Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ATen.h +37 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/AccumulateType.h +153 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Backend.h +2 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CPUFixedAllocator.h +33 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CPUFunctions.h +29 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CPUFunctions_inl.h +576 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradFunctions.h +29 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradNonFunctionalFunctions.h +29 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradNonFunctionalFunctions_inl.h +323 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradFunctions.h +29 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradNestedTensorFunctions_inl.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Context.h +560 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/DLConvertor.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Device.h +2 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/DeviceAccelerator.h +27 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/DeviceGuard.h +41 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Dimname.h +1 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ExpandBase.h +30 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Formatting.h +1 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/FunctionalStorageImpl.h +126 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Functions.h +1427 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/InferSize.h +87 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/InitialTensorOptions.h +15 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/LinalgBackend.h +31 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/MapAllocator.h +139 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/MatrixRef.h +109 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/MemoryOverlap.h +42 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/MetaFunctions_inl.h +324 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/NamedTensorUtils.h +215 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/NestedTensorImpl.h +283 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/NumericUtils.h +203 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/OpMathType.h +69 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/PTThreadPool.h +17 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ParallelFuture.h +13 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ParallelNativeTBB.h +52 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ParallelOpenMP.h +54 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/RedispatchFunctions.h +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/RegistrationDeclarations.h +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Scalar.h +3 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/SmallVector.h +2 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/SparseTensorImpl.h +400 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorGeometry.h +144 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorIndexing.h +735 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorMeta.h +137 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorNames.h +75 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorOperators.h +51 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorOptions.h +2 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorSubclassLikeUtils.h +86 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ThreadLocalPythonObjects.h +21 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Version.h +18 -0
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ATen.h
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#if !defined(_MSC_VER) && __cplusplus < 201703L
|
4 |
+
#error C++17 or later compatible compiler is required to use ATen.
|
5 |
+
#endif
|
6 |
+
|
7 |
+
#include <ATen/Context.h>
|
8 |
+
#include <ATen/Device.h>
|
9 |
+
#include <ATen/DeviceGuard.h>
|
10 |
+
#include <ATen/DimVector.h>
|
11 |
+
#include <ATen/Dispatch.h>
|
12 |
+
#include <ATen/Formatting.h>
|
13 |
+
#include <ATen/Functions.h>
|
14 |
+
#include <ATen/NamedTensor.h>
|
15 |
+
#include <ATen/ScalarOps.h>
|
16 |
+
#include <ATen/Tensor.h>
|
17 |
+
#include <ATen/TensorGeometry.h>
|
18 |
+
#include <ATen/TensorIndexing.h>
|
19 |
+
#include <ATen/TensorOperators.h>
|
20 |
+
#include <ATen/Version.h>
|
21 |
+
#include <ATen/core/ATenGeneral.h>
|
22 |
+
#include <ATen/core/Generator.h>
|
23 |
+
#include <ATen/core/Reduction.h>
|
24 |
+
#include <ATen/core/Scalar.h>
|
25 |
+
#include <ATen/core/UnsafeFromTH.h>
|
26 |
+
#include <ATen/core/ivalue.h>
|
27 |
+
#include <ATen/core/jit_type.h>
|
28 |
+
#include <c10/core/Allocator.h>
|
29 |
+
#include <c10/core/InferenceMode.h>
|
30 |
+
#include <c10/core/Layout.h>
|
31 |
+
#include <c10/core/Storage.h>
|
32 |
+
#include <c10/core/TensorOptions.h>
|
33 |
+
#include <c10/util/Exception.h>
|
34 |
+
|
35 |
+
// TODO: try to remove this
|
36 |
+
// There is some back story, see https://github.com/pytorch/pytorch/issues/48684
|
37 |
+
#include <ATen/NativeFunctions.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/AccumulateType.h
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/Config.h>
|
3 |
+
#include <c10/core/DeviceType.h>
|
4 |
+
#include <c10/core/ScalarType.h>
|
5 |
+
#include <c10/util/BFloat16.h>
|
6 |
+
#include <c10/util/Float8_e4m3fn.h>
|
7 |
+
#include <c10/util/Float8_e4m3fnuz.h>
|
8 |
+
#include <c10/util/Float8_e5m2.h>
|
9 |
+
#include <c10/util/Float8_e5m2fnuz.h>
|
10 |
+
#include <c10/util/Half.h>
|
11 |
+
|
12 |
+
// Defines the accumulation type for a scalar type.
|
13 |
+
// Example:
|
14 |
+
// using accscalar_t = acc_type<scalar_t, /*is_cuda*/true>;
|
15 |
+
//
|
16 |
+
// Accumulation types are an important concept in numeric computing
|
17 |
+
// because you frequently want to perform intermediate computations
|
18 |
+
// at a higher precision than the input and output precision, to avoid
|
19 |
+
// compounding internal rounding errors. Accumulation is the most
|
20 |
+
// well-known intermediate computation (it is of great importance for
|
21 |
+
// sum reduction and matrix multiply, for example), but in PyTorch
|
22 |
+
// acc_type ends up getting used for all sorts of other intermediate
|
23 |
+
// computations, so it perhaps would be more accurately (ahem) called an
|
24 |
+
// "accurate" type. acc_type is especially important for reduced
|
25 |
+
// precision operations like float16 and bfloat16, where relatively
|
26 |
+
// benign looking inputs can easily end up overflowing/underflowing.
|
27 |
+
//
|
28 |
+
// acc_type is parametrized by whether or not you are running on CUDA
|
29 |
+
// or not, because on CUDA double precision operations are expensive
|
30 |
+
// and so by default, we don't actually want to use double as an
|
31 |
+
// acc_type on CUDA. A lot of things are typed out below, but
|
32 |
+
// basically, the table is generated by a few rules:
|
33 |
+
//
|
34 |
+
// If bool:
|
35 |
+
// Use 'bool' as acc_type.
|
36 |
+
// If floating point:
|
37 |
+
// If CUDA, use 'float' as acc_type (unless scalar_t is double),
|
38 |
+
// otherwise (CPU) use 'double'
|
39 |
+
// If integral:
|
40 |
+
// Use 'int64_t' as acc_type
|
41 |
+
//
|
42 |
+
// You're not forced to use this template; if you happen to know
|
43 |
+
// something specific about your use case, you can specify your own
|
44 |
+
// desired behavior. This template, however, will give you a reasonable
|
45 |
+
// default that will work for all dtypes supported in PyTorch.
|
46 |
+
|
47 |
+
#if defined(__CUDACC__)
|
48 |
+
#include <cuda.h>
|
49 |
+
#include <cuda_fp16.h>
|
50 |
+
#elif defined(__HIPCC__)
|
51 |
+
#include <hip/hip_fp16.h>
|
52 |
+
#include <hip/hip_runtime.h>
|
53 |
+
#endif
|
54 |
+
|
55 |
+
namespace at {
|
56 |
+
|
57 |
+
template <typename T, c10::DeviceType D>
|
58 |
+
struct AccumulateTypeDevice {};
|
59 |
+
|
60 |
+
template <typename T, bool>
|
61 |
+
struct AccumulateType {};
|
62 |
+
|
63 |
+
template <typename T>
|
64 |
+
struct AccumulateType<T, false> {
|
65 |
+
using type = typename AccumulateTypeDevice<T, c10::DeviceType::CPU>::type;
|
66 |
+
};
|
67 |
+
|
68 |
+
template <typename T>
|
69 |
+
struct AccumulateType<T, true> {
|
70 |
+
using type = typename AccumulateTypeDevice<T, c10::DeviceType::CUDA>::type;
|
71 |
+
};
|
72 |
+
|
73 |
+
template <typename T, c10::DeviceType device>
|
74 |
+
using acc_type_device = typename AccumulateTypeDevice<T, device>::type;
|
75 |
+
|
76 |
+
template <typename T, bool is_cuda>
|
77 |
+
using acc_type = typename AccumulateType<T, is_cuda>::type;
|
78 |
+
|
79 |
+
#define ACC_TYPE(t, acc_t, device_type) \
|
80 |
+
template <> \
|
81 |
+
struct AccumulateTypeDevice<t, device_type> { \
|
82 |
+
using type = acc_t; \
|
83 |
+
};
|
84 |
+
#define MPS_ACC_TYPE(t, acc_t) ACC_TYPE(t, acc_t, c10::DeviceType::MPS)
|
85 |
+
#define CUDA_ACC_TYPE(t, acc_t) ACC_TYPE(t, acc_t, c10::DeviceType::CUDA)
|
86 |
+
#define CPU_ACC_TYPE(t, acc_t) ACC_TYPE(t, acc_t, c10::DeviceType::CPU)
|
87 |
+
|
88 |
+
MPS_ACC_TYPE(BFloat16, float);
|
89 |
+
MPS_ACC_TYPE(Half, float);
|
90 |
+
MPS_ACC_TYPE(Float8_e5m2, float);
|
91 |
+
MPS_ACC_TYPE(Float8_e4m3fn, float);
|
92 |
+
MPS_ACC_TYPE(Float8_e5m2fnuz, float);
|
93 |
+
MPS_ACC_TYPE(Float8_e4m3fnuz, float);
|
94 |
+
MPS_ACC_TYPE(float, float);
|
95 |
+
MPS_ACC_TYPE(double, float);
|
96 |
+
MPS_ACC_TYPE(int8_t, int64_t);
|
97 |
+
MPS_ACC_TYPE(uint8_t, int64_t);
|
98 |
+
MPS_ACC_TYPE(char, int64_t);
|
99 |
+
MPS_ACC_TYPE(int16_t, int64_t);
|
100 |
+
MPS_ACC_TYPE(int32_t, int64_t);
|
101 |
+
MPS_ACC_TYPE(int64_t, int64_t);
|
102 |
+
MPS_ACC_TYPE(bool, bool);
|
103 |
+
MPS_ACC_TYPE(c10::complex<Half>, c10::complex<float>);
|
104 |
+
MPS_ACC_TYPE(c10::complex<float>, c10::complex<float>);
|
105 |
+
MPS_ACC_TYPE(c10::complex<double>, c10::complex<float>);
|
106 |
+
|
107 |
+
#if defined(__CUDACC__) || defined(__HIPCC__)
|
108 |
+
CUDA_ACC_TYPE(half, float);
|
109 |
+
#endif
|
110 |
+
CUDA_ACC_TYPE(BFloat16, float);
|
111 |
+
CUDA_ACC_TYPE(Half, float);
|
112 |
+
CUDA_ACC_TYPE(Float8_e5m2, float);
|
113 |
+
CUDA_ACC_TYPE(Float8_e4m3fn, float);
|
114 |
+
CUDA_ACC_TYPE(Float8_e5m2fnuz, float);
|
115 |
+
CUDA_ACC_TYPE(Float8_e4m3fnuz, float);
|
116 |
+
CUDA_ACC_TYPE(float, float);
|
117 |
+
CUDA_ACC_TYPE(double, double);
|
118 |
+
CUDA_ACC_TYPE(int8_t, int64_t);
|
119 |
+
CUDA_ACC_TYPE(uint8_t, int64_t);
|
120 |
+
CUDA_ACC_TYPE(char, int64_t);
|
121 |
+
CUDA_ACC_TYPE(int16_t, int64_t);
|
122 |
+
CUDA_ACC_TYPE(int32_t, int64_t);
|
123 |
+
CUDA_ACC_TYPE(int64_t, int64_t);
|
124 |
+
CUDA_ACC_TYPE(bool, bool);
|
125 |
+
CUDA_ACC_TYPE(c10::complex<Half>, c10::complex<float>);
|
126 |
+
CUDA_ACC_TYPE(c10::complex<float>, c10::complex<float>);
|
127 |
+
CUDA_ACC_TYPE(c10::complex<double>, c10::complex<double>);
|
128 |
+
|
129 |
+
CPU_ACC_TYPE(BFloat16, float);
|
130 |
+
CPU_ACC_TYPE(Half, float);
|
131 |
+
CPU_ACC_TYPE(Float8_e5m2, float);
|
132 |
+
CPU_ACC_TYPE(Float8_e4m3fn, float);
|
133 |
+
CPU_ACC_TYPE(Float8_e5m2fnuz, float);
|
134 |
+
CPU_ACC_TYPE(Float8_e4m3fnuz, float);
|
135 |
+
CPU_ACC_TYPE(float, double);
|
136 |
+
CPU_ACC_TYPE(double, double);
|
137 |
+
CPU_ACC_TYPE(int8_t, int64_t);
|
138 |
+
CPU_ACC_TYPE(uint8_t, int64_t);
|
139 |
+
CPU_ACC_TYPE(char, int64_t);
|
140 |
+
CPU_ACC_TYPE(int16_t, int64_t);
|
141 |
+
CPU_ACC_TYPE(int32_t, int64_t);
|
142 |
+
CPU_ACC_TYPE(int64_t, int64_t);
|
143 |
+
CPU_ACC_TYPE(bool, bool);
|
144 |
+
CPU_ACC_TYPE(c10::complex<Half>, c10::complex<float>);
|
145 |
+
CPU_ACC_TYPE(c10::complex<float>, c10::complex<double>);
|
146 |
+
CPU_ACC_TYPE(c10::complex<double>, c10::complex<double>);
|
147 |
+
|
148 |
+
TORCH_API c10::ScalarType toAccumulateType(
|
149 |
+
c10::ScalarType type,
|
150 |
+
c10::DeviceType device);
|
151 |
+
TORCH_API c10::ScalarType toAccumulateType(c10::ScalarType type, bool is_cuda);
|
152 |
+
|
153 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Backend.h
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/core/Backend.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CPUFixedAllocator.h
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Allocator.h>
|
4 |
+
#include <c10/util/Exception.h>
|
5 |
+
|
6 |
+
// This file creates a fake allocator that just throws exceptions if
|
7 |
+
// it is actually used.
|
8 |
+
|
9 |
+
// state passed to the allocator is the std::function<void(void*)> called
|
10 |
+
// when the blob is release by ATen
|
11 |
+
|
12 |
+
namespace at {
|
13 |
+
|
14 |
+
static cpu_fixed_malloc(void*, ptrdiff_t) {
|
15 |
+
AT_ERROR("attempting to resize a tensor view of an external blob");
|
16 |
+
}
|
17 |
+
|
18 |
+
static cpu_fixed_realloc(void*, void*, ptrdiff_t) {
|
19 |
+
AT_ERROR("attempting to resize a tensor view of an external blob");
|
20 |
+
}
|
21 |
+
|
22 |
+
static cpu_fixed_free(void* state, void* allocation) {
|
23 |
+
auto on_release = static_cast<std::function<void(void*)>*>(state);
|
24 |
+
(*on_release)(allocation);
|
25 |
+
delete on_release;
|
26 |
+
}
|
27 |
+
|
28 |
+
static Allocator CPU_fixed_allocator = {
|
29 |
+
cpu_fixed_malloc,
|
30 |
+
cpu_fixed_realloc,
|
31 |
+
cpu_fixed_free};
|
32 |
+
|
33 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CPUFunctions.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/core/TensorBody.h>
|
2 |
+
|
3 |
+
// TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
|
4 |
+
// Code introduced to avoid cyclic dependency in static dispatch is no longer
|
5 |
+
// needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
|
6 |
+
// to Operators.cpp for supporting multiple backends with multiple kernels.
|
7 |
+
//
|
8 |
+
// Note [Avoiding Include Cycles In Static Dispatch]
|
9 |
+
// In order to avoid #include cycles in the static dispatch build, we've carefully split out
|
10 |
+
// the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
|
11 |
+
//
|
12 |
+
// Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
|
13 |
+
// - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
|
14 |
+
// all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
|
15 |
+
// directly inlined into TensorBody.h.
|
16 |
+
// - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
|
17 |
+
// which include functions that have defaultable optional<Tensor> arguments.
|
18 |
+
// That requires knowing the full Tensor class definition.
|
19 |
+
//
|
20 |
+
// We break the cycle by doing the following:
|
21 |
+
// - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
|
22 |
+
// - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
|
23 |
+
// - CPUFunctions_inl.h includes everything else
|
24 |
+
// - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
|
25 |
+
// and then it includes CPUFunctions_inl.h.
|
26 |
+
// - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
|
27 |
+
// - This also means that static dispatch build, CPUFunctions.h only needs to
|
28 |
+
// #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
|
29 |
+
#include <ATen/CPUFunctions_inl.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CPUFunctions_inl.h
ADDED
@@ -0,0 +1,576 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunctions_inl.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
#if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
|
12 |
+
#error This change adds a dependency on all pytorch operators, meaning the \
|
13 |
+
file will need to be re-compiled every time an operator is changed or added. \
|
14 |
+
Consider including a specific operator from \
|
15 |
+
<ATen/ops/{my_operator}_cpu_dispatch.h>. \
|
16 |
+
See NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
|
17 |
+
#endif
|
18 |
+
|
19 |
+
#include <ATen/ops/_adaptive_avg_pool2d_cpu_dispatch.h>
|
20 |
+
#include <ATen/ops/_adaptive_avg_pool2d_backward_cpu_dispatch.h>
|
21 |
+
#include <ATen/ops/_adaptive_avg_pool3d_cpu_dispatch.h>
|
22 |
+
#include <ATen/ops/_adaptive_avg_pool3d_backward_cpu_dispatch.h>
|
23 |
+
#include <ATen/ops/_add_relu_cpu_dispatch.h>
|
24 |
+
#include <ATen/ops/_addmm_activation_cpu_dispatch.h>
|
25 |
+
#include <ATen/ops/_aminmax_cpu_dispatch.h>
|
26 |
+
#include <ATen/ops/_amp_foreach_non_finite_check_and_unscale_cpu_dispatch.h>
|
27 |
+
#include <ATen/ops/_amp_update_scale_cpu_dispatch.h>
|
28 |
+
#include <ATen/ops/_assert_async_cpu_dispatch.h>
|
29 |
+
#include <ATen/ops/_cdist_backward_cpu_dispatch.h>
|
30 |
+
#include <ATen/ops/_cdist_forward_cpu_dispatch.h>
|
31 |
+
#include <ATen/ops/_cholesky_solve_helper_cpu_dispatch.h>
|
32 |
+
#include <ATen/ops/_compute_linear_combination_cpu_dispatch.h>
|
33 |
+
#include <ATen/ops/_convert_indices_from_coo_to_csr_cpu_dispatch.h>
|
34 |
+
#include <ATen/ops/_convert_indices_from_csr_to_coo_cpu_dispatch.h>
|
35 |
+
#include <ATen/ops/_convert_weight_to_int4pack_cpu_dispatch.h>
|
36 |
+
#include <ATen/ops/_ctc_loss_cpu_dispatch.h>
|
37 |
+
#include <ATen/ops/_ctc_loss_backward_cpu_dispatch.h>
|
38 |
+
#include <ATen/ops/_cummax_helper_cpu_dispatch.h>
|
39 |
+
#include <ATen/ops/_cummin_helper_cpu_dispatch.h>
|
40 |
+
#include <ATen/ops/_dirichlet_grad_cpu_dispatch.h>
|
41 |
+
#include <ATen/ops/_efficientzerotensor_cpu_dispatch.h>
|
42 |
+
#include <ATen/ops/_embedding_bag_cpu_dispatch.h>
|
43 |
+
#include <ATen/ops/_embedding_bag_dense_backward_cpu_dispatch.h>
|
44 |
+
#include <ATen/ops/_embedding_bag_forward_only_cpu_dispatch.h>
|
45 |
+
#include <ATen/ops/_embedding_bag_per_sample_weights_backward_cpu_dispatch.h>
|
46 |
+
#include <ATen/ops/_empty_affine_quantized_cpu_dispatch.h>
|
47 |
+
#include <ATen/ops/_empty_per_channel_affine_quantized_cpu_dispatch.h>
|
48 |
+
#include <ATen/ops/_fake_quantize_learnable_per_channel_affine_cpu_dispatch.h>
|
49 |
+
#include <ATen/ops/_fake_quantize_learnable_per_channel_affine_backward_cpu_dispatch.h>
|
50 |
+
#include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_cpu_dispatch.h>
|
51 |
+
#include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_backward_cpu_dispatch.h>
|
52 |
+
#include <ATen/ops/_fake_quantize_per_tensor_affine_cachemask_tensor_qparams_cpu_dispatch.h>
|
53 |
+
#include <ATen/ops/_fft_c2c_cpu_dispatch.h>
|
54 |
+
#include <ATen/ops/_fft_c2r_cpu_dispatch.h>
|
55 |
+
#include <ATen/ops/_fft_r2c_cpu_dispatch.h>
|
56 |
+
#include <ATen/ops/_foobar_cpu_dispatch.h>
|
57 |
+
#include <ATen/ops/_foreach_abs_cpu_dispatch.h>
|
58 |
+
#include <ATen/ops/_foreach_acos_cpu_dispatch.h>
|
59 |
+
#include <ATen/ops/_foreach_add_cpu_dispatch.h>
|
60 |
+
#include <ATen/ops/_foreach_addcdiv_cpu_dispatch.h>
|
61 |
+
#include <ATen/ops/_foreach_addcmul_cpu_dispatch.h>
|
62 |
+
#include <ATen/ops/_foreach_asin_cpu_dispatch.h>
|
63 |
+
#include <ATen/ops/_foreach_atan_cpu_dispatch.h>
|
64 |
+
#include <ATen/ops/_foreach_ceil_cpu_dispatch.h>
|
65 |
+
#include <ATen/ops/_foreach_clamp_max_cpu_dispatch.h>
|
66 |
+
#include <ATen/ops/_foreach_clamp_min_cpu_dispatch.h>
|
67 |
+
#include <ATen/ops/_foreach_copy_cpu_dispatch.h>
|
68 |
+
#include <ATen/ops/_foreach_cos_cpu_dispatch.h>
|
69 |
+
#include <ATen/ops/_foreach_cosh_cpu_dispatch.h>
|
70 |
+
#include <ATen/ops/_foreach_div_cpu_dispatch.h>
|
71 |
+
#include <ATen/ops/_foreach_erf_cpu_dispatch.h>
|
72 |
+
#include <ATen/ops/_foreach_erfc_cpu_dispatch.h>
|
73 |
+
#include <ATen/ops/_foreach_exp_cpu_dispatch.h>
|
74 |
+
#include <ATen/ops/_foreach_expm1_cpu_dispatch.h>
|
75 |
+
#include <ATen/ops/_foreach_floor_cpu_dispatch.h>
|
76 |
+
#include <ATen/ops/_foreach_frac_cpu_dispatch.h>
|
77 |
+
#include <ATen/ops/_foreach_lerp_cpu_dispatch.h>
|
78 |
+
#include <ATen/ops/_foreach_lgamma_cpu_dispatch.h>
|
79 |
+
#include <ATen/ops/_foreach_log_cpu_dispatch.h>
|
80 |
+
#include <ATen/ops/_foreach_log10_cpu_dispatch.h>
|
81 |
+
#include <ATen/ops/_foreach_log1p_cpu_dispatch.h>
|
82 |
+
#include <ATen/ops/_foreach_log2_cpu_dispatch.h>
|
83 |
+
#include <ATen/ops/_foreach_maximum_cpu_dispatch.h>
|
84 |
+
#include <ATen/ops/_foreach_minimum_cpu_dispatch.h>
|
85 |
+
#include <ATen/ops/_foreach_mul_cpu_dispatch.h>
|
86 |
+
#include <ATen/ops/_foreach_neg_cpu_dispatch.h>
|
87 |
+
#include <ATen/ops/_foreach_norm_cpu_dispatch.h>
|
88 |
+
#include <ATen/ops/_foreach_pow_cpu_dispatch.h>
|
89 |
+
#include <ATen/ops/_foreach_reciprocal_cpu_dispatch.h>
|
90 |
+
#include <ATen/ops/_foreach_round_cpu_dispatch.h>
|
91 |
+
#include <ATen/ops/_foreach_sigmoid_cpu_dispatch.h>
|
92 |
+
#include <ATen/ops/_foreach_sign_cpu_dispatch.h>
|
93 |
+
#include <ATen/ops/_foreach_sin_cpu_dispatch.h>
|
94 |
+
#include <ATen/ops/_foreach_sinh_cpu_dispatch.h>
|
95 |
+
#include <ATen/ops/_foreach_sqrt_cpu_dispatch.h>
|
96 |
+
#include <ATen/ops/_foreach_sub_cpu_dispatch.h>
|
97 |
+
#include <ATen/ops/_foreach_tan_cpu_dispatch.h>
|
98 |
+
#include <ATen/ops/_foreach_tanh_cpu_dispatch.h>
|
99 |
+
#include <ATen/ops/_foreach_trunc_cpu_dispatch.h>
|
100 |
+
#include <ATen/ops/_foreach_zero_cpu_dispatch.h>
|
101 |
+
#include <ATen/ops/_functional_assert_async_cpu_dispatch.h>
|
102 |
+
#include <ATen/ops/_fused_moving_avg_obs_fq_helper_cpu_dispatch.h>
|
103 |
+
#include <ATen/ops/_fused_sdp_choice_cpu_dispatch.h>
|
104 |
+
#include <ATen/ops/_histogramdd_bin_edges_cpu_dispatch.h>
|
105 |
+
#include <ATen/ops/_histogramdd_from_bin_cts_cpu_dispatch.h>
|
106 |
+
#include <ATen/ops/_histogramdd_from_bin_tensors_cpu_dispatch.h>
|
107 |
+
#include <ATen/ops/_index_put_impl_cpu_dispatch.h>
|
108 |
+
#include <ATen/ops/_linalg_det_cpu_dispatch.h>
|
109 |
+
#include <ATen/ops/_linalg_eigh_cpu_dispatch.h>
|
110 |
+
#include <ATen/ops/_linalg_eigvals_cpu_dispatch.h>
|
111 |
+
#include <ATen/ops/_linalg_slogdet_cpu_dispatch.h>
|
112 |
+
#include <ATen/ops/_linalg_solve_ex_cpu_dispatch.h>
|
113 |
+
#include <ATen/ops/_linalg_svd_cpu_dispatch.h>
|
114 |
+
#include <ATen/ops/_local_scalar_dense_cpu_dispatch.h>
|
115 |
+
#include <ATen/ops/_log_softmax_cpu_dispatch.h>
|
116 |
+
#include <ATen/ops/_log_softmax_backward_data_cpu_dispatch.h>
|
117 |
+
#include <ATen/ops/_logcumsumexp_cpu_dispatch.h>
|
118 |
+
#include <ATen/ops/_make_dep_token_cpu_dispatch.h>
|
119 |
+
#include <ATen/ops/_make_per_channel_quantized_tensor_cpu_dispatch.h>
|
120 |
+
#include <ATen/ops/_make_per_tensor_quantized_tensor_cpu_dispatch.h>
|
121 |
+
#include <ATen/ops/_masked_softmax_cpu_dispatch.h>
|
122 |
+
#include <ATen/ops/_masked_softmax_backward_cpu_dispatch.h>
|
123 |
+
#include <ATen/ops/_native_batch_norm_legit_cpu_dispatch.h>
|
124 |
+
#include <ATen/ops/_native_multi_head_attention_cpu_dispatch.h>
|
125 |
+
#include <ATen/ops/_nested_from_padded_cpu_dispatch.h>
|
126 |
+
#include <ATen/ops/_nested_tensor_from_mask_cpu_dispatch.h>
|
127 |
+
#include <ATen/ops/_nested_tensor_from_mask_left_aligned_cpu_dispatch.h>
|
128 |
+
#include <ATen/ops/_nested_view_from_buffer_cpu_dispatch.h>
|
129 |
+
#include <ATen/ops/_pdist_backward_cpu_dispatch.h>
|
130 |
+
#include <ATen/ops/_pdist_forward_cpu_dispatch.h>
|
131 |
+
#include <ATen/ops/_prelu_kernel_cpu_dispatch.h>
|
132 |
+
#include <ATen/ops/_prelu_kernel_backward_cpu_dispatch.h>
|
133 |
+
#include <ATen/ops/_reshape_alias_cpu_dispatch.h>
|
134 |
+
#include <ATen/ops/_sample_dirichlet_cpu_dispatch.h>
|
135 |
+
#include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu_cpu_dispatch.h>
|
136 |
+
#include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu_backward_cpu_dispatch.h>
|
137 |
+
#include <ATen/ops/_segment_reduce_backward_cpu_dispatch.h>
|
138 |
+
#include <ATen/ops/_slow_conv2d_backward_cpu_dispatch.h>
|
139 |
+
#include <ATen/ops/_slow_conv2d_forward_cpu_dispatch.h>
|
140 |
+
#include <ATen/ops/_softmax_cpu_dispatch.h>
|
141 |
+
#include <ATen/ops/_softmax_backward_data_cpu_dispatch.h>
|
142 |
+
#include <ATen/ops/_spdiags_cpu_dispatch.h>
|
143 |
+
#include <ATen/ops/_stack_cpu_dispatch.h>
|
144 |
+
#include <ATen/ops/_standard_gamma_cpu_dispatch.h>
|
145 |
+
#include <ATen/ops/_standard_gamma_grad_cpu_dispatch.h>
|
146 |
+
#include <ATen/ops/_test_functorch_fallback_cpu_dispatch.h>
|
147 |
+
#include <ATen/ops/_test_optional_filled_intlist_cpu_dispatch.h>
|
148 |
+
#include <ATen/ops/_test_optional_floatlist_cpu_dispatch.h>
|
149 |
+
#include <ATen/ops/_test_optional_intlist_cpu_dispatch.h>
|
150 |
+
#include <ATen/ops/_to_sparse_cpu_dispatch.h>
|
151 |
+
#include <ATen/ops/_to_sparse_bsc_cpu_dispatch.h>
|
152 |
+
#include <ATen/ops/_to_sparse_bsr_cpu_dispatch.h>
|
153 |
+
#include <ATen/ops/_to_sparse_csc_cpu_dispatch.h>
|
154 |
+
#include <ATen/ops/_to_sparse_csr_cpu_dispatch.h>
|
155 |
+
#include <ATen/ops/_transform_bias_rescale_qkv_cpu_dispatch.h>
|
156 |
+
#include <ATen/ops/_transformer_encoder_layer_fwd_cpu_dispatch.h>
|
157 |
+
#include <ATen/ops/_unique_cpu_dispatch.h>
|
158 |
+
#include <ATen/ops/_unique2_cpu_dispatch.h>
|
159 |
+
#include <ATen/ops/_upsample_bicubic2d_aa_cpu_dispatch.h>
|
160 |
+
#include <ATen/ops/_upsample_bicubic2d_aa_backward_cpu_dispatch.h>
|
161 |
+
#include <ATen/ops/_upsample_bilinear2d_aa_cpu_dispatch.h>
|
162 |
+
#include <ATen/ops/_upsample_bilinear2d_aa_backward_cpu_dispatch.h>
|
163 |
+
#include <ATen/ops/_upsample_nearest_exact1d_cpu_dispatch.h>
|
164 |
+
#include <ATen/ops/_upsample_nearest_exact1d_backward_cpu_dispatch.h>
|
165 |
+
#include <ATen/ops/_upsample_nearest_exact2d_cpu_dispatch.h>
|
166 |
+
#include <ATen/ops/_upsample_nearest_exact2d_backward_cpu_dispatch.h>
|
167 |
+
#include <ATen/ops/_upsample_nearest_exact3d_cpu_dispatch.h>
|
168 |
+
#include <ATen/ops/_upsample_nearest_exact3d_backward_cpu_dispatch.h>
|
169 |
+
#include <ATen/ops/_validate_compressed_sparse_indices_cpu_dispatch.h>
|
170 |
+
#include <ATen/ops/_weight_int4pack_mm_cpu_dispatch.h>
|
171 |
+
#include <ATen/ops/_weight_int8pack_mm_cpu_dispatch.h>
|
172 |
+
#include <ATen/ops/_weight_norm_interface_cpu_dispatch.h>
|
173 |
+
#include <ATen/ops/_weight_norm_interface_backward_cpu_dispatch.h>
|
174 |
+
#include <ATen/ops/abs_cpu_dispatch.h>
|
175 |
+
#include <ATen/ops/acos_cpu_dispatch.h>
|
176 |
+
#include <ATen/ops/acosh_cpu_dispatch.h>
|
177 |
+
#include <ATen/ops/adaptive_avg_pool2d_cpu_dispatch.h>
|
178 |
+
#include <ATen/ops/adaptive_avg_pool3d_cpu_dispatch.h>
|
179 |
+
#include <ATen/ops/adaptive_avg_pool3d_backward_cpu_dispatch.h>
|
180 |
+
#include <ATen/ops/adaptive_max_pool2d_cpu_dispatch.h>
|
181 |
+
#include <ATen/ops/adaptive_max_pool2d_backward_cpu_dispatch.h>
|
182 |
+
#include <ATen/ops/adaptive_max_pool3d_cpu_dispatch.h>
|
183 |
+
#include <ATen/ops/adaptive_max_pool3d_backward_cpu_dispatch.h>
|
184 |
+
#include <ATen/ops/add_cpu_dispatch.h>
|
185 |
+
#include <ATen/ops/addbmm_cpu_dispatch.h>
|
186 |
+
#include <ATen/ops/addcdiv_cpu_dispatch.h>
|
187 |
+
#include <ATen/ops/addcmul_cpu_dispatch.h>
|
188 |
+
#include <ATen/ops/addmm_cpu_dispatch.h>
|
189 |
+
#include <ATen/ops/addmv_cpu_dispatch.h>
|
190 |
+
#include <ATen/ops/addr_cpu_dispatch.h>
|
191 |
+
#include <ATen/ops/all_cpu_dispatch.h>
|
192 |
+
#include <ATen/ops/amax_cpu_dispatch.h>
|
193 |
+
#include <ATen/ops/amin_cpu_dispatch.h>
|
194 |
+
#include <ATen/ops/aminmax_cpu_dispatch.h>
|
195 |
+
#include <ATen/ops/angle_cpu_dispatch.h>
|
196 |
+
#include <ATen/ops/any_cpu_dispatch.h>
|
197 |
+
#include <ATen/ops/arange_cpu_dispatch.h>
|
198 |
+
#include <ATen/ops/argmax_cpu_dispatch.h>
|
199 |
+
#include <ATen/ops/argmin_cpu_dispatch.h>
|
200 |
+
#include <ATen/ops/argsort_cpu_dispatch.h>
|
201 |
+
#include <ATen/ops/as_strided_cpu_dispatch.h>
|
202 |
+
#include <ATen/ops/asin_cpu_dispatch.h>
|
203 |
+
#include <ATen/ops/asinh_cpu_dispatch.h>
|
204 |
+
#include <ATen/ops/atan_cpu_dispatch.h>
|
205 |
+
#include <ATen/ops/atan2_cpu_dispatch.h>
|
206 |
+
#include <ATen/ops/atanh_cpu_dispatch.h>
|
207 |
+
#include <ATen/ops/avg_pool2d_cpu_dispatch.h>
|
208 |
+
#include <ATen/ops/avg_pool2d_backward_cpu_dispatch.h>
|
209 |
+
#include <ATen/ops/avg_pool3d_cpu_dispatch.h>
|
210 |
+
#include <ATen/ops/avg_pool3d_backward_cpu_dispatch.h>
|
211 |
+
#include <ATen/ops/baddbmm_cpu_dispatch.h>
|
212 |
+
#include <ATen/ops/batch_norm_update_stats_cpu_dispatch.h>
|
213 |
+
#include <ATen/ops/bernoulli_cpu_dispatch.h>
|
214 |
+
#include <ATen/ops/binary_cross_entropy_cpu_dispatch.h>
|
215 |
+
#include <ATen/ops/binary_cross_entropy_backward_cpu_dispatch.h>
|
216 |
+
#include <ATen/ops/bincount_cpu_dispatch.h>
|
217 |
+
#include <ATen/ops/binomial_cpu_dispatch.h>
|
218 |
+
#include <ATen/ops/bitwise_and_cpu_dispatch.h>
|
219 |
+
#include <ATen/ops/bitwise_left_shift_cpu_dispatch.h>
|
220 |
+
#include <ATen/ops/bitwise_not_cpu_dispatch.h>
|
221 |
+
#include <ATen/ops/bitwise_or_cpu_dispatch.h>
|
222 |
+
#include <ATen/ops/bitwise_right_shift_cpu_dispatch.h>
|
223 |
+
#include <ATen/ops/bitwise_xor_cpu_dispatch.h>
|
224 |
+
#include <ATen/ops/bmm_cpu_dispatch.h>
|
225 |
+
#include <ATen/ops/bucketize_cpu_dispatch.h>
|
226 |
+
#include <ATen/ops/cat_cpu_dispatch.h>
|
227 |
+
#include <ATen/ops/cauchy_cpu_dispatch.h>
|
228 |
+
#include <ATen/ops/ceil_cpu_dispatch.h>
|
229 |
+
#include <ATen/ops/channel_shuffle_cpu_dispatch.h>
|
230 |
+
#include <ATen/ops/cholesky_cpu_dispatch.h>
|
231 |
+
#include <ATen/ops/cholesky_inverse_cpu_dispatch.h>
|
232 |
+
#include <ATen/ops/clamp_cpu_dispatch.h>
|
233 |
+
#include <ATen/ops/clamp_max_cpu_dispatch.h>
|
234 |
+
#include <ATen/ops/clamp_min_cpu_dispatch.h>
|
235 |
+
#include <ATen/ops/col2im_cpu_dispatch.h>
|
236 |
+
#include <ATen/ops/complex_cpu_dispatch.h>
|
237 |
+
#include <ATen/ops/conj_physical_cpu_dispatch.h>
|
238 |
+
#include <ATen/ops/copysign_cpu_dispatch.h>
|
239 |
+
#include <ATen/ops/cos_cpu_dispatch.h>
|
240 |
+
#include <ATen/ops/cosh_cpu_dispatch.h>
|
241 |
+
#include <ATen/ops/count_nonzero_cpu_dispatch.h>
|
242 |
+
#include <ATen/ops/cumprod_cpu_dispatch.h>
|
243 |
+
#include <ATen/ops/cumsum_cpu_dispatch.h>
|
244 |
+
#include <ATen/ops/dense_dim_cpu_dispatch.h>
|
245 |
+
#include <ATen/ops/dequantize_cpu_dispatch.h>
|
246 |
+
#include <ATen/ops/digamma_cpu_dispatch.h>
|
247 |
+
#include <ATen/ops/div_cpu_dispatch.h>
|
248 |
+
#include <ATen/ops/dot_cpu_dispatch.h>
|
249 |
+
#include <ATen/ops/elu_cpu_dispatch.h>
|
250 |
+
#include <ATen/ops/elu_backward_cpu_dispatch.h>
|
251 |
+
#include <ATen/ops/embedding_dense_backward_cpu_dispatch.h>
|
252 |
+
#include <ATen/ops/embedding_renorm_cpu_dispatch.h>
|
253 |
+
#include <ATen/ops/empty_cpu_dispatch.h>
|
254 |
+
#include <ATen/ops/empty_strided_cpu_dispatch.h>
|
255 |
+
#include <ATen/ops/eq_cpu_dispatch.h>
|
256 |
+
#include <ATen/ops/equal_cpu_dispatch.h>
|
257 |
+
#include <ATen/ops/erf_cpu_dispatch.h>
|
258 |
+
#include <ATen/ops/erfc_cpu_dispatch.h>
|
259 |
+
#include <ATen/ops/erfinv_cpu_dispatch.h>
|
260 |
+
#include <ATen/ops/exp_cpu_dispatch.h>
|
261 |
+
#include <ATen/ops/exp2_cpu_dispatch.h>
|
262 |
+
#include <ATen/ops/expm1_cpu_dispatch.h>
|
263 |
+
#include <ATen/ops/exponential_cpu_dispatch.h>
|
264 |
+
#include <ATen/ops/eye_cpu_dispatch.h>
|
265 |
+
#include <ATen/ops/fake_quantize_per_channel_affine_cachemask_cpu_dispatch.h>
|
266 |
+
#include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_cpu_dispatch.h>
|
267 |
+
#include <ATen/ops/fill_cpu_dispatch.h>
|
268 |
+
#include <ATen/ops/flip_cpu_dispatch.h>
|
269 |
+
#include <ATen/ops/floor_cpu_dispatch.h>
|
270 |
+
#include <ATen/ops/floor_divide_cpu_dispatch.h>
|
271 |
+
#include <ATen/ops/fmax_cpu_dispatch.h>
|
272 |
+
#include <ATen/ops/fmin_cpu_dispatch.h>
|
273 |
+
#include <ATen/ops/fmod_cpu_dispatch.h>
|
274 |
+
#include <ATen/ops/frac_cpu_dispatch.h>
|
275 |
+
#include <ATen/ops/fractional_max_pool2d_cpu_dispatch.h>
|
276 |
+
#include <ATen/ops/fractional_max_pool2d_backward_cpu_dispatch.h>
|
277 |
+
#include <ATen/ops/fractional_max_pool3d_cpu_dispatch.h>
|
278 |
+
#include <ATen/ops/fractional_max_pool3d_backward_cpu_dispatch.h>
|
279 |
+
#include <ATen/ops/frexp_cpu_dispatch.h>
|
280 |
+
#include <ATen/ops/from_file_cpu_dispatch.h>
|
281 |
+
#include <ATen/ops/gather_cpu_dispatch.h>
|
282 |
+
#include <ATen/ops/gcd_cpu_dispatch.h>
|
283 |
+
#include <ATen/ops/ge_cpu_dispatch.h>
|
284 |
+
#include <ATen/ops/gelu_cpu_dispatch.h>
|
285 |
+
#include <ATen/ops/gelu_backward_cpu_dispatch.h>
|
286 |
+
#include <ATen/ops/geometric_cpu_dispatch.h>
|
287 |
+
#include <ATen/ops/geqrf_cpu_dispatch.h>
|
288 |
+
#include <ATen/ops/glu_cpu_dispatch.h>
|
289 |
+
#include <ATen/ops/glu_backward_cpu_dispatch.h>
|
290 |
+
#include <ATen/ops/glu_backward_jvp_cpu_dispatch.h>
|
291 |
+
#include <ATen/ops/glu_jvp_cpu_dispatch.h>
|
292 |
+
#include <ATen/ops/grid_sampler_2d_cpu_dispatch.h>
|
293 |
+
#include <ATen/ops/grid_sampler_2d_backward_cpu_dispatch.h>
|
294 |
+
#include <ATen/ops/grid_sampler_3d_cpu_dispatch.h>
|
295 |
+
#include <ATen/ops/grid_sampler_3d_backward_cpu_dispatch.h>
|
296 |
+
#include <ATen/ops/gt_cpu_dispatch.h>
|
297 |
+
#include <ATen/ops/hardshrink_cpu_dispatch.h>
|
298 |
+
#include <ATen/ops/hardshrink_backward_cpu_dispatch.h>
|
299 |
+
#include <ATen/ops/hardsigmoid_cpu_dispatch.h>
|
300 |
+
#include <ATen/ops/hardsigmoid_backward_cpu_dispatch.h>
|
301 |
+
#include <ATen/ops/hardswish_cpu_dispatch.h>
|
302 |
+
#include <ATen/ops/hardswish_backward_cpu_dispatch.h>
|
303 |
+
#include <ATen/ops/hardtanh_cpu_dispatch.h>
|
304 |
+
#include <ATen/ops/hardtanh_backward_cpu_dispatch.h>
|
305 |
+
#include <ATen/ops/heaviside_cpu_dispatch.h>
|
306 |
+
#include <ATen/ops/histc_cpu_dispatch.h>
|
307 |
+
#include <ATen/ops/histogram_cpu_dispatch.h>
|
308 |
+
#include <ATen/ops/huber_loss_cpu_dispatch.h>
|
309 |
+
#include <ATen/ops/huber_loss_backward_cpu_dispatch.h>
|
310 |
+
#include <ATen/ops/hypot_cpu_dispatch.h>
|
311 |
+
#include <ATen/ops/i0_cpu_dispatch.h>
|
312 |
+
#include <ATen/ops/igamma_cpu_dispatch.h>
|
313 |
+
#include <ATen/ops/igammac_cpu_dispatch.h>
|
314 |
+
#include <ATen/ops/im2col_cpu_dispatch.h>
|
315 |
+
#include <ATen/ops/index_cpu_dispatch.h>
|
316 |
+
#include <ATen/ops/index_add_cpu_dispatch.h>
|
317 |
+
#include <ATen/ops/index_copy_cpu_dispatch.h>
|
318 |
+
#include <ATen/ops/index_fill_cpu_dispatch.h>
|
319 |
+
#include <ATen/ops/index_reduce_cpu_dispatch.h>
|
320 |
+
#include <ATen/ops/index_select_cpu_dispatch.h>
|
321 |
+
#include <ATen/ops/is_set_to_cpu_dispatch.h>
|
322 |
+
#include <ATen/ops/isin_cpu_dispatch.h>
|
323 |
+
#include <ATen/ops/isnan_cpu_dispatch.h>
|
324 |
+
#include <ATen/ops/isneginf_cpu_dispatch.h>
|
325 |
+
#include <ATen/ops/isposinf_cpu_dispatch.h>
|
326 |
+
#include <ATen/ops/kthvalue_cpu_dispatch.h>
|
327 |
+
#include <ATen/ops/lcm_cpu_dispatch.h>
|
328 |
+
#include <ATen/ops/le_cpu_dispatch.h>
|
329 |
+
#include <ATen/ops/leaky_relu_cpu_dispatch.h>
|
330 |
+
#include <ATen/ops/leaky_relu_backward_cpu_dispatch.h>
|
331 |
+
#include <ATen/ops/lerp_cpu_dispatch.h>
|
332 |
+
#include <ATen/ops/lgamma_cpu_dispatch.h>
|
333 |
+
#include <ATen/ops/linalg_cholesky_ex_cpu_dispatch.h>
|
334 |
+
#include <ATen/ops/linalg_cross_cpu_dispatch.h>
|
335 |
+
#include <ATen/ops/linalg_eig_cpu_dispatch.h>
|
336 |
+
#include <ATen/ops/linalg_eigvals_cpu_dispatch.h>
|
337 |
+
#include <ATen/ops/linalg_householder_product_cpu_dispatch.h>
|
338 |
+
#include <ATen/ops/linalg_inv_ex_cpu_dispatch.h>
|
339 |
+
#include <ATen/ops/linalg_ldl_factor_ex_cpu_dispatch.h>
|
340 |
+
#include <ATen/ops/linalg_ldl_solve_cpu_dispatch.h>
|
341 |
+
#include <ATen/ops/linalg_lstsq_cpu_dispatch.h>
|
342 |
+
#include <ATen/ops/linalg_lu_cpu_dispatch.h>
|
343 |
+
#include <ATen/ops/linalg_lu_factor_ex_cpu_dispatch.h>
|
344 |
+
#include <ATen/ops/linalg_lu_solve_cpu_dispatch.h>
|
345 |
+
#include <ATen/ops/linalg_matrix_exp_cpu_dispatch.h>
|
346 |
+
#include <ATen/ops/linalg_qr_cpu_dispatch.h>
|
347 |
+
#include <ATen/ops/linalg_solve_triangular_cpu_dispatch.h>
|
348 |
+
#include <ATen/ops/linalg_vector_norm_cpu_dispatch.h>
|
349 |
+
#include <ATen/ops/linspace_cpu_dispatch.h>
|
350 |
+
#include <ATen/ops/log_cpu_dispatch.h>
|
351 |
+
#include <ATen/ops/log10_cpu_dispatch.h>
|
352 |
+
#include <ATen/ops/log1p_cpu_dispatch.h>
|
353 |
+
#include <ATen/ops/log2_cpu_dispatch.h>
|
354 |
+
#include <ATen/ops/log_normal_cpu_dispatch.h>
|
355 |
+
#include <ATen/ops/log_sigmoid_backward_cpu_dispatch.h>
|
356 |
+
#include <ATen/ops/log_sigmoid_forward_cpu_dispatch.h>
|
357 |
+
#include <ATen/ops/logaddexp_cpu_dispatch.h>
|
358 |
+
#include <ATen/ops/logaddexp2_cpu_dispatch.h>
|
359 |
+
#include <ATen/ops/logical_and_cpu_dispatch.h>
|
360 |
+
#include <ATen/ops/logical_not_cpu_dispatch.h>
|
361 |
+
#include <ATen/ops/logical_or_cpu_dispatch.h>
|
362 |
+
#include <ATen/ops/logical_xor_cpu_dispatch.h>
|
363 |
+
#include <ATen/ops/logit_cpu_dispatch.h>
|
364 |
+
#include <ATen/ops/logit_backward_cpu_dispatch.h>
|
365 |
+
#include <ATen/ops/logspace_cpu_dispatch.h>
|
366 |
+
#include <ATen/ops/lshift_cpu_dispatch.h>
|
367 |
+
#include <ATen/ops/lt_cpu_dispatch.h>
|
368 |
+
#include <ATen/ops/lu_unpack_cpu_dispatch.h>
|
369 |
+
#include <ATen/ops/masked_fill_cpu_dispatch.h>
|
370 |
+
#include <ATen/ops/masked_scatter_cpu_dispatch.h>
|
371 |
+
#include <ATen/ops/masked_select_cpu_dispatch.h>
|
372 |
+
#include <ATen/ops/max_cpu_dispatch.h>
|
373 |
+
#include <ATen/ops/max_pool2d_with_indices_cpu_dispatch.h>
|
374 |
+
#include <ATen/ops/max_pool2d_with_indices_backward_cpu_dispatch.h>
|
375 |
+
#include <ATen/ops/max_pool3d_with_indices_cpu_dispatch.h>
|
376 |
+
#include <ATen/ops/max_pool3d_with_indices_backward_cpu_dispatch.h>
|
377 |
+
#include <ATen/ops/max_unpool2d_cpu_dispatch.h>
|
378 |
+
#include <ATen/ops/max_unpool3d_cpu_dispatch.h>
|
379 |
+
#include <ATen/ops/maximum_cpu_dispatch.h>
|
380 |
+
#include <ATen/ops/mean_cpu_dispatch.h>
|
381 |
+
#include <ATen/ops/median_cpu_dispatch.h>
|
382 |
+
#include <ATen/ops/min_cpu_dispatch.h>
|
383 |
+
#include <ATen/ops/minimum_cpu_dispatch.h>
|
384 |
+
#include <ATen/ops/mish_cpu_dispatch.h>
|
385 |
+
#include <ATen/ops/mish_backward_cpu_dispatch.h>
|
386 |
+
#include <ATen/ops/mkldnn_rnn_layer_cpu_dispatch.h>
|
387 |
+
#include <ATen/ops/mkldnn_rnn_layer_backward_cpu_dispatch.h>
|
388 |
+
#include <ATen/ops/mm_cpu_dispatch.h>
|
389 |
+
#include <ATen/ops/mode_cpu_dispatch.h>
|
390 |
+
#include <ATen/ops/mse_loss_cpu_dispatch.h>
|
391 |
+
#include <ATen/ops/mse_loss_backward_cpu_dispatch.h>
|
392 |
+
#include <ATen/ops/mul_cpu_dispatch.h>
|
393 |
+
#include <ATen/ops/multi_margin_loss_cpu_dispatch.h>
|
394 |
+
#include <ATen/ops/multi_margin_loss_backward_cpu_dispatch.h>
|
395 |
+
#include <ATen/ops/multilabel_margin_loss_backward_cpu_dispatch.h>
|
396 |
+
#include <ATen/ops/multilabel_margin_loss_forward_cpu_dispatch.h>
|
397 |
+
#include <ATen/ops/multinomial_cpu_dispatch.h>
|
398 |
+
#include <ATen/ops/mvlgamma_cpu_dispatch.h>
|
399 |
+
#include <ATen/ops/nan_to_num_cpu_dispatch.h>
|
400 |
+
#include <ATen/ops/nanmedian_cpu_dispatch.h>
|
401 |
+
#include <ATen/ops/nansum_cpu_dispatch.h>
|
402 |
+
#include <ATen/ops/narrow_copy_cpu_dispatch.h>
|
403 |
+
#include <ATen/ops/native_batch_norm_cpu_dispatch.h>
|
404 |
+
#include <ATen/ops/native_batch_norm_backward_cpu_dispatch.h>
|
405 |
+
#include <ATen/ops/native_channel_shuffle_cpu_dispatch.h>
|
406 |
+
#include <ATen/ops/native_dropout_cpu_dispatch.h>
|
407 |
+
#include <ATen/ops/native_dropout_backward_cpu_dispatch.h>
|
408 |
+
#include <ATen/ops/native_group_norm_cpu_dispatch.h>
|
409 |
+
#include <ATen/ops/native_group_norm_backward_cpu_dispatch.h>
|
410 |
+
#include <ATen/ops/native_layer_norm_cpu_dispatch.h>
|
411 |
+
#include <ATen/ops/native_layer_norm_backward_cpu_dispatch.h>
|
412 |
+
#include <ATen/ops/ne_cpu_dispatch.h>
|
413 |
+
#include <ATen/ops/neg_cpu_dispatch.h>
|
414 |
+
#include <ATen/ops/nextafter_cpu_dispatch.h>
|
415 |
+
#include <ATen/ops/nll_loss2d_backward_cpu_dispatch.h>
|
416 |
+
#include <ATen/ops/nll_loss2d_forward_cpu_dispatch.h>
|
417 |
+
#include <ATen/ops/nll_loss_backward_cpu_dispatch.h>
|
418 |
+
#include <ATen/ops/nll_loss_forward_cpu_dispatch.h>
|
419 |
+
#include <ATen/ops/nonzero_cpu_dispatch.h>
|
420 |
+
#include <ATen/ops/nonzero_static_cpu_dispatch.h>
|
421 |
+
#include <ATen/ops/norm_cpu_dispatch.h>
|
422 |
+
#include <ATen/ops/normal_cpu_dispatch.h>
|
423 |
+
#include <ATen/ops/ormqr_cpu_dispatch.h>
|
424 |
+
#include <ATen/ops/pixel_shuffle_cpu_dispatch.h>
|
425 |
+
#include <ATen/ops/pixel_unshuffle_cpu_dispatch.h>
|
426 |
+
#include <ATen/ops/poisson_cpu_dispatch.h>
|
427 |
+
#include <ATen/ops/polar_cpu_dispatch.h>
|
428 |
+
#include <ATen/ops/polygamma_cpu_dispatch.h>
|
429 |
+
#include <ATen/ops/pow_cpu_dispatch.h>
|
430 |
+
#include <ATen/ops/prod_cpu_dispatch.h>
|
431 |
+
#include <ATen/ops/put_cpu_dispatch.h>
|
432 |
+
#include <ATen/ops/quantize_per_channel_cpu_dispatch.h>
|
433 |
+
#include <ATen/ops/quantize_per_tensor_cpu_dispatch.h>
|
434 |
+
#include <ATen/ops/quantize_per_tensor_dynamic_cpu_dispatch.h>
|
435 |
+
#include <ATen/ops/random_cpu_dispatch.h>
|
436 |
+
#include <ATen/ops/randperm_cpu_dispatch.h>
|
437 |
+
#include <ATen/ops/range_cpu_dispatch.h>
|
438 |
+
#include <ATen/ops/reciprocal_cpu_dispatch.h>
|
439 |
+
#include <ATen/ops/reflection_pad1d_cpu_dispatch.h>
|
440 |
+
#include <ATen/ops/reflection_pad1d_backward_cpu_dispatch.h>
|
441 |
+
#include <ATen/ops/reflection_pad2d_cpu_dispatch.h>
|
442 |
+
#include <ATen/ops/reflection_pad2d_backward_cpu_dispatch.h>
|
443 |
+
#include <ATen/ops/reflection_pad3d_cpu_dispatch.h>
|
444 |
+
#include <ATen/ops/reflection_pad3d_backward_cpu_dispatch.h>
|
445 |
+
#include <ATen/ops/relu_cpu_dispatch.h>
|
446 |
+
#include <ATen/ops/remainder_cpu_dispatch.h>
|
447 |
+
#include <ATen/ops/renorm_cpu_dispatch.h>
|
448 |
+
#include <ATen/ops/repeat_interleave_cpu_dispatch.h>
|
449 |
+
#include <ATen/ops/replication_pad1d_cpu_dispatch.h>
|
450 |
+
#include <ATen/ops/replication_pad1d_backward_cpu_dispatch.h>
|
451 |
+
#include <ATen/ops/replication_pad2d_cpu_dispatch.h>
|
452 |
+
#include <ATen/ops/replication_pad2d_backward_cpu_dispatch.h>
|
453 |
+
#include <ATen/ops/replication_pad3d_cpu_dispatch.h>
|
454 |
+
#include <ATen/ops/replication_pad3d_backward_cpu_dispatch.h>
|
455 |
+
#include <ATen/ops/resize_cpu_dispatch.h>
|
456 |
+
#include <ATen/ops/roll_cpu_dispatch.h>
|
457 |
+
#include <ATen/ops/round_cpu_dispatch.h>
|
458 |
+
#include <ATen/ops/rrelu_with_noise_cpu_dispatch.h>
|
459 |
+
#include <ATen/ops/rshift_cpu_dispatch.h>
|
460 |
+
#include <ATen/ops/rsqrt_cpu_dispatch.h>
|
461 |
+
#include <ATen/ops/rsub_cpu_dispatch.h>
|
462 |
+
#include <ATen/ops/scatter_cpu_dispatch.h>
|
463 |
+
#include <ATen/ops/scatter_add_cpu_dispatch.h>
|
464 |
+
#include <ATen/ops/scatter_reduce_cpu_dispatch.h>
|
465 |
+
#include <ATen/ops/searchsorted_cpu_dispatch.h>
|
466 |
+
#include <ATen/ops/segment_reduce_cpu_dispatch.h>
|
467 |
+
#include <ATen/ops/set_cpu_dispatch.h>
|
468 |
+
#include <ATen/ops/sgn_cpu_dispatch.h>
|
469 |
+
#include <ATen/ops/sigmoid_cpu_dispatch.h>
|
470 |
+
#include <ATen/ops/sigmoid_backward_cpu_dispatch.h>
|
471 |
+
#include <ATen/ops/sign_cpu_dispatch.h>
|
472 |
+
#include <ATen/ops/signbit_cpu_dispatch.h>
|
473 |
+
#include <ATen/ops/silu_cpu_dispatch.h>
|
474 |
+
#include <ATen/ops/silu_backward_cpu_dispatch.h>
|
475 |
+
#include <ATen/ops/sin_cpu_dispatch.h>
|
476 |
+
#include <ATen/ops/sinc_cpu_dispatch.h>
|
477 |
+
#include <ATen/ops/sinh_cpu_dispatch.h>
|
478 |
+
#include <ATen/ops/slow_conv3d_forward_cpu_dispatch.h>
|
479 |
+
#include <ATen/ops/slow_conv_dilated2d_cpu_dispatch.h>
|
480 |
+
#include <ATen/ops/slow_conv_dilated3d_cpu_dispatch.h>
|
481 |
+
#include <ATen/ops/slow_conv_transpose2d_cpu_dispatch.h>
|
482 |
+
#include <ATen/ops/slow_conv_transpose3d_cpu_dispatch.h>
|
483 |
+
#include <ATen/ops/smooth_l1_loss_cpu_dispatch.h>
|
484 |
+
#include <ATen/ops/smooth_l1_loss_backward_cpu_dispatch.h>
|
485 |
+
#include <ATen/ops/softplus_cpu_dispatch.h>
|
486 |
+
#include <ATen/ops/softplus_backward_cpu_dispatch.h>
|
487 |
+
#include <ATen/ops/softshrink_cpu_dispatch.h>
|
488 |
+
#include <ATen/ops/softshrink_backward_cpu_dispatch.h>
|
489 |
+
#include <ATen/ops/sort_cpu_dispatch.h>
|
490 |
+
#include <ATen/ops/sparse_dim_cpu_dispatch.h>
|
491 |
+
#include <ATen/ops/special_airy_ai_cpu_dispatch.h>
|
492 |
+
#include <ATen/ops/special_bessel_j0_cpu_dispatch.h>
|
493 |
+
#include <ATen/ops/special_bessel_j1_cpu_dispatch.h>
|
494 |
+
#include <ATen/ops/special_bessel_y0_cpu_dispatch.h>
|
495 |
+
#include <ATen/ops/special_bessel_y1_cpu_dispatch.h>
|
496 |
+
#include <ATen/ops/special_chebyshev_polynomial_t_cpu_dispatch.h>
|
497 |
+
#include <ATen/ops/special_chebyshev_polynomial_u_cpu_dispatch.h>
|
498 |
+
#include <ATen/ops/special_chebyshev_polynomial_v_cpu_dispatch.h>
|
499 |
+
#include <ATen/ops/special_chebyshev_polynomial_w_cpu_dispatch.h>
|
500 |
+
#include <ATen/ops/special_entr_cpu_dispatch.h>
|
501 |
+
#include <ATen/ops/special_erfcx_cpu_dispatch.h>
|
502 |
+
#include <ATen/ops/special_hermite_polynomial_h_cpu_dispatch.h>
|
503 |
+
#include <ATen/ops/special_hermite_polynomial_he_cpu_dispatch.h>
|
504 |
+
#include <ATen/ops/special_i0e_cpu_dispatch.h>
|
505 |
+
#include <ATen/ops/special_i1_cpu_dispatch.h>
|
506 |
+
#include <ATen/ops/special_i1e_cpu_dispatch.h>
|
507 |
+
#include <ATen/ops/special_laguerre_polynomial_l_cpu_dispatch.h>
|
508 |
+
#include <ATen/ops/special_legendre_polynomial_p_cpu_dispatch.h>
|
509 |
+
#include <ATen/ops/special_log_ndtr_cpu_dispatch.h>
|
510 |
+
#include <ATen/ops/special_modified_bessel_i0_cpu_dispatch.h>
|
511 |
+
#include <ATen/ops/special_modified_bessel_i1_cpu_dispatch.h>
|
512 |
+
#include <ATen/ops/special_modified_bessel_k0_cpu_dispatch.h>
|
513 |
+
#include <ATen/ops/special_modified_bessel_k1_cpu_dispatch.h>
|
514 |
+
#include <ATen/ops/special_ndtri_cpu_dispatch.h>
|
515 |
+
#include <ATen/ops/special_scaled_modified_bessel_k0_cpu_dispatch.h>
|
516 |
+
#include <ATen/ops/special_scaled_modified_bessel_k1_cpu_dispatch.h>
|
517 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_t_cpu_dispatch.h>
|
518 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_u_cpu_dispatch.h>
|
519 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_v_cpu_dispatch.h>
|
520 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_w_cpu_dispatch.h>
|
521 |
+
#include <ATen/ops/special_spherical_bessel_j0_cpu_dispatch.h>
|
522 |
+
#include <ATen/ops/special_xlog1py_cpu_dispatch.h>
|
523 |
+
#include <ATen/ops/special_zeta_cpu_dispatch.h>
|
524 |
+
#include <ATen/ops/sqrt_cpu_dispatch.h>
|
525 |
+
#include <ATen/ops/sspaddmm_cpu_dispatch.h>
|
526 |
+
#include <ATen/ops/std_cpu_dispatch.h>
|
527 |
+
#include <ATen/ops/std_mean_cpu_dispatch.h>
|
528 |
+
#include <ATen/ops/sub_cpu_dispatch.h>
|
529 |
+
#include <ATen/ops/sum_cpu_dispatch.h>
|
530 |
+
#include <ATen/ops/take_cpu_dispatch.h>
|
531 |
+
#include <ATen/ops/tan_cpu_dispatch.h>
|
532 |
+
#include <ATen/ops/tanh_cpu_dispatch.h>
|
533 |
+
#include <ATen/ops/tanh_backward_cpu_dispatch.h>
|
534 |
+
#include <ATen/ops/threshold_cpu_dispatch.h>
|
535 |
+
#include <ATen/ops/threshold_backward_cpu_dispatch.h>
|
536 |
+
#include <ATen/ops/to_mkldnn_cpu_dispatch.h>
|
537 |
+
#include <ATen/ops/topk_cpu_dispatch.h>
|
538 |
+
#include <ATen/ops/trace_cpu_dispatch.h>
|
539 |
+
#include <ATen/ops/triangular_solve_cpu_dispatch.h>
|
540 |
+
#include <ATen/ops/tril_cpu_dispatch.h>
|
541 |
+
#include <ATen/ops/tril_indices_cpu_dispatch.h>
|
542 |
+
#include <ATen/ops/triu_cpu_dispatch.h>
|
543 |
+
#include <ATen/ops/triu_indices_cpu_dispatch.h>
|
544 |
+
#include <ATen/ops/trunc_cpu_dispatch.h>
|
545 |
+
#include <ATen/ops/unfold_cpu_dispatch.h>
|
546 |
+
#include <ATen/ops/unfold_backward_cpu_dispatch.h>
|
547 |
+
#include <ATen/ops/uniform_cpu_dispatch.h>
|
548 |
+
#include <ATen/ops/unique_consecutive_cpu_dispatch.h>
|
549 |
+
#include <ATen/ops/unique_dim_cpu_dispatch.h>
|
550 |
+
#include <ATen/ops/unique_dim_consecutive_cpu_dispatch.h>
|
551 |
+
#include <ATen/ops/upsample_bicubic2d_cpu_dispatch.h>
|
552 |
+
#include <ATen/ops/upsample_bicubic2d_backward_cpu_dispatch.h>
|
553 |
+
#include <ATen/ops/upsample_bilinear2d_cpu_dispatch.h>
|
554 |
+
#include <ATen/ops/upsample_bilinear2d_backward_cpu_dispatch.h>
|
555 |
+
#include <ATen/ops/upsample_linear1d_cpu_dispatch.h>
|
556 |
+
#include <ATen/ops/upsample_linear1d_backward_cpu_dispatch.h>
|
557 |
+
#include <ATen/ops/upsample_nearest1d_cpu_dispatch.h>
|
558 |
+
#include <ATen/ops/upsample_nearest1d_backward_cpu_dispatch.h>
|
559 |
+
#include <ATen/ops/upsample_nearest2d_cpu_dispatch.h>
|
560 |
+
#include <ATen/ops/upsample_nearest2d_backward_cpu_dispatch.h>
|
561 |
+
#include <ATen/ops/upsample_nearest3d_cpu_dispatch.h>
|
562 |
+
#include <ATen/ops/upsample_nearest3d_backward_cpu_dispatch.h>
|
563 |
+
#include <ATen/ops/upsample_trilinear3d_cpu_dispatch.h>
|
564 |
+
#include <ATen/ops/upsample_trilinear3d_backward_cpu_dispatch.h>
|
565 |
+
#include <ATen/ops/var_cpu_dispatch.h>
|
566 |
+
#include <ATen/ops/var_mean_cpu_dispatch.h>
|
567 |
+
#include <ATen/ops/vdot_cpu_dispatch.h>
|
568 |
+
#include <ATen/ops/view_cpu_dispatch.h>
|
569 |
+
#include <ATen/ops/view_as_complex_cpu_dispatch.h>
|
570 |
+
#include <ATen/ops/view_as_real_cpu_dispatch.h>
|
571 |
+
#include <ATen/ops/where_cpu_dispatch.h>
|
572 |
+
#include <ATen/ops/xlogy_cpu_dispatch.h>
|
573 |
+
#include <ATen/ops/zero_cpu_dispatch.h>
|
574 |
+
|
575 |
+
|
576 |
+
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradFunctions.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/core/TensorBody.h>
|
2 |
+
|
3 |
+
// TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
|
4 |
+
// Code introduced to avoid cyclic dependency in static dispatch is no longer
|
5 |
+
// needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
|
6 |
+
// to Operators.cpp for supporting multiple backends with multiple kernels.
