Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/datasets/__init__.py +70 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/__init__.py +13 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/convert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/convert_to_parquet.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/datasets_cli.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/dummy_data.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/env.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/run_beam.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/test.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/convert.py +195 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/convert_to_parquet.py +156 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/datasets_cli.py +45 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/dummy_data.py +468 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/env.py +41 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/run_beam.py +168 -0
- llmeval-env/lib/python3.10/site-packages/datasets/commands/test.py +201 -0
- llmeval-env/lib/python3.10/site-packages/datasets/data_files.py +821 -0
- llmeval-env/lib/python3.10/site-packages/datasets/download/__init__.py +10 -0
- llmeval-env/lib/python3.10/site-packages/datasets/download/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/download/__pycache__/download_config.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/download/__pycache__/download_manager.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/download/__pycache__/mock_download_manager.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/download/__pycache__/streaming_download_manager.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/download/download_config.py +108 -0
- llmeval-env/lib/python3.10/site-packages/datasets/download/download_manager.py +448 -0
- llmeval-env/lib/python3.10/site-packages/datasets/download/mock_download_manager.py +244 -0
- llmeval-env/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py +210 -0
- llmeval-env/lib/python3.10/site-packages/datasets/filesystems/__init__.py +69 -0
- llmeval-env/lib/python3.10/site-packages/datasets/filesystems/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/filesystems/__pycache__/compression.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/filesystems/__pycache__/s3filesystem.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/filesystems/compression.py +123 -0
- llmeval-env/lib/python3.10/site-packages/datasets/filesystems/s3filesystem.py +116 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/abc.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/csv.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/generator.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/json.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/parquet.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/spark.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/sql.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/text.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/abc.py +53 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/csv.py +145 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/generator.py +57 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/json.py +170 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/parquet.py +158 -0
- llmeval-env/lib/python3.10/site-packages/datasets/io/spark.py +57 -0
llmeval-env/lib/python3.10/site-packages/datasets/__init__.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ruff: noqa
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
__version__ = "2.19.1"
|
17 |
+
|
18 |
+
from .arrow_dataset import Dataset
|
19 |
+
from .arrow_reader import ReadInstruction
|
20 |
+
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
|
21 |
+
from .combine import concatenate_datasets, interleave_datasets
|
22 |
+
from .dataset_dict import DatasetDict, IterableDatasetDict
|
23 |
+
from .download import *
|
24 |
+
from .features import *
|
25 |
+
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
|
26 |
+
from .info import DatasetInfo, MetricInfo
|
27 |
+
from .inspect import (
|
28 |
+
get_dataset_config_info,
|
29 |
+
get_dataset_config_names,
|
30 |
+
get_dataset_default_config_name,
|
31 |
+
get_dataset_infos,
|
32 |
+
get_dataset_split_names,
|
33 |
+
inspect_dataset,
|
34 |
+
inspect_metric,
|
35 |
+
list_datasets,
|
36 |
+
list_metrics,
|
37 |
+
)
|
38 |
+
from .iterable_dataset import IterableDataset
|
39 |
+
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
|
40 |
+
from .metric import Metric
|
41 |
+
from .splits import (
|
42 |
+
NamedSplit,
|
43 |
+
NamedSplitAll,
|
44 |
+
Split,
|
45 |
+
SplitBase,
|
46 |
+
SplitDict,
|
47 |
+
SplitGenerator,
|
48 |
+
SplitInfo,
|
49 |
+
SubSplitInfo,
|
50 |
+
percent,
|
51 |
+
)
|
52 |
+
from .tasks import *
|
53 |
+
from .utils import *
|
54 |
+
from .utils import logging
|
55 |
+
|
56 |
+
|
57 |
+
# deprecated modules
|
58 |
+
from datasets import arrow_dataset as _arrow_dataset # isort:skip
|
59 |
+
from datasets import utils as _utils # isort:skip
|
60 |
+
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
|
61 |
+
|
62 |
+
_arrow_dataset.concatenate_datasets = concatenate_datasets
|
63 |
+
_utils.DownloadConfig = DownloadConfig
|
64 |
+
_utils.DownloadManager = DownloadManager
|
65 |
+
_utils.DownloadMode = DownloadMode
|
66 |
+
_deprecated_download_manager.DownloadConfig = DownloadConfig
|
67 |
+
_deprecated_download_manager.DownloadMode = DownloadMode
|
68 |
+
_deprecated_download_manager.DownloadManager = DownloadManager
|
69 |
+
|
70 |
+
del _arrow_dataset, _utils, _deprecated_download_manager
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
+
|
5 |
+
class BaseDatasetsCLICommand(ABC):
|
6 |
+
@staticmethod
|
7 |
+
@abstractmethod
|
8 |
+
def register_subcommand(parser: ArgumentParser):
|
9 |
+
raise NotImplementedError()
|
10 |
+
|
11 |
+
@abstractmethod
|
12 |
+
def run(self):
|
13 |
+
raise NotImplementedError()
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (817 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/convert.cpython-310.pyc
ADDED
Binary file (6.08 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/convert_to_parquet.cpython-310.pyc
ADDED
Binary file (4.42 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/datasets_cli.cpython-310.pyc
ADDED
Binary file (1.71 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/dummy_data.cpython-310.pyc
ADDED
Binary file (16.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/env.cpython-310.pyc
ADDED
Binary file (1.87 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/run_beam.cpython-310.pyc
ADDED
Binary file (5.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/__pycache__/test.cpython-310.pyc
ADDED
Binary file (5.63 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/convert.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import shutil
|
4 |
+
from argparse import ArgumentParser, Namespace
|
5 |
+
|
6 |
+
from datasets.commands import BaseDatasetsCLICommand
|
7 |
+
from datasets.utils.logging import get_logger
|
8 |
+
|
9 |
+
|
10 |
+
HIGHLIGHT_MESSAGE_PRE = """<<<<<<< This should probably be modified because it mentions: """
|
11 |
+
|
12 |
+
HIGHLIGHT_MESSAGE_POST = """=======
|
13 |
+
>>>>>>>
|
14 |
+
"""
|
15 |
+
|
16 |
+
TO_HIGHLIGHT = [
|
17 |
+
"TextEncoderConfig",
|
18 |
+
"ByteTextEncoder",
|
19 |
+
"SubwordTextEncoder",
|
20 |
+
"encoder_config",
|
21 |
+
"maybe_build_from_corpus",
|
22 |
+
"manual_dir",
|
23 |
+
]
|
24 |
+
|
25 |
+
TO_CONVERT = [
|
26 |
+
# (pattern, replacement)
|
27 |
+
# Order is important here for some replacements
|
28 |
+
(r"tfds\.core", r"datasets"),
|
29 |
+
(r"tf\.io\.gfile\.GFile", r"open"),
|
30 |
+
(r"tf\.([\w\d]+)", r"datasets.Value('\1')"),
|
31 |
+
(r"tfds\.features\.Text\(\)", r"datasets.Value('string')"),
|
32 |
+
(r"tfds\.features\.Text\(", r"datasets.Value('string'),"),
|
33 |
+
(r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("),
|
34 |
+
(r"tfds\.features\.FeaturesDict\(", r"dict("),
|
35 |
+
(r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"),
|
36 |
+
(r"tfds\.", r"datasets."),
|
37 |
+
(r"dl_manager\.manual_dir", r"self.config.data_dir"),
|
38 |
+
(r"self\.builder_config", r"self.config"),
|
39 |
+
]
|
40 |
+
|
41 |
+
|
42 |
+
def convert_command_factory(args: Namespace):
|
43 |
+
"""
|
44 |
+
Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint.
|
45 |
+
|
46 |
+
Returns: ConvertCommand
|
47 |
+
"""
|
48 |
+
return ConvertCommand(args.tfds_path, args.datasets_directory)
|
49 |
+
|
50 |
+
|
51 |
+
class ConvertCommand(BaseDatasetsCLICommand):
|
52 |
+
@staticmethod
|
53 |
+
def register_subcommand(parser: ArgumentParser):
|
54 |
+
"""
|
55 |
+
Register this command to argparse so it's available for the datasets-cli
|
56 |
+
|
57 |
+
Args:
|
58 |
+
parser: Root parser to register command-specific arguments
|
59 |
+
"""
|
60 |
+
train_parser = parser.add_parser(
|
61 |
+
"convert",
|
62 |
+
help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.",
|
63 |
+
)
|
64 |
+
train_parser.add_argument(
|
65 |
+
"--tfds_path",
|
66 |
+
type=str,
|
67 |
+
required=True,
|
68 |
+
help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.",
|
69 |
+
)
|
70 |
+
train_parser.add_argument(
|
71 |
+
"--datasets_directory", type=str, required=True, help="Path to the HuggingFace Datasets folder."
|
72 |
+
)
|
73 |
+
train_parser.set_defaults(func=convert_command_factory)
|
74 |
+
|
75 |
+
def __init__(self, tfds_path: str, datasets_directory: str, *args):
|
76 |
+
self._logger = get_logger("datasets-cli/converting")
|
77 |
+
|
78 |
+
self._tfds_path = tfds_path
|
79 |
+
self._datasets_directory = datasets_directory
|
80 |
+
|
81 |
+
def run(self):
|
82 |
+
if os.path.isdir(self._tfds_path):
|
83 |
+
abs_tfds_path = os.path.abspath(self._tfds_path)
|
84 |
+
elif os.path.isfile(self._tfds_path):
|
85 |
+
abs_tfds_path = os.path.dirname(self._tfds_path)
|
86 |
+
else:
|
87 |
+
raise ValueError("--tfds_path is neither a directory nor a file. Please check path.")
|
88 |
+
|
89 |
+
abs_datasets_path = os.path.abspath(self._datasets_directory)
|
90 |
+
|
91 |
+
self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}")
|
92 |
+
|
93 |
+
utils_files = []
|
94 |
+
with_manual_update = []
|
95 |
+
imports_to_builder_map = {}
|
96 |
+
|
97 |
+
if os.path.isdir(self._tfds_path):
|
98 |
+
file_names = os.listdir(abs_tfds_path)
|
99 |
+
else:
|
100 |
+
file_names = [os.path.basename(self._tfds_path)]
|
101 |
+
|
102 |
+
for f_name in file_names:
|
103 |
+
self._logger.info(f"Looking at file {f_name}")
|
104 |
+
input_file = os.path.join(abs_tfds_path, f_name)
|
105 |
+
output_file = os.path.join(abs_datasets_path, f_name)
|
106 |
+
|
107 |
+
if not os.path.isfile(input_file) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
|
108 |
+
self._logger.info("Skipping file")
|
109 |
+
continue
|
110 |
+
|
111 |
+
with open(input_file, encoding="utf-8") as f:
|
112 |
+
lines = f.readlines()
|
113 |
+
|
114 |
+
out_lines = []
|
115 |
+
is_builder = False
|
116 |
+
needs_manual_update = False
|
117 |
+
tfds_imports = []
|
118 |
+
for line in lines:
|
119 |
+
out_line = line
|
120 |
+
|
121 |
+
# Convert imports
|
122 |
+
if "import tensorflow.compat.v2 as tf" in out_line:
|
123 |
+
continue
|
124 |
+
elif "@tfds.core" in out_line:
|
125 |
+
continue
|
126 |
+
elif "builder=self" in out_line:
|
127 |
+
continue
|
128 |
+
elif "import tensorflow_datasets.public_api as tfds" in out_line:
|
129 |
+
out_line = "import datasets\n"
|
130 |
+
elif "import tensorflow" in out_line:
|
131 |
+
# order is important here
|
132 |
+
out_line = ""
|
133 |
+
continue
|
134 |
+
elif "from absl import logging" in out_line:
|
135 |
+
out_line = "from datasets import logging\n"
|
136 |
+
elif "getLogger" in out_line:
|
137 |
+
out_line = out_line.replace("getLogger", "get_logger")
|
138 |
+
elif any(expression in out_line for expression in TO_HIGHLIGHT):
|
139 |
+
needs_manual_update = True
|
140 |
+
to_remove = list(filter(lambda e: e in out_line, TO_HIGHLIGHT))
|
141 |
+
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(to_remove) + "\n")
|
142 |
+
out_lines.append(out_line)
|
143 |
+
out_lines.append(HIGHLIGHT_MESSAGE_POST)
|
144 |
+
continue
|
145 |
+
else:
|
146 |
+
for pattern, replacement in TO_CONVERT:
|
147 |
+
out_line = re.sub(pattern, replacement, out_line)
|
148 |
+
|
149 |
+
# Take care of saving utilities (to later move them together with main script)
|
150 |
+
if "tensorflow_datasets" in out_line:
|
151 |
+
match = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)", out_line)
|
152 |
+
tfds_imports.extend(imp.strip() for imp in match.group(1).split(","))
|
153 |
+
out_line = "from . import " + match.group(1)
|
154 |
+
|
155 |
+
# Check we have not forget anything
|
156 |
+
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
|
157 |
+
raise ValueError(f"Error converting {out_line.strip()}")
|
158 |
+
|
159 |
+
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
|
160 |
+
is_builder = True
|
161 |
+
out_lines.append(out_line)
|
162 |
+
|
163 |
+
if is_builder or "wmt" in f_name:
|
164 |
+
# We create a new directory for each dataset
|
165 |
+
dir_name = f_name.replace(".py", "")
|
166 |
+
output_dir = os.path.join(abs_datasets_path, dir_name)
|
167 |
+
output_file = os.path.join(output_dir, f_name)
|
168 |
+
os.makedirs(output_dir, exist_ok=True)
|
169 |
+
self._logger.info(f"Adding directory {output_dir}")
|
170 |
+
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports})
|
171 |
+
else:
|
172 |
+
# Utilities will be moved at the end
|
173 |
+
utils_files.append(output_file)
|
174 |
+
|
175 |
+
if needs_manual_update:
|
176 |
+
with_manual_update.append(output_file)
|
177 |
+
|
178 |
+
with open(output_file, "w", encoding="utf-8") as f:
|
179 |
+
f.writelines(out_lines)
|
180 |
+
self._logger.info(f"Converted in {output_file}")
|
181 |
+
|
182 |
+
for utils_file in utils_files:
|
183 |
+
try:
|
184 |
+
f_name = os.path.basename(utils_file)
|
185 |
+
dest_folder = imports_to_builder_map[f_name.replace(".py", "")]
|
186 |
+
self._logger.info(f"Moving {dest_folder} to {utils_file}")
|
187 |
+
shutil.copy(utils_file, dest_folder)
|
188 |
+
except KeyError:
|
189 |
+
self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually.")
|
190 |
+
|
191 |
+
if with_manual_update:
|
192 |
+
for file_path in with_manual_update:
|
193 |
+
self._logger.warning(
|
194 |
+
f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'."
|
195 |
+
)
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/convert_to_parquet.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
from huggingface_hub import HfApi, create_branch, get_repo_discussions
|
6 |
+
|
7 |
+
from datasets import get_dataset_config_names, get_dataset_default_config_name, load_dataset
|
8 |
+
from datasets.commands import BaseDatasetsCLICommand
|
9 |
+
|
10 |
+
|
11 |
+
def _command_factory(args):
|
12 |
+
return ConvertToParquetCommand(
|
13 |
+
args.dataset_id,
|
14 |
+
args.token,
|
15 |
+
args.revision,
|
16 |
+
args.trust_remote_code,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
class ConvertToParquetCommand(BaseDatasetsCLICommand):
|
21 |
+
@staticmethod
|
22 |
+
def register_subcommand(parser):
|
23 |
+
parser: ArgumentParser = parser.add_parser("convert_to_parquet", help="Convert dataset to Parquet")
|
24 |
+
parser.add_argument("dataset_id", help="source dataset ID")
|
25 |
+
parser.add_argument("--token", help="access token to the Hugging Face Hub")
|
26 |
+
parser.add_argument("--revision", help="source revision")
|
27 |
+
parser.add_argument(
|
28 |
+
"--trust_remote_code", action="store_true", help="whether to trust the code execution of the load script"
|
29 |
+
)
|
30 |
+
parser.set_defaults(func=_command_factory)
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
dataset_id: str,
|
35 |
+
token: Optional[str],
|
36 |
+
revision: Optional[str],
|
37 |
+
trust_remote_code: bool,
|
38 |
+
):
|
39 |
+
self._dataset_id = dataset_id
|
40 |
+
self._token = token
|
41 |
+
self._revision = revision
|
42 |
+
self._trust_remote_code = trust_remote_code
|
43 |
+
|
44 |
+
def run(self) -> None:
|
45 |
+
dataset_id = self._dataset_id
|
46 |
+
token = self._token
|
47 |
+
revision = self._revision
|
48 |
+
trust_remote_code = self._trust_remote_code
|
49 |
+
print(f"{dataset_id}")
|
50 |
+
configs = get_dataset_config_names(
|
51 |
+
dataset_id, token=token, revision=revision, trust_remote_code=trust_remote_code
|
52 |
+
)
|
53 |
+
print(f"{configs = }")
|
54 |
+
default_config = get_dataset_default_config_name(
|
55 |
+
dataset_id, token=token, revision=revision, trust_remote_code=trust_remote_code
|
56 |
+
)
|
57 |
+
print(f"{default_config = }")
|
58 |
+
if default_config:
|
59 |
+
config = default_config
|
60 |
+
configs.remove(default_config)
|
61 |
+
else:
|
62 |
+
config = configs.pop(0)
|
63 |
+
print(f"{config = }")
|
64 |
+
dataset = load_dataset(dataset_id, config, revision=revision, trust_remote_code=trust_remote_code)
|
65 |
+
commit_info = dataset.push_to_hub(
|
66 |
+
dataset_id,
|
67 |
+
config_name=config,
|
68 |
+
commit_message="Convert dataset to Parquet",
|
69 |
+
commit_description="Convert dataset to Parquet.",
|
70 |
+
create_pr=True,
|
71 |
+
token=token,
|
72 |
+
set_default=default_config is not None,
|
73 |
+
)
|
74 |
+
time.sleep(5)
|
75 |
+
if commit_info:
|
76 |
+
pr_revision, pr_url = commit_info.pr_revision, commit_info.pr_url
|
77 |
+
else:
|
78 |
+
pr_revision, pr_url = infer_pr(dataset_id, token=token)
|
79 |
+
for config in configs:
|
80 |
+
print(f"{config = }")
|
81 |
+
dataset = load_dataset(dataset_id, config, revision=revision, trust_remote_code=trust_remote_code)
|
82 |
+
dataset.push_to_hub(
|
83 |
+
dataset_id,
|
84 |
+
config_name=config,
|
85 |
+
commit_message=f"Add {config} data files",
|
86 |
+
revision=pr_revision,
|
87 |
+
token=token,
|
88 |
+
)
|
89 |
+
time.sleep(5)
|
90 |
+
delete_files(dataset_id, revision=pr_revision, token=token)
|
91 |
+
if not revision:
|
92 |
+
create_branch(dataset_id, branch="script", repo_type="dataset", token=token, exist_ok=True)
|
93 |
+
print(f"You can find your PR to convert the dataset to Parquet at: {pr_url}")
|
94 |
+
|
95 |
+
|
96 |
+
def infer_pr(dataset_id, token=None):
|
97 |
+
discussions = get_repo_discussions(dataset_id, repo_type="dataset", token=token)
|
98 |
+
prs = [discussion for discussion in discussions if discussion.is_pull_request and discussion.status == "open"]
|
99 |
+
pr = sorted(prs, key=lambda pr: pr.num)[-1]
|
100 |
+
return pr.git_reference, pr.url
|
101 |
+
|
102 |
+
|
103 |
+
def delete_files(dataset_id, revision=None, token=None):
|
104 |
+
dataset_name = dataset_id.split("/")[-1]
|
105 |
+
hf_api = HfApi(token=token)
|
106 |
+
repo_files = hf_api.list_repo_files(
|
107 |
+
dataset_id,
|
108 |
+
repo_type="dataset",
|
109 |
+
)
|
110 |
+
if repo_files:
|
111 |
+
legacy_json_file = []
|
112 |
+
python_files = []
|
113 |
+
data_files = []
|
114 |
+
for filename in repo_files:
|
115 |
+
if filename in {".gitattributes", "README.md"}:
|
116 |
+
continue
|
117 |
+
elif filename == f"{dataset_name}.py":
|
118 |
+
hf_api.delete_file(
|
119 |
+
filename,
|
120 |
+
dataset_id,
|
121 |
+
repo_type="dataset",
|
122 |
+
revision=revision,
|
123 |
+
commit_message="Delete loading script",
|
124 |
+
)
|
125 |
+
elif filename == "dataset_infos.json":
|
126 |
+
legacy_json_file.append(filename)
|
127 |
+
elif filename.endswith(".py"):
|
128 |
+
python_files.append(filename)
|
129 |
+
else:
|
130 |
+
data_files.append(filename)
|
131 |
+
if legacy_json_file:
|
132 |
+
hf_api.delete_file(
|
133 |
+
"dataset_infos.json",
|
134 |
+
dataset_id,
|
135 |
+
repo_type="dataset",
|
136 |
+
revision=revision,
|
137 |
+
commit_message="Delete legacy dataset_infos.json",
|
138 |
+
)
|
139 |
+
if python_files:
|
140 |
+
for filename in python_files:
|
141 |
+
hf_api.delete_file(
|
142 |
+
filename,
|
143 |
+
dataset_id,
|
144 |
+
repo_type="dataset",
|
145 |
+
revision=revision,
|
146 |
+
commit_message="Delete loading script auxiliary file",
|
147 |
+
)
|
148 |
+
if data_files:
|
149 |
+
for filename in data_files:
|
150 |
+
hf_api.delete_file(
|
151 |
+
filename,
|
152 |
+
dataset_id,
|
153 |
+
repo_type="dataset",
|
154 |
+
revision=revision,
|
155 |
+
commit_message="Delete data file",
|
156 |
+
)
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/datasets_cli.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
+
from datasets.commands.convert import ConvertCommand
|
5 |
+
from datasets.commands.convert_to_parquet import ConvertToParquetCommand
|
6 |
+
from datasets.commands.dummy_data import DummyDataCommand
|
7 |
+
from datasets.commands.env import EnvironmentCommand
|
8 |
+
from datasets.commands.run_beam import RunBeamCommand
|
9 |
+
from datasets.commands.test import TestCommand
|
10 |
+
from datasets.utils.logging import set_verbosity_info
|
11 |
+
|
12 |
+
|
13 |
+
def parse_unknown_args(unknown_args):
|
14 |
+
return {key.lstrip("-"): value for key, value in zip(unknown_args[::2], unknown_args[1::2])}
|
15 |
+
|
16 |
+
|
17 |
+
def main():
|
18 |
+
parser = ArgumentParser(
|
19 |
+
"HuggingFace Datasets CLI tool", usage="datasets-cli <command> [<args>]", allow_abbrev=False
|
20 |
+
)
|
21 |
+
commands_parser = parser.add_subparsers(help="datasets-cli command helpers")
|
22 |
+
set_verbosity_info()
|
23 |
+
|
24 |
+
# Register commands
|
25 |
+
ConvertCommand.register_subcommand(commands_parser)
|
26 |
+
EnvironmentCommand.register_subcommand(commands_parser)
|
27 |
+
TestCommand.register_subcommand(commands_parser)
|
28 |
+
RunBeamCommand.register_subcommand(commands_parser)
|
29 |
+
DummyDataCommand.register_subcommand(commands_parser)
|
30 |
+
ConvertToParquetCommand.register_subcommand(commands_parser)
|
31 |
+
|
32 |
+
# Parse args
|
33 |
+
args, unknown_args = parser.parse_known_args()
|
34 |
+
if not hasattr(args, "func"):
|
35 |
+
parser.print_help()
|
36 |
+
exit(1)
|
37 |
+
kwargs = parse_unknown_args(unknown_args)
|
38 |
+
|
39 |
+
# Run
|
40 |
+
service = args.func(args, **kwargs)
|
41 |
+
service.run()
|
42 |
+
|
43 |
+
|
44 |
+
if __name__ == "__main__":
|
45 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/dummy_data.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fnmatch
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import tempfile
|
6 |
+
import xml.etree.ElementTree as ET
|
7 |
+
from argparse import ArgumentParser
|
8 |
+
from pathlib import Path
|
9 |
+
from typing import Optional
|
10 |
+
|
11 |
+
from datasets import config
|
12 |
+
from datasets.commands import BaseDatasetsCLICommand
|
13 |
+
from datasets.download.download_config import DownloadConfig
|
14 |
+
from datasets.download.download_manager import DownloadManager
|
15 |
+
from datasets.download.mock_download_manager import MockDownloadManager
|
16 |
+
from datasets.load import dataset_module_factory, import_main_class
|
17 |
+
from datasets.utils.deprecation_utils import deprecated
|
18 |
+
from datasets.utils.logging import get_logger, set_verbosity_warning
|
19 |
+
from datasets.utils.py_utils import map_nested
|
20 |
+
|
21 |
+
|
22 |
+
logger = get_logger(__name__)
|
23 |
+
|
24 |
+
DEFAULT_ENCODING = "utf-8"
|
25 |
+
|
26 |
+
|
27 |
+
def dummy_data_command_factory(args):
|
28 |
+
return DummyDataCommand(
|
29 |
+
args.path_to_dataset,
|
30 |
+
args.auto_generate,
|
31 |
+
args.n_lines,
|
32 |
+
args.json_field,
|
33 |
+
args.xml_tag,
|
34 |
+
args.match_text_files,
|
35 |
+
args.keep_uncompressed,
|
36 |
+
args.cache_dir,
|
37 |
+
args.encoding,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
class DummyDataGeneratorDownloadManager(DownloadManager):
|
42 |
+
def __init__(self, mock_download_manager, *args, **kwargs):
|
43 |
+
super().__init__(*args, **kwargs)
|
44 |
+
self.mock_download_manager = mock_download_manager
|
45 |
+
self.downloaded_dummy_paths = []
|
46 |
+
self.expected_dummy_paths = []
|
47 |
+
|
48 |
+
def download(self, url_or_urls):
|
49 |
+
output = super().download(url_or_urls)
|
50 |
+
dummy_output = self.mock_download_manager.download(url_or_urls)
|
51 |
+
map_nested(self.downloaded_dummy_paths.append, output, map_tuple=True)
|
52 |
+
map_nested(self.expected_dummy_paths.append, dummy_output, map_tuple=True)
|
53 |
+
return output
|
54 |
+
|
55 |
+
def download_and_extract(self, url_or_urls):
|
56 |
+
output = super().extract(super().download(url_or_urls))
|
57 |
+
dummy_output = self.mock_download_manager.download(url_or_urls)
|
58 |
+
map_nested(self.downloaded_dummy_paths.append, output, map_tuple=True)
|
59 |
+
map_nested(self.expected_dummy_paths.append, dummy_output, map_tuple=True)
|
60 |
+
return output
|
61 |
+
|
62 |
+
def auto_generate_dummy_data_folder(
|
63 |
+
self,
|
64 |
+
n_lines: int = 5,
|
65 |
+
json_field: Optional[str] = None,
|
66 |
+
xml_tag: Optional[str] = None,
|
67 |
+
match_text_files: Optional[str] = None,
|
68 |
+
encoding: Optional[str] = None,
|
69 |
+
) -> bool:
|
70 |
+
os.makedirs(
|
71 |
+
os.path.join(
|
72 |
+
self.mock_download_manager.datasets_scripts_dir,
|
73 |
+
self.mock_download_manager.dataset_name,
|
74 |
+
self.mock_download_manager.dummy_data_folder,
|
75 |
+
"dummy_data",
|
76 |
+
),
|
77 |
+
exist_ok=True,
|
78 |
+
)
|
79 |
+
total = 0
|
80 |
+
self.mock_download_manager.load_existing_dummy_data = False
|
81 |
+
for src_path, relative_dst_path in zip(self.downloaded_dummy_paths, self.expected_dummy_paths):
|
82 |
+
dst_path = os.path.join(
|
83 |
+
self.mock_download_manager.datasets_scripts_dir,
|
84 |
+
self.mock_download_manager.dataset_name,
|
85 |
+
self.mock_download_manager.dummy_data_folder,
|
86 |
+
relative_dst_path,
|
87 |
+
)
|
88 |
+
total += self._create_dummy_data(
|
89 |
+
src_path,
|
90 |
+
dst_path,
|
91 |
+
n_lines=n_lines,
|
92 |
+
json_field=json_field,
|
93 |
+
xml_tag=xml_tag,
|
94 |
+
match_text_files=match_text_files,
|
95 |
+
encoding=encoding,
|
96 |
+
)
|
97 |
+
if total == 0:
|
98 |
+
logger.error(
|
99 |
+
"Dummy data generation failed: no dummy files were created. "
|
100 |
+
"Make sure the data files format is supported by the auto-generation."
