Create the series
1162
+ ser = Series(
1163
+ values[:, j], index=df_index, name=maybe_cast_str(col_names[j])
1164
+ )
1165
+ results[j] = jitted_udf(ser)
1166
+ return results
1167
+
1168
+ return numba_func
1169
+
1170
+ def apply_with_numba(self) -> dict[int, Any]:
1171
+ nb_func = self.generate_numba_apply_func(
1172
+ cast(Callable, self.func), **self.engine_kwargs
1173
+ )
1174
+ from pandas.core._numba.extensions import set_numba_data
1175
+
1176
+ index = self.obj.index
1177
+ if index.dtype == "string":
1178
+ index = index.astype(object)
1179
+
1180
+ columns = self.obj.columns
1181
+ if columns.dtype == "string":
1182
+ columns = columns.astype(object)
1183
+
1184
+ # Convert from numba dict to regular dict
1185
+ # Our isinstance checks in the df constructor don't pass for numbas typed dict
1186
+ with set_numba_data(index) as index, set_numba_data(columns) as columns:
1187
+ res = dict(nb_func(self.values, columns, index))
1188
+ return res
1189
+
1190
+ @property
1191
+ def result_index(self) -> Index:
1192
+ return self.columns
1193
+
1194
+ @property
1195
+ def result_columns(self) -> Index:
1196
+ return self.index
1197
+
1198
+ def wrap_results_for_axis(
1199
+ self, results: ResType, res_index: Index
1200
+ ) -> DataFrame | Series:
1201
+ """return the results for the rows"""
1202
+
1203
+ if self.result_type == "reduce":
1204
+ # e.g. test_apply_dict GH#8735
1205
+ res = self.obj._constructor_sliced(results)
1206
+ res.index = res_index
1207
+ return res
1208
+
1209
+ elif self.result_type is None and all(
1210
+ isinstance(x, dict) for x in results.values()
1211
+ ):
1212
+ # Our operation was a to_dict op e.g.
1213
+ # test_apply_dict GH#8735, test_apply_reduce_to_dict GH#25196 #37544
1214
+ res = self.obj._constructor_sliced(results)
1215
+ res.index = res_index
1216
+ return res
1217
+
1218
+ try:
1219
+ result = self.obj._constructor(data=results)
1220
+ except ValueError as err:
1221
+ if "All arrays must be of the same length" in str(err):
1222
+ # e.g. result = [[2, 3], [1.5], ['foo', 'bar']]
1223
+ # see test_agg_listlike_result GH#29587
1224
+ res = self.obj._constructor_sliced(results)
1225
+ res.index = res_index
1226
+ return res
1227
+ else:
1228
+ raise
1229
+
1230
+ if not isinstance(results[0], ABCSeries):
1231
+ if len(result.index) == len(self.res_columns):
1232
+ result.index = self.res_columns
1233
+
1234
+ if len(result.columns) == len(res_index):
1235
+ result.columns = res_index
1236
+
1237
+ return result
1238
+
1239
+
1240
+ class FrameColumnApply(FrameApply):
1241
+ axis: AxisInt = 1
1242
+
1243
+ def apply_broadcast(self, target: DataFrame) -> DataFrame:
1244
+ result = super().apply_broadcast(target.T)
1245
+ return result.T
1246
+
1247
+ @property
1248
+ def series_generator(self) -> Generator[Series, None, None]:
1249
+ values = self.values
1250
+ values = ensure_wrapped_if_datetimelike(values)
1251
+ assert len(values) > 0
1252
+
1253
+ # We create one Series object, and will swap out the data inside
1254
+ # of it. Kids: don't do this at home.
1255
+ ser = self.obj._ixs(0, axis=0)
1256
+ mgr = ser._mgr
1257
+
1258
+ is_view = mgr.blocks[0].refs.has_reference() # type: ignore[union-attr]
1259
+
1260
+ if isinstance(ser.dtype, ExtensionDtype):
1261
+ # values will be incorrect for this block
1262
+ # TODO(EA2D): special case would be unnecessary with 2D EAs
1263
+ obj = self.obj
1264
+ for i in range(len(obj)):
1265
+ yield obj._ixs(i, axis=0)
1266
+
1267
+ else:
1268
+ for arr, name in zip(values, self.index):
1269
+ # GH#35462 re-pin mgr in case setitem changed it
1270
+ ser._mgr = mgr
1271
+ mgr.set_values(arr)
1272
+ object.__setattr__(ser, "_name", name)
1273
+ if not is_view:
1274
+ # In apply_series_generator we store the a shallow copy of the
1275
+ # result, which potentially increases the ref count of this reused
1276
+ # `ser` object (depending on the result of the applied function)
1277
+ # -> if that happened and `ser` is already a copy, then we reset
1278
+ # the refs here to avoid triggering a unnecessary CoW inside the
1279
+ # applied function (https://github.com/pandas-dev/pandas/pull/56212)
1280
+ mgr.blocks[0].refs = BlockValuesRefs(mgr.blocks[0]) # type: ignore[union-attr]
1281
+ yield ser
1282
+
1283
+ @staticmethod
1284
+ @functools.cache
1285
+ def generate_numba_apply_func(
1286
+ func, nogil=True, nopython=True, parallel=False
1287
+ ) -> Callable[[npt.NDArray, Index, Index], dict[int, Any]]:
1288
+ numba = import_optional_dependency("numba")
1289
+ from pandas import Series
1290
+ from pandas.core._numba.extensions import maybe_cast_str
1291
+
1292
+ jitted_udf = numba.extending.register_jitable(func)
1293
+
1294
+ @numba.jit(nogil=nogil, nopython=nopython, parallel=parallel)
1295
+ def numba_func(values, col_names_index, index):
1296
+ results = {}
1297
+ # Currently the parallel argument doesn't get passed through here
1298
+ # (it's disabled) since the dicts in numba aren't thread-safe.
1299
+ for i in range(values.shape[0]):
1300
+ # Create the series
1301
+ # TODO: values corrupted without the copy
1302
+ ser = Series(
1303
+ values[i].copy(),
1304
+ index=col_names_index,
1305
+ name=maybe_cast_str(index[i]),
1306
+ )
1307
+ results[i] = jitted_udf(ser)
1308
+
1309
+ return results
1310
+
1311
+ return numba_func
1312
+
1313
+ def apply_with_numba(self) -> dict[int, Any]:
1314
+ nb_func = self.generate_numba_apply_func(
1315
+ cast(Callable, self.func), **self.engine_kwargs
1316
+ )
1317
+
1318
+ from pandas.core._numba.extensions import set_numba_data
1319
+
1320
+ # Convert from numba dict to regular dict
1321
+ # Our isinstance checks in the df constructor don't pass for numbas typed dict
1322
+ with set_numba_data(self.obj.index) as index, set_numba_data(
1323
+ self.columns
1324
+ ) as columns:
1325
+ res = dict(nb_func(self.values, columns, index))
1326
+
1327
+ return res
1328
+
1329
+ @property
1330
+ def result_index(self) -> Index:
1331
+ return self.index
1332
+
1333
+ @property
1334
+ def result_columns(self) -> Index:
1335
+ return self.columns
1336
+
1337
+ def wrap_results_for_axis(
1338
+ self, results: ResType, res_index: Index
1339
+ ) -> DataFrame | Series:
1340
+ """return the results for the columns"""
1341
+ result: DataFrame | Series
1342
+
1343
+ # we have requested to expand
1344
+ if self.result_type == "expand":
1345
+ result = self.infer_to_same_shape(results, res_index)
1346
+
1347
+ # we have a non-series and don't want inference
1348
+ elif not isinstance(results[0], ABCSeries):
1349
+ result = self.obj._constructor_sliced(results)
1350
+ result.index = res_index
1351
+
1352
+ # we may want to infer results
1353
+ else:
1354
+ result = self.infer_to_same_shape(results, res_index)
1355
+
1356
+ return result
1357
+
1358
+ def infer_to_same_shape(self, results: ResType, res_index: Index) -> DataFrame:
1359
+ """infer the results to the same shape as the input object"""
1360
+ result = self.obj._constructor(data=results)
1361
+ result = result.T
1362
+
1363
+ # set the index
1364
+ result.index = res_index
1365
+
1366
+ # infer dtypes
1367
+ result = result.infer_objects(copy=False)
1368
+
1369
+ return result
1370
+
1371
+
1372
+ class SeriesApply(NDFrameApply):
1373
+ obj: Series
1374
+ axis: AxisInt = 0
1375
+ by_row: Literal[False, "compat", "_compat"] # only relevant for apply()
1376
+
1377
+ def __init__(
1378
+ self,
1379
+ obj: Series,
1380
+ func: AggFuncType,
1381
+ *,
1382
+ convert_dtype: bool | lib.NoDefault = lib.no_default,
1383
+ by_row: Literal[False, "compat", "_compat"] = "compat",
1384
+ args,
1385
+ kwargs,
1386
+ ) -> None:
1387
+ if convert_dtype is lib.no_default:
1388
+ convert_dtype = True
1389
+ else:
1390
+ warnings.warn(
1391
+ "the convert_dtype parameter is deprecated and will be removed in a "
1392
+ "future version. Do ``ser.astype(object).apply()`` "
1393
+ "instead if you want ``convert_dtype=False``.",
1394
+ FutureWarning,
1395
+ stacklevel=find_stack_level(),
1396
+ )
1397
+ self.convert_dtype = convert_dtype
1398
+
1399
+ super().__init__(
1400
+ obj,
1401
+ func,
1402
+ raw=False,
1403
+ result_type=None,
1404
+ by_row=by_row,
1405
+ args=args,
1406
+ kwargs=kwargs,
1407
+ )
1408
+
1409
+ def apply(self) -> DataFrame | Series:
1410
+ obj = self.obj
1411
+
1412
+ if len(obj) == 0:
1413
+ return self.apply_empty_result()
1414
+
1415
+ # dispatch to handle list-like or dict-like
1416
+ if is_list_like(self.func):
1417
+ return self.apply_list_or_dict_like()
1418
+
1419
+ if isinstance(self.func, str):
1420
+ # if we are a string, try to dispatch
1421
+ return self.apply_str()
1422
+
1423
+ if self.by_row == "_compat":
1424
+ return self.apply_compat()
1425
+
1426
+ # self.func is Callable
1427
+ return self.apply_standard()
1428
+
1429
+ def agg(self):
1430
+ result = super().agg()
1431
+ if result is None:
1432
+ obj = self.obj
1433
+ func = self.func
1434
+ # string, list-like, and dict-like are entirely handled in super
1435
+ assert callable(func)
1436
+
1437
+ # GH53325: The setup below is just to keep current behavior while emitting a
1438
+ # deprecation message. In the future this will all be replaced with a simple
1439
+ # `result = f(self.obj, *self.args, **self.kwargs)`.
1440
+ try:
1441
+ result = obj.apply(func, args=self.args, **self.kwargs)
1442
+ except (ValueError, AttributeError, TypeError):
1443
+ result = func(obj, *self.args, **self.kwargs)
1444
+ else:
1445
+ msg = (
1446
+ f"using {func} in {type(obj).__name__}.agg cannot aggregate and "
1447
+ f"has been deprecated. Use {type(obj).__name__}.transform to "
1448
+ f"keep behavior unchanged."
1449
+ )
1450
+ warnings.warn(msg, FutureWarning, stacklevel=find_stack_level())
1451
+
1452
+ return result
1453
+
1454
+ def apply_empty_result(self) -> Series:
1455
+ obj = self.obj
1456
+ return obj._constructor(dtype=obj.dtype, index=obj.index).__finalize__(
1457
+ obj, method="apply"
1458
+ )
1459
+
1460
+ def apply_compat(self):
1461
+ """compat apply method for funcs in listlikes and dictlikes.
1462
+
1463
+ Used for each callable when giving listlikes and dictlikes of callables to
1464
+ apply. Needed for compatibility with Pandas < v2.1.
1465
+
1466
+ .. versionadded:: 2.1.0
1467
+ """
1468
+ obj = self.obj
1469
+ func = self.func
1470
+
1471
+ if callable(func):
1472
+ f = com.get_cython_func(func)
1473
+ if f and not self.args and not self.kwargs:
1474
+ return obj.apply(func, by_row=False)
1475
+
1476
+ try:
1477
+ result = obj.apply(func, by_row="compat")
1478
+ except (ValueError, AttributeError, TypeError):
1479
+ result = obj.apply(func, by_row=False)
1480
+ return result
1481
+
1482
+ def apply_standard(self) -> DataFrame | Series:
1483
+ # caller is responsible for ensuring that f is Callable
1484
+ func = cast(Callable, self.func)
1485
+ obj = self.obj
1486
+
1487
+ if isinstance(func, np.ufunc):
1488
+ with np.errstate(all="ignore"):
1489
+ return func(obj, *self.args, **self.kwargs)
1490
+ elif not self.by_row:
1491
+ return func(obj, *self.args, **self.kwargs)
1492
+
1493
+ if self.args or self.kwargs:
1494
+ # _map_values does not support args/kwargs
1495
+ def curried(x):
1496
+ return func(x, *self.args, **self.kwargs)
1497
+
1498
+ else:
1499
+ curried = func
1500
+
1501
+ # row-wise access
1502
+ # apply doesn't have a `na_action` keyword and for backward compat reasons
1503
+ # we need to give `na_action="ignore"` for categorical data.
1504
+ # TODO: remove the `na_action="ignore"` when that default has been changed in
1505
+ # Categorical (GH51645).
1506
+ action = "ignore" if isinstance(obj.dtype, CategoricalDtype) else None
1507
+ mapped = obj._map_values(
1508
+ mapper=curried, na_action=action, convert=self.convert_dtype
1509
+ )
1510
+
1511
+ if len(mapped) and isinstance(mapped[0], ABCSeries):
1512
+ # GH#43986 Need to do list(mapped) in order to get treated as nested
1513
+ # See also GH#25959 regarding EA support
1514
+ return obj._constructor_expanddim(list(mapped), index=obj.index)
1515
+ else:
1516
+ return obj._constructor(mapped, index=obj.index).__finalize__(
1517
+ obj, method="apply"
1518
+ )
1519
+
1520
+
1521
+ class GroupByApply(Apply):
1522
+ obj: GroupBy | Resampler | BaseWindow
1523
+
1524
+ def __init__(
1525
+ self,
1526
+ obj: GroupBy[NDFrameT],
1527
+ func: AggFuncType,
1528
+ *,
1529
+ args,
1530
+ kwargs,
1531
+ ) -> None:
1532
+ kwargs = kwargs.copy()
1533
+ self.axis = obj.obj._get_axis_number(kwargs.get("axis", 0))
1534
+ super().__init__(
1535
+ obj,
1536
+ func,
1537
+ raw=False,
1538
+ result_type=None,
1539
+ args=args,
1540
+ kwargs=kwargs,
1541
+ )
1542
+
1543
+ def apply(self):
1544
+ raise NotImplementedError
1545
+
1546
+ def transform(self):
1547
+ raise NotImplementedError
1548
+
1549
+ def agg_or_apply_list_like(
1550
+ self, op_name: Literal["agg", "apply"]
1551
+ ) -> DataFrame | Series:
1552
+ obj = self.obj
1553
+ kwargs = self.kwargs
1554
+ if op_name == "apply":
1555
+ kwargs = {**kwargs, "by_row": False}
1556
+
1557
+ if getattr(obj, "axis", 0) == 1:
1558
+ raise NotImplementedError("axis other than 0 is not supported")
1559
+
1560
+ if obj._selected_obj.ndim == 1:
1561
+ # For SeriesGroupBy this matches _obj_with_exclusions
1562
+ selected_obj = obj._selected_obj
1563
+ else:
1564
+ selected_obj = obj._obj_with_exclusions
1565
+
1566
+ # Only set as_index=True on groupby objects, not Window or Resample
1567
+ # that inherit from this class.
1568
+ with com.temp_setattr(
1569
+ obj, "as_index", True, condition=hasattr(obj, "as_index")
1570
+ ):
1571
+ keys, results = self.compute_list_like(op_name, selected_obj, kwargs)
1572
+ result = self.wrap_results_list_like(keys, results)
1573
+ return result
1574
+
1575
+ def agg_or_apply_dict_like(
1576
+ self, op_name: Literal["agg", "apply"]
1577
+ ) -> DataFrame | Series:
1578
+ from pandas.core.groupby.generic import (
1579
+ DataFrameGroupBy,
1580
+ SeriesGroupBy,
1581
+ )
1582
+
1583
+ assert op_name in ["agg", "apply"]
1584
+
1585
+ obj = self.obj
1586
+ kwargs = {}
1587
+ if op_name == "apply":
1588
+ by_row = "_compat" if self.by_row else False
1589
+ kwargs.update({"by_row": by_row})
1590
+
1591
+ if getattr(obj, "axis", 0) == 1:
1592
+ raise NotImplementedError("axis other than 0 is not supported")
1593
+
1594
+ selected_obj = obj._selected_obj
1595
+ selection = obj._selection
1596
+
1597
+ is_groupby = isinstance(obj, (DataFrameGroupBy, SeriesGroupBy))
1598
+
1599
+ # Numba Groupby engine/engine-kwargs passthrough
1600
+ if is_groupby:
1601
+ engine = self.kwargs.get("engine", None)
1602
+ engine_kwargs = self.kwargs.get("engine_kwargs", None)
1603
+ kwargs.update({"engine": engine, "engine_kwargs": engine_kwargs})
1604
+
1605
+ with com.temp_setattr(
1606
+ obj, "as_index", True, condition=hasattr(obj, "as_index")
1607
+ ):
1608
+ result_index, result_data = self.compute_dict_like(
1609
+ op_name, selected_obj, selection, kwargs
1610
+ )
1611
+ result = self.wrap_results_dict_like(selected_obj, result_index, result_data)
1612
+ return result
1613
+
1614
+
1615
+ class ResamplerWindowApply(GroupByApply):
1616
+ axis: AxisInt = 0
1617
+ obj: Resampler | BaseWindow
1618
+
1619
+ def __init__(
1620
+ self,
1621
+ obj: Resampler | BaseWindow,
1622
+ func: AggFuncType,
1623
+ *,
1624
+ args,
1625
+ kwargs,
1626
+ ) -> None:
1627
+ super(GroupByApply, self).__init__(
1628
+ obj,
1629
+ func,
1630
+ raw=False,
1631
+ result_type=None,
1632
+ args=args,
1633
+ kwargs=kwargs,
1634
+ )
1635
+
1636
+ def apply(self):
1637
+ raise NotImplementedError
1638
+
1639
+ def transform(self):
1640
+ raise NotImplementedError
1641
+
1642
+
1643
+ def reconstruct_func(
1644
+ func: AggFuncType | None, **kwargs
1645
+ ) -> tuple[bool, AggFuncType, tuple[str, ...] | None, npt.NDArray[np.intp] | None]:
1646
+ """
1647
+ This is the internal function to reconstruct func given if there is relabeling
1648
+ or not and also normalize the keyword to get new order of columns.
1649
+
1650
+ If named aggregation is applied, `func` will be None, and kwargs contains the
1651
+ column and aggregation function information to be parsed;
1652
+ If named aggregation is not applied, `func` is either string (e.g. 'min') or
1653
+ Callable, or list of them (e.g. ['min', np.max]), or the dictionary of column name
1654
+ and str/Callable/list of them (e.g. {'A': 'min'}, or {'A': [np.min, lambda x: x]})
1655
+
1656
+ If relabeling is True, will return relabeling, reconstructed func, column
1657
+ names, and the reconstructed order of columns.
1658
+ If relabeling is False, the columns and order will be None.
1659
+
1660
+ Parameters
1661
+ ----------
1662
+ func: agg function (e.g. 'min' or Callable) or list of agg functions
1663
+ (e.g. ['min', np.max]) or dictionary (e.g. {'A': ['min', np.max]}).
1664
+ **kwargs: dict, kwargs used in is_multi_agg_with_relabel and
1665
+ normalize_keyword_aggregation function for relabelling
1666
+
1667
+ Returns
1668
+ -------
1669
+ relabelling: bool, if there is relabelling or not
1670
+ func: normalized and mangled func
1671
+ columns: tuple of column names
1672
+ order: array of columns indices
1673
+
1674
+ Examples
1675
+ --------
1676
+ >>> reconstruct_func(None, **{"foo": ("col", "min")})
1677
+ (True, defaultdict(<class 'list'>, {'col': ['min']}), ('foo',), array([0]))
1678
+
1679
+ >>> reconstruct_func("min")
1680
+ (False, 'min', None, None)
1681
+ """
1682
+ relabeling = func is None and is_multi_agg_with_relabel(**kwargs)
1683
+ columns: tuple[str, ...] | None = None
1684
+ order: npt.NDArray[np.intp] | None = None
1685
+
1686
+ if not relabeling:
1687
+ if isinstance(func, list) and len(func) > len(set(func)):
1688
+ # GH 28426 will raise error if duplicated function names are used and
1689
+ # there is no reassigned name
1690
+ raise SpecificationError(
1691
+ "Function names must be unique if there is no new column names "
1692
+ "assigned"
1693
+ )
1694
+ if func is None:
1695
+ # nicer error message
1696
+ raise TypeError("Must provide 'func' or tuples of '(column, aggfunc).")
1697
+
1698
+ if relabeling:
1699
+ # error: Incompatible types in assignment (expression has type
1700
+ # "MutableMapping[Hashable, list[Callable[..., Any] | str]]", variable has type
1701
+ # "Callable[..., Any] | str | list[Callable[..., Any] | str] |
1702
+ # MutableMapping[Hashable, Callable[..., Any] | str | list[Callable[..., Any] |
1703
+ # str]] | None")
1704
+ func, columns, order = normalize_keyword_aggregation( # type: ignore[assignment]
1705
+ kwargs
1706
+ )
1707
+ assert func is not None
1708
+
1709
+ return relabeling, func, columns, order
1710
+
1711
+
1712
+ def is_multi_agg_with_relabel(**kwargs) -> bool:
1713
+ """
1714
+ Check whether kwargs passed to .agg look like multi-agg with relabeling.
1715
+
1716
+ Parameters
1717
+ ----------
1718
+ **kwargs : dict
1719
+
1720
+ Returns
1721
+ -------
1722
+ bool
1723
+
1724
+ Examples
1725
+ --------
1726
+ >>> is_multi_agg_with_relabel(a="max")
1727
+ False
1728
+ >>> is_multi_agg_with_relabel(a_max=("a", "max"), a_min=("a", "min"))
1729
+ True
1730
+ >>> is_multi_agg_with_relabel()
1731
+ False
1732
+ """
1733
+ return all(isinstance(v, tuple) and len(v) == 2 for v in kwargs.values()) and (
1734
+ len(kwargs) > 0
1735
+ )
1736
+
1737
+
1738
+ def normalize_keyword_aggregation(
1739
+ kwargs: dict,
1740
+ ) -> tuple[
1741
+ MutableMapping[Hashable, list[AggFuncTypeBase]],
1742
+ tuple[str, ...],
1743
+ npt.NDArray[np.intp],
1744
+ ]:
1745
+ """
1746
+ Normalize user-provided "named aggregation" kwargs.
1747
+ Transforms from the new ``Mapping[str, NamedAgg]`` style kwargs
1748
+ to the old Dict[str, List[scalar]]].
1749
+
1750
+ Parameters
1751
+ ----------
1752
+ kwargs : dict
1753
+
1754
+ Returns
1755
+ -------
1756
+ aggspec : dict
1757
+ The transformed kwargs.
1758
+ columns : tuple[str, ...]
1759
+ The user-provided keys.
1760
+ col_idx_order : List[int]
1761
+ List of columns indices.
1762
+
1763
+ Examples
1764
+ --------
1765
+ >>> normalize_keyword_aggregation({"output": ("input", "sum")})
1766
+ (defaultdict(<class 'list'>, {'input': ['sum']}), ('output',), array([0]))
1767
+ """
1768
+ from pandas.core.indexes.base import Index
1769
+
1770
+ # Normalize the aggregation functions as Mapping[column, List[func]],
1771
+ # process normally, then fixup the names.
1772
+ # TODO: aggspec type: typing.Dict[str, List[AggScalar]]
1773
+ aggspec = defaultdict(list)
1774
+ order = []
1775
+ columns, pairs = list(zip(*kwargs.items()))
1776
+
1777
+ for column, aggfunc in pairs:
1778
+ aggspec[column].append(aggfunc)
1779
+ order.append((column, com.get_callable_name(aggfunc) or aggfunc))
1780
+
1781
+ # uniquify aggfunc name if duplicated in order list
1782
+ uniquified_order = _make_unique_kwarg_list(order)
1783
+
1784
+ # GH 25719, due to aggspec will change the order of assigned columns in aggregation
1785
+ # uniquified_aggspec will store uniquified order list and will compare it with order
1786
+ # based on index
1787
+ aggspec_order = [
1788
+ (column, com.get_callable_name(aggfunc) or aggfunc)
1789
+ for column, aggfuncs in aggspec.items()
1790
+ for aggfunc in aggfuncs
1791
+ ]
1792
+ uniquified_aggspec = _make_unique_kwarg_list(aggspec_order)
1793
+
1794
+ # get the new index of columns by comparison
1795
+ col_idx_order = Index(uniquified_aggspec).get_indexer(uniquified_order)
1796
+ return aggspec, columns, col_idx_order
1797
+
1798
+
1799
+ def _make_unique_kwarg_list(
1800
+ seq: Sequence[tuple[Any, Any]]
1801
+ ) -> Sequence[tuple[Any, Any]]:
1802
+ """
1803
+ Uniquify aggfunc name of the pairs in the order list
1804
+
1805
+ Examples:
1806
+ --------
1807
+ >>> kwarg_list = [('a', '<lambda>'), ('a', '<lambda>'), ('b', '<lambda>')]
1808
+ >>> _make_unique_kwarg_list(kwarg_list)
1809
+ [('a', '<lambda>_0'), ('a', '<lambda>_1'), ('b', '<lambda>')]
1810
+ """
1811
+ return [
1812
+ (pair[0], f"{pair[1]}_{seq[:i].count(pair)}") if seq.count(pair) > 1 else pair
1813
+ for i, pair in enumerate(seq)
1814
+ ]
1815
+
1816
+
1817
+ def relabel_result(
1818
+ result: DataFrame | Series,
1819
+ func: dict[str, list[Callable | str]],
1820
+ columns: Iterable[Hashable],
1821
+ order: Iterable[int],
1822
+ ) -> dict[Hashable, Series]:
1823
+ """
1824
+ Internal function to reorder result if relabelling is True for
1825
+ dataframe.agg, and return the reordered result in dict.
1826
+
1827
+ Parameters:
1828
+ ----------
1829
+ result: Result from aggregation
1830
+ func: Dict of (column name, funcs)
1831
+ columns: New columns name for relabelling
1832
+ order: New order for relabelling
1833
+
1834
+ Examples
1835
+ --------
1836
+ >>> from pandas.core.apply import relabel_result
1837
+ >>> result = pd.DataFrame(
1838
+ ... {"A": [np.nan, 2, np.nan], "C": [6, np.nan, np.nan], "B": [np.nan, 4, 2.5]},
1839
+ ... index=["max", "mean", "min"]
1840
+ ... )
1841
+ >>> funcs = {"A": ["max"], "C": ["max"], "B": ["mean", "min"]}
1842
+ >>> columns = ("foo", "aab", "bar", "dat")
1843
+ >>> order = [0, 1, 2, 3]
1844
+ >>> result_in_dict = relabel_result(result, funcs, columns, order)
1845
+ >>> pd.DataFrame(result_in_dict, index=columns)
1846
+ A C B
1847
+ foo 2.0 NaN NaN
1848
+ aab NaN 6.0 NaN
1849
+ bar NaN NaN 4.0
1850
+ dat NaN NaN 2.5
1851
+ """
1852
+ from pandas.core.indexes.base import Index
1853
+
1854
+ reordered_indexes = [
1855
+ pair[0] for pair in sorted(zip(columns, order), key=lambda t: t[1])
1856
+ ]
1857
+ reordered_result_in_dict: dict[Hashable, Series] = {}
1858
+ idx = 0
1859
+
1860
+ reorder_mask = not isinstance(result, ABCSeries) and len(result.columns) > 1
1861
+ for col, fun in func.items():
1862
+ s = result[col].dropna()
1863
+
1864
+ # In the `_aggregate`, the callable names are obtained and used in `result`, and
1865
+ # these names are ordered alphabetically. e.g.
1866
+ # C2 C1
1867
+ # <lambda> 1 NaN
1868
+ # amax NaN 4.0
1869
+ # max NaN 4.0
1870
+ # sum 18.0 6.0
1871
+ # Therefore, the order of functions for each column could be shuffled
1872
+ # accordingly so need to get the callable name if it is not parsed names, and
1873
+ # reorder the aggregated result for each column.
1874
+ # e.g. if df.agg(c1=("C2", sum), c2=("C2", lambda x: min(x))), correct order is
1875
+ # [sum, <lambda>], but in `result`, it will be [<lambda>, sum], and we need to
1876
+ # reorder so that aggregated values map to their functions regarding the order.
1877
+
1878
+ # However there is only one column being used for aggregation, not need to
1879
+ # reorder since the index is not sorted, and keep as is in `funcs`, e.g.
1880
+ # A
1881
+ # min 1.0
1882
+ # mean 1.5
1883
+ # mean 1.5
1884
+ if reorder_mask:
1885
+ fun = [
1886
+ com.get_callable_name(f) if not isinstance(f, str) else f for f in fun
1887
+ ]
1888
+ col_idx_order = Index(s.index).get_indexer(fun)
1889
+ s = s.iloc[col_idx_order]
1890
+
1891
+ # assign the new user-provided "named aggregation" as index names, and reindex
1892
+ # it based on the whole user-provided names.
1893
+ s.index = reordered_indexes[idx : idx + len(fun)]
1894
+ reordered_result_in_dict[col] = s.reindex(columns, copy=False)
1895
+ idx = idx + len(fun)
1896
+ return reordered_result_in_dict
1897
+
1898
+
1899
+ def reconstruct_and_relabel_result(result, func, **kwargs) -> DataFrame | Series:
1900
+ from pandas import DataFrame
1901
+
1902
+ relabeling, func, columns, order = reconstruct_func(func, **kwargs)
1903
+
1904
+ if relabeling:
1905
+ # This is to keep the order to columns occurrence unchanged, and also
1906
+ # keep the order of new columns occurrence unchanged
1907
+
1908
+ # For the return values of reconstruct_func, if relabeling is
1909
+ # False, columns and order will be None.
1910
+ assert columns is not None
1911
+ assert order is not None
1912
+
1913
+ result_in_dict = relabel_result(result, func, columns, order)
1914
+ result = DataFrame(result_in_dict, index=columns)
1915
+
1916
+ return result
1917
+
1918
+
1919
+ # TODO: Can't use, because mypy doesn't like us setting __name__
1920
+ # error: "partial[Any]" has no attribute "__name__"
1921
+ # the type is:
1922
+ # typing.Sequence[Callable[..., ScalarResult]]
1923
+ # -> typing.Sequence[Callable[..., ScalarResult]]:
1924
+
1925
+
1926
+ def _managle_lambda_list(aggfuncs: Sequence[Any]) -> Sequence[Any]:
1927
+ """
1928
+ Possibly mangle a list of aggfuncs.
1929
+
1930
+ Parameters
1931
+ ----------
1932
+ aggfuncs : Sequence
1933
+
1934
+ Returns
1935
+ -------
1936
+ mangled: list-like
1937
+ A new AggSpec sequence, where lambdas have been converted
1938
+ to have unique names.
1939
+
1940
+ Notes
1941
+ -----
1942
+ If just one aggfunc is passed, the name will not be mangled.
1943
+ """
1944
+ if len(aggfuncs) <= 1:
1945
+ # don't mangle for .agg([lambda x: .])
1946
+ return aggfuncs
1947
+ i = 0
1948
+ mangled_aggfuncs = []
1949
+ for aggfunc in aggfuncs:
1950
+ if com.get_callable_name(aggfunc) == "<lambda>":
1951
+ aggfunc = partial(aggfunc)
1952
+ aggfunc.__name__ = f"<lambda_{i}>"
1953
+ i += 1
1954
+ mangled_aggfuncs.append(aggfunc)
1955
+
1956
+ return mangled_aggfuncs
1957
+
1958
+
1959
+ def maybe_mangle_lambdas(agg_spec: Any) -> Any:
1960
+ """
1961
+ Make new lambdas with unique names.
1962
+
1963
+ Parameters
1964
+ ----------
1965
+ agg_spec : Any
1966
+ An argument to GroupBy.agg.
1967
+ Non-dict-like `agg_spec` are pass through as is.
1968
+ For dict-like `agg_spec` a new spec is returned
1969
+ with name-mangled lambdas.
1970
+
1971
+ Returns
1972
+ -------
1973
+ mangled : Any
1974
+ Same type as the input.
1975
+
1976
+ Examples
1977
+ --------
1978
+ >>> maybe_mangle_lambdas('sum')
1979
+ 'sum'
1980
+ >>> maybe_mangle_lambdas([lambda: 1, lambda: 2]) # doctest: +SKIP
1981
+ [<function __main__.<lambda_0>,
1982
+ <function pandas...._make_lambda.<locals>.f(*args, **kwargs)>]
1983
+ """
1984
+ is_dict = is_dict_like(agg_spec)
1985
+ if not (is_dict or is_list_like(agg_spec)):
1986
+ return agg_spec
1987
+ mangled_aggspec = type(agg_spec)() # dict or OrderedDict
1988
+
1989
+ if is_dict:
1990
+ for key, aggfuncs in agg_spec.items():
1991
+ if is_list_like(aggfuncs) and not is_dict_like(aggfuncs):
1992
+ mangled_aggfuncs = _managle_lambda_list(aggfuncs)
1993
+ else:
1994
+ mangled_aggfuncs = aggfuncs
1995
+
1996
+ mangled_aggspec[key] = mangled_aggfuncs
1997
+ else:
1998
+ mangled_aggspec = _managle_lambda_list(agg_spec)
1999
+
2000
+ return mangled_aggspec
2001
+
2002
+
2003
+ def validate_func_kwargs(
2004
+ kwargs: dict,
2005
+ ) -> tuple[list[str], list[str | Callable[..., Any]]]:
2006
+ """
2007
+ Validates types of user-provided "named aggregation" kwargs.
2008
+ `TypeError` is raised if aggfunc is not `str` or callable.
2009
+
2010
+ Parameters
2011
+ ----------
2012
+ kwargs : dict
2013
+
2014
+ Returns
2015
+ -------
2016
+ columns : List[str]
2017
+ List of user-provided keys.
2018
+ func : List[Union[str, callable[...,Any]]]
2019
+ List of user-provided aggfuncs
2020
+
2021
+ Examples
2022
+ --------
2023
+ >>> validate_func_kwargs({'one': 'min', 'two': 'max'})
2024
+ (['one', 'two'], ['min', 'max'])
2025
+ """
2026
+ tuple_given_message = "func is expected but received {} in **kwargs."