|
7 |
+
//
|
8 |
+
// Note [Avoiding Include Cycles In Static Dispatch]
|
9 |
+
// In order to avoid #include cycles in the static dispatch build, we've carefully split out
|
10 |
+
// the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
|
11 |
+
//
|
12 |
+
// Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
|
13 |
+
// - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
|
14 |
+
// all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
|
15 |
+
// directly inlined into TensorBody.h.
|
16 |
+
// - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
|
17 |
+
// which include functions that have defaultable optional<Tensor> arguments.
|
18 |
+
// That requires knowing the full Tensor class definition.
|
19 |
+
//
|
20 |
+
// We break the cycle by doing the following:
|
21 |
+
// - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
|
22 |
+
// - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
|
23 |
+
// - CPUFunctions_inl.h includes everything else
|
24 |
+
// - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
|
25 |
+
// and then it includes CPUFunctions_inl.h.
|
26 |
+
// - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
|
27 |
+
// - This also means that static dispatch build, CPUFunctions.h only needs to
|
28 |
+
// #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
|
29 |
+
#include <ATen/CompositeExplicitAutogradFunctions_inl.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradNonFunctionalFunctions.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/core/TensorBody.h>
|
2 |
+
|
3 |
+
// TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
|
4 |
+
// Code introduced to avoid cyclic dependency in static dispatch is no longer
|
5 |
+
// needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
|
6 |
+
// to Operators.cpp for supporting multiple backends with multiple kernels.
|
7 |
+
//
|
8 |
+
// Note [Avoiding Include Cycles In Static Dispatch]
|
9 |
+
// In order to avoid #include cycles in the static dispatch build, we've carefully split out
|
10 |
+
// the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
|
11 |
+
//
|
12 |
+
// Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
|
13 |
+
// - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
|
14 |
+
// all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
|
15 |
+
// directly inlined into TensorBody.h.
|
16 |
+
// - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
|
17 |
+
// which include functions that have defaultable optional<Tensor> arguments.
|
18 |
+
// That requires knowing the full Tensor class definition.
|
19 |
+
//
|
20 |
+
// We break the cycle by doing the following:
|
21 |
+
// - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
|
22 |
+
// - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
|
23 |
+
// - CPUFunctions_inl.h includes everything else
|
24 |
+
// - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
|
25 |
+
// and then it includes CPUFunctions_inl.h.
|
26 |
+
// - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
|
27 |
+
// - This also means that static dispatch build, CPUFunctions.h only needs to
|
28 |
+
// #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
|
29 |
+
#include <ATen/CompositeExplicitAutogradNonFunctionalFunctions_inl.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradNonFunctionalFunctions_inl.h
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunctions_inl.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
#if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
|
12 |
+
#error This change adds a dependency on all pytorch operators, meaning the \
|
13 |
+
file will need to be re-compiled every time an operator is changed or added. \
|
14 |
+
Consider including a specific operator from \
|
15 |
+
<ATen/ops/{my_operator}_compositeexplicitautogradnonfunctional_dispatch.h>. \
|
16 |
+
See NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
|
17 |
+
#endif
|
18 |
+
|
19 |
+
#include <ATen/ops/_addmm_activation_compositeexplicitautogradnonfunctional_dispatch.h>
|
20 |
+
#include <ATen/ops/_conj_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
21 |
+
#include <ATen/ops/_convert_indices_from_coo_to_csr_compositeexplicitautogradnonfunctional_dispatch.h>
|
22 |
+
#include <ATen/ops/_convert_indices_from_csr_to_coo_compositeexplicitautogradnonfunctional_dispatch.h>
|
23 |
+
#include <ATen/ops/_fw_primal_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
24 |
+
#include <ATen/ops/_indices_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
25 |
+
#include <ATen/ops/_linalg_det_compositeexplicitautogradnonfunctional_dispatch.h>
|
26 |
+
#include <ATen/ops/_linalg_eigh_compositeexplicitautogradnonfunctional_dispatch.h>
|
27 |
+
#include <ATen/ops/_linalg_slogdet_compositeexplicitautogradnonfunctional_dispatch.h>
|
28 |
+
#include <ATen/ops/_linalg_solve_ex_compositeexplicitautogradnonfunctional_dispatch.h>
|
29 |
+
#include <ATen/ops/_linalg_svd_compositeexplicitautogradnonfunctional_dispatch.h>
|
30 |
+
#include <ATen/ops/_log_softmax_compositeexplicitautogradnonfunctional_dispatch.h>
|
31 |
+
#include <ATen/ops/_log_softmax_backward_data_compositeexplicitautogradnonfunctional_dispatch.h>
|
32 |
+
#include <ATen/ops/_make_dual_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
33 |
+
#include <ATen/ops/_neg_view_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
34 |
+
#include <ATen/ops/_nested_get_values_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
35 |
+
#include <ATen/ops/_nested_view_from_buffer_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
36 |
+
#include <ATen/ops/_nested_view_from_jagged_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
37 |
+
#include <ATen/ops/_reshape_alias_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
38 |
+
#include <ATen/ops/_softmax_compositeexplicitautogradnonfunctional_dispatch.h>
|
39 |
+
#include <ATen/ops/_softmax_backward_data_compositeexplicitautogradnonfunctional_dispatch.h>
|
40 |
+
#include <ATen/ops/_sparse_broadcast_to_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
41 |
+
#include <ATen/ops/_test_autograd_multiple_dispatch_view_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
42 |
+
#include <ATen/ops/_trilinear_compositeexplicitautogradnonfunctional_dispatch.h>
|
43 |
+
#include <ATen/ops/_upsample_bicubic2d_aa_compositeexplicitautogradnonfunctional_dispatch.h>
|
44 |
+
#include <ATen/ops/_upsample_bicubic2d_aa_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
45 |
+
#include <ATen/ops/_upsample_bilinear2d_aa_compositeexplicitautogradnonfunctional_dispatch.h>
|
46 |
+
#include <ATen/ops/_upsample_bilinear2d_aa_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
47 |
+
#include <ATen/ops/_upsample_nearest_exact1d_compositeexplicitautogradnonfunctional_dispatch.h>
|
48 |
+
#include <ATen/ops/_upsample_nearest_exact1d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
49 |
+
#include <ATen/ops/_upsample_nearest_exact2d_compositeexplicitautogradnonfunctional_dispatch.h>
|
50 |
+
#include <ATen/ops/_upsample_nearest_exact2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
51 |
+
#include <ATen/ops/_upsample_nearest_exact3d_compositeexplicitautogradnonfunctional_dispatch.h>
|
52 |
+
#include <ATen/ops/_upsample_nearest_exact3d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
53 |
+
#include <ATen/ops/_values_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
54 |
+
#include <ATen/ops/acos_compositeexplicitautogradnonfunctional_dispatch.h>
|
55 |
+
#include <ATen/ops/acosh_compositeexplicitautogradnonfunctional_dispatch.h>
|
56 |
+
#include <ATen/ops/adaptive_max_pool2d_compositeexplicitautogradnonfunctional_dispatch.h>
|
57 |
+
#include <ATen/ops/adaptive_max_pool2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
58 |
+
#include <ATen/ops/adaptive_max_pool3d_compositeexplicitautogradnonfunctional_dispatch.h>
|
59 |
+
#include <ATen/ops/adaptive_max_pool3d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
60 |
+
#include <ATen/ops/add_compositeexplicitautogradnonfunctional_dispatch.h>
|
61 |
+
#include <ATen/ops/addcdiv_compositeexplicitautogradnonfunctional_dispatch.h>
|
62 |
+
#include <ATen/ops/addcmul_compositeexplicitautogradnonfunctional_dispatch.h>
|
63 |
+
#include <ATen/ops/addmm_compositeexplicitautogradnonfunctional_dispatch.h>
|
64 |
+
#include <ATen/ops/addmv_compositeexplicitautogradnonfunctional_dispatch.h>
|
65 |
+
#include <ATen/ops/alias_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
66 |
+
#include <ATen/ops/all_compositeexplicitautogradnonfunctional_dispatch.h>
|
67 |
+
#include <ATen/ops/amax_compositeexplicitautogradnonfunctional_dispatch.h>
|
68 |
+
#include <ATen/ops/amin_compositeexplicitautogradnonfunctional_dispatch.h>
|
69 |
+
#include <ATen/ops/aminmax_compositeexplicitautogradnonfunctional_dispatch.h>
|
70 |
+
#include <ATen/ops/any_compositeexplicitautogradnonfunctional_dispatch.h>
|
71 |
+
#include <ATen/ops/argmax_compositeexplicitautogradnonfunctional_dispatch.h>
|
72 |
+
#include <ATen/ops/argmin_compositeexplicitautogradnonfunctional_dispatch.h>
|
73 |
+
#include <ATen/ops/as_strided_compositeexplicitautogradnonfunctional_dispatch.h>
|
74 |
+
#include <ATen/ops/as_strided_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
75 |
+
#include <ATen/ops/as_strided_scatter_compositeexplicitautogradnonfunctional_dispatch.h>
|
76 |
+
#include <ATen/ops/asin_compositeexplicitautogradnonfunctional_dispatch.h>
|
77 |
+
#include <ATen/ops/asinh_compositeexplicitautogradnonfunctional_dispatch.h>
|
78 |
+
#include <ATen/ops/atan_compositeexplicitautogradnonfunctional_dispatch.h>
|
79 |
+
#include <ATen/ops/atan2_compositeexplicitautogradnonfunctional_dispatch.h>
|
80 |
+
#include <ATen/ops/atanh_compositeexplicitautogradnonfunctional_dispatch.h>
|
81 |
+
#include <ATen/ops/avg_pool2d_compositeexplicitautogradnonfunctional_dispatch.h>
|
82 |
+
#include <ATen/ops/avg_pool2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
83 |
+
#include <ATen/ops/avg_pool3d_compositeexplicitautogradnonfunctional_dispatch.h>
|
84 |
+
#include <ATen/ops/avg_pool3d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
85 |
+
#include <ATen/ops/baddbmm_compositeexplicitautogradnonfunctional_dispatch.h>
|
86 |
+
#include <ATen/ops/bernoulli_compositeexplicitautogradnonfunctional_dispatch.h>
|
87 |
+
#include <ATen/ops/bitwise_and_compositeexplicitautogradnonfunctional_dispatch.h>
|
88 |
+
#include <ATen/ops/bitwise_left_shift_compositeexplicitautogradnonfunctional_dispatch.h>
|
89 |
+
#include <ATen/ops/bitwise_not_compositeexplicitautogradnonfunctional_dispatch.h>
|
90 |
+
#include <ATen/ops/bitwise_or_compositeexplicitautogradnonfunctional_dispatch.h>
|
91 |
+
#include <ATen/ops/bitwise_right_shift_compositeexplicitautogradnonfunctional_dispatch.h>
|
92 |
+
#include <ATen/ops/bitwise_xor_compositeexplicitautogradnonfunctional_dispatch.h>
|
93 |
+
#include <ATen/ops/bmm_compositeexplicitautogradnonfunctional_dispatch.h>
|
94 |
+
#include <ATen/ops/cat_compositeexplicitautogradnonfunctional_dispatch.h>
|
95 |
+
#include <ATen/ops/ccol_indices_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
96 |
+
#include <ATen/ops/ceil_compositeexplicitautogradnonfunctional_dispatch.h>
|
97 |
+
#include <ATen/ops/clamp_compositeexplicitautogradnonfunctional_dispatch.h>
|
98 |
+
#include <ATen/ops/clamp_max_compositeexplicitautogradnonfunctional_dispatch.h>
|
99 |
+
#include <ATen/ops/clamp_min_compositeexplicitautogradnonfunctional_dispatch.h>
|
100 |
+
#include <ATen/ops/col_indices_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
101 |
+
#include <ATen/ops/copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
102 |
+
#include <ATen/ops/copysign_compositeexplicitautogradnonfunctional_dispatch.h>
|
103 |
+
#include <ATen/ops/cos_compositeexplicitautogradnonfunctional_dispatch.h>
|
104 |
+
#include <ATen/ops/cosh_compositeexplicitautogradnonfunctional_dispatch.h>
|
105 |
+
#include <ATen/ops/crow_indices_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
106 |
+
#include <ATen/ops/cumprod_compositeexplicitautogradnonfunctional_dispatch.h>
|
107 |
+
#include <ATen/ops/cumsum_compositeexplicitautogradnonfunctional_dispatch.h>
|
108 |
+
#include <ATen/ops/detach_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
109 |
+
#include <ATen/ops/diag_embed_compositeexplicitautogradnonfunctional_dispatch.h>
|
110 |
+
#include <ATen/ops/diagonal_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
111 |
+
#include <ATen/ops/diagonal_scatter_compositeexplicitautogradnonfunctional_dispatch.h>
|
112 |
+
#include <ATen/ops/digamma_compositeexplicitautogradnonfunctional_dispatch.h>
|
113 |
+
#include <ATen/ops/div_compositeexplicitautogradnonfunctional_dispatch.h>
|
114 |
+
#include <ATen/ops/elu_compositeexplicitautogradnonfunctional_dispatch.h>
|
115 |
+
#include <ATen/ops/elu_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
116 |
+
#include <ATen/ops/eq_compositeexplicitautogradnonfunctional_dispatch.h>
|
117 |
+
#include <ATen/ops/erf_compositeexplicitautogradnonfunctional_dispatch.h>
|
118 |
+
#include <ATen/ops/erfc_compositeexplicitautogradnonfunctional_dispatch.h>
|
119 |
+
#include <ATen/ops/erfinv_compositeexplicitautogradnonfunctional_dispatch.h>
|
120 |
+
#include <ATen/ops/exp_compositeexplicitautogradnonfunctional_dispatch.h>
|
121 |
+
#include <ATen/ops/exp2_compositeexplicitautogradnonfunctional_dispatch.h>
|
122 |
+
#include <ATen/ops/expand_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
123 |
+
#include <ATen/ops/expm1_compositeexplicitautogradnonfunctional_dispatch.h>
|
124 |
+
#include <ATen/ops/floor_compositeexplicitautogradnonfunctional_dispatch.h>
|
125 |
+
#include <ATen/ops/fmax_compositeexplicitautogradnonfunctional_dispatch.h>
|
126 |
+
#include <ATen/ops/fmin_compositeexplicitautogradnonfunctional_dispatch.h>
|
127 |
+
#include <ATen/ops/fmod_compositeexplicitautogradnonfunctional_dispatch.h>
|
128 |
+
#include <ATen/ops/frac_compositeexplicitautogradnonfunctional_dispatch.h>
|
129 |
+
#include <ATen/ops/fractional_max_pool2d_compositeexplicitautogradnonfunctional_dispatch.h>
|
130 |
+
#include <ATen/ops/fractional_max_pool2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
131 |
+
#include <ATen/ops/fractional_max_pool3d_compositeexplicitautogradnonfunctional_dispatch.h>
|
132 |
+
#include <ATen/ops/gather_compositeexplicitautogradnonfunctional_dispatch.h>
|
133 |
+
#include <ATen/ops/gcd_compositeexplicitautogradnonfunctional_dispatch.h>
|
134 |
+
#include <ATen/ops/ge_compositeexplicitautogradnonfunctional_dispatch.h>
|
135 |
+
#include <ATen/ops/gelu_compositeexplicitautogradnonfunctional_dispatch.h>
|
136 |
+
#include <ATen/ops/gelu_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
137 |
+
#include <ATen/ops/glu_compositeexplicitautogradnonfunctional_dispatch.h>
|
138 |
+
#include <ATen/ops/gt_compositeexplicitautogradnonfunctional_dispatch.h>
|
139 |
+
#include <ATen/ops/hardshrink_compositeexplicitautogradnonfunctional_dispatch.h>
|
140 |
+
#include <ATen/ops/hardshrink_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
141 |
+
#include <ATen/ops/hardsigmoid_compositeexplicitautogradnonfunctional_dispatch.h>
|
142 |
+
#include <ATen/ops/hardsigmoid_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
143 |
+
#include <ATen/ops/heaviside_compositeexplicitautogradnonfunctional_dispatch.h>
|
144 |
+
#include <ATen/ops/hypot_compositeexplicitautogradnonfunctional_dispatch.h>
|
145 |
+
#include <ATen/ops/i0_compositeexplicitautogradnonfunctional_dispatch.h>
|
146 |
+
#include <ATen/ops/igamma_compositeexplicitautogradnonfunctional_dispatch.h>
|
147 |
+
#include <ATen/ops/igammac_compositeexplicitautogradnonfunctional_dispatch.h>
|
148 |
+
#include <ATen/ops/index_compositeexplicitautogradnonfunctional_dispatch.h>
|
149 |
+
#include <ATen/ops/index_add_compositeexplicitautogradnonfunctional_dispatch.h>
|
150 |
+
#include <ATen/ops/index_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
151 |
+
#include <ATen/ops/index_reduce_compositeexplicitautogradnonfunctional_dispatch.h>
|
152 |
+
#include <ATen/ops/indices_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
153 |
+
#include <ATen/ops/isin_compositeexplicitautogradnonfunctional_dispatch.h>
|
154 |
+
#include <ATen/ops/isneginf_compositeexplicitautogradnonfunctional_dispatch.h>
|
155 |
+
#include <ATen/ops/isposinf_compositeexplicitautogradnonfunctional_dispatch.h>
|
156 |
+
#include <ATen/ops/lcm_compositeexplicitautogradnonfunctional_dispatch.h>
|
157 |
+
#include <ATen/ops/le_compositeexplicitautogradnonfunctional_dispatch.h>
|
158 |
+
#include <ATen/ops/leaky_relu_compositeexplicitautogradnonfunctional_dispatch.h>
|
159 |
+
#include <ATen/ops/leaky_relu_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
160 |
+
#include <ATen/ops/lerp_compositeexplicitautogradnonfunctional_dispatch.h>
|
161 |
+
#include <ATen/ops/lgamma_compositeexplicitautogradnonfunctional_dispatch.h>
|
162 |
+
#include <ATen/ops/lift_fresh_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
163 |
+
#include <ATen/ops/linalg_cholesky_ex_compositeexplicitautogradnonfunctional_dispatch.h>
|
164 |
+
#include <ATen/ops/linalg_cross_compositeexplicitautogradnonfunctional_dispatch.h>
|
165 |
+
#include <ATen/ops/linalg_inv_ex_compositeexplicitautogradnonfunctional_dispatch.h>
|
166 |
+
#include <ATen/ops/linalg_ldl_factor_ex_compositeexplicitautogradnonfunctional_dispatch.h>
|
167 |
+
#include <ATen/ops/linalg_ldl_solve_compositeexplicitautogradnonfunctional_dispatch.h>
|
168 |
+
#include <ATen/ops/linalg_lu_compositeexplicitautogradnonfunctional_dispatch.h>
|
169 |
+
#include <ATen/ops/linalg_lu_factor_ex_compositeexplicitautogradnonfunctional_dispatch.h>
|
170 |
+
#include <ATen/ops/linalg_lu_solve_compositeexplicitautogradnonfunctional_dispatch.h>
|
171 |
+
#include <ATen/ops/linalg_pinv_compositeexplicitautogradnonfunctional_dispatch.h>
|
172 |
+
#include <ATen/ops/linalg_qr_compositeexplicitautogradnonfunctional_dispatch.h>
|
173 |
+
#include <ATen/ops/linalg_vector_norm_compositeexplicitautogradnonfunctional_dispatch.h>
|
174 |
+
#include <ATen/ops/log_compositeexplicitautogradnonfunctional_dispatch.h>
|
175 |
+
#include <ATen/ops/log10_compositeexplicitautogradnonfunctional_dispatch.h>
|
176 |
+
#include <ATen/ops/log1p_compositeexplicitautogradnonfunctional_dispatch.h>
|
177 |
+
#include <ATen/ops/log2_compositeexplicitautogradnonfunctional_dispatch.h>
|
178 |
+
#include <ATen/ops/logaddexp_compositeexplicitautogradnonfunctional_dispatch.h>
|
179 |
+
#include <ATen/ops/logaddexp2_compositeexplicitautogradnonfunctional_dispatch.h>
|
180 |
+
#include <ATen/ops/logit_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
181 |
+
#include <ATen/ops/logsumexp_compositeexplicitautogradnonfunctional_dispatch.h>
|
182 |
+
#include <ATen/ops/lt_compositeexplicitautogradnonfunctional_dispatch.h>
|
183 |
+
#include <ATen/ops/lu_unpack_compositeexplicitautogradnonfunctional_dispatch.h>
|
184 |
+
#include <ATen/ops/max_compositeexplicitautogradnonfunctional_dispatch.h>
|
185 |
+
#include <ATen/ops/max_pool2d_with_indices_compositeexplicitautogradnonfunctional_dispatch.h>
|
186 |
+
#include <ATen/ops/max_pool2d_with_indices_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
187 |
+
#include <ATen/ops/maximum_compositeexplicitautogradnonfunctional_dispatch.h>
|
188 |
+
#include <ATen/ops/mean_compositeexplicitautogradnonfunctional_dispatch.h>
|
189 |
+
#include <ATen/ops/min_compositeexplicitautogradnonfunctional_dispatch.h>
|
190 |
+
#include <ATen/ops/minimum_compositeexplicitautogradnonfunctional_dispatch.h>
|
191 |
+
#include <ATen/ops/mish_compositeexplicitautogradnonfunctional_dispatch.h>
|
192 |
+
#include <ATen/ops/mm_compositeexplicitautogradnonfunctional_dispatch.h>
|
193 |
+
#include <ATen/ops/mse_loss_compositeexplicitautogradnonfunctional_dispatch.h>
|
194 |
+
#include <ATen/ops/mul_compositeexplicitautogradnonfunctional_dispatch.h>
|
195 |
+
#include <ATen/ops/narrow_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
196 |
+
#include <ATen/ops/ne_compositeexplicitautogradnonfunctional_dispatch.h>
|
197 |
+
#include <ATen/ops/neg_compositeexplicitautogradnonfunctional_dispatch.h>
|
198 |
+
#include <ATen/ops/new_empty_strided_compositeexplicitautogradnonfunctional_dispatch.h>
|
199 |
+
#include <ATen/ops/nextafter_compositeexplicitautogradnonfunctional_dispatch.h>
|
200 |
+
#include <ATen/ops/nll_loss_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
201 |
+
#include <ATen/ops/nll_loss_forward_compositeexplicitautogradnonfunctional_dispatch.h>
|
202 |
+
#include <ATen/ops/norm_compositeexplicitautogradnonfunctional_dispatch.h>
|
203 |
+
#include <ATen/ops/permute_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
204 |
+
#include <ATen/ops/pixel_shuffle_compositeexplicitautogradnonfunctional_dispatch.h>
|
205 |
+
#include <ATen/ops/pixel_unshuffle_compositeexplicitautogradnonfunctional_dispatch.h>
|
206 |
+
#include <ATen/ops/polygamma_compositeexplicitautogradnonfunctional_dispatch.h>
|
207 |
+
#include <ATen/ops/pow_compositeexplicitautogradnonfunctional_dispatch.h>
|
208 |
+
#include <ATen/ops/prod_compositeexplicitautogradnonfunctional_dispatch.h>
|
209 |
+
#include <ATen/ops/reciprocal_compositeexplicitautogradnonfunctional_dispatch.h>
|
210 |
+
#include <ATen/ops/reflection_pad1d_compositeexplicitautogradnonfunctional_dispatch.h>
|
211 |
+
#include <ATen/ops/reflection_pad1d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
212 |
+
#include <ATen/ops/reflection_pad3d_compositeexplicitautogradnonfunctional_dispatch.h>
|
213 |
+
#include <ATen/ops/reflection_pad3d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
214 |
+
#include <ATen/ops/remainder_compositeexplicitautogradnonfunctional_dispatch.h>
|
215 |
+
#include <ATen/ops/renorm_compositeexplicitautogradnonfunctional_dispatch.h>
|
216 |
+
#include <ATen/ops/replication_pad1d_compositeexplicitautogradnonfunctional_dispatch.h>
|
217 |
+
#include <ATen/ops/replication_pad1d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
218 |
+
#include <ATen/ops/replication_pad2d_compositeexplicitautogradnonfunctional_dispatch.h>
|
219 |
+
#include <ATen/ops/replication_pad3d_compositeexplicitautogradnonfunctional_dispatch.h>
|
220 |
+
#include <ATen/ops/round_compositeexplicitautogradnonfunctional_dispatch.h>
|
221 |
+
#include <ATen/ops/row_indices_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
222 |
+
#include <ATen/ops/rsqrt_compositeexplicitautogradnonfunctional_dispatch.h>
|
223 |
+
#include <ATen/ops/scatter_compositeexplicitautogradnonfunctional_dispatch.h>
|
224 |
+
#include <ATen/ops/scatter_add_compositeexplicitautogradnonfunctional_dispatch.h>
|
225 |
+
#include <ATen/ops/scatter_reduce_compositeexplicitautogradnonfunctional_dispatch.h>
|
226 |
+
#include <ATen/ops/select_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
227 |
+
#include <ATen/ops/select_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
228 |
+
#include <ATen/ops/select_scatter_compositeexplicitautogradnonfunctional_dispatch.h>
|
229 |
+
#include <ATen/ops/sgn_compositeexplicitautogradnonfunctional_dispatch.h>
|
230 |
+
#include <ATen/ops/sigmoid_compositeexplicitautogradnonfunctional_dispatch.h>
|
231 |
+
#include <ATen/ops/sigmoid_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
232 |
+
#include <ATen/ops/sign_compositeexplicitautogradnonfunctional_dispatch.h>
|
233 |
+
#include <ATen/ops/signbit_compositeexplicitautogradnonfunctional_dispatch.h>
|
234 |
+
#include <ATen/ops/silu_compositeexplicitautogradnonfunctional_dispatch.h>
|
235 |
+
#include <ATen/ops/silu_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
236 |
+
#include <ATen/ops/sin_compositeexplicitautogradnonfunctional_dispatch.h>
|
237 |
+
#include <ATen/ops/sinc_compositeexplicitautogradnonfunctional_dispatch.h>
|
238 |
+
#include <ATen/ops/sinh_compositeexplicitautogradnonfunctional_dispatch.h>
|
239 |
+
#include <ATen/ops/slice_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
240 |
+
#include <ATen/ops/slice_scatter_compositeexplicitautogradnonfunctional_dispatch.h>
|
241 |
+
#include <ATen/ops/slow_conv_transpose2d_compositeexplicitautogradnonfunctional_dispatch.h>
|
242 |
+
#include <ATen/ops/smooth_l1_loss_compositeexplicitautogradnonfunctional_dispatch.h>
|
243 |
+
#include <ATen/ops/softplus_compositeexplicitautogradnonfunctional_dispatch.h>
|
244 |
+
#include <ATen/ops/softplus_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
245 |
+
#include <ATen/ops/softshrink_compositeexplicitautogradnonfunctional_dispatch.h>
|
246 |
+
#include <ATen/ops/softshrink_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
247 |
+
#include <ATen/ops/sort_compositeexplicitautogradnonfunctional_dispatch.h>
|
248 |
+
#include <ATen/ops/special_airy_ai_compositeexplicitautogradnonfunctional_dispatch.h>
|
249 |
+
#include <ATen/ops/special_bessel_j0_compositeexplicitautogradnonfunctional_dispatch.h>
|
250 |
+
#include <ATen/ops/special_bessel_j1_compositeexplicitautogradnonfunctional_dispatch.h>
|
251 |
+
#include <ATen/ops/special_bessel_y0_compositeexplicitautogradnonfunctional_dispatch.h>
|
252 |
+
#include <ATen/ops/special_bessel_y1_compositeexplicitautogradnonfunctional_dispatch.h>
|
253 |
+
#include <ATen/ops/special_chebyshev_polynomial_t_compositeexplicitautogradnonfunctional_dispatch.h>
|
254 |
+
#include <ATen/ops/special_chebyshev_polynomial_u_compositeexplicitautogradnonfunctional_dispatch.h>
|
255 |
+
#include <ATen/ops/special_chebyshev_polynomial_v_compositeexplicitautogradnonfunctional_dispatch.h>
|
256 |
+
#include <ATen/ops/special_chebyshev_polynomial_w_compositeexplicitautogradnonfunctional_dispatch.h>
|
257 |
+
#include <ATen/ops/special_entr_compositeexplicitautogradnonfunctional_dispatch.h>
|
258 |
+
#include <ATen/ops/special_erfcx_compositeexplicitautogradnonfunctional_dispatch.h>
|
259 |
+
#include <ATen/ops/special_hermite_polynomial_h_compositeexplicitautogradnonfunctional_dispatch.h>
|
260 |
+
#include <ATen/ops/special_hermite_polynomial_he_compositeexplicitautogradnonfunctional_dispatch.h>
|
261 |
+
#include <ATen/ops/special_i0e_compositeexplicitautogradnonfunctional_dispatch.h>
|
262 |
+
#include <ATen/ops/special_i1_compositeexplicitautogradnonfunctional_dispatch.h>
|
263 |
+
#include <ATen/ops/special_i1e_compositeexplicitautogradnonfunctional_dispatch.h>
|
264 |
+
#include <ATen/ops/special_laguerre_polynomial_l_compositeexplicitautogradnonfunctional_dispatch.h>
|
265 |
+
#include <ATen/ops/special_legendre_polynomial_p_compositeexplicitautogradnonfunctional_dispatch.h>
|
266 |
+
#include <ATen/ops/special_log_ndtr_compositeexplicitautogradnonfunctional_dispatch.h>
|
267 |
+
#include <ATen/ops/special_modified_bessel_i0_compositeexplicitautogradnonfunctional_dispatch.h>
|
268 |
+
#include <ATen/ops/special_modified_bessel_i1_compositeexplicitautogradnonfunctional_dispatch.h>
|
269 |
+
#include <ATen/ops/special_modified_bessel_k0_compositeexplicitautogradnonfunctional_dispatch.h>
|
270 |
+
#include <ATen/ops/special_modified_bessel_k1_compositeexplicitautogradnonfunctional_dispatch.h>
|
271 |
+
#include <ATen/ops/special_ndtri_compositeexplicitautogradnonfunctional_dispatch.h>
|
272 |
+
#include <ATen/ops/special_scaled_modified_bessel_k0_compositeexplicitautogradnonfunctional_dispatch.h>
|
273 |
+
#include <ATen/ops/special_scaled_modified_bessel_k1_compositeexplicitautogradnonfunctional_dispatch.h>
|
274 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_t_compositeexplicitautogradnonfunctional_dispatch.h>
|
275 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_u_compositeexplicitautogradnonfunctional_dispatch.h>
|
276 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_v_compositeexplicitautogradnonfunctional_dispatch.h>
|
277 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_w_compositeexplicitautogradnonfunctional_dispatch.h>
|
278 |
+
#include <ATen/ops/special_spherical_bessel_j0_compositeexplicitautogradnonfunctional_dispatch.h>
|
279 |
+
#include <ATen/ops/special_xlog1py_compositeexplicitautogradnonfunctional_dispatch.h>
|
280 |
+
#include <ATen/ops/special_zeta_compositeexplicitautogradnonfunctional_dispatch.h>
|
281 |
+
#include <ATen/ops/split_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
282 |
+
#include <ATen/ops/split_with_sizes_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
283 |
+
#include <ATen/ops/sqrt_compositeexplicitautogradnonfunctional_dispatch.h>
|
284 |
+
#include <ATen/ops/squeeze_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
285 |
+
#include <ATen/ops/sub_compositeexplicitautogradnonfunctional_dispatch.h>
|
286 |
+
#include <ATen/ops/sum_compositeexplicitautogradnonfunctional_dispatch.h>
|
287 |
+
#include <ATen/ops/t_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
288 |
+
#include <ATen/ops/tan_compositeexplicitautogradnonfunctional_dispatch.h>
|
289 |
+
#include <ATen/ops/tanh_compositeexplicitautogradnonfunctional_dispatch.h>
|
290 |
+
#include <ATen/ops/tanh_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
291 |
+
#include <ATen/ops/threshold_compositeexplicitautogradnonfunctional_dispatch.h>
|
292 |
+
#include <ATen/ops/threshold_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
293 |
+
#include <ATen/ops/topk_compositeexplicitautogradnonfunctional_dispatch.h>
|
294 |
+
#include <ATen/ops/transpose_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
295 |
+
#include <ATen/ops/triangular_solve_compositeexplicitautogradnonfunctional_dispatch.h>
|
296 |
+
#include <ATen/ops/tril_compositeexplicitautogradnonfunctional_dispatch.h>
|
297 |
+
#include <ATen/ops/triu_compositeexplicitautogradnonfunctional_dispatch.h>
|
298 |
+
#include <ATen/ops/trunc_compositeexplicitautogradnonfunctional_dispatch.h>
|
299 |
+
#include <ATen/ops/unbind_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
300 |
+
#include <ATen/ops/unfold_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
301 |
+
#include <ATen/ops/unsqueeze_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
302 |
+
#include <ATen/ops/upsample_bicubic2d_compositeexplicitautogradnonfunctional_dispatch.h>
|
303 |
+
#include <ATen/ops/upsample_bicubic2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
304 |
+
#include <ATen/ops/upsample_bilinear2d_compositeexplicitautogradnonfunctional_dispatch.h>
|
305 |
+
#include <ATen/ops/upsample_bilinear2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
306 |
+
#include <ATen/ops/upsample_linear1d_compositeexplicitautogradnonfunctional_dispatch.h>
|
307 |
+
#include <ATen/ops/upsample_linear1d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
308 |
+
#include <ATen/ops/upsample_nearest1d_compositeexplicitautogradnonfunctional_dispatch.h>
|
309 |
+
#include <ATen/ops/upsample_nearest1d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
310 |
+
#include <ATen/ops/upsample_nearest2d_compositeexplicitautogradnonfunctional_dispatch.h>
|
311 |
+
#include <ATen/ops/upsample_nearest2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
312 |
+
#include <ATen/ops/upsample_nearest3d_compositeexplicitautogradnonfunctional_dispatch.h>
|
313 |
+
#include <ATen/ops/upsample_nearest3d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
314 |
+
#include <ATen/ops/upsample_trilinear3d_compositeexplicitautogradnonfunctional_dispatch.h>
|
315 |
+
#include <ATen/ops/upsample_trilinear3d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
|
316 |
+
#include <ATen/ops/values_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
317 |
+
#include <ATen/ops/view_as_complex_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
318 |
+
#include <ATen/ops/view_as_real_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
319 |
+
#include <ATen/ops/view_copy_compositeexplicitautogradnonfunctional_dispatch.h>
|
320 |
+
#include <ATen/ops/xlogy_compositeexplicitautogradnonfunctional_dispatch.h>
|
321 |
+
|
322 |
+
|
323 |
+
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradFunctions.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/core/TensorBody.h>
|
2 |
+
|
3 |
+
// TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
|
4 |
+
// Code introduced to avoid cyclic dependency in static dispatch is no longer
|
5 |
+
// needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
|
6 |
+
// to Operators.cpp for supporting multiple backends with multiple kernels.
|
7 |
+
//
|
8 |
+
// Note [Avoiding Include Cycles In Static Dispatch]
|
9 |
+
// In order to avoid #include cycles in the static dispatch build, we've carefully split out
|
10 |
+
// the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
|
11 |
+
//
|
12 |
+
// Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
|
13 |
+
// - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
|
14 |
+
// all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
|
15 |
+
// directly inlined into TensorBody.h.
|
16 |
+
// - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
|
17 |
+
// which include functions that have defaultable optional<Tensor> arguments.
|
18 |
+
// That requires knowing the full Tensor class definition.
|
19 |
+
//
|
20 |
+
// We break the cycle by doing the following:
|
21 |
+
// - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
|
22 |
+
// - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
|
23 |
+
// - CPUFunctions_inl.h includes everything else
|
24 |
+
// - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
|
25 |
+
// and then it includes CPUFunctions_inl.h.
