Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cholesky_solve_helper_cpu_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_flatten_weight.h +91 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_dense_backward_native.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_fake_quantize_per_tensor_affine_cachemask_tensor_qparams_cuda_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_erfc_cuda_dispatch.h +24 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_tan_ops.h +50 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_trunc_native.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_zero_ops.h +50 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_log_softmax_backward_data_native.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_masked_softmax_cuda_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_native_batch_norm_legit_no_training_compositeexplicitautograd_dispatch.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_native_batch_norm_legit_ops.h +72 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_offsets_ops.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_select_backward_native.h +21 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_from_tensor_list_ops.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_view_from_buffer.h +30 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_mm.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_csr_tensor_unsafe_ops.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_backward_ops.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_spdiags_native.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_standard_gamma_ops.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_lstm_cell_backward.h +30 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_trilinear_compositeexplicitautograd_dispatch.h +24 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bilinear2d_aa_cuda_dispatch.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_int4pack_mm_cpu_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_norm_interface_native.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/addbmm_cpu_dispatch.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/affine_grid_generator.h +91 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/aminmax_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/arccos.h +44 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/arcsin_ops.h +50 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/argwhere_compositeimplicitautograd_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/baddbmm_ops.h +50 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm.h +30 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/bernoulli_native.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/eye_native.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_channel_affine_cachemask_ops.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_channel_affine_compositeimplicitautograd_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfft2.h +91 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fmod_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool3d_ops.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/gather_ops.h +61 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/gelu_backward_cuda_dispatch.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/geqrf_cuda_dispatch.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_3d_backward_native.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/huber_loss_backward_native.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/indices_copy.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/is_set_to_cpu_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_cross_native.h +24 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_lstsq_ops.h +39 -0
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cholesky_solve_helper_cpu_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _cholesky_solve_helper(const at::Tensor & self, const at::Tensor & A, bool upper);
|
21 |
+
|
22 |
+
} // namespace cpu
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_flatten_weight.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_cudnn_rnn_flatten_weight_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor
|
26 |
+
inline at::Tensor _cudnn_rnn_flatten_weight(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
27 |
+
return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor _cudnn_rnn_flatten_weight(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
32 |
+
return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor
|
37 |
+
inline at::Tensor _cudnn_rnn_flatten_weight_symint(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
38 |
+
return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
at::Tensor _cudnn_rnn_flatten_weight(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
43 |
+
return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & _cudnn_rnn_flatten_weight_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
49 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
at::Tensor & _cudnn_rnn_flatten_weight_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
54 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & _cudnn_rnn_flatten_weight_outf(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
|
60 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
at::Tensor & _cudnn_rnn_flatten_weight_outf(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
|
65 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & _cudnn_rnn_flatten_weight_symint_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
71 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
at::Tensor & _cudnn_rnn_flatten_weight_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
76 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & _cudnn_rnn_flatten_weight_symint_outf(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
|
82 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor & _cudnn_rnn_flatten_weight_outf(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
|
87 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_dense_backward_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & _embedding_bag_dense_backward_out_symint(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor _embedding_bag_dense_backward_cpu(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1);
|
21 |
+
TORCH_API at::Tensor _embedding_bag_dense_backward_cuda(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1);
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_fake_quantize_per_tensor_affine_cachemask_tensor_qparams_cuda_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> _fake_quantize_per_tensor_affine_cachemask_tensor_qparams(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, const at::Tensor & fake_quant_enabled, int64_t quant_min, int64_t quant_max);
|
21 |
+
|
22 |
+
} // namespace cuda
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_erfc_cuda_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_erfc(at::TensorList self);
|
21 |
+
TORCH_API void _foreach_erfc_(at::TensorList self);
|
22 |
+
|
23 |
+
} // namespace cuda
|
24 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_tan_ops.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _foreach_tan {
|
18 |
+
using schema = ::std::vector<at::Tensor> (at::TensorList);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_tan")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_tan(Tensor[] self) -> Tensor[]")
|
24 |
+
static ::std::vector<at::Tensor> call(at::TensorList self);
|
25 |
+
static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _foreach_tan_ {
|
29 |
+
using schema = void (at::TensorList);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_tan_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_tan_(Tensor(a!)[] self) -> ()")
|
35 |
+
static void call(at::TensorList self);
|
36 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API _foreach_tan_out {
|
40 |
+