|
101 |
+
)
|
102 |
+
return total > 0
|
103 |
+
|
104 |
+
def _create_dummy_data(
|
105 |
+
self,
|
106 |
+
src_path: str,
|
107 |
+
dst_path: str,
|
108 |
+
n_lines: int,
|
109 |
+
json_field: Optional[str] = None,
|
110 |
+
xml_tag: Optional[str] = None,
|
111 |
+
match_text_files: Optional[str] = None,
|
112 |
+
encoding: Optional[str] = None,
|
113 |
+
) -> int:
|
114 |
+
encoding = encoding or DEFAULT_ENCODING
|
115 |
+
if os.path.isfile(src_path):
|
116 |
+
logger.debug(f"Trying to generate dummy data file {dst_path}")
|
117 |
+
dst_path_extensions = Path(dst_path).suffixes
|
118 |
+
line_by_line_extensions = [".txt", ".csv", ".jsonl", ".tsv"]
|
119 |
+
is_line_by_line_text_file = any(extension in dst_path_extensions for extension in line_by_line_extensions)
|
120 |
+
if match_text_files is not None:
|
121 |
+
file_name = os.path.basename(dst_path)
|
122 |
+
for pattern in match_text_files.split(","):
|
123 |
+
is_line_by_line_text_file |= fnmatch.fnmatch(file_name, pattern)
|
124 |
+
# Line by line text file (txt, csv etc.)
|
125 |
+
if is_line_by_line_text_file:
|
126 |
+
Path(dst_path).parent.mkdir(exist_ok=True, parents=True)
|
127 |
+
with open(src_path, encoding=encoding) as src_file:
|
128 |
+
with open(dst_path, "w", encoding=encoding) as dst_file:
|
129 |
+
first_lines = []
|
130 |
+
for i, line in enumerate(src_file):
|
131 |
+
if i >= n_lines:
|
132 |
+
break
|
133 |
+
first_lines.append(line)
|
134 |
+
dst_file.write("".join(first_lines).strip())
|
135 |
+
return 1
|
136 |
+
# json file
|
137 |
+
elif ".json" in dst_path_extensions:
|
138 |
+
with open(src_path, encoding=encoding) as src_file:
|
139 |
+
json_data = json.load(src_file)
|
140 |
+
if json_field is not None:
|
141 |
+
json_data = json_data[json_field]
|
142 |
+
if isinstance(json_data, dict):
|
143 |
+
if not all(isinstance(v, list) for v in json_data.values()):
|
144 |
+
raise ValueError(
|
145 |
+
f"Couldn't parse columns {list(json_data.keys())}. "
|
146 |
+
"Maybe specify which json field must be used "
|
147 |
+
"to read the data with --json_field <my_field>."
|
148 |
+
)
|
149 |
+
first_json_data = {k: v[:n_lines] for k, v in json_data.items()}
|
150 |
+
else:
|
151 |
+
first_json_data = json_data[:n_lines]
|
152 |
+
if json_field is not None:
|
153 |
+
first_json_data = {json_field: first_json_data}
|
154 |
+
Path(dst_path).parent.mkdir(exist_ok=True, parents=True)
|
155 |
+
with open(dst_path, "w", encoding=encoding) as dst_file:
|
156 |
+
json.dump(first_json_data, dst_file)
|
157 |
+
return 1
|
158 |
+
# xml file
|
159 |
+
elif any(extension in dst_path_extensions for extension in [".xml", ".txm"]):
|
160 |
+
if xml_tag is None:
|
161 |
+
logger.warning("Found xml file but 'xml_tag' is set to None. Please provide --xml_tag")
|
162 |
+
else:
|
163 |
+
self._create_xml_dummy_data(src_path, dst_path, xml_tag, n_lines=n_lines, encoding=encoding)
|
164 |
+
return 1
|
165 |
+
logger.warning(
|
166 |
+
f"Couldn't generate dummy file '{dst_path}'. " "Ignore that if this file is not useful for dummy data."
|
167 |
+
)
|
168 |
+
return 0
|
169 |
+
# directory, iterate through all files
|
170 |
+
elif os.path.isdir(src_path):
|
171 |
+
total = 0
|
172 |
+
for path, _, files in os.walk(src_path):
|
173 |
+
for name in files:
|
174 |
+
if not name.startswith("."): # ignore files like .DS_Store etc.
|
175 |
+
src_file_path = os.path.join(path, name)
|
176 |
+
dst_file_path = os.path.join(dst_path, Path(src_file_path).relative_to(src_path))
|
177 |
+
total += self._create_dummy_data(
|
178 |
+
src_file_path,
|
179 |
+
dst_file_path,
|
180 |
+
n_lines=n_lines,
|
181 |
+
json_field=json_field,
|
182 |
+
xml_tag=xml_tag,
|
183 |
+
match_text_files=match_text_files,
|
184 |
+
encoding=encoding,
|
185 |
+
)
|
186 |
+
return total
|
187 |
+
|
188 |
+
@staticmethod
|
189 |
+
def _create_xml_dummy_data(src_path, dst_path, xml_tag, n_lines=5, encoding=DEFAULT_ENCODING):
|
190 |
+
Path(dst_path).parent.mkdir(exist_ok=True, parents=True)
|
191 |
+
with open(src_path, encoding=encoding) as src_file:
|
192 |
+
n_line = 0
|
193 |
+
parents = []
|
194 |
+
for event, elem in ET.iterparse(src_file, events=("start", "end")):
|
195 |
+
if event == "start":
|
196 |
+
parents.append(elem)
|
197 |
+
else:
|
198 |
+
_ = parents.pop()
|
199 |
+
if elem.tag == xml_tag:
|
200 |
+
if n_line < n_lines:
|
201 |
+
n_line += 1
|
202 |
+
else:
|
203 |
+
if parents:
|
204 |
+
parents[-1].remove(elem)
|
205 |
+
ET.ElementTree(element=elem).write(dst_path, encoding=encoding)
|
206 |
+
|
207 |
+
def compress_autogenerated_dummy_data(self, path_to_dataset):
|
208 |
+
root_dir = os.path.join(path_to_dataset, self.mock_download_manager.dummy_data_folder)
|
209 |
+
base_name = os.path.join(root_dir, "dummy_data")
|
210 |
+
base_dir = "dummy_data"
|
211 |
+
logger.info(f"Compressing dummy data folder to '{base_name}.zip'")
|
212 |
+
shutil.make_archive(base_name, "zip", root_dir, base_dir)
|
213 |
+
shutil.rmtree(base_name)
|
214 |
+
|
215 |
+
|
216 |
+
@deprecated(
|
217 |
+
"The `datasets` repository does not host the dataset scripts anymore. Therefore, dummy data is no longer needed to test their loading with CI."
|
218 |
+
)
|
219 |
+
class DummyDataCommand(BaseDatasetsCLICommand):
|
220 |
+
@staticmethod
|
221 |
+
def register_subcommand(parser: ArgumentParser):
|
222 |
+
test_parser = parser.add_parser("dummy_data", help="Generate dummy data.")
|
223 |
+
test_parser.add_argument("--auto_generate", action="store_true", help="Automatically generate dummy data")
|
224 |
+
test_parser.add_argument(
|
225 |
+
"--n_lines", type=int, default=5, help="Number of lines or samples to keep when auto-generating dummy data"
|
226 |
+
)
|
227 |
+
test_parser.add_argument(
|
228 |
+
"--json_field",
|
229 |
+
type=str,
|
230 |
+
default=None,
|
231 |
+
help="Optional, json field to read the data from when auto-generating dummy data. In the json data files, this field must point to a list of samples as json objects (ex: the 'data' field for squad-like files)",
|
232 |
+
)
|
233 |
+
test_parser.add_argument(
|
234 |
+
"--xml_tag",
|
235 |
+
type=str,
|
236 |
+
default=None,
|
237 |
+
help="Optional, xml tag name of the samples inside the xml files when auto-generating dummy data.",
|
238 |
+
)
|
239 |
+
test_parser.add_argument(
|
240 |
+
"--match_text_files",
|
241 |
+
type=str,
|
242 |
+
default=None,
|
243 |
+
help="Optional, a comma separated list of file patterns that looks for line-by-line text files other than *.txt or *.csv. Example: --match_text_files *.label",
|
244 |
+
)
|
245 |
+
test_parser.add_argument(
|
246 |
+
"--keep_uncompressed",
|
247 |
+
action="store_true",
|
248 |
+
help="Whether to leave the dummy data folders uncompressed when auto-generating dummy data. Useful for debugging for to do manual adjustements before compressing.",
|
249 |
+
)
|
250 |
+
test_parser.add_argument(
|
251 |
+
"--cache_dir",
|
252 |
+
type=str,
|
253 |
+
default=None,
|
254 |
+
help="Cache directory to download and cache files when auto-generating dummy data",
|
255 |
+
)
|
256 |
+
test_parser.add_argument(
|
257 |
+
"--encoding",
|
258 |
+
type=str,
|
259 |
+
default=None,
|
260 |
+
help=f"Encoding to use when auto-generating dummy data. Defaults to {DEFAULT_ENCODING}",
|
261 |
+
)
|
262 |
+
test_parser.add_argument("path_to_dataset", type=str, help="Path to the dataset (example: ./datasets/squad)")
|
263 |
+
test_parser.set_defaults(func=dummy_data_command_factory)
|
264 |
+
|
265 |
+
def __init__(
|
266 |
+
self,
|
267 |
+
path_to_dataset: str,
|
268 |
+
auto_generate: bool,
|
269 |
+
n_lines: int,
|
270 |
+
json_field: Optional[str],
|
271 |
+
xml_tag: Optional[str],
|
272 |
+
match_text_files: Optional[str],
|
273 |
+
keep_uncompressed: bool,
|
274 |
+
cache_dir: Optional[str],
|
275 |
+
encoding: Optional[str],
|
276 |
+
):
|
277 |
+
self._path_to_dataset = path_to_dataset
|
278 |
+
if os.path.isdir(path_to_dataset):
|
279 |
+
self._dataset_name = path_to_dataset.replace(os.sep, "/").split("/")[-1]
|
280 |
+
else:
|
281 |
+
self._dataset_name = path_to_dataset.replace(os.sep, "/").split("/")[-2]
|
282 |
+
cache_dir = os.path.expanduser(cache_dir or config.HF_DATASETS_CACHE)
|
283 |
+
self._auto_generate = auto_generate
|
284 |
+
self._n_lines = n_lines
|
285 |
+
self._json_field = json_field
|
286 |
+
self._xml_tag = xml_tag
|
287 |
+
self._match_text_files = match_text_files
|
288 |
+
self._keep_uncompressed = keep_uncompressed
|
289 |
+
self._cache_dir = cache_dir
|
290 |
+
self._encoding = encoding
|
291 |
+
|
292 |
+
def run(self):
|
293 |
+
set_verbosity_warning()
|
294 |
+
dataset_module = dataset_module_factory(self._path_to_dataset)
|
295 |
+
builder_cls = import_main_class(dataset_module.module_path)
|
296 |
+
|
297 |
+
# use `None` as config if no configs
|
298 |
+
builder_configs = builder_cls.BUILDER_CONFIGS or [None]
|
299 |
+
auto_generate_results = []
|
300 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
301 |
+
for builder_config in builder_configs:
|
302 |
+
config_name = builder_config.name if builder_config else None
|
303 |
+
dataset_builder = builder_cls(config_name=config_name, hash=dataset_module.hash, cache_dir=tmp_dir)
|
304 |
+
version = builder_config.version if builder_config else dataset_builder.config.version
|
305 |
+
mock_dl_manager = MockDownloadManager(
|
306 |
+
dataset_name=self._dataset_name,
|
307 |
+
config=builder_config,
|
308 |
+
version=version,
|
309 |
+
use_local_dummy_data=True,
|
310 |
+
load_existing_dummy_data=False,
|
311 |
+
)
|
312 |
+
|
313 |
+
if self._auto_generate:
|
314 |
+
auto_generate_results.append(
|
315 |
+
self._autogenerate_dummy_data(
|
316 |
+
dataset_builder=dataset_builder,
|
317 |
+
mock_dl_manager=mock_dl_manager,
|
318 |
+
keep_uncompressed=self._keep_uncompressed,
|
319 |
+
)
|
320 |
+
)
|
321 |
+
else:
|
322 |
+
self._print_dummy_data_instructions(
|
323 |
+
dataset_builder=dataset_builder, mock_dl_manager=mock_dl_manager
|
324 |
+
)
|
325 |
+
if self._auto_generate and not self._keep_uncompressed:
|
326 |
+
if all(auto_generate_results):
|
327 |
+
print(f"Automatic dummy data generation succeeded for all configs of '{self._path_to_dataset}'")
|
328 |
+
else:
|
329 |
+
print(f"Automatic dummy data generation failed for some configs of '{self._path_to_dataset}'")
|
330 |
+
|
331 |
+
def _autogenerate_dummy_data(self, dataset_builder, mock_dl_manager, keep_uncompressed) -> Optional[bool]:
|
332 |
+
dl_cache_dir = (
|
333 |
+
os.path.join(self._cache_dir, config.DOWNLOADED_DATASETS_DIR)
|
334 |
+
if self._cache_dir
|
335 |
+
else config.DOWNLOADED_DATASETS_PATH
|
336 |
+
)
|
337 |
+
download_config = DownloadConfig(cache_dir=dl_cache_dir)
|
338 |
+
dl_manager = DummyDataGeneratorDownloadManager(
|
339 |
+
dataset_name=self._dataset_name, mock_download_manager=mock_dl_manager, download_config=download_config
|
340 |
+
)
|
341 |
+
dataset_builder._split_generators(dl_manager)
|
342 |
+
mock_dl_manager.load_existing_dummy_data = False # don't use real dummy data
|
343 |
+
dl_manager.auto_generate_dummy_data_folder(
|
344 |
+
n_lines=self._n_lines,
|
345 |
+
json_field=self._json_field,
|
346 |
+
xml_tag=self._xml_tag,
|
347 |
+
match_text_files=self._match_text_files,
|
348 |
+
encoding=self._encoding,
|
349 |
+
)
|
350 |
+
if not keep_uncompressed:
|
351 |
+
path_do_dataset = os.path.join(mock_dl_manager.datasets_scripts_dir, mock_dl_manager.dataset_name)
|
352 |
+
dl_manager.compress_autogenerated_dummy_data(path_do_dataset)
|
353 |
+
# now test that the dummy_data.zip file actually works
|
354 |
+
mock_dl_manager.load_existing_dummy_data = True # use real dummy data
|
355 |
+
n_examples_per_split = {}
|
356 |
+
os.makedirs(dataset_builder._cache_dir, exist_ok=True)
|
357 |
+
try:
|
358 |
+
split_generators = dataset_builder._split_generators(mock_dl_manager)
|
359 |
+
for split_generator in split_generators:
|
360 |
+
dataset_builder._prepare_split(split_generator, check_duplicate_keys=False)
|
361 |
+
n_examples_per_split[split_generator.name] = split_generator.split_info.num_examples
|
362 |
+
except OSError as e:
|
363 |
+
logger.error(
|
364 |
+
f"Failed to load dummy data for config '{dataset_builder.config.name}''.\nOriginal error:\n"
|
365 |
+
+ str(e)
|
366 |
+
)
|
367 |
+
return False
|
368 |
+
else:
|
369 |
+
if all(n_examples > 0 for n_examples in n_examples_per_split.values()):
|
370 |
+
logger.warning(
|
371 |
+
f"Dummy data generation done and dummy data test succeeded for config '{dataset_builder.config.name}''."
|
372 |
+
)
|
373 |
+
return True
|
374 |
+
else:
|
375 |
+
empty_splits = [
|
376 |
+
split_name for split_name in n_examples_per_split if n_examples_per_split[split_name] == 0
|
377 |
+
]
|
378 |
+
logger.warning(
|
379 |
+
f"Dummy data generation done but dummy data test failed since splits {empty_splits} have 0 examples for config '{dataset_builder.config.name}''."
|
380 |
+
)
|
381 |
+
return False
|
382 |
+
else:
|
383 |
+
generated_dummy_data_dir = os.path.join(self._path_to_dataset, mock_dl_manager.dummy_data_folder)
|
384 |
+
logger.info(
|
385 |
+
f"Dummy data generated in directory '{generated_dummy_data_dir}' but kept uncompressed. "
|
386 |
+
"Please compress this directory into a zip file to use it for dummy data tests."
|
387 |
+
)
|
388 |
+
|
389 |
+
def _print_dummy_data_instructions(self, dataset_builder, mock_dl_manager):
|
390 |
+
dummy_data_folder = os.path.join(self._path_to_dataset, mock_dl_manager.dummy_data_folder)
|
391 |
+
logger.info(f"Creating dummy folder structure for {dummy_data_folder}... ")
|
392 |
+
os.makedirs(dummy_data_folder, exist_ok=True)
|
393 |
+
|
394 |
+
try:
|
395 |
+
generator_splits = dataset_builder._split_generators(mock_dl_manager)
|
396 |
+
except FileNotFoundError as e:
|
397 |
+
print(
|
398 |
+
f"Dataset {self._dataset_name} with config {mock_dl_manager.config} seems to already open files in the method `_split_generators(...)`. You might consider to instead only open files in the method `_generate_examples(...)` instead. If this is not possible the dummy data has to be created with less guidance. Make sure you create the file {e.filename}."
|
399 |
+
)
|
400 |
+
|
401 |
+
files_to_create = set()
|
402 |
+
split_names = []
|
403 |
+
dummy_file_name = mock_dl_manager.dummy_file_name
|
404 |
+
|
405 |
+
for split in generator_splits:
|
406 |
+
logger.info(f"Collecting dummy data file paths to create for {split.name}")
|
407 |
+
split_names.append(split.name)
|
408 |
+
gen_kwargs = split.gen_kwargs
|
409 |
+
generator = dataset_builder._generate_examples(**gen_kwargs)
|
410 |
+
|
411 |
+
try:
|
412 |
+
dummy_data_guidance_print = "\n" + 30 * "=" + "DUMMY DATA INSTRUCTIONS" + 30 * "=" + "\n"
|
413 |
+
config_string = (
|
414 |
+
f"config {mock_dl_manager.config.name} of " if mock_dl_manager.config is not None else ""
|
415 |
+
)
|
416 |
+
dummy_data_guidance_print += (
|
417 |
+
"- In order to create the dummy data for "
|
418 |
+
+ config_string
|
419 |
+
+ f"{self._dataset_name}, please go into the folder '{dummy_data_folder}' with `cd {dummy_data_folder}` . \n\n"
|
420 |
+
)
|
421 |
+
|
422 |
+
# trigger generate function
|
423 |
+
for key, record in generator:
|
424 |
+
pass
|
425 |
+
|
426 |
+
dummy_data_guidance_print += f"- It appears that the function `_generate_examples(...)` expects one or more files in the folder {dummy_file_name} using the function `glob.glob(...)`. In this case, please refer to the `_generate_examples(...)` method to see under which filename the dummy data files should be created. \n\n"
|
427 |
+
|
428 |
+
except FileNotFoundError as e:
|
429 |
+
files_to_create.add(e.filename)
|
430 |
+
|
431 |
+
split_names = ", ".join(split_names)
|
432 |
+
if len(files_to_create) > 0:
|
433 |
+
# no glob.glob(...) in `_generate_examples(...)`
|
434 |
+
if len(files_to_create) == 1 and next(iter(files_to_create)) == dummy_file_name:
|
435 |
+
dummy_data_guidance_print += f"- Please create a single dummy data file called '{next(iter(files_to_create))}' from the folder '{dummy_data_folder}'. Make sure that the dummy data file provides at least one example for the split(s) '{split_names}' \n\n"
|
436 |
+
files_string = dummy_file_name
|
437 |
+
else:
|
438 |
+
files_string = ", ".join(files_to_create)
|
439 |
+
dummy_data_guidance_print += f"- Please create the following dummy data files '{files_string}' from the folder '{dummy_data_folder}'\n\n"
|
440 |
+
|
441 |
+
dummy_data_guidance_print += f"- For each of the splits '{split_names}', make sure that one or more of the dummy data files provide at least one example \n\n"
|
442 |
+
|
443 |
+
dummy_data_guidance_print += f"- If the method `_generate_examples(...)` includes multiple `open()` statements, you might have to create other files in addition to '{files_string}'. In this case please refer to the `_generate_examples(...)` method \n\n"
|
444 |
+
|
445 |
+
if len(files_to_create) == 1 and next(iter(files_to_create)) == dummy_file_name:
|
446 |
+
dummy_data_guidance_print += f"- After the dummy data file is created, it should be zipped to '{dummy_file_name}.zip' with the command `zip {dummy_file_name}.zip {dummy_file_name}` \n\n"
|
447 |
+
|
448 |
+
dummy_data_guidance_print += (
|
449 |
+
f"- You can now delete the file '{dummy_file_name}' with the command `rm {dummy_file_name}` \n\n"
|
450 |
+
)
|
451 |
+
|
452 |
+
dummy_data_guidance_print += f"- To get the file '{dummy_file_name}' back for further changes to the dummy data, simply unzip {dummy_file_name}.zip with the command `unzip {dummy_file_name}.zip` \n\n"
|
453 |
+
else:
|
454 |
+
dummy_data_guidance_print += f"- After all dummy data files are created, they should be zipped recursively to '{dummy_file_name}.zip' with the command `zip -r {dummy_file_name}.zip {dummy_file_name}/` \n\n"
|
455 |
+
|
456 |
+
dummy_data_guidance_print += (
|
457 |
+
f"- You can now delete the folder '{dummy_file_name}' with the command `rm -r {dummy_file_name}` \n\n"
|
458 |
+
)
|
459 |
+
|
460 |
+
dummy_data_guidance_print += f"- To get the folder '{dummy_file_name}' back for further changes to the dummy data, simply unzip {dummy_file_name}.zip with the command `unzip {dummy_file_name}.zip` \n\n"
|
461 |
+
|
462 |
+
dummy_data_guidance_print += (
|
463 |
+
f"- Make sure you have created the file '{dummy_file_name}.zip' in '{dummy_data_folder}' \n"
|
464 |
+
)
|
465 |
+
|
466 |
+
dummy_data_guidance_print += 83 * "=" + "\n"
|
467 |
+
|
468 |
+
print(dummy_data_guidance_print)
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/env.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import platform
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
+
import fsspec
|
5 |
+
import huggingface_hub
|
6 |
+
import pandas
|
7 |
+
import pyarrow
|
8 |
+
|
9 |
+
from datasets import __version__ as version
|
10 |
+
from datasets.commands import BaseDatasetsCLICommand
|
11 |
+
|
12 |
+
|
13 |
+
def info_command_factory(_):
|
14 |
+
return EnvironmentCommand()
|
15 |
+
|
16 |
+
|
17 |
+
class EnvironmentCommand(BaseDatasetsCLICommand):
|
18 |
+
@staticmethod
|
19 |
+
def register_subcommand(parser: ArgumentParser):
|
20 |
+
download_parser = parser.add_parser("env", help="Print relevant system environment info.")