|
26 |
+
// - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
|
27 |
+
// - This also means that static dispatch build, CPUFunctions.h only needs to
|
28 |
+
// #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
|
29 |
+
#include <ATen/CompositeImplicitAutogradFunctions_inl.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradNestedTensorFunctions_inl.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunctions_inl.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
#if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
|
12 |
+
#error This change adds a dependency on all pytorch operators, meaning the \
|
13 |
+
file will need to be re-compiled every time an operator is changed or added. \
|
14 |
+
Consider including a specific operator from \
|
15 |
+
<ATen/ops/{my_operator}_compositeimplicitautogradnestedtensor_dispatch.h>. \
|
16 |
+
See NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
|
17 |
+
#endif
|
18 |
+
|
19 |
+
#include <ATen/ops/randn_like_compositeimplicitautogradnestedtensor_dispatch.h>
|
20 |
+
#include <ATen/ops/reshape_compositeimplicitautogradnestedtensor_dispatch.h>
|
21 |
+
#include <ATen/ops/reshape_as_compositeimplicitautogradnestedtensor_dispatch.h>
|
22 |
+
#include <ATen/ops/zeros_like_compositeimplicitautogradnestedtensor_dispatch.h>
|
23 |
+
|
24 |
+
|
25 |
+
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Context.h
ADDED
@@ -0,0 +1,560 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/CPUGeneratorImpl.h>
|
4 |
+
#include <ATen/DeviceAccelerator.h>
|
5 |
+
#include <ATen/LinalgBackend.h>
|
6 |
+
#include <ATen/core/ATenGeneral.h>
|
7 |
+
#include <ATen/core/DeprecatedTypeProperties.h>
|
8 |
+
#include <ATen/core/Generator.h>
|
9 |
+
#include <ATen/core/LegacyTypeDispatch.h>
|
10 |
+
#include <ATen/detail/AcceleratorHooksInterface.h>
|
11 |
+
#include <ATen/detail/CUDAHooksInterface.h>
|
12 |
+
#include <ATen/detail/HIPHooksInterface.h>
|
13 |
+
#include <ATen/detail/IPUHooksInterface.h>
|
14 |
+
#include <ATen/detail/MPSHooksInterface.h>
|
15 |
+
#include <ATen/detail/MTIAHooksInterface.h>
|
16 |
+
#include <ATen/detail/ORTHooksInterface.h>
|
17 |
+
#include <ATen/detail/PrivateUse1HooksInterface.h>
|
18 |
+
#include <ATen/detail/XPUHooksInterface.h>
|
19 |
+
#include <c10/core/QEngine.h>
|
20 |
+
#include <c10/core/impl/DeviceGuardImplInterface.h>
|
21 |
+
#include <c10/util/CallOnce.h>
|
22 |
+
#include <c10/util/Exception.h>
|
23 |
+
#include <c10/util/env.h>
|
24 |
+
#include <c10/util/irange.h>
|
25 |
+
|
26 |
+
#include <cstdint>
|
27 |
+
#include <mutex>
|
28 |
+
|
29 |
+
namespace at {
|
30 |
+
|
31 |
+
class Tensor;
|
32 |
+
|
33 |
+
enum class TORCH_API Float32MatmulPrecision { HIGHEST, HIGH, MEDIUM };
|
34 |
+
|
35 |
+
class TORCH_API Context {
|
36 |
+
public:
|
37 |
+
Context();
|
38 |
+
|
39 |
+
const Generator& defaultGenerator(Device device) {
|
40 |
+
c10::DeviceType device_type = device.type();
|
41 |
+
initCUDAIfNeeded(device_type);
|
42 |
+
initHIPIfNeeded(device_type);
|
43 |
+
if (device_type == at::kCPU) {
|
44 |
+
return at::detail::getDefaultCPUGenerator();
|
45 |
+
} else if (device_type == at::kCUDA) {
|
46 |
+
return at::detail::getCUDAHooks().getDefaultCUDAGenerator(device.index());
|
47 |
+
} else if (device_type == at::kMPS) {
|
48 |
+
return at::detail::getMPSHooks().getDefaultMPSGenerator();
|
49 |
+
} else if (device_type == at::kXPU) {
|
50 |
+
return at::detail::getXPUHooks().getDefaultXPUGenerator(device.index());
|
51 |
+
} else if (device_type == at::kIPU) {
|
52 |
+
return at::detail::getIPUHooks().getDefaultIPUGenerator(device.index());
|
53 |
+
} else if (device_type == at::kPrivateUse1) {
|
54 |
+
return at::GetPrivateUse1HooksInterface()->getDefaultGenerator(
|
55 |
+
device.index());
|
56 |
+
} else {
|
57 |
+
AT_ERROR(c10::DeviceTypeName(device_type), " device type not enabled.");
|
58 |
+
}
|
59 |
+
}
|
60 |
+
const AcceleratorHooksInterface& getAcceleratorHooksInterface(
|
61 |
+
c10::optional<c10::DeviceType> opt_device_type = c10::nullopt) {
|
62 |
+
c10::DeviceType device_type = opt_device_type.has_value()
|
63 |
+
? opt_device_type.value()
|
64 |
+
: at::getAccelerator(true).value();
|
65 |
+
if (device_type == at::kCUDA) {
|
66 |
+
return at::detail::getCUDAHooks();
|
67 |
+
} else if (device_type == at::kMPS) {
|
68 |
+
return at::detail::getMPSHooks();
|
69 |
+
} else if (device_type == at::kPrivateUse1) {
|
70 |
+
return at::detail::getPrivateUse1Hooks();
|
71 |
+
} else {
|
72 |
+
AT_ERROR(
|
73 |
+
c10::DeviceTypeName(device_type), " device type not an accelerator.");
|
74 |
+
}
|
75 |
+
}
|
76 |
+
Device getDeviceFromPtr(void* data, c10::DeviceType device_type) {
|
77 |
+
initCUDAIfNeeded(device_type);
|
78 |
+
initHIPIfNeeded(device_type);
|
79 |
+
initXPUIfNeeded(device_type);
|
80 |
+
if (device_type == at::kCPU) {
|
81 |
+
return c10::DeviceType::CPU;
|
82 |
+
} else if (device_type == at::kCUDA) {
|
83 |
+
return at::detail::getCUDAHooks().getDeviceFromPtr(data);
|
84 |
+
} else if (device_type == at::kXPU) {
|
85 |
+
return at::detail::getXPUHooks().getDeviceFromPtr(data);
|
86 |
+
} else if (device_type == at::kPrivateUse1) {
|
87 |
+
return at::GetPrivateUse1HooksInterface()->getDeviceFromPtr(data);
|
88 |
+
} else {
|
89 |
+
AT_ERROR(c10::DeviceTypeName(device_type), " device type not enabled.");
|
90 |
+
}
|
91 |
+
}
|
92 |
+
static bool isPinnedPtr(const void* data) {
|
93 |
+
return detail::getCUDAHooks().isPinnedPtr(data);
|
94 |
+
}
|
95 |
+
static bool hasOpenMP();
|
96 |
+
static bool hasMKL();
|
97 |
+
static bool hasLAPACK();
|
98 |
+
static bool hasMKLDNN();
|
99 |
+
static bool hasMAGMA() {
|
100 |
+
return detail::getCUDAHooks().hasMAGMA();
|
101 |
+
}
|
102 |
+
static bool hasCUDA() {
|
103 |
+
return detail::getCUDAHooks().hasCUDA();
|
104 |
+
}
|
105 |
+
static bool hasMTIA() {
|
106 |
+
return detail::getMTIAHooks().hasMTIA();
|
107 |
+
}
|
108 |
+
static bool hasCUDART() {
|
109 |
+
return detail::getCUDAHooks().hasCUDART();
|
110 |
+
}
|
111 |
+
static long versionCUDART() {
|
112 |
+
return detail::getCUDAHooks().versionCUDART();
|
113 |
+
}
|
114 |
+
static bool hasCuDNN() {
|
115 |
+
return detail::getCUDAHooks().hasCuDNN();
|
116 |
+
}
|
117 |
+
static long versionCuDNN() {
|
118 |
+
return detail::getCUDAHooks().versionCuDNN();
|
119 |
+
}
|
120 |
+
static bool hasCuSOLVER() {
|
121 |
+
return detail::getCUDAHooks().hasCuSOLVER();
|
122 |
+
}
|
123 |
+
static bool hasHIP() {
|
124 |
+
return detail::getHIPHooks().hasHIP();
|
125 |
+
}
|
126 |
+
static bool hasMPS() {
|
127 |
+
return detail::getMPSHooks().hasMPS();
|
128 |
+
}
|
129 |
+
static bool hasIPU() {
|
130 |
+
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::IPU);
|
131 |
+
}
|
132 |
+
static bool hasXLA() {
|
133 |
+
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::XLA);
|
134 |
+
}
|
135 |
+
static bool hasXPU() {
|
136 |
+
return detail::getXPUHooks().hasXPU();
|
137 |
+
}
|
138 |
+
static bool hasLazy() {
|
139 |
+
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::Lazy);
|
140 |
+
}
|
141 |
+
static bool hasORT() {
|
142 |
+
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::ORT);
|
143 |
+
}
|
144 |
+
// defined in header so that getNonVariableType has ability to inline
|
145 |
+
// call_once check. getNonVariableType is called fairly frequently
|
146 |
+
void lazyInitCUDA() {
|
147 |
+
c10::call_once(thc_init, [&] { detail::getCUDAHooks().initCUDA(); });
|
148 |
+
}
|
149 |
+
void lazyInitHIP() {
|
150 |
+
c10::call_once(thh_init, [&] { detail::getHIPHooks().initHIP(); });
|
151 |
+
}
|
152 |
+
void lazyInitXPU() {
|
153 |
+
c10::call_once(thx_init, [&] { detail::getXPUHooks().initXPU(); });
|
154 |
+
}
|
155 |
+
void lazyInitPrivateUse1() {
|
156 |
+
c10::call_once(thp_init, [&] {
|
157 |
+
if (isPrivateUse1HooksRegistered()) {
|
158 |
+
at::GetPrivateUse1HooksInterface()->initPrivateUse1();
|
159 |
+
}
|
160 |
+
});
|
161 |
+
}
|
162 |
+
static const at::cuda::NVRTC& getNVRTC() {
|
163 |
+
return detail::getCUDAHooks().nvrtc();
|
164 |
+
}
|
165 |
+
|
166 |
+
static bool setFlushDenormal(bool on);
|
167 |
+
|
168 |
+
// NB: This method is *purely* whether or not a user requested
|
169 |
+
// that CuDNN was enabled, it doesn't actually say anything about
|
170 |
+
// whether or not CuDNN is actually usable. Use cudnn_is_acceptable
|
171 |
+
// to test this instead
|
172 |
+
bool userEnabledCuDNN() const;
|
173 |
+
void setUserEnabledCuDNN(bool e);
|
174 |
+
bool userEnabledMkldnn() const;
|
175 |
+
void setUserEnabledMkldnn(bool e);
|
176 |
+
bool benchmarkCuDNN() const;
|
177 |
+
void setBenchmarkCuDNN(bool);
|
178 |
+
int benchmarkLimitCuDNN() const;
|
179 |
+
void setBenchmarkLimitCuDNN(int);
|
180 |
+
bool deterministicCuDNN() const;
|
181 |
+
void setDeterministicCuDNN(bool);
|
182 |
+
bool userEnabledNNPACK() const;
|
183 |
+
void setUserEnabledNNPACK(bool e);
|
184 |
+
|
185 |
+
// Note [Disabling Fused SDP Kernels]
|
186 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
187 |
+
// Flash and Memory Efficient SDP kernels are enabled by default.
|
188 |
+
// However, they can be disabled by setting
|
189 |
+
// at::globalContext().setUserEnabledFlashSDP(false) flag.
|
190 |
+
// This is useful for debugging purposes. For example, if you want to
|
191 |
+
// compare the performance of the flash SDP kernels with the unfused
|
192 |
+
// kernel, you can disable the flash SDP kernels. By disabling
|
193 |
+
// the math SDP kernel, you can force your code to use flash kernels.
|
194 |
+
// The math SDP kernel can be disabled by setting
|
195 |
+
// at::globalContext().setUserEnabledMathSDP(false) flag.
|
196 |
+
void setSDPUseFlash(bool);
|
197 |
+
bool userEnabledFlashSDP() const;
|
198 |
+
|
199 |
+
void setSDPUseMemEfficient(bool);
|
200 |
+
bool userEnabledMemEfficientSDP() const;
|
201 |
+
|
202 |
+
void setSDPUseMath(bool);
|
203 |
+
bool userEnabledMathSDP() const;
|
204 |
+
|
205 |
+
void setSDPUseCuDNN(bool);
|
206 |
+
bool userEnabledCuDNNSDP() const;
|
207 |
+
|
208 |
+
at::LinalgBackend linalgPreferredBackend() const;
|
209 |
+
void setLinalgPreferredBackend(at::LinalgBackend);
|
210 |
+
|
211 |
+
// Note [Enabling Deterministic Operations]
|
212 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
213 |
+
// Operations in PyTorch that normally act nondeterministically, but have an
|
214 |
+
// alternate deterministic implementation, should satisfy the following
|
215 |
+
// requirements:
|
216 |
+
//
|
217 |
+
// * Include this comment: "See Note [Enabling Deterministic Operations]"
|
218 |
+
//
|
219 |
+
// * Check the value of `at::globalContext().deterministicAlgorithms()` to
|
220 |
+
// toggle
|
221 |
+
// between nondeterministic and deterministic implementations.
|
222 |
+
//
|
223 |
+
// * Have an entry in the list of PyTorch operations that toggle between
|
224 |
+
// nondeterministic
|
225 |
+
// and deterministic implementations, in the docstring of
|
226 |
+
// `use_deterministic_algorithms()` in torch/__init__.py
|
227 |
+
//
|
228 |
+
// `example_func()` below shows an example of toggling between
|
229 |
+
// nondeterministic and deterministic implementations:
|
230 |
+
//
|
231 |
+
// void example_func() {
|
232 |
+
// // See Note [Enabling Deterministic Operations]
|
233 |
+
// if (at::globalContext().deterministicAlgorithms()) {
|
234 |
+
// example_func_deterministic();
|
235 |
+
// } else {
|
236 |
+
// example_func_nondeterministic();
|
237 |
+
// }
|
238 |
+
// }
|
239 |
+
|
240 |
+
bool deterministicAlgorithms() const;
|
241 |
+
bool deterministicAlgorithmsWarnOnly() const;
|
242 |
+
void setDeterministicAlgorithms(bool, bool);
|
243 |
+
bool deterministicFillUninitializedMemory() const;
|
244 |
+
void setDeterministicFillUninitializedMemory(bool);
|
245 |
+
|
246 |
+
// Note [Writing Nondeterministic Operations]
|
247 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
248 |
+
// Operations in PyTorch that act nondeterministically and do not have an
|
249 |
+
// alternate deterministic implementation should satisfy the following
|
250 |
+
// requirements:
|
251 |
+
//
|
252 |
+
// * Include this comment: "See Note [Writing Nondeterministic Operations]"
|
253 |
+
//
|
254 |
+
// * Include a comment explaining why the operation is nondeterministic.
|
255 |
+
//
|
256 |
+
// * Throw an error when `Context::deterministicAlgorithms()` is true. Most
|
257 |
+
// of the time, this should be accomplished by calling
|
258 |
+
// `at::globalContext().alertNotDeterminstic()`. However, if the
|
259 |
+
// nondeterministic behavior is caused by the CuBLAS workspace
|
260 |
+
// configuration in CUDA >= 10.2,
|
261 |
+
// `at::globalContext().alertCuBLASConfigNotDeterministic()` should be
|
262 |
+
// called instead (in this case, a comment explaining why the operation is
|
263 |
+
// nondeterministic is not necessary). See below for details on these
|
264 |
+
// methods.
|
265 |
+
//
|
266 |
+
// * Have an entry in the list of nondeterministic PyTorch operations in the
|
267 |
+
// docstring of `use_deterministic_algorithms()` in torch/__init__.py
|
268 |
+
//
|
269 |
+
// * Have a test function in `test/test_torch.py` whose name begins with
|
270 |
+
// `test_nondeterministic_alert_`. Alternatively, if CuBLAS workspace
|
271 |
+
// configuration is the reason for nondeterminism, the operation should be
|
272 |
+
// included in the `test_cublas_config_nondeterministic_alert` test. Any new
|
273 |
+
// tests should ideally follow a pattern similar to the existing ones.
|
274 |
+
//
|
275 |
+
// `example_func()` below shows an example of the comments and error-throwing
|
276 |
+
// code for a nondeterministic operation:
|
277 |
+
//
|
278 |
+
// void example_func() {
|
279 |
+
// // See Note [Writing Nondeterministic Operations]
|
280 |
+
// // Nondeterministic because <reason>
|
281 |
+
// at::globalContext().alertNondeterministic("example_func");
|
282 |
+
// ...
|
283 |
+
// }
|
284 |
+
|
285 |
+
// Throws an error if `Context::deterministicAlgorithms()` is true
|
286 |
+
static void alertNotDeterministic(c10::string_view const& caller);
|
287 |
+
|
288 |
+
// Throws an error if `Context::deterministicAlgorithms()` is true, CUDA
|
289 |
+
// >= 10.2, and CUBLAS_WORKSPACE_CONFIG is not set to either ":16:8" or
|
290 |
+
// ":4096:8". For more details:
|
291 |
+
// https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility
|
292 |
+
void alertCuBLASConfigNotDeterministic() const;
|
293 |
+
|
294 |
+
void setFloat32MatmulPrecision(const std::string& s);
|
295 |
+
bool allowTF32CuDNN() const;
|
296 |
+
void setAllowTF32CuDNN(bool);
|
297 |
+
bool allowTF32CuBLAS() const;
|
298 |
+
void setAllowTF32CuBLAS(bool);
|
299 |
+
Float32MatmulPrecision float32MatmulPrecision() const;
|
300 |
+
void setFloat32MatmulPrecision(Float32MatmulPrecision p);
|
301 |
+
bool allowFP16ReductionCuBLAS() const;
|
302 |
+
void setAllowFP16ReductionCuBLAS(bool);
|
303 |
+
bool allowBF16ReductionCuBLAS() const;
|
304 |
+
void setAllowBF16ReductionCuBLAS(bool);
|
305 |
+
at::QEngine qEngine() const;
|
306 |
+
void setQEngine(at::QEngine e);
|
307 |
+
static const std::vector<at::QEngine>& supportedQEngines();
|
308 |
+
static bool isXNNPACKAvailable();
|
309 |
+
void setCheckSparseTensorInvariants(bool e);
|
310 |
+
bool checkSparseTensorInvariants() const;
|
311 |
+
// This method is used to release the original weight after pre-packing.
|
312 |
+
// It should be called once before loading/running the model.
|
313 |
+
// NB: By default it is set to true for mobile builds.
|
314 |
+
void setReleaseWeightsWhenPrepacking(bool e);
|
315 |
+
bool releaseWeightsWhenPrepacking() const;
|
316 |
+
|
317 |
+
void setDisplayVmapFallbackWarnings(bool enabled);
|
318 |
+
bool areVmapFallbackWarningsEnabled() const;
|
319 |
+
|
320 |
+
void setDefaultMobileCPUAllocator();
|
321 |
+
void unsetDefaultMobileCPUAllocator();
|
322 |
+
bool allowFP16ReductionCPU() const;
|
323 |
+
void setAllowFP16ReductionCPU(bool);
|
324 |
+
|
325 |
+
private:
|
326 |
+
void initCUDAIfNeeded(c10::DeviceType p) {
|
327 |
+
if (p == c10::DeviceType::CUDA) {
|
328 |
+
lazyInitCUDA();
|
329 |
+
}
|
330 |
+
}
|
331 |
+
void initHIPIfNeeded(c10::DeviceType p) {
|
332 |
+
if (p == c10::DeviceType::HIP) {
|
333 |
+
lazyInitHIP();
|
334 |
+
}
|
335 |
+
}
|
336 |
+
void initXPUIfNeeded(c10::DeviceType p) {
|
337 |
+
if (p == c10::DeviceType::XPU) {
|
338 |
+
lazyInitXPU();
|
339 |
+
}
|
340 |
+
}
|
341 |
+
static bool checkCuBLASConfigDeterministic();
|
342 |
+
c10::once_flag thc_init;
|
343 |
+
c10::once_flag thh_init;
|
344 |
+
c10::once_flag thx_init;
|
345 |
+
c10::once_flag thp_init;
|
346 |
+
bool enabled_cudnn = true;
|
347 |
+
bool deterministic_cudnn = false;
|
348 |
+
bool _deterministic_algorithms = false;
|
349 |
+
bool _deterministic_algorithms_warn_only = false;
|
350 |
+
bool _deterministic_fill_uninitialized_memory = true;
|
351 |
+
bool enabled_flashSDP = true;
|
352 |
+
bool enabled_mem_efficientSDP = true;
|
353 |
+
bool enabled_mathSDP = true;
|
354 |
+
bool enabled_cudnnSDP = false;
|
355 |
+
#ifdef USE_ROCM
|
356 |
+
bool benchmark_cudnn = true;
|
357 |
+
#else
|
358 |
+
bool benchmark_cudnn = false;
|
359 |
+
#endif
|
360 |
+
Float32MatmulPrecision float32_matmul_precision =
|
361 |
+
c10::utils::check_env("TORCH_ALLOW_TF32_CUBLAS_OVERRIDE") == true
|
362 |
+
? at::Float32MatmulPrecision::HIGH
|
363 |
+
: at::Float32MatmulPrecision::HIGHEST;
|
364 |
+
int benchmark_limit_cudnn = 10;
|
365 |
+
bool allow_tf32_cudnn = true;
|
366 |
+
bool allow_fp16_reduction_cublas = true;
|
367 |
+
bool allow_bf16_reduction_cublas = true;
|
368 |
+
bool enabled_mkldnn = true;
|
369 |
+
bool enabled_nnpack = true;
|
370 |
+
at::LinalgBackend linalg_preferred_backend =
|
371 |
+
c10::utils::check_env("TORCH_LINALG_PREFER_CUSOLVER") == true
|
372 |
+
? at::LinalgBackend::Cusolver
|
373 |
+
: at::LinalgBackend::Default;
|
374 |
+
#ifdef C10_MOBILE
|
375 |
+
bool release_original_weights = true;
|
376 |
+
#else
|
377 |
+
bool release_original_weights = false;
|
378 |
+
#endif
|
379 |
+
bool display_vmap_fallback_warnings_ = false;
|
380 |
+
c10::optional<at::QEngine> quantized_engine = c10::nullopt;
|
381 |
+
bool enable_sparse_tensor_invariant_checks = false;
|
382 |
+
bool allow_fp16_reduction_cpu = false;
|
383 |
+
|
384 |
+
Allocator* prev_allocator_ptr_{nullptr};
|
385 |
+
};
|
386 |
+
|
387 |
+
TORCH_API Context& globalContext();
|
388 |
+
|
389 |
+
static inline void init() {
|
390 |
+
globalContext();
|
391 |
+
}
|
392 |
+
|
393 |
+
TORCH_API Allocator* getCPUAllocator();
|
394 |
+
|
395 |
+
static inline DeprecatedTypeProperties& getDeprecatedTypeProperties(
|
396 |
+
Backend p,
|
397 |
+
ScalarType s) {
|
398 |
+
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
|
399 |
+
p, s);
|
400 |
+
}
|
401 |
+
|
402 |
+
static inline DeprecatedTypeProperties& CPU(ScalarType s) {
|
403 |
+
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
|
404 |
+
Backend::CPU, s);
|
405 |
+
}
|
406 |
+
|
407 |
+
static inline DeprecatedTypeProperties& CUDA(ScalarType s) {
|
408 |
+
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
|
409 |
+
Backend::CUDA, s);
|
410 |
+
}
|
411 |
+
|
412 |
+
static inline DeprecatedTypeProperties& HIP(ScalarType s) {
|
413 |
+
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
|
414 |
+
Backend::HIP, s);
|
415 |
+
}
|
416 |
+
|
417 |
+
static inline DeprecatedTypeProperties& MPS(ScalarType s) {
|
418 |
+
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
|
419 |
+
Backend::MPS, s);
|
420 |
+
}
|
421 |
+
|
422 |
+
static inline bool hasCUDA() {
|
423 |
+
return globalContext().hasCUDA();
|
424 |
+
}
|
425 |
+
|
426 |
+
static inline bool hasMTIA() {
|
427 |
+
return globalContext().hasMTIA();
|
428 |
+
}
|
429 |
+
|
430 |
+
static inline bool hasHIP() {
|
431 |
+
return globalContext().hasHIP();
|
432 |
+
}
|
433 |
+
|
434 |
+
static inline bool hasIPU() {
|
435 |
+
return globalContext().hasIPU();
|
436 |
+
}
|
437 |
+
|
438 |
+
static inline bool hasXLA() {
|
439 |
+
return globalContext().hasXLA();
|
440 |
+
}
|
441 |
+
|
442 |
+
static inline bool hasMPS() {
|
443 |
+
return globalContext().hasMPS();
|
444 |
+
}
|
445 |
+
|
446 |
+
static inline bool hasORT() {
|
447 |
+
return globalContext().hasORT();
|
448 |
+
}
|
449 |
+
|
450 |
+
static inline bool hasXPU() {
|
451 |
+
return globalContext().hasXPU();
|
452 |
+
}
|
453 |
+
|
454 |
+
// Despite its name, this function returns the number of *CUDA* GPUs.
|
455 |
+
static inline size_t getNumGPUs() {
|
456 |
+
// WARNING: DO NOT ADD LOGIC TO HANDLE OTHER DEVICE TYPES TO THIS
|
457 |
+
// FUNCTION. If you are interested in interrogating the number of
|
458 |
+
// devices for a specific device type, add that function to the
|
459 |
+
// relevant library (e.g., similar to at::cuda::device_count())
|
460 |
+
if (hasCUDA() && hasHIP()) {
|
461 |
+
throw std::runtime_error(
|
462 |
+
"Enabling both CUDA and HIP in ATen is not supported, as HIP masquerades "
|
463 |
+
"to be CUDA (e.g., when you say CUDA, on a HIP build of ATen, this actually "
|
464 |
+
"means HIP. Rebuild PyTorch with one or the other disabled.");
|
465 |
+
} else if (hasCUDA()) {
|
466 |
+
return detail::getCUDAHooks().getNumGPUs();
|
467 |
+
} else if (hasHIP()) {
|
468 |
+
return detail::getHIPHooks().getNumGPUs();
|
469 |
+
} else {
|
470 |
+
return 0;
|
471 |
+
}
|
472 |
+
}
|
473 |
+
|
474 |
+
static inline bool hasOpenMP() {
|
475 |
+
return globalContext().hasOpenMP();
|
476 |
+
}
|
477 |
+
|
478 |
+
static inline bool hasMKL() {
|
479 |
+
return globalContext().hasMKL();
|
480 |
+
}
|
481 |
+
|
482 |
+
static inline bool hasLAPACK() {
|
483 |
+
return globalContext().hasLAPACK();
|
484 |
+
}
|
485 |
+
|
486 |
+
static inline bool hasMAGMA() {
|
487 |
+
return globalContext().hasMAGMA();
|
488 |
+
}
|
489 |
+
|
490 |
+
static inline bool hasMKLDNN() {
|
491 |
+
return globalContext().hasMKLDNN();
|
492 |
+
}
|
493 |
+
|
494 |
+
static inline void manual_seed(uint64_t seed) {
|
495 |
+
auto gen = globalContext().defaultGenerator(c10::DeviceType::CPU);
|
496 |
+
{
|
497 |
+
// See Note [Acquire lock when using random generators]
|
498 |
+
std::lock_guard<std::mutex> lock(gen.mutex());
|
499 |
+
gen.set_current_seed(seed);
|
500 |
+
}
|
501 |
+
// NB: Sometimes we build with CUDA, but we don't have any GPUs
|
502 |
+
// available. In that case, we must not seed CUDA; it will fail!
|
503 |
+
const auto cuda_num_gpus = detail::getCUDAHooks().getNumGPUs();
|
504 |
+
if (hasCUDA() && cuda_num_gpus > 0) {
|
505 |
+
for (const auto i : c10::irange(cuda_num_gpus)) {
|
506 |
+
auto cuda_gen = globalContext().defaultGenerator(
|
507 |
+
Device(at::kCUDA, static_cast<c10::DeviceIndex>(i)));
|
508 |
+
{
|
509 |
+
// See Note [Acquire lock when using random generators]
|
510 |
+
std::lock_guard<std::mutex> lock(cuda_gen.mutex());
|
511 |
+
cuda_gen.set_current_seed(seed);
|
512 |
+
}
|
513 |
+
}
|
514 |
+
}
|
515 |
+
|
516 |
+
const auto xpu_num_gpus = detail::getXPUHooks().getNumGPUs();
|
517 |
+
if (hasXPU() && xpu_num_gpus) {
|
518 |
+
for (const auto i : c10::irange(xpu_num_gpus)) {
|
519 |
+
auto xpu_gen = globalContext().defaultGenerator(
|
520 |
+
Device(at::kXPU, static_cast<c10::DeviceIndex>(i)));
|
521 |
+
{
|
522 |
+
// See Note [Acquire lock when using random generators]
|
523 |
+
std::lock_guard<std::mutex> lock(xpu_gen.mutex());
|
524 |
+
xpu_gen.set_current_seed(seed);
|
525 |
+
}
|
526 |
+
}
|
527 |
+
}
|
528 |
+
|
529 |
+
if (hasMPS()) {
|
530 |
+
auto mps_gen = globalContext().defaultGenerator(c10::DeviceType::MPS);
|
531 |
+
// See Note [Acquire lock when using random generators]
|
532 |
+
std::lock_guard<std::mutex> lock(mps_gen.mutex());
|
533 |
+
mps_gen.set_current_seed(seed);
|
534 |
+
}
|
535 |
+
}
|
536 |
+
|
537 |
+
// When the global flag `allow_tf32` is set to true, cuBLAS handles are
|
538 |
+
// automatically configured to use math mode CUBLAS_TF32_TENSOR_OP_MATH.
|
539 |
+
// For some operators, such as addmv, TF32 offers no performance improvement
|
540 |
+
// but causes precision loss. To help this case, this class implements
|
541 |
+
// a RAII guard that can be used to quickly disable TF32 within its scope.
|
542 |
+
//
|
543 |
+
// Usage:
|
544 |
+
// NoTF32Guard disable_tf32;
|
545 |
+
struct TORCH_API NoTF32Guard {
|
546 |
+
NoTF32Guard();
|
547 |
+
~NoTF32Guard();
|
548 |
+
static bool should_disable_tf32();
|
549 |
+
|
550 |
+
private:
|
551 |
+
bool changed = false;
|
552 |
+
};
|
553 |
+
|
554 |
+
struct TORCH_API ROCmBackwardPassGuard {
|
555 |
+
ROCmBackwardPassGuard();
|
556 |
+
~ROCmBackwardPassGuard();
|
557 |
+
static bool is_backward_pass();
|
558 |
+
};
|
559 |
+
|
560 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/DLConvertor.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/Tensor.h>
|
5 |
+
#include <ATen/dlpack.h>
|
6 |
+
|
7 |
+
// this convertor will:
|
8 |
+
// 1) take a Tensor object and wrap it in the DLPack tensor
|
9 |
+
// 2) take a dlpack tensor and convert it to the ATen Tensor
|
10 |
+
|
11 |
+
namespace at {
|
12 |
+
|
13 |
+
TORCH_API ScalarType toScalarType(const DLDataType& dtype);
|
14 |
+
TORCH_API DLManagedTensor* toDLPack(const Tensor& src);
|
15 |
+
TORCH_API Tensor fromDLPack(DLManagedTensor* src);
|
16 |
+
C10_DEPRECATED_MESSAGE("Please migrate to a non-const variant")
|
17 |
+
inline Tensor fromDLPack(const DLManagedTensor* src) {
|
18 |
+
return fromDLPack(const_cast<DLManagedTensor*>(src));
|
19 |
+
}
|
20 |
+
TORCH_API Tensor
|
21 |
+
fromDLPack(DLManagedTensor* src, std::function<void(void*)> deleter);
|
22 |
+
TORCH_API DLDataType getDLDataType(const Tensor& t);
|
23 |
+
TORCH_API DLDevice getDLContext(const Tensor& tensor, const int64_t& device_id);
|
24 |
+
|
25 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Device.h
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/core/Device.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/DeviceAccelerator.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/DeviceType.h>
|
4 |
+
#include <c10/macros/Macros.h>
|
5 |
+
|
6 |
+
#include <ATen/detail/MTIAHooksInterface.h>
|
7 |
+
#include <optional>
|
8 |
+
|
9 |
+
// This file defines the top level Accelerator concept for PyTorch.
|
10 |
+
// A device is an accelerator per the definition here if:
|
11 |
+
// - It is mutually exclusive with all other accelerators
|
12 |
+
// - It performs asynchronous compute via a Stream/Event system
|
13 |
+
// - It provides a set of common APIs as defined by AcceleratorHooksInterface
|
14 |
+
//
|
15 |
+
// As of today, accelerator devices are (in no particular order):
|
16 |
+
// CUDA, MTIA, PrivateUse1
|
17 |
+
// We want to add once all the proper APIs are supported and tested:
|
18 |
+
// HIP, MPS, XPU
|
19 |
+
|
20 |
+
namespace at {
|
21 |
+
|
22 |
+
// Ensures that only one accelerator is available (at
|
23 |
+
// compile time if possible) and return it.
|
24 |
+
// When checked is true, the returned optional always has a value.
|
25 |
+
TORCH_API std::optional<c10::DeviceType> getAccelerator(bool checked = false);
|
26 |
+
|
27 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/DeviceGuard.h
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/IListRef.h>
|
4 |
+
#include <ATen/core/Tensor.h>
|
5 |
+
#include <c10/core/DeviceGuard.h>
|
6 |
+
#include <c10/core/ScalarType.h> // TensorList whyyyyy
|
7 |
+
|
8 |
+
namespace at {
|
9 |
+
|
10 |
+
// Are you here because you're wondering why DeviceGuard(tensor) no
|
11 |
+
// longer works? For code organization reasons, we have temporarily(?)
|
12 |
+
// removed this constructor from DeviceGuard. The new way to
|
13 |
+
// spell it is:
|
14 |
+
//
|
15 |
+
// OptionalDeviceGuard guard(device_of(tensor));
|
16 |
+
|
17 |
+
/// Return the Device of a Tensor, if the Tensor is defined.
|
18 |
+
inline c10::optional<Device> device_of(const Tensor& t) {
|
19 |
+
if (t.defined()) {
|
20 |
+
return c10::make_optional(t.device());
|
21 |
+
} else {
|
22 |
+
return c10::nullopt;
|
23 |
+
}
|
24 |
+
}
|
25 |
+
|
26 |
+
inline c10::optional<Device> device_of(const c10::optional<Tensor>& t) {
|
27 |
+
return t.has_value() ? device_of(t.value()) : c10::nullopt;
|
28 |
+
}
|
29 |
+
|
30 |
+
/// Return the Device of a TensorList, if the list is non-empty and
|
31 |
+
/// the first Tensor is defined. (This function implicitly assumes
|
32 |
+
/// that all tensors in the list have the same device.)
|
33 |
+
inline c10::optional<Device> device_of(ITensorListRef t) {
|
34 |
+
if (!t.empty()) {
|
35 |
+
return device_of(t.front());
|
36 |
+
} else {
|
37 |
+
return c10::nullopt;
|
38 |
+
}
|
39 |
+
}
|
40 |
+
|
41 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Dimname.h
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
#include <ATen/core/Dimname.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ExpandBase.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/core/TensorBase.h>
|
2 |
+
|
3 |
+
// Broadcasting utilities for working with TensorBase
|
4 |
+
namespace at {
|
5 |
+
namespace internal {
|
6 |
+
TORCH_API TensorBase expand_slow_path(const TensorBase& self, IntArrayRef size);
|
7 |
+
} // namespace internal
|
8 |
+
|
9 |
+
inline c10::MaybeOwned<TensorBase> expand_size(
|
10 |
+
const TensorBase& self,
|
11 |
+
IntArrayRef size) {
|
12 |
+
if (size.equals(self.sizes())) {
|
13 |
+
return c10::MaybeOwned<TensorBase>::borrowed(self);
|
14 |
+
}
|
15 |
+
return c10::MaybeOwned<TensorBase>::owned(
|
16 |
+
at::internal::expand_slow_path(self, size));
|
17 |
+
}
|
18 |
+
c10::MaybeOwned<TensorBase> expand_size(TensorBase&& self, IntArrayRef size) =
|
19 |
+
delete;
|
20 |
+
|
21 |
+
inline c10::MaybeOwned<TensorBase> expand_inplace(
|
22 |
+
const TensorBase& tensor,
|
23 |
+
const TensorBase& to_expand) {
|
24 |
+
return expand_size(to_expand, tensor.sizes());
|
25 |
+
}
|
26 |
+
c10::MaybeOwned<TensorBase> expand_inplace(
|
27 |
+
const TensorBase& tensor,
|
28 |
+
TensorBase&& to_expand) = delete;
|
29 |
+
|
30 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Formatting.h
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
#include <ATen/core/Formatting.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/FunctionalStorageImpl.h
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Tensor.h>
|
4 |
+
|
5 |
+
namespace at::functionalization {
|
6 |
+
|
7 |
+
// See Note [Functionalization Pass In Core]
|
8 |
+
|
9 |
+
// ViewMeta is a class used by the functionalization pass to navigate between
|
10 |
+
// a base tensor and a view tensor.
|
11 |
+
// For example, if I call `b = a.view1(...)`
|
12 |
+
// the functionalization pass will generate and store a ViewMeta on b that looks
|
13 |
+
// like:
|
14 |
+
//
|
15 |
+
// ViewMeta(
|
16 |
+
// [<captures>](const Tensor& base, int64_t mutated_view_idx) {
|
17 |
+
// return base.view1(...);
|
18 |
+
// },
|
19 |
+
// [<captures>](const at::Tensor& base, const at::Tensor& mutated_view,
|
20 |
+
// int64_t mutated_view_idx) -> at::Tensor {
|
21 |
+
// return at::functionalization::impl::view1_inverse(base, mutated_view,
|
22 |
+
// ...);
|
23 |
+
// }
|
24 |
+
//
|
25 |
+
// The forward_fn lambda describes how to replay view1 on a tensor.
|
26 |
+
//
|
27 |
+
// The reverse_fn lambda describes how, given a tensor that is already a view,
|
28 |
+
// how to get the corresponding base tensor. See Note [Functionalization Pass:
|
29 |
+
// View Inverses] for details.
|
30 |
+
struct ViewMeta {
|
31 |
+
ViewMeta(
|
32 |
+
std::function<Tensor(const Tensor&, int64_t)> forward,
|
33 |
+
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse,
|
34 |
+
bool is_multi_output = false,
|
35 |
+
int64_t out_idx = 0)
|
36 |
+
: forward_fn(std::move(forward)),
|
37 |
+
reverse_fn(std::move(reverse)),
|
38 |
+
out_index(out_idx),
|
39 |
+
is_multi_output(is_multi_output) {}
|
40 |
+
|
41 |
+
std::function<Tensor(const Tensor&, int64_t)> forward_fn;
|
42 |
+
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse_fn;
|
43 |
+
// See Note [out_idx in ViewMeta]
|
44 |
+
int64_t out_index;
|
45 |
+
|
46 |
+
// Tells us if this is a multi-output view
|
47 |
+
bool is_multi_output;
|
48 |
+
|
49 |
+
// Returns a copy of the current ViewMeta, if out_idx matches the current
|
50 |
+
// out_index. Otherwise, returns a new ViewMeta with the same forward/reverse
|
51 |
+
// functions, but a new out index.
|
52 |
+
ViewMeta to_out_idx(int64_t out_idx);
|
53 |
+
};
|
54 |
+
|
55 |
+
// FunctionalStorageImpl is a subclass of StorageImpl used by the
|
56 |
+
// functionalization pass. It has no underlying data (similar to meta storage).
|
57 |
+
// It also knows how to reflect mutations to tensors in the absence of a valid
|
58 |
+
// data pointer.
|
59 |
+
//
|
60 |
+
// A storage represents the state shared by (potentially multiple) views of the
|
61 |
+
// same tensor. For example, in the following code:
|
62 |
+
//
|
63 |
+
// b = a.view1(...)
|
64 |
+
// c = b.view2(...)
|
65 |
+
// b.add_(1)
|
66 |
+
// --> storage.add_update(b, {view1_meta})
|
67 |
+
//
|
68 |
+
// The call to add_(1) will result in a call to alias.add_update(b,
|
69 |
+
// {view1_meta}), queueing up the mutation from b onto the alias. Later, suppose
|
70 |
+
// c is used in an expression (e.g. you try to print c, or pass it to an
|
71 |
+
// operator). Doing so will involve "syncing" c. First we apply any pending
|
72 |
+
// updates to the alias, and then we regenerate c by replaying its views off of
|
73 |
+
// the updated alias. E.g:
|
74 |
+
//
|
75 |
+
// print(str(c))
|
76 |
+
// --> c.sync_()
|
77 |
+
// --> alias.apply_updates() // after this, the alias will be updated to
|
78 |
+
// reflect the mutation to b
|
79 |
+
struct TORCH_API FunctionalStorageImpl : public c10::StorageImpl {
|
80 |
+
public:
|
81 |
+
struct Update {
|
82 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
83 |
+
const at::Tensor new_val;
|
84 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
85 |
+
const std::vector<ViewMeta> view_metas;
|
86 |
+
};
|
87 |
+
|
88 |
+
explicit FunctionalStorageImpl(const Tensor& value);
|
89 |
+
|
90 |
+
void add_update(
|
91 |
+
const Tensor& updated_val,
|
92 |
+
const std::vector<ViewMeta>& view_metas);
|
93 |
+
bool apply_updates();
|
94 |
+
const Tensor& base() {
|
95 |
+
return base_;
|
96 |
+
}
|
97 |
+
size_t generation() const {
|
98 |
+
return generation_;
|
99 |
+
}
|
100 |
+
void freeze() {
|
101 |
+
frozen_ = true;
|
102 |
+
}
|
103 |
+
|
104 |
+
~FunctionalStorageImpl() override = default;
|
105 |
+
|
106 |
+
private:
|
107 |
+
// NB: base_ should always point to a tensor BELOW the current
|
108 |
+
// functionalization layer. This is mainly to avoid reference cycles. e.g.
|
109 |
+
// given `b = a.view(...)` Both a.storage_ and b.storage_ are a
|
110 |
+
// FunctionStorageImpl containing an Walualias, with contains a Tensor
|
111 |
+
// `base_`. In this case (where a and b are FunctionalTensorWrapper's), base_
|
112 |
+
// should point not to a, but to a's unwrapped value, a.value_` See Note
|
113 |
+
// [Functionalization: Walualias Removal] for a diagram that shows this
|
114 |
+
// visually.
|
115 |
+
at::Tensor base_;
|
116 |
+
std::vector<Update> updates_;
|
117 |
+
// generation_ gets incremented every time a mutation is queued onto the
|
118 |
+
// alias. It is used to determine if a given tensor is "up to date", or if it
|
119 |
+
// needs to be regenerated from the alias.
|
120 |
+
size_t generation_ = 0;
|
121 |
+
// If frozen, no more mutations are allowed on this storage. Once frozen, a
|
122 |
+
// storage cannot be unfrozen.
|
123 |
+
bool frozen_ = false;
|
124 |
+
};
|
125 |
+
|
126 |
+
} // namespace at::functionalization
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Functions.h
ADDED
@@ -0,0 +1,1427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Functions.h
|
4 |
+
|
5 |
+
#ifdef TORCH_ASSERT_NO_OPERATORS
|
6 |
+
#error This change adds a dependency on native_functions.yaml, \
|
7 |
+
meaning the file will need to be re-compiled every time an operator \
|
8 |
+
is changed or added. Consider if your change would be better placed in \
|
9 |
+
another file, or if a more specific header might achieve the same goal. \
|
10 |
+
See NOTE: [Tensor vs. TensorBase]
|
11 |
+
#endif
|
12 |
+
|
13 |
+
#if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
|
14 |
+
#error This change adds a dependency on all pytorch operators, meaning the \
|
15 |
+
file will need to be re-compiled every time an operator is changed or added. \
|
16 |
+
Consider including a specific operator from <ATen/ops/{my_operator}.h> and \
|
17 |
+
see NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
|
18 |
+
#endif
|
19 |
+
|
20 |
+
// NOTE: [TORCH_ASSERT_ONLY_METHOD_OPERATORS]
|
21 |
+
//
|
22 |
+
// In ATen, certain generated headers files include the definitions of
|
23 |
+
// every single operator in PyTorch. Unfortunately this means every
|
24 |
+
// time an operator signature is updated or changed in
|
25 |
+
// native_functions.yaml, you (and every other PyTorch developer) need
|
26 |
+
// to recompile every source file that includes any of these headers.
|
27 |
+
//
|
28 |
+
// To break up these header dependencies, and improve incremental
|
29 |
+
// build times for all PyTorch developers. These headers are split
|
30 |
+
// into per-operator headers in the `ATen/ops` folder. This limits
|
31 |
+
// incremental builds to only changes to methods of `Tensor`, or files
|
32 |
+
// that use the specific operator being changed. With `at::sum` as an
|
33 |
+
// example, you should include
|
34 |
+
//
|
35 |
+
// <ATen/ops/sum.h> // instead of ATen/Functions.h
|
36 |
+
// <ATen/ops/sum_native.h> // instead of ATen/NativeFunctions.h
|
37 |
+
// <ATen/ops/sum_ops.h> // instead of ATen/Operators.h
|
38 |
+
// <ATen/ops/sum_cpu_dispatch.h> // instead of ATen/CPUFunctions.h
|
39 |
+
//
|
40 |
+
// However, even if you're careful to use this in your own code.
|
41 |
+
// `Functions.h` might be included indirectly through another header
|
42 |
+
// without you realising. To avoid this, you can add
|
43 |
+
//
|
44 |
+
// #define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
45 |
+
//
|
46 |
+
// to the top of your source file. This way any time the non-specific
|
47 |
+
// headers are included, the compiler will error out.
|
48 |
+
//
|
49 |
+
// Also, be aware that `ops` are not available in all build
|
50 |
+
// configurations (namely fb-internal) so you must guard these
|
51 |
+
// includes with `#ifdef AT_PER_OPERATOR_HEADERS`. e.g.