using schema = void (at::TensorList, at::TensorList);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_tan")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_tan.out(Tensor[] self, *, Tensor(a!)[] out) -> ()")
|
46 |
+
static void call(at::TensorList self, at::TensorList out);
|
47 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList out);
|
48 |
+
};
|
49 |
+
|
50 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_trunc_native.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API void _foreach_trunc_out(at::TensorList self, at::TensorList out);
|
20 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_trunc_slow(at::TensorList self);
|
21 |
+
TORCH_API void foreach_tensor_trunc_slow_(at::TensorList self);
|
22 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_trunc_cuda(at::TensorList self);
|
23 |
+
TORCH_API void foreach_tensor_trunc_cuda_(at::TensorList self);
|
24 |
+
} // namespace native
|
25 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_zero_ops.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _foreach_zero_ {
|
18 |
+
using schema = void (at::TensorList);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_zero_")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_zero_(Tensor(a!)[] self) -> ()")
|
24 |
+
static void call(at::TensorList self);
|
25 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _foreach_zero_out {
|
29 |
+
using schema = void (at::TensorList, at::TensorList);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_zero")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_zero.out(Tensor[] self, *, Tensor(a!)[] out) -> ()")
|
35 |
+
static void call(at::TensorList self, at::TensorList out);
|
36 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList out);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API _foreach_zero {
|
40 |
+
using schema = ::std::vector<at::Tensor> (at::TensorList);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_zero")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_zero(Tensor[] self) -> Tensor[] self_out")
|
46 |
+
static ::std::vector<at::Tensor> call(at::TensorList self);
|
47 |
+
static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
|
48 |
+
};
|
49 |
+
|
50 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_log_softmax_backward_data_native.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/_log_softmax_backward_data_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured_log_softmax_backward_cpu_out : public at::meta::structured__log_softmax_backward_data {
|
20 |
+
void impl(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, at::ScalarType input_dtype, const at::Tensor & out);
|
21 |
+
};
|
22 |
+
struct TORCH_API structured_log_softmax_backward_cuda_out : public at::meta::structured__log_softmax_backward_data {
|
23 |
+
void impl(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, at::ScalarType input_dtype, const at::Tensor & out);
|
24 |
+
};
|
25 |
+
} // namespace native
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_masked_softmax_cuda_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _masked_softmax(const at::Tensor & self, const at::Tensor & mask, c10::optional<int64_t> dim=c10::nullopt, c10::optional<int64_t> mask_type=c10::nullopt);
|
21 |
+
|
22 |
+
} // namespace cuda
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_native_batch_norm_legit_no_training_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _native_batch_norm_legit_no_training(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & running_mean, const at::Tensor & running_var, double momentum, double eps);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _native_batch_norm_legit_no_training_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & running_mean, const at::Tensor & running_var, double momentum, double eps);
|
22 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _native_batch_norm_legit_no_training_outf(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & running_mean, const at::Tensor & running_var, double momentum, double eps, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2);
|
23 |
+
|
24 |
+
} // namespace compositeexplicitautograd
|
25 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_native_batch_norm_legit_ops.h
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _native_batch_norm_legit {
|
18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor> (const at::Tensor &, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, at::Tensor &, at::Tensor &, bool, double, double);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_native_batch_norm_legit")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_native_batch_norm_legit(Tensor input, Tensor? weight, Tensor? bias, Tensor(a!) running_mean, Tensor(b!) running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)")
|
24 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> call(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, at::Tensor & running_mean, at::Tensor & running_var, bool training, double momentum, double eps);
|
25 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, at::Tensor & running_mean, at::Tensor & running_var, bool training, double momentum, double eps);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _native_batch_norm_legit_out {
|
29 |
+
using schema = ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> (const at::Tensor &, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, at::Tensor &, at::Tensor &, bool, double, double, at::Tensor &, at::Tensor &, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_native_batch_norm_legit")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_native_batch_norm_legit.out(Tensor input, Tensor? weight, Tensor? bias, Tensor(a!) running_mean, Tensor(b!) running_var, bool training, float momentum, float eps, *, Tensor(d!) out, Tensor(e!) save_mean, Tensor(f!) save_invstd) -> (Tensor(d!), Tensor(e!), Tensor(f!))")
|
35 |
+
static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> call(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, at::Tensor & running_mean, at::Tensor & running_var, bool training, double momentum, double eps, at::Tensor & out, at::Tensor & save_mean, at::Tensor & save_invstd);
|
36 |
+
static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, at::Tensor & running_mean, at::Tensor & running_var, bool training, double momentum, double eps, at::Tensor & out, at::Tensor & save_mean, at::Tensor & save_invstd);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API _native_batch_norm_legit_no_stats {
|
40 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor> (const at::Tensor &, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, bool, double, double);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_native_batch_norm_legit")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "no_stats")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_native_batch_norm_legit.no_stats(Tensor input, Tensor? weight, Tensor? bias, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)")
|
46 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> call(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, bool training, double momentum, double eps);
|
47 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, bool training, double momentum, double eps);
|
48 |
+
};
|
49 |
+
|
50 |
+
struct TORCH_API _native_batch_norm_legit_no_stats_out {
|
51 |
+
using schema = ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> (const at::Tensor &, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, bool, double, double, at::Tensor &, at::Tensor &, at::Tensor &);
|
52 |
+
using ptr_schema = schema*;
|
53 |
+
// See Note [static constexpr char* members for windows NVCC]
|
54 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_native_batch_norm_legit")
|
55 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "no_stats_out")
|
56 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_native_batch_norm_legit.no_stats_out(Tensor input, Tensor? weight, Tensor? bias, bool training, float momentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!), Tensor(b!), Tensor(c!))")