|
21 |
+
download_parser.set_defaults(func=info_command_factory)
|
22 |
+
|
23 |
+
def run(self):
|
24 |
+
info = {
|
25 |
+
"`datasets` version": version,
|
26 |
+
"Platform": platform.platform(),
|
27 |
+
"Python version": platform.python_version(),
|
28 |
+
"`huggingface_hub` version": huggingface_hub.__version__,
|
29 |
+
"PyArrow version": pyarrow.__version__,
|
30 |
+
"Pandas version": pandas.__version__,
|
31 |
+
"`fsspec` version": fsspec.__version__,
|
32 |
+
}
|
33 |
+
|
34 |
+
print("\nCopy-and-paste the text below in your GitHub issue.\n")
|
35 |
+
print(self.format_dict(info))
|
36 |
+
|
37 |
+
return info
|
38 |
+
|
39 |
+
@staticmethod
|
40 |
+
def format_dict(d):
|
41 |
+
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/run_beam.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
from pathlib import Path
|
4 |
+
from shutil import copyfile
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
from datasets import config
|
8 |
+
from datasets.builder import DatasetBuilder
|
9 |
+
from datasets.commands import BaseDatasetsCLICommand
|
10 |
+
from datasets.download.download_config import DownloadConfig
|
11 |
+
from datasets.download.download_manager import DownloadMode
|
12 |
+
from datasets.load import dataset_module_factory, import_main_class
|
13 |
+
from datasets.utils.deprecation_utils import deprecated
|
14 |
+
from datasets.utils.info_utils import VerificationMode
|
15 |
+
|
16 |
+
|
17 |
+
def run_beam_command_factory(args, **kwargs):
|
18 |
+
return RunBeamCommand(
|
19 |
+
args.dataset,
|
20 |
+
args.name,
|
21 |
+
args.cache_dir,
|
22 |
+
args.beam_pipeline_options,
|
23 |
+
args.data_dir,
|
24 |
+
args.all_configs,
|
25 |
+
args.save_info or args.save_infos,
|
26 |
+
args.ignore_verifications,
|
27 |
+
args.force_redownload,
|
28 |
+
**kwargs,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
@deprecated(
|
33 |
+
"`BeamBasedBuilder` and `datasets-cli run_beam` are deprecated and will be removed in v3.0.0. Please use `GeneratorBasedBuilder` or `ArrowBasedBuilder` instead."
|
34 |
+
)
|
35 |
+
class RunBeamCommand(BaseDatasetsCLICommand):
|
36 |
+
@staticmethod
|
37 |
+
def register_subcommand(parser: ArgumentParser):
|
38 |
+
run_beam_parser = parser.add_parser("run_beam", help="Run a Beam dataset processing pipeline")
|
39 |
+
run_beam_parser.add_argument("dataset", type=str, help="Name of the dataset to download")
|
40 |
+
run_beam_parser.add_argument("--name", type=str, default=None, help="Dataset config name")
|
41 |
+
run_beam_parser.add_argument(
|
42 |
+
"--cache_dir",
|
43 |
+
type=str,
|
44 |
+
default=None,
|
45 |
+
help="Cache directory where the datasets are stored",
|
46 |
+
)
|
47 |
+
run_beam_parser.add_argument(
|
48 |
+
"--beam_pipeline_options",
|
49 |
+
type=str,
|
50 |
+
default="",
|
51 |
+
help="Beam pipeline options, separated by commas. Example:: `--beam_pipeline_options=job_name=my-job,project=my-project`",
|
52 |
+
)
|
53 |
+
run_beam_parser.add_argument(
|
54 |
+
"--data_dir",
|
55 |
+
type=str,
|
56 |
+
default=None,
|
57 |
+
help="Can be used to specify a manual directory to get the files from",
|
58 |
+
)
|
59 |
+
run_beam_parser.add_argument("--all_configs", action="store_true", help="Test all dataset configurations")
|
60 |
+
run_beam_parser.add_argument("--save_info", action="store_true", help="Save the dataset infos file")
|
61 |
+
run_beam_parser.add_argument(
|
62 |
+
"--ignore_verifications", action="store_true", help="Run the test without checksums and splits checks"
|
63 |
+
)
|
64 |
+
run_beam_parser.add_argument("--force_redownload", action="store_true", help="Force dataset redownload")
|
65 |
+
# aliases
|
66 |
+
run_beam_parser.add_argument("--save_infos", action="store_true", help="alias for save_info")
|
67 |
+
run_beam_parser.set_defaults(func=run_beam_command_factory)
|
68 |
+
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
dataset: str,
|
72 |
+
name: str,
|
73 |
+
cache_dir: str,
|
74 |
+
beam_pipeline_options: str,
|
75 |
+
data_dir: str,
|
76 |
+
all_configs: bool,
|
77 |
+
save_infos: bool,
|
78 |
+
ignore_verifications: bool,
|
79 |
+
force_redownload: bool,
|
80 |
+
**config_kwargs,
|
81 |
+
):
|
82 |
+
self._dataset = dataset
|
83 |
+
self._name = name
|
84 |
+
self._cache_dir = cache_dir
|
85 |
+
self._beam_pipeline_options = beam_pipeline_options
|
86 |
+
self._data_dir = data_dir
|
87 |
+
self._all_configs = all_configs
|
88 |
+
self._save_infos = save_infos
|
89 |
+
self._ignore_verifications = ignore_verifications
|
90 |
+
self._force_redownload = force_redownload
|
91 |
+
self._config_kwargs = config_kwargs
|
92 |
+
|
93 |
+
def run(self):
|
94 |
+
import apache_beam as beam
|
95 |
+
|
96 |
+
if self._name is not None and self._all_configs:
|
97 |
+
print("Both parameters `name` and `all_configs` can't be used at once.")
|
98 |
+
exit(1)
|
99 |
+
path, config_name = self._dataset, self._name
|
100 |
+
dataset_module = dataset_module_factory(path)
|
101 |
+
builder_cls = import_main_class(dataset_module.module_path)
|
102 |
+
builders: List[DatasetBuilder] = []
|
103 |
+
if self._beam_pipeline_options:
|
104 |
+
beam_options = beam.options.pipeline_options.PipelineOptions(
|
105 |
+
flags=[f"--{opt.strip()}" for opt in self._beam_pipeline_options.split(",") if opt]
|
106 |
+
)
|
107 |
+
else:
|
108 |
+
beam_options = None
|
109 |
+
if self._all_configs and len(builder_cls.BUILDER_CONFIGS) > 0:
|
110 |
+
for builder_config in builder_cls.BUILDER_CONFIGS:
|
111 |
+
builders.append(
|
112 |
+
builder_cls(
|
113 |
+
config_name=builder_config.name,
|
114 |
+
data_dir=self._data_dir,
|
115 |
+
hash=dataset_module.hash,
|
116 |
+
beam_options=beam_options,
|
117 |
+
cache_dir=self._cache_dir,
|
118 |
+
base_path=dataset_module.builder_kwargs.get("base_path"),
|
119 |
+
)
|
120 |
+
)
|
121 |
+
else:
|
122 |
+
builders.append(
|
123 |
+
builder_cls(
|
124 |
+
config_name=config_name,
|
125 |
+
data_dir=self._data_dir,
|
126 |
+
beam_options=beam_options,
|
127 |
+
cache_dir=self._cache_dir,
|
128 |
+
base_path=dataset_module.builder_kwargs.get("base_path"),
|
129 |
+
**self._config_kwargs,
|
130 |
+
)
|
131 |
+
)
|
132 |
+
|
133 |
+
for builder in builders:
|
134 |
+
builder.download_and_prepare(
|
135 |
+
download_mode=DownloadMode.REUSE_CACHE_IF_EXISTS
|
136 |
+
if not self._force_redownload
|
137 |
+
else DownloadMode.FORCE_REDOWNLOAD,
|
138 |
+
download_config=DownloadConfig(cache_dir=config.DOWNLOADED_DATASETS_PATH),
|
139 |
+
verification_mode=VerificationMode.NO_CHECKS
|
140 |
+
if self._ignore_verifications
|
141 |
+
else VerificationMode.ALL_CHECKS,
|
142 |
+
)
|
143 |
+
if self._save_infos:
|
144 |
+
builder._save_infos()
|
145 |
+
|
146 |
+
print("Apache beam run successful.")
|
147 |
+
|
148 |
+
# If save_infos=True, the dataset infos file is created next to the loaded module file.
|
149 |
+
# Let's move it to the original directory of the dataset script, to allow the user to
|
150 |
+
# upload them on S3 at the same time afterwards.
|
151 |
+
if self._save_infos:
|
152 |
+
dataset_infos_path = os.path.join(builder_cls.get_imported_module_dir(), config.DATASETDICT_INFOS_FILENAME)
|
153 |
+
|
154 |
+
name = Path(path).name + ".py"
|
155 |
+
|
156 |
+
combined_path = os.path.join(path, name)
|
157 |
+
if os.path.isfile(path):
|
158 |
+
dataset_dir = os.path.dirname(path)
|
159 |
+
elif os.path.isfile(combined_path):
|
160 |
+
dataset_dir = path
|
161 |
+
else: # in case of a remote dataset
|
162 |
+
print(f"Dataset Infos file saved at {dataset_infos_path}")
|
163 |
+
exit(1)
|
164 |
+
|
165 |
+
# Move datasetinfo back to the user
|
166 |
+
user_dataset_infos_path = os.path.join(dataset_dir, config.DATASETDICT_INFOS_FILENAME)
|
167 |
+
copyfile(dataset_infos_path, user_dataset_infos_path)
|
168 |
+
print(f"Dataset Infos file saved at {user_dataset_infos_path}")
|
llmeval-env/lib/python3.10/site-packages/datasets/commands/test.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
from argparse import ArgumentParser
|
4 |
+
from pathlib import Path
|
5 |
+
from shutil import copyfile, rmtree
|
6 |
+
from typing import Generator
|
7 |
+
|
8 |
+
import datasets.config
|
9 |
+
from datasets.builder import DatasetBuilder
|
10 |
+
from datasets.commands import BaseDatasetsCLICommand
|
11 |
+
from datasets.download.download_manager import DownloadMode
|
12 |
+
from datasets.load import dataset_module_factory, import_main_class
|
13 |
+
from datasets.utils.info_utils import VerificationMode
|
14 |
+
from datasets.utils.logging import ERROR, get_logger
|
15 |
+
|
16 |
+
|
17 |
+
logger = get_logger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
def _test_command_factory(args):
|
21 |
+
return TestCommand(
|
22 |
+
args.dataset,
|
23 |
+
args.name,
|
24 |
+
args.cache_dir,
|
25 |
+
args.data_dir,
|
26 |
+
args.all_configs,
|
27 |
+
args.save_info or args.save_infos,
|
28 |
+
args.ignore_verifications,
|
29 |
+
args.force_redownload,
|
30 |
+
args.clear_cache,
|
31 |
+
args.num_proc,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
class TestCommand(BaseDatasetsCLICommand):
|
36 |
+
__test__ = False # to tell pytest it's not a test class
|
37 |
+
|
38 |
+
@staticmethod
|
39 |
+
def register_subcommand(parser: ArgumentParser):
|
40 |
+
test_parser = parser.add_parser("test", help="Test dataset implementation.")
|
41 |
+
test_parser.add_argument("--name", type=str, default=None, help="Dataset processing name")
|
42 |
+
test_parser.add_argument(
|
43 |
+
"--cache_dir",
|
44 |
+
type=str,
|
45 |
+
default=None,
|
46 |
+
help="Cache directory where the datasets are stored.",
|
47 |
+
)
|
48 |
+
test_parser.add_argument(
|
49 |
+
"--data_dir",
|
50 |
+
type=str,
|
51 |
+
default=None,
|
52 |
+
help="Can be used to specify a manual directory to get the files from.",
|
53 |
+
)
|
54 |
+
test_parser.add_argument("--all_configs", action="store_true", help="Test all dataset configurations")
|
55 |
+
test_parser.add_argument(
|
56 |
+
"--save_info", action="store_true", help="Save the dataset infos in the dataset card (README.md)"
|
57 |
+
)
|
58 |
+
test_parser.add_argument(
|
59 |
+
"--ignore_verifications",
|
60 |
+
action="store_true",
|
61 |
+
help="Run the test without checksums and splits checks.",
|
62 |
+
)
|
63 |
+
test_parser.add_argument("--force_redownload", action="store_true", help="Force dataset redownload")
|
64 |
+
test_parser.add_argument(
|
65 |
+
"--clear_cache",
|
66 |
+
action="store_true",
|
67 |
+
help="Remove downloaded files and cached datasets after each config test",
|
68 |
+
)
|
69 |
+
test_parser.add_argument("--num_proc", type=int, default=None, help="Number of processes")
|
70 |
+
# aliases
|
71 |
+
test_parser.add_argument("--save_infos", action="store_true", help="alias to save_info")
|
72 |
+
test_parser.add_argument("dataset", type=str, help="Name of the dataset to download")
|
73 |
+
test_parser.set_defaults(func=_test_command_factory)
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
dataset: str,
|
78 |
+
name: str,
|
79 |
+
cache_dir: str,
|
80 |
+
data_dir: str,
|
81 |
+
all_configs: bool,
|
82 |
+
save_infos: bool,
|
83 |
+
ignore_verifications: bool,
|
84 |
+
force_redownload: bool,
|
85 |
+
clear_cache: bool,
|
86 |
+
num_proc: int,
|
87 |
+
):
|
88 |
+
self._dataset = dataset
|
89 |
+
self._name = name
|
90 |
+
self._cache_dir = cache_dir
|
91 |
+
self._data_dir = data_dir
|
92 |
+
self._all_configs = all_configs
|
93 |
+
self._save_infos = save_infos
|
94 |
+
self._ignore_verifications = ignore_verifications
|
95 |
+
self._force_redownload = force_redownload
|
96 |
+
self._clear_cache = clear_cache
|
97 |
+
self._num_proc = num_proc
|
98 |
+
if clear_cache and not cache_dir:
|
99 |
+
print(
|
100 |
+
"When --clear_cache is used, specifying a cache directory is mandatory.\n"
|
101 |
+
"The 'download' folder of the cache directory and the dataset builder cache will be deleted after each configuration test.\n"
|
102 |
+
"Please provide a --cache_dir that will be used to test the dataset script."
|
103 |
+
)
|
104 |
+
exit(1)
|
105 |
+
if save_infos:
|
106 |
+
self._ignore_verifications = True
|
107 |
+
|
108 |
+
def run(self):
|
109 |
+
logging.getLogger("filelock").setLevel(ERROR)
|
110 |
+
if self._name is not None and self._all_configs:
|
111 |
+
print("Both parameters `config` and `all_configs` can't be used at once.")
|
112 |
+
exit(1)
|
113 |
+
path, config_name = self._dataset, self._name
|
114 |
+
module = dataset_module_factory(path)
|
115 |
+
builder_cls = import_main_class(module.module_path)
|
116 |
+
n_builders = len(builder_cls.BUILDER_CONFIGS) if self._all_configs and builder_cls.BUILDER_CONFIGS else 1
|
117 |
+
|
118 |
+
def get_builders() -> Generator[DatasetBuilder, None, None]:
|
119 |
+
if self._all_configs and builder_cls.BUILDER_CONFIGS:
|
120 |
+
for i, config in enumerate(builder_cls.BUILDER_CONFIGS):
|
121 |
+
if "config_name" in module.builder_kwargs:
|
122 |
+
yield builder_cls(
|
123 |
+
cache_dir=self._cache_dir,
|
124 |
+
data_dir=self._data_dir,
|
125 |
+
**module.builder_kwargs,
|
126 |
+
)
|
127 |
+
else:
|
128 |
+
yield builder_cls(
|
129 |
+
config_name=config.name,
|
130 |
+
cache_dir=self._cache_dir,
|
131 |
+
data_dir=self._data_dir,
|
132 |
+
**module.builder_kwargs,
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
if "config_name" in module.builder_kwargs:
|
136 |
+
yield builder_cls(cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs)
|
137 |
+
else:
|
138 |
+
yield builder_cls(
|
139 |
+
config_name=config_name,
|
140 |
+
cache_dir=self._cache_dir,
|
141 |
+
data_dir=self._data_dir,
|
142 |
+
**module.builder_kwargs,
|
143 |
+
)
|
144 |
+
|
145 |
+
for j, builder in enumerate(get_builders()):
|
146 |
+
print(f"Testing builder '{builder.config.name}' ({j + 1}/{n_builders})")
|
147 |
+
builder._record_infos = os.path.exists(
|
148 |
+
os.path.join(builder.get_imported_module_dir(), datasets.config.DATASETDICT_INFOS_FILENAME)
|
149 |
+
) # record checksums only if we need to update a (deprecated) dataset_infos.json
|
150 |
+
builder.download_and_prepare(
|
151 |
+
download_mode=DownloadMode.REUSE_CACHE_IF_EXISTS
|
152 |
+
if not self._force_redownload
|
153 |
+
else DownloadMode.FORCE_REDOWNLOAD,
|
154 |
+
verification_mode=VerificationMode.NO_CHECKS
|
155 |
+
if self._ignore_verifications
|
156 |
+
else VerificationMode.ALL_CHECKS,
|
157 |
+
try_from_hf_gcs=False,
|
158 |
+
num_proc=self._num_proc,
|
159 |
+
)
|
160 |
+
builder.as_dataset()
|
161 |
+
if self._save_infos:
|
162 |
+
builder._save_infos()
|
163 |
+
|
164 |
+
# If save_infos=True, the dataset card (README.md) is created next to the loaded module file.
|
165 |
+
# The dataset_infos are saved in the YAML part of the README.md
|
166 |
+
|
167 |
+
# Let's move it to the original directory of the dataset script, to allow the user to
|
168 |
+
# upload them on S3 at the same time afterwards.
|
169 |
+
if self._save_infos:
|
170 |
+
dataset_readme_path = os.path.join(
|
171 |
+
builder_cls.get_imported_module_dir(), datasets.config.REPOCARD_FILENAME
|
172 |
+
)
|
173 |
+
name = Path(path).name + ".py"
|
174 |
+
combined_path = os.path.join(path, name)
|
175 |
+
if os.path.isfile(path):
|
176 |
+
dataset_dir = os.path.dirname(path)
|
177 |
+
elif os.path.isfile(combined_path):
|
178 |
+
dataset_dir = path
|
179 |
+
elif os.path.isdir(path): # for local directories containing only data files
|
180 |
+
dataset_dir = path
|
181 |
+
else: # in case of a remote dataset
|
182 |
+
dataset_dir = None
|
183 |
+
print(f"Dataset card saved at {dataset_readme_path}")
|
184 |
+
|
185 |
+
# Move dataset_info back to the user
|
186 |
+
if dataset_dir is not None:
|
187 |
+
user_dataset_readme_path = os.path.join(dataset_dir, datasets.config.REPOCARD_FILENAME)
|
188 |
+
copyfile(dataset_readme_path, user_dataset_readme_path)
|
189 |
+
print(f"Dataset card saved at {user_dataset_readme_path}")
|
190 |
+
|
191 |
+
# If clear_cache=True, the download folder and the dataset builder cache directory are deleted
|
192 |
+
if self._clear_cache:
|
193 |
+
if os.path.isdir(builder._cache_dir):
|
194 |
+
logger.warning(f"Clearing cache at {builder._cache_dir}")
|
195 |
+
rmtree(builder._cache_dir)
|
196 |
+
download_dir = os.path.join(self._cache_dir, datasets.config.DOWNLOADED_DATASETS_DIR)
|
197 |
+
if os.path.isdir(download_dir):
|
198 |
+
logger.warning(f"Clearing cache at {download_dir}")
|
199 |
+
rmtree(download_dir)
|
200 |
+
|
201 |
+
print("Test successful.")
|
llmeval-env/lib/python3.10/site-packages/datasets/data_files.py
ADDED
@@ -0,0 +1,821 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
from functools import partial
|
4 |
+
from glob import has_magic
|
5 |
+
from pathlib import Path, PurePath
|
6 |
+
from typing import Callable, Dict, List, Optional, Set, Tuple, Union
|
7 |
+
|
8 |
+
import huggingface_hub
|
9 |
+
from fsspec.core import url_to_fs
|
10 |
+
from fsspec.implementations.http import HTTPFileSystem
|
11 |
+
from huggingface_hub import HfFileSystem
|
12 |
+
from packaging import version
|
13 |
+
from tqdm.contrib.concurrent import thread_map
|
14 |
+
|
15 |
+
from . import config
|
16 |
+
from .download import DownloadConfig
|
17 |
+
from .naming import _split_re
|
18 |
+
from .splits import Split
|
19 |
+
from .utils import logging
|
20 |
+
from .utils import tqdm as hf_tqdm
|
21 |
+
from .utils.file_utils import _prepare_path_and_storage_options, is_local_path, is_relative_path, xbasename, xjoin
|
22 |
+
from .utils.py_utils import glob_pattern_to_regex, string_to_dict
|
23 |
+
|
24 |
+
|
25 |
+
SANITIZED_DEFAULT_SPLIT = str(Split.TRAIN)
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
class Url(str):
|
32 |
+
pass
|
33 |
+
|
34 |
+
|
35 |
+
class EmptyDatasetError(FileNotFoundError):
|
36 |
+
pass
|
37 |
+
|
38 |
+
|
39 |
+
SPLIT_PATTERN_SHARDED = "data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*"
|
40 |
+
|
41 |
+
SPLIT_KEYWORDS = {
|
42 |
+
Split.TRAIN: ["train", "training"],
|
43 |
+
Split.VALIDATION: ["validation", "valid", "dev", "val"],
|
44 |
+
Split.TEST: ["test", "testing", "eval", "evaluation"],
|
45 |
+
}
|
46 |
+
NON_WORDS_CHARS = "-._ 0-9"
|
47 |
+
if config.FSSPEC_VERSION < version.parse("2023.9.0"):
|
48 |
+
KEYWORDS_IN_FILENAME_BASE_PATTERNS = ["**[{sep}/]{keyword}[{sep}]*", "{keyword}[{sep}]*"]
|
49 |
+
KEYWORDS_IN_DIR_NAME_BASE_PATTERNS = [
|
50 |
+
"{keyword}/**",
|
51 |
+
"{keyword}[{sep}]*/**",
|
52 |
+
"**[{sep}/]{keyword}/**",
|
53 |
+
"**[{sep}/]{keyword}[{sep}]*/**",
|
54 |
+
]
|
55 |
+
elif config.FSSPEC_VERSION < version.parse("2023.12.0"):
|
56 |
+
KEYWORDS_IN_FILENAME_BASE_PATTERNS = ["**/*[{sep}/]{keyword}[{sep}]*", "{keyword}[{sep}]*"]
|
57 |
+
KEYWORDS_IN_DIR_NAME_BASE_PATTERNS = [
|
58 |
+
"{keyword}/**/*",
|
59 |
+
"{keyword}[{sep}]*/**/*",
|
60 |
+
"**/*[{sep}/]{keyword}/**/*",
|
61 |
+
"**/*[{sep}/]{keyword}[{sep}]*/**/*",
|
62 |
+
]
|
63 |
+
else:
|
64 |
+
KEYWORDS_IN_FILENAME_BASE_PATTERNS = ["**/{keyword}[{sep}]*", "**/*[{sep}]{keyword}[{sep}]*"]
|
65 |
+
KEYWORDS_IN_DIR_NAME_BASE_PATTERNS = [
|
66 |
+
"**/{keyword}/**",
|
67 |
+
"**/{keyword}[{sep}]*/**",
|
68 |
+
"**/*[{sep}]{keyword}/**",
|
69 |
+
"**/*[{sep}]{keyword}[{sep}]*/**",
|
70 |
+
]
|
71 |
+
|
72 |
+
DEFAULT_SPLITS = [Split.TRAIN, Split.VALIDATION, Split.TEST]
|
73 |
+
DEFAULT_PATTERNS_SPLIT_IN_FILENAME = {
|
74 |
+
split: [
|
75 |
+
pattern.format(keyword=keyword, sep=NON_WORDS_CHARS)
|
76 |
+
for keyword in SPLIT_KEYWORDS[split]
|
77 |
+
for pattern in KEYWORDS_IN_FILENAME_BASE_PATTERNS
|
78 |
+
]
|
79 |
+
for split in DEFAULT_SPLITS
|
80 |
+
}
|
81 |
+
DEFAULT_PATTERNS_SPLIT_IN_DIR_NAME = {
|
82 |
+
split: [
|
83 |
+
pattern.format(keyword=keyword, sep=NON_WORDS_CHARS)
|
84 |
+
for keyword in SPLIT_KEYWORDS[split]
|
85 |
+
for pattern in KEYWORDS_IN_DIR_NAME_BASE_PATTERNS
|
86 |
+
]
|
87 |
+
for split in DEFAULT_SPLITS
|
88 |
+
}
|
89 |
+
|
90 |
+
|
91 |
+
DEFAULT_PATTERNS_ALL = {
|
92 |
+
Split.TRAIN: ["**"],
|
93 |
+
}
|
94 |
+
|
95 |
+
ALL_SPLIT_PATTERNS = [SPLIT_PATTERN_SHARDED]
|
96 |
+
ALL_DEFAULT_PATTERNS = [
|
97 |
+
DEFAULT_PATTERNS_SPLIT_IN_DIR_NAME,
|
98 |
+
DEFAULT_PATTERNS_SPLIT_IN_FILENAME,
|
99 |
+
DEFAULT_PATTERNS_ALL,
|
100 |
+
]
|
101 |
+
if config.FSSPEC_VERSION < version.parse("2023.9.0"):
|
102 |
+
METADATA_PATTERNS = [
|
103 |
+
"metadata.csv",
|
104 |
+
"**/metadata.csv",
|
105 |
+
"metadata.jsonl",
|
106 |
+
"**/metadata.jsonl",
|
107 |
+
] # metadata file for ImageFolder and AudioFolder
|
108 |
+
else:
|
109 |
+
METADATA_PATTERNS = [
|
110 |
+
"**/metadata.csv",
|
111 |
+
"**/metadata.jsonl",
|
112 |
+
] # metadata file for ImageFolder and AudioFolder
|
113 |
+
WILDCARD_CHARACTERS = "*[]"
|
114 |
+
FILES_TO_IGNORE = [
|
115 |
+
"README.md",
|
116 |
+
"config.json",
|
117 |
+
"dataset_info.json",
|
118 |
+
"dataset_infos.json",
|
119 |
+
"dummy_data.zip",
|
120 |
+
"dataset_dict.json",
|
121 |
+
]
|
122 |
+
|
123 |
+
|
124 |
+
def contains_wildcards(pattern: str) -> bool:
|
125 |
+
return any(wilcard_character in pattern for wilcard_character in WILDCARD_CHARACTERS)
|
126 |
+
|
127 |
+
|
128 |
+
def sanitize_patterns(patterns: Union[Dict, List, str]) -> Dict[str, Union[List[str], "DataFilesList"]]:
|
129 |
+
"""
|
130 |
+
Take the data_files patterns from the user, and format them into a dictionary.
|
131 |
+
Each key is the name of the split, and each value is a list of data files patterns (paths or urls).
|
132 |
+
The default split is "train".