|
52 |
+
//
|
53 |
+
// #ifndef AT_PER_OPERATOR_HEADERS
|
54 |
+
// #include <ATen/Functions.h>
|
55 |
+
// #else
|
56 |
+
// #include <ATen/ops/sum.h>
|
57 |
+
// #endif
|
58 |
+
|
59 |
+
#include <ATen/Context.h>
|
60 |
+
#include <ATen/DeviceGuard.h>
|
61 |
+
#include <ATen/TensorUtils.h>
|
62 |
+
#include <ATen/TracerMode.h>
|
63 |
+
#include <ATen/core/Generator.h>
|
64 |
+
#include <ATen/core/Reduction.h>
|
65 |
+
#include <c10/core/SymInt.h>
|
66 |
+
#include <ATen/core/Tensor.h>
|
67 |
+
#include <c10/core/Scalar.h>
|
68 |
+
#include <c10/core/Storage.h>
|
69 |
+
#include <c10/core/TensorOptions.h>
|
70 |
+
#include <c10/util/Deprecated.h>
|
71 |
+
#include <c10/util/Optional.h>
|
72 |
+
#include <c10/util/OptionalArrayRef.h>
|
73 |
+
|
74 |
+
#include <ATen/ops/from_blob.h>
|
75 |
+
#include <ATen/ops/tensor.h>
|
76 |
+
|
77 |
+
#include <ATen/ops/_adaptive_avg_pool2d.h>
|
78 |
+
#include <ATen/ops/_adaptive_avg_pool2d_backward.h>
|
79 |
+
#include <ATen/ops/_adaptive_avg_pool3d.h>
|
80 |
+
#include <ATen/ops/_adaptive_avg_pool3d_backward.h>
|
81 |
+
#include <ATen/ops/_add_batch_dim.h>
|
82 |
+
#include <ATen/ops/_add_relu.h>
|
83 |
+
#include <ATen/ops/_addmm_activation.h>
|
84 |
+
#include <ATen/ops/_aminmax.h>
|
85 |
+
#include <ATen/ops/_amp_foreach_non_finite_check_and_unscale.h>
|
86 |
+
#include <ATen/ops/_amp_update_scale.h>
|
87 |
+
#include <ATen/ops/_assert_async.h>
|
88 |
+
#include <ATen/ops/_assert_scalar.h>
|
89 |
+
#include <ATen/ops/_assert_tensor_metadata.h>
|
90 |
+
#include <ATen/ops/_autocast_to_full_precision.h>
|
91 |
+
#include <ATen/ops/_autocast_to_reduced_precision.h>
|
92 |
+
#include <ATen/ops/_backward.h>
|
93 |
+
#include <ATen/ops/_batch_norm_impl_index.h>
|
94 |
+
#include <ATen/ops/_batch_norm_impl_index_backward.h>
|
95 |
+
#include <ATen/ops/_cast_Byte.h>
|
96 |
+
#include <ATen/ops/_cast_Char.h>
|
97 |
+
#include <ATen/ops/_cast_Double.h>
|
98 |
+
#include <ATen/ops/_cast_Float.h>
|
99 |
+
#include <ATen/ops/_cast_Half.h>
|
100 |
+
#include <ATen/ops/_cast_Int.h>
|
101 |
+
#include <ATen/ops/_cast_Long.h>
|
102 |
+
#include <ATen/ops/_cast_Short.h>
|
103 |
+
#include <ATen/ops/_cdist_backward.h>
|
104 |
+
#include <ATen/ops/_cdist_forward.h>
|
105 |
+
#include <ATen/ops/_cholesky_solve_helper.h>
|
106 |
+
#include <ATen/ops/_choose_qparams_per_tensor.h>
|
107 |
+
#include <ATen/ops/_chunk_cat.h>
|
108 |
+
#include <ATen/ops/_coalesce.h>
|
109 |
+
#include <ATen/ops/_coalesced.h>
|
110 |
+
#include <ATen/ops/_compute_linear_combination.h>
|
111 |
+
#include <ATen/ops/_conj.h>
|
112 |
+
#include <ATen/ops/_conj_copy.h>
|
113 |
+
#include <ATen/ops/_conj_physical.h>
|
114 |
+
#include <ATen/ops/_conv_depthwise2d.h>
|
115 |
+
#include <ATen/ops/_convert_indices_from_coo_to_csr.h>
|
116 |
+
#include <ATen/ops/_convert_indices_from_csr_to_coo.h>
|
117 |
+
#include <ATen/ops/_convert_weight_to_int4pack.h>
|
118 |
+
#include <ATen/ops/_convolution.h>
|
119 |
+
#include <ATen/ops/_convolution_double_backward.h>
|
120 |
+
#include <ATen/ops/_convolution_mode.h>
|
121 |
+
#include <ATen/ops/_copy_from.h>
|
122 |
+
#include <ATen/ops/_copy_from_and_resize.h>
|
123 |
+
#include <ATen/ops/_cslt_compress.h>
|
124 |
+
#include <ATen/ops/_cslt_sparse_mm.h>
|
125 |
+
#include <ATen/ops/_cslt_sparse_mm_search.h>
|
126 |
+
#include <ATen/ops/_ctc_loss.h>
|
127 |
+
#include <ATen/ops/_ctc_loss_backward.h>
|
128 |
+
#include <ATen/ops/_cudnn_ctc_loss.h>
|
129 |
+
#include <ATen/ops/_cudnn_init_dropout_state.h>
|
130 |
+
#include <ATen/ops/_cudnn_rnn.h>
|
131 |
+
#include <ATen/ops/_cudnn_rnn_backward.h>
|
132 |
+
#include <ATen/ops/_cudnn_rnn_flatten_weight.h>
|
133 |
+
#include <ATen/ops/_cufft_clear_plan_cache.h>
|
134 |
+
#include <ATen/ops/_cufft_get_plan_cache_max_size.h>
|
135 |
+
#include <ATen/ops/_cufft_get_plan_cache_size.h>
|
136 |
+
#include <ATen/ops/_cufft_set_plan_cache_max_size.h>
|
137 |
+
#include <ATen/ops/_cummax_helper.h>
|
138 |
+
#include <ATen/ops/_cummin_helper.h>
|
139 |
+
#include <ATen/ops/_debug_has_internal_overlap.h>
|
140 |
+
#include <ATen/ops/_dimI.h>
|
141 |
+
#include <ATen/ops/_dimV.h>
|
142 |
+
#include <ATen/ops/_dim_arange.h>
|
143 |
+
#include <ATen/ops/_dirichlet_grad.h>
|
144 |
+
#include <ATen/ops/_efficient_attention_backward.h>
|
145 |
+
#include <ATen/ops/_efficient_attention_forward.h>
|
146 |
+
#include <ATen/ops/_efficientzerotensor.h>
|
147 |
+
#include <ATen/ops/_embedding_bag.h>
|
148 |
+
#include <ATen/ops/_embedding_bag_backward.h>
|
149 |
+
#include <ATen/ops/_embedding_bag_dense_backward.h>
|
150 |
+
#include <ATen/ops/_embedding_bag_forward_only.h>
|
151 |
+
#include <ATen/ops/_embedding_bag_per_sample_weights_backward.h>
|
152 |
+
#include <ATen/ops/_embedding_bag_sparse_backward.h>
|
153 |
+
#include <ATen/ops/_empty_affine_quantized.h>
|
154 |
+
#include <ATen/ops/_empty_per_channel_affine_quantized.h>
|
155 |
+
#include <ATen/ops/_euclidean_dist.h>
|
156 |
+
#include <ATen/ops/_fake_quantize_learnable_per_channel_affine.h>
|
157 |
+
#include <ATen/ops/_fake_quantize_learnable_per_channel_affine_backward.h>
|
158 |
+
#include <ATen/ops/_fake_quantize_learnable_per_tensor_affine.h>
|
159 |
+
#include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_backward.h>
|
160 |
+
#include <ATen/ops/_fake_quantize_per_tensor_affine_cachemask_tensor_qparams.h>
|
161 |
+
#include <ATen/ops/_fft_c2c.h>
|
162 |
+
#include <ATen/ops/_fft_c2r.h>
|
163 |
+
#include <ATen/ops/_fft_r2c.h>
|
164 |
+
#include <ATen/ops/_fill_mem_eff_dropout_mask.h>
|
165 |
+
#include <ATen/ops/_flash_attention_backward.h>
|
166 |
+
#include <ATen/ops/_flash_attention_forward.h>
|
167 |
+
#include <ATen/ops/_foobar.h>
|
168 |
+
#include <ATen/ops/_foreach_abs.h>
|
169 |
+
#include <ATen/ops/_foreach_acos.h>
|
170 |
+
#include <ATen/ops/_foreach_add.h>
|
171 |
+
#include <ATen/ops/_foreach_addcdiv.h>
|
172 |
+
#include <ATen/ops/_foreach_addcmul.h>
|
173 |
+
#include <ATen/ops/_foreach_asin.h>
|
174 |
+
#include <ATen/ops/_foreach_atan.h>
|
175 |
+
#include <ATen/ops/_foreach_ceil.h>
|
176 |
+
#include <ATen/ops/_foreach_clamp_max.h>
|
177 |
+
#include <ATen/ops/_foreach_clamp_min.h>
|
178 |
+
#include <ATen/ops/_foreach_copy.h>
|
179 |
+
#include <ATen/ops/_foreach_cos.h>
|
180 |
+
#include <ATen/ops/_foreach_cosh.h>
|
181 |
+
#include <ATen/ops/_foreach_div.h>
|
182 |
+
#include <ATen/ops/_foreach_erf.h>
|
183 |
+
#include <ATen/ops/_foreach_erfc.h>
|
184 |
+
#include <ATen/ops/_foreach_exp.h>
|
185 |
+
#include <ATen/ops/_foreach_expm1.h>
|
186 |
+
#include <ATen/ops/_foreach_floor.h>
|
187 |
+
#include <ATen/ops/_foreach_frac.h>
|
188 |
+
#include <ATen/ops/_foreach_lerp.h>
|
189 |
+
#include <ATen/ops/_foreach_lgamma.h>
|
190 |
+
#include <ATen/ops/_foreach_log.h>
|
191 |
+
#include <ATen/ops/_foreach_log10.h>
|
192 |
+
#include <ATen/ops/_foreach_log1p.h>
|
193 |
+
#include <ATen/ops/_foreach_log2.h>
|
194 |
+
#include <ATen/ops/_foreach_maximum.h>
|
195 |
+
#include <ATen/ops/_foreach_minimum.h>
|
196 |
+
#include <ATen/ops/_foreach_mul.h>
|
197 |
+
#include <ATen/ops/_foreach_neg.h>
|
198 |
+
#include <ATen/ops/_foreach_norm.h>
|
199 |
+
#include <ATen/ops/_foreach_pow.h>
|
200 |
+
#include <ATen/ops/_foreach_reciprocal.h>
|
201 |
+
#include <ATen/ops/_foreach_round.h>
|
202 |
+
#include <ATen/ops/_foreach_sigmoid.h>
|
203 |
+
#include <ATen/ops/_foreach_sign.h>
|
204 |
+
#include <ATen/ops/_foreach_sin.h>
|
205 |
+
#include <ATen/ops/_foreach_sinh.h>
|
206 |
+
#include <ATen/ops/_foreach_sqrt.h>
|
207 |
+
#include <ATen/ops/_foreach_sub.h>
|
208 |
+
#include <ATen/ops/_foreach_tan.h>
|
209 |
+
#include <ATen/ops/_foreach_tanh.h>
|
210 |
+
#include <ATen/ops/_foreach_trunc.h>
|
211 |
+
#include <ATen/ops/_foreach_zero.h>
|
212 |
+
#include <ATen/ops/_functional_assert_async.h>
|
213 |
+
#include <ATen/ops/_functional_assert_scalar.h>
|
214 |
+
#include <ATen/ops/_functional_sym_constrain_range.h>
|
215 |
+
#include <ATen/ops/_functional_sym_constrain_range_for_size.h>
|
216 |
+
#include <ATen/ops/_fused_adam.h>
|
217 |
+
#include <ATen/ops/_fused_adamw.h>
|
218 |
+
#include <ATen/ops/_fused_dropout.h>
|
219 |
+
#include <ATen/ops/_fused_moving_avg_obs_fq_helper.h>
|
220 |
+
#include <ATen/ops/_fused_sdp_choice.h>
|
221 |
+
#include <ATen/ops/_fused_sgd.h>
|
222 |
+
#include <ATen/ops/_fw_primal.h>
|
223 |
+
#include <ATen/ops/_fw_primal_copy.h>
|
224 |
+
#include <ATen/ops/_gather_sparse_backward.h>
|
225 |
+
#include <ATen/ops/_grid_sampler_2d_cpu_fallback.h>
|
226 |
+
#include <ATen/ops/_grid_sampler_2d_cpu_fallback_backward.h>
|
227 |
+
#include <ATen/ops/_has_compatible_shallow_copy_type.h>
|
228 |
+
#include <ATen/ops/_has_same_storage_numel.h>
|
229 |
+
#include <ATen/ops/_histogramdd_bin_edges.h>
|
230 |
+
#include <ATen/ops/_histogramdd_from_bin_cts.h>
|
231 |
+
#include <ATen/ops/_histogramdd_from_bin_tensors.h>
|
232 |
+
#include <ATen/ops/_index_put_impl.h>
|
233 |
+
#include <ATen/ops/_indices.h>
|
234 |
+
#include <ATen/ops/_indices_copy.h>
|
235 |
+
#include <ATen/ops/_int_mm.h>
|
236 |
+
#include <ATen/ops/_is_all_true.h>
|
237 |
+
#include <ATen/ops/_is_any_true.h>
|
238 |
+
#include <ATen/ops/_is_zerotensor.h>
|
239 |
+
#include <ATen/ops/_lazy_clone.h>
|
240 |
+
#include <ATen/ops/_linalg_check_errors.h>
|
241 |
+
#include <ATen/ops/_linalg_det.h>
|
242 |
+
#include <ATen/ops/_linalg_eigh.h>
|
243 |
+
#include <ATen/ops/_linalg_eigvals.h>
|
244 |
+
#include <ATen/ops/_linalg_slogdet.h>
|
245 |
+
#include <ATen/ops/_linalg_solve_ex.h>
|
246 |
+
#include <ATen/ops/_linalg_svd.h>
|
247 |
+
#include <ATen/ops/_local_scalar_dense.h>
|
248 |
+
#include <ATen/ops/_log_softmax.h>
|
249 |
+
#include <ATen/ops/_log_softmax_backward_data.h>
|
250 |
+
#include <ATen/ops/_logcumsumexp.h>
|
251 |
+
#include <ATen/ops/_lstm_mps.h>
|
252 |
+
#include <ATen/ops/_lu_with_info.h>
|
253 |
+
#include <ATen/ops/_make_dep_token.h>
|
254 |
+
#include <ATen/ops/_make_dual.h>
|
255 |
+
#include <ATen/ops/_make_dual_copy.h>
|
256 |
+
#include <ATen/ops/_make_per_channel_quantized_tensor.h>
|
257 |
+
#include <ATen/ops/_make_per_tensor_quantized_tensor.h>
|
258 |
+
#include <ATen/ops/_masked_scale.h>
|
259 |
+
#include <ATen/ops/_masked_softmax.h>
|
260 |
+
#include <ATen/ops/_masked_softmax_backward.h>
|
261 |
+
#include <ATen/ops/_mixed_dtypes_linear.h>
|
262 |
+
#include <ATen/ops/_mkldnn_reshape.h>
|
263 |
+
#include <ATen/ops/_mkldnn_transpose.h>
|
264 |
+
#include <ATen/ops/_mps_convolution.h>
|
265 |
+
#include <ATen/ops/_mps_convolution_transpose.h>
|
266 |
+
#include <ATen/ops/_native_batch_norm_legit.h>
|
267 |
+
#include <ATen/ops/_native_batch_norm_legit_no_training.h>
|
268 |
+
#include <ATen/ops/_native_multi_head_attention.h>
|
269 |
+
#include <ATen/ops/_neg_view.h>
|
270 |
+
#include <ATen/ops/_neg_view_copy.h>
|
271 |
+
#include <ATen/ops/_nested_from_padded.h>
|
272 |
+
#include <ATen/ops/_nested_from_padded_and_nested_example.h>
|
273 |
+
#include <ATen/ops/_nested_get_jagged_dummy.h>
|
274 |
+
#include <ATen/ops/_nested_get_lengths.h>
|
275 |
+
#include <ATen/ops/_nested_get_offsets.h>
|
276 |
+
#include <ATen/ops/_nested_get_ragged_idx.h>
|
277 |
+
#include <ATen/ops/_nested_get_values.h>
|
278 |
+
#include <ATen/ops/_nested_get_values_copy.h>
|
279 |
+
#include <ATen/ops/_nested_select_backward.h>
|
280 |
+
#include <ATen/ops/_nested_sum_backward.h>
|
281 |
+
#include <ATen/ops/_nested_tensor_from_mask.h>
|
282 |
+
#include <ATen/ops/_nested_tensor_from_mask_left_aligned.h>
|
283 |
+
#include <ATen/ops/_nested_tensor_from_tensor_list.h>
|
284 |
+
#include <ATen/ops/_nested_tensor_size.h>
|
285 |
+
#include <ATen/ops/_nested_tensor_softmax_with_shape.h>
|
286 |
+
#include <ATen/ops/_nested_tensor_storage_offsets.h>
|
287 |
+
#include <ATen/ops/_nested_tensor_strides.h>
|
288 |
+
#include <ATen/ops/_nested_view_from_buffer.h>
|
289 |
+
#include <ATen/ops/_nested_view_from_buffer_copy.h>
|
290 |
+
#include <ATen/ops/_nested_view_from_jagged.h>
|
291 |
+
#include <ATen/ops/_nested_view_from_jagged_copy.h>
|
292 |
+
#include <ATen/ops/_new_zeros_with_same_feature_meta.h>
|
293 |
+
#include <ATen/ops/_nnpack_available.h>
|
294 |
+
#include <ATen/ops/_nnpack_spatial_convolution.h>
|
295 |
+
#include <ATen/ops/_nnz.h>
|
296 |
+
#include <ATen/ops/_pack_padded_sequence.h>
|
297 |
+
#include <ATen/ops/_pack_padded_sequence_backward.h>
|
298 |
+
#include <ATen/ops/_pad_circular.h>
|
299 |
+
#include <ATen/ops/_pad_enum.h>
|
300 |
+
#include <ATen/ops/_pad_packed_sequence.h>
|
301 |
+
#include <ATen/ops/_pdist_backward.h>
|
302 |
+
#include <ATen/ops/_pdist_forward.h>
|
303 |
+
#include <ATen/ops/_pin_memory.h>
|
304 |
+
#include <ATen/ops/_prelu_kernel.h>
|
305 |
+
#include <ATen/ops/_prelu_kernel_backward.h>
|
306 |
+
#include <ATen/ops/_print.h>
|
307 |
+
#include <ATen/ops/_propagate_xla_data.h>
|
308 |
+
#include <ATen/ops/_remove_batch_dim.h>
|
309 |
+
#include <ATen/ops/_reshape_alias.h>
|
310 |
+
#include <ATen/ops/_reshape_alias_copy.h>
|
311 |
+
#include <ATen/ops/_reshape_copy.h>
|
312 |
+
#include <ATen/ops/_reshape_from_tensor.h>
|
313 |
+
#include <ATen/ops/_resize_output.h>
|
314 |
+
#include <ATen/ops/_rowwise_prune.h>
|
315 |
+
#include <ATen/ops/_sample_dirichlet.h>
|
316 |
+
#include <ATen/ops/_saturate_weight_to_fp16.h>
|
317 |
+
#include <ATen/ops/_scaled_dot_product_attention_math.h>
|
318 |
+
#include <ATen/ops/_scaled_dot_product_cudnn_attention.h>
|
319 |
+
#include <ATen/ops/_scaled_dot_product_efficient_attention.h>
|
320 |
+
#include <ATen/ops/_scaled_dot_product_efficient_attention_backward.h>
|
321 |
+
#include <ATen/ops/_scaled_dot_product_flash_attention.h>
|
322 |
+
#include <ATen/ops/_scaled_dot_product_flash_attention_backward.h>
|
323 |
+
#include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu.h>
|
324 |
+
#include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu_backward.h>
|
325 |
+
#include <ATen/ops/_scaled_mm.h>
|
326 |
+
#include <ATen/ops/_segment_reduce_backward.h>
|
327 |
+
#include <ATen/ops/_shape_as_tensor.h>
|
328 |
+
#include <ATen/ops/_slow_conv2d_backward.h>
|
329 |
+
#include <ATen/ops/_slow_conv2d_forward.h>
|
330 |
+
#include <ATen/ops/_sobol_engine_draw.h>
|
331 |
+
#include <ATen/ops/_sobol_engine_ff.h>
|
332 |
+
#include <ATen/ops/_sobol_engine_initialize_state.h>
|
333 |
+
#include <ATen/ops/_sobol_engine_scramble.h>
|
334 |
+
#include <ATen/ops/_softmax.h>
|
335 |
+
#include <ATen/ops/_softmax_backward_data.h>
|
336 |
+
#include <ATen/ops/_sparse_addmm.h>
|
337 |
+
#include <ATen/ops/_sparse_broadcast_to.h>
|
338 |
+
#include <ATen/ops/_sparse_broadcast_to_copy.h>
|
339 |
+
#include <ATen/ops/_sparse_bsc_tensor_unsafe.h>
|
340 |
+
#include <ATen/ops/_sparse_bsr_tensor_unsafe.h>
|
341 |
+
#include <ATen/ops/_sparse_compressed_tensor_unsafe.h>
|
342 |
+
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
|
343 |
+
#include <ATen/ops/_sparse_coo_tensor_with_dims.h>
|
344 |
+
#include <ATen/ops/_sparse_coo_tensor_with_dims_and_tensors.h>
|
345 |
+
#include <ATen/ops/_sparse_csc_tensor_unsafe.h>
|
346 |
+
#include <ATen/ops/_sparse_csr_prod.h>
|
347 |
+
#include <ATen/ops/_sparse_csr_sum.h>
|
348 |
+
#include <ATen/ops/_sparse_csr_tensor_unsafe.h>
|
349 |
+
#include <ATen/ops/_sparse_log_softmax.h>
|
350 |
+
#include <ATen/ops/_sparse_log_softmax_backward_data.h>
|
351 |
+
#include <ATen/ops/_sparse_mask_projection.h>
|
352 |
+
#include <ATen/ops/_sparse_mm.h>
|
353 |
+
#include <ATen/ops/_sparse_mm_reduce_impl.h>
|
354 |
+
#include <ATen/ops/_sparse_mm_reduce_impl_backward.h>
|
355 |
+
#include <ATen/ops/_sparse_semi_structured_linear.h>
|
356 |
+
#include <ATen/ops/_sparse_softmax.h>
|
357 |
+
#include <ATen/ops/_sparse_softmax_backward_data.h>
|
358 |
+
#include <ATen/ops/_sparse_sparse_matmul.h>
|
359 |
+
#include <ATen/ops/_sparse_sum.h>
|
360 |
+
#include <ATen/ops/_sparse_sum_backward.h>
|
361 |
+
#include <ATen/ops/_spdiags.h>
|
362 |
+
#include <ATen/ops/_stack.h>
|
363 |
+
#include <ATen/ops/_standard_gamma.h>
|
364 |
+
#include <ATen/ops/_standard_gamma_grad.h>
|
365 |
+
#include <ATen/ops/_test_ambiguous_defaults.h>
|
366 |
+
#include <ATen/ops/_test_autograd_multiple_dispatch.h>
|
367 |
+
#include <ATen/ops/_test_autograd_multiple_dispatch_view.h>
|
368 |
+
#include <ATen/ops/_test_autograd_multiple_dispatch_view_copy.h>
|
369 |
+
#include <ATen/ops/_test_check_tensor.h>
|
370 |
+
#include <ATen/ops/_test_functorch_fallback.h>
|
371 |
+
#include <ATen/ops/_test_optional_filled_intlist.h>
|
372 |
+
#include <ATen/ops/_test_optional_floatlist.h>
|
373 |
+
#include <ATen/ops/_test_optional_intlist.h>
|
374 |
+
#include <ATen/ops/_test_parallel_materialize.h>
|
375 |
+
#include <ATen/ops/_test_serialization_subcmul.h>
|
376 |
+
#include <ATen/ops/_test_string_default.h>
|
377 |
+
#include <ATen/ops/_test_warn_in_autograd.h>
|
378 |
+
#include <ATen/ops/_thnn_differentiable_gru_cell_backward.h>
|
379 |
+
#include <ATen/ops/_thnn_differentiable_lstm_cell_backward.h>
|
380 |
+
#include <ATen/ops/_thnn_fused_gru_cell.h>
|
381 |
+
#include <ATen/ops/_thnn_fused_gru_cell_backward.h>
|
382 |
+
#include <ATen/ops/_thnn_fused_lstm_cell.h>
|
383 |
+
#include <ATen/ops/_thnn_fused_lstm_cell_backward.h>
|
384 |
+
#include <ATen/ops/_thnn_fused_lstm_cell_backward_impl.h>
|
385 |
+
#include <ATen/ops/_to_copy.h>
|
386 |
+
#include <ATen/ops/_to_cpu.h>
|
387 |
+
#include <ATen/ops/_to_dense.h>
|
388 |
+
#include <ATen/ops/_to_sparse.h>
|
389 |
+
#include <ATen/ops/_to_sparse_bsc.h>
|
390 |
+
#include <ATen/ops/_to_sparse_bsr.h>
|
391 |
+
#include <ATen/ops/_to_sparse_csc.h>
|
392 |
+
#include <ATen/ops/_to_sparse_csr.h>
|
393 |
+
#include <ATen/ops/_to_sparse_semi_structured.h>
|
394 |
+
#include <ATen/ops/_transform_bias_rescale_qkv.h>
|
395 |
+
#include <ATen/ops/_transformer_encoder_layer_fwd.h>
|
396 |
+
#include <ATen/ops/_trilinear.h>
|
397 |
+
#include <ATen/ops/_triton_multi_head_attention.h>
|
398 |
+
#include <ATen/ops/_triton_scaled_dot_attention.h>
|
399 |
+
#include <ATen/ops/_unique.h>
|
400 |
+
#include <ATen/ops/_unique2.h>
|
401 |
+
#include <ATen/ops/_unpack_dual.h>
|
402 |
+
#include <ATen/ops/_unsafe_index.h>
|
403 |
+
#include <ATen/ops/_unsafe_index_put.h>
|
404 |
+
#include <ATen/ops/_unsafe_view.h>
|
405 |
+
#include <ATen/ops/_upsample_bicubic2d_aa.h>
|
406 |
+
#include <ATen/ops/_upsample_bicubic2d_aa_backward.h>
|
407 |
+
#include <ATen/ops/_upsample_bilinear2d_aa.h>
|
408 |
+
#include <ATen/ops/_upsample_bilinear2d_aa_backward.h>
|
409 |
+
#include <ATen/ops/_upsample_nearest_exact1d.h>
|
410 |
+
#include <ATen/ops/_upsample_nearest_exact1d_backward.h>
|
411 |
+
#include <ATen/ops/_upsample_nearest_exact2d.h>
|
412 |
+
#include <ATen/ops/_upsample_nearest_exact2d_backward.h>
|
413 |
+
#include <ATen/ops/_upsample_nearest_exact3d.h>
|
414 |
+
#include <ATen/ops/_upsample_nearest_exact3d_backward.h>
|
415 |
+
#include <ATen/ops/_use_cudnn_ctc_loss.h>
|
416 |
+
#include <ATen/ops/_use_cudnn_rnn_flatten_weight.h>
|
417 |
+
#include <ATen/ops/_validate_compressed_sparse_indices.h>
|
418 |
+
#include <ATen/ops/_validate_sparse_bsc_tensor_args.h>
|
419 |
+
#include <ATen/ops/_validate_sparse_bsr_tensor_args.h>
|
420 |
+
#include <ATen/ops/_validate_sparse_compressed_tensor_args.h>
|
421 |
+
#include <ATen/ops/_validate_sparse_coo_tensor_args.h>
|
422 |
+
#include <ATen/ops/_validate_sparse_csc_tensor_args.h>
|
423 |
+
#include <ATen/ops/_validate_sparse_csr_tensor_args.h>
|
424 |
+
#include <ATen/ops/_values.h>
|
425 |
+
#include <ATen/ops/_values_copy.h>
|
426 |
+
#include <ATen/ops/_version.h>
|
427 |
+
#include <ATen/ops/_weight_int4pack_mm.h>
|
428 |
+
#include <ATen/ops/_weight_int8pack_mm.h>
|
429 |
+
#include <ATen/ops/_weight_norm.h>
|
430 |
+
#include <ATen/ops/_weight_norm_differentiable_backward.h>
|
431 |
+
#include <ATen/ops/_weight_norm_interface.h>
|
432 |
+
#include <ATen/ops/_weight_norm_interface_backward.h>
|
433 |
+
#include <ATen/ops/abs.h>
|
434 |
+
#include <ATen/ops/absolute.h>
|
435 |
+
#include <ATen/ops/acos.h>
|
436 |
+
#include <ATen/ops/acosh.h>
|
437 |
+
#include <ATen/ops/adaptive_avg_pool1d.h>
|
438 |
+
#include <ATen/ops/adaptive_avg_pool2d.h>
|
439 |
+
#include <ATen/ops/adaptive_avg_pool3d.h>
|
440 |
+
#include <ATen/ops/adaptive_avg_pool3d_backward.h>
|
441 |
+
#include <ATen/ops/adaptive_max_pool1d.h>
|
442 |
+
#include <ATen/ops/adaptive_max_pool2d.h>
|
443 |
+
#include <ATen/ops/adaptive_max_pool2d_backward.h>
|
444 |
+
#include <ATen/ops/adaptive_max_pool3d.h>
|
445 |
+
#include <ATen/ops/adaptive_max_pool3d_backward.h>
|
446 |
+
#include <ATen/ops/add.h>
|
447 |
+
#include <ATen/ops/addbmm.h>
|
448 |
+
#include <ATen/ops/addcdiv.h>
|
449 |
+
#include <ATen/ops/addcmul.h>
|
450 |
+
#include <ATen/ops/addmm.h>
|
451 |
+
#include <ATen/ops/addmv.h>
|
452 |
+
#include <ATen/ops/addr.h>
|
453 |
+
#include <ATen/ops/adjoint.h>
|
454 |
+
#include <ATen/ops/affine_grid_generator.h>
|
455 |
+
#include <ATen/ops/affine_grid_generator_backward.h>
|
456 |
+
#include <ATen/ops/alias.h>
|
457 |
+
#include <ATen/ops/alias_copy.h>
|
458 |
+
#include <ATen/ops/align_as.h>
|
459 |
+
#include <ATen/ops/align_tensors.h>
|
460 |
+
#include <ATen/ops/align_to.h>
|
461 |
+
#include <ATen/ops/all.h>
|
462 |
+
#include <ATen/ops/allclose.h>
|
463 |
+
#include <ATen/ops/alpha_dropout.h>
|
464 |
+
#include <ATen/ops/amax.h>
|
465 |
+
#include <ATen/ops/amin.h>
|
466 |
+
#include <ATen/ops/aminmax.h>
|
467 |
+
#include <ATen/ops/and.h>
|
468 |
+
#include <ATen/ops/angle.h>
|
469 |
+
#include <ATen/ops/any.h>
|
470 |
+
#include <ATen/ops/arange.h>
|
471 |
+
#include <ATen/ops/arccos.h>
|
472 |
+
#include <ATen/ops/arccosh.h>
|
473 |
+
#include <ATen/ops/arcsin.h>
|
474 |
+
#include <ATen/ops/arcsinh.h>
|
475 |
+
#include <ATen/ops/arctan.h>
|
476 |
+
#include <ATen/ops/arctan2.h>
|
477 |
+
#include <ATen/ops/arctanh.h>
|
478 |
+
#include <ATen/ops/argmax.h>
|
479 |
+
#include <ATen/ops/argmin.h>
|
480 |
+
#include <ATen/ops/argsort.h>
|
481 |
+
#include <ATen/ops/argwhere.h>
|
482 |
+
#include <ATen/ops/as_strided.h>
|
483 |
+
#include <ATen/ops/as_strided_copy.h>
|
484 |
+
#include <ATen/ops/as_strided_scatter.h>
|
485 |
+
#include <ATen/ops/asin.h>
|
486 |
+
#include <ATen/ops/asinh.h>
|
487 |
+
#include <ATen/ops/atan.h>
|
488 |
+
#include <ATen/ops/atan2.h>
|
489 |
+
#include <ATen/ops/atanh.h>
|
490 |
+
#include <ATen/ops/atleast_1d.h>
|
491 |
+
#include <ATen/ops/atleast_2d.h>
|
492 |
+
#include <ATen/ops/atleast_3d.h>
|
493 |
+
#include <ATen/ops/avg_pool1d.h>
|
494 |
+
#include <ATen/ops/avg_pool2d.h>
|
495 |
+
#include <ATen/ops/avg_pool2d_backward.h>
|
496 |
+
#include <ATen/ops/avg_pool3d.h>
|
497 |
+
#include <ATen/ops/avg_pool3d_backward.h>
|
498 |
+
#include <ATen/ops/baddbmm.h>
|
499 |
+
#include <ATen/ops/bartlett_window.h>
|
500 |
+
#include <ATen/ops/batch_norm.h>
|
501 |
+
#include <ATen/ops/batch_norm_backward_elemt.h>
|
502 |
+
#include <ATen/ops/batch_norm_backward_reduce.h>
|
503 |
+
#include <ATen/ops/batch_norm_elemt.h>
|
504 |
+
#include <ATen/ops/batch_norm_gather_stats.h>
|
505 |
+
#include <ATen/ops/batch_norm_gather_stats_with_counts.h>
|
506 |
+
#include <ATen/ops/batch_norm_stats.h>
|
507 |
+
#include <ATen/ops/batch_norm_update_stats.h>
|
508 |
+
#include <ATen/ops/bernoulli.h>
|
509 |
+
#include <ATen/ops/bilinear.h>
|
510 |
+
#include <ATen/ops/binary_cross_entropy.h>
|
511 |
+
#include <ATen/ops/binary_cross_entropy_backward.h>
|
512 |
+
#include <ATen/ops/binary_cross_entropy_with_logits.h>
|
513 |
+
#include <ATen/ops/bincount.h>
|
514 |
+
#include <ATen/ops/binomial.h>
|
515 |
+
#include <ATen/ops/bitwise_and.h>
|
516 |
+
#include <ATen/ops/bitwise_left_shift.h>
|
517 |
+
#include <ATen/ops/bitwise_not.h>
|
518 |
+
#include <ATen/ops/bitwise_or.h>
|
519 |
+
#include <ATen/ops/bitwise_right_shift.h>
|
520 |
+
#include <ATen/ops/bitwise_xor.h>
|
521 |
+
#include <ATen/ops/blackman_window.h>
|
522 |
+
#include <ATen/ops/block_diag.h>
|
523 |
+
#include <ATen/ops/bmm.h>
|
524 |
+
#include <ATen/ops/broadcast_tensors.h>
|
525 |
+
#include <ATen/ops/broadcast_to.h>
|
526 |
+
#include <ATen/ops/bucketize.h>
|
527 |
+
#include <ATen/ops/can_cast.h>
|
528 |
+
#include <ATen/ops/cartesian_prod.h>
|
529 |
+
#include <ATen/ops/cat.h>
|
530 |
+
#include <ATen/ops/cauchy.h>
|
531 |
+
#include <ATen/ops/ccol_indices.h>
|
532 |
+
#include <ATen/ops/ccol_indices_copy.h>
|
533 |
+
#include <ATen/ops/cdist.h>
|
534 |
+
#include <ATen/ops/ceil.h>
|
535 |
+
#include <ATen/ops/celu.h>
|
536 |
+
#include <ATen/ops/chain_matmul.h>
|
537 |
+
#include <ATen/ops/chalf.h>
|
538 |
+
#include <ATen/ops/channel_shuffle.h>
|
539 |
+
#include <ATen/ops/cholesky.h>
|
540 |
+
#include <ATen/ops/cholesky_inverse.h>
|
541 |
+
#include <ATen/ops/cholesky_solve.h>
|
542 |
+
#include <ATen/ops/choose_qparams_optimized.h>
|
543 |
+
#include <ATen/ops/chunk.h>
|
544 |
+
#include <ATen/ops/clamp.h>
|
545 |
+
#include <ATen/ops/clamp_max.h>
|
546 |
+
#include <ATen/ops/clamp_min.h>
|
547 |
+
#include <ATen/ops/clip.h>
|
548 |
+
#include <ATen/ops/clone.h>
|
549 |
+
#include <ATen/ops/coalesce.h>
|
550 |
+
#include <ATen/ops/col2im.h>
|
551 |
+
#include <ATen/ops/col_indices.h>
|
552 |
+
#include <ATen/ops/col_indices_copy.h>
|
553 |
+
#include <ATen/ops/column_stack.h>
|
554 |
+
#include <ATen/ops/combinations.h>
|
555 |
+
#include <ATen/ops/complex.h>
|
556 |
+
#include <ATen/ops/concat.h>
|
557 |
+
#include <ATen/ops/concatenate.h>
|
558 |
+
#include <ATen/ops/conj.h>
|
559 |
+
#include <ATen/ops/conj_physical.h>
|
560 |
+
#include <ATen/ops/constant_pad_nd.h>
|
561 |
+
#include <ATen/ops/contiguous.h>
|
562 |
+
#include <ATen/ops/conv1d.h>
|
563 |
+
#include <ATen/ops/conv2d.h>
|
564 |
+
#include <ATen/ops/conv3d.h>
|
565 |
+
#include <ATen/ops/conv_depthwise3d.h>
|
566 |
+
#include <ATen/ops/conv_tbc.h>
|
567 |
+
#include <ATen/ops/conv_tbc_backward.h>
|
568 |
+
#include <ATen/ops/conv_transpose1d.h>
|
569 |
+
#include <ATen/ops/conv_transpose2d.h>
|
570 |
+
#include <ATen/ops/conv_transpose3d.h>
|
571 |
+
#include <ATen/ops/convolution.h>
|
572 |
+
#include <ATen/ops/convolution_backward.h>
|
573 |
+
#include <ATen/ops/convolution_backward_overrideable.h>
|
574 |
+
#include <ATen/ops/convolution_overrideable.h>
|
575 |
+
#include <ATen/ops/copy.h>
|
576 |
+
#include <ATen/ops/copy_sparse_to_sparse.h>
|
577 |
+
#include <ATen/ops/copysign.h>
|
578 |
+
#include <ATen/ops/corrcoef.h>
|
579 |
+
#include <ATen/ops/cos.h>
|
580 |
+
#include <ATen/ops/cosh.h>
|
581 |
+
#include <ATen/ops/cosine_embedding_loss.h>
|
582 |
+
#include <ATen/ops/cosine_similarity.h>
|
583 |
+
#include <ATen/ops/count_nonzero.h>
|
584 |
+
#include <ATen/ops/cov.h>
|
585 |
+
#include <ATen/ops/cross.h>
|
586 |
+
#include <ATen/ops/cross_entropy_loss.h>
|
587 |
+
#include <ATen/ops/crow_indices.h>
|
588 |
+
#include <ATen/ops/crow_indices_copy.h>
|
589 |
+
#include <ATen/ops/ctc_loss.h>
|
590 |
+
#include <ATen/ops/cudnn_affine_grid_generator.h>
|
591 |
+
#include <ATen/ops/cudnn_affine_grid_generator_backward.h>
|
592 |
+
#include <ATen/ops/cudnn_batch_norm.h>
|
593 |
+
#include <ATen/ops/cudnn_batch_norm_backward.h>
|
594 |
+
#include <ATen/ops/cudnn_convolution.h>
|
595 |
+
#include <ATen/ops/cudnn_convolution_add_relu.h>
|
596 |
+
#include <ATen/ops/cudnn_convolution_relu.h>
|
597 |
+
#include <ATen/ops/cudnn_convolution_transpose.h>
|
598 |
+
#include <ATen/ops/cudnn_grid_sampler.h>
|
599 |
+
#include <ATen/ops/cudnn_grid_sampler_backward.h>
|
600 |
+
#include <ATen/ops/cudnn_is_acceptable.h>
|
601 |
+
#include <ATen/ops/cummax.h>
|
602 |
+
#include <ATen/ops/cummaxmin_backward.h>
|
603 |
+
#include <ATen/ops/cummin.h>
|
604 |
+
#include <ATen/ops/cumprod.h>
|
605 |
+
#include <ATen/ops/cumprod_backward.h>
|
606 |
+
#include <ATen/ops/cumsum.h>
|
607 |
+
#include <ATen/ops/cumulative_trapezoid.h>
|
608 |
+
#include <ATen/ops/data.h>
|
609 |
+
#include <ATen/ops/deg2rad.h>
|
610 |
+
#include <ATen/ops/dense_dim.h>
|
611 |
+
#include <ATen/ops/dequantize.h>
|
612 |
+
#include <ATen/ops/det.h>
|
613 |
+
#include <ATen/ops/detach.h>
|
614 |
+
#include <ATen/ops/detach_copy.h>
|
615 |
+
#include <ATen/ops/diag.h>
|
616 |
+
#include <ATen/ops/diag_embed.h>
|
617 |
+
#include <ATen/ops/diagflat.h>
|
618 |
+
#include <ATen/ops/diagonal.h>
|
619 |
+
#include <ATen/ops/diagonal_backward.h>
|
620 |
+
#include <ATen/ops/diagonal_copy.h>
|
621 |
+
#include <ATen/ops/diagonal_scatter.h>
|
622 |
+
#include <ATen/ops/diff.h>
|
623 |
+
#include <ATen/ops/digamma.h>
|
624 |
+
#include <ATen/ops/dist.h>
|
625 |
+
#include <ATen/ops/div.h>
|
626 |
+
#include <ATen/ops/divide.h>
|
627 |
+
#include <ATen/ops/dot.h>
|
628 |
+
#include <ATen/ops/dropout.h>
|
629 |
+
#include <ATen/ops/dsplit.h>
|
630 |
+
#include <ATen/ops/dstack.h>
|
631 |
+
#include <ATen/ops/einsum.h>
|
632 |
+
#include <ATen/ops/elu.h>
|
633 |
+
#include <ATen/ops/elu_backward.h>
|
634 |
+
#include <ATen/ops/embedding.h>
|
635 |
+
#include <ATen/ops/embedding_backward.h>
|
636 |
+
#include <ATen/ops/embedding_bag.h>
|
637 |
+
#include <ATen/ops/embedding_dense_backward.h>
|
638 |
+
#include <ATen/ops/embedding_renorm.h>
|
639 |
+
#include <ATen/ops/embedding_sparse_backward.h>
|
640 |
+
#include <ATen/ops/empty.h>
|
641 |
+
#include <ATen/ops/empty_like.h>
|
642 |
+
#include <ATen/ops/empty_permuted.h>
|
643 |
+
#include <ATen/ops/empty_quantized.h>
|
644 |
+
#include <ATen/ops/empty_strided.h>
|
645 |
+
#include <ATen/ops/eq.h>
|
646 |
+
#include <ATen/ops/equal.h>
|
647 |
+
#include <ATen/ops/erf.h>
|
648 |
+
#include <ATen/ops/erfc.h>
|
649 |
+
#include <ATen/ops/erfinv.h>
|
650 |
+
#include <ATen/ops/exp.h>
|
651 |
+
#include <ATen/ops/exp2.h>
|
652 |
+
#include <ATen/ops/expand.h>
|
653 |
+
#include <ATen/ops/expand_as.h>
|
654 |
+
#include <ATen/ops/expand_copy.h>
|
655 |
+
#include <ATen/ops/expm1.h>
|
656 |
+
#include <ATen/ops/exponential.h>
|
657 |
+
#include <ATen/ops/eye.h>
|
658 |
+
#include <ATen/ops/fake_quantize_per_channel_affine.h>
|
659 |
+
#include <ATen/ops/fake_quantize_per_channel_affine_cachemask.h>
|
660 |
+
#include <ATen/ops/fake_quantize_per_channel_affine_cachemask_backward.h>
|
661 |
+
#include <ATen/ops/fake_quantize_per_tensor_affine.h>
|
662 |
+
#include <ATen/ops/fake_quantize_per_tensor_affine_cachemask.h>
|
663 |
+
#include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_backward.h>
|
664 |
+
#include <ATen/ops/fbgemm_linear_fp16_weight.h>
|
665 |
+
#include <ATen/ops/fbgemm_linear_fp16_weight_fp32_activation.h>
|
666 |
+
#include <ATen/ops/fbgemm_linear_int8_weight.h>
|
667 |
+
#include <ATen/ops/fbgemm_linear_int8_weight_fp32_activation.h>
|
668 |
+
#include <ATen/ops/fbgemm_linear_quantize_weight.h>
|
669 |
+
#include <ATen/ops/fbgemm_pack_gemm_matrix_fp16.h>
|
670 |
+
#include <ATen/ops/fbgemm_pack_quantized_matrix.h>
|
671 |
+
#include <ATen/ops/feature_alpha_dropout.h>
|
672 |
+
#include <ATen/ops/feature_dropout.h>
|
673 |
+
#include <ATen/ops/fft_fft.h>
|
674 |
+
#include <ATen/ops/fft_fft2.h>
|
675 |
+
#include <ATen/ops/fft_fftfreq.h>
|
676 |
+
#include <ATen/ops/fft_fftn.h>
|
677 |
+
#include <ATen/ops/fft_fftshift.h>
|
678 |
+
#include <ATen/ops/fft_hfft.h>
|
679 |
+
#include <ATen/ops/fft_hfft2.h>
|
680 |
+
#include <ATen/ops/fft_hfftn.h>
|
681 |
+
#include <ATen/ops/fft_ifft.h>
|
682 |
+
#include <ATen/ops/fft_ifft2.h>
|
683 |
+
#include <ATen/ops/fft_ifftn.h>
|
684 |
+
#include <ATen/ops/fft_ifftshift.h>
|
685 |
+
#include <ATen/ops/fft_ihfft.h>
|
686 |
+
#include <ATen/ops/fft_ihfft2.h>
|
687 |
+
#include <ATen/ops/fft_ihfftn.h>
|
688 |
+
#include <ATen/ops/fft_irfft.h>
|
689 |
+
#include <ATen/ops/fft_irfft2.h>
|
690 |
+
#include <ATen/ops/fft_irfftn.h>
|
691 |
+
#include <ATen/ops/fft_rfft.h>
|
692 |
+
#include <ATen/ops/fft_rfft2.h>
|
693 |
+
#include <ATen/ops/fft_rfftfreq.h>
|
694 |
+
#include <ATen/ops/fft_rfftn.h>
|
695 |
+
#include <ATen/ops/fill.h>
|
696 |
+
#include <ATen/ops/fill_diagonal.h>
|
697 |
+
#include <ATen/ops/fix.h>
|
698 |
+
#include <ATen/ops/flatten.h>
|
699 |
+
#include <ATen/ops/flatten_dense_tensors.h>
|
700 |
+
#include <ATen/ops/flip.h>
|
701 |
+
#include <ATen/ops/fliplr.h>
|
702 |
+
#include <ATen/ops/flipud.h>
|
703 |
+
#include <ATen/ops/float_power.h>
|
704 |
+
#include <ATen/ops/floor.h>
|
705 |
+
#include <ATen/ops/floor_divide.h>
|
706 |
+
#include <ATen/ops/fmax.h>
|
707 |
+
#include <ATen/ops/fmin.h>
|
708 |
+
#include <ATen/ops/fmod.h>
|
709 |
+
#include <ATen/ops/frac.h>
|
710 |
+
#include <ATen/ops/fractional_max_pool2d.h>
|
711 |
+
#include <ATen/ops/fractional_max_pool2d_backward.h>
|
712 |
+
#include <ATen/ops/fractional_max_pool3d.h>
|
713 |
+
#include <ATen/ops/fractional_max_pool3d_backward.h>
|
714 |
+
#include <ATen/ops/frexp.h>
|
715 |
+
#include <ATen/ops/frobenius_norm.h>
|
716 |
+
#include <ATen/ops/from_file.h>
|
717 |
+
#include <ATen/ops/full.h>
|
718 |
+
#include <ATen/ops/full_like.h>
|
719 |
+
#include <ATen/ops/fused_moving_avg_obs_fake_quant.h>
|
720 |
+
#include <ATen/ops/gather.h>
|
721 |
+
#include <ATen/ops/gather_backward.h>
|
722 |
+
#include <ATen/ops/gcd.h>
|
723 |
+
#include <ATen/ops/ge.h>
|
724 |
+
#include <ATen/ops/gelu.h>
|
725 |
+
#include <ATen/ops/gelu_backward.h>
|
726 |
+
#include <ATen/ops/geometric.h>
|
727 |
+
#include <ATen/ops/geqrf.h>
|
728 |
+
#include <ATen/ops/ger.h>
|
729 |
+
#include <ATen/ops/glu.h>
|
730 |
+
#include <ATen/ops/glu_backward.h>
|
731 |
+
#include <ATen/ops/glu_backward_jvp.h>
|
732 |
+
#include <ATen/ops/glu_jvp.h>
|
733 |
+
#include <ATen/ops/gradient.h>
|
734 |
+
#include <ATen/ops/greater.h>
|
735 |
+
#include <ATen/ops/greater_equal.h>
|
736 |
+
#include <ATen/ops/grid_sampler.h>
|
737 |
+
#include <ATen/ops/grid_sampler_2d.h>
|
738 |
+
#include <ATen/ops/grid_sampler_2d_backward.h>
|
739 |
+
#include <ATen/ops/grid_sampler_3d.h>
|
740 |
+
#include <ATen/ops/grid_sampler_3d_backward.h>
|
741 |
+
#include <ATen/ops/group_norm.h>
|
742 |
+
#include <ATen/ops/gru.h>
|
743 |
+
#include <ATen/ops/gru_cell.h>
|
744 |
+
#include <ATen/ops/gt.h>
|
745 |
+
#include <ATen/ops/hamming_window.h>
|
746 |
+
#include <ATen/ops/hann_window.h>
|
747 |
+
#include <ATen/ops/hardshrink.h>
|
748 |
+
#include <ATen/ops/hardshrink_backward.h>
|
749 |
+
#include <ATen/ops/hardsigmoid.h>
|
750 |
+
#include <ATen/ops/hardsigmoid_backward.h>
|
751 |
+
#include <ATen/ops/hardswish.h>
|
752 |
+
#include <ATen/ops/hardswish_backward.h>
|
753 |
+
#include <ATen/ops/hardtanh.h>
|
754 |
+
#include <ATen/ops/hardtanh_backward.h>
|
755 |
+
#include <ATen/ops/heaviside.h>
|
756 |
+
#include <ATen/ops/hinge_embedding_loss.h>
|
757 |
+
#include <ATen/ops/histc.h>
|
758 |
+
#include <ATen/ops/histogram.h>
|
759 |
+
#include <ATen/ops/histogramdd.h>
|
760 |
+
#include <ATen/ops/hsplit.h>
|
761 |
+
#include <ATen/ops/hspmm.h>
|
762 |
+
#include <ATen/ops/hstack.h>
|
763 |
+
#include <ATen/ops/huber_loss.h>
|
764 |
+
#include <ATen/ops/huber_loss_backward.h>
|
765 |
+
#include <ATen/ops/hypot.h>
|
766 |
+
#include <ATen/ops/i0.h>
|
767 |
+
#include <ATen/ops/igamma.h>
|
768 |
+
#include <ATen/ops/igammac.h>
|
769 |
+
#include <ATen/ops/im2col.h>
|
770 |
+
#include <ATen/ops/imag.h>
|
771 |
+
#include <ATen/ops/index.h>
|
772 |
+
#include <ATen/ops/index_add.h>
|
773 |
+
#include <ATen/ops/index_copy.h>
|
774 |
+
#include <ATen/ops/index_fill.h>
|
775 |
+
#include <ATen/ops/index_put.h>
|
776 |
+
#include <ATen/ops/index_reduce.h>
|
777 |
+
#include <ATen/ops/index_select.h>
|
778 |
+
#include <ATen/ops/index_select_backward.h>
|
779 |
+
#include <ATen/ops/indices.h>
|
780 |
+
#include <ATen/ops/indices_copy.h>
|
781 |
+
#include <ATen/ops/infinitely_differentiable_gelu_backward.h>
|
782 |
+
#include <ATen/ops/inner.h>
|
783 |
+
#include <ATen/ops/instance_norm.h>
|
784 |
+
#include <ATen/ops/int_repr.h>
|
785 |
+
#include <ATen/ops/inverse.h>
|
786 |
+
#include <ATen/ops/is_coalesced.h>
|
787 |
+
#include <ATen/ops/is_complex.h>
|
788 |
+
#include <ATen/ops/is_conj.h>
|
789 |
+
#include <ATen/ops/is_distributed.h>
|
790 |
+
#include <ATen/ops/is_floating_point.h>
|
791 |
+
#include <ATen/ops/is_inference.h>
|
792 |
+
#include <ATen/ops/is_leaf.h>
|
793 |
+
#include <ATen/ops/is_neg.h>
|
794 |
+
#include <ATen/ops/is_nonzero.h>
|
795 |
+
#include <ATen/ops/is_pinned.h>
|
796 |
+
#include <ATen/ops/is_same_size.h>
|
797 |
+
#include <ATen/ops/is_set_to.h>
|
798 |
+
#include <ATen/ops/is_signed.h>
|
799 |
+
#include <ATen/ops/is_vulkan_available.h>
|
800 |
+
#include <ATen/ops/isclose.h>
|
801 |
+
#include <ATen/ops/isfinite.h>
|
802 |
+
#include <ATen/ops/isin.h>
|
803 |
+
#include <ATen/ops/isinf.h>
|
804 |
+
#include <ATen/ops/isnan.h>
|
805 |
+
#include <ATen/ops/isneginf.h>
|
806 |
+
#include <ATen/ops/isposinf.h>
|
807 |
+
#include <ATen/ops/isreal.h>
|
808 |
+
#include <ATen/ops/istft.h>
|
809 |
+
#include <ATen/ops/item.h>
|
810 |
+
#include <ATen/ops/kaiser_window.h>
|
811 |
+
#include <ATen/ops/kl_div.h>
|
812 |
+
#include <ATen/ops/kron.h>
|
813 |
+
#include <ATen/ops/kthvalue.h>
|
814 |
+
#include <ATen/ops/l1_loss.h>
|
815 |
+
#include <ATen/ops/layer_norm.h>
|
816 |
+
#include <ATen/ops/lcm.h>
|
817 |
+
#include <ATen/ops/ldexp.h>
|
818 |
+
#include <ATen/ops/le.h>
|
819 |
+
#include <ATen/ops/leaky_relu.h>
|
820 |
+
#include <ATen/ops/leaky_relu_backward.h>
|
821 |
+
#include <ATen/ops/lerp.h>
|
822 |
+
#include <ATen/ops/less.h>
|
823 |
+
#include <ATen/ops/less_equal.h>
|
824 |
+
#include <ATen/ops/lgamma.h>
|
825 |
+
#include <ATen/ops/lift.h>
|
826 |
+
#include <ATen/ops/lift_fresh.h>
|
827 |
+
#include <ATen/ops/lift_fresh_copy.h>
|
828 |
+
#include <ATen/ops/linalg_cholesky.h>
|
829 |
+
#include <ATen/ops/linalg_cholesky_ex.h>
|
830 |
+
#include <ATen/ops/linalg_cond.h>
|
831 |
+
#include <ATen/ops/linalg_cross.h>
|
832 |
+
#include <ATen/ops/linalg_det.h>
|
833 |
+
#include <ATen/ops/linalg_diagonal.h>
|
834 |
+
#include <ATen/ops/linalg_eig.h>
|
835 |
+
#include <ATen/ops/linalg_eigh.h>
|
836 |
+
#include <ATen/ops/linalg_eigvals.h>
|
837 |
+
#include <ATen/ops/linalg_eigvalsh.h>
|
838 |
+
#include <ATen/ops/linalg_householder_product.h>
|
839 |
+
#include <ATen/ops/linalg_inv.h>
|
840 |
+
#include <ATen/ops/linalg_inv_ex.h>
|
841 |
+
#include <ATen/ops/linalg_ldl_factor.h>
|
842 |
+
#include <ATen/ops/linalg_ldl_factor_ex.h>
|
843 |
+
#include <ATen/ops/linalg_ldl_solve.h>
|
844 |
+
#include <ATen/ops/linalg_lstsq.h>
|
845 |
+
#include <ATen/ops/linalg_lu.h>
|
846 |
+
#include <ATen/ops/linalg_lu_factor.h>
|
847 |
+
#include <ATen/ops/linalg_lu_factor_ex.h>
|
848 |
+
#include <ATen/ops/linalg_lu_solve.h>
|
849 |
+
#include <ATen/ops/linalg_matmul.h>
|
850 |
+
#include <ATen/ops/linalg_matrix_exp.h>
|
851 |
+
#include <ATen/ops/linalg_matrix_norm.h>
|
852 |
+
#include <ATen/ops/linalg_matrix_power.h>
|
853 |
+
#include <ATen/ops/linalg_matrix_rank.h>
|
854 |
+
#include <ATen/ops/linalg_multi_dot.h>
|
855 |
+
#include <ATen/ops/linalg_norm.h>
|
856 |
+
#include <ATen/ops/linalg_pinv.h>
|
857 |
+
#include <ATen/ops/linalg_qr.h>
|
858 |
+
#include <ATen/ops/linalg_slogdet.h>
|
859 |
+
#include <ATen/ops/linalg_solve.h>
|
860 |
+
#include <ATen/ops/linalg_solve_ex.h>
|
861 |
+
#include <ATen/ops/linalg_solve_triangular.h>
|
862 |
+