|
57 |
+
static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> call(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, bool training, double momentum, double eps, at::Tensor & out, at::Tensor & save_mean, at::Tensor & save_invstd);
|
58 |
+
static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, bool training, double momentum, double eps, at::Tensor & out, at::Tensor & save_mean, at::Tensor & save_invstd);
|
59 |
+
};
|
60 |
+
|
61 |
+
struct TORCH_API _native_batch_norm_legit_functional {
|
62 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> (const at::Tensor &, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, const at::Tensor &, const at::Tensor &, bool, double, double);
|
63 |
+
using ptr_schema = schema*;
|
64 |
+
// See Note [static constexpr char* members for windows NVCC]
|
65 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_native_batch_norm_legit_functional")
|
66 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
67 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_native_batch_norm_legit_functional(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor, Tensor running_mean_out, Tensor running_var_out)")
|
68 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> call(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & running_mean, const at::Tensor & running_var, bool training, double momentum, double eps);
|
69 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & running_mean, const at::Tensor & running_var, bool training, double momentum, double eps);
|
70 |
+
};
|
71 |
+
|
72 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_offsets_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _nested_get_offsets {
|
18 |
+
using schema = at::Tensor (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_nested_get_offsets")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_nested_get_offsets(Tensor self) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_select_backward_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor _nested_select_backward_symint(const at::Tensor & grad_output, const at::Tensor & self, int64_t dim, c10::SymInt index);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_from_tensor_list_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _nested_tensor_from_tensor_list {
|
18 |
+
using schema = at::Tensor (at::TensorList, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_nested_tensor_from_tensor_list")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_nested_tensor_from_tensor_list(Tensor[] list, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor")
|
24 |
+
static at::Tensor call(at::TensorList list, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList list, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _nested_tensor_from_tensor_list_out {
|
29 |
+
using schema = at::Tensor & (at::TensorList, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_nested_tensor_from_tensor_list")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_nested_tensor_from_tensor_list.out(Tensor[] list, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::TensorList list, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList list, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_view_from_buffer.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_nested_view_from_buffer_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_nested_view_from_buffer(Tensor(a) self, Tensor nested_size, Tensor nested_strides, Tensor offsets) -> Tensor(a)
|
26 |
+
inline at::Tensor _nested_view_from_buffer(const at::Tensor & self, const at::Tensor & nested_size, const at::Tensor & nested_strides, const at::Tensor & offsets) {
|
27 |
+
return at::_ops::_nested_view_from_buffer::call(self, nested_size, nested_strides, offsets);
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_mm.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_scaled_mm_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_scaled_mm(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None, bool use_fast_accum=False) -> (Tensor, Tensor)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor> _scaled_mm(const at::Tensor & self, const at::Tensor & mat2, const c10::optional<at::Tensor> & bias={}, c10::optional<at::ScalarType> out_dtype=c10::nullopt, const c10::optional<at::Tensor> & scale_a={}, const c10::optional<at::Tensor> & scale_b={}, const c10::optional<at::Tensor> & scale_result={}, bool use_fast_accum=false) {
|
27 |
+
return at::_ops::_scaled_mm::call(self, mat2, bias, out_dtype, scale_a, scale_b, scale_result, use_fast_accum);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_scaled_mm.out(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None, bool use_fast_accum=False, Tensor(a!) out, Tensor(b!) out_amax) -> (Tensor(a!), Tensor(b!))
|
31 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> _scaled_mm_out(at::Tensor & out, at::Tensor & out_amax, const at::Tensor & self, const at::Tensor & mat2, const c10::optional<at::Tensor> & bias={}, c10::optional<at::ScalarType> out_dtype=c10::nullopt, const c10::optional<at::Tensor> & scale_a={}, const c10::optional<at::Tensor> & scale_b={}, const c10::optional<at::Tensor> & scale_result={}, bool use_fast_accum=false) {
|
32 |
+
return at::_ops::_scaled_mm_out::call(self, mat2, bias, out_dtype, scale_a, scale_b, scale_result, use_fast_accum, out, out_amax);
|
33 |
+
}
|
34 |
+
// aten::_scaled_mm.out(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None, bool use_fast_accum=False, Tensor(a!) out, Tensor(b!) out_amax) -> (Tensor(a!), Tensor(b!))