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
patterns: dictionary of split_name -> list of patterns
|
136 |
+
"""
|
137 |
+
if isinstance(patterns, dict):
|
138 |
+
return {str(key): value if isinstance(value, list) else [value] for key, value in patterns.items()}
|
139 |
+
elif isinstance(patterns, str):
|
140 |
+
return {SANITIZED_DEFAULT_SPLIT: [patterns]}
|
141 |
+
elif isinstance(patterns, list):
|
142 |
+
if any(isinstance(pattern, dict) for pattern in patterns):
|
143 |
+
for pattern in patterns:
|
144 |
+
if not (
|
145 |
+
isinstance(pattern, dict)
|
146 |
+
and len(pattern) == 2
|
147 |
+
and "split" in pattern
|
148 |
+
and isinstance(pattern.get("path"), (str, list))
|
149 |
+
):
|
150 |
+
raise ValueError(
|
151 |
+
f"Expected each split to have a 'path' key which can be a string or a list of strings, but got {pattern}"
|
152 |
+
)
|
153 |
+
splits = [pattern["split"] for pattern in patterns]
|
154 |
+
if len(set(splits)) != len(splits):
|
155 |
+
raise ValueError(f"Some splits are duplicated in data_files: {splits}")
|
156 |
+
return {
|
157 |
+
str(pattern["split"]): pattern["path"] if isinstance(pattern["path"], list) else [pattern["path"]]
|
158 |
+
for pattern in patterns
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
return {SANITIZED_DEFAULT_SPLIT: patterns}
|
162 |
+
else:
|
163 |
+
return sanitize_patterns(list(patterns))
|
164 |
+
|
165 |
+
|
166 |
+
def _is_inside_unrequested_special_dir(matched_rel_path: str, pattern: str) -> bool:
|
167 |
+
"""
|
168 |
+
When a path matches a pattern, we additionnally check if it's inside a special directory
|
169 |
+
we ignore by default (if it starts with a double underscore).
|
170 |
+
|
171 |
+
Users can still explicitly request a filepath inside such a directory if "__pycache__" is
|
172 |
+
mentioned explicitly in the requested pattern.
|
173 |
+
|
174 |
+
Some examples:
|
175 |
+
|
176 |
+
base directory:
|
177 |
+
|
178 |
+
./
|
179 |
+
└── __pycache__
|
180 |
+
└── b.txt
|
181 |
+
|
182 |
+
>>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "**")
|
183 |
+
True
|
184 |
+
>>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "*/b.txt")
|
185 |
+
True
|
186 |
+
>>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "__pycache__/*")
|
187 |
+
False
|
188 |
+
>>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "__*/*")
|
189 |
+
False
|
190 |
+
"""
|
191 |
+
# We just need to check if every special directories from the path is present explicly in the pattern.
|
192 |
+
# Since we assume that the path matches the pattern, it's equivalent to counting that both
|
193 |
+
# the parent path and the parent pattern have the same number of special directories.
|
194 |
+
data_dirs_to_ignore_in_path = [part for part in PurePath(matched_rel_path).parent.parts if part.startswith("__")]
|
195 |
+
data_dirs_to_ignore_in_pattern = [part for part in PurePath(pattern).parent.parts if part.startswith("__")]
|
196 |
+
return len(data_dirs_to_ignore_in_path) != len(data_dirs_to_ignore_in_pattern)
|
197 |
+
|
198 |
+
|
199 |
+
def _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(matched_rel_path: str, pattern: str) -> bool:
|
200 |
+
"""
|
201 |
+
When a path matches a pattern, we additionnally check if it's a hidden file or if it's inside
|
202 |
+
a hidden directory we ignore by default, i.e. if the file name or a parent directory name starts with a dot.
|
203 |
+
|
204 |
+
Users can still explicitly request a filepath that is hidden or is inside a hidden directory
|
205 |
+
if the hidden part is mentioned explicitly in the requested pattern.
|
206 |
+
|
207 |
+
Some examples:
|
208 |
+
|
209 |
+
base directory:
|
210 |
+
|
211 |
+
./
|
212 |
+
└── .hidden_file.txt
|
213 |
+
|
214 |
+
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_file.txt", "**")
|
215 |
+
True
|
216 |
+
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_file.txt", ".*")
|
217 |
+
False
|
218 |
+
|
219 |
+
base directory:
|
220 |
+
|
221 |
+
./
|
222 |
+
└── .hidden_dir
|
223 |
+
└── a.txt
|
224 |
+
|
225 |
+
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/a.txt", "**")
|
226 |
+
True
|
227 |
+
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/a.txt", ".*/*")
|
228 |
+
False
|
229 |
+
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/a.txt", ".hidden_dir/*")
|
230 |
+
False
|
231 |
+
|
232 |
+
base directory:
|
233 |
+
|
234 |
+
./
|
235 |
+
└── .hidden_dir
|
236 |
+
└── .hidden_file.txt
|
237 |
+
|
238 |
+
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", "**")
|
239 |
+
True
|
240 |
+
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".*/*")
|
241 |
+
True
|
242 |
+
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".*/.*")
|
243 |
+
False
|
244 |
+
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".hidden_dir/*")
|
245 |
+
True
|
246 |
+
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".hidden_dir/.*")
|
247 |
+
False
|
248 |
+
"""
|
249 |
+
# We just need to check if every hidden part from the path is present explicly in the pattern.
|
250 |
+
# Since we assume that the path matches the pattern, it's equivalent to counting that both
|
251 |
+
# the path and the pattern have the same number of hidden parts.
|
252 |
+
hidden_directories_in_path = [
|
253 |
+
part for part in PurePath(matched_rel_path).parts if part.startswith(".") and not set(part) == {"."}
|
254 |
+
]
|
255 |
+
hidden_directories_in_pattern = [
|
256 |
+
part for part in PurePath(pattern).parts if part.startswith(".") and not set(part) == {"."}
|
257 |
+
]
|
258 |
+
return len(hidden_directories_in_path) != len(hidden_directories_in_pattern)
|
259 |
+
|
260 |
+
|
261 |
+
def _get_data_files_patterns(pattern_resolver: Callable[[str], List[str]]) -> Dict[str, List[str]]:
|
262 |
+
"""
|
263 |
+
Get the default pattern from a directory or repository by testing all the supported patterns.
|
264 |
+
The first patterns to return a non-empty list of data files is returned.
|
265 |
+
|
266 |
+
In order, it first tests if SPLIT_PATTERN_SHARDED works, otherwise it tests the patterns in ALL_DEFAULT_PATTERNS.
|
267 |
+
"""
|
268 |
+
# first check the split patterns like data/{split}-00000-of-00001.parquet
|
269 |
+
for split_pattern in ALL_SPLIT_PATTERNS:
|
270 |
+
pattern = split_pattern.replace("{split}", "*")
|
271 |
+
try:
|
272 |
+
data_files = pattern_resolver(pattern)
|
273 |
+
except FileNotFoundError:
|
274 |
+
continue
|
275 |
+
if len(data_files) > 0:
|
276 |
+
splits: Set[str] = {
|
277 |
+
string_to_dict(xbasename(p), glob_pattern_to_regex(xbasename(split_pattern)))["split"]
|
278 |
+
for p in data_files
|
279 |
+
}
|
280 |
+
if any(not re.match(_split_re, split) for split in splits):
|
281 |
+
raise ValueError(f"Split name should match '{_split_re}'' but got '{splits}'.")
|
282 |
+
sorted_splits = [str(split) for split in DEFAULT_SPLITS if split in splits] + sorted(
|
283 |
+
splits - set(DEFAULT_SPLITS)
|
284 |
+
)
|
285 |
+
return {split: [split_pattern.format(split=split)] for split in sorted_splits}
|
286 |
+
# then check the default patterns based on train/valid/test splits
|
287 |
+
for patterns_dict in ALL_DEFAULT_PATTERNS:
|
288 |
+
non_empty_splits = []
|
289 |
+
for split, patterns in patterns_dict.items():
|
290 |
+
for pattern in patterns:
|
291 |
+
try:
|
292 |
+
data_files = pattern_resolver(pattern)
|
293 |
+
except FileNotFoundError:
|
294 |
+
continue
|
295 |
+
if len(data_files) > 0:
|
296 |
+
non_empty_splits.append(split)
|
297 |
+
break
|
298 |
+
if non_empty_splits:
|
299 |
+
return {split: patterns_dict[split] for split in non_empty_splits}
|
300 |
+
raise FileNotFoundError(f"Couldn't resolve pattern {pattern} with resolver {pattern_resolver}")
|
301 |
+
|
302 |
+
|
303 |
+
def _get_metadata_files_patterns(pattern_resolver: Callable[[str], List[str]]) -> List[str]:
|
304 |
+
"""
|
305 |
+
Get the supported metadata patterns from a directory or repository.
|
306 |
+
"""
|
307 |
+
non_empty_patterns = []
|
308 |
+
for pattern in METADATA_PATTERNS:
|
309 |
+
try:
|
310 |
+
metadata_files = pattern_resolver(pattern)
|
311 |
+
if len(metadata_files) > 0:
|
312 |
+
non_empty_patterns.append(pattern)
|
313 |
+
except FileNotFoundError:
|
314 |
+
pass
|
315 |
+
if non_empty_patterns:
|
316 |
+
return non_empty_patterns
|
317 |
+
raise FileNotFoundError(f"Couldn't resolve pattern {pattern} with resolver {pattern_resolver}")
|
318 |
+
|
319 |
+
|
320 |
+
def resolve_pattern(
|
321 |
+
pattern: str,
|
322 |
+
base_path: str,
|
323 |
+
allowed_extensions: Optional[List[str]] = None,
|
324 |
+
download_config: Optional[DownloadConfig] = None,
|
325 |
+
) -> List[str]:
|
326 |
+
"""
|
327 |
+
Resolve the paths and URLs of the data files from the pattern passed by the user.
|
328 |
+
|
329 |
+
You can use patterns to resolve multiple local files. Here are a few examples:
|
330 |
+
- *.csv to match all the CSV files at the first level
|
331 |
+
- **.csv to match all the CSV files at any level
|
332 |
+
- data/* to match all the files inside "data"
|
333 |
+
- data/** to match all the files inside "data" and its subdirectories
|
334 |
+
|
335 |
+
The patterns are resolved using the fsspec glob. In fsspec>=2023.12.0 this is equivalent to
|
336 |
+
Python's glob.glob, Path.glob, Path.match and fnmatch where ** is unsupported with a prefix/suffix
|
337 |
+
other than a forward slash /.
|
338 |
+
|
339 |
+
More generally:
|
340 |
+
- '*' matches any character except a forward-slash (to match just the file or directory name)
|
341 |
+
- '**' matches any character including a forward-slash /
|
342 |
+
|
343 |
+
Hidden files and directories (i.e. whose names start with a dot) are ignored, unless they are explicitly requested.
|
344 |
+
The same applies to special directories that start with a double underscore like "__pycache__".
|
345 |
+
You can still include one if the pattern explicilty mentions it:
|
346 |
+
- to include a hidden file: "*/.hidden.txt" or "*/.*"
|
347 |
+
- to include a hidden directory: ".hidden/*" or ".*/*"
|
348 |
+
- to include a special directory: "__special__/*" or "__*/*"
|
349 |
+
|
350 |
+
Example::
|
351 |
+
|
352 |
+
>>> from datasets.data_files import resolve_pattern
|
353 |
+
>>> base_path = "."
|
354 |
+
>>> resolve_pattern("docs/**/*.py", base_path)
|
355 |
+
[/Users/mariosasko/Desktop/projects/datasets/docs/source/_config.py']
|
356 |
+
|
357 |
+
Args:
|
358 |
+
pattern (str): Unix pattern or paths or URLs of the data files to resolve.
|
359 |
+
The paths can be absolute or relative to base_path.
|
360 |
+
Remote filesystems using fsspec are supported, e.g. with the hf:// protocol.
|
361 |
+
base_path (str): Base path to use when resolving relative paths.
|
362 |
+
allowed_extensions (Optional[list], optional): White-list of file extensions to use. Defaults to None (all extensions).
|
363 |
+
For example: allowed_extensions=[".csv", ".json", ".txt", ".parquet"]
|
364 |
+
Returns:
|
365 |
+
List[str]: List of paths or URLs to the local or remote files that match the patterns.
|
366 |
+
"""
|
367 |
+
if is_relative_path(pattern):
|
368 |
+
pattern = xjoin(base_path, pattern)
|
369 |
+
elif is_local_path(pattern):
|
370 |
+
base_path = os.path.splitdrive(pattern)[0] + os.sep
|
371 |
+
else:
|
372 |
+
base_path = ""
|
373 |
+
pattern, storage_options = _prepare_path_and_storage_options(pattern, download_config=download_config)
|
374 |
+
fs, fs_pattern = url_to_fs(pattern, **storage_options)
|
375 |
+
files_to_ignore = set(FILES_TO_IGNORE) - {xbasename(pattern)}
|
376 |
+
protocol = fs.protocol if isinstance(fs.protocol, str) else fs.protocol[0]
|
377 |
+
protocol_prefix = protocol + "://" if protocol != "file" else ""
|
378 |
+
glob_kwargs = {}
|
379 |
+
if protocol == "hf" and config.HF_HUB_VERSION >= version.parse("0.20.0"):
|
380 |
+
# 10 times faster glob with detail=True (ignores costly info like lastCommit)
|
381 |
+
glob_kwargs["expand_info"] = False
|
382 |
+
matched_paths = [
|
383 |
+
filepath if filepath.startswith(protocol_prefix) else protocol_prefix + filepath
|
384 |
+
for filepath, info in fs.glob(pattern, detail=True, **glob_kwargs).items()
|
385 |
+
if info["type"] == "file"
|
386 |
+
and (xbasename(filepath) not in files_to_ignore)
|
387 |
+
and not _is_inside_unrequested_special_dir(filepath, fs_pattern)
|
388 |
+
and not _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(filepath, fs_pattern)
|
389 |
+
] # ignore .ipynb and __pycache__, but keep /../
|
390 |
+
if allowed_extensions is not None:
|
391 |
+
out = [
|
392 |
+
filepath
|
393 |
+
for filepath in matched_paths
|
394 |
+
if any("." + suffix in allowed_extensions for suffix in xbasename(filepath).split(".")[1:])
|
395 |
+
]
|
396 |
+
if len(out) < len(matched_paths):
|
397 |
+
invalid_matched_files = list(set(matched_paths) - set(out))
|
398 |
+
logger.info(
|
399 |
+
f"Some files matched the pattern '{pattern}' but don't have valid data file extensions: {invalid_matched_files}"
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
out = matched_paths
|
403 |
+
if not out:
|
404 |
+
error_msg = f"Unable to find '{pattern}'"
|
405 |
+
if allowed_extensions is not None:
|
406 |
+
error_msg += f" with any supported extension {list(allowed_extensions)}"
|
407 |
+
raise FileNotFoundError(error_msg)
|
408 |
+
return out
|
409 |
+
|
410 |
+
|
411 |
+
def get_data_patterns(base_path: str, download_config: Optional[DownloadConfig] = None) -> Dict[str, List[str]]:
|
412 |
+
"""
|
413 |
+
Get the default pattern from a directory testing all the supported patterns.
|
414 |
+
The first patterns to return a non-empty list of data files is returned.
|
415 |
+
|
416 |
+
Some examples of supported patterns:
|
417 |
+
|
418 |
+
Input:
|
419 |
+
|
420 |
+
my_dataset_repository/
|
421 |
+
├── README.md
|
422 |
+
└── dataset.csv
|
423 |
+
|
424 |
+
Output:
|
425 |
+
|
426 |
+
{'train': ['**']}
|
427 |
+
|
428 |
+
Input:
|
429 |
+
|
430 |
+
my_dataset_repository/
|
431 |
+
├── README.md
|
432 |
+
├── train.csv
|
433 |
+
└── test.csv
|
434 |
+
|
435 |
+
my_dataset_repository/
|
436 |
+
├── README.md
|
437 |
+
└── data/
|
438 |
+
├── train.csv
|
439 |
+
└── test.csv
|
440 |
+
|
441 |
+
my_dataset_repository/
|
442 |
+
├── README.md
|
443 |
+
├── train_0.csv
|
444 |
+
├── train_1.csv
|
445 |
+
├── train_2.csv
|
446 |
+
├── train_3.csv
|
447 |
+
├── test_0.csv
|
448 |
+
└── test_1.csv
|
449 |
+
|
450 |
+
Output:
|
451 |
+
|
452 |
+
{'train': ['**/train[-._ 0-9]*', '**/*[-._ 0-9]train[-._ 0-9]*', '**/training[-._ 0-9]*', '**/*[-._ 0-9]training[-._ 0-9]*'],
|
453 |
+
'test': ['**/test[-._ 0-9]*', '**/*[-._ 0-9]test[-._ 0-9]*', '**/testing[-._ 0-9]*', '**/*[-._ 0-9]testing[-._ 0-9]*', ...]}
|
454 |
+
|
455 |
+
Input:
|
456 |
+
|
457 |
+
my_dataset_repository/
|
458 |
+
├── README.md
|
459 |
+
└── data/
|
460 |
+
├── train/
|
461 |
+
│ ├── shard_0.csv
|
462 |
+
│ ├── shard_1.csv
|
463 |
+
│ ├── shard_2.csv
|
464 |
+
│ └── shard_3.csv
|
465 |
+
└── test/
|
466 |
+
├── shard_0.csv
|
467 |
+
└── shard_1.csv
|
468 |
+
|
469 |
+
Output:
|
470 |
+
|
471 |
+
{'train': ['**/train/**', '**/train[-._ 0-9]*/**', '**/*[-._ 0-9]train/**', '**/*[-._ 0-9]train[-._ 0-9]*/**', ...],
|
472 |
+
'test': ['**/test/**', '**/test[-._ 0-9]*/**', '**/*[-._ 0-9]test/**', '**/*[-._ 0-9]test[-._ 0-9]*/**', ...]}
|
473 |
+
|
474 |
+
Input:
|
475 |
+
|
476 |
+
my_dataset_repository/
|
477 |
+
├── README.md
|
478 |
+
└── data/
|
479 |
+
├── train-00000-of-00003.csv
|
480 |
+
├── train-00001-of-00003.csv
|
481 |
+
├── train-00002-of-00003.csv
|
482 |
+
├── test-00000-of-00001.csv
|
483 |
+
├── random-00000-of-00003.csv
|
484 |
+
├── random-00001-of-00003.csv
|
485 |
+
└── random-00002-of-00003.csv
|
486 |
+
|
487 |
+
Output:
|
488 |
+
|
489 |
+
{'train': ['data/train-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*'],
|
490 |
+
'test': ['data/test-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*'],
|
491 |
+
'random': ['data/random-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*']}
|
492 |
+
|
493 |
+
In order, it first tests if SPLIT_PATTERN_SHARDED works, otherwise it tests the patterns in ALL_DEFAULT_PATTERNS.
|
494 |
+
"""
|
495 |
+
resolver = partial(resolve_pattern, base_path=base_path, download_config=download_config)
|
496 |
+
try:
|
497 |
+
return _get_data_files_patterns(resolver)
|
498 |
+
except FileNotFoundError:
|
499 |
+
raise EmptyDatasetError(f"The directory at {base_path} doesn't contain any data files") from None
|
500 |
+
|
501 |
+
|
502 |
+
def get_metadata_patterns(
|
503 |
+
base_path: str,
|
504 |
+
download_config: Optional[DownloadConfig] = None,
|
505 |
+
) -> List[str]:
|
506 |
+
"""
|
507 |
+
Get the supported metadata patterns from a local directory.
|
508 |
+
"""
|
509 |
+
resolver = partial(resolve_pattern, base_path=base_path, download_config=download_config)
|
510 |
+
try:
|
511 |
+
return _get_metadata_files_patterns(resolver)
|
512 |
+
except FileNotFoundError:
|
513 |
+
raise FileNotFoundError(f"The directory at {base_path} doesn't contain any metadata file") from None
|
514 |
+
|
515 |
+
|
516 |
+
def _get_single_origin_metadata(
|
517 |
+
data_file: str,
|
518 |
+
download_config: Optional[DownloadConfig] = None,
|
519 |
+
) -> Tuple[str]:
|
520 |
+
data_file, storage_options = _prepare_path_and_storage_options(data_file, download_config=download_config)
|
521 |
+
fs, *_ = url_to_fs(data_file, **storage_options)
|
522 |
+
if isinstance(fs, HfFileSystem):
|
523 |
+
resolved_path = fs.resolve_path(data_file)
|
524 |
+
return (resolved_path.repo_id, resolved_path.revision)
|
525 |
+
elif isinstance(fs, HTTPFileSystem) and data_file.startswith(config.HF_ENDPOINT):
|
526 |
+
hffs = HfFileSystem(endpoint=config.HF_ENDPOINT, token=download_config.token)
|
527 |
+
data_file = "hf://" + data_file[len(config.HF_ENDPOINT) + 1 :].replace("/resolve/", "@", 1)
|
528 |
+
resolved_path = hffs.resolve_path(data_file)
|
529 |
+
return (resolved_path.repo_id, resolved_path.revision)
|
530 |
+
info = fs.info(data_file)
|
531 |
+
# s3fs uses "ETag", gcsfs uses "etag", and for local we simply check mtime
|
532 |
+
for key in ["ETag", "etag", "mtime"]:
|
533 |
+
if key in info:
|
534 |
+
return (str(info[key]),)
|
535 |
+
return ()
|
536 |
+
|
537 |
+
|
538 |
+
def _get_origin_metadata(
|
539 |
+
data_files: List[str],
|
540 |
+
download_config: Optional[DownloadConfig] = None,
|
541 |
+
max_workers: Optional[int] = None,
|
542 |
+
) -> Tuple[str]:
|
543 |
+
max_workers = max_workers if max_workers is not None else config.HF_DATASETS_MULTITHREADING_MAX_WORKERS
|
544 |
+
return thread_map(
|
545 |
+
partial(_get_single_origin_metadata, download_config=download_config),
|
546 |
+
data_files,
|
547 |
+
max_workers=max_workers,
|
548 |
+
tqdm_class=hf_tqdm,
|
549 |
+
desc="Resolving data files",
|
550 |
+
# set `disable=None` rather than `disable=False` by default to disable progress bar when no TTY attached
|
551 |
+
disable=len(data_files) <= 16 or None,
|
552 |
+
)
|
553 |
+
|
554 |
+
|
555 |
+
class DataFilesList(List[str]):
|
556 |
+
"""
|
557 |
+
List of data files (absolute local paths or URLs).
|
558 |
+
It has two construction methods given the user's data files patterns :
|
559 |
+
- ``from_hf_repo``: resolve patterns inside a dataset repository
|
560 |
+
- ``from_local_or_remote``: resolve patterns from a local path
|
561 |
+
|
562 |
+
Moreover DataFilesList has an additional attribute ``origin_metadata``.
|
563 |
+
It can store:
|
564 |
+
- the last modified time of local files
|
565 |
+
- ETag of remote files
|
566 |
+
- commit sha of a dataset repository
|
567 |
+
|
568 |
+
Thanks to this additional attribute, it is possible to hash the list
|
569 |
+
and get a different hash if and only if at least one file changed.
|
570 |
+
This is useful for caching Dataset objects that are obtained from a list of data files.
|
571 |
+
"""
|
572 |
+
|
573 |
+
def __init__(self, data_files: List[str], origin_metadata: List[Tuple[str]]):
|
574 |
+
super().__init__(data_files)
|
575 |
+
self.origin_metadata = origin_metadata
|
576 |
+
|
577 |
+
def __add__(self, other):
|
578 |
+
return DataFilesList([*self, *other], self.origin_metadata + other.origin_metadata)
|
579 |
+
|
580 |
+
@classmethod
|
581 |
+
def from_hf_repo(
|
582 |
+
cls,
|
583 |
+
patterns: List[str],
|
584 |
+
dataset_info: huggingface_hub.hf_api.DatasetInfo,
|
585 |
+
base_path: Optional[str] = None,
|
586 |
+
allowed_extensions: Optional[List[str]] = None,
|
587 |
+
download_config: Optional[DownloadConfig] = None,
|
588 |
+
) -> "DataFilesList":
|
589 |
+
base_path = f"hf://datasets/{dataset_info.id}@{dataset_info.sha}/{base_path or ''}".rstrip("/")
|
590 |
+
return cls.from_patterns(
|
591 |
+
patterns, base_path=base_path, allowed_extensions=allowed_extensions, download_config=download_config
|
592 |
+
)
|
593 |
+
|
594 |
+
@classmethod
|
595 |
+
def from_local_or_remote(
|
596 |
+
cls,
|
597 |
+
patterns: List[str],
|
598 |
+
base_path: Optional[str] = None,
|
599 |
+
allowed_extensions: Optional[List[str]] = None,
|
600 |
+
download_config: Optional[DownloadConfig] = None,
|
601 |
+
) -> "DataFilesList":
|
602 |
+
base_path = base_path if base_path is not None else Path().resolve().as_posix()
|
603 |
+
return cls.from_patterns(
|
604 |
+
patterns, base_path=base_path, allowed_extensions=allowed_extensions, download_config=download_config
|
605 |
+
)
|
606 |
+
|
607 |
+
@classmethod
|
608 |
+
def from_patterns(
|
609 |
+
cls,
|
610 |
+
patterns: List[str],
|
611 |
+
base_path: Optional[str] = None,
|
612 |
+
allowed_extensions: Optional[List[str]] = None,
|
613 |
+
download_config: Optional[DownloadConfig] = None,
|
614 |
+
) -> "DataFilesList":
|
615 |
+
base_path = base_path if base_path is not None else Path().resolve().as_posix()
|
616 |
+
data_files = []
|
617 |
+
for pattern in patterns:
|
618 |
+
try:
|
619 |
+
data_files.extend(
|
620 |
+
resolve_pattern(
|
621 |
+
pattern,
|
622 |
+
base_path=base_path,
|
623 |
+
allowed_extensions=allowed_extensions,
|
624 |
+
download_config=download_config,
|
625 |
+
)
|
626 |
+
)
|
627 |
+
except FileNotFoundError:
|
628 |
+
if not has_magic(pattern):
|
629 |
+
raise
|
630 |
+
origin_metadata = _get_origin_metadata(data_files, download_config=download_config)
|
631 |
+
return cls(data_files, origin_metadata)
|
632 |
+
|
633 |
+
def filter_extensions(self, extensions: List[str]) -> "DataFilesList":
|
634 |
+
pattern = "|".join("\\" + ext for ext in extensions)
|
635 |
+
pattern = re.compile(f".*({pattern})(\\..+)?$")
|
636 |
+
return DataFilesList(
|
637 |
+
[data_file for data_file in self if pattern.match(data_file)],
|
638 |
+
origin_metadata=self.origin_metadata,
|
639 |
+
)
|
640 |
+
|
641 |
+
|
642 |
+
class DataFilesDict(Dict[str, DataFilesList]):
|
643 |
+
"""
|
644 |
+
Dict of split_name -> list of data files (absolute local paths or URLs).
