Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/chi2.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/fishersnedecor.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/independent.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/lkj_cholesky.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/multinomial.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/normal.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/poisson.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/futures/__init__.py +318 -0
- env-llmeval/lib/python3.10/site-packages/torch/futures/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/__init__.py +89 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/__init__.pyi +11 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/_compatibility.py +34 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/_pytree.py +69 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/_symbolic_trace.py +1163 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/annotate.py +21 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/config.py +6 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/graph.py +1630 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/graph_module.py +867 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/immutable_collections.py +54 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/interpreter.py +505 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/node.py +696 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/operator_schemas.py +440 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/passes/graph_drawer.py +418 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/proxy.py +563 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/subgraph_rewriter.py +343 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/tensor_type.py +104 -0
- env-llmeval/lib/python3.10/site-packages/torch/fx/traceback.py +100 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__init__.py +87 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/_numeric_suite.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/_numeric_suite_fx.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/_quantized_conversions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/fake_quantize.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/fuse_modules.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/fuser_method_mappings.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/observer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/qconfig.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/quant_type.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/quantization_mappings.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/quantize.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/quantize_fx.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/quantize_jit.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/stubs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/_numeric_suite.py +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/_numeric_suite_fx.py +26 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/_quantized_conversions.py +132 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/fake_quantize.py +32 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/fuse_modules.py +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/quantization/fuser_method_mappings.py +15 -0
env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/chi2.cpython-310.pyc
ADDED
Binary file (1.53 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/fishersnedecor.cpython-310.pyc
ADDED
Binary file (3.52 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/independent.cpython-310.pyc
ADDED
Binary file (4.88 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/lkj_cholesky.cpython-310.pyc
ADDED
Binary file (4.77 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/multinomial.cpython-310.pyc
ADDED
Binary file (5.65 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/normal.cpython-310.pyc
ADDED
Binary file (4.38 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/distributions/__pycache__/poisson.cpython-310.pyc
ADDED
Binary file (2.98 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/futures/__init__.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import cast, Callable, Generic, List, Optional, Type, TypeVar, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
__all__ = ['Future', 'collect_all', 'wait_all']
|
8 |
+
|
9 |
+
T = TypeVar("T")
|
10 |
+
S = TypeVar("S")
|
11 |
+
|
12 |
+
|
13 |
+
class _PyFutureMeta(type(torch._C.Future), type(Generic)): # type: ignore[misc, no-redef]
|
14 |
+
pass
|
15 |
+
|
16 |
+
|
17 |
+
class Future(torch._C.Future, Generic[T], metaclass=_PyFutureMeta):
|
18 |
+
r"""
|
19 |
+
Wrapper around a ``torch._C.Future`` which encapsulates an asynchronous
|
20 |
+
execution of a callable, e.g. :meth:`~torch.distributed.rpc.rpc_async`. It
|
21 |
+
also exposes a set of APIs to add callback functions and set results.
|
22 |
+
|
23 |
+
.. warning:: GPU support is a beta feature, subject to changes.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, *, devices: Optional[List[Union[int, str, torch.device]]] = None):
|
27 |
+
r"""
|
28 |
+
Create an empty unset ``Future``. If the future is intended to hold
|
29 |
+
values containing CUDA tensors, (a superset of) their CUDA devices must
|
30 |
+
be specified at construction. (This is only supported if
|
31 |
+
``torch.cuda.is_available()`` returns ``True``). This is needed to
|
32 |
+
ensure proper CUDA stream synchronization. The child futures, returned
|
33 |
+
by the ``then`` method, will inherit these devices.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
devices(``List[Union[int, str, torch.device]]``, optional): the set
|
37 |
+
of devices on which tensors contained in this future's value are
|
38 |
+
allowed to reside and on which callbacks are allowed to operate.
|
39 |
+
"""
|
40 |
+
if devices is None:
|
41 |
+
devices = []
|
42 |
+
super().__init__([torch.device(d) for d in devices])
|
43 |
+
|
44 |
+
def done(self) -> bool:
|
45 |
+
r"""
|
46 |
+
Return ``True`` if this ``Future`` is done. A ``Future`` is done if it
|
47 |
+
has a result or an exception.
|
48 |
+
|
49 |
+
If the value contains tensors that reside on GPUs, ``Future.done()``
|
50 |
+
will return ``True`` even if the asynchronous kernels that are
|
51 |
+
populating those tensors haven't yet completed running on the device,
|
52 |
+
because at such stage the result is already usable, provided one
|
53 |
+
performs the appropriate synchronizations (see :meth:`wait`).
|
54 |
+
"""
|
55 |
+
return super().done()
|
56 |
+
|
57 |
+
def wait(self) -> T:
|
58 |
+
r"""
|
59 |
+
Block until the value of this ``Future`` is ready.
|
60 |
+
|
61 |
+
If the value contains tensors that reside on GPUs, then an additional
|
62 |
+
synchronization is performed with the kernels (executing on the device)
|
63 |
+
which may be asynchronously populating those tensors. Such sync is
|
64 |
+
non-blocking, which means that ``wait()`` will insert the necessary
|
65 |
+
instructions in the current streams to ensure that further operations
|
66 |
+
enqueued on those streams will be properly scheduled after the async
|
67 |
+
kernels but, once that is done, ``wait()`` will return, even if those
|
68 |
+
kernels are still running. No further synchronization is required when
|
69 |
+
accessing and using the values, as long as one doesn't change streams.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
The value held by this ``Future``. If the function (callback or RPC)
|
73 |
+
creating the value has thrown an error, this ``wait`` method will
|
74 |
+
also throw an error.
|
75 |
+
"""
|
76 |
+
return super().wait()
|
77 |
+
|
78 |
+
def value(self) -> T:
|
79 |
+
r"""
|
80 |
+
Obtain the value of an already-completed future.
|
81 |
+
|
82 |
+
This method should only be called after a call to :meth:`wait` has
|
83 |
+
completed, or inside a callback function passed to :meth:`then`. In
|
84 |
+
other cases this ``Future`` may not yet hold a value and calling
|
85 |
+
``value()`` could fail.
|
86 |
+
|
87 |
+
If the value contains tensors that reside on GPUs, then this method will
|
88 |
+
*not* perform any additional synchronization. This should be done
|
89 |
+
beforehand, separately, through a call to :meth:`wait` (except within
|
90 |
+
callbacks, for which it's already being taken care of by :meth:`then`).
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
The value held by this ``Future``. If the function (callback or RPC)
|
94 |
+
creating the value has thrown an error, this ``value()`` method will
|
95 |
+
also throw an error.
|
96 |
+
"""
|
97 |
+
return super().value()
|
98 |
+
|
99 |
+
def then(self, callback: Callable[[Future[T]], S]) -> Future[S]:
|
100 |
+
r"""
|
101 |
+
Append the given callback function to this ``Future``, which will be run
|
102 |
+
when the ``Future`` is completed. Multiple callbacks can be added to
|
103 |
+
the same ``Future``, but the order in which they will be executed cannot
|
104 |
+
be guaranteed (to enforce a certain order consider chaining:
|
105 |
+
``fut.then(cb1).then(cb2)``). The callback must take one argument, which
|
106 |
+
is the reference to this ``Future``. The callback function can use the
|
107 |
+
:meth:`value` method to get the value. Note that if this ``Future`` is
|
108 |
+
already completed, the given callback will be run immediately inline.
|
109 |
+
|
110 |
+
If the ``Future``'s value contains tensors that reside on GPUs, the
|
111 |
+
callback might be invoked while the async kernels that are populating
|
112 |
+
those tensors haven't yet finished executing on the device. However, the
|
113 |
+
callback will be invoked with some dedicated streams set as current
|
114 |
+
(fetched from a global pool) which will be synchronized with those
|
115 |
+
kernels. Hence any operation performed by the callback on these tensors
|
116 |
+
will be scheduled on the device after the kernels complete. In other
|
117 |
+
words, as long as the callback doesn't switch streams, it can safely
|
118 |
+
manipulate the result without any additional synchronization. This is
|
119 |
+
similar to the non-blocking behavior of :meth:`wait`.
|
120 |
+
|
121 |
+
Similarly, if the callback returns a value that contains tensors that
|
122 |
+
reside on a GPU, it can do so even if the kernels that are producing
|
123 |
+
these tensors are still running on the device, as long as the callback
|
124 |
+
didn't change streams during its execution. If one wants to change
|
125 |
+
streams, one must be careful to re-synchronize them with the original
|
126 |
+
streams, that is, those that were current when the callback was invoked.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
callback(``Callable``): a ``Callable`` that takes this ``Future`` as
|
130 |
+
the only argument.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
A new ``Future`` object that holds the return value of the
|
134 |
+
``callback`` and will be marked as completed when the given
|
135 |
+
``callback`` finishes.
|
136 |
+
|
137 |
+
.. note:: Note that if the callback function throws, either
|
138 |
+
through the original future being completed with an exception and
|
139 |
+
calling ``fut.wait()``, or through other code in the callback, the
|
140 |
+
future returned by ``then`` will be marked appropriately with the
|
141 |
+
encountered error. However, if this callback later completes
|
142 |
+
additional futures, those futures are not marked as completed with
|
143 |
+
an error and the user is responsible for handling completion/waiting
|
144 |
+
on those futures independently.
|
145 |
+
|
146 |
+
Example::
|
147 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_FUTURES)
|
148 |
+
>>> def callback(fut):
|
149 |
+
... print(f"RPC return value is {fut.wait()}.")
|
150 |
+
>>> fut = torch.futures.Future()
|
151 |
+
>>> # The inserted callback will print the return value when
|
152 |
+
>>> # receiving the response from "worker1"
|
153 |
+
>>> cb_fut = fut.then(callback)
|
154 |
+
>>> chain_cb_fut = cb_fut.then(
|
155 |
+
... lambda x : print(f"Chained cb done. {x.wait()}")
|
156 |
+
... )
|
157 |
+
>>> fut.set_result(5)
|
158 |
+
RPC return value is 5.
|
159 |
+
Chained cb done. None
|
160 |
+
"""
|
161 |
+
return cast(Future[S], super().then(callback))
|
162 |
+
|
163 |
+
def add_done_callback(self, callback: Callable[[Future[T]], None]) -> None:
|
164 |
+
r"""
|
165 |
+
Append the given callback function to this ``Future``, which will be run
|
166 |
+
when the ``Future`` is completed. Multiple callbacks can be added to
|
167 |
+
the same ``Future``, but the order in which they will be executed cannot
|
168 |
+
be guaranteed. The callback must take one argument, which is the
|
169 |
+
reference to this ``Future``. The callback function can use the
|
170 |
+
:meth:`value` method to get the value. Note that if this ``Future`` is
|
171 |
+
already completed, the given callback will be run inline.
|
172 |
+
|
173 |
+
We recommend that you use the :meth:`then` method as it provides a way
|
174 |
+
to synchronize after your callback has completed. ``add_done_callback``
|
175 |
+
can be cheaper if your callback does not return anything. But both
|
176 |
+
:meth:`then` and ``add_done_callback`` use the same callback
|
177 |
+
registration API under the hood.
|
178 |
+
|
179 |
+
With respect to GPU tensors, this method behaves in the same way as
|
180 |
+
:meth:`then`.
|
181 |
+
|
182 |
+
Args:
|
183 |
+
callback(``Future``): a ``Callable`` that takes in one argument,
|
184 |
+
which is the reference to this ``Future``.
|
185 |
+
|
186 |
+
.. note:: Note that if the callback function throws, either
|
187 |
+
through the original future being completed with an exception and
|
188 |
+
calling ``fut.wait()``, or through other code in the callback,
|
189 |
+
error handling must be carefully taken care of. For example, if
|
190 |
+
this callback later completes additional futures, those futures are
|
191 |
+
not marked as completed with an error and the user is responsible
|
192 |
+
for handling completion/waiting on those futures independently.
|
193 |
+
|
194 |
+
Example::
|
195 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_FUTURES)
|
196 |
+
>>> def callback(fut):
|
197 |
+
... print("This will run after the future has finished.")
|
198 |
+
... print(fut.wait())
|
199 |
+
>>> fut = torch.futures.Future()
|
200 |
+
>>> fut.add_done_callback(callback)
|
201 |
+
>>> fut.set_result(5)
|
202 |
+
This will run after the future has finished.
|
203 |
+
5
|
204 |
+
"""
|
205 |
+
super().add_done_callback(callback)
|
206 |
+
|
207 |
+
def set_result(self, result: T) -> None:
|
208 |
+
r"""
|
209 |
+
Set the result for this ``Future``, which will mark this ``Future`` as
|
210 |
+
completed and trigger all attached callbacks. Note that a ``Future``
|
211 |
+
cannot be marked completed twice.
|
212 |
+
|
213 |
+
If the result contains tensors that reside on GPUs, this method can be
|
214 |
+
called even if the asynchronous kernels that are populating those
|
215 |
+
tensors haven't yet completed running on the device, provided that the
|
216 |
+
streams on which those kernels were enqueued are set as the current ones
|
217 |
+
when this method is called. Put simply, it's safe to call this method
|
218 |
+
immediately after launching those kernels, without any additional
|
219 |
+
synchronization, as long as one doesn't change streams in between. This
|
220 |
+
method will record events on all the relevant current streams and will
|
221 |
+
use them to ensure proper scheduling for all the consumers of this
|
222 |
+
``Future``.
|
223 |
+
|
224 |
+
Args:
|
225 |
+
result (object): the result object of this ``Future``.
|
226 |
+
|
227 |
+
Example::
|
228 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_FUTURES)
|
229 |
+
>>> import threading
|
230 |
+
>>> import time
|
231 |
+
>>> def slow_set_future(fut, value):
|
232 |
+
... time.sleep(0.5)
|
233 |
+
... fut.set_result(value)
|
234 |
+
>>> fut = torch.futures.Future()
|
235 |
+
>>> t = threading.Thread(
|
236 |
+
... target=slow_set_future,
|
237 |
+
... args=(fut, torch.ones(2) * 3)
|
238 |
+
... )
|
239 |
+
>>> t.start()
|
240 |
+
>>> print(fut.wait())
|
241 |
+
tensor([3., 3.])
|
242 |
+
>>> t.join()
|
243 |
+
"""
|
244 |
+
super().set_result(result)
|
245 |
+
|
246 |
+
def set_exception(self, result: T) -> None:
|
247 |
+
r"""
|
248 |
+
Set an exception for this ``Future``, which will mark this ``Future`` as
|
249 |
+
completed with an error and trigger all attached callbacks. Note that
|
250 |
+
when calling wait()/value() on this ``Future``, the exception set here
|
251 |
+
will be raised inline.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
result (BaseException): the exception for this ``Future``.
|
255 |
+
|
256 |
+
Example::
|
257 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_FUTURES)
|
258 |
+
>>> fut = torch.futures.Future()
|
259 |
+
>>> fut.set_exception(ValueError("foo"))
|
260 |
+
>>> fut.wait()
|
261 |
+
Traceback (most recent call last):
|
262 |
+
...
|
263 |
+
ValueError: foo
|
264 |
+
"""
|
265 |
+
assert isinstance(result, Exception), f"{result} is of type {type(result)}, not an Exception."
|
266 |
+
|
267 |
+
def raise_error(fut_result):
|
268 |
+
raise fut_result
|
269 |
+
|
270 |
+
super()._set_unwrap_func(raise_error)
|
271 |
+
self.set_result(result) # type: ignore[arg-type]
|
272 |
+
|
273 |
+
|
274 |
+
def collect_all(futures: List[Future]) -> Future[List[Future]]:
|
275 |
+
r"""
|
276 |
+
Collects the provided :class:`~torch.futures.Future` objects into a single
|
277 |
+
combined :class:`~torch.futures.Future` that is completed when all of the
|
278 |
+
sub-futures are completed.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
futures (list): a list of :class:`~torch.futures.Future` objects.
|
282 |
+
|
283 |
+
Returns:
|
284 |
+
Returns a :class:`~torch.futures.Future` object to a list of the passed
|
285 |
+
in Futures.
|
286 |
+
|
287 |
+
Example::
|
288 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_FUTURES)
|
289 |
+
>>> fut0 = torch.futures.Future()
|
290 |
+
>>> fut1 = torch.futures.Future()
|
291 |
+
>>> fut = torch.futures.collect_all([fut0, fut1])
|
292 |
+
>>> fut0.set_result(0)
|
293 |
+
>>> fut1.set_result(1)
|
294 |
+
>>> fut_list = fut.wait()
|
295 |
+
>>> print(f"fut0 result = {fut_list[0].wait()}")
|
296 |
+
fut0 result = 0
|
297 |
+
>>> print(f"fut1 result = {fut_list[1].wait()}")
|
298 |
+
fut1 result = 1
|
299 |
+
"""
|
300 |
+
return cast(Future[List[Future]], torch._C._collect_all(cast(List[torch._C.Future], futures)))
|
301 |
+
|
302 |
+
|
303 |
+
def wait_all(futures: List[Future]) -> List:
|
304 |
+
r"""
|
305 |
+
Waits for all provided futures to be complete, and returns
|
306 |
+
the list of completed values. If any of the futures encounters an error,
|
307 |
+
the method will exit early and report the error not waiting for other
|
308 |
+
futures to complete.
|
309 |
+
|
310 |
+
Args:
|
311 |
+
futures (list): a list of :class:`~torch.futures.Future` object.
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
A list of the completed :class:`~torch.futures.Future` results. This
|
315 |
+
method will throw an error if ``wait`` on any
|
316 |
+
:class:`~torch.futures.Future` throws.
|
317 |
+
"""
|
318 |
+
return [fut.wait() for fut in torch._C._collect_all(cast(List[torch._C.Future], futures)).wait()]
|
env-llmeval/lib/python3.10/site-packages/torch/futures/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (15.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/fx/__init__.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r'''
|
2 |
+
FX is a toolkit for developers to use to transform ``nn.Module``
|
3 |
+
instances. FX consists of three main components: a **symbolic tracer,**
|
4 |
+
an **intermediate representation**, and **Python code generation**. A
|
5 |
+
demonstration of these components in action:
|
6 |
+
|
7 |
+
::
|
8 |
+
|
9 |
+
import torch
|
10 |
+
# Simple module for demonstration
|
11 |
+
class MyModule(torch.nn.Module):
|
12 |
+
def __init__(self):
|
13 |
+
super().__init__()
|
14 |
+
self.param = torch.nn.Parameter(torch.rand(3, 4))
|
15 |
+
self.linear = torch.nn.Linear(4, 5)
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
return self.linear(x + self.param).clamp(min=0.0, max=1.0)
|
19 |
+
|
20 |
+
module = MyModule()
|
21 |
+
|
22 |
+
from torch.fx import symbolic_trace
|
23 |
+
# Symbolic tracing frontend - captures the semantics of the module
|
24 |
+
symbolic_traced : torch.fx.GraphModule = symbolic_trace(module)
|
25 |
+
|
26 |
+
# High-level intermediate representation (IR) - Graph representation
|
27 |
+
print(symbolic_traced.graph)
|
28 |
+
"""
|
29 |
+
graph():
|
30 |
+
%x : [num_users=1] = placeholder[target=x]
|
31 |
+
%param : [num_users=1] = get_attr[target=param]
|
32 |
+
%add : [num_users=1] = call_function[target=operator.add](args = (%x, %param), kwargs = {})
|
33 |
+
%linear : [num_users=1] = call_module[target=linear](args = (%add,), kwargs = {})
|
34 |
+
%clamp : [num_users=1] = call_method[target=clamp](args = (%linear,), kwargs = {min: 0.0, max: 1.0})
|
35 |
+
return clamp
|
36 |
+
"""
|
37 |
+
|
38 |
+
# Code generation - valid Python code
|
39 |
+
print(symbolic_traced.code)
|
40 |
+
"""
|
41 |
+
def forward(self, x):
|
42 |
+
param = self.param
|
43 |
+
add = x + param; x = param = None
|
44 |
+
linear = self.linear(add); add = None
|
45 |
+
clamp = linear.clamp(min = 0.0, max = 1.0); linear = None
|
46 |
+
return clamp
|
47 |
+
"""
|
48 |
+
|
49 |
+
The **symbolic tracer** performs "symbolic execution" of the Python
|
50 |
+
code. It feeds fake values, called Proxies, through the code. Operations
|
51 |
+
on theses Proxies are recorded. More information about symbolic tracing
|
52 |
+
can be found in the :func:`symbolic_trace` and :class:`Tracer`
|
53 |
+
documentation.
|
54 |
+
|
55 |
+
The **intermediate representation** is the container for the operations
|
56 |
+
that were recorded during symbolic tracing. It consists of a list of
|
57 |
+
Nodes that represent function inputs, callsites (to functions, methods,
|
58 |
+
or :class:`torch.nn.Module` instances), and return values. More information
|
59 |
+
about the IR can be found in the documentation for :class:`Graph`. The
|
60 |
+
IR is the format on which transformations are applied.
|
61 |
+
|
62 |
+
**Python code generation** is what makes FX a Python-to-Python (or
|
63 |
+
Module-to-Module) transformation toolkit. For each Graph IR, we can
|
64 |
+
create valid Python code matching the Graph's semantics. This
|
65 |
+
functionality is wrapped up in :class:`GraphModule`, which is a
|
66 |
+
:class:`torch.nn.Module` instance that holds a :class:`Graph` as well as a
|
67 |
+
``forward`` method generated from the Graph.
|
68 |
+
|
69 |
+
Taken together, this pipeline of components (symbolic tracing ->
|
70 |
+
intermediate representation -> transforms -> Python code generation)
|
71 |
+
constitutes the Python-to-Python transformation pipeline of FX. In
|
72 |
+
addition, these components can be used separately. For example,
|
73 |
+
symbolic tracing can be used in isolation to capture a form of
|
74 |
+
the code for analysis (and not transformation) purposes. Code
|
75 |
+
generation can be used for programmatically generating models, for
|
76 |
+
example from a config file. There are many uses for FX!
|
77 |
+
|
78 |
+
Several example transformations can be found at the
|
79 |
+
`examples <https://github.com/pytorch/examples/tree/master/fx>`__
|
80 |
+
repository.
|
81 |
+
'''
|
82 |
+
|
83 |
+
from .graph_module import GraphModule
|
84 |
+
from ._symbolic_trace import symbolic_trace, Tracer, wrap, PH, ProxyableClassMeta
|
85 |
+
from .graph import Graph, CodeGen
|
86 |
+
from .node import Node, map_arg, has_side_effect
|
87 |
+
from .proxy import Proxy
|
88 |
+
from .interpreter import Interpreter as Interpreter, Transformer as Transformer
|
89 |
+
from .subgraph_rewriter import replace_pattern
|
env-llmeval/lib/python3.10/site-packages/torch/fx/__init__.pyi
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._symbolic_trace import (
|
2 |
+
symbolic_trace as symbolic_trace,
|
3 |
+
Tracer as Tracer,
|
4 |
+
wrap as wrap,
|
5 |
+
)
|
6 |
+
from .graph import Graph as Graph
|
7 |
+
from .graph_module import GraphModule as GraphModule
|
8 |
+
from .interpreter import Interpreter as Interpreter, Transformer as Transformer
|
9 |
+
from .node import has_side_effect as has_side_effect, map_arg as map_arg, Node as Node
|
10 |
+
from .proxy import Proxy as Proxy
|
11 |
+
from .subgraph_rewriter import replace_pattern as replace_pattern
|
env-llmeval/lib/python3.10/site-packages/torch/fx/_compatibility.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict
|
2 |
+
import textwrap
|
3 |
+
|
4 |
+
_BACK_COMPAT_OBJECTS : Dict[Any, None] = {}
|
5 |
+
_MARKED_WITH_COMPATIBILITY : Dict[Any, None] = {}
|
6 |
+
|
7 |
+
def compatibility(is_backward_compatible : bool):
|
8 |
+
if is_backward_compatible:
|
9 |
+
|
10 |
+
def mark_back_compat(fn):
|
11 |
+
docstring = textwrap.dedent(getattr(fn, '__doc__', None) or '')
|
12 |
+
docstring += """
|
13 |
+
.. note::
|
14 |
+
Backwards-compatibility for this API is guaranteed.
|
15 |
+
"""
|
16 |
+
fn.__doc__ = docstring
|
17 |
+
_BACK_COMPAT_OBJECTS.setdefault(fn)
|
18 |
+
_MARKED_WITH_COMPATIBILITY.setdefault(fn)
|
19 |
+
return fn
|
20 |
+
|
21 |
+
return mark_back_compat
|
22 |
+
else:
|
23 |
+
|
24 |
+
def mark_not_back_compat(fn):
|
25 |
+
docstring = textwrap.dedent(getattr(fn, '__doc__', None) or '')
|
26 |
+
docstring += """
|
27 |
+
.. warning::
|
28 |
+
This API is experimental and is *NOT* backward-compatible.
|
29 |
+
"""
|
30 |
+
fn.__doc__ = docstring
|
31 |
+
_MARKED_WITH_COMPATIBILITY.setdefault(fn)
|
32 |
+
return fn
|
33 |
+
|
34 |
+
return mark_not_back_compat
|
env-llmeval/lib/python3.10/site-packages/torch/fx/_pytree.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
from typing import Any, Callable, Dict, List, NamedTuple, Tuple, Type, Optional
|
3 |
+
|
4 |
+
from torch.utils._pytree import LeafSpec, PyTree, TreeSpec
|
5 |
+
|
6 |
+
FlattenFuncSpec = Callable[[PyTree, TreeSpec], List]
|
7 |
+
|
8 |
+
FlattenFuncExactMatchSpec = Callable[[PyTree, TreeSpec], bool]
|
9 |
+
|
10 |
+
SUPPORTED_NODES: Dict[Type[Any], FlattenFuncSpec] = {}
|
11 |
+
|
12 |
+
SUPPORTED_NODES_EXACT_MATCH: Dict[Type[Any], Optional[FlattenFuncExactMatchSpec]] = {}
|
13 |
+
|
14 |
+
def register_pytree_flatten_spec(
|
15 |
+
cls: Type[Any],
|
16 |
+
flatten_fn_spec: FlattenFuncSpec,
|
17 |
+
flatten_fn_exact_match_spec: Optional[FlattenFuncExactMatchSpec] = None
|
18 |
+
) -> None:
|
19 |
+
SUPPORTED_NODES[cls] = flatten_fn_spec
|
20 |
+
SUPPORTED_NODES_EXACT_MATCH[cls] = flatten_fn_exact_match_spec
|
21 |
+
|
22 |
+
def tree_flatten_spec(pytree: PyTree, spec: TreeSpec, exact_structural_match=False) -> List[Any]:
|
23 |
+
if isinstance(spec, LeafSpec):
|
24 |
+
return [pytree]
|
25 |
+
if spec.type not in SUPPORTED_NODES:
|
26 |
+
raise RuntimeError(
|
27 |
+
f"{type(pytree)} does not have a flatten_fn_spec associated with it. Please register one with "
|
28 |
+
"torch.fx._pytree.register_pytree_flatten_spec. If you have serialized your model, make "
|
29 |
+
"sure that any custom pytrees have been registered before loading it.")
|
30 |
+
flatten_fn_spec = SUPPORTED_NODES[spec.type]
|
31 |
+
child_pytrees = flatten_fn_spec(pytree, spec)
|
32 |
+
if exact_structural_match:
|
33 |
+
flatten_fn_exact_match_spec = SUPPORTED_NODES_EXACT_MATCH[spec.type]
|
34 |
+
if flatten_fn_exact_match_spec and not flatten_fn_exact_match_spec(pytree, spec):
|
35 |
+
raise RuntimeError(f"Cannot flatten pytree {pytree}, given spec: {spec}")
|
36 |
+
result = []
|
37 |
+
for child, child_spec in zip(child_pytrees, spec.children_specs):
|
38 |
+
flat = tree_flatten_spec(child, child_spec, exact_structural_match)
|
39 |
+
result += flat
|
40 |
+
return result
|
41 |
+
|
42 |
+
def _dict_flatten_spec(d: Dict[Any, Any], spec: TreeSpec) -> List[Any]:
|
43 |
+
return [d[k] for k in spec.context]
|
44 |
+
|
45 |
+
def _list_flatten_spec(d: List[Any], spec: TreeSpec) -> List[Any]:
|
46 |
+
return [d[i] for i in range(len(spec.children_specs))]
|
47 |
+
|
48 |
+
def _tuple_flatten_spec(d: Tuple[Any], spec: TreeSpec) -> List[Any]:
|
49 |
+
return [d[i] for i in range(len(spec.children_specs))]
|
50 |
+
|
51 |
+
def _namedtuple_flatten_spec(d: NamedTuple, spec: TreeSpec) -> List[Any]:
|
52 |
+
return [d[i] for i in range(len(spec.children_specs))]
|
53 |
+
|
54 |
+
def _dict_flatten_spec_exact_match(d: Dict[Any, Any], spec: TreeSpec) -> bool:
|
55 |
+
return len(d) == len(spec.context)
|
56 |
+
|
57 |
+
def _list_flatten_spec_exact_match(d: List[Any], spec: TreeSpec) -> bool:
|
58 |
+
return len(d) == len(spec.children_specs)
|
59 |
+
|
60 |
+
def _tuple_flatten_spec_exact_match(d: Tuple[Any], spec: TreeSpec) -> bool:
|
61 |
+
return len(d) == len(spec.children_specs)
|
62 |
+
|
63 |
+
def _namedtuple_flatten_spec_exact_match(d: NamedTuple, spec: TreeSpec) -> bool:
|
64 |
+
return len(d) == len(spec.children_specs)
|
65 |
+
|
66 |
+
register_pytree_flatten_spec(dict, _dict_flatten_spec, _dict_flatten_spec_exact_match)
|
67 |
+
register_pytree_flatten_spec(list, _list_flatten_spec, _list_flatten_spec_exact_match)
|
68 |
+
register_pytree_flatten_spec(tuple, _tuple_flatten_spec, _tuple_flatten_spec_exact_match)
|
69 |
+
register_pytree_flatten_spec(namedtuple, _namedtuple_flatten_spec, _tuple_flatten_spec_exact_match) # type: ignore[arg-type]
|
env-llmeval/lib/python3.10/site-packages/torch/fx/_symbolic_trace.py
ADDED
@@ -0,0 +1,1163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import builtins
|
2 |
+
import copy
|
3 |
+
import functools
|
4 |
+
import inspect
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import warnings
|
8 |
+
import collections
|
9 |
+
from itertools import chain
|
10 |
+
from types import CodeType, FunctionType, ModuleType
|
11 |
+
from typing import (
|
12 |
+
Any,
|
13 |
+
Callable,
|
14 |
+
Dict,
|
15 |
+
List,
|
16 |
+
NamedTuple,
|
17 |
+
Optional,
|
18 |
+
Set,
|
19 |
+
Tuple,
|
20 |
+
Type,
|
21 |
+
Union,
|
22 |
+
)
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils._pytree as pytree
|
26 |
+
from torch._C import ScriptObject # type: ignore[attr-defined]
|
27 |
+
|
28 |
+
from ._compatibility import compatibility
|
29 |
+
from .graph import _PyTreeCodeGen, _PyTreeInfo, Graph
|
30 |
+
from .graph_module import GraphModule
|
31 |
+
from .node import Argument, base_types, map_aggregate
|
32 |
+
from .proxy import ParameterProxy, Proxy, TracerBase, Scope, ScopeContextManager
|
33 |
+
|
34 |
+
HAS_VARSTUFF = inspect.CO_VARARGS | inspect.CO_VARKEYWORDS
|
35 |
+
|
36 |
+
# These need to run in global scope to handle nested calls correctly
|
37 |
+
_orig_module_call: Callable = torch.nn.Module.__call__
|
38 |
+
_orig_module_getattr: Callable = torch.nn.Module.__getattr__
|
39 |
+
|
40 |
+
_proxyable_classes: Dict[Type, None] = {}
|
41 |
+
|
42 |
+
_is_fx_tracing_flag = False
|
43 |
+
|
44 |
+
|
45 |
+
def is_fx_tracing():
|
46 |
+
return _is_fx_tracing_flag
|
47 |
+
|
48 |
+
@compatibility(is_backward_compatible=True)
|
49 |
+
class ProxyableClassMeta(type):
|
50 |
+
"""
|
51 |
+
ProxyableClassMeta allows you to make construction of a given Python class
|
52 |
+
symbolically traceable. For example::
|
53 |
+
|
54 |
+
import torch
|
55 |
+
import torch.fx
|
56 |
+
|
57 |
+
class TensorPair(metaclass=torch.fx.ProxyableClassMeta):
|
58 |
+
def __init__(self, left, right):
|
59 |
+
self.left, self.right = left, right
|
60 |
+
|
61 |
+
def add(self, other):
|
62 |
+
l = self.left + other.left
|
63 |
+
r = self.right + other.right
|
64 |
+
return TensorPair(l, r)
|
65 |
+
|
66 |
+
def mul(self, other):
|
67 |
+
l = self.left * other.left
|
68 |
+
r = self.right * other.right
|
69 |
+
return TensorPair(l, r)
|
70 |
+
|
71 |
+
def use_tensor_pair_ctor(x : TensorPair, y : torch.Tensor):
|
72 |
+
s = x.add(TensorPair(y, y))
|
73 |
+
return s.mul(x)
|
74 |
+
|
75 |
+
x = TensorPair(torch.randn(5, 3), torch.randn(5, 3))
|
76 |
+
y = torch.randn(5, 3)
|
77 |
+
ref_out = use_tensor_pair_ctor(x, y)
|
78 |
+
|
79 |
+
traced = torch.fx.symbolic_trace(use_tensor_pair_ctor)
|
80 |
+
print(traced.code)
|
81 |
+
'''
|
82 |
+
def forward(self, x : __main___TensorPair, y : torch.Tensor):
|
83 |
+
tensor_pair = __main___TensorPair(y, y); y = None
|
84 |
+
add = x.add(tensor_pair); tensor_pair = None
|
85 |
+
mul = add.mul(x); add = x = None
|
86 |
+
return mul
|
87 |
+
'''
|
88 |
+
|
89 |
+
From this example, we can see that construction of a class (``TensorPair``)
|
90 |
+
defined with ``ProxyableClassMeta`` as metaclass can be recorded in symbolic
|
91 |
+
tracing.
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(cls, name, bases, attrs):
|
95 |
+
_proxyable_classes.setdefault(cls)
|
96 |
+
super().__init__(name, bases, attrs)
|
97 |
+
|
98 |
+
def __call__(cls, *args, **kwargs):
|
99 |
+
instance = cls.__new__(cls) # type: ignore[call-overload]
|
100 |
+
|
101 |
+
if not is_fx_tracing():
|
102 |
+
cls.__init__(instance, *args, **kwargs) # type: ignore[misc]
|
103 |
+
return instance
|
104 |
+
|
105 |
+
found_proxies = []
|
106 |
+
|
107 |
+
def check_proxy(a):
|
108 |
+
if isinstance(a, Proxy):
|
109 |
+
found_proxies.append(a)
|
110 |
+
|
111 |
+
map_aggregate(args, check_proxy)
|
112 |
+
map_aggregate(kwargs, check_proxy)
|
113 |
+
|
114 |
+
if len(found_proxies) != 0:
|
115 |
+
tracer = found_proxies[0].tracer
|
116 |
+
return tracer.create_proxy("call_function", cls, args, kwargs)
|
117 |
+
else:
|
118 |
+
cls.__init__(instance, *args, **kwargs) # type: ignore[misc]
|
119 |
+
return instance
|
120 |
+
|
121 |
+
|
122 |
+
def _patch_function(fn: FunctionType, nargs: int) -> FunctionType:
|
123 |
+
co = fn.__code__
|
124 |
+
co_flags = co.co_flags & ~HAS_VARSTUFF
|
125 |
+
co_args: tuple
|
126 |
+
if hasattr(co, "co_qualname"):
|
127 |
+
# Python-3.11+ code signature
|
128 |
+
co_args = (
|
129 |
+
nargs,
|
130 |
+
0,
|
131 |
+
0,
|
132 |
+
co.co_nlocals,
|
133 |
+
co.co_stacksize,
|
134 |
+
co_flags,
|
135 |
+
co.co_code,
|
136 |
+
co.co_consts,
|
137 |
+
co.co_names,
|
138 |
+
co.co_varnames,
|
139 |
+
co.co_filename,
|
140 |
+
co.co_name,
|
141 |
+
co.co_qualname, # type: ignore[attr-defined]
|
142 |
+
co.co_firstlineno,
|
143 |
+
co.co_lnotab,
|
144 |
+
co.co_exceptiontable, # type: ignore[attr-defined]
|
145 |
+
co.co_freevars,
|
146 |
+
co.co_cellvars,
|
147 |
+
)
|
148 |
+
elif hasattr(co, "co_posonlyargcount"):
|
149 |
+
co_args = (
|
150 |
+
nargs,
|
151 |
+
0,
|
152 |
+
0,
|
153 |
+
co.co_nlocals,
|
154 |
+
co.co_stacksize,
|
155 |
+
co_flags,
|
156 |
+
co.co_code,
|
157 |
+
co.co_consts,
|
158 |
+
co.co_names,
|
159 |
+
co.co_varnames,
|
160 |
+
co.co_filename,
|
161 |
+
co.co_name,
|
162 |
+
co.co_firstlineno,
|
163 |
+
co.co_lnotab,
|
164 |
+
co.co_freevars,
|
165 |
+
co.co_cellvars,
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
co_args = (
|
169 |
+
nargs,
|
170 |
+
0,
|
171 |
+
co.co_nlocals,
|
172 |
+
co.co_stacksize,
|
173 |
+
co_flags,
|
174 |
+
co.co_code,
|
175 |
+
co.co_consts,
|
176 |
+
co.co_names,
|
177 |
+
co.co_varnames,
|
178 |
+
co.co_filename,
|
179 |
+
co.co_name,
|
180 |
+
co.co_firstlineno,
|
181 |
+
co.co_lnotab,
|
182 |
+
co.co_freevars,
|
183 |
+
co.co_cellvars,
|
184 |
+
)
|
185 |
+
new_code = CodeType(*co_args) # type: ignore[arg-type]
|
186 |
+
return FunctionType(
|
187 |
+
new_code, fn.__globals__, fn.__name__, fn.__defaults__, fn.__closure__
|
188 |
+
)
|
189 |
+
|
190 |
+
# we need to insert placeholder nodes for *args and **kwargs
|
191 |
+
# we can't call this function normally, otherwise it would try to unpack them
|
192 |
+
# instead, let's make python think that args and kwargs are normal variables
|
193 |
+
|
194 |
+
|
195 |
+
@compatibility(is_backward_compatible=False)
|
196 |
+
class PHBase:
|
197 |
+
"""
|
198 |
+
Object representing an input placeholder to `concrete_args`
|
199 |
+
"""
|
200 |
+
|
201 |
+
def __repr__(self):
|
202 |
+
return "PH"
|
203 |
+
|
204 |
+
|
205 |
+
PH = PHBase()
|
206 |
+
|
207 |
+
|
208 |
+
@compatibility(is_backward_compatible=False)
|
209 |
+
class PHWithMeta(PHBase):
|
210 |
+
"""
|
211 |
+
Object representing an input placeholder to `concrete_args`
|
212 |
+
"""
|
213 |
+
def __init__(self, ph_key: Optional[str] = None):
|
214 |
+
super().__init__()
|
215 |
+
|
216 |
+
# Provide a hey for user to identify placeholder node during analysis
|
217 |
+
self.ph_key = ph_key
|
218 |
+
|
219 |
+
|
220 |
+
@compatibility(is_backward_compatible=True)
|
221 |
+
class Tracer(TracerBase):
|
222 |
+
# Reference: https://github.com/pytorch/pytorch/issues/54354
|
223 |
+
# The first line of this docstring overrides the one Sphinx generates for the
|
224 |
+
# documentation. We need it so that Sphinx doesn't leak `math`s path from the
|
225 |
+
# build environment (e.g. `<module 'math' from '/leaked/path').
|
226 |
+
|
227 |
+
"""Tracer(autowrap_modules=(math,), autowrap_functions=())
|
228 |
+
|
229 |
+
``Tracer`` is the class that implements the symbolic tracing functionality
|
230 |
+
of ``torch.fx.symbolic_trace``. A call to ``symbolic_trace(m)`` is equivalent
|
231 |
+
to ``Tracer().trace(m)``.
|
232 |
+
|
233 |
+
Tracer can be subclassed to override various behaviors of the tracing
|
234 |
+
process. The different behaviors that can be overridden are described
|
235 |
+
in the docstrings of the methods on this class.