2027
+ columns = list(kwargs)
2028
+ func = []
2029
+ for col_func in kwargs.values():
2030
+ if not (isinstance(col_func, str) or callable(col_func)):
2031
+ raise TypeError(tuple_given_message.format(type(col_func).__name__))
2032
+ func.append(col_func)
2033
+ if not columns:
2034
+ no_arg_message = "Must provide 'func' or named aggregation **kwargs."
2035
+ raise TypeError(no_arg_message)
2036
+ return columns, func
2037
+
2038
+
2039
+ def include_axis(op_name: Literal["agg", "apply"], colg: Series | DataFrame) -> bool:
2040
+ return isinstance(colg, ABCDataFrame) or (
2041
+ isinstance(colg, ABCSeries) and op_name == "agg"
2042
+ )
2043
+
2044
+
2045
+ def warn_alias_replacement(
2046
+ obj: AggObjType,
2047
+ func: Callable,
2048
+ alias: str,
2049
+ ) -> None:
2050
+ if alias.startswith("np."):
2051
+ full_alias = alias
2052
+ else:
2053
+ full_alias = f"{type(obj).__name__}.{alias}"
2054
+ alias = f'"{alias}"'
2055
+ warnings.warn(
2056
+ f"The provided callable {func} is currently using "
2057
+ f"{full_alias}. In a future version of pandas, "
2058
+ f"the provided callable will be used directly. To keep current "
2059
+ f"behavior pass the string {alias} instead.",
2060
+ category=FutureWarning,
2061
+ stacklevel=find_stack_level(),
2062
+ )
llmeval-env/lib/python3.10/site-packages/pandas/core/arraylike.py ADDED
@@ -0,0 +1,530 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Methods that can be shared by many array-like classes or subclasses:
3
+ Series
4
+ Index
5
+ ExtensionArray
6
+ """
7
+ from __future__ import annotations
8
+
9
+ import operator
10
+ from typing import Any
11
+
12
+ import numpy as np
13
+
14
+ from pandas._libs import lib
15
+ from pandas._libs.ops_dispatch import maybe_dispatch_ufunc_to_dunder_op
16
+
17
+ from pandas.core.dtypes.generic import ABCNDFrame
18
+
19
+ from pandas.core import roperator
20
+ from pandas.core.construction import extract_array
21
+ from pandas.core.ops.common import unpack_zerodim_and_defer
22
+
23
+ REDUCTION_ALIASES = {
24
+ "maximum": "max",
25
+ "minimum": "min",
26
+ "add": "sum",
27
+ "multiply": "prod",
28
+ }
29
+
30
+
31
+ class OpsMixin:
32
+ # -------------------------------------------------------------
33
+ # Comparisons
34
+
35
+ def _cmp_method(self, other, op):
36
+ return NotImplemented
37
+
38
+ @unpack_zerodim_and_defer("__eq__")
39
+ def __eq__(self, other):
40
+ return self._cmp_method(other, operator.eq)
41
+
42
+ @unpack_zerodim_and_defer("__ne__")
43
+ def __ne__(self, other):
44
+ return self._cmp_method(other, operator.ne)
45
+
46
+ @unpack_zerodim_and_defer("__lt__")
47
+ def __lt__(self, other):
48
+ return self._cmp_method(other, operator.lt)
49
+
50
+ @unpack_zerodim_and_defer("__le__")
51
+ def __le__(self, other):
52
+ return self._cmp_method(other, operator.le)
53
+
54
+ @unpack_zerodim_and_defer("__gt__")
55
+ def __gt__(self, other):
56
+ return self._cmp_method(other, operator.gt)
57
+
58
+ @unpack_zerodim_and_defer("__ge__")
59
+ def __ge__(self, other):
60
+ return self._cmp_method(other, operator.ge)
61
+
62
+ # -------------------------------------------------------------
63
+ # Logical Methods
64
+
65
+ def _logical_method(self, other, op):
66
+ return NotImplemented
67
+
68
+ @unpack_zerodim_and_defer("__and__")
69
+ def __and__(self, other):
70
+ return self._logical_method(other, operator.and_)
71
+
72
+ @unpack_zerodim_and_defer("__rand__")
73
+ def __rand__(self, other):
74
+ return self._logical_method(other, roperator.rand_)
75
+
76
+ @unpack_zerodim_and_defer("__or__")
77
+ def __or__(self, other):
78
+ return self._logical_method(other, operator.or_)
79
+
80
+ @unpack_zerodim_and_defer("__ror__")
81
+ def __ror__(self, other):
82
+ return self._logical_method(other, roperator.ror_)
83
+
84
+ @unpack_zerodim_and_defer("__xor__")
85
+ def __xor__(self, other):
86
+ return self._logical_method(other, operator.xor)
87
+
88
+ @unpack_zerodim_and_defer("__rxor__")
89
+ def __rxor__(self, other):
90
+ return self._logical_method(other, roperator.rxor)
91
+
92
+ # -------------------------------------------------------------
93
+ # Arithmetic Methods
94
+
95
+ def _arith_method(self, other, op):
96
+ return NotImplemented
97
+
98
+ @unpack_zerodim_and_defer("__add__")
99
+ def __add__(self, other):
100
+ """
101
+ Get Addition of DataFrame and other, column-wise.
102
+
103
+ Equivalent to ``DataFrame.add(other)``.
104
+
105
+ Parameters
106
+ ----------
107
+ other : scalar, sequence, Series, dict or DataFrame
108
+ Object to be added to the DataFrame.
109
+
110
+ Returns
111
+ -------
112
+ DataFrame
113
+ The result of adding ``other`` to DataFrame.
114
+
115
+ See Also
116
+ --------
117
+ DataFrame.add : Add a DataFrame and another object, with option for index-
118
+ or column-oriented addition.
119
+
120
+ Examples
121
+ --------
122
+ >>> df = pd.DataFrame({'height': [1.5, 2.6], 'weight': [500, 800]},
123
+ ... index=['elk', 'moose'])
124
+ >>> df
125
+ height weight
126
+ elk 1.5 500
127
+ moose 2.6 800
128
+
129
+ Adding a scalar affects all rows and columns.
130
+
131
+ >>> df[['height', 'weight']] + 1.5
132
+ height weight
133
+ elk 3.0 501.5
134
+ moose 4.1 801.5
135
+
136
+ Each element of a list is added to a column of the DataFrame, in order.
137
+
138
+ >>> df[['height', 'weight']] + [0.5, 1.5]
139
+ height weight
140
+ elk 2.0 501.5
141
+ moose 3.1 801.5
142
+
143
+ Keys of a dictionary are aligned to the DataFrame, based on column names;
144
+ each value in the dictionary is added to the corresponding column.
145
+
146
+ >>> df[['height', 'weight']] + {'height': 0.5, 'weight': 1.5}
147
+ height weight
148
+ elk 2.0 501.5
149
+ moose 3.1 801.5
150
+
151
+ When `other` is a :class:`Series`, the index of `other` is aligned with the
152
+ columns of the DataFrame.
153
+
154
+ >>> s1 = pd.Series([0.5, 1.5], index=['weight', 'height'])
155
+ >>> df[['height', 'weight']] + s1
156
+ height weight
157
+ elk 3.0 500.5
158
+ moose 4.1 800.5
159
+
160
+ Even when the index of `other` is the same as the index of the DataFrame,
161
+ the :class:`Series` will not be reoriented. If index-wise alignment is desired,
162
+ :meth:`DataFrame.add` should be used with `axis='index'`.
163
+
164
+ >>> s2 = pd.Series([0.5, 1.5], index=['elk', 'moose'])
165
+ >>> df[['height', 'weight']] + s2
166
+ elk height moose weight
167
+ elk NaN NaN NaN NaN
168
+ moose NaN NaN NaN NaN
169
+
170
+ >>> df[['height', 'weight']].add(s2, axis='index')
171
+ height weight
172
+ elk 2.0 500.5
173
+ moose 4.1 801.5
174
+
175
+ When `other` is a :class:`DataFrame`, both columns names and the
176
+ index are aligned.
177
+
178
+ >>> other = pd.DataFrame({'height': [0.2, 0.4, 0.6]},
179
+ ... index=['elk', 'moose', 'deer'])
180
+ >>> df[['height', 'weight']] + other
181
+ height weight
182
+ deer NaN NaN
183
+ elk 1.7 NaN
184
+ moose 3.0 NaN
185
+ """
186
+ return self._arith_method(other, operator.add)
187
+
188
+ @unpack_zerodim_and_defer("__radd__")
189
+ def __radd__(self, other):
190
+ return self._arith_method(other, roperator.radd)
191
+
192
+ @unpack_zerodim_and_defer("__sub__")
193
+ def __sub__(self, other):
194
+ return self._arith_method(other, operator.sub)
195
+
196
+ @unpack_zerodim_and_defer("__rsub__")
197
+ def __rsub__(self, other):
198
+ return self._arith_method(other, roperator.rsub)
199
+
200
+ @unpack_zerodim_and_defer("__mul__")
201
+ def __mul__(self, other):
202
+ return self._arith_method(other, operator.mul)
203
+
204
+ @unpack_zerodim_and_defer("__rmul__")
205
+ def __rmul__(self, other):
206
+ return self._arith_method(other, roperator.rmul)
207
+
208
+ @unpack_zerodim_and_defer("__truediv__")
209
+ def __truediv__(self, other):
210
+ return self._arith_method(other, operator.truediv)
211
+
212
+ @unpack_zerodim_and_defer("__rtruediv__")
213
+ def __rtruediv__(self, other):
214
+ return self._arith_method(other, roperator.rtruediv)
215
+
216
+ @unpack_zerodim_and_defer("__floordiv__")
217
+ def __floordiv__(self, other):
218
+ return self._arith_method(other, operator.floordiv)
219
+
220
+ @unpack_zerodim_and_defer("__rfloordiv")
221
+ def __rfloordiv__(self, other):
222
+ return self._arith_method(other, roperator.rfloordiv)
223
+
224
+ @unpack_zerodim_and_defer("__mod__")
225
+ def __mod__(self, other):
226
+ return self._arith_method(other, operator.mod)
227
+
228
+ @unpack_zerodim_and_defer("__rmod__")
229
+ def __rmod__(self, other):
230
+ return self._arith_method(other, roperator.rmod)
231
+
232
+ @unpack_zerodim_and_defer("__divmod__")
233
+ def __divmod__(self, other):
234
+ return self._arith_method(other, divmod)
235
+
236
+ @unpack_zerodim_and_defer("__rdivmod__")
237
+ def __rdivmod__(self, other):
238
+ return self._arith_method(other, roperator.rdivmod)
239
+
240
+ @unpack_zerodim_and_defer("__pow__")
241
+ def __pow__(self, other):
242
+ return self._arith_method(other, operator.pow)
243
+
244
+ @unpack_zerodim_and_defer("__rpow__")
245
+ def __rpow__(self, other):
246
+ return self._arith_method(other, roperator.rpow)
247
+
248
+
249
+ # -----------------------------------------------------------------------------
250
+ # Helpers to implement __array_ufunc__
251
+
252
+
253
+ def array_ufunc(self, ufunc: np.ufunc, method: str, *inputs: Any, **kwargs: Any):
254
+ """
255
+ Compatibility with numpy ufuncs.
256
+
257
+ See also
258
+ --------
259
+ numpy.org/doc/stable/reference/arrays.classes.html#numpy.class.__array_ufunc__
260
+ """
261
+ from pandas.core.frame import (
262
+ DataFrame,
263
+ Series,
264
+ )
265
+ from pandas.core.generic import NDFrame
266
+ from pandas.core.internals import (
267
+ ArrayManager,
268
+ BlockManager,
269
+ )
270
+
271
+ cls = type(self)
272
+
273
+ kwargs = _standardize_out_kwarg(**kwargs)
274
+
275
+ # for binary ops, use our custom dunder methods
276
+ result = maybe_dispatch_ufunc_to_dunder_op(self, ufunc, method, *inputs, **kwargs)
277
+ if result is not NotImplemented:
278
+ return result
279
+
280
+ # Determine if we should defer.
281
+ no_defer = (
282
+ np.ndarray.__array_ufunc__,
283
+ cls.__array_ufunc__,
284
+ )
285
+
286
+ for item in inputs:
287
+ higher_priority = (
288
+ hasattr(item, "__array_priority__")
289
+ and item.__array_priority__ > self.__array_priority__
290
+ )
291
+ has_array_ufunc = (
292
+ hasattr(item, "__array_ufunc__")
293
+ and type(item).__array_ufunc__ not in no_defer
294
+ and not isinstance(item, self._HANDLED_TYPES)
295
+ )
296
+ if higher_priority or has_array_ufunc:
297
+ return NotImplemented
298
+
299
+ # align all the inputs.
300
+ types = tuple(type(x) for x in inputs)
301
+ alignable = [x for x, t in zip(inputs, types) if issubclass(t, NDFrame)]
302
+
303
+ if len(alignable) > 1:
304
+ # This triggers alignment.
305
+ # At the moment, there aren't any ufuncs with more than two inputs
306
+ # so this ends up just being x1.index | x2.index, but we write
307
+ # it to handle *args.
308
+ set_types = set(types)
309
+ if len(set_types) > 1 and {DataFrame, Series}.issubset(set_types):
310
+ # We currently don't handle ufunc(DataFrame, Series)
311
+ # well. Previously this raised an internal ValueError. We might
312
+ # support it someday, so raise a NotImplementedError.
313
+ raise NotImplementedError(
314
+ f"Cannot apply ufunc {ufunc} to mixed DataFrame and Series inputs."
315
+ )
316
+ axes = self.axes
317
+ for obj in alignable[1:]:
318
+ # this relies on the fact that we aren't handling mixed
319
+ # series / frame ufuncs.
320
+ for i, (ax1, ax2) in enumerate(zip(axes, obj.axes)):
321
+ axes[i] = ax1.union(ax2)
322
+
323
+ reconstruct_axes = dict(zip(self._AXIS_ORDERS, axes))
324
+ inputs = tuple(
325
+ x.reindex(**reconstruct_axes) if issubclass(t, NDFrame) else x
326
+ for x, t in zip(inputs, types)
327
+ )
328
+ else:
329
+ reconstruct_axes = dict(zip(self._AXIS_ORDERS, self.axes))
330
+
331
+ if self.ndim == 1:
332
+ names = [getattr(x, "name") for x in inputs if hasattr(x, "name")]
333
+ name = names[0] if len(set(names)) == 1 else None
334
+ reconstruct_kwargs = {"name": name}
335
+ else:
336
+ reconstruct_kwargs = {}
337
+
338
+ def reconstruct(result):
339
+ if ufunc.nout > 1:
340
+ # np.modf, np.frexp, np.divmod
341
+ return tuple(_reconstruct(x) for x in result)
342
+
343
+ return _reconstruct(result)
344
+
345
+ def _reconstruct(result):
346
+ if lib.is_scalar(result):
347
+ return result
348
+
349
+ if result.ndim != self.ndim:
350
+ if method == "outer":
351
+ raise NotImplementedError
352
+ return result
353
+ if isinstance(result, (BlockManager, ArrayManager)):
354
+ # we went through BlockManager.apply e.g. np.sqrt
355
+ result = self._constructor_from_mgr(result, axes=result.axes)
356
+ else:
357
+ # we converted an array, lost our axes
358
+ result = self._constructor(
359
+ result, **reconstruct_axes, **reconstruct_kwargs, copy=False
360
+ )
361
+ # TODO: When we support multiple values in __finalize__, this
362
+ # should pass alignable to `__finalize__` instead of self.
363
+ # Then `np.add(a, b)` would consider attrs from both a and b
364
+ # when a and b are NDFrames.
365
+ if len(alignable) == 1:
366
+ result = result.__finalize__(self)
367
+ return result
368
+
369
+ if "out" in kwargs:
370
+ # e.g. test_multiindex_get_loc
371
+ result = dispatch_ufunc_with_out(self, ufunc, method, *inputs, **kwargs)
372
+ return reconstruct(result)
373
+
374
+ if method == "reduce":
375
+ # e.g. test.series.test_ufunc.test_reduce
376
+ result = dispatch_reduction_ufunc(self, ufunc, method, *inputs, **kwargs)
377
+ if result is not NotImplemented:
378
+ return result
379
+
380
+ # We still get here with kwargs `axis` for e.g. np.maximum.accumulate
381
+ # and `dtype` and `keepdims` for np.ptp
382
+
383
+ if self.ndim > 1 and (len(inputs) > 1 or ufunc.nout > 1):
384
+ # Just give up on preserving types in the complex case.
385
+ # In theory we could preserve them for them.
386
+ # * nout>1 is doable if BlockManager.apply took nout and
387
+ # returned a Tuple[BlockManager].
388
+ # * len(inputs) > 1 is doable when we know that we have
389
+ # aligned blocks / dtypes.
390
+
391
+ # e.g. my_ufunc, modf, logaddexp, heaviside, subtract, add
392
+ inputs = tuple(np.asarray(x) for x in inputs)
393
+ # Note: we can't use default_array_ufunc here bc reindexing means
394
+ # that `self` may not be among `inputs`
395
+ result = getattr(ufunc, method)(*inputs, **kwargs)
396
+ elif self.ndim == 1:
397
+ # ufunc(series, ...)
398
+ inputs = tuple(extract_array(x, extract_numpy=True) for x in inputs)
399
+ result = getattr(ufunc, method)(*inputs, **kwargs)
400
+ else:
401
+ # ufunc(dataframe)
402
+ if method == "__call__" and not kwargs:
403
+ # for np.<ufunc>(..) calls
404
+ # kwargs cannot necessarily be handled block-by-block, so only
405
+ # take this path if there are no kwargs
406
+ mgr = inputs[0]._mgr
407
+ result = mgr.apply(getattr(ufunc, method))
408
+ else:
409
+ # otherwise specific ufunc methods (eg np.<ufunc>.accumulate(..))
410
+ # Those can have an axis keyword and thus can't be called block-by-block
411
+ result = default_array_ufunc(inputs[0], ufunc, method, *inputs, **kwargs)
412
+ # e.g. np.negative (only one reached), with "where" and "out" in kwargs
413
+
414
+ result = reconstruct(result)
415
+ return result
416
+
417
+
418
+ def _standardize_out_kwarg(**kwargs) -> dict:
419
+ """
420
+ If kwargs contain "out1" and "out2", replace that with a tuple "out"
421
+
422
+ np.divmod, np.modf, np.frexp can have either `out=(out1, out2)` or
423
+ `out1=out1, out2=out2)`
424
+ """
425
+ if "out" not in kwargs and "out1" in kwargs and "out2" in kwargs:
426
+ out1 = kwargs.pop("out1")
427
+ out2 = kwargs.pop("out2")
428
+ out = (out1, out2)
429
+ kwargs["out"] = out
430
+ return kwargs
431
+
432
+
433
+ def dispatch_ufunc_with_out(self, ufunc: np.ufunc, method: str, *inputs, **kwargs):
434
+ """
435
+ If we have an `out` keyword, then call the ufunc without `out` and then
436
+ set the result into the given `out`.
437
+ """
438
+
439
+ # Note: we assume _standardize_out_kwarg has already been called.
440
+ out = kwargs.pop("out")
441
+ where = kwargs.pop("where", None)
442
+
443
+ result = getattr(ufunc, method)(*inputs, **kwargs)
444
+
445
+ if result is NotImplemented:
446
+ return NotImplemented
447
+
448
+ if isinstance(result, tuple):
449
+ # i.e. np.divmod, np.modf, np.frexp
450
+ if not isinstance(out, tuple) or len(out) != len(result):
451
+ raise NotImplementedError
452
+
453
+ for arr, res in zip(out, result):
454
+ _assign_where(arr, res, where)
455
+
456
+ return out
457
+
458
+ if isinstance(out, tuple):
459
+ if len(out) == 1:
460
+ out = out[0]
461
+ else:
462
+ raise NotImplementedError
463
+
464
+ _assign_where(out, result, where)
465
+ return out
466
+
467
+
468
+ def _assign_where(out, result, where) -> None:
469
+ """
470
+ Set a ufunc result into 'out', masking with a 'where' argument if necessary.
471
+ """
472
+ if where is None:
473
+ # no 'where' arg passed to ufunc
474
+ out[:] = result
475
+ else:
476
+ np.putmask(out, where, result)
477
+
478
+
479
+ def default_array_ufunc(self, ufunc: np.ufunc, method: str, *inputs, **kwargs):
480
+ """
481
+ Fallback to the behavior we would get if we did not define __array_ufunc__.
482
+
483
+ Notes
484
+ -----
485
+ We are assuming that `self` is among `inputs`.
486
+ """
487
+ if not any(x is self for x in inputs):
488
+ raise NotImplementedError
489
+
490
+ new_inputs = [x if x is not self else np.asarray(x) for x in inputs]
491
+
492
+ return getattr(ufunc, method)(*new_inputs, **kwargs)
493
+
494
+
495
+ def dispatch_reduction_ufunc(self, ufunc: np.ufunc, method: str, *inputs, **kwargs):
496
+ """
497
+ Dispatch ufunc reductions to self's reduction methods.
498
+ """
499
+ assert method == "reduce"
500
+
501
+ if len(inputs) != 1 or inputs[0] is not self:
502
+ return NotImplemented
503
+
504
+ if ufunc.__name__ not in REDUCTION_ALIASES:
505
+ return NotImplemented
506
+
507
+ method_name = REDUCTION_ALIASES[ufunc.__name__]
508
+
509
+ # NB: we are assuming that min/max represent minimum/maximum methods,
510
+ # which would not be accurate for e.g. Timestamp.min
511
+ if not hasattr(self, method_name):
512
+ return NotImplemented
513
+
514
+ if self.ndim > 1:
515
+ if isinstance(self, ABCNDFrame):
516
+ # TODO: test cases where this doesn't hold, i.e. 2D DTA/TDA
517
+ kwargs["numeric_only"] = False
518
+
519
+ if "axis" not in kwargs:
520
+ # For DataFrame reductions we don't want the default axis=0
521
+ # Note: np.min is not a ufunc, but uses array_function_dispatch,
522
+ # so calls DataFrame.min (without ever getting here) with the np.min
523
+ # default of axis=None, which DataFrame.min catches and changes to axis=0.
524
+ # np.minimum.reduce(df) gets here bc axis is not in kwargs,
525
+ # so we set axis=0 to match the behaviorof np.minimum.reduce(df.values)
526
+ kwargs["axis"] = 0
527
+
528
+ # By default, numpy's reductions do not skip NaNs, so we have to
529
+ # pass skipna=False
530
+ return getattr(self, method_name)(skipna=False, **kwargs)
llmeval-env/lib/python3.10/site-packages/pandas/core/base.py ADDED
@@ -0,0 +1,1391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Base and utility classes for pandas objects.
3
+ """
4
+
5
+ from __future__ import annotations
6
+
7
+ import textwrap
8
+ from typing import (
9
+ TYPE_CHECKING,
10
+ Any,
11
+ Generic,
12
+ Literal,
13
+ cast,
14
+ final,
15
+ overload,
16
+ )
17
+ import warnings
18
+
19
+ import numpy as np
20
+
21
+ from pandas._config import using_copy_on_write
22
+
23
+ from pandas._libs import lib
24
+ from pandas._typing import (
25
+ AxisInt,
26
+ DtypeObj,
27
+ IndexLabel,
28
+ NDFrameT,
29
+ Self,
30
+ Shape,
31
+ npt,
32
+ )
33
+ from pandas.compat import PYPY
34
+ from pandas.compat.numpy import function as nv
35
+ from pandas.errors import AbstractMethodError
36
+ from pandas.util._decorators import (
37
+ cache_readonly,
38
+ doc,
39
+ )
40
+ from pandas.util._exceptions import find_stack_level
41
+
42
+ from pandas.core.dtypes.cast import can_hold_element
43
+ from pandas.core.dtypes.common import (
44
+ is_object_dtype,
45
+ is_scalar,
46
+ )
47
+ from pandas.core.dtypes.dtypes import ExtensionDtype
48
+ from pandas.core.dtypes.generic import (
49
+ ABCDataFrame,
50
+ ABCIndex,
51
+ ABCSeries,
52
+ )
53
+ from pandas.core.dtypes.missing import (
54
+ isna,
55
+ remove_na_arraylike,
56
+ )
57
+
58
+ from pandas.core import (
59
+ algorithms,
60
+ nanops,
61
+ ops,
62
+ )
63
+ from pandas.core.accessor import DirNamesMixin
64
+ from pandas.core.arraylike import OpsMixin
65
+ from pandas.core.arrays import ExtensionArray
66
+ from pandas.core.construction import (
67
+ ensure_wrapped_if_datetimelike,
68
+ extract_array,
69
+ )
70
+
71
+ if TYPE_CHECKING:
72
+ from collections.abc import (
73
+ Hashable,
74
+ Iterator,
75
+ )
76
+
77
+ from pandas._typing import (
78
+ DropKeep,
79
+ NumpySorter,
80
+ NumpyValueArrayLike,
81
+ ScalarLike_co,
82
+ )
83
+
84
+ from pandas import (
85
+ DataFrame,
86
+ Index,
87
+ Series,
88
+ )
89
+
90
+
91
+ _shared_docs: dict[str, str] = {}
92
+ _indexops_doc_kwargs = {
93
+ "klass": "IndexOpsMixin",
94
+ "inplace": "",
95
+ "unique": "IndexOpsMixin",
96
+ "duplicated": "IndexOpsMixin",
97
+ }
98
+
99
+
100
+ class PandasObject(DirNamesMixin):
101
+ """
102
+ Baseclass for various pandas objects.
103
+ """
104
+
105
+ # results from calls to methods decorated with cache_readonly get added to _cache
106
+ _cache: dict[str, Any]
107
+
108
+ @property
109
+ def _constructor(self):
110
+ """
111
+ Class constructor (for this class it's just `__class__`).
112
+ """
113
+ return type(self)
114
+
115
+ def __repr__(self) -> str:
116
+ """
117
+ Return a string representation for a particular object.
118
+ """
119
+ # Should be overwritten by base classes
120
+ return object.__repr__(self)
121
+
122
+ def _reset_cache(self, key: str | None = None) -> None:
123
+ """
124
+ Reset cached properties. If ``key`` is passed, only clears that key.
125
+ """
126
+ if not hasattr(self, "_cache"):
127
+ return
128
+ if key is None:
129
+ self._cache.clear()
130
+ else:
131
+ self._cache.pop(key, None)
132
+
133
+ def __sizeof__(self) -> int:
134
+ """
135
+ Generates the total memory usage for an object that returns
136
+ either a value or Series of values
137
+ """
138
+ memory_usage = getattr(self, "memory_usage", None)
139
+ if memory_usage:
140
+ mem = memory_usage(deep=True) # pylint: disable=not-callable
141
+ return int(mem if is_scalar(mem) else mem.sum())
142
+
143
+ # no memory_usage attribute, so fall back to object's 'sizeof'
144
+ return super().__sizeof__()
145
+
146
+
147
+ class NoNewAttributesMixin:
148
+ """
149
+ Mixin which prevents adding new attributes.
150
+
151
+ Prevents additional attributes via xxx.attribute = "something" after a
152
+ call to `self.__freeze()`. Mainly used to prevent the user from using
153
+ wrong attributes on an accessor (`Series.cat/.str/.dt`).
154
+
155
+ If you really want to add a new attribute at a later time, you need to use
156
+ `object.__setattr__(self, key, value)`.
157
+ """
158
+
159
+ def _freeze(self) -> None:
160
+ """
161
+ Prevents setting additional attributes.
162
+ """
163
+ object.__setattr__(self, "__frozen", True)
164
+
165
+ # prevent adding any attribute via s.xxx.new_attribute = ...
166
+ def __setattr__(self, key: str, value) -> None:
167
+ # _cache is used by a decorator
168
+ # We need to check both 1.) cls.__dict__ and 2.) getattr(self, key)
169
+ # because
170
+ # 1.) getattr is false for attributes that raise errors
171
+ # 2.) cls.__dict__ doesn't traverse into base classes
172
+ if getattr(self, "__frozen", False) and not (
173
+ key == "_cache"
174
+ or key in type(self).__dict__
175
+ or getattr(self, key, None) is not None
176
+ ):
177
+ raise AttributeError(f"You cannot add any new attribute '{key}'")
178
+ object.__setattr__(self, key, value)
179
+
180
+
181
+ class SelectionMixin(Generic[NDFrameT]):
182
+ """
183
+ mixin implementing the selection & aggregation interface on a group-like
184
+ object sub-classes need to define: obj, exclusions
185
+ """
186
+
187
+ obj: NDFrameT
188
+ _selection: IndexLabel | None = None
189
+ exclusions: frozenset[Hashable]
190
+ _internal_names = ["_cache", "__setstate__"]
191
+ _internal_names_set = set(_internal_names)
192
+
193
+ @final
194
+ @property
195
+ def _selection_list(self):
196
+ if not isinstance(
197
+ self._selection, (list, tuple, ABCSeries, ABCIndex, np.ndarray)
198
+ ):
199
+ return [self._selection]
200
+ return self._selection
201
+
202
+ @cache_readonly
203
+ def _selected_obj(self):
204
+ if self._selection is None or isinstance(self.obj, ABCSeries):
205
+ return self.obj
206
+ else:
207
+ return self.obj[self._selection]
208
+
209
+ @final
210
+ @cache_readonly
211
+ def ndim(self) -> int:
212
+ return self._selected_obj.ndim
213
+
214
+ @final
215
+ @cache_readonly
216
+ def _obj_with_exclusions(self):
217
+ if isinstance(self.obj, ABCSeries):
218
+ return self.obj
219
+
220
+ if self._selection is not None:
221
+ return self.obj._getitem_nocopy(self._selection_list)
222
+
223
+ if len(self.exclusions) > 0:
224
+ # equivalent to `self.obj.drop(self.exclusions, axis=1)
225
+ # but this avoids consolidating and making a copy
226
+ # TODO: following GH#45287 can we now use .drop directly without
227
+ # making a copy?
228
+ return self.obj._drop_axis(self.exclusions, axis=1, only_slice=True)
229
+ else:
230
+ return self.obj
231
+
232
+ def __getitem__(self, key):
233
+ if self._selection is not None:
234
+ raise IndexError(f"Column(s) {self._selection} already selected")
235
+
236
+ if isinstance(key, (list, tuple, ABCSeries, ABCIndex, np.ndarray)):
237
+ if len(self.obj.columns.intersection(key)) != len(set(key)):
238
+ bad_keys = list(set(key).difference(self.obj.columns))
239
+ raise KeyError(f"Columns not found: {str(bad_keys)[1:-1]}")
240
+ return self._gotitem(list(key), ndim=2)
241
+
242
+ else:
243
+ if key not in self.obj:
244
+ raise KeyError(f"Column not found: {key}")
245
+ ndim = self.obj[key].ndim
246
+ return self._gotitem(key, ndim=ndim)
247
+
248
+ def _gotitem(self, key, ndim: int, subset=None):
249
+ """
250
+ sub-classes to define
251
+ return a sliced object
252
+
253
+ Parameters
254
+ ----------
255
+ key : str / list of selections
256
+ ndim : {1, 2}
257
+ requested ndim of result
258
+ subset : object, default None
259
+ subset to act on
260
+ """
261
+ raise AbstractMethodError(self)
262
+
263
+ @final
264
+ def _infer_selection(self, key, subset: Series | DataFrame):
265
+ """
266
+ Infer the `selection` to pass to our constructor in _gotitem.
267
+ """
268
+ # Shared by Rolling and Resample
269
+ selection = None
270
+ if subset.ndim == 2 and (
271
+ (lib.is_scalar(key) and key in subset) or lib.is_list_like(key)
272
+ ):
273
+ selection = key
274
+ elif subset.ndim == 1 and lib.is_scalar(key) and key == subset.name:
275
+ selection = key
276
+ return selection
277
+
278
+ def aggregate(self, func, *args, **kwargs):
279
+ raise AbstractMethodError(self)
280
+
281
+ agg = aggregate
282
+
283
+
284
+ class IndexOpsMixin(OpsMixin):
285
+ """
286
+ Common ops mixin to support a unified interface / docs for Series / Index
287
+ """
288
+
289
+ # ndarray compatibility
290
+ __array_priority__ = 1000
291
+ _hidden_attrs: frozenset[str] = frozenset(
292
+ ["tolist"] # tolist is not deprecated, just suppressed in the __dir__
293
+ )
294
+
295
+ @property
296
+ def dtype(self) -> DtypeObj:
297
+ # must be defined here as a property for mypy
298
+ raise AbstractMethodError(self)
299
+
300
+ @property
301
+ def _values(self) -> ExtensionArray | np.ndarray:
302
+ # must be defined here as a property for mypy
303
+ raise AbstractMethodError(self)
304
+
305
+ @final
306
+ def transpose(self, *args, **kwargs) -> Self:
307
+ """
308
+ Return the transpose, which is by definition self.
309
+
310
+ Returns
311
+ -------
312
+ %(klass)s
313
+ """
314
+ nv.validate_transpose(args, kwargs)
315
+ return self
316
+
317
+ T = property(
318
+ transpose,
319
+ doc="""
320
+ Return the transpose, which is by definition self.
321
+
322
+ Examples
323
+ --------
324
+ For Series:
325
+
326
+ >>> s = pd.Series(['Ant', 'Bear', 'Cow'])
327
+ >>> s
328
+ 0 Ant
329
+ 1 Bear
330
+ 2 Cow
331
+ dtype: object
332
+ >>> s.T
333
+ 0 Ant
334
+ 1 Bear
335
+ 2 Cow
336
+ dtype: object
337
+
338
+ For Index:
339
+
340
+ >>> idx = pd.Index([1, 2, 3])
341
+ >>> idx.T
342
+ Index([1, 2, 3], dtype='int64')
343
+ """,
344
+ )
345
+
346
+ @property
347
+ def shape(self) -> Shape:
348
+ """
349
+ Return a tuple of the shape of the underlying data.
350
+
351
+ Examples
352
+ --------
353
+ >>> s = pd.Series([1, 2, 3])
354
+ >>> s.shape
355
+ (3,)
356
+ """
357
+ return self._values.shape
358
+
359
+ def __len__(self) -> int:
360
+ # We need this defined here for mypy
361
+ raise AbstractMethodError(self)
362
+
363
+ @property
364
+ def ndim(self) -> Literal[1]:
365
+ """
366
+ Number of dimensions of the underlying data, by definition 1.