|
35 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> _scaled_mm_outf(const at::Tensor & self, const at::Tensor & mat2, const c10::optional<at::Tensor> & bias, c10::optional<at::ScalarType> out_dtype, const c10::optional<at::Tensor> & scale_a, const c10::optional<at::Tensor> & scale_b, const c10::optional<at::Tensor> & scale_result, bool use_fast_accum, at::Tensor & out, at::Tensor & out_amax) {
|
36 |
+
return at::_ops::_scaled_mm_out::call(self, mat2, bias, out_dtype, scale_a, scale_b, scale_result, use_fast_accum, out, out_amax);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_csr_tensor_unsafe_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _sparse_csr_tensor_unsafe {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, at::IntArrayRef, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_sparse_csr_tensor_unsafe")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_sparse_csr_tensor_unsafe(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_backward_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _sparse_mm_reduce_impl_backward {
|
18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const at::Tensor &, c10::string_view, const at::Tensor &, ::std::array<bool,2>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_sparse_mm_reduce_impl_backward")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_sparse_mm_reduce_impl_backward(Tensor self, Tensor grad_out, Tensor weight, str reduce, Tensor arg_out, bool[2] output_mask) -> (Tensor, Tensor)")
|
24 |
+
static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & self, const at::Tensor & grad_out, const at::Tensor & weight, c10::string_view reduce, const at::Tensor & arg_out, ::std::array<bool,2> output_mask);
|
25 |
+
static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & grad_out, const at::Tensor & weight, c10::string_view reduce, const at::Tensor & arg_out, ::std::array<bool,2> output_mask);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_spdiags_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & _spdiags_out(const at::Tensor & diagonals, const at::Tensor & offsets, at::IntArrayRef shape, c10::optional<at::Layout> layout, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor spdiags(const at::Tensor & diagonals, const at::Tensor & offsets, at::IntArrayRef shape, c10::optional<at::Layout> layout=c10::nullopt);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_standard_gamma_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _standard_gamma {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, c10::optional<at::Generator>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_standard_gamma")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_standard_gamma(Tensor self, Generator? generator=None) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, c10::optional<at::Generator> generator);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::optional<at::Generator> generator);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _standard_gamma_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, c10::optional<at::Generator>, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_standard_gamma")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_standard_gamma.out(Tensor self, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, c10::optional<at::Generator> generator, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::optional<at::Generator> generator, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_lstm_cell_backward.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_thnn_fused_lstm_cell_backward_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_thnn_fused_lstm_cell_backward(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _thnn_fused_lstm_cell_backward(const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias) {
|
27 |
+
return at::_ops::_thnn_fused_lstm_cell_backward::call(grad_hy, grad_cy, cx, cy, workspace, has_bias);
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_trilinear_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & _trilinear_out(at::Tensor & out, const at::Tensor & i1, const at::Tensor & i2, const at::Tensor & i3, at::IntArrayRef expand1, at::IntArrayRef expand2, at::IntArrayRef expand3, at::IntArrayRef sumdim, int64_t unroll_dim=1);
|
21 |
+
TORCH_API at::Tensor & _trilinear_outf(const at::Tensor & i1, const at::Tensor & i2, const at::Tensor & i3, at::IntArrayRef expand1, at::IntArrayRef expand2, at::IntArrayRef expand3, at::IntArrayRef sumdim, int64_t unroll_dim, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bilinear2d_aa_cuda_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _upsample_bilinear2d_aa(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor _upsample_bilinear2d_aa_symint(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor & _upsample_bilinear2d_aa_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
23 |
+
TORCH_API at::Tensor & _upsample_bilinear2d_aa_outf(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor & _upsample_bilinear2d_aa_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
25 |
+
TORCH_API at::Tensor & _upsample_bilinear2d_aa_symint_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out);
|
26 |
+
|
27 |
+
} // namespace cuda
|
28 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_int4pack_mm_cpu_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _weight_int4pack_mm(const at::Tensor & self, const at::Tensor & mat2, int64_t qGroupSize, const at::Tensor & qScaleAndZeros);
|
21 |
+
|
22 |
+
} // namespace cpu
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_norm_interface_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _weight_norm_interface_out(const at::Tensor & v, const at::Tensor & g, int64_t dim, at::Tensor & out0, at::Tensor & out1);