|
236 |
+
"""
|
237 |
+
|
238 |
+
# Not checking BC on this API because the default value for `autowrap_modules`
|
239 |
+
# includes the local filepath to the `math` module, which would jitter
|
240 |
+
# across machines.
|
241 |
+
@compatibility(is_backward_compatible=True)
|
242 |
+
def __init__(
|
243 |
+
self,
|
244 |
+
autowrap_modules: Tuple[ModuleType] = (math,),
|
245 |
+
autowrap_functions: Tuple[Callable, ...] = (),
|
246 |
+
param_shapes_constant: bool = False,
|
247 |
+
) -> None:
|
248 |
+
# This method's signature is overridden by the first line of this class'
|
249 |
+
# docstring. If this method's signature is modified, the signature that
|
250 |
+
# overrides it also should be modified accordingly.
|
251 |
+
|
252 |
+
"""
|
253 |
+
Construct a Tracer object.
|
254 |
+
|
255 |
+
Args:
|
256 |
+
|
257 |
+
autowrap_modules (Tuple[ModuleType]): defaults to `(math, )`,
|
258 |
+
Python modules whose functions should be wrapped automatically
|
259 |
+
without needing to use fx.wrap(). Backward-compatibility for
|
260 |
+
this parameter is guaranteed.
|
261 |
+
|
262 |
+
autowrap_functions (Tuple[Callable, ...]): defaults to `()`,
|
263 |
+
Python functions that should be wrapped automatically without
|
264 |
+
needing to use fx.wrap(). Backward compatibility for this
|
265 |
+
parameter is guaranteed.
|
266 |
+
|
267 |
+
param_shapes_constant (bool): When this flag is set, calls to shape,
|
268 |
+
size and a few other shape like attributes of a module's parameter
|
269 |
+
will be evaluated directly, rather than returning a new Proxy value
|
270 |
+
for an attribute access. Backward compatibility for this parameter
|
271 |
+
is guaranteed.
|
272 |
+
"""
|
273 |
+
|
274 |
+
super().__init__()
|
275 |
+
|
276 |
+
# Functions we will eagerly wrap when we see them while tracing
|
277 |
+
# this captures both `math.sqrt()` and `from math import sqrt` automatically
|
278 |
+
self._autowrap_function_ids: Set[int] = {
|
279 |
+
id(value)
|
280 |
+
for name, value in chain(*[m.__dict__.items() for m in autowrap_modules])
|
281 |
+
if not name.startswith("_") and callable(value)
|
282 |
+
}
|
283 |
+
self._autowrap_function_ids.update({id(f) for f in autowrap_functions})
|
284 |
+
|
285 |
+
# Python modules to apply autowrap to at the start, in addition to
|
286 |
+
# modules we see while tracing
|
287 |
+
self._autowrap_search: List[ModuleType] = list(autowrap_modules)
|
288 |
+
self.param_shapes_constant = param_shapes_constant
|
289 |
+
|
290 |
+
self.submodule_paths: Optional[Dict[torch.nn.Module, str]] = None
|
291 |
+
self.root_module_name: str = ""
|
292 |
+
# Maps the containing module's name to the operator name
|
293 |
+
self.scope = Scope("", None)
|
294 |
+
# Records the module call stack
|
295 |
+
self.module_stack = collections.OrderedDict()
|
296 |
+
# Mapping of node name to module scope
|
297 |
+
self.node_name_to_scope: Dict[str, Tuple[str, type]] = {}
|
298 |
+
|
299 |
+
@compatibility(is_backward_compatible=True)
|
300 |
+
def create_arg(self, a: Any) -> "Argument":
|
301 |
+
"""
|
302 |
+
A method to specify the behavior of tracing when preparing values to
|
303 |
+
be used as arguments to nodes in the ``Graph``.
|
304 |
+
|
305 |
+
By default, the behavior includes:
|
306 |
+
|
307 |
+
#. Iterate through collection types (e.g. tuple, list, dict) and recursively
|
308 |
+
call ``create_args`` on the elements.
|
309 |
+
#. Given a Proxy object, return a reference to the underlying IR ``Node``
|
310 |
+
#. Given a non-Proxy Tensor object, emit IR for various cases:
|
311 |
+
|
312 |
+
* For a Parameter, emit a ``get_attr`` node referring to that Parameter
|
313 |
+
* For a non-Parameter Tensor, store the Tensor away in a special
|
314 |
+
attribute referring to that attribute.
|
315 |
+
|
316 |
+
This method can be overridden to support more types.
|
317 |
+
|
318 |
+
Args:
|
319 |
+
|
320 |
+
a (Any): The value to be emitted as an ``Argument`` in the ``Graph``.
|
321 |
+
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
|
325 |
+
The value ``a`` converted into the appropriate ``Argument``
|
326 |
+
"""
|
327 |
+
# The base tracer is used to construct Graphs when there is no associated
|
328 |
+
# module hierarchy, so it can never create parameter references.
|
329 |
+
# The default tracer adds the ability to refer to parameters when
|
330 |
+
# tracing modules.
|
331 |
+
if isinstance(a, torch.nn.Parameter):
|
332 |
+
for n, p in self.root.named_parameters():
|
333 |
+
if a is p:
|
334 |
+
return self.create_node("get_attr", n, (), {})
|
335 |
+
raise NameError("parameter is not a member of this module")
|
336 |
+
elif isinstance(a, torch.Tensor):
|
337 |
+
for n_, p_ in self.root.named_buffers():
|
338 |
+
if a is p_:
|
339 |
+
return self.create_node("get_attr", n_, (), {})
|
340 |
+
elif isinstance(a, torch.nn.Module):
|
341 |
+
for n_, p_ in self.root.named_modules():
|
342 |
+
if a is p_:
|
343 |
+
return self.create_node("get_attr", n_, (), {})
|
344 |
+
# For NamedTuple instances that appear literally as args, we emit
|
345 |
+
# a node to construct the NamedTuple and use that Node as the argument.
|
346 |
+
if isinstance(a, tuple) and hasattr(a, "_fields"):
|
347 |
+
args = tuple(self.create_arg(elem) for elem in a)
|
348 |
+
return self.create_node("call_function", a.__class__, args, {})
|
349 |
+
|
350 |
+
# Tensors do not have a reliable string repr() from which they can be
|
351 |
+
# constructed (and we probably don't want to rely on that, either), so
|
352 |
+
# for any constant Tensor values we encounter, first search for if they
|
353 |
+
# are an attribute of some module in the module hierarchy. If so, emit
|
354 |
+
# a get_attr to retrieve that tensor. Otherwise, we'll store away the
|
355 |
+
# tensor value into a special attribute on the Module s.t. we can
|
356 |
+
# retrieve it with a get_attr.
|
357 |
+
if isinstance(a, (torch.Tensor, ScriptObject)):
|
358 |
+
qualname: Optional[str] = self.tensor_attrs.get(a)
|
359 |
+
|
360 |
+
# Tensor was not found in the Module hierarchy, stow it away in a
|
361 |
+
# special attribute and set the qualname to refer to that
|
362 |
+
if not qualname:
|
363 |
+
i = 0
|
364 |
+
while True:
|
365 |
+
qualname = f"_tensor_constant{i}"
|
366 |
+
if not hasattr(self.root, qualname):
|
367 |
+
break
|
368 |
+
i += 1
|
369 |
+
self.tensor_attrs[a] = qualname
|
370 |
+
setattr(self.root, qualname, a)
|
371 |
+
|
372 |
+
return self.create_node("get_attr", qualname, (), {})
|
373 |
+
|
374 |
+
if type(a) in _proxyable_classes:
|
375 |
+
# This is an instance of a proxyable class for which we did not
|
376 |
+
# witness its construction. Intern this as a constant attribute
|
377 |
+
|
378 |
+
# TODO: binary search
|
379 |
+
i = 0
|
380 |
+
while True:
|
381 |
+
qualname = f"_{a.__class__.__name__}_constant_{i}"
|
382 |
+
if not hasattr(self.root, qualname):
|
383 |
+
break
|
384 |
+
i += 1
|
385 |
+
setattr(self.root, qualname, a)
|
386 |
+
|
387 |
+
return self.create_node("get_attr", qualname, (), {})
|
388 |
+
|
389 |
+
return super().create_arg(a)
|
390 |
+
|
391 |
+
@compatibility(is_backward_compatible=True)
|
392 |
+
def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool:
|
393 |
+
"""
|
394 |
+
A method to specify whether a given ``nn.Module`` is a "leaf" module.
|
395 |
+
|
396 |
+
Leaf modules are the atomic units that appear in
|
397 |
+
the IR, referenced by ``call_module`` calls. By default,
|
398 |
+
Modules in the PyTorch standard library namespace (torch.nn)
|
399 |
+
are leaf modules. All other modules are traced through and
|
400 |
+
their constituent ops are recorded, unless specified otherwise
|
401 |
+
via this parameter.
|
402 |
+
|
403 |
+
Args:
|
404 |
+
|
405 |
+
m (Module): The module being queried about
|
406 |
+
module_qualified_name (str): The path to root of this module. For example,
|
407 |
+
if you have a module hierarchy where submodule ``foo`` contains
|
408 |
+
submodule ``bar``, which contains submodule ``baz``, that module will
|
409 |
+
appear with the qualified name ``foo.bar.baz`` here.
|
410 |
+
"""
|
411 |
+
return (
|
412 |
+
(m.__module__.startswith("torch.nn") or m.__module__.startswith("torch.ao.nn"))
|
413 |
+
and not isinstance(m, torch.nn.Sequential)
|
414 |
+
)
|
415 |
+
|
416 |
+
@compatibility(is_backward_compatible=True)
|
417 |
+
def path_of_module(self, mod: torch.nn.Module) -> str:
|
418 |
+
"""
|
419 |
+
Helper method to find the qualified name of ``mod`` in the Module hierarchy
|
420 |
+
of ``root``. For example, if ``root`` has a submodule named ``foo``, which has
|
421 |
+
a submodule named ``bar``, passing ``bar`` into this function will return
|
422 |
+
the string "foo.bar".
|
423 |
+
|
424 |
+
Args:
|
425 |
+
|
426 |
+
mod (str): The ``Module`` to retrieve the qualified name for.
|
427 |
+
"""
|
428 |
+
# Prefer the O(1) algorithm
|
429 |
+
if self.submodule_paths:
|
430 |
+
path = self.submodule_paths.get(mod)
|
431 |
+
if path is None:
|
432 |
+
raise NameError("module is not installed as a submodule")
|
433 |
+
assert isinstance(path, str)
|
434 |
+
return path
|
435 |
+
# O(N^2) fallback in the case that we didn't store the submodule
|
436 |
+
# paths.
|
437 |
+
else:
|
438 |
+
for n, p in self.root.named_modules():
|
439 |
+
if mod is p:
|
440 |
+
return n
|
441 |
+
raise NameError("module is not installed as a submodule")
|
442 |
+
|
443 |
+
@compatibility(is_backward_compatible=True)
|
444 |
+
def call_module(
|
445 |
+
self,
|
446 |
+
m: torch.nn.Module,
|
447 |
+
forward: Callable[..., Any],
|
448 |
+
args: Tuple[Any, ...],
|
449 |
+
kwargs: Dict[str, Any],
|
450 |
+
) -> Any:
|
451 |
+
"""
|
452 |
+
Method that specifies the behavior of this ``Tracer`` when it encounters
|
453 |
+
a call to an ``nn.Module`` instance.
|
454 |
+
|
455 |
+
By default, the behavior is to check if the called module is a leaf module
|
456 |
+
via ``is_leaf_module``. If it is, emit a ``call_module`` node referring to
|
457 |
+
``m`` in the ``Graph``. Otherwise, call the ``Module`` normally, tracing through
|
458 |
+
the operations in its ``forward`` function.
|
459 |
+
|
460 |
+
This method can be overridden to--for example--create nested traced
|
461 |
+
GraphModules, or any other behavior you would want while tracing across
|
462 |
+
``Module`` boundaries.
|
463 |
+
|
464 |
+
Args:
|
465 |
+
|
466 |
+
m (Module): The module for which a call is being emitted
|
467 |
+
forward (Callable): The forward() method of the ``Module`` to be invoked
|
468 |
+
args (Tuple): args of the module callsite
|
469 |
+
kwargs (Dict): kwargs of the module callsite
|
470 |
+
|
471 |
+
Return:
|
472 |
+
|
473 |
+
The return value from the Module call. In the case that a ``call_module``
|
474 |
+
node was emitted, this is a ``Proxy`` value. Otherwise, it is whatever
|
475 |
+
value was returned from the ``Module`` invocation.
|
476 |
+
"""
|
477 |
+
module_qualified_name = self.path_of_module(m)
|
478 |
+
with ScopeContextManager(self.scope, Scope(module_qualified_name, type(m))) as _scope:
|
479 |
+
# module_stack is an ordered dict so writing then deleting the
|
480 |
+
# entry is equivalent to push/pop on a list
|
481 |
+
self.module_stack[_scope.module_path] = (module_qualified_name, _scope.module_type)
|
482 |
+
if not self.is_leaf_module(m, module_qualified_name):
|
483 |
+
ret_val = forward(*args, **kwargs)
|
484 |
+
else:
|
485 |
+
ret_val = self.create_proxy("call_module", module_qualified_name, args, kwargs)
|
486 |
+
key, _ = self.module_stack.popitem(last=True)
|
487 |
+
assert key == _scope.module_path, f" Unexpected key {key}"
|
488 |
+
|
489 |
+
return ret_val
|
490 |
+
|
491 |
+
@compatibility(is_backward_compatible=False)
|
492 |
+
def getattr(self, attr: str, attr_val: Any, parameter_proxy_cache: Dict[str, Any]):
|
493 |
+
"""
|
494 |
+
Method that specifies the behavior of this ``Tracer`` when we call getattr
|
495 |
+
on a call to an ``nn.Module`` instance.
|
496 |
+
|
497 |
+
By default, the behavior is to return a proxy value for the attribute. It
|
498 |
+
also stores the proxy value in the ``parameter_proxy_cache``, so that future
|
499 |
+
calls will reuse the proxy rather than creating a new one.
|
500 |
+
|
501 |
+
This method can be overridden to --for example-- not return proxies when
|
502 |
+
querying parameters.
|
503 |
+
|
504 |
+
Args:
|
505 |
+
|
506 |
+
attr (str): The name of the attribute being queried
|
507 |
+
attr_val (Any): The value of the attribute
|
508 |
+
parameter_proxy_cache (Dict[str, Any]): A cache of attr names to proxies
|
509 |
+
|
510 |
+
Return:
|
511 |
+
|
512 |
+
The return value from the getattr call.
|
513 |
+
"""
|
514 |
+
def maybe_get_proxy_for_attr(
|
515 |
+
attr_val, collection_to_search, parameter_proxy_cache
|
516 |
+
):
|
517 |
+
for n, p in collection_to_search:
|
518 |
+
if attr_val is p:
|
519 |
+
if n not in parameter_proxy_cache:
|
520 |
+
kwargs = {}
|
521 |
+
if (
|
522 |
+
"proxy_factory_fn"
|
523 |
+
in inspect.signature(self.create_proxy).parameters
|
524 |
+
):
|
525 |
+
kwargs["proxy_factory_fn"] = (
|
526 |
+
None
|
527 |
+
if not self.param_shapes_constant
|
528 |
+
else lambda node: ParameterProxy(
|
529 |
+
self, node, n, attr_val
|
530 |
+
)
|
531 |
+
)
|
532 |
+
val_proxy = self.create_proxy("get_attr", n, (), {}, **kwargs) # type: ignore[arg-type]
|
533 |
+
parameter_proxy_cache[n] = val_proxy
|
534 |
+
return parameter_proxy_cache[n]
|
535 |
+
return None
|
536 |
+
|
537 |
+
if isinstance(attr_val, torch.nn.Parameter):
|
538 |
+
maybe_parameter_proxy = maybe_get_proxy_for_attr(
|
539 |
+
attr_val, self.root.named_parameters(), parameter_proxy_cache
|
540 |
+
)
|
541 |
+
if maybe_parameter_proxy is not None:
|
542 |
+
return maybe_parameter_proxy
|
543 |
+
|
544 |
+
if self.proxy_buffer_attributes and isinstance(attr_val, torch.Tensor):
|
545 |
+
maybe_buffer_proxy = maybe_get_proxy_for_attr(
|
546 |
+
attr_val, self.root.named_buffers(), parameter_proxy_cache
|
547 |
+
)
|
548 |
+
if maybe_buffer_proxy is not None:
|
549 |
+
return maybe_buffer_proxy
|
550 |
+
|
551 |
+
return attr_val
|
552 |
+
|
553 |
+
# This method will be refactored
|
554 |
+
@compatibility(is_backward_compatible=False)
|
555 |
+
def create_args_for_root(self, root_fn, is_module, concrete_args=None):
|
556 |
+
"""
|
557 |
+
Create ``placeholder`` nodes corresponding to the signature of the ``root``
|
558 |
+
Module. This method introspects root's signature and emits those
|
559 |
+
nodes accordingly, also supporting ``*args`` and ``**kwargs``.
|
560 |
+
"""
|
561 |
+
# In some cases, a function or method has been decorated with a wrapper
|
562 |
+
# defined via ``functools.wraps``. In this case, the outer code object
|
563 |
+
# will likely not contain the actual parameters we care about, so unwrap
|
564 |
+
# the function to get to the innermost callable.
|
565 |
+
fn_for_analysis = inspect.unwrap(root_fn)
|
566 |
+
co = fn_for_analysis.__code__
|
567 |
+
total_args = co.co_argcount + co.co_kwonlyargcount
|
568 |
+
orig_args = list(co.co_varnames)
|
569 |
+
names_iter = iter(co.co_varnames)
|
570 |
+
args: List[Any] = []
|
571 |
+
skip_arg_idx = 0
|
572 |
+
if is_module:
|
573 |
+
if total_args == 0:
|
574 |
+
raise RuntimeError(
|
575 |
+
"``self`` argument cannot be part of *args expansion!"
|
576 |
+
)
|
577 |
+
skip_arg_idx = 1
|
578 |
+
next(names_iter) # skip self
|
579 |
+
args.append(self.root)
|
580 |
+
|
581 |
+
sig = inspect.signature(fn_for_analysis)
|
582 |
+
|
583 |
+
def proxy_placeholder(name: str):
|
584 |
+
if concrete_args is not None and name in concrete_args:
|
585 |
+
cnt = 0
|
586 |
+
|
587 |
+
def replace_ph(x):
|
588 |
+
nonlocal cnt
|
589 |
+
cnt += 1
|
590 |
+
param = sig.parameters[name]
|
591 |
+
default = (
|
592 |
+
()
|
593 |
+
if param.default is inspect.Parameter.empty
|
594 |
+
else (param.default,)
|
595 |
+
)
|
596 |
+
out = self.create_proxy(
|
597 |
+
"placeholder", f"{name}_{str(cnt)}", default, {}
|
598 |
+
)
|
599 |
+
if isinstance(x, PHBase):
|
600 |
+
def transfer_attrs(fr, to):
|
601 |
+
for attr_name in dir(fr):
|
602 |
+
attr_val = getattr(fr, attr_name)
|
603 |
+
if (
|
604 |
+
not callable(attr_val)
|
605 |
+
and not attr_name.startswith("__")
|
606 |
+
and not hasattr(to, attr_name)
|
607 |
+
):
|
608 |
+
setattr(to, attr_name, attr_val)
|
609 |
+
|
610 |
+
if x != PH:
|
611 |
+
# Transfer attrs in the case where you're using a placeholder other
|
612 |
+
# than the singleton PH (PH has no attributes to transfer).
|
613 |
+
# Proxies were created out of the placeholders.
|
614 |
+
# Transfer any metadata (put on the placeholders in the form of
|
615 |
+
# attributes set by the user) from the placeholder to the
|
616 |
+
# underlying nodes (the proxy is unwrapped by the user, but
|
617 |
+
# the metadata should hold).
|
618 |
+
transfer_attrs(fr=x, to=out.node)
|
619 |
+
|
620 |
+
return out
|
621 |
+
# Union[int, bool] == bool in Python <= 3.6
|
622 |
+
if (
|
623 |
+
type(x) == bool
|
624 |
+
or type(x) in base_types
|
625 |
+
and type(x) != torch.Tensor
|
626 |
+
):
|
627 |
+
torch._assert(
|
628 |
+
out == x,
|
629 |
+
f"{name} has been specialized to have value {x} but got another value",
|
630 |
+
)
|
631 |
+
elif type(x) == type(None):
|
632 |
+
args = (
|
633 |
+
out,
|
634 |
+
f"{name} has been specialized to have value None but got another value",
|
635 |
+
)
|
636 |
+
self.create_proxy("call_function", _assert_is_none, args, {})
|
637 |
+
else:
|
638 |
+
warnings.warn(
|
639 |
+
f"Was not able to add assertion to guarantee correct input {name} to "
|
640 |
+
f"specialized function. It is up to the user to make sure that your inputs match the "
|
641 |
+
f"inputs you specialized the function with."
|
642 |
+
)
|
643 |
+
|
644 |
+
return x
|
645 |
+
|
646 |
+
return pytree.tree_map(replace_ph, concrete_args[name])
|
647 |
+
if name[0] == "*":
|
648 |
+
default = ()
|
649 |
+
else:
|
650 |
+
param = sig.parameters[name]
|
651 |
+
default = () if param.default is inspect.Parameter.empty else (param.default,) # type: ignore[assignment]
|
652 |
+
return self.create_proxy(
|
653 |
+
"placeholder",
|
654 |
+
name,
|
655 |
+
default,
|
656 |
+
{},
|
657 |
+
type_expr=fn_for_analysis.__annotations__.get(name, None)
|
658 |
+
)
|
659 |
+
|
660 |
+
arg_names = [next(names_iter) for idx in range(skip_arg_idx, total_args)]
|
661 |
+
if isinstance(concrete_args, tuple):
|
662 |
+
if len(arg_names) != len(concrete_args):
|
663 |
+
raise RuntimeError(
|
664 |
+
f"Tracing expected {len(arg_names)} arguments but got {len(concrete_args)} concrete arguments"
|
665 |
+
)
|
666 |
+
concrete_args = dict(zip(arg_names, concrete_args))
|
667 |
+
args.extend(proxy_placeholder(names) for names in arg_names)
|
668 |
+
|
669 |
+
if co.co_kwonlyargcount > 0 or co.co_flags & HAS_VARSTUFF:
|
670 |
+
# TODO: type annotations for *args and **kwargs
|
671 |
+
if co.co_flags & inspect.CO_VARARGS:
|
672 |
+
args.append(proxy_placeholder("*" + next(names_iter)))
|
673 |
+
if co.co_flags & inspect.CO_VARKEYWORDS:
|
674 |
+
args.append(proxy_placeholder("**" + next(names_iter)))
|
675 |
+
root_fn = _patch_function(root_fn, len(args))
|
676 |
+
|
677 |
+
flat_args, in_spec = pytree.tree_flatten(tuple(args))
|
678 |
+
if any(not isinstance(i, pytree.LeafSpec) for i in in_spec.children_specs):
|
679 |
+
# In the case that we have pytree-flattened inputs in
|
680 |
+
# `concrete_args`, generate a flattening wrapper around the
|
681 |
+
# original root function and return that.
|
682 |
+
self.graph._codegen = _PyTreeCodeGen(
|
683 |
+
_PyTreeInfo(orig_args[:total_args], in_spec, None)
|
684 |
+
)
|
685 |
+
|
686 |
+
def flatten_fn(*args):
|
687 |
+
tree_args = pytree.tree_unflatten(list(args), in_spec)
|
688 |
+
tree_out = root_fn(*tree_args)
|
689 |
+
out_args, out_spec = pytree.tree_flatten(tree_out)
|
690 |
+
assert isinstance(self.graph._codegen, _PyTreeCodeGen)
|
691 |
+
self.graph._codegen.pytree_info = (
|
692 |
+
self.graph._codegen.pytree_info._replace(out_spec=out_spec)
|
693 |
+
)
|
694 |
+
return out_args
|
695 |
+
|
696 |
+
return flatten_fn, flat_args
|
697 |
+
return root_fn, args
|
698 |
+
|
699 |
+
@compatibility(is_backward_compatible=True)
|
700 |
+
def trace(
|
701 |
+
self,
|
702 |
+
root: Union[torch.nn.Module, Callable[..., Any]],
|
703 |
+
concrete_args: Optional[Dict[str, Any]] = None,
|
704 |
+
) -> Graph:
|
705 |
+
"""
|
706 |
+
Trace ``root`` and return the corresponding FX ``Graph`` representation. ``root``
|
707 |
+
can either be an ``nn.Module`` instance or a Python callable.
|
708 |
+
|
709 |
+
Note that after this call, ``self.root`` may be different from the ``root`` passed
|
710 |
+
in here. For example, when a free function is passed to ``trace()``, we will
|
711 |
+
create an ``nn.Module`` instance to use as the root and add embedded constants
|
712 |
+
to.
|
713 |
+
|
714 |
+
|
715 |
+
Args:
|
716 |
+
|
717 |
+
root (Union[Module, Callable]): Either a ``Module`` or a function to be
|
718 |
+
traced through. Backwards-compatibility for this parameter is
|
719 |
+
guaranteed.
|
720 |
+
concrete_args (Optional[Dict[str, any]]): Concrete arguments that should
|
721 |
+
not be treated as Proxies. This parameter is experimental and
|
722 |
+
its backwards-compatibility is *NOT* guaranteed.
|
723 |
+
|
724 |
+
Returns:
|
725 |
+
|
726 |
+
A ``Graph`` representing the semantics of the passed-in ``root``.
|
727 |
+
"""
|
728 |
+
global _is_fx_tracing_flag
|
729 |
+
old_is_fx_tracing_flag = _is_fx_tracing_flag
|
730 |
+
_is_fx_tracing_flag = True
|
731 |
+
try:
|
732 |
+
if isinstance(root, torch.nn.Module):
|
733 |
+
self.root = root
|
734 |
+
|
735 |
+
assert hasattr(
|
736 |
+
type(root), self.traced_func_name
|
737 |
+
), f"traced_func_name={self.traced_func_name} doesn't exist in {type(root).__name__}"
|
738 |
+
|
739 |
+
fn = getattr(type(root), self.traced_func_name)
|
740 |
+
self.root_module_name = root._get_name()
|
741 |
+
self.submodule_paths = {mod: name for name, mod in root.named_modules()}
|
742 |
+
else:
|
743 |
+
self.root = torch.nn.Module()
|
744 |
+
fn = root
|
745 |
+
|
746 |
+
tracer_cls: Optional[Type[Tracer]] = getattr(self, "__class__", None)
|
747 |
+
self.graph = Graph(tracer_cls=tracer_cls)
|
748 |
+
if hasattr(fn, '__code__'):
|
749 |
+
code = fn.__code__
|
750 |
+
self.graph._co_fields = {
|
751 |
+
'co_name': code.co_name,
|
752 |
+
'co_filename': code.co_filename,
|
753 |
+
'co_firstlineno': code.co_firstlineno,
|
754 |
+
}
|
755 |
+
|
756 |
+
# When we encounter a Tensor value that's not a parameter, we look if it
|
757 |
+
# is some other attribute on the model. Construct a dict mapping Tensor
|
758 |
+
# values to the qualified name here for efficiency. This is used downstream
|
759 |
+
# in create_arg
|
760 |
+
self.tensor_attrs: Dict[Union[torch.Tensor, ScriptObject], str] = {}
|
761 |
+
|
762 |
+
def collect_tensor_attrs(m: torch.nn.Module, prefix_atoms: List[str]):
|
763 |
+
for k, v in m.__dict__.items():
|
764 |
+
if isinstance(v, (torch.Tensor, ScriptObject)):
|
765 |
+
self.tensor_attrs[v] = ".".join(prefix_atoms + [k])
|
766 |
+
for k, v in m.named_children():
|
767 |
+
collect_tensor_attrs(v, prefix_atoms + [k])
|
768 |
+
|
769 |
+
collect_tensor_attrs(self.root, [])
|
770 |
+
|
771 |
+
assert isinstance(fn, FunctionType)
|
772 |
+
|
773 |
+
fn_globals = fn.__globals__ # run before it gets patched
|
774 |
+
fn, args = self.create_args_for_root(
|
775 |
+
fn, isinstance(root, torch.nn.Module), concrete_args
|
776 |
+
)
|
777 |
+
|
778 |
+
parameter_proxy_cache: Dict[
|
779 |
+
str, Proxy
|
780 |
+
] = {} # Reduce number of get_attr calls
|
781 |
+
|
782 |
+
# Method dispatch on parameters is not recorded unless it's directly used.
|
783 |
+
# Thus, we need to insert a proxy when __getattr__ requests a parameter.
|
784 |
+
@functools.wraps(_orig_module_getattr)
|
785 |
+
def module_getattr_wrapper(mod, attr):
|
786 |
+
attr_val = _orig_module_getattr(mod, attr)
|
787 |
+
return self.getattr(attr, attr_val, parameter_proxy_cache)
|
788 |
+
|
789 |
+
@functools.wraps(_orig_module_call)
|
790 |
+
def module_call_wrapper(mod, *args, **kwargs):
|
791 |
+
def forward(*args, **kwargs):
|
792 |
+
return _orig_module_call(mod, *args, **kwargs)
|
793 |
+
|
794 |
+
_autowrap_check(
|
795 |
+
patcher,
|
796 |
+
getattr(getattr(mod, "forward", mod), "__globals__", {}),
|
797 |
+
self._autowrap_function_ids,
|
798 |
+
)
|
799 |
+
return self.call_module(mod, forward, args, kwargs)
|
800 |
+
|
801 |
+
with _Patcher() as patcher:
|
802 |
+
# allow duplicate patches to support the case of nested calls
|
803 |
+
patcher.patch_method(
|
804 |
+
torch.nn.Module,
|
805 |
+
"__getattr__",
|
806 |
+
module_getattr_wrapper,
|
807 |
+
deduplicate=False,
|
808 |
+
)
|
809 |
+
patcher.patch_method(
|
810 |
+
torch.nn.Module, "__call__", module_call_wrapper, deduplicate=False
|
811 |
+
)
|
812 |
+
_patch_wrapped_functions(patcher)
|
813 |
+
_autowrap_check(patcher, fn_globals, self._autowrap_function_ids)
|
814 |
+
for module in self._autowrap_search:
|
815 |
+
_autowrap_check(
|
816 |
+
patcher, module.__dict__, self._autowrap_function_ids
|
817 |
+
)
|
818 |
+
self.create_node(
|
819 |
+
"output",
|
820 |
+
"output",
|
821 |
+
(self.create_arg(fn(*args)),),
|
822 |
+
{},
|
823 |
+
type_expr=fn.__annotations__.get("return", None),
|
824 |
+
)
|
825 |
+
|
826 |
+
self.submodule_paths = None
|
827 |
+
finally:
|
828 |
+
_is_fx_tracing_flag = old_is_fx_tracing_flag
|
829 |
+
return self.graph
|
830 |
+
|
831 |
+
def __deepcopy__(self, memo):
|
832 |
+
# _autowrap_search contains modules, which cannot be deepcopied.
|
833 |
+
new_tracer = Tracer.__new__(Tracer)
|
834 |
+
|
835 |
+
for k, v in self.__dict__.items():
|
836 |
+
if k in {'_autowrap_search'}:
|
837 |
+
new_obj = copy.copy(v)
|
838 |
+
else:
|
839 |
+
new_obj = copy.deepcopy(v, memo)
|
840 |
+
|
841 |
+
new_tracer.__dict__[k] = new_obj
|
842 |
+
|
843 |
+
return new_tracer
|
844 |
+
|
845 |
+
|
846 |
+
# Dictionary of (id(globals dict), function name) => globals_dict to patch for
|
847 |
+
# the purposes of the wrap() API.
|
848 |
+
# We key by the globals dict id and function name to ensure we're wrapping a given
|
849 |
+
# function only once.
|
850 |
+
_wrapped_fns_to_patch: Dict[Tuple[int, str], dict] = {}
|
851 |
+
|
852 |
+
# List of methods on classes to wrap (class type, function name)
|
853 |
+
# this currently only works for Tensor.* methods that aren't traced properly
|
854 |
+
_wrapped_methods_to_patch: List[Tuple[type, str]] = []
|
855 |
+
|
856 |
+
if os.environ.get("FX_PATCH_GETITEM") == "1":
|
857 |
+
# This change is needed to trace models like PositionalEmbedding from BERT:
|
858 |
+
# https://github.com/pytorch/benchmark/blob/master/torchbenchmark/models/BERT_pytorch/bert_pytorch/model/embedding/position.py
|
859 |
+
# but causes issues in quantization documented here:
|
860 |
+
# https://github.com/pytorch/pytorch/issues/50710
|
861 |
+
# once that is fixed we can make this the default behavior.
|
862 |
+
_wrapped_methods_to_patch.append((torch.Tensor, "__getitem__"))
|
863 |
+
|
864 |
+
|
865 |
+
def _find_proxy(*objects_to_search):
|
866 |
+
"""
|
867 |
+
Recursively search a data structure for a Proxy() and return it,
|
868 |
+
return None if not found.
|
869 |
+
"""
|
870 |
+
proxy = None
|
871 |
+
|
872 |
+
def find_proxy(x):
|
873 |
+
nonlocal proxy
|
874 |
+
if isinstance(x, Proxy):
|
875 |
+
proxy = x
|
876 |
+
|
877 |
+
map_aggregate(objects_to_search, find_proxy)
|
878 |
+
return proxy
|
879 |
+
|
880 |
+
|
881 |
+
def _create_wrapped_func(orig_fn):
|
882 |
+
@functools.wraps(orig_fn)
|
883 |
+
def wrapped(*args, **kwargs):
|
884 |
+
"""
|
885 |
+
Given an closed-over ``orig_function`` to invoke, search the args and kwargs for
|
886 |
+
a Proxy object. If there is one, emit a ``call_function`` node to preserve the
|
887 |
+
call to this leaf function directly. Otherwise, just return the results of
|
888 |
+
this function call, as this function is not being traced.
|
889 |
+
"""
|
890 |
+
proxy = _find_proxy(args, kwargs)
|
891 |
+
if proxy is not None:
|
892 |
+
return_proxy = proxy.tracer.create_proxy(
|
893 |
+
"call_function", orig_fn, args, kwargs
|
894 |
+
)
|
895 |
+
return_proxy.node.meta["is_wrapped"] = True
|
896 |
+
return return_proxy
|
897 |
+
return orig_fn(*args, **kwargs)
|
898 |
+
|
899 |
+
return wrapped
|
900 |
+
|
901 |
+
|
902 |
+
def _create_wrapped_method(cls, name):
|
903 |
+
orig_fn = getattr(cls, name)
|
904 |
+
|
905 |
+
@functools.wraps(orig_fn)
|
906 |
+
def wrapped(*args, **kwargs):
|
907 |
+
"""
|
908 |
+
Search the args and kwargs for a Proxy object. If there is one,
|
909 |
+
emit a ``call_method`` node to preserve the call to this method
|
910 |
+
directly. Otherwise, just return the results of this function
|
911 |
+
call, as this function is not being traced.
|
912 |
+
"""
|
913 |
+
proxy = _find_proxy(args, kwargs)
|
914 |
+
if proxy is not None:
|
915 |
+
return proxy.tracer.create_proxy("call_method", name, args, kwargs)
|
916 |
+
return orig_fn(*args, **kwargs)
|
917 |
+
|
918 |
+
return wrapped
|
919 |
+
|
920 |
+
|
921 |
+
class _PatchedFn(NamedTuple):
|
922 |
+
frame_dict: Any
|
923 |
+
fn_name: str
|
924 |
+
orig_fn: Any
|
925 |
+
|
926 |
+
def revert(self):
|
927 |
+
raise NotImplementedError()
|
928 |
+
|
929 |
+
|
930 |
+
class _PatchedFnSetItem(_PatchedFn):
|
931 |
+
def revert(self):
|
932 |
+
self.frame_dict[self.fn_name] = self.orig_fn
|
933 |
+
|
934 |
+
|
935 |
+
class _PatchedFnDel(_PatchedFn):
|
936 |
+
def revert(self):
|
937 |
+
del self.frame_dict[self.fn_name]
|
938 |
+
|
939 |
+
|
940 |
+
class _PatchedFnSetAttr(_PatchedFn):
|
941 |
+
def revert(self):
|
942 |
+
setattr(self.frame_dict, self.fn_name, self.orig_fn)
|
943 |
+
|
944 |
+
|
945 |
+
class _Patcher:
|
946 |
+
def __init__(self):
|
947 |
+
super().__init__()
|
948 |
+
self.patches_made: List[_PatchedFn] = []
|
949 |
+
self.visited: Set[int] = set()
|
950 |
+
|
951 |
+
def patch(
|
952 |
+
self,
|
953 |
+
frame_dict: Dict[str, Any],
|
954 |
+
name: str,
|
955 |
+
new_fn: Callable,
|
956 |
+
deduplicate: bool = True,
|
957 |
+
):
|
958 |
+
"""
|
959 |
+
Replace frame_dict[name] with new_fn until we exit the context manager.
|
960 |
+
"""
|
961 |
+
new_fn.__fx_already_patched = deduplicate # type: ignore[attr-defined]
|
962 |
+
if name not in frame_dict and hasattr(builtins, name):
|
963 |
+
self.patches_made.append(_PatchedFnDel(frame_dict, name, None))
|
964 |
+
elif getattr(frame_dict[name], "__fx_already_patched", False):
|
965 |
+
return # already patched, no need to do it again
|
966 |
+
else:
|
967 |
+
self.patches_made.append(
|
968 |
+
_PatchedFnSetItem(frame_dict, name, frame_dict[name])
|
969 |
+
)
|
970 |
+
frame_dict[name] = new_fn
|
971 |
+
|
972 |
+
def patch_method(
|
973 |
+
self, cls: type, name: str, new_fn: Callable, deduplicate: bool = True
|
974 |
+
):
|
975 |
+
"""
|
976 |
+
Replace object_or_dict.name with new_fn until we exit the context manager.
|
977 |
+
"""
|
978 |
+
new_fn.__fx_already_patched = deduplicate # type: ignore[attr-defined]
|
979 |
+
orig_fn = getattr(cls, name)
|
980 |
+
if getattr(orig_fn, "__fx_already_patched", False):
|
981 |
+
return # already patched, no need to do it again
|
982 |
+
self.patches_made.append(_PatchedFnSetAttr(cls, name, orig_fn))
|
983 |
+
setattr(cls, name, new_fn)
|
984 |
+
|
985 |
+
def visit_once(self, thing: Any):
|
986 |
+
"""Return True on the first call to with thing, otherwise false"""
|
987 |
+
idx = id(thing)
|
988 |
+
if idx in self.visited:
|
989 |
+
return False
|
990 |
+
self.visited.add(idx)
|
991 |
+
return True
|
992 |
+
|
993 |
+
def __enter__(self):
|
994 |
+
return self
|
995 |
+
|
996 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
997 |
+
"""
|
998 |
+
Undo all the changes made via self.patch() and self.patch_method()
|
999 |
+
"""
|
1000 |
+
while self.patches_made:
|
1001 |
+
# unpatch in reverse order to handle duplicates correctly
|
1002 |
+
self.patches_made.pop().revert()
|
1003 |
+
self.visited.clear()
|
1004 |
+
|
1005 |
+
|
1006 |
+
def _patch_wrapped_functions(patcher: _Patcher):
|
1007 |
+
"""
|
1008 |
+
Go through ``_wrapped_fn_patch_table`` and, for each frame object, wrap
|
1009 |
+
the listed global functions in the `_create_wrapped_func` wrapper.
|
1010 |
+
"""
|
1011 |
+
for (_, name), frame_dict in _wrapped_fns_to_patch.copy().items():
|
1012 |
+
if name not in frame_dict and hasattr(builtins, name):
|
1013 |
+
orig_fn = getattr(builtins, name)
|
1014 |
+
else:
|
1015 |
+
orig_fn = frame_dict[name]
|
1016 |
+
patcher.patch(frame_dict, name, _create_wrapped_func(orig_fn))
|
1017 |
+
|
1018 |
+
for cls, name in _wrapped_methods_to_patch:
|
1019 |
+
patcher.patch_method(cls, name, _create_wrapped_method(cls, name))
|
1020 |
+
|
1021 |
+
|
1022 |
+
def _autowrap_check(
|
1023 |
+
patcher: _Patcher, frame_dict: Dict[str, Any], function_ids: Set[int]
|
1024 |
+
):
|
1025 |
+
"""
|
1026 |
+
Some methods, like `math.sqrt` are common enough we want to automatically wrap them as we see them.