#include <ATen/ops/linalg_svd.h>
|
863 |
+
#include <ATen/ops/linalg_svdvals.h>
|
864 |
+
#include <ATen/ops/linalg_tensorinv.h>
|
865 |
+
#include <ATen/ops/linalg_tensorsolve.h>
|
866 |
+
#include <ATen/ops/linalg_vander.h>
|
867 |
+
#include <ATen/ops/linalg_vecdot.h>
|
868 |
+
#include <ATen/ops/linalg_vector_norm.h>
|
869 |
+
#include <ATen/ops/linear.h>
|
870 |
+
#include <ATen/ops/linear_backward.h>
|
871 |
+
#include <ATen/ops/linspace.h>
|
872 |
+
#include <ATen/ops/log.h>
|
873 |
+
#include <ATen/ops/log10.h>
|
874 |
+
#include <ATen/ops/log1p.h>
|
875 |
+
#include <ATen/ops/log2.h>
|
876 |
+
#include <ATen/ops/log_normal.h>
|
877 |
+
#include <ATen/ops/log_sigmoid.h>
|
878 |
+
#include <ATen/ops/log_sigmoid_backward.h>
|
879 |
+
#include <ATen/ops/log_sigmoid_forward.h>
|
880 |
+
#include <ATen/ops/log_softmax.h>
|
881 |
+
#include <ATen/ops/logaddexp.h>
|
882 |
+
#include <ATen/ops/logaddexp2.h>
|
883 |
+
#include <ATen/ops/logcumsumexp.h>
|
884 |
+
#include <ATen/ops/logdet.h>
|
885 |
+
#include <ATen/ops/logical_and.h>
|
886 |
+
#include <ATen/ops/logical_not.h>
|
887 |
+
#include <ATen/ops/logical_or.h>
|
888 |
+
#include <ATen/ops/logical_xor.h>
|
889 |
+
#include <ATen/ops/logit.h>
|
890 |
+
#include <ATen/ops/logit_backward.h>
|
891 |
+
#include <ATen/ops/logspace.h>
|
892 |
+
#include <ATen/ops/logsumexp.h>
|
893 |
+
#include <ATen/ops/lshift.h>
|
894 |
+
#include <ATen/ops/lstm.h>
|
895 |
+
#include <ATen/ops/lstm_cell.h>
|
896 |
+
#include <ATen/ops/lstm_mps_backward.h>
|
897 |
+
#include <ATen/ops/lt.h>
|
898 |
+
#include <ATen/ops/lu_solve.h>
|
899 |
+
#include <ATen/ops/lu_unpack.h>
|
900 |
+
#include <ATen/ops/mH.h>
|
901 |
+
#include <ATen/ops/mT.h>
|
902 |
+
#include <ATen/ops/margin_ranking_loss.h>
|
903 |
+
#include <ATen/ops/masked_fill.h>
|
904 |
+
#include <ATen/ops/masked_scatter.h>
|
905 |
+
#include <ATen/ops/masked_scatter_backward.h>
|
906 |
+
#include <ATen/ops/masked_select.h>
|
907 |
+
#include <ATen/ops/masked_select_backward.h>
|
908 |
+
#include <ATen/ops/matmul.h>
|
909 |
+
#include <ATen/ops/matmul_backward.h>
|
910 |
+
#include <ATen/ops/matrix_H.h>
|
911 |
+
#include <ATen/ops/matrix_exp.h>
|
912 |
+
#include <ATen/ops/matrix_exp_backward.h>
|
913 |
+
#include <ATen/ops/matrix_power.h>
|
914 |
+
#include <ATen/ops/max.h>
|
915 |
+
#include <ATen/ops/max_pool1d.h>
|
916 |
+
#include <ATen/ops/max_pool1d_with_indices.h>
|
917 |
+
#include <ATen/ops/max_pool2d.h>
|
918 |
+
#include <ATen/ops/max_pool2d_backward.h>
|
919 |
+
#include <ATen/ops/max_pool2d_with_indices.h>
|
920 |
+
#include <ATen/ops/max_pool2d_with_indices_backward.h>
|
921 |
+
#include <ATen/ops/max_pool3d.h>
|
922 |
+
#include <ATen/ops/max_pool3d_with_indices.h>
|
923 |
+
#include <ATen/ops/max_pool3d_with_indices_backward.h>
|
924 |
+
#include <ATen/ops/max_unpool2d.h>
|
925 |
+
#include <ATen/ops/max_unpool3d.h>
|
926 |
+
#include <ATen/ops/maximum.h>
|
927 |
+
#include <ATen/ops/mean.h>
|
928 |
+
#include <ATen/ops/median.h>
|
929 |
+
#include <ATen/ops/meshgrid.h>
|
930 |
+
#include <ATen/ops/min.h>
|
931 |
+
#include <ATen/ops/minimum.h>
|
932 |
+
#include <ATen/ops/miopen_batch_norm.h>
|
933 |
+
#include <ATen/ops/miopen_batch_norm_backward.h>
|
934 |
+
#include <ATen/ops/miopen_convolution.h>
|
935 |
+
#include <ATen/ops/miopen_convolution_add_relu.h>
|
936 |
+
#include <ATen/ops/miopen_convolution_relu.h>
|
937 |
+
#include <ATen/ops/miopen_convolution_transpose.h>
|
938 |
+
#include <ATen/ops/miopen_depthwise_convolution.h>
|
939 |
+
#include <ATen/ops/miopen_rnn.h>
|
940 |
+
#include <ATen/ops/miopen_rnn_backward.h>
|
941 |
+
#include <ATen/ops/mish.h>
|
942 |
+
#include <ATen/ops/mish_backward.h>
|
943 |
+
#include <ATen/ops/mkldnn_adaptive_avg_pool2d.h>
|
944 |
+
#include <ATen/ops/mkldnn_adaptive_avg_pool2d_backward.h>
|
945 |
+
#include <ATen/ops/mkldnn_convolution.h>
|
946 |
+
#include <ATen/ops/mkldnn_linear.h>
|
947 |
+
#include <ATen/ops/mkldnn_linear_backward.h>
|
948 |
+
#include <ATen/ops/mkldnn_linear_backward_input.h>
|
949 |
+
#include <ATen/ops/mkldnn_linear_backward_weights.h>
|
950 |
+
#include <ATen/ops/mkldnn_max_pool2d.h>
|
951 |
+
#include <ATen/ops/mkldnn_max_pool2d_backward.h>
|
952 |
+
#include <ATen/ops/mkldnn_max_pool3d.h>
|
953 |
+
#include <ATen/ops/mkldnn_max_pool3d_backward.h>
|
954 |
+
#include <ATen/ops/mkldnn_reorder_conv2d_weight.h>
|
955 |
+
#include <ATen/ops/mkldnn_reorder_conv3d_weight.h>
|
956 |
+
#include <ATen/ops/mkldnn_rnn_layer.h>
|
957 |
+
#include <ATen/ops/mkldnn_rnn_layer_backward.h>
|
958 |
+
#include <ATen/ops/mm.h>
|
959 |
+
#include <ATen/ops/mode.h>
|
960 |
+
#include <ATen/ops/moveaxis.h>
|
961 |
+
#include <ATen/ops/movedim.h>
|
962 |
+
#include <ATen/ops/mps_convolution_backward.h>
|
963 |
+
#include <ATen/ops/mps_convolution_transpose_backward.h>
|
964 |
+
#include <ATen/ops/mse_loss.h>
|
965 |
+
#include <ATen/ops/mse_loss_backward.h>
|
966 |
+
#include <ATen/ops/msort.h>
|
967 |
+
#include <ATen/ops/mul.h>
|
968 |
+
#include <ATen/ops/multi_margin_loss.h>
|
969 |
+
#include <ATen/ops/multi_margin_loss_backward.h>
|
970 |
+
#include <ATen/ops/multilabel_margin_loss.h>
|
971 |
+
#include <ATen/ops/multilabel_margin_loss_backward.h>
|
972 |
+
#include <ATen/ops/multilabel_margin_loss_forward.h>
|
973 |
+
#include <ATen/ops/multinomial.h>
|
974 |
+
#include <ATen/ops/multiply.h>
|
975 |
+
#include <ATen/ops/mv.h>
|
976 |
+
#include <ATen/ops/mvlgamma.h>
|
977 |
+
#include <ATen/ops/nan_to_num.h>
|
978 |
+
#include <ATen/ops/nanmean.h>
|
979 |
+
#include <ATen/ops/nanmedian.h>
|
980 |
+
#include <ATen/ops/nanquantile.h>
|
981 |
+
#include <ATen/ops/nansum.h>
|
982 |
+
#include <ATen/ops/narrow.h>
|
983 |
+
#include <ATen/ops/narrow_copy.h>
|
984 |
+
#include <ATen/ops/native_batch_norm.h>
|
985 |
+
#include <ATen/ops/native_batch_norm_backward.h>
|
986 |
+
#include <ATen/ops/native_channel_shuffle.h>
|
987 |
+
#include <ATen/ops/native_dropout.h>
|
988 |
+
#include <ATen/ops/native_dropout_backward.h>
|
989 |
+
#include <ATen/ops/native_group_norm.h>
|
990 |
+
#include <ATen/ops/native_group_norm_backward.h>
|
991 |
+
#include <ATen/ops/native_layer_norm.h>
|
992 |
+
#include <ATen/ops/native_layer_norm_backward.h>
|
993 |
+
#include <ATen/ops/native_norm.h>
|
994 |
+
#include <ATen/ops/ne.h>
|
995 |
+
#include <ATen/ops/neg.h>
|
996 |
+
#include <ATen/ops/negative.h>
|
997 |
+
#include <ATen/ops/nested_to_padded_tensor.h>
|
998 |
+
#include <ATen/ops/new_empty.h>
|
999 |
+
#include <ATen/ops/new_empty_strided.h>
|
1000 |
+
#include <ATen/ops/new_full.h>
|
1001 |
+
#include <ATen/ops/new_ones.h>
|
1002 |
+
#include <ATen/ops/new_zeros.h>
|
1003 |
+
#include <ATen/ops/nextafter.h>
|
1004 |
+
#include <ATen/ops/nll_loss.h>
|
1005 |
+
#include <ATen/ops/nll_loss2d.h>
|
1006 |
+
#include <ATen/ops/nll_loss2d_backward.h>
|
1007 |
+
#include <ATen/ops/nll_loss2d_forward.h>
|
1008 |
+
#include <ATen/ops/nll_loss_backward.h>
|
1009 |
+
#include <ATen/ops/nll_loss_forward.h>
|
1010 |
+
#include <ATen/ops/nll_loss_nd.h>
|
1011 |
+
#include <ATen/ops/nonzero.h>
|
1012 |
+
#include <ATen/ops/nonzero_numpy.h>
|
1013 |
+
#include <ATen/ops/nonzero_static.h>
|
1014 |
+
#include <ATen/ops/norm.h>
|
1015 |
+
#include <ATen/ops/norm_except_dim.h>
|
1016 |
+
#include <ATen/ops/normal.h>
|
1017 |
+
#include <ATen/ops/not_equal.h>
|
1018 |
+
#include <ATen/ops/nuclear_norm.h>
|
1019 |
+
#include <ATen/ops/numpy_T.h>
|
1020 |
+
#include <ATen/ops/one_hot.h>
|
1021 |
+
#include <ATen/ops/ones.h>
|
1022 |
+
#include <ATen/ops/ones_like.h>
|
1023 |
+
#include <ATen/ops/or.h>
|
1024 |
+
#include <ATen/ops/orgqr.h>
|
1025 |
+
#include <ATen/ops/ormqr.h>
|
1026 |
+
#include <ATen/ops/outer.h>
|
1027 |
+
#include <ATen/ops/output_nr.h>
|
1028 |
+
#include <ATen/ops/pad.h>
|
1029 |
+
#include <ATen/ops/pad_sequence.h>
|
1030 |
+
#include <ATen/ops/pairwise_distance.h>
|
1031 |
+
#include <ATen/ops/pdist.h>
|
1032 |
+
#include <ATen/ops/permute.h>
|
1033 |
+
#include <ATen/ops/permute_copy.h>
|
1034 |
+
#include <ATen/ops/pin_memory.h>
|
1035 |
+
#include <ATen/ops/pinverse.h>
|
1036 |
+
#include <ATen/ops/pixel_shuffle.h>
|
1037 |
+
#include <ATen/ops/pixel_unshuffle.h>
|
1038 |
+
#include <ATen/ops/poisson.h>
|
1039 |
+
#include <ATen/ops/poisson_nll_loss.h>
|
1040 |
+
#include <ATen/ops/polar.h>
|
1041 |
+
#include <ATen/ops/polygamma.h>
|
1042 |
+
#include <ATen/ops/positive.h>
|
1043 |
+
#include <ATen/ops/pow.h>
|
1044 |
+
#include <ATen/ops/prelu.h>
|
1045 |
+
#include <ATen/ops/prod.h>
|
1046 |
+
#include <ATen/ops/promote_types.h>
|
1047 |
+
#include <ATen/ops/put.h>
|
1048 |
+
#include <ATen/ops/q_per_channel_axis.h>
|
1049 |
+
#include <ATen/ops/q_per_channel_scales.h>
|
1050 |
+
#include <ATen/ops/q_per_channel_zero_points.h>
|
1051 |
+
#include <ATen/ops/q_scale.h>
|
1052 |
+
#include <ATen/ops/q_zero_point.h>
|
1053 |
+
#include <ATen/ops/qr.h>
|
1054 |
+
#include <ATen/ops/qscheme.h>
|
1055 |
+
#include <ATen/ops/quantile.h>
|
1056 |
+
#include <ATen/ops/quantize_per_channel.h>
|
1057 |
+
#include <ATen/ops/quantize_per_tensor.h>
|
1058 |
+
#include <ATen/ops/quantize_per_tensor_dynamic.h>
|
1059 |
+
#include <ATen/ops/quantized_batch_norm.h>
|
1060 |
+
#include <ATen/ops/quantized_gru_cell.h>
|
1061 |
+
#include <ATen/ops/quantized_lstm_cell.h>
|
1062 |
+
#include <ATen/ops/quantized_max_pool1d.h>
|
1063 |
+
#include <ATen/ops/quantized_max_pool2d.h>
|
1064 |
+
#include <ATen/ops/quantized_max_pool3d.h>
|
1065 |
+
#include <ATen/ops/quantized_rnn_relu_cell.h>
|
1066 |
+
#include <ATen/ops/quantized_rnn_tanh_cell.h>
|
1067 |
+
#include <ATen/ops/rad2deg.h>
|
1068 |
+
#include <ATen/ops/rand.h>
|
1069 |
+
#include <ATen/ops/rand_like.h>
|
1070 |
+
#include <ATen/ops/randint.h>
|
1071 |
+
#include <ATen/ops/randint_like.h>
|
1072 |
+
#include <ATen/ops/randn.h>
|
1073 |
+
#include <ATen/ops/randn_like.h>
|
1074 |
+
#include <ATen/ops/random.h>
|
1075 |
+
#include <ATen/ops/randperm.h>
|
1076 |
+
#include <ATen/ops/range.h>
|
1077 |
+
#include <ATen/ops/ravel.h>
|
1078 |
+
#include <ATen/ops/real.h>
|
1079 |
+
#include <ATen/ops/reciprocal.h>
|
1080 |
+
#include <ATen/ops/record_stream.h>
|
1081 |
+
#include <ATen/ops/refine_names.h>
|
1082 |
+
#include <ATen/ops/reflection_pad1d.h>
|
1083 |
+
#include <ATen/ops/reflection_pad1d_backward.h>
|
1084 |
+
#include <ATen/ops/reflection_pad2d.h>
|
1085 |
+
#include <ATen/ops/reflection_pad2d_backward.h>
|
1086 |
+
#include <ATen/ops/reflection_pad3d.h>
|
1087 |
+
#include <ATen/ops/reflection_pad3d_backward.h>
|
1088 |
+
#include <ATen/ops/relu.h>
|
1089 |
+
#include <ATen/ops/relu6.h>
|
1090 |
+
#include <ATen/ops/remainder.h>
|
1091 |
+
#include <ATen/ops/rename.h>
|
1092 |
+
#include <ATen/ops/renorm.h>
|
1093 |
+
#include <ATen/ops/repeat.h>
|
1094 |
+
#include <ATen/ops/repeat_interleave.h>
|
1095 |
+
#include <ATen/ops/replication_pad1d.h>
|
1096 |
+
#include <ATen/ops/replication_pad1d_backward.h>
|
1097 |
+
#include <ATen/ops/replication_pad2d.h>
|
1098 |
+
#include <ATen/ops/replication_pad2d_backward.h>
|
1099 |
+
#include <ATen/ops/replication_pad3d.h>
|
1100 |
+
#include <ATen/ops/replication_pad3d_backward.h>
|
1101 |
+
#include <ATen/ops/requires_grad.h>
|
1102 |
+
#include <ATen/ops/reshape.h>
|
1103 |
+
#include <ATen/ops/reshape_as.h>
|
1104 |
+
#include <ATen/ops/resize.h>
|
1105 |
+
#include <ATen/ops/resize_as.h>
|
1106 |
+
#include <ATen/ops/resize_as_sparse.h>
|
1107 |
+
#include <ATen/ops/resolve_conj.h>
|
1108 |
+
#include <ATen/ops/resolve_neg.h>
|
1109 |
+
#include <ATen/ops/result_type.h>
|
1110 |
+
#include <ATen/ops/retain_grad.h>
|
1111 |
+
#include <ATen/ops/retains_grad.h>
|
1112 |
+
#include <ATen/ops/rnn_relu.h>
|
1113 |
+
#include <ATen/ops/rnn_relu_cell.h>
|
1114 |
+
#include <ATen/ops/rnn_tanh.h>
|
1115 |
+
#include <ATen/ops/rnn_tanh_cell.h>
|
1116 |
+
#include <ATen/ops/roll.h>
|
1117 |
+
#include <ATen/ops/rot90.h>
|
1118 |
+
#include <ATen/ops/round.h>
|
1119 |
+
#include <ATen/ops/row_indices.h>
|
1120 |
+
#include <ATen/ops/row_indices_copy.h>
|
1121 |
+
#include <ATen/ops/row_stack.h>
|
1122 |
+
#include <ATen/ops/rrelu.h>
|
1123 |
+
#include <ATen/ops/rrelu_with_noise.h>
|
1124 |
+
#include <ATen/ops/rrelu_with_noise_backward.h>
|
1125 |
+
#include <ATen/ops/rshift.h>
|
1126 |
+
#include <ATen/ops/rsqrt.h>
|
1127 |
+
#include <ATen/ops/rsub.h>
|
1128 |
+
#include <ATen/ops/scalar_tensor.h>
|
1129 |
+
#include <ATen/ops/scaled_dot_product_attention.h>
|
1130 |
+
#include <ATen/ops/scatter.h>
|
1131 |
+
#include <ATen/ops/scatter_add.h>
|
1132 |
+
#include <ATen/ops/scatter_reduce.h>
|
1133 |
+
#include <ATen/ops/searchsorted.h>
|
1134 |
+
#include <ATen/ops/segment_reduce.h>
|
1135 |
+
#include <ATen/ops/select.h>
|
1136 |
+
#include <ATen/ops/select_backward.h>
|
1137 |
+
#include <ATen/ops/select_copy.h>
|
1138 |
+
#include <ATen/ops/select_scatter.h>
|
1139 |
+
#include <ATen/ops/selu.h>
|
1140 |
+
#include <ATen/ops/set.h>
|
1141 |
+
#include <ATen/ops/set_data.h>
|
1142 |
+
#include <ATen/ops/sgn.h>
|
1143 |
+
#include <ATen/ops/sigmoid.h>
|
1144 |
+
#include <ATen/ops/sigmoid_backward.h>
|
1145 |
+
#include <ATen/ops/sign.h>
|
1146 |
+
#include <ATen/ops/signbit.h>
|
1147 |
+
#include <ATen/ops/silu.h>
|
1148 |
+
#include <ATen/ops/silu_backward.h>
|
1149 |
+
#include <ATen/ops/sin.h>
|
1150 |
+
#include <ATen/ops/sinc.h>
|
1151 |
+
#include <ATen/ops/sinh.h>
|
1152 |
+
#include <ATen/ops/size.h>
|
1153 |
+
#include <ATen/ops/slice.h>
|
1154 |
+
#include <ATen/ops/slice_backward.h>
|
1155 |
+
#include <ATen/ops/slice_copy.h>
|
1156 |
+
#include <ATen/ops/slice_inverse.h>
|
1157 |
+
#include <ATen/ops/slice_scatter.h>
|
1158 |
+
#include <ATen/ops/slogdet.h>
|
1159 |
+
#include <ATen/ops/slow_conv3d.h>
|
1160 |
+
#include <ATen/ops/slow_conv3d_forward.h>
|
1161 |
+
#include <ATen/ops/slow_conv_dilated2d.h>
|
1162 |
+
#include <ATen/ops/slow_conv_dilated3d.h>
|
1163 |
+
#include <ATen/ops/slow_conv_transpose2d.h>
|
1164 |
+
#include <ATen/ops/slow_conv_transpose3d.h>
|
1165 |
+
#include <ATen/ops/smm.h>
|
1166 |
+
#include <ATen/ops/smooth_l1_loss.h>
|
1167 |
+
#include <ATen/ops/smooth_l1_loss_backward.h>
|
1168 |
+
#include <ATen/ops/soft_margin_loss.h>
|
1169 |
+
#include <ATen/ops/soft_margin_loss_backward.h>
|
1170 |
+
#include <ATen/ops/softmax.h>
|
1171 |
+
#include <ATen/ops/softplus.h>
|
1172 |
+
#include <ATen/ops/softplus_backward.h>
|
1173 |
+
#include <ATen/ops/softshrink.h>
|
1174 |
+
#include <ATen/ops/softshrink_backward.h>
|
1175 |
+
#include <ATen/ops/sort.h>
|
1176 |
+
#include <ATen/ops/sparse_bsc_tensor.h>
|
1177 |
+
#include <ATen/ops/sparse_bsr_tensor.h>
|
1178 |
+
#include <ATen/ops/sparse_compressed_tensor.h>
|
1179 |
+
#include <ATen/ops/sparse_coo_tensor.h>
|
1180 |
+
#include <ATen/ops/sparse_csc_tensor.h>
|
1181 |
+
#include <ATen/ops/sparse_csr_tensor.h>
|
1182 |
+
#include <ATen/ops/sparse_dim.h>
|
1183 |
+
#include <ATen/ops/sparse_mask.h>
|
1184 |
+
#include <ATen/ops/sparse_resize.h>
|
1185 |
+
#include <ATen/ops/sparse_resize_and_clear.h>
|
1186 |
+
#include <ATen/ops/sparse_sampled_addmm.h>
|
1187 |
+
#include <ATen/ops/special_airy_ai.h>
|
1188 |
+
#include <ATen/ops/special_bessel_j0.h>
|
1189 |
+
#include <ATen/ops/special_bessel_j1.h>
|
1190 |
+
#include <ATen/ops/special_bessel_y0.h>
|
1191 |
+
#include <ATen/ops/special_bessel_y1.h>
|
1192 |
+
#include <ATen/ops/special_chebyshev_polynomial_t.h>
|
1193 |
+
#include <ATen/ops/special_chebyshev_polynomial_u.h>
|
1194 |
+
#include <ATen/ops/special_chebyshev_polynomial_v.h>
|
1195 |
+
#include <ATen/ops/special_chebyshev_polynomial_w.h>
|
1196 |
+
#include <ATen/ops/special_digamma.h>
|
1197 |
+
#include <ATen/ops/special_entr.h>
|
1198 |
+
#include <ATen/ops/special_erf.h>
|
1199 |
+
#include <ATen/ops/special_erfc.h>
|
1200 |
+
#include <ATen/ops/special_erfcx.h>
|
1201 |
+
#include <ATen/ops/special_erfinv.h>
|
1202 |
+
#include <ATen/ops/special_exp2.h>
|
1203 |
+
#include <ATen/ops/special_expit.h>
|
1204 |
+
#include <ATen/ops/special_expm1.h>
|
1205 |
+
#include <ATen/ops/special_gammainc.h>
|
1206 |
+
#include <ATen/ops/special_gammaincc.h>
|
1207 |
+
#include <ATen/ops/special_gammaln.h>
|
1208 |
+
#include <ATen/ops/special_hermite_polynomial_h.h>
|
1209 |
+
#include <ATen/ops/special_hermite_polynomial_he.h>
|
1210 |
+
#include <ATen/ops/special_i0.h>
|
1211 |
+
#include <ATen/ops/special_i0e.h>
|
1212 |
+
#include <ATen/ops/special_i1.h>
|
1213 |
+
#include <ATen/ops/special_i1e.h>
|
1214 |
+
#include <ATen/ops/special_laguerre_polynomial_l.h>
|
1215 |
+
#include <ATen/ops/special_legendre_polynomial_p.h>
|
1216 |
+
#include <ATen/ops/special_log1p.h>
|
1217 |
+
#include <ATen/ops/special_log_ndtr.h>
|
1218 |
+
#include <ATen/ops/special_log_softmax.h>
|
1219 |
+
#include <ATen/ops/special_logit.h>
|
1220 |
+
#include <ATen/ops/special_logsumexp.h>
|
1221 |
+
#include <ATen/ops/special_modified_bessel_i0.h>
|
1222 |
+
#include <ATen/ops/special_modified_bessel_i1.h>
|
1223 |
+
#include <ATen/ops/special_modified_bessel_k0.h>
|
1224 |
+
#include <ATen/ops/special_modified_bessel_k1.h>
|
1225 |
+
#include <ATen/ops/special_multigammaln.h>
|
1226 |
+
#include <ATen/ops/special_ndtr.h>
|
1227 |
+
#include <ATen/ops/special_ndtri.h>
|
1228 |
+
#include <ATen/ops/special_polygamma.h>
|
1229 |
+
#include <ATen/ops/special_psi.h>
|
1230 |
+
#include <ATen/ops/special_round.h>
|
1231 |
+
#include <ATen/ops/special_scaled_modified_bessel_k0.h>
|
1232 |
+
#include <ATen/ops/special_scaled_modified_bessel_k1.h>
|
1233 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_t.h>
|
1234 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_u.h>
|
1235 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_v.h>
|
1236 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_w.h>
|
1237 |
+
#include <ATen/ops/special_sinc.h>
|
1238 |
+
#include <ATen/ops/special_softmax.h>
|
1239 |
+
#include <ATen/ops/special_spherical_bessel_j0.h>
|
1240 |
+
#include <ATen/ops/special_xlog1py.h>
|
1241 |
+
#include <ATen/ops/special_xlogy.h>
|
1242 |
+
#include <ATen/ops/special_zeta.h>
|
1243 |
+
#include <ATen/ops/split.h>
|
1244 |
+
#include <ATen/ops/split_copy.h>
|
1245 |
+
#include <ATen/ops/split_with_sizes.h>
|
1246 |
+
#include <ATen/ops/split_with_sizes_copy.h>
|
1247 |
+
#include <ATen/ops/sqrt.h>
|
1248 |
+
#include <ATen/ops/square.h>
|
1249 |
+
#include <ATen/ops/squeeze.h>
|
1250 |
+
#include <ATen/ops/squeeze_copy.h>
|
1251 |
+
#include <ATen/ops/sspaddmm.h>
|
1252 |
+
#include <ATen/ops/stack.h>
|
1253 |
+
#include <ATen/ops/std.h>
|
1254 |
+
#include <ATen/ops/std_mean.h>
|
1255 |
+
#include <ATen/ops/stft.h>
|
1256 |
+
#include <ATen/ops/stride.h>
|
1257 |
+
#include <ATen/ops/sub.h>
|
1258 |
+
#include <ATen/ops/subtract.h>
|
1259 |
+
#include <ATen/ops/sum.h>
|
1260 |
+
#include <ATen/ops/sum_to_size.h>
|
1261 |
+
#include <ATen/ops/svd.h>
|
1262 |
+
#include <ATen/ops/swapaxes.h>
|
1263 |
+
#include <ATen/ops/swapdims.h>
|
1264 |
+
#include <ATen/ops/sym_constrain_range.h>
|
1265 |
+
#include <ATen/ops/sym_constrain_range_for_size.h>
|
1266 |
+
#include <ATen/ops/sym_numel.h>
|
1267 |
+
#include <ATen/ops/sym_size.h>
|
1268 |
+
#include <ATen/ops/sym_storage_offset.h>
|
1269 |
+
#include <ATen/ops/sym_stride.h>
|
1270 |
+
#include <ATen/ops/t.h>
|
1271 |
+
#include <ATen/ops/t_copy.h>
|
1272 |
+
#include <ATen/ops/take.h>
|
1273 |
+
#include <ATen/ops/take_along_dim.h>
|
1274 |
+
#include <ATen/ops/tan.h>
|
1275 |
+
#include <ATen/ops/tanh.h>
|
1276 |
+
#include <ATen/ops/tanh_backward.h>
|
1277 |
+
#include <ATen/ops/tensor_split.h>
|
1278 |
+
#include <ATen/ops/tensordot.h>
|
1279 |
+
#include <ATen/ops/thnn_conv2d.h>
|
1280 |
+
#include <ATen/ops/threshold.h>
|
1281 |
+
#include <ATen/ops/threshold_backward.h>
|
1282 |
+
#include <ATen/ops/tile.h>
|
1283 |
+
#include <ATen/ops/to.h>
|
1284 |
+
#include <ATen/ops/to_dense.h>
|
1285 |
+
#include <ATen/ops/to_dense_backward.h>
|
1286 |
+
#include <ATen/ops/to_mkldnn.h>
|
1287 |
+
#include <ATen/ops/to_mkldnn_backward.h>
|
1288 |
+
#include <ATen/ops/to_padded_tensor.h>
|
1289 |
+
#include <ATen/ops/to_sparse.h>
|
1290 |
+
#include <ATen/ops/to_sparse_bsc.h>
|
1291 |
+
#include <ATen/ops/to_sparse_bsr.h>
|
1292 |
+
#include <ATen/ops/to_sparse_csc.h>
|
1293 |
+
#include <ATen/ops/to_sparse_csr.h>
|
1294 |
+
#include <ATen/ops/topk.h>
|
1295 |
+
#include <ATen/ops/trace.h>
|
1296 |
+
#include <ATen/ops/trace_backward.h>
|
1297 |
+
#include <ATen/ops/transpose.h>
|
1298 |
+
#include <ATen/ops/transpose_copy.h>
|
1299 |
+
#include <ATen/ops/trapezoid.h>
|
1300 |
+
#include <ATen/ops/trapz.h>
|
1301 |
+
#include <ATen/ops/triangular_solve.h>
|
1302 |
+
#include <ATen/ops/tril.h>
|
1303 |
+
#include <ATen/ops/tril_indices.h>
|
1304 |
+
#include <ATen/ops/triplet_margin_loss.h>
|
1305 |
+
#include <ATen/ops/triu.h>
|
1306 |
+
#include <ATen/ops/triu_indices.h>
|
1307 |
+
#include <ATen/ops/true_divide.h>
|
1308 |
+
#include <ATen/ops/trunc.h>
|
1309 |
+
#include <ATen/ops/type_as.h>
|
1310 |
+
#include <ATen/ops/unbind.h>
|
1311 |
+
#include <ATen/ops/unbind_copy.h>
|
1312 |
+
#include <ATen/ops/unflatten.h>
|
1313 |
+
#include <ATen/ops/unflatten_dense_tensors.h>
|
1314 |
+
#include <ATen/ops/unfold.h>
|
1315 |
+
#include <ATen/ops/unfold_backward.h>
|
1316 |
+
#include <ATen/ops/unfold_copy.h>
|
1317 |
+
#include <ATen/ops/uniform.h>
|
1318 |
+
#include <ATen/ops/unique_consecutive.h>
|
1319 |
+
#include <ATen/ops/unique_dim.h>
|
1320 |
+
#include <ATen/ops/unique_dim_consecutive.h>
|
1321 |
+
#include <ATen/ops/unsafe_chunk.h>
|
1322 |
+
#include <ATen/ops/unsafe_split.h>
|
1323 |
+
#include <ATen/ops/unsafe_split_with_sizes.h>
|
1324 |
+
#include <ATen/ops/unsqueeze.h>
|
1325 |
+
#include <ATen/ops/unsqueeze_copy.h>
|
1326 |
+
#include <ATen/ops/upsample_bicubic2d.h>
|
1327 |
+
#include <ATen/ops/upsample_bicubic2d_backward.h>
|
1328 |
+
#include <ATen/ops/upsample_bilinear2d.h>
|
1329 |
+
#include <ATen/ops/upsample_bilinear2d_backward.h>
|
1330 |
+
#include <ATen/ops/upsample_linear1d.h>
|
1331 |
+
#include <ATen/ops/upsample_linear1d_backward.h>
|
1332 |
+
#include <ATen/ops/upsample_nearest1d.h>
|
1333 |
+
#include <ATen/ops/upsample_nearest1d_backward.h>
|
1334 |
+
#include <ATen/ops/upsample_nearest2d.h>
|
1335 |
+
#include <ATen/ops/upsample_nearest2d_backward.h>
|
1336 |
+
#include <ATen/ops/upsample_nearest3d.h>
|
1337 |
+
#include <ATen/ops/upsample_nearest3d_backward.h>
|
1338 |
+
#include <ATen/ops/upsample_trilinear3d.h>
|
1339 |
+
#include <ATen/ops/upsample_trilinear3d_backward.h>
|
1340 |
+
#include <ATen/ops/value_selecting_reduction_backward.h>
|
1341 |
+
#include <ATen/ops/values.h>
|
1342 |
+
#include <ATen/ops/values_copy.h>
|
1343 |
+
#include <ATen/ops/vander.h>
|
1344 |
+
#include <ATen/ops/var.h>
|
1345 |
+
#include <ATen/ops/var_mean.h>
|
1346 |
+
#include <ATen/ops/vdot.h>
|
1347 |
+
#include <ATen/ops/view.h>
|
1348 |
+
#include <ATen/ops/view_as.h>
|
1349 |
+
#include <ATen/ops/view_as_complex.h>
|
1350 |
+
#include <ATen/ops/view_as_complex_copy.h>
|
1351 |
+
#include <ATen/ops/view_as_real.h>
|
1352 |
+
#include <ATen/ops/view_as_real_copy.h>
|
1353 |
+
#include <ATen/ops/view_copy.h>
|
1354 |
+
#include <ATen/ops/vsplit.h>
|
1355 |
+
#include <ATen/ops/vstack.h>
|
1356 |
+
#include <ATen/ops/where.h>
|
1357 |
+
#include <ATen/ops/xlogy.h>
|
1358 |
+
#include <ATen/ops/xor.h>
|
1359 |
+
#include <ATen/ops/zero.h>
|
1360 |
+
#include <ATen/ops/zeros.h>
|
1361 |
+
#include <ATen/ops/zeros_like.h>
|
1362 |
+
|
1363 |
+
namespace at {
|
1364 |
+
|
1365 |
+
|
1366 |
+
|
1367 |
+
// Special C++ only overloads for std()-like functions (See gh-40287)
|
1368 |
+
// These are needed because int -> bool conversion takes precedence over int -> IntArrayRef
|
1369 |
+
// So, for example std(0) would select the std(unbiased=False) overload
|
1370 |
+
TORCH_API inline Tensor var(const Tensor& self, int dim) {
|
1371 |
+
return at::var(self, IntArrayRef{dim});
|
1372 |
+
}
|
1373 |
+
TORCH_API inline std::tuple<Tensor, Tensor> var_mean(const Tensor& self, int dim) {
|
1374 |
+
return at::var_mean(self, IntArrayRef{dim});
|
1375 |
+
}
|
1376 |
+
TORCH_API inline Tensor std(const Tensor& self, int dim) {
|
1377 |
+
return at::std(self, IntArrayRef{dim});
|
1378 |
+
}
|
1379 |
+
TORCH_API inline std::tuple<Tensor, Tensor> std_mean(const Tensor& self, int dim) {
|
1380 |
+
return at::std_mean(self, IntArrayRef{dim});
|
1381 |
+
}
|
1382 |
+
|
1383 |
+
inline int64_t numel(const Tensor& tensor) {
|
1384 |
+
return tensor.numel();
|
1385 |
+
}
|
1386 |
+
|
1387 |
+
inline int64_t size(const Tensor& tensor, int64_t dim) {
|
1388 |
+
return tensor.size(dim);
|
1389 |
+
}
|
1390 |
+
|
1391 |
+
inline int64_t stride(const Tensor& tensor, int64_t dim) {
|
1392 |
+
return tensor.stride(dim);
|
1393 |
+
}
|
1394 |
+
|
1395 |
+
inline bool is_complex(const Tensor& tensor) {
|
1396 |
+
return tensor.is_complex();
|
1397 |
+
}
|
1398 |
+
|
1399 |
+
inline bool is_floating_point(const Tensor& tensor) {
|
1400 |
+
return tensor.is_floating_point();
|
1401 |
+
}
|
1402 |
+
|
1403 |
+
inline bool is_signed(const Tensor& tensor) {
|
1404 |
+
return tensor.is_signed();
|
1405 |
+
}
|
1406 |
+
|
1407 |
+
inline bool is_inference(const Tensor& tensor) {
|
1408 |
+
return tensor.is_inference();
|
1409 |
+
}
|
1410 |
+
|
1411 |
+
inline bool _is_zerotensor(const Tensor& tensor) {
|
1412 |
+
return tensor._is_zerotensor();
|
1413 |
+
}
|
1414 |
+
|
1415 |
+
inline bool is_conj(const Tensor& tensor) {
|
1416 |
+
return tensor.is_conj();
|
1417 |
+
}
|
1418 |
+
|
1419 |
+
inline Tensor conj(const Tensor& tensor) {
|
1420 |
+
return tensor.conj();
|
1421 |
+
}
|
1422 |
+
|
1423 |
+
inline bool is_neg(const Tensor& tensor) {
|
1424 |
+
return tensor.is_neg();
|
1425 |
+
}
|
1426 |
+
|
1427 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/InferSize.h
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/DimVector.h>
|
4 |
+
#include <c10/core/ScalarType.h>
|
5 |
+
#include <c10/core/SymIntArrayRef.h>
|
6 |
+
#include <c10/util/DimVector.h>
|
7 |
+
#include <c10/util/Optional.h>
|
8 |
+
#include <sstream>
|
9 |
+
#include <vector>
|
10 |
+
|
11 |
+
namespace at {
|
12 |
+
|
13 |
+
// Infers the size of a dim with size -1, if it exists. Also checks that new
|
14 |
+
// shape is compatible with the number of elements.
|
15 |
+
//
|
16 |
+
// templated to handle std::vector<int64_t> and DimVector use cases, see
|
17 |
+
// below
|
18 |
+
//
|
19 |
+
template <typename InputArrayRef, typename NumelType, typename ResultVec>
|
20 |
+
inline void infer_size_impl(
|
21 |
+
InputArrayRef shape,
|
22 |
+
NumelType numel,
|
23 |
+
ResultVec& res) {
|
24 |
+
NumelType newsize = 1;
|
25 |
+
// N.B. this is an index, not a sym dim!
|
26 |
+
auto infer_dim = c10::optional<int64_t>();
|
27 |
+
for (int64_t dim = 0, ndim = shape.size(); dim != ndim; dim++) {
|
28 |
+
if (shape[dim] == -1) {
|
29 |
+
if (infer_dim) {
|
30 |
+
throw std::runtime_error("only one dimension can be inferred");
|
31 |
+
}
|
32 |
+
infer_dim = dim;
|
33 |
+
} else if (shape[dim] >= 0) {
|
34 |
+
newsize *= shape[dim];
|
35 |
+
} else {
|
36 |
+
AT_ERROR("invalid shape dimension ", shape[dim]);
|
37 |
+
}
|
38 |
+
}
|
39 |
+
|
40 |
+
if (numel == newsize || (infer_dim && newsize > 0 && numel % newsize == 0)) {
|
41 |
+
if (infer_dim) {
|
42 |
+
// We have a degree of freedom here to select the dimension size; follow
|
43 |
+
// NumPy semantics and just bail. However, a nice error message is needed
|
44 |
+
// because users often use `view` as a way to flatten & unflatten
|
45 |
+
// dimensions and will otherwise be confused why
|
46 |
+
// empty_tensor.view( 0, 0)
|
47 |
+
// works yet
|
48 |
+
// empty_tensor.view(-1, 0)
|
49 |
+
// doesn't.
|
50 |
+
TORCH_CHECK(
|
51 |
+
newsize != 0,
|
52 |
+
"cannot reshape tensor of 0 elements into shape ",
|
53 |
+
shape,
|
54 |
+
" because the unspecified dimension size -1 can be any "
|
55 |
+
"value and is ambiguous");
|
56 |
+
res[*infer_dim] = numel / newsize;
|
57 |
+
}
|
58 |
+
return;
|
59 |
+
}
|
60 |
+
|
61 |
+
std::ostringstream ss;
|
62 |
+
ss << "shape '" << shape << "' is invalid for input of size " << numel;
|
63 |
+
throw std::runtime_error(ss.str());
|
64 |
+
}
|
65 |
+
|
66 |
+
inline std::vector<int64_t> infer_size(IntArrayRef shape, int64_t numel) {
|
67 |
+
auto res = shape.vec();
|
68 |
+
infer_size_impl(shape, numel, res);
|
69 |
+
return res;
|
70 |
+
}
|
71 |
+
|
72 |
+
inline at::DimVector infer_size_dv(IntArrayRef shape, int64_t numel) {
|
73 |
+
auto res = at::DimVector(shape);
|
74 |
+
infer_size_impl(shape, numel, res);
|
75 |
+
return res;
|
76 |
+
}
|
77 |
+
|
78 |
+
inline at::SymDimVector infer_size_dv(
|
79 |
+
c10::SymIntArrayRef shape,
|
80 |
+
c10::SymInt numel) {
|
81 |
+
auto res = at::SymDimVector(shape);
|
82 |
+
infer_size_impl<c10::SymIntArrayRef, c10::SymInt, at::SymDimVector>(
|
83 |
+
shape, std::move(numel), res);
|
84 |
+
return res;
|
85 |
+
}
|
86 |
+
|
87 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/InitialTensorOptions.h
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/TensorOptions.h>
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
|
7 |
+
// Represents the initial TensorOptions, before the "defaults" are ever changed.
|
8 |
+
// This is designed to be used in library code, where the explicit devices,
|
9 |
+
// dtypes, etc. are known. NOTE: this is not a stable API.
|
10 |
+
inline TensorOptions initialTensorOptions() {
|
11 |
+
return TensorOptions(kCPU).dtype(kFloat).layout(kStrided).requires_grad(
|
12 |
+
false);
|
13 |
+
}
|
14 |
+
|
15 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/LinalgBackend.h
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/Exception.h>
|
4 |
+
|
5 |
+
#include <ostream>
|
6 |
+
#include <string>
|
7 |
+
|
8 |
+
namespace at {
|
9 |
+
|
10 |
+
enum class LinalgBackend : int8_t { Default, Cusolver, Magma };
|
11 |
+
|
12 |
+
inline std::string LinalgBackendToString(at::LinalgBackend backend) {
|
13 |
+
switch (backend) {
|
14 |
+
case LinalgBackend::Default:
|
15 |
+
return "at::LinalgBackend::Default";
|
16 |
+
case LinalgBackend::Cusolver:
|
17 |
+
return "at::LinalgBackend::Cusolver";
|
18 |
+
case LinalgBackend::Magma:
|
19 |
+
return "at::LinalgBackend::Magma";
|
20 |
+
default:
|
21 |
+
TORCH_CHECK(false, "Unknown linalg backend");
|
22 |
+
}
|
23 |
+
}
|
24 |
+
|
25 |
+
inline std::ostream& operator<<(
|
26 |
+
std::ostream& stream,
|
27 |
+
at::LinalgBackend backend) {
|
28 |
+
return stream << LinalgBackendToString(backend);
|
29 |
+
}
|
30 |
+
|
31 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/MapAllocator.h
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Allocator.h>
|
4 |
+
#include <c10/util/string_view.h>
|
5 |
+
|
6 |
+
namespace at {
|
7 |
+
|
8 |
+
enum MappedAllocatorModes {
|
9 |
+
ALLOCATOR_MAPPED_SHARED = 1,
|
10 |
+
ALLOCATOR_MAPPED_SHAREDMEM = 2,
|
11 |
+
ALLOCATOR_MAPPED_EXCLUSIVE = 4,
|
12 |
+
ALLOCATOR_MAPPED_NOCREATE = 8,
|
13 |
+
ALLOCATOR_MAPPED_KEEPFD = 16,
|
14 |
+
ALLOCATOR_MAPPED_FROMFD = 32,
|
15 |
+
ALLOCATOR_MAPPED_UNLINK = 64
|
16 |
+
};
|
17 |
+
|
18 |
+
// Sentinel value/type to help distinguish the file descriptor constructor from
|
19 |
+
// the non-file descriptor constructor
|
20 |
+
enum WithFd { WITH_FD };
|
21 |
+
|
22 |
+
TORCH_API std::string NewProcessWideShmHandle();
|
23 |
+
|
24 |
+
class TORCH_API MapAllocator {
|
25 |
+
public:
|
26 |
+
MapAllocator(c10::string_view filename, int flags, size_t size);
|
27 |
+
MapAllocator(
|
28 |
+
WithFd,
|
29 |
+
c10::string_view filename,
|
30 |
+
int fd,
|
31 |
+
int flags,
|
32 |
+
size_t size);
|
33 |
+
MapAllocator(const MapAllocator&) = delete;
|
34 |
+
MapAllocator& operator=(const MapAllocator&) = delete;
|
35 |
+
MapAllocator(MapAllocator&&) = delete;
|
36 |
+
MapAllocator& operator=(MapAllocator&&) = delete;
|
37 |
+
|
38 |
+
const char* filename() const {
|
39 |
+
return filename_.c_str();
|
40 |
+
}
|
41 |
+
int fd() const {
|
42 |
+
#ifdef _WIN32
|
43 |
+
TORCH_CHECK(false, "MapAllocator::fd() is unsupported on Windows");
|
44 |
+
#else
|
45 |
+
return fd_;
|
46 |
+
#endif
|
47 |
+
}
|
48 |
+
ptrdiff_t size() const {
|
49 |
+
return size_;
|
50 |
+
}
|
51 |
+
// Return a pointer to the actual data for this allocator
|
52 |
+
// (in the case of the refcounted allocator, this is offset
|
53 |
+
// from the base pointer.)
|
54 |
+
virtual void* data() const {
|
55 |
+
return base_ptr_;
|
56 |
+
}
|
57 |
+
|
58 |
+
static MapAllocator* fromDataPtr(const at::DataPtr&);
|
59 |
+
static at::DataPtr makeDataPtr(
|
60 |
+
c10::string_view filename,
|
61 |
+
int flags,
|
62 |
+
size_t size,
|
63 |
+
size_t* actual_size_out);
|
64 |
+
static at::DataPtr makeDataPtr(
|
65 |
+
WithFd,
|
66 |
+
const char* filename,
|
67 |
+
int fd,
|
68 |
+
int flags,
|
69 |
+
size_t size,
|
70 |
+
size_t* actual_size_out);
|
71 |
+
|
72 |
+
// Closes the data. Helps us avoid destructor shenanigans
|
73 |
+
virtual void close();
|
74 |
+
|
75 |
+
// This is very dangerous. You have to redefine this destructor for each
|
76 |
+
// subclass
|
77 |
+
virtual ~MapAllocator();
|
78 |
+
|
79 |
+
protected:
|
80 |
+
bool closed_ = false;
|
81 |
+
std::string filename_;
|
82 |
+
int flags_ = 0;
|
83 |
+
ptrdiff_t size_; /* mapped size */
|
84 |
+
#ifdef _WIN32
|
85 |
+
void* handle_;
|
86 |
+
void* event_;
|
87 |
+
std::string eventname_;
|
88 |
+
#else
|
89 |
+
int fd_ = -1;
|
90 |
+
#endif
|
91 |
+
void* base_ptr_ = nullptr;
|
92 |
+
};
|
93 |
+
|
94 |
+
// Base-from-member idiom
|
95 |
+
struct TORCH_API RefcountedMapAllocatorArgCheck {
|
96 |
+
RefcountedMapAllocatorArgCheck(int flags);
|
97 |
+
};
|
98 |
+
|
99 |
+
class TORCH_API RefcountedMapAllocator : private RefcountedMapAllocatorArgCheck,
|
100 |
+
public MapAllocator {
|
101 |
+
public:
|
102 |
+
RefcountedMapAllocator(const char* filename, int flags, size_t size);
|
103 |
+
RefcountedMapAllocator(
|
104 |
+
WithFd,
|
105 |
+
const char* filename,
|
106 |
+
int fd,
|
107 |
+
int flags,
|
108 |
+
size_t size);
|
109 |
+
|
110 |
+
static RefcountedMapAllocator* fromDataPtr(const at::DataPtr&);
|
111 |
+
static at::DataPtr makeDataPtr(
|
112 |
+
const char* filename,
|
113 |
+
int flags,
|
114 |
+
size_t size,
|
115 |
+
size_t* actual_size_out);
|
116 |
+
static at::DataPtr makeDataPtr(
|
117 |
+
WithFd,
|
118 |
+
const char* filename,
|
119 |
+
int fd,
|
120 |
+
int flags,
|
121 |
+
size_t size,
|
122 |
+
size_t* actual_size_out);
|
123 |
+
|
124 |
+
void* data() const override;
|
125 |
+
|
126 |
+
void incref();
|
127 |
+
int decref();
|
128 |
+
void close() override;
|
129 |
+
|
130 |
+
~RefcountedMapAllocator() override {
|
131 |
+
RefcountedMapAllocator::close();
|
132 |
+
}
|
133 |
+
|
134 |
+
protected:
|
135 |
+
void checkFlags();
|
136 |
+
void initializeAlloc();
|
137 |
+
};
|
138 |
+
|
139 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/MatrixRef.h
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/Utils.h>
|
3 |
+
#include <c10/util/ArrayRef.h>
|
4 |
+
|
5 |
+
#include <vector>
|
6 |
+
|
7 |
+
namespace at {
|
8 |
+
/// MatrixRef - Like an ArrayRef, but with an extra recorded strides so that
|
9 |
+
/// we can easily view it as a multidimensional array.
|
10 |
+
///
|
11 |
+
/// Like ArrayRef, this class does not own the underlying data, it is expected
|
12 |
+
/// to be used in situations where the data resides in some other buffer.
|
13 |
+
///
|
14 |
+
/// This is intended to be trivially copyable, so it should be passed by
|
15 |
+
/// value.
|
16 |
+
///
|
17 |
+
/// For now, 2D only (so the copies are actually cheap, without having
|
18 |
+
/// to write a SmallVector class) and contiguous only (so we can
|
19 |
+
/// return non-strided ArrayRef on index).
|
20 |
+
///
|
21 |
+
/// P.S. dimension 0 indexes rows, dimension 1 indexes columns
|
22 |
+
template <typename T>
|
23 |
+
class MatrixRef {
|
24 |
+
public:
|
25 |
+
typedef size_t size_type;
|
26 |
+
|
27 |
+
private:
|
28 |
+
/// Underlying ArrayRef
|
29 |
+
ArrayRef<T> arr;
|
30 |
+
|
31 |
+
/// Stride of dim 0 (outer dimension)
|
32 |
+
size_type stride0;
|
33 |
+
|
34 |
+
// Stride of dim 1 is assumed to be 1
|
35 |
+
|
36 |
+
public:
|
37 |
+
/// Construct an empty Matrixref.
|
38 |
+
/*implicit*/ MatrixRef() : arr(nullptr), stride0(0) {}
|
39 |
+
|
40 |
+
/// Construct an MatrixRef from an ArrayRef and outer stride.
|
41 |
+
/*implicit*/ MatrixRef(ArrayRef<T> arr, size_type stride0)
|
42 |
+
: arr(arr), stride0(stride0) {
|
43 |
+
TORCH_CHECK(
|
44 |
+
arr.size() % stride0 == 0,
|
45 |
+
"MatrixRef: ArrayRef size ",
|
46 |
+
arr.size(),
|
47 |
+
" not divisible by stride ",
|
48 |
+
stride0)
|
49 |
+
}
|
50 |
+
|
51 |
+
/// @}
|
52 |
+
/// @name Simple Operations
|
53 |
+
/// @{
|
54 |
+
|
55 |
+
/// empty - Check if the matrix is empty.
|
56 |
+
bool empty() const {
|
57 |
+
return arr.empty();
|
58 |
+
}
|
59 |
+
|
60 |
+
const T* data() const {
|
61 |
+
return arr.data();
|
62 |
+
}
|
63 |
+
|
64 |
+
/// size - Get size a dimension
|
65 |
+
size_t size(size_t dim) const {
|
66 |
+
if (dim == 0) {
|
67 |
+
return arr.size() / stride0;
|
68 |
+
} else if (dim == 1) {
|
69 |
+
return stride0;
|
70 |
+
} else {
|
71 |
+
TORCH_CHECK(
|
72 |
+
0, "MatrixRef: out of bounds dimension ", dim, "; expected 0 or 1");
|
73 |
+
}
|
74 |
+
}
|
75 |
+
|
76 |
+
size_t numel() const {
|
77 |
+
return arr.size();
|
78 |
+
}
|
79 |
+
|
80 |
+
/// equals - Check for element-wise equality.
|
81 |
+
bool equals(MatrixRef RHS) const {
|
82 |
+
return stride0 == RHS.stride0 && arr.equals(RHS.arr);
|
83 |
+
}
|
84 |
+
|
85 |
+
/// @}
|
86 |
+
/// @name Operator Overloads
|
87 |
+
/// @{
|
88 |
+
ArrayRef<T> operator[](size_t Index) const {
|
89 |
+
return arr.slice(Index * stride0, stride0);
|
90 |
+
}
|
91 |
+
|
92 |
+
/// Disallow accidental assignment from a temporary.
|
93 |
+
///
|
94 |
+
/// The declaration here is extra complicated so that "arrayRef = {}"
|
95 |
+
/// continues to select the move assignment operator.
|
96 |
+
template <typename U>
|
97 |
+
std::enable_if_t<std::is_same_v<U, T>, MatrixRef<T>>& operator=(
|
98 |
+
U&& Temporary) = delete;
|
99 |
+
|
100 |
+
/// Disallow accidental assignment from a temporary.
|
101 |
+
///
|
102 |
+
/// The declaration here is extra complicated so that "arrayRef = {}"
|
103 |
+
/// continues to select the move assignment operator.
|
104 |
+
template <typename U>
|
105 |
+
std::enable_if_t<std::is_same_v<U, T>, MatrixRef<T>>& operator=(
|
106 |
+
std::initializer_list<U>) = delete;
|
107 |
+
};
|
108 |
+
|
109 |
+
} // end namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/MemoryOverlap.h
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/macros/Export.h>
|
4 |
+
|
5 |
+
namespace c10 {
|
6 |
+
struct TensorImpl;
|
7 |
+
}
|
8 |
+
|
9 |
+
namespace at {
|
10 |
+
class TensorBase;
|
11 |
+
|
12 |
+
// MemOverlap: Whether or not there is memory overlap
|
13 |
+
//
|
14 |
+
// No: Absolutely no memory overlap
|
15 |
+
// Yes: Absolutely yes memory overlap
|
16 |
+
// TooHard: There might be memory overlap, but it was too expensive to compute.
|
17 |
+
//
|
18 |
+
// NB: Please update the python test for these if you renumber them.