367
+
368
+ Examples
369
+ --------
370
+ >>> s = pd.Series(['Ant', 'Bear', 'Cow'])
371
+ >>> s
372
+ 0 Ant
373
+ 1 Bear
374
+ 2 Cow
375
+ dtype: object
376
+ >>> s.ndim
377
+ 1
378
+
379
+ For Index:
380
+
381
+ >>> idx = pd.Index([1, 2, 3])
382
+ >>> idx
383
+ Index([1, 2, 3], dtype='int64')
384
+ >>> idx.ndim
385
+ 1
386
+ """
387
+ return 1
388
+
389
+ @final
390
+ def item(self):
391
+ """
392
+ Return the first element of the underlying data as a Python scalar.
393
+
394
+ Returns
395
+ -------
396
+ scalar
397
+ The first element of Series or Index.
398
+
399
+ Raises
400
+ ------
401
+ ValueError
402
+ If the data is not length = 1.
403
+
404
+ Examples
405
+ --------
406
+ >>> s = pd.Series([1])
407
+ >>> s.item()
408
+ 1
409
+
410
+ For an index:
411
+
412
+ >>> s = pd.Series([1], index=['a'])
413
+ >>> s.index.item()
414
+ 'a'
415
+ """
416
+ if len(self) == 1:
417
+ return next(iter(self))
418
+ raise ValueError("can only convert an array of size 1 to a Python scalar")
419
+
420
+ @property
421
+ def nbytes(self) -> int:
422
+ """
423
+ Return the number of bytes in the underlying data.
424
+
425
+ Examples
426
+ --------
427
+ For Series:
428
+
429
+ >>> s = pd.Series(['Ant', 'Bear', 'Cow'])
430
+ >>> s
431
+ 0 Ant
432
+ 1 Bear
433
+ 2 Cow
434
+ dtype: object
435
+ >>> s.nbytes
436
+ 24
437
+
438
+ For Index:
439
+
440
+ >>> idx = pd.Index([1, 2, 3])
441
+ >>> idx
442
+ Index([1, 2, 3], dtype='int64')
443
+ >>> idx.nbytes
444
+ 24
445
+ """
446
+ return self._values.nbytes
447
+
448
+ @property
449
+ def size(self) -> int:
450
+ """
451
+ Return the number of elements in the underlying data.
452
+
453
+ Examples
454
+ --------
455
+ For Series:
456
+
457
+ >>> s = pd.Series(['Ant', 'Bear', 'Cow'])
458
+ >>> s
459
+ 0 Ant
460
+ 1 Bear
461
+ 2 Cow
462
+ dtype: object
463
+ >>> s.size
464
+ 3
465
+
466
+ For Index:
467
+
468
+ >>> idx = pd.Index([1, 2, 3])
469
+ >>> idx
470
+ Index([1, 2, 3], dtype='int64')
471
+ >>> idx.size
472
+ 3
473
+ """
474
+ return len(self._values)
475
+
476
+ @property
477
+ def array(self) -> ExtensionArray:
478
+ """
479
+ The ExtensionArray of the data backing this Series or Index.
480
+
481
+ Returns
482
+ -------
483
+ ExtensionArray
484
+ An ExtensionArray of the values stored within. For extension
485
+ types, this is the actual array. For NumPy native types, this
486
+ is a thin (no copy) wrapper around :class:`numpy.ndarray`.
487
+
488
+ ``.array`` differs from ``.values``, which may require converting
489
+ the data to a different form.
490
+
491
+ See Also
492
+ --------
493
+ Index.to_numpy : Similar method that always returns a NumPy array.
494
+ Series.to_numpy : Similar method that always returns a NumPy array.
495
+
496
+ Notes
497
+ -----
498
+ This table lays out the different array types for each extension
499
+ dtype within pandas.
500
+
501
+ ================== =============================
502
+ dtype array type
503
+ ================== =============================
504
+ category Categorical
505
+ period PeriodArray
506
+ interval IntervalArray
507
+ IntegerNA IntegerArray
508
+ string StringArray
509
+ boolean BooleanArray
510
+ datetime64[ns, tz] DatetimeArray
511
+ ================== =============================
512
+
513
+ For any 3rd-party extension types, the array type will be an
514
+ ExtensionArray.
515
+
516
+ For all remaining dtypes ``.array`` will be a
517
+ :class:`arrays.NumpyExtensionArray` wrapping the actual ndarray
518
+ stored within. If you absolutely need a NumPy array (possibly with
519
+ copying / coercing data), then use :meth:`Series.to_numpy` instead.
520
+
521
+ Examples
522
+ --------
523
+ For regular NumPy types like int, and float, a NumpyExtensionArray
524
+ is returned.
525
+
526
+ >>> pd.Series([1, 2, 3]).array
527
+ <NumpyExtensionArray>
528
+ [1, 2, 3]
529
+ Length: 3, dtype: int64
530
+
531
+ For extension types, like Categorical, the actual ExtensionArray
532
+ is returned
533
+
534
+ >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
535
+ >>> ser.array
536
+ ['a', 'b', 'a']
537
+ Categories (2, object): ['a', 'b']
538
+ """
539
+ raise AbstractMethodError(self)
540
+
541
+ @final
542
+ def to_numpy(
543
+ self,
544
+ dtype: npt.DTypeLike | None = None,
545
+ copy: bool = False,
546
+ na_value: object = lib.no_default,
547
+ **kwargs,
548
+ ) -> np.ndarray:
549
+ """
550
+ A NumPy ndarray representing the values in this Series or Index.
551
+
552
+ Parameters
553
+ ----------
554
+ dtype : str or numpy.dtype, optional
555
+ The dtype to pass to :meth:`numpy.asarray`.
556
+ copy : bool, default False
557
+ Whether to ensure that the returned value is not a view on
558
+ another array. Note that ``copy=False`` does not *ensure* that
559
+ ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that
560
+ a copy is made, even if not strictly necessary.
561
+ na_value : Any, optional
562
+ The value to use for missing values. The default value depends
563
+ on `dtype` and the type of the array.
564
+ **kwargs
565
+ Additional keywords passed through to the ``to_numpy`` method
566
+ of the underlying array (for extension arrays).
567
+
568
+ Returns
569
+ -------
570
+ numpy.ndarray
571
+
572
+ See Also
573
+ --------
574
+ Series.array : Get the actual data stored within.
575
+ Index.array : Get the actual data stored within.
576
+ DataFrame.to_numpy : Similar method for DataFrame.
577
+
578
+ Notes
579
+ -----
580
+ The returned array will be the same up to equality (values equal
581
+ in `self` will be equal in the returned array; likewise for values
582
+ that are not equal). When `self` contains an ExtensionArray, the
583
+ dtype may be different. For example, for a category-dtype Series,
584
+ ``to_numpy()`` will return a NumPy array and the categorical dtype
585
+ will be lost.
586
+
587
+ For NumPy dtypes, this will be a reference to the actual data stored
588
+ in this Series or Index (assuming ``copy=False``). Modifying the result
589
+ in place will modify the data stored in the Series or Index (not that
590
+ we recommend doing that).
591
+
592
+ For extension types, ``to_numpy()`` *may* require copying data and
593
+ coercing the result to a NumPy type (possibly object), which may be
594
+ expensive. When you need a no-copy reference to the underlying data,
595
+ :attr:`Series.array` should be used instead.
596
+
597
+ This table lays out the different dtypes and default return types of
598
+ ``to_numpy()`` for various dtypes within pandas.
599
+
600
+ ================== ================================
601
+ dtype array type
602
+ ================== ================================
603
+ category[T] ndarray[T] (same dtype as input)
604
+ period ndarray[object] (Periods)
605
+ interval ndarray[object] (Intervals)
606
+ IntegerNA ndarray[object]
607
+ datetime64[ns] datetime64[ns]
608
+ datetime64[ns, tz] ndarray[object] (Timestamps)
609
+ ================== ================================
610
+
611
+ Examples
612
+ --------
613
+ >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
614
+ >>> ser.to_numpy()
615
+ array(['a', 'b', 'a'], dtype=object)
616
+
617
+ Specify the `dtype` to control how datetime-aware data is represented.
618
+ Use ``dtype=object`` to return an ndarray of pandas :class:`Timestamp`
619
+ objects, each with the correct ``tz``.
620
+
621
+ >>> ser = pd.Series(pd.date_range('2000', periods=2, tz="CET"))
622
+ >>> ser.to_numpy(dtype=object)
623
+ array([Timestamp('2000-01-01 00:00:00+0100', tz='CET'),
624
+ Timestamp('2000-01-02 00:00:00+0100', tz='CET')],
625
+ dtype=object)
626
+
627
+ Or ``dtype='datetime64[ns]'`` to return an ndarray of native
628
+ datetime64 values. The values are converted to UTC and the timezone
629
+ info is dropped.
630
+
631
+ >>> ser.to_numpy(dtype="datetime64[ns]")
632
+ ... # doctest: +ELLIPSIS
633
+ array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00...'],
634
+ dtype='datetime64[ns]')
635
+ """
636
+ if isinstance(self.dtype, ExtensionDtype):
637
+ return self.array.to_numpy(dtype, copy=copy, na_value=na_value, **kwargs)
638
+ elif kwargs:
639
+ bad_keys = next(iter(kwargs.keys()))
640
+ raise TypeError(
641
+ f"to_numpy() got an unexpected keyword argument '{bad_keys}'"
642
+ )
643
+
644
+ fillna = (
645
+ na_value is not lib.no_default
646
+ # no need to fillna with np.nan if we already have a float dtype
647
+ and not (na_value is np.nan and np.issubdtype(self.dtype, np.floating))
648
+ )
649
+
650
+ values = self._values
651
+ if fillna:
652
+ if not can_hold_element(values, na_value):
653
+ # if we can't hold the na_value asarray either makes a copy or we
654
+ # error before modifying values. The asarray later on thus won't make
655
+ # another copy
656
+ values = np.asarray(values, dtype=dtype)
657
+ else:
658
+ values = values.copy()
659
+
660
+ values[np.asanyarray(isna(self))] = na_value
661
+
662
+ result = np.asarray(values, dtype=dtype)
663
+
664
+ if (copy and not fillna) or (not copy and using_copy_on_write()):
665
+ if np.shares_memory(self._values[:2], result[:2]):
666
+ # Take slices to improve performance of check
667
+ if using_copy_on_write() and not copy:
668
+ result = result.view()
669
+ result.flags.writeable = False
670
+ else:
671
+ result = result.copy()
672
+
673
+ return result
674
+
675
+ @final
676
+ @property
677
+ def empty(self) -> bool:
678
+ return not self.size
679
+
680
+ @doc(op="max", oppose="min", value="largest")
681
+ def argmax(
682
+ self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs
683
+ ) -> int:
684
+ """
685
+ Return int position of the {value} value in the Series.
686
+
687
+ If the {op}imum is achieved in multiple locations,
688
+ the first row position is returned.
689
+
690
+ Parameters
691
+ ----------
692
+ axis : {{None}}
693
+ Unused. Parameter needed for compatibility with DataFrame.
694
+ skipna : bool, default True
695
+ Exclude NA/null values when showing the result.
696
+ *args, **kwargs
697
+ Additional arguments and keywords for compatibility with NumPy.
698
+
699
+ Returns
700
+ -------
701
+ int
702
+ Row position of the {op}imum value.
703
+
704
+ See Also
705
+ --------
706
+ Series.arg{op} : Return position of the {op}imum value.
707
+ Series.arg{oppose} : Return position of the {oppose}imum value.
708
+ numpy.ndarray.arg{op} : Equivalent method for numpy arrays.
709
+ Series.idxmax : Return index label of the maximum values.
710
+ Series.idxmin : Return index label of the minimum values.
711
+
712
+ Examples
713
+ --------
714
+ Consider dataset containing cereal calories
715
+
716
+ >>> s = pd.Series({{'Corn Flakes': 100.0, 'Almond Delight': 110.0,
717
+ ... 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0}})
718
+ >>> s
719
+ Corn Flakes 100.0
720
+ Almond Delight 110.0
721
+ Cinnamon Toast Crunch 120.0
722
+ Cocoa Puff 110.0
723
+ dtype: float64
724
+
725
+ >>> s.argmax()
726
+ 2
727
+ >>> s.argmin()
728
+ 0
729
+
730
+ The maximum cereal calories is the third element and
731
+ the minimum cereal calories is the first element,
732
+ since series is zero-indexed.
733
+ """
734
+ delegate = self._values
735
+ nv.validate_minmax_axis(axis)
736
+ skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs)
737
+
738
+ if isinstance(delegate, ExtensionArray):
739
+ if not skipna and delegate.isna().any():
740
+ warnings.warn(
741
+ f"The behavior of {type(self).__name__}.argmax/argmin "
742
+ "with skipna=False and NAs, or with all-NAs is deprecated. "
743
+ "In a future version this will raise ValueError.",
744
+ FutureWarning,
745
+ stacklevel=find_stack_level(),
746
+ )
747
+ return -1
748
+ else:
749
+ return delegate.argmax()
750
+ else:
751
+ result = nanops.nanargmax(delegate, skipna=skipna)
752
+ if result == -1:
753
+ warnings.warn(
754
+ f"The behavior of {type(self).__name__}.argmax/argmin "
755
+ "with skipna=False and NAs, or with all-NAs is deprecated. "
756
+ "In a future version this will raise ValueError.",
757
+ FutureWarning,
758
+ stacklevel=find_stack_level(),
759
+ )
760
+ # error: Incompatible return value type (got "Union[int, ndarray]", expected
761
+ # "int")
762
+ return result # type: ignore[return-value]
763
+
764
+ @doc(argmax, op="min", oppose="max", value="smallest")
765
+ def argmin(
766
+ self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs
767
+ ) -> int:
768
+ delegate = self._values
769
+ nv.validate_minmax_axis(axis)
770
+ skipna = nv.validate_argmin_with_skipna(skipna, args, kwargs)
771
+
772
+ if isinstance(delegate, ExtensionArray):
773
+ if not skipna and delegate.isna().any():
774
+ warnings.warn(
775
+ f"The behavior of {type(self).__name__}.argmax/argmin "
776
+ "with skipna=False and NAs, or with all-NAs is deprecated. "
777
+ "In a future version this will raise ValueError.",
778
+ FutureWarning,
779
+ stacklevel=find_stack_level(),
780
+ )
781
+ return -1
782
+ else:
783
+ return delegate.argmin()
784
+ else:
785
+ result = nanops.nanargmin(delegate, skipna=skipna)
786
+ if result == -1:
787
+ warnings.warn(
788
+ f"The behavior of {type(self).__name__}.argmax/argmin "
789
+ "with skipna=False and NAs, or with all-NAs is deprecated. "
790
+ "In a future version this will raise ValueError.",
791
+ FutureWarning,
792
+ stacklevel=find_stack_level(),
793
+ )
794
+ # error: Incompatible return value type (got "Union[int, ndarray]", expected
795
+ # "int")
796
+ return result # type: ignore[return-value]
797
+
798
+ def tolist(self):
799
+ """
800
+ Return a list of the values.
801
+
802
+ These are each a scalar type, which is a Python scalar
803
+ (for str, int, float) or a pandas scalar
804
+ (for Timestamp/Timedelta/Interval/Period)
805
+
806
+ Returns
807
+ -------
808
+ list
809
+
810
+ See Also
811
+ --------
812
+ numpy.ndarray.tolist : Return the array as an a.ndim-levels deep
813
+ nested list of Python scalars.
814
+
815
+ Examples
816
+ --------
817
+ For Series
818
+
819
+ >>> s = pd.Series([1, 2, 3])
820
+ >>> s.to_list()
821
+ [1, 2, 3]
822
+
823
+ For Index:
824
+
825
+ >>> idx = pd.Index([1, 2, 3])
826
+ >>> idx
827
+ Index([1, 2, 3], dtype='int64')
828
+
829
+ >>> idx.to_list()
830
+ [1, 2, 3]
831
+ """
832
+ return self._values.tolist()
833
+
834
+ to_list = tolist
835
+
836
+ def __iter__(self) -> Iterator:
837
+ """
838
+ Return an iterator of the values.
839
+
840
+ These are each a scalar type, which is a Python scalar
841
+ (for str, int, float) or a pandas scalar
842
+ (for Timestamp/Timedelta/Interval/Period)
843
+
844
+ Returns
845
+ -------
846
+ iterator
847
+
848
+ Examples
849
+ --------
850
+ >>> s = pd.Series([1, 2, 3])
851
+ >>> for x in s:
852
+ ... print(x)
853
+ 1
854
+ 2
855
+ 3
856
+ """
857
+ # We are explicitly making element iterators.
858
+ if not isinstance(self._values, np.ndarray):
859
+ # Check type instead of dtype to catch DTA/TDA
860
+ return iter(self._values)
861
+ else:
862
+ return map(self._values.item, range(self._values.size))
863
+
864
+ @cache_readonly
865
+ def hasnans(self) -> bool:
866
+ """
867
+ Return True if there are any NaNs.
868
+
869
+ Enables various performance speedups.
870
+
871
+ Returns
872
+ -------
873
+ bool
874
+
875
+ Examples
876
+ --------
877
+ >>> s = pd.Series([1, 2, 3, None])
878
+ >>> s
879
+ 0 1.0
880
+ 1 2.0
881
+ 2 3.0
882
+ 3 NaN
883
+ dtype: float64
884
+ >>> s.hasnans
885
+ True
886
+ """
887
+ # error: Item "bool" of "Union[bool, ndarray[Any, dtype[bool_]], NDFrame]"
888
+ # has no attribute "any"
889
+ return bool(isna(self).any()) # type: ignore[union-attr]
890
+
891
+ @final
892
+ def _map_values(self, mapper, na_action=None, convert: bool = True):
893
+ """
894
+ An internal function that maps values using the input
895
+ correspondence (which can be a dict, Series, or function).
896
+
897
+ Parameters
898
+ ----------
899
+ mapper : function, dict, or Series
900
+ The input correspondence object
901
+ na_action : {None, 'ignore'}
902
+ If 'ignore', propagate NA values, without passing them to the
903
+ mapping function
904
+ convert : bool, default True
905
+ Try to find better dtype for elementwise function results. If
906
+ False, leave as dtype=object. Note that the dtype is always
907
+ preserved for some extension array dtypes, such as Categorical.
908
+
909
+ Returns
910
+ -------
911
+ Union[Index, MultiIndex], inferred
912
+ The output of the mapping function applied to the index.
913
+ If the function returns a tuple with more than one element
914
+ a MultiIndex will be returned.
915
+ """
916
+ arr = self._values
917
+
918
+ if isinstance(arr, ExtensionArray):
919
+ return arr.map(mapper, na_action=na_action)
920
+
921
+ return algorithms.map_array(arr, mapper, na_action=na_action, convert=convert)
922
+
923
+ @final
924
+ def value_counts(
925
+ self,
926
+ normalize: bool = False,
927
+ sort: bool = True,
928
+ ascending: bool = False,
929
+ bins=None,
930
+ dropna: bool = True,
931
+ ) -> Series:
932
+ """
933
+ Return a Series containing counts of unique values.
934
+
935
+ The resulting object will be in descending order so that the
936
+ first element is the most frequently-occurring element.
937
+ Excludes NA values by default.
938
+
939
+ Parameters
940
+ ----------
941
+ normalize : bool, default False
942
+ If True then the object returned will contain the relative
943
+ frequencies of the unique values.
944
+ sort : bool, default True
945
+ Sort by frequencies when True. Preserve the order of the data when False.
946
+ ascending : bool, default False
947
+ Sort in ascending order.
948
+ bins : int, optional
949
+ Rather than count values, group them into half-open bins,
950
+ a convenience for ``pd.cut``, only works with numeric data.
951
+ dropna : bool, default True
952
+ Don't include counts of NaN.
953
+
954
+ Returns
955
+ -------
956
+ Series
957
+
958
+ See Also
959
+ --------
960
+ Series.count: Number of non-NA elements in a Series.
961
+ DataFrame.count: Number of non-NA elements in a DataFrame.
962
+ DataFrame.value_counts: Equivalent method on DataFrames.
963
+
964
+ Examples
965
+ --------
966
+ >>> index = pd.Index([3, 1, 2, 3, 4, np.nan])
967
+ >>> index.value_counts()
968
+ 3.0 2
969
+ 1.0 1
970
+ 2.0 1
971
+ 4.0 1
972
+ Name: count, dtype: int64
973
+
974
+ With `normalize` set to `True`, returns the relative frequency by
975
+ dividing all values by the sum of values.
976
+
977
+ >>> s = pd.Series([3, 1, 2, 3, 4, np.nan])
978
+ >>> s.value_counts(normalize=True)
979
+ 3.0 0.4
980
+ 1.0 0.2
981
+ 2.0 0.2
982
+ 4.0 0.2
983
+ Name: proportion, dtype: float64
984
+
985
+ **bins**
986
+
987
+ Bins can be useful for going from a continuous variable to a
988
+ categorical variable; instead of counting unique
989
+ apparitions of values, divide the index in the specified
990
+ number of half-open bins.
991
+
992
+ >>> s.value_counts(bins=3)
993
+ (0.996, 2.0] 2
994
+ (2.0, 3.0] 2
995
+ (3.0, 4.0] 1
996
+ Name: count, dtype: int64
997
+
998
+ **dropna**
999
+
1000
+ With `dropna` set to `False` we can also see NaN index values.
1001
+
1002
+ >>> s.value_counts(dropna=False)
1003
+ 3.0 2
1004
+ 1.0 1
1005
+ 2.0 1
1006
+ 4.0 1
1007
+ NaN 1
1008
+ Name: count, dtype: int64
1009
+ """
1010
+ return algorithms.value_counts_internal(
1011
+ self,
1012
+ sort=sort,
1013
+ ascending=ascending,
1014
+ normalize=normalize,
1015
+ bins=bins,
1016
+ dropna=dropna,
1017
+ )
1018
+
1019
+ def unique(self):
1020
+ values = self._values
1021
+ if not isinstance(values, np.ndarray):
1022
+ # i.e. ExtensionArray
1023
+ result = values.unique()
1024
+ else:
1025
+ result = algorithms.unique1d(values)
1026
+ return result
1027
+
1028
+ @final
1029
+ def nunique(self, dropna: bool = True) -> int:
1030
+ """
1031
+ Return number of unique elements in the object.
1032
+
1033
+ Excludes NA values by default.
1034
+
1035
+ Parameters
1036
+ ----------
1037
+ dropna : bool, default True
1038
+ Don't include NaN in the count.
1039
+
1040
+ Returns
1041
+ -------
1042
+ int
1043
+
1044
+ See Also
1045
+ --------
1046
+ DataFrame.nunique: Method nunique for DataFrame.
1047
+ Series.count: Count non-NA/null observations in the Series.
1048
+
1049
+ Examples
1050
+ --------
1051
+ >>> s = pd.Series([1, 3, 5, 7, 7])
1052
+ >>> s
1053
+ 0 1
1054
+ 1 3
1055
+ 2 5
1056
+ 3 7
1057
+ 4 7
1058
+ dtype: int64
1059
+
1060
+ >>> s.nunique()
1061
+ 4
1062
+ """
1063
+ uniqs = self.unique()
1064
+ if dropna:
1065
+ uniqs = remove_na_arraylike(uniqs)
1066
+ return len(uniqs)
1067
+
1068
+ @property
1069
+ def is_unique(self) -> bool:
1070
+ """
1071
+ Return boolean if values in the object are unique.
1072
+
1073
+ Returns
1074
+ -------
1075
+ bool
1076
+
1077
+ Examples
1078
+ --------
1079
+ >>> s = pd.Series([1, 2, 3])
1080
+ >>> s.is_unique
1081
+ True
1082
+
1083
+ >>> s = pd.Series([1, 2, 3, 1])
1084
+ >>> s.is_unique
1085
+ False
1086
+ """
1087
+ return self.nunique(dropna=False) == len(self)
1088
+
1089
+ @property
1090
+ def is_monotonic_increasing(self) -> bool:
1091
+ """
1092
+ Return boolean if values in the object are monotonically increasing.
1093
+
1094
+ Returns
1095
+ -------
1096
+ bool
1097
+
1098
+ Examples
1099
+ --------
1100
+ >>> s = pd.Series([1, 2, 2])
1101
+ >>> s.is_monotonic_increasing
1102
+ True
1103
+
1104
+ >>> s = pd.Series([3, 2, 1])
1105
+ >>> s.is_monotonic_increasing
1106
+ False
1107
+ """
1108
+ from pandas import Index
1109
+
1110
+ return Index(self).is_monotonic_increasing
1111
+
1112
+ @property
1113
+ def is_monotonic_decreasing(self) -> bool:
1114
+ """
1115
+ Return boolean if values in the object are monotonically decreasing.
1116
+
1117
+ Returns
1118
+ -------
1119
+ bool
1120
+
1121
+ Examples
1122
+ --------
1123
+ >>> s = pd.Series([3, 2, 2, 1])
1124
+ >>> s.is_monotonic_decreasing
1125
+ True
1126
+
1127
+ >>> s = pd.Series([1, 2, 3])
1128
+ >>> s.is_monotonic_decreasing
1129
+ False
1130
+ """
1131
+ from pandas import Index
1132
+
1133
+ return Index(self).is_monotonic_decreasing
1134
+
1135
+ @final
1136
+ def _memory_usage(self, deep: bool = False) -> int:
1137
+ """
1138
+ Memory usage of the values.
1139
+
1140
+ Parameters
1141
+ ----------
1142
+ deep : bool, default False
1143
+ Introspect the data deeply, interrogate
1144
+ `object` dtypes for system-level memory consumption.
1145
+
1146
+ Returns
1147
+ -------
1148
+ bytes used
1149
+
1150
+ See Also
1151
+ --------
1152
+ numpy.ndarray.nbytes : Total bytes consumed by the elements of the
1153
+ array.
1154
+
1155
+ Notes
1156
+ -----
1157
+ Memory usage does not include memory consumed by elements that
1158
+ are not components of the array if deep=False or if used on PyPy
1159
+
1160
+ Examples
1161
+ --------
1162
+ >>> idx = pd.Index([1, 2, 3])
1163
+ >>> idx.memory_usage()
1164
+ 24
1165
+ """
1166
+ if hasattr(self.array, "memory_usage"):
1167
+ return self.array.memory_usage( # pyright: ignore[reportGeneralTypeIssues]
1168
+ deep=deep,
1169
+ )
1170
+
1171
+ v = self.array.nbytes
1172
+ if deep and is_object_dtype(self.dtype) and not PYPY:
1173
+ values = cast(np.ndarray, self._values)
1174
+ v += lib.memory_usage_of_objects(values)
1175
+ return v
1176
+
1177
+ @doc(
1178
+ algorithms.factorize,
1179
+ values="",
1180
+ order="",
1181
+ size_hint="",
1182
+ sort=textwrap.dedent(
1183
+ """\
1184
+ sort : bool, default False
1185
+ Sort `uniques` and shuffle `codes` to maintain the
1186
+ relationship.
1187
+ """
1188
+ ),
1189
+ )
1190
+ def factorize(
1191
+ self,
1192
+ sort: bool = False,
1193
+ use_na_sentinel: bool = True,
1194
+ ) -> tuple[npt.NDArray[np.intp], Index]:
1195
+ codes, uniques = algorithms.factorize(
1196
+ self._values, sort=sort, use_na_sentinel=use_na_sentinel
1197
+ )
1198
+ if uniques.dtype == np.float16:
1199
+ uniques = uniques.astype(np.float32)
1200
+
1201
+ if isinstance(self, ABCIndex):
1202
+ # preserve e.g. MultiIndex
1203
+ uniques = self._constructor(uniques)
1204
+ else:
1205
+ from pandas import Index
1206
+
1207
+ uniques = Index(uniques)
1208
+ return codes, uniques
1209
+
1210
+ _shared_docs[
1211
+ "searchsorted"
1212
+ ] = """
1213
+ Find indices where elements should be inserted to maintain order.
1214
+
1215
+ Find the indices into a sorted {klass} `self` such that, if the
1216
+ corresponding elements in `value` were inserted before the indices,
1217
+ the order of `self` would be preserved.
1218
+
1219
+ .. note::
1220
+
1221
+ The {klass} *must* be monotonically sorted, otherwise
1222
+ wrong locations will likely be returned. Pandas does *not*
1223
+ check this for you.
1224
+
1225
+ Parameters
1226
+ ----------
1227
+ value : array-like or scalar
1228
+ Values to insert into `self`.
1229
+ side : {{'left', 'right'}}, optional
1230
+ If 'left', the index of the first suitable location found is given.
1231
+ If 'right', return the last such index. If there is no suitable
1232
+ index, return either 0 or N (where N is the length of `self`).
1233
+ sorter : 1-D array-like, optional
1234
+ Optional array of integer indices that sort `self` into ascending
1235
+ order. They are typically the result of ``np.argsort``.
1236
+
1237
+ Returns
1238
+ -------
1239
+ int or array of int
1240
+ A scalar or array of insertion points with the
1241
+ same shape as `value`.
1242
+
1243
+ See Also
1244
+ --------
1245
+ sort_values : Sort by the values along either axis.
1246
+ numpy.searchsorted : Similar method from NumPy.
1247
+
1248
+ Notes
1249
+ -----
1250
+ Binary search is used to find the required insertion points.
1251
+
1252
+ Examples
1253
+ --------
1254
+ >>> ser = pd.Series([1, 2, 3])
1255
+ >>> ser
1256
+ 0 1
1257
+ 1 2
1258
+ 2 3
1259
+ dtype: int64
1260
+
1261
+ >>> ser.searchsorted(4)
1262
+ 3
1263
+
1264
+ >>> ser.searchsorted([0, 4])
1265
+ array([0, 3])
1266
+
1267
+ >>> ser.searchsorted([1, 3], side='left')
1268
+ array([0, 2])
1269
+
1270
+ >>> ser.searchsorted([1, 3], side='right')
1271
+ array([1, 3])
1272
+
1273
+ >>> ser = pd.Series(pd.to_datetime(['3/11/2000', '3/12/2000', '3/13/2000']))
1274
+ >>> ser
1275
+ 0 2000-03-11
1276
+ 1 2000-03-12
1277
+ 2 2000-03-13
1278
+ dtype: datetime64[ns]
1279
+
1280
+ >>> ser.searchsorted('3/14/2000')
1281
+ 3
1282
+
1283
+ >>> ser = pd.Categorical(
1284
+ ... ['apple', 'bread', 'bread', 'cheese', 'milk'], ordered=True
1285
+ ... )
1286
+ >>> ser
1287
+ ['apple', 'bread', 'bread', 'cheese', 'milk']
1288
+ Categories (4, object): ['apple' < 'bread' < 'cheese' < 'milk']
1289
+
1290
+ >>> ser.searchsorted('bread')
1291
+ 1
1292
+
1293
+ >>> ser.searchsorted(['bread'], side='right')
1294
+ array([3])
1295
+
1296
+ If the values are not monotonically sorted, wrong locations
1297
+ may be returned:
1298
+
1299
+ >>> ser = pd.Series([2, 1, 3])
1300
+ >>> ser
1301
+ 0 2
1302
+ 1 1
1303
+ 2 3
1304
+ dtype: int64
1305
+
1306
+ >>> ser.searchsorted(1) # doctest: +SKIP
1307
+ 0 # wrong result, correct would be 1
1308
+ """
1309
+
1310
+ # This overload is needed so that the call to searchsorted in
1311
+ # pandas.core.resample.TimeGrouper._get_period_bins picks the correct result
1312
+
1313
+ # error: Overloaded function signatures 1 and 2 overlap with incompatible
1314
+ # return types
1315
+ @overload
1316
+ def searchsorted( # type: ignore[overload-overlap]
1317
+ self,
1318
+ value: ScalarLike_co,
1319
+ side: Literal["left", "right"] = ...,
1320
+ sorter: NumpySorter = ...,
1321
+ ) -> np.intp:
1322
+ ...
1323
+
1324
+ @overload
1325
+ def searchsorted(
1326
+ self,
1327
+ value: npt.ArrayLike | ExtensionArray,
1328
+ side: Literal["left", "right"] = ...,
1329
+ sorter: NumpySorter = ...,
1330
+ ) -> npt.NDArray[np.intp]:
1331
+ ...
1332
+
1333
+ @doc(_shared_docs["searchsorted"], klass="Index")
1334
+ def searchsorted(
1335
+ self,
1336
+ value: NumpyValueArrayLike | ExtensionArray,
1337
+ side: Literal["left", "right"] = "left",
1338
+ sorter: NumpySorter | None = None,
1339
+ ) -> npt.NDArray[np.intp] | np.intp:
1340
+ if isinstance(value, ABCDataFrame):
1341
+ msg = (
1342
+ "Value must be 1-D array-like or scalar, "
1343
+ f"{type(value).__name__} is not supported"
1344
+ )
1345
+ raise ValueError(msg)
1346
+
1347
+ values = self._values
1348
+ if not isinstance(values, np.ndarray):
1349
+ # Going through EA.searchsorted directly improves performance GH#38083
1350
+ return values.searchsorted(value, side=side, sorter=sorter)
1351
+
1352
+ return algorithms.searchsorted(
1353
+ values,
1354
+ value,
1355
+ side=side,
1356
+ sorter=sorter,
1357
+ )
1358
+
1359
+ def drop_duplicates(self, *, keep: DropKeep = "first"):
1360
+ duplicated = self._duplicated(keep=keep)
1361
+ # error: Value of type "IndexOpsMixin" is not indexable
1362
+ return self[~duplicated] # type: ignore[index]
1363
+
1364
+ @final
1365
+ def _duplicated(self, keep: DropKeep = "first") -> npt.NDArray[np.bool_]:
1366
+ arr = self._values
1367
+ if isinstance(arr, ExtensionArray):
1368
+ return arr.duplicated(keep=keep)
1369
+ return algorithms.duplicated(arr, keep=keep)
1370
+
1371
+ def _arith_method(self, other, op):
1372
+ res_name = ops.get_op_result_name(self, other)
1373
+
1374
+ lvalues = self._values
1375
+ rvalues = extract_array(other, extract_numpy=True, extract_range=True)
1376
+ rvalues = ops.maybe_prepare_scalar_for_op(rvalues, lvalues.shape)
1377
+ rvalues = ensure_wrapped_if_datetimelike(rvalues)
1378
+ if isinstance(rvalues, range):
1379
+ rvalues = np.arange(rvalues.start, rvalues.stop, rvalues.step)
1380
+
1381
+ with np.errstate(all="ignore"):
1382
+ result = ops.arithmetic_op(lvalues, rvalues, op)
1383
+
1384
+ return self._construct_result(result, name=res_name)
1385
+
1386
+ def _construct_result(self, result, name):
1387
+ """
1388
+ Construct an appropriately-wrapped result from the ArrayLike result
1389
+ of an arithmetic-like operation.
1390
+ """
1391
+ raise AbstractMethodError(self)
llmeval-env/lib/python3.10/site-packages/pandas/core/common.py ADDED
@@ -0,0 +1,657 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Misc tools for implementing data structures
3
+
4
+ Note: pandas.core.common is *not* part of the public API.