|
1027 |
+
This method searches a scope for them and patches them if found.
|
1028 |
+
"""
|
1029 |
+
if patcher.visit_once(frame_dict):
|
1030 |
+
for name, value in frame_dict.items():
|
1031 |
+
if (
|
1032 |
+
not name.startswith("_")
|
1033 |
+
and callable(value)
|
1034 |
+
and id(value) in function_ids
|
1035 |
+
):
|
1036 |
+
patcher.patch(frame_dict, name, _create_wrapped_func(value))
|
1037 |
+
|
1038 |
+
|
1039 |
+
@compatibility(is_backward_compatible=True)
|
1040 |
+
def wrap(fn_or_name: Union[str, Callable]):
|
1041 |
+
"""
|
1042 |
+
This function can be called at module-level scope to register fn_or_name as a "leaf function".
|
1043 |
+
A "leaf function" will be preserved as a CallFunction node in the FX trace instead of being
|
1044 |
+
traced through::
|
1045 |
+
|
1046 |
+
# foo/bar/baz.py
|
1047 |
+
def my_custom_function(x, y):
|
1048 |
+
return x * x + y * y
|
1049 |
+
|
1050 |
+
torch.fx.wrap('my_custom_function')
|
1051 |
+
|
1052 |
+
def fn_to_be_traced(x, y):
|
1053 |
+
# When symbolic tracing, the below call to my_custom_function will be inserted into
|
1054 |
+
# the graph rather than tracing it.
|
1055 |
+
return my_custom_function(x, y)
|
1056 |
+
|
1057 |
+
This function can also equivalently be used as a decorator::
|
1058 |
+
|
1059 |
+
# foo/bar/baz.py
|
1060 |
+
@torch.fx.wrap
|
1061 |
+
def my_custom_function(x, y):
|
1062 |
+
return x * x + y * y
|
1063 |
+
|
1064 |
+
A wrapped function can be thought of a "leaf function", analogous to the concept of
|
1065 |
+
"leaf modules", that is, they are functions that are left as calls in the FX trace
|
1066 |
+
rather than traced through.
|
1067 |
+
|
1068 |
+
Args:
|
1069 |
+
|
1070 |
+
fn_or_name (Union[str, Callable]): The function or name of the global function to insert into the
|
1071 |
+
graph when it's called
|
1072 |
+
"""
|
1073 |
+
if not callable(fn_or_name) and not isinstance(fn_or_name, str):
|
1074 |
+
raise RuntimeError(
|
1075 |
+
"Unsupported type for global function! Must be either a callable or "
|
1076 |
+
"string name"
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
if callable(fn_or_name):
|
1080 |
+
assert not isinstance(fn_or_name, str) # to make mypy happy
|
1081 |
+
fn_name = fn_or_name.__name__
|
1082 |
+
else:
|
1083 |
+
assert isinstance(
|
1084 |
+
fn_or_name, str
|
1085 |
+
), "fn_or_name must be a global function or string name"
|
1086 |
+
fn_name = fn_or_name
|
1087 |
+
|
1088 |
+
currentframe = inspect.currentframe()
|
1089 |
+
assert currentframe is not None
|
1090 |
+
f = currentframe.f_back
|
1091 |
+
assert f is not None
|
1092 |
+
if f.f_code.co_name != "<module>":
|
1093 |
+
raise NotImplementedError("wrap must be called at the top level of a module")
|
1094 |
+
|
1095 |
+
# consider implementing Callable version of this via _autowrap_function_ids / _autowrap_search
|
1096 |
+
# semantics would be slightly different, but would add support `from x import wrapped_function`
|
1097 |
+
_wrapped_fns_to_patch[(id(f.f_globals), fn_name)] = f.f_globals
|
1098 |
+
return fn_or_name
|
1099 |
+
|
1100 |
+
|
1101 |
+
@compatibility(is_backward_compatible=True)
|
1102 |
+
def symbolic_trace(
|
1103 |
+
root: Union[torch.nn.Module, Callable[..., Any]],
|
1104 |
+
concrete_args: Optional[Dict[str, Any]] = None,
|
1105 |
+
) -> GraphModule:
|
1106 |
+
"""
|
1107 |
+
Symbolic tracing API
|
1108 |
+
|
1109 |
+
Given an ``nn.Module`` or function instance ``root``, this function will return a ``GraphModule``
|
1110 |
+
constructed by recording operations seen while tracing through ``root``.
|
1111 |
+
|
1112 |
+
``concrete_args`` allows you to partially specialize your function, whether it's to remove control flow or data structures.
|
1113 |
+
|
1114 |
+
For example::
|
1115 |
+
|
1116 |
+
def f(a, b):
|
1117 |
+
if b == True:
|
1118 |
+
return a
|
1119 |
+
else:
|
1120 |
+
return a*2
|
1121 |
+
|
1122 |
+
FX can typically not trace through this due to the presence of control
|
1123 |
+
flow. However, we can use `concrete_args` to specialize on the value of
|
1124 |
+
`b` to trace through this::
|
1125 |
+
|
1126 |
+
f = fx.symbolic_trace(f, concrete_args={'b': False})
|
1127 |
+
assert f(3, False) == 6
|
1128 |
+
|
1129 |
+
Note that although you can still pass in different values of `b`, they will be ignored.
|
1130 |
+
|
1131 |
+
We can also use `concrete_args` to eliminate data-structure handling from
|
1132 |
+
our function. This will use pytrees to flatten your input. To avoid
|
1133 |
+
overspecializing, pass in `fx.PH` for values that shouldn't be
|
1134 |
+
specialized. For example::
|
1135 |
+
|
1136 |
+
def f(x):
|
1137 |
+
out = 0
|
1138 |
+
for v in x.values():
|
1139 |
+
out += v
|
1140 |
+
return out
|
1141 |
+
f = fx.symbolic_trace(f, concrete_args={'x': {'a': fx.PH, 'b': fx.PH, 'c': fx.PH}})
|
1142 |
+
assert f({'a': 1, 'b': 2, 'c': 4}) == 7
|
1143 |
+
|
1144 |
+
|
1145 |
+
Args:
|
1146 |
+
root (Union[torch.nn.Module, Callable]): Module or function to be traced and converted
|
1147 |
+
into a Graph representation.
|
1148 |
+
concrete_args (Optional[Dict[str, any]]): Inputs to be partially specialized
|
1149 |
+
|
1150 |
+
Returns:
|
1151 |
+
GraphModule: a Module created from the recorded operations from ``root``.
|
1152 |
+
"""
|
1153 |
+
tracer = Tracer()
|
1154 |
+
graph = tracer.trace(root, concrete_args)
|
1155 |
+
name = (
|
1156 |
+
root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__
|
1157 |
+
)
|
1158 |
+
return GraphModule(tracer.root, graph, name)
|
1159 |
+
|
1160 |
+
|
1161 |
+
@wrap
|
1162 |
+
def _assert_is_none(value, msg):
|
1163 |
+
assert value is None, msg
|
env-llmeval/lib/python3.10/site-packages/torch/fx/annotate.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.fx.proxy import Proxy
|
2 |
+
from ._compatibility import compatibility
|
3 |
+
|
4 |
+
@compatibility(is_backward_compatible=False)
|
5 |
+
def annotate(val, type):
|
6 |
+
# val could be either a regular value (not tracing)
|
7 |
+
# or fx.Proxy (tracing)
|
8 |
+
if isinstance(val, Proxy):
|
9 |
+
if val.node.type:
|
10 |
+
raise RuntimeError(f"Tried to annotate a value that already had a type on it!"
|
11 |
+
f" Existing type is {val.node.type} "
|
12 |
+
f"and new type is {type}. "
|
13 |
+
f"This could happen if you tried to annotate a function parameter "
|
14 |
+
f"value (in which case you should use the type slot "
|
15 |
+
f"on the function signature) or you called "
|
16 |
+
f"annotate on the same value twice")
|
17 |
+
else:
|
18 |
+
val.node.type = type
|
19 |
+
return val
|
20 |
+
else:
|
21 |
+
return val
|
env-llmeval/lib/python3.10/site-packages/torch/fx/config.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Whether to disable showing progress on compilation passes
|
2 |
+
# Need to add a new config otherwise wil get a circular import if dynamo config is imported here
|
3 |
+
disable_progress = True
|
4 |
+
|
5 |
+
# If True this also shows the node names in each pass, for small models this is great but larger models it's quite noisy
|
6 |
+
verbose_progress = False
|
env-llmeval/lib/python3.10/site-packages/torch/fx/graph.py
ADDED
@@ -0,0 +1,1630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
from collections import defaultdict
|
3 |
+
from .node import Node, Argument, Target, map_arg, _type_repr, _get_qualified_name
|
4 |
+
import torch.utils._pytree as pytree
|
5 |
+
from . import _pytree as fx_pytree
|
6 |
+
from ._compatibility import compatibility
|
7 |
+
|
8 |
+
import contextlib
|
9 |
+
from typing import TYPE_CHECKING, Callable, Any, List, Dict, NamedTuple, Optional, Tuple, Set, FrozenSet, Type
|
10 |
+
from dataclasses import dataclass
|
11 |
+
from contextlib import contextmanager
|
12 |
+
import copy
|
13 |
+
import enum
|
14 |
+
import torch
|
15 |
+
import keyword
|
16 |
+
import re
|
17 |
+
import builtins
|
18 |
+
import math
|
19 |
+
import warnings
|
20 |
+
import inspect
|
21 |
+
|
22 |
+
__all__ = ["PythonCode", "CodeGen", "Graph"]
|
23 |
+
|
24 |
+
if TYPE_CHECKING:
|
25 |
+
from .graph_module import GraphModule # noqa: F401
|
26 |
+
from ._symbolic_trace import Tracer # noqa: F401
|
27 |
+
|
28 |
+
|
29 |
+
# Mapping of builtins to their `typing` equivalent.
|
30 |
+
_origin_type_map = {
|
31 |
+
list: List,
|
32 |
+
dict: Dict,
|
33 |
+
set: Set,
|
34 |
+
frozenset: FrozenSet,
|
35 |
+
tuple: Tuple,
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
# Signature for functions thattransforms the body (`list[str]`) of the
|
40 |
+
# generated code
|
41 |
+
TransformCodeFunc = Callable[[List[str]], List[str]]
|
42 |
+
|
43 |
+
|
44 |
+
class _CustomBuiltin(NamedTuple):
|
45 |
+
"""Additional objs that we add to every graph's globals.
|
46 |
+
|
47 |
+
The repr() for some standard library objects is not valid Python code without
|
48 |
+
an import. For common objects of this sort, we bundle them in the globals of
|
49 |
+
every FX graph.
|
50 |
+
"""
|
51 |
+
# How to import this object from the standard library.
|
52 |
+
import_str: str
|
53 |
+
# The actual object, produced from that import string.
|
54 |
+
obj: Any
|
55 |
+
|
56 |
+
_custom_builtins: Dict[str, _CustomBuiltin] = {}
|
57 |
+
|
58 |
+
|
59 |
+
def _register_custom_builtin(name: str, import_str: str, obj: Any):
|
60 |
+
_custom_builtins[name] = _CustomBuiltin(import_str, obj)
|
61 |
+
|
62 |
+
|
63 |
+
_register_custom_builtin('inf', 'from math import inf', math.inf)
|
64 |
+
_register_custom_builtin('nan', 'from math import nan', math.nan)
|
65 |
+
_register_custom_builtin('NoneType', 'NoneType = type(None)', type(None))
|
66 |
+
_register_custom_builtin('torch', 'import torch', torch)
|
67 |
+
_register_custom_builtin('device', 'from torch import device', torch.device)
|
68 |
+
_register_custom_builtin('fx_pytree', 'import torch.fx._pytree as fx_pytree', fx_pytree)
|
69 |
+
_register_custom_builtin('pytree', 'import torch.utils._pytree as pytree', pytree)
|
70 |
+
|
71 |
+
|
72 |
+
def _is_magic(x: str) -> bool:
|
73 |
+
return x.startswith('__') and x.endswith('__')
|
74 |
+
|
75 |
+
|
76 |
+
def _snake_case(s: str) -> str:
|
77 |
+
"""
|
78 |
+
Transforms the given string ``s`` to a Python-style variable name
|
79 |
+
|
80 |
+
Examples:
|
81 |
+
``mod.snake_case`` -> ``mod.snake_case``
|
82 |
+
``mod.pascalCase``-> ``mod.pascal_case``
|
83 |
+
``mod.ALL_CAPS`` -> ``mod.all_caps``
|
84 |
+
"""
|
85 |
+
chars = []
|
86 |
+
prev_lower = False
|
87 |
+
for c in s:
|
88 |
+
if prev_lower and c.isupper():
|
89 |
+
chars.append('_')
|
90 |
+
chars.append(c.lower())
|
91 |
+
prev_lower = c.islower()
|
92 |
+
return ''.join(chars)
|
93 |
+
|
94 |
+
|
95 |
+
def _is_from_torch(obj: Any) -> bool:
|
96 |
+
module_name = getattr(obj, '__module__', None)
|
97 |
+
if module_name is not None:
|
98 |
+
base_module = module_name.partition('.')[0]
|
99 |
+
return (
|
100 |
+
base_module == 'torch' and
|
101 |
+
not module_name.startswith("torch._dynamo.") and
|
102 |
+
not module_name.startswith("torch._inductor.")
|
103 |
+
)
|
104 |
+
|
105 |
+
name = getattr(obj, '__name__', None)
|
106 |
+
# exclude torch because torch.torch.torch.torch works. idk mang
|
107 |
+
if name is not None and name != 'torch':
|
108 |
+
for guess in [torch, torch.nn.functional]:
|
109 |
+
if getattr(guess, name, None) is obj:
|
110 |
+
return True
|
111 |
+
|
112 |
+
return False
|
113 |
+
|
114 |
+
|
115 |
+
class _Namespace:
|
116 |
+
"""A context for associating names uniquely with objects.
|
117 |
+
|
118 |
+
The following invariants are enforced:
|
119 |
+
- Each object gets a single name.
|
120 |
+
- Each name is unique within a given namespace.
|
121 |
+
- Names generated do not shadow builtins, unless the object is indeed that builtin.
|
122 |
+
"""
|
123 |
+
def __init__(self):
|
124 |
+
self._obj_to_name: Dict[Any, str] = {}
|
125 |
+
self._unassociated_names = set()
|
126 |
+
self._used_names: Set[str] = set()
|
127 |
+
self._base_count: Dict[str, int] = defaultdict(int)
|
128 |
+
|
129 |
+
self._illegal_char_regex = re.compile('[^0-9a-zA-Z_]+')
|
130 |
+
self._name_suffix_regex = re.compile(r"(.*)_(\d+)$")
|
131 |
+
|
132 |
+
def create_name(self, candidate: str, obj: Optional[Any]) -> str:
|
133 |
+
"""Create a unique name.
|
134 |
+
|
135 |
+
Arguments:
|
136 |
+
candidate: used as the basis for the unique name, relevant to the user.
|
137 |
+
obj: If not None, an object that will be associated with the unique name.
|
138 |
+
"""
|
139 |
+
if obj is not None and obj in self._obj_to_name:
|
140 |
+
return self._obj_to_name[obj]
|
141 |
+
|
142 |
+
# delete all characters that are illegal in a Python identifier
|
143 |
+
candidate = self._illegal_char_regex.sub('_', candidate)
|
144 |
+
|
145 |
+
if not candidate:
|
146 |
+
candidate = '_unnamed'
|
147 |
+
|
148 |
+
if candidate[0].isdigit():
|
149 |
+
candidate = f'_{candidate}'
|
150 |
+
|
151 |
+
match = self._name_suffix_regex.match(candidate)
|
152 |
+
if match is None:
|
153 |
+
base = candidate
|
154 |
+
num = None
|
155 |
+
else:
|
156 |
+
base, num_str = match.group(1, 2)
|
157 |
+
num = int(num_str)
|
158 |
+
|
159 |
+
candidate = base if num is None else f'{base}_{num}'
|
160 |
+
if not num:
|
161 |
+
num = self._base_count[base]
|
162 |
+
|
163 |
+
while candidate in self._used_names or self._is_illegal_name(candidate, obj):
|
164 |
+
num += 1
|
165 |
+
candidate = f'{base}_{num}'
|
166 |
+
|
167 |
+
self._used_names.add(candidate)
|
168 |
+
self._base_count[base] = num
|
169 |
+
if obj is None:
|
170 |
+
self._unassociated_names.add(candidate)
|
171 |
+
else:
|
172 |
+
self._obj_to_name[obj] = candidate
|
173 |
+
return candidate
|
174 |
+
|
175 |
+
def associate_name_with_obj(self, name: str, obj: Any):
|
176 |
+
"""Associate a unique name with an object.
|
177 |
+
|
178 |
+
Neither `name` nor `obj` should be associated already.
|
179 |
+
"""
|
180 |
+
assert obj not in self._obj_to_name
|
181 |
+
assert name in self._unassociated_names
|
182 |
+
self._obj_to_name[obj] = name
|
183 |
+
self._unassociated_names.remove(name)
|
184 |
+
|
185 |
+
def _is_illegal_name(self, name: str, obj: Any) -> bool:
|
186 |
+
# 1. keywords are never allowed as names.
|
187 |
+
if name in keyword.kwlist:
|
188 |
+
return True
|
189 |
+
|
190 |
+
# 2. Can't shadow a builtin name, unless you *are* that builtin.
|
191 |
+
if name in builtins.__dict__:
|
192 |
+
return obj is not builtins.__dict__[name]
|
193 |
+
|
194 |
+
# 3. Can't shadow our custom builtins either
|
195 |
+
if name in _custom_builtins:
|
196 |
+
return obj is not _custom_builtins[name].obj
|
197 |
+
|
198 |
+
return False
|
199 |
+
|
200 |
+
def _rename_object(self, obj: Any, name: str):
|
201 |
+
assert obj in self._obj_to_name
|
202 |
+
self._obj_to_name[obj] = name
|
203 |
+
self._used_names.add(name)
|
204 |
+
|
205 |
+
dtype_abbrs = {
|
206 |
+
torch.bfloat16: 'bf16',
|
207 |
+
torch.float64: 'f64',
|
208 |
+
torch.float32: 'f32',
|
209 |
+
torch.float16: 'f16',
|
210 |
+
torch.float8_e4m3fn: 'f8e4m3fn',
|
211 |
+
torch.float8_e5m2: 'f8e5m2',
|
212 |
+
torch.complex32: 'c32',
|
213 |
+
torch.complex64: 'c64',
|
214 |
+
torch.complex128: 'c128',
|
215 |
+
torch.int8: 'i8',
|
216 |
+
torch.int16: 'i16',
|
217 |
+
torch.int32: 'i32',
|
218 |
+
torch.int64: 'i64',
|
219 |
+
torch.bool: 'b8',
|
220 |
+
torch.uint8: 'u8',
|
221 |
+
}
|
222 |
+
|
223 |
+
@compatibility(is_backward_compatible=True)
|
224 |
+
@dataclass
|
225 |
+
class PythonCode:
|
226 |
+
"""
|
227 |
+
Represents all the information necessary to exec or save a graph as Python code.
|
228 |
+
"""
|
229 |
+
# Python source code for the forward function definition.
|
230 |
+
src: str
|
231 |
+
# Values in global scope during execution of `src_def`.
|
232 |
+
globals: Dict[str, Any]
|
233 |
+
# Optional mapping from the forward function's line number to
|
234 |
+
# node index.
|
235 |
+
_lineno_map: Optional[Dict[int, Optional[int]]]
|
236 |
+
|
237 |
+
|
238 |
+
def _format_target(base: str, target: str) -> str:
|
239 |
+
elems = target.split('.')
|
240 |
+
r = base
|
241 |
+
for e in elems:
|
242 |
+
if not e.isidentifier():
|
243 |
+
r = f'getattr({r}, "{e}")'
|
244 |
+
else:
|
245 |
+
r = f'{r}.{e}'
|
246 |
+
return r
|
247 |
+
|
248 |
+
class _InsertPoint:
|
249 |
+
def __init__(self, graph, new_insert):
|
250 |
+
self.graph = graph
|
251 |
+
self.orig_insert, graph._insert = graph._insert, new_insert
|
252 |
+
|
253 |
+
def __enter__(self):
|
254 |
+
pass
|
255 |
+
|
256 |
+
def __exit__(self, type, value, tb):
|
257 |
+
self.graph._insert = self.orig_insert
|
258 |
+
|
259 |
+
class _node_list:
|
260 |
+
def __init__(self, graph: 'Graph', direction: str = '_next'):
|
261 |
+
assert direction in ['_next', '_prev']
|
262 |
+
self.graph = graph
|
263 |
+
self.direction = direction
|
264 |
+
|
265 |
+
def __len__(self):
|
266 |
+
return self.graph._len
|
267 |
+
|
268 |
+
def __iter__(self):
|
269 |
+
root, direction = self.graph._root, self.direction
|
270 |
+
cur = getattr(root, direction)
|
271 |
+
while cur is not root:
|
272 |
+
if not cur._erased:
|
273 |
+
yield cur
|
274 |
+
cur = getattr(cur, direction)
|
275 |
+
|
276 |
+
def __reversed__(self):
|
277 |
+
return _node_list(self.graph, '_next' if self.direction == '_prev' else '_prev')
|
278 |
+
|
279 |
+
class _PyTreeInfo(NamedTuple):
|
280 |
+
"""
|
281 |
+
Contains extra info stored when we're using Pytrees
|
282 |
+
"""
|
283 |
+
orig_args: List[str]
|
284 |
+
in_spec: pytree.TreeSpec
|
285 |
+
out_spec: Optional[pytree.TreeSpec]
|
286 |
+
|
287 |
+
# get File:lineno code from stack_trace
|
288 |
+
def _parse_stack_trace(stack_trace: str):
|
289 |
+
if stack_trace is None:
|
290 |
+
return None
|
291 |
+
ParsedStackTrace = collections.namedtuple("ParsedStackTrace", ["file", "lineno", "code"])
|
292 |
+
pattern = re.compile(r"^File \"(.+)\", line (\d+), in (.+)$")
|
293 |
+
lines = stack_trace.strip().split('\n')
|
294 |
+
# stacktrace should have innermost frame last, so we
|
295 |
+
# iterate backwards to find the first line that starts
|
296 |
+
# with 'File '
|
297 |
+
summary_str = ""
|
298 |
+
for idx in range(len(lines) - 2, -1, -1):
|
299 |
+
line = lines[idx].strip()
|
300 |
+
matches = pattern.match(line)
|
301 |
+
if matches:
|
302 |
+
file = matches.group(1)
|
303 |
+
lineno = matches.group(2)
|
304 |
+
# next line should be the code
|
305 |
+
code = lines[idx + 1].strip()
|
306 |
+
return ParsedStackTrace(file, lineno, code)
|
307 |
+
return None
|
308 |
+
|
309 |
+
|
310 |
+
@compatibility(is_backward_compatible=False)
|
311 |
+
class CodeGen:
|
312 |
+
def __init__(self):
|
313 |
+
self._body_transformer: Optional[TransformCodeFunc] = None
|
314 |
+
self._func_name: str = "forward"
|
315 |
+
|
316 |
+
def gen_fn_def(self, free_vars: List[str], maybe_return_annotation: str) -> str:
|
317 |
+
"""
|
318 |
+
Given the free variables and a return annotation, generates the beginning of the FX function.
|
319 |
+
By default, `gen_fn_def(['a', 'b'], '') == 'def {self._func_name}(a, b):'`
|
320 |
+
"""
|
321 |
+
# If the original function didn't have self as its first argument, we
|
322 |
+
# would have added it.
|
323 |
+
if len(free_vars) == 0 or free_vars[0] != 'self':
|
324 |
+
free_vars.insert(0, 'self')
|
325 |
+
return f"def {self._func_name}({', '.join(free_vars)}){maybe_return_annotation}:"
|
326 |
+
|
327 |
+
def generate_output(self, output_args: Argument) -> str:
|
328 |
+
"""
|
329 |
+
Given the output arguments, generates the return statement of the FX function.
|
330 |
+
Note: The returned statement should not be indented.
|
331 |
+
"""
|
332 |
+
return f'return {repr(output_args)}'
|
333 |
+
|
334 |
+
def process_inputs(self, *args: Any) -> Any:
|
335 |
+
"""
|
336 |
+
Transforms the inputs so that the graph can take them as arguments, as
|
337 |
+
non-default codegen may result in the inputs to the function being
|
338 |
+
different from the inputs to the graph.
|
339 |
+
|
340 |
+
If the graph was directly runnable, this invariant should hold true
|
341 |
+
`f.graph.process_outputs(f.graph(*f.graph.process_inputs(*inputs))) == f(*inputs)`
|
342 |
+
"""
|
343 |
+
return args
|
344 |
+
|
345 |
+
def process_outputs(self, outputs: Any) -> Any:
|
346 |
+
"""
|
347 |
+
Transforms the outputs of the graph to be identical to the codegen.
|
348 |
+
|
349 |
+
See ``process_inputs`` for more details.
|
350 |
+
"""
|
351 |
+
return outputs
|
352 |
+
|
353 |
+
def additional_globals(self) -> List[Tuple[str, Any]]:
|
354 |
+
"""
|
355 |
+
If your codegen uses extra global values, add tuples of (identifier,reference to the value) here.
|
356 |
+
For example, return ['List', typing.List] if you need ``List`` in the global context.
|
357 |
+
"""
|
358 |
+
return []
|
359 |
+
|
360 |
+
def _gen_python_code(
|
361 |
+
self, nodes, root_module: str, namespace: _Namespace, *, verbose: bool = False,
|
362 |
+
) -> PythonCode:
|
363 |
+
free_vars: List[str] = []
|
364 |
+
body: List[str] = []
|
365 |
+
globals_: Dict[str, Any] = {}
|
366 |
+
wrapped_fns: Dict[str, None] = {}
|
367 |
+
|
368 |
+
# Wrap string in list to pass by reference
|
369 |
+
maybe_return_annotation : List[str] = ['']
|
370 |
+
|
371 |
+
def add_global(name_hint: str, obj: Any):
|
372 |
+
"""Add an obj to be tracked as a global.
|
373 |
+
|
374 |
+
We call this for names that reference objects external to the
|
375 |
+
Graph, like functions or types.
|
376 |
+
|
377 |
+
Returns: the global name that should be used to reference 'obj' in generated source.
|
378 |
+
"""
|
379 |
+
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device
|
380 |
+
# HACK: workaround for how torch custom ops are registered. We
|
381 |
+
# can't import them like normal modules so they must retain their
|
382 |
+
# fully qualified name.
|
383 |
+
return _get_qualified_name(obj)
|
384 |
+
|
385 |
+
# normalize the name hint to get a proper identifier
|
386 |
+
global_name = namespace.create_name(name_hint, obj)
|
387 |
+
|
388 |
+
if global_name in globals_:
|
389 |
+
assert globals_[global_name] is obj
|
390 |
+
return global_name
|
391 |
+
globals_[global_name] = obj
|
392 |
+
return global_name
|
393 |
+
|
394 |
+
# Pre-fill the globals table with registered builtins.
|
395 |
+
for name, (_, obj) in _custom_builtins.items():
|
396 |
+
add_global(name, obj)
|
397 |
+
|
398 |
+
def type_repr(o : Any):
|
399 |
+
if o == ():
|
400 |
+
# Empty tuple is used for empty tuple type annotation Tuple[()]
|
401 |
+
return '()'
|
402 |
+
|
403 |
+
typename = _type_repr(o)
|
404 |
+
|
405 |
+
if hasattr(o, '__origin__'):
|
406 |
+
# This is a generic type, e.g. typing.List[torch.Tensor]
|
407 |
+
origin_type = _origin_type_map.get(o.__origin__, o.__origin__)
|
408 |
+
origin_typename = add_global(_type_repr(origin_type), origin_type)
|
409 |
+
|
410 |
+
if hasattr(o, '__args__'):
|
411 |
+
# Assign global names for each of the inner type variables.
|
412 |
+
args = [type_repr(arg) for arg in o.__args__]
|
413 |
+
|
414 |
+
if len(args) == 0:
|
415 |
+
# Bare type, such as `typing.Tuple` with no subscript
|
416 |
+
# This code-path used in Python < 3.9
|
417 |
+
return origin_typename
|
418 |
+
|
419 |
+
return f'{origin_typename}[{",".join(args)}]'
|
420 |
+
else:
|
421 |
+
# Bare type, such as `typing.Tuple` with no subscript
|
422 |
+
# This code-path used in Python 3.9+
|
423 |
+
return origin_typename
|
424 |
+
|
425 |
+
# Common case: this is a regular module name like 'foo.bar.baz'
|
426 |
+
return add_global(typename, o)
|
427 |
+
|
428 |
+
def _get_repr(arg: Any) -> str:
|
429 |
+
# Handle NamedTuples (if it has `_fields`) via add_global.
|
430 |
+
if isinstance(arg, tuple) and hasattr(arg, '_fields'):
|
431 |
+
qualified_name = _get_qualified_name(type(arg))
|
432 |
+
global_name = add_global(qualified_name, type(arg))
|
433 |
+
return f"{global_name}{repr(tuple(arg))}"
|
434 |
+
elif isinstance(arg, torch._ops.OpOverload):
|
435 |
+
qualified_name = _get_qualified_name(arg)
|
436 |
+
global_name = add_global(qualified_name, arg)
|
437 |
+
return f"{global_name}"
|
438 |
+
elif isinstance(arg, enum.Enum):
|
439 |
+
cls = arg.__class__
|
440 |
+
clsname = add_global(cls.__name__, cls)
|
441 |
+
return f"{clsname}.{arg.name}"
|
442 |
+
return repr(arg)
|
443 |
+
|
444 |
+
def _format_args(args: Tuple[Argument, ...], kwargs: Dict[str, Argument]) -> str:
|
445 |
+
args_s = ', '.join(_get_repr(a) for a in args)
|
446 |
+
kwargs_s = ', '.join(f'{k} = {_get_repr(v)}' for k, v in kwargs.items())
|
447 |
+
if args_s and kwargs_s:
|
448 |
+
return f'{args_s}, {kwargs_s}'
|
449 |
+
return args_s or kwargs_s
|
450 |
+
|
451 |
+
# Run through reverse nodes and record the first instance of a use
|
452 |
+
# of a given node. This represents the *last* use of the node in the
|
453 |
+
# execution order of the program, which we will use to free unused
|
454 |
+
# values
|
455 |
+
node_to_last_use : Dict[Node, Node] = {}
|
456 |
+
user_to_last_uses : Dict[Node, List[Node]] = {}
|
457 |
+
|
458 |
+
def register_last_uses(n : Node, user : Node):
|
459 |
+
if n not in node_to_last_use:
|
460 |
+
node_to_last_use[n] = user
|
461 |
+
user_to_last_uses.setdefault(user, []).append(n)
|
462 |
+
|
463 |
+
for node in reversed(nodes):
|
464 |
+
map_arg(node.args, lambda n: register_last_uses(n, node))
|
465 |
+
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
|
466 |
+
|
467 |
+
def delete_unused_values(user : Node):
|
468 |
+
"""
|
469 |
+
Delete values after their last use. This ensures that values that are
|
470 |
+
not used in the remainder of the code are freed and the memory usage
|
471 |
+
of the code is optimal.
|
472 |
+
"""
|
473 |
+
if user.op == 'placeholder':
|
474 |
+
return
|
475 |
+
if user.op == 'output':
|
476 |
+
body.append('\n')
|
477 |
+
return
|
478 |
+
nodes_to_delete = user_to_last_uses.get(user, [])
|
479 |
+
if len(nodes_to_delete):
|
480 |
+
to_delete_str = ' = '.join([repr(n) for n in nodes_to_delete] + ['None'])
|
481 |
+
body.append(f'; {to_delete_str}\n')
|
482 |
+
else:
|
483 |
+
body.append('\n')
|
484 |
+
|
485 |
+
prev_stacktrace = None
|
486 |
+
|
487 |
+
def append_stacktrace_summary(node : Node):
|
488 |
+
"""
|
489 |
+
Append a summary of the stacktrace to the generated code. This is
|
490 |
+
useful for debugging.
|
491 |
+
"""
|
492 |
+
nonlocal prev_stacktrace
|
493 |
+
|
494 |
+
if node.op not in {'placeholder', 'output'}:
|
495 |
+
if node.stack_trace:
|
496 |
+
if node.stack_trace != prev_stacktrace:
|
497 |
+
prev_stacktrace = node.stack_trace
|
498 |
+
summary_str = ""
|
499 |
+
|
500 |
+
parsed_stack_trace = _parse_stack_trace(node.stack_trace)
|
501 |
+
|
502 |
+
if parsed_stack_trace is not None:
|
503 |
+
lineno = parsed_stack_trace.lineno
|
504 |
+
code = parsed_stack_trace.code
|
505 |
+
summary_str = f'File: {parsed_stack_trace.file}:{lineno}, code: {code}'
|
506 |
+
|
507 |
+
body.append(f'\n# {summary_str}\n')
|
508 |
+
elif prev_stacktrace != "":
|
509 |
+
prev_stacktrace = ""
|
510 |
+
body.append('\n# No stacktrace found for following nodes\n')
|
511 |
+
|
512 |
+
def stringify_shape(shape : torch.Size) -> str:
|
513 |
+
return f"[{', '.join(str(x) for x in shape)}]"
|
514 |
+
|
515 |
+
def emit_node(node : Node):
|
516 |
+
maybe_type_annotation = '' if node.type is None else f' : {type_repr(node.type)}'
|
517 |
+
|
518 |
+
if verbose:
|
519 |
+
# override annotation with more detailed information
|
520 |
+
from torch._subclasses.fake_tensor import FakeTensor
|
521 |
+
from torch.fx.experimental.proxy_tensor import py_sym_types
|
522 |
+
from torch.fx.passes.shape_prop import TensorMetadata
|
523 |
+
|
524 |
+
meta_val = node.meta.get('val', node.meta.get('tensor_meta', None))
|
525 |
+
|
526 |
+
# use string as annotation, to make it valid python code
|
527 |
+
if isinstance(meta_val, FakeTensor):
|
528 |
+
maybe_type_annotation = f': "{dtype_abbrs[meta_val.dtype]}{stringify_shape(meta_val.shape)}"'
|
529 |
+
elif isinstance(meta_val, py_sym_types):
|
530 |
+
maybe_type_annotation = f': "Sym({meta_val})"'
|
531 |
+
elif isinstance(meta_val, TensorMetadata):
|
532 |
+
maybe_type_annotation = f': "{dtype_abbrs[meta_val.dtype]}{stringify_shape(meta_val.shape)}"'
|
533 |
+
|
534 |
+
if node.op == 'placeholder':
|
535 |
+
assert isinstance(node.target, str)
|
536 |
+
maybe_default_arg = '' if not node.args else f' = {_get_repr(node.args[0])}'
|
537 |
+
free_vars.append(f'{node.target}{maybe_type_annotation}{maybe_default_arg}')
|
538 |
+
raw_name = node.target.replace('*', '')
|
539 |
+
if raw_name != repr(node):
|
540 |
+
body.append(f'{repr(node)} = {raw_name}\n')
|
541 |
+
return
|
542 |
+
elif node.op == 'call_method':
|
543 |
+
assert isinstance(node.target, str)
|
544 |
+
body.append(
|
545 |
+
f'{repr(node)}{maybe_type_annotation} = {_format_target(_get_repr(node.args[0]), node.target)}'
|
546 |
+
f'({_format_args(node.args[1:], node.kwargs)})')
|
547 |
+
return
|
548 |
+
elif node.op == 'call_function':
|
549 |
+
assert callable(node.target)
|
550 |
+
# pretty print operators
|
551 |
+
if getattr(node.target, "__module__", "") == '_operator' and node.target.__name__ in magic_methods:
|
552 |
+
assert isinstance(node.args, tuple)
|
553 |
+
body.append(f'{repr(node)}{maybe_type_annotation} = '
|
554 |
+
f'{magic_methods[node.target.__name__].format(*(_get_repr(a) for a in node.args))}')
|
555 |
+
return
|
556 |
+
|
557 |
+
# pretty print inplace operators; required for jit.script to work properly
|
558 |
+
# not currently supported in normal FX graphs, but generated by torchdynamo
|
559 |
+
if getattr(node.target, "__module__", "") == '_operator' and node.target.__name__ in inplace_methods:
|
560 |
+
body.append(f'{inplace_methods[node.target.__name__].format(*(_get_repr(a) for a in node.args))}; '
|
561 |
+
f'{repr(node)}{maybe_type_annotation} = {_get_repr(node.args[0])}')
|
562 |
+
return
|
563 |
+
|
564 |
+
qualified_name = _get_qualified_name(node.target)
|
565 |
+
global_name = add_global(qualified_name, node.target)
|
566 |
+
# special case for getattr: node.args could be 2-argument or 3-argument
|
567 |
+
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
|
568 |
+
if global_name == 'getattr' and \
|
569 |
+
isinstance(node.args, tuple) and \
|
570 |
+
isinstance(node.args[1], str) and \
|
571 |
+
node.args[1].isidentifier() and \
|
572 |
+
len(node.args) == 2:
|
573 |
+
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(_get_repr(node.args[0]), node.args[1])}')
|
574 |
+
return
|
575 |
+
body.append(f'{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})')
|
576 |
+
if node.meta.get('is_wrapped', False):
|
577 |
+
wrapped_fns.setdefault(global_name)
|
578 |
+
return
|
579 |
+
elif node.op == 'call_module':
|
580 |
+
assert isinstance(node.target, str)
|
581 |
+
body.append(f'{repr(node)}{maybe_type_annotation} = '
|
582 |
+
f'{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})')
|
583 |
+
return
|
584 |
+
elif node.op == 'get_attr':
|
585 |
+
assert isinstance(node.target, str)
|
586 |
+
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}')
|
587 |
+
return
|
588 |
+
elif node.op == 'output':
|
589 |
+
if node.type is not None:
|
590 |
+
maybe_return_annotation[0] = f" -> {type_repr(node.type)}"
|
591 |
+
body.append(self.generate_output(node.args[0]))
|
592 |
+
return
|
593 |
+
raise NotImplementedError(f'node: {node.op} {node.target}')
|
594 |
+
|
595 |
+
for i, node in enumerate(nodes):
|
596 |
+
# NOTE: emit_node does not emit a string with newline. It depends
|
597 |
+
# on delete_unused_values to append one
|
598 |
+
if verbose:
|
599 |
+
append_stacktrace_summary(node)
|
600 |
+
# emit a counter comment to keep track of
|
601 |
+
# node index, which will be deleted later
|
602 |
+
# after going through _body_transformer
|
603 |
+
body.append(f"# COUNTER: {i}\n")
|
604 |
+
emit_node(node)
|
605 |
+
delete_unused_values(node)
|
606 |
+
|
607 |
+
if len(body) == 0:
|
608 |
+
# If the Graph has no non-placeholder nodes, no lines for the body
|
609 |
+
# have been emitted. To continue to have valid Python code, emit a
|
610 |
+
# single pass statement
|
611 |
+
body.append('pass\n')
|
612 |
+
|
613 |
+
|
614 |
+
|
615 |
+
if len(wrapped_fns) > 0:
|
616 |
+
wrap_name = add_global('wrap', torch.fx.wrap)
|
617 |
+
wrap_stmts = '\n'.join([f'{wrap_name}("{name}")' for name in wrapped_fns])
|
618 |
+
else:
|
619 |
+
wrap_stmts = ''
|
620 |
+
|
621 |
+
if self._body_transformer:
|
622 |
+
body = self._body_transformer(body)
|
623 |
+
|
624 |
+
for name, value in self.additional_globals():
|
625 |
+
add_global(name, value)
|
626 |
+
|
627 |
+
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0])
|
628 |
+
|
629 |
+
# remove counter and generate lineno to node index mapping
|
630 |
+
lineno_map: Dict[int, Optional[int]] = {}
|
631 |
+
prologue_len = prologue.count('\n') + 1
|
632 |
+
new_lines: List[str] = []
|
633 |
+
cur_idx = None
|
634 |
+
for line in ''.join(body).split('\n'):
|
635 |
+
counter = re.search(r"# COUNTER: (\d+)", line)
|
636 |
+
if counter and counter.group(1) is not None:
|
637 |
+
cur_idx = int(counter.group(1))
|
638 |
+
else:
|
639 |
+
lineno_map[len(new_lines) + prologue_len] = cur_idx
|
640 |
+
new_lines.append(line)
|
641 |
+
|
642 |
+
code = "\n".join(new_lines).lstrip('\n')
|
643 |
+
code = '\n'.join(' ' + line for line in code.split('\n'))
|
644 |
+
|
645 |
+
fn_code = f"""
|
646 |
+
{wrap_stmts}
|
647 |
+
|
648 |
+
{prologue}
|
649 |
+
{code}"""
|
650 |
+
return PythonCode(fn_code, globals_, _lineno_map=lineno_map)