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> weight_norm_cpu(const at::Tensor & v, const at::Tensor & g, int64_t dim=0);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> weight_norm_cuda(const at::Tensor & v, const at::Tensor & g, int64_t dim=0);
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/addbmm_cpu_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor addbmm(const at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta=1, const at::Scalar & alpha=1);
|
21 |
+
TORCH_API at::Tensor & addbmm_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta=1, const at::Scalar & alpha=1);
|
22 |
+
TORCH_API at::Tensor & addbmm_outf(const at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta, const at::Scalar & alpha, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & addbmm_(at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta=1, const at::Scalar & alpha=1);
|
24 |
+
|
25 |
+
} // namespace cpu
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/affine_grid_generator.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/affine_grid_generator_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::affine_grid_generator(Tensor theta, SymInt[] size, bool align_corners) -> Tensor
|
26 |
+
inline at::Tensor affine_grid_generator(const at::Tensor & theta, at::IntArrayRef size, bool align_corners) {
|
27 |
+
return at::_ops::affine_grid_generator::call(theta, c10::fromIntArrayRefSlow(size), align_corners);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor affine_grid_generator(const at::Tensor & theta, at::IntArrayRef size, bool align_corners) {
|
32 |
+
return at::_ops::affine_grid_generator::call(theta, c10::fromIntArrayRefSlow(size), align_corners);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::affine_grid_generator(Tensor theta, SymInt[] size, bool align_corners) -> Tensor
|
37 |
+
inline at::Tensor affine_grid_generator_symint(const at::Tensor & theta, c10::SymIntArrayRef size, bool align_corners) {
|
38 |
+
return at::_ops::affine_grid_generator::call(theta, size, align_corners);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
at::Tensor affine_grid_generator(const at::Tensor & theta, c10::SymIntArrayRef size, bool align_corners) {
|
43 |
+
return at::_ops::affine_grid_generator::call(theta, size, align_corners);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::affine_grid_generator.out(Tensor theta, SymInt[] size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & affine_grid_generator_out(at::Tensor & out, const at::Tensor & theta, at::IntArrayRef size, bool align_corners) {
|
49 |
+
return at::_ops::affine_grid_generator_out::call(theta, c10::fromIntArrayRefSlow(size), align_corners, out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
at::Tensor & affine_grid_generator_out(at::Tensor & out, const at::Tensor & theta, at::IntArrayRef size, bool align_corners) {
|
54 |
+
return at::_ops::affine_grid_generator_out::call(theta, c10::fromIntArrayRefSlow(size), align_corners, out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::affine_grid_generator.out(Tensor theta, SymInt[] size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & affine_grid_generator_outf(const at::Tensor & theta, at::IntArrayRef size, bool align_corners, at::Tensor & out) {
|
60 |
+
return at::_ops::affine_grid_generator_out::call(theta, c10::fromIntArrayRefSlow(size), align_corners, out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
at::Tensor & affine_grid_generator_outf(const at::Tensor & theta, at::IntArrayRef size, bool align_corners, at::Tensor & out) {
|
65 |
+
return at::_ops::affine_grid_generator_out::call(theta, c10::fromIntArrayRefSlow(size), align_corners, out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::affine_grid_generator.out(Tensor theta, SymInt[] size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & affine_grid_generator_symint_out(at::Tensor & out, const at::Tensor & theta, c10::SymIntArrayRef size, bool align_corners) {
|
71 |
+
return at::_ops::affine_grid_generator_out::call(theta, size, align_corners, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
at::Tensor & affine_grid_generator_out(at::Tensor & out, const at::Tensor & theta, c10::SymIntArrayRef size, bool align_corners) {
|
76 |
+
return at::_ops::affine_grid_generator_out::call(theta, size, align_corners, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::affine_grid_generator.out(Tensor theta, SymInt[] size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & affine_grid_generator_symint_outf(const at::Tensor & theta, c10::SymIntArrayRef size, bool align_corners, at::Tensor & out) {
|
82 |
+
return at::_ops::affine_grid_generator_out::call(theta, size, align_corners, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor & affine_grid_generator_outf(const at::Tensor & theta, c10::SymIntArrayRef size, bool align_corners, at::Tensor & out) {
|
87 |
+
return at::_ops::affine_grid_generator_out::call(theta, size, align_corners, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/aminmax_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> aminmax(const at::Tensor & self, c10::optional<int64_t> dim=c10::nullopt, bool keepdim=false);
|
21 |
+
|
22 |
+
} // namespace compositeexplicitautogradnonfunctional
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/arccos.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/arccos_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::arccos(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor arccos(const at::Tensor & self) {
|
27 |
+
return at::_ops::arccos::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::arccos_(Tensor(a!) self) -> Tensor(a!)