5
+ """
6
+ from __future__ import annotations
7
+
8
+ import builtins
9
+ from collections import (
10
+ abc,
11
+ defaultdict,
12
+ )
13
+ from collections.abc import (
14
+ Collection,
15
+ Generator,
16
+ Hashable,
17
+ Iterable,
18
+ Sequence,
19
+ )
20
+ import contextlib
21
+ from functools import partial
22
+ import inspect
23
+ from typing import (
24
+ TYPE_CHECKING,
25
+ Any,
26
+ Callable,
27
+ cast,
28
+ overload,
29
+ )
30
+ import warnings
31
+
32
+ import numpy as np
33
+
34
+ from pandas._libs import lib
35
+ from pandas.compat.numpy import np_version_gte1p24
36
+
37
+ from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
38
+ from pandas.core.dtypes.common import (
39
+ is_bool_dtype,
40
+ is_integer,
41
+ )
42
+ from pandas.core.dtypes.generic import (
43
+ ABCExtensionArray,
44
+ ABCIndex,
45
+ ABCMultiIndex,
46
+ ABCSeries,
47
+ )
48
+ from pandas.core.dtypes.inference import iterable_not_string
49
+
50
+ if TYPE_CHECKING:
51
+ from pandas._typing import (
52
+ AnyArrayLike,
53
+ ArrayLike,
54
+ NpDtype,
55
+ RandomState,
56
+ T,
57
+ )
58
+
59
+ from pandas import Index
60
+
61
+
62
+ def flatten(line):
63
+ """
64
+ Flatten an arbitrarily nested sequence.
65
+
66
+ Parameters
67
+ ----------
68
+ line : sequence
69
+ The non string sequence to flatten
70
+
71
+ Notes
72
+ -----
73
+ This doesn't consider strings sequences.
74
+
75
+ Returns
76
+ -------
77
+ flattened : generator
78
+ """
79
+ for element in line:
80
+ if iterable_not_string(element):
81
+ yield from flatten(element)
82
+ else:
83
+ yield element
84
+
85
+
86
+ def consensus_name_attr(objs):
87
+ name = objs[0].name
88
+ for obj in objs[1:]:
89
+ try:
90
+ if obj.name != name:
91
+ name = None
92
+ except ValueError:
93
+ name = None
94
+ return name
95
+
96
+
97
+ def is_bool_indexer(key: Any) -> bool:
98
+ """
99
+ Check whether `key` is a valid boolean indexer.
100
+
101
+ Parameters
102
+ ----------
103
+ key : Any
104
+ Only list-likes may be considered boolean indexers.
105
+ All other types are not considered a boolean indexer.
106
+ For array-like input, boolean ndarrays or ExtensionArrays
107
+ with ``_is_boolean`` set are considered boolean indexers.
108
+
109
+ Returns
110
+ -------
111
+ bool
112
+ Whether `key` is a valid boolean indexer.
113
+
114
+ Raises
115
+ ------
116
+ ValueError
117
+ When the array is an object-dtype ndarray or ExtensionArray
118
+ and contains missing values.
119
+
120
+ See Also
121
+ --------
122
+ check_array_indexer : Check that `key` is a valid array to index,
123
+ and convert to an ndarray.
124
+ """
125
+ if isinstance(
126
+ key, (ABCSeries, np.ndarray, ABCIndex, ABCExtensionArray)
127
+ ) and not isinstance(key, ABCMultiIndex):
128
+ if key.dtype == np.object_:
129
+ key_array = np.asarray(key)
130
+
131
+ if not lib.is_bool_array(key_array):
132
+ na_msg = "Cannot mask with non-boolean array containing NA / NaN values"
133
+ if lib.is_bool_array(key_array, skipna=True):
134
+ # Don't raise on e.g. ["A", "B", np.nan], see
135
+ # test_loc_getitem_list_of_labels_categoricalindex_with_na
136
+ raise ValueError(na_msg)
137
+ return False
138
+ return True
139
+ elif is_bool_dtype(key.dtype):
140
+ return True
141
+ elif isinstance(key, list):
142
+ # check if np.array(key).dtype would be bool
143
+ if len(key) > 0:
144
+ if type(key) is not list: # noqa: E721
145
+ # GH#42461 cython will raise TypeError if we pass a subclass
146
+ key = list(key)
147
+ return lib.is_bool_list(key)
148
+
149
+ return False
150
+
151
+
152
+ def cast_scalar_indexer(val):
153
+ """
154
+ Disallow indexing with a float key, even if that key is a round number.
155
+
156
+ Parameters
157
+ ----------
158
+ val : scalar
159
+
160
+ Returns
161
+ -------
162
+ outval : scalar
163
+ """
164
+ # assumes lib.is_scalar(val)
165
+ if lib.is_float(val) and val.is_integer():
166
+ raise IndexError(
167
+ # GH#34193
168
+ "Indexing with a float is no longer supported. Manually convert "
169
+ "to an integer key instead."
170
+ )
171
+ return val
172
+
173
+
174
+ def not_none(*args):
175
+ """
176
+ Returns a generator consisting of the arguments that are not None.
177
+ """
178
+ return (arg for arg in args if arg is not None)
179
+
180
+
181
+ def any_none(*args) -> bool:
182
+ """
183
+ Returns a boolean indicating if any argument is None.
184
+ """
185
+ return any(arg is None for arg in args)
186
+
187
+
188
+ def all_none(*args) -> bool:
189
+ """
190
+ Returns a boolean indicating if all arguments are None.
191
+ """
192
+ return all(arg is None for arg in args)
193
+
194
+
195
+ def any_not_none(*args) -> bool:
196
+ """
197
+ Returns a boolean indicating if any argument is not None.
198
+ """
199
+ return any(arg is not None for arg in args)
200
+
201
+
202
+ def all_not_none(*args) -> bool:
203
+ """
204
+ Returns a boolean indicating if all arguments are not None.
205
+ """
206
+ return all(arg is not None for arg in args)
207
+
208
+
209
+ def count_not_none(*args) -> int:
210
+ """
211
+ Returns the count of arguments that are not None.
212
+ """
213
+ return sum(x is not None for x in args)
214
+
215
+
216
+ @overload
217
+ def asarray_tuplesafe(
218
+ values: ArrayLike | list | tuple | zip, dtype: NpDtype | None = ...
219
+ ) -> np.ndarray:
220
+ # ExtensionArray can only be returned when values is an Index, all other iterables
221
+ # will return np.ndarray. Unfortunately "all other" cannot be encoded in a type
222
+ # signature, so instead we special-case some common types.
223
+ ...
224
+
225
+
226
+ @overload
227
+ def asarray_tuplesafe(values: Iterable, dtype: NpDtype | None = ...) -> ArrayLike:
228
+ ...
229
+
230
+
231
+ def asarray_tuplesafe(values: Iterable, dtype: NpDtype | None = None) -> ArrayLike:
232
+ if not (isinstance(values, (list, tuple)) or hasattr(values, "__array__")):
233
+ values = list(values)
234
+ elif isinstance(values, ABCIndex):
235
+ return values._values
236
+ elif isinstance(values, ABCSeries):
237
+ return values._values
238
+
239
+ if isinstance(values, list) and dtype in [np.object_, object]:
240
+ return construct_1d_object_array_from_listlike(values)
241
+
242
+ try:
243
+ with warnings.catch_warnings():
244
+ # Can remove warning filter once NumPy 1.24 is min version
245
+ if not np_version_gte1p24:
246
+ warnings.simplefilter("ignore", np.VisibleDeprecationWarning)
247
+ result = np.asarray(values, dtype=dtype)
248
+ except ValueError:
249
+ # Using try/except since it's more performant than checking is_list_like
250
+ # over each element
251
+ # error: Argument 1 to "construct_1d_object_array_from_listlike"
252
+ # has incompatible type "Iterable[Any]"; expected "Sized"
253
+ return construct_1d_object_array_from_listlike(values) # type: ignore[arg-type]
254
+
255
+ if issubclass(result.dtype.type, str):
256
+ result = np.asarray(values, dtype=object)
257
+
258
+ if result.ndim == 2:
259
+ # Avoid building an array of arrays:
260
+ values = [tuple(x) for x in values]
261
+ result = construct_1d_object_array_from_listlike(values)
262
+
263
+ return result
264
+
265
+
266
+ def index_labels_to_array(
267
+ labels: np.ndarray | Iterable, dtype: NpDtype | None = None
268
+ ) -> np.ndarray:
269
+ """
270
+ Transform label or iterable of labels to array, for use in Index.
271
+
272
+ Parameters
273
+ ----------
274
+ dtype : dtype
275
+ If specified, use as dtype of the resulting array, otherwise infer.
276
+
277
+ Returns
278
+ -------
279
+ array
280
+ """
281
+ if isinstance(labels, (str, tuple)):
282
+ labels = [labels]
283
+
284
+ if not isinstance(labels, (list, np.ndarray)):
285
+ try:
286
+ labels = list(labels)
287
+ except TypeError: # non-iterable
288
+ labels = [labels]
289
+
290
+ labels = asarray_tuplesafe(labels, dtype=dtype)
291
+
292
+ return labels
293
+
294
+
295
+ def maybe_make_list(obj):
296
+ if obj is not None and not isinstance(obj, (tuple, list)):
297
+ return [obj]
298
+ return obj
299
+
300
+
301
+ def maybe_iterable_to_list(obj: Iterable[T] | T) -> Collection[T] | T:
302
+ """
303
+ If obj is Iterable but not list-like, consume into list.
304
+ """
305
+ if isinstance(obj, abc.Iterable) and not isinstance(obj, abc.Sized):
306
+ return list(obj)
307
+ obj = cast(Collection, obj)
308
+ return obj
309
+
310
+
311
+ def is_null_slice(obj) -> bool:
312
+ """
313
+ We have a null slice.
314
+ """
315
+ return (
316
+ isinstance(obj, slice)
317
+ and obj.start is None
318
+ and obj.stop is None
319
+ and obj.step is None
320
+ )
321
+
322
+
323
+ def is_empty_slice(obj) -> bool:
324
+ """
325
+ We have an empty slice, e.g. no values are selected.
326
+ """
327
+ return (
328
+ isinstance(obj, slice)
329
+ and obj.start is not None
330
+ and obj.stop is not None
331
+ and obj.start == obj.stop
332
+ )
333
+
334
+
335
+ def is_true_slices(line) -> list[bool]:
336
+ """
337
+ Find non-trivial slices in "line": return a list of booleans with same length.
338
+ """
339
+ return [isinstance(k, slice) and not is_null_slice(k) for k in line]
340
+
341
+
342
+ # TODO: used only once in indexing; belongs elsewhere?
343
+ def is_full_slice(obj, line: int) -> bool:
344
+ """
345
+ We have a full length slice.
346
+ """
347
+ return (
348
+ isinstance(obj, slice)
349
+ and obj.start == 0
350
+ and obj.stop == line
351
+ and obj.step is None
352
+ )
353
+
354
+
355
+ def get_callable_name(obj):
356
+ # typical case has name
357
+ if hasattr(obj, "__name__"):
358
+ return getattr(obj, "__name__")
359
+ # some objects don't; could recurse
360
+ if isinstance(obj, partial):
361
+ return get_callable_name(obj.func)
362
+ # fall back to class name
363
+ if callable(obj):
364
+ return type(obj).__name__
365
+ # everything failed (probably because the argument
366
+ # wasn't actually callable); we return None
367
+ # instead of the empty string in this case to allow
368
+ # distinguishing between no name and a name of ''
369
+ return None
370
+
371
+
372
+ def apply_if_callable(maybe_callable, obj, **kwargs):
373
+ """
374
+ Evaluate possibly callable input using obj and kwargs if it is callable,
375
+ otherwise return as it is.
376
+
377
+ Parameters
378
+ ----------
379
+ maybe_callable : possibly a callable
380
+ obj : NDFrame
381
+ **kwargs
382
+ """
383
+ if callable(maybe_callable):
384
+ return maybe_callable(obj, **kwargs)
385
+
386
+ return maybe_callable
387
+
388
+
389
+ def standardize_mapping(into):
390
+ """
391
+ Helper function to standardize a supplied mapping.
392
+
393
+ Parameters
394
+ ----------
395
+ into : instance or subclass of collections.abc.Mapping
396
+ Must be a class, an initialized collections.defaultdict,
397
+ or an instance of a collections.abc.Mapping subclass.
398
+
399
+ Returns
400
+ -------
401
+ mapping : a collections.abc.Mapping subclass or other constructor
402
+ a callable object that can accept an iterator to create
403
+ the desired Mapping.
404
+
405
+ See Also
406
+ --------
407
+ DataFrame.to_dict
408
+ Series.to_dict
409
+ """
410
+ if not inspect.isclass(into):
411
+ if isinstance(into, defaultdict):
412
+ return partial(defaultdict, into.default_factory)
413
+ into = type(into)
414
+ if not issubclass(into, abc.Mapping):
415
+ raise TypeError(f"unsupported type: {into}")
416
+ if into == defaultdict:
417
+ raise TypeError("to_dict() only accepts initialized defaultdicts")
418
+ return into
419
+
420
+
421
+ @overload
422
+ def random_state(state: np.random.Generator) -> np.random.Generator:
423
+ ...
424
+
425
+
426
+ @overload
427
+ def random_state(
428
+ state: int | np.ndarray | np.random.BitGenerator | np.random.RandomState | None,
429
+ ) -> np.random.RandomState:
430
+ ...
431
+
432
+
433
+ def random_state(state: RandomState | None = None):
434
+ """
435
+ Helper function for processing random_state arguments.
436
+
437
+ Parameters
438
+ ----------
439
+ state : int, array-like, BitGenerator, Generator, np.random.RandomState, None.
440
+ If receives an int, array-like, or BitGenerator, passes to
441
+ np.random.RandomState() as seed.
442
+ If receives an np.random RandomState or Generator, just returns that unchanged.
443
+ If receives `None`, returns np.random.
444
+ If receives anything else, raises an informative ValueError.
445
+
446
+ Default None.
447
+
448
+ Returns
449
+ -------
450
+ np.random.RandomState or np.random.Generator. If state is None, returns np.random
451
+
452
+ """
453
+ if is_integer(state) or isinstance(state, (np.ndarray, np.random.BitGenerator)):
454
+ return np.random.RandomState(state)
455
+ elif isinstance(state, np.random.RandomState):
456
+ return state
457
+ elif isinstance(state, np.random.Generator):
458
+ return state
459
+ elif state is None:
460
+ return np.random
461
+ else:
462
+ raise ValueError(
463
+ "random_state must be an integer, array-like, a BitGenerator, Generator, "
464
+ "a numpy RandomState, or None"
465
+ )
466
+
467
+
468
+ def pipe(
469
+ obj, func: Callable[..., T] | tuple[Callable[..., T], str], *args, **kwargs
470
+ ) -> T:
471
+ """
472
+ Apply a function ``func`` to object ``obj`` either by passing obj as the
473
+ first argument to the function or, in the case that the func is a tuple,
474
+ interpret the first element of the tuple as a function and pass the obj to
475
+ that function as a keyword argument whose key is the value of the second
476
+ element of the tuple.
477
+
478
+ Parameters
479
+ ----------
480
+ func : callable or tuple of (callable, str)
481
+ Function to apply to this object or, alternatively, a
482
+ ``(callable, data_keyword)`` tuple where ``data_keyword`` is a
483
+ string indicating the keyword of ``callable`` that expects the
484
+ object.
485
+ *args : iterable, optional
486
+ Positional arguments passed into ``func``.
487
+ **kwargs : dict, optional
488
+ A dictionary of keyword arguments passed into ``func``.
489
+
490
+ Returns
491
+ -------
492
+ object : the return type of ``func``.
493
+ """
494
+ if isinstance(func, tuple):
495
+ func, target = func
496
+ if target in kwargs:
497
+ msg = f"{target} is both the pipe target and a keyword argument"
498
+ raise ValueError(msg)
499
+ kwargs[target] = obj
500
+ return func(*args, **kwargs)
501
+ else:
502
+ return func(obj, *args, **kwargs)
503
+
504
+
505
+ def get_rename_function(mapper):
506
+ """
507
+ Returns a function that will map names/labels, dependent if mapper
508
+ is a dict, Series or just a function.
509
+ """
510
+
511
+ def f(x):
512
+ if x in mapper:
513
+ return mapper[x]
514
+ else:
515
+ return x
516
+
517
+ return f if isinstance(mapper, (abc.Mapping, ABCSeries)) else mapper
518
+
519
+
520
+ def convert_to_list_like(
521
+ values: Hashable | Iterable | AnyArrayLike,
522
+ ) -> list | AnyArrayLike:
523
+ """
524
+ Convert list-like or scalar input to list-like. List, numpy and pandas array-like
525
+ inputs are returned unmodified whereas others are converted to list.
526
+ """
527
+ if isinstance(values, (list, np.ndarray, ABCIndex, ABCSeries, ABCExtensionArray)):
528
+ return values
529
+ elif isinstance(values, abc.Iterable) and not isinstance(values, str):
530
+ return list(values)
531
+
532
+ return [values]
533
+
534
+
535
+ @contextlib.contextmanager
536
+ def temp_setattr(
537
+ obj, attr: str, value, condition: bool = True
538
+ ) -> Generator[None, None, None]:
539
+ """
540
+ Temporarily set attribute on an object.
541
+
542
+ Parameters
543
+ ----------
544
+ obj : object
545
+ Object whose attribute will be modified.
546
+ attr : str
547
+ Attribute to modify.
548
+ value : Any
549
+ Value to temporarily set attribute to.
550
+ condition : bool, default True
551
+ Whether to set the attribute. Provided in order to not have to
552
+ conditionally use this context manager.
553
+
554
+ Yields
555
+ ------
556
+ object : obj with modified attribute.
557
+ """
558
+ if condition:
559
+ old_value = getattr(obj, attr)
560
+ setattr(obj, attr, value)
561
+ try:
562
+ yield obj
563
+ finally:
564
+ if condition:
565
+ setattr(obj, attr, old_value)
566
+
567
+
568
+ def require_length_match(data, index: Index) -> None:
569
+ """
570
+ Check the length of data matches the length of the index.
571
+ """
572
+ if len(data) != len(index):
573
+ raise ValueError(
574
+ "Length of values "
575
+ f"({len(data)}) "
576
+ "does not match length of index "
577
+ f"({len(index)})"
578
+ )
579
+
580
+
581
+ # the ufuncs np.maximum.reduce and np.minimum.reduce default to axis=0,
582
+ # whereas np.min and np.max (which directly call obj.min and obj.max)
583
+ # default to axis=None.
584
+ _builtin_table = {
585
+ builtins.sum: np.sum,
586
+ builtins.max: np.maximum.reduce,
587
+ builtins.min: np.minimum.reduce,
588
+ }
589
+
590
+ # GH#53425: Only for deprecation
591
+ _builtin_table_alias = {
592
+ builtins.sum: "np.sum",
593
+ builtins.max: "np.maximum.reduce",
594
+ builtins.min: "np.minimum.reduce",
595
+ }
596
+
597
+ _cython_table = {
598
+ builtins.sum: "sum",
599
+ builtins.max: "max",
600
+ builtins.min: "min",
601
+ np.all: "all",
602
+ np.any: "any",
603
+ np.sum: "sum",
604
+ np.nansum: "sum",
605
+ np.mean: "mean",
606
+ np.nanmean: "mean",
607
+ np.prod: "prod",
608
+ np.nanprod: "prod",
609
+ np.std: "std",
610
+ np.nanstd: "std",
611
+ np.var: "var",
612
+ np.nanvar: "var",
613
+ np.median: "median",
614
+ np.nanmedian: "median",
615
+ np.max: "max",
616
+ np.nanmax: "max",
617
+ np.min: "min",
618
+ np.nanmin: "min",
619
+ np.cumprod: "cumprod",
620
+ np.nancumprod: "cumprod",
621
+ np.cumsum: "cumsum",
622
+ np.nancumsum: "cumsum",
623
+ }
624
+
625
+
626
+ def get_cython_func(arg: Callable) -> str | None:
627
+ """
628
+ if we define an internal function for this argument, return it
629
+ """
630
+ return _cython_table.get(arg)
631
+
632
+
633
+ def is_builtin_func(arg):
634
+ """
635
+ if we define a builtin function for this argument, return it,
636
+ otherwise return the arg
637
+ """
638
+ return _builtin_table.get(arg, arg)
639
+
640
+
641
+ def fill_missing_names(names: Sequence[Hashable | None]) -> list[Hashable]:
642
+ """
643
+ If a name is missing then replace it by level_n, where n is the count
644
+
645
+ .. versionadded:: 1.4.0
646
+
647
+ Parameters
648
+ ----------
649
+ names : list-like
650
+ list of column names or None values.
651
+
652
+ Returns
653
+ -------
654
+ list
655
+ list of column names with the None values replaced.
656
+ """
657
+ return [f"level_{i}" if name is None else name for i, name in enumerate(names)]
llmeval-env/lib/python3.10/site-packages/pandas/core/config_init.py ADDED
@@ -0,0 +1,924 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module is imported from the pandas package __init__.py file
3
+ in order to ensure that the core.config options registered here will
4
+ be available as soon as the user loads the package. if register_option
5
+ is invoked inside specific modules, they will not be registered until that
6
+ module is imported, which may or may not be a problem.
7
+
8
+ If you need to make sure options are available even before a certain
9
+ module is imported, register them here rather than in the module.
10
+
11
+ """
12
+ from __future__ import annotations
13
+
14
+ import os
15
+ from typing import Callable
16
+
17
+ import pandas._config.config as cf
18
+ from pandas._config.config import (
19
+ is_bool,
20
+ is_callable,
21
+ is_instance_factory,
22
+ is_int,
23
+ is_nonnegative_int,
24
+ is_one_of_factory,
25
+ is_str,
26
+ is_text,
27
+ )
28
+
29
+ # compute
30
+
31
+ use_bottleneck_doc = """
32
+ : bool
33
+ Use the bottleneck library to accelerate if it is installed,
34
+ the default is True
35
+ Valid values: False,True
36
+ """
37
+
38
+
39
+ def use_bottleneck_cb(key) -> None:
40
+ from pandas.core import nanops
41
+
42
+ nanops.set_use_bottleneck(cf.get_option(key))
43
+
44
+
45
+ use_numexpr_doc = """
46
+ : bool
47
+ Use the numexpr library to accelerate computation if it is installed,
48
+ the default is True
49
+ Valid values: False,True
50
+ """
51
+
52
+
53
+ def use_numexpr_cb(key) -> None:
54
+ from pandas.core.computation import expressions
55
+
56
+ expressions.set_use_numexpr(cf.get_option(key))
57
+
58
+
59
+ use_numba_doc = """
60
+ : bool
61
+ Use the numba engine option for select operations if it is installed,
62
+ the default is False
63
+ Valid values: False,True
64
+ """
65
+
66
+
67
+ def use_numba_cb(key) -> None:
68
+ from pandas.core.util import numba_
69
+
70
+ numba_.set_use_numba(cf.get_option(key))
71
+
72
+
73
+ with cf.config_prefix("compute"):
74
+ cf.register_option(
75
+ "use_bottleneck",
76
+ True,
77
+ use_bottleneck_doc,
78
+ validator=is_bool,
79
+ cb=use_bottleneck_cb,
80
+ )
81
+ cf.register_option(
82
+ "use_numexpr", True, use_numexpr_doc, validator=is_bool, cb=use_numexpr_cb
83
+ )
84
+ cf.register_option(
85
+ "use_numba", False, use_numba_doc, validator=is_bool, cb=use_numba_cb
86
+ )
87
+ #
88
+ # options from the "display" namespace
89
+
90
+ pc_precision_doc = """
91
+ : int
92
+ Floating point output precision in terms of number of places after the
93
+ decimal, for regular formatting as well as scientific notation. Similar
94
+ to ``precision`` in :meth:`numpy.set_printoptions`.
95
+ """
96
+
97
+ pc_colspace_doc = """
98
+ : int
99
+ Default space for DataFrame columns.
100
+ """
101
+
102
+ pc_max_rows_doc = """
103
+ : int
104
+ If max_rows is exceeded, switch to truncate view. Depending on
105
+ `large_repr`, objects are either centrally truncated or printed as
106
+ a summary view. 'None' value means unlimited.
107
+
108
+ In case python/IPython is running in a terminal and `large_repr`
109
+ equals 'truncate' this can be set to 0 and pandas will auto-detect
110
+ the height of the terminal and print a truncated object which fits
111
+ the screen height. The IPython notebook, IPython qtconsole, or
112
+ IDLE do not run in a terminal and hence it is not possible to do
113
+ correct auto-detection.
114
+ """
115
+
116
+ pc_min_rows_doc = """
117
+ : int
118
+ The numbers of rows to show in a truncated view (when `max_rows` is
119
+ exceeded). Ignored when `max_rows` is set to None or 0. When set to
120
+ None, follows the value of `max_rows`.
121
+ """
122
+
123
+ pc_max_cols_doc = """
124
+ : int
125
+ If max_cols is exceeded, switch to truncate view. Depending on
126
+ `large_repr`, objects are either centrally truncated or printed as
127
+ a summary view. 'None' value means unlimited.
128
+
129
+ In case python/IPython is running in a terminal and `large_repr`
130
+ equals 'truncate' this can be set to 0 or None and pandas will auto-detect
131
+ the width of the terminal and print a truncated object which fits
132
+ the screen width. The IPython notebook, IPython qtconsole, or IDLE
133
+ do not run in a terminal and hence it is not possible to do
134
+ correct auto-detection and defaults to 20.
135
+ """
136
+
137
+ pc_max_categories_doc = """
138
+ : int
139
+ This sets the maximum number of categories pandas should output when
140
+ printing out a `Categorical` or a Series of dtype "category".
141
+ """
142
+
143
+ pc_max_info_cols_doc = """
144
+ : int
145
+ max_info_columns is used in DataFrame.info method to decide if
146
+ per column information will be printed.
147
+ """
148
+
149
+ pc_nb_repr_h_doc = """
150
+ : boolean
151
+ When True, IPython notebook will use html representation for
152
+ pandas objects (if it is available).
153
+ """
154
+
155
+ pc_pprint_nest_depth = """
156
+ : int
157
+ Controls the number of nested levels to process when pretty-printing
158
+ """
159
+
160
+ pc_multi_sparse_doc = """
161
+ : boolean
162
+ "sparsify" MultiIndex display (don't display repeated
163
+ elements in outer levels within groups)
164
+ """
165
+
166
+ float_format_doc = """
167
+ : callable
168
+ The callable should accept a floating point number and return
169
+ a string with the desired format of the number. This is used
170
+ in some places like SeriesFormatter.
171
+ See formats.format.EngFormatter for an example.
172
+ """
173
+
174
+ max_colwidth_doc = """
175
+ : int or None
176
+ The maximum width in characters of a column in the repr of
177
+ a pandas data structure. When the column overflows, a "..."
178
+ placeholder is embedded in the output. A 'None' value means unlimited.
179
+ """
180
+
181
+ colheader_justify_doc = """
182
+ : 'left'/'right'
183
+ Controls the justification of column headers. used by DataFrameFormatter.
184
+ """
185
+
186
+ pc_expand_repr_doc = """
187
+ : boolean
188
+ Whether to print out the full DataFrame repr for wide DataFrames across
189
+ multiple lines, `max_columns` is still respected, but the output will
190
+ wrap-around across multiple "pages" if its width exceeds `display.width`.
191
+ """
192
+
193
+ pc_show_dimensions_doc = """
194
+ : boolean or 'truncate'
195
+ Whether to print out dimensions at the end of DataFrame repr.
196
+ If 'truncate' is specified, only print out the dimensions if the
197
+ frame is truncated (e.g. not display all rows and/or columns)
198
+ """
199
+
200
+ pc_east_asian_width_doc = """
201
+ : boolean
202
+ Whether to use the Unicode East Asian Width to calculate the display text
203
+ width.
204
+ Enabling this may affect to the performance (default: False)
205
+ """
206
+
207
+ pc_ambiguous_as_wide_doc = """
208
+ : boolean
209
+ Whether to handle Unicode characters belong to Ambiguous as Wide (width=2)
210
+ (default: False)
211
+ """
212
+
213
+ pc_table_schema_doc = """
214
+ : boolean
215
+ Whether to publish a Table Schema representation for frontends
216
+ that support it.
217
+ (default: False)
218
+ """
219
+
220
+ pc_html_border_doc = """
221
+ : int
222
+ A ``border=value`` attribute is inserted in the ``<table>`` tag
223
+ for the DataFrame HTML repr.
224
+ """
225
+
226
+ pc_html_use_mathjax_doc = """\
227
+ : boolean
228
+ When True, Jupyter notebook will process table contents using MathJax,
229
+ rendering mathematical expressions enclosed by the dollar symbol.
230
+ (default: True)
231
+ """
232
+
233
+ pc_max_dir_items = """\
234
+ : int
235
+ The number of items that will be added to `dir(...)`. 'None' value means
236
+ unlimited. Because dir is cached, changing this option will not immediately
237
+ affect already existing dataframes until a column is deleted or added.
238
+
239
+ This is for instance used to suggest columns from a dataframe to tab
240
+ completion.
241
+ """
242
+
243
+ pc_width_doc = """
244
+ : int
245
+ Width of the display in characters. In case python/IPython is running in
246
+ a terminal this can be set to None and pandas will correctly auto-detect
247
+ the width.
248
+ Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a
249
+ terminal and hence it is not possible to correctly detect the width.
250
+ """
251
+
252
+ pc_chop_threshold_doc = """
253
+ : float or None
254
+ if set to a float value, all float values smaller than the given threshold
255
+ will be displayed as exactly 0 by repr and friends.
256
+ """
257
+
258
+ pc_max_seq_items = """
259
+ : int or None
260
+ When pretty-printing a long sequence, no more then `max_seq_items`
261
+ will be printed. If items are omitted, they will be denoted by the
262
+ addition of "..." to the resulting string.
263
+
264
+ If set to None, the number of items to be printed is unlimited.
265
+ """
266
+
267
+ pc_max_info_rows_doc = """
268
+ : int
269
+ df.info() will usually show null-counts for each column.
270
+ For large frames this can be quite slow. max_info_rows and max_info_cols
271
+ limit this null check only to frames with smaller dimensions than
272
+ specified.
273
+ """
274
+
275
+ pc_large_repr_doc = """
276
+ : 'truncate'/'info'
277
+ For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can
278
+ show a truncated table, or switch to the view from
279
+ df.info() (the behaviour in earlier versions of pandas).
280
+ """
281
+
282
+ pc_memory_usage_doc = """
283
+ : bool, string or None
284
+ This specifies if the memory usage of a DataFrame should be displayed when
285
+ df.info() is called. Valid values True,False,'deep'
286
+ """
287
+
288
+
289
+ def table_schema_cb(key) -> None:
290
+ from pandas.io.formats.printing import enable_data_resource_formatter
291
+
292
+ enable_data_resource_formatter(cf.get_option(key))
293
+
294
+
295
+ def is_terminal() -> bool:
296
+ """
297
+ Detect if Python is running in a terminal.
298
+
299
+ Returns True if Python is running in a terminal or False if not.
300
+ """
301
+ try:
302
+ # error: Name 'get_ipython' is not defined
303
+ ip = get_ipython() # type: ignore[name-defined]
304
+ except NameError: # assume standard Python interpreter in a terminal
305
+ return True
306
+ else:
307
+ if hasattr(ip, "kernel"): # IPython as a Jupyter kernel
308
+ return False
309
+ else: # IPython in a terminal
310
+ return True
311
+
312
+
313
+ with cf.config_prefix("display"):
314
+ cf.register_option("precision", 6, pc_precision_doc, validator=is_nonnegative_int)
315
+ cf.register_option(
316
+ "float_format",
317
+ None,
318
+ float_format_doc,
319
+ validator=is_one_of_factory([None, is_callable]),
320
+ )
321
+ cf.register_option(
322
+ "max_info_rows",
323
+ 1690785,
324
+ pc_max_info_rows_doc,
325
+ validator=is_int,
326
+ )
327
+ cf.register_option("max_rows", 60, pc_max_rows_doc, validator=is_nonnegative_int)
328
+ cf.register_option(
329
+ "min_rows",
330
+ 10,
331
+ pc_min_rows_doc,
332
+ validator=is_instance_factory([type(None), int]),
333
+ )
334
+ cf.register_option("max_categories", 8, pc_max_categories_doc, validator=is_int)
335
+
336
+ cf.register_option(
337
+ "max_colwidth",
338
+ 50,
339
+ max_colwidth_doc,
340
+ validator=is_nonnegative_int,
341
+ )
342
+ if is_terminal():
343
+ max_cols = 0 # automatically determine optimal number of columns
344
+ else:
345
+ max_cols = 20 # cannot determine optimal number of columns
346
+ cf.register_option(
347
+ "max_columns", max_cols, pc_max_cols_doc, validator=is_nonnegative_int
348
+ )
349
+ cf.register_option(
350
+ "large_repr",
351
+ "truncate",
352
+ pc_large_repr_doc,
353
+ validator=is_one_of_factory(["truncate", "info"]),
354
+ )
355
+ cf.register_option("max_info_columns", 100, pc_max_info_cols_doc, validator=is_int)
356
+ cf.register_option(
357
+ "colheader_justify", "right", colheader_justify_doc, validator=is_text
358
+ )
359
+ cf.register_option("notebook_repr_html", True, pc_nb_repr_h_doc, validator=is_bool)
360
+ cf.register_option("pprint_nest_depth", 3, pc_pprint_nest_depth, validator=is_int)
361
+ cf.register_option("multi_sparse", True, pc_multi_sparse_doc, validator=is_bool)
362
+ cf.register_option("expand_frame_repr", True, pc_expand_repr_doc)
363
+ cf.register_option(
364
+ "show_dimensions",
365
+ "truncate",
366
+ pc_show_dimensions_doc,
367
+ validator=is_one_of_factory([True, False, "truncate"]),
368
+ )
369
+ cf.register_option("chop_threshold", None, pc_chop_threshold_doc)
370
+ cf.register_option("max_seq_items", 100, pc_max_seq_items)
371
+ cf.register_option(
372
+ "width", 80, pc_width_doc, validator=is_instance_factory([type(None), int])
373
+ )
374
+ cf.register_option(
375
+ "memory_usage",
376
+ True,
377
+ pc_memory_usage_doc,
378
+ validator=is_one_of_factory([None, True, False, "deep"]),
379
+ )
380
+ cf.register_option(
381
+ "unicode.east_asian_width", False, pc_east_asian_width_doc, validator=is_bool
382
+ )
383
+ cf.register_option(
384
+ "unicode.ambiguous_as_wide", False, pc_east_asian_width_doc, validator=is_bool
385
+ )
386
+ cf.register_option(
387
+ "html.table_schema",
388
+ False,
389
+ pc_table_schema_doc,
390
+ validator=is_bool,
391
+ cb=table_schema_cb,
392
+ )
393
+ cf.register_option("html.border", 1, pc_html_border_doc, validator=is_int)
394
+ cf.register_option(
395
+ "html.use_mathjax", True, pc_html_use_mathjax_doc, validator=is_bool
396
+ )
397
+ cf.register_option(
398
+ "max_dir_items", 100, pc_max_dir_items, validator=is_nonnegative_int
399
+ )
400
+
401
+ tc_sim_interactive_doc = """
402
+ : boolean
403
+ Whether to simulate interactive mode for purposes of testing
404
+ """
405
+
406
+ with cf.config_prefix("mode"):
407
+ cf.register_option("sim_interactive", False, tc_sim_interactive_doc)
408
+
409
+ use_inf_as_na_doc = """
410
+ : boolean
411
+ True means treat None, NaN, INF, -INF as NA (old way),
412
+ False means None and NaN are null, but INF, -INF are not NA
413
+ (new way).