|
651 |
+
|
652 |
+
|
653 |
+
# Ideally, we'd like to refactor all of the pytree logic into this codegen
|
654 |
+
# class. Unfortunately, there are 3 areas we currently need extra logic in FX.
|
655 |
+
# 1. In the initial symbolic trace, the pytree logic is tied up with `concrete_args`.
|
656 |
+
# 2. In the FX graph, we need to access 2 attributes - in_spec and out_spec.
|
657 |
+
# Since we can't access .graph within the FX forward, we need to copy the attribute to the module.
|
658 |
+
# 3. We currently can't register the pytree imports with `add_global` - not sure why.
|
659 |
+
class _PyTreeCodeGen(CodeGen):
|
660 |
+
def __init__(self, pytree_info: _PyTreeInfo):
|
661 |
+
super().__init__()
|
662 |
+
self.pytree_info: _PyTreeInfo = pytree_info
|
663 |
+
|
664 |
+
def process_inputs(self, *inputs: Any) -> Any:
|
665 |
+
flat_args = pytree.arg_tree_leaves(*inputs)
|
666 |
+
return flat_args
|
667 |
+
|
668 |
+
def process_outputs(self, out: Any) -> Any:
|
669 |
+
if self.pytree_info is None or self.pytree_info.out_spec is None:
|
670 |
+
return out
|
671 |
+
if not isinstance(out, (list, tuple)):
|
672 |
+
out = [out]
|
673 |
+
assert(self.pytree_info.out_spec is not None)
|
674 |
+
return pytree.tree_unflatten(out, self.pytree_info.out_spec)
|
675 |
+
|
676 |
+
def gen_fn_def(self, free_vars, maybe_return_annotation):
|
677 |
+
# Given a user function/model:
|
678 |
+
# myargs = [myargs0, myargs1]
|
679 |
+
# mykwargs = {'mykwargs0': ..., 'mykwargs1': ...}
|
680 |
+
# def forward(self, mypos, *myargs, mykey=None, **mykwargs):
|
681 |
+
#
|
682 |
+
# The generated code flattens all keywords into positional arguments for `forward()`
|
683 |
+
# e.g forward(self, mypos, myargs0, myargs1, mykey, mykwargs0, mykwargs1):
|
684 |
+
#
|
685 |
+
# Within `forward`, `tree_flatten_spec``still parses args and kwargs separately
|
686 |
+
# e.g. tree_flatten_spec(([mypos, myargs0, myargs1],
|
687 |
+
# {'mykey':mykey, 'mykwargs0':mykwargs0, 'mykwargs1':mykwargs1}),
|
688 |
+
# self._in_spec)
|
689 |
+
#
|
690 |
+
# If the user function/model does not have keywords, the dict is suppressed from tree_flatten_spec
|
691 |
+
# e.g. tree_flatten_spec([mypos, myargs0, myargs1]), self._in_spec)
|
692 |
+
if self.pytree_info is None:
|
693 |
+
return super().gen_fn_def(free_vars, maybe_return_annotation)
|
694 |
+
|
695 |
+
fn_args = self.pytree_info.orig_args
|
696 |
+
has_orig_self = (fn_args[0] == 'self') if len(fn_args) > 0 else False
|
697 |
+
if has_orig_self:
|
698 |
+
free_vars.insert(0, 'self')
|
699 |
+
fn_definition = super().gen_fn_def(fn_args[:], maybe_return_annotation)
|
700 |
+
|
701 |
+
if len(free_vars) > 0: # pytree has placeholders in it
|
702 |
+
# when kwargs is present, in_spec is tuple(args, kwargs)
|
703 |
+
has_args_kwargs_tuple = self.pytree_info.in_spec.type == tuple and \
|
704 |
+
len(self.pytree_info.in_spec.children_specs) == 2 and \
|
705 |
+
self.pytree_info.in_spec.children_specs[0].type == tuple and \
|
706 |
+
self.pytree_info.in_spec.children_specs[1].type == dict
|
707 |
+
fn_kwargs = '{}'
|
708 |
+
fn_signature = f"[{', '.join(fn_args)}], self._in_spec"
|
709 |
+
if has_args_kwargs_tuple:
|
710 |
+
count_args = len(self.pytree_info.in_spec.children_specs[0].children_specs)
|
711 |
+
fn_args = self.pytree_info.orig_args[:count_args]
|
712 |
+
fn_kwargs = '{' + ', '.join(f"'{k}':{v}" for k, v in zip(
|
713 |
+
self.pytree_info.in_spec.children_specs[1].context,
|
714 |
+
self.pytree_info.orig_args[count_args:])) + '}'
|
715 |
+
fn_signature = f"([{', '.join(fn_args)}], {fn_kwargs}), self._in_spec"
|
716 |
+
|
717 |
+
# in Python, `var1: annotation1, var2: annotation2 = function_call()` is invalid.
|
718 |
+
# we need to split it to two lines:
|
719 |
+
# one for annotation: `var1: annotation1; var2: annotation2;` (note the semicolon)
|
720 |
+
# one for code: `var1, var2, = function_call()`
|
721 |
+
without_annotation = [x.split(":")[0] for x in free_vars]
|
722 |
+
has_annotation = [x + "; " for x in free_vars if ":" in x]
|
723 |
+
if len(has_annotation) > 0:
|
724 |
+
fn_definition += "\n " + "".join(has_annotation) + "\n"
|
725 |
+
fn_definition += f"""
|
726 |
+
{', '.join(without_annotation)}, = fx_pytree.tree_flatten_spec({fn_signature})"""
|
727 |
+
return fn_definition
|
728 |
+
|
729 |
+
def generate_output(self, output_args):
|
730 |
+
if self.pytree_info and self.pytree_info.out_spec:
|
731 |
+
return f'return pytree.tree_unflatten({repr(output_args)}, self._out_spec)'
|
732 |
+
else:
|
733 |
+
return super().generate_output(output_args)
|
734 |
+
|
735 |
+
@compatibility(is_backward_compatible=True)
|
736 |
+
class Graph:
|
737 |
+
"""
|
738 |
+
``Graph`` is the main data structure used in the FX Intermediate Representation.
|
739 |
+
It consists of a series of ``Node`` s, each representing callsites (or other
|
740 |
+
syntactic constructs). The list of ``Node`` s, taken together, constitute a
|
741 |
+
valid Python function.
|
742 |
+
|
743 |
+
For example, the following code
|
744 |
+
|
745 |
+
.. code-block:: python
|
746 |
+
|
747 |
+
import torch
|
748 |
+
import torch.fx
|
749 |
+
|
750 |
+
class MyModule(torch.nn.Module):
|
751 |
+
def __init__(self):
|
752 |
+
super().__init__()
|
753 |
+
self.param = torch.nn.Parameter(torch.rand(3, 4))
|
754 |
+
self.linear = torch.nn.Linear(4, 5)
|
755 |
+
|
756 |
+
def forward(self, x):
|
757 |
+
return torch.topk(torch.sum(self.linear(x + self.linear.weight).relu(), dim=-1), 3)
|
758 |
+
|
759 |
+
m = MyModule()
|
760 |
+
gm = torch.fx.symbolic_trace(m)
|
761 |
+
|
762 |
+
Will produce the following Graph::
|
763 |
+
|
764 |
+
print(gm.graph)
|
765 |
+
|
766 |
+
.. code-block:: text
|
767 |
+
|
768 |
+
graph(x):
|
769 |
+
%linear_weight : [num_users=1] = self.linear.weight
|
770 |
+
%add_1 : [num_users=1] = call_function[target=operator.add](args = (%x, %linear_weight), kwargs = {})
|
771 |
+
%linear_1 : [num_users=1] = call_module[target=linear](args = (%add_1,), kwargs = {})
|
772 |
+
%relu_1 : [num_users=1] = call_method[target=relu](args = (%linear_1,), kwargs = {})
|
773 |
+
%sum_1 : [num_users=1] = call_function[target=torch.sum](args = (%relu_1,), kwargs = {dim: -1})
|
774 |
+
%topk_1 : [num_users=1] = call_function[target=torch.topk](args = (%sum_1, 3), kwargs = {})
|
775 |
+
return topk_1
|
776 |
+
|
777 |
+
For the semantics of operations represented in the ``Graph``, please see :class:`Node`.
|
778 |
+
"""
|
779 |
+
|
780 |
+
@compatibility(is_backward_compatible=True)
|
781 |
+
def __init__(self, owning_module: Optional["GraphModule"] = None, tracer_cls: Optional[Type["Tracer"]] = None,
|
782 |
+
tracer_extras: Optional[Dict[str, Any]] = None):
|
783 |
+
"""
|
784 |
+
Construct an empty Graph.
|
785 |
+
"""
|
786 |
+
self._root : Node = Node(self, '', 'root', '', (), {})
|
787 |
+
self._used_names : Dict[str, int] = {} # base name -> number
|
788 |
+
self._insert = self._root.prepend
|
789 |
+
self._len = 0
|
790 |
+
self._graph_namespace = _Namespace()
|
791 |
+
self._owning_module = owning_module
|
792 |
+
self._tracer_cls = tracer_cls
|
793 |
+
self._tracer_extras = tracer_extras
|
794 |
+
self._codegen = CodeGen()
|
795 |
+
self._co_fields : Dict[str, Any] = {}
|
796 |
+
|
797 |
+
@property
|
798 |
+
def owning_module(self):
|
799 |
+
return self._owning_module
|
800 |
+
|
801 |
+
@owning_module.setter
|
802 |
+
def owning_module(self, mod: Optional["GraphModule"]):
|
803 |
+
self._owning_module = mod
|
804 |
+
|
805 |
+
@property
|
806 |
+
def nodes(self) -> _node_list:
|
807 |
+
"""
|
808 |
+
Get the list of Nodes that constitute this Graph.
|
809 |
+
|
810 |
+
Note that this ``Node`` list representation is a doubly-linked list. Mutations
|
811 |
+
during iteration (e.g. delete a Node, add a Node) are safe.
|
812 |
+
|
813 |
+
Returns:
|
814 |
+
|
815 |
+
A doubly-linked list of Nodes. Note that ``reversed`` can be called on
|
816 |
+
this list to switch iteration order.
|
817 |
+
"""
|
818 |
+
return _node_list(self)
|
819 |
+
|
820 |
+
@compatibility(is_backward_compatible=True)
|
821 |
+
def graph_copy(self, g : 'Graph', val_map : Dict[Node, Node], return_output_node=False) -> 'Optional[Argument]':
|
822 |
+
"""
|
823 |
+
Copy all nodes from a given graph into ``self``.
|
824 |
+
|
825 |
+
Args:
|
826 |
+
|
827 |
+
g (Graph): The source graph from which to copy Nodes.
|
828 |
+
|
829 |
+
val_map (Dict[Node, Node]): a dictionary that will be populated with a mapping
|
830 |
+
from nodes in ``g`` to nodes in ``self``. Note that ``val_map`` can be passed
|
831 |
+
in with values in it already to override copying of certain values.
|
832 |
+
|
833 |
+
Returns:
|
834 |
+
|
835 |
+
The value in ``self`` that is now equivalent to the output value in ``g``,
|
836 |
+
if ``g`` had an ``output`` node. ``None`` otherwise.
|
837 |
+
"""
|
838 |
+
for node in g.nodes:
|
839 |
+
if node in val_map:
|
840 |
+
continue
|
841 |
+
if node.op == 'output':
|
842 |
+
rv = map_arg(node.args[0], lambda n: val_map[n])
|
843 |
+
return rv if not return_output_node else (rv, node)
|
844 |
+
val_map[node] = self.node_copy(node, lambda n : val_map[n])
|
845 |
+
return None
|
846 |
+
|
847 |
+
def __deepcopy__(self, memo=None) -> 'Graph':
|
848 |
+
"""
|
849 |
+
Explicitly implement __deepcopy__ to prevent excessive recursion depth
|
850 |
+
from the default implementation. This uses graph_copy to copy the nodes
|
851 |
+
in an iterative way, rather than recursive. It also populates the
|
852 |
+
memoization table to prevent unnecessary copies (e.g. references to
|
853 |
+
nodes or other parts of the Graph from a custom GraphModule implementation.
|
854 |
+
"""
|
855 |
+
memo = memo if memo else {}
|
856 |
+
g = Graph(tracer_cls=self._tracer_cls)
|
857 |
+
output_vals = g.graph_copy(self, val_map=memo, return_output_node=True)
|
858 |
+
g._codegen = copy.deepcopy(self._codegen)
|
859 |
+
assert isinstance(output_vals, tuple)
|
860 |
+
output_val, old_output_node = output_vals
|
861 |
+
new_output_node = g.output(output_val, type_expr=getattr(old_output_node, 'type', None))
|
862 |
+
new_output_node.meta = copy.copy(old_output_node.meta)
|
863 |
+
return g
|
864 |
+
|
865 |
+
@compatibility(is_backward_compatible=True)
|
866 |
+
def create_node(self, op: str, target: 'Target',
|
867 |
+
args: Optional[Tuple['Argument', ...]] = None,
|
868 |
+
kwargs: Optional[Dict[str, 'Argument']] = None,
|
869 |
+
name: Optional[str] = None,
|
870 |
+
type_expr: Optional[Any] = None) -> Node:
|
871 |
+
"""
|
872 |
+
Create a ``Node`` and add it to the ``Graph`` at the current insert-point.
|
873 |
+
Note that the current insert-point can be set via :meth:`Graph.inserting_before`
|
874 |
+
and :meth:`Graph.inserting_after`.
|
875 |
+
|
876 |
+
Args:
|
877 |
+
op (str): the opcode for this Node. One of 'call_function', 'call_method', 'get_attr',
|
878 |
+
'call_module', 'placeholder', or 'output'. The semantics of these opcodes are
|
879 |
+
described in the ``Graph`` docstring.
|
880 |
+
|
881 |
+
args (Optional[Tuple[Argument, ...]]): is a tuple of arguments to this node.
|
882 |
+
|
883 |
+
kwargs (Optional[Dict[str, Argument]]): the kwargs of this Node
|
884 |
+
|
885 |
+
name (Optional[str]): an optional string name for the ``Node``.
|
886 |
+
This will influence the name of the value assigned to in the
|
887 |
+
Python generated code.
|
888 |
+
|
889 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
890 |
+
Python type the output of this node will have.
|
891 |
+
|
892 |
+
Returns:
|
893 |
+
|
894 |
+
The newly-created and inserted node.
|
895 |
+
"""
|
896 |
+
assert op in ('call_function', 'call_method', 'get_attr', 'call_module', 'placeholder', 'output')
|
897 |
+
args = () if args is None else args
|
898 |
+
kwargs = {} if kwargs is None else kwargs
|
899 |
+
assert isinstance(args, tuple), "args must be a tuple"
|
900 |
+
assert isinstance(kwargs, dict), "kwargs must be a dict"
|
901 |
+
|
902 |
+
candidate = name if name is not None else self._target_to_str(target)
|
903 |
+
name = self._graph_namespace.create_name(candidate, None)
|
904 |
+
n = Node(self, name, op, target, args, kwargs, type_expr)
|
905 |
+
|
906 |
+
self._graph_namespace.associate_name_with_obj(name, n)
|
907 |
+
|
908 |
+
self._insert(n)
|
909 |
+
self._len += 1
|
910 |
+
return n
|
911 |
+
|
912 |
+
@compatibility(is_backward_compatible=False)
|
913 |
+
def process_inputs(self, *args):
|
914 |
+
"""
|
915 |
+
Processes args so that they can be passed to the FX graph.
|
916 |
+
"""
|
917 |
+
return self._codegen.process_inputs(*args)
|
918 |
+
|
919 |
+
@compatibility(is_backward_compatible=False)
|
920 |
+
def process_outputs(self, out):
|
921 |
+
return self._codegen.process_outputs(out)
|
922 |
+
|
923 |
+
|
924 |
+
@compatibility(is_backward_compatible=True)
|
925 |
+
def erase_node(self, to_erase : Node) -> None:
|
926 |
+
"""
|
927 |
+
Erases a ``Node`` from the ``Graph``. Throws an exception if
|
928 |
+
there are still users of that node in the ``Graph``.
|
929 |
+
|
930 |
+
Args:
|
931 |
+
|
932 |
+
to_erase (Node): The ``Node`` to erase from the ``Graph``.
|
933 |
+
"""
|
934 |
+
if len(to_erase.users) > 0:
|
935 |
+
raise RuntimeError(f'Tried to erase Node {to_erase} but it still had {len(to_erase.users)} '
|
936 |
+
f'users in the graph: {to_erase.users}!')
|
937 |
+
if to_erase._erased:
|
938 |
+
warnings.warn(f"erase_node({to_erase}) on an already erased node")
|
939 |
+
return
|
940 |
+
|
941 |
+
to_erase._remove_from_list()
|
942 |
+
to_erase._erased = True # iterators may retain handles to erased nodes
|
943 |
+
self._len -= 1
|
944 |
+
|
945 |
+
# Null out this Node's argument nodes so that the Nodes referred to
|
946 |
+
# can update their ``users`` accordingly
|
947 |
+
new_args = map_arg(to_erase.args, lambda n: None)
|
948 |
+
assert isinstance(new_args, tuple)
|
949 |
+
to_erase.args = new_args
|
950 |
+
new_kwargs = map_arg(to_erase.kwargs, lambda n: None)
|
951 |
+
assert isinstance(new_kwargs, dict)
|
952 |
+
to_erase.kwargs = new_kwargs
|
953 |
+
|
954 |
+
@compatibility(is_backward_compatible=True)
|
955 |
+
def inserting_before(self, n: Optional[Node] = None):
|
956 |
+
"""Set the point at which create_node and companion methods will insert into the graph.
|
957 |
+
When used within a 'with' statement, this will temporary set the insert point and
|
958 |
+
then restore it when the with statement exits::
|
959 |
+
|
960 |
+
with g.inserting_before(n):
|
961 |
+
... # inserting before node n
|
962 |
+
... # insert point restored to what it was previously
|
963 |
+
g.inserting_before(n) # set the insert point permanently
|
964 |
+
|
965 |
+
Args:
|
966 |
+
|
967 |
+
n (Optional[Node]): The node before which to insert. If None this will insert before
|
968 |
+
the beginning of the entire graph.
|
969 |
+
|
970 |
+
Returns:
|
971 |
+
A resource manager that will restore the insert point on ``__exit__``.
|
972 |
+
"""
|
973 |
+
if n is None:
|
974 |
+
return self.inserting_after(self._root)
|
975 |
+
assert n.graph == self, "Node to insert before is not in graph."
|
976 |
+
return _InsertPoint(self, n.prepend)
|
977 |
+
|
978 |
+
@compatibility(is_backward_compatible=True)
|
979 |
+
def inserting_after(self, n: Optional[Node] = None):
|
980 |
+
"""Set the point at which create_node and companion methods will insert into the graph.
|
981 |
+
When used within a 'with' statement, this will temporary set the insert point and
|
982 |
+
then restore it when the with statement exits::
|
983 |
+
|
984 |
+
with g.inserting_after(n):
|
985 |
+
... # inserting after node n
|
986 |
+
... # insert point restored to what it was previously
|
987 |
+
g.inserting_after(n) # set the insert point permanently
|
988 |
+
|
989 |
+
Args:
|
990 |
+
|
991 |
+
n (Optional[Node]): The node before which to insert. If None this will insert after
|
992 |
+
the beginning of the entire graph.
|
993 |
+
|
994 |
+
Returns:
|
995 |
+
A resource manager that will restore the insert point on ``__exit__``.
|
996 |
+
"""
|
997 |
+
if n is None:
|
998 |
+
return self.inserting_before(self._root)
|
999 |
+
assert n.graph == self, "Node to insert after is not in graph."
|
1000 |
+
return _InsertPoint(self, n.append)
|
1001 |
+
|
1002 |
+
@compatibility(is_backward_compatible=True)
|
1003 |
+
def placeholder(self, name: str, type_expr: Optional[Any] = None,
|
1004 |
+
default_value : Any = inspect.Signature.empty) -> Node:
|
1005 |
+
"""
|
1006 |
+
Insert a ``placeholder`` node into the Graph. A ``placeholder`` represents
|
1007 |
+
a function input.
|
1008 |
+
|
1009 |
+
Args:
|
1010 |
+
|
1011 |
+
name (str): A name for the input value. This corresponds to the name
|
1012 |
+
of the positional argument to the function this ``Graph`` represents.
|
1013 |
+
|
1014 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
1015 |
+
Python type the output of this node will have. This is needed in some
|
1016 |
+
cases for proper code generation (e.g. when the function is used
|
1017 |
+
subsequently in TorchScript compilation).
|
1018 |
+
|
1019 |
+
default_value (Any): The default value this function argument should take
|
1020 |
+
on. NOTE: to allow for `None` as a default value, `inspect.Signature.empty`
|
1021 |
+
should be passed as this argument to specify that the parameter does _not_
|
1022 |
+
have a default value.
|
1023 |
+
|
1024 |
+
.. note::
|
1025 |
+
The same insertion point and type expression rules apply for this method
|
1026 |
+
as ``Graph.create_node``.
|
1027 |
+
"""
|
1028 |
+
args = () if default_value is inspect.Signature.empty else (default_value,)
|
1029 |
+
return self.create_node('placeholder', name, args=args, type_expr=type_expr)
|
1030 |
+
|
1031 |
+
@compatibility(is_backward_compatible=True)
|
1032 |
+
def get_attr(self, qualified_name: str, type_expr: Optional[Any] = None) -> Node:
|
1033 |
+
"""
|
1034 |
+
Insert a ``get_attr`` node into the Graph. A ``get_attr`` ``Node`` represents the
|
1035 |
+
fetch of an attribute from the ``Module`` hierarchy.
|
1036 |
+
|
1037 |
+
Args:
|
1038 |
+
|
1039 |
+
qualified_name (str): the fully-qualified name of the attribute to be retrieved.
|
1040 |
+
For example, if the traced Module has a submodule named ``foo``, which has a
|
1041 |
+
submodule named ``bar``, which has an attribute named ``baz``, the qualified
|
1042 |
+
name ``foo.bar.baz`` should be passed as ``qualified_name``.
|
1043 |
+
|
1044 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
1045 |
+
Python type the output of this node will have.
|
1046 |
+
|
1047 |
+
|
1048 |
+
Returns:
|
1049 |
+
|
1050 |
+
The newly-created and inserted ``get_attr`` node.
|
1051 |
+
|
1052 |
+
.. note::
|
1053 |
+
The same insertion point and type expression rules apply for this method
|
1054 |
+
as ``Graph.create_node``.
|
1055 |
+
"""
|
1056 |
+
def _get_attr_reference_exists(mod: torch.nn.Module, qualified_name: str) -> bool:
|
1057 |
+
module_path, _, name = qualified_name.rpartition(".")
|
1058 |
+
|
1059 |
+
try:
|
1060 |
+
submod: torch.nn.Module = mod.get_submodule(module_path)
|
1061 |
+
except AttributeError:
|
1062 |
+
warnings.warn(f"Failed to fetch module {module_path}!")
|
1063 |
+
return False
|
1064 |
+
|
1065 |
+
if not hasattr(submod, name):
|
1066 |
+
return False
|
1067 |
+
|
1068 |
+
res = getattr(submod, name)
|
1069 |
+
|
1070 |
+
if (not isinstance(res, torch.nn.Module)
|
1071 |
+
and not isinstance(res, torch.nn.Parameter)
|
1072 |
+
and name not in submod._buffers):
|
1073 |
+
return False
|
1074 |
+
|
1075 |
+
return True
|
1076 |
+
|
1077 |
+
if (self.owning_module and
|
1078 |
+
not _get_attr_reference_exists(self.owning_module, qualified_name)):
|
1079 |
+
warnings.warn("Attempted to insert a get_attr Node with no "
|
1080 |
+
"underlying reference in the owning "
|
1081 |
+
"GraphModule! Call "
|
1082 |
+
"GraphModule.add_submodule to add the "
|
1083 |
+
"necessary submodule, "
|
1084 |
+
"GraphModule.add_parameter to add the "
|
1085 |
+
"necessary Parameter, or "
|
1086 |
+
"nn.Module.register_buffer to add the "
|
1087 |
+
"necessary buffer", stacklevel=2)
|
1088 |
+
return self.create_node('get_attr', qualified_name, type_expr=type_expr)
|
1089 |
+
|
1090 |
+
@compatibility(is_backward_compatible=True)
|
1091 |
+
def call_module(self,
|
1092 |
+
module_name: str,
|
1093 |
+
args: Optional[Tuple['Argument', ...]] = None,
|
1094 |
+
kwargs: Optional[Dict[str, 'Argument']] = None,
|
1095 |
+
type_expr: Optional[Any] = None) -> Node:
|
1096 |
+
"""
|
1097 |
+
Insert a ``call_module`` ``Node`` into the ``Graph``. A ``call_module`` node
|
1098 |
+
represents a call to the forward() function of a ``Module`` in the ``Module``
|
1099 |
+
hierarchy.
|
1100 |
+
|
1101 |
+
Args:
|
1102 |
+
|
1103 |
+
module_name (str): The qualified name of the ``Module`` in the ``Module``
|
1104 |
+
hierarchy to be called. For example, if the traced ``Module`` has a
|
1105 |
+
submodule named ``foo``, which has a submodule named ``bar``, the
|
1106 |
+
qualified name ``foo.bar`` should be passed as ``module_name`` to
|
1107 |
+
call that module.
|
1108 |
+
|
1109 |
+
args (Optional[Tuple[Argument, ...]]): The positional arguments to be passed
|
1110 |
+
to the called method. Note that this should *not* include a ``self`` argument.
|
1111 |
+
|
1112 |
+
kwargs (Optional[Dict[str, Argument]]): The keyword arguments to be passed
|
1113 |
+
to the called method
|
1114 |
+
|
1115 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
1116 |
+
Python type the output of this node will have.
|
1117 |
+
|
1118 |
+
Returns:
|
1119 |
+
|
1120 |
+
The newly-created and inserted ``call_module`` node.
|
1121 |
+
|
1122 |
+
.. note::
|
1123 |
+
The same insertion point and type expression rules apply for this method
|
1124 |
+
as :meth:`Graph.create_node`.
|
1125 |
+
"""
|
1126 |
+
if (self.owning_module and
|
1127 |
+
self.owning_module.get_submodule(module_name) is None):
|
1128 |
+
warnings.warn("Attempted to insert a call_module Node with "
|
1129 |
+
"no underlying reference in the owning "
|
1130 |
+
"GraphModule! Call "
|
1131 |
+
"GraphModule.add_submodule to add the "
|
1132 |
+
"necessary submodule")
|
1133 |
+
return self.create_node('call_module', module_name, args, kwargs, type_expr=type_expr)
|
1134 |
+
|
1135 |
+
@compatibility(is_backward_compatible=True)
|
1136 |
+
def call_method(self,
|
1137 |
+
method_name: str,
|
1138 |
+
args: Optional[Tuple['Argument', ...]] = None,
|
1139 |
+
kwargs: Optional[Dict[str, 'Argument']] = None,
|
1140 |
+
type_expr: Optional[Any] = None) -> Node:
|
1141 |
+
"""
|
1142 |
+
Insert a ``call_method`` ``Node`` into the ``Graph``. A ``call_method`` node
|
1143 |
+
represents a call to a given method on the 0th element of ``args``.
|
1144 |
+
|
1145 |
+
Args:
|
1146 |
+
|
1147 |
+
method_name (str): The name of the method to apply to the self argument.
|
1148 |
+
For example, if args[0] is a ``Node`` representing a ``Tensor``,
|
1149 |
+
then to call ``relu()`` on that ``Tensor``, pass ``relu`` to ``method_name``.
|
1150 |
+
|
1151 |
+
args (Optional[Tuple[Argument, ...]]): The positional arguments to be passed
|
1152 |
+
to the called method. Note that this *should* include a ``self`` argument.
|
1153 |
+
|
1154 |
+
kwargs (Optional[Dict[str, Argument]]): The keyword arguments to be passed
|
1155 |
+
to the called method
|
1156 |
+
|
1157 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
1158 |
+
Python type the output of this node will have.
|
1159 |
+
|
1160 |
+
Returns:
|
1161 |
+
|
1162 |
+
The newly created and inserted ``call_method`` node.
|
1163 |
+
|
1164 |
+
.. note::
|
1165 |
+
The same insertion point and type expression rules apply for this method
|
1166 |
+
as :meth:`Graph.create_node`.
|
1167 |
+
"""
|
1168 |
+
return self.create_node('call_method', method_name, args, kwargs, type_expr=type_expr)
|
1169 |
+
|
1170 |
+
@compatibility(is_backward_compatible=True)
|
1171 |
+
def call_function(self,
|
1172 |
+
the_function: Callable[..., Any],
|
1173 |
+
args: Optional[Tuple['Argument', ...]] = None,
|
1174 |
+
kwargs: Optional[Dict[str, 'Argument']] = None,
|
1175 |
+
type_expr: Optional[Any] = None) -> Node:
|
1176 |
+
"""
|
1177 |
+
Insert a ``call_function`` ``Node`` into the ``Graph``. A ``call_function`` node
|
1178 |
+
represents a call to a Python callable, specified by ``the_function``.
|
1179 |
+
|
1180 |
+
Args:
|
1181 |
+
|
1182 |
+
the_function (Callable[..., Any]): The function to be called. Can be any PyTorch
|
1183 |
+
operator, Python function, or member of the ``builtins`` or ``operator``
|
1184 |
+
namespaces.
|
1185 |
+
|
1186 |
+
args (Optional[Tuple[Argument, ...]]): The positional arguments to be passed
|
1187 |
+
to the called function.
|
1188 |
+
|
1189 |
+
kwargs (Optional[Dict[str, Argument]]): The keyword arguments to be passed
|
1190 |
+
to the called function
|
1191 |
+
|
1192 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
1193 |
+
Python type the output of this node will have.
|
1194 |
+
|
1195 |
+
Returns:
|
1196 |
+
|
1197 |
+
The newly created and inserted ``call_function`` node.
|
1198 |
+
|
1199 |
+
.. note::
|
1200 |
+
The same insertion point and type expression rules apply for this method
|
1201 |
+
as :meth:`Graph.create_node`.
|
1202 |
+
"""
|
1203 |
+
return self.create_node('call_function', the_function, args, kwargs, type_expr=type_expr)
|
1204 |
+
|
1205 |
+
@compatibility(is_backward_compatible=True)
|
1206 |
+
def node_copy(self, node: Node, arg_transform: Callable[[Node], 'Argument'] = lambda x: x) -> Node:
|
1207 |
+
"""
|
1208 |
+
Copy a node from one graph into another. ``arg_transform`` needs to transform arguments from
|
1209 |
+
the graph of node to the graph of self. Example::
|
1210 |
+
|
1211 |
+
# Copying all the nodes in `g` into `new_graph`
|
1212 |
+
g : torch.fx.Graph = ...
|
1213 |
+
new_graph = torch.fx.graph()
|
1214 |
+
value_remap = {}
|
1215 |
+
for node in g.nodes:
|
1216 |
+
value_remap[node] = new_graph.node_copy(node, lambda n : value_remap[n])
|
1217 |
+
|
1218 |
+
Args:
|
1219 |
+
|
1220 |
+
node (Node): The node to copy into ``self``.
|
1221 |
+
|
1222 |
+
arg_transform (Callable[[Node], Argument]): A function that transforms
|
1223 |
+
``Node`` arguments in node's ``args`` and ``kwargs`` into the
|
1224 |
+
equivalent argument in ``self``. In the simplest case, this should
|
1225 |
+
retrieve a value out of a table mapping Nodes in the original
|
1226 |
+
graph to ``self``.
|
1227 |
+
"""
|
1228 |
+
args = map_arg(node.args, arg_transform)
|
1229 |
+
kwargs = map_arg(node.kwargs, arg_transform)
|
1230 |
+
assert isinstance(args, tuple)
|
1231 |
+
assert isinstance(kwargs, dict)
|
1232 |
+
result_node = self.create_node(node.op, node.target, args, kwargs, node.name, node.type)
|
1233 |
+
result_node.meta = copy.copy(node.meta)
|
1234 |
+
return result_node
|
1235 |
+
|
1236 |
+
@compatibility(is_backward_compatible=True)
|
1237 |
+
def output(self, result: 'Argument', type_expr: Optional[Any] = None):
|
1238 |
+
"""
|
1239 |
+
Insert an ``output`` ``Node`` into the ``Graph``. An ``output`` node represents
|
1240 |
+
a ``return`` statement in Python code. ``result`` is the value that should
|
1241 |
+
be returned.
|
1242 |
+
|
1243 |
+
Args:
|
1244 |
+
|
1245 |
+
result (Argument): The value to be returned.
|
1246 |
+
|
1247 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
1248 |
+
Python type the output of this node will have.
|
1249 |
+
|
1250 |
+
.. note::
|
1251 |
+
|
1252 |
+
The same insertion point and type expression rules apply for this method
|
1253 |
+
as ``Graph.create_node``.
|
1254 |
+
"""
|
1255 |
+
return self.create_node(op='output', target='output', args=(result,), type_expr=type_expr)
|
1256 |
+
|
1257 |
+
def _target_to_str(self, target : Target) -> str:
|
1258 |
+
if callable(target):
|
1259 |
+
op = target.__name__
|
1260 |
+
else:
|
1261 |
+
assert isinstance(target, str)
|
1262 |
+
op = target
|
1263 |
+
if _is_magic(op):
|
1264 |
+
op = op[2:-2]
|
1265 |
+
op = _snake_case(op)
|
1266 |
+
return op
|
1267 |
+
|
1268 |
+
@compatibility(is_backward_compatible=True)
|
1269 |
+
def python_code(self, root_module: str, *, verbose: bool = False) -> PythonCode:
|
1270 |
+
"""
|
1271 |
+
Turn this ``Graph`` into valid Python code.
|
1272 |
+
|
1273 |
+
Args:
|
1274 |
+
|
1275 |
+
root_module (str): The name of the root module on which to look-up
|
1276 |
+
qualified name targets. This is usually 'self'.
|
1277 |
+
|
1278 |
+
Returns:
|
1279 |
+
|
1280 |
+
A PythonCode object, consisting of two fields:
|
1281 |
+
src: the Python source code representing the object
|
1282 |
+
globals: a dictionary of global names in `src` -> the objects that they reference.
|
1283 |
+
"""
|
1284 |
+
# NOTE: [Graph Namespaces]
|
1285 |
+
#
|
1286 |
+
# There are two types of symbols in generated Python source code:
|
1287 |
+
# locals and globals.
|
1288 |
+
# Locals are locally defined by the output of a node in the Graph.
|
1289 |
+
# Globals are references to external objects, like functions or types.
|
1290 |
+
#
|
1291 |
+
# When generating Python code, we need to make sure to name things
|
1292 |
+
# appropriately. In particular:
|
1293 |
+
# - All names should be unique, to avoid weird shadowing bugs.
|
1294 |
+
# - These names need to be consistent, e.g. a object should always be
|
1295 |
+
# referenced by the same name.
|
1296 |
+
#
|
1297 |
+
# To do this, we create a new namespace just for this source. All names
|
1298 |
+
# that get printed must come from this namespace.
|
1299 |
+
#
|
1300 |
+
# Why can't we re-use node.name? Because it was generated within the
|
1301 |
+
# namespace `self._graph_namespace`. In order to provide uniqueness
|
1302 |
+
# over both locals (node.name) *and* globals, we create a completely
|
1303 |
+
# new namespace to put all identifiers in.
|
1304 |
+
namespace = _Namespace()
|
1305 |
+
|
1306 |
+
# Override Node's repr to generate a valid name within our namespace.
|
1307 |
+
# Since repr() is designed to produce a valid Python expression, it
|
1308 |
+
# makes sense to re-use it. This way, it's easy to print something like
|
1309 |
+
# Tuple[Node, Node] by simply calling repr() on it. Node's __repr__ is
|
1310 |
+
# implemented cooperatively to allow this.
|
1311 |
+
def node_repr(n: Node):
|
1312 |
+
return namespace.create_name(n.name, n)
|
1313 |
+
|
1314 |
+
@contextmanager
|
1315 |
+
def override_node_repr(graph: Graph):
|
1316 |
+
orig_repr_fns = {}
|
1317 |
+
for node in graph.nodes:
|
1318 |
+
orig_repr_fns[node] = node._repr_fn
|
1319 |
+
node._repr_fn = node_repr
|
1320 |
+
try:
|
1321 |
+
yield None
|
1322 |
+
finally:
|
1323 |
+
# restore the original repr functions
|
1324 |
+
for node in graph.nodes:
|
1325 |
+
node._repr_fn = orig_repr_fns[node]
|
1326 |
+
|
1327 |
+
with override_node_repr(self):
|
1328 |
+
return self._python_code(root_module, namespace, verbose=verbose)
|
1329 |
+
|
1330 |
+
def _python_code(self, root_module: str, namespace: _Namespace, *, verbose: bool = False) -> PythonCode:
|
1331 |
+
return self._codegen._gen_python_code(self.nodes, root_module, namespace, verbose=verbose)
|
1332 |
+
|
1333 |
+
|
1334 |
+
def __str__(self) -> str:
|
1335 |
+
"""
|
1336 |
+
Return a human-readable (not machine-readable) string representation
|
1337 |
+
of this Graph
|
1338 |
+
"""
|
1339 |
+
placeholder_names : List[str] = []
|
1340 |
+
# This is a one-element array just so ``format_node`` can modify the closed
|
1341 |
+
# over value
|
1342 |
+
maybe_return_typename : List[str] = ['']
|
1343 |
+
|
1344 |
+
node_strs = [node.format_node(placeholder_names) for node in self.nodes]
|
1345 |
+
param_str = ', '.join(placeholder_names)
|
1346 |
+
s = f'graph({param_str}){maybe_return_typename[0]}:'
|
1347 |
+
for node_str in node_strs:
|
1348 |
+
if node_str:
|
1349 |
+
s += '\n ' + node_str
|
1350 |
+
return s
|
1351 |
+
|
1352 |
+
@compatibility(is_backward_compatible=True)
|
1353 |
+
def print_tabular(self):
|
1354 |
+
"""
|
1355 |
+
Prints the intermediate representation of the graph in tabular
|
1356 |
+
format. Note that this API requires the ``tabulate`` module to be
|
1357 |
+
installed.
|
1358 |
+
"""
|
1359 |
+
try:
|
1360 |
+
from tabulate import tabulate
|
1361 |
+
except ImportError:
|
1362 |
+
print("`print_tabular` relies on the library `tabulate`, "
|
1363 |
+
"which could not be found on this machine. Run `pip "
|
1364 |
+
"install tabulate` to install the library.")
|
1365 |
+
raise
|
1366 |
+
|
1367 |
+
node_specs = [[n.op, n.name, n.target, n.args, n.kwargs]
|
1368 |
+
for n in self.nodes]
|
1369 |
+
print(tabulate(node_specs,
|
1370 |
+
headers=['opcode', 'name', 'target', 'args', 'kwargs']))
|
1371 |
+
|
1372 |
+
@compatibility(is_backward_compatible=True)
|
1373 |
+
def lint(self):
|
1374 |
+
"""
|
1375 |
+
Runs various checks on this Graph to make sure it is well-formed. In
|
1376 |
+
particular:
|
1377 |
+
- Checks Nodes have correct ownership (owned by this graph)
|
1378 |
+
- Checks Nodes appear in topological order
|
1379 |
+
- If this Graph has an owning GraphModule, checks that targets
|
1380 |
+
exist in that GraphModule
|
1381 |
+
"""
|
1382 |
+
|
1383 |
+
# Check topo order
|
1384 |
+
def check_arg(arg : Node, n : Optional[Node] = None) -> None:
|
1385 |
+
context_str = f' of Node \'{n}\' ' if n else ' '
|
1386 |
+
if arg.graph is not self:
|
1387 |
+
raise RuntimeError(f'Argument \'{arg}\'{context_str}does not belong to this Graph, '
|
1388 |
+
f'but was used as an argument! If you are copying nodes from another graph, make '
|
1389 |
+
f'sure to use ``arg_transform`` on node_copy() to remap values\n{self}')
|
1390 |
+
if arg not in seen_values:
|
1391 |
+
raise RuntimeError(f'Argument \'{arg}\'{context_str}was used before it has been '
|
1392 |
+
f'defined! Please check that Nodes in the graph are topologically ordered\n{self}')
|
1393 |
+
|
1394 |
+
seen_names : Set[str] = set()
|
1395 |
+
seen_values : Set[Node] = set()
|
1396 |
+
for node in self.nodes:
|
1397 |
+
if node.op not in ['placeholder', 'call_method', 'call_module', 'call_function', 'get_attr', 'output']:
|
1398 |
+
raise RuntimeError(f'Node {node} had unknown opcode {node.op}!')