|
31 |
+
inline at::Tensor & arccos_(at::Tensor & self) {
|
32 |
+
return at::_ops::arccos_::call(self);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::arccos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
36 |
+
inline at::Tensor & arccos_out(at::Tensor & out, const at::Tensor & self) {
|
37 |
+
return at::_ops::arccos_out::call(self, out);
|
38 |
+
}
|
39 |
+
// aten::arccos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
40 |
+
inline at::Tensor & arccos_outf(const at::Tensor & self, at::Tensor & out) {
|
41 |
+
return at::_ops::arccos_out::call(self, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/arcsin_ops.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API arcsin {
|
18 |
+
using schema = at::Tensor (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::arcsin")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "arcsin(Tensor self) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API arcsin_ {
|
29 |
+
using schema = at::Tensor & (at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::arcsin_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "arcsin_(Tensor(a!) self) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::Tensor & self);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API arcsin_out {
|
40 |
+
using schema = at::Tensor & (const at::Tensor &, at::Tensor &);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::arcsin")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "arcsin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)")
|
46 |
+
static at::Tensor & call(const at::Tensor & self, at::Tensor & out);
|
47 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & out);
|
48 |
+
};
|
49 |
+
|
50 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/argwhere_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor argwhere(const at::Tensor & self);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/baddbmm_ops.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API baddbmm {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Scalar &, const at::Scalar &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::baddbmm")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta, const at::Scalar & alpha);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta, const at::Scalar & alpha);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API baddbmm_ {
|
29 |
+
using schema = at::Tensor & (at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Scalar &, const at::Scalar &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::baddbmm_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "baddbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta, const at::Scalar & alpha);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta, const at::Scalar & alpha);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API baddbmm_out {
|
40 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Scalar &, const at::Scalar &, at::Tensor &);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::baddbmm")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "baddbmm.out(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)")
|
46 |
+
static at::Tensor & call(const at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta, const at::Scalar & alpha, at::Tensor & out);
|
47 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta, const at::Scalar & alpha, at::Tensor & out);
|
48 |
+
};
|
49 |
+
|
50 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/batch_norm_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor
|
26 |
+
inline at::Tensor batch_norm(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, bool training, double momentum, double eps, bool cudnn_enabled) {
|
27 |
+
return at::_ops::batch_norm::call(input, weight, bias, running_mean, running_var, training, momentum, eps, cudnn_enabled);
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/bernoulli_native.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor bernoulli(const at::Tensor & self, c10::optional<at::Generator> generator=c10::nullopt);
|
20 |
+
TORCH_API at::Tensor & bernoulli_out(const at::Tensor & self, c10::optional<at::Generator> generator, at::Tensor & out);
|
21 |
+
TORCH_API at::Tensor bernoulli(const at::Tensor & self, const at::Tensor & p, c10::optional<at::Generator> generator=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor & bernoulli_Tensor_out(const at::Tensor & self, const at::Tensor & p, c10::optional<at::Generator> generator, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & bernoulli_(at::Tensor & self, const at::Tensor & p, c10::optional<at::Generator> generator=c10::nullopt);
|
24 |
+
TORCH_API at::Tensor & bernoulli_float_out(const at::Tensor & self, double p, c10::optional<at::Generator> generator, at::Tensor & out);
|
25 |
+
TORCH_API at::Tensor & bernoulli_(at::Tensor & self, double p=0.5, c10::optional<at::Generator> generator=c10::nullopt);
|
26 |
+
TORCH_API at::Tensor bernoulli(const at::Tensor & self, double p, c10::optional<at::Generator> generator=c10::nullopt);
|
27 |
+
} // namespace native
|
28 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/eye_native.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor eye(int64_t n, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={});
|
20 |
+
TORCH_API at::Tensor & eye_out_cpu(int64_t n, at::Tensor & out);
|
21 |
+
TORCH_API at::Tensor & eye_out_cuda(int64_t n, at::Tensor & out);
|
22 |
+
TORCH_API at::Tensor eye(int64_t n, int64_t m, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={});
|
23 |
+
TORCH_API at::Tensor & eye_out_cpu(int64_t n, int64_t m, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor & eye_out_cuda(int64_t n, int64_t m, at::Tensor & out);
|
25 |
+
} // namespace native
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_channel_affine_cachemask_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API fake_quantize_per_channel_affine_cachemask {
|
18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const at::Tensor &, int64_t, int64_t, int64_t);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fake_quantize_per_channel_affine_cachemask")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fake_quantize_per_channel_affine_cachemask(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> (Tensor output, Tensor mask)")
|
24 |
+
static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max);
|
25 |
+
static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API fake_quantize_per_channel_affine_cachemask_out {
|
29 |
+
using schema = ::std::tuple<at::Tensor &,at::Tensor &> (const at::Tensor &, const at::Tensor &, const at::Tensor &, int64_t, int64_t, int64_t, at::Tensor &, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fake_quantize_per_channel_affine_cachemask")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fake_quantize_per_channel_affine_cachemask.out(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))")
|
35 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> call(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, at::Tensor & out0, at::Tensor & out1);
|
36 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, at::Tensor & out0, at::Tensor & out1);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_channel_affine_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor fake_quantize_per_channel_affine(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfft2.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/fft_rfft2_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::fft_rfft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor
|
26 |
+
inline at::Tensor fft_rfft2(const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt) {
|
27 |
+
return at::_ops::fft_rfft2::call(self, s.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*s)) : c10::nullopt, dim, norm);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor fft_rfft2(const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt) {
|
32 |
+
return at::_ops::fft_rfft2::call(self, s.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*s)) : c10::nullopt, dim, norm);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::fft_rfft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor
|
37 |
+
inline at::Tensor fft_rfft2_symint(const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt) {
|
38 |
+
return at::_ops::fft_rfft2::call(self, s, dim, norm);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
at::Tensor fft_rfft2(const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt) {
|
43 |
+
return at::_ops::fft_rfft2::call(self, s, dim, norm);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::fft_rfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & fft_rfft2_out(at::Tensor & out, const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt) {
|
49 |
+
return at::_ops::fft_rfft2_out::call(self, s.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*s)) : c10::nullopt, dim, norm, out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
at::Tensor & fft_rfft2_out(at::Tensor & out, const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt) {
|
54 |
+
return at::_ops::fft_rfft2_out::call(self, s.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*s)) : c10::nullopt, dim, norm, out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::fft_rfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & fft_rfft2_outf(const at::Tensor & self, at::OptionalIntArrayRef s, at::IntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
|
60 |
+
return at::_ops::fft_rfft2_out::call(self, s.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*s)) : c10::nullopt, dim, norm, out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
at::Tensor & fft_rfft2_outf(const at::Tensor & self, at::OptionalIntArrayRef s, at::IntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
|
65 |
+
return at::_ops::fft_rfft2_out::call(self, s.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*s)) : c10::nullopt, dim, norm, out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::fft_rfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & fft_rfft2_symint_out(at::Tensor & out, const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt) {
|
71 |
+
return at::_ops::fft_rfft2_out::call(self, s, dim, norm, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
at::Tensor & fft_rfft2_out(at::Tensor & out, const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt) {
|
76 |
+
return at::_ops::fft_rfft2_out::call(self, s, dim, norm, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::fft_rfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & fft_rfft2_symint_outf(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::IntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
|
82 |
+
return at::_ops::fft_rfft2_out::call(self, s, dim, norm, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor & fft_rfft2_outf(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::IntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
|
87 |
+
return at::_ops::fft_rfft2_out::call(self, s, dim, norm, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fmod_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor fmod(const at::Tensor & self, const at::Tensor & other);
|
21 |
+
TORCH_API at::Tensor & fmod_(at::Tensor & self, const at::Tensor & other);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautogradnonfunctional
|
24 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool3d_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API fractional_max_pool3d_output {
|
18 |
+
using schema = ::std::tuple<at::Tensor &,at::Tensor &> (const at::Tensor &, at::IntArrayRef, at::IntArrayRef, const at::Tensor &, at::Tensor &, at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fractional_max_pool3d")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "output")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fractional_max_pool3d.output(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples, *, Tensor(a!) output, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))")
|
24 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> call(const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & random_samples, at::Tensor & output, at::Tensor & indices);
|
25 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & random_samples, at::Tensor & output, at::Tensor & indices);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API fractional_max_pool3d {
|
29 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, at::IntArrayRef, at::IntArrayRef, const at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fractional_max_pool3d")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fractional_max_pool3d(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples) -> (Tensor, Tensor)")
|
35 |
+
static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & random_samples);
|
36 |
+
static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & random_samples);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/gather_ops.h
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API gather_out {
|
18 |
+
using schema = at::Tensor & (const at::Tensor &, int64_t, const at::Tensor &, bool, at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::gather")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "gather.out(Tensor self, int dim, Tensor index, *, bool sparse_grad=False, Tensor(a!) out) -> Tensor(a!)")
|
24 |
+
static at::Tensor & call(const at::Tensor & self, int64_t dim, const at::Tensor & index, bool sparse_grad, at::Tensor & out);
|
25 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, const at::Tensor & index, bool sparse_grad, at::Tensor & out);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API gather {
|
29 |
+
using schema = at::Tensor (const at::Tensor &, int64_t, const at::Tensor &, bool);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::gather")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "gather(Tensor self, int dim, Tensor index, *, bool sparse_grad=False) -> Tensor")
|
35 |
+
static at::Tensor call(const at::Tensor & self, int64_t dim, const at::Tensor & index, bool sparse_grad);
|
36 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, const at::Tensor & index, bool sparse_grad);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API gather_dimname_out {
|
40 |
+
using schema = at::Tensor & (const at::Tensor &, at::Dimname, const at::Tensor &, bool, at::Tensor &);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::gather")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "dimname_out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "gather.dimname_out(Tensor self, Dimname dim, Tensor index, *, bool sparse_grad=False, Tensor(a!) out) -> Tensor(a!)")