414
+
415
+ This option is deprecated in pandas 2.1.0 and will be removed in 3.0.
416
+ """
417
+
418
+ # We don't want to start importing everything at the global context level
419
+ # or we'll hit circular deps.
420
+
421
+
422
+ def use_inf_as_na_cb(key) -> None:
423
+ # TODO(3.0): enforcing this deprecation will close GH#52501
424
+ from pandas.core.dtypes.missing import _use_inf_as_na
425
+
426
+ _use_inf_as_na(key)
427
+
428
+
429
+ with cf.config_prefix("mode"):
430
+ cf.register_option("use_inf_as_na", False, use_inf_as_na_doc, cb=use_inf_as_na_cb)
431
+
432
+ cf.deprecate_option(
433
+ # GH#51684
434
+ "mode.use_inf_as_na",
435
+ "use_inf_as_na option is deprecated and will be removed in a future "
436
+ "version. Convert inf values to NaN before operating instead.",
437
+ )
438
+
439
+ data_manager_doc = """
440
+ : string
441
+ Internal data manager type; can be "block" or "array". Defaults to "block",
442
+ unless overridden by the 'PANDAS_DATA_MANAGER' environment variable (needs
443
+ to be set before pandas is imported).
444
+ """
445
+
446
+
447
+ with cf.config_prefix("mode"):
448
+ cf.register_option(
449
+ "data_manager",
450
+ # Get the default from an environment variable, if set, otherwise defaults
451
+ # to "block". This environment variable can be set for testing.
452
+ os.environ.get("PANDAS_DATA_MANAGER", "block"),
453
+ data_manager_doc,
454
+ validator=is_one_of_factory(["block", "array"]),
455
+ )
456
+
457
+ cf.deprecate_option(
458
+ # GH#55043
459
+ "mode.data_manager",
460
+ "data_manager option is deprecated and will be removed in a future "
461
+ "version. Only the BlockManager will be available.",
462
+ )
463
+
464
+
465
+ # TODO better name?
466
+ copy_on_write_doc = """
467
+ : bool
468
+ Use new copy-view behaviour using Copy-on-Write. Defaults to False,
469
+ unless overridden by the 'PANDAS_COPY_ON_WRITE' environment variable
470
+ (if set to "1" for True, needs to be set before pandas is imported).
471
+ """
472
+
473
+
474
+ with cf.config_prefix("mode"):
475
+ cf.register_option(
476
+ "copy_on_write",
477
+ # Get the default from an environment variable, if set, otherwise defaults
478
+ # to False. This environment variable can be set for testing.
479
+ "warn"
480
+ if os.environ.get("PANDAS_COPY_ON_WRITE", "0") == "warn"
481
+ else os.environ.get("PANDAS_COPY_ON_WRITE", "0") == "1",
482
+ copy_on_write_doc,
483
+ validator=is_one_of_factory([True, False, "warn"]),
484
+ )
485
+
486
+
487
+ # user warnings
488
+ chained_assignment = """
489
+ : string
490
+ Raise an exception, warn, or no action if trying to use chained assignment,
491
+ The default is warn
492
+ """
493
+
494
+ with cf.config_prefix("mode"):
495
+ cf.register_option(
496
+ "chained_assignment",
497
+ "warn",
498
+ chained_assignment,
499
+ validator=is_one_of_factory([None, "warn", "raise"]),
500
+ )
501
+
502
+
503
+ string_storage_doc = """
504
+ : string
505
+ The default storage for StringDtype. This option is ignored if
506
+ ``future.infer_string`` is set to True.
507
+ """
508
+
509
+ with cf.config_prefix("mode"):
510
+ cf.register_option(
511
+ "string_storage",
512
+ "python",
513
+ string_storage_doc,
514
+ validator=is_one_of_factory(["python", "pyarrow", "pyarrow_numpy"]),
515
+ )
516
+
517
+
518
+ # Set up the io.excel specific reader configuration.
519
+ reader_engine_doc = """
520
+ : string
521
+ The default Excel reader engine for '{ext}' files. Available options:
522
+ auto, {others}.
523
+ """
524
+
525
+ _xls_options = ["xlrd", "calamine"]
526
+ _xlsm_options = ["xlrd", "openpyxl", "calamine"]
527
+ _xlsx_options = ["xlrd", "openpyxl", "calamine"]
528
+ _ods_options = ["odf", "calamine"]
529
+ _xlsb_options = ["pyxlsb", "calamine"]
530
+
531
+
532
+ with cf.config_prefix("io.excel.xls"):
533
+ cf.register_option(
534
+ "reader",
535
+ "auto",
536
+ reader_engine_doc.format(ext="xls", others=", ".join(_xls_options)),
537
+ validator=is_one_of_factory(_xls_options + ["auto"]),
538
+ )
539
+
540
+ with cf.config_prefix("io.excel.xlsm"):
541
+ cf.register_option(
542
+ "reader",
543
+ "auto",
544
+ reader_engine_doc.format(ext="xlsm", others=", ".join(_xlsm_options)),
545
+ validator=is_one_of_factory(_xlsm_options + ["auto"]),
546
+ )
547
+
548
+
549
+ with cf.config_prefix("io.excel.xlsx"):
550
+ cf.register_option(
551
+ "reader",
552
+ "auto",
553
+ reader_engine_doc.format(ext="xlsx", others=", ".join(_xlsx_options)),
554
+ validator=is_one_of_factory(_xlsx_options + ["auto"]),
555
+ )
556
+
557
+
558
+ with cf.config_prefix("io.excel.ods"):
559
+ cf.register_option(
560
+ "reader",
561
+ "auto",
562
+ reader_engine_doc.format(ext="ods", others=", ".join(_ods_options)),
563
+ validator=is_one_of_factory(_ods_options + ["auto"]),
564
+ )
565
+
566
+ with cf.config_prefix("io.excel.xlsb"):
567
+ cf.register_option(
568
+ "reader",
569
+ "auto",
570
+ reader_engine_doc.format(ext="xlsb", others=", ".join(_xlsb_options)),
571
+ validator=is_one_of_factory(_xlsb_options + ["auto"]),
572
+ )
573
+
574
+ # Set up the io.excel specific writer configuration.
575
+ writer_engine_doc = """
576
+ : string
577
+ The default Excel writer engine for '{ext}' files. Available options:
578
+ auto, {others}.
579
+ """
580
+
581
+ _xlsm_options = ["openpyxl"]
582
+ _xlsx_options = ["openpyxl", "xlsxwriter"]
583
+ _ods_options = ["odf"]
584
+
585
+
586
+ with cf.config_prefix("io.excel.xlsm"):
587
+ cf.register_option(
588
+ "writer",
589
+ "auto",
590
+ writer_engine_doc.format(ext="xlsm", others=", ".join(_xlsm_options)),
591
+ validator=str,
592
+ )
593
+
594
+
595
+ with cf.config_prefix("io.excel.xlsx"):
596
+ cf.register_option(
597
+ "writer",
598
+ "auto",
599
+ writer_engine_doc.format(ext="xlsx", others=", ".join(_xlsx_options)),
600
+ validator=str,
601
+ )
602
+
603
+
604
+ with cf.config_prefix("io.excel.ods"):
605
+ cf.register_option(
606
+ "writer",
607
+ "auto",
608
+ writer_engine_doc.format(ext="ods", others=", ".join(_ods_options)),
609
+ validator=str,
610
+ )
611
+
612
+
613
+ # Set up the io.parquet specific configuration.
614
+ parquet_engine_doc = """
615
+ : string
616
+ The default parquet reader/writer engine. Available options:
617
+ 'auto', 'pyarrow', 'fastparquet', the default is 'auto'
618
+ """
619
+
620
+ with cf.config_prefix("io.parquet"):
621
+ cf.register_option(
622
+ "engine",
623
+ "auto",
624
+ parquet_engine_doc,
625
+ validator=is_one_of_factory(["auto", "pyarrow", "fastparquet"]),
626
+ )
627
+
628
+
629
+ # Set up the io.sql specific configuration.
630
+ sql_engine_doc = """
631
+ : string
632
+ The default sql reader/writer engine. Available options:
633
+ 'auto', 'sqlalchemy', the default is 'auto'
634
+ """
635
+
636
+ with cf.config_prefix("io.sql"):
637
+ cf.register_option(
638
+ "engine",
639
+ "auto",
640
+ sql_engine_doc,
641
+ validator=is_one_of_factory(["auto", "sqlalchemy"]),
642
+ )
643
+
644
+ # --------
645
+ # Plotting
646
+ # ---------
647
+
648
+ plotting_backend_doc = """
649
+ : str
650
+ The plotting backend to use. The default value is "matplotlib", the
651
+ backend provided with pandas. Other backends can be specified by
652
+ providing the name of the module that implements the backend.
653
+ """
654
+
655
+
656
+ def register_plotting_backend_cb(key) -> None:
657
+ if key == "matplotlib":
658
+ # We defer matplotlib validation, since it's the default
659
+ return
660
+ from pandas.plotting._core import _get_plot_backend
661
+
662
+ _get_plot_backend(key)
663
+
664
+
665
+ with cf.config_prefix("plotting"):
666
+ cf.register_option(
667
+ "backend",
668
+ defval="matplotlib",
669
+ doc=plotting_backend_doc,
670
+ validator=register_plotting_backend_cb,
671
+ )
672
+
673
+
674
+ register_converter_doc = """
675
+ : bool or 'auto'.
676
+ Whether to register converters with matplotlib's units registry for
677
+ dates, times, datetimes, and Periods. Toggling to False will remove
678
+ the converters, restoring any converters that pandas overwrote.
679
+ """
680
+
681
+
682
+ def register_converter_cb(key) -> None:
683
+ from pandas.plotting import (
684
+ deregister_matplotlib_converters,
685
+ register_matplotlib_converters,
686
+ )
687
+
688
+ if cf.get_option(key):
689
+ register_matplotlib_converters()
690
+ else:
691
+ deregister_matplotlib_converters()
692
+
693
+
694
+ with cf.config_prefix("plotting.matplotlib"):
695
+ cf.register_option(
696
+ "register_converters",
697
+ "auto",
698
+ register_converter_doc,
699
+ validator=is_one_of_factory(["auto", True, False]),
700
+ cb=register_converter_cb,
701
+ )
702
+
703
+ # ------
704
+ # Styler
705
+ # ------
706
+
707
+ styler_sparse_index_doc = """
708
+ : bool
709
+ Whether to sparsify the display of a hierarchical index. Setting to False will
710
+ display each explicit level element in a hierarchical key for each row.
711
+ """
712
+
713
+ styler_sparse_columns_doc = """
714
+ : bool
715
+ Whether to sparsify the display of hierarchical columns. Setting to False will
716
+ display each explicit level element in a hierarchical key for each column.
717
+ """
718
+
719
+ styler_render_repr = """
720
+ : str
721
+ Determine which output to use in Jupyter Notebook in {"html", "latex"}.
722
+ """
723
+
724
+ styler_max_elements = """
725
+ : int
726
+ The maximum number of data-cell (<td>) elements that will be rendered before
727
+ trimming will occur over columns, rows or both if needed.
728
+ """
729
+
730
+ styler_max_rows = """
731
+ : int, optional
732
+ The maximum number of rows that will be rendered. May still be reduced to
733
+ satisfy ``max_elements``, which takes precedence.
734
+ """
735
+
736
+ styler_max_columns = """
737
+ : int, optional
738
+ The maximum number of columns that will be rendered. May still be reduced to
739
+ satisfy ``max_elements``, which takes precedence.
740
+ """
741
+
742
+ styler_precision = """
743
+ : int
744
+ The precision for floats and complex numbers.
745
+ """
746
+
747
+ styler_decimal = """
748
+ : str
749
+ The character representation for the decimal separator for floats and complex.
750
+ """
751
+
752
+ styler_thousands = """
753
+ : str, optional
754
+ The character representation for thousands separator for floats, int and complex.
755
+ """
756
+
757
+ styler_na_rep = """
758
+ : str, optional
759
+ The string representation for values identified as missing.
760
+ """
761
+
762
+ styler_escape = """
763
+ : str, optional
764
+ Whether to escape certain characters according to the given context; html or latex.
765
+ """
766
+
767
+ styler_formatter = """
768
+ : str, callable, dict, optional
769
+ A formatter object to be used as default within ``Styler.format``.
770
+ """
771
+
772
+ styler_multirow_align = """
773
+ : {"c", "t", "b"}
774
+ The specifier for vertical alignment of sparsified LaTeX multirows.
775
+ """
776
+
777
+ styler_multicol_align = r"""
778
+ : {"r", "c", "l", "naive-l", "naive-r"}
779
+ The specifier for horizontal alignment of sparsified LaTeX multicolumns. Pipe
780
+ decorators can also be added to non-naive values to draw vertical
781
+ rules, e.g. "\|r" will draw a rule on the left side of right aligned merged cells.
782
+ """
783
+
784
+ styler_hrules = """
785
+ : bool
786
+ Whether to add horizontal rules on top and bottom and below the headers.
787
+ """
788
+
789
+ styler_environment = """
790
+ : str
791
+ The environment to replace ``\\begin{table}``. If "longtable" is used results
792
+ in a specific longtable environment format.
793
+ """
794
+
795
+ styler_encoding = """
796
+ : str
797
+ The encoding used for output HTML and LaTeX files.
798
+ """
799
+
800
+ styler_mathjax = """
801
+ : bool
802
+ If False will render special CSS classes to table attributes that indicate Mathjax
803
+ will not be used in Jupyter Notebook.
804
+ """
805
+
806
+ with cf.config_prefix("styler"):
807
+ cf.register_option("sparse.index", True, styler_sparse_index_doc, validator=is_bool)
808
+
809
+ cf.register_option(
810
+ "sparse.columns", True, styler_sparse_columns_doc, validator=is_bool
811
+ )
812
+
813
+ cf.register_option(
814
+ "render.repr",
815
+ "html",
816
+ styler_render_repr,
817
+ validator=is_one_of_factory(["html", "latex"]),
818
+ )
819
+
820
+ cf.register_option(
821
+ "render.max_elements",
822
+ 2**18,
823
+ styler_max_elements,
824
+ validator=is_nonnegative_int,
825
+ )
826
+
827
+ cf.register_option(
828
+ "render.max_rows",
829
+ None,
830
+ styler_max_rows,
831
+ validator=is_nonnegative_int,
832
+ )
833
+
834
+ cf.register_option(
835
+ "render.max_columns",
836
+ None,
837
+ styler_max_columns,
838
+ validator=is_nonnegative_int,
839
+ )
840
+
841
+ cf.register_option("render.encoding", "utf-8", styler_encoding, validator=is_str)
842
+
843
+ cf.register_option("format.decimal", ".", styler_decimal, validator=is_str)
844
+
845
+ cf.register_option(
846
+ "format.precision", 6, styler_precision, validator=is_nonnegative_int
847
+ )
848
+
849
+ cf.register_option(
850
+ "format.thousands",
851
+ None,
852
+ styler_thousands,
853
+ validator=is_instance_factory([type(None), str]),
854
+ )
855
+
856
+ cf.register_option(
857
+ "format.na_rep",
858
+ None,
859
+ styler_na_rep,
860
+ validator=is_instance_factory([type(None), str]),
861
+ )
862
+
863
+ cf.register_option(
864
+ "format.escape",
865
+ None,
866
+ styler_escape,
867
+ validator=is_one_of_factory([None, "html", "latex", "latex-math"]),
868
+ )
869
+
870
+ cf.register_option(
871
+ "format.formatter",
872
+ None,
873
+ styler_formatter,
874
+ validator=is_instance_factory([type(None), dict, Callable, str]),
875
+ )
876
+
877
+ cf.register_option("html.mathjax", True, styler_mathjax, validator=is_bool)
878
+
879
+ cf.register_option(
880
+ "latex.multirow_align",
881
+ "c",
882
+ styler_multirow_align,
883
+ validator=is_one_of_factory(["c", "t", "b", "naive"]),
884
+ )
885
+
886
+ val_mca = ["r", "|r|", "|r", "r|", "c", "|c|", "|c", "c|", "l", "|l|", "|l", "l|"]
887
+ val_mca += ["naive-l", "naive-r"]
888
+ cf.register_option(
889
+ "latex.multicol_align",
890
+ "r",
891
+ styler_multicol_align,
892
+ validator=is_one_of_factory(val_mca),
893
+ )
894
+
895
+ cf.register_option("latex.hrules", False, styler_hrules, validator=is_bool)
896
+
897
+ cf.register_option(
898
+ "latex.environment",
899
+ None,
900
+ styler_environment,
901
+ validator=is_instance_factory([type(None), str]),
902
+ )
903
+
904
+
905
+ with cf.config_prefix("future"):
906
+ cf.register_option(
907
+ "infer_string",
908
+ False,
909
+ "Whether to infer sequence of str objects as pyarrow string "
910
+ "dtype, which will be the default in pandas 3.0 "
911
+ "(at which point this option will be deprecated).",
912
+ validator=is_one_of_factory([True, False]),
913
+ )
914
+
915
+ cf.register_option(
916
+ "no_silent_downcasting",
917
+ False,
918
+ "Whether to opt-in to the future behavior which will *not* silently "
919
+ "downcast results from Series and DataFrame `where`, `mask`, and `clip` "
920
+ "methods. "
921
+ "Silent downcasting will be removed in pandas 3.0 "
922
+ "(at which point this option will be deprecated).",
923
+ validator=is_one_of_factory([True, False]),
924
+ )
llmeval-env/lib/python3.10/site-packages/pandas/core/construction.py ADDED
@@ -0,0 +1,824 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Constructor functions intended to be shared by pd.array, Series.__init__,
3
+ and Index.__new__.
4
+
5
+ These should not depend on core.internals.
6
+ """
7
+ from __future__ import annotations
8
+
9
+ from collections.abc import Sequence
10
+ from typing import (
11
+ TYPE_CHECKING,
12
+ Optional,
13
+ Union,
14
+ cast,
15
+ overload,
16
+ )
17
+ import warnings
18
+
19
+ import numpy as np
20
+ from numpy import ma
21
+
22
+ from pandas._config import using_pyarrow_string_dtype
23
+
24
+ from pandas._libs import lib
25
+ from pandas._libs.tslibs import (
26
+ Period,
27
+ get_supported_dtype,
28
+ is_supported_dtype,
29
+ )
30
+ from pandas._typing import (
31
+ AnyArrayLike,
32
+ ArrayLike,
33
+ Dtype,
34
+ DtypeObj,
35
+ T,
36
+ )
37
+ from pandas.util._exceptions import find_stack_level
38
+
39
+ from pandas.core.dtypes.base import ExtensionDtype
40
+ from pandas.core.dtypes.cast import (
41
+ construct_1d_arraylike_from_scalar,
42
+ construct_1d_object_array_from_listlike,
43
+ maybe_cast_to_datetime,
44
+ maybe_cast_to_integer_array,
45
+ maybe_convert_platform,
46
+ maybe_infer_to_datetimelike,
47
+ maybe_promote,
48
+ )
49
+ from pandas.core.dtypes.common import (
50
+ is_list_like,
51
+ is_object_dtype,
52
+ is_string_dtype,
53
+ pandas_dtype,
54
+ )
55
+ from pandas.core.dtypes.dtypes import NumpyEADtype
56
+ from pandas.core.dtypes.generic import (
57
+ ABCDataFrame,
58
+ ABCExtensionArray,
59
+ ABCIndex,
60
+ ABCSeries,
61
+ )
62
+ from pandas.core.dtypes.missing import isna
63
+
64
+ import pandas.core.common as com
65
+
66
+ if TYPE_CHECKING:
67
+ from pandas import (
68
+ Index,
69
+ Series,
70
+ )
71
+ from pandas.core.arrays.base import ExtensionArray
72
+
73
+
74
+ def array(
75
+ data: Sequence[object] | AnyArrayLike,
76
+ dtype: Dtype | None = None,
77
+ copy: bool = True,
78
+ ) -> ExtensionArray:
79
+ """
80
+ Create an array.
81
+
82
+ Parameters
83
+ ----------
84
+ data : Sequence of objects
85
+ The scalars inside `data` should be instances of the
86
+ scalar type for `dtype`. It's expected that `data`
87
+ represents a 1-dimensional array of data.
88
+
89
+ When `data` is an Index or Series, the underlying array
90
+ will be extracted from `data`.
91
+
92
+ dtype : str, np.dtype, or ExtensionDtype, optional
93
+ The dtype to use for the array. This may be a NumPy
94
+ dtype or an extension type registered with pandas using
95
+ :meth:`pandas.api.extensions.register_extension_dtype`.
96
+
97
+ If not specified, there are two possibilities:
98
+
99
+ 1. When `data` is a :class:`Series`, :class:`Index`, or
100
+ :class:`ExtensionArray`, the `dtype` will be taken
101
+ from the data.
102
+ 2. Otherwise, pandas will attempt to infer the `dtype`
103
+ from the data.
104
+
105
+ Note that when `data` is a NumPy array, ``data.dtype`` is
106
+ *not* used for inferring the array type. This is because
107
+ NumPy cannot represent all the types of data that can be
108
+ held in extension arrays.
109
+
110
+ Currently, pandas will infer an extension dtype for sequences of
111
+
112
+ ============================== =======================================
113
+ Scalar Type Array Type
114
+ ============================== =======================================
115
+ :class:`pandas.Interval` :class:`pandas.arrays.IntervalArray`
116
+ :class:`pandas.Period` :class:`pandas.arrays.PeriodArray`
117
+ :class:`datetime.datetime` :class:`pandas.arrays.DatetimeArray`
118
+ :class:`datetime.timedelta` :class:`pandas.arrays.TimedeltaArray`
119
+ :class:`int` :class:`pandas.arrays.IntegerArray`
120
+ :class:`float` :class:`pandas.arrays.FloatingArray`
121
+ :class:`str` :class:`pandas.arrays.StringArray` or
122
+ :class:`pandas.arrays.ArrowStringArray`
123
+ :class:`bool` :class:`pandas.arrays.BooleanArray`
124
+ ============================== =======================================
125
+
126
+ The ExtensionArray created when the scalar type is :class:`str` is determined by
127
+ ``pd.options.mode.string_storage`` if the dtype is not explicitly given.
128
+
129
+ For all other cases, NumPy's usual inference rules will be used.
130
+ copy : bool, default True
131
+ Whether to copy the data, even if not necessary. Depending
132
+ on the type of `data`, creating the new array may require
133
+ copying data, even if ``copy=False``.
134
+
135
+ Returns
136
+ -------
137
+ ExtensionArray
138
+ The newly created array.
139
+
140
+ Raises
141
+ ------
142
+ ValueError
143
+ When `data` is not 1-dimensional.
144
+
145
+ See Also
146
+ --------
147
+ numpy.array : Construct a NumPy array.
148
+ Series : Construct a pandas Series.
149
+ Index : Construct a pandas Index.
150
+ arrays.NumpyExtensionArray : ExtensionArray wrapping a NumPy array.
151
+ Series.array : Extract the array stored within a Series.
152
+
153
+ Notes
154
+ -----
155
+ Omitting the `dtype` argument means pandas will attempt to infer the
156
+ best array type from the values in the data. As new array types are
157
+ added by pandas and 3rd party libraries, the "best" array type may
158
+ change. We recommend specifying `dtype` to ensure that
159
+
160
+ 1. the correct array type for the data is returned
161
+ 2. the returned array type doesn't change as new extension types
162
+ are added by pandas and third-party libraries
163
+
164
+ Additionally, if the underlying memory representation of the returned
165
+ array matters, we recommend specifying the `dtype` as a concrete object
166
+ rather than a string alias or allowing it to be inferred. For example,
167
+ a future version of pandas or a 3rd-party library may include a
168
+ dedicated ExtensionArray for string data. In this event, the following
169
+ would no longer return a :class:`arrays.NumpyExtensionArray` backed by a
170
+ NumPy array.
171
+
172
+ >>> pd.array(['a', 'b'], dtype=str)
173
+ <NumpyExtensionArray>
174
+ ['a', 'b']
175
+ Length: 2, dtype: str32
176
+
177
+ This would instead return the new ExtensionArray dedicated for string
178
+ data. If you really need the new array to be backed by a NumPy array,
179
+ specify that in the dtype.
180
+
181
+ >>> pd.array(['a', 'b'], dtype=np.dtype("<U1"))
182
+ <NumpyExtensionArray>
183
+ ['a', 'b']
184
+ Length: 2, dtype: str32
185
+
186
+ Finally, Pandas has arrays that mostly overlap with NumPy
187
+
188
+ * :class:`arrays.DatetimeArray`
189
+ * :class:`arrays.TimedeltaArray`
190
+
191
+ When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is
192
+ passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray``
193
+ rather than a ``NumpyExtensionArray``. This is for symmetry with the case of
194
+ timezone-aware data, which NumPy does not natively support.
195
+
196
+ >>> pd.array(['2015', '2016'], dtype='datetime64[ns]')
197
+ <DatetimeArray>
198
+ ['2015-01-01 00:00:00', '2016-01-01 00:00:00']
199
+ Length: 2, dtype: datetime64[ns]
200
+
201
+ >>> pd.array(["1h", "2h"], dtype='timedelta64[ns]')
202
+ <TimedeltaArray>
203
+ ['0 days 01:00:00', '0 days 02:00:00']
204
+ Length: 2, dtype: timedelta64[ns]
205
+
206
+ Examples
207
+ --------
208
+ If a dtype is not specified, pandas will infer the best dtype from the values.
209
+ See the description of `dtype` for the types pandas infers for.
210
+
211
+ >>> pd.array([1, 2])
212
+ <IntegerArray>
213
+ [1, 2]
214
+ Length: 2, dtype: Int64
215
+
216
+ >>> pd.array([1, 2, np.nan])
217
+ <IntegerArray>
218
+ [1, 2, <NA>]
219
+ Length: 3, dtype: Int64
220
+
221
+ >>> pd.array([1.1, 2.2])
222
+ <FloatingArray>
223
+ [1.1, 2.2]
224
+ Length: 2, dtype: Float64
225
+
226
+ >>> pd.array(["a", None, "c"])
227
+ <StringArray>
228
+ ['a', <NA>, 'c']
229
+ Length: 3, dtype: string
230
+
231
+ >>> with pd.option_context("string_storage", "pyarrow"):
232
+ ... arr = pd.array(["a", None, "c"])
233
+ ...
234
+ >>> arr
235
+ <ArrowStringArray>
236
+ ['a', <NA>, 'c']
237
+ Length: 3, dtype: string
238
+
239
+ >>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")])
240
+ <PeriodArray>
241
+ ['2000-01-01', '2000-01-01']
242
+ Length: 2, dtype: period[D]
243
+
244
+ You can use the string alias for `dtype`
245
+
246
+ >>> pd.array(['a', 'b', 'a'], dtype='category')
247
+ ['a', 'b', 'a']
248
+ Categories (2, object): ['a', 'b']
249
+
250
+ Or specify the actual dtype
251
+
252
+ >>> pd.array(['a', 'b', 'a'],
253
+ ... dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True))
254
+ ['a', 'b', 'a']
255
+ Categories (3, object): ['a' < 'b' < 'c']
256
+
257
+ If pandas does not infer a dedicated extension type a
258
+ :class:`arrays.NumpyExtensionArray` is returned.
259
+
260
+ >>> pd.array([1 + 1j, 3 + 2j])
261
+ <NumpyExtensionArray>
262
+ [(1+1j), (3+2j)]
263
+ Length: 2, dtype: complex128
264
+
265
+ As mentioned in the "Notes" section, new extension types may be added
266
+ in the future (by pandas or 3rd party libraries), causing the return
267
+ value to no longer be a :class:`arrays.NumpyExtensionArray`. Specify the
268
+ `dtype` as a NumPy dtype if you need to ensure there's no future change in
269
+ behavior.
270
+
271
+ >>> pd.array([1, 2], dtype=np.dtype("int32"))
272
+ <NumpyExtensionArray>
273
+ [1, 2]
274
+ Length: 2, dtype: int32
275
+
276
+ `data` must be 1-dimensional. A ValueError is raised when the input
277
+ has the wrong dimensionality.
278
+
279
+ >>> pd.array(1)
280
+ Traceback (most recent call last):
281
+ ...
282
+ ValueError: Cannot pass scalar '1' to 'pandas.array'.
283
+ """
284
+ from pandas.core.arrays import (
285
+ BooleanArray,
286
+ DatetimeArray,
287
+ ExtensionArray,
288
+ FloatingArray,
289
+ IntegerArray,
290
+ IntervalArray,
291
+ NumpyExtensionArray,
292
+ PeriodArray,
293
+ TimedeltaArray,
294
+ )
295
+ from pandas.core.arrays.string_ import StringDtype
296
+
297
+ if lib.is_scalar(data):
298
+ msg = f"Cannot pass scalar '{data}' to 'pandas.array'."
299
+ raise ValueError(msg)
300
+ elif isinstance(data, ABCDataFrame):
301
+ raise TypeError("Cannot pass DataFrame to 'pandas.array'")
302
+
303
+ if dtype is None and isinstance(data, (ABCSeries, ABCIndex, ExtensionArray)):
304
+ # Note: we exclude np.ndarray here, will do type inference on it
305
+ dtype = data.dtype
306
+
307
+ data = extract_array(data, extract_numpy=True)
308
+
309
+ # this returns None for not-found dtypes.
310
+ if dtype is not None:
311
+ dtype = pandas_dtype(dtype)
312
+
313
+ if isinstance(data, ExtensionArray) and (dtype is None or data.dtype == dtype):
314
+ # e.g. TimedeltaArray[s], avoid casting to NumpyExtensionArray
315
+ if copy:
316
+ return data.copy()
317
+ return data
318
+
319
+ if isinstance(dtype, ExtensionDtype):
320
+ cls = dtype.construct_array_type()
321
+ return cls._from_sequence(data, dtype=dtype, copy=copy)
322
+
323
+ if dtype is None:
324
+ inferred_dtype = lib.infer_dtype(data, skipna=True)
325
+ if inferred_dtype == "period":
326
+ period_data = cast(Union[Sequence[Optional[Period]], AnyArrayLike], data)
327
+ return PeriodArray._from_sequence(period_data, copy=copy)
328
+
329
+ elif inferred_dtype == "interval":
330
+ return IntervalArray(data, copy=copy)
331
+
332
+ elif inferred_dtype.startswith("datetime"):
333
+ # datetime, datetime64
334
+ try:
335
+ return DatetimeArray._from_sequence(data, copy=copy)
336
+ except ValueError:
337
+ # Mixture of timezones, fall back to NumpyExtensionArray
338
+ pass
339
+
340
+ elif inferred_dtype.startswith("timedelta"):
341
+ # timedelta, timedelta64
342
+ return TimedeltaArray._from_sequence(data, copy=copy)
343
+
344
+ elif inferred_dtype == "string":
345
+ # StringArray/ArrowStringArray depending on pd.options.mode.string_storage
346
+ dtype = StringDtype()
347
+ cls = dtype.construct_array_type()
348
+ return cls._from_sequence(data, dtype=dtype, copy=copy)
349
+
350
+ elif inferred_dtype == "integer":
351
+ return IntegerArray._from_sequence(data, copy=copy)
352
+ elif inferred_dtype == "empty" and not hasattr(data, "dtype") and not len(data):
353
+ return FloatingArray._from_sequence(data, copy=copy)
354
+ elif (
355
+ inferred_dtype in ("floating", "mixed-integer-float")
356
+ and getattr(data, "dtype", None) != np.float16
357
+ ):
358
+ # GH#44715 Exclude np.float16 bc FloatingArray does not support it;
359
+ # we will fall back to NumpyExtensionArray.
360
+ return FloatingArray._from_sequence(data, copy=copy)
361
+
362
+ elif inferred_dtype == "boolean":
363
+ return BooleanArray._from_sequence(data, dtype="boolean", copy=copy)
364
+
365
+ # Pandas overrides NumPy for
366
+ # 1. datetime64[ns,us,ms,s]
367
+ # 2. timedelta64[ns,us,ms,s]
368
+ # so that a DatetimeArray is returned.
369
+ if lib.is_np_dtype(dtype, "M") and is_supported_dtype(dtype):
370
+ return DatetimeArray._from_sequence(data, dtype=dtype, copy=copy)
371
+ if lib.is_np_dtype(dtype, "m") and is_supported_dtype(dtype):
372
+ return TimedeltaArray._from_sequence(data, dtype=dtype, copy=copy)
373
+
374
+ elif lib.is_np_dtype(dtype, "mM"):
375
+ warnings.warn(
376
+ r"datetime64 and timedelta64 dtype resolutions other than "
377
+ r"'s', 'ms', 'us', and 'ns' are deprecated. "
378
+ r"In future releases passing unsupported resolutions will "
379
+ r"raise an exception.",
380
+ FutureWarning,
381
+ stacklevel=find_stack_level(),
382
+ )
383
+
384
+ return NumpyExtensionArray._from_sequence(data, dtype=dtype, copy=copy)
385
+
386
+
387
+ _typs = frozenset(
388
+ {
389
+ "index",
390
+ "rangeindex",
391
+ "multiindex",
392
+ "datetimeindex",
393
+ "timedeltaindex",
394
+ "periodindex",
395
+ "categoricalindex",
396
+ "intervalindex",
397
+ "series",
398
+ }
399
+ )
400
+
401
+
402
+ @overload
403
+ def extract_array(
404
+ obj: Series | Index, extract_numpy: bool = ..., extract_range: bool = ...
405
+ ) -> ArrayLike:
406
+ ...
407
+
408
+
409
+ @overload
410
+ def extract_array(
411
+ obj: T, extract_numpy: bool = ..., extract_range: bool = ...
412
+ ) -> T | ArrayLike:
413
+ ...
414
+
415
+
416
+ def extract_array(
417
+ obj: T, extract_numpy: bool = False, extract_range: bool = False
418
+ ) -> T | ArrayLike:
419
+ """
420
+ Extract the ndarray or ExtensionArray from a Series or Index.