|
1399 |
+
if node.graph is not self:
|
1400 |
+
raise RuntimeError(f'Node \'{node}\' does not belong to this Graph!')
|
1401 |
+
map_arg(node.args, lambda arg: check_arg(arg, node))
|
1402 |
+
map_arg(node.kwargs, lambda arg: check_arg(arg, node))
|
1403 |
+
seen_values.add(node)
|
1404 |
+
|
1405 |
+
if node.name in seen_names:
|
1406 |
+
raise RuntimeError(f'Node redefined name {node.name}!')
|
1407 |
+
seen_names.add(node.name)
|
1408 |
+
|
1409 |
+
# Check targets are legit
|
1410 |
+
if self.owning_module:
|
1411 |
+
for node in self.nodes:
|
1412 |
+
if node.op == 'call_function':
|
1413 |
+
if not callable(node.target):
|
1414 |
+
raise ValueError(f'Node {node} target {node.target} has type {torch.typename(node.target)} but '
|
1415 |
+
'a Callable is expected')
|
1416 |
+
else:
|
1417 |
+
if not isinstance(node.target, str):
|
1418 |
+
raise ValueError(f'Node {node} target {node.target} has type {torch.typename(node.target)} but '
|
1419 |
+
'a str is expected')
|
1420 |
+
if node.op in ['get_attr', 'call_module']:
|
1421 |
+
target_atoms = node.target.split('.')
|
1422 |
+
m_itr = self.owning_module
|
1423 |
+
for i, atom in enumerate(target_atoms):
|
1424 |
+
new_m_itr = getattr(m_itr, atom, None)
|
1425 |
+
seen_qualname = '.'.join(target_atoms[:i])
|
1426 |
+
if new_m_itr is None:
|
1427 |
+
raise RuntimeError(f'Node {node} target {node.target} references nonexistent attribute '
|
1428 |
+
f'{atom} of {seen_qualname}')
|
1429 |
+
if (node.op == "call_module"
|
1430 |
+
and not isinstance(new_m_itr, torch.nn.Module)):
|
1431 |
+
raise RuntimeError(f'Node {node} target {node.target} {atom} of {seen_qualname} does '
|
1432 |
+
'not reference an nn.Module')
|
1433 |
+
elif (node.op == "get_attr"
|
1434 |
+
and not isinstance(new_m_itr, torch.nn.Module)
|
1435 |
+
and not isinstance(new_m_itr, torch.nn.Parameter)
|
1436 |
+
and atom not in m_itr._buffers):
|
1437 |
+
warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does '
|
1438 |
+
'not reference an nn.Module, nn.Parameter, or buffer, which is '
|
1439 |
+
'what \'get_attr\' Nodes typically target')
|
1440 |
+
else:
|
1441 |
+
m_itr = new_m_itr
|
1442 |
+
|
1443 |
+
@compatibility(is_backward_compatible=True)
|
1444 |
+
def eliminate_dead_code(self):
|
1445 |
+
"""
|
1446 |
+
Remove all dead code from the graph, based on each node's number of
|
1447 |
+
users, and whether the nodes have any side effects. The graph must be
|
1448 |
+
topologically sorted before calling.
|
1449 |
+
|
1450 |
+
Returns:
|
1451 |
+
bool: Whether the graph was changed as a result of the pass.
|
1452 |
+
|
1453 |
+
Example:
|
1454 |
+
|
1455 |
+
Before dead code is eliminated, `a` from `a = x + 1` below has no users
|
1456 |
+
and thus can be eliminated from the graph without having an effect.
|
1457 |
+
|
1458 |
+
.. code-block:: python
|
1459 |
+
|
1460 |
+
def forward(self, x):
|
1461 |
+
a = x + 1
|
1462 |
+
return x + self.attr_1
|
1463 |
+
|
1464 |
+
After dead code is eliminated, `a = x + 1` has been removed, and the rest
|
1465 |
+
of `forward` remains.
|
1466 |
+
|
1467 |
+
.. code-block:: python
|
1468 |
+
|
1469 |
+
def forward(self, x):
|
1470 |
+
return x + self.attr_1
|
1471 |
+
|
1472 |
+
.. warning::
|
1473 |
+
|
1474 |
+
Dead code elimination has some heuristics to avoid removing
|
1475 |
+
side-effectful nodes (see Node.is_impure) but in general coverage
|
1476 |
+
is very bad, so you should assume that this method is not sound
|
1477 |
+
to call unless you know that your FX graph consists entirely
|
1478 |
+
of functional operations.
|
1479 |
+
"""
|
1480 |
+
# Lint the graph first to make sure its topologically sorted, otherwise
|
1481 |
+
# DCE below will not behave as expected.
|
1482 |
+
self.lint()
|
1483 |
+
|
1484 |
+
# Reverse iterate so that when we remove a node, any nodes used as an
|
1485 |
+
# input to that node have an updated user count that no longer reflects
|
1486 |
+
# the removed node.
|
1487 |
+
changed = False
|
1488 |
+
for node in reversed(self.nodes):
|
1489 |
+
if not node.is_impure() and len(node.users) == 0:
|
1490 |
+
self.erase_node(node)
|
1491 |
+
changed = True
|
1492 |
+
|
1493 |
+
return changed
|
1494 |
+
|
1495 |
+
@compatibility(is_backward_compatible=False)
|
1496 |
+
def set_codegen(self, codegen: CodeGen):
|
1497 |
+
self._codegen = codegen
|
1498 |
+
|
1499 |
+
@compatibility(is_backward_compatible=False)
|
1500 |
+
def on_generate_code(
|
1501 |
+
self,
|
1502 |
+
make_transformer: Callable[[Optional[TransformCodeFunc]], TransformCodeFunc]
|
1503 |
+
):
|
1504 |
+
"""Register a transformer function when python code is generated
|
1505 |
+
|
1506 |
+
Args:
|
1507 |
+
make_transformer (Callable[[Optional[TransformCodeFunc]], TransformCodeFunc]):
|
1508 |
+
a function that returns a code transformer to be registered.
|
1509 |
+
This function is called by `on_generate_code` to obtain the
|
1510 |
+
code transformer.
|
1511 |
+
|
1512 |
+
This function is also given as its input the currently
|
1513 |
+
registered code transformer (or None if nothing is registered),
|
1514 |
+
in case it is not desirable to overwrite it. This is useful to
|
1515 |
+
chain code transformers together.
|
1516 |
+
|
1517 |
+
Returns:
|
1518 |
+
a context manager that when used in a `with` statement, to automatically
|
1519 |
+
restore the previously registered code transformer.
|
1520 |
+
|
1521 |
+
Example:
|
1522 |
+
|
1523 |
+
.. code-block:: python
|
1524 |
+
|
1525 |
+
|
1526 |
+
gm: fx.GraphModule = ...
|
1527 |
+
|
1528 |
+
# This is a code transformer we want to register. This code
|
1529 |
+
# transformer prepends a pdb import and trace statement at the very
|
1530 |
+
# beginning of the generated torch.fx code to allow for manual
|
1531 |
+
# debugging with the PDB library.
|
1532 |
+
def insert_pdb(body):
|
1533 |
+
return ["import pdb; pdb.set_trace()\\n", *body]
|
1534 |
+
|
1535 |
+
# Registers `insert_pdb`, and overwrites the current registered
|
1536 |
+
# code transformer (given by `_` to the lambda):
|
1537 |
+
gm.graph.on_generate_code(
|
1538 |
+
lambda _: insert_pdb
|
1539 |
+
)
|
1540 |
+
|
1541 |
+
# Or alternatively, registers a code transformer which first
|
1542 |
+
# runs `body` through existing registered transformer, then
|
1543 |
+
# through `insert_pdb`:
|
1544 |
+
gm.graph.on_generate_code(
|
1545 |
+
lambda current_trans: (
|
1546 |
+
lambda body: insert_pdb(
|
1547 |
+
current_trans(body) if current_trans
|
1548 |
+
else body
|
1549 |
+
)
|
1550 |
+
)
|
1551 |
+
)
|
1552 |
+
|
1553 |
+
gm.recompile()
|
1554 |
+
gm(*inputs) # drops into pdb
|
1555 |
+
|
1556 |
+
|
1557 |
+
This function can also be used as a context manager, with the benefit to
|
1558 |
+
automatically restores the previously registered code transformer:
|
1559 |
+
|
1560 |
+
.. code-block:: python
|
1561 |
+
|
1562 |
+
# ... continue from previous example
|
1563 |
+
|
1564 |
+
with gm.graph.on_generate_code(lambda _: insert_pdb):
|
1565 |
+
# do more stuff with `gm`...
|
1566 |
+
gm.recompile()
|
1567 |
+
gm(*inputs) # drops into pdb
|
1568 |
+
|
1569 |
+
# now previous code transformer is restored (but `gm`'s code with pdb
|
1570 |
+
# remains - that means you can run `gm` with pdb here too, until you
|
1571 |
+
# run next `recompile()`).
|
1572 |
+
"""
|
1573 |
+
on_gen_code_old = self._codegen._body_transformer
|
1574 |
+
self._codegen._body_transformer = make_transformer(on_gen_code_old)
|
1575 |
+
|
1576 |
+
@contextlib.contextmanager
|
1577 |
+
def on_generate_code_context_manager():
|
1578 |
+
try:
|
1579 |
+
yield
|
1580 |
+
finally:
|
1581 |
+
self._codegen._body_transformer = on_gen_code_old
|
1582 |
+
|
1583 |
+
return on_generate_code_context_manager()
|
1584 |
+
|
1585 |
+
|
1586 |
+
reflectable_magic_methods = {
|
1587 |
+
'add': '{} + {}',
|
1588 |
+
'sub': '{} - {}',
|
1589 |
+
'mul': '{} * {}',
|
1590 |
+
'floordiv': '{} // {}',
|
1591 |
+
'truediv': '{} / {}',
|
1592 |
+
'div': '{} / {}',
|
1593 |
+
'mod': '{} % {}',
|
1594 |
+
'pow': '{} ** {}',
|
1595 |
+
'lshift': '{} << {}',
|
1596 |
+
'rshift': '{} >> {}',
|
1597 |
+
'and_': '{} & {}',
|
1598 |
+
'or_': '{} | {}',
|
1599 |
+
'xor': '{} ^ {}',
|
1600 |
+
'getitem': '{}[{}]',
|
1601 |
+
'matmul': '{} @ {}',
|
1602 |
+
}
|
1603 |
+
|
1604 |
+
magic_methods = dict({
|
1605 |
+
'eq': '{} == {}',
|
1606 |
+
'ne': '{} != {}',
|
1607 |
+
'lt': '{} < {}',
|
1608 |
+
'gt': '{} > {}',
|
1609 |
+
'le': '{} <= {}',
|
1610 |
+
'ge': '{} >= {}',
|
1611 |
+
'pos': '+{}',
|
1612 |
+
'neg': '-{}',
|
1613 |
+
'invert': '~{}'}, **reflectable_magic_methods)
|
1614 |
+
|
1615 |
+
inplace_methods = {
|
1616 |
+
'iadd': '{} += {}',
|
1617 |
+
'iand': '{} &= {}',
|
1618 |
+
'ifloordiv': '{} //= {}',
|
1619 |
+
'ilshift': '{} <<= {}',
|
1620 |
+
'imod': '{} %= {}',
|
1621 |
+
'imul': '{} *= {}',
|
1622 |
+
'imatmul': '{} @= {}',
|
1623 |
+
'ior': '{} |= {}',
|
1624 |
+
'ipow': '{} **= {}',
|
1625 |
+
'irshift': '{} >>= {}',
|
1626 |
+
'isub': '{} -= {}',
|
1627 |
+
'itruediv': '{} /= {}',
|
1628 |
+
'ixor': '{} ^= {}',
|
1629 |
+
'setitem': '{}[{}] = {}',
|
1630 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/fx/graph_module.py
ADDED
@@ -0,0 +1,867 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import itertools
|
3 |
+
import linecache
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
import traceback
|
7 |
+
import warnings
|
8 |
+
from pathlib import Path
|
9 |
+
from typing import Any, Callable, Dict, List, Optional, Set, Type, Union
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.overrides
|
14 |
+
from torch.nn.modules.module import _addindent
|
15 |
+
from torch.package import Importer, PackageExporter, PackageImporter, sys_importer
|
16 |
+
|
17 |
+
from ._compatibility import compatibility
|
18 |
+
from .graph import _custom_builtins, _is_from_torch, _PyTreeCodeGen, Graph, PythonCode
|
19 |
+
|
20 |
+
__all__ = [
|
21 |
+
"reduce_graph_module",
|
22 |
+
"reduce_package_graph_module",
|
23 |
+
"reduce_deploy_graph_module",
|
24 |
+
"GraphModule",
|
25 |
+
]
|
26 |
+
|
27 |
+
_USER_PRESERVED_ATTRIBUTES_KEY = "_user_preserved_attributes"
|
28 |
+
|
29 |
+
# Normal exec loses the source code, however we can work with
|
30 |
+
# the linecache module to recover it.
|
31 |
+
# Using _exec_with_source will add it to our local cache
|
32 |
+
# and then tools like TorchScript will be able to get source info.
|
33 |
+
class _EvalCacheLoader:
|
34 |
+
def __init__(self):
|
35 |
+
self.eval_cache = {}
|
36 |
+
self.next_id = 0
|
37 |
+
|
38 |
+
def cache(self, src: str, globals: Dict[str, Any], co_fields=None):
|
39 |
+
"""Store the source in a private cache, and add a lazy entry in linecache
|
40 |
+
that allows the source to be retrieved by 'filename'.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
src (str): The module source to cache
|
44 |
+
globals (dict): The module globals
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
str: The cache key (and dummy filename) generated for src.
|
48 |
+
"""
|
49 |
+
|
50 |
+
key = self._get_key()
|
51 |
+
if co_fields:
|
52 |
+
key += f" from {co_fields['co_filename']}:{co_fields['co_firstlineno']} in {co_fields['co_name']}"
|
53 |
+
self.eval_cache[key] = src
|
54 |
+
|
55 |
+
# Don't mutate globals so that this loader is only used
|
56 |
+
# to populate linecache, and doesn't interact with other modules
|
57 |
+
# that might check `__loader__`
|
58 |
+
globals_copy = globals.copy()
|
59 |
+
globals_copy["__file__"] = key
|
60 |
+
globals_copy["__name__"] = key
|
61 |
+
globals_copy["__loader__"] = self
|
62 |
+
linecache.lazycache(key, globals_copy)
|
63 |
+
|
64 |
+
return key
|
65 |
+
|
66 |
+
# Part of the loader protocol (PEP 302)
|
67 |
+
# linecache will use this method when trying to find source code
|
68 |
+
def get_source(self, module_name) -> Optional[str]:
|
69 |
+
if module_name in self.eval_cache:
|
70 |
+
return self.eval_cache[module_name]
|
71 |
+
return None
|
72 |
+
|
73 |
+
def _get_key(self):
|
74 |
+
key = f"<eval_with_key>.{self.next_id}"
|
75 |
+
self.next_id += 1
|
76 |
+
return key
|
77 |
+
|
78 |
+
|
79 |
+
_loader = _EvalCacheLoader()
|
80 |
+
|
81 |
+
|
82 |
+
def _exec_with_source(src: str, globals: Dict[str, Any], co_fields=None):
|
83 |
+
key = _loader.cache(src, globals, co_fields)
|
84 |
+
exec(compile(src, key, "exec"), globals)
|
85 |
+
|
86 |
+
|
87 |
+
def _forward_from_src(src: str, globals: Dict[str, Any], co_fields=None):
|
88 |
+
return _method_from_src(
|
89 |
+
method_name="forward", src=src, globals=globals, co_fields=co_fields
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
+
def _method_from_src(
|
94 |
+
method_name: str, src: str, globals: Dict[str, Any], co_fields=None
|
95 |
+
) -> Callable:
|
96 |
+
# avoid mutating the passed in dict
|
97 |
+
globals_copy = globals.copy()
|
98 |
+
_exec_with_source(src, globals_copy, co_fields)
|
99 |
+
fn = globals_copy[method_name]
|
100 |
+
del globals_copy[method_name]
|
101 |
+
return fn
|
102 |
+
|
103 |
+
|
104 |
+
def _format_import_statement(name: str, obj: Any, importer: Importer) -> str:
|
105 |
+
if name in _custom_builtins:
|
106 |
+
return _custom_builtins[name].import_str
|
107 |
+
if _is_from_torch(name):
|
108 |
+
return "import torch"
|
109 |
+
module_name, attr_name = importer.get_name(obj)
|
110 |
+
return f"from {module_name} import {attr_name} as {name}"
|
111 |
+
|
112 |
+
|
113 |
+
def _format_import_block(globals: Dict[str, Any], importer: Importer):
|
114 |
+
import_strs: Set[str] = set()
|
115 |
+
for name, obj in globals.items():
|
116 |
+
import_strs.add(_format_import_statement(name, obj, importer))
|
117 |
+
# Sort the imports so we have a stable import block that allows us to
|
118 |
+
# hash the graph module and get a consistent key for use in a cache.
|
119 |
+
return "\n".join(sorted(import_strs))
|
120 |
+
|
121 |
+
|
122 |
+
@compatibility(is_backward_compatible=True)
|
123 |
+
def reduce_graph_module(body: Dict[Any, Any], import_block: str) -> torch.nn.Module:
|
124 |
+
# BC: attribute name was changed from `code` to `_code` to facilitate
|
125 |
+
# making `code` into a property and adding a docstring to it
|
126 |
+
fn_src = body.get("_code") or body["code"]
|
127 |
+
forward = _forward_from_src(import_block + fn_src, {})
|
128 |
+
return _deserialize_graph_module(forward, body)
|
129 |
+
|
130 |
+
|
131 |
+
@compatibility(is_backward_compatible=True)
|
132 |
+
def reduce_package_graph_module(
|
133 |
+
importer: PackageImporter, body: Dict[Any, Any], generated_module_name: str
|
134 |
+
) -> torch.nn.Module:
|
135 |
+
forward = importer.import_module(generated_module_name).forward
|
136 |
+
return _deserialize_graph_module(forward, body)
|
137 |
+
|
138 |
+
|
139 |
+
@compatibility(is_backward_compatible=True)
|
140 |
+
def reduce_deploy_graph_module(
|
141 |
+
importer: PackageImporter, body: Dict[Any, Any], import_block: str
|
142 |
+
) -> torch.nn.Module:
|
143 |
+
ns = {}
|
144 |
+
ns["__builtins__"] = importer.patched_builtins
|
145 |
+
fn_src = body.get("_code")
|
146 |
+
assert fn_src is not None
|
147 |
+
forward = _forward_from_src(import_block + fn_src, ns)
|
148 |
+
return _deserialize_graph_module(forward, body)
|
149 |
+
|
150 |
+
|
151 |
+
# We create a dummy class here because symbolic_trace pulls the forward()
|
152 |
+
# function off of the class, rather than the instance. This class is used
|
153 |
+
# in _deserialize_graph_module() below.
|
154 |
+
class _CodeOnlyModule(torch.nn.Module):
|
155 |
+
def __init__(self, body):
|
156 |
+
super().__init__()
|
157 |
+
self.__dict__ = body
|
158 |
+
|
159 |
+
|
160 |
+
def _deserialize_graph_module(forward, body: Dict[Any, Any], graph_module_cls=None) -> torch.nn.Module:
|
161 |
+
"""
|
162 |
+
Deserialize a GraphModule given the dictionary of the original module,
|
163 |
+
using the code to reconstruct the graph. We delete the actual graph before
|
164 |
+
saving the dictionary so that changes to the in-memory graph format do not
|
165 |
+
get serialized.
|
166 |
+
"""
|
167 |
+
|
168 |
+
# Try to retrieve the forward source in a backward-compatible way
|
169 |
+
_CodeOnlyModule.forward = forward
|
170 |
+
|
171 |
+
tracer_cls = body.get("_tracer_cls")
|
172 |
+
if tracer_cls is None:
|
173 |
+
from ._symbolic_trace import Tracer
|
174 |
+
|
175 |
+
tracer_cls = Tracer
|
176 |
+
|
177 |
+
graphmodule_cls_name = body.get("_graphmodule_cls_name", "GraphModule")
|
178 |
+
|
179 |
+
# This is a workaround for a mypy linter issue related to
|
180 |
+
# passing base class as an argument - https://github.com/python/mypy/issues/5865.
|
181 |
+
cls_tracer: Any = tracer_cls
|
182 |
+
|
183 |
+
class KeepModules(cls_tracer):
|
184 |
+
# we shouldn't trace into any of the submodules,
|
185 |
+
# because they were not traced in the original GraphModule
|
186 |
+
def is_leaf_module(self, _: torch.nn.Module, __: str) -> bool:
|
187 |
+
return True
|
188 |
+
|
189 |
+
com = _CodeOnlyModule(body)
|
190 |
+
|
191 |
+
tracer_extras = body.get("_tracer_extras", {})
|
192 |
+
graph = KeepModules().trace(com, **tracer_extras)
|
193 |
+
|
194 |
+
# Manually set Tracer class on the reconstructed Graph, to avoid
|
195 |
+
# referencing the private local subclass KeepModules.
|
196 |
+
graph._tracer_cls = tracer_cls
|
197 |
+
if graph_module_cls is None:
|
198 |
+
graph_module_cls = GraphModule
|
199 |
+
gm = graph_module_cls(com, graph, class_name=graphmodule_cls_name)
|
200 |
+
|
201 |
+
# The GraphModule constructor only retains attributes referenced by the graph.
|
202 |
+
# In this case, our goal is return a GraphModule as close to identical as the one
|
203 |
+
# put into the package. If any additional attributes were present in body,
|
204 |
+
# we should keep them.
|
205 |
+
for k, v in body.items():
|
206 |
+
if not hasattr(gm, k):
|
207 |
+
setattr(gm, k, v)
|
208 |
+
return gm
|
209 |
+
|
210 |
+
|
211 |
+
# copy an attribute value with qualified name 'target' from 'from_module' to 'to_module'
|
212 |
+
# This installs empty Modules where none exist yet if they are subpaths of target
|
213 |
+
def _copy_attr(from_module: torch.nn.Module, to_module: torch.nn.Module, target: str):
|
214 |
+
*prefix, field = target.split(".")
|
215 |
+
for item in prefix:
|
216 |
+
f = getattr(from_module, item)
|
217 |
+
t = getattr(to_module, item, None)
|
218 |
+
if f is t:
|
219 |
+
# we have already installed one of its parents
|
220 |
+
# (e.g. target = root.linear.weight, but we have already installed root.linear)
|
221 |
+
# once we install a parent, we no longer need to copy the children
|
222 |
+
# since all the needed properties will already be present
|
223 |
+
return
|
224 |
+
|
225 |
+
if t is None:
|
226 |
+
t = torch.nn.Module()
|
227 |
+
setattr(to_module, item, t)
|
228 |
+
from_module, to_module = f, t
|
229 |
+
|
230 |
+
orig = getattr(from_module, field)
|
231 |
+
# If it is a tensor and not a parameter attribute of a module, it should be a named buffer.
|
232 |
+
# So, we register it as a named buffer in the target module.
|
233 |
+
if isinstance(orig, torch.Tensor) and not isinstance(orig, torch.nn.Parameter):
|
234 |
+
to_module.register_buffer(field, orig)
|
235 |
+
else:
|
236 |
+
setattr(to_module, field, orig)
|
237 |
+
|
238 |
+
|
239 |
+
# Assign attribute 'from_obj' to the qualified name 'target' on 'to_module
|
240 |
+
# This installs empty Modules where none exist yet if they are subpaths of target
|
241 |
+
def _assign_attr(from_obj: Any, to_module: torch.nn.Module, target: str):
|
242 |
+
*prefix, field = target.split(".")
|
243 |
+
for item in prefix:
|
244 |
+
t = getattr(to_module, item, None)
|
245 |
+
|
246 |
+
if t is None:
|
247 |
+
t = torch.nn.Module()
|
248 |
+
setattr(to_module, item, t)
|
249 |
+
to_module = t
|
250 |
+
|
251 |
+
# If it is a tensor and not a parameter attribute of a module, it should be a named buffer.
|
252 |
+
# So, we register it as a named buffer in the target module.
|
253 |
+
if isinstance(from_obj, torch.Tensor) and not isinstance(
|
254 |
+
from_obj, torch.nn.Parameter
|
255 |
+
):
|
256 |
+
to_module.register_buffer(field, from_obj)
|
257 |
+
else:
|
258 |
+
setattr(to_module, field, from_obj)
|
259 |
+
|
260 |
+
|
261 |
+
class _WrappedCall:
|
262 |
+
def __init__(self, cls, cls_call):
|
263 |
+
self.cls = cls
|
264 |
+
self.cls_call = cls_call
|
265 |
+
|
266 |
+
# Previously, if an error occurred when valid
|
267 |
+
# symbolically-traced code was run with an invalid input, the
|
268 |
+
# user would see the source of the error as coming from
|
269 |
+
# `File "<eval_with_key_N">`, where N is some number. We use
|
270 |
+
# this function to generate a more informative error message. We
|
271 |
+
# return the traceback itself, a message explaining that the
|
272 |
+
# error occurred in a traced Module's generated forward
|
273 |
+
# function, and five lines of context surrounding the faulty
|
274 |
+
# line
|
275 |
+
@staticmethod
|
276 |
+
def _generate_error_message(frame_summary: traceback.FrameSummary) -> str:
|
277 |
+
# auxiliary variables (for readability)
|
278 |
+
err_lineno = frame_summary.lineno
|
279 |
+
assert err_lineno is not None
|
280 |
+
line = frame_summary.line
|
281 |
+
assert line is not None
|
282 |
+
err_line_len = len(line)
|
283 |
+
all_src_lines = linecache.getlines(frame_summary.filename)
|
284 |
+
|
285 |
+
# constituent substrings of the error message
|
286 |
+
tb_repr = traceback.format_exc()
|
287 |
+
custom_msg = (
|
288 |
+
"Call using an FX-traced Module, "
|
289 |
+
f"line {err_lineno} of the traced Module's "
|
290 |
+
"generated forward function:"
|
291 |
+
)
|
292 |
+
before_err = "".join(all_src_lines[err_lineno - 2 : err_lineno])
|
293 |
+
marker = "~" * err_line_len + "~~~ <--- HERE"
|
294 |
+
err_and_after_err = "\n".join(all_src_lines[err_lineno : err_lineno + 2])
|
295 |
+
|
296 |
+
# joined message
|
297 |
+
return "\n".join([tb_repr, custom_msg, before_err, marker, err_and_after_err])
|
298 |
+
|
299 |
+
def __call__(self, obj, *args, **kwargs):
|
300 |
+
try:
|
301 |
+
if self.cls_call is not None:
|
302 |
+
return self.cls_call(obj, *args, **kwargs)
|
303 |
+
else:
|
304 |
+
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
|
305 |
+
except Exception as e:
|
306 |
+
assert e.__traceback__
|
307 |
+
topmost_framesummary: traceback.FrameSummary = (
|
308 |
+
traceback.StackSummary.extract(traceback.walk_tb(e.__traceback__))[-1]
|
309 |
+
) # type: ignore[arg-type]
|
310 |
+
if "eval_with_key" in topmost_framesummary.filename:
|
311 |
+
print(
|
312 |
+
_WrappedCall._generate_error_message(topmost_framesummary),
|
313 |
+
file=sys.stderr,
|
314 |
+
)
|
315 |
+
raise e.with_traceback(None) # noqa: TRY200
|
316 |
+
else:
|
317 |
+
raise e
|
318 |
+
|
319 |
+
|
320 |
+
@compatibility(is_backward_compatible=True)
|
321 |
+
class GraphModule(torch.nn.Module):
|
322 |
+
"""
|
323 |
+
GraphModule is an nn.Module generated from an fx.Graph. Graphmodule has a
|
324 |
+
``graph`` attribute, as well as ``code`` and ``forward`` attributes generated
|
325 |
+
from that ``graph``.
|
326 |
+
|
327 |
+
.. warning::
|
328 |
+
|
329 |
+
When ``graph`` is reassigned, ``code`` and ``forward`` will be automatically
|
330 |
+
regenerated. However, if you edit the contents of the ``graph`` without reassigning
|
331 |
+
the ``graph`` attribute itself, you must call ``recompile()`` to update the generated
|
332 |
+
code.
|
333 |
+
"""
|
334 |
+
|
335 |
+
def __new__(cls: "Type[GraphModule]", *args, **kwargs):
|
336 |
+
# each instance of a graph module needs its own forward method
|
337 |
+
# so create a new singleton class for each instance.
|
338 |
+
# it is a subclass of the user-defined class, the only difference
|
339 |
+
# is an extra layer to install the forward method
|
340 |
+
|
341 |
+
# address issue described at https://github.com/pytorch/pytorch/issues/63883
|
342 |
+
# in other words, traverse class hierarchy to fix the redundant class definition problem
|
343 |
+
for t in cls.__mro__:
|
344 |
+
c = t.__qualname__.split(".")[-1]
|
345 |
+
if c != "GraphModuleImpl":
|
346 |
+
cls = t
|
347 |
+
break
|
348 |
+
|
349 |
+
class GraphModuleImpl(cls): # type: ignore[misc, valid-type]
|
350 |
+
pass
|
351 |
+
|
352 |
+
return super().__new__(GraphModuleImpl)
|
353 |
+
|
354 |
+
@compatibility(is_backward_compatible=True)
|
355 |
+
def __init__(
|
356 |
+
self,
|
357 |
+
root: Union[torch.nn.Module, Dict[str, Any]],
|
358 |
+
graph: Graph,
|
359 |
+
class_name: str = "GraphModule",
|
360 |
+
):
|
361 |
+
"""
|
362 |
+
Construct a GraphModule.
|
363 |
+
|
364 |
+
Args:
|
365 |
+
|
366 |
+
root (Union[torch.nn.Module, Dict[str, Any]):
|
367 |
+
``root`` can either be an nn.Module instance or a Dict mapping strings to any attribute type.
|
368 |
+
In the case that ``root`` is a Module, any references to Module-based objects (via qualified
|
369 |
+
name) in the Graph's Nodes' ``target`` field will be copied over from the respective place
|
370 |
+
within ``root``'s Module hierarchy into the GraphModule's module hierarchy.
|
371 |
+
In the case that ``root`` is a dict, the qualified name found in a Node's ``target`` will be
|
372 |
+
looked up directly in the dict's keys. The object mapped to by the Dict will be copied
|
373 |
+
over into the appropriate place within the GraphModule's module hierarchy.
|
374 |
+
|
375 |
+
graph (Graph): ``graph`` contains the nodes this GraphModule should use for code generation
|
376 |
+
|
377 |
+
class_name (str): ``name`` denotes the name of this GraphModule for debugging purposes. If it's unset, all
|
378 |
+
error messages will report as originating from ``GraphModule``. It may be helpful to set this
|
379 |
+
to ``root``'s original name or a name that makes sense within the context of your transform.
|
380 |
+
"""
|
381 |
+
super().__init__()
|
382 |
+
self.__class__.__name__ = class_name
|
383 |
+
if isinstance(root, torch.nn.Module):
|
384 |
+
if hasattr(root, "training"):
|
385 |
+
self.training = root.training
|
386 |
+
|
387 |
+
# When we pickle/unpickle graph module, we don't want to drop any module or attributes.
|
388 |
+
if isinstance(root, _CodeOnlyModule):
|
389 |
+
for k, _ in root.named_children():
|
390 |
+
_copy_attr(root, self, k)
|
391 |
+
|
392 |
+
for k, _ in root.named_buffers():
|
393 |
+
_copy_attr(root, self, k)
|
394 |
+
|
395 |
+
for k, _ in root.named_parameters():
|
396 |
+
_copy_attr(root, self, k)
|
397 |
+
|
398 |
+
for node in graph.nodes:
|
399 |
+
if node.op in ["get_attr", "call_module"]:
|
400 |
+
assert isinstance(node.target, str)
|
401 |
+
_copy_attr(root, self, node.target)
|
402 |
+
elif isinstance(root, dict):
|
403 |
+
targets_to_copy = []
|
404 |
+
for node in graph.nodes:
|
405 |
+
if node.op in ["get_attr", "call_module"]:
|
406 |
+
assert isinstance(node.target, str)
|
407 |
+
if node.target not in root:
|
408 |
+
raise RuntimeError(
|
409 |
+
"Node "
|
410 |
+
+ str(node)
|
411 |
+
+ " referenced target "
|
412 |
+
+ node.target
|
413 |
+
+ " but that target was not provided in ``root``!"
|
414 |
+
)
|
415 |
+
targets_to_copy.append(node.target)
|
416 |
+
# Sort targets in ascending order of the # of atoms.
|
417 |
+
# This will ensure that less deeply nested attributes are assigned
|
418 |
+
# before more deeply nested attributes. For example, foo.bar
|
419 |
+
# will be assigned before foo.bar.baz. Otherwise, we might assign
|
420 |
+
# the user-provided ``foo.bar`` and wipe out the previously-assigned
|
421 |
+
# ``foo.bar.baz``
|
422 |
+
targets_to_copy.sort(key=lambda t: t.count("."))
|
423 |
+
for target_to_copy in targets_to_copy:
|
424 |
+
_assign_attr(root[target_to_copy], self, target_to_copy)
|
425 |
+
else:
|
426 |
+
raise RuntimeError("Unsupported type " + str(root) + " passed for root!")
|
427 |
+
|
428 |
+
self.graph = graph
|
429 |
+
|
430 |
+
# Store the Tracer class responsible for creating a Graph separately as part of the
|
431 |
+
# GraphModule state, except when the Tracer is defined in a local namespace.
|
432 |
+
# Locally defined Tracers are not pickleable. This is needed because torch.package will
|
433 |
+
# serialize a GraphModule without retaining the Graph, and needs to use the correct Tracer
|
434 |
+
# to re-create the Graph during deserialization.
|
435 |
+
self._tracer_cls = None
|
436 |
+
if (
|
437 |
+
self.graph._tracer_cls
|
438 |
+
and "<locals>" not in self.graph._tracer_cls.__qualname__
|
439 |
+
):
|
440 |
+
self._tracer_cls = self.graph._tracer_cls
|
441 |
+
|
442 |
+
self._tracer_extras = {}
|
443 |
+
if self.graph._tracer_extras:
|
444 |
+
self._tracer_extras = self.graph._tracer_extras
|
445 |
+
|
446 |
+
# Dictionary to store metadata
|
447 |
+
self.meta: Dict[str, Any] = {}
|
448 |
+
|
449 |
+
# TorchScript breaks trying to compile the graph setter because of the
|
450 |
+
# continued string literal. Issue here: https://github.com/pytorch/pytorch/issues/44842
|
451 |
+
#
|
452 |
+
# Shouldn't be an issue since these methods shouldn't be used in TorchScript anyway
|
453 |
+
__jit_unused_properties__ = ["graph"]
|
454 |
+
|
455 |
+
@property
|
456 |
+
def graph(self) -> Graph:
|
457 |
+
"""
|
458 |
+
Return the ``Graph`` underlying this ``GraphModule``
|
459 |
+
"""
|
460 |
+
return self._graph
|
461 |
+
|
462 |
+
@graph.setter
|
463 |
+
def graph(self, g: Graph) -> None:
|
464 |
+
"""
|
465 |
+
Set the underlying ``Graph`` for this ``GraphModule``. This will internally
|
466 |
+
recompile the ``GraphModule`` so that the generated ``forward()`` function
|
467 |
+
corresponds to ``g``
|
468 |
+
"""
|
469 |
+
assert isinstance(g, Graph), f"Expected a Graph instance, but got {type(g)}"
|
470 |
+
self._graph = g
|
471 |
+
g.owning_module = self
|
472 |
+
self.recompile()
|
473 |
+
|
474 |
+
@compatibility(is_backward_compatible=False)
|
475 |
+
def to_folder(self, folder: Union[str, os.PathLike], module_name: str = "FxModule"):
|
476 |
+
"""Dumps out module to ``folder`` with ``module_name`` so that it can be
|
477 |
+
imported with ``from <folder> import <module_name>``
|
478 |
+
|
479 |
+
Args:
|
480 |
+
|
481 |
+
folder (Union[str, os.PathLike]): The folder to write the code out to
|
482 |
+
|
483 |
+
module_name (str): Top-level name to use for the ``Module`` while
|
484 |
+
writing out the code
|
485 |
+
"""
|
486 |
+
folder = Path(folder)
|
487 |
+
Path(folder).mkdir(exist_ok=True)
|
488 |
+
torch.save(self.state_dict(), folder / "state_dict.pt")
|
489 |
+
tab = " " * 4
|
490 |
+
custom_builtins = "\n".join([v.import_str for v in _custom_builtins.values()])
|
491 |
+
model_str = f"""
|
492 |
+
import torch
|
493 |
+
{custom_builtins}
|
494 |
+
|
495 |
+
from torch.nn import *
|
496 |
+
class {module_name}(torch.nn.Module):
|
497 |
+
def __init__(self):
|
498 |
+
super().__init__()
|
499 |
+
"""
|
500 |
+
|
501 |
+
def _gen_model_repr(module_name: str, module: torch.nn.Module) -> Optional[str]:
|
502 |
+
safe_reprs = [
|
503 |
+
nn.Linear,
|
504 |
+
nn.Conv1d,
|
505 |
+
nn.Conv2d,
|
506 |
+
nn.Conv3d,
|
507 |
+
nn.BatchNorm1d,
|
508 |
+
nn.BatchNorm2d,
|
509 |
+
nn.BatchNorm3d,
|
510 |
+
]
|
511 |
+
if type(module) in safe_reprs:
|
512 |
+
return f"{module.__repr__()}"
|
513 |
+
else:
|
514 |
+
return None
|
515 |
+
|
516 |
+
blobified_modules = []
|
517 |
+
for module_name, module in self.named_children():
|
518 |
+
module_str = _gen_model_repr(module_name, module)
|
519 |
+
if module_str is None:
|
520 |
+
module_file = folder / f"{module_name}.pt"
|
521 |
+
torch.save(module, module_file)
|
522 |
+
blobified_modules.append(module_name)
|
523 |
+
module_repr = module.__repr__().replace("\r", " ").replace("\n", " ")
|
524 |
+
module_str = f"torch.load(r'{module_file}') # {module_repr}"
|
525 |
+
model_str += f"{tab*2}self.{module_name} = {module_str}\n"
|
526 |
+
|
527 |
+
for buffer_name, buffer in self._buffers.items():
|
528 |
+
if buffer is None:
|
529 |
+
continue
|
530 |
+
model_str += f"{tab*2}self.register_buffer('{buffer_name}', torch.empty({list(buffer.shape)}, dtype={buffer.dtype}))\n"
|
531 |
+
|
532 |
+
for param_name, param in self._parameters.items():
|
533 |
+
if param is None:
|
534 |
+
continue
|
535 |
+
model_str += f"{tab*2}self.{param_name} = torch.nn.Parameter(torch.empty({list(param.shape)}, dtype={param.dtype}))\n"
|
536 |
+
|
537 |
+
model_str += (
|
538 |
+
f"{tab*2}self.load_state_dict(torch.load(r'{folder}/state_dict.pt'))\n"
|
539 |
+
)
|
540 |
+
model_str += f"{_addindent(self.code, 4)}\n"
|
541 |
+
|
542 |
+
module_file = folder / "module.py"
|
543 |
+
module_file.write_text(model_str)
|
544 |
+
|
545 |
+
init_file = folder / "__init__.py"
|
546 |
+
init_file.write_text("from .module import *")
|
547 |
+
|
548 |
+
if len(blobified_modules) > 0:
|
549 |
+
warnings.warn(
|
550 |
+
"Was not able to save the following children modules as reprs -"
|
551 |
+
f"saved as pickled files instead: {blobified_modules}"
|
552 |
+
)
|
553 |
+
|
554 |
+
@compatibility(is_backward_compatible=True)
|
555 |
+
def add_submodule(self, target: str, m: torch.nn.Module) -> bool:
|
556 |
+
"""
|
557 |
+
Adds the given submodule to ``self``.
|
558 |
+
|
559 |
+
This installs empty Modules where none exist yet if they are
|
560 |
+
subpaths of ``target``.
|
561 |
+
|
562 |
+
Args:
|
563 |
+
target: The fully-qualified string name of the new submodule
|
564 |
+
(See example in ``nn.Module.get_submodule`` for how to
|
565 |
+
specify a fully-qualified string.)
|
566 |
+
m: The submodule itself; the actual object we want to
|
567 |
+
install in the current Module
|
568 |
+
|
569 |
+
Return:
|
570 |
+
bool: Whether or not the submodule could be inserted. For
|
571 |
+
this method to return True, each object in the chain
|
572 |
+
denoted by ``target`` must either a) not exist yet,
|
573 |
+
or b) reference an ``nn.Module`` (not a parameter or
|
574 |
+
other attribute)
|
575 |
+
"""
|
576 |
+
*prefix, field = target.split(".")
|
577 |
+
mod: torch.nn.Module = self
|
578 |
+
|
579 |
+
for item in prefix:
|
580 |
+
|
581 |
+
submod = getattr(mod, item, None)
|
582 |
+
|
583 |
+
if submod is None:
|
584 |
+
submod = torch.nn.Module()
|
585 |
+
setattr(mod, item, submod)
|
586 |
+
|
587 |
+
if not isinstance(submod, torch.nn.Module):
|
588 |
+
return False
|
589 |
+
|
590 |
+
mod = submod
|
591 |
+
|
592 |
+
mod.add_module(field, m)
|
593 |
+
return True
|
594 |
+
|
595 |
+
@compatibility(is_backward_compatible=True)
|
596 |
+
def delete_submodule(self, target: str) -> bool:
|
597 |
+
"""
|
598 |
+
Deletes the given submodule from ``self``.
|
599 |
+
|
600 |
+
The module will not be deleted if ``target`` is not a valid
|
601 |
+
target.
|
602 |
+
|
603 |
+
Args:
|
604 |
+
target: The fully-qualified string name of the new submodule
|
605 |
+
(See example in ``nn.Module.get_submodule`` for how to
|
606 |
+
specify a fully-qualified string.)