|
645 |
+
It has two construction methods given the user's data files patterns :
|
646 |
+
- ``from_hf_repo``: resolve patterns inside a dataset repository
|
647 |
+
- ``from_local_or_remote``: resolve patterns from a local path
|
648 |
+
|
649 |
+
Moreover each list is a DataFilesList. It is possible to hash the dictionary
|
650 |
+
and get a different hash if and only if at least one file changed.
|
651 |
+
For more info, see ``DataFilesList``.
|
652 |
+
|
653 |
+
This is useful for caching Dataset objects that are obtained from a list of data files.
|
654 |
+
|
655 |
+
Changing the order of the keys of this dictionary also doesn't change its hash.
|
656 |
+
"""
|
657 |
+
|
658 |
+
@classmethod
|
659 |
+
def from_local_or_remote(
|
660 |
+
cls,
|
661 |
+
patterns: Dict[str, Union[List[str], DataFilesList]],
|
662 |
+
base_path: Optional[str] = None,
|
663 |
+
allowed_extensions: Optional[List[str]] = None,
|
664 |
+
download_config: Optional[DownloadConfig] = None,
|
665 |
+
) -> "DataFilesDict":
|
666 |
+
out = cls()
|
667 |
+
for key, patterns_for_key in patterns.items():
|
668 |
+
out[key] = (
|
669 |
+
DataFilesList.from_local_or_remote(
|
670 |
+
patterns_for_key,
|
671 |
+
base_path=base_path,
|
672 |
+
allowed_extensions=allowed_extensions,
|
673 |
+
download_config=download_config,
|
674 |
+
)
|
675 |
+
if not isinstance(patterns_for_key, DataFilesList)
|
676 |
+
else patterns_for_key
|
677 |
+
)
|
678 |
+
return out
|
679 |
+
|
680 |
+
@classmethod
|
681 |
+
def from_hf_repo(
|
682 |
+
cls,
|
683 |
+
patterns: Dict[str, Union[List[str], DataFilesList]],
|
684 |
+
dataset_info: huggingface_hub.hf_api.DatasetInfo,
|
685 |
+
base_path: Optional[str] = None,
|
686 |
+
allowed_extensions: Optional[List[str]] = None,
|
687 |
+
download_config: Optional[DownloadConfig] = None,
|
688 |
+
) -> "DataFilesDict":
|
689 |
+
out = cls()
|
690 |
+
for key, patterns_for_key in patterns.items():
|
691 |
+
out[key] = (
|
692 |
+
DataFilesList.from_hf_repo(
|
693 |
+
patterns_for_key,
|
694 |
+
dataset_info=dataset_info,
|
695 |
+
base_path=base_path,
|
696 |
+
allowed_extensions=allowed_extensions,
|
697 |
+
download_config=download_config,
|
698 |
+
)
|
699 |
+
if not isinstance(patterns_for_key, DataFilesList)
|
700 |
+
else patterns_for_key
|
701 |
+
)
|
702 |
+
return out
|
703 |
+
|
704 |
+
@classmethod
|
705 |
+
def from_patterns(
|
706 |
+
cls,
|
707 |
+
patterns: Dict[str, Union[List[str], DataFilesList]],
|
708 |
+
base_path: Optional[str] = None,
|
709 |
+
allowed_extensions: Optional[List[str]] = None,
|
710 |
+
download_config: Optional[DownloadConfig] = None,
|
711 |
+
) -> "DataFilesDict":
|
712 |
+
out = cls()
|
713 |
+
for key, patterns_for_key in patterns.items():
|
714 |
+
out[key] = (
|
715 |
+
DataFilesList.from_patterns(
|
716 |
+
patterns_for_key,
|
717 |
+
base_path=base_path,
|
718 |
+
allowed_extensions=allowed_extensions,
|
719 |
+
download_config=download_config,
|
720 |
+
)
|
721 |
+
if not isinstance(patterns_for_key, DataFilesList)
|
722 |
+
else patterns_for_key
|
723 |
+
)
|
724 |
+
return out
|
725 |
+
|
726 |
+
def filter_extensions(self, extensions: List[str]) -> "DataFilesDict":
|
727 |
+
out = type(self)()
|
728 |
+
for key, data_files_list in self.items():
|
729 |
+
out[key] = data_files_list.filter_extensions(extensions)
|
730 |
+
return out
|
731 |
+
|
732 |
+
|
733 |
+
class DataFilesPatternsList(List[str]):
|
734 |
+
"""
|
735 |
+
List of data files patterns (absolute local paths or URLs).
|
736 |
+
For each pattern there should also be a list of allowed extensions
|
737 |
+
to keep, or a None ot keep all the files for the pattern.
|
738 |
+
"""
|
739 |
+
|
740 |
+
def __init__(
|
741 |
+
self,
|
742 |
+
patterns: List[str],
|
743 |
+
allowed_extensions: List[Optional[List[str]]],
|
744 |
+
):
|
745 |
+
super().__init__(patterns)
|
746 |
+
self.allowed_extensions = allowed_extensions
|
747 |
+
|
748 |
+
def __add__(self, other):
|
749 |
+
return DataFilesList([*self, *other], self.allowed_extensions + other.allowed_extensions)
|
750 |
+
|
751 |
+
@classmethod
|
752 |
+
def from_patterns(
|
753 |
+
cls, patterns: List[str], allowed_extensions: Optional[List[str]] = None
|
754 |
+
) -> "DataFilesPatternsDict":
|
755 |
+
return cls(patterns, [allowed_extensions] * len(patterns))
|
756 |
+
|
757 |
+
def resolve(
|
758 |
+
self,
|
759 |
+
base_path: str,
|
760 |
+
download_config: Optional[DownloadConfig] = None,
|
761 |
+
) -> "DataFilesList":
|
762 |
+
base_path = base_path if base_path is not None else Path().resolve().as_posix()
|
763 |
+
data_files = []
|
764 |
+
for pattern, allowed_extensions in zip(self, self.allowed_extensions):
|
765 |
+
try:
|
766 |
+
data_files.extend(
|
767 |
+
resolve_pattern(
|
768 |
+
pattern,
|
769 |
+
base_path=base_path,
|
770 |
+
allowed_extensions=allowed_extensions,
|
771 |
+
download_config=download_config,
|
772 |
+
)
|
773 |
+
)
|
774 |
+
except FileNotFoundError:
|
775 |
+
if not has_magic(pattern):
|
776 |
+
raise
|
777 |
+
origin_metadata = _get_origin_metadata(data_files, download_config=download_config)
|
778 |
+
return DataFilesList(data_files, origin_metadata)
|
779 |
+
|
780 |
+
def filter_extensions(self, extensions: List[str]) -> "DataFilesList":
|
781 |
+
return DataFilesPatternsList(
|
782 |
+
self, [allowed_extensions + extensions for allowed_extensions in self.allowed_extensions]
|
783 |
+
)
|
784 |
+
|
785 |
+
|
786 |
+
class DataFilesPatternsDict(Dict[str, DataFilesPatternsList]):
|
787 |
+
"""
|
788 |
+
Dict of split_name -> list of data files patterns (absolute local paths or URLs).
|
789 |
+
"""
|
790 |
+
|
791 |
+
@classmethod
|
792 |
+
def from_patterns(
|
793 |
+
cls, patterns: Dict[str, List[str]], allowed_extensions: Optional[List[str]] = None
|
794 |
+
) -> "DataFilesPatternsDict":
|
795 |
+
out = cls()
|
796 |
+
for key, patterns_for_key in patterns.items():
|
797 |
+
out[key] = (
|
798 |
+
DataFilesPatternsList.from_patterns(
|
799 |
+
patterns_for_key,
|
800 |
+
allowed_extensions=allowed_extensions,
|
801 |
+
)
|
802 |
+
if not isinstance(patterns_for_key, DataFilesPatternsList)
|
803 |
+
else patterns_for_key
|
804 |
+
)
|
805 |
+
return out
|
806 |
+
|
807 |
+
def resolve(
|
808 |
+
self,
|
809 |
+
base_path: str,
|
810 |
+
download_config: Optional[DownloadConfig] = None,
|
811 |
+
) -> "DataFilesDict":
|
812 |
+
out = DataFilesDict()
|
813 |
+
for key, data_files_patterns_list in self.items():
|
814 |
+
out[key] = data_files_patterns_list.resolve(base_path, download_config)
|
815 |
+
return out
|
816 |
+
|
817 |
+
def filter_extensions(self, extensions: List[str]) -> "DataFilesPatternsDict":
|
818 |
+
out = type(self)()
|
819 |
+
for key, data_files_patterns_list in self.items():
|
820 |
+
out[key] = data_files_patterns_list.filter_extensions(extensions)
|
821 |
+
return out
|
llmeval-env/lib/python3.10/site-packages/datasets/download/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = [
|
2 |
+
"DownloadConfig",
|
3 |
+
"DownloadManager",
|
4 |
+
"DownloadMode",
|
5 |
+
"StreamingDownloadManager",
|
6 |
+
]
|
7 |
+
|
8 |
+
from .download_config import DownloadConfig
|
9 |
+
from .download_manager import DownloadManager, DownloadMode
|
10 |
+
from .streaming_download_manager import StreamingDownloadManager
|
llmeval-env/lib/python3.10/site-packages/datasets/download/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (439 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/download/__pycache__/download_config.cpython-310.pyc
ADDED
Binary file (5.66 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/download/__pycache__/download_manager.cpython-310.pyc
ADDED
Binary file (15.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/download/__pycache__/mock_download_manager.cpython-310.pyc
ADDED
Binary file (8.03 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/download/__pycache__/streaming_download_manager.cpython-310.pyc
ADDED
Binary file (7.45 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/download/download_config.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import warnings
|
3 |
+
from dataclasses import InitVar, dataclass, field
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Any, Dict, Optional, Union
|
6 |
+
|
7 |
+
from .. import config
|
8 |
+
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class DownloadConfig:
|
12 |
+
"""Configuration for our cached path manager.
|
13 |
+
|
14 |
+
Attributes:
|
15 |
+
cache_dir (`str` or `Path`, *optional*):
|
16 |
+
Specify a cache directory to save the file to (overwrite the
|
17 |
+
default cache dir).
|
18 |
+
force_download (`bool`, defaults to `False`):
|
19 |
+
If `True`, re-dowload the file even if it's already cached in
|
20 |
+
the cache dir.
|
21 |
+
resume_download (`bool`, defaults to `False`):
|
22 |
+
If `True`, resume the download if an incompletely received file is
|
23 |
+
found.
|
24 |
+
proxies (`dict`, *optional*):
|
25 |
+
user_agent (`str`, *optional*):
|
26 |
+
Optional string or dict that will be appended to the user-agent on remote
|
27 |
+
requests.
|
28 |
+
extract_compressed_file (`bool`, defaults to `False`):
|
29 |
+
If `True` and the path point to a zip or tar file,
|
30 |
+
extract the compressed file in a folder along the archive.
|
31 |
+
force_extract (`bool`, defaults to `False`):
|
32 |
+
If `True` when `extract_compressed_file` is `True` and the archive
|
33 |
+
was already extracted, re-extract the archive and override the folder where it was extracted.
|
34 |
+
delete_extracted (`bool`, defaults to `False`):
|
35 |
+
Whether to delete (or keep) the extracted files.
|
36 |
+
extract_on_the_fly (`bool`, defaults to `False`):
|
37 |
+
If `True`, extract compressed files while they are being read.
|
38 |
+
use_etag (`bool`, defaults to `True`):
|
39 |
+
Whether to use the ETag HTTP response header to validate the cached files.
|
40 |
+
num_proc (`int`, *optional*):
|
41 |
+
The number of processes to launch to download the files in parallel.
|
42 |
+
max_retries (`int`, default to `1`):
|
43 |
+
The number of times to retry an HTTP request if it fails.
|
44 |
+
token (`str` or `bool`, *optional*):
|
45 |
+
Optional string or boolean to use as Bearer token
|
46 |
+
for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`.
|
47 |
+
use_auth_token (`str` or `bool`, *optional*):
|
48 |
+
Optional string or boolean to use as Bearer token
|
49 |
+
for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`.
|
50 |
+
|
51 |
+
<Deprecated version="2.14.0">
|
52 |
+
|
53 |
+
`use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0.
|
54 |
+
|
55 |
+
</Deprecated>
|
56 |
+
|
57 |
+
ignore_url_params (`bool`, defaults to `False`):
|
58 |
+
Whether to strip all query parameters and fragments from
|
59 |
+
the download URL before using it for caching the file.
|
60 |
+
storage_options (`dict`, *optional*):
|
61 |
+
Key/value pairs to be passed on to the dataset file-system backend, if any.
|
62 |
+
download_desc (`str`, *optional*):
|
63 |
+
A description to be displayed alongside with the progress bar while downloading the files.
|
64 |
+
disable_tqdm (`bool`, defaults to `False`):
|
65 |
+
Whether to disable the individual files download progress bar
|
66 |
+
"""
|
67 |
+
|
68 |
+
cache_dir: Optional[Union[str, Path]] = None
|
69 |
+
force_download: bool = False
|
70 |
+
resume_download: bool = False
|
71 |
+
local_files_only: bool = False
|
72 |
+
proxies: Optional[Dict] = None
|
73 |
+
user_agent: Optional[str] = None
|
74 |
+
extract_compressed_file: bool = False
|
75 |
+
force_extract: bool = False
|
76 |
+
delete_extracted: bool = False
|
77 |
+
extract_on_the_fly: bool = False
|
78 |
+
use_etag: bool = True
|
79 |
+
num_proc: Optional[int] = None
|
80 |
+
max_retries: int = 1
|
81 |
+
token: Optional[Union[str, bool]] = None
|
82 |
+
use_auth_token: InitVar[Optional[Union[str, bool]]] = "deprecated"
|
83 |
+
ignore_url_params: bool = False
|
84 |
+
storage_options: Dict[str, Any] = field(default_factory=dict)
|
85 |
+
download_desc: Optional[str] = None
|
86 |
+
disable_tqdm: bool = False
|
87 |
+
|
88 |
+
def __post_init__(self, use_auth_token):
|
89 |
+
if use_auth_token != "deprecated":
|
90 |
+
warnings.warn(
|
91 |
+
"'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n"
|
92 |
+
f"You can remove this warning by passing 'token={use_auth_token}' instead.",
|
93 |
+
FutureWarning,
|
94 |
+
)
|
95 |
+
self.token = use_auth_token
|
96 |
+
if "hf" not in self.storage_options:
|
97 |
+
self.storage_options["hf"] = {"token": self.token, "endpoint": config.HF_ENDPOINT}
|
98 |
+
|
99 |
+
def copy(self) -> "DownloadConfig":
|
100 |
+
return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
|
101 |
+
|
102 |
+
def __setattr__(self, name, value):
|
103 |
+
if name == "token" and getattr(self, "storage_options", None) is not None:
|
104 |
+
if "hf" not in self.storage_options:
|
105 |
+
self.storage_options["hf"] = {"token": value, "endpoint": config.HF_ENDPOINT}
|
106 |
+
elif getattr(self.storage_options["hf"], "token", None) is None:
|
107 |
+
self.storage_options["hf"]["token"] = value
|
108 |
+
super().__setattr__(name, value)
|
llmeval-env/lib/python3.10/site-packages/datasets/download/download_manager.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The TensorFlow Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Lint as: python3
|
16 |
+
"""Download manager interface."""
|
17 |
+
|
18 |
+
import enum
|
19 |
+
import io
|
20 |
+
import multiprocessing
|
21 |
+
import os
|
22 |
+
import posixpath
|
23 |
+
import warnings
|
24 |
+
from datetime import datetime
|
25 |
+
from functools import partial
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import fsspec
|
29 |
+
from fsspec.core import url_to_fs
|
30 |
+
from tqdm.contrib.concurrent import thread_map
|
31 |
+
|
32 |
+
from .. import config
|
33 |
+
from ..utils import tqdm as hf_tqdm
|
34 |
+
from ..utils.deprecation_utils import DeprecatedEnum, deprecated
|
35 |
+
from ..utils.file_utils import (
|
36 |
+
ArchiveIterable,
|
37 |
+
FilesIterable,
|
38 |
+
cached_path,
|
39 |
+
get_from_cache,
|
40 |
+
hash_url_to_filename,
|
41 |
+
is_relative_path,
|
42 |
+
stack_multiprocessing_download_progress_bars,
|
43 |
+
url_or_path_join,
|
44 |
+
)
|
45 |
+
from ..utils.info_utils import get_size_checksum_dict
|
46 |
+
from ..utils.logging import get_logger, tqdm
|
47 |
+
from ..utils.py_utils import NestedDataStructure, map_nested, size_str
|
48 |
+
from ..utils.track import tracked_str
|
49 |
+
from .download_config import DownloadConfig
|
50 |
+
|
51 |
+
|
52 |
+
logger = get_logger(__name__)
|
53 |
+
|
54 |
+
|
55 |
+
class DownloadMode(enum.Enum):
|
56 |
+
"""`Enum` for how to treat pre-existing downloads and data.
|
57 |
+
|
58 |
+
The default mode is `REUSE_DATASET_IF_EXISTS`, which will reuse both
|
59 |
+
raw downloads and the prepared dataset if they exist.
|
60 |
+
|
61 |
+
The generations modes:
|
62 |
+
|
63 |
+
| | Downloads | Dataset |
|
64 |
+
|-------------------------------------|-----------|---------|
|
65 |
+
| `REUSE_DATASET_IF_EXISTS` (default) | Reuse | Reuse |
|
66 |
+
| `REUSE_CACHE_IF_EXISTS` | Reuse | Fresh |
|
67 |
+
| `FORCE_REDOWNLOAD` | Fresh | Fresh |
|
68 |
+
|
69 |
+
"""
|
70 |
+
|
71 |
+
REUSE_DATASET_IF_EXISTS = "reuse_dataset_if_exists"
|
72 |
+
REUSE_CACHE_IF_EXISTS = "reuse_cache_if_exists"
|
73 |
+
FORCE_REDOWNLOAD = "force_redownload"
|
74 |
+
|
75 |
+
|
76 |
+
class GenerateMode(DeprecatedEnum):
|
77 |
+
REUSE_DATASET_IF_EXISTS = "reuse_dataset_if_exists"
|
78 |
+
REUSE_CACHE_IF_EXISTS = "reuse_cache_if_exists"
|
79 |
+
FORCE_REDOWNLOAD = "force_redownload"
|
80 |
+
|
81 |
+
@property
|
82 |
+
def help_message(self):
|
83 |
+
return "Use 'DownloadMode' instead."
|
84 |
+
|
85 |
+
|
86 |
+
class DownloadManager:
|
87 |
+
is_streaming = False
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
dataset_name: Optional[str] = None,
|
92 |
+
data_dir: Optional[str] = None,
|
93 |
+
download_config: Optional[DownloadConfig] = None,
|
94 |
+
base_path: Optional[str] = None,
|
95 |
+
record_checksums=True,
|
96 |
+
):
|
97 |
+
"""Download manager constructor.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
data_dir:
|
101 |
+
can be used to specify a manual directory to get the files from.
|
102 |
+
dataset_name (`str`):
|
103 |
+
name of dataset this instance will be used for. If
|
104 |
+
provided, downloads will contain which datasets they were used for.
|
105 |
+
download_config (`DownloadConfig`):
|
106 |
+
to specify the cache directory and other
|
107 |
+
download options
|
108 |
+
base_path (`str`):
|
109 |
+
base path that is used when relative paths are used to
|
110 |
+
download files. This can be a remote url.
|
111 |
+
record_checksums (`bool`, defaults to `True`):
|
112 |
+
Whether to record the checksums of the downloaded files. If None, the value is inferred from the builder.
|
113 |
+
"""
|
114 |
+
self._dataset_name = dataset_name
|
115 |
+
self._data_dir = data_dir
|
116 |
+
self._base_path = base_path or os.path.abspath(".")
|
117 |
+
# To record what is being used: {url: {num_bytes: int, checksum: str}}
|
118 |
+
self._recorded_sizes_checksums: Dict[str, Dict[str, Optional[Union[int, str]]]] = {}
|
119 |
+
self.record_checksums = record_checksums
|
120 |
+
self.download_config = download_config or DownloadConfig()
|
121 |
+
self.downloaded_paths = {}
|
122 |
+
self.extracted_paths = {}
|
123 |
+
|
124 |
+
@property
|
125 |
+
def manual_dir(self):
|
126 |
+
return self._data_dir
|
127 |
+
|
128 |
+
@property
|
129 |
+
def downloaded_size(self):
|
130 |
+
"""Returns the total size of downloaded files."""
|
131 |
+
return sum(checksums_dict["num_bytes"] for checksums_dict in self._recorded_sizes_checksums.values())
|
132 |
+
|
133 |
+
@staticmethod
|
134 |
+
def ship_files_with_pipeline(downloaded_path_or_paths, pipeline):
|
135 |
+
"""Ship the files using Beam FileSystems to the pipeline temp dir.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
downloaded_path_or_paths (`str` or `list[str]` or `dict[str, str]`):
|
139 |
+
Nested structure containing the
|
140 |
+
downloaded path(s).
|
141 |
+
pipeline ([`utils.beam_utils.BeamPipeline`]):
|
142 |
+
Apache Beam Pipeline.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
`str` or `list[str]` or `dict[str, str]`
|
146 |
+
"""
|
147 |
+
from ..utils.beam_utils import upload_local_to_remote
|
148 |
+
|
149 |
+
remote_dir = pipeline._options.get_all_options().get("temp_location")
|
150 |
+
if remote_dir is None:
|
151 |
+
raise ValueError("You need to specify 'temp_location' in PipelineOptions to upload files")
|
152 |
+
|
153 |
+
def upload(local_file_path):
|
154 |
+
remote_file_path = posixpath.join(
|
155 |
+
remote_dir, config.DOWNLOADED_DATASETS_DIR, os.path.basename(local_file_path)
|
156 |
+
)
|
157 |
+
logger.info(
|
158 |
+
f"Uploading {local_file_path} ({size_str(os.path.getsize(local_file_path))}) to {remote_file_path}."
|
159 |
+
)
|
160 |
+
upload_local_to_remote(local_file_path, remote_file_path)
|
161 |
+
return remote_file_path
|
162 |
+
|
163 |
+
uploaded_path_or_paths = map_nested(
|
164 |
+
lambda local_file_path: upload(local_file_path),
|
165 |
+
downloaded_path_or_paths,
|
166 |
+
)
|
167 |
+
return uploaded_path_or_paths
|
168 |
+
|
169 |
+
def _record_sizes_checksums(self, url_or_urls: NestedDataStructure, downloaded_path_or_paths: NestedDataStructure):
|
170 |
+
"""Record size/checksum of downloaded files."""
|
171 |
+
delay = 5
|
172 |
+
for url, path in hf_tqdm(
|
173 |
+
list(zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten())),
|
174 |
+
delay=delay,
|
175 |
+
desc="Computing checksums",
|
176 |
+
):
|
177 |
+
# call str to support PathLike objects
|
178 |
+
self._recorded_sizes_checksums[str(url)] = get_size_checksum_dict(
|
179 |
+
path, record_checksum=self.record_checksums
|
180 |
+
)
|
181 |
+
|
182 |
+
@deprecated("Use `.download`/`.download_and_extract` with `fsspec` URLs instead.")
|
183 |
+
def download_custom(self, url_or_urls, custom_download):
|
184 |
+
"""
|
185 |
+
Download given urls(s) by calling `custom_download`.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
url_or_urls (`str` or `list` or `dict`):
|
189 |
+
URL or `list` or `dict` of URLs to download and extract. Each URL is a `str`.
|
190 |
+
custom_download (`Callable[src_url, dst_path]`):
|
191 |
+
The source URL and destination path. For example
|
192 |
+
`tf.io.gfile.copy`, that lets you download from Google storage.