421
+
422
+ For all other types, `obj` is just returned as is.
423
+
424
+ Parameters
425
+ ----------
426
+ obj : object
427
+ For Series / Index, the underlying ExtensionArray is unboxed.
428
+
429
+ extract_numpy : bool, default False
430
+ Whether to extract the ndarray from a NumpyExtensionArray.
431
+
432
+ extract_range : bool, default False
433
+ If we have a RangeIndex, return range._values if True
434
+ (which is a materialized integer ndarray), otherwise return unchanged.
435
+
436
+ Returns
437
+ -------
438
+ arr : object
439
+
440
+ Examples
441
+ --------
442
+ >>> extract_array(pd.Series(['a', 'b', 'c'], dtype='category'))
443
+ ['a', 'b', 'c']
444
+ Categories (3, object): ['a', 'b', 'c']
445
+
446
+ Other objects like lists, arrays, and DataFrames are just passed through.
447
+
448
+ >>> extract_array([1, 2, 3])
449
+ [1, 2, 3]
450
+
451
+ For an ndarray-backed Series / Index the ndarray is returned.
452
+
453
+ >>> extract_array(pd.Series([1, 2, 3]))
454
+ array([1, 2, 3])
455
+
456
+ To extract all the way down to the ndarray, pass ``extract_numpy=True``.
457
+
458
+ >>> extract_array(pd.Series([1, 2, 3]), extract_numpy=True)
459
+ array([1, 2, 3])
460
+ """
461
+ typ = getattr(obj, "_typ", None)
462
+ if typ in _typs:
463
+ # i.e. isinstance(obj, (ABCIndex, ABCSeries))
464
+ if typ == "rangeindex":
465
+ if extract_range:
466
+ # error: "T" has no attribute "_values"
467
+ return obj._values # type: ignore[attr-defined]
468
+ return obj
469
+
470
+ # error: "T" has no attribute "_values"
471
+ return obj._values # type: ignore[attr-defined]
472
+
473
+ elif extract_numpy and typ == "npy_extension":
474
+ # i.e. isinstance(obj, ABCNumpyExtensionArray)
475
+ # error: "T" has no attribute "to_numpy"
476
+ return obj.to_numpy() # type: ignore[attr-defined]
477
+
478
+ return obj
479
+
480
+
481
+ def ensure_wrapped_if_datetimelike(arr):
482
+ """
483
+ Wrap datetime64 and timedelta64 ndarrays in DatetimeArray/TimedeltaArray.
484
+ """
485
+ if isinstance(arr, np.ndarray):
486
+ if arr.dtype.kind == "M":
487
+ from pandas.core.arrays import DatetimeArray
488
+
489
+ dtype = get_supported_dtype(arr.dtype)
490
+ return DatetimeArray._from_sequence(arr, dtype=dtype)
491
+
492
+ elif arr.dtype.kind == "m":
493
+ from pandas.core.arrays import TimedeltaArray
494
+
495
+ dtype = get_supported_dtype(arr.dtype)
496
+ return TimedeltaArray._from_sequence(arr, dtype=dtype)
497
+
498
+ return arr
499
+
500
+
501
+ def sanitize_masked_array(data: ma.MaskedArray) -> np.ndarray:
502
+ """
503
+ Convert numpy MaskedArray to ensure mask is softened.
504
+ """
505
+ mask = ma.getmaskarray(data)
506
+ if mask.any():
507
+ dtype, fill_value = maybe_promote(data.dtype, np.nan)
508
+ dtype = cast(np.dtype, dtype)
509
+ data = ma.asarray(data.astype(dtype, copy=True))
510
+ data.soften_mask() # set hardmask False if it was True
511
+ data[mask] = fill_value
512
+ else:
513
+ data = data.copy()
514
+ return data
515
+
516
+
517
+ def sanitize_array(
518
+ data,
519
+ index: Index | None,
520
+ dtype: DtypeObj | None = None,
521
+ copy: bool = False,
522
+ *,
523
+ allow_2d: bool = False,
524
+ ) -> ArrayLike:
525
+ """
526
+ Sanitize input data to an ndarray or ExtensionArray, copy if specified,
527
+ coerce to the dtype if specified.
528
+
529
+ Parameters
530
+ ----------
531
+ data : Any
532
+ index : Index or None, default None
533
+ dtype : np.dtype, ExtensionDtype, or None, default None
534
+ copy : bool, default False
535
+ allow_2d : bool, default False
536
+ If False, raise if we have a 2D Arraylike.
537
+
538
+ Returns
539
+ -------
540
+ np.ndarray or ExtensionArray
541
+ """
542
+ original_dtype = dtype
543
+ if isinstance(data, ma.MaskedArray):
544
+ data = sanitize_masked_array(data)
545
+
546
+ if isinstance(dtype, NumpyEADtype):
547
+ # Avoid ending up with a NumpyExtensionArray
548
+ dtype = dtype.numpy_dtype
549
+
550
+ object_index = False
551
+ if isinstance(data, ABCIndex) and data.dtype == object and dtype is None:
552
+ object_index = True
553
+
554
+ # extract ndarray or ExtensionArray, ensure we have no NumpyExtensionArray
555
+ data = extract_array(data, extract_numpy=True, extract_range=True)
556
+
557
+ if isinstance(data, np.ndarray) and data.ndim == 0:
558
+ if dtype is None:
559
+ dtype = data.dtype
560
+ data = lib.item_from_zerodim(data)
561
+ elif isinstance(data, range):
562
+ # GH#16804
563
+ data = range_to_ndarray(data)
564
+ copy = False
565
+
566
+ if not is_list_like(data):
567
+ if index is None:
568
+ raise ValueError("index must be specified when data is not list-like")
569
+ if (
570
+ isinstance(data, str)
571
+ and using_pyarrow_string_dtype()
572
+ and original_dtype is None
573
+ ):
574
+ from pandas.core.arrays.string_ import StringDtype
575
+
576
+ dtype = StringDtype("pyarrow_numpy")
577
+ data = construct_1d_arraylike_from_scalar(data, len(index), dtype)
578
+
579
+ return data
580
+
581
+ elif isinstance(data, ABCExtensionArray):
582
+ # it is already ensured above this is not a NumpyExtensionArray
583
+ # Until GH#49309 is fixed this check needs to come before the
584
+ # ExtensionDtype check
585
+ if dtype is not None:
586
+ subarr = data.astype(dtype, copy=copy)
587
+ elif copy:
588
+ subarr = data.copy()
589
+ else:
590
+ subarr = data
591
+
592
+ elif isinstance(dtype, ExtensionDtype):
593
+ # create an extension array from its dtype
594
+ _sanitize_non_ordered(data)
595
+ cls = dtype.construct_array_type()
596
+ subarr = cls._from_sequence(data, dtype=dtype, copy=copy)
597
+
598
+ # GH#846
599
+ elif isinstance(data, np.ndarray):
600
+ if isinstance(data, np.matrix):
601
+ data = data.A
602
+
603
+ if dtype is None:
604
+ subarr = data
605
+ if data.dtype == object:
606
+ subarr = maybe_infer_to_datetimelike(data)
607
+ if (
608
+ object_index
609
+ and using_pyarrow_string_dtype()
610
+ and is_string_dtype(subarr)
611
+ ):
612
+ # Avoid inference when string option is set
613
+ subarr = data
614
+ elif data.dtype.kind == "U" and using_pyarrow_string_dtype():
615
+ from pandas.core.arrays.string_ import StringDtype
616
+
617
+ dtype = StringDtype(storage="pyarrow_numpy")
618
+ subarr = dtype.construct_array_type()._from_sequence(data, dtype=dtype)
619
+
620
+ if subarr is data and copy:
621
+ subarr = subarr.copy()
622
+
623
+ else:
624
+ # we will try to copy by-definition here
625
+ subarr = _try_cast(data, dtype, copy)
626
+
627
+ elif hasattr(data, "__array__"):
628
+ # e.g. dask array GH#38645
629
+ if not copy:
630
+ data = np.asarray(data)
631
+ else:
632
+ data = np.array(data, copy=copy)
633
+ return sanitize_array(
634
+ data,
635
+ index=index,
636
+ dtype=dtype,
637
+ copy=False,
638
+ allow_2d=allow_2d,
639
+ )
640
+
641
+ else:
642
+ _sanitize_non_ordered(data)
643
+ # materialize e.g. generators, convert e.g. tuples, abc.ValueView
644
+ data = list(data)
645
+
646
+ if len(data) == 0 and dtype is None:
647
+ # We default to float64, matching numpy
648
+ subarr = np.array([], dtype=np.float64)
649
+
650
+ elif dtype is not None:
651
+ subarr = _try_cast(data, dtype, copy)
652
+
653
+ else:
654
+ subarr = maybe_convert_platform(data)
655
+ if subarr.dtype == object:
656
+ subarr = cast(np.ndarray, subarr)
657
+ subarr = maybe_infer_to_datetimelike(subarr)
658
+
659
+ subarr = _sanitize_ndim(subarr, data, dtype, index, allow_2d=allow_2d)
660
+
661
+ if isinstance(subarr, np.ndarray):
662
+ # at this point we should have dtype be None or subarr.dtype == dtype
663
+ dtype = cast(np.dtype, dtype)
664
+ subarr = _sanitize_str_dtypes(subarr, data, dtype, copy)
665
+
666
+ return subarr
667
+
668
+
669
+ def range_to_ndarray(rng: range) -> np.ndarray:
670
+ """
671
+ Cast a range object to ndarray.
672
+ """
673
+ # GH#30171 perf avoid realizing range as a list in np.array
674
+ try:
675
+ arr = np.arange(rng.start, rng.stop, rng.step, dtype="int64")
676
+ except OverflowError:
677
+ # GH#30173 handling for ranges that overflow int64
678
+ if (rng.start >= 0 and rng.step > 0) or (rng.step < 0 <= rng.stop):
679
+ try:
680
+ arr = np.arange(rng.start, rng.stop, rng.step, dtype="uint64")
681
+ except OverflowError:
682
+ arr = construct_1d_object_array_from_listlike(list(rng))
683
+ else:
684
+ arr = construct_1d_object_array_from_listlike(list(rng))
685
+ return arr
686
+
687
+
688
+ def _sanitize_non_ordered(data) -> None:
689
+ """
690
+ Raise only for unordered sets, e.g., not for dict_keys
691
+ """
692
+ if isinstance(data, (set, frozenset)):
693
+ raise TypeError(f"'{type(data).__name__}' type is unordered")
694
+
695
+
696
+ def _sanitize_ndim(
697
+ result: ArrayLike,
698
+ data,
699
+ dtype: DtypeObj | None,
700
+ index: Index | None,
701
+ *,
702
+ allow_2d: bool = False,
703
+ ) -> ArrayLike:
704
+ """
705
+ Ensure we have a 1-dimensional result array.
706
+ """
707
+ if getattr(result, "ndim", 0) == 0:
708
+ raise ValueError("result should be arraylike with ndim > 0")
709
+
710
+ if result.ndim == 1:
711
+ # the result that we want
712
+ result = _maybe_repeat(result, index)
713
+
714
+ elif result.ndim > 1:
715
+ if isinstance(data, np.ndarray):
716
+ if allow_2d:
717
+ return result
718
+ raise ValueError(
719
+ f"Data must be 1-dimensional, got ndarray of shape {data.shape} instead"
720
+ )
721
+ if is_object_dtype(dtype) and isinstance(dtype, ExtensionDtype):
722
+ # i.e. NumpyEADtype("O")
723
+
724
+ result = com.asarray_tuplesafe(data, dtype=np.dtype("object"))
725
+ cls = dtype.construct_array_type()
726
+ result = cls._from_sequence(result, dtype=dtype)
727
+ else:
728
+ # error: Argument "dtype" to "asarray_tuplesafe" has incompatible type
729
+ # "Union[dtype[Any], ExtensionDtype, None]"; expected "Union[str,
730
+ # dtype[Any], None]"
731
+ result = com.asarray_tuplesafe(data, dtype=dtype) # type: ignore[arg-type]
732
+ return result
733
+
734
+
735
+ def _sanitize_str_dtypes(
736
+ result: np.ndarray, data, dtype: np.dtype | None, copy: bool
737
+ ) -> np.ndarray:
738
+ """
739
+ Ensure we have a dtype that is supported by pandas.
740
+ """
741
+
742
+ # This is to prevent mixed-type Series getting all casted to
743
+ # NumPy string type, e.g. NaN --> '-1#IND'.
744
+ if issubclass(result.dtype.type, str):
745
+ # GH#16605
746
+ # If not empty convert the data to dtype
747
+ # GH#19853: If data is a scalar, result has already the result
748
+ if not lib.is_scalar(data):
749
+ if not np.all(isna(data)):
750
+ data = np.asarray(data, dtype=dtype)
751
+ if not copy:
752
+ result = np.asarray(data, dtype=object)
753
+ else:
754
+ result = np.array(data, dtype=object, copy=copy)
755
+ return result
756
+
757
+
758
+ def _maybe_repeat(arr: ArrayLike, index: Index | None) -> ArrayLike:
759
+ """
760
+ If we have a length-1 array and an index describing how long we expect
761
+ the result to be, repeat the array.
762
+ """
763
+ if index is not None:
764
+ if 1 == len(arr) != len(index):
765
+ arr = arr.repeat(len(index))
766
+ return arr
767
+
768
+
769
+ def _try_cast(
770
+ arr: list | np.ndarray,
771
+ dtype: np.dtype,
772
+ copy: bool,
773
+ ) -> ArrayLike:
774
+ """
775
+ Convert input to numpy ndarray and optionally cast to a given dtype.
776
+
777
+ Parameters
778
+ ----------
779
+ arr : ndarray or list
780
+ Excludes: ExtensionArray, Series, Index.
781
+ dtype : np.dtype
782
+ copy : bool
783
+ If False, don't copy the data if not needed.
784
+
785
+ Returns
786
+ -------
787
+ np.ndarray or ExtensionArray
788
+ """
789
+ is_ndarray = isinstance(arr, np.ndarray)
790
+
791
+ if dtype == object:
792
+ if not is_ndarray:
793
+ subarr = construct_1d_object_array_from_listlike(arr)
794
+ return subarr
795
+ return ensure_wrapped_if_datetimelike(arr).astype(dtype, copy=copy)
796
+
797
+ elif dtype.kind == "U":
798
+ # TODO: test cases with arr.dtype.kind in "mM"
799
+ if is_ndarray:
800
+ arr = cast(np.ndarray, arr)
801
+ shape = arr.shape
802
+ if arr.ndim > 1:
803
+ arr = arr.ravel()
804
+ else:
805
+ shape = (len(arr),)
806
+ return lib.ensure_string_array(arr, convert_na_value=False, copy=copy).reshape(
807
+ shape
808
+ )
809
+
810
+ elif dtype.kind in "mM":
811
+ return maybe_cast_to_datetime(arr, dtype)
812
+
813
+ # GH#15832: Check if we are requesting a numeric dtype and
814
+ # that we can convert the data to the requested dtype.
815
+ elif dtype.kind in "iu":
816
+ # this will raise if we have e.g. floats
817
+
818
+ subarr = maybe_cast_to_integer_array(arr, dtype)
819
+ elif not copy:
820
+ subarr = np.asarray(arr, dtype=dtype)
821
+ else:
822
+ subarr = np.array(arr, dtype=dtype, copy=copy)
823
+
824
+ return subarr
llmeval-env/lib/python3.10/site-packages/pandas/core/flags.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING
4
+ import weakref
5
+
6
+ if TYPE_CHECKING:
7
+ from pandas.core.generic import NDFrame
8
+
9
+
10
+ class Flags:
11
+ """
12
+ Flags that apply to pandas objects.
13
+
14
+ Parameters
15
+ ----------
16
+ obj : Series or DataFrame
17
+ The object these flags are associated with.
18
+ allows_duplicate_labels : bool, default True
19
+ Whether to allow duplicate labels in this object. By default,
20
+ duplicate labels are permitted. Setting this to ``False`` will
21
+ cause an :class:`errors.DuplicateLabelError` to be raised when
22
+ `index` (or columns for DataFrame) is not unique, or any
23
+ subsequent operation on introduces duplicates.
24
+ See :ref:`duplicates.disallow` for more.
25
+
26
+ .. warning::
27
+
28
+ This is an experimental feature. Currently, many methods fail to
29
+ propagate the ``allows_duplicate_labels`` value. In future versions
30
+ it is expected that every method taking or returning one or more
31
+ DataFrame or Series objects will propagate ``allows_duplicate_labels``.
32
+
33
+ Examples
34
+ --------
35
+ Attributes can be set in two ways:
36
+
37
+ >>> df = pd.DataFrame()
38
+ >>> df.flags
39
+ <Flags(allows_duplicate_labels=True)>
40
+ >>> df.flags.allows_duplicate_labels = False
41
+ >>> df.flags
42
+ <Flags(allows_duplicate_labels=False)>
43
+
44
+ >>> df.flags['allows_duplicate_labels'] = True
45
+ >>> df.flags
46
+ <Flags(allows_duplicate_labels=True)>
47
+ """
48
+
49
+ _keys: set[str] = {"allows_duplicate_labels"}
50
+
51
+ def __init__(self, obj: NDFrame, *, allows_duplicate_labels: bool) -> None:
52
+ self._allows_duplicate_labels = allows_duplicate_labels
53
+ self._obj = weakref.ref(obj)
54
+
55
+ @property
56
+ def allows_duplicate_labels(self) -> bool:
57
+ """
58
+ Whether this object allows duplicate labels.
59
+
60
+ Setting ``allows_duplicate_labels=False`` ensures that the
61
+ index (and columns of a DataFrame) are unique. Most methods
62
+ that accept and return a Series or DataFrame will propagate
63
+ the value of ``allows_duplicate_labels``.
64
+
65
+ See :ref:`duplicates` for more.
66
+
67
+ See Also
68
+ --------
69
+ DataFrame.attrs : Set global metadata on this object.
70
+ DataFrame.set_flags : Set global flags on this object.
71
+
72
+ Examples
73
+ --------
74
+ >>> df = pd.DataFrame({"A": [1, 2]}, index=['a', 'a'])
75
+ >>> df.flags.allows_duplicate_labels
76
+ True
77
+ >>> df.flags.allows_duplicate_labels = False
78
+ Traceback (most recent call last):
79
+ ...
80
+ pandas.errors.DuplicateLabelError: Index has duplicates.
81
+ positions
82
+ label
83
+ a [0, 1]
84
+ """
85
+ return self._allows_duplicate_labels
86
+
87
+ @allows_duplicate_labels.setter
88
+ def allows_duplicate_labels(self, value: bool) -> None:
89
+ value = bool(value)
90
+ obj = self._obj()
91
+ if obj is None:
92
+ raise ValueError("This flag's object has been deleted.")
93
+
94
+ if not value:
95
+ for ax in obj.axes:
96
+ ax._maybe_check_unique()
97
+
98
+ self._allows_duplicate_labels = value
99
+
100
+ def __getitem__(self, key: str):
101
+ if key not in self._keys:
102
+ raise KeyError(key)
103
+
104
+ return getattr(self, key)
105
+
106
+ def __setitem__(self, key: str, value) -> None:
107
+ if key not in self._keys:
108
+ raise ValueError(f"Unknown flag {key}. Must be one of {self._keys}")
109
+ setattr(self, key, value)
110
+
111
+ def __repr__(self) -> str:
112
+ return f"<Flags(allows_duplicate_labels={self.allows_duplicate_labels})>"
113
+
114
+ def __eq__(self, other) -> bool:
115
+ if isinstance(other, type(self)):
116
+ return self.allows_duplicate_labels == other.allows_duplicate_labels
117
+ return False
llmeval-env/lib/python3.10/site-packages/pandas/core/frame.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/pandas/core/generic.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (192 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/accessors.cpython-310.pyc ADDED
Binary file (17.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/api.cpython-310.pyc ADDED
Binary file (10.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/base.cpython-310.pyc ADDED
Binary file (196 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/category.cpython-310.pyc ADDED
Binary file (14.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/datetimelike.cpython-310.pyc ADDED
Binary file (21.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/datetimes.cpython-310.pyc ADDED
Binary file (32.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/extension.cpython-310.pyc ADDED
Binary file (5.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/frozen.cpython-310.pyc ADDED
Binary file (4.11 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/interval.cpython-310.pyc ADDED
Binary file (28.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/multi.cpython-310.pyc ADDED
Binary file (108 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/period.cpython-310.pyc ADDED
Binary file (16.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/range.cpython-310.pyc ADDED
Binary file (29.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/timedeltas.cpython-310.pyc ADDED
Binary file (10.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/accessors.py ADDED
@@ -0,0 +1,643 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ datetimelike delegation
3
+ """
4
+ from __future__ import annotations
5
+
6
+ from typing import (
7
+ TYPE_CHECKING,
8
+ cast,
9
+ )
10
+ import warnings
11
+
12
+ import numpy as np
13
+
14
+ from pandas._libs import lib
15
+ from pandas.util._exceptions import find_stack_level
16
+
17
+ from pandas.core.dtypes.common import (
18
+ is_integer_dtype,
19
+ is_list_like,
20
+ )
21
+ from pandas.core.dtypes.dtypes import (
22
+ ArrowDtype,
23
+ CategoricalDtype,
24
+ DatetimeTZDtype,
25
+ PeriodDtype,
26
+ )
27
+ from pandas.core.dtypes.generic import ABCSeries
28
+
29
+ from pandas.core.accessor import (
30
+ PandasDelegate,
31
+ delegate_names,
32
+ )
33
+ from pandas.core.arrays import (
34
+ DatetimeArray,
35
+ PeriodArray,
36
+ TimedeltaArray,
37
+ )
38
+ from pandas.core.arrays.arrow.array import ArrowExtensionArray
39
+ from pandas.core.base import (
40
+ NoNewAttributesMixin,
41
+ PandasObject,
42
+ )
43
+ from pandas.core.indexes.datetimes import DatetimeIndex
44
+ from pandas.core.indexes.timedeltas import TimedeltaIndex
45
+
46
+ if TYPE_CHECKING:
47
+ from pandas import (
48
+ DataFrame,
49
+ Series,
50
+ )
51
+
52
+
53
+ class Properties(PandasDelegate, PandasObject, NoNewAttributesMixin):
54
+ _hidden_attrs = PandasObject._hidden_attrs | {
55
+ "orig",
56
+ "name",
57
+ }
58
+
59
+ def __init__(self, data: Series, orig) -> None:
60
+ if not isinstance(data, ABCSeries):
61
+ raise TypeError(
62
+ f"cannot convert an object of type {type(data)} to a datetimelike index"
63
+ )
64
+
65
+ self._parent = data
66
+ self.orig = orig
67
+ self.name = getattr(data, "name", None)
68
+ self._freeze()
69
+
70
+ def _get_values(self):
71
+ data = self._parent
72
+ if lib.is_np_dtype(data.dtype, "M"):
73
+ return DatetimeIndex(data, copy=False, name=self.name)
74
+
75
+ elif isinstance(data.dtype, DatetimeTZDtype):
76
+ return DatetimeIndex(data, copy=False, name=self.name)
77
+
78
+ elif lib.is_np_dtype(data.dtype, "m"):
79
+ return TimedeltaIndex(data, copy=False, name=self.name)
80
+
81
+ elif isinstance(data.dtype, PeriodDtype):
82
+ return PeriodArray(data, copy=False)
83
+
84
+ raise TypeError(
85
+ f"cannot convert an object of type {type(data)} to a datetimelike index"
86
+ )
87
+
88
+ def _delegate_property_get(self, name: str):
89
+ from pandas import Series
90
+
91
+ values = self._get_values()
92
+
93
+ result = getattr(values, name)
94
+
95
+ # maybe need to upcast (ints)
96
+ if isinstance(result, np.ndarray):
97
+ if is_integer_dtype(result):
98
+ result = result.astype("int64")
99
+ elif not is_list_like(result):
100
+ return result
101
+
102
+ result = np.asarray(result)
103
+
104
+ if self.orig is not None:
105
+ index = self.orig.index
106
+ else:
107
+ index = self._parent.index
108
+ # return the result as a Series
109
+ result = Series(result, index=index, name=self.name).__finalize__(self._parent)
110
+
111
+ # setting this object will show a SettingWithCopyWarning/Error
112
+ result._is_copy = (
113
+ "modifications to a property of a datetimelike "
114
+ "object are not supported and are discarded. "
115
+ "Change values on the original."
116
+ )
117
+
118
+ return result
119
+
120
+ def _delegate_property_set(self, name: str, value, *args, **kwargs):
121
+ raise ValueError(
122
+ "modifications to a property of a datetimelike object are not supported. "
123
+ "Change values on the original."
124
+ )
125
+
126
+ def _delegate_method(self, name: str, *args, **kwargs):
127
+ from pandas import Series
128
+
129
+ values = self._get_values()
130
+
131
+ method = getattr(values, name)
132
+ result = method(*args, **kwargs)
133
+
134
+ if not is_list_like(result):
135
+ return result
136
+
137
+ result = Series(result, index=self._parent.index, name=self.name).__finalize__(
138
+ self._parent
139
+ )
140
+
141
+ # setting this object will show a SettingWithCopyWarning/Error
142
+ result._is_copy = (
143
+ "modifications to a method of a datetimelike "
144
+ "object are not supported and are discarded. "
145
+ "Change values on the original."
146
+ )
147
+
148
+ return result
149
+
150
+
151
+ @delegate_names(
152
+ delegate=ArrowExtensionArray,
153
+ accessors=TimedeltaArray._datetimelike_ops,
154
+ typ="property",
155
+ accessor_mapping=lambda x: f"_dt_{x}",
156
+ raise_on_missing=False,
157
+ )
158
+ @delegate_names(
159
+ delegate=ArrowExtensionArray,
160
+ accessors=TimedeltaArray._datetimelike_methods,
161
+ typ="method",
162
+ accessor_mapping=lambda x: f"_dt_{x}",
163
+ raise_on_missing=False,
164
+ )
165
+ @delegate_names(
166
+ delegate=ArrowExtensionArray,
167
+ accessors=DatetimeArray._datetimelike_ops,
168
+ typ="property",
169
+ accessor_mapping=lambda x: f"_dt_{x}",
170
+ raise_on_missing=False,
171
+ )
172
+ @delegate_names(
173
+ delegate=ArrowExtensionArray,
174
+ accessors=DatetimeArray._datetimelike_methods,
175
+ typ="method",
176
+ accessor_mapping=lambda x: f"_dt_{x}",
177
+ raise_on_missing=False,
178
+ )
179
+ class ArrowTemporalProperties(PandasDelegate, PandasObject, NoNewAttributesMixin):
180
+ def __init__(self, data: Series, orig) -> None:
181
+ if not isinstance(data, ABCSeries):
182
+ raise TypeError(
183
+ f"cannot convert an object of type {type(data)} to a datetimelike index"
184
+ )
185
+
186
+ self._parent = data
187
+ self._orig = orig
188
+ self._freeze()
189
+
190
+ def _delegate_property_get(self, name: str):
191
+ if not hasattr(self._parent.array, f"_dt_{name}"):
192
+ raise NotImplementedError(
193
+ f"dt.{name} is not supported for {self._parent.dtype}"
194
+ )
195
+ result = getattr(self._parent.array, f"_dt_{name}")
196
+
197
+ if not is_list_like(result):
198
+ return result
199
+
200
+ if self._orig is not None:
201
+ index = self._orig.index
202
+ else:
203
+ index = self._parent.index
204
+ # return the result as a Series, which is by definition a copy
205
+ result = type(self._parent)(
206
+ result, index=index, name=self._parent.name
207
+ ).__finalize__(self._parent)
208
+
209
+ return result
210
+
211
+ def _delegate_method(self, name: str, *args, **kwargs):
212
+ if not hasattr(self._parent.array, f"_dt_{name}"):
213
+ raise NotImplementedError(
214
+ f"dt.{name} is not supported for {self._parent.dtype}"
215
+ )
216
+
217
+ result = getattr(self._parent.array, f"_dt_{name}")(*args, **kwargs)
218
+
219
+ if self._orig is not None:
220
+ index = self._orig.index
221
+ else:
222
+ index = self._parent.index
223
+ # return the result as a Series, which is by definition a copy
224
+ result = type(self._parent)(
225
+ result, index=index, name=self._parent.name
226
+ ).__finalize__(self._parent)
227
+
228
+ return result
229
+
230
+ def to_pytimedelta(self):
231
+ return cast(ArrowExtensionArray, self._parent.array)._dt_to_pytimedelta()
232
+
233
+ def to_pydatetime(self):
234
+ # GH#20306
235
+ warnings.warn(
236
+ f"The behavior of {type(self).__name__}.to_pydatetime is deprecated, "
237
+ "in a future version this will return a Series containing python "
238
+ "datetime objects instead of an ndarray. To retain the old behavior, "
239
+ "call `np.array` on the result",
240
+ FutureWarning,
241
+ stacklevel=find_stack_level(),
242
+ )
243
+ return cast(ArrowExtensionArray, self._parent.array)._dt_to_pydatetime()
244
+
245
+ def isocalendar(self) -> DataFrame:
246
+ from pandas import DataFrame
247
+
248
+ result = (
249
+ cast(ArrowExtensionArray, self._parent.array)
250
+ ._dt_isocalendar()
251
+ ._pa_array.combine_chunks()
252
+ )
253
+ iso_calendar_df = DataFrame(
254
+ {
255
+ col: type(self._parent.array)(result.field(i)) # type: ignore[call-arg]
256
+ for i, col in enumerate(["year", "week", "day"])
257
+ }
258
+ )
259
+ return iso_calendar_df
260
+
261
+ @property
262
+ def components(self) -> DataFrame:
263
+ from pandas import DataFrame
264
+
265
+ components_df = DataFrame(
266
+ {
267
+ col: getattr(self._parent.array, f"_dt_{col}")
268
+ for col in [
269
+ "days",
270
+ "hours",
271
+ "minutes",
272
+ "seconds",
273
+ "milliseconds",
274
+ "microseconds",
275
+ "nanoseconds",
276
+ ]
277
+ }
278
+ )
279
+ return components_df
280
+
281
+
282
+ @delegate_names(
283
+ delegate=DatetimeArray,
284
+ accessors=DatetimeArray._datetimelike_ops + ["unit"],
285
+ typ="property",
286
+ )
287
+ @delegate_names(
288
+ delegate=DatetimeArray,
289
+ accessors=DatetimeArray._datetimelike_methods + ["as_unit"],
290
+ typ="method",
291
+ )
292
+ class DatetimeProperties(Properties):
293
+ """
294
+ Accessor object for datetimelike properties of the Series values.
295
+
296
+ Examples
297
+ --------
298
+ >>> seconds_series = pd.Series(pd.date_range("2000-01-01", periods=3, freq="s"))
299
+ >>> seconds_series
300
+ 0 2000-01-01 00:00:00
301
+ 1 2000-01-01 00:00:01
302
+ 2 2000-01-01 00:00:02
303
+ dtype: datetime64[ns]
304
+ >>> seconds_series.dt.second
305
+ 0 0
306
+ 1 1
307
+ 2 2
308
+ dtype: int32
309
+
310
+ >>> hours_series = pd.Series(pd.date_range("2000-01-01", periods=3, freq="h"))
311
+ >>> hours_series
312
+ 0 2000-01-01 00:00:00
313
+ 1 2000-01-01 01:00:00
314
+ 2 2000-01-01 02:00:00
315
+ dtype: datetime64[ns]
316
+ >>> hours_series.dt.hour
317
+ 0 0
318
+ 1 1
319
+ 2 2
320
+ dtype: int32
321
+
322
+ >>> quarters_series = pd.Series(pd.date_range("2000-01-01", periods=3, freq="QE"))
323
+ >>> quarters_series
324
+ 0 2000-03-31
325
+ 1 2000-06-30
326
+ 2 2000-09-30
327
+ dtype: datetime64[ns]
328
+ >>> quarters_series.dt.quarter
329
+ 0 1
330
+ 1 2
331
+ 2 3
332
+ dtype: int32
333
+
334
+ Returns a Series indexed like the original Series.
335
+ Raises TypeError if the Series does not contain datetimelike values.
336
+ """
337
+
338
+ def to_pydatetime(self) -> np.ndarray:
339
+ """
340
+ Return the data as an array of :class:`datetime.datetime` objects.
341
+
342
+ .. deprecated:: 2.1.0
343
+
344
+ The current behavior of dt.to_pydatetime is deprecated.
345
+ In a future version this will return a Series containing python
346
+ datetime objects instead of a ndarray.
347
+
348
+ Timezone information is retained if present.
349
+
350
+ .. warning::
351
+
352
+ Python's datetime uses microsecond resolution, which is lower than
353
+ pandas (nanosecond). The values are truncated.
354
+
355
+ Returns
356
+ -------
357
+ numpy.ndarray
358
+ Object dtype array containing native Python datetime objects.
359
+
360
+ See Also
361
+ --------
362
+ datetime.datetime : Standard library value for a datetime.
363
+
364
+ Examples
365
+ --------
366
+ >>> s = pd.Series(pd.date_range('20180310', periods=2))
367
+ >>> s
368
+ 0 2018-03-10
369
+ 1 2018-03-11
370
+ dtype: datetime64[ns]
371
+
372
+ >>> s.dt.to_pydatetime()
373
+ array([datetime.datetime(2018, 3, 10, 0, 0),
374
+ datetime.datetime(2018, 3, 11, 0, 0)], dtype=object)
375
+
376
+ pandas' nanosecond precision is truncated to microseconds.
377
+
378
+ >>> s = pd.Series(pd.date_range('20180310', periods=2, freq='ns'))
379
+ >>> s
380
+ 0 2018-03-10 00:00:00.000000000
381
+ 1 2018-03-10 00:00:00.000000001
382
+ dtype: datetime64[ns]
383
+
384
+ >>> s.dt.to_pydatetime()
385
+ array([datetime.datetime(2018, 3, 10, 0, 0),
386
+ datetime.datetime(2018, 3, 10, 0, 0)], dtype=object)
387
+ """
388
+ # GH#20306
389
+ warnings.warn(
390
+ f"The behavior of {type(self).__name__}.to_pydatetime is deprecated, "
391
+ "in a future version this will return a Series containing python "
392
+ "datetime objects instead of an ndarray. To retain the old behavior, "
393
+ "call `np.array` on the result",
394
+ FutureWarning,
395
+ stacklevel=find_stack_level(),
396
+ )
397
+ return self._get_values().to_pydatetime()
398
+
399
+ @property
400
+ def freq(self):
401
+ return self._get_values().inferred_freq
402
+
403
+ def isocalendar(self) -> DataFrame:
404
+ """
405
+ Calculate year, week, and day according to the ISO 8601 standard.
406
+
407
+ Returns
408
+ -------
409
+ DataFrame
410
+ With columns year, week and day.