|
19 |
+
enum class MemOverlap { No, Yes, TooHard };
|
20 |
+
|
21 |
+
enum class MemOverlapStatus { Full, Partial, No, TooHard };
|
22 |
+
|
23 |
+
TORCH_API MemOverlap has_internal_overlap(const TensorBase& t);
|
24 |
+
TORCH_API MemOverlap has_internal_overlap(c10::TensorImpl* t);
|
25 |
+
|
26 |
+
TORCH_API void assert_no_internal_overlap(const TensorBase& t);
|
27 |
+
TORCH_API void assert_no_internal_overlap(c10::TensorImpl* t);
|
28 |
+
|
29 |
+
TORCH_API MemOverlapStatus
|
30 |
+
get_overlap_status(const TensorBase& a, const TensorBase& b);
|
31 |
+
TORCH_API MemOverlapStatus
|
32 |
+
get_overlap_status(const c10::TensorImpl* a, const c10::TensorImpl* b);
|
33 |
+
|
34 |
+
TORCH_API void assert_no_partial_overlap(
|
35 |
+
const TensorBase& a,
|
36 |
+
const TensorBase& b);
|
37 |
+
void assert_no_partial_overlap(c10::TensorImpl* a, c10::TensorImpl* b);
|
38 |
+
|
39 |
+
TORCH_API void assert_no_overlap(const TensorBase& a, const TensorBase& b);
|
40 |
+
TORCH_API void assert_no_overlap(c10::TensorImpl* a, c10::TensorImpl* b);
|
41 |
+
|
42 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/MetaFunctions_inl.h
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunctions_inl.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
#if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
|
12 |
+
#error This change adds a dependency on all pytorch operators, meaning the \
|
13 |
+
file will need to be re-compiled every time an operator is changed or added. \
|
14 |
+
Consider including a specific operator from \
|
15 |
+
<ATen/ops/{my_operator}_meta_dispatch.h>. \
|
16 |
+
See NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
|
17 |
+
#endif
|
18 |
+
|
19 |
+
#include <ATen/ops/_add_relu_meta_dispatch.h>
|
20 |
+
#include <ATen/ops/_addmm_activation_meta_dispatch.h>
|
21 |
+
#include <ATen/ops/_amp_update_scale_meta_dispatch.h>
|
22 |
+
#include <ATen/ops/_coalesced_meta_dispatch.h>
|
23 |
+
#include <ATen/ops/_convert_indices_from_coo_to_csr_meta_dispatch.h>
|
24 |
+
#include <ATen/ops/_convert_indices_from_csr_to_coo_meta_dispatch.h>
|
25 |
+
#include <ATen/ops/_ctc_loss_meta_dispatch.h>
|
26 |
+
#include <ATen/ops/_efficientzerotensor_meta_dispatch.h>
|
27 |
+
#include <ATen/ops/_fill_mem_eff_dropout_mask_meta_dispatch.h>
|
28 |
+
#include <ATen/ops/_fused_sdp_choice_meta_dispatch.h>
|
29 |
+
#include <ATen/ops/_index_put_impl_meta_dispatch.h>
|
30 |
+
#include <ATen/ops/_linalg_det_meta_dispatch.h>
|
31 |
+
#include <ATen/ops/_linalg_eigh_meta_dispatch.h>
|
32 |
+
#include <ATen/ops/_linalg_slogdet_meta_dispatch.h>
|
33 |
+
#include <ATen/ops/_linalg_solve_ex_meta_dispatch.h>
|
34 |
+
#include <ATen/ops/_linalg_svd_meta_dispatch.h>
|
35 |
+
#include <ATen/ops/_log_softmax_meta_dispatch.h>
|
36 |
+
#include <ATen/ops/_log_softmax_backward_data_meta_dispatch.h>
|
37 |
+
#include <ATen/ops/_mkldnn_transpose_meta_dispatch.h>
|
38 |
+
#include <ATen/ops/_reshape_alias_meta_dispatch.h>
|
39 |
+
#include <ATen/ops/_resize_output_meta_dispatch.h>
|
40 |
+
#include <ATen/ops/_softmax_meta_dispatch.h>
|
41 |
+
#include <ATen/ops/_softmax_backward_data_meta_dispatch.h>
|
42 |
+
#include <ATen/ops/_sparse_coo_tensor_with_dims_meta_dispatch.h>
|
43 |
+
#include <ATen/ops/_sparse_coo_tensor_with_dims_and_tensors_meta_dispatch.h>
|
44 |
+
#include <ATen/ops/_upsample_bicubic2d_aa_meta_dispatch.h>
|
45 |
+
#include <ATen/ops/_upsample_bicubic2d_aa_backward_meta_dispatch.h>
|
46 |
+
#include <ATen/ops/_upsample_bilinear2d_aa_meta_dispatch.h>
|
47 |
+
#include <ATen/ops/_upsample_bilinear2d_aa_backward_meta_dispatch.h>
|
48 |
+
#include <ATen/ops/_upsample_nearest_exact1d_meta_dispatch.h>
|
49 |
+
#include <ATen/ops/_upsample_nearest_exact1d_backward_meta_dispatch.h>
|
50 |
+
#include <ATen/ops/_upsample_nearest_exact2d_meta_dispatch.h>
|
51 |
+
#include <ATen/ops/_upsample_nearest_exact2d_backward_meta_dispatch.h>
|
52 |
+
#include <ATen/ops/_upsample_nearest_exact3d_meta_dispatch.h>
|
53 |
+
#include <ATen/ops/_upsample_nearest_exact3d_backward_meta_dispatch.h>
|
54 |
+
#include <ATen/ops/acos_meta_dispatch.h>
|
55 |
+
#include <ATen/ops/acosh_meta_dispatch.h>
|
56 |
+
#include <ATen/ops/adaptive_max_pool2d_meta_dispatch.h>
|
57 |
+
#include <ATen/ops/adaptive_max_pool2d_backward_meta_dispatch.h>
|
58 |
+
#include <ATen/ops/adaptive_max_pool3d_meta_dispatch.h>
|
59 |
+
#include <ATen/ops/adaptive_max_pool3d_backward_meta_dispatch.h>
|
60 |
+
#include <ATen/ops/add_meta_dispatch.h>
|
61 |
+
#include <ATen/ops/addbmm_meta_dispatch.h>
|
62 |
+
#include <ATen/ops/addcdiv_meta_dispatch.h>
|
63 |
+
#include <ATen/ops/addcmul_meta_dispatch.h>
|
64 |
+
#include <ATen/ops/addmm_meta_dispatch.h>
|
65 |
+
#include <ATen/ops/addmv_meta_dispatch.h>
|
66 |
+
#include <ATen/ops/all_meta_dispatch.h>
|
67 |
+
#include <ATen/ops/amax_meta_dispatch.h>
|
68 |
+
#include <ATen/ops/amin_meta_dispatch.h>
|
69 |
+
#include <ATen/ops/aminmax_meta_dispatch.h>
|
70 |
+
#include <ATen/ops/any_meta_dispatch.h>
|
71 |
+
#include <ATen/ops/arange_meta_dispatch.h>
|
72 |
+
#include <ATen/ops/argmax_meta_dispatch.h>
|
73 |
+
#include <ATen/ops/argmin_meta_dispatch.h>
|
74 |
+
#include <ATen/ops/as_strided_meta_dispatch.h>
|
75 |
+
#include <ATen/ops/asin_meta_dispatch.h>
|
76 |
+
#include <ATen/ops/asinh_meta_dispatch.h>
|
77 |
+
#include <ATen/ops/atan_meta_dispatch.h>
|
78 |
+
#include <ATen/ops/atan2_meta_dispatch.h>
|
79 |
+
#include <ATen/ops/atanh_meta_dispatch.h>
|
80 |
+
#include <ATen/ops/avg_pool2d_meta_dispatch.h>
|
81 |
+
#include <ATen/ops/avg_pool2d_backward_meta_dispatch.h>
|
82 |
+
#include <ATen/ops/avg_pool3d_meta_dispatch.h>
|
83 |
+
#include <ATen/ops/avg_pool3d_backward_meta_dispatch.h>
|
84 |
+
#include <ATen/ops/baddbmm_meta_dispatch.h>
|
85 |
+
#include <ATen/ops/bernoulli_meta_dispatch.h>
|
86 |
+
#include <ATen/ops/bitwise_and_meta_dispatch.h>
|
87 |
+
#include <ATen/ops/bitwise_left_shift_meta_dispatch.h>
|
88 |
+
#include <ATen/ops/bitwise_not_meta_dispatch.h>
|
89 |
+
#include <ATen/ops/bitwise_or_meta_dispatch.h>
|
90 |
+
#include <ATen/ops/bitwise_right_shift_meta_dispatch.h>
|
91 |
+
#include <ATen/ops/bitwise_xor_meta_dispatch.h>
|
92 |
+
#include <ATen/ops/bmm_meta_dispatch.h>
|
93 |
+
#include <ATen/ops/cat_meta_dispatch.h>
|
94 |
+
#include <ATen/ops/cauchy_meta_dispatch.h>
|
95 |
+
#include <ATen/ops/ceil_meta_dispatch.h>
|
96 |
+
#include <ATen/ops/clamp_meta_dispatch.h>
|
97 |
+
#include <ATen/ops/clamp_max_meta_dispatch.h>
|
98 |
+
#include <ATen/ops/clamp_min_meta_dispatch.h>
|
99 |
+
#include <ATen/ops/copy_sparse_to_sparse_meta_dispatch.h>
|
100 |
+
#include <ATen/ops/copysign_meta_dispatch.h>
|
101 |
+
#include <ATen/ops/cos_meta_dispatch.h>
|
102 |
+
#include <ATen/ops/cosh_meta_dispatch.h>
|
103 |
+
#include <ATen/ops/cumprod_meta_dispatch.h>
|
104 |
+
#include <ATen/ops/cumsum_meta_dispatch.h>
|
105 |
+
#include <ATen/ops/digamma_meta_dispatch.h>
|
106 |
+
#include <ATen/ops/div_meta_dispatch.h>
|
107 |
+
#include <ATen/ops/elu_meta_dispatch.h>
|
108 |
+
#include <ATen/ops/elu_backward_meta_dispatch.h>
|
109 |
+
#include <ATen/ops/embedding_renorm_meta_dispatch.h>
|
110 |
+
#include <ATen/ops/empty_meta_dispatch.h>
|
111 |
+
#include <ATen/ops/empty_strided_meta_dispatch.h>
|
112 |
+
#include <ATen/ops/eq_meta_dispatch.h>
|
113 |
+
#include <ATen/ops/erf_meta_dispatch.h>
|
114 |
+
#include <ATen/ops/erfc_meta_dispatch.h>
|
115 |
+
#include <ATen/ops/erfinv_meta_dispatch.h>
|
116 |
+
#include <ATen/ops/exp_meta_dispatch.h>
|
117 |
+
#include <ATen/ops/exp2_meta_dispatch.h>
|
118 |
+
#include <ATen/ops/expm1_meta_dispatch.h>
|
119 |
+
#include <ATen/ops/exponential_meta_dispatch.h>
|
120 |
+
#include <ATen/ops/eye_meta_dispatch.h>
|
121 |
+
#include <ATen/ops/fill_meta_dispatch.h>
|
122 |
+
#include <ATen/ops/floor_meta_dispatch.h>
|
123 |
+
#include <ATen/ops/floor_divide_meta_dispatch.h>
|
124 |
+
#include <ATen/ops/fmax_meta_dispatch.h>
|
125 |
+
#include <ATen/ops/fmin_meta_dispatch.h>
|
126 |
+
#include <ATen/ops/fmod_meta_dispatch.h>
|
127 |
+
#include <ATen/ops/frac_meta_dispatch.h>
|
128 |
+
#include <ATen/ops/fractional_max_pool2d_meta_dispatch.h>
|
129 |
+
#include <ATen/ops/fractional_max_pool2d_backward_meta_dispatch.h>
|
130 |
+
#include <ATen/ops/fractional_max_pool3d_meta_dispatch.h>
|
131 |
+
#include <ATen/ops/gather_meta_dispatch.h>
|
132 |
+
#include <ATen/ops/gcd_meta_dispatch.h>
|
133 |
+
#include <ATen/ops/ge_meta_dispatch.h>
|
134 |
+
#include <ATen/ops/gelu_meta_dispatch.h>
|
135 |
+
#include <ATen/ops/gelu_backward_meta_dispatch.h>
|
136 |
+
#include <ATen/ops/geometric_meta_dispatch.h>
|
137 |
+
#include <ATen/ops/glu_meta_dispatch.h>
|
138 |
+
#include <ATen/ops/gt_meta_dispatch.h>
|
139 |
+
#include <ATen/ops/hardshrink_meta_dispatch.h>
|
140 |
+
#include <ATen/ops/hardshrink_backward_meta_dispatch.h>
|
141 |
+
#include <ATen/ops/hardsigmoid_meta_dispatch.h>
|
142 |
+
#include <ATen/ops/hardsigmoid_backward_meta_dispatch.h>
|
143 |
+
#include <ATen/ops/hardswish_meta_dispatch.h>
|
144 |
+
#include <ATen/ops/hardtanh_meta_dispatch.h>
|
145 |
+
#include <ATen/ops/heaviside_meta_dispatch.h>
|
146 |
+
#include <ATen/ops/hypot_meta_dispatch.h>
|
147 |
+
#include <ATen/ops/i0_meta_dispatch.h>
|
148 |
+
#include <ATen/ops/igamma_meta_dispatch.h>
|
149 |
+
#include <ATen/ops/igammac_meta_dispatch.h>
|
150 |
+
#include <ATen/ops/index_meta_dispatch.h>
|
151 |
+
#include <ATen/ops/index_add_meta_dispatch.h>
|
152 |
+
#include <ATen/ops/index_copy_meta_dispatch.h>
|
153 |
+
#include <ATen/ops/index_fill_meta_dispatch.h>
|
154 |
+
#include <ATen/ops/index_reduce_meta_dispatch.h>
|
155 |
+
#include <ATen/ops/isin_meta_dispatch.h>
|
156 |
+
#include <ATen/ops/isneginf_meta_dispatch.h>
|
157 |
+
#include <ATen/ops/isposinf_meta_dispatch.h>
|
158 |
+
#include <ATen/ops/lcm_meta_dispatch.h>
|
159 |
+
#include <ATen/ops/le_meta_dispatch.h>
|
160 |
+
#include <ATen/ops/leaky_relu_meta_dispatch.h>
|
161 |
+
#include <ATen/ops/leaky_relu_backward_meta_dispatch.h>
|
162 |
+
#include <ATen/ops/lerp_meta_dispatch.h>
|
163 |
+
#include <ATen/ops/lgamma_meta_dispatch.h>
|
164 |
+
#include <ATen/ops/linalg_cholesky_ex_meta_dispatch.h>
|
165 |
+
#include <ATen/ops/linalg_cross_meta_dispatch.h>
|
166 |
+
#include <ATen/ops/linalg_inv_ex_meta_dispatch.h>
|
167 |
+
#include <ATen/ops/linalg_ldl_factor_ex_meta_dispatch.h>
|
168 |
+
#include <ATen/ops/linalg_ldl_solve_meta_dispatch.h>
|
169 |
+
#include <ATen/ops/linalg_lu_meta_dispatch.h>
|
170 |
+
#include <ATen/ops/linalg_lu_factor_ex_meta_dispatch.h>
|
171 |
+
#include <ATen/ops/linalg_lu_solve_meta_dispatch.h>
|
172 |
+
#include <ATen/ops/linalg_qr_meta_dispatch.h>
|
173 |
+
#include <ATen/ops/linalg_vector_norm_meta_dispatch.h>
|
174 |
+
#include <ATen/ops/linspace_meta_dispatch.h>
|
175 |
+
#include <ATen/ops/log_meta_dispatch.h>
|
176 |
+
#include <ATen/ops/log10_meta_dispatch.h>
|
177 |
+
#include <ATen/ops/log1p_meta_dispatch.h>
|
178 |
+
#include <ATen/ops/log2_meta_dispatch.h>
|
179 |
+
#include <ATen/ops/log_normal_meta_dispatch.h>
|
180 |
+
#include <ATen/ops/logaddexp_meta_dispatch.h>
|
181 |
+
#include <ATen/ops/logaddexp2_meta_dispatch.h>
|
182 |
+
#include <ATen/ops/logit_meta_dispatch.h>
|
183 |
+
#include <ATen/ops/logit_backward_meta_dispatch.h>
|
184 |
+
#include <ATen/ops/logspace_meta_dispatch.h>
|
185 |
+
#include <ATen/ops/lshift_meta_dispatch.h>
|
186 |
+
#include <ATen/ops/lt_meta_dispatch.h>
|
187 |
+
#include <ATen/ops/lu_unpack_meta_dispatch.h>
|
188 |
+
#include <ATen/ops/masked_fill_meta_dispatch.h>
|
189 |
+
#include <ATen/ops/masked_scatter_meta_dispatch.h>
|
190 |
+
#include <ATen/ops/max_meta_dispatch.h>
|
191 |
+
#include <ATen/ops/max_pool2d_with_indices_meta_dispatch.h>
|
192 |
+
#include <ATen/ops/max_pool2d_with_indices_backward_meta_dispatch.h>
|
193 |
+
#include <ATen/ops/maximum_meta_dispatch.h>
|
194 |
+
#include <ATen/ops/mean_meta_dispatch.h>
|
195 |
+
#include <ATen/ops/min_meta_dispatch.h>
|
196 |
+
#include <ATen/ops/minimum_meta_dispatch.h>
|
197 |
+
#include <ATen/ops/mish_meta_dispatch.h>
|
198 |
+
#include <ATen/ops/mm_meta_dispatch.h>
|
199 |
+
#include <ATen/ops/mse_loss_meta_dispatch.h>
|
200 |
+
#include <ATen/ops/mul_meta_dispatch.h>
|
201 |
+
#include <ATen/ops/ne_meta_dispatch.h>
|
202 |
+
#include <ATen/ops/neg_meta_dispatch.h>
|
203 |
+
#include <ATen/ops/nextafter_meta_dispatch.h>
|
204 |
+
#include <ATen/ops/nll_loss_backward_meta_dispatch.h>
|
205 |
+
#include <ATen/ops/nll_loss_forward_meta_dispatch.h>
|
206 |
+
#include <ATen/ops/norm_meta_dispatch.h>
|
207 |
+
#include <ATen/ops/normal_meta_dispatch.h>
|
208 |
+
#include <ATen/ops/polygamma_meta_dispatch.h>
|
209 |
+
#include <ATen/ops/pow_meta_dispatch.h>
|
210 |
+
#include <ATen/ops/prod_meta_dispatch.h>
|
211 |
+
#include <ATen/ops/put_meta_dispatch.h>
|
212 |
+
#include <ATen/ops/random_meta_dispatch.h>
|
213 |
+
#include <ATen/ops/range_meta_dispatch.h>
|
214 |
+
#include <ATen/ops/reciprocal_meta_dispatch.h>
|
215 |
+
#include <ATen/ops/reflection_pad1d_meta_dispatch.h>
|
216 |
+
#include <ATen/ops/reflection_pad1d_backward_meta_dispatch.h>
|
217 |
+
#include <ATen/ops/reflection_pad3d_meta_dispatch.h>
|
218 |
+
#include <ATen/ops/reflection_pad3d_backward_meta_dispatch.h>
|
219 |
+
#include <ATen/ops/relu_meta_dispatch.h>
|
220 |
+
#include <ATen/ops/remainder_meta_dispatch.h>
|
221 |
+
#include <ATen/ops/renorm_meta_dispatch.h>
|
222 |
+
#include <ATen/ops/replication_pad1d_meta_dispatch.h>
|
223 |
+
#include <ATen/ops/replication_pad1d_backward_meta_dispatch.h>
|
224 |
+
#include <ATen/ops/replication_pad2d_meta_dispatch.h>
|
225 |
+
#include <ATen/ops/replication_pad3d_meta_dispatch.h>
|
226 |
+
#include <ATen/ops/resize_meta_dispatch.h>
|
227 |
+
#include <ATen/ops/resize_as_sparse_meta_dispatch.h>
|
228 |
+
#include <ATen/ops/round_meta_dispatch.h>
|
229 |
+
#include <ATen/ops/rrelu_with_noise_meta_dispatch.h>
|
230 |
+
#include <ATen/ops/rshift_meta_dispatch.h>
|
231 |
+
#include <ATen/ops/rsqrt_meta_dispatch.h>
|
232 |
+
#include <ATen/ops/scatter_meta_dispatch.h>
|
233 |
+
#include <ATen/ops/scatter_add_meta_dispatch.h>
|
234 |
+
#include <ATen/ops/scatter_reduce_meta_dispatch.h>
|
235 |
+
#include <ATen/ops/set_meta_dispatch.h>
|
236 |
+
#include <ATen/ops/sgn_meta_dispatch.h>
|
237 |
+
#include <ATen/ops/sigmoid_meta_dispatch.h>
|
238 |
+
#include <ATen/ops/sigmoid_backward_meta_dispatch.h>
|
239 |
+
#include <ATen/ops/sign_meta_dispatch.h>
|
240 |
+
#include <ATen/ops/signbit_meta_dispatch.h>
|
241 |
+
#include <ATen/ops/silu_meta_dispatch.h>
|
242 |
+
#include <ATen/ops/silu_backward_meta_dispatch.h>
|
243 |
+
#include <ATen/ops/sin_meta_dispatch.h>
|
244 |
+
#include <ATen/ops/sinc_meta_dispatch.h>
|
245 |
+
#include <ATen/ops/sinh_meta_dispatch.h>
|
246 |
+
#include <ATen/ops/slow_conv_transpose2d_meta_dispatch.h>
|
247 |
+
#include <ATen/ops/smooth_l1_loss_meta_dispatch.h>
|
248 |
+
#include <ATen/ops/softplus_meta_dispatch.h>
|
249 |
+
#include <ATen/ops/softplus_backward_meta_dispatch.h>
|
250 |
+
#include <ATen/ops/softshrink_meta_dispatch.h>
|
251 |
+
#include <ATen/ops/softshrink_backward_meta_dispatch.h>
|
252 |
+
#include <ATen/ops/sort_meta_dispatch.h>
|
253 |
+
#include <ATen/ops/sparse_resize_meta_dispatch.h>
|
254 |
+
#include <ATen/ops/sparse_resize_and_clear_meta_dispatch.h>
|
255 |
+
#include <ATen/ops/special_airy_ai_meta_dispatch.h>
|
256 |
+
#include <ATen/ops/special_bessel_j0_meta_dispatch.h>
|
257 |
+
#include <ATen/ops/special_bessel_j1_meta_dispatch.h>
|
258 |
+
#include <ATen/ops/special_bessel_y0_meta_dispatch.h>
|
259 |
+
#include <ATen/ops/special_bessel_y1_meta_dispatch.h>
|
260 |
+
#include <ATen/ops/special_chebyshev_polynomial_t_meta_dispatch.h>
|
261 |
+
#include <ATen/ops/special_chebyshev_polynomial_u_meta_dispatch.h>
|
262 |
+
#include <ATen/ops/special_chebyshev_polynomial_v_meta_dispatch.h>
|
263 |
+
#include <ATen/ops/special_chebyshev_polynomial_w_meta_dispatch.h>
|
264 |
+
#include <ATen/ops/special_entr_meta_dispatch.h>
|
265 |
+
#include <ATen/ops/special_erfcx_meta_dispatch.h>
|
266 |
+
#include <ATen/ops/special_hermite_polynomial_h_meta_dispatch.h>
|
267 |
+
#include <ATen/ops/special_hermite_polynomial_he_meta_dispatch.h>
|
268 |
+
#include <ATen/ops/special_i0e_meta_dispatch.h>
|
269 |
+
#include <ATen/ops/special_i1_meta_dispatch.h>
|
270 |
+
#include <ATen/ops/special_i1e_meta_dispatch.h>
|
271 |
+
#include <ATen/ops/special_laguerre_polynomial_l_meta_dispatch.h>
|
272 |
+
#include <ATen/ops/special_legendre_polynomial_p_meta_dispatch.h>
|
273 |
+
#include <ATen/ops/special_log_ndtr_meta_dispatch.h>
|
274 |
+
#include <ATen/ops/special_modified_bessel_i0_meta_dispatch.h>
|
275 |
+
#include <ATen/ops/special_modified_bessel_i1_meta_dispatch.h>
|
276 |
+
#include <ATen/ops/special_modified_bessel_k0_meta_dispatch.h>
|
277 |
+
#include <ATen/ops/special_modified_bessel_k1_meta_dispatch.h>
|
278 |
+
#include <ATen/ops/special_ndtri_meta_dispatch.h>
|
279 |
+
#include <ATen/ops/special_scaled_modified_bessel_k0_meta_dispatch.h>
|
280 |
+
#include <ATen/ops/special_scaled_modified_bessel_k1_meta_dispatch.h>
|
281 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_t_meta_dispatch.h>
|
282 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_u_meta_dispatch.h>
|
283 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_v_meta_dispatch.h>
|
284 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_w_meta_dispatch.h>
|
285 |
+
#include <ATen/ops/special_spherical_bessel_j0_meta_dispatch.h>
|
286 |
+
#include <ATen/ops/special_xlog1py_meta_dispatch.h>
|
287 |
+
#include <ATen/ops/special_zeta_meta_dispatch.h>
|
288 |
+
#include <ATen/ops/sqrt_meta_dispatch.h>
|
289 |
+
#include <ATen/ops/sub_meta_dispatch.h>
|
290 |
+
#include <ATen/ops/sum_meta_dispatch.h>
|
291 |
+
#include <ATen/ops/tan_meta_dispatch.h>
|
292 |
+
#include <ATen/ops/tanh_meta_dispatch.h>
|
293 |
+
#include <ATen/ops/tanh_backward_meta_dispatch.h>
|
294 |
+
#include <ATen/ops/threshold_meta_dispatch.h>
|
295 |
+
#include <ATen/ops/threshold_backward_meta_dispatch.h>
|
296 |
+
#include <ATen/ops/topk_meta_dispatch.h>
|
297 |
+
#include <ATen/ops/triangular_solve_meta_dispatch.h>
|
298 |
+
#include <ATen/ops/tril_meta_dispatch.h>
|
299 |
+
#include <ATen/ops/triu_meta_dispatch.h>
|
300 |
+
#include <ATen/ops/trunc_meta_dispatch.h>
|
301 |
+
#include <ATen/ops/unfold_meta_dispatch.h>
|
302 |
+
#include <ATen/ops/uniform_meta_dispatch.h>
|
303 |
+
#include <ATen/ops/upsample_bicubic2d_meta_dispatch.h>
|
304 |
+
#include <ATen/ops/upsample_bicubic2d_backward_meta_dispatch.h>
|
305 |
+
#include <ATen/ops/upsample_bilinear2d_meta_dispatch.h>
|
306 |
+
#include <ATen/ops/upsample_bilinear2d_backward_meta_dispatch.h>
|
307 |
+
#include <ATen/ops/upsample_linear1d_meta_dispatch.h>
|
308 |
+
#include <ATen/ops/upsample_linear1d_backward_meta_dispatch.h>
|
309 |
+
#include <ATen/ops/upsample_nearest1d_meta_dispatch.h>
|
310 |
+
#include <ATen/ops/upsample_nearest1d_backward_meta_dispatch.h>
|
311 |
+
#include <ATen/ops/upsample_nearest2d_meta_dispatch.h>
|
312 |
+
#include <ATen/ops/upsample_nearest2d_backward_meta_dispatch.h>
|
313 |
+
#include <ATen/ops/upsample_nearest3d_meta_dispatch.h>
|
314 |
+
#include <ATen/ops/upsample_nearest3d_backward_meta_dispatch.h>
|
315 |
+
#include <ATen/ops/upsample_trilinear3d_meta_dispatch.h>
|
316 |
+
#include <ATen/ops/upsample_trilinear3d_backward_meta_dispatch.h>
|
317 |
+
#include <ATen/ops/view_meta_dispatch.h>
|
318 |
+
#include <ATen/ops/view_as_complex_meta_dispatch.h>
|
319 |
+
#include <ATen/ops/view_as_real_meta_dispatch.h>
|
320 |
+
#include <ATen/ops/xlogy_meta_dispatch.h>
|
321 |
+
#include <ATen/ops/zero_meta_dispatch.h>
|
322 |
+
|
323 |
+
|
324 |
+
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/NamedTensorUtils.h
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/NamedTensor.h>
|
3 |
+
#include <ATen/TensorNames.h>
|
4 |
+
#include <ATen/WrapDimUtilsMulti.h>
|
5 |
+
|
6 |
+
#include <ATen/core/DimVector.h>
|
7 |
+
#include <ATen/core/Tensor.h>
|
8 |
+
#include <functional>
|
9 |
+
|
10 |
+
namespace at {
|
11 |
+
|
12 |
+
using NameVector = SmallVector<Dimname, kDimVectorStaticSize>;
|
13 |
+
|
14 |
+
inline bool has_names(const ITensorListRef& tensors) {
|
15 |
+
return std::any_of(tensors.begin(), tensors.end(), [](const Tensor& t) {
|
16 |
+
return t.has_names();
|
17 |
+
});
|
18 |
+
}
|
19 |
+
|
20 |
+
// Converts dim to an positional index. Errors if `dim` cannot be used to
|
21 |
+
// refer to any dimension of tensor.
|
22 |
+
TORCH_API int64_t dimname_to_position(const Tensor& tensor, Dimname dim);
|
23 |
+
TORCH_API std::vector<int64_t> dimnames_to_positions(
|
24 |
+
const Tensor& tensor,
|
25 |
+
DimnameList dims);
|
26 |
+
|
27 |
+
// Unifies two DimnameList to produce a third. This is useful for implementing
|
28 |
+
// the named inference rule for binary broadcasting operations like add.
|
29 |
+
//
|
30 |
+
// There are three main constraints:
|
31 |
+
// 1) Check matching: Names must match positionally from the right.
|
32 |
+
// 2) Check misaligned: If a name `n` is in `names`, then it must appear at
|
33 |
+
// the same index from the right in other.
|
34 |
+
// 3) The output names are obtained by unifying the names individually from the
|
35 |
+
// right.
|
36 |
+
TORCH_API std::vector<Dimname> unify_from_right(
|
37 |
+
DimnameList names,
|
38 |
+
DimnameList other,
|
39 |
+
const char* action = "broadcast");
|
40 |
+
|
41 |
+
[[noreturn]] inline void reportNYIDimnameOverload(const char* op_name) {
|
42 |
+
TORCH_CHECK(
|
43 |
+
false,
|
44 |
+
op_name,
|
45 |
+
": You passed a dimname (string) to this op in place of a dimension "
|
46 |
+
"index but it does not yet support this behavior. Please pass a dimension "
|
47 |
+
"index to work around this.");
|
48 |
+
}
|
49 |
+
|
50 |
+
// [NOTE] Writing name inference rules
|
51 |
+
//
|
52 |
+
// Operators that support named tensors are either composed of operations that
|
53 |
+
// support named tensors or implement some name inference rule. An op that
|
54 |
+
// implements its own name inference rule generally looks like the following:
|
55 |
+
//
|
56 |
+
// Tensor op(...) {
|
57 |
+
// perform_shape_checks(...);
|
58 |
+
// # (1)
|
59 |
+
// auto maybe_outnames = compute_outnames(...);
|
60 |
+
// auto result = [&]() {
|
61 |
+
// NoNamesGuard guard;
|
62 |
+
// return op_impl(...);
|
63 |
+
// }();
|
64 |
+
// # (2)
|
65 |
+
// propagate_names_if_nonempty(result, maybe_outnames);
|
66 |
+
//
|
67 |
+
// Each op has (1) a compute outnames step and (2) a propagate names step.
|
68 |
+
//
|
69 |
+
// compute_outnames is responsible for checking that input names match and
|
70 |
+
// determining what the output names should be. It returns either:
|
71 |
+
// - {} (if the inputs tensors are all unnamed)
|
72 |
+
// - non-empty outnames.
|
73 |
+
//
|
74 |
+
// propagate_names_if_nonempty propagates the outnames if they exist to the
|
75 |
+
// result tensors.
|
76 |
+
//
|
77 |
+
// The {} case is an optimization; if the user does not use named tensors they
|
78 |
+
// pay no perf cost for it.
|
79 |
+
|
80 |
+
namespace namedinference {
|
81 |
+
|
82 |
+
const Tensor& propagate_names_if_present_and_nonempty(
|
83 |
+
const Tensor& result,
|
84 |
+
c10::optional<DimnameList> maybe_names,
|
85 |
+
bool validate_names = false);
|
86 |
+
// Propagates `names` to `result` if `names` is not empty.
|
87 |
+
// `names` can be empty; see [NOTE] Writing name inference rules
|
88 |
+
// If `names` is not empty, `names.size()` should equal `result.dim()`.
|
89 |
+
// When in doubt, use this overload instead of the others.
|
90 |
+
TORCH_API const Tensor& propagate_names_if_nonempty(
|
91 |
+
const Tensor& result,
|
92 |
+
DimnameList maybe_names,
|
93 |
+
bool validate_names = false);
|
94 |
+
|
95 |
+
// Propagates `names` to `result`. Only use this if we are certain that there
|
96 |
+
// are names to propagate (that names is not empty).
|
97 |
+
TORCH_API const Tensor& propagate_names(
|
98 |
+
const Tensor& result,
|
99 |
+
DimnameList names,
|
100 |
+
bool validate_names = false);
|
101 |
+
|
102 |
+
// Propagates all names from src to result.
|
103 |
+
TORCH_API void propagate_names(const Tensor& result, const Tensor& src);
|
104 |
+
|
105 |
+
// Propagates all names except for those at the excluded_idxs.
|
106 |
+
TORCH_API void propagate_names_except(
|
107 |
+
const Tensor& result,
|
108 |
+
const Tensor& src,
|
109 |
+
IntArrayRef excluded_idxs);
|
110 |
+
|
111 |
+
// Used for reduction ops that have a `keepdim` arg.
|
112 |
+
TORCH_API void propagate_names_for_reduction(
|
113 |
+
const Tensor& result,
|
114 |
+
const Tensor& src,
|
115 |
+
IntArrayRef excluded_idxs,
|
116 |
+
bool keepdim);
|
117 |
+
|
118 |
+
TORCH_API void propagate_names_for_expand(
|
119 |
+
const Tensor& result,
|
120 |
+
const Tensor& self);
|
121 |
+
|
122 |
+
TORCH_API std::vector<Dimname> compute_cat_outnames(
|
123 |
+
const MaterializedITensorListRef& tensors);
|
124 |
+
|
125 |
+
TORCH_API std::vector<Dimname> compute_broadcast_outnames(
|
126 |
+
const Tensor& self,
|
127 |
+
const Tensor& other);
|
128 |
+
|
129 |
+
TORCH_API std::vector<Dimname> broadcast_to_outnames(
|
130 |
+
const Tensor& tensor,
|
131 |
+
const Tensor& reference_tensor,
|
132 |
+
const char* op_name);
|
133 |
+
|
134 |
+
TORCH_API std::vector<Dimname> compute_matmul_outnames(
|
135 |
+
const Tensor& self,
|
136 |
+
const Tensor& other);
|
137 |
+
|
138 |
+
TORCH_API std::vector<Dimname> compute_cdist_outnames(
|
139 |
+
const Tensor& self,
|
140 |
+
const Tensor& other);
|
141 |
+
|
142 |
+
TORCH_API std::vector<Dimname> compute_bmm_outnames(
|
143 |
+
const Tensor& result,
|
144 |
+
const Tensor& self,
|
145 |
+
const Tensor& other);
|
146 |
+
|
147 |
+
TORCH_API std::vector<Dimname> compute_squeeze_outnames(const Tensor& tensor);
|
148 |
+
TORCH_API std::vector<Dimname> compute_squeeze_outnames(
|
149 |
+
const Tensor& tensor,
|
150 |
+
std::bitset<dim_bitset_size> dims);
|
151 |
+
|
152 |
+
std::vector<Dimname> compute_diagonal_outnames(
|
153 |
+
const Tensor& tensor,
|
154 |
+
int64_t dim1,
|
155 |
+
int64_t dim2);
|
156 |
+
|
157 |
+
// TensorImpl* overloads for Legacy TH/THC code. Use these sparingly.
|
158 |
+
|
159 |
+
TORCH_API TensorImpl* propagate_names_if_nonempty(
|
160 |
+
TensorImpl* result,
|
161 |
+
DimnameList maybe_names,
|
162 |
+
bool validate_names = false);
|
163 |
+
|
164 |
+
TORCH_API TensorImpl* propagate_names(
|
165 |
+
TensorImpl* result,
|
166 |
+
DimnameList names,
|
167 |
+
bool validate_names = false);
|
168 |
+
|
169 |
+
TORCH_API void propagate_names(TensorImpl* result, /*const */ TensorImpl* src);
|
170 |
+
|
171 |
+
TORCH_API inline void propagate_names(
|
172 |
+
const TensorBase& result,
|
173 |
+
DimnameList names,
|
174 |
+
bool validate_names = false) {
|
175 |
+
propagate_names(result.unsafeGetTensorImpl(), names, validate_names);
|
176 |
+
}
|
177 |
+
|
178 |
+
TORCH_API inline void propagate_names_if_nonempty(
|
179 |
+
const TensorBase& result,
|
180 |
+
DimnameList names,
|
181 |
+
bool validate_names = false) {
|
182 |
+
propagate_names_if_nonempty(
|
183 |
+
result.unsafeGetTensorImpl(), names, validate_names);
|
184 |
+
}
|
185 |
+
|
186 |
+
TORCH_API inline void propagate_names(
|
187 |
+
const TensorBase& result,
|
188 |
+
const TensorBase& src) {
|
189 |
+
propagate_names(result.unsafeGetTensorImpl(), src.unsafeGetTensorImpl());
|
190 |
+
}
|
191 |
+
|
192 |
+
// result = m1 @ m2 + bias
|
193 |
+
TORCH_API std::vector<Dimname> propagate_names_for_addmm(
|
194 |
+
const Tensor& m1,
|
195 |
+
const Tensor& m2,
|
196 |
+
const Tensor& bias);
|
197 |
+
|
198 |
+
TORCH_API std::vector<Dimname> propagate_names_for_addmv(
|
199 |
+
const Tensor& mat,
|
200 |
+
const Tensor& vec,
|
201 |
+
const Tensor& bias);
|
202 |
+
|
203 |
+
TORCH_API void check_names_for_dot(TensorImpl* vec1, TensorImpl* vec2);
|
204 |
+
|
205 |
+
TORCH_API std::vector<Dimname> compute_baddbmm_outnames(
|
206 |
+
const Tensor& result,
|
207 |
+
const Tensor& self,
|
208 |
+
const Tensor& other,
|
209 |
+
const Tensor& bias);
|
210 |
+
|
211 |
+
TORCH_API bool are_names_equal(TensorImpl* self, TensorImpl* other);
|
212 |
+
|
213 |
+
} // namespace namedinference
|
214 |
+
|
215 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/NestedTensorImpl.h
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/MemoryOverlap.h>
|
3 |
+
#include <ATen/Tensor.h>
|
4 |
+
#include <c10/core/DispatchKey.h>
|
5 |
+
#include <c10/core/DispatchKeySet.h>
|
6 |
+
#include <c10/core/MemoryFormat.h>
|
7 |
+
#include <c10/core/TensorImpl.h>
|
8 |
+
#include <c10/util/ArrayRef.h>
|
9 |
+
#include <c10/util/Exception.h>
|
10 |
+
#include <c10/util/Metaprogramming.h>
|
11 |
+
#include <c10/util/irange.h>
|
12 |
+
|
13 |
+
namespace at::native {
|
14 |
+
struct NestedTensorImpl;
|
15 |
+
inline bool nested_tensor_impl_is_contiguous(const NestedTensorImpl* nt);
|
16 |
+
int64_t get_numel_from_nested_size_tensor(const at::Tensor& tensor);
|
17 |
+
|
18 |
+
struct TORCH_API NestedTensorImpl : public c10::TensorImpl {
|
19 |
+
explicit NestedTensorImpl(
|
20 |
+
Storage storage,
|
21 |
+
c10::DispatchKeySet key_set,
|
22 |
+
const caffe2::TypeMeta data_type,
|
23 |
+
at::Tensor nested_sizes,
|
24 |
+
at::Tensor nested_strides,
|
25 |
+
at::Tensor storage_offsets);
|
26 |
+
|
27 |
+
explicit NestedTensorImpl(
|
28 |
+
const at::Tensor& buffer,
|
29 |
+
at::Tensor nested_sizes,
|
30 |
+
at::Tensor nested_strides,
|
31 |
+
at::Tensor storage_offsets);
|
32 |
+
// assume contiguous, `nested_strides` and `offsets`
|
33 |
+
// can be infered from `nested_sizes`
|
34 |
+
explicit NestedTensorImpl(
|
35 |
+
const at::Tensor& buffer,
|
36 |
+
const at::Tensor& nested_sizes);
|
37 |
+
|
38 |
+
// This constructor is used creating view tensors from nested tensors
|
39 |
+
explicit NestedTensorImpl(
|
40 |
+
c10::TensorImpl::ImplType impl_type,
|
41 |
+
const at::Tensor& base_tensor,
|
42 |
+
at::Tensor nested_sizes,
|
43 |
+
at::Tensor nested_strides,
|
44 |
+
at::Tensor storage_offsets);
|
45 |
+
|
46 |
+
// TODO: don't expose private implementation details like this; in
|
47 |
+
// particular, resizing this tensor will mess up our dim() and
|
48 |
+
// callers cannot fix it.
|
49 |
+
const Tensor& get_nested_sizes() const {
|
50 |
+
return nested_sizes_;
|
51 |
+
}
|
52 |
+
// TODO: don't expose private implementation details like this
|
53 |
+
const Tensor& get_nested_strides() const {
|
54 |
+
return nested_strides_;
|
55 |
+
}
|
56 |
+
const Tensor& get_storage_offsets() const {
|
57 |
+
return storage_offsets_;
|
58 |
+
}
|
59 |
+
// Returns nullopt if the ith dimension is irregular. The ith dimension
|
60 |
+
// of a NestedTensor is regular if the unbound tensors match in
|
61 |
+
// size at the (i-1)th dimension.
|
62 |
+
c10::optional<int64_t> opt_size(int64_t d) const;
|
63 |
+
|
64 |
+
int64_t size(int64_t d) const {
|
65 |
+
c10::optional<int64_t> optional_size = this->opt_size(d);
|
66 |
+
TORCH_CHECK(
|
67 |
+
optional_size.has_value(),
|
68 |
+
"Given dimension ",
|
69 |
+
d,
|
70 |
+
" is irregular and does not have a size.");
|
71 |
+
return *optional_size;
|
72 |
+
}
|
73 |
+
/**
|
74 |
+
* Return a view of the nested tensor as a 1 dimensional contiguous tensor.
|
75 |
+
*
|
76 |
+
* The buffer tensor created by this function shares the same storage_impl as
|
77 |
+
* the original nested tensor, and therefore can be seen as a view.
|
78 |
+
*
|
79 |
+
* @return A newly constructed view tensor
|
80 |
+
*/
|
81 |
+
at::Tensor get_buffer() const {
|
82 |
+
TORCH_CHECK(
|
83 |
+
nested_tensor_impl_is_contiguous(this),
|
84 |
+
"NestedTensor must be contiguous to get buffer.");
|
85 |
+
return get_unsafe_storage_as_tensor();
|
86 |
+
}
|
87 |
+
/**
|
88 |
+
* If possible use get_buffer() instead. This function returns the storage
|
89 |
+
* as a tensor directly, which is not safe to use in general. If using this
|
90 |
+
* function, The caller must ensure to account for nested_sizes,
|
91 |
+
* nested_strides and storage_offsets.
|
92 |
+
*
|
93 |
+
* @return A newly constructed view tensor
|
94 |
+
*/
|
95 |
+
at::Tensor get_unsafe_storage_as_tensor() const {
|
96 |
+
auto buffer_key_set_ = generate_buffer_key_set();
|
97 |
+
const auto buffer_size = get_buffer_size();
|
98 |
+
auto buffer_tensor_impl = c10::make_intrusive<TensorImpl>(
|
99 |
+
c10::TensorImpl::VIEW, Storage(storage_), buffer_key_set_, data_type_);
|
100 |
+
buffer_tensor_impl->set_sizes_contiguous(
|
101 |
+
c10::makeArrayRef(static_cast<int64_t>(buffer_size)));
|
102 |
+
return Tensor(buffer_tensor_impl);
|
103 |
+
}
|
104 |
+
|
105 |
+
size_t get_buffer_size() const {
|
106 |
+
return storage_.nbytes() / data_type_.itemsize();
|
107 |
+
}
|
108 |
+
|
109 |
+
protected:
|
110 |
+
const char* tensorimpl_type_name() const override;
|
111 |
+
|
112 |
+
// TODO: numel_custom and is_contiguous_custom can be profitably overridden
|
113 |
+
// with real implementations
|
114 |
+
int64_t numel_custom() const override;
|
115 |
+
c10::SymInt sym_numel_custom() const override;
|
116 |
+
bool is_contiguous_custom(MemoryFormat) const override;
|
117 |
+
int64_t size_custom(int64_t d) const override {
|
118 |
+
return this->size(d);
|
119 |
+
}
|
120 |
+
c10::SymInt sym_size_custom(int64_t d) const override {
|
121 |
+
return c10::SymInt{this->size(d)};
|
122 |
+
}
|
123 |
+
IntArrayRef sizes_custom() const override;
|
124 |
+
c10::SymIntArrayRef sym_sizes_custom() const override;
|
125 |
+
IntArrayRef strides_custom() const override;
|
126 |
+
c10::SymIntArrayRef sym_strides_custom() const override;
|
127 |
+
|
128 |
+
// this one is real
|
129 |
+
int64_t dim_custom() const override;
|
130 |
+
|
131 |
+
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
|
132 |
+
const c10::VariableVersion& version_counter,
|
133 |
+
bool allow_tensor_metadata_change) const override;
|
134 |
+
|
135 |
+
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
|
136 |
+
c10::VariableVersion&& version_counter,
|
137 |
+
bool allow_tensor_metadata_change) const override;
|
138 |
+
|
139 |
+
void shallow_copy_from(const c10::intrusive_ptr<TensorImpl>& impl) override {
|
140 |
+
copy_tensor_metadata(
|
141 |
+
/*src_impl=*/impl.get(),
|
142 |
+
/*dest_impl=*/this,
|
143 |
+
/*version_counter=*/version_counter(),
|
144 |
+
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change());
|
145 |
+
}
|
146 |
+
|
147 |
+
private:
|
148 |
+
// Must be called after any changes to our dim() to sync the state
|
149 |
+
// to TensorImpl.
|
150 |
+
void refresh_dim();
|
151 |
+
|
152 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
153 |
+
const at::Tensor nested_sizes_, nested_strides_;
|
154 |
+
// The starting positions of the underlying tensors in contiguous buffer
|
155 |
+
// i.e. the buffer memory offsets to get the underlying tensors
|
156 |
+
// The reason to keep this metadata is that, without strong enough constraint
|
157 |
+
// it cannot be derived from `nested_sizes_`
|
158 |
+
// and `nested_strides_`:
|
159 |
+
// 1. when buffer has blanks, e.g. [tensor1, blank, tensor2]
|
160 |
+
// this can happen e.g. after slicing a nested tensor
|
161 |
+
// 2. when multiple tensors share a same memory
|
162 |
+
// 3. when the nesting ordering is changed, e.g. [tensor1, tensor3, tensor2]
|
163 |
+
// Some strong enough constraints are:
|
164 |
+
// 1. every underlying tensor is contiguous in memory
|
165 |
+
// && nesting in ascending order
|
166 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
167 |
+
const at::Tensor storage_offsets_;
|
168 |
+
// NOTE: -1 here means the size is missing
|
169 |
+
// Optional to allow it to be computed lazily from nested.
|
170 |
+
// TODO: maybe we can remove this metadata since
|
171 |
+
// we can compute it from `nested_sizes_`
|
172 |
+
mutable c10::optional<std::vector<int64_t>> opt_sizes_;
|
173 |
+
|
174 |
+
template <typename VariableVersion>
|
175 |
+
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach_core(
|
176 |
+
VariableVersion&& version_counter,
|
177 |
+
bool allow_tensor_metadata_change) const;
|
178 |
+
|
179 |
+
/**
|
180 |
+
* Generates a non-nested key_set from a nested tensor.
|
181 |
+
*
|
182 |
+
* For many nested tensor kernel implementations a buffer tensor
|
183 |
+
* is generated and redispatched to a non-nested kernel this function
|
184 |
+
* generates the key set used by that buffer tensor
|
185 |
+
*
|
186 |
+
* @return Appropriate key set for non-nested tensor
|
187 |
+
*/
|
188 |
+
inline c10::DispatchKeySet generate_buffer_key_set() const {
|
189 |
+
auto buffer_key_set = this->key_set();
|
190 |
+
const bool Autograd = buffer_key_set.has_any(c10::autograd_dispatch_keyset);
|
191 |
+
// Remove nested tensor specific keys
|
192 |
+
buffer_key_set = buffer_key_set -
|
193 |
+
c10::DispatchKeySet{
|
194 |
+
c10::DispatchKey::NestedTensor,
|
195 |
+
c10::DispatchKey::AutogradNestedTensor};
|
196 |
+
|
197 |
+
// Add dense tensor specific keys
|
198 |
+
buffer_key_set =
|
199 |
+
buffer_key_set | c10::DispatchKeySet{c10::DispatchKey::Dense};
|
200 |
+
buffer_key_set = Autograd
|
201 |
+
? c10::DispatchKeySet{c10::DispatchKey::Autograd} | buffer_key_set
|
202 |
+
: buffer_key_set;
|
203 |
+
|
204 |
+
return buffer_key_set;
|
205 |
+
}
|
206 |
+
};
|
207 |
+
|
208 |
+
inline NestedTensorImpl* get_nested_tensor_impl_or_null(
|
209 |
+
const at::Tensor& tensor) {
|
210 |
+
if (tensor.is_nested()) {
|
211 |
+
return static_cast<NestedTensorImpl*>(tensor.unsafeGetTensorImpl());
|
212 |
+
}
|
213 |
+
return nullptr;
|
214 |
+
}
|
215 |
+
|
216 |
+
inline NestedTensorImpl* get_nested_tensor_impl(const at::Tensor& tensor) {
|
217 |
+
TORCH_CHECK(
|
218 |
+
tensor.is_nested(), "get_nested_tensor_impl requires a NestedTensor.");
|
219 |
+
return static_cast<NestedTensorImpl*>(tensor.unsafeGetTensorImpl());
|
220 |
+
}
|
221 |
+
|
222 |
+
inline bool nested_tensor_impl_is_contiguous(const NestedTensorImpl* nt) {
|
223 |
+
int64_t ntensors = nt->size(0);
|
224 |
+
if (ntensors == 0) {
|
225 |
+
return true;
|
226 |
+
}
|
227 |
+
const Tensor &sizemat = nt->get_nested_sizes(),
|
228 |
+
&stridemat = nt->get_nested_strides();
|
229 |
+
int64_t* offsets_ptr = nt->get_storage_offsets().data_ptr<int64_t>();
|
230 |
+
int64_t orig_dim = sizemat.size(1);
|
231 |
+
// nesting scalars
|
232 |
+
if (orig_dim == 0) {
|
233 |
+
// each scalar must be contiguous
|
234 |
+
// if there is blank memory between underlying scalars
|
235 |
+
for (int64_t i = 0; i < ntensors; i++) {
|
236 |
+
if (offsets_ptr[i] != i) {
|
237 |
+
return false;
|
238 |
+
}
|
239 |
+
}
|
240 |
+
}
|
241 |
+
// nesting tensors
|
242 |
+
else {
|
243 |
+
// if any underlying tensor is non-contiguous
|
244 |
+
const int64_t *sizemat_ptr = sizemat.data_ptr<int64_t>(),
|
245 |
+
*stridemat_ptr = stridemat.data_ptr<int64_t>();
|
246 |
+
for (int64_t i = 0; i < ntensors; i++) {
|
247 |
+
if (stridemat_ptr[orig_dim - 1] != 1) {
|
248 |
+
return false;
|
249 |
+
}
|
250 |
+
int64_t product = sizemat_ptr[orig_dim - 1];
|
251 |
+
for (int64_t j = orig_dim - 2; j >= 0; j--) {
|
252 |
+
if (stridemat_ptr[j] != product) {
|
253 |
+
return false;
|
254 |
+
}
|
255 |
+
product *= sizemat_ptr[j];
|
256 |
+
}
|
257 |
+
sizemat_ptr += orig_dim;
|
258 |
+
stridemat_ptr += orig_dim;
|
259 |
+
}
|
260 |
+
// if there is blank memory between underlying tensors
|
261 |
+
if (offsets_ptr[0] != 0) {
|
262 |
+
return false;
|
263 |
+
}
|
264 |
+
sizemat_ptr = sizemat.data_ptr<int64_t>();
|
265 |
+
stridemat_ptr = stridemat.data_ptr<int64_t>();
|
266 |
+
for (int64_t i = 1; i < ntensors; i++) {
|
267 |
+
if (offsets_ptr[i] !=
|
268 |
+
offsets_ptr[i - 1] + *sizemat_ptr * *stridemat_ptr) {
|
269 |
+
return false;
|
270 |
+
}
|
271 |
+
sizemat_ptr += orig_dim;
|
272 |
+
stridemat_ptr += orig_dim;
|
273 |
+
}
|
274 |
+
}
|
275 |
+
// everything is fine
|
276 |
+
return true;
|
277 |
+
}
|
278 |
+
|
279 |
+
inline const at::Tensor& get_nested_sizes(const at::Tensor& tensor) {
|
280 |
+
return get_nested_tensor_impl(tensor)->get_nested_sizes();
|
281 |
+
}
|
282 |
+
|
283 |
+
} // namespace at::native
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/NumericUtils.h
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#ifdef __HIPCC__
|
4 |
+
#include <hip/hip_runtime.h>
|
5 |
+
#endif
|
6 |
+
|
7 |
+
#include <c10/macros/Macros.h>
|
8 |
+
#include <c10/util/BFloat16.h>
|
9 |
+
#include <c10/util/Float8_e4m3fn.h>
|
10 |
+
#include <c10/util/Float8_e4m3fnuz.h>
|
11 |
+
#include <c10/util/Float8_e5m2.h>
|
12 |
+
#include <c10/util/Float8_e5m2fnuz.h>
|
13 |
+
#include <c10/util/Half.h>
|
14 |
+
#include <c10/util/complex.h>
|
15 |
+
|
16 |
+
#include <cmath>
|
17 |
+
#include <type_traits>
|
18 |
+
|
19 |
+
namespace at {
|
20 |
+
|
21 |
+
// std::isnan isn't performant to use on integral types; it will
|
22 |
+
// (uselessly) convert to floating point and then do the test.