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
downloaded_path(s): `str`, The downloaded paths matching the given input
|
196 |
+
`url_or_urls`.
|
197 |
+
|
198 |
+
Example:
|
199 |
+
|
200 |
+
```py
|
201 |
+
>>> downloaded_files = dl_manager.download_custom('s3://my-bucket/data.zip', custom_download_for_my_private_bucket)
|
202 |
+
```
|
203 |
+
"""
|
204 |
+
cache_dir = self.download_config.cache_dir or config.DOWNLOADED_DATASETS_PATH
|
205 |
+
max_retries = self.download_config.max_retries
|
206 |
+
|
207 |
+
def url_to_downloaded_path(url):
|
208 |
+
return os.path.join(cache_dir, hash_url_to_filename(url))
|
209 |
+
|
210 |
+
downloaded_path_or_paths = map_nested(url_to_downloaded_path, url_or_urls)
|
211 |
+
url_or_urls = NestedDataStructure(url_or_urls)
|
212 |
+
downloaded_path_or_paths = NestedDataStructure(downloaded_path_or_paths)
|
213 |
+
for url, path in zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten()):
|
214 |
+
try:
|
215 |
+
get_from_cache(
|
216 |
+
url, cache_dir=cache_dir, local_files_only=True, use_etag=False, max_retries=max_retries
|
217 |
+
)
|
218 |
+
cached = True
|
219 |
+
except FileNotFoundError:
|
220 |
+
cached = False
|
221 |
+
if not cached or self.download_config.force_download:
|
222 |
+
custom_download(url, path)
|
223 |
+
get_from_cache(
|
224 |
+
url, cache_dir=cache_dir, local_files_only=True, use_etag=False, max_retries=max_retries
|
225 |
+
)
|
226 |
+
self._record_sizes_checksums(url_or_urls, downloaded_path_or_paths)
|
227 |
+
return downloaded_path_or_paths.data
|
228 |
+
|
229 |
+
def download(self, url_or_urls):
|
230 |
+
"""Download given URL(s).
|
231 |
+
|
232 |
+
By default, only one process is used for download. Pass customized `download_config.num_proc` to change this behavior.
|
233 |
+
|
234 |
+
Args:
|
235 |
+
url_or_urls (`str` or `list` or `dict`):
|
236 |
+
URL or `list` or `dict` of URLs to download. Each URL is a `str`.
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
`str` or `list` or `dict`:
|
240 |
+
The downloaded paths matching the given input `url_or_urls`.
|
241 |
+
|
242 |
+
Example:
|
243 |
+
|
244 |
+
```py
|
245 |
+
>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
|
246 |
+
```
|
247 |
+
"""
|
248 |
+
download_config = self.download_config.copy()
|
249 |
+
download_config.extract_compressed_file = False
|
250 |
+
if download_config.download_desc is None:
|
251 |
+
download_config.download_desc = "Downloading data"
|
252 |
+
|
253 |
+
download_func = partial(self._download_batched, download_config=download_config)
|
254 |
+
|
255 |
+
start_time = datetime.now()
|
256 |
+
with stack_multiprocessing_download_progress_bars():
|
257 |
+
downloaded_path_or_paths = map_nested(
|
258 |
+
download_func,
|
259 |
+
url_or_urls,
|
260 |
+
map_tuple=True,
|
261 |
+
num_proc=download_config.num_proc,
|
262 |
+
desc="Downloading data files",
|
263 |
+
batched=True,
|
264 |
+
batch_size=-1,
|
265 |
+
)
|
266 |
+
duration = datetime.now() - start_time
|
267 |
+
logger.info(f"Downloading took {duration.total_seconds() // 60} min")
|
268 |
+
url_or_urls = NestedDataStructure(url_or_urls)
|
269 |
+
downloaded_path_or_paths = NestedDataStructure(downloaded_path_or_paths)
|
270 |
+
self.downloaded_paths.update(dict(zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten())))
|
271 |
+
|
272 |
+
start_time = datetime.now()
|
273 |
+
self._record_sizes_checksums(url_or_urls, downloaded_path_or_paths)
|
274 |
+
duration = datetime.now() - start_time
|
275 |
+
logger.info(f"Checksum Computation took {duration.total_seconds() // 60} min")
|
276 |
+
|
277 |
+
return downloaded_path_or_paths.data
|
278 |
+
|
279 |
+
def _download_batched(
|
280 |
+
self,
|
281 |
+
url_or_filenames: List[str],
|
282 |
+
download_config: DownloadConfig,
|
283 |
+
) -> List[str]:
|
284 |
+
if len(url_or_filenames) >= 16:
|
285 |
+
download_config = download_config.copy()
|
286 |
+
download_config.disable_tqdm = True
|
287 |
+
download_func = partial(self._download_single, download_config=download_config)
|
288 |
+
|
289 |
+
fs: fsspec.AbstractFileSystem
|
290 |
+
fs, path = url_to_fs(url_or_filenames[0], **download_config.storage_options)
|
291 |
+
size = 0
|
292 |
+
try:
|
293 |
+
size = fs.info(path).get("size", 0)
|
294 |
+
except Exception:
|
295 |
+
pass
|
296 |
+
max_workers = (
|
297 |
+
config.HF_DATASETS_MULTITHREADING_MAX_WORKERS if size < (20 << 20) else 1
|
298 |
+
) # enable multithreading if files are small
|
299 |
+
|
300 |
+
return thread_map(
|
301 |
+
download_func,
|
302 |
+
url_or_filenames,
|
303 |
+
desc=download_config.download_desc or "Downloading",
|
304 |
+
unit="files",
|
305 |
+
position=multiprocessing.current_process()._identity[-1] # contains the ranks of subprocesses
|
306 |
+
if os.environ.get("HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS") == "1"
|
307 |
+
and multiprocessing.current_process()._identity
|
308 |
+
else None,
|
309 |
+
max_workers=max_workers,
|
310 |
+
tqdm_class=tqdm,
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
return [
|
314 |
+
self._download_single(url_or_filename, download_config=download_config)
|
315 |
+
for url_or_filename in url_or_filenames
|
316 |
+
]
|
317 |
+
|
318 |
+
def _download_single(self, url_or_filename: str, download_config: DownloadConfig) -> str:
|
319 |
+
url_or_filename = str(url_or_filename)
|
320 |
+
if is_relative_path(url_or_filename):
|
321 |
+
# append the relative path to the base_path
|
322 |
+
url_or_filename = url_or_path_join(self._base_path, url_or_filename)
|
323 |
+
out = cached_path(url_or_filename, download_config=download_config)
|
324 |
+
out = tracked_str(out)
|
325 |
+
out.set_origin(url_or_filename)
|
326 |
+
return out
|
327 |
+
|
328 |
+
def iter_archive(self, path_or_buf: Union[str, io.BufferedReader]):
|
329 |
+
"""Iterate over files within an archive.
|
330 |
+
|
331 |
+
Args:
|
332 |
+
path_or_buf (`str` or `io.BufferedReader`):
|
333 |
+
Archive path or archive binary file object.
|
334 |
+
|
335 |
+
Yields:
|
336 |
+
`tuple[str, io.BufferedReader]`:
|
337 |
+
2-tuple (path_within_archive, file_object).
|
338 |
+
File object is opened in binary mode.
|
339 |
+
|
340 |
+
Example:
|
341 |
+
|
342 |
+
```py
|
343 |
+
>>> archive = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
|
344 |
+
>>> files = dl_manager.iter_archive(archive)
|
345 |
+
```
|
346 |
+
"""
|
347 |
+
|
348 |
+
if hasattr(path_or_buf, "read"):
|
349 |
+
return ArchiveIterable.from_buf(path_or_buf)
|
350 |
+
else:
|
351 |
+
return ArchiveIterable.from_urlpath(path_or_buf)
|
352 |
+
|
353 |
+
def iter_files(self, paths: Union[str, List[str]]):
|
354 |
+
"""Iterate over file paths.
|
355 |
+
|
356 |
+
Args:
|
357 |
+
paths (`str` or `list` of `str`):
|
358 |
+
Root paths.
|
359 |
+
|
360 |
+
Yields:
|
361 |
+
`str`: File path.
|
362 |
+
|
363 |
+
Example:
|
364 |
+
|
365 |
+
```py
|
366 |
+
>>> files = dl_manager.download_and_extract('https://huggingface.co/datasets/beans/resolve/main/data/train.zip')
|
367 |
+
>>> files = dl_manager.iter_files(files)
|
368 |
+
```
|
369 |
+
"""
|
370 |
+
return FilesIterable.from_urlpaths(paths)
|
371 |
+
|
372 |
+
def extract(self, path_or_paths, num_proc="deprecated"):
|
373 |
+
"""Extract given path(s).
|
374 |
+
|
375 |
+
Args:
|
376 |
+
path_or_paths (path or `list` or `dict`):
|
377 |
+
Path of file to extract. Each path is a `str`.
|
378 |
+
num_proc (`int`):
|
379 |
+
Use multi-processing if `num_proc` > 1 and the length of
|
380 |
+
`path_or_paths` is larger than `num_proc`.
|
381 |
+
|
382 |
+
<Deprecated version="2.6.2">
|
383 |
+
|
384 |
+
Pass `DownloadConfig(num_proc=<num_proc>)` to the initializer instead.
|
385 |
+
|
386 |
+
</Deprecated>
|
387 |
+
|
388 |
+
Returns:
|
389 |
+
extracted_path(s): `str`, The extracted paths matching the given input
|
390 |
+
path_or_paths.
|
391 |
+
|
392 |
+
Example:
|
393 |
+
|
394 |
+
```py
|
395 |
+
>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
|
396 |
+
>>> extracted_files = dl_manager.extract(downloaded_files)
|
397 |
+
```
|
398 |
+
"""
|
399 |
+
if num_proc != "deprecated":
|
400 |
+
warnings.warn(
|
401 |
+
"'num_proc' was deprecated in version 2.6.2 and will be removed in 3.0.0. Pass `DownloadConfig(num_proc=<num_proc>)` to the initializer instead.",
|
402 |
+
FutureWarning,
|
403 |
+
)
|
404 |
+
download_config = self.download_config.copy()
|
405 |
+
download_config.extract_compressed_file = True
|
406 |
+
extract_func = partial(self._download_single, download_config=download_config)
|
407 |
+
extracted_paths = map_nested(
|
408 |
+
extract_func,
|
409 |
+
path_or_paths,
|
410 |
+
num_proc=download_config.num_proc,
|
411 |
+
desc="Extracting data files",
|
412 |
+
)
|
413 |
+
path_or_paths = NestedDataStructure(path_or_paths)
|
414 |
+
extracted_paths = NestedDataStructure(extracted_paths)
|
415 |
+
self.extracted_paths.update(dict(zip(path_or_paths.flatten(), extracted_paths.flatten())))
|
416 |
+
return extracted_paths.data
|
417 |
+
|
418 |
+
def download_and_extract(self, url_or_urls):
|
419 |
+
"""Download and extract given `url_or_urls`.
|
420 |
+
|
421 |
+
Is roughly equivalent to:
|
422 |
+
|
423 |
+
```
|
424 |
+
extracted_paths = dl_manager.extract(dl_manager.download(url_or_urls))
|
425 |
+
```
|
426 |
+
|
427 |
+
Args:
|
428 |
+
url_or_urls (`str` or `list` or `dict`):
|
429 |
+
URL or `list` or `dict` of URLs to download and extract. Each URL is a `str`.
|
430 |
+
|
431 |
+
Returns:
|
432 |
+
extracted_path(s): `str`, extracted paths of given URL(s).
|
433 |
+
"""
|
434 |
+
return self.extract(self.download(url_or_urls))
|
435 |
+
|
436 |
+
def get_recorded_sizes_checksums(self):
|
437 |
+
return self._recorded_sizes_checksums.copy()
|
438 |
+
|
439 |
+
def delete_extracted_files(self):
|
440 |
+
paths_to_delete = set(self.extracted_paths.values()) - set(self.downloaded_paths.values())
|
441 |
+
for key, path in list(self.extracted_paths.items()):
|
442 |
+
if path in paths_to_delete and os.path.isfile(path):
|
443 |
+
os.remove(path)
|
444 |
+
del self.extracted_paths[key]
|
445 |
+
|
446 |
+
def manage_extracted_files(self):
|
447 |
+
if self.download_config.delete_extracted:
|
448 |
+
self.delete_extracted_files()
|
llmeval-env/lib/python3.10/site-packages/datasets/download/mock_download_manager.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The TensorFlow Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Lint as: python3
|
16 |
+
"""Mock download manager interface."""
|
17 |
+
|
18 |
+
import os
|
19 |
+
import re
|
20 |
+
import urllib.parse
|
21 |
+
from pathlib import Path
|
22 |
+
from typing import Callable, List, Optional, Union
|
23 |
+
from zipfile import ZipFile
|
24 |
+
|
25 |
+
from ..utils.file_utils import cached_path, hf_github_url
|
26 |
+
from ..utils.logging import get_logger
|
27 |
+
from ..utils.version import Version
|
28 |
+
|
29 |
+
|
30 |
+
logger = get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class MockDownloadManager:
|
34 |
+
dummy_file_name = "dummy_data"
|
35 |
+
datasets_scripts_dir = "datasets"
|
36 |
+
is_streaming = False
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
dataset_name: str,
|
41 |
+
config: str,
|
42 |
+
version: Union[Version, str],
|
43 |
+
cache_dir: Optional[str] = None,
|
44 |
+
use_local_dummy_data: bool = False,
|
45 |
+
load_existing_dummy_data: bool = True,
|
46 |
+
download_callbacks: Optional[List[Callable]] = None,
|
47 |
+
):
|
48 |
+
self.downloaded_size = 0
|
49 |
+
self.dataset_name = dataset_name
|
50 |
+
self.cache_dir = cache_dir
|
51 |
+
self.use_local_dummy_data = use_local_dummy_data
|
52 |
+
self.config = config
|
53 |
+
# download_callbacks take a single url as input
|
54 |
+
self.download_callbacks: List[Callable] = download_callbacks or []
|
55 |
+
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
|
56 |
+
# to the dummy_data zip file root
|
57 |
+
self.load_existing_dummy_data = load_existing_dummy_data
|
58 |
+
|
59 |
+
# TODO(PVP, QL) might need to make this more general
|
60 |
+
self.version_name = str(version)
|
61 |
+
# to be downloaded
|
62 |
+
self._dummy_file = None
|
63 |
+
self._bucket_url = None
|
64 |
+
|
65 |
+
@property
|
66 |
+
def dummy_file(self):
|
67 |
+
if self._dummy_file is None:
|
68 |
+
self._dummy_file = self.download_dummy_data()
|
69 |
+
return self._dummy_file
|
70 |
+
|
71 |
+
@property
|
72 |
+
def dummy_data_folder(self):
|
73 |
+
if self.config is not None:
|
74 |
+
# structure is dummy / config_name / version_name
|
75 |
+
return os.path.join("dummy", self.config.name, self.version_name)
|
76 |
+
# structure is dummy / version_name
|
77 |
+
return os.path.join("dummy", self.version_name)
|
78 |
+
|
79 |
+
@property
|
80 |
+
def dummy_zip_file(self):
|
81 |
+
return os.path.join(self.dummy_data_folder, "dummy_data.zip")
|
82 |
+
|
83 |
+
def download_dummy_data(self):
|
84 |
+
path_to_dummy_data_dir = (
|
85 |
+
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
|
86 |
+
)
|
87 |
+
|
88 |
+
local_path = cached_path(
|
89 |
+
path_to_dummy_data_dir, cache_dir=self.cache_dir, extract_compressed_file=True, force_extract=True
|
90 |
+
)
|
91 |
+
|
92 |
+
return os.path.join(local_path, self.dummy_file_name)
|
93 |
+
|
94 |
+
@property
|
95 |
+
def local_path_to_dummy_data(self):
|
96 |
+
return os.path.join(self.datasets_scripts_dir, self.dataset_name, self.dummy_zip_file)
|
97 |
+
|
98 |
+
@property
|
99 |
+
def github_path_to_dummy_data(self):
|
100 |
+
if self._bucket_url is None:
|
101 |
+
self._bucket_url = hf_github_url(self.dataset_name, self.dummy_zip_file.replace(os.sep, "/"))
|
102 |
+
return self._bucket_url
|
103 |
+
|
104 |
+
@property
|
105 |
+
def manual_dir(self):
|
106 |
+
# return full path if its a dir
|
107 |
+
if os.path.isdir(self.dummy_file):
|
108 |
+
return self.dummy_file
|
109 |
+
# else cut off path to file -> example `xsum`.
|
110 |
+
return "/".join(self.dummy_file.replace(os.sep, "/").split("/")[:-1])
|
111 |
+
|
112 |
+
# this function has to be in the manager under this name so that testing works
|
113 |
+
def download_and_extract(self, data_url, *args):
|
114 |
+
if self.load_existing_dummy_data:
|
115 |
+
# dummy data is downloaded and tested
|
116 |
+
dummy_file = self.dummy_file
|
117 |
+
else:
|
118 |
+
# dummy data cannot be downloaded and only the path to dummy file is returned
|
119 |
+
dummy_file = self.dummy_file_name
|
120 |
+
|
121 |
+
# special case when data_url is a dict
|
122 |
+
if isinstance(data_url, dict):
|
123 |
+
return self.create_dummy_data_dict(dummy_file, data_url)
|
124 |
+
elif isinstance(data_url, (list, tuple)):
|
125 |
+
return self.create_dummy_data_list(dummy_file, data_url)
|
126 |
+
else:
|
127 |
+
return self.create_dummy_data_single(dummy_file, data_url)
|
128 |
+
|
129 |
+
# this function has to be in the manager under this name so that testing works
|
130 |
+
def download(self, data_url, *args):
|
131 |
+
return self.download_and_extract(data_url)
|
132 |
+
|
133 |
+
# this function has to be in the manager under this name so that testing works
|
134 |
+
def download_custom(self, data_url, custom_download):
|
135 |
+
return self.download_and_extract(data_url)
|
136 |
+
|
137 |
+
# this function has to be in the manager under this name so that testing works
|
138 |
+
def extract(self, path, *args, **kwargs):
|
139 |
+
return path
|
140 |
+
|
141 |
+
# this function has to be in the manager under this name so that testing works
|
142 |
+
def get_recorded_sizes_checksums(self):
|
143 |
+
return {}
|
144 |
+
|
145 |
+
def create_dummy_data_dict(self, path_to_dummy_data, data_url):
|
146 |
+
dummy_data_dict = {}
|
147 |
+
for key, single_urls in data_url.items():
|
148 |
+
for download_callback in self.download_callbacks:
|
149 |
+
if isinstance(single_urls, list):
|
150 |
+
for single_url in single_urls:
|
151 |
+
download_callback(single_url)
|
152 |
+
else:
|
153 |
+
single_url = single_urls
|
154 |
+
download_callback(single_url)
|
155 |
+
# we force the name of each key to be the last file / folder name of the url path
|
156 |
+
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
|
157 |
+
if isinstance(single_urls, list):
|
158 |
+
value = [os.path.join(path_to_dummy_data, urllib.parse.quote_plus(Path(x).name)) for x in single_urls]
|
159 |
+
else:
|
160 |
+
single_url = single_urls
|
161 |
+
value = os.path.join(path_to_dummy_data, urllib.parse.quote_plus(Path(single_url).name))
|
162 |
+
dummy_data_dict[key] = value
|
163 |
+
|
164 |
+
# make sure that values are unique
|
165 |
+
if all(isinstance(i, str) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len(
|
166 |
+
dummy_data_dict.values()
|
167 |
+
):
|
168 |
+
# append key to value to make its name unique
|
169 |
+
dummy_data_dict = {key: value + key for key, value in dummy_data_dict.items()}
|
170 |
+
|
171 |
+
return dummy_data_dict
|
172 |
+
|
173 |
+
def create_dummy_data_list(self, path_to_dummy_data, data_url):
|
174 |
+
dummy_data_list = []
|
175 |
+
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
|
176 |
+
is_tf_records = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}", url)) for url in data_url)
|
177 |
+
is_pubmed_records = all(
|
178 |
+
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed") for url in data_url
|
179 |
+
)
|
180 |
+
if data_url and (is_tf_records or is_pubmed_records):
|
181 |
+
data_url = [data_url[0]] * len(data_url)
|
182 |
+
for single_url in data_url:
|
183 |
+
for download_callback in self.download_callbacks:
|
184 |
+
download_callback(single_url)
|
185 |
+
# we force the name of each key to be the last file / folder name of the url path
|
186 |
+
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
|
187 |
+
value = os.path.join(path_to_dummy_data, urllib.parse.quote_plus(single_url.split("/")[-1]))
|
188 |
+
dummy_data_list.append(value)
|
189 |
+
return dummy_data_list
|
190 |
+
|
191 |
+
def create_dummy_data_single(self, path_to_dummy_data, data_url):
|
192 |
+
for download_callback in self.download_callbacks:
|
193 |
+
download_callback(data_url)
|
194 |
+
# we force the name of each key to be the last file / folder name of the url path
|
195 |
+
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
|
196 |
+
value = os.path.join(path_to_dummy_data, urllib.parse.quote_plus(data_url.split("/")[-1]))
|
197 |
+
if os.path.exists(value) or not self.load_existing_dummy_data:
|
198 |
+
return value
|
199 |
+
else:
|
200 |
+
# Backward compatibility, maybe deprecate at one point.
|
201 |
+
# For many datasets with single url calls to dl_manager.download_and_extract,
|
202 |
+
# the dummy_data.zip file is actually the zipped downloaded file
|
203 |
+
# while now we expected the dummy_data.zip file to be a directory containing
|
204 |
+
# the downloaded file.
|
205 |
+
return path_to_dummy_data
|
206 |
+
|
207 |
+
def delete_extracted_files(self):
|
208 |
+
pass
|
209 |
+
|
210 |
+
def manage_extracted_files(self):
|
211 |
+
pass
|
212 |
+
|
213 |
+
def iter_archive(self, path):
|
214 |
+
def _iter_archive_members(path):
|
215 |
+
# this preserves the order of the members inside the ZIP archive
|
216 |
+
dummy_parent_path = Path(self.dummy_file).parent
|
217 |
+
relative_path = path.relative_to(dummy_parent_path)
|
218 |
+
with ZipFile(self.local_path_to_dummy_data) as zip_file:
|
219 |
+
members = zip_file.namelist()
|
220 |
+
for member in members:
|
221 |
+
if member.startswith(relative_path.as_posix()):
|
222 |
+
yield dummy_parent_path.joinpath(member)
|
223 |
+
|
224 |
+
path = Path(path)
|
225 |
+
file_paths = _iter_archive_members(path) if self.use_local_dummy_data else path.rglob("*")
|
226 |
+
for file_path in file_paths:
|
227 |
+
if file_path.is_file() and not file_path.name.startswith((".", "__")):
|
228 |
+
yield file_path.relative_to(path).as_posix(), file_path.open("rb")
|
229 |
+
|
230 |
+
def iter_files(self, paths):
|
231 |
+
if not isinstance(paths, list):
|
232 |
+
paths = [paths]
|
233 |
+
for path in paths:
|
234 |
+
if os.path.isfile(path):
|
235 |
+
yield path
|
236 |
+
else:
|
237 |
+
for dirpath, dirnames, filenames in os.walk(path):
|
238 |
+
if os.path.basename(dirpath).startswith((".", "__")):
|
239 |
+
continue
|
240 |
+
dirnames.sort()
|
241 |
+
for filename in sorted(filenames):
|
242 |
+
if filename.startswith((".", "__")):
|
243 |
+
continue
|
244 |
+
yield os.path.join(dirpath, filename)
|
llmeval-env/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
from typing import Iterable, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
from ..utils.file_utils import ( # noqa: F401 # backward compatibility
|
6 |
+
SINGLE_FILE_COMPRESSION_PROTOCOLS,
|
7 |
+
ArchiveIterable,
|
8 |
+
FilesIterable,
|
9 |
+
_get_extraction_protocol,
|
10 |
+
_get_path_extension,
|
11 |
+
_prepare_path_and_storage_options,
|
12 |
+
is_relative_path,
|
13 |
+
url_or_path_join,
|
14 |
+
xbasename,
|
15 |
+
xdirname,
|
16 |
+
xet_parse,
|
17 |
+
xexists,
|
18 |
+
xgetsize,
|
19 |
+
xglob,
|
20 |
+
xgzip_open,
|
21 |
+
xisdir,
|
22 |
+
xisfile,
|
23 |
+
xjoin,
|
24 |
+
xlistdir,
|
25 |
+
xnumpy_load,
|
26 |
+
xopen,
|
27 |
+
xpandas_read_csv,
|
28 |
+
xpandas_read_excel,
|
29 |
+
xPath,
|
30 |
+
xpyarrow_parquet_read_table,
|
31 |
+
xrelpath,
|
32 |
+
xsio_loadmat,
|
33 |
+
xsplit,
|
34 |
+
xsplitext,
|
35 |
+
xwalk,
|
36 |
+
xxml_dom_minidom_parse,
|
37 |
+
)
|
38 |
+
from ..utils.logging import get_logger
|
39 |
+
from ..utils.py_utils import map_nested
|
40 |
+
from .download_config import DownloadConfig
|
41 |
+
|
42 |
+
|
43 |
+
logger = get_logger(__name__)
|
44 |
+
|
45 |
+
|
46 |
+
class StreamingDownloadManager:
|
47 |
+
"""
|
48 |
+
Download manager that uses the "::" separator to navigate through (possibly remote) compressed archives.
|
49 |
+
Contrary to the regular `DownloadManager`, the `download` and `extract` methods don't actually download nor extract
|
50 |
+
data, but they rather return the path or url that could be opened using the `xopen` function which extends the
|
51 |
+
built-in `open` function to stream data from remote files.
|
52 |
+
"""
|
53 |
+
|
54 |
+
is_streaming = True
|
55 |
+
|
56 |
+
def __init__(
|
57 |
+
self,
|
58 |
+
dataset_name: Optional[str] = None,
|
59 |
+
data_dir: Optional[str] = None,
|
60 |
+
download_config: Optional[DownloadConfig] = None,
|
61 |
+
base_path: Optional[str] = None,
|
62 |
+
):
|
63 |
+
self._dataset_name = dataset_name
|
64 |
+
self._data_dir = data_dir
|
65 |
+
self._base_path = base_path or os.path.abspath(".")
|
66 |
+
self.download_config = download_config or DownloadConfig()
|
67 |
+
|
68 |
+
@property
|
69 |
+
def manual_dir(self):
|
70 |
+
return self._data_dir
|
71 |
+
|
72 |
+
def download(self, url_or_urls):
|
73 |
+
"""Normalize URL(s) of files to stream data from.
|
74 |
+
This is the lazy version of `DownloadManager.download` for streaming.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
url_or_urls (`str` or `list` or `dict`):
|
78 |
+
URL(s) of files to stream data from. Each url is a `str`.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
url(s): (`str` or `list` or `dict`), URL(s) to stream data from matching the given input url_or_urls.