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
bool: Whether or not the target string referenced a
|
610 |
+
submodule we want to delete. A return value of ``False``
|
611 |
+
means that the ``target`` was not a valid reference to
|
612 |
+
a submodule.
|
613 |
+
"""
|
614 |
+
atoms = target.split(".")
|
615 |
+
path, target_submod = atoms[:-1], atoms[-1]
|
616 |
+
mod: torch.nn.Module = self
|
617 |
+
|
618 |
+
# Get the parent module
|
619 |
+
for item in path:
|
620 |
+
|
621 |
+
if not hasattr(mod, item):
|
622 |
+
return False
|
623 |
+
|
624 |
+
mod = getattr(mod, item)
|
625 |
+
|
626 |
+
if not isinstance(mod, torch.nn.Module):
|
627 |
+
return False
|
628 |
+
|
629 |
+
if not hasattr(mod, target_submod):
|
630 |
+
return False
|
631 |
+
|
632 |
+
if not isinstance(getattr(mod, target_submod), torch.nn.Module):
|
633 |
+
return False
|
634 |
+
|
635 |
+
delattr(mod, target_submod)
|
636 |
+
return True
|
637 |
+
|
638 |
+
@compatibility(is_backward_compatible=True)
|
639 |
+
def delete_all_unused_submodules(self) -> None:
|
640 |
+
"""
|
641 |
+
Deletes all unused submodules from ``self``.
|
642 |
+
|
643 |
+
A Module is considered "used" if any one of the following is
|
644 |
+
true:
|
645 |
+
1. It has children that are used
|
646 |
+
2. Its forward is called directly via a ``call_module`` node
|
647 |
+
3. It has a non-Module attribute that is used from a
|
648 |
+
``get_attr`` node
|
649 |
+
|
650 |
+
This method can be called to clean up an ``nn.Module`` without
|
651 |
+
manually calling ``delete_submodule`` on each unused submodule.
|
652 |
+
"""
|
653 |
+
used: List[str] = []
|
654 |
+
|
655 |
+
for node in self.graph.nodes:
|
656 |
+
|
657 |
+
if node.op == "call_module" or node.op == "get_attr":
|
658 |
+
|
659 |
+
# A list of strings representing the different parts
|
660 |
+
# of the path. For example, `foo.bar.baz` gives us
|
661 |
+
# ["foo", "bar", "baz"]
|
662 |
+
fullpath = node.target.split(".")
|
663 |
+
|
664 |
+
# If we're looking at multiple parts of a path, join
|
665 |
+
# join them with a dot. Otherwise, return that single
|
666 |
+
# element without doing anything to it.
|
667 |
+
def join_fn(x: str, y: str) -> str:
|
668 |
+
return ".".join([x, y] if y else [x])
|
669 |
+
|
670 |
+
# Progressively collect all the names of intermediate
|
671 |
+
# modules. For example, if we have the target
|
672 |
+
# `foo.bar.baz`, we'll add `foo`, `foo.bar`, and
|
673 |
+
# `foo.bar.baz` to the list.
|
674 |
+
for path in itertools.accumulate(fullpath, join_fn):
|
675 |
+
used.append(path)
|
676 |
+
|
677 |
+
# For a `call_module` node, also register all recursive submodules
|
678 |
+
# as used
|
679 |
+
if node.op == "call_module":
|
680 |
+
try:
|
681 |
+
submod = self.get_submodule(node.target)
|
682 |
+
|
683 |
+
for submod_name, _ in submod.named_modules():
|
684 |
+
if submod_name != "":
|
685 |
+
used.append(".".join([node.target, submod_name]))
|
686 |
+
except AttributeError:
|
687 |
+
# Node referenced nonexistent submodule, don't need to
|
688 |
+
# worry about GCing anything
|
689 |
+
pass
|
690 |
+
|
691 |
+
to_delete = [name for name, _ in self.named_modules() if name not in used]
|
692 |
+
|
693 |
+
for name in to_delete:
|
694 |
+
self.delete_submodule(name)
|
695 |
+
|
696 |
+
@property
|
697 |
+
def code(self) -> str:
|
698 |
+
"""
|
699 |
+
Return the Python code generated from the ``Graph`` underlying this
|
700 |
+
``GraphModule``.
|
701 |
+
"""
|
702 |
+
if not hasattr(self, "_code"):
|
703 |
+
raise RuntimeError(
|
704 |
+
"Code has not been generated! Please report a bug to PyTorch"
|
705 |
+
)
|
706 |
+
return self._code
|
707 |
+
|
708 |
+
@compatibility(is_backward_compatible=True)
|
709 |
+
def recompile(self) -> PythonCode:
|
710 |
+
"""
|
711 |
+
Recompile this GraphModule from its ``graph`` attribute. This should be
|
712 |
+
called after editing the contained ``graph``, otherwise the generated
|
713 |
+
code of this ``GraphModule`` will be out of date.
|
714 |
+
"""
|
715 |
+
if isinstance(self._graph._codegen, _PyTreeCodeGen):
|
716 |
+
self._in_spec = self._graph._codegen.pytree_info.in_spec
|
717 |
+
self._out_spec = self._graph._codegen.pytree_info.out_spec
|
718 |
+
python_code = self._graph.python_code(root_module="self")
|
719 |
+
self._code = python_code.src
|
720 |
+
self._lineno_map = python_code._lineno_map
|
721 |
+
|
722 |
+
cls = type(self)
|
723 |
+
co_fields = self._graph._co_fields if hasattr(self._graph, "_co_fields") else {}
|
724 |
+
cls.forward = _forward_from_src(self._code, python_code.globals, co_fields)
|
725 |
+
|
726 |
+
# Determine whether this class explicitly defines a __call__ implementation
|
727 |
+
# to wrap. If it does, save it in order to have wrapped_call invoke it.
|
728 |
+
# If it does not, wrapped_call can use a dynamic call to super() instead.
|
729 |
+
# In most cases, super().__call__ should be torch.nn.Module.__call__.
|
730 |
+
# We do not want to hold a reference to Module.__call__ here; doing so will
|
731 |
+
# bypass patching of torch.nn.Module.__call__ done while symbolic tracing.
|
732 |
+
cls_call = cls.__call__ if "__call__" in vars(cls) else None
|
733 |
+
|
734 |
+
if "_wrapped_call" not in vars(cls):
|
735 |
+
cls._wrapped_call = _WrappedCall(cls, cls_call) # type: ignore[attr-defined]
|
736 |
+
|
737 |
+
def call_wrapped(self, *args, **kwargs):
|
738 |
+
return self._wrapped_call(self, *args, **kwargs)
|
739 |
+
|
740 |
+
cls.__call__ = call_wrapped # type: ignore[method-assign]
|
741 |
+
|
742 |
+
return python_code
|
743 |
+
|
744 |
+
# Passing Tracer as argument allows subclasses extending fx.GraphModule
|
745 |
+
# define their own Tracer (extending fx.Tracer).
|
746 |
+
def __reduce_deploy__(self, importer: Importer):
|
747 |
+
dict_without_graph = self.__dict__.copy()
|
748 |
+
dict_without_graph["_graphmodule_cls_name"] = self.__class__.__name__
|
749 |
+
del dict_without_graph["_graph"]
|
750 |
+
|
751 |
+
python_code = self.recompile()
|
752 |
+
import_block = _format_import_block(python_code.globals, importer)
|
753 |
+
return (reduce_deploy_graph_module, (dict_without_graph, import_block))
|
754 |
+
|
755 |
+
def __reduce_package__(self, exporter: PackageExporter):
|
756 |
+
dict_without_graph = self.__dict__.copy()
|
757 |
+
dict_without_graph["_graphmodule_cls_name"] = self.__class__.__name__
|
758 |
+
del dict_without_graph["_graph"]
|
759 |
+
|
760 |
+
generated_module_name = f"fx-generated._{exporter.get_unique_id()}"
|
761 |
+
python_code = self.recompile()
|
762 |
+
import_block = _format_import_block(python_code.globals, exporter.importer)
|
763 |
+
module_code = import_block + self.code
|
764 |
+
exporter.save_source_string(generated_module_name, module_code)
|
765 |
+
return (
|
766 |
+
reduce_package_graph_module,
|
767 |
+
(dict_without_graph, generated_module_name),
|
768 |
+
)
|
769 |
+
|
770 |
+
def __reduce__(self):
|
771 |
+
"""
|
772 |
+
Serialization of GraphModule. We serialize only the generated code, not
|
773 |
+
the underlying ``Graph``. This is because ``Graph`` does not have on-disk
|
774 |
+
backward-compatibility guarantees, whereas Python source code does.
|
775 |
+
On the deserialization side, we symbolically trace through the generated
|
776 |
+
code to regenerate the underlying ``Graph``
|
777 |
+
"""
|
778 |
+
dict_without_graph = self.__dict__.copy()
|
779 |
+
python_code = self.recompile()
|
780 |
+
import_block = _format_import_block(python_code.globals, sys_importer)
|
781 |
+
del dict_without_graph["_graph"]
|
782 |
+
return (reduce_graph_module, (dict_without_graph, import_block))
|
783 |
+
|
784 |
+
def _deepcopy_init(self):
|
785 |
+
return GraphModule.__init__
|
786 |
+
|
787 |
+
# because __reduce__ is defined for serialization,
|
788 |
+
# we need to define deepcopy otherwise it will call __reduce__
|
789 |
+
# and cause symbolic tracing to occur every time we try to copy the object
|
790 |
+
def __deepcopy__(self, memo):
|
791 |
+
res = type(self).__new__(type(self))
|
792 |
+
memo[id(self)] = res
|
793 |
+
fake_mod = _CodeOnlyModule(copy.deepcopy(self.__dict__, memo))
|
794 |
+
self._deepcopy_init()(res, fake_mod, fake_mod.__dict__["_graph"])
|
795 |
+
# hooks are lost during `GraphModule.__init__`, so we need to copy over
|
796 |
+
# them explicitly, note right now we are only copying state_dict related
|
797 |
+
# hooks, to reduce bc-related issues, we can copy forward/backward related
|
798 |
+
# hooks in the future as well if needed
|
799 |
+
extra_preserved_attrs = [
|
800 |
+
"_state_dict_hooks",
|
801 |
+
"_load_state_dict_pre_hooks",
|
802 |
+
"_load_state_dict_post_hooks",
|
803 |
+
]
|
804 |
+
for attr in extra_preserved_attrs:
|
805 |
+
if attr in self.__dict__:
|
806 |
+
setattr(res, attr, copy.deepcopy(self.__dict__[attr], memo))
|
807 |
+
res.meta = copy.deepcopy(getattr(self, "meta", {}), memo)
|
808 |
+
if _USER_PRESERVED_ATTRIBUTES_KEY in res.meta:
|
809 |
+
for attr_name, attr in res.meta[_USER_PRESERVED_ATTRIBUTES_KEY].items():
|
810 |
+
setattr(res, attr_name, attr)
|
811 |
+
return res
|
812 |
+
|
813 |
+
def __copy__(self):
|
814 |
+
res = GraphModule(self, self.graph)
|
815 |
+
res.meta = getattr(self, "meta", {})
|
816 |
+
return res
|
817 |
+
|
818 |
+
@compatibility(is_backward_compatible=False)
|
819 |
+
def print_readable(self, print_output=True):
|
820 |
+
"""
|
821 |
+
Return the Python code generated for current GraphModule and its children GraphModules
|
822 |
+
"""
|
823 |
+
verbose_python_code = self._graph.python_code(root_module="self", verbose=True)
|
824 |
+
module_code = verbose_python_code.src
|
825 |
+
module_code = module_code.lstrip("\n")
|
826 |
+
module_code = f"class {self._get_name()}(torch.nn.Module):\n" + module_code
|
827 |
+
module_code = _addindent(module_code, 4)
|
828 |
+
|
829 |
+
submodule_code_list = [""]
|
830 |
+
for submodule in self.children():
|
831 |
+
if isinstance(submodule, GraphModule):
|
832 |
+
submodule_code_list.append(submodule.print_readable(print_output=False))
|
833 |
+
submodule_code = "\n".join(submodule_code_list)
|
834 |
+
submodule_code = _addindent(submodule_code, 4)
|
835 |
+
|
836 |
+
output = module_code + submodule_code
|
837 |
+
if print_output:
|
838 |
+
print(module_code + submodule_code)
|
839 |
+
return output
|
840 |
+
|
841 |
+
def __str__(self) -> str:
|
842 |
+
orig_str = super().__str__()
|
843 |
+
print_readable_reminder = (
|
844 |
+
"# To see more debug info, please use `graph_module.print_readable()`"
|
845 |
+
)
|
846 |
+
return "\n".join([orig_str, self._code, print_readable_reminder])
|
847 |
+
|
848 |
+
def _replicate_for_data_parallel(self):
|
849 |
+
new_gm = self.__copy__()
|
850 |
+
new_gm._is_replica = True
|
851 |
+
return new_gm
|
852 |
+
|
853 |
+
|
854 |
+
# workarounds for issues in __torch_function__
|
855 |
+
|
856 |
+
# WAR for __torch_function__ not handling tensor lists,
|
857 |
+
# fix is in https://github.com/pytorch/pytorch/pull/34725
|
858 |
+
# orig_cat = torch.cat
|
859 |
+
# def patched_cat(*args, **kwargs):
|
860 |
+
# tensors = args[0]
|
861 |
+
# for t in tensors:
|
862 |
+
# if isinstance(t, Proxy):
|
863 |
+
# return t.__torch_function__(patched_cat, (), args, kwargs)
|
864 |
+
# return orig_cat(*args, **kwargs)
|
865 |
+
# patched_cat.__module__ = 'torch'
|
866 |
+
# patched_cat.__name__ = 'cat'
|
867 |
+
# torch.cat = patched_cat
|
env-llmeval/lib/python3.10/site-packages/torch/fx/immutable_collections.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Iterable, List, Tuple
|
2 |
+
|
3 |
+
from ._compatibility import compatibility
|
4 |
+
from torch.utils._pytree import Context, register_pytree_node
|
5 |
+
|
6 |
+
__all__ = ["immutable_list", "immutable_dict"]
|
7 |
+
|
8 |
+
_help_mutation = """\
|
9 |
+
If you are attempting to modify the kwargs or args of a torch.fx.Node object,
|
10 |
+
instead create a new copy of it and assign the copy to the node:
|
11 |
+
new_args = ... # copy and mutate args
|
12 |
+
node.args = new_args
|
13 |
+
"""
|
14 |
+
|
15 |
+
def _no_mutation(self, *args, **kwargs):
|
16 |
+
raise NotImplementedError(f"'{type(self).__name__}' object does not support mutation. {_help_mutation}")
|
17 |
+
|
18 |
+
def _create_immutable_container(base, mutable_functions):
|
19 |
+
container = type('immutable_' + base.__name__, (base,), {})
|
20 |
+
for attr in mutable_functions:
|
21 |
+
setattr(container, attr, _no_mutation)
|
22 |
+
return container
|
23 |
+
|
24 |
+
immutable_list = _create_immutable_container(list,
|
25 |
+
['__delitem__', '__iadd__', '__imul__', '__setitem__', 'append',
|
26 |
+
'clear', 'extend', 'insert', 'pop', 'remove'])
|
27 |
+
immutable_list.__reduce__ = lambda self: (immutable_list, (tuple(iter(self)),))
|
28 |
+
immutable_list.__hash__ = lambda self: hash(tuple(self))
|
29 |
+
|
30 |
+
compatibility(is_backward_compatible=True)(immutable_list)
|
31 |
+
|
32 |
+
immutable_dict = _create_immutable_container(dict, ['__delitem__', '__setitem__', 'clear', 'pop', 'popitem', 'update'])
|
33 |
+
immutable_dict.__reduce__ = lambda self: (immutable_dict, (iter(self.items()),))
|
34 |
+
immutable_dict.__hash__ = lambda self: hash(tuple(self.items()))
|
35 |
+
compatibility(is_backward_compatible=True)(immutable_dict)
|
36 |
+
|
37 |
+
|
38 |
+
# Register immutable collections for PyTree operations
|
39 |
+
|
40 |
+
def _immutable_dict_flatten(d: Dict[Any, Any]) -> Tuple[List[Any], Context]:
|
41 |
+
return list(d.values()), list(d.keys())
|
42 |
+
|
43 |
+
def _immutable_dict_unflatten(values: Iterable[Any], context: Context) -> Dict[Any, Any]:
|
44 |
+
return immutable_dict(dict(zip(context, values)))
|
45 |
+
|
46 |
+
def _immutable_list_flatten(d: List[Any]) -> Tuple[List[Any], Context]:
|
47 |
+
return d, None
|
48 |
+
|
49 |
+
def _immutable_list_unflatten(values: Iterable[Any], context: Context) -> List[Any]:
|
50 |
+
return immutable_list(values)
|
51 |
+
|
52 |
+
|
53 |
+
register_pytree_node(immutable_dict, _immutable_dict_flatten, _immutable_dict_unflatten)
|
54 |
+
register_pytree_node(immutable_list, _immutable_list_flatten, _immutable_list_unflatten)
|
env-llmeval/lib/python3.10/site-packages/torch/fx/interpreter.py
ADDED
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .graph_module import GraphModule
|
2 |
+
from .graph import Graph
|
3 |
+
from .node import Argument, Node, Target, map_arg, map_aggregate
|
4 |
+
from .proxy import Proxy
|
5 |
+
from ._symbolic_trace import Tracer
|
6 |
+
from ._compatibility import compatibility
|
7 |
+
from . import config
|
8 |
+
import torch.fx.traceback as fx_traceback
|
9 |
+
import torch
|
10 |
+
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
|
11 |
+
import inspect
|
12 |
+
from contextlib import contextmanager
|
13 |
+
from torch.hub import tqdm
|
14 |
+
|
15 |
+
__all__ = ['Interpreter', 'Transformer']
|
16 |
+
|
17 |
+
@compatibility(is_backward_compatible=True)
|
18 |
+
class Interpreter:
|
19 |
+
"""
|
20 |
+
An Interpreter executes an FX graph Node-by-Node. This pattern
|
21 |
+
can be useful for many things, including writing code
|
22 |
+
transformations as well as analysis passes.
|
23 |
+
|
24 |
+
Methods in the Interpreter class can be overridden to customize
|
25 |
+
the behavior of execution. The map of overrideable methods
|
26 |
+
in terms of call hierarchy::
|
27 |
+
|
28 |
+
run()
|
29 |
+
+-- run_node
|
30 |
+
+-- placeholder()
|
31 |
+
+-- get_attr()
|
32 |
+
+-- call_function()
|
33 |
+
+-- call_method()
|
34 |
+
+-- call_module()
|
35 |
+
+-- output()
|
36 |
+
|
37 |
+
Example:
|
38 |
+
|
39 |
+
Suppose we want to swap all instances of ``torch.neg`` with
|
40 |
+
``torch.sigmoid`` and vice versa (including their ``Tensor``
|
41 |
+
method equivalents). We could subclass Interpreter like so::
|
42 |
+
|
43 |
+
class NegSigmSwapInterpreter(Interpreter):
|
44 |
+
def call_function(self, target : Target,
|
45 |
+
args : Tuple, kwargs : Dict) -> Any:
|
46 |
+
if target == torch.sigmoid:
|
47 |
+
return torch.neg(*args, **kwargs)
|
48 |
+
return super().call_function(n)
|
49 |
+
|
50 |
+
def call_method(self, target : Target,
|
51 |
+
args : Tuple, kwargs : Dict) -> Any:
|
52 |
+
if target == 'neg':
|
53 |
+
call_self, *args_tail = args
|
54 |
+
return call_self.sigmoid(*args_tail, **kwargs)
|
55 |
+
return super().call_method(n)
|
56 |
+
|
57 |
+
def fn(x):
|
58 |
+
return torch.sigmoid(x).neg()
|
59 |
+
|
60 |
+
gm = torch.fx.symbolic_trace(fn)
|
61 |
+
input = torch.randn(3, 4)
|
62 |
+
result = NegSigmSwapInterpreter(gm).run(input)
|
63 |
+
torch.testing.assert_close(result, torch.neg(input).sigmoid())
|
64 |
+
|
65 |
+
Args:
|
66 |
+
module (GraphModule): The module to be executed
|
67 |
+
garbage_collect_values (bool): Whether to delete values after their last
|
68 |
+
use within the Module's execution. This ensures optimal memory usage during
|
69 |
+
execution. This can be disabled to, for example, examine all of the intermediate
|
70 |
+
values in the execution by looking at the ``Interpreter.env`` attribute.
|
71 |
+
"""
|
72 |
+
@compatibility(is_backward_compatible=True)
|
73 |
+
def __init__(self, module : GraphModule, garbage_collect_values : bool = True):
|
74 |
+
assert isinstance(module, GraphModule)
|
75 |
+
self.module = module
|
76 |
+
self.submodules = dict(self.module.named_modules())
|
77 |
+
self.env : Dict[Node, Any] = {}
|
78 |
+
self.name = "Interpreter"
|
79 |
+
self.garbage_collect_values = garbage_collect_values
|
80 |
+
self.extra_traceback = True
|
81 |
+
|
82 |
+
if self.garbage_collect_values:
|
83 |
+
# Run through reverse nodes and record the first instance of a use
|
84 |
+
# of a given node. This represents the *last* use of the node in the
|
85 |
+
# execution order of the program, which we will use to free unused
|
86 |
+
# values
|
87 |
+
node_to_last_use : Dict[Node, Node] = {}
|
88 |
+
self.user_to_last_uses : Dict[Node, List[Node]] = {}
|
89 |
+
|
90 |
+
def register_last_uses(n : Node, user : Node):
|
91 |
+
if n not in node_to_last_use:
|
92 |
+
node_to_last_use[n] = user
|
93 |
+
self.user_to_last_uses.setdefault(user, []).append(n)
|
94 |
+
|
95 |
+
for node in reversed(self.module.graph.nodes):
|
96 |
+
map_arg(node.args, lambda n: register_last_uses(n, node))
|
97 |
+
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
|
98 |
+
|
99 |
+
@compatibility(is_backward_compatible=True)
|
100 |
+
def run(self, *args, initial_env : Optional[Dict[Node, Any]] = None, enable_io_processing : bool = True) -> Any:
|
101 |
+
"""
|
102 |
+
Run `module` via interpretation and return the result.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
*args: The arguments to the Module to run, in positional order
|
106 |
+
initial_env (Optional[Dict[Node, Any]]): An optional starting environment for execution.
|
107 |
+
This is a dict mapping `Node` to any value. This can be used, for example, to
|
108 |
+
pre-populate results for certain `Nodes` so as to do only partial evaluation within
|
109 |
+
the interpreter.
|
110 |
+
enable_io_processing (bool): If true, we process the inputs and outputs with graph's process_inputs and
|
111 |
+
process_outputs function first before using them.
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
Any: The value returned from executing the Module
|
115 |
+
"""
|
116 |
+
self.env = initial_env if initial_env is not None else {}
|
117 |
+
|
118 |
+
# Positional function args are consumed left-to-right by
|
119 |
+
# `placeholder` nodes. Use an iterator to keep track of
|
120 |
+
# position and extract those values.
|
121 |
+
if enable_io_processing:
|
122 |
+
args = self.module.graph.process_inputs(*args)
|
123 |
+
self.args_iter : Iterator[Any] = iter(args)
|
124 |
+
pbar = tqdm(total=len(self.module.graph.nodes),
|
125 |
+
desc=f"{self.name}: {str(list(self.module.graph.nodes)) if config.verbose_progress else ''}",
|
126 |
+
initial=0, position=0, leave=True, disable=config.disable_progress, delay=0)
|
127 |
+
|
128 |
+
for node in self.module.graph.nodes:
|
129 |
+
pbar.update(1)
|
130 |
+
if node in self.env:
|
131 |
+
# Short circuit if we have this value. This could
|
132 |
+
# be used, for example, for partial evaluation
|
133 |
+
# where the caller has pre-populated `env` with
|
134 |
+
# values for a subset of the program.
|
135 |
+
continue
|
136 |
+
|
137 |
+
try:
|
138 |
+
self.env[node] = self.run_node(node)
|
139 |
+
except Exception as e:
|
140 |
+
if self.extra_traceback:
|
141 |
+
msg = f"While executing {node.format_node()}"
|
142 |
+
msg = f'{e.args[0]}\n\n{msg}' if e.args else str(msg)
|
143 |
+
msg += f"\nOriginal traceback:\n{node.stack_trace}"
|
144 |
+
e.args = (msg,) + e.args[1:]
|
145 |
+
if isinstance(e, KeyError):
|
146 |
+
raise RuntimeError(*e.args) from e
|
147 |
+
raise
|
148 |
+
|
149 |
+
if self.garbage_collect_values:
|
150 |
+
for to_delete in self.user_to_last_uses.get(node, []):
|
151 |
+
del self.env[to_delete]
|
152 |
+
|
153 |
+
if node.op == 'output':
|
154 |
+
output_val = self.env[node]
|
155 |
+
return self.module.graph.process_outputs(output_val) if enable_io_processing else output_val
|
156 |
+
|
157 |
+
@compatibility(is_backward_compatible=True)
|
158 |
+
def boxed_run(self, args_list):
|
159 |
+
"""
|
160 |
+
Run `module` via interpretation and return the result. This uses the "boxed"
|
161 |
+
calling convention, where you pass a list of arguments, which will be cleared
|
162 |
+
by the interpreter. This ensures that input tensors are promptly deallocated.
|
163 |
+
"""
|
164 |
+
args_iter = iter(args_list)
|
165 |
+
env = {}
|
166 |
+
for n in self.module.graph.nodes:
|
167 |
+
if n.op == "placeholder":
|
168 |
+
env[n] = next(args_iter)
|
169 |
+
args_list.clear()
|
170 |
+
return self.run(initial_env=env)
|
171 |
+
|
172 |
+
@contextmanager
|
173 |
+
def _set_current_node(self, node):
|
174 |
+
with fx_traceback.set_current_meta(node):
|
175 |
+
yield
|
176 |
+
|
177 |
+
@compatibility(is_backward_compatible=True)
|
178 |
+
def run_node(self, n : Node) -> Any:
|
179 |
+
"""
|
180 |
+
Run a specific node ``n`` and return the result.
|
181 |
+
Calls into placeholder, get_attr, call_function,
|
182 |
+
call_method, call_module, or output depending
|
183 |
+
on ``node.op``
|
184 |
+
|
185 |
+
Args:
|
186 |
+
n (Node): The Node to execute
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
Any: The result of executing ``n``
|
190 |
+
"""
|
191 |
+
with self._set_current_node(n):
|
192 |
+
args, kwargs = self.fetch_args_kwargs_from_env(n)
|
193 |
+
assert isinstance(args, tuple)
|
194 |
+
assert isinstance(kwargs, dict)
|
195 |
+
return getattr(self, n.op)(n.target, args, kwargs)
|
196 |
+
|
197 |
+
# Main Node running APIs
|
198 |
+
@compatibility(is_backward_compatible=True)
|
199 |
+
def placeholder(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
200 |
+
"""
|
201 |
+
Execute a ``placeholder`` node. Note that this is stateful:
|
202 |
+
``Interpreter`` maintains an internal iterator over
|
203 |
+
arguments passed to ``run`` and this method returns
|
204 |
+
next() on that iterator.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
target (Target): The call target for this node. See
|
208 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
209 |
+
details on semantics
|
210 |
+
args (Tuple): Tuple of positional args for this invocation
|
211 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
Any: The argument value that was retrieved.
|
215 |
+
"""
|
216 |
+
assert isinstance(target, str)
|
217 |
+
if target.startswith('*'):
|
218 |
+
# For a starred parameter e.g. `*args`, retrieve all
|
219 |
+
# remaining values from the args list.
|
220 |
+
return list(self.args_iter)
|
221 |
+
else:
|
222 |
+
try:
|
223 |
+
return next(self.args_iter)
|
224 |
+
except StopIteration as si:
|
225 |
+
if len(args) > 0:
|
226 |
+
return args[0]
|
227 |
+
else:
|
228 |
+
raise RuntimeError(f'Expected positional argument for parameter {target}, but one was not passed in!') from si
|
229 |
+
|
230 |
+
@compatibility(is_backward_compatible=True)
|
231 |
+
def get_attr(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
232 |
+
"""
|
233 |
+
Execute a ``get_attr`` node. Will retrieve an attribute
|
234 |
+
value from the ``Module`` hierarchy of ``self.module``.
|
235 |
+
|
236 |
+
Args:
|
237 |
+
target (Target): The call target for this node. See
|
238 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
239 |
+
details on semantics
|
240 |
+
args (Tuple): Tuple of positional args for this invocation
|
241 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
242 |
+
|
243 |
+
Return:
|
244 |
+
Any: The value of the attribute that was retrieved
|
245 |
+
"""
|
246 |
+
assert isinstance(target, str)
|
247 |
+
return self.fetch_attr(target)
|
248 |
+
|
249 |
+
@compatibility(is_backward_compatible=True)
|
250 |
+
def call_function(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
251 |
+
"""
|
252 |
+
Execute a ``call_function`` node and return the result.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
target (Target): The call target for this node. See
|
256 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
257 |
+
details on semantics
|
258 |
+
args (Tuple): Tuple of positional args for this invocation
|
259 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
260 |
+
|
261 |
+
Return
|
262 |
+
Any: The value returned by the function invocation
|
263 |
+
"""
|
264 |
+
assert not isinstance(target, str)
|
265 |
+
|
266 |
+
# Execute the function and return the result
|
267 |
+
return target(*args, **kwargs)
|
268 |
+
|
269 |
+
@compatibility(is_backward_compatible=True)
|
270 |
+
def call_method(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
271 |
+
"""
|
272 |
+
Execute a ``call_method`` node and return the result.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
target (Target): The call target for this node. See
|
276 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
277 |
+
details on semantics
|
278 |
+
args (Tuple): Tuple of positional args for this invocation
|
279 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
280 |
+
|
281 |
+
Return
|
282 |
+
Any: The value returned by the method invocation
|
283 |
+
"""
|
284 |
+
# args[0] is the `self` object for this method call
|
285 |
+
self_obj, *args_tail = args
|
286 |
+
|
287 |
+
# Execute the method and return the result
|
288 |
+
assert isinstance(target, str)
|
289 |
+
return getattr(self_obj, target)(*args_tail, **kwargs)
|
290 |
+
|
291 |
+
@compatibility(is_backward_compatible=True)
|
292 |
+
def call_module(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
293 |
+
"""
|
294 |
+
Execute a ``call_module`` node and return the result.
|
295 |
+
|
296 |
+
Args:
|
297 |
+
target (Target): The call target for this node. See
|
298 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
299 |
+
details on semantics
|
300 |
+
args (Tuple): Tuple of positional args for this invocation
|
301 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
302 |
+
|
303 |
+
Return
|
304 |
+
Any: The value returned by the module invocation
|
305 |
+
"""
|
306 |
+
# Retrieve executed args and kwargs values from the environment
|
307 |
+
|
308 |
+
# Execute the method and return the result
|
309 |
+
assert isinstance(target, str)
|
310 |
+
submod = self.fetch_attr(target)
|
311 |
+
|
312 |
+
return submod(*args, **kwargs)
|
313 |
+
|
314 |
+
@compatibility(is_backward_compatible=True)
|
315 |
+
def output(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
316 |
+
"""
|
317 |
+
Execute an ``output`` node. This really just retrieves
|
318 |
+
the value referenced by the ``output`` node and returns it.
|
319 |
+
|
320 |
+
Args:
|
321 |
+
target (Target): The call target for this node. See
|
322 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
323 |
+
details on semantics
|
324 |
+
args (Tuple): Tuple of positional args for this invocation
|
325 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
326 |
+
|
327 |
+
Return:
|
328 |
+
Any: The return value referenced by the output node
|
329 |
+
"""
|
330 |
+
return args[0]
|
331 |
+
|
332 |
+
# Helper methods
|
333 |
+
@compatibility(is_backward_compatible=True)
|
334 |
+
def fetch_attr(self, target : str):
|
335 |
+
"""
|
336 |
+
Fetch an attribute from the ``Module`` hierarchy of ``self.module``.
|
337 |
+
|
338 |
+
Args:
|
339 |
+
target (str): The fully-qualified name of the attribute to fetch
|
340 |
+
|
341 |
+
Return:
|
342 |
+
Any: The value of the attribute.
|
343 |
+
"""
|
344 |
+
target_atoms = target.split('.')
|
345 |
+
attr_itr = self.module
|
346 |
+
for i, atom in enumerate(target_atoms):
|
347 |
+
if not hasattr(attr_itr, atom):
|
348 |
+
raise RuntimeError(f"Node referenced nonexistent target {'.'.join(target_atoms[:i])}")
|
349 |
+
attr_itr = getattr(attr_itr, atom)
|
350 |
+
return attr_itr
|
351 |
+
|
352 |
+
@compatibility(is_backward_compatible=True)
|
353 |
+
def fetch_args_kwargs_from_env(self, n : Node) -> Tuple[Tuple, Dict]:
|
354 |
+
"""
|
355 |
+
Fetch the concrete values of ``args`` and ``kwargs`` of node ``n``
|
356 |
+
from the current execution environment.
|
357 |
+
|
358 |
+
Args:
|
359 |
+
n (Node): The node for which ``args`` and ``kwargs`` should be fetched.
|
360 |
+
|
361 |
+
Return:
|
362 |
+
Tuple[Tuple, Dict]: ``args`` and ``kwargs`` with concrete values for ``n``.
|
363 |
+
"""
|
364 |
+
args = self.map_nodes_to_values(n.args, n)
|
365 |
+
assert isinstance(args, tuple)
|
366 |
+
kwargs = self.map_nodes_to_values(n.kwargs, n)
|
367 |
+
assert isinstance(kwargs, dict)
|
368 |
+
return args, kwargs
|
369 |
+
|
370 |
+
@compatibility(is_backward_compatible=True)
|
371 |
+
def map_nodes_to_values(self, args : Argument, n : Node) -> Argument:
|
372 |
+
"""
|
373 |
+
Recursively descend through ``args`` and look up the concrete value
|
374 |
+
for each ``Node`` in the current execution environment.
|
375 |
+
|
376 |
+
Args:
|
377 |
+
args (Argument): Data structure within which to look up concrete values
|
378 |
+
|
379 |
+
n (Node): Node to which ``args`` belongs. This is only used for error reporting.
|
380 |
+
"""
|
381 |
+
def load_arg(n_arg : Node) -> Any:
|
382 |
+
if n_arg not in self.env:
|
383 |
+
raise RuntimeError(f'Node {n} referenced nonexistent value {n_arg}! Run Graph.lint() '
|
384 |
+
f'to diagnose such issues')
|
385 |
+
return self.env[n_arg]
|
386 |
+
return map_arg(args, load_arg)
|
387 |
+
|
388 |
+
@compatibility(is_backward_compatible=True)
|
389 |
+
class Transformer(Interpreter):
|
390 |
+
"""
|
391 |
+
``Transformer`` is a special type of interpreter that produces a
|
392 |
+
new ``Module``. It exposes a ``transform()`` method that returns
|
393 |
+
the transformed ``Module``. ``Transformer`` does not require
|
394 |
+
arguments to run, as ``Interpreter`` does. ``Transformer`` works
|
395 |
+
entirely symbolically.
|
396 |
+
|
397 |
+
Example:
|
398 |
+
|
399 |
+
Suppose we want to swap all instances of ``torch.neg`` with
|
400 |
+
``torch.sigmoid`` and vice versa (including their ``Tensor``
|
401 |
+
method equivalents). We could subclass ``Transformer`` like so::
|
402 |
+
|
403 |
+
class NegSigmSwapXformer(Transformer):
|
404 |
+
def call_function(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
405 |
+
if target == torch.sigmoid:
|
406 |
+
return torch.neg(*args, **kwargs)
|
407 |
+
return super().call_function(n)
|
408 |
+
|
409 |
+
def call_method(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
410 |
+
if target == 'neg':
|
411 |
+
call_self, *args_tail = args
|
412 |
+
return call_self.sigmoid(*args_tail, **kwargs)
|
413 |
+
return super().call_method(n)
|
414 |
+
|
415 |
+
def fn(x):
|
416 |
+
return torch.sigmoid(x).neg()
|
417 |
+
|
418 |
+
gm = torch.fx.symbolic_trace(fn)
|
419 |
+
|
420 |
+
transformed : torch.nn.Module = NegSigmSwapXformer(gm).transform()
|
421 |
+
input = torch.randn(3, 4)
|
422 |
+
torch.testing.assert_close(transformed(input), torch.neg(input).sigmoid())
|
423 |
+
|
424 |
+
Args:
|
425 |
+
module (GraphModule): The ``Module`` to be transformed.
|
426 |
+
"""
|
427 |
+
|
428 |
+
@compatibility(is_backward_compatible=True)
|
429 |
+
def __init__(self, module):
|
430 |
+
super().__init__(module)
|
431 |
+
self.new_graph = Graph()
|
432 |
+
self.new_graph.set_codegen(module.graph._codegen)
|
433 |
+
|
434 |
+
class TransformerTracer(Tracer):
|
435 |
+
def __init__(self, graph: Graph):
|
436 |
+
super().__init__()
|
437 |
+
self.graph = graph
|
438 |
+
self.tensor_attrs: Dict[torch.Tensor, str] = {} # type: ignore[assignment]
|
439 |
+
|
440 |
+
def is_leaf_module(self, _, __) -> bool:
|
441 |
+
return True
|
442 |
+
|
443 |
+
self.tracer = TransformerTracer(self.new_graph)
|
444 |
+
self.tracer.root = module
|
445 |
+
|
446 |
+
@compatibility(is_backward_compatible=True)
|
447 |
+
def placeholder(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Proxy:
|
448 |
+
"""
|
449 |
+
Execute a ``placeholder`` node. In ``Transformer``, this is
|
450 |
+
overridden to insert a new ``placeholder`` into the output
|
451 |
+
graph.
|
452 |
+
|
453 |
+
Args:
|
454 |
+
target (Target): The call target for this node. See
|
455 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
456 |
+
details on semantics
|
457 |
+
args (Tuple): Tuple of positional args for this invocation
|
458 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
459 |
+
"""
|
460 |
+
assert isinstance(target, str)
|
461 |
+
default_value = next(iter(args)) if args else inspect.Signature.empty
|
462 |
+
return Proxy(self.new_graph.placeholder(target, default_value=default_value), self.tracer)
|
463 |
+
|
464 |
+
@compatibility(is_backward_compatible=True)
|
465 |
+
def get_attr(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Proxy:
|
466 |
+
"""
|
467 |
+
Execute a ``get_attr`` node. In ``Transformer``, this is
|
468 |
+
overridden to insert a new ``get_attr`` node into the output
|
469 |
+
graph.