|
23 |
+
// This function is.
|
24 |
+
|
25 |
+
template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
|
26 |
+
inline C10_HOST_DEVICE bool _isnan(T /*val*/) {
|
27 |
+
return false;
|
28 |
+
}
|
29 |
+
|
30 |
+
template <typename T, std::enable_if_t<std::is_floating_point_v<T>, int> = 0>
|
31 |
+
inline C10_HOST_DEVICE bool _isnan(T val) {
|
32 |
+
#if defined(__CUDACC__) || defined(__HIPCC__)
|
33 |
+
return ::isnan(val);
|
34 |
+
#else
|
35 |
+
return std::isnan(val);
|
36 |
+
#endif
|
37 |
+
}
|
38 |
+
|
39 |
+
template <typename T, std::enable_if_t<c10::is_complex<T>::value, int> = 0>
|
40 |
+
inline C10_HOST_DEVICE bool _isnan(T val) {
|
41 |
+
return std::isnan(val.real()) || std::isnan(val.imag());
|
42 |
+
}
|
43 |
+
|
44 |
+
template <typename T, std::enable_if_t<std::is_same_v<T, at::Half>, int> = 0>
|
45 |
+
inline C10_HOST_DEVICE bool _isnan(T val) {
|
46 |
+
return at::_isnan(static_cast<float>(val));
|
47 |
+
}
|
48 |
+
|
49 |
+
template <
|
50 |
+
typename T,
|
51 |
+
std::enable_if_t<std::is_same_v<T, at::BFloat16>, int> = 0>
|
52 |
+
inline C10_HOST_DEVICE bool _isnan(at::BFloat16 val) {
|
53 |
+
return at::_isnan(static_cast<float>(val));
|
54 |
+
}
|
55 |
+
|
56 |
+
inline C10_HOST_DEVICE bool _isnan(at::BFloat16 val) {
|
57 |
+
return at::_isnan(static_cast<float>(val));
|
58 |
+
}
|
59 |
+
|
60 |
+
template <
|
61 |
+
typename T,
|
62 |
+
std::enable_if_t<std::is_same_v<T, at::Float8_e5m2>, int> = 0>
|
63 |
+
inline C10_HOST_DEVICE bool _isnan(T val) {
|
64 |
+
return val.isnan();
|
65 |
+
}
|
66 |
+
|
67 |
+
template <
|
68 |
+
typename T,
|
69 |
+
std::enable_if_t<std::is_same_v<T, at::Float8_e4m3fn>, int> = 0>
|
70 |
+
inline C10_HOST_DEVICE bool _isnan(T val) {
|
71 |
+
return val.isnan();
|
72 |
+
}
|
73 |
+
|
74 |
+
template <
|
75 |
+
typename T,
|
76 |
+
std::enable_if_t<std::is_same_v<T, at::Float8_e5m2fnuz>, int> = 0>
|
77 |
+
inline C10_HOST_DEVICE bool _isnan(T val) {
|
78 |
+
return val.isnan();
|
79 |
+
}
|
80 |
+
|
81 |
+
template <
|
82 |
+
typename T,
|
83 |
+
std::enable_if_t<std::is_same_v<T, at::Float8_e4m3fnuz>, int> = 0>
|
84 |
+
inline C10_HOST_DEVICE bool _isnan(T val) {
|
85 |
+
return val.isnan();
|
86 |
+
}
|
87 |
+
|
88 |
+
// std::isinf isn't performant to use on integral types; it will
|
89 |
+
// (uselessly) convert to floating point and then do the test.
|
90 |
+
// This function is.
|
91 |
+
|
92 |
+
template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
|
93 |
+
inline C10_HOST_DEVICE bool _isinf(T /*val*/) {
|
94 |
+
return false;
|
95 |
+
}
|
96 |
+
|
97 |
+
template <typename T, std::enable_if_t<std::is_floating_point_v<T>, int> = 0>
|
98 |
+
inline C10_HOST_DEVICE bool _isinf(T val) {
|
99 |
+
#if defined(__CUDACC__) || defined(__HIPCC__)
|
100 |
+
return ::isinf(val);
|
101 |
+
#else
|
102 |
+
return std::isinf(val);
|
103 |
+
#endif
|
104 |
+
}
|
105 |
+
|
106 |
+
inline C10_HOST_DEVICE bool _isinf(at::Half val) {
|
107 |
+
return at::_isinf(static_cast<float>(val));
|
108 |
+
}
|
109 |
+
|
110 |
+
inline C10_HOST_DEVICE bool _isinf(at::BFloat16 val) {
|
111 |
+
return at::_isinf(static_cast<float>(val));
|
112 |
+
}
|
113 |
+
|
114 |
+
inline C10_HOST_DEVICE bool _isinf(at::Float8_e5m2 val) {
|
115 |
+
return val.isinf();
|
116 |
+
}
|
117 |
+
|
118 |
+
inline C10_HOST_DEVICE bool _isinf(at::Float8_e4m3fn val) {
|
119 |
+
return false;
|
120 |
+
}
|
121 |
+
|
122 |
+
inline C10_HOST_DEVICE bool _isinf(at::Float8_e5m2fnuz val) {
|
123 |
+
return false;
|
124 |
+
}
|
125 |
+
|
126 |
+
inline C10_HOST_DEVICE bool _isinf(at::Float8_e4m3fnuz val) {
|
127 |
+
return false;
|
128 |
+
}
|
129 |
+
|
130 |
+
template <typename T>
|
131 |
+
C10_HOST_DEVICE inline T exp(T x) {
|
132 |
+
static_assert(
|
133 |
+
!std::is_same_v<T, double>,
|
134 |
+
"this template must be used with float or less precise type");
|
135 |
+
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
|
136 |
+
// use __expf fast approximation for peak bandwidth
|
137 |
+
return __expf(x);
|
138 |
+
#else
|
139 |
+
return ::exp(x);
|
140 |
+
#endif
|
141 |
+
}
|
142 |
+
|
143 |
+
template <>
|
144 |
+
C10_HOST_DEVICE inline double exp<double>(double x) {
|
145 |
+
return ::exp(x);
|
146 |
+
}
|
147 |
+
|
148 |
+
template <typename T>
|
149 |
+
C10_HOST_DEVICE inline T log(T x) {
|
150 |
+
static_assert(
|
151 |
+
!std::is_same_v<T, double>,
|
152 |
+
"this template must be used with float or less precise type");
|
153 |
+
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
|
154 |
+
// use __logf fast approximation for peak bandwidth
|
155 |
+
return __logf(x);
|
156 |
+
#else
|
157 |
+
return ::log(x);
|
158 |
+
#endif
|
159 |
+
}
|
160 |
+
|
161 |
+
template <>
|
162 |
+
C10_HOST_DEVICE inline double log<double>(double x) {
|
163 |
+
return ::log(x);
|
164 |
+
}
|
165 |
+
|
166 |
+
template <typename T>
|
167 |
+
C10_HOST_DEVICE inline T log1p(T x) {
|
168 |
+
static_assert(
|
169 |
+
!std::is_same_v<T, double>,
|
170 |
+
"this template must be used with float or less precise type");
|
171 |
+
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
|
172 |
+
// use __logf fast approximation for peak bandwidth
|
173 |
+
// NOTE: There is no __log1pf so unfortunately we lose precision.
|
174 |
+
return __logf(1.0f + x);
|
175 |
+
#else
|
176 |
+
return ::log1p(x);
|
177 |
+
#endif
|
178 |
+
}
|
179 |
+
|
180 |
+
template <>
|
181 |
+
C10_HOST_DEVICE inline double log1p<double>(double x) {
|
182 |
+
return ::log1p(x);
|
183 |
+
}
|
184 |
+
|
185 |
+
template <typename T>
|
186 |
+
C10_HOST_DEVICE inline T tan(T x) {
|
187 |
+
static_assert(
|
188 |
+
!std::is_same_v<T, double>,
|
189 |
+
"this template must be used with float or less precise type");
|
190 |
+
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
|
191 |
+
// use __tanf fast approximation for peak bandwidth
|
192 |
+
return __tanf(x);
|
193 |
+
#else
|
194 |
+
return ::tan(x);
|
195 |
+
#endif
|
196 |
+
}
|
197 |
+
|
198 |
+
template <>
|
199 |
+
C10_HOST_DEVICE inline double tan<double>(double x) {
|
200 |
+
return ::tan(x);
|
201 |
+
}
|
202 |
+
|
203 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/OpMathType.h
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/ScalarType.h>
|
4 |
+
#include <c10/util/BFloat16.h>
|
5 |
+
#include <c10/util/Exception.h>
|
6 |
+
#include <c10/util/Float8_e4m3fn.h>
|
7 |
+
#include <c10/util/Float8_e4m3fnuz.h>
|
8 |
+
#include <c10/util/Float8_e5m2.h>
|
9 |
+
#include <c10/util/Float8_e5m2fnuz.h>
|
10 |
+
#include <c10/util/Half.h>
|
11 |
+
|
12 |
+
namespace at {
|
13 |
+
|
14 |
+
// For FP16 or BFloat16 inputs, ops should perform internal math in FP32.
|
15 |
+
template <typename scalar_t>
|
16 |
+
struct OpMathType {
|
17 |
+
using type = scalar_t;
|
18 |
+
};
|
19 |
+
template <>
|
20 |
+
struct OpMathType<at::Half> {
|
21 |
+
using type = float;
|
22 |
+
};
|
23 |
+
template <>
|
24 |
+
struct OpMathType<at::BFloat16> {
|
25 |
+
using type = float;
|
26 |
+
};
|
27 |
+
template <>
|
28 |
+
struct OpMathType<at::Float8_e5m2> {
|
29 |
+
using type = float;
|
30 |
+
};
|
31 |
+
template <>
|
32 |
+
struct OpMathType<at::Float8_e4m3fn> {
|
33 |
+
using type = float;
|
34 |
+
};
|
35 |
+
template <>
|
36 |
+
struct OpMathType<at::Float8_e5m2fnuz> {
|
37 |
+
using type = float;
|
38 |
+
};
|
39 |
+
template <>
|
40 |
+
struct OpMathType<at::Float8_e4m3fnuz> {
|
41 |
+
using type = float;
|
42 |
+
};
|
43 |
+
template <>
|
44 |
+
struct OpMathType<c10::complex<Half>> {
|
45 |
+
using type = c10::complex<float>;
|
46 |
+
};
|
47 |
+
|
48 |
+
template <typename T>
|
49 |
+
using opmath_type = typename OpMathType<T>::type;
|
50 |
+
|
51 |
+
namespace {
|
52 |
+
|
53 |
+
inline c10::ScalarType toOpMathType(const c10::ScalarType type) {
|
54 |
+
switch (type) {
|
55 |
+
#define DEFINE_CASE(scalar_t, TypeNum) \
|
56 |
+
case ScalarType::TypeNum: \
|
57 |
+
return CppTypeToScalarType<at::opmath_type<scalar_t>>::value;
|
58 |
+
|
59 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_CASE)
|
60 |
+
#undef DEFINE_CASE
|
61 |
+
|
62 |
+
default:
|
63 |
+
TORCH_INTERNAL_ASSERT(false, "Unrecognized ScalarType: ", type);
|
64 |
+
}
|
65 |
+
}
|
66 |
+
|
67 |
+
} // namespace
|
68 |
+
|
69 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/PTThreadPool.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Parallel.h>
|
4 |
+
#include <c10/core/thread_pool.h>
|
5 |
+
|
6 |
+
namespace at {
|
7 |
+
|
8 |
+
class TORCH_API PTThreadPool : public c10::ThreadPool {
|
9 |
+
public:
|
10 |
+
explicit PTThreadPool(int pool_size, int numa_node_id = -1)
|
11 |
+
: c10::ThreadPool(pool_size, numa_node_id, []() {
|
12 |
+
c10::setThreadName("PTThreadPool");
|
13 |
+
at::init_num_threads();
|
14 |
+
}) {}
|
15 |
+
};
|
16 |
+
|
17 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ParallelFuture.h
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/ivalue.h>
|
4 |
+
#include <c10/macros/Macros.h>
|
5 |
+
#include <functional>
|
6 |
+
|
7 |
+
namespace at {
|
8 |
+
|
9 |
+
// Launches intra-op parallel task, returns a future
|
10 |
+
TORCH_API c10::intrusive_ptr<c10::ivalue::Future> intraop_launch_future(
|
11 |
+
std::function<void()> func);
|
12 |
+
|
13 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ParallelNativeTBB.h
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <atomic>
|
4 |
+
#include <cstddef>
|
5 |
+
#include <exception>
|
6 |
+
|
7 |
+
#include <c10/util/Exception.h>
|
8 |
+
|
9 |
+
#ifdef _WIN32
|
10 |
+
#ifndef WIN32_LEAN_AND_MEAN
|
11 |
+
#define WIN32_LEAN_AND_MEAN
|
12 |
+
#endif
|
13 |
+
#endif
|
14 |
+
#include <tbb/tbb.h>
|
15 |
+
|
16 |
+
#define INTRA_OP_PARALLEL
|
17 |
+
|
18 |
+
namespace at::internal {
|
19 |
+
|
20 |
+
template <typename F>
|
21 |
+
inline void invoke_parallel(
|
22 |
+
const int64_t begin,
|
23 |
+
const int64_t end,
|
24 |
+
const int64_t grain_size,
|
25 |
+
const F& f) {
|
26 |
+
// Choose number of tasks based on grain size and number of threads.
|
27 |
+
int64_t chunk_size = divup((end - begin), get_num_threads());
|
28 |
+
// Make sure each task is at least grain_size size.
|
29 |
+
chunk_size = std::max(grain_size, chunk_size);
|
30 |
+
|
31 |
+
std::atomic_flag err_flag = ATOMIC_FLAG_INIT;
|
32 |
+
std::exception_ptr eptr;
|
33 |
+
tbb::parallel_for(
|
34 |
+
tbb::blocked_range<int64_t>(begin, end, chunk_size),
|
35 |
+
[&eptr, &err_flag, f](const tbb::blocked_range<int64_t>& r) {
|
36 |
+
try {
|
37 |
+
internal::ThreadIdGuard tid_guard(
|
38 |
+
tbb::this_task_arena::current_thread_index());
|
39 |
+
f(r.begin(), r.end());
|
40 |
+
} catch (...) {
|
41 |
+
if (!err_flag.test_and_set()) {
|
42 |
+
eptr = std::current_exception();
|
43 |
+
}
|
44 |
+
}
|
45 |
+
},
|
46 |
+
tbb::static_partitioner{});
|
47 |
+
if (eptr) {
|
48 |
+
std::rethrow_exception(eptr);
|
49 |
+
}
|
50 |
+
}
|
51 |
+
|
52 |
+
} // namespace at::internal
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ParallelOpenMP.h
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <algorithm>
|
4 |
+
#include <atomic>
|
5 |
+
#include <cstddef>
|
6 |
+
#include <exception>
|
7 |
+
|
8 |
+
#ifdef _OPENMP
|
9 |
+
#define INTRA_OP_PARALLEL
|
10 |
+
|
11 |
+
#include <omp.h>
|
12 |
+
#endif
|
13 |
+
|
14 |
+
#ifdef _OPENMP
|
15 |
+
namespace at::internal {
|
16 |
+
template <typename F>
|
17 |
+
inline void invoke_parallel(
|
18 |
+
int64_t begin,
|
19 |
+
int64_t end,
|
20 |
+
int64_t grain_size,
|
21 |
+
const F& f) {
|
22 |
+
std::atomic_flag err_flag = ATOMIC_FLAG_INIT;
|
23 |
+
std::exception_ptr eptr;
|
24 |
+
|
25 |
+
#pragma omp parallel
|
26 |
+
{
|
27 |
+
// choose number of tasks based on grain size and number of threads
|
28 |
+
// can't use num_threads clause due to bugs in GOMP's thread pool (See
|
29 |
+
// #32008)
|
30 |
+
int64_t num_threads = omp_get_num_threads();
|
31 |
+
if (grain_size > 0) {
|
32 |
+
num_threads = std::min(num_threads, divup((end - begin), grain_size));
|
33 |
+
}
|
34 |
+
|
35 |
+
int64_t tid = omp_get_thread_num();
|
36 |
+
int64_t chunk_size = divup((end - begin), num_threads);
|
37 |
+
int64_t begin_tid = begin + tid * chunk_size;
|
38 |
+
if (begin_tid < end) {
|
39 |
+
try {
|
40 |
+
internal::ThreadIdGuard tid_guard(tid);
|
41 |
+
f(begin_tid, std::min(end, chunk_size + begin_tid));
|
42 |
+
} catch (...) {
|
43 |
+
if (!err_flag.test_and_set()) {
|
44 |
+
eptr = std::current_exception();
|
45 |
+
}
|
46 |
+
}
|
47 |
+
}
|
48 |
+
}
|
49 |
+
if (eptr) {
|
50 |
+
std::rethrow_exception(eptr);
|
51 |
+
}
|
52 |
+
}
|
53 |
+
} // namespace at::internal
|
54 |
+
#endif // _OPENMP
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/RedispatchFunctions.h
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/RegistrationDeclarations.h
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Scalar.h
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Scalar.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/SmallVector.h
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/util/SmallVector.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/SparseTensorImpl.h
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Tensor.h>
|
4 |
+
#include <c10/core/TensorImpl.h>
|
5 |
+
#include <c10/util/Exception.h>
|
6 |
+
#include <c10/util/irange.h>
|
7 |
+
|
8 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
9 |
+
#include <ATen/Functions.h>
|
10 |
+
#else
|
11 |
+
#include <ATen/ops/empty.h>
|
12 |
+
#include <ATen/ops/resize.h>
|
13 |
+
#endif
|
14 |
+
|
15 |
+
namespace at {
|
16 |
+
struct TORCH_API SparseTensorImpl : public TensorImpl {
|
17 |
+
// Stored in COO format, indices + values.
|
18 |
+
|
19 |
+
// INVARIANTS:
|
20 |
+
// sparse_dim: range [0, len(shape)]; sparse_dim + dense_dim = len(shape)
|
21 |
+
// dense_dim : range [0, len(shape)]; sparse_dim + dense_dim = len(shape)
|
22 |
+
// _indices.shape: dimensionality: 2, shape: (sparse_dim, nnz)
|
23 |
+
// _values.shape: dimensionality: 1 + dense_dim. shape: (nnz,
|
24 |
+
// shape[sparse_dim:])
|
25 |
+
|
26 |
+
int64_t sparse_dim_ = 0; // number of sparse dimensions
|
27 |
+
int64_t dense_dim_ = 0; // number of dense dimensions
|
28 |
+
|
29 |
+
Tensor indices_; // always a LongTensor
|
30 |
+
Tensor values_;
|
31 |
+
|
32 |
+
// A sparse tensor is 'coalesced' if every index occurs at most once in
|
33 |
+
// the indices tensor, and the indices are in sorted order. (This means
|
34 |
+
// that it is very easy to convert a coalesced tensor to CSR format: you
|
35 |
+
// need only compute CSR format indices.)
|
36 |
+
//
|
37 |
+
// Most math operations can only be performed on coalesced sparse tensors,
|
38 |
+
// because many algorithms proceed by merging two sorted lists (of indices).
|
39 |
+
bool coalesced_ = false;
|
40 |
+
|
41 |
+
// compute_numel with integer multiplication overflow check, see gh-57542
|
42 |
+
void refresh_numel() {
|
43 |
+
TensorImpl::safe_refresh_numel();
|
44 |
+
}
|
45 |
+
|
46 |
+
public:
|
47 |
+
// Public for now...
|
48 |
+
explicit SparseTensorImpl(at::DispatchKeySet, const caffe2::TypeMeta);
|
49 |
+
|
50 |
+
void release_resources() override;
|
51 |
+
|
52 |
+
int64_t nnz() const {
|
53 |
+
return values_.size(0);
|
54 |
+
}
|
55 |
+
|
56 |
+
c10::SymInt sym_nnz() const {
|
57 |
+
return values_.sym_size(0);
|
58 |
+
}
|
59 |
+
int64_t sparse_dim() const {
|
60 |
+
return sparse_dim_;
|
61 |
+
}
|
62 |
+
int64_t dense_dim() const {
|
63 |
+
return dense_dim_;
|
64 |
+
}
|
65 |
+
bool coalesced() const {
|
66 |
+
return coalesced_;
|
67 |
+
}
|
68 |
+
Tensor indices() const {
|
69 |
+
return indices_;
|
70 |
+
}
|
71 |
+
Tensor values() const {
|
72 |
+
return values_;
|
73 |
+
}
|
74 |
+
|
75 |
+
void set_size(int64_t dim, int64_t new_size) override;
|
76 |
+
void set_stride(int64_t dim, int64_t new_stride) override;
|
77 |
+
void set_storage_offset(int64_t storage_offset) override;
|
78 |
+
|
79 |
+
#ifdef DEBUG
|
80 |
+
bool has_storage() const override;
|
81 |
+
#endif
|
82 |
+
|
83 |
+
// WARNING: This function does NOT preserve invariants of sparse_dim/dense_dim
|
84 |
+
// with respect to indices and values
|
85 |
+
void raw_resize_(int64_t sparse_dim, int64_t dense_dim, IntArrayRef size) {
|
86 |
+
TORCH_CHECK(
|
87 |
+
allow_tensor_metadata_change(),
|
88 |
+
"raw_resize_ ",
|
89 |
+
err_msg_tensor_metadata_change_not_allowed);
|
90 |
+
TORCH_CHECK(
|
91 |
+
!has_symbolic_sizes_strides_,
|
92 |
+
"raw_resize_ called on tensor with symbolic shape")
|
93 |
+
set_sizes_and_strides(size, std::vector<int64_t>(size.size()));
|
94 |
+
sparse_dim_ = sparse_dim;
|
95 |
+
dense_dim_ = dense_dim;
|
96 |
+
refresh_numel();
|
97 |
+
}
|
98 |
+
|
99 |
+
// NOTE: This function preserves invariants of sparse_dim/dense_dim with
|
100 |
+
// respect to indices and values.
|
101 |
+
//
|
102 |
+
// NOTE: This function supports the following cases:
|
103 |
+
// 1. When we keep the number of dense dimensions unchanged, and NOT shrinking
|
104 |
+
// the size of any of the dense dimensions.
|
105 |
+
// 2. When we keep the number of sparse dimensions unchanged, and NOT
|
106 |
+
// shrinking the size of any of the sparse dimensions.
|
107 |
+
// 3. When the sparse tensor has zero nnz, in which case we are free to change
|
108 |
+
// the shapes of both its sparse and dense dimensions.
|
109 |
+
//
|
110 |
+
// This function DOESN'T support (and will throw an error) the following
|
111 |
+
// cases:
|
112 |
+
// 1. When we attempt to change the number of sparse dimensions on a non-empty
|
113 |
+
// sparse tensor (such an operation will invalidate the indices stored).
|
114 |
+
// 2. When we attempt to change the number of dense dimensions on a non-empty
|
115 |
+
// sparse tensor (such an operation will behave differently from an equivalent
|
116 |
+
// dense tensor's resize method, and for API consistency we don't support it).
|
117 |
+
// 3. When we attempt to shrink the size of any of the dense dimensions on a
|
118 |
+
// non-empty sparse tensor (such an operation will behave differently from an
|
119 |
+
// equivalent dense tensor's resize method, and for API consistency we don't
|
120 |
+
// support it).
|
121 |
+
// 4. When we attempt to shrink the size of any of the sparse dimensions on a
|
122 |
+
// non-empty sparse tensor (this could make some of the stored indices
|
123 |
+
// out-of-bound and thus unsafe).
|
124 |
+
template <typename T>
|
125 |
+
void _resize_(int64_t sparse_dim, int64_t dense_dim, ArrayRef<T> size) {
|
126 |
+
TORCH_CHECK(
|
127 |
+
allow_tensor_metadata_change(),
|
128 |
+
"resize_ ",
|
129 |
+
err_msg_tensor_metadata_change_not_allowed);
|
130 |
+
TORCH_CHECK(
|
131 |
+
!has_symbolic_sizes_strides_,
|
132 |
+
"resize_ called on tensor with symbolic shape")
|
133 |
+
TORCH_CHECK(
|
134 |
+
sparse_dim + dense_dim == static_cast<int64_t>(size.size()),
|
135 |
+
"number of dimensions must be sparse_dim (",
|
136 |
+
sparse_dim,
|
137 |
+
") + dense_dim (",
|
138 |
+
dense_dim,
|
139 |
+
"), but got ",
|
140 |
+
size.size());
|
141 |
+
if (nnz() > 0) {
|
142 |
+
auto alt_options_msg =
|
143 |
+
"You could try the following options:\n\
|
144 |
+
1. If you need an empty sparse tensor of this size, call `x = torch.sparse_coo_tensor(size)`.\n\
|
145 |
+
2. If you need to resize this tensor, you have the following options:\n\
|
146 |
+
1. For both sparse and dense dimensions, keep the number of them constant and the size of them non-shrinking, and then try the same call again.\n\
|
147 |
+
2. Or, create a new sparse tensor with the correct indices and values from this sparse tensor.";
|
148 |
+
|
149 |
+
TORCH_CHECK(
|
150 |
+
sparse_dim == sparse_dim_,
|
151 |
+
"changing the number of sparse dimensions (from ",
|
152 |
+
sparse_dim_,
|
153 |
+
" to ",
|
154 |
+
sparse_dim,
|
155 |
+
") on a non-empty sparse tensor is not supported.\n",
|
156 |
+
alt_options_msg);
|
157 |
+
|
158 |
+
TORCH_CHECK(
|
159 |
+
dense_dim == dense_dim_,
|
160 |
+
"changing the number of dense dimensions (from ",
|
161 |
+
dense_dim_,
|
162 |
+
" to ",
|
163 |
+
dense_dim,
|
164 |
+
") on a non-empty sparse tensor is not supported.\n",
|
165 |
+
alt_options_msg);
|
166 |
+
|
167 |
+
bool shrinking_sparse_dims = false;
|
168 |
+
bool shrinking_dense_dim = false;
|
169 |
+
auto sparse_size_original = generic_sizes<T>().slice(0, sparse_dim);
|
170 |
+
auto sparse_size_new = size.slice(0, sparse_dim);
|
171 |
+
for (const auto i : c10::irange(sparse_dim)) {
|
172 |
+
if (sparse_size_new[i] < sparse_size_original[i]) {
|
173 |
+
shrinking_sparse_dims = true;
|
174 |
+
break;
|
175 |
+
}
|
176 |
+
}
|
177 |
+
auto dense_size_original = generic_sizes<T>().slice(sparse_dim);
|
178 |
+
auto dense_size_new = size.slice(sparse_dim);
|
179 |
+
for (const auto i : c10::irange(dense_dim)) {
|
180 |
+
if (dense_size_new[i] < dense_size_original[i]) {
|
181 |
+
shrinking_dense_dim = true;
|
182 |
+
break;
|
183 |
+
}
|
184 |
+
}
|
185 |
+
|
186 |
+
TORCH_CHECK(
|
187 |
+
!shrinking_sparse_dims,
|
188 |
+
"shrinking the size of sparse dimensions (from ",
|
189 |
+
sparse_size_original,
|
190 |
+
" to ",
|
191 |
+
sparse_size_new,
|
192 |
+
") on a non-empty sparse tensor is not supported.\n",
|
193 |
+
alt_options_msg);
|
194 |
+
|
195 |
+
TORCH_CHECK(
|
196 |
+
!shrinking_dense_dim,
|
197 |
+
"shrinking the size of dense dimensions (from ",
|
198 |
+
dense_size_original,
|
199 |
+
" to ",
|
200 |
+
dense_size_new,
|
201 |
+
") on a non-empty sparse tensor is not supported.\n",
|
202 |
+
alt_options_msg);
|
203 |
+
}
|
204 |
+
|
205 |
+
auto sizes_and_strides = generic_sizes<T>();
|
206 |
+
const bool size_equals_sizes = std::equal(
|
207 |
+
size.begin(),
|
208 |
+
size.end(),
|
209 |
+
sizes_and_strides.begin(),
|
210 |
+
sizes_and_strides.end());
|
211 |
+
if ((!size_equals_sizes) || (sparse_dim != sparse_dim_) ||
|
212 |
+
(dense_dim != dense_dim_)) {
|
213 |
+
auto nnz = at::symint::sizes<T>(values())[0];
|
214 |
+
std::vector<T> values_size = {nnz};
|
215 |
+
auto dense_size = size.slice(sparse_dim);
|
216 |
+
values_size.insert(
|
217 |
+
values_size.end(), dense_size.begin(), dense_size.end());
|
218 |
+
at::symint::resize_<T>(values_, values_size);
|
219 |
+
at::symint::resize_<T>(indices_, {T(sparse_dim), nnz});
|
220 |
+
}
|
221 |
+
|
222 |
+
if (!size_equals_sizes) {
|
223 |
+
set_sizes_and_strides(size, std::vector<T>(size.size()));
|
224 |
+
}
|
225 |
+
sparse_dim_ = sparse_dim;
|
226 |
+
dense_dim_ = dense_dim;
|
227 |
+
refresh_numel();
|
228 |
+
}
|
229 |
+
|
230 |
+
void resize_(int64_t sparse_dim, int64_t dense_dim, ArrayRef<int64_t> size) {
|
231 |
+
return _resize_(sparse_dim, dense_dim, size);
|
232 |
+
}
|
233 |
+
|
234 |
+
void resize_(
|
235 |
+
int64_t sparse_dim,
|
236 |
+
int64_t dense_dim,
|
237 |
+
ArrayRef<c10::SymInt> size) {
|
238 |
+
return _resize_(sparse_dim, dense_dim, size);
|
239 |
+
}
|
240 |
+
|
241 |
+
// NOTE: this function will resize the sparse tensor and also set `indices`
|
242 |
+
// and `values` to empty.
|
243 |
+
void resize_and_clear_(
|
244 |
+
int64_t sparse_dim,
|
245 |
+
int64_t dense_dim,
|
246 |
+
IntArrayRef size) {
|
247 |
+
TORCH_CHECK(
|
248 |
+
allow_tensor_metadata_change(),
|
249 |
+
"resize_and_clear_ ",
|
250 |
+
err_msg_tensor_metadata_change_not_allowed);
|
251 |
+
TORCH_CHECK(
|
252 |
+
!has_symbolic_sizes_strides_,
|
253 |
+
"resize_and_clear_ called on tensor with symbolic shape")
|
254 |
+
TORCH_CHECK(
|
255 |
+
sparse_dim + dense_dim == static_cast<int64_t>(size.size()),
|
256 |
+
"number of dimensions must be sparse_dim (",
|
257 |
+
sparse_dim,
|
258 |
+
") + dense_dim (",
|
259 |
+
dense_dim,
|
260 |
+
"), but got ",
|
261 |
+
size.size());
|
262 |
+
|
263 |
+
set_sizes_and_strides(size, std::vector<int64_t>(size.size()));
|
264 |
+
sparse_dim_ = sparse_dim;
|
265 |
+
dense_dim_ = dense_dim;
|
266 |
+
|
267 |
+
auto empty_indices = at::empty({sparse_dim, 0}, indices().options());
|
268 |
+
std::vector<int64_t> values_size = {0};
|
269 |
+
auto dense_size = sizes().slice(sparse_dim);
|
270 |
+
values_size.insert(values_size.end(), dense_size.begin(), dense_size.end());
|
271 |
+
auto empty_values = at::empty(values_size, values().options());
|
272 |
+
set_indices_and_values_unsafe(empty_indices, empty_values);
|
273 |
+
refresh_numel();
|
274 |
+
}
|
275 |
+
|
276 |
+
void set_coalesced(bool coalesced) {
|
277 |
+
TORCH_CHECK(
|
278 |
+
allow_tensor_metadata_change(),
|
279 |
+
"set_coalesced ",
|
280 |
+
err_msg_tensor_metadata_change_not_allowed);
|
281 |
+
coalesced_ = coalesced;
|
282 |
+
}
|
283 |
+
|
284 |
+
// NOTE: this function is only used internally and not exposed to Python
|
285 |
+
// frontend
|
286 |
+
void set_nnz_and_narrow(int64_t new_nnz) {
|
287 |
+
TORCH_CHECK(
|
288 |
+
allow_tensor_metadata_change(),
|
289 |
+
"set_nnz_and_narrow ",
|
290 |
+
err_msg_tensor_metadata_change_not_allowed);
|
291 |
+
AT_ASSERT(new_nnz <= nnz());
|
292 |
+
indices_ = indices_.narrow(1, 0, new_nnz);
|
293 |
+
values_ = values_.narrow(0, 0, new_nnz);
|
294 |
+
if (new_nnz < 2) {
|
295 |
+
coalesced_ = true;
|
296 |
+
}
|
297 |
+
}
|
298 |
+
|
299 |
+
// Takes indices and values and directly puts them into the sparse tensor, no
|
300 |
+
// copy. NOTE: this function is unsafe because it doesn't check whether any
|
301 |
+
// indices are out of boundaries of `sizes`, so it should ONLY be used where
|
302 |
+
// we know that the indices are guaranteed to be within bounds. This used to
|
303 |
+
// be called THSTensor_(_move) NB: This used to be able to avoid a refcount
|
304 |
+
// bump, but I was too lazy to make it happen
|
305 |
+
void set_indices_and_values_unsafe(
|
306 |
+
const Tensor& indices,
|
307 |
+
const Tensor& values);
|
308 |
+
|
309 |
+
/**
|
310 |
+
* Return a TensorImpl that is a shallow-copy of this TensorImpl.
|
311 |
+
*
|
312 |
+
* For usage of `version_counter` and `allow_tensor_metadata_change`,
|
313 |
+
* see NOTE [ TensorImpl Shallow-Copying ].
|
314 |
+
*/
|
315 |
+
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
|
316 |
+
const c10::VariableVersion& version_counter,
|
317 |
+
bool allow_tensor_metadata_change) const override {
|
318 |
+
auto impl = c10::make_intrusive<SparseTensorImpl>(key_set(), dtype());
|
319 |
+
copy_tensor_metadata(
|
320 |
+
/*src_sparse_impl=*/this,
|
321 |
+
/*dest_sparse_impl=*/impl.get(),
|
322 |
+
/*version_counter=*/version_counter,
|
323 |
+
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
|
324 |
+
impl->refresh_numel();
|
325 |
+
return impl;
|
326 |
+
}
|
327 |
+
|
328 |
+
/**
|
329 |
+
* Return a TensorImpl that is a shallow-copy of this TensorImpl.
|
330 |
+
*
|
331 |
+
* For usage of `version_counter` and `allow_tensor_metadata_change`,
|
332 |
+
* see NOTE [ TensorImpl Shallow-Copying ].
|
333 |
+
*/
|
334 |
+
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
|
335 |
+
c10::VariableVersion&& version_counter,
|
336 |
+
bool allow_tensor_metadata_change) const override {
|
337 |
+
auto impl = c10::make_intrusive<SparseTensorImpl>(key_set(), dtype());
|
338 |
+
copy_tensor_metadata(
|
339 |
+
/*src_sparse_impl=*/this,
|
340 |
+
/*dest_sparse_impl=*/impl.get(),
|
341 |
+
/*version_counter=*/std::move(version_counter),
|
342 |
+
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
|
343 |
+
impl->refresh_numel();
|
344 |
+
return impl;
|
345 |
+
}
|
346 |
+
|
347 |
+
/**
|
348 |
+
* Shallow-copies data from another TensorImpl into this TensorImpl.
|
349 |
+
*
|
350 |
+
* For why this function doesn't check this TensorImpl's
|
351 |
+
* `allow_tensor_metadata_change_`, see NOTE [ TensorImpl Shallow-Copying ].
|
352 |
+
*/
|
353 |
+
void shallow_copy_from(const c10::intrusive_ptr<TensorImpl>& impl) override {
|
354 |
+
AT_ASSERT(has_compatible_shallow_copy_type(impl->key_set()));
|
355 |
+
auto sparse_impl = static_cast<const SparseTensorImpl*>(impl.get());
|
356 |
+
copy_tensor_metadata(
|
357 |
+
/*src_sparse_impl=*/sparse_impl,
|
358 |
+
/*dest_sparse_impl=*/this,
|
359 |
+
/*version_counter=*/version_counter(),
|
360 |
+
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change());
|
361 |
+
refresh_numel();
|
362 |
+
}
|
363 |
+
|
364 |
+
private:
|
365 |
+
explicit SparseTensorImpl(
|
366 |
+
at::DispatchKeySet,
|
367 |
+
const caffe2::TypeMeta,
|
368 |
+
at::Tensor indices,
|
369 |
+
at::Tensor values);
|
370 |
+
|
371 |
+
/**
|
372 |
+
* Copy the tensor metadata fields (e.g. sizes / strides / storage pointer /
|
373 |
+
* storage_offset) from one TensorImpl to another TensorImpl.
|
374 |
+
*
|
375 |
+
* For usage of `version_counter` and `allow_tensor_metadata_change`, see NOTE
|
376 |
+
* [ TensorImpl Shallow-Copying ].
|
377 |
+
*/
|
378 |
+
static void copy_tensor_metadata(
|
379 |
+
const SparseTensorImpl* src_sparse_impl,
|
380 |
+
SparseTensorImpl* dest_sparse_impl,
|
381 |
+
c10::VariableVersion version_counter,
|
382 |
+
bool allow_tensor_metadata_change) {
|
383 |
+
TensorImpl::copy_tensor_metadata(
|
384 |
+
src_sparse_impl,
|
385 |
+
dest_sparse_impl,
|
386 |
+
std::move(version_counter),
|
387 |
+
allow_tensor_metadata_change);
|
388 |
+
|
389 |
+
// Sparse-specific fields
|
390 |
+
dest_sparse_impl->sparse_dim_ = src_sparse_impl->sparse_dim();
|
391 |
+
dest_sparse_impl->dense_dim_ = src_sparse_impl->dense_dim();
|
392 |
+
dest_sparse_impl->indices_ = src_sparse_impl->indices();
|
393 |
+
dest_sparse_impl->values_ = src_sparse_impl->values();
|
394 |
+
dest_sparse_impl->coalesced_ = src_sparse_impl->coalesced();
|
395 |
+
}
|
396 |
+
|
397 |
+
const char* tensorimpl_type_name() const override;
|
398 |
+
};
|
399 |
+
|
400 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorGeometry.h
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/TensorBase.h>
|
4 |
+
#include <c10/core/WrapDimMinimal.h>
|
5 |
+
|
6 |
+
namespace at {
|
7 |
+
|
8 |
+
// Return if the tensor geometry represented by `sizes` and `strides` is
|
9 |
+
// contiguous Although we cache is_contiguous in tensor now, this is till useful
|
10 |
+
// because it allows checking if a particular geometry is contiguous without
|
11 |
+
// explicitly constructing a tensor, e.g., when you want to choose a kernel
|
12 |
+
// strategy based on whether a subgeometry is contiguous.
|
13 |
+
TORCH_API bool geometry_is_contiguous(IntArrayRef sizes, IntArrayRef strides);
|
14 |
+
|
15 |
+
struct TORCH_API TensorGeometry {
|
16 |
+
TensorGeometry() = default;
|
17 |
+
|
18 |
+
explicit TensorGeometry(c10::SymIntArrayRef sizes)
|
19 |
+
: sizes_(sizes.vec()),
|
20 |
+
strides_(sizes.size()),
|
21 |
+
has_symbolic_sizes_strides_(
|
22 |
+
!c10::asIntArrayRefSlowOpt(sizes).has_value()) {
|
23 |
+
int64_t dim = static_cast<int64_t>(sizes.size());
|
24 |
+
c10::SymInt expected_stride = 1;
|
25 |
+
for (int64_t i = dim - 1; i >= 0; i--) {
|
26 |
+
strides_[i] = expected_stride;
|
27 |
+
expected_stride *= sizes_[i];
|
28 |
+
}
|
29 |
+
numel_ = expected_stride;
|
30 |
+
}
|
31 |
+
|
32 |
+
explicit TensorGeometry(const TensorBase& t)
|
33 |
+
: sizes_(t.sym_sizes().vec()),
|
34 |
+
strides_(t.sym_strides().vec()),
|
35 |
+
storage_offset_(t.sym_storage_offset()),
|
36 |
+
numel_(t.sym_numel()),
|
37 |
+
has_symbolic_sizes_strides_(
|
38 |
+
t.unsafeGetTensorImpl()->has_symbolic_sizes_strides()) {}
|
39 |
+
|
40 |
+
// true if the tensor is contiguous
|
41 |
+
bool is_contiguous() const;
|
42 |
+
|
43 |
+
int64_t dim() const {
|
44 |
+
return static_cast<int64_t>(sizes_.size());
|
45 |
+
}
|
46 |
+
|
47 |
+
int64_t size(int64_t dim) const {
|
48 |
+
TORCH_INTERNAL_ASSERT(!has_symbolic_sizes_strides_);
|
49 |
+
dim = c10::maybe_wrap_dim(dim, this->dim());
|
50 |
+
return sizes_.at(static_cast<size_t>(dim)).as_int_unchecked();
|
51 |
+
}
|
52 |
+
c10::IntArrayRef sizes() const {
|
53 |
+
TORCH_INTERNAL_ASSERT(!has_symbolic_sizes_strides_);
|
54 |
+
return c10::asIntArrayRefUnchecked(sizes_);
|
55 |
+
}
|
56 |
+
int64_t stride(int64_t dim) const {
|
57 |
+
TORCH_INTERNAL_ASSERT(!has_symbolic_sizes_strides_);
|
58 |
+
dim = c10::maybe_wrap_dim(dim, this->dim());
|
59 |
+
return strides_.at(static_cast<size_t>(dim)).as_int_unchecked();
|
60 |
+
}
|
61 |
+
c10::IntArrayRef strides() const {
|
62 |
+
TORCH_INTERNAL_ASSERT(!has_symbolic_sizes_strides_);
|
63 |
+
return c10::asIntArrayRefUnchecked(strides_);
|
64 |
+
}
|
65 |
+
int64_t storage_offset() const {
|
66 |
+
TORCH_INTERNAL_ASSERT(!has_symbolic_sizes_strides_);
|
67 |
+
return storage_offset_.as_int_unchecked();
|
68 |
+
}
|
69 |
+
int64_t numel() const {
|
70 |
+
TORCH_INTERNAL_ASSERT(!has_symbolic_sizes_strides_);
|
71 |
+
return numel_.as_int_unchecked();
|
72 |
+
}
|
73 |
+
|
74 |
+
c10::SymInt sym_size(int64_t dim) const {
|
75 |
+
dim = c10::maybe_wrap_dim(dim, this->dim());
|
76 |
+
return sizes_.at(static_cast<size_t>(dim));
|
77 |
+
}
|
78 |
+
c10::SymIntArrayRef sym_sizes() const {
|
79 |
+
return sizes_;
|
80 |
+
}
|
81 |
+
c10::SymInt sym_stride(int64_t dim) const {
|
82 |
+
dim = c10::maybe_wrap_dim(dim, this->dim());
|
83 |
+
return strides_.at(static_cast<size_t>(dim));
|
84 |
+
}
|
85 |
+
c10::SymIntArrayRef sym_strides() const {
|
86 |
+
return strides_;
|
87 |
+
}
|
88 |
+
c10::SymInt sym_storage_offset() const {
|
89 |
+
return storage_offset_;
|
90 |
+
}
|
91 |
+
c10::SymInt sym_numel() const {
|
92 |
+
return numel_;
|
93 |
+
}
|
94 |
+
|
95 |
+
TensorGeometry transpose(int64_t dim0, int64_t dim1) {
|
96 |
+
TensorGeometry r = *this; // copy
|
97 |
+
TORCH_CHECK(
|
98 |
+
dim0 < dim(),
|
99 |
+
"transpose: dim0=",
|
100 |
+
dim0,
|
101 |
+
" out of range (dim=",
|
102 |
+
dim(),
|
103 |
+
")")
|
104 |
+
TORCH_CHECK(
|
105 |
+
dim1 < dim(),
|
106 |
+
"transpose: dim1=",
|
107 |
+
dim1,
|
108 |
+
" out of range (dim=",
|
109 |
+
dim(),
|
110 |
+
")")
|
111 |
+
std::swap(r.sizes_[dim0], r.sizes_[dim1]);
|
112 |
+
std::swap(r.strides_[dim0], r.strides_[dim1]);
|
113 |
+
return r;
|
114 |
+
}
|
115 |
+
|
116 |
+
std::vector<c10::SymInt>& mutable_sizes() {
|
117 |
+
return sizes_;
|
118 |
+
}
|
119 |
+
std::vector<c10::SymInt>& mutable_strides() {
|
120 |
+
return strides_;
|
121 |
+
}
|
122 |
+
c10::SymInt& mutable_storage_offset() {
|
123 |
+
return storage_offset_;
|
124 |
+
}
|
125 |
+
void recompute() {
|
126 |
+
// recalculate numel after a change
|
127 |
+
c10::SymInt numel = 1;
|
128 |
+
for (const auto& i : sizes_) {
|
129 |
+
numel = numel * i;
|
130 |
+
}
|
131 |
+
numel_ = std::move(numel);
|
132 |
+
has_symbolic_sizes_strides_ =
|
133 |
+
!c10::asIntArrayRefSlowOpt(sizes_).has_value();
|
134 |
+
}
|
135 |
+
|
136 |
+
private:
|
137 |
+
std::vector<c10::SymInt> sizes_;
|
138 |
+
std::vector<c10::SymInt> strides_;
|
139 |
+
c10::SymInt storage_offset_;
|
140 |
+
c10::SymInt numel_;
|
141 |
+
bool has_symbolic_sizes_strides_{false};
|
142 |
+
};
|
143 |
+
|
144 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorIndexing.h
ADDED
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ExpandUtils.h>
|
4 |
+
#include <ATen/ScalarOps.h>
|
5 |
+
#include <ATen/core/Tensor.h>
|
6 |
+
#include <ATen/core/TensorBody.h>
|
7 |
+
#include <c10/core/SymInt.h>
|
8 |
+
#include <c10/util/Optional.h>
|
9 |
+
#include <c10/util/irange.h>
|
10 |
+
|
11 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
12 |
+
#include <ATen/Functions.h>
|
13 |
+
#include <ATen/NativeFunctions.h>
|
14 |
+
#else
|
15 |
+
#include <ATen/ops/alias.h>
|
16 |
+
#include <ATen/ops/empty.h>
|
17 |
+
#include <ATen/ops/scalar_tensor.h>
|
18 |
+
#include <ATen/ops/zeros.h>
|
19 |
+
#endif
|
20 |
+
|
21 |
+
#include <ATen/core/List.h>
|
22 |
+
|
23 |
+
#include <utility>
|
24 |
+
|
25 |
+
namespace at::indexing {
|
26 |
+
|
27 |
+
constexpr int64_t INDEX_MIN = c10::SymInt::min_representable_int();
|
28 |
+
constexpr int64_t INDEX_MAX = -(INDEX_MIN + 1);
|
29 |
+
|
30 |
+
enum class TensorIndexType { None, Ellipsis, SymInt, Boolean, Slice, Tensor };
|
31 |
+
|
32 |
+
constexpr c10::nullopt_t None = c10::nullopt;
|
33 |
+
|
34 |
+
struct TORCH_API EllipsisIndexType final {
|
35 |
+
EllipsisIndexType() = default;
|
36 |
+
};
|
37 |
+
TORCH_API extern const EllipsisIndexType Ellipsis;
|
38 |
+
|
39 |
+
struct TORCH_API Slice final {
|
40 |
+
public:
|
41 |
+
Slice(
|
42 |
+
c10::optional<c10::SymInt> start_index = c10::nullopt,
|
43 |
+
c10::optional<c10::SymInt> stop_index = c10::nullopt,
|
44 |
+
c10::optional<c10::SymInt> step_index = c10::nullopt) {
|
45 |
+
if (!step_index.has_value()) {
|
46 |
+
step_ = c10::SymInt(1);
|
47 |
+
} else {
|
48 |
+
step_ = std::move(step_index).value();
|
49 |
+
}
|
50 |
+
|
51 |
+
TORCH_CHECK_VALUE(step_ != 0, "slice step cannot be zero");
|
52 |
+
|
53 |
+
if (!start_index.has_value()) {
|
54 |
+
start_ = c10::SymInt(step_ < 0 ? INDEX_MAX : 0);
|
55 |
+
} else {
|
56 |
+
start_ = std::move(start_index).value();
|
57 |
+
}
|
58 |
+
|
59 |
+
if (!stop_index.has_value()) {
|
60 |
+
stop_ = c10::SymInt(step_ < 0 ? INDEX_MIN : INDEX_MAX);
|
61 |
+
} else {
|
62 |
+
stop_ = std::move(stop_index).value();
|
63 |
+
}
|
64 |
+
}
|
65 |
+
|
66 |
+
inline c10::SymInt start() const {
|
67 |
+
return start_;
|
68 |
+
}
|
69 |
+
|
70 |
+
inline c10::SymInt stop() const {
|
71 |
+
return stop_;
|
72 |
+
}
|
73 |
+
|
74 |
+
inline c10::SymInt step() const {
|
75 |
+
return step_;
|
76 |
+
}
|
77 |
+
|
78 |
+
private:
|
79 |
+
c10::SymInt start_;
|
80 |
+
c10::SymInt stop_;
|
81 |
+
c10::SymInt step_;
|
82 |
+
};
|
83 |
+
|
84 |
+
TORCH_API std::ostream& operator<<(std::ostream& stream, const Slice& slice);
|
85 |
+
|
86 |
+
// `at::indexing::TensorIndex` is used for converting C++ tensor indices such as
|
87 |
+
// `{None, "...", Ellipsis, 0, true, Slice(1, None, 2), torch::tensor({1, 2})}`
|
88 |
+
// into its equivalent `std::vector<TensorIndex>`, so that further tensor
|
89 |
+
// indexing operations can be performed using the supplied indices.