|
82 |
+
|
83 |
+
Example:
|
84 |
+
|
85 |
+
```py
|
86 |
+
>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
|
87 |
+
```
|
88 |
+
"""
|
89 |
+
url_or_urls = map_nested(self._download_single, url_or_urls, map_tuple=True)
|
90 |
+
return url_or_urls
|
91 |
+
|
92 |
+
def _download_single(self, urlpath: str) -> str:
|
93 |
+
urlpath = str(urlpath)
|
94 |
+
if is_relative_path(urlpath):
|
95 |
+
# append the relative path to the base_path
|
96 |
+
urlpath = url_or_path_join(self._base_path, urlpath)
|
97 |
+
return urlpath
|
98 |
+
|
99 |
+
def extract(self, url_or_urls):
|
100 |
+
"""Add extraction protocol for given url(s) for streaming.
|
101 |
+
|
102 |
+
This is the lazy version of `DownloadManager.extract` for streaming.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
url_or_urls (`str` or `list` or `dict`):
|
106 |
+
URL(s) of files to stream data from. Each url is a `str`.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
url(s): (`str` or `list` or `dict`), URL(s) to stream data from matching the given input `url_or_urls`.
|
110 |
+
|
111 |
+
Example:
|
112 |
+
|
113 |
+
```py
|
114 |
+
>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
|
115 |
+
>>> extracted_files = dl_manager.extract(downloaded_files)
|
116 |
+
```
|
117 |
+
"""
|
118 |
+
urlpaths = map_nested(self._extract, url_or_urls, map_tuple=True)
|
119 |
+
return urlpaths
|
120 |
+
|
121 |
+
def _extract(self, urlpath: str) -> str:
|
122 |
+
urlpath = str(urlpath)
|
123 |
+
protocol = _get_extraction_protocol(urlpath, download_config=self.download_config)
|
124 |
+
# get inner file: zip://train-00000.json.gz::https://foo.bar/data.zip -> zip://train-00000.json.gz
|
125 |
+
path = urlpath.split("::")[0]
|
126 |
+
extension = _get_path_extension(path)
|
127 |
+
if extension in ["tgz", "tar"] or path.endswith((".tar.gz", ".tar.bz2", ".tar.xz")):
|
128 |
+
raise NotImplementedError(
|
129 |
+
f"Extraction protocol for TAR archives like '{urlpath}' is not implemented in streaming mode. "
|
130 |
+
f"Please use `dl_manager.iter_archive` instead.\n\n"
|
131 |
+
f"Example usage:\n\n"
|
132 |
+
f"\turl = dl_manager.download(url)\n"
|
133 |
+
f"\ttar_archive_iterator = dl_manager.iter_archive(url)\n\n"
|
134 |
+
f"\tfor filename, file in tar_archive_iterator:\n"
|
135 |
+
f"\t\t..."
|
136 |
+
)
|
137 |
+
if protocol is None:
|
138 |
+
# no extraction
|
139 |
+
return urlpath
|
140 |
+
elif protocol in SINGLE_FILE_COMPRESSION_PROTOCOLS:
|
141 |
+
# there is one single file which is the uncompressed file
|
142 |
+
inner_file = os.path.basename(urlpath.split("::")[0])
|
143 |
+
inner_file = inner_file[: inner_file.rindex(".")] if "." in inner_file else inner_file
|
144 |
+
return f"{protocol}://{inner_file}::{urlpath}"
|
145 |
+
else:
|
146 |
+
return f"{protocol}://::{urlpath}"
|
147 |
+
|
148 |
+
def download_and_extract(self, url_or_urls):
|
149 |
+
"""Prepare given `url_or_urls` for streaming (add extraction protocol).
|
150 |
+
|
151 |
+
This is the lazy version of `DownloadManager.download_and_extract` for streaming.
|
152 |
+
|
153 |
+
Is equivalent to:
|
154 |
+
|
155 |
+
```
|
156 |
+
urls = dl_manager.extract(dl_manager.download(url_or_urls))
|
157 |
+
```
|
158 |
+
|
159 |
+
Args:
|
160 |
+
url_or_urls (`str` or `list` or `dict`):
|
161 |
+
URL(s) to stream from data from. Each url is a `str`.
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
url(s): (`str` or `list` or `dict`), URL(s) to stream data from matching the given input `url_or_urls`.
|
165 |
+
"""
|
166 |
+
return self.extract(self.download(url_or_urls))
|
167 |
+
|
168 |
+
def iter_archive(self, urlpath_or_buf: Union[str, io.BufferedReader]) -> Iterable[Tuple]:
|
169 |
+
"""Iterate over files within an archive.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
urlpath_or_buf (`str` or `io.BufferedReader`):
|
173 |
+
Archive path or archive binary file object.
|
174 |
+
|
175 |
+
Yields:
|
176 |
+
`tuple[str, io.BufferedReader]`:
|
177 |
+
2-tuple (path_within_archive, file_object).
|
178 |
+
File object is opened in binary mode.
|
179 |
+
|
180 |
+
Example:
|
181 |
+
|
182 |
+
```py
|
183 |
+
>>> archive = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
|
184 |
+
>>> files = dl_manager.iter_archive(archive)
|
185 |
+
```
|
186 |
+
"""
|
187 |
+
|
188 |
+
if hasattr(urlpath_or_buf, "read"):
|
189 |
+
return ArchiveIterable.from_buf(urlpath_or_buf)
|
190 |
+
else:
|
191 |
+
return ArchiveIterable.from_urlpath(urlpath_or_buf, download_config=self.download_config)
|
192 |
+
|
193 |
+
def iter_files(self, urlpaths: Union[str, List[str]]) -> Iterable[str]:
|
194 |
+
"""Iterate over files.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
urlpaths (`str` or `list` of `str`):
|
198 |
+
Root paths.
|
199 |
+
|
200 |
+
Yields:
|
201 |
+
str: File URL path.
|
202 |
+
|
203 |
+
Example:
|
204 |
+
|
205 |
+
```py
|
206 |
+
>>> files = dl_manager.download_and_extract('https://huggingface.co/datasets/beans/resolve/main/data/train.zip')
|
207 |
+
>>> files = dl_manager.iter_files(files)
|
208 |
+
```
|
209 |
+
"""
|
210 |
+
return FilesIterable.from_urlpaths(urlpaths, download_config=self.download_config)
|
llmeval-env/lib/python3.10/site-packages/datasets/filesystems/__init__.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import shutil
|
3 |
+
import warnings
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
import fsspec
|
7 |
+
import fsspec.asyn
|
8 |
+
from fsspec.implementations.local import LocalFileSystem
|
9 |
+
|
10 |
+
from ..utils.deprecation_utils import deprecated
|
11 |
+
from . import compression
|
12 |
+
|
13 |
+
|
14 |
+
_has_s3fs = importlib.util.find_spec("s3fs") is not None
|
15 |
+
|
16 |
+
if _has_s3fs:
|
17 |
+
from .s3filesystem import S3FileSystem # noqa: F401
|
18 |
+
|
19 |
+
COMPRESSION_FILESYSTEMS: List[compression.BaseCompressedFileFileSystem] = [
|
20 |
+
compression.Bz2FileSystem,
|
21 |
+
compression.GzipFileSystem,
|
22 |
+
compression.Lz4FileSystem,
|
23 |
+
compression.XzFileSystem,
|
24 |
+
compression.ZstdFileSystem,
|
25 |
+
]
|
26 |
+
|
27 |
+
# Register custom filesystems
|
28 |
+
for fs_class in COMPRESSION_FILESYSTEMS:
|
29 |
+
if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class:
|
30 |
+
warnings.warn(f"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.")
|
31 |
+
fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True)
|
32 |
+
|
33 |
+
|
34 |
+
@deprecated(
|
35 |
+
"This function is deprecated and will be removed in a future version. Please use `fsspec.core.strip_protocol` instead."
|
36 |
+
)
|
37 |
+
def extract_path_from_uri(dataset_path: str) -> str:
|
38 |
+
"""
|
39 |
+
Preprocesses `dataset_path` and removes remote filesystem (e.g. removing `s3://`).
|
40 |
+
|
41 |
+
Args:
|
42 |
+
dataset_path (`str`):
|
43 |
+
Path (e.g. `dataset/train`) or remote uri (e.g. `s3://my-bucket/dataset/train`) of the dataset directory.
|
44 |
+
"""
|
45 |
+
if "://" in dataset_path:
|
46 |
+
dataset_path = dataset_path.split("://")[1]
|
47 |
+
return dataset_path
|
48 |
+
|
49 |
+
|
50 |
+
def is_remote_filesystem(fs: fsspec.AbstractFileSystem) -> bool:
|
51 |
+
"""
|
52 |
+
Checks if `fs` is a remote filesystem.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
fs (`fsspec.spec.AbstractFileSystem`):
|
56 |
+
An abstract super-class for pythonic file-systems, e.g. `fsspec.filesystem(\'file\')` or [`datasets.filesystems.S3FileSystem`].
|
57 |
+
"""
|
58 |
+
return not isinstance(fs, LocalFileSystem)
|
59 |
+
|
60 |
+
|
61 |
+
def rename(fs: fsspec.AbstractFileSystem, src: str, dst: str):
|
62 |
+
"""
|
63 |
+
Renames the file `src` in `fs` to `dst`.
|
64 |
+
"""
|
65 |
+
if not is_remote_filesystem(fs):
|
66 |
+
# LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory
|
67 |
+
shutil.move(fs._strip_protocol(src), fs._strip_protocol(dst))
|
68 |
+
else:
|
69 |
+
fs.mv(src, dst, recursive=True)
|
llmeval-env/lib/python3.10/site-packages/datasets/filesystems/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.34 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/filesystems/__pycache__/compression.cpython-310.pyc
ADDED
Binary file (4.24 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/filesystems/__pycache__/s3filesystem.cpython-310.pyc
ADDED
Binary file (6.07 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/filesystems/compression.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import fsspec
|
5 |
+
from fsspec.archive import AbstractArchiveFileSystem
|
6 |
+
|
7 |
+
|
8 |
+
class BaseCompressedFileFileSystem(AbstractArchiveFileSystem):
|
9 |
+
"""Read contents of compressed file as a filesystem with one file inside."""
|
10 |
+
|
11 |
+
root_marker = ""
|
12 |
+
protocol: str = (
|
13 |
+
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
|
14 |
+
)
|
15 |
+
compression: str = None # compression type in fsspec. ex: "gzip"
|
16 |
+
extension: str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
|
17 |
+
|
18 |
+
def __init__(
|
19 |
+
self, fo: str = "", target_protocol: Optional[str] = None, target_options: Optional[dict] = None, **kwargs
|
20 |
+
):
|
21 |
+
"""
|
22 |
+
The compressed file system can be instantiated from any compressed file.
|
23 |
+
It reads the contents of compressed file as a filesystem with one file inside, as if it was an archive.
|
24 |
+
|
25 |
+
The single file inside the filesystem is named after the compresssed file,
|
26 |
+
without the compression extension at the end of the filename.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
fo (:obj:``str``): Path to compressed file. Will fetch file using ``fsspec.open()``
|
30 |
+
mode (:obj:``str``): Currently, only 'rb' accepted
|
31 |
+
target_protocol(:obj:``str``, optional): To override the FS protocol inferred from a URL.
|
32 |
+
target_options (:obj:``dict``, optional): Kwargs passed when instantiating the target FS.
|
33 |
+
"""
|
34 |
+
super().__init__(self, **kwargs)
|
35 |
+
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
|
36 |
+
self.file = fsspec.open(
|
37 |
+
fo,
|
38 |
+
mode="rb",
|
39 |
+
protocol=target_protocol,
|
40 |
+
compression=self.compression,
|
41 |
+
client_kwargs={
|
42 |
+
"requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459
|
43 |
+
"trust_env": True, # Enable reading proxy env variables.
|
44 |
+
**(target_options or {}).pop("client_kwargs", {}), # To avoid issues if it was already passed.
|
45 |
+
},
|
46 |
+
**(target_options or {}),
|
47 |
+
)
|
48 |
+
self.compressed_name = os.path.basename(self.file.path.split("::")[0])
|
49 |
+
self.uncompressed_name = (
|
50 |
+
self.compressed_name[: self.compressed_name.rindex(".")]
|
51 |
+
if "." in self.compressed_name
|
52 |
+
else self.compressed_name
|
53 |
+
)
|
54 |
+
self.dir_cache = None
|
55 |
+
|
56 |
+
@classmethod
|
57 |
+
def _strip_protocol(cls, path):
|
58 |
+
# compressed file paths are always relative to the archive root
|
59 |
+
return super()._strip_protocol(path).lstrip("/")
|
60 |
+
|
61 |
+
def _get_dirs(self):
|
62 |
+
if self.dir_cache is None:
|
63 |
+
f = {**self.file.fs.info(self.file.path), "name": self.uncompressed_name}
|
64 |
+
self.dir_cache = {f["name"]: f}
|
65 |
+
|
66 |
+
def cat(self, path: str):
|
67 |
+
return self.file.open().read()
|
68 |
+
|
69 |
+
def _open(
|
70 |
+
self,
|
71 |
+
path: str,
|
72 |
+
mode: str = "rb",
|
73 |
+
block_size=None,
|
74 |
+
autocommit=True,
|
75 |
+
cache_options=None,
|
76 |
+
**kwargs,
|
77 |
+
):
|
78 |
+
path = self._strip_protocol(path)
|
79 |
+
if mode != "rb":
|
80 |
+
raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'")
|
81 |
+
return self.file.open()
|
82 |
+
|
83 |
+
|
84 |
+
class Bz2FileSystem(BaseCompressedFileFileSystem):
|
85 |
+
"""Read contents of BZ2 file as a filesystem with one file inside."""
|
86 |
+
|
87 |
+
protocol = "bz2"
|
88 |
+
compression = "bz2"
|
89 |
+
extension = ".bz2"
|
90 |
+
|
91 |
+
|
92 |
+
class GzipFileSystem(BaseCompressedFileFileSystem):
|
93 |
+
"""Read contents of GZIP file as a filesystem with one file inside."""
|
94 |
+
|
95 |
+
protocol = "gzip"
|
96 |
+
compression = "gzip"
|
97 |
+
extension = ".gz"
|
98 |
+
|
99 |
+
|
100 |
+
class Lz4FileSystem(BaseCompressedFileFileSystem):
|
101 |
+
"""Read contents of LZ4 file as a filesystem with one file inside."""
|
102 |
+
|
103 |
+
protocol = "lz4"
|
104 |
+
compression = "lz4"
|
105 |
+
extension = ".lz4"
|
106 |
+
|
107 |
+
|
108 |
+
class XzFileSystem(BaseCompressedFileFileSystem):
|
109 |
+
"""Read contents of .xz (LZMA) file as a filesystem with one file inside."""
|
110 |
+
|
111 |
+
protocol = "xz"
|
112 |
+
compression = "xz"
|
113 |
+
extension = ".xz"
|
114 |
+
|
115 |
+
|
116 |
+
class ZstdFileSystem(BaseCompressedFileFileSystem):
|
117 |
+
"""
|
118 |
+
Read contents of .zstd file as a filesystem with one file inside.
|
119 |
+
"""
|
120 |
+
|
121 |
+
protocol = "zstd"
|
122 |
+
compression = "zstd"
|
123 |
+
extension = ".zst"
|
llmeval-env/lib/python3.10/site-packages/datasets/filesystems/s3filesystem.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import s3fs
|
2 |
+
|
3 |
+
from ..utils.deprecation_utils import deprecated
|
4 |
+
|
5 |
+
|
6 |
+
@deprecated("Use s3fs.S3FileSystem instead.")
|
7 |
+
class S3FileSystem(s3fs.S3FileSystem):
|
8 |
+
"""
|
9 |
+
`datasets.filesystems.S3FileSystem` is a subclass of [`s3fs.S3FileSystem`](https://s3fs.readthedocs.io/en/latest/api.html).
|
10 |
+
|
11 |
+
Users can use this class to access S3 as if it were a file system. It exposes a filesystem-like API (ls, cp, open, etc.) on top of S3 storage. Provide credentials either explicitly (`key=`, `secret=`) or with boto's credential methods. See botocore documentation for more information. If no credentials are available, use `anon=True`.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
anon (`bool`, default to `False`):
|
15 |
+
Whether to use anonymous connection (public buckets only). If `False`, uses the key/secret given,
|
16 |
+
or boto's credential resolver (client_kwargs, environment, variables, config files, EC2 IAM server, in that order).
|
17 |
+
key (`str`):
|
18 |
+
If not anonymous, use this access key ID, if specified.
|
19 |
+
secret (`str`):
|
20 |
+
If not anonymous, use this secret access key, if specified.
|
21 |
+
token (`str`):
|
22 |
+
If not anonymous, use this security token, if specified.
|
23 |
+
use_ssl (`bool`, defaults to `True`):
|
24 |
+
Whether to use SSL in connections to S3; may be faster without, but insecure. If `use_ssl` is
|
25 |
+
also set in `client_kwargs`, the value set in `client_kwargs` will take priority.
|
26 |
+
s3_additional_kwargs (`dict`):
|
27 |
+
Parameters that are used when calling S3 API methods. Typically used for things
|
28 |
+
like ServerSideEncryption.
|
29 |
+
client_kwargs (`dict`):
|
30 |
+
Parameters for the botocore client.
|
31 |
+
requester_pays (`bool`, defaults to `False`):
|
32 |
+
Whether `RequesterPays` buckets are supported.
|
33 |
+
default_block_size (`int`):
|
34 |
+
If given, the default block size value used for `open()`, if no specific value is given at all time.
|
35 |
+
The built-in default is 5MB.
|
36 |
+
default_fill_cache (`bool`, defaults to `True`):
|
37 |
+
Whether to use cache filling with open by default. Refer to `S3File.open`.
|
38 |
+
default_cache_type (`str`, defaults to `bytes`):
|
39 |
+
If given, the default `cache_type` value used for `open()`. Set to `none` if no
|
40 |
+
caching is desired. See fsspec's documentation for other available `cache_type` values.
|
41 |
+
version_aware (`bool`, defaults to `False`):
|
42 |
+
Whether to support bucket versioning. If enable this will require the user to have
|
43 |
+
the necessary IAM permissions for dealing with versioned objects.
|
44 |
+
cache_regions (`bool`, defaults to `False`):
|
45 |
+
Whether to cache bucket regions. Whenever a new bucket is used, it will
|
46 |
+
first find out which region it belongs to and then use the client for that region.
|
47 |
+
asynchronous (`bool`, defaults to `False`):
|
48 |
+
Whether this instance is to be used from inside coroutines.
|
49 |
+
config_kwargs (`dict`):
|
50 |
+
Parameters passed to `botocore.client.Config`.
|
51 |
+
**kwargs:
|
52 |
+
Other parameters for core session.
|
53 |
+
session (`aiobotocore.session.AioSession`):
|
54 |
+
Session to be used for all connections. This session will be used inplace of creating
|
55 |
+
a new session inside S3FileSystem. For example: `aiobotocore.session.AioSession(profile='test_user')`.
|
56 |
+
skip_instance_cache (`bool`):
|
57 |
+
Control reuse of instances. Passed on to `fsspec`.
|
58 |
+
use_listings_cache (`bool`):
|
59 |
+
Control reuse of directory listings. Passed on to `fsspec`.
|
60 |
+
listings_expiry_time (`int` or `float`):
|
61 |
+
Control reuse of directory listings. Passed on to `fsspec`.
|
62 |
+
max_paths (`int`): Control reuse of directory listings. Passed on to `fsspec`.
|
63 |
+
|
64 |
+
Examples:
|
65 |
+
|
66 |
+
Listing files from public S3 bucket.
|
67 |
+
|
68 |
+
```py
|
69 |
+
>>> import datasets
|
70 |
+
>>> s3 = datasets.filesystems.S3FileSystem(anon=True) # doctest: +SKIP
|
71 |
+
>>> s3.ls('public-datasets/imdb/train') # doctest: +SKIP
|
72 |
+
['dataset_info.json.json','dataset.arrow','state.json']
|
73 |
+
```
|
74 |
+
|
75 |
+
Listing files from private S3 bucket using `aws_access_key_id` and `aws_secret_access_key`.
|
76 |
+
|
77 |
+
```py
|
78 |
+
>>> import datasets
|
79 |
+
>>> s3 = datasets.filesystems.S3FileSystem(key=aws_access_key_id, secret=aws_secret_access_key) # doctest: +SKIP
|
80 |
+
>>> s3.ls('my-private-datasets/imdb/train') # doctest: +SKIP
|
81 |
+
['dataset_info.json.json','dataset.arrow','state.json']
|
82 |
+
```
|
83 |
+
|
84 |
+
Using `S3Filesystem` with `botocore.session.Session` and custom `aws_profile`.
|
85 |
+
|
86 |
+
```py
|
87 |
+
>>> import botocore
|
88 |
+
>>> from datasets.filesystems import S3Filesystem
|
89 |
+
|
90 |
+
>>> s3_session = botocore.session.Session(profile_name='my_profile_name')
|
91 |
+
>>> s3 = S3FileSystem(session=s3_session) # doctest: +SKIP
|
92 |
+
```
|
93 |
+
|
94 |
+
Loading dataset from S3 using `S3Filesystem` and [`load_from_disk`].
|
95 |
+
|
96 |
+
```py
|
97 |
+
>>> from datasets import load_from_disk
|
98 |
+
>>> from datasets.filesystems import S3Filesystem
|
99 |
+
|
100 |
+
>>> s3 = S3FileSystem(key=aws_access_key_id, secret=aws_secret_access_key) # doctest: +SKIP
|
101 |
+
>>> dataset = load_from_disk('s3://my-private-datasets/imdb/train', storage_options=s3.storage_options) # doctest: +SKIP
|
102 |
+
>>> print(len(dataset))
|
103 |
+
25000
|
104 |
+
```
|
105 |
+
|
106 |
+
Saving dataset to S3 using `S3Filesystem` and [`Dataset.save_to_disk`].
|
107 |
+
|
108 |
+
```py
|
109 |
+
>>> from datasets import load_dataset
|
110 |
+
>>> from datasets.filesystems import S3Filesystem
|
111 |
+
|
112 |
+
>>> dataset = load_dataset("imdb")
|
113 |
+
>>> s3 = S3FileSystem(key=aws_access_key_id, secret=aws_secret_access_key) # doctest: +SKIP
|
114 |
+
>>> dataset.save_to_disk('s3://my-private-datasets/imdb/train', storage_options=s3.storage_options) # doctest: +SKIP
|
115 |
+
```
|
116 |
+
"""
|
llmeval-env/lib/python3.10/site-packages/datasets/io/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/abc.cpython-310.pyc
ADDED
Binary file (2.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/csv.cpython-310.pyc
ADDED
Binary file (4.49 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/generator.cpython-310.pyc
ADDED
Binary file (1.65 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/json.cpython-310.pyc
ADDED
Binary file (5.06 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/parquet.cpython-310.pyc
ADDED
Binary file (5.36 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/spark.cpython-310.pyc
ADDED
Binary file (1.93 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/sql.cpython-310.pyc
ADDED
Binary file (3.95 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/io/__pycache__/text.cpython-310.pyc
ADDED
Binary file (1.74 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/io/abc.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from typing import Optional, Union
|
3 |
+
|
4 |
+
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
|
5 |
+
from ..utils.typing import NestedDataStructureLike, PathLike
|
6 |
+
|
7 |
+
|
8 |
+
class AbstractDatasetReader(ABC):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
path_or_paths: Optional[NestedDataStructureLike[PathLike]] = None,
|
12 |
+
split: Optional[NamedSplit] = None,
|
13 |
+
features: Optional[Features] = None,
|
14 |
+
cache_dir: str = None,
|
15 |
+
keep_in_memory: bool = False,
|
16 |
+
streaming: bool = False,
|
17 |
+
num_proc: Optional[int] = None,
|
18 |
+
**kwargs,
|
19 |
+
):
|
20 |
+
self.path_or_paths = path_or_paths
|
21 |
+
self.split = split if split or isinstance(path_or_paths, dict) else "train"
|
22 |
+
self.features = features
|
23 |
+
self.cache_dir = cache_dir
|
24 |
+
self.keep_in_memory = keep_in_memory
|
25 |
+
self.streaming = streaming
|
26 |
+
self.num_proc = num_proc
|
27 |
+
self.kwargs = kwargs
|
28 |
+
|
29 |
+
@abstractmethod
|
30 |
+
def read(self) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]:
|
31 |
+
pass
|
32 |
+
|
33 |
+
|
34 |
+
class AbstractDatasetInputStream(ABC):
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
features: Optional[Features] = None,
|
38 |
+
cache_dir: str = None,
|
39 |
+
keep_in_memory: bool = False,
|
40 |
+
streaming: bool = False,
|
41 |
+
num_proc: Optional[int] = None,
|
42 |
+
**kwargs,
|
43 |
+
):
|
44 |
+
self.features = features
|
45 |
+
self.cache_dir = cache_dir
|
46 |
+
self.keep_in_memory = keep_in_memory
|
47 |
+
self.streaming = streaming
|
48 |
+
self.num_proc = num_proc
|
49 |
+
self.kwargs = kwargs
|
50 |
+
|
51 |
+
@abstractmethod
|
52 |
+
def read(self) -> Union[Dataset, IterableDataset]:
|
53 |
+
pass
|
llmeval-env/lib/python3.10/site-packages/datasets/io/csv.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import multiprocessing
|
2 |
+
import os
|
3 |
+
from typing import BinaryIO, Optional, Union
|
4 |
+
|
5 |
+
import fsspec
|
6 |
+
|
7 |
+
from .. import Dataset, Features, NamedSplit, config
|
8 |
+
from ..formatting import query_table
|
9 |
+
from ..packaged_modules.csv.csv import Csv
|
10 |
+
from ..utils import tqdm as hf_tqdm
|
11 |
+
from ..utils.typing import NestedDataStructureLike, PathLike
|
12 |
+
from .abc import AbstractDatasetReader
|
13 |
+
|
14 |
+
|
15 |
+
class CsvDatasetReader(AbstractDatasetReader):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
path_or_paths: NestedDataStructureLike[PathLike],
|
19 |
+
split: Optional[NamedSplit] = None,
|
20 |
+
features: Optional[Features] = None,
|
21 |
+
cache_dir: str = None,
|
22 |
+
keep_in_memory: bool = False,
|
23 |
+
streaming: bool = False,
|
24 |
+
num_proc: Optional[int] = None,
|
25 |
+
**kwargs,
|
26 |
+
):
|
27 |
+
super().__init__(
|
28 |
+
path_or_paths,
|
29 |
+
split=split,
|
30 |
+
features=features,
|
31 |
+
cache_dir=cache_dir,
|
32 |
+
keep_in_memory=keep_in_memory,
|
33 |
+
streaming=streaming,
|
34 |
+
num_proc=num_proc,
|
35 |
+
**kwargs,
|
36 |
+
)
|
37 |
+
path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths}
|
38 |
+
self.builder = Csv(
|
39 |
+
cache_dir=cache_dir,
|
40 |
+
data_files=path_or_paths,
|
41 |
+
features=features,
|
42 |
+
**kwargs,
|
43 |
+
)
|
44 |
+
|
45 |
+
def read(self):
|
46 |
+
# Build iterable dataset
|
47 |
+
if self.streaming:
|
48 |
+
dataset = self.builder.as_streaming_dataset(split=self.split)
|
49 |
+
# Build regular (map-style) dataset
|
50 |
+
else:
|
51 |
+
download_config = None
|
52 |
+
download_mode = None
|
53 |
+
verification_mode = None
|
54 |
+
base_path = None
|
55 |
+
|
56 |
+
self.builder.download_and_prepare(
|
57 |
+
download_config=download_config,
|
58 |
+
download_mode=download_mode,
|
59 |
+
verification_mode=verification_mode,
|
60 |
+
base_path=base_path,
|
61 |
+
num_proc=self.num_proc,
|
62 |
+
)
|
63 |
+
dataset = self.builder.as_dataset(
|
64 |
+
split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory
|
65 |
+
)
|
66 |
+
return dataset
|
67 |
+
|
68 |
+
|
69 |
+
class CsvDatasetWriter:
|
70 |
+
def __init__(
|
71 |
+
self,
|
72 |
+
dataset: Dataset,
|
73 |
+
path_or_buf: Union[PathLike, BinaryIO],
|
74 |
+
batch_size: Optional[int] = None,
|
75 |
+
num_proc: Optional[int] = None,
|
76 |
+
storage_options: Optional[dict] = None,
|
77 |
+
**to_csv_kwargs,
|
78 |
+
):
|
79 |
+
if num_proc is not None and num_proc <= 0:
|
80 |
+
raise ValueError(f"num_proc {num_proc} must be an integer > 0.")