|
470 |
+
|
471 |
+
Args:
|
472 |
+
target (Target): The call target for this node. See
|
473 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
474 |
+
details on semantics
|
475 |
+
args (Tuple): Tuple of positional args for this invocation
|
476 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
477 |
+
"""
|
478 |
+
assert isinstance(target, str)
|
479 |
+
return self.tracer.create_proxy("get_attr", target, args, kwargs)
|
480 |
+
|
481 |
+
@compatibility(is_backward_compatible=True)
|
482 |
+
def call_module(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
483 |
+
# Override so that the leaf module policy from `self.tracer` is respected.
|
484 |
+
assert isinstance(target, str)
|
485 |
+
submod = self.fetch_attr(target)
|
486 |
+
return self.tracer.call_module(submod, submod.forward, args, kwargs)
|
487 |
+
|
488 |
+
@compatibility(is_backward_compatible=True)
|
489 |
+
def call_function(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
490 |
+
# Override so that functions that were wrapped are still wrapped.
|
491 |
+
return self.tracer.create_proxy('call_function', target, args, kwargs)
|
492 |
+
|
493 |
+
@compatibility(is_backward_compatible=True)
|
494 |
+
def transform(self) -> GraphModule:
|
495 |
+
"""
|
496 |
+
Transform ``self.module`` and return the transformed
|
497 |
+
``GraphModule``.
|
498 |
+
"""
|
499 |
+
with fx_traceback.preserve_node_meta():
|
500 |
+
result = super().run(enable_io_processing=False)
|
501 |
+
if result is not None:
|
502 |
+
def strip_proxy(a : Union[Argument, Proxy]) -> Any:
|
503 |
+
return a.node if isinstance(a, Proxy) else a
|
504 |
+
self.new_graph.output(map_aggregate(result, strip_proxy))
|
505 |
+
return GraphModule(self.module, self.new_graph)
|
env-llmeval/lib/python3.10/site-packages/torch/fx/node.py
ADDED
@@ -0,0 +1,696 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Nodes represent a definition of a value in our graph of operators.
|
2 |
+
from typing import TYPE_CHECKING, Union, Callable, Any, Tuple, List, Optional, Dict, Set
|
3 |
+
from ._compatibility import compatibility
|
4 |
+
from .immutable_collections import immutable_dict, immutable_list
|
5 |
+
import torch
|
6 |
+
import builtins
|
7 |
+
import types
|
8 |
+
import inspect
|
9 |
+
import warnings
|
10 |
+
from torch.fx.operator_schemas import normalize_function, normalize_module, ArgsKwargsPair
|
11 |
+
from .._ops import ops as _ops
|
12 |
+
|
13 |
+
if TYPE_CHECKING:
|
14 |
+
from .graph import Graph
|
15 |
+
|
16 |
+
__all__ = ['Node', 'map_arg', 'map_aggregate', "has_side_effect"]
|
17 |
+
|
18 |
+
BaseArgumentTypes = Union[str, int, float, bool, complex, torch.dtype,
|
19 |
+
torch.Tensor, torch.device, torch.memory_format, torch.layout, torch._ops.OpOverload]
|
20 |
+
base_types = BaseArgumentTypes.__args__ # type: ignore[attr-defined]
|
21 |
+
|
22 |
+
Target = Union[Callable[..., Any], str]
|
23 |
+
|
24 |
+
Argument = Optional[Union[
|
25 |
+
Tuple[Any, ...], # actually Argument, but mypy can't represent recursive types
|
26 |
+
List[Any], # actually Argument
|
27 |
+
Dict[str, Any], # actually Argument
|
28 |
+
slice, # Slice[Argument, Argument, Argument], but slice is not a templated type in typing
|
29 |
+
range,
|
30 |
+
'Node',
|
31 |
+
BaseArgumentTypes
|
32 |
+
]]
|
33 |
+
|
34 |
+
_side_effectful_functions: Set[Callable] = {
|
35 |
+
torch._assert,
|
36 |
+
torch._assert_async,
|
37 |
+
_ops.aten._assert_async.msg,
|
38 |
+
_ops.aten.copy_.default,
|
39 |
+
_ops.aten.sym_constrain_range.default,
|
40 |
+
_ops.aten.sym_constrain_range_for_size.default,
|
41 |
+
_ops.profiler._record_function_enter,
|
42 |
+
_ops.profiler._record_function_enter_new,
|
43 |
+
_ops.profiler._record_function_exit,
|
44 |
+
_ops.inductor.accumulate_grad_.default,
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
@compatibility(is_backward_compatible=False)
|
49 |
+
def has_side_effect(fn: Callable) -> None:
|
50 |
+
_side_effectful_functions.add(fn)
|
51 |
+
return fn
|
52 |
+
|
53 |
+
|
54 |
+
# this is fixed on master, WAR for 1.5
|
55 |
+
def _find_module_of_method(orig_method: Callable[..., Any]) -> str:
|
56 |
+
name = orig_method.__name__
|
57 |
+
module = orig_method.__module__
|
58 |
+
if module is not None:
|
59 |
+
return module
|
60 |
+
for guess in [torch, torch.nn.functional]:
|
61 |
+
if getattr(guess, name, None) is orig_method:
|
62 |
+
return guess.__name__
|
63 |
+
raise RuntimeError(f'cannot find module for {orig_method}')
|
64 |
+
|
65 |
+
# Borrowed from CPython typing module
|
66 |
+
# https://github.com/python/cpython/blob/f90dc36c15d7fee0efaf6d39e97be0bdf2683e93/Lib/typing.py#L156
|
67 |
+
def _type_repr(obj):
|
68 |
+
"""Return the repr() of an object, special-casing types (internal helper).
|
69 |
+
If obj is a type, we return a shorter version than the default
|
70 |
+
type.__repr__, based on the module and qualified name, which is
|
71 |
+
typically enough to uniquely identify a type. For everything
|
72 |
+
else, we fall back on repr(obj).
|
73 |
+
"""
|
74 |
+
if isinstance(obj, type):
|
75 |
+
if obj.__module__ == 'builtins':
|
76 |
+
return obj.__qualname__
|
77 |
+
return f'{obj.__module__}.{obj.__qualname__}'
|
78 |
+
if obj is ...:
|
79 |
+
return('...')
|
80 |
+
if isinstance(obj, types.FunctionType):
|
81 |
+
return obj.__name__
|
82 |
+
return repr(obj)
|
83 |
+
|
84 |
+
def _get_qualified_name(func: Callable[..., Any]) -> str:
|
85 |
+
# things like getattr just appear in builtins
|
86 |
+
if getattr(builtins, func.__name__, None) is func:
|
87 |
+
return func.__name__
|
88 |
+
# torch.Tensor.{fn}
|
89 |
+
if (isinstance(func, (types.MethodDescriptorType, types.WrapperDescriptorType))
|
90 |
+
and func is getattr(torch.Tensor, func.__name__, None)):
|
91 |
+
return f"torch.Tensor.{func.__name__}"
|
92 |
+
name = func.__name__
|
93 |
+
if name == "<lambda>":
|
94 |
+
# For lambdas, try to get their defining name in the module
|
95 |
+
try:
|
96 |
+
name = inspect.getsource(func).split("=")[0].strip()
|
97 |
+
except Exception as e:
|
98 |
+
raise RuntimeError("Unable to represent lambda") from e
|
99 |
+
module = _find_module_of_method(func)
|
100 |
+
module = module.replace('torch._ops', 'torch.ops') # WAR for bug in how torch.ops assigns module
|
101 |
+
# Fixup segment_reduce mismatch
|
102 |
+
if module == "torch" and name == "segment_reduce":
|
103 |
+
name = "_" + name
|
104 |
+
return f'{module}.{name}'
|
105 |
+
|
106 |
+
def _format_arg(arg, max_list_len=float('inf')) -> str:
|
107 |
+
if hasattr(arg, '_custom_fx_repr_fn'):
|
108 |
+
return arg._custom_fx_repr_fn()
|
109 |
+
elif isinstance(arg, list):
|
110 |
+
items = ', '.join(_format_arg(a) for idx, a in enumerate(arg) if idx < max_list_len)
|
111 |
+
maybe_len = '' if len(arg) < max_list_len + 1 else f', ...[total_len={len(arg)}]'
|
112 |
+
return f'[{items}{maybe_len}]'
|
113 |
+
elif isinstance(arg, tuple):
|
114 |
+
items = ', '.join(_format_arg(a) for idx, a in enumerate(arg) if idx < max_list_len)
|
115 |
+
maybe_len = '' if len(arg) < max_list_len + 1 else f', ...[total_len={len(arg)}]'
|
116 |
+
maybe_comma = ',' if len(arg) == 1 else ''
|
117 |
+
return f'({items}{maybe_comma}{maybe_len})'
|
118 |
+
elif isinstance(arg, dict):
|
119 |
+
items_str = ', '.join(f'{k}: {_format_arg(v)}' for k, v in arg.items())
|
120 |
+
return f'{{{items_str}}}'
|
121 |
+
|
122 |
+
if isinstance(arg, Node):
|
123 |
+
return '%' + str(arg)
|
124 |
+
else:
|
125 |
+
return str(arg)
|
126 |
+
|
127 |
+
@compatibility(is_backward_compatible=True)
|
128 |
+
class Node:
|
129 |
+
"""
|
130 |
+
``Node`` is the data structure that represents individual operations within
|
131 |
+
a ``Graph``. For the most part, Nodes represent callsites to various entities,
|
132 |
+
such as operators, methods, and Modules (some exceptions include nodes that
|
133 |
+
specify function inputs and outputs). Each ``Node`` has a function specified
|
134 |
+
by its ``op`` property. The ``Node`` semantics for each value of ``op`` are as follows:
|
135 |
+
|
136 |
+
- ``placeholder`` represents a function input. The ``name`` attribute specifies the name this value will take on.
|
137 |
+
``target`` is similarly the name of the argument. ``args`` holds either: 1) nothing, or 2) a single argument
|
138 |
+
denoting the default parameter of the function input. ``kwargs`` is don't-care. Placeholders correspond to
|
139 |
+
the function parameters (e.g. ``x``) in the graph printout.
|
140 |
+
- ``get_attr`` retrieves a parameter from the module hierarchy. ``name`` is similarly the name the result of the
|
141 |
+
fetch is assigned to. ``target`` is the fully-qualified name of the parameter's position in the module hierarchy.
|
142 |
+
``args`` and ``kwargs`` are don't-care
|
143 |
+
- ``call_function`` applies a free function to some values. ``name`` is similarly the name of the value to assign
|
144 |
+
to. ``target`` is the function to be applied. ``args`` and ``kwargs`` represent the arguments to the function,
|
145 |
+
following the Python calling convention
|
146 |
+
- ``call_module`` applies a module in the module hierarchy's ``forward()`` method to given arguments. ``name`` is
|
147 |
+
as previous. ``target`` is the fully-qualified name of the module in the module hierarchy to call.
|
148 |
+
``args`` and ``kwargs`` represent the arguments to invoke the module on, *excluding the self argument*.
|
149 |
+
- ``call_method`` calls a method on a value. ``name`` is as similar. ``target`` is the string name of the method
|
150 |
+
to apply to the ``self`` argument. ``args`` and ``kwargs`` represent the arguments to invoke the module on,
|
151 |
+
*including the self argument*
|
152 |
+
- ``output`` contains the output of the traced function in its ``args[0]`` attribute. This corresponds to the "return" statement
|
153 |
+
in the Graph printout.
|
154 |
+
"""
|
155 |
+
|
156 |
+
@compatibility(is_backward_compatible=True)
|
157 |
+
def __init__(self, graph: 'Graph', name: str, op: str, target: 'Target',
|
158 |
+
args: Tuple['Argument', ...], kwargs: Dict[str, 'Argument'],
|
159 |
+
return_type : Optional[Any] = None) -> None:
|
160 |
+
"""
|
161 |
+
Instantiate an instance of ``Node``. Note: most often, you want to use the
|
162 |
+
Graph APIs, i.e. ``Graph.call_module``, ``Graph.call_method``, etc. rather
|
163 |
+
than instantiating a ``Node`` directly.
|
164 |
+
|
165 |
+
Args:
|
166 |
+
graph (Graph): The ``Graph`` to which this ``Node`` should belong.
|
167 |
+
|
168 |
+
name (str): The name to which the output of this ``Node`` should be assigned
|
169 |
+
|
170 |
+
op (str): The opcode for this ``Node``. Can be one of 'placeholder',
|
171 |
+
'call_method', 'call_module', 'call_function', 'get_attr',
|
172 |
+
'output'
|
173 |
+
|
174 |
+
target ('Target'): The target this op should call. See the broader
|
175 |
+
``Node`` docstring for more details.
|
176 |
+
|
177 |
+
args (Tuple['Argument']): The args to be passed to ``target``
|
178 |
+
|
179 |
+
kwargs (Dict[str, 'Argument']): The kwargs to be passed to ``target``
|
180 |
+
|
181 |
+
return_type (Optional[Any]): The python type expression representing the
|
182 |
+
type of the output of this node. This field can be used for
|
183 |
+
annotation of values in the generated code or for other types
|
184 |
+
of analyses.
|
185 |
+
"""
|
186 |
+
self.graph = graph
|
187 |
+
self.name = name # unique name of value being created
|
188 |
+
assert op in ['placeholder', 'call_method', 'call_module', 'call_function', 'get_attr', 'output', 'root']
|
189 |
+
self.op = op # the kind of operation = placeholder|call_method|call_module|call_function|get_attr
|
190 |
+
if op == 'call_function':
|
191 |
+
if not callable(target):
|
192 |
+
raise ValueError(f'Node [graph = {graph}, name = \'{name}\'] target {target} has type {torch.typename(target)} '
|
193 |
+
'but a Callable is expected')
|
194 |
+
else:
|
195 |
+
if not isinstance(target, str):
|
196 |
+
raise ValueError(f'Node [graph = {graph}, name = \'{name}\'] target {target} has type {torch.typename(target)} '
|
197 |
+
'but a str is expected')
|
198 |
+
self.target = target # for method/module/function, the name of the method/module/function/attr
|
199 |
+
# being invoked, e.g add, layer1, or torch.add
|
200 |
+
|
201 |
+
# All `Node`-valued inputs. Key is the Node, value is don't-care.
|
202 |
+
# The public API for this is `all_input_nodes`, this private attribute
|
203 |
+
# should not be accessed directly.
|
204 |
+
self._input_nodes : Dict[Node, None] = {}
|
205 |
+
self.__update_args_kwargs(map_arg(args, lambda x: x), map_arg(kwargs, lambda x: x)) # type: ignore[arg-type]
|
206 |
+
|
207 |
+
# All of the nodes that use the value produced by this Node
|
208 |
+
# Note one user may correspond to several uses, e.g. the node fo ``x + x``
|
209 |
+
# would appear once here, but represents two uses.
|
210 |
+
#
|
211 |
+
# Is a dict to act as an "ordered set". Keys are significant, value dont-care
|
212 |
+
self.users : Dict[Node, None] = {}
|
213 |
+
# Type expression representing the output value of this node.
|
214 |
+
# This should contain the same class of Type objects that would appear
|
215 |
+
# as type annotations for function inputs/outputs.
|
216 |
+
#
|
217 |
+
# For placeholder nodes, this value will be used to type-annotate the
|
218 |
+
# generated function parameters.
|
219 |
+
# For the return node, this value will be used to type-annotate the
|
220 |
+
# generated function return type. (Note this is a special case. ``return``
|
221 |
+
# does not produce a value, it's more of a notation. Thus, this value
|
222 |
+
# describes the type of args[0] in the ``return`` node.
|
223 |
+
self.type : Optional[Any] = return_type
|
224 |
+
self._prev = self
|
225 |
+
self._next = self
|
226 |
+
self._erased = False
|
227 |
+
|
228 |
+
# If set, use this fn to print this node
|
229 |
+
self._repr_fn : Optional[Callable[[Node], str]] = None
|
230 |
+
|
231 |
+
# Dictionary to store metadata passes need to do their
|
232 |
+
# transformations. This metadata is preserved across node copies
|
233 |
+
self.meta : Dict[str, Any] = {}
|
234 |
+
|
235 |
+
@property
|
236 |
+
def next(self) -> 'Node':
|
237 |
+
"""
|
238 |
+
Returns the next ``Node`` in the linked list of Nodes.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
|
242 |
+
The next ``Node`` in the linked list of Nodes.
|
243 |
+
"""
|
244 |
+
return self._next
|
245 |
+
|
246 |
+
@property
|
247 |
+
def prev(self) -> 'Node':
|
248 |
+
"""
|
249 |
+
Returns the previous ``Node`` in the linked list of Nodes.
|
250 |
+
|
251 |
+
Returns:
|
252 |
+
|
253 |
+
The previous ``Node`` in the linked list of Nodes.
|
254 |
+
"""
|
255 |
+
return self._prev
|
256 |
+
|
257 |
+
@compatibility(is_backward_compatible=True)
|
258 |
+
def prepend(self, x: 'Node') -> None:
|
259 |
+
"""
|
260 |
+
Insert x before this node in the list of nodes in the graph. Example::
|
261 |
+
|
262 |
+
Before: p -> self
|
263 |
+
bx -> x -> ax
|
264 |
+
After: p -> x -> self
|
265 |
+
bx -> ax
|
266 |
+
|
267 |
+
Args:
|
268 |
+
x (Node): The node to put before this node. Must be a member of the same graph.
|
269 |
+
"""
|
270 |
+
assert self.graph == x.graph, "Attempting to move a Node into a different Graph"
|
271 |
+
if self == x:
|
272 |
+
warnings.warn("Trying to prepend a node to itself. This behavior has no effect on the graph.")
|
273 |
+
return
|
274 |
+
x._remove_from_list()
|
275 |
+
p = self._prev
|
276 |
+
p._next, x._prev = x, p
|
277 |
+
x._next, self._prev = self, x
|
278 |
+
|
279 |
+
@compatibility(is_backward_compatible=True)
|
280 |
+
def append(self, x: 'Node') -> None:
|
281 |
+
"""
|
282 |
+
Insert ``x`` after this node in the list of nodes in the graph.
|
283 |
+
Equivalent to ``self.next.prepend(x)``
|
284 |
+
|
285 |
+
Args:
|
286 |
+
x (Node): The node to put after this node. Must be a member of the same graph.
|
287 |
+
"""
|
288 |
+
self._next.prepend(x)
|
289 |
+
|
290 |
+
def _remove_from_list(self):
|
291 |
+
p, n = self._prev, self._next
|
292 |
+
p._next, n._prev = n, p
|
293 |
+
|
294 |
+
@property
|
295 |
+
def args(self) -> Tuple[Argument, ...]:
|
296 |
+
"""
|
297 |
+
The tuple of arguments to this ``Node``. The interpretation of arguments
|
298 |
+
depends on the node's opcode. See the :class:`Node` docstring for more
|
299 |
+
information.
|
300 |
+
|
301 |
+
Assignment to this property is allowed. All accounting of uses and users
|
302 |
+
is updated automatically on assignment.
|
303 |
+
"""
|
304 |
+
return self._args
|
305 |
+
|
306 |
+
@args.setter
|
307 |
+
def args(self, a : Tuple[Argument, ...]):
|
308 |
+
"""
|
309 |
+
Set the tuple of arguments to this Node. The interpretation of arguments
|
310 |
+
depends on the node's opcode. See the ``fx.Graph`` docstring for more
|
311 |
+
information.
|
312 |
+
"""
|
313 |
+
# DO NOT CALL `__update_args_kwargs` directly. The correct way to
|
314 |
+
# set `args` is via direct assignment, i.e. `node.args = new_args`
|
315 |
+
self.__update_args_kwargs(map_arg(a, lambda x: x), self._kwargs) # type: ignore[arg-type]
|
316 |
+
|
317 |
+
@property
|
318 |
+
def kwargs(self) -> Dict[str, Argument]:
|
319 |
+
"""
|
320 |
+
The dict of keyword arguments to this ``Node``. The interpretation of arguments
|
321 |
+
depends on the node's opcode. See the :class:`Node` docstring for more
|
322 |
+
information.
|
323 |
+
|
324 |
+
Assignment to this property is allowed. All accounting of uses and users
|
325 |
+
is updated automatically on assignment.
|
326 |
+
"""
|
327 |
+
return self._kwargs
|
328 |
+
|
329 |
+
@kwargs.setter
|
330 |
+
def kwargs(self, k : Dict[str, Argument]):
|
331 |
+
"""
|
332 |
+
Set the dict of kwargs to this Node. The interpretation of arguments
|
333 |
+
depends on the node's opcode. See the ``fx.Graph`` docstring for more
|
334 |
+
information.
|
335 |
+
"""
|
336 |
+
# DO NOT CALL `__update_args_kwargs` directly. The correct way to
|
337 |
+
# set `args` is via direct assignment, i.e. `node.kwargs = new_kwargs`
|
338 |
+
self.__update_args_kwargs(self._args, map_arg(k, lambda x: x)) # type: ignore[arg-type]
|
339 |
+
|
340 |
+
@property
|
341 |
+
def all_input_nodes(self) -> List['Node']:
|
342 |
+
"""
|
343 |
+
Return all Nodes that are inputs to this Node. This is equivalent to
|
344 |
+
iterating over ``args`` and ``kwargs`` and only collecting the values that
|
345 |
+
are Nodes.
|
346 |
+
|
347 |
+
Returns:
|
348 |
+
|
349 |
+
List of ``Nodes`` that appear in the ``args`` and ``kwargs`` of this
|
350 |
+
``Node``, in that order.
|
351 |
+
"""
|
352 |
+
return list(self._input_nodes.keys())
|
353 |
+
|
354 |
+
@compatibility(is_backward_compatible=True)
|
355 |
+
def update_arg(self, idx : int, arg : Argument) -> None:
|
356 |
+
"""
|
357 |
+
Update an existing positional argument to contain the new value
|
358 |
+
``arg``. After calling, ``self.args[idx] == arg``.
|
359 |
+
|
360 |
+
Args:
|
361 |
+
|
362 |
+
idx (int): The index into ``self.args`` of the element to update
|
363 |
+
arg (Argument): The new argument value to write into ``args``
|
364 |
+
"""
|
365 |
+
args = list(self.args)
|
366 |
+
args[idx] = arg
|
367 |
+
self.args = tuple(args)
|
368 |
+
|
369 |
+
@compatibility(is_backward_compatible=True)
|
370 |
+
def insert_arg(self, idx : int, arg : Argument) -> None:
|
371 |
+
"""
|
372 |
+
Insert an positional argument to the argument list with given index.
|
373 |
+
|
374 |
+
Args:
|
375 |
+
|
376 |
+
idx (int): The index of the element in ``self.args`` to be inserted before.
|
377 |
+
arg (Argument): The new argument value to insert into ``args``
|
378 |
+
"""
|
379 |
+
assert 0 <= idx <= len(self.args), "insert_args index must be between 0 and len(self.args)"
|
380 |
+
args_left = self.args[:idx]
|
381 |
+
args_right = self.args[idx:]
|
382 |
+
|
383 |
+
self._args = args_left + (arg,) + args_right
|
384 |
+
|
385 |
+
_new_input_nodes = {}
|
386 |
+
map_arg(arg, _new_input_nodes.setdefault)
|
387 |
+
|
388 |
+
for new_use in _new_input_nodes.keys():
|
389 |
+
if new_use not in self._input_nodes:
|
390 |
+
self._input_nodes.setdefault(new_use)
|
391 |
+
new_use.users.setdefault(self)
|
392 |
+
|
393 |
+
@compatibility(is_backward_compatible=True)
|
394 |
+
def update_kwarg(self, key : str, arg : Argument) -> None:
|
395 |
+
"""
|
396 |
+
Update an existing keyword argument to contain the new value
|
397 |
+
``arg``. After calling, ``self.kwargs[key] == arg``.
|
398 |
+
|
399 |
+
Args:
|
400 |
+
|
401 |
+
key (str): The key in ``self.kwargs`` of the element to update
|
402 |
+
arg (Argument): The new argument value to write into ``kwargs``
|
403 |
+
"""
|
404 |
+
kwargs = dict(self.kwargs)
|
405 |
+
kwargs[key] = arg
|
406 |
+
self.kwargs = kwargs
|
407 |
+
|
408 |
+
@property
|
409 |
+
def stack_trace(self) -> Optional[str]:
|
410 |
+
"""
|
411 |
+
Return the Python stack trace that was recorded during tracing, if any.
|
412 |
+
When traced with fx.Tracer, this property is usually populated by
|
413 |
+
`Tracer.create_proxy`. To record stack traces during tracing for debug purposes,
|
414 |
+
set `record_stack_traces = True` on the `Tracer` instance.
|
415 |
+
When traced with dynamo, this property will be populated by default by
|
416 |
+
`OutputGraph.create_proxy`.
|
417 |
+
|
418 |
+
stack_trace would have the innermost frame at the end of the string.
|
419 |
+
"""
|
420 |
+
return self.meta.get("stack_trace", None)
|
421 |
+
|
422 |
+
@stack_trace.setter
|
423 |
+
def stack_trace(self, trace : Optional[str]):
|
424 |
+
self.meta["stack_trace"] = trace
|
425 |
+
|
426 |
+
def __update_args_kwargs(self, new_args : Tuple['Argument', ...], new_kwargs : Dict[str, 'Argument']):
|
427 |
+
"""
|
428 |
+
This API is internal. Do *not* call it directly.
|
429 |
+
"""
|
430 |
+
self._args = new_args
|
431 |
+
self._kwargs = new_kwargs
|
432 |
+
|
433 |
+
for old_use in self._input_nodes.keys():
|
434 |
+
old_use.users.pop(self)
|
435 |
+
|
436 |
+
self._input_nodes = {}
|
437 |
+
map_arg(self._args, self._input_nodes.setdefault)
|
438 |
+
map_arg(self._kwargs, self._input_nodes.setdefault)
|
439 |
+
|
440 |
+
for new_use in self._input_nodes.keys():
|
441 |
+
new_use.users.setdefault(self)
|
442 |
+
|
443 |
+
def __repr__(self) -> str:
|
444 |
+
if self._repr_fn:
|
445 |
+
return self._repr_fn(self)
|
446 |
+
return self.name
|
447 |
+
|
448 |
+
def _pretty_print_target(self, target):
|
449 |
+
"""
|
450 |
+
Make target printouts more user-friendly.
|
451 |
+
1) builtins will be printed as `builtins.xyz`
|
452 |
+
2) operators will be printed as `operator.xyz`
|
453 |
+
3) other callables will be printed with qualified name, e.g. torch.add
|
454 |
+
"""
|
455 |
+
if isinstance(target, str):
|
456 |
+
return target
|
457 |
+
if hasattr(target, '__module__'):
|
458 |
+
if not hasattr(target, '__name__'):
|
459 |
+
# Just to be defensive, if we don't have `__name__`, get the
|
460 |
+
# qualname. Not sure if this happens for any members of `operator`
|
461 |
+
# or `builtins`. This fallback path is not as good, since e.g.
|
462 |
+
# things in `operator` have `_operator` as their __module__.
|
463 |
+
return _get_qualified_name(target)
|
464 |
+
if target.__module__ == 'builtins':
|
465 |
+
return f'builtins.{target.__name__}'
|
466 |
+
elif target.__module__ == '_operator':
|
467 |
+
return f'operator.{target.__name__}'
|
468 |
+
return _get_qualified_name(target)
|
469 |
+
|
470 |
+
@compatibility(is_backward_compatible=True)
|
471 |
+
def format_node(self,
|
472 |
+
placeholder_names: Optional[List[str]] = None,
|
473 |
+
maybe_return_typename: Optional[List[str]] = None) -> Optional[str]:
|
474 |
+
"""
|
475 |
+
Return a descriptive string representation of ``self``.
|
476 |
+
|
477 |
+
This method can be used with no arguments as a debugging
|
478 |
+
utility.
|
479 |
+
|
480 |
+
This function is also used internally in the ``__str__`` method
|
481 |
+
of ``Graph``. Together, the strings in ``placeholder_names``
|
482 |
+
and ``maybe_return_typename`` make up the signature of the
|
483 |
+
autogenerated ``forward`` function in this Graph's surrounding
|
484 |
+
GraphModule. ``placeholder_names`` and ``maybe_return_typename``
|
485 |
+
should not be used otherwise.
|
486 |
+
|
487 |
+
Args:
|
488 |
+
placeholder_names: A list that will store formatted strings
|
489 |
+
representing the placeholders in the generated
|
490 |
+
``forward`` function. Internal use only.
|
491 |
+
maybe_return_typename: A single-element list that will store
|
492 |
+
a formatted string representing the output of the
|
493 |
+
generated ``forward`` function. Internal use only.
|
494 |
+
|
495 |
+
Returns:
|
496 |
+
str: If 1) we're using ``format_node`` as an internal helper
|
497 |
+
in the ``__str__`` method of ``Graph``, and 2) ``self``
|
498 |
+
is a placeholder Node, return ``None``. Otherwise,
|
499 |
+
return a descriptive string representation of the
|
500 |
+
current Node.
|
501 |
+
"""
|
502 |
+
if self.op == 'placeholder':
|
503 |
+
assert isinstance(self.target, str)
|
504 |
+
arg_str = self.target
|
505 |
+
arg_str += arg_str + f': {_type_repr(self.type)}' if self.type else ''
|
506 |
+
if placeholder_names:
|
507 |
+
placeholder_names.append(arg_str)
|
508 |
+
return None
|
509 |
+
maybe_typename = f'{_type_repr(self.type)} ' if self.type else ''
|
510 |
+
default_val = '(default=' + str(self.args[0]) + ')' if self.args else ''
|
511 |
+
return f'%{self.name} : {maybe_typename}[num_users={len(self.users)}] = {self.op}[target={self.target}]{default_val}'
|
512 |
+
elif self.op == 'get_attr':
|
513 |
+
maybe_typename = f'{_type_repr(self.type)} ' if self.type is not None else ''
|
514 |
+
return f'%{self.name} : {maybe_typename}[num_users={len(self.users)}] = ' \
|
515 |
+
f'{self.op}[target={self._pretty_print_target(self.target)}]'
|
516 |
+
elif self.op == 'output':
|
517 |
+
if self.type and maybe_return_typename:
|
518 |
+
maybe_return_typename[0] = f' -> {_type_repr(self.type)}'
|
519 |
+
return f'return {self.args[0]}'
|
520 |
+
else:
|
521 |
+
maybe_typename = f'{_type_repr(self.type)} ' if self.type is not None else ''
|
522 |
+
return f'%{self.name} : {maybe_typename}[num_users={len(self.users)}] = ' \
|
523 |
+
f'{self.op}[target={self._pretty_print_target(self.target)}](' \
|
524 |
+
f'args = {_format_arg(self.args)}, kwargs = {_format_arg(self.kwargs)})'
|
525 |
+
|
526 |
+
@compatibility(is_backward_compatible=True)
|
527 |
+
def replace_all_uses_with(self,
|
528 |
+
replace_with : 'Node',
|
529 |
+
delete_user_cb: Callable[['Node'], bool] = lambda user: True,
|
530 |
+
*,
|
531 |
+
propagate_meta=False
|
532 |
+
) -> List['Node']:
|
533 |
+
"""
|
534 |
+
Replace all uses of ``self`` in the Graph with the Node ``replace_with``.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
|
538 |
+
replace_with (Node): The node to replace all uses of ``self`` with.
|
539 |
+
delete_user_cb (Callable): Callback that is called to determine
|
540 |
+
whether a given user of the self node should be removed.
|
541 |
+
propagate_meta (bool): Whether or not to copy all properties
|
542 |
+
on the .meta field of the original node onto the replacement node.
|
543 |
+
For safety, this is only valid to do if the replacement node
|
544 |
+
doesn't already have an existing .meta field.
|
545 |
+
|
546 |
+
Returns:
|
547 |
+
|
548 |
+
The list of Nodes on which this change was made.
|
549 |
+
"""
|
550 |
+
if propagate_meta:
|
551 |
+
assert len(replace_with.meta) == 0, \
|
552 |
+
'Called node.replace_all_uses_with(replace_with, propagate_meta=True), ' \
|
553 |
+
'but replace_with already has .meta keys'
|
554 |
+
for k, v in self.meta.items():
|
555 |
+
replace_with.meta[k] = v
|
556 |
+
to_process = list(self.users)
|
557 |
+
skipped = []
|
558 |
+
for use_node in to_process:
|
559 |
+
if not delete_user_cb(use_node):
|
560 |
+
skipped.append(use_node)
|
561 |
+
continue
|
562 |
+
|
563 |
+
def maybe_replace_node(n : Node) -> Node:
|
564 |
+
if n == self:
|
565 |
+
return replace_with
|
566 |
+
else:
|
567 |
+
return n
|
568 |
+
|
569 |
+
new_args = map_arg(use_node.args, maybe_replace_node)
|
570 |
+
new_kwargs = map_arg(use_node.kwargs, maybe_replace_node)
|
571 |
+
assert isinstance(new_args, tuple)
|
572 |
+
assert isinstance(new_kwargs, dict)
|
573 |
+
use_node.__update_args_kwargs(new_args, new_kwargs)
|
574 |
+
|
575 |
+
assert len(self.users) - len(skipped) == 0
|
576 |
+
return [n for n in to_process if n not in skipped]
|
577 |
+
|
578 |
+
@compatibility(is_backward_compatible=False)
|
579 |
+
def is_impure(self):
|
580 |
+
"""
|
581 |
+
Returns whether this op is impure, i.e. if its op is a placeholder or
|
582 |
+
output, or if a call_function or call_module which is impure.
|
583 |
+
|
584 |
+
Returns:
|
585 |
+
|
586 |
+
bool: If the op is impure or not.
|
587 |
+
"""
|
588 |
+
if self.op in {"placeholder", "output"}:
|
589 |
+
return True
|
590 |
+
|
591 |
+
# Check if an impure function.
|
592 |
+
if self.op == "call_function":
|
593 |
+
return self.target in _side_effectful_functions
|
594 |
+
|
595 |
+
# Check if an impure module.
|
596 |
+
if self.op == "call_module":
|
597 |
+
assert (
|
598 |
+
self.graph.owning_module is not None
|
599 |
+
), "self.graph.owning_module not set for purity check"
|
600 |
+
target_mod = self.graph.owning_module.get_submodule(self.target)
|
601 |
+
assert (
|
602 |
+
target_mod is not None
|
603 |
+
), f"Did not find expected submodule target {self.target}"
|
604 |
+
return getattr(target_mod, "_is_impure", False)
|
605 |
+
|
606 |
+
return False
|
607 |
+
|
608 |
+
@compatibility(is_backward_compatible=False)
|
609 |
+
def normalized_arguments(
|
610 |
+
self, root : torch.nn.Module, arg_types : Optional[Tuple[Any]] = None,
|
611 |
+
kwarg_types : Optional[Dict[str, Any]] = None,
|
612 |
+
normalize_to_only_use_kwargs : bool = False) -> Optional[ArgsKwargsPair]:
|
613 |
+
"""
|
614 |
+
Returns normalized arguments to Python targets. This means that
|
615 |
+
`args/kwargs` will be matched up to the module/functional's
|
616 |
+
signature and return exclusively kwargs in positional order
|
617 |
+
if `normalize_to_only_use_kwargs` is true.
|
618 |
+
Also populates default values. Does not support positional-only
|
619 |
+
parameters or varargs parameters.
|
620 |
+
|
621 |
+
Supports module calls.
|
622 |
+
|
623 |
+
May require `arg_types` and `kwarg_types` in order to disambiguate overloads.
|
624 |
+
|
625 |
+
Args:
|
626 |
+
root (torch.nn.Module): Module upon which to resolve module targets.
|
627 |
+
arg_types (Optional[Tuple[Any]]): Tuple of arg types for the args
|
628 |
+
kwarg_types (Optional[Dict[str, Any]]): Dict of arg types for the kwargs
|
629 |
+
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
630 |
+
|
631 |
+
Returns:
|
632 |
+
|
633 |
+
Returns NamedTuple ArgsKwargsPair, or `None` if not successful.
|
634 |
+
"""
|
635 |
+
if self.op == 'call_function':
|
636 |
+
assert callable(self.target)
|
637 |
+
return normalize_function(self.target, self.args, self.kwargs, arg_types, kwarg_types) # type: ignore[arg-type]
|
638 |
+
elif self.op == 'call_module':
|
639 |
+
assert isinstance(self.target, str)
|
640 |
+
return normalize_module(root, self.target, self.args, self.kwargs) # type: ignore[arg-type]
|
641 |
+
|
642 |
+
return None
|
643 |
+
|
644 |
+
@compatibility(is_backward_compatible=True)
|
645 |
+
def replace_input_with(self, old_input: 'Node', new_input: 'Node'):
|
646 |
+
"""
|
647 |
+
Loop through input nodes of ``self``, and replace all instances of
|
648 |
+
``old_input`` with ``new_input``.
|
649 |
+
|
650 |
+
Args:
|
651 |
+
|
652 |
+
old_input (Node): The old input node to be replaced.
|
653 |
+
new_input (Node): The new input node to replace ``old_input``.
|
654 |
+
"""
|
655 |
+
def maybe_replace_node(n : Node) -> Node:
|
656 |
+
return new_input if n == old_input else n
|
657 |
+
|
658 |
+
new_args = map_arg(self.args, maybe_replace_node)
|
659 |
+
new_kwargs = map_arg(self.kwargs, maybe_replace_node)
|
660 |
+
assert isinstance(new_args, tuple)
|
661 |
+
assert isinstance(new_kwargs, dict)
|
662 |
+
self.__update_args_kwargs(new_args, new_kwargs)
|
663 |
+
|
664 |
+
def _rename(self, candidate: str):
|
665 |
+
if candidate == self.name:
|
666 |
+
return
|
667 |
+
name = self.graph._graph_namespace.create_name(candidate, None)
|
668 |
+
self.name = name
|
669 |
+
self.graph._graph_namespace._rename_object(self, name)
|
670 |
+
|
671 |
+
|
672 |
+
@compatibility(is_backward_compatible=True)
|
673 |
+
def map_arg(a: Argument, fn: Callable[[Node], Argument]) -> Argument:
|
674 |
+
"""
|
675 |
+
Apply fn to each Node appearing arg. arg may be a list, tuple, slice, or dict with string keys.
|
676 |
+
"""
|
677 |
+
assert callable(fn), "torch.fx.map_arg(a, fn): fn must be a callable"
|
678 |
+
return map_aggregate(a, lambda x: fn(x) if isinstance(x, Node) else x)
|
679 |
+
|
680 |
+
@compatibility(is_backward_compatible=True)
|
681 |
+
def map_aggregate(a: Argument, fn: Callable[[Argument], Argument]) -> Argument:
|
682 |
+
"""
|
683 |
+
Apply fn to each Node appearing arg. arg may be a list, tuple, slice, or dict with string keys.
|
684 |
+
"""
|
685 |
+
if isinstance(a, tuple):
|
686 |
+
t = tuple(map_aggregate(elem, fn) for elem in a)
|
687 |
+
# Support NamedTuple (if it has `_fields`) by repacking into original type.
|
688 |
+
return t if not hasattr(a, '_fields') else type(a)(*t)
|
689 |
+
elif isinstance(a, list):
|
690 |
+
return immutable_list(map_aggregate(elem, fn) for elem in a)
|
691 |
+
elif isinstance(a, dict):
|
692 |
+
return immutable_dict((k, map_aggregate(v, fn)) for k, v in a.items())
|
693 |
+
elif isinstance(a, slice):
|
694 |
+
return slice(map_aggregate(a.start, fn), map_aggregate(a.stop, fn), map_aggregate(a.step, fn))
|
695 |
+
else:
|
696 |
+
return fn(a)
|
env-llmeval/lib/python3.10/site-packages/torch/fx/operator_schemas.py
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import inspect
|
3 |
+
import numbers
|
4 |
+
import types
|
5 |
+
import typing
|
6 |
+
import enum
|
7 |
+
import warnings
|
8 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, NamedTuple, cast, TYPE_CHECKING
|
9 |
+
from torch._jit_internal import boolean_dispatched
|
10 |
+
from ._compatibility import compatibility
|
11 |
+
from torch._ops import OpOverloadPacket, OpOverload
|
12 |
+
|
13 |
+
if TYPE_CHECKING:
|
14 |
+
from .node import Argument
|
15 |
+
|
16 |
+
__all__ = ["ArgsKwargsPair", "check_for_mutable_operation", "get_signature_for_torch_op", "create_type_hint",
|
17 |
+
"type_matches", "normalize_function", "normalize_module"]
|
18 |
+
|
19 |
+
@compatibility(is_backward_compatible=False)
|
20 |
+
class ArgsKwargsPair(NamedTuple):
|
21 |
+
"""
|
22 |
+
Simple named tuple for wrapping args/kwargs pairs.