|
46 |
+
static at::Tensor & call(const at::Tensor & self, at::Dimname dim, const at::Tensor & index, bool sparse_grad, at::Tensor & out);
|
47 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Dimname dim, const at::Tensor & index, bool sparse_grad, at::Tensor & out);
|
48 |
+
};
|
49 |
+
|
50 |
+
struct TORCH_API gather_dimname {
|
51 |
+
using schema = at::Tensor (const at::Tensor &, at::Dimname, const at::Tensor &, bool);
|
52 |
+
using ptr_schema = schema*;
|
53 |
+
// See Note [static constexpr char* members for windows NVCC]
|
54 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::gather")
|
55 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "dimname")
|
56 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "gather.dimname(Tensor self, Dimname dim, Tensor index, *, bool sparse_grad=False) -> Tensor")
|
57 |
+
static at::Tensor call(const at::Tensor & self, at::Dimname dim, const at::Tensor & index, bool sparse_grad);
|
58 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Dimname dim, const at::Tensor & index, bool sparse_grad);
|
59 |
+
};
|
60 |
+
|
61 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/gelu_backward_cuda_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor gelu_backward(const at::Tensor & grad_output, const at::Tensor & self, c10::string_view approximate="none");
|
21 |
+
TORCH_API at::Tensor & gelu_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, c10::string_view approximate="none");
|
22 |
+
TORCH_API at::Tensor & gelu_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, c10::string_view approximate, at::Tensor & grad_input);
|
23 |
+
|
24 |
+
} // namespace cuda
|
25 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/geqrf_cuda_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> geqrf(const at::Tensor & self);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> geqrf_out(at::Tensor & a, at::Tensor & tau, const at::Tensor & self);
|
22 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> geqrf_outf(const at::Tensor & self, at::Tensor & a, at::Tensor & tau);
|
23 |
+
|
24 |
+
} // namespace cuda
|
25 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_3d_backward_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> grid_sampler_3d_backward_out(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask, at::Tensor & out0, at::Tensor & out1);
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> grid_sampler_3d_backward_cpu(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> grid_sampler_3d_backward_cuda(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask);
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/huber_loss_backward_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor huber_loss_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, int64_t reduction, double delta);
|
20 |
+
TORCH_API at::Tensor & huber_loss_backward_out(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, int64_t reduction, double delta, at::Tensor & grad_input);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/indices_copy.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/indices_copy_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::indices_copy(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor indices_copy(const at::Tensor & self) {
|
27 |
+
return at::_ops::indices_copy::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::indices_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & indices_copy_out(at::Tensor & out, const at::Tensor & self) {
|
32 |
+
return at::_ops::indices_copy_out::call(self, out);
|
33 |
+
}
|
34 |
+
// aten::indices_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & indices_copy_outf(const at::Tensor & self, at::Tensor & out) {
|
36 |
+
return at::_ops::indices_copy_out::call(self, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/is_set_to_cpu_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API bool is_set_to(const at::Tensor & self, const at::Tensor & tensor);
|
21 |
+
|
22 |
+
} // namespace cpu
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_cross_native.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/linalg_cross_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured_linalg_cross_out : public at::meta::structured_linalg_cross {
|
20 |
+
void impl(const at::Tensor & self, const at::Tensor & other, int64_t dim, const at::Tensor & out);
|
21 |
+
};
|
22 |
+
TORCH_API at::Tensor linalg_cross_zerotensor(const at::Tensor & self, const at::Tensor & other, int64_t dim=-1);
|
23 |
+
} // namespace native
|
24 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_lstsq_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API linalg_lstsq {
|
18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, c10::optional<double>, c10::optional<c10::string_view>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_lstsq")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_lstsq(Tensor self, Tensor b, float? rcond=None, *, str? driver=None) -> (Tensor solution, Tensor residuals, Tensor rank, Tensor singular_values)")
|
24 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> call(const at::Tensor & self, const at::Tensor & b, c10::optional<double> rcond, c10::optional<c10::string_view> driver);
|
25 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & b, c10::optional<double> rcond, c10::optional<c10::string_view> driver);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API linalg_lstsq_out {
|
29 |
+
using schema = ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> (const at::Tensor &, const at::Tensor &, c10::optional<double>, c10::optional<c10::string_view>, at::Tensor &, at::Tensor &, at::Tensor &, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_lstsq")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_lstsq.out(Tensor self, Tensor b, float? rcond=None, *, str? driver=None, Tensor(a!) solution, Tensor(b!) residuals, Tensor(c!) rank, Tensor(d!) singular_values) -> (Tensor(a!) solution, Tensor(b!) residuals, Tensor(c!) rank, Tensor(d!) singular_values)")
|
35 |
+
static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> call(const at::Tensor & self, const at::Tensor & b, c10::optional<double> rcond, c10::optional<c10::string_view> driver, at::Tensor & solution, at::Tensor & residuals, at::Tensor & rank, at::Tensor & singular_values);
|
36 |
+
static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & b, c10::optional<double> rcond, c10::optional<c10::string_view> driver, at::Tensor & solution, at::Tensor & residuals, at::Tensor & rank, at::Tensor & singular_values);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|