|
90 |
+
//
|
91 |
+
// There is one-to-one correspondence between Python and C++ tensor index types:
|
92 |
+
// Python | C++
|
93 |
+
// -----------------------------------------------------
|
94 |
+
// `None` | `at::indexing::None`
|
95 |
+
// `Ellipsis` | `at::indexing::Ellipsis`
|
96 |
+
// `...` | `"..."`
|
97 |
+
// `123` | `123`
|
98 |
+
// `True` / `False` | `true` / `false`
|
99 |
+
// `:` | `Slice()` / `Slice(None, None)`
|
100 |
+
// `::` | `Slice()` / `Slice(None, None, None)`
|
101 |
+
// `1:` | `Slice(1, None)`
|
102 |
+
// `1::` | `Slice(1, None, None)`
|
103 |
+
// `:3` | `Slice(None, 3)`
|
104 |
+
// `:3:` | `Slice(None, 3, None)`
|
105 |
+
// `::2` | `Slice(None, None, 2)`
|
106 |
+
// `1:3` | `Slice(1, 3)`
|
107 |
+
// `1::2` | `Slice(1, None, 2)`
|
108 |
+
// `:3:2` | `Slice(None, 3, 2)`
|
109 |
+
// `1:3:2` | `Slice(1, 3, 2)`
|
110 |
+
// `torch.tensor([1, 2])`) | `torch::tensor({1, 2})`
|
111 |
+
struct TORCH_API TensorIndex final {
|
112 |
+
// Case 1: `at::indexing::None`
|
113 |
+
TensorIndex(c10::nullopt_t) : type_(TensorIndexType::None) {}
|
114 |
+
|
115 |
+
// Case 2: "..." / `at::indexing::Ellipsis`
|
116 |
+
TensorIndex(at::indexing::EllipsisIndexType)
|
117 |
+
: type_(TensorIndexType::Ellipsis) {}
|
118 |
+
TensorIndex(const char* str) : TensorIndex(at::indexing::Ellipsis) {
|
119 |
+
TORCH_CHECK_VALUE(
|
120 |
+
strcmp(str, "...") == 0,
|
121 |
+
"Expected \"...\" to represent an ellipsis index, but got \"",
|
122 |
+
str,
|
123 |
+
"\"");
|
124 |
+
}
|
125 |
+
|
126 |
+
// Case 3: (Sym) Integer value
|
127 |
+
TensorIndex(SymInt integer)
|
128 |
+
: integer_(std::move(integer)), type_(TensorIndexType::SymInt) {}
|
129 |
+
TensorIndex(int64_t integer) : TensorIndex(SymInt(integer)) {}
|
130 |
+
TensorIndex(int integer) : TensorIndex(SymInt(integer)) {}
|
131 |
+
|
132 |
+
// Case 4: Boolean value
|
133 |
+
template <class T, class = std::enable_if_t<std::is_same_v<bool, T>>>
|
134 |
+
TensorIndex(T boolean) : boolean_(boolean), type_(TensorIndexType::Boolean) {}
|
135 |
+
|
136 |
+
// Case 5: Slice represented in `at::indexing::Slice` form
|
137 |
+
TensorIndex(Slice slice)
|
138 |
+
: slice_(std::move(slice)), type_(TensorIndexType::Slice) {}
|
139 |
+
|
140 |
+
// Case 6: Tensor value
|
141 |
+
TensorIndex(Tensor tensor)
|
142 |
+
: tensor_(std::move(tensor)), type_(TensorIndexType::Tensor) {}
|
143 |
+
|
144 |
+
inline bool is_none() const {
|
145 |
+
return type_ == TensorIndexType::None;
|
146 |
+
}
|
147 |
+
|
148 |
+
inline bool is_ellipsis() const {
|
149 |
+
return type_ == TensorIndexType::Ellipsis;
|
150 |
+
}
|
151 |
+
|
152 |
+
inline bool is_integer() const {
|
153 |
+
return type_ == TensorIndexType::SymInt;
|
154 |
+
}
|
155 |
+
|
156 |
+
inline SymInt integer() const {
|
157 |
+
return integer_;
|
158 |
+
}
|
159 |
+
|
160 |
+
inline bool is_boolean() const {
|
161 |
+
return type_ == TensorIndexType::Boolean;
|
162 |
+
}
|
163 |
+
|
164 |
+
inline bool boolean() const {
|
165 |
+
return boolean_;
|
166 |
+
}
|
167 |
+
|
168 |
+
inline bool is_slice() const {
|
169 |
+
return type_ == TensorIndexType::Slice;
|
170 |
+
}
|
171 |
+
|
172 |
+
inline const Slice& slice() const {
|
173 |
+
return slice_;
|
174 |
+
}
|
175 |
+
|
176 |
+
inline bool is_tensor() const {
|
177 |
+
return type_ == TensorIndexType::Tensor;
|
178 |
+
}
|
179 |
+
|
180 |
+
inline const Tensor& tensor() const {
|
181 |
+
return tensor_;
|
182 |
+
}
|
183 |
+
|
184 |
+
private:
|
185 |
+
SymInt integer_ = 0;
|
186 |
+
bool boolean_ = false;
|
187 |
+
Slice slice_;
|
188 |
+
Tensor tensor_;
|
189 |
+
TensorIndexType type_;
|
190 |
+
};
|
191 |
+
|
192 |
+
TORCH_API std::ostream& operator<<(
|
193 |
+
std::ostream& stream,
|
194 |
+
const TensorIndex& tensor_index);
|
195 |
+
TORCH_API std::ostream& operator<<(
|
196 |
+
std::ostream& stream,
|
197 |
+
const std::vector<TensorIndex>& tensor_indices);
|
198 |
+
|
199 |
+
namespace impl {
|
200 |
+
static inline Tensor applySlice(
|
201 |
+
const Tensor& self,
|
202 |
+
int64_t dim,
|
203 |
+
c10::SymInt start,
|
204 |
+
c10::SymInt stop,
|
205 |
+
c10::SymInt step,
|
206 |
+
bool disable_slice_optimization,
|
207 |
+
const at::Device& self_device,
|
208 |
+
const c10::optional<SymIntArrayRef>& self_sizes) {
|
209 |
+
// TODO: implement negative step
|
210 |
+
TORCH_CHECK_VALUE(step > 0, "step must be greater than zero");
|
211 |
+
|
212 |
+
// See NOTE [nested tensor size for indexing]
|
213 |
+
if (self_sizes.has_value()) {
|
214 |
+
// Skip this optimization if we are tracing, as the trace may be polymorphic
|
215 |
+
// over the shape of the `self` tensor, and we still want to record
|
216 |
+
// the slice.
|
217 |
+
SymInt length = (self_device == at::kCPU || self_device == at::kCUDA)
|
218 |
+
? (*self_sizes)[dim]
|
219 |
+
: self.sym_size(dim);
|
220 |
+
if (!disable_slice_optimization &&
|
221 |
+
TORCH_GUARD_SIZE_OBLIVIOUS(start.sym_eq(0)) && length == stop &&
|
222 |
+
step == 1) {
|
223 |
+
return self;
|
224 |
+
}
|
225 |
+
}
|
226 |
+
return self.slice_symint(
|
227 |
+
dim, std::move(start), std::move(stop), std::move(step));
|
228 |
+
}
|
229 |
+
|
230 |
+
static inline Tensor applySelect(
|
231 |
+
const Tensor& self,
|
232 |
+
int64_t dim,
|
233 |
+
SymInt index,
|
234 |
+
int64_t real_dim,
|
235 |
+
const at::Device& /*self_device*/,
|
236 |
+
const c10::optional<SymIntArrayRef>& self_sizes) {
|
237 |
+
// See NOTE [nested tensor size for indexing]
|
238 |
+
if (self_sizes.has_value()) {
|
239 |
+
auto maybe_index = index.maybe_as_int();
|
240 |
+
if (maybe_index.has_value()) {
|
241 |
+
TORCH_CHECK_INDEX(
|
242 |
+
!(maybe_index.value() == 0 && dim == 0 && self_sizes->empty()),
|
243 |
+
"invalid index of a 0-dim tensor. ",
|
244 |
+
"Use `tensor.item()` in Python or `tensor.item<T>()` in C++ to convert a 0-dim tensor to a number");
|
245 |
+
}
|
246 |
+
|
247 |
+
auto size = (*self_sizes)[dim];
|
248 |
+
// Note: `size >= -index` is not equivalent to `size > -1 - index` if index
|
249 |
+
// is INT64_MIN For std::numeric_limits<int64_t>::min() result of unary
|
250 |
+
// minus is undefined by the standard but in practice is equal to self. On
|
251 |
+
// the other hand, indexing wraping is valid for all negative int64_t
|
252 |
+
// values, as x[INT64_MIN] is the same as x[INT64_MAX]
|
253 |
+
TORCH_CHECK_INDEX(
|
254 |
+
size > -1 - index && size > index,
|
255 |
+
"index ",
|
256 |
+
index,
|
257 |
+
" is out of bounds for dimension ",
|
258 |
+
real_dim,
|
259 |
+
" with size ",
|
260 |
+
size);
|
261 |
+
}
|
262 |
+
|
263 |
+
// if the index is negative, do not normalize it because that would fix the
|
264 |
+
// index on the current tensor size in the tracer. aten::select also works on
|
265 |
+
// negative indices
|
266 |
+
return self.select_symint(dim, std::move(index));
|
267 |
+
}
|
268 |
+
|
269 |
+
static inline Tensor boolToIndexingTensorCPUOrCUDA(
|
270 |
+
const Tensor& self,
|
271 |
+
bool value) {
|
272 |
+
// booleans add a dimension of size 1. true indexes this dimension as if 0:,
|
273 |
+
// false as empty.
|
274 |
+
if (value) {
|
275 |
+
return at::empty({1}, self.options().dtype(kLong)).fill_(0.);
|
276 |
+
} else {
|
277 |
+
return at::empty({0}, self.options().dtype(kLong));
|
278 |
+
}
|
279 |
+
}
|
280 |
+
|
281 |
+
static inline Tensor boolToIndexingTensorNonNativeDeviceType(
|
282 |
+
const Tensor& self,
|
283 |
+
bool value) {
|
284 |
+
// booleans add a dimension of size 1. true indexes this dimension as if 0:,
|
285 |
+
// false as empty.
|
286 |
+
if (value) {
|
287 |
+
return at::zeros({1}, self.options().dtype(kLong));
|
288 |
+
} else {
|
289 |
+
return at::empty({0}, self.options().dtype(kLong));
|
290 |
+
}
|
291 |
+
}
|
292 |
+
|
293 |
+
static inline Tensor boolToIndexingTensor(
|
294 |
+
const Tensor& self,
|
295 |
+
bool value,
|
296 |
+
const at::Device& self_device) {
|
297 |
+
if (self_device == at::kCPU || self_device == at::kCUDA) {
|
298 |
+
return boolToIndexingTensorCPUOrCUDA(self, value);
|
299 |
+
} else {
|
300 |
+
return boolToIndexingTensorNonNativeDeviceType(self, value);
|
301 |
+
}
|
302 |
+
}
|
303 |
+
|
304 |
+
static inline Tensor scalarToTensorNonNativeDeviceType(
|
305 |
+
const Scalar& v,
|
306 |
+
const TensorOptions& options) {
|
307 |
+
return at::scalar_tensor(v, options);
|
308 |
+
}
|
309 |
+
|
310 |
+
static inline void recordTensorIndex(
|
311 |
+
const Tensor& tensor,
|
312 |
+
std::vector<Tensor>& outIndices,
|
313 |
+
int64_t* dim_ptr) {
|
314 |
+
// TODO: check scalarType
|
315 |
+
outIndices.resize(*dim_ptr + 1);
|
316 |
+
outIndices[*dim_ptr] = tensor;
|
317 |
+
(*dim_ptr)++;
|
318 |
+
};
|
319 |
+
|
320 |
+
static inline c10::List<c10::optional<Tensor>> typeConvertIndices(
|
321 |
+
const Tensor& /*self*/,
|
322 |
+
std::vector<Tensor>&& indices) {
|
323 |
+
c10::List<c10::optional<Tensor>> converted_inds;
|
324 |
+
converted_inds.reserve(indices.size());
|
325 |
+
for (auto&& i : std::move(indices)) {
|
326 |
+
converted_inds.push_back(std::move(i));
|
327 |
+
}
|
328 |
+
return converted_inds;
|
329 |
+
}
|
330 |
+
|
331 |
+
// NOTE: Why do we mirror instead of replace the `count_specified_dimensions`
|
332 |
+
// function in torch/csrc/autograd/python_variable_indexing.cpp? It's because
|
333 |
+
// `count_specified_dimensions` is on the hot path of Python tensor multi-dim
|
334 |
+
// indexing (i.e. it's called by `applySlicing` which is called by
|
335 |
+
// `THPVariable_getitem` / `THPVariable_setitem` when handling indexing of more
|
336 |
+
// than one dimension). If we were to merge the Python/C++
|
337 |
+
// `count_specified_dimensions` function, on the Python side we would have to
|
338 |
+
// construct a `std::vector` container to be consumed by the C++
|
339 |
+
// `count_specified_dimensions` function, which adds 100s of nanoseconds
|
340 |
+
// overhead and is undesirable.
|
341 |
+
static inline int64_t count_specified_dimensions(
|
342 |
+
const ArrayRef<TensorIndex>& indices) {
|
343 |
+
// Count the number of indexed dimensions (everything but ellipsis and None)
|
344 |
+
int64_t count = 0;
|
345 |
+
for (auto& obj : indices) {
|
346 |
+
if (obj.is_tensor()) {
|
347 |
+
auto& tensor = obj.tensor();
|
348 |
+
if (tensor.scalar_type() == kByte || tensor.scalar_type() == kBool) {
|
349 |
+
count += tensor.dim();
|
350 |
+
} else {
|
351 |
+
count++;
|
352 |
+
}
|
353 |
+
} else if (!obj.is_none() && !obj.is_ellipsis() && !obj.is_boolean()) {
|
354 |
+
count++;
|
355 |
+
}
|
356 |
+
}
|
357 |
+
return count;
|
358 |
+
}
|
359 |
+
} // namespace impl
|
360 |
+
|
361 |
+
// NOTE: Many functions below are only for consumption from Python indexing
|
362 |
+
// implementation, they include:
|
363 |
+
//
|
364 |
+
// - `Tensor scalarToTensor(...)`
|
365 |
+
// - `IntArrayRef slicePrefix1sSize(...)`
|
366 |
+
// - `void copy_to(...)`
|
367 |
+
// - `Tensor handleDimInMultiDimIndexing(...)`
|
368 |
+
// - `Tensor dispatch_index(...)`
|
369 |
+
// - `Tensor dispatch_index_put_(...)`
|
370 |
+
// - `Tensor get_item(...)`
|
371 |
+
// - `void set_item(...)`
|
372 |
+
//
|
373 |
+
// The rest of the functions are in `at::indexing::impl` namespace, signifying
|
374 |
+
// that they shouldn't be used from Python indexing implementation.
|
375 |
+
static inline Tensor scalarToTensor(
|
376 |
+
const Scalar& v,
|
377 |
+
const TensorOptions& options,
|
378 |
+
const at::Device& self_device) {
|
379 |
+
if (self_device == at::kCPU && !v.isSymbolic()) {
|
380 |
+
return at::detail::scalar_tensor_static(
|
381 |
+
v, options.dtype_opt()->toScalarType(), self_device);
|
382 |
+
} else {
|
383 |
+
return impl::scalarToTensorNonNativeDeviceType(v, options);
|
384 |
+
}
|
385 |
+
}
|
386 |
+
|
387 |
+
// To match numpy semantics:
|
388 |
+
// As a special case for backwards compatibility,
|
389 |
+
// strip away unit dimensions from the left of 'src'
|
390 |
+
static inline SymIntArrayRef slicePrefix1sSize(const SymIntArrayRef& sizes) {
|
391 |
+
size_t first_non1_src = sizes.size();
|
392 |
+
for (const auto i : c10::irange(sizes.size())) {
|
393 |
+
// Unbacked SymInt has different behavior, but this is sound because
|
394 |
+
// failing to slice will only ever cause an error, not divergent
|
395 |
+
// behavior
|
396 |
+
if (!sizes[i].has_hint() || sizes[i] != 1) {
|
397 |
+
first_non1_src = i;
|
398 |
+
break;
|
399 |
+
}
|
400 |
+
}
|
401 |
+
|
402 |
+
return sizes.slice(first_non1_src);
|
403 |
+
}
|
404 |
+
|
405 |
+
static inline void copy_to(const Tensor& dst, const Tensor& src) {
|
406 |
+
if (dst.sym_sizes().equals(src.sym_sizes())) {
|
407 |
+
// A shortcut to avoid generating hard-coded constant sizes during tracing.
|
408 |
+
// This is not a perfect solution: when src & dst have different shapes,
|
409 |
+
// constants will still appear. Users can workaround that case by
|
410 |
+
// dst[index..] = src.reshape(..)
|
411 |
+
dst.copy_(src);
|
412 |
+
return;
|
413 |
+
} else if (src.dim() == 0 && src.device().type() == at::kCPU) {
|
414 |
+
dst.fill_(src);
|
415 |
+
return;
|
416 |
+
}
|
417 |
+
auto src_view = src.view_symint(slicePrefix1sSize(src.sym_sizes()));
|
418 |
+
c10::MaybeOwned<Tensor> b_src = expand_inplace(dst, src_view, "setitem");
|
419 |
+
dst.copy_(*b_src);
|
420 |
+
}
|
421 |
+
|
422 |
+
// See NOTE [ Setting `disable_slice_optimization` when calling C++ tensor
|
423 |
+
// indexing functions from Python ]
|
424 |
+
static inline Tensor handleDimInMultiDimIndexing(
|
425 |
+
const Tensor& prev_dim_result,
|
426 |
+
const Tensor& original_tensor,
|
427 |
+
const TensorIndex& index,
|
428 |
+
int64_t* dim_ptr,
|
429 |
+
int64_t* specified_dims_ptr,
|
430 |
+
int64_t real_dim,
|
431 |
+
std::vector<Tensor>& outIndices,
|
432 |
+
bool disable_slice_optimization,
|
433 |
+
const at::Device& original_tensor_device,
|
434 |
+
const c10::optional<SymIntArrayRef>& prev_dim_result_sizes) {
|
435 |
+
if (index.is_integer()) {
|
436 |
+
return impl::applySelect(
|
437 |
+
prev_dim_result,
|
438 |
+
*dim_ptr,
|
439 |
+
index.integer(),
|
440 |
+
real_dim,
|
441 |
+
original_tensor_device,
|
442 |
+
prev_dim_result_sizes);
|
443 |
+
} else if (index.is_slice()) {
|
444 |
+
Tensor result = impl::applySlice(
|
445 |
+
prev_dim_result,
|
446 |
+
*dim_ptr,
|
447 |
+
index.slice().start(),
|
448 |
+
index.slice().stop(),
|
449 |
+
index.slice().step(),
|
450 |
+
/*disable_slice_optimization=*/disable_slice_optimization,
|
451 |
+
original_tensor_device,
|
452 |
+
prev_dim_result_sizes);
|
453 |
+
(*dim_ptr)++;
|
454 |
+
return result;
|
455 |
+
} else if (index.is_ellipsis()) {
|
456 |
+
(*dim_ptr) += original_tensor.dim() - (*specified_dims_ptr);
|
457 |
+
return prev_dim_result;
|
458 |
+
} else if (index.is_none()) {
|
459 |
+
Tensor result = prev_dim_result.unsqueeze(*dim_ptr);
|
460 |
+
(*dim_ptr)++;
|
461 |
+
return result;
|
462 |
+
} else if (index.is_boolean()) {
|
463 |
+
Tensor result = prev_dim_result.unsqueeze(*dim_ptr);
|
464 |
+
impl::recordTensorIndex(
|
465 |
+
impl::boolToIndexingTensor(
|
466 |
+
result, index.boolean(), original_tensor_device),
|
467 |
+
outIndices,
|
468 |
+
dim_ptr);
|
469 |
+
return result;
|
470 |
+
} else if (index.is_tensor()) {
|
471 |
+
Tensor result = prev_dim_result;
|
472 |
+
const Tensor& tensor = index.tensor();
|
473 |
+
auto scalar_type = tensor.scalar_type();
|
474 |
+
if (tensor.dim() == 0 &&
|
475 |
+
at::isIntegralType(scalar_type, /*includeBool=*/true)) {
|
476 |
+
if (scalar_type != at::kByte && scalar_type != at::kBool) {
|
477 |
+
result = impl::applySelect(
|
478 |
+
result,
|
479 |
+
*dim_ptr,
|
480 |
+
tensor.item<int64_t>(),
|
481 |
+
real_dim,
|
482 |
+
original_tensor_device,
|
483 |
+
prev_dim_result_sizes);
|
484 |
+
} else {
|
485 |
+
result = result.unsqueeze(*dim_ptr);
|
486 |
+
if (scalar_type == at::kBool) {
|
487 |
+
impl::recordTensorIndex(
|
488 |
+
impl::boolToIndexingTensor(
|
489 |
+
result, tensor.item<bool>() != 0, original_tensor_device),
|
490 |
+
outIndices,
|
491 |
+
dim_ptr);
|
492 |
+
} else {
|
493 |
+
impl::recordTensorIndex(
|
494 |
+
impl::boolToIndexingTensor(
|
495 |
+
result, tensor.item<uint8_t>() != 0, original_tensor_device),
|
496 |
+
outIndices,
|
497 |
+
dim_ptr);
|
498 |
+
}
|
499 |
+
}
|
500 |
+
} else {
|
501 |
+
impl::recordTensorIndex(tensor, outIndices, dim_ptr);
|
502 |
+
}
|
503 |
+
return result;
|
504 |
+
} else {
|
505 |
+
TORCH_INTERNAL_ASSERT(false, "Invalid TensorIndex type");
|
506 |
+
}
|
507 |
+
}
|
508 |
+
|
509 |
+
namespace impl {
|
510 |
+
// This mirrors `applySlicing` in
|
511 |
+
// torch/csrc/autograd/python_variable_indexing.cpp
|
512 |
+
static inline Tensor applySlicing(
|
513 |
+
const Tensor& self,
|
514 |
+
const ArrayRef<TensorIndex>& indices,
|
515 |
+
std::vector<Tensor>& outIndices,
|
516 |
+
bool disable_slice_optimization,
|
517 |
+
const at::Device& self_device,
|
518 |
+
const c10::optional<SymIntArrayRef>& self_sizes) {
|
519 |
+
int64_t dim = 0;
|
520 |
+
int64_t specified_dims = impl::count_specified_dimensions(indices);
|
521 |
+
|
522 |
+
// See NOTE [nested tensor size for indexing]
|
523 |
+
if (self_sizes.has_value()) {
|
524 |
+
TORCH_CHECK_INDEX(
|
525 |
+
specified_dims <= (int64_t)self_sizes->size(),
|
526 |
+
"too many indices for tensor of dimension ",
|
527 |
+
(int)self_sizes->size());
|
528 |
+
}
|
529 |
+
|
530 |
+
Tensor result = self;
|
531 |
+
for (const auto i : c10::irange(indices.size())) {
|
532 |
+
auto& obj = indices[i];
|
533 |
+
// See NOTE [nested tensor size for indexing]
|
534 |
+
c10::optional<SymIntArrayRef> result_sizes = result.is_nested()
|
535 |
+
? c10::optional<SymIntArrayRef>(c10::nullopt)
|
536 |
+
: c10::optional<SymIntArrayRef>(result.sym_sizes());
|
537 |
+
result = handleDimInMultiDimIndexing(
|
538 |
+
/*prev_dim_result=*/result,
|
539 |
+
/*original_tensor=*/self,
|
540 |
+
/*index=*/obj,
|
541 |
+
/*dim_ptr=*/&dim,
|
542 |
+
/*specified_dims_ptr=*/&specified_dims,
|
543 |
+
/*real_dim=*/static_cast<int64_t>(i),
|
544 |
+
/*outIndices=*/outIndices,
|
545 |
+
/*disable_slice_optimization=*/disable_slice_optimization,
|
546 |
+
/*original_tensor_device=*/self_device,
|
547 |
+
/*prev_dim_result_sizes=*/result_sizes);
|
548 |
+
}
|
549 |
+
return result;
|
550 |
+
}
|
551 |
+
} // namespace impl
|
552 |
+
|
553 |
+
static inline Tensor dispatch_index(
|
554 |
+
const Tensor& self,
|
555 |
+
std::vector<Tensor>&& indices) {
|
556 |
+
return self.index(impl::typeConvertIndices(self, std::move(indices)));
|
557 |
+
}
|
558 |
+
|
559 |
+
static inline Tensor dispatch_index_put_(
|
560 |
+
Tensor& self,
|
561 |
+
std::vector<Tensor>&& indices,
|
562 |
+
const Tensor& value) {
|
563 |
+
return self.index_put_(
|
564 |
+
impl::typeConvertIndices(self, std::move(indices)), value);
|
565 |
+
}
|
566 |
+
|
567 |
+
// NOTE [ Setting `disable_slice_optimization` when calling C++ tensor indexing
|
568 |
+
// functions from Python ]
|
569 |
+
//
|
570 |
+
// Question: When should we set `disable_slice_optimization` to `true` when
|
571 |
+
// calling C++ tensor indexing functions from Python indexing code?
|
572 |
+
//
|
573 |
+
// Answer: What "slice optimization" means: when we have a slicing expression
|
574 |
+
// like `x[0:5, 0]`, where the sliced tensor was of size 5 in dimension 0, we
|
575 |
+
// would skip dispatching the actual slice call as an optimization. However,
|
576 |
+
// here are the cases where we DON'T want this optimization:
|
577 |
+
//
|
578 |
+
// 1. When we are doing 1-D slicing (e.g. `tensor[:]`).
|
579 |
+
// Reason: we always return a shallow copy for expressions such as
|
580 |
+
// `tensor[:]` / `tensor[...]` / `tensor[:, :]`. (Note that for `tensor[:,
|
581 |
+
// :]`, we return an alias of `tensor` by doing the following:
|
582 |
+
// ```
|
583 |
+
// Tensor sliced = impl::applySlicing(self, indices, tensorIndices,
|
584 |
+
// disable_slice_optimization, self_device, self_sizes); if
|
585 |
+
// (tensorIndices.empty()) {
|
586 |
+
// if (sliced.is_same(self)) {
|
587 |
+
// // ensure we return a shallow copy for things like x[...]
|
588 |
+
// sliced = at::alias(sliced);
|
589 |
+
// }
|
590 |
+
// return sliced;
|
591 |
+
// }
|
592 |
+
// ```)
|
593 |
+
// 2. When we are doing JIT tracing.
|
594 |
+
// Reason: JIT tracing needs the `self.slice(...)` call to properly trace the
|
595 |
+
// slice operation.
|
596 |
+
|
597 |
+
// This mirrors `THPVariable_getitem` in
|
598 |
+
// torch/csrc/autograd/python_variable_indexing.cpp See NOTE [ Setting
|
599 |
+
// `disable_slice_optimization` when calling C++ tensor indexing functions from
|
600 |
+
// Python ]
|
601 |
+
static inline Tensor get_item(
|
602 |
+
const Tensor& self,
|
603 |
+
const ArrayRef<TensorIndex>& indices,
|
604 |
+
bool disable_slice_optimization = false) {
|
605 |
+
at::Device self_device = self.device();
|
606 |
+
// NOTE [nested tensor size for indexing]
|
607 |
+
// nested tensor does not have a size (yet) so for now we represent its size
|
608 |
+
// as null may need to be changed after we reach a better solution for nested
|
609 |
+
// tensor size
|
610 |
+
c10::optional<SymIntArrayRef> self_sizes = self.is_nested()
|
611 |
+
? c10::optional<SymIntArrayRef>(c10::nullopt)
|
612 |
+
: c10::optional<SymIntArrayRef>(self.sym_sizes());
|
613 |
+
|
614 |
+
// handle simple types: integers, slices, none, ellipsis, bool
|
615 |
+
if (indices.size() == 1) {
|
616 |
+
const TensorIndex& index = indices[0];
|
617 |
+
if (index.is_integer()) {
|
618 |
+
return impl::applySelect(
|
619 |
+
self, 0, index.integer(), 0, self_device, self_sizes);
|
620 |
+
} else if (index.is_slice()) {
|
621 |
+
return impl::applySlice(
|
622 |
+
self,
|
623 |
+
0,
|
624 |
+
index.slice().start(),
|
625 |
+
index.slice().stop(),
|
626 |
+
index.slice().step(),
|
627 |
+
/*disable_slice_optimization=*/true,
|
628 |
+
self_device,
|
629 |
+
self_sizes);
|
630 |
+
} else if (index.is_none()) {
|
631 |
+
return self.unsqueeze(0);
|
632 |
+
} else if (index.is_ellipsis()) {
|
633 |
+
return at::alias(self);
|
634 |
+
} else if (index.is_boolean()) {
|
635 |
+
Tensor result = self.unsqueeze(0);
|
636 |
+
return dispatch_index(
|
637 |
+
result,
|
638 |
+
std::vector<Tensor>{impl::boolToIndexingTensor(
|
639 |
+
result, index.boolean(), self_device)});
|
640 |
+
}
|
641 |
+
}
|
642 |
+
|
643 |
+
std::vector<Tensor> tensorIndices;
|
644 |
+
Tensor sliced = impl::applySlicing(
|
645 |
+
self,
|
646 |
+
indices,
|
647 |
+
tensorIndices,
|
648 |
+
disable_slice_optimization,
|
649 |
+
self_device,
|
650 |
+
self_sizes);
|
651 |
+
if (tensorIndices.empty()) {
|
652 |
+
if (sliced.is_same(self)) {
|
653 |
+
// ensure we return a shallow copy for things like x[...]
|
654 |
+
sliced = at::alias(sliced);
|
655 |
+
}
|
656 |
+
return sliced;
|
657 |
+
}
|
658 |
+
|
659 |
+
// indexing by tensors ("advanced" indexing)
|
660 |
+
return dispatch_index(sliced, std::move(tensorIndices));
|
661 |
+
}
|
662 |
+
|
663 |
+
// This mirrors `THPVariable_setitem` in
|
664 |
+
// torch/csrc/autograd/python_variable_indexing.cpp for "the assigned value is a
|
665 |
+
// Tensor" case See NOTE [ Setting `disable_slice_optimization` when calling C++
|
666 |
+
// tensor indexing functions from Python ]
|
667 |
+
static inline void set_item(
|
668 |
+
const Tensor& self,
|
669 |
+
const ArrayRef<TensorIndex>& indices,
|
670 |
+
const Tensor& value,
|
671 |
+
bool disable_slice_optimization = false) {
|
672 |
+
at::Device self_device = self.device();
|
673 |
+
SymIntArrayRef self_sizes = self.sym_sizes();
|
674 |
+
|
675 |
+
// handle simple types: integers, slices, ellipsis, bool
|
676 |
+
if (indices.size() == 1) {
|
677 |
+
const TensorIndex& index = indices[0];
|
678 |
+
if (index.is_boolean() && !index.boolean()) {
|
679 |
+
// do nothing for false (technically we should check the size, but we
|
680 |
+
// don't have real 0-sized shapes.
|
681 |
+
return;
|
682 |
+
} else if (index.is_ellipsis()) {
|
683 |
+
copy_to(self, value);
|
684 |
+
return;
|
685 |
+
} else if (index.is_none() || (index.is_boolean() && index.boolean())) {
|
686 |
+
copy_to(self.unsqueeze(0), value);
|
687 |
+
return;
|
688 |
+
} else if (index.is_integer()) {
|
689 |
+
copy_to(
|
690 |
+
impl::applySelect(
|
691 |
+
self, 0, index.integer(), 0, self_device, self_sizes),
|
692 |
+
value);
|
693 |
+
return;
|
694 |
+
} else if (index.is_slice()) {
|
695 |
+
copy_to(
|
696 |
+
impl::applySlice(
|
697 |
+
self,
|
698 |
+
0,
|
699 |
+
index.slice().start(),
|
700 |
+
index.slice().stop(),
|
701 |
+
index.slice().step(),
|
702 |
+
/*disable_slice_optimization=*/disable_slice_optimization,
|
703 |
+
self_device,
|
704 |
+
self_sizes),
|
705 |
+
value);
|
706 |
+
return;
|
707 |
+
}
|
708 |
+
}
|
709 |
+
|
710 |
+
std::vector<Tensor> tensorIndices;
|
711 |
+
Tensor sliced = impl::applySlicing(
|
712 |
+
self,
|
713 |
+
indices,
|
714 |
+
tensorIndices,
|
715 |
+
disable_slice_optimization,
|
716 |
+
self_device,
|
717 |
+
self_sizes);
|
718 |
+
if (tensorIndices.empty()) {
|
719 |
+
copy_to(sliced, value);
|
720 |
+
return;
|
721 |
+
}
|
722 |
+
|
723 |
+
SymIntArrayRef valueSizes = value.sym_sizes();
|
724 |
+
SymIntArrayRef slicedValueSizes = slicePrefix1sSize(valueSizes);
|
725 |
+
Tensor valuesSliced;
|
726 |
+
if (!valueSizes.equals(slicedValueSizes)) {
|
727 |
+
valuesSliced = value.view_symint(slicedValueSizes);
|
728 |
+
} else {
|
729 |
+
valuesSliced = value;
|
730 |
+
}
|
731 |
+
dispatch_index_put_(sliced, std::move(tensorIndices), valuesSliced);
|
732 |
+
return;
|
733 |
+
}
|
734 |
+
|
735 |
+
} // namespace at::indexing
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorMeta.h
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/DimVector.h>
|
4 |
+
#include <ATen/core/Dimname.h>
|
5 |
+
#include <c10/core/TensorOptions.h>
|
6 |
+
#include <c10/util/strides.h>
|
7 |
+
|
8 |
+
namespace at {
|
9 |
+
|
10 |
+
class Tensor;
|
11 |
+
|
12 |
+
namespace impl {
|
13 |
+
|
14 |
+
// Use this to define the prototype for a meta function. There are two
|
15 |
+
// versions; one that takes one argument (just the operator name), or FUNC2
|
16 |
+
// variant that takes two arguments (operator name and overload name).
|
17 |
+
//
|
18 |
+
// Example usage:
|
19 |
+
//
|
20 |
+
// TORCH_META_FUNC2(add, Tensor) (
|
21 |
+
// const Tensor& self, const Tensor& other
|
22 |
+
// ) {
|
23 |
+
// ... compute sizes and options ...
|
24 |
+
// set_output(sizes, options);
|
25 |
+
// }
|
26 |
+
//
|
27 |
+
#define TORCH_META_FUNC(name) void structured_##name::meta
|
28 |
+
#define TORCH_META_FUNC2(name, overload) \
|
29 |
+
void structured_##name##_##overload::meta
|
30 |
+
|
31 |
+
// These are versions of TORCH_META_FUNC(2) that include a precompute_out struct
|
32 |
+
// as a return value. They should be used when the kernel in question has
|
33 |
+
// precomputed values declared in native_functions.yaml and the corresponding
|
34 |
+
// implementation should return an instance of the aforementioned struct.
|
35 |
+
#define TORCH_PRECOMPUTE_META_FUNC(name) \
|
36 |
+
structured_##name::meta_return_ty structured_##name::meta
|
37 |
+
#define TORCH_PRECOMPUTE_META_FUNC2(name, overload) \
|
38 |
+
structured_##name##_##overload::meta_return_ty \
|
39 |
+
structured_##name##_##overload::meta
|
40 |
+
|
41 |
+
// Use this to create a precompute struct in a meta function.
|
42 |
+
#define TORCH_PRECOMPUTE_STRUCT(name) structured_##name::precompute_out<>
|
43 |
+
#define TORCH_PRECOMPUTE_STRUCT2(name, overload) \
|
44 |
+
structured_##name##_##overload::precompute_out<>
|
45 |
+
|
46 |
+
// Use this to define the prototype for an implementation. This takes only
|
47 |
+
// one argument, which is the name of the dispatch key entry you're
|
48 |
+
// implementing.
|
49 |
+
//
|
50 |
+
// Example usage:
|
51 |
+
//
|
52 |
+
// TORCH_IMPL_FUNC(add_cpu) (
|
53 |
+
// Tensor& result, const Tensor& self, const Tensor& other
|
54 |
+
// ) {
|
55 |
+
// ... do the actual implementation ...
|
56 |
+
// }
|
57 |
+
//
|
58 |
+
#define TORCH_IMPL_FUNC(name) void structured_##name::impl
|
59 |
+
|
60 |
+
// Base class for all structured kernel classes. The set_output virtual
|
61 |
+
// method is varied depending whether or not the operator is
|
62 |
+
// functional/out/inplace, and could also be specialized for CPU/CUDA/etc
|
63 |
+
// (although presently it isn't).
|
64 |
+
//
|
65 |
+
// A notable subclass of this interface is TensorIteratorBase.
|
66 |
+
struct TORCH_API MetaBase {
|
67 |
+
MetaBase() = default;
|
68 |
+
MetaBase(const MetaBase&) = default;
|
69 |
+
MetaBase& operator=(const MetaBase&) = default;
|
70 |
+
MetaBase(MetaBase&&) noexcept = default;
|
71 |
+
MetaBase& operator=(MetaBase&&) noexcept = default;
|
72 |
+
virtual const Tensor& maybe_get_output(int64_t output_idx) = 0;
|
73 |
+
|
74 |
+
// Note: [set_output_*]
|
75 |
+
// See: https://github.com/pytorch/pytorch/issues/69813
|
76 |
+
// Whenever defining the output properties in the META function of a
|
77 |
+
// structured kernel (what was usually done with `set_output`), use one of
|
78 |
+
// these 3 variants, instead. In order to decide which variant to use, check
|
79 |
+
// the following decision tree:
|
80 |
+
//
|
81 |
+
// - Can the kernel you are going to implement support output tensors
|
82 |
+
// with arbitrary strides?
|
83 |
+
// |
|
84 |
+
// -- YES: `set_output_raw_strided`
|
85 |
+
// |
|
86 |
+
// -- NO: Should the output tensor strides be contiguous?
|
87 |
+
// |
|
88 |
+
// -- YES: `set_output_contiguous`
|
89 |
+
// |
|
90 |
+
// -- NO: `set_output_strided`
|
91 |
+
//
|
92 |
+
// Use this function whenever the kernel requires specific strides for the
|
93 |
+
// output. If `strides` does not match the given output strides, proxy outputs
|
94 |
+
// will be created and passed to the IMPL function.
|
95 |
+
virtual void set_output_strided(
|
96 |
+
int64_t output_idx,
|
97 |
+
IntArrayRef sizes,
|
98 |
+
IntArrayRef strides,
|
99 |
+
TensorOptions options,
|
100 |
+
DimnameList names = {}) {
|
101 |
+
TORCH_INTERNAL_ASSERT(false, "set_output_strided not implemented.");
|
102 |
+
}
|
103 |
+
|
104 |
+
// Use this function whenever the kernel knows how to handle arbitrary strided
|
105 |
+
// outputs. This function has the same behavior as the old `set_output`: it
|
106 |
+
// will only re-stride if the given output was resized.
|
107 |
+
virtual void set_output_raw_strided(
|
108 |
+
int64_t output_idx,
|
109 |
+
IntArrayRef sizes,
|
110 |
+
IntArrayRef strides_hint,
|
111 |
+
TensorOptions options,
|
112 |
+
DimnameList names = {}) {
|
113 |
+
TORCH_INTERNAL_ASSERT(false, "set_output_strided not implemented.");
|
114 |
+
}
|
115 |
+
|
116 |
+
// Use this function if the kernel requires contiguous strides.
|
117 |
+
// Alias for `set_output_strided`, but with contiguous strides.
|
118 |
+
void set_output_contiguous(
|
119 |
+
int64_t output_idx,
|
120 |
+
IntArrayRef sizes,
|
121 |
+
TensorOptions options,
|
122 |
+
DimnameList names = {}) {
|
123 |
+
auto strides = c10::contiguous_strides(sizes);
|
124 |
+
set_output_strided(output_idx, sizes, strides, options, names);
|
125 |
+
}
|
126 |
+
|
127 |
+
// Returns a reference to an undefined tensor if there is no presupplied
|
128 |
+
// output
|
129 |
+
const Tensor& maybe_get_output() {
|
130 |
+
return maybe_get_output(0);
|
131 |
+
}
|
132 |
+
virtual ~MetaBase() = default;
|
133 |
+
};
|
134 |
+
|
135 |
+
} // namespace impl
|
136 |
+
|
137 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorNames.h
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/WrapDimUtils.h>
|
4 |
+
|
5 |
+
namespace at::namedinference {
|
6 |
+
|
7 |
+
// TensorName and TensorNames are wrappers around Dimname and DimnameList
|
8 |
+
// that contain helper functions to make writing name inference rules easier.
|
9 |
+
//
|
10 |
+
// A TensorName represents a Dimname associated with some DimnameList (from a
|
11 |
+
// Tensor). This encapsulates all the information that is needed to check if
|
12 |
+
// names *match* and to *unify* names.
|
13 |
+
//
|
14 |
+
// Definition: Two names in two tensors *match* if they are equal, or if at
|
15 |
+
// least one of them is a wildcard that can be *refined* to the other name.
|
16 |
+
//
|
17 |
+
// Definition: unify(name, other) fails if the names do not match. Otherwise,
|
18 |
+
// it returns the most refined of name and other.
|
19 |
+
//
|
20 |
+
// Here is an example of checking if two names match.
|
21 |
+
// tensor: Tensor[A, None]
|
22 |
+
// other: Tensor[A]
|
23 |
+
//
|
24 |
+
// Let's say we wish to check if tensor.names[-1] matches other.names[-1].
|
25 |
+
// None (in tensor) cannot match A (in other) because if the None were refined
|
26 |
+
// to A, `tensor` would have duplicate names [A, A]. Therefore we need to check
|
27 |
+
// tensor.names [A, None] for the existence of A.
|
28 |
+
struct TORCH_API TensorName {
|
29 |
+
explicit TensorName(ArrayRef<Dimname> origin, int origin_idx)
|
30 |
+
: origin_(origin),
|
31 |
+
name_(origin[maybe_wrap_dim(
|
32 |
+
origin_idx,
|
33 |
+
static_cast<int64_t>(origin.size()))]),
|
34 |
+
origin_idx_(origin_idx) {}
|
35 |
+
|
36 |
+
// op_name is only used for error reporting.
|
37 |
+
const TensorName& unify(const TensorName& other, const char* op_name) const;
|
38 |
+
Dimname toDimname() const;
|
39 |
+
|
40 |
+
private:
|
41 |
+
ArrayRef<Dimname> origin_;
|
42 |
+
Dimname name_;
|
43 |
+
int origin_idx_; // A named tensor can have at most 64 dims.
|
44 |
+
|
45 |
+
TORCH_API friend std::ostream& operator<<(
|
46 |
+
std::ostream& out,
|
47 |
+
const TensorName& tensorname);
|
48 |
+
};
|
49 |
+
|
50 |
+
using TensorNameVec = SmallVector<TensorName, 10>;
|
51 |
+
|
52 |
+
struct TORCH_API TensorNames {
|
53 |
+
explicit TensorNames(ArrayRef<Dimname> names);
|
54 |
+
|
55 |
+
// Create TensorNames from names[start:end]. Each individual TensorName stores
|
56 |
+
// `names`, NOT names[start:end], because the original tensor's names are
|
57 |
+
// `names`.
|
58 |
+
explicit TensorNames(ArrayRef<Dimname> names, int64_t start, int64_t end);
|
59 |
+
|
60 |
+
// op_name is only used for error reporting.
|
61 |
+
TensorNames& unifyFromRightInplace(
|
62 |
+
const TensorNames& other,
|
63 |
+
const char* op_name = "unify");
|
64 |
+
void checkUnique(const char* op_name) const;
|
65 |
+
|
66 |
+
void append(TensorName name);
|
67 |
+
std::vector<Dimname> toDimnameVec() const;
|
68 |
+
|
69 |
+
private:
|
70 |
+
explicit TensorNames(TensorNameVec&& names) : names_(std::move(names)){};
|
71 |
+
|
72 |
+
TensorNameVec names_;
|
73 |
+
};
|
74 |
+
|
75 |
+
} // namespace at::namedinference
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorOperators.h
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <c10/core/Scalar.h>
|
5 |
+
|
6 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
7 |
+
#include <ATen/Functions.h>
|
8 |
+
#else
|
9 |
+
#include <ATen/ops/empty_like.h>
|
10 |
+
#endif
|
11 |
+
|
12 |
+
namespace at {
|
13 |
+
|
14 |
+
#define AT_FORALL_BINARY_OPS(_) \
|
15 |
+
_(+, x.add(y), y.add(x)) \
|
16 |
+
_(*, x.mul(y), y.mul(x)) \
|
17 |
+
_(-, \
|
18 |
+
x.sub(y), \
|
19 |
+
::at::empty_like(y, at::MemoryFormat::Preserve).fill_(x).sub_(y)) \
|
20 |
+
_(/, \
|
21 |
+
x.div(y), \
|
22 |
+
::at::empty_like(y, at::MemoryFormat::Preserve).fill_(x).div_(y)) \
|
23 |
+
_(%, \
|
24 |
+
x.remainder(y), \
|
25 |
+
::at::empty_like(y, at::MemoryFormat::Preserve).fill_(x).remainder_(y)) \
|
26 |
+
_(&, x.bitwise_and(y), y.bitwise_and(x)) \
|
27 |
+
_(|, x.bitwise_or(y), y.bitwise_or(x)) \
|
28 |
+
_(^, x.bitwise_xor(y), y.bitwise_xor(x)) \
|
29 |
+
_(<, x.lt(y), y.gt(x)) \
|
30 |
+
_(<=, x.le(y), y.ge(x)) \
|
31 |
+
_(>, x.gt(y), y.lt(x)) \
|
32 |
+
_(>=, x.ge(y), y.le(x)) \
|
33 |
+
_(==, x.eq(y), y.eq(x)) \
|
34 |
+
_(!=, x.ne(y), y.ne(x))
|
35 |
+
|
36 |
+
#define DEFINE_OPERATOR(op, body, reverse_scalar_body) \
|
37 |
+
static inline Tensor operator op(const Tensor& x, const Tensor& y) { \
|
38 |
+
return body; \
|
39 |
+
} \
|
40 |
+
static inline Tensor operator op(const Tensor& x, const Scalar& y) { \
|
41 |
+
return body; \
|
42 |
+
} \
|
43 |
+
static inline Tensor operator op(const Scalar& x, const Tensor& y) { \
|
44 |
+
return reverse_scalar_body; \
|
45 |
+
}
|
46 |
+
|
47 |
+
AT_FORALL_BINARY_OPS(DEFINE_OPERATOR)
|
48 |
+
#undef DEFINE_OPERATOR
|
49 |
+
#undef AT_FORALL_BINARY_OPS
|
50 |
+
|
51 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorOptions.h
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/core/TensorOptions.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorSubclassLikeUtils.h
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/core/List.h>
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <c10/core/impl/TorchDispatchModeTLS.h>
|
5 |
+
|
6 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
7 |
+
#include <ATen/Functions.h>
|
8 |
+
#else
|
9 |
+
#include <ATen/ops/equal.h>
|
10 |
+
#endif
|
11 |
+
|
12 |
+
namespace at {
|
13 |
+
|
14 |
+
// Note [Tensor-subclass-like Tensors]
|
15 |
+
// Tensor-subclass-like is defined as:
|
16 |
+
// - a Tensor subclass (via __torch_dispatch__ in Python or extending
|
17 |
+
// TensorImpl in C++)
|
18 |
+
// - anything else that shares the same perils as Tensor subclasses.
|
19 |
+
// For example, many Tensor subclasses do not have storage and meta Tensors
|
20 |
+
// do not have storage either, so meta Tensors belong here.
|
21 |
+
//
|
22 |
+
// We should ensure that PyTorch internals supports Tensor-subclass-like
|
23 |
+
// objects. In particular, Tensor-subclass-like objects struggle with two
|
24 |
+
// classes of operations that are problematic for Tensor subclasses:
|
25 |
+
// 1. Because some Tensor subclasses do not have storage, .item() or
|
26 |
+
// .data_ptr() calls are not good.
|
27 |
+
// 2. Certain in-place operations can eliminate the typing of the Tensor
|
28 |
+
// subclass. For example:
|
29 |
+
// >>> torch.zeros(input.sizes(), grad.options()).diag().copy_(input)
|
30 |
+
// If input is a Tensor subclass, then the above ends up either erroring out
|
31 |
+
// or returning a regular non-Tensor-subclass Tensor!
|
32 |
+
|
33 |
+
constexpr auto kFunctorchWrappedTensors = DispatchKeySet(
|
34 |
+
{DispatchKey::FuncTorchGradWrapper,
|
35 |
+
DispatchKey::FuncTorchBatched,
|
36 |
+
DispatchKey::Functionalize});
|
37 |
+
|
38 |
+
constexpr auto kTensorSubclassLike =
|
39 |
+
kFunctorchWrappedTensors |
|
40 |
+
DispatchKeySet(
|
41 |
+
{// WARNING: DO NOT put combined backend component + functionality keys
|
42 |
+
// here, you will incorrectly always match on the functionality key
|
43 |
+
// no matter the backend component
|
44 |
+
DispatchKey::Batched,
|
45 |
+
DispatchKey::Sparse,
|
46 |
+
DispatchKey::SparseCsr,
|
47 |
+
DispatchKey::Python}) |
|
48 |
+
DispatchKeySet(BackendComponent::MetaBit);
|
49 |
+
|
50 |
+
inline bool isTensorSubclassLike(const Tensor& tensor) {
|
51 |
+
if (c10::impl::dispatch_mode_enabled())
|
52 |
+
return true;
|
53 |
+
auto key_set = tensor.unsafeGetTensorImpl()->key_set();
|
54 |
+
return !(key_set & kTensorSubclassLike).empty();
|
55 |
+
}
|
56 |
+
|
57 |
+
inline bool areAnyTensorSubclassLike(TensorList tensors) {
|
58 |
+
if (c10::impl::dispatch_mode_enabled())
|
59 |
+
return true;
|
60 |
+
return std::any_of(tensors.begin(), tensors.end(), isTensorSubclassLike);
|
61 |
+
}
|
62 |
+
|
63 |
+
inline bool areAnyOptionalTensorSubclassLike(
|
64 |
+
const c10::List<c10::optional<Tensor>>& tensors) {
|
65 |
+
if (c10::impl::dispatch_mode_enabled())
|
66 |
+
return true;
|
67 |
+
return std::any_of(
|
68 |
+
tensors.begin(), tensors.end(), [](const optional<Tensor>& opt_tensor) {
|
69 |
+
return (
|
70 |
+
opt_tensor.has_value() && isTensorSubclassLike(opt_tensor.value()));
|
71 |
+
});
|
72 |
+
}
|
73 |
+
|
74 |
+
// Helper function to deal testing truthfulness of a scalar tensor
|
75 |
+
// in a Composite Compliant manner.
|
76 |
+
// NOTE: This function expects a scalar tensor of boolean dtype.
|
77 |
+
// Eg.
|
78 |
+
// Non-Composite Compliant Pattern : (t == 0).all().item<bool>()
|
79 |
+
// Composite Compliant Patter : is_salar_tensor_true((t == 0).all())
|
80 |
+
inline bool is_scalar_tensor_true(const Tensor& t) {
|
81 |
+
TORCH_INTERNAL_ASSERT(t.dim() == 0)
|
82 |
+
TORCH_INTERNAL_ASSERT(t.scalar_type() == kBool)
|
83 |
+
return at::equal(t, t.new_ones({}, t.options()));
|
84 |
+
}
|
85 |
+
|
86 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ThreadLocalPythonObjects.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/SafePyObject.h>
|
4 |
+
#include <c10/macros/Macros.h>
|
5 |
+
#include <unordered_map>
|
6 |
+
|
7 |
+
namespace at::impl {
|
8 |
+
|
9 |
+
struct TORCH_API ThreadLocalPythonObjects {
|
10 |
+
static void set(const std::string& key, std::shared_ptr<SafePyObject> value);
|
11 |
+
static const std::shared_ptr<SafePyObject>& get(const std::string& key);
|
12 |
+
static bool contains(const std::string& key);
|
13 |
+
|
14 |
+
static const ThreadLocalPythonObjects& get_state();
|
15 |
+
static void set_state(ThreadLocalPythonObjects state);
|
16 |
+
|
17 |
+
private:
|
18 |
+
std::unordered_map<std::string, std::shared_ptr<c10::SafePyObject>> obj_dict_;
|
19 |
+
};
|
20 |
+
|
21 |
+
} // namespace at::impl
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/Version.h
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/Context.h>
|
2 |
+
|
3 |
+
namespace at {
|
4 |
+
|
5 |
+
/// Returns a detailed string describing the configuration PyTorch.
|
6 |
+
TORCH_API std::string show_config();
|
7 |
+
|
8 |
+
TORCH_API std::string get_mkl_version();
|
9 |
+
|
10 |
+
TORCH_API std::string get_mkldnn_version();
|
11 |
+
|
12 |
+
TORCH_API std::string get_openmp_version();
|
13 |
+
|
14 |
+
TORCH_API std::string get_cxx_flags();
|
15 |
+
|
16 |
+
TORCH_API std::string get_cpu_capability();
|
17 |
+
|
18 |
+
} // namespace at
|