411
+
412
+ See Also
413
+ --------
414
+ Timestamp.isocalendar : Function return a 3-tuple containing ISO year,
415
+ week number, and weekday for the given Timestamp object.
416
+ datetime.date.isocalendar : Return a named tuple object with
417
+ three components: year, week and weekday.
418
+
419
+ Examples
420
+ --------
421
+ >>> ser = pd.to_datetime(pd.Series(["2010-01-01", pd.NaT]))
422
+ >>> ser.dt.isocalendar()
423
+ year week day
424
+ 0 2009 53 5
425
+ 1 <NA> <NA> <NA>
426
+ >>> ser.dt.isocalendar().week
427
+ 0 53
428
+ 1 <NA>
429
+ Name: week, dtype: UInt32
430
+ """
431
+ return self._get_values().isocalendar().set_index(self._parent.index)
432
+
433
+
434
+ @delegate_names(
435
+ delegate=TimedeltaArray, accessors=TimedeltaArray._datetimelike_ops, typ="property"
436
+ )
437
+ @delegate_names(
438
+ delegate=TimedeltaArray,
439
+ accessors=TimedeltaArray._datetimelike_methods,
440
+ typ="method",
441
+ )
442
+ class TimedeltaProperties(Properties):
443
+ """
444
+ Accessor object for datetimelike properties of the Series values.
445
+
446
+ Returns a Series indexed like the original Series.
447
+ Raises TypeError if the Series does not contain datetimelike values.
448
+
449
+ Examples
450
+ --------
451
+ >>> seconds_series = pd.Series(
452
+ ... pd.timedelta_range(start="1 second", periods=3, freq="s")
453
+ ... )
454
+ >>> seconds_series
455
+ 0 0 days 00:00:01
456
+ 1 0 days 00:00:02
457
+ 2 0 days 00:00:03
458
+ dtype: timedelta64[ns]
459
+ >>> seconds_series.dt.seconds
460
+ 0 1
461
+ 1 2
462
+ 2 3
463
+ dtype: int32
464
+ """
465
+
466
+ def to_pytimedelta(self) -> np.ndarray:
467
+ """
468
+ Return an array of native :class:`datetime.timedelta` objects.
469
+
470
+ Python's standard `datetime` library uses a different representation
471
+ timedelta's. This method converts a Series of pandas Timedeltas
472
+ to `datetime.timedelta` format with the same length as the original
473
+ Series.
474
+
475
+ Returns
476
+ -------
477
+ numpy.ndarray
478
+ Array of 1D containing data with `datetime.timedelta` type.
479
+
480
+ See Also
481
+ --------
482
+ datetime.timedelta : A duration expressing the difference
483
+ between two date, time, or datetime.
484
+
485
+ Examples
486
+ --------
487
+ >>> s = pd.Series(pd.to_timedelta(np.arange(5), unit="d"))
488
+ >>> s
489
+ 0 0 days
490
+ 1 1 days
491
+ 2 2 days
492
+ 3 3 days
493
+ 4 4 days
494
+ dtype: timedelta64[ns]
495
+
496
+ >>> s.dt.to_pytimedelta()
497
+ array([datetime.timedelta(0), datetime.timedelta(days=1),
498
+ datetime.timedelta(days=2), datetime.timedelta(days=3),
499
+ datetime.timedelta(days=4)], dtype=object)
500
+ """
501
+ return self._get_values().to_pytimedelta()
502
+
503
+ @property
504
+ def components(self):
505
+ """
506
+ Return a Dataframe of the components of the Timedeltas.
507
+
508
+ Returns
509
+ -------
510
+ DataFrame
511
+
512
+ Examples
513
+ --------
514
+ >>> s = pd.Series(pd.to_timedelta(np.arange(5), unit='s'))
515
+ >>> s
516
+ 0 0 days 00:00:00
517
+ 1 0 days 00:00:01
518
+ 2 0 days 00:00:02
519
+ 3 0 days 00:00:03
520
+ 4 0 days 00:00:04
521
+ dtype: timedelta64[ns]
522
+ >>> s.dt.components
523
+ days hours minutes seconds milliseconds microseconds nanoseconds
524
+ 0 0 0 0 0 0 0 0
525
+ 1 0 0 0 1 0 0 0
526
+ 2 0 0 0 2 0 0 0
527
+ 3 0 0 0 3 0 0 0
528
+ 4 0 0 0 4 0 0 0
529
+ """
530
+ return (
531
+ self._get_values()
532
+ .components.set_index(self._parent.index)
533
+ .__finalize__(self._parent)
534
+ )
535
+
536
+ @property
537
+ def freq(self):
538
+ return self._get_values().inferred_freq
539
+
540
+
541
+ @delegate_names(
542
+ delegate=PeriodArray, accessors=PeriodArray._datetimelike_ops, typ="property"
543
+ )
544
+ @delegate_names(
545
+ delegate=PeriodArray, accessors=PeriodArray._datetimelike_methods, typ="method"
546
+ )
547
+ class PeriodProperties(Properties):
548
+ """
549
+ Accessor object for datetimelike properties of the Series values.
550
+
551
+ Returns a Series indexed like the original Series.
552
+ Raises TypeError if the Series does not contain datetimelike values.
553
+
554
+ Examples
555
+ --------
556
+ >>> seconds_series = pd.Series(
557
+ ... pd.period_range(
558
+ ... start="2000-01-01 00:00:00", end="2000-01-01 00:00:03", freq="s"
559
+ ... )
560
+ ... )
561
+ >>> seconds_series
562
+ 0 2000-01-01 00:00:00
563
+ 1 2000-01-01 00:00:01
564
+ 2 2000-01-01 00:00:02
565
+ 3 2000-01-01 00:00:03
566
+ dtype: period[s]
567
+ >>> seconds_series.dt.second
568
+ 0 0
569
+ 1 1
570
+ 2 2
571
+ 3 3
572
+ dtype: int64
573
+
574
+ >>> hours_series = pd.Series(
575
+ ... pd.period_range(start="2000-01-01 00:00", end="2000-01-01 03:00", freq="h")
576
+ ... )
577
+ >>> hours_series
578
+ 0 2000-01-01 00:00
579
+ 1 2000-01-01 01:00
580
+ 2 2000-01-01 02:00
581
+ 3 2000-01-01 03:00
582
+ dtype: period[h]
583
+ >>> hours_series.dt.hour
584
+ 0 0
585
+ 1 1
586
+ 2 2
587
+ 3 3
588
+ dtype: int64
589
+
590
+ >>> quarters_series = pd.Series(
591
+ ... pd.period_range(start="2000-01-01", end="2000-12-31", freq="Q-DEC")
592
+ ... )
593
+ >>> quarters_series
594
+ 0 2000Q1
595
+ 1 2000Q2
596
+ 2 2000Q3
597
+ 3 2000Q4
598
+ dtype: period[Q-DEC]
599
+ >>> quarters_series.dt.quarter
600
+ 0 1
601
+ 1 2
602
+ 2 3
603
+ 3 4
604
+ dtype: int64
605
+ """
606
+
607
+
608
+ class CombinedDatetimelikeProperties(
609
+ DatetimeProperties, TimedeltaProperties, PeriodProperties
610
+ ):
611
+ def __new__(cls, data: Series): # pyright: ignore[reportInconsistentConstructor]
612
+ # CombinedDatetimelikeProperties isn't really instantiated. Instead
613
+ # we need to choose which parent (datetime or timedelta) is
614
+ # appropriate. Since we're checking the dtypes anyway, we'll just
615
+ # do all the validation here.
616
+
617
+ if not isinstance(data, ABCSeries):
618
+ raise TypeError(
619
+ f"cannot convert an object of type {type(data)} to a datetimelike index"
620
+ )
621
+
622
+ orig = data if isinstance(data.dtype, CategoricalDtype) else None
623
+ if orig is not None:
624
+ data = data._constructor(
625
+ orig.array,
626
+ name=orig.name,
627
+ copy=False,
628
+ dtype=orig._values.categories.dtype,
629
+ index=orig.index,
630
+ )
631
+
632
+ if isinstance(data.dtype, ArrowDtype) and data.dtype.kind in "Mm":
633
+ return ArrowTemporalProperties(data, orig)
634
+ if lib.is_np_dtype(data.dtype, "M"):
635
+ return DatetimeProperties(data, orig)
636
+ elif isinstance(data.dtype, DatetimeTZDtype):
637
+ return DatetimeProperties(data, orig)
638
+ elif lib.is_np_dtype(data.dtype, "m"):
639
+ return TimedeltaProperties(data, orig)
640
+ elif isinstance(data.dtype, PeriodDtype):
641
+ return PeriodProperties(data, orig)
642
+
643
+ raise AttributeError("Can only use .dt accessor with datetimelike values")
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/api.py ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import textwrap
4
+ from typing import (
5
+ TYPE_CHECKING,
6
+ cast,
7
+ )
8
+
9
+ import numpy as np
10
+
11
+ from pandas._libs import (
12
+ NaT,
13
+ lib,
14
+ )
15
+ from pandas.errors import InvalidIndexError
16
+
17
+ from pandas.core.dtypes.cast import find_common_type
18
+
19
+ from pandas.core.algorithms import safe_sort
20
+ from pandas.core.indexes.base import (
21
+ Index,
22
+ _new_Index,
23
+ ensure_index,
24
+ ensure_index_from_sequences,
25
+ get_unanimous_names,
26
+ )
27
+ from pandas.core.indexes.category import CategoricalIndex
28
+ from pandas.core.indexes.datetimes import DatetimeIndex
29
+ from pandas.core.indexes.interval import IntervalIndex
30
+ from pandas.core.indexes.multi import MultiIndex
31
+ from pandas.core.indexes.period import PeriodIndex
32
+ from pandas.core.indexes.range import RangeIndex
33
+ from pandas.core.indexes.timedeltas import TimedeltaIndex
34
+
35
+ if TYPE_CHECKING:
36
+ from pandas._typing import Axis
37
+ _sort_msg = textwrap.dedent(
38
+ """\
39
+ Sorting because non-concatenation axis is not aligned. A future version
40
+ of pandas will change to not sort by default.
41
+
42
+ To accept the future behavior, pass 'sort=False'.
43
+
44
+ To retain the current behavior and silence the warning, pass 'sort=True'.
45
+ """
46
+ )
47
+
48
+
49
+ __all__ = [
50
+ "Index",
51
+ "MultiIndex",
52
+ "CategoricalIndex",
53
+ "IntervalIndex",
54
+ "RangeIndex",
55
+ "InvalidIndexError",
56
+ "TimedeltaIndex",
57
+ "PeriodIndex",
58
+ "DatetimeIndex",
59
+ "_new_Index",
60
+ "NaT",
61
+ "ensure_index",
62
+ "ensure_index_from_sequences",
63
+ "get_objs_combined_axis",
64
+ "union_indexes",
65
+ "get_unanimous_names",
66
+ "all_indexes_same",
67
+ "default_index",
68
+ "safe_sort_index",
69
+ ]
70
+
71
+
72
+ def get_objs_combined_axis(
73
+ objs,
74
+ intersect: bool = False,
75
+ axis: Axis = 0,
76
+ sort: bool = True,
77
+ copy: bool = False,
78
+ ) -> Index:
79
+ """
80
+ Extract combined index: return intersection or union (depending on the
81
+ value of "intersect") of indexes on given axis, or None if all objects
82
+ lack indexes (e.g. they are numpy arrays).
83
+
84
+ Parameters
85
+ ----------
86
+ objs : list
87
+ Series or DataFrame objects, may be mix of the two.
88
+ intersect : bool, default False
89
+ If True, calculate the intersection between indexes. Otherwise,
90
+ calculate the union.
91
+ axis : {0 or 'index', 1 or 'outer'}, default 0
92
+ The axis to extract indexes from.
93
+ sort : bool, default True
94
+ Whether the result index should come out sorted or not.
95
+ copy : bool, default False
96
+ If True, return a copy of the combined index.
97
+
98
+ Returns
99
+ -------
100
+ Index
101
+ """
102
+ obs_idxes = [obj._get_axis(axis) for obj in objs]
103
+ return _get_combined_index(obs_idxes, intersect=intersect, sort=sort, copy=copy)
104
+
105
+
106
+ def _get_distinct_objs(objs: list[Index]) -> list[Index]:
107
+ """
108
+ Return a list with distinct elements of "objs" (different ids).
109
+ Preserves order.
110
+ """
111
+ ids: set[int] = set()
112
+ res = []
113
+ for obj in objs:
114
+ if id(obj) not in ids:
115
+ ids.add(id(obj))
116
+ res.append(obj)
117
+ return res
118
+
119
+
120
+ def _get_combined_index(
121
+ indexes: list[Index],
122
+ intersect: bool = False,
123
+ sort: bool = False,
124
+ copy: bool = False,
125
+ ) -> Index:
126
+ """
127
+ Return the union or intersection of indexes.
128
+
129
+ Parameters
130
+ ----------
131
+ indexes : list of Index or list objects
132
+ When intersect=True, do not accept list of lists.
133
+ intersect : bool, default False
134
+ If True, calculate the intersection between indexes. Otherwise,
135
+ calculate the union.
136
+ sort : bool, default False
137
+ Whether the result index should come out sorted or not.
138
+ copy : bool, default False
139
+ If True, return a copy of the combined index.
140
+
141
+ Returns
142
+ -------
143
+ Index
144
+ """
145
+ # TODO: handle index names!
146
+ indexes = _get_distinct_objs(indexes)
147
+ if len(indexes) == 0:
148
+ index = Index([])
149
+ elif len(indexes) == 1:
150
+ index = indexes[0]
151
+ elif intersect:
152
+ index = indexes[0]
153
+ for other in indexes[1:]:
154
+ index = index.intersection(other)
155
+ else:
156
+ index = union_indexes(indexes, sort=False)
157
+ index = ensure_index(index)
158
+
159
+ if sort:
160
+ index = safe_sort_index(index)
161
+ # GH 29879
162
+ if copy:
163
+ index = index.copy()
164
+
165
+ return index
166
+
167
+
168
+ def safe_sort_index(index: Index) -> Index:
169
+ """
170
+ Returns the sorted index
171
+
172
+ We keep the dtypes and the name attributes.
173
+
174
+ Parameters
175
+ ----------
176
+ index : an Index
177
+
178
+ Returns
179
+ -------
180
+ Index
181
+ """
182
+ if index.is_monotonic_increasing:
183
+ return index
184
+
185
+ try:
186
+ array_sorted = safe_sort(index)
187
+ except TypeError:
188
+ pass
189
+ else:
190
+ if isinstance(array_sorted, Index):
191
+ return array_sorted
192
+
193
+ array_sorted = cast(np.ndarray, array_sorted)
194
+ if isinstance(index, MultiIndex):
195
+ index = MultiIndex.from_tuples(array_sorted, names=index.names)
196
+ else:
197
+ index = Index(array_sorted, name=index.name, dtype=index.dtype)
198
+
199
+ return index
200
+
201
+
202
+ def union_indexes(indexes, sort: bool | None = True) -> Index:
203
+ """
204
+ Return the union of indexes.
205
+
206
+ The behavior of sort and names is not consistent.
207
+
208
+ Parameters
209
+ ----------
210
+ indexes : list of Index or list objects
211
+ sort : bool, default True
212
+ Whether the result index should come out sorted or not.
213
+
214
+ Returns
215
+ -------
216
+ Index
217
+ """
218
+ if len(indexes) == 0:
219
+ raise AssertionError("Must have at least 1 Index to union")
220
+ if len(indexes) == 1:
221
+ result = indexes[0]
222
+ if isinstance(result, list):
223
+ if not sort:
224
+ result = Index(result)
225
+ else:
226
+ result = Index(sorted(result))
227
+ return result
228
+
229
+ indexes, kind = _sanitize_and_check(indexes)
230
+
231
+ def _unique_indices(inds, dtype) -> Index:
232
+ """
233
+ Concatenate indices and remove duplicates.
234
+
235
+ Parameters
236
+ ----------
237
+ inds : list of Index or list objects
238
+ dtype : dtype to set for the resulting Index
239
+
240
+ Returns
241
+ -------
242
+ Index
243
+ """
244
+ if all(isinstance(ind, Index) for ind in inds):
245
+ inds = [ind.astype(dtype, copy=False) for ind in inds]
246
+ result = inds[0].unique()
247
+ other = inds[1].append(inds[2:])
248
+ diff = other[result.get_indexer_for(other) == -1]
249
+ if len(diff):
250
+ result = result.append(diff.unique())
251
+ if sort:
252
+ result = result.sort_values()
253
+ return result
254
+
255
+ def conv(i):
256
+ if isinstance(i, Index):
257
+ i = i.tolist()
258
+ return i
259
+
260
+ return Index(
261
+ lib.fast_unique_multiple_list([conv(i) for i in inds], sort=sort),
262
+ dtype=dtype,
263
+ )
264
+
265
+ def _find_common_index_dtype(inds):
266
+ """
267
+ Finds a common type for the indexes to pass through to resulting index.
268
+
269
+ Parameters
270
+ ----------
271
+ inds: list of Index or list objects
272
+
273
+ Returns
274
+ -------
275
+ The common type or None if no indexes were given
276
+ """
277
+ dtypes = [idx.dtype for idx in indexes if isinstance(idx, Index)]
278
+ if dtypes:
279
+ dtype = find_common_type(dtypes)
280
+ else:
281
+ dtype = None
282
+
283
+ return dtype
284
+
285
+ if kind == "special":
286
+ result = indexes[0]
287
+
288
+ dtis = [x for x in indexes if isinstance(x, DatetimeIndex)]
289
+ dti_tzs = [x for x in dtis if x.tz is not None]
290
+ if len(dti_tzs) not in [0, len(dtis)]:
291
+ # TODO: this behavior is not tested (so may not be desired),
292
+ # but is kept in order to keep behavior the same when
293
+ # deprecating union_many
294
+ # test_frame_from_dict_with_mixed_indexes
295
+ raise TypeError("Cannot join tz-naive with tz-aware DatetimeIndex")
296
+
297
+ if len(dtis) == len(indexes):
298
+ sort = True
299
+ result = indexes[0]
300
+
301
+ elif len(dtis) > 1:
302
+ # If we have mixed timezones, our casting behavior may depend on
303
+ # the order of indexes, which we don't want.
304
+ sort = False
305
+
306
+ # TODO: what about Categorical[dt64]?
307
+ # test_frame_from_dict_with_mixed_indexes
308
+ indexes = [x.astype(object, copy=False) for x in indexes]
309
+ result = indexes[0]
310
+
311
+ for other in indexes[1:]:
312
+ result = result.union(other, sort=None if sort else False)
313
+ return result
314
+
315
+ elif kind == "array":
316
+ dtype = _find_common_index_dtype(indexes)
317
+ index = indexes[0]
318
+ if not all(index.equals(other) for other in indexes[1:]):
319
+ index = _unique_indices(indexes, dtype)
320
+
321
+ name = get_unanimous_names(*indexes)[0]
322
+ if name != index.name:
323
+ index = index.rename(name)
324
+ return index
325
+ else: # kind='list'
326
+ dtype = _find_common_index_dtype(indexes)
327
+ return _unique_indices(indexes, dtype)
328
+
329
+
330
+ def _sanitize_and_check(indexes):
331
+ """
332
+ Verify the type of indexes and convert lists to Index.
333
+
334
+ Cases:
335
+
336
+ - [list, list, ...]: Return ([list, list, ...], 'list')
337
+ - [list, Index, ...]: Return _sanitize_and_check([Index, Index, ...])
338
+ Lists are sorted and converted to Index.
339
+ - [Index, Index, ...]: Return ([Index, Index, ...], TYPE)
340
+ TYPE = 'special' if at least one special type, 'array' otherwise.
341
+
342
+ Parameters
343
+ ----------
344
+ indexes : list of Index or list objects
345
+
346
+ Returns
347
+ -------
348
+ sanitized_indexes : list of Index or list objects
349
+ type : {'list', 'array', 'special'}
350
+ """
351
+ kinds = list({type(index) for index in indexes})
352
+
353
+ if list in kinds:
354
+ if len(kinds) > 1:
355
+ indexes = [
356
+ Index(list(x)) if not isinstance(x, Index) else x for x in indexes
357
+ ]
358
+ kinds.remove(list)
359
+ else:
360
+ return indexes, "list"
361
+
362
+ if len(kinds) > 1 or Index not in kinds:
363
+ return indexes, "special"
364
+ else:
365
+ return indexes, "array"
366
+
367
+
368
+ def all_indexes_same(indexes) -> bool:
369
+ """
370
+ Determine if all indexes contain the same elements.
371
+
372
+ Parameters
373
+ ----------
374
+ indexes : iterable of Index objects
375
+
376
+ Returns
377
+ -------
378
+ bool
379
+ True if all indexes contain the same elements, False otherwise.
380
+ """
381
+ itr = iter(indexes)
382
+ first = next(itr)
383
+ return all(first.equals(index) for index in itr)
384
+
385
+
386
+ def default_index(n: int) -> RangeIndex:
387
+ rng = range(n)
388
+ return RangeIndex._simple_new(rng, name=None)
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/base.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/category.py ADDED
@@ -0,0 +1,513 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import (
4
+ TYPE_CHECKING,
5
+ Any,
6
+ Literal,
7
+ cast,
8
+ )
9
+
10
+ import numpy as np
11
+
12
+ from pandas._libs import index as libindex
13
+ from pandas.util._decorators import (
14
+ cache_readonly,
15
+ doc,
16
+ )
17
+
18
+ from pandas.core.dtypes.common import is_scalar
19
+ from pandas.core.dtypes.concat import concat_compat
20
+ from pandas.core.dtypes.dtypes import CategoricalDtype
21
+ from pandas.core.dtypes.missing import (
22
+ is_valid_na_for_dtype,
23
+ isna,
24
+ )
25
+
26
+ from pandas.core.arrays.categorical import (
27
+ Categorical,
28
+ contains,
29
+ )
30
+ from pandas.core.construction import extract_array
31
+ from pandas.core.indexes.base import (
32
+ Index,
33
+ maybe_extract_name,
34
+ )
35
+ from pandas.core.indexes.extension import (
36
+ NDArrayBackedExtensionIndex,
37
+ inherit_names,
38
+ )
39
+
40
+ if TYPE_CHECKING:
41
+ from collections.abc import Hashable
42
+
43
+ from pandas._typing import (
44
+ Dtype,
45
+ DtypeObj,
46
+ Self,
47
+ npt,
48
+ )
49
+
50
+
51
+ @inherit_names(
52
+ [
53
+ "argsort",
54
+ "tolist",
55
+ "codes",
56
+ "categories",
57
+ "ordered",
58
+ "_reverse_indexer",
59
+ "searchsorted",
60
+ "min",
61
+ "max",
62
+ ],
63
+ Categorical,
64
+ )
65
+ @inherit_names(
66
+ [
67
+ "rename_categories",
68
+ "reorder_categories",
69
+ "add_categories",
70
+ "remove_categories",
71
+ "remove_unused_categories",
72
+ "set_categories",
73
+ "as_ordered",
74
+ "as_unordered",
75
+ ],
76
+ Categorical,
77
+ wrap=True,
78
+ )
79
+ class CategoricalIndex(NDArrayBackedExtensionIndex):
80
+ """
81
+ Index based on an underlying :class:`Categorical`.
82
+
83
+ CategoricalIndex, like Categorical, can only take on a limited,
84
+ and usually fixed, number of possible values (`categories`). Also,
85
+ like Categorical, it might have an order, but numerical operations
86
+ (additions, divisions, ...) are not possible.
87
+
88
+ Parameters
89
+ ----------
90
+ data : array-like (1-dimensional)
91
+ The values of the categorical. If `categories` are given, values not in
92
+ `categories` will be replaced with NaN.
93
+ categories : index-like, optional
94
+ The categories for the categorical. Items need to be unique.
95
+ If the categories are not given here (and also not in `dtype`), they
96
+ will be inferred from the `data`.
97
+ ordered : bool, optional
98
+ Whether or not this categorical is treated as an ordered
99
+ categorical. If not given here or in `dtype`, the resulting
100
+ categorical will be unordered.
101
+ dtype : CategoricalDtype or "category", optional
102
+ If :class:`CategoricalDtype`, cannot be used together with
103
+ `categories` or `ordered`.
104
+ copy : bool, default False
105
+ Make a copy of input ndarray.
106
+ name : object, optional
107
+ Name to be stored in the index.
108
+
109
+ Attributes
110
+ ----------
111
+ codes
112
+ categories
113
+ ordered
114
+
115
+ Methods
116
+ -------
117
+ rename_categories
118
+ reorder_categories
119
+ add_categories
120
+ remove_categories
121
+ remove_unused_categories
122
+ set_categories
123
+ as_ordered
124
+ as_unordered
125
+ map
126
+
127
+ Raises
128
+ ------
129
+ ValueError
130
+ If the categories do not validate.
131
+ TypeError
132
+ If an explicit ``ordered=True`` is given but no `categories` and the
133
+ `values` are not sortable.
134
+
135
+ See Also
136
+ --------
137
+ Index : The base pandas Index type.
138
+ Categorical : A categorical array.
139
+ CategoricalDtype : Type for categorical data.
140
+
141
+ Notes
142
+ -----
143
+ See the `user guide
144
+ <https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#categoricalindex>`__
145
+ for more.
146
+
147
+ Examples
148
+ --------
149
+ >>> pd.CategoricalIndex(["a", "b", "c", "a", "b", "c"])
150
+ CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'],
151
+ categories=['a', 'b', 'c'], ordered=False, dtype='category')
152
+
153
+ ``CategoricalIndex`` can also be instantiated from a ``Categorical``:
154
+
155
+ >>> c = pd.Categorical(["a", "b", "c", "a", "b", "c"])
156
+ >>> pd.CategoricalIndex(c)
157
+ CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'],
158
+ categories=['a', 'b', 'c'], ordered=False, dtype='category')
159
+
160
+ Ordered ``CategoricalIndex`` can have a min and max value.
161
+
162
+ >>> ci = pd.CategoricalIndex(
163
+ ... ["a", "b", "c", "a", "b", "c"], ordered=True, categories=["c", "b", "a"]
164
+ ... )
165
+ >>> ci
166
+ CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'],
167
+ categories=['c', 'b', 'a'], ordered=True, dtype='category')
168
+ >>> ci.min()
169
+ 'c'
170
+ """
171
+
172
+ _typ = "categoricalindex"
173
+ _data_cls = Categorical
174
+
175
+ @property
176
+ def _can_hold_strings(self):
177
+ return self.categories._can_hold_strings
178
+
179
+ @cache_readonly
180
+ def _should_fallback_to_positional(self) -> bool:
181
+ return self.categories._should_fallback_to_positional
182
+
183
+ codes: np.ndarray
184
+ categories: Index
185
+ ordered: bool | None
186
+ _data: Categorical
187
+ _values: Categorical
188
+
189
+ @property
190
+ def _engine_type(self) -> type[libindex.IndexEngine]:
191
+ # self.codes can have dtype int8, int16, int32 or int64, so we need
192
+ # to return the corresponding engine type (libindex.Int8Engine, etc.).
193
+ return {
194
+ np.int8: libindex.Int8Engine,
195
+ np.int16: libindex.Int16Engine,
196
+ np.int32: libindex.Int32Engine,
197
+ np.int64: libindex.Int64Engine,
198
+ }[self.codes.dtype.type]
199
+
200
+ # --------------------------------------------------------------------
201
+ # Constructors
202
+
203
+ def __new__(
204
+ cls,
205
+ data=None,
206
+ categories=None,
207
+ ordered=None,
208
+ dtype: Dtype | None = None,
209
+ copy: bool = False,
210
+ name: Hashable | None = None,
211
+ ) -> Self:
212
+ name = maybe_extract_name(name, data, cls)
213
+
214
+ if is_scalar(data):
215
+ # GH#38944 include None here, which pre-2.0 subbed in []
216
+ cls._raise_scalar_data_error(data)
217
+
218
+ data = Categorical(
219
+ data, categories=categories, ordered=ordered, dtype=dtype, copy=copy
220
+ )
221
+
222
+ return cls._simple_new(data, name=name)
223
+
224
+ # --------------------------------------------------------------------
225
+
226
+ def _is_dtype_compat(self, other: Index) -> Categorical:
227
+ """
228
+ *this is an internal non-public method*
229
+
230
+ provide a comparison between the dtype of self and other (coercing if
231
+ needed)
232
+
233
+ Parameters
234
+ ----------
235
+ other : Index
236
+
237
+ Returns
238
+ -------
239
+ Categorical
240
+
241
+ Raises
242
+ ------
243
+ TypeError if the dtypes are not compatible
244
+ """
245
+ if isinstance(other.dtype, CategoricalDtype):
246
+ cat = extract_array(other)
247
+ cat = cast(Categorical, cat)
248
+ if not cat._categories_match_up_to_permutation(self._values):
249
+ raise TypeError(
250
+ "categories must match existing categories when appending"
251
+ )
252
+
253
+ elif other._is_multi:
254
+ # preempt raising NotImplementedError in isna call
255
+ raise TypeError("MultiIndex is not dtype-compatible with CategoricalIndex")
256
+ else:
257
+ values = other
258
+
259
+ cat = Categorical(other, dtype=self.dtype)
260
+ other = CategoricalIndex(cat)
261
+ if not other.isin(values).all():
262
+ raise TypeError(
263
+ "cannot append a non-category item to a CategoricalIndex"
264
+ )
265
+ cat = other._values
266
+
267
+ if not ((cat == values) | (isna(cat) & isna(values))).all():
268
+ # GH#37667 see test_equals_non_category
269
+ raise TypeError(
270
+ "categories must match existing categories when appending"
271
+ )
272
+
273
+ return cat
274
+
275
+ def equals(self, other: object) -> bool:
276
+ """
277
+ Determine if two CategoricalIndex objects contain the same elements.
278
+
279
+ Returns
280
+ -------
281
+ bool
282
+ ``True`` if two :class:`pandas.CategoricalIndex` objects have equal
283
+ elements, ``False`` otherwise.
284
+
285
+ Examples
286
+ --------
287
+ >>> ci = pd.CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'])
288
+ >>> ci2 = pd.CategoricalIndex(pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']))
289
+ >>> ci.equals(ci2)
290
+ True
291
+
292
+ The order of elements matters.
293
+
294
+ >>> ci3 = pd.CategoricalIndex(['c', 'b', 'a', 'a', 'b', 'c'])
295
+ >>> ci.equals(ci3)
296
+ False
297
+
298
+ The orderedness also matters.
299
+
300
+ >>> ci4 = ci.as_ordered()
301
+ >>> ci.equals(ci4)
302
+ False
303
+
304
+ The categories matter, but the order of the categories matters only when
305
+ ``ordered=True``.
306
+
307
+ >>> ci5 = ci.set_categories(['a', 'b', 'c', 'd'])
308
+ >>> ci.equals(ci5)
309
+ False
310
+
311
+ >>> ci6 = ci.set_categories(['b', 'c', 'a'])
312
+ >>> ci.equals(ci6)
313
+ True
314
+ >>> ci_ordered = pd.CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'],
315
+ ... ordered=True)
316
+ >>> ci2_ordered = ci_ordered.set_categories(['b', 'c', 'a'])
317
+ >>> ci_ordered.equals(ci2_ordered)
318
+ False
319
+ """
320
+ if self.is_(other):
321
+ return True
322
+
323
+ if not isinstance(other, Index):
324
+ return False
325
+
326
+ try:
327
+ other = self._is_dtype_compat(other)
328
+ except (TypeError, ValueError):
329
+ return False
330
+
331
+ return self._data.equals(other)
332
+
333
+ # --------------------------------------------------------------------
334
+ # Rendering Methods
335
+
336
+ @property
337
+ def _formatter_func(self):
338
+ return self.categories._formatter_func
339
+
340
+ def _format_attrs(self):
341
+ """
342
+ Return a list of tuples of the (attr,formatted_value)
343
+ """
344
+ attrs: list[tuple[str, str | int | bool | None]]
345
+
346
+ attrs = [
347
+ (
348
+ "categories",
349
+ f"[{', '.join(self._data._repr_categories())}]",
350
+ ),
351
+ ("ordered", self.ordered),
352
+ ]
353
+ extra = super()._format_attrs()
354
+ return attrs + extra
355
+
356
+ # --------------------------------------------------------------------
357
+
358
+ @property
359
+ def inferred_type(self) -> str:
360
+ return "categorical"
361
+
362
+ @doc(Index.__contains__)
363
+ def __contains__(self, key: Any) -> bool:
364
+ # if key is a NaN, check if any NaN is in self.
365
+ if is_valid_na_for_dtype(key, self.categories.dtype):
366
+ return self.hasnans
367
+
368
+ return contains(self, key, container=self._engine)
369
+
370
+ def reindex(
371
+ self, target, method=None, level=None, limit: int | None = None, tolerance=None
372
+ ) -> tuple[Index, npt.NDArray[np.intp] | None]:
373
+ """
374
+ Create index with target's values (move/add/delete values as necessary)
375
+
376
+ Returns
377
+ -------
378
+ new_index : pd.Index
379
+ Resulting index
380
+ indexer : np.ndarray[np.intp] or None
381
+ Indices of output values in original index
382
+
383
+ """
384
+ if method is not None:
385
+ raise NotImplementedError(
386
+ "argument method is not implemented for CategoricalIndex.reindex"
387
+ )
388
+ if level is not None:
389
+ raise NotImplementedError(
390
+ "argument level is not implemented for CategoricalIndex.reindex"
391
+ )
392
+ if limit is not None:
393
+ raise NotImplementedError(
394
+ "argument limit is not implemented for CategoricalIndex.reindex"
395
+ )
396
+ return super().reindex(target)
397
+
398
+ # --------------------------------------------------------------------
399
+ # Indexing Methods
400
+
401
+ def _maybe_cast_indexer(self, key) -> int:
402
+ # GH#41933: we have to do this instead of self._data._validate_scalar
403
+ # because this will correctly get partial-indexing on Interval categories
404
+ try:
405
+ return self._data._unbox_scalar(key)
406
+ except KeyError:
407
+ if is_valid_na_for_dtype(key, self.categories.dtype):
408
+ return -1
409
+ raise
410
+
411
+ def _maybe_cast_listlike_indexer(self, values) -> CategoricalIndex:
412
+ if isinstance(values, CategoricalIndex):
413
+ values = values._data
414
+ if isinstance(values, Categorical):
415
+ # Indexing on codes is more efficient if categories are the same,
416
+ # so we can apply some optimizations based on the degree of
417
+ # dtype-matching.