|
81 |
+
|
82 |
+
self.dataset = dataset
|
83 |
+
self.path_or_buf = path_or_buf
|
84 |
+
self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
|
85 |
+
self.num_proc = num_proc
|
86 |
+
self.encoding = "utf-8"
|
87 |
+
self.storage_options = storage_options or {}
|
88 |
+
self.to_csv_kwargs = to_csv_kwargs
|
89 |
+
|
90 |
+
def write(self) -> int:
|
91 |
+
_ = self.to_csv_kwargs.pop("path_or_buf", None)
|
92 |
+
header = self.to_csv_kwargs.pop("header", True)
|
93 |
+
index = self.to_csv_kwargs.pop("index", False)
|
94 |
+
|
95 |
+
if isinstance(self.path_or_buf, (str, bytes, os.PathLike)):
|
96 |
+
with fsspec.open(self.path_or_buf, "wb", **(self.storage_options or {})) as buffer:
|
97 |
+
written = self._write(file_obj=buffer, header=header, index=index, **self.to_csv_kwargs)
|
98 |
+
else:
|
99 |
+
written = self._write(file_obj=self.path_or_buf, header=header, index=index, **self.to_csv_kwargs)
|
100 |
+
return written
|
101 |
+
|
102 |
+
def _batch_csv(self, args):
|
103 |
+
offset, header, index, to_csv_kwargs = args
|
104 |
+
|
105 |
+
batch = query_table(
|
106 |
+
table=self.dataset.data,
|
107 |
+
key=slice(offset, offset + self.batch_size),
|
108 |
+
indices=self.dataset._indices,
|
109 |
+
)
|
110 |
+
csv_str = batch.to_pandas().to_csv(
|
111 |
+
path_or_buf=None, header=header if (offset == 0) else False, index=index, **to_csv_kwargs
|
112 |
+
)
|
113 |
+
return csv_str.encode(self.encoding)
|
114 |
+
|
115 |
+
def _write(self, file_obj: BinaryIO, header, index, **to_csv_kwargs) -> int:
|
116 |
+
"""Writes the pyarrow table as CSV to a binary file handle.
|
117 |
+
|
118 |
+
Caller is responsible for opening and closing the handle.
|
119 |
+
"""
|
120 |
+
written = 0
|
121 |
+
|
122 |
+
if self.num_proc is None or self.num_proc == 1:
|
123 |
+
for offset in hf_tqdm(
|
124 |
+
range(0, len(self.dataset), self.batch_size),
|
125 |
+
unit="ba",
|
126 |
+
desc="Creating CSV from Arrow format",
|
127 |
+
):
|
128 |
+
csv_str = self._batch_csv((offset, header, index, to_csv_kwargs))
|
129 |
+
written += file_obj.write(csv_str)
|
130 |
+
|
131 |
+
else:
|
132 |
+
num_rows, batch_size = len(self.dataset), self.batch_size
|
133 |
+
with multiprocessing.Pool(self.num_proc) as pool:
|
134 |
+
for csv_str in hf_tqdm(
|
135 |
+
pool.imap(
|
136 |
+
self._batch_csv,
|
137 |
+
[(offset, header, index, to_csv_kwargs) for offset in range(0, num_rows, batch_size)],
|
138 |
+
),
|
139 |
+
total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size,
|
140 |
+
unit="ba",
|
141 |
+
desc="Creating CSV from Arrow format",
|
142 |
+
):
|
143 |
+
written += file_obj.write(csv_str)
|
144 |
+
|
145 |
+
return written
|
llmeval-env/lib/python3.10/site-packages/datasets/io/generator.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, Optional
|
2 |
+
|
3 |
+
from .. import Features
|
4 |
+
from ..packaged_modules.generator.generator import Generator
|
5 |
+
from .abc import AbstractDatasetInputStream
|
6 |
+
|
7 |
+
|
8 |
+
class GeneratorDatasetInputStream(AbstractDatasetInputStream):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
generator: Callable,
|
12 |
+
features: Optional[Features] = None,
|
13 |
+
cache_dir: str = None,
|
14 |
+
keep_in_memory: bool = False,
|
15 |
+
streaming: bool = False,
|
16 |
+
gen_kwargs: Optional[dict] = None,
|
17 |
+
num_proc: Optional[int] = None,
|
18 |
+
**kwargs,
|
19 |
+
):
|
20 |
+
super().__init__(
|
21 |
+
features=features,
|
22 |
+
cache_dir=cache_dir,
|
23 |
+
keep_in_memory=keep_in_memory,
|
24 |
+
streaming=streaming,
|
25 |
+
num_proc=num_proc,
|
26 |
+
**kwargs,
|
27 |
+
)
|
28 |
+
self.builder = Generator(
|
29 |
+
cache_dir=cache_dir,
|
30 |
+
features=features,
|
31 |
+
generator=generator,
|
32 |
+
gen_kwargs=gen_kwargs,
|
33 |
+
**kwargs,
|
34 |
+
)
|
35 |
+
|
36 |
+
def read(self):
|
37 |
+
# Build iterable dataset
|
38 |
+
if self.streaming:
|
39 |
+
dataset = self.builder.as_streaming_dataset(split="train")
|
40 |
+
# Build regular (map-style) dataset
|
41 |
+
else:
|
42 |
+
download_config = None
|
43 |
+
download_mode = None
|
44 |
+
verification_mode = None
|
45 |
+
base_path = None
|
46 |
+
|
47 |
+
self.builder.download_and_prepare(
|
48 |
+
download_config=download_config,
|
49 |
+
download_mode=download_mode,
|
50 |
+
verification_mode=verification_mode,
|
51 |
+
base_path=base_path,
|
52 |
+
num_proc=self.num_proc,
|
53 |
+
)
|
54 |
+
dataset = self.builder.as_dataset(
|
55 |
+
split="train", verification_mode=verification_mode, in_memory=self.keep_in_memory
|
56 |
+
)
|
57 |
+
return dataset
|
llmeval-env/lib/python3.10/site-packages/datasets/io/json.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import multiprocessing
|
2 |
+
import os
|
3 |
+
from typing import BinaryIO, Optional, Union
|
4 |
+
|
5 |
+
import fsspec
|
6 |
+
|
7 |
+
from .. import Dataset, Features, NamedSplit, config
|
8 |
+
from ..formatting import query_table
|
9 |
+
from ..packaged_modules.json.json import Json
|
10 |
+
from ..utils import tqdm as hf_tqdm
|
11 |
+
from ..utils.typing import NestedDataStructureLike, PathLike
|
12 |
+
from .abc import AbstractDatasetReader
|
13 |
+
|
14 |
+
|
15 |
+
class JsonDatasetReader(AbstractDatasetReader):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
path_or_paths: NestedDataStructureLike[PathLike],
|
19 |
+
split: Optional[NamedSplit] = None,
|
20 |
+
features: Optional[Features] = None,
|
21 |
+
cache_dir: str = None,
|
22 |
+
keep_in_memory: bool = False,
|
23 |
+
streaming: bool = False,
|
24 |
+
field: Optional[str] = None,
|
25 |
+
num_proc: Optional[int] = None,
|
26 |
+
**kwargs,
|
27 |
+
):
|
28 |
+
super().__init__(
|
29 |
+
path_or_paths,
|
30 |
+
split=split,
|
31 |
+
features=features,
|
32 |
+
cache_dir=cache_dir,
|
33 |
+
keep_in_memory=keep_in_memory,
|
34 |
+
streaming=streaming,
|
35 |
+
num_proc=num_proc,
|
36 |
+
**kwargs,
|
37 |
+
)
|
38 |
+
self.field = field
|
39 |
+
path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths}
|
40 |
+
self.builder = Json(
|
41 |
+
cache_dir=cache_dir,
|
42 |
+
data_files=path_or_paths,
|
43 |
+
features=features,
|
44 |
+
field=field,
|
45 |
+
**kwargs,
|
46 |
+
)
|
47 |
+
|
48 |
+
def read(self):
|
49 |
+
# Build iterable dataset
|
50 |
+
if self.streaming:
|
51 |
+
dataset = self.builder.as_streaming_dataset(split=self.split)
|
52 |
+
# Build regular (map-style) dataset
|
53 |
+
else:
|
54 |
+
download_config = None
|
55 |
+
download_mode = None
|
56 |
+
verification_mode = None
|
57 |
+
base_path = None
|
58 |
+
|
59 |
+
self.builder.download_and_prepare(
|
60 |
+
download_config=download_config,
|
61 |
+
download_mode=download_mode,
|
62 |
+
verification_mode=verification_mode,
|
63 |
+
# try_from_hf_gcs=try_from_hf_gcs,
|
64 |
+
base_path=base_path,
|
65 |
+
num_proc=self.num_proc,
|
66 |
+
)
|
67 |
+
dataset = self.builder.as_dataset(
|
68 |
+
split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory
|
69 |
+
)
|
70 |
+
return dataset
|
71 |
+
|
72 |
+
|
73 |
+
class JsonDatasetWriter:
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
dataset: Dataset,
|
77 |
+
path_or_buf: Union[PathLike, BinaryIO],
|
78 |
+
batch_size: Optional[int] = None,
|
79 |
+
num_proc: Optional[int] = None,
|
80 |
+
storage_options: Optional[dict] = None,
|
81 |
+
**to_json_kwargs,
|
82 |
+
):
|
83 |
+
if num_proc is not None and num_proc <= 0:
|
84 |
+
raise ValueError(f"num_proc {num_proc} must be an integer > 0.")
|
85 |
+
|
86 |
+
self.dataset = dataset
|
87 |
+
self.path_or_buf = path_or_buf
|
88 |
+
self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
|
89 |
+
self.num_proc = num_proc
|
90 |
+
self.encoding = "utf-8"
|
91 |
+
self.storage_options = storage_options or {}
|
92 |
+
self.to_json_kwargs = to_json_kwargs
|
93 |
+
|
94 |
+
def write(self) -> int:
|
95 |
+
_ = self.to_json_kwargs.pop("path_or_buf", None)
|
96 |
+
orient = self.to_json_kwargs.pop("orient", "records")
|
97 |
+
lines = self.to_json_kwargs.pop("lines", True if orient == "records" else False)
|
98 |
+
if "index" not in self.to_json_kwargs and orient in ["split", "table"]:
|
99 |
+
self.to_json_kwargs["index"] = False
|
100 |
+
|
101 |
+
# Determine the default compression value based on self.path_or_buf type
|
102 |
+
default_compression = "infer" if isinstance(self.path_or_buf, (str, bytes, os.PathLike)) else None
|
103 |
+
compression = self.to_json_kwargs.pop("compression", default_compression)
|
104 |
+
|
105 |
+
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
|
106 |
+
raise NotImplementedError(f"`datasets` currently does not support {compression} compression")
|
107 |
+
|
108 |
+
if isinstance(self.path_or_buf, (str, bytes, os.PathLike)):
|
109 |
+
with fsspec.open(
|
110 |
+
self.path_or_buf, "wb", compression=compression, **(self.storage_options or {})
|
111 |
+
) as buffer:
|
112 |
+
written = self._write(file_obj=buffer, orient=orient, lines=lines, **self.to_json_kwargs)
|
113 |
+
else:
|
114 |
+
if compression:
|
115 |
+
raise NotImplementedError(
|
116 |
+
f"The compression parameter is not supported when writing to a buffer, but compression={compression}"
|
117 |
+
" was passed. Please provide a local path instead."
|
118 |
+
)
|
119 |
+
written = self._write(file_obj=self.path_or_buf, orient=orient, lines=lines, **self.to_json_kwargs)
|
120 |
+
return written
|
121 |
+
|
122 |
+
def _batch_json(self, args):
|
123 |
+
offset, orient, lines, to_json_kwargs = args
|
124 |
+
|
125 |
+
batch = query_table(
|
126 |
+
table=self.dataset.data,
|
127 |
+
key=slice(offset, offset + self.batch_size),
|
128 |
+
indices=self.dataset._indices,
|
129 |
+
)
|
130 |
+
json_str = batch.to_pandas().to_json(path_or_buf=None, orient=orient, lines=lines, **to_json_kwargs)
|
131 |
+
if not json_str.endswith("\n"):
|
132 |
+
json_str += "\n"
|
133 |
+
return json_str.encode(self.encoding)
|
134 |
+
|
135 |
+
def _write(
|
136 |
+
self,
|
137 |
+
file_obj: BinaryIO,
|
138 |
+
orient,
|
139 |
+
lines,
|
140 |
+
**to_json_kwargs,
|
141 |
+
) -> int:
|
142 |
+
"""Writes the pyarrow table as JSON lines to a binary file handle.
|
143 |
+
|
144 |
+
Caller is responsible for opening and closing the handle.
|
145 |
+
"""
|
146 |
+
written = 0
|
147 |
+
|
148 |
+
if self.num_proc is None or self.num_proc == 1:
|
149 |
+
for offset in hf_tqdm(
|
150 |
+
range(0, len(self.dataset), self.batch_size),
|
151 |
+
unit="ba",
|
152 |
+
desc="Creating json from Arrow format",
|
153 |
+
):
|
154 |
+
json_str = self._batch_json((offset, orient, lines, to_json_kwargs))
|
155 |
+
written += file_obj.write(json_str)
|
156 |
+
else:
|
157 |
+
num_rows, batch_size = len(self.dataset), self.batch_size
|
158 |
+
with multiprocessing.Pool(self.num_proc) as pool:
|
159 |
+
for json_str in hf_tqdm(
|
160 |
+
pool.imap(
|
161 |
+
self._batch_json,
|
162 |
+
[(offset, orient, lines, to_json_kwargs) for offset in range(0, num_rows, batch_size)],
|
163 |
+
),
|
164 |
+
total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size,
|
165 |
+
unit="ba",
|
166 |
+
desc="Creating json from Arrow format",
|
167 |
+
):
|
168 |
+
written += file_obj.write(json_str)
|
169 |
+
|
170 |
+
return written
|
llmeval-env/lib/python3.10/site-packages/datasets/io/parquet.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import BinaryIO, Optional, Union
|
3 |
+
|
4 |
+
import fsspec
|
5 |
+
import numpy as np
|
6 |
+
import pyarrow.parquet as pq
|
7 |
+
|
8 |
+
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
|
9 |
+
from ..features.features import FeatureType, _visit
|
10 |
+
from ..formatting import query_table
|
11 |
+
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
|
12 |
+
from ..packaged_modules.parquet.parquet import Parquet
|
13 |
+
from ..utils import tqdm as hf_tqdm
|
14 |
+
from ..utils.typing import NestedDataStructureLike, PathLike
|
15 |
+
from .abc import AbstractDatasetReader
|
16 |
+
|
17 |
+
|
18 |
+
def get_writer_batch_size(features: Features) -> Optional[int]:
|
19 |
+
"""
|
20 |
+
Get the writer_batch_size that defines the maximum row group size in the parquet files.
|
21 |
+
The default in `datasets` is 1,000 but we lower it to 100 for image datasets.
|
22 |
+
This allows to optimize random access to parquet file, since accessing 1 row requires
|
23 |
+
to read its entire row group.
|
24 |
+
|
25 |
+
This can be improved to get optimized size for querying/iterating
|
26 |
+
but at least it matches the dataset viewer expectations on HF.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
ds_config_info (`datasets.info.DatasetInfo`):
|
30 |
+
Dataset info from `datasets`.
|
31 |
+
Returns:
|
32 |
+
writer_batch_size (`Optional[int]`):
|
33 |
+
Writer batch size to pass to a dataset builder.
|
34 |
+
If `None`, then it will use the `datasets` default.
|
35 |
+
"""
|
36 |
+
|
37 |
+
batch_size = np.inf
|
38 |
+
|
39 |
+
def set_batch_size(feature: FeatureType) -> None:
|
40 |
+
nonlocal batch_size
|
41 |
+
if isinstance(feature, Image):
|
42 |
+
batch_size = min(batch_size, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS)
|
43 |
+
elif isinstance(feature, Audio):
|
44 |
+
batch_size = min(batch_size, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS)
|
45 |
+
elif isinstance(feature, Value) and feature.dtype == "binary":
|
46 |
+
batch_size = min(batch_size, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS)
|
47 |
+
|
48 |
+
_visit(features, set_batch_size)
|
49 |
+
|
50 |
+
return None if batch_size is np.inf else batch_size
|
51 |
+
|
52 |
+
|
53 |
+
class ParquetDatasetReader(AbstractDatasetReader):
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
path_or_paths: NestedDataStructureLike[PathLike],
|
57 |
+
split: Optional[NamedSplit] = None,
|
58 |
+
features: Optional[Features] = None,
|
59 |
+
cache_dir: str = None,
|
60 |
+
keep_in_memory: bool = False,
|
61 |
+
streaming: bool = False,
|
62 |
+
num_proc: Optional[int] = None,
|
63 |
+
**kwargs,
|
64 |
+
):
|
65 |
+
super().__init__(
|
66 |
+
path_or_paths,
|
67 |
+
split=split,
|
68 |
+
features=features,
|
69 |
+
cache_dir=cache_dir,
|
70 |
+
keep_in_memory=keep_in_memory,
|
71 |
+
streaming=streaming,
|
72 |
+
num_proc=num_proc,
|
73 |
+
**kwargs,
|
74 |
+
)
|
75 |
+
path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths}
|
76 |
+
hash = _PACKAGED_DATASETS_MODULES["parquet"][1]
|
77 |
+
self.builder = Parquet(
|
78 |
+
cache_dir=cache_dir,
|
79 |
+
data_files=path_or_paths,
|
80 |
+
features=features,
|
81 |
+
hash=hash,
|
82 |
+
**kwargs,
|
83 |
+
)
|
84 |
+
|
85 |
+
def read(self):
|
86 |
+
# Build iterable dataset
|
87 |
+
if self.streaming:
|
88 |
+
dataset = self.builder.as_streaming_dataset(split=self.split)
|
89 |
+
# Build regular (map-style) dataset
|
90 |
+
else:
|
91 |
+
download_config = None
|
92 |
+
download_mode = None
|
93 |
+
verification_mode = None
|
94 |
+
base_path = None
|
95 |
+
|
96 |
+
self.builder.download_and_prepare(
|
97 |
+
download_config=download_config,
|
98 |
+
download_mode=download_mode,
|
99 |
+
verification_mode=verification_mode,
|
100 |
+
base_path=base_path,
|
101 |
+
num_proc=self.num_proc,
|
102 |
+
)
|
103 |
+
dataset = self.builder.as_dataset(
|
104 |
+
split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory
|
105 |
+
)
|
106 |
+
return dataset
|
107 |
+
|
108 |
+
|
109 |
+
class ParquetDatasetWriter:
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
dataset: Dataset,
|
113 |
+
path_or_buf: Union[PathLike, BinaryIO],
|
114 |
+
batch_size: Optional[int] = None,
|
115 |
+
storage_options: Optional[dict] = None,
|
116 |
+
**parquet_writer_kwargs,
|
117 |
+
):
|
118 |
+
self.dataset = dataset
|
119 |
+
self.path_or_buf = path_or_buf
|
120 |
+
self.batch_size = batch_size or get_writer_batch_size(dataset.features)
|
121 |
+
self.storage_options = storage_options or {}
|
122 |
+
self.parquet_writer_kwargs = parquet_writer_kwargs
|
123 |
+
|
124 |
+
def write(self) -> int:
|
125 |
+
batch_size = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
|
126 |
+
|
127 |
+
if isinstance(self.path_or_buf, (str, bytes, os.PathLike)):
|
128 |
+
with fsspec.open(self.path_or_buf, "wb", **(self.storage_options or {})) as buffer:
|
129 |
+
written = self._write(file_obj=buffer, batch_size=batch_size, **self.parquet_writer_kwargs)
|
130 |
+
else:
|
131 |
+
written = self._write(file_obj=self.path_or_buf, batch_size=batch_size, **self.parquet_writer_kwargs)
|
132 |
+
return written
|
133 |
+
|
134 |
+
def _write(self, file_obj: BinaryIO, batch_size: int, **parquet_writer_kwargs) -> int:
|
135 |
+
"""Writes the pyarrow table as Parquet to a binary file handle.
|
136 |
+
|
137 |
+
Caller is responsible for opening and closing the handle.
|
138 |
+
"""
|
139 |
+
written = 0
|
140 |
+
_ = parquet_writer_kwargs.pop("path_or_buf", None)
|
141 |
+
schema = self.dataset.features.arrow_schema
|
142 |
+
|
143 |
+
writer = pq.ParquetWriter(file_obj, schema=schema, **parquet_writer_kwargs)
|
144 |
+
|
145 |
+
for offset in hf_tqdm(
|
146 |
+
range(0, len(self.dataset), batch_size),
|
147 |
+
unit="ba",
|
148 |
+
desc="Creating parquet from Arrow format",
|
149 |
+
):
|
150 |
+
batch = query_table(
|
151 |
+
table=self.dataset._data,
|
152 |
+
key=slice(offset, offset + batch_size),
|
153 |
+
indices=self.dataset._indices,
|
154 |
+
)
|
155 |
+
writer.write_table(batch)
|
156 |
+
written += batch.nbytes
|
157 |
+
writer.close()
|
158 |
+
return written
|
llmeval-env/lib/python3.10/site-packages/datasets/io/spark.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import pyspark
|
4 |
+
|
5 |
+
from .. import Features, NamedSplit
|
6 |
+
from ..download import DownloadMode
|
7 |
+
from ..packaged_modules.spark.spark import Spark
|
8 |
+
from .abc import AbstractDatasetReader
|
9 |
+
|
10 |
+
|
11 |
+
class SparkDatasetReader(AbstractDatasetReader):
|
12 |
+
"""A dataset reader that reads from a Spark DataFrame.
|
13 |
+
|
14 |
+
When caching, cache materialization is parallelized over Spark; an NFS that is accessible to the driver must be
|
15 |
+
provided. Streaming is not currently supported.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
df: pyspark.sql.DataFrame,
|
21 |
+
split: Optional[NamedSplit] = None,
|
22 |
+
features: Optional[Features] = None,
|
23 |
+
streaming: bool = True,
|
24 |
+
cache_dir: str = None,
|
25 |
+
keep_in_memory: bool = False,
|
26 |
+
working_dir: str = None,
|
27 |
+
load_from_cache_file: bool = True,
|
28 |
+
file_format: str = "arrow",
|
29 |
+
**kwargs,
|
30 |
+
):
|
31 |
+
super().__init__(
|
32 |
+
split=split,
|
33 |
+
features=features,
|
34 |
+
cache_dir=cache_dir,
|
35 |
+
keep_in_memory=keep_in_memory,
|
36 |
+
streaming=streaming,
|
37 |
+
**kwargs,
|
38 |
+
)
|
39 |
+
self._load_from_cache_file = load_from_cache_file
|
40 |
+
self._file_format = file_format
|
41 |
+
self.builder = Spark(
|
42 |
+
df=df,
|
43 |
+
features=features,
|
44 |
+
cache_dir=cache_dir,
|
45 |
+
working_dir=working_dir,
|
46 |
+
**kwargs,
|
47 |
+
)
|
48 |
+
|
49 |
+
def read(self):
|
50 |
+
if self.streaming:
|
51 |
+
return self.builder.as_streaming_dataset(split=self.split)
|
52 |
+
download_mode = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
|
53 |
+
self.builder.download_and_prepare(
|
54 |
+
download_mode=download_mode,
|
55 |
+
file_format=self._file_format,
|
56 |
+
)
|
57 |
+
return self.builder.as_dataset(split=self.split)
|