418
+ cat = self._data._encode_with_my_categories(values)
419
+ codes = cat._codes
420
+ else:
421
+ codes = self.categories.get_indexer(values)
422
+ codes = codes.astype(self.codes.dtype, copy=False)
423
+ cat = self._data._from_backing_data(codes)
424
+ return type(self)._simple_new(cat)
425
+
426
+ # --------------------------------------------------------------------
427
+
428
+ def _is_comparable_dtype(self, dtype: DtypeObj) -> bool:
429
+ return self.categories._is_comparable_dtype(dtype)
430
+
431
+ def map(self, mapper, na_action: Literal["ignore"] | None = None):
432
+ """
433
+ Map values using input an input mapping or function.
434
+
435
+ Maps the values (their categories, not the codes) of the index to new
436
+ categories. If the mapping correspondence is one-to-one the result is a
437
+ :class:`~pandas.CategoricalIndex` which has the same order property as
438
+ the original, otherwise an :class:`~pandas.Index` is returned.
439
+
440
+ If a `dict` or :class:`~pandas.Series` is used any unmapped category is
441
+ mapped to `NaN`. Note that if this happens an :class:`~pandas.Index`
442
+ will be returned.
443
+
444
+ Parameters
445
+ ----------
446
+ mapper : function, dict, or Series
447
+ Mapping correspondence.
448
+
449
+ Returns
450
+ -------
451
+ pandas.CategoricalIndex or pandas.Index
452
+ Mapped index.
453
+
454
+ See Also
455
+ --------
456
+ Index.map : Apply a mapping correspondence on an
457
+ :class:`~pandas.Index`.
458
+ Series.map : Apply a mapping correspondence on a
459
+ :class:`~pandas.Series`.
460
+ Series.apply : Apply more complex functions on a
461
+ :class:`~pandas.Series`.
462
+
463
+ Examples
464
+ --------
465
+ >>> idx = pd.CategoricalIndex(['a', 'b', 'c'])
466
+ >>> idx
467
+ CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'],
468
+ ordered=False, dtype='category')
469
+ >>> idx.map(lambda x: x.upper())
470
+ CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'],
471
+ ordered=False, dtype='category')
472
+ >>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'})
473
+ CategoricalIndex(['first', 'second', 'third'], categories=['first',
474
+ 'second', 'third'], ordered=False, dtype='category')
475
+
476
+ If the mapping is one-to-one the ordering of the categories is
477
+ preserved:
478
+
479
+ >>> idx = pd.CategoricalIndex(['a', 'b', 'c'], ordered=True)
480
+ >>> idx
481
+ CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'],
482
+ ordered=True, dtype='category')
483
+ >>> idx.map({'a': 3, 'b': 2, 'c': 1})
484
+ CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True,
485
+ dtype='category')
486
+
487
+ If the mapping is not one-to-one an :class:`~pandas.Index` is returned:
488
+
489
+ >>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'})
490
+ Index(['first', 'second', 'first'], dtype='object')
491
+
492
+ If a `dict` is used, all unmapped categories are mapped to `NaN` and
493
+ the result is an :class:`~pandas.Index`:
494
+
495
+ >>> idx.map({'a': 'first', 'b': 'second'})
496
+ Index(['first', 'second', nan], dtype='object')
497
+ """
498
+ mapped = self._values.map(mapper, na_action=na_action)
499
+ return Index(mapped, name=self.name)
500
+
501
+ def _concat(self, to_concat: list[Index], name: Hashable) -> Index:
502
+ # if calling index is category, don't check dtype of others
503
+ try:
504
+ cat = Categorical._concat_same_type(
505
+ [self._is_dtype_compat(c) for c in to_concat]
506
+ )
507
+ except TypeError:
508
+ # not all to_concat elements are among our categories (or NA)
509
+
510
+ res = concat_compat([x._values for x in to_concat])
511
+ return Index(res, name=name)
512
+ else:
513
+ return type(self)._simple_new(cat, name=name)
llmeval-env/lib/python3.10/site-packages/pandas/core/indexes/datetimelike.py ADDED
@@ -0,0 +1,843 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Base and utility classes for tseries type pandas objects.
3
+ """
4
+ from __future__ import annotations
5
+
6
+ from abc import (
7
+ ABC,
8
+ abstractmethod,
9
+ )
10
+ from typing import (
11
+ TYPE_CHECKING,
12
+ Any,
13
+ Callable,
14
+ cast,
15
+ final,
16
+ )
17
+ import warnings
18
+
19
+ import numpy as np
20
+
21
+ from pandas._config import using_copy_on_write
22
+
23
+ from pandas._libs import (
24
+ NaT,
25
+ Timedelta,
26
+ lib,
27
+ )
28
+ from pandas._libs.tslibs import (
29
+ BaseOffset,
30
+ Resolution,
31
+ Tick,
32
+ parsing,
33
+ to_offset,
34
+ )
35
+ from pandas._libs.tslibs.dtypes import freq_to_period_freqstr
36
+ from pandas.compat.numpy import function as nv
37
+ from pandas.errors import (
38
+ InvalidIndexError,
39
+ NullFrequencyError,
40
+ )
41
+ from pandas.util._decorators import (
42
+ Appender,
43
+ cache_readonly,
44
+ doc,
45
+ )
46
+ from pandas.util._exceptions import find_stack_level
47
+
48
+ from pandas.core.dtypes.common import (
49
+ is_integer,
50
+ is_list_like,
51
+ )
52
+ from pandas.core.dtypes.concat import concat_compat
53
+ from pandas.core.dtypes.dtypes import CategoricalDtype
54
+
55
+ from pandas.core.arrays import (
56
+ DatetimeArray,
57
+ ExtensionArray,
58
+ PeriodArray,
59
+ TimedeltaArray,
60
+ )
61
+ from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin
62
+ import pandas.core.common as com
63
+ import pandas.core.indexes.base as ibase
64
+ from pandas.core.indexes.base import (
65
+ Index,
66
+ _index_shared_docs,
67
+ )
68
+ from pandas.core.indexes.extension import NDArrayBackedExtensionIndex
69
+ from pandas.core.indexes.range import RangeIndex
70
+ from pandas.core.tools.timedeltas import to_timedelta
71
+
72
+ if TYPE_CHECKING:
73
+ from collections.abc import Sequence
74
+ from datetime import datetime
75
+
76
+ from pandas._typing import (
77
+ Axis,
78
+ Self,
79
+ npt,
80
+ )
81
+
82
+ from pandas import CategoricalIndex
83
+
84
+ _index_doc_kwargs = dict(ibase._index_doc_kwargs)
85
+
86
+
87
+ class DatetimeIndexOpsMixin(NDArrayBackedExtensionIndex, ABC):
88
+ """
89
+ Common ops mixin to support a unified interface datetimelike Index.
90
+ """
91
+
92
+ _can_hold_strings = False
93
+ _data: DatetimeArray | TimedeltaArray | PeriodArray
94
+
95
+ @doc(DatetimeLikeArrayMixin.mean)
96
+ def mean(self, *, skipna: bool = True, axis: int | None = 0):
97
+ return self._data.mean(skipna=skipna, axis=axis)
98
+
99
+ @property
100
+ def freq(self) -> BaseOffset | None:
101
+ return self._data.freq
102
+
103
+ @freq.setter
104
+ def freq(self, value) -> None:
105
+ # error: Property "freq" defined in "PeriodArray" is read-only [misc]
106
+ self._data.freq = value # type: ignore[misc]
107
+
108
+ @property
109
+ def asi8(self) -> npt.NDArray[np.int64]:
110
+ return self._data.asi8
111
+
112
+ @property
113
+ @doc(DatetimeLikeArrayMixin.freqstr)
114
+ def freqstr(self) -> str:
115
+ from pandas import PeriodIndex
116
+
117
+ if self._data.freqstr is not None and isinstance(
118
+ self._data, (PeriodArray, PeriodIndex)
119
+ ):
120
+ freq = freq_to_period_freqstr(self._data.freq.n, self._data.freq.name)
121
+ return freq
122
+ else:
123
+ return self._data.freqstr # type: ignore[return-value]
124
+
125
+ @cache_readonly
126
+ @abstractmethod
127
+ def _resolution_obj(self) -> Resolution:
128
+ ...
129
+
130
+ @cache_readonly
131
+ @doc(DatetimeLikeArrayMixin.resolution)
132
+ def resolution(self) -> str:
133
+ return self._data.resolution
134
+
135
+ # ------------------------------------------------------------------------
136
+
137
+ @cache_readonly
138
+ def hasnans(self) -> bool:
139
+ return self._data._hasna
140
+
141
+ def equals(self, other: Any) -> bool:
142
+ """
143
+ Determines if two Index objects contain the same elements.
144
+ """
145
+ if self.is_(other):
146
+ return True
147
+
148
+ if not isinstance(other, Index):
149
+ return False
150
+ elif other.dtype.kind in "iufc":
151
+ return False
152
+ elif not isinstance(other, type(self)):
153
+ should_try = False
154
+ inferable = self._data._infer_matches
155
+ if other.dtype == object:
156
+ should_try = other.inferred_type in inferable
157
+ elif isinstance(other.dtype, CategoricalDtype):
158
+ other = cast("CategoricalIndex", other)
159
+ should_try = other.categories.inferred_type in inferable
160
+
161
+ if should_try:
162
+ try:
163
+ other = type(self)(other)
164
+ except (ValueError, TypeError, OverflowError):
165
+ # e.g.
166
+ # ValueError -> cannot parse str entry, or OutOfBoundsDatetime
167
+ # TypeError -> trying to convert IntervalIndex to DatetimeIndex
168
+ # OverflowError -> Index([very_large_timedeltas])
169
+ return False
170
+
171
+ if self.dtype != other.dtype:
172
+ # have different timezone
173
+ return False
174
+
175
+ return np.array_equal(self.asi8, other.asi8)
176
+
177
+ @Appender(Index.__contains__.__doc__)
178
+ def __contains__(self, key: Any) -> bool:
179
+ hash(key)
180
+ try:
181
+ self.get_loc(key)
182
+ except (KeyError, TypeError, ValueError, InvalidIndexError):
183
+ return False
184
+ return True
185
+
186
+ def _convert_tolerance(self, tolerance, target):
187
+ tolerance = np.asarray(to_timedelta(tolerance).to_numpy())
188
+ return super()._convert_tolerance(tolerance, target)
189
+
190
+ # --------------------------------------------------------------------
191
+ # Rendering Methods
192
+ _default_na_rep = "NaT"
193
+
194
+ def format(
195
+ self,
196
+ name: bool = False,
197
+ formatter: Callable | None = None,
198
+ na_rep: str = "NaT",
199
+ date_format: str | None = None,
200
+ ) -> list[str]:
201
+ """
202
+ Render a string representation of the Index.
203
+ """
204
+ warnings.warn(
205
+ # GH#55413
206
+ f"{type(self).__name__}.format is deprecated and will be removed "
207
+ "in a future version. Convert using index.astype(str) or "
208
+ "index.map(formatter) instead.",
209
+ FutureWarning,
210
+ stacklevel=find_stack_level(),
211
+ )
212
+ header = []
213
+ if name:
214
+ header.append(
215
+ ibase.pprint_thing(self.name, escape_chars=("\t", "\r", "\n"))
216
+ if self.name is not None
217
+ else ""
218
+ )
219
+
220
+ if formatter is not None:
221
+ return header + list(self.map(formatter))
222
+
223
+ return self._format_with_header(
224
+ header=header, na_rep=na_rep, date_format=date_format
225
+ )
226
+
227
+ def _format_with_header(
228
+ self, *, header: list[str], na_rep: str, date_format: str | None = None
229
+ ) -> list[str]:
230
+ # TODO: not reached in tests 2023-10-11
231
+ # matches base class except for whitespace padding and date_format
232
+ return header + list(
233
+ self._get_values_for_csv(na_rep=na_rep, date_format=date_format)
234
+ )
235
+
236
+ @property
237
+ def _formatter_func(self):
238
+ return self._data._formatter()
239
+
240
+ def _format_attrs(self):
241
+ """
242
+ Return a list of tuples of the (attr,formatted_value).
243
+ """
244
+ attrs = super()._format_attrs()
245
+ for attrib in self._attributes:
246
+ # iterating over _attributes prevents us from doing this for PeriodIndex
247
+ if attrib == "freq":
248
+ freq = self.freqstr
249
+ if freq is not None:
250
+ freq = repr(freq) # e.g. D -> 'D'
251
+ attrs.append(("freq", freq))
252
+ return attrs
253
+
254
+ @Appender(Index._summary.__doc__)
255
+ def _summary(self, name=None) -> str:
256
+ result = super()._summary(name=name)
257
+ if self.freq:
258
+ result += f"\nFreq: {self.freqstr}"
259
+
260
+ return result
261
+
262
+ # --------------------------------------------------------------------
263
+ # Indexing Methods
264
+
265
+ @final
266
+ def _can_partial_date_slice(self, reso: Resolution) -> bool:
267
+ # e.g. test_getitem_setitem_periodindex
268
+ # History of conversation GH#3452, GH#3931, GH#2369, GH#14826
269
+ return reso > self._resolution_obj
270
+ # NB: for DTI/PI, not TDI
271
+
272
+ def _parsed_string_to_bounds(self, reso: Resolution, parsed):
273
+ raise NotImplementedError
274
+
275
+ def _parse_with_reso(self, label: str):
276
+ # overridden by TimedeltaIndex
277
+ try:
278
+ if self.freq is None or hasattr(self.freq, "rule_code"):
279
+ freq = self.freq
280
+ except NotImplementedError:
281
+ freq = getattr(self, "freqstr", getattr(self, "inferred_freq", None))
282
+
283
+ freqstr: str | None
284
+ if freq is not None and not isinstance(freq, str):
285
+ freqstr = freq.rule_code
286
+ else:
287
+ freqstr = freq
288
+
289
+ if isinstance(label, np.str_):
290
+ # GH#45580
291
+ label = str(label)
292
+
293
+ parsed, reso_str = parsing.parse_datetime_string_with_reso(label, freqstr)
294
+ reso = Resolution.from_attrname(reso_str)
295
+ return parsed, reso
296
+
297
+ def _get_string_slice(self, key: str):
298
+ # overridden by TimedeltaIndex
299
+ parsed, reso = self._parse_with_reso(key)
300
+ try:
301
+ return self._partial_date_slice(reso, parsed)
302
+ except KeyError as err:
303
+ raise KeyError(key) from err
304
+
305
+ @final
306
+ def _partial_date_slice(
307
+ self,
308
+ reso: Resolution,
309
+ parsed: datetime,
310
+ ) -> slice | npt.NDArray[np.intp]:
311
+ """
312
+ Parameters
313
+ ----------
314
+ reso : Resolution
315
+ parsed : datetime
316
+
317
+ Returns
318
+ -------
319
+ slice or ndarray[intp]
320
+ """
321
+ if not self._can_partial_date_slice(reso):
322
+ raise ValueError
323
+
324
+ t1, t2 = self._parsed_string_to_bounds(reso, parsed)
325
+ vals = self._data._ndarray
326
+ unbox = self._data._unbox
327
+
328
+ if self.is_monotonic_increasing:
329
+ if len(self) and (
330
+ (t1 < self[0] and t2 < self[0]) or (t1 > self[-1] and t2 > self[-1])
331
+ ):
332
+ # we are out of range
333
+ raise KeyError
334
+
335
+ # TODO: does this depend on being monotonic _increasing_?
336
+
337
+ # a monotonic (sorted) series can be sliced
338
+ left = vals.searchsorted(unbox(t1), side="left")
339
+ right = vals.searchsorted(unbox(t2), side="right")
340
+ return slice(left, right)
341
+
342
+ else:
343
+ lhs_mask = vals >= unbox(t1)
344
+ rhs_mask = vals <= unbox(t2)
345
+
346
+ # try to find the dates
347
+ return (lhs_mask & rhs_mask).nonzero()[0]
348
+
349
+ def _maybe_cast_slice_bound(self, label, side: str):
350
+ """
351
+ If label is a string, cast it to scalar type according to resolution.
352
+
353
+ Parameters
354
+ ----------
355
+ label : object
356
+ side : {'left', 'right'}
357
+
358
+ Returns
359
+ -------
360
+ label : object
361
+
362
+ Notes
363
+ -----
364
+ Value of `side` parameter should be validated in caller.
365
+ """
366
+ if isinstance(label, str):
367
+ try:
368
+ parsed, reso = self._parse_with_reso(label)
369
+ except ValueError as err:
370
+ # DTI -> parsing.DateParseError
371
+ # TDI -> 'unit abbreviation w/o a number'
372
+ # PI -> string cannot be parsed as datetime-like
373
+ self._raise_invalid_indexer("slice", label, err)
374
+
375
+ lower, upper = self._parsed_string_to_bounds(reso, parsed)
376
+ return lower if side == "left" else upper
377
+ elif not isinstance(label, self._data._recognized_scalars):
378
+ self._raise_invalid_indexer("slice", label)
379
+
380
+ return label
381
+
382
+ # --------------------------------------------------------------------
383
+ # Arithmetic Methods
384
+
385
+ def shift(self, periods: int = 1, freq=None) -> Self:
386
+ """
387
+ Shift index by desired number of time frequency increments.
388
+
389
+ This method is for shifting the values of datetime-like indexes
390
+ by a specified time increment a given number of times.
391
+
392
+ Parameters
393
+ ----------
394
+ periods : int, default 1
395
+ Number of periods (or increments) to shift by,
396
+ can be positive or negative.
397
+ freq : pandas.DateOffset, pandas.Timedelta or string, optional
398
+ Frequency increment to shift by.
399
+ If None, the index is shifted by its own `freq` attribute.
400
+ Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc.
401
+
402
+ Returns
403
+ -------
404
+ pandas.DatetimeIndex
405
+ Shifted index.
406
+
407
+ See Also
408
+ --------
409
+ Index.shift : Shift values of Index.
410
+ PeriodIndex.shift : Shift values of PeriodIndex.
411
+ """
412
+ raise NotImplementedError
413
+
414
+ # --------------------------------------------------------------------
415
+
416
+ @doc(Index._maybe_cast_listlike_indexer)
417
+ def _maybe_cast_listlike_indexer(self, keyarr):
418
+ try:
419
+ res = self._data._validate_listlike(keyarr, allow_object=True)
420
+ except (ValueError, TypeError):
421
+ if not isinstance(keyarr, ExtensionArray):
422
+ # e.g. we don't want to cast DTA to ndarray[object]
423
+ res = com.asarray_tuplesafe(keyarr)
424
+ # TODO: com.asarray_tuplesafe shouldn't cast e.g. DatetimeArray
425
+ else:
426
+ res = keyarr
427
+ return Index(res, dtype=res.dtype)
428
+
429
+
430
+ class DatetimeTimedeltaMixin(DatetimeIndexOpsMixin, ABC):
431
+ """
432
+ Mixin class for methods shared by DatetimeIndex and TimedeltaIndex,
433
+ but not PeriodIndex
434
+ """
435
+
436
+ _data: DatetimeArray | TimedeltaArray
437
+ _comparables = ["name", "freq"]
438
+ _attributes = ["name", "freq"]
439
+
440
+ # Compat for frequency inference, see GH#23789
441
+ _is_monotonic_increasing = Index.is_monotonic_increasing
442
+ _is_monotonic_decreasing = Index.is_monotonic_decreasing
443
+ _is_unique = Index.is_unique
444
+
445
+ @property
446
+ def unit(self) -> str:
447
+ return self._data.unit
448
+
449
+ def as_unit(self, unit: str) -> Self:
450
+ """
451
+ Convert to a dtype with the given unit resolution.
452
+
453
+ Parameters
454
+ ----------
455
+ unit : {'s', 'ms', 'us', 'ns'}
456
+
457
+ Returns
458
+ -------
459
+ same type as self
460
+
461
+ Examples
462
+ --------
463
+ For :class:`pandas.DatetimeIndex`:
464
+
465
+ >>> idx = pd.DatetimeIndex(['2020-01-02 01:02:03.004005006'])
466
+ >>> idx
467
+ DatetimeIndex(['2020-01-02 01:02:03.004005006'],
468
+ dtype='datetime64[ns]', freq=None)
469
+ >>> idx.as_unit('s')
470
+ DatetimeIndex(['2020-01-02 01:02:03'], dtype='datetime64[s]', freq=None)
471
+
472
+ For :class:`pandas.TimedeltaIndex`:
473
+
474
+ >>> tdelta_idx = pd.to_timedelta(['1 day 3 min 2 us 42 ns'])
475
+ >>> tdelta_idx
476
+ TimedeltaIndex(['1 days 00:03:00.000002042'],
477
+ dtype='timedelta64[ns]', freq=None)
478
+ >>> tdelta_idx.as_unit('s')
479
+ TimedeltaIndex(['1 days 00:03:00'], dtype='timedelta64[s]', freq=None)
480
+ """
481
+ arr = self._data.as_unit(unit)
482
+ return type(self)._simple_new(arr, name=self.name)
483
+
484
+ def _with_freq(self, freq):
485
+ arr = self._data._with_freq(freq)
486
+ return type(self)._simple_new(arr, name=self._name)
487
+
488
+ @property
489
+ def values(self) -> np.ndarray:
490
+ # NB: For Datetime64TZ this is lossy
491
+ data = self._data._ndarray
492
+ if using_copy_on_write():
493
+ data = data.view()
494
+ data.flags.writeable = False
495
+ return data
496
+
497
+ @doc(DatetimeIndexOpsMixin.shift)
498
+ def shift(self, periods: int = 1, freq=None) -> Self:
499
+ if freq is not None and freq != self.freq:
500
+ if isinstance(freq, str):
501
+ freq = to_offset(freq)
502
+ offset = periods * freq
503
+ return self + offset
504
+
505
+ if periods == 0 or len(self) == 0:
506
+ # GH#14811 empty case
507
+ return self.copy()
508
+
509
+ if self.freq is None:
510
+ raise NullFrequencyError("Cannot shift with no freq")
511
+
512
+ start = self[0] + periods * self.freq
513
+ end = self[-1] + periods * self.freq
514
+
515
+ # Note: in the DatetimeTZ case, _generate_range will infer the
516
+ # appropriate timezone from `start` and `end`, so tz does not need
517
+ # to be passed explicitly.
518
+ result = self._data._generate_range(
519
+ start=start, end=end, periods=None, freq=self.freq, unit=self.unit
520
+ )
521
+ return type(self)._simple_new(result, name=self.name)
522
+
523
+ @cache_readonly
524
+ @doc(DatetimeLikeArrayMixin.inferred_freq)
525
+ def inferred_freq(self) -> str | None:
526
+ return self._data.inferred_freq
527
+
528
+ # --------------------------------------------------------------------
529
+ # Set Operation Methods
530
+
531
+ @cache_readonly
532
+ def _as_range_index(self) -> RangeIndex:
533
+ # Convert our i8 representations to RangeIndex
534
+ # Caller is responsible for checking isinstance(self.freq, Tick)
535
+ freq = cast(Tick, self.freq)
536
+ tick = Timedelta(freq).as_unit("ns")._value
537
+ rng = range(self[0]._value, self[-1]._value + tick, tick)
538
+ return RangeIndex(rng)
539
+
540
+ def _can_range_setop(self, other) -> bool:
541
+ return isinstance(self.freq, Tick) and isinstance(other.freq, Tick)
542
+
543
+ def _wrap_range_setop(self, other, res_i8) -> Self:
544
+ new_freq = None
545
+ if not len(res_i8):
546
+ # RangeIndex defaults to step=1, which we don't want.
547
+ new_freq = self.freq
548
+ elif isinstance(res_i8, RangeIndex):
549
+ new_freq = to_offset(Timedelta(res_i8.step))
550
+
551
+ # TODO(GH#41493): we cannot just do
552
+ # type(self._data)(res_i8.values, dtype=self.dtype, freq=new_freq)
553
+ # because test_setops_preserve_freq fails with _validate_frequency raising.
554
+ # This raising is incorrect, as 'on_freq' is incorrect. This will
555
+ # be fixed by GH#41493
556
+ res_values = res_i8.values.view(self._data._ndarray.dtype)
557
+ result = type(self._data)._simple_new(
558
+ # error: Argument "dtype" to "_simple_new" of "DatetimeArray" has
559
+ # incompatible type "Union[dtype[Any], ExtensionDtype]"; expected
560
+ # "Union[dtype[datetime64], DatetimeTZDtype]"
561
+ res_values,
562
+ dtype=self.dtype, # type: ignore[arg-type]
563
+ freq=new_freq, # type: ignore[arg-type]
564
+ )
565
+ return cast("Self", self._wrap_setop_result(other, result))
566
+
567
+ def _range_intersect(self, other, sort) -> Self:
568
+ # Dispatch to RangeIndex intersection logic.
569
+ left = self._as_range_index
570
+ right = other._as_range_index
571
+ res_i8 = left.intersection(right, sort=sort)
572
+ return self._wrap_range_setop(other, res_i8)
573
+
574
+ def _range_union(self, other, sort) -> Self:
575
+ # Dispatch to RangeIndex union logic.
576
+ left = self._as_range_index
577
+ right = other._as_range_index
578
+ res_i8 = left.union(right, sort=sort)
579
+ return self._wrap_range_setop(other, res_i8)
580
+
581
+ def _intersection(self, other: Index, sort: bool = False) -> Index:
582
+ """
583
+ intersection specialized to the case with matching dtypes and both non-empty.
584
+ """
585
+ other = cast("DatetimeTimedeltaMixin", other)
586
+
587
+ if self._can_range_setop(other):
588
+ return self._range_intersect(other, sort=sort)
589
+
590
+ if not self._can_fast_intersect(other):
591
+ result = Index._intersection(self, other, sort=sort)
592
+ # We need to invalidate the freq because Index._intersection
593
+ # uses _shallow_copy on a view of self._data, which will preserve
594
+ # self.freq if we're not careful.
595
+ # At this point we should have result.dtype == self.dtype
596
+ # and type(result) is type(self._data)
597
+ result = self._wrap_setop_result(other, result)
598
+ return result._with_freq(None)._with_freq("infer")
599
+
600
+ else:
601
+ return self._fast_intersect(other, sort)
602
+
603
+ def _fast_intersect(self, other, sort):
604
+ # to make our life easier, "sort" the two ranges
605
+ if self[0] <= other[0]:
606
+ left, right = self, other
607
+ else:
608
+ left, right = other, self
609
+
610
+ # after sorting, the intersection always starts with the right index
611
+ # and ends with the index of which the last elements is smallest
612
+ end = min(left[-1], right[-1])
613
+ start = right[0]
614
+
615
+ if end < start:
616
+ result = self[:0]
617
+ else:
618
+ lslice = slice(*left.slice_locs(start, end))
619
+ result = left._values[lslice]
620
+
621
+ return result
622
+
623
+ def _can_fast_intersect(self, other: Self) -> bool:
624
+ # Note: we only get here with len(self) > 0 and len(other) > 0
625
+ if self.freq is None:
626
+ return False
627
+
628
+ elif other.freq != self.freq:
629
+ return False
630
+
631
+ elif not self.is_monotonic_increasing:
632
+ # Because freq is not None, we must then be monotonic decreasing
633
+ return False
634
+
635
+ # this along with matching freqs ensure that we "line up",
636
+ # so intersection will preserve freq
637
+ # Note we are assuming away Ticks, as those go through _range_intersect
638
+ # GH#42104
639
+ return self.freq.n == 1
640
+
641
+ def _can_fast_union(self, other: Self) -> bool:
642
+ # Assumes that type(self) == type(other), as per the annotation
643
+ # The ability to fast_union also implies that `freq` should be
644
+ # retained on union.
645
+ freq = self.freq
646
+
647
+ if freq is None or freq != other.freq:
648
+ return False
649
+
650
+ if not self.is_monotonic_increasing:
651
+ # Because freq is not None, we must then be monotonic decreasing
652
+ # TODO: do union on the reversed indexes?
653
+ return False
654
+
655
+ if len(self) == 0 or len(other) == 0:
656
+ # only reached via union_many
657
+ return True
658
+
659
+ # to make our life easier, "sort" the two ranges
660
+ if self[0] <= other[0]:
661
+ left, right = self, other
662
+ else:
663
+ left, right = other, self
664
+
665
+ right_start = right[0]
666
+ left_end = left[-1]
667
+
668
+ # Only need to "adjoin", not overlap
669
+ return (right_start == left_end + freq) or right_start in left
670
+
671
+ def _fast_union(self, other: Self, sort=None) -> Self:
672
+ # Caller is responsible for ensuring self and other are non-empty
673
+
674
+ # to make our life easier, "sort" the two ranges
675
+ if self[0] <= other[0]:
676
+ left, right = self, other
677
+ elif sort is False:
678
+ # TDIs are not in the "correct" order and we don't want
679
+ # to sort but want to remove overlaps
680
+ left, right = self, other
681
+ left_start = left[0]
682
+ loc = right.searchsorted(left_start, side="left")
683
+ right_chunk = right._values[:loc]
684
+ dates = concat_compat((left._values, right_chunk))
685
+ result = type(self)._simple_new(dates, name=self.name)
686
+ return result
687
+ else:
688
+ left, right = other, self
689
+
690
+ left_end = left[-1]
691
+ right_end = right[-1]
692
+
693
+ # concatenate
694
+ if left_end < right_end:
695
+ loc = right.searchsorted(left_end, side="right")
696
+ right_chunk = right._values[loc:]
697
+ dates = concat_compat([left._values, right_chunk])
698
+ # The can_fast_union check ensures that the result.freq
699
+ # should match self.freq
700
+ assert isinstance(dates, type(self._data))
701
+ # error: Item "ExtensionArray" of "ExtensionArray |
702
+ # ndarray[Any, Any]" has no attribute "_freq"
703
+ assert dates._freq == self.freq # type: ignore[union-attr]
704
+ result = type(self)._simple_new(dates)
705
+ return result
706
+ else:
707
+ return left
708
+
709
+ def _union(self, other, sort):
710
+ # We are called by `union`, which is responsible for this validation
711
+ assert isinstance(other, type(self))
712
+ assert self.dtype == other.dtype
713
+
714
+ if self._can_range_setop(other):
715
+ return self._range_union(other, sort=sort)
716
+
717
+ if self._can_fast_union(other):
718
+ result = self._fast_union(other, sort=sort)
719
+ # in the case with sort=None, the _can_fast_union check ensures
720
+ # that result.freq == self.freq
721
+ return result
722
+ else:
723
+ return super()._union(other, sort)._with_freq("infer")
724
+
725
+ # --------------------------------------------------------------------
726
+ # Join Methods
727
+
728
+ def _get_join_freq(self, other):
729
+ """
730
+ Get the freq to attach to the result of a join operation.
731
+ """
732
+ freq = None
733
+ if self._can_fast_union(other):
734
+ freq = self.freq
735
+ return freq
736
+
737
+ def _wrap_joined_index(
738
+ self, joined, other, lidx: npt.NDArray[np.intp], ridx: npt.NDArray[np.intp]
739
+ ):
740
+ assert other.dtype == self.dtype, (other.dtype, self.dtype)
741
+ result = super()._wrap_joined_index(joined, other, lidx, ridx)
742
+ result._data._freq = self._get_join_freq(other)
743
+ return result
744
+
745
+ def _get_engine_target(self) -> np.ndarray:
746
+ # engine methods and libjoin methods need dt64/td64 values cast to i8
747
+ return self._data._ndarray.view("i8")
748
+
749
+ def _from_join_target(self, result: np.ndarray):
750
+ # view e.g. i8 back to M8[ns]
751
+ result = result.view(self._data._ndarray.dtype)
752
+ return self._data._from_backing_data(result)
753
+
754
+ # --------------------------------------------------------------------
755
+ # List-like Methods
756
+
757
+ def _get_delete_freq(self, loc: int | slice | Sequence[int]):
758
+ """
759
+ Find the `freq` for self.delete(loc).
760
+ """
761
+ freq = None
762
+ if self.freq is not None:
763
+ if is_integer(loc):
764
+ if loc in (0, -len(self), -1, len(self) - 1):
765
+ freq = self.freq
766
+ else:
767
+ if is_list_like(loc):
768
+ # error: Incompatible types in assignment (expression has
769
+ # type "Union[slice, ndarray]", variable has type
770
+ # "Union[int, slice, Sequence[int]]")
771
+ loc = lib.maybe_indices_to_slice( # type: ignore[assignment]
772
+ np.asarray(loc, dtype=np.intp), len(self)
773
+ )
774
+ if isinstance(loc, slice) and loc.step in (1, None):
775
+ if loc.start in (0, None) or loc.stop in (len(self), None):
776
+ freq = self.freq
777
+ return freq
778
+
779
+ def _get_insert_freq(self, loc: int, item):
780
+ """
781
+ Find the `freq` for self.insert(loc, item).
782
+ """
783
+ value = self._data._validate_scalar(item)
784
+ item = self._data._box_func(value)
785
+
786
+ freq = None
787
+ if self.freq is not None:
788
+ # freq can be preserved on edge cases
789
+ if self.size:
790
+ if item is NaT:
791
+ pass
792
+ elif loc in (0, -len(self)) and item + self.freq == self[0]:
793
+ freq = self.freq
794
+ elif (loc == len(self)) and item - self.freq == self[-1]:
795
+ freq = self.freq
796
+ else:
797
+ # Adding a single item to an empty index may preserve freq
798
+ if isinstance(self.freq, Tick):
799
+ # all TimedeltaIndex cases go through here; is_on_offset
800
+ # would raise TypeError
801
+ freq = self.freq
802
+ elif self.freq.is_on_offset(item):
803
+ freq = self.freq
804
+ return freq
805
+
806
+ @doc(NDArrayBackedExtensionIndex.delete)
807
+ def delete(self, loc) -> Self:
808
+ result = super().delete(loc)
809
+ result._data._freq = self._get_delete_freq(loc)
810
+ return result
811
+
812
+ @doc(NDArrayBackedExtensionIndex.insert)
813
+ def insert(self, loc: int, item):
814
+ result = super().insert(loc, item)
815
+ if isinstance(result, type(self)):
816
+ # i.e. parent class method did not cast
817
+ result._data._freq = self._get_insert_freq(loc, item)
818
+ return result
819
+
820
+ # --------------------------------------------------------------------
821
+ # NDArray-Like Methods
822
+
823
+ @Appender(_index_shared_docs["take"] % _index_doc_kwargs)
824
+ def take(
825
+ self,
826
+ indices,
827
+ axis: Axis = 0,
828
+ allow_fill: bool = True,
829
+ fill_value=None,
830
+ **kwargs,
831
+ ) -> Self:
832
+ nv.validate_take((), kwargs)
833
+ indices = np.asarray(indices, dtype=np.intp)
834
+
835
+ result = NDArrayBackedExtensionIndex.take(
836
+ self, indices, axis, allow_fill, fill_value, **kwargs
837
+ )
838
+
839
+ maybe_slice = lib.maybe_indices_to_slice(indices, len(self))
840
+ if isinstance(maybe_slice, slice):
841
+ freq = self._data._get_getitem_freq(maybe_slice)
842
+ result._data._freq = freq
843
+ return result