|
23 |
+
"""
|
24 |
+
args: Tuple[Any, ...]
|
25 |
+
kwargs: Dict[str, Any]
|
26 |
+
|
27 |
+
_manual_overrides : Dict[Callable, List[inspect.Signature]] = {}
|
28 |
+
|
29 |
+
def _nonzero_schemas():
|
30 |
+
signatures = []
|
31 |
+
|
32 |
+
def nonzero(self):
|
33 |
+
pass
|
34 |
+
signatures.append(inspect.signature(nonzero))
|
35 |
+
|
36 |
+
def nonzero(self, *, as_tuple : bool): # type: ignore[no-redef]
|
37 |
+
pass
|
38 |
+
signatures.append(inspect.signature(nonzero))
|
39 |
+
|
40 |
+
return signatures
|
41 |
+
|
42 |
+
_manual_overrides[torch.nonzero] = _nonzero_schemas()
|
43 |
+
|
44 |
+
class _FakeGlobalNamespace:
|
45 |
+
def __getattr__(self, name):
|
46 |
+
if name == 'torch':
|
47 |
+
return torch
|
48 |
+
raise RuntimeError('Expected a torch namespace lookup')
|
49 |
+
|
50 |
+
_type_eval_globals = {'Tensor' : torch.Tensor, 'Device' : torch.device, 'Layout' : torch.layout,
|
51 |
+
'number' : numbers.Number, 'Future' : torch.jit.Future,
|
52 |
+
'AnyEnumType' : enum.Enum, 'QScheme' : torch.qscheme,
|
53 |
+
'__torch__': _FakeGlobalNamespace(), 'NoneType': type(None),
|
54 |
+
't': typing.TypeVar('t')}
|
55 |
+
for k in dir(typing):
|
56 |
+
_type_eval_globals[k] = getattr(typing, k)
|
57 |
+
|
58 |
+
def _torchscript_type_to_python_type(ts_type : 'torch._C.JitType') -> Any:
|
59 |
+
"""
|
60 |
+
Convert a TorchScript type to a Python type (including subtypes) via
|
61 |
+
eval'ing the annotation_str. _type_eval_globals sets up expressions
|
62 |
+
like "List" and "Future" to map to actual types (typing.List and jit.Future)
|
63 |
+
"""
|
64 |
+
return eval(ts_type.annotation_str, _type_eval_globals)
|
65 |
+
|
66 |
+
def _torchscript_schema_to_signature_impl(ts_schema : torch._C.FunctionSchema) -> inspect.Signature:
|
67 |
+
from inspect import Parameter
|
68 |
+
parameters : List[Parameter] = []
|
69 |
+
for arg in ts_schema.arguments:
|
70 |
+
arg_type = _torchscript_type_to_python_type(arg.type)
|
71 |
+
default = arg.default_value if arg.has_default_value() else Parameter.empty
|
72 |
+
# TODO: Figure out if this is safe. It seems like when generating the type signatures for
|
73 |
+
# PythonArgParser, we emit signatures with `input` instead of `self` as the first tensor
|
74 |
+
# argument name. Downstream, if someone converts that positional argument to a keyword
|
75 |
+
# argument, the name mismatch will break things, so here we're going to normalize the
|
76 |
+
# name to "input"
|
77 |
+
name = arg.name if arg.name != 'self' else 'input'
|
78 |
+
kind = Parameter.KEYWORD_ONLY if arg.kwarg_only else Parameter.POSITIONAL_OR_KEYWORD
|
79 |
+
# "from" is a keyword therefore it must be a POSITIONAL_ONLY argument
|
80 |
+
if name == "from":
|
81 |
+
assert kind == Parameter.POSITIONAL_OR_KEYWORD
|
82 |
+
# ParameterKind type is internal implementation detail to inspec package
|
83 |
+
# which makes it hard to do type annotation
|
84 |
+
kind = Parameter.POSITIONAL_ONLY # type: ignore[assignment]
|
85 |
+
# This renders all previous arguments to positional only
|
86 |
+
for idx, p in enumerate(parameters):
|
87 |
+
assert p.kind == Parameter.POSITIONAL_OR_KEYWORD
|
88 |
+
parameters[idx] = Parameter(name=p.name, kind=Parameter.POSITIONAL_ONLY, default=p.default, annotation=p.annotation)
|
89 |
+
parameters.append(Parameter(name=name, kind=kind, default=default, annotation=arg_type))
|
90 |
+
return_types = [_torchscript_type_to_python_type(ret.type) for ret in ts_schema.returns]
|
91 |
+
if len(return_types) == 0:
|
92 |
+
return_type = None
|
93 |
+
elif len(return_types) == 1:
|
94 |
+
return_type = return_types[0]
|
95 |
+
else:
|
96 |
+
return_type = tuple(return_types)
|
97 |
+
|
98 |
+
return inspect.Signature(parameters, return_annotation=return_type)
|
99 |
+
|
100 |
+
_SCHEMA_TO_SIGNATURE_CACHE : Dict[Tuple[str, str], inspect.Signature] = {}
|
101 |
+
|
102 |
+
def _torchscript_schema_to_signature(ts_schema : torch._C.FunctionSchema) -> inspect.Signature:
|
103 |
+
# Cached as it's called in the hot path of FakeTensor dispatch
|
104 |
+
cache_key = ts_schema.name, ts_schema.overload_name
|
105 |
+
cache_val = _SCHEMA_TO_SIGNATURE_CACHE.get(cache_key)
|
106 |
+
if cache_val is not None:
|
107 |
+
return cache_val
|
108 |
+
|
109 |
+
res = _torchscript_schema_to_signature_impl(ts_schema)
|
110 |
+
_SCHEMA_TO_SIGNATURE_CACHE[cache_key] = res
|
111 |
+
return res
|
112 |
+
|
113 |
+
@compatibility(is_backward_compatible=False)
|
114 |
+
def check_for_mutable_operation(target : Callable, args : Tuple['Argument', ...], kwargs : Dict[str, 'Argument']):
|
115 |
+
signatures, schemas = get_signature_for_torch_op(target, return_schemas=True)
|
116 |
+
|
117 |
+
if signatures and schemas:
|
118 |
+
matched_schemas = []
|
119 |
+
|
120 |
+
# Iterate through all of the schema until we find one that matches
|
121 |
+
# If one matches, populate `new_args_and_kwargs` with the new args/kwargs
|
122 |
+
# values. If none matches, `new_args_and_kwargs` will be None
|
123 |
+
for candidate_signature, schema in zip(signatures, schemas):
|
124 |
+
try:
|
125 |
+
candidate_signature.bind(*args, **kwargs)
|
126 |
+
matched_schemas.append((candidate_signature, schema))
|
127 |
+
except TypeError as e:
|
128 |
+
continue
|
129 |
+
|
130 |
+
def throw_if_mutable(schema):
|
131 |
+
if schema.is_mutable:
|
132 |
+
raise RuntimeError(f'Tried to trace mutable operation {schema}. FX only supports functional '
|
133 |
+
f'code, so operations that mutate operands in-place (e.g. via `out` arguments) '
|
134 |
+
f'are not supported')
|
135 |
+
|
136 |
+
if len(matched_schemas) == 0:
|
137 |
+
# Did not match any schema. Cannot check for mutation
|
138 |
+
pass
|
139 |
+
elif len(matched_schemas) == 1:
|
140 |
+
# Matched exactly one schema, unambiguous
|
141 |
+
_, schema_to_check = matched_schemas[0]
|
142 |
+
throw_if_mutable(schema_to_check)
|
143 |
+
pass
|
144 |
+
else:
|
145 |
+
# Ambiguous schema match. Since mutability checking is best effort,
|
146 |
+
# do nothing.
|
147 |
+
pass
|
148 |
+
|
149 |
+
@compatibility(is_backward_compatible=False)
|
150 |
+
def get_signature_for_torch_op(op : Callable, return_schemas : bool = False):
|
151 |
+
"""
|
152 |
+
Given an operator on the `torch` namespace, return a list of `inspect.Signature`
|
153 |
+
objects corresponding to the overloads of that op.. May return `None` if a signature
|
154 |
+
could not be retrieved.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
op (Callable): An operator on the `torch` namespace to look up a signature for
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
Optional[List[inspect.Signature]]: A list of signatures for the overloads of this
|
161 |
+
operator, or None if the operator signatures could not be retrieved. If
|
162 |
+
return_schemas=True, returns a tuple containing the optional Python signatures
|
163 |
+
and the optional TorchScript Function signature
|
164 |
+
"""
|
165 |
+
if isinstance(op, OpOverload):
|
166 |
+
schemas = [op._schema]
|
167 |
+
elif isinstance(op, OpOverloadPacket):
|
168 |
+
schemas = [getattr(op, overload)._schema for overload in op.overloads()]
|
169 |
+
else:
|
170 |
+
override = _manual_overrides.get(op)
|
171 |
+
if override:
|
172 |
+
return (override, None) if return_schemas else None
|
173 |
+
|
174 |
+
aten_fn = torch.jit._builtins._find_builtin(op)
|
175 |
+
|
176 |
+
if aten_fn is None:
|
177 |
+
return (None, None) if return_schemas else None
|
178 |
+
schemas = torch._C._jit_get_schemas_for_operator(aten_fn)
|
179 |
+
|
180 |
+
signatures = [_torchscript_schema_to_signature(schema) for schema in schemas]
|
181 |
+
return (signatures, schemas) if return_schemas else signatures
|
182 |
+
|
183 |
+
@compatibility(is_backward_compatible=False)
|
184 |
+
def create_type_hint(x):
|
185 |
+
try:
|
186 |
+
if isinstance(x, (list, tuple)):
|
187 |
+
# todo(chilli): Figure out the right way for mypy to handle this
|
188 |
+
if isinstance(x, list):
|
189 |
+
def ret_type(x):
|
190 |
+
return List[x] # type: ignore[valid-type]
|
191 |
+
else:
|
192 |
+
def ret_type(x):
|
193 |
+
return Tuple[x, ...]
|
194 |
+
if len(x) == 0:
|
195 |
+
return ret_type(Any)
|
196 |
+
base_type = x[0]
|
197 |
+
for t in x:
|
198 |
+
if issubclass(t, base_type):
|
199 |
+
continue
|
200 |
+
elif issubclass(base_type, t):
|
201 |
+
base_type = t
|
202 |
+
else:
|
203 |
+
return ret_type(Any)
|
204 |
+
return ret_type(base_type)
|
205 |
+
except Exception as e:
|
206 |
+
# We tried to create a type hint for list but failed.
|
207 |
+
warnings.warn(f"We were not able to successfully create type hint from the type {x}")
|
208 |
+
pass
|
209 |
+
return x
|
210 |
+
|
211 |
+
@compatibility(is_backward_compatible=False)
|
212 |
+
def type_matches(signature_type : Any, argument_type : Any):
|
213 |
+
sig_origin_type = getattr(signature_type, '__origin__', signature_type)
|
214 |
+
|
215 |
+
if signature_type is argument_type:
|
216 |
+
return True
|
217 |
+
|
218 |
+
# Union types in signature. Given type needs to match one of the
|
219 |
+
# contained types in the Union
|
220 |
+
if sig_origin_type is typing.Union and signature_type != argument_type:
|
221 |
+
sig_contained = signature_type.__args__
|
222 |
+
return any(type_matches(c, argument_type) for c in sig_contained)
|
223 |
+
|
224 |
+
if signature_type is List[int] and argument_type is int:
|
225 |
+
# int can be promoted to List[int]
|
226 |
+
return True
|
227 |
+
|
228 |
+
if getattr(signature_type, '__origin__', None) in {list, List}:
|
229 |
+
sig_el_type = signature_type.__args__[0]
|
230 |
+
if not inspect.isclass(sig_el_type):
|
231 |
+
warnings.warn(
|
232 |
+
f"Does not support nested parametric types, got {signature_type}. Please file a bug.")
|
233 |
+
return False
|
234 |
+
if getattr(argument_type, '__origin__', None) in {list, List}:
|
235 |
+
return issubclass(argument_type.__args__[0], sig_el_type)
|
236 |
+
|
237 |
+
def is_homogeneous_tuple(t):
|
238 |
+
if getattr(t, "__origin__", None) not in {tuple, Tuple}:
|
239 |
+
return False
|
240 |
+
contained = t.__args__
|
241 |
+
if t.__args__ == ((),): # Tuple[()].__args__ == ((),) for some reason
|
242 |
+
return True
|
243 |
+
return all((c is Ellipsis) or issubclass(c, sig_el_type) for c in contained)
|
244 |
+
|
245 |
+
# Tuple[T] is accepted for List[T] parameters
|
246 |
+
return is_homogeneous_tuple(argument_type)
|
247 |
+
|
248 |
+
# Dtype is an int in schemas
|
249 |
+
if signature_type is int and argument_type is torch.dtype:
|
250 |
+
return True
|
251 |
+
|
252 |
+
if signature_type is numbers.Number and argument_type in {int, float}:
|
253 |
+
return True
|
254 |
+
if inspect.isclass(argument_type) and inspect.isclass(signature_type):
|
255 |
+
return issubclass(argument_type, signature_type)
|
256 |
+
|
257 |
+
return False
|
258 |
+
|
259 |
+
@compatibility(is_backward_compatible=False)
|
260 |
+
def normalize_function(
|
261 |
+
target: Callable, args: Tuple[Any], kwargs : Optional[Dict[str, Any]] = None, arg_types : Optional[Tuple[Any]] = None,
|
262 |
+
kwarg_types : Optional[Dict[str, Any]] = None,
|
263 |
+
normalize_to_only_use_kwargs : bool = False) -> Optional[ArgsKwargsPair]:
|
264 |
+
"""
|
265 |
+
Returns normalized arguments to PyTorch functions. This means that
|
266 |
+
`args/kwargs` will be matched up to the functional's
|
267 |
+
signature and return exclusively kwargs in positional order if
|
268 |
+
`normalize_to_only_use_kwargs` is True.
|
269 |
+
Also populates default values. Does not support positional-only
|
270 |
+
parameters or varargs parameters (*args, **kwargs). Does not support modules.
|
271 |
+
|
272 |
+
May require `arg_types` and `kwarg_types` in order to disambiguate overloads.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
target (Callable): Function that we are normalizing
|
276 |
+
args (Tuple[Any]): Tuple of args to the function
|
277 |
+
kwargs (Optional[Dict[str, Any]]): Dict of kwargs to the function
|
278 |
+
arg_types (Optional[Tuple[Any]]): Tuple of arg types for the args
|
279 |
+
kwarg_types (Optional[Dict[str, Any]]): Dict of arg types for the kwargs
|
280 |
+
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
281 |
+
|
282 |
+
Returns:
|
283 |
+
|
284 |
+
Returns normalized_args_and_kwargs, or `None` if not successful.
|
285 |
+
"""
|
286 |
+
if kwargs is None:
|
287 |
+
kwargs = {}
|
288 |
+
new_args_and_kwargs = None
|
289 |
+
if not isinstance(target, types.BuiltinFunctionType) and not (
|
290 |
+
isinstance(target, (OpOverloadPacket, OpOverload))
|
291 |
+
):
|
292 |
+
target_for_analysis = target
|
293 |
+
if target in boolean_dispatched:
|
294 |
+
# HACK: `boolean_dispatch` as used in `torch.nn.functional` makes it so that we have
|
295 |
+
# a 2-way dispatch based on a boolean value. Here we check that the `true` and `false`
|
296 |
+
# branches of the dispatch have exactly the same signature. If they do, use the `true`
|
297 |
+
# branch signature for analysis. Otherwise, leave this un-normalized
|
298 |
+
assert not isinstance(target, str)
|
299 |
+
dispatched = boolean_dispatched[target]
|
300 |
+
if_true, if_false = dispatched['if_true'], dispatched['if_false']
|
301 |
+
if inspect.signature(if_true).parameters != inspect.signature(if_false).parameters:
|
302 |
+
return None
|
303 |
+
target_for_analysis = if_true
|
304 |
+
|
305 |
+
assert callable(target_for_analysis)
|
306 |
+
sig = inspect.signature(inspect.unwrap(target_for_analysis))
|
307 |
+
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(sig, args, kwargs, normalize_to_only_use_kwargs)
|
308 |
+
else:
|
309 |
+
assert callable(target)
|
310 |
+
torch_op_schemas = get_signature_for_torch_op(target)
|
311 |
+
matched_schemas = []
|
312 |
+
if torch_op_schemas:
|
313 |
+
# Iterate through all of the schema until we find one that matches
|
314 |
+
# If one matches, populate `new_args_and_kwargs` with the new args/kwargs
|
315 |
+
# values. If none matches, `new_args_and_kwargs` will be None
|
316 |
+
for candidate_signature in torch_op_schemas:
|
317 |
+
try:
|
318 |
+
candidate_signature.bind(*args, **kwargs)
|
319 |
+
matched_schemas.append(candidate_signature)
|
320 |
+
except TypeError as e:
|
321 |
+
continue
|
322 |
+
|
323 |
+
if len(matched_schemas) == 0:
|
324 |
+
# Did not match any schema. Cannot normalize
|
325 |
+
pass
|
326 |
+
elif len(matched_schemas) == 1:
|
327 |
+
# Matched exactly one schema, unambiguous
|
328 |
+
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(matched_schemas[0], args, kwargs,
|
329 |
+
normalize_to_only_use_kwargs)
|
330 |
+
else:
|
331 |
+
if arg_types is not None or kwarg_types is not None:
|
332 |
+
arg_types = arg_types if arg_types else cast(Tuple[Any], ())
|
333 |
+
kwarg_types = kwarg_types if kwarg_types else {}
|
334 |
+
for candidate_signature in torch_op_schemas:
|
335 |
+
sig_matches = True
|
336 |
+
try:
|
337 |
+
bound_types = candidate_signature.bind(*arg_types, **kwarg_types)
|
338 |
+
for arg_name, arg_type in bound_types.arguments.items():
|
339 |
+
param = candidate_signature.parameters[arg_name]
|
340 |
+
sig_matches = sig_matches and type_matches(param.annotation, arg_type)
|
341 |
+
except TypeError as e:
|
342 |
+
sig_matches = False
|
343 |
+
if sig_matches:
|
344 |
+
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(candidate_signature, args, kwargs,
|
345 |
+
normalize_to_only_use_kwargs)
|
346 |
+
break
|
347 |
+
else:
|
348 |
+
# Matched more than one schema. In this situation, the caller must provide the types of
|
349 |
+
# the arguments of the overload they expect.
|
350 |
+
schema_printouts = '\n'.join(str(schema) for schema in matched_schemas)
|
351 |
+
raise RuntimeError(f'Tried to normalize arguments to {torch.typename(target)} but '
|
352 |
+
f'the schema match was ambiguous! Please provide argument types to '
|
353 |
+
f'the normalize_arguments() call. Available schemas:\n{schema_printouts}')
|
354 |
+
|
355 |
+
return new_args_and_kwargs
|
356 |
+
|
357 |
+
@compatibility(is_backward_compatible=False)
|
358 |
+
def normalize_module(
|
359 |
+
root: torch.nn.Module, target: str, args: Tuple[Any], kwargs : Optional[Dict[str, Any]] = None,
|
360 |
+
normalize_to_only_use_kwargs : bool = False) -> Optional[ArgsKwargsPair]:
|
361 |
+
"""
|
362 |
+
Returns normalized arguments to PyTorch modules. This means that
|
363 |
+
`args/kwargs` will be matched up to the functional's
|
364 |
+
signature and return exclusively kwargs in positional order if
|
365 |
+
`normalize_to_only_use_kwargs` is True.
|
366 |
+
Also populates default values. Does not support positional-only
|
367 |
+
parameters or varargs parameters (*args, **kwargs).
|
368 |
+
|
369 |
+
Args:
|
370 |
+
root (nn.Module): root module upon which we query modules
|
371 |
+
target (Callable): Function that we are normalizing
|
372 |
+
args (Tuple[Any]): Tuple of args to the function
|
373 |
+
kwargs (Optional[Dict[str, Any]]): Dict of kwargs to the function
|
374 |
+
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
375 |
+
|
376 |
+
Returns:
|
377 |
+
|
378 |
+
Returns normalized_args_and_kwargs, or `None` if not successful.
|
379 |
+
"""
|
380 |
+
try:
|
381 |
+
submod = root.get_submodule(target)
|
382 |
+
except AttributeError as e:
|
383 |
+
raise RuntimeError(f"Tried to normalize node with target {target} but root did not "
|
384 |
+
f"have that target!") from e
|
385 |
+
if hasattr(submod.__class__, '__name__'):
|
386 |
+
classname = submod.__class__.__name__
|
387 |
+
if getattr(torch.nn, classname, None) == submod.__class__:
|
388 |
+
sig = inspect.signature(inspect.unwrap(submod.forward))
|
389 |
+
if kwargs is None:
|
390 |
+
kwargs = {}
|
391 |
+
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(sig, args, kwargs,
|
392 |
+
normalize_to_only_use_kwargs)
|
393 |
+
return new_args_and_kwargs
|
394 |
+
return None
|
395 |
+
|
396 |
+
def _args_kwargs_to_normalized_args_kwargs(sig : inspect.Signature, args : Tuple[Any, ...],
|
397 |
+
kwargs : Dict[str, Any],
|
398 |
+
normalize_to_only_use_kwargs : bool) -> Optional[ArgsKwargsPair]:
|
399 |
+
"""
|
400 |
+
Given a call target, args, and kwargs, return the arguments normalized into
|
401 |
+
an ArgsKwargsPair, or None if the type signature is not supported by
|
402 |
+
this normalization.
|
403 |
+
|
404 |
+
Args:
|
405 |
+
|
406 |
+
sig (inspect.Signature): Signature object for the target
|
407 |
+
args (Tuple): Arguments that appear at the callsite for `target`
|
408 |
+
kwargs (Dict): Keyword arguments that appear at the callsite for `target`
|
409 |
+
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
410 |
+
|
411 |
+
Returns:
|
412 |
+
|
413 |
+
Optional[ArgsKwargsPair]: Normalized args and kwargs for `target`, or `None` if
|
414 |
+
this target is not supported.
|
415 |
+
"""
|
416 |
+
|
417 |
+
# Don't currently support positional-only
|
418 |
+
# or varargs (*args, **kwargs) signatures
|
419 |
+
supported_parameter_types = {
|
420 |
+
inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY}
|
421 |
+
if any(p.kind not in supported_parameter_types for p in sig.parameters.values()):
|
422 |
+
# Add an exception for one signature, which is common for random/uniform, i.e.:
|
423 |
+
# Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None
|
424 |
+
# `from` is Python keyword and as such functions with that signature should have
|
425 |
+
# positional-only args, but at the same time they could be dispatched as kwargs
|
426 |
+
if list(sig.parameters.keys()) != ['input', 'from', 'to', 'generator']:
|
427 |
+
return None
|
428 |
+
|
429 |
+
bound_args = sig.bind(*args, **kwargs)
|
430 |
+
bound_args.apply_defaults()
|
431 |
+
|
432 |
+
new_kwargs : Dict[str, Any] = {}
|
433 |
+
new_args : List[Any] = []
|
434 |
+
for i, param in enumerate(sig.parameters):
|
435 |
+
if not normalize_to_only_use_kwargs and i < len(args):
|
436 |
+
new_args.append(bound_args.arguments[param])
|
437 |
+
else:
|
438 |
+
new_kwargs[param] = bound_args.arguments[param]
|
439 |
+
|
440 |
+
return ArgsKwargsPair(tuple(new_args), new_kwargs)
|
env-llmeval/lib/python3.10/site-packages/torch/fx/passes/graph_drawer.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import hashlib
|
3 |
+
import torch
|
4 |
+
import torch.fx
|
5 |
+
from typing import Any, Dict, Optional, TYPE_CHECKING
|
6 |
+
from torch.fx.node import _get_qualified_name, _format_arg
|
7 |
+
from torch.fx.graph import _parse_stack_trace
|
8 |
+
from torch.fx.passes.shape_prop import TensorMetadata
|
9 |
+
from torch.fx._compatibility import compatibility
|
10 |
+
from itertools import chain
|
11 |
+
|
12 |
+
__all__ = ['FxGraphDrawer']
|
13 |
+
try:
|
14 |
+
import pydot
|
15 |
+
HAS_PYDOT = True
|
16 |
+
except ImportError:
|
17 |
+
HAS_PYDOT = False
|
18 |
+
|
19 |
+
_COLOR_MAP = {
|
20 |
+
"placeholder": '"AliceBlue"',
|
21 |
+
"call_module": "LemonChiffon1",
|
22 |
+
"get_param": "Yellow2",
|
23 |
+
"get_attr": "LightGrey",
|
24 |
+
"output": "PowderBlue",
|
25 |
+
}
|
26 |
+
|
27 |
+
_HASH_COLOR_MAP = [
|
28 |
+
"CadetBlue1",
|
29 |
+
"Coral",
|
30 |
+
"DarkOliveGreen1",
|
31 |
+
"DarkSeaGreen1",
|
32 |
+
"GhostWhite",
|
33 |
+
"Khaki1",
|
34 |
+
"LavenderBlush1",
|
35 |
+
"LightSkyBlue",
|
36 |
+
"MistyRose1",
|
37 |
+
"MistyRose2",
|
38 |
+
"PaleTurquoise2",
|
39 |
+
"PeachPuff1",
|
40 |
+
"Salmon",
|
41 |
+
"Thistle1",
|
42 |
+
"Thistle3",
|
43 |
+
"Wheat1",
|
44 |
+
]
|
45 |
+
|
46 |
+
_WEIGHT_TEMPLATE = {
|
47 |
+
"fillcolor": "Salmon",
|
48 |
+
"style": '"filled,rounded"',
|
49 |
+
"fontcolor": "#000000",
|
50 |
+
}
|
51 |
+
|
52 |
+
if HAS_PYDOT:
|
53 |
+
@compatibility(is_backward_compatible=False)
|
54 |
+
class FxGraphDrawer:
|
55 |
+
"""
|
56 |
+
Visualize a torch.fx.Graph with graphviz
|
57 |
+
Basic usage:
|
58 |
+
g = FxGraphDrawer(symbolic_traced, "resnet18")
|
59 |
+
g.get_dot_graph().write_svg("a.svg")
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
graph_module: torch.fx.GraphModule,
|
65 |
+
name: str,
|
66 |
+
ignore_getattr: bool = False,
|
67 |
+
ignore_parameters_and_buffers: bool = False,
|
68 |
+
skip_node_names_in_args: bool = True,
|
69 |
+
parse_stack_trace: bool = False,
|
70 |
+
dot_graph_shape: Optional[str] = None,
|
71 |
+
):
|
72 |
+
self._name = name
|
73 |
+
self.dot_graph_shape = (
|
74 |
+
dot_graph_shape if dot_graph_shape is not None else "record"
|
75 |
+
)
|
76 |
+
_WEIGHT_TEMPLATE["shape"] = self.dot_graph_shape
|
77 |
+
|
78 |
+
self._dot_graphs = {
|
79 |
+
name: self._to_dot(
|
80 |
+
graph_module, name, ignore_getattr, ignore_parameters_and_buffers, skip_node_names_in_args, parse_stack_trace
|
81 |
+
)
|
82 |
+
}
|
83 |
+
|
84 |
+
for node in graph_module.graph.nodes:
|
85 |
+
if node.op != "call_module":
|
86 |
+
continue
|
87 |
+
|
88 |
+
leaf_node = self._get_leaf_node(graph_module, node)
|
89 |
+
|
90 |
+
if not isinstance(leaf_node, torch.fx.GraphModule):
|
91 |
+
continue
|
92 |
+
|
93 |
+
|
94 |
+
self._dot_graphs[f"{name}_{node.target}"] = self._to_dot(
|
95 |
+
leaf_node,
|
96 |
+
f"{name}_{node.target}",
|
97 |
+
ignore_getattr,
|
98 |
+
ignore_parameters_and_buffers,
|
99 |
+
skip_node_names_in_args,
|
100 |
+
parse_stack_trace,
|
101 |
+
)
|
102 |
+
|
103 |
+
def get_dot_graph(self, submod_name=None) -> pydot.Dot:
|
104 |
+
"""
|
105 |
+
Visualize a torch.fx.Graph with graphviz
|
106 |
+
Example:
|
107 |
+
>>> # xdoctest: +REQUIRES(module:pydot)
|
108 |
+
>>> # define module
|
109 |
+
>>> class MyModule(torch.nn.Module):
|
110 |
+
>>> def __init__(self):
|
111 |
+
>>> super().__init__()
|
112 |
+
>>> self.linear = torch.nn.Linear(4, 5)
|
113 |
+
>>> def forward(self, x):
|
114 |
+
>>> return self.linear(x).clamp(min=0.0, max=1.0)
|
115 |
+
>>> module = MyModule()
|
116 |
+
>>> # trace the module
|
117 |
+
>>> symbolic_traced = torch.fx.symbolic_trace(module)
|
118 |
+
>>> # setup output file
|
119 |
+
>>> import ubelt as ub
|
120 |
+
>>> dpath = ub.Path.appdir('torch/tests/FxGraphDrawer').ensuredir()
|
121 |
+
>>> fpath = dpath / 'linear.svg'
|
122 |
+
>>> # draw the graph
|
123 |
+
>>> g = FxGraphDrawer(symbolic_traced, "linear")
|
124 |
+
>>> g.get_dot_graph().write_svg(fpath)
|
125 |
+
"""
|
126 |
+
if submod_name is None:
|
127 |
+
return self.get_main_dot_graph()
|
128 |
+
else:
|
129 |
+
return self.get_submod_dot_graph(submod_name)
|
130 |
+
|
131 |
+
def get_main_dot_graph(self) -> pydot.Dot:
|
132 |
+
return self._dot_graphs[self._name]
|
133 |
+
|
134 |
+
def get_submod_dot_graph(self, submod_name) -> pydot.Dot:
|
135 |
+
return self._dot_graphs[f"{self._name}_{submod_name}"]
|
136 |
+
|
137 |
+
def get_all_dot_graphs(self) -> Dict[str, pydot.Dot]:
|
138 |
+
return self._dot_graphs
|
139 |
+
|
140 |
+
def _get_node_style(self, node: torch.fx.Node) -> Dict[str, str]:
|
141 |
+
|
142 |
+
template = {
|
143 |
+
"shape": self.dot_graph_shape,
|
144 |
+
"fillcolor": "#CAFFE3",
|
145 |
+
"style": '"filled,rounded"',
|
146 |
+
"fontcolor": "#000000",
|
147 |
+
}
|
148 |
+
if node.op in _COLOR_MAP:
|
149 |
+
template["fillcolor"] = _COLOR_MAP[node.op]
|
150 |
+
else:
|
151 |
+
# Use a random color for each node; based on its name so it's stable.
|
152 |
+
target_name = node._pretty_print_target(node.target)
|
153 |
+
target_hash = int(hashlib.md5(target_name.encode()).hexdigest()[:8], 16)
|
154 |
+
template["fillcolor"] = _HASH_COLOR_MAP[target_hash % len(_HASH_COLOR_MAP)]
|
155 |
+
return template
|
156 |
+
|
157 |
+
def _get_leaf_node(
|
158 |
+
self, module: torch.nn.Module, node: torch.fx.Node
|
159 |
+
) -> torch.nn.Module:
|
160 |
+
py_obj = module
|
161 |
+
assert isinstance(node.target, str)
|
162 |
+
atoms = node.target.split(".")
|
163 |
+
for atom in atoms:
|
164 |
+
if not hasattr(py_obj, atom):
|
165 |
+
raise RuntimeError(
|
166 |
+
str(py_obj) + " does not have attribute " + atom + "!"
|
167 |
+
)
|
168 |
+
py_obj = getattr(py_obj, atom)
|
169 |
+
return py_obj
|
170 |
+
|
171 |
+
def _typename(self, target: Any) -> str:
|
172 |
+
if isinstance(target, torch.nn.Module):
|
173 |
+
ret = torch.typename(target)
|
174 |
+
elif isinstance(target, str):
|
175 |
+
ret = target
|
176 |
+
else:
|
177 |
+
ret = _get_qualified_name(target)
|
178 |
+
|
179 |
+
# Escape "{" and "}" to prevent dot files like:
|
180 |
+
# https://gist.github.com/SungMinCho/1a017aab662c75d805c5954d62c5aabc
|
181 |
+
# which triggers `Error: bad label format (...)` from dot
|
182 |
+
return ret.replace("{", r"\{").replace("}", r"\}")
|
183 |
+
|
184 |
+
# shorten path to avoid drawing long boxes
|
185 |
+
# for full path = '/home/weif/pytorch/test.py'
|
186 |
+
# return short path = 'pytorch/test.py'
|
187 |
+
def _shorten_file_name(
|
188 |
+
self,
|
189 |
+
full_file_name: str,
|
190 |
+
truncate_to_last_n: int = 2,
|
191 |
+
):
|
192 |
+
splits = full_file_name.split('/')
|
193 |
+
if len(splits) >= truncate_to_last_n:
|
194 |
+
return '/'.join(splits[-truncate_to_last_n:])
|
195 |
+
return full_file_name
|
196 |
+
|
197 |
+
|
198 |
+
def _get_node_label(
|
199 |
+
self,
|
200 |
+
module: torch.fx.GraphModule,
|
201 |
+
node: torch.fx.Node,
|
202 |
+
skip_node_names_in_args: bool,
|
203 |
+
parse_stack_trace: bool,
|
204 |
+
) -> str:
|
205 |
+
def _get_str_for_args_kwargs(arg):
|
206 |
+
if isinstance(arg, tuple):
|
207 |
+
prefix, suffix = r"|args=(\l", r",\n)\l"
|
208 |
+
arg_strs_list = [_format_arg(a, max_list_len=8) for a in arg]
|
209 |
+
elif isinstance(arg, dict):
|
210 |
+
prefix, suffix = r"|kwargs={\l", r",\n}\l"
|
211 |
+
arg_strs_list = [
|
212 |
+
f"{k}: {_format_arg(v, max_list_len=8)}"
|
213 |
+
for k, v in arg.items()
|
214 |
+
]
|
215 |
+
else: # Fall back to nothing in unexpected case.
|
216 |
+
return ""
|
217 |
+
|
218 |
+
# Strip out node names if requested.
|
219 |
+
if skip_node_names_in_args:
|
220 |
+
arg_strs_list = [a for a in arg_strs_list if "%" not in a]
|
221 |
+
if len(arg_strs_list) == 0:
|
222 |
+
return ""
|
223 |
+
arg_strs = prefix + r",\n".join(arg_strs_list) + suffix
|
224 |
+
if len(arg_strs_list) == 1:
|
225 |
+
arg_strs = arg_strs.replace(r"\l", "").replace(r"\n", "")
|
226 |
+
return arg_strs.replace("{", r"\{").replace("}", r"\}")
|
227 |
+
|
228 |
+
|
229 |
+
label = "{" + f"name=%{node.name}|op_code={node.op}\n"
|
230 |
+
|
231 |
+
if node.op == "call_module":
|
232 |
+
leaf_module = self._get_leaf_node(module, node)
|
233 |
+
label += r"\n" + self._typename(leaf_module) + r"\n|"
|
234 |
+
extra = ""
|
235 |
+
if hasattr(leaf_module, "__constants__"):
|
236 |
+
extra = r"\n".join(
|
237 |
+
[f"{c}: {getattr(leaf_module, c)}" for c in leaf_module.__constants__] # type: ignore[union-attr]
|
238 |
+
)
|
239 |
+
label += extra + r"\n"
|
240 |
+
else:
|
241 |
+
label += f"|target={self._typename(node.target)}" + r"\n"
|
242 |
+
if len(node.args) > 0:
|
243 |
+
label += _get_str_for_args_kwargs(node.args)
|
244 |
+
if len(node.kwargs) > 0:
|
245 |
+
label += _get_str_for_args_kwargs(node.kwargs)
|
246 |
+
label += f"|num_users={len(node.users)}" + r"\n"
|
247 |
+
|
248 |
+
tensor_meta = node.meta.get('tensor_meta')
|
249 |
+
label += self._tensor_meta_to_label(tensor_meta)
|
250 |
+
|
251 |
+
# for original fx graph
|
252 |
+
# print buf=buf0, n_origin=6
|
253 |
+
buf_meta = node.meta.get('buf_meta', None)
|
254 |
+
if buf_meta is not None:
|
255 |
+
label += f"|buf={buf_meta.name}" + r"\n"
|
256 |
+
label += f"|n_origin={buf_meta.n_origin}" + r"\n"
|
257 |
+
|
258 |
+
# for original fx graph
|
259 |
+
# print file:lineno code
|
260 |
+
if parse_stack_trace and node.stack_trace is not None:
|
261 |
+
parsed_stack_trace = _parse_stack_trace(node.stack_trace)
|
262 |
+
fname = self._shorten_file_name(parsed_stack_trace.file)
|
263 |
+
label += f"|file={fname}:{parsed_stack_trace.lineno} {parsed_stack_trace.code}" + r"\n"
|
264 |
+
|
265 |
+
|
266 |
+
return label + "}"
|
267 |
+
|
268 |
+
def _tensor_meta_to_label(self, tm) -> str:
|
269 |
+
if tm is None:
|
270 |
+
return ""
|
271 |
+
elif isinstance(tm, TensorMetadata):
|
272 |
+
return self._stringify_tensor_meta(tm)
|
273 |
+
elif isinstance(tm, list):
|
274 |
+
result = ""
|
275 |
+
for item in tm:
|
276 |
+
result += self._tensor_meta_to_label(item)
|
277 |
+
return result
|
278 |
+
elif isinstance(tm, dict):
|
279 |
+
result = ""
|
280 |
+
for v in tm.values():
|
281 |
+
result += self._tensor_meta_to_label(v)
|
282 |
+
return result
|
283 |
+
elif isinstance(tm, tuple):
|
284 |
+
result = ""
|
285 |
+
for item in tm:
|
286 |
+
result += self._tensor_meta_to_label(item)
|
287 |
+
return result
|
288 |
+
else:
|
289 |
+
raise RuntimeError(f"Unsupported tensor meta type {type(tm)}")
|
290 |
+
|
291 |
+
def _stringify_tensor_meta(self, tm: TensorMetadata) -> str:
|
292 |
+
result = ""
|
293 |
+
if not hasattr(tm, "dtype"):
|
294 |
+
print("tm", tm)
|
295 |
+
result += "|" + "dtype" + "=" + str(tm.dtype) + r"\n"
|
296 |
+
result += "|" + "shape" + "=" + str(tuple(tm.shape)) + r"\n"
|
297 |
+
result += "|" + "requires_grad" + "=" + str(tm.requires_grad) + r"\n"
|
298 |
+
result += "|" + "stride" + "=" + str(tm.stride) + r"\n"
|
299 |
+
if tm.is_quantized:
|
300 |
+
assert tm.qparams is not None
|
301 |
+
assert "qscheme" in tm.qparams
|
302 |
+
qscheme = tm.qparams["qscheme"]
|
303 |
+
if qscheme in {
|
304 |
+
torch.per_tensor_affine,
|
305 |
+
torch.per_tensor_symmetric,
|
306 |
+
}:
|
307 |
+
result += "|" + "q_scale" + "=" + str(tm.qparams["scale"]) + r"\n"
|
308 |
+
result += "|" + "q_zero_point" + "=" + str(tm.qparams["zero_point"]) + r"\n"
|
309 |
+
elif qscheme in {
|
310 |
+
torch.per_channel_affine,
|
311 |
+
torch.per_channel_symmetric,
|
312 |
+
torch.per_channel_affine_float_qparams,
|
313 |
+
}:
|
314 |
+
result += "|" + "q_per_channel_scale" + "=" + str(tm.qparams["scale"]) + r"\n"
|
315 |
+
result += "|" + "q_per_channel_zero_point" + "=" + str(tm.qparams["zero_point"]) + r"\n"
|
316 |
+
result += "|" + "q_per_channel_axis" + "=" + str(tm.qparams["axis"]) + r"\n"
|
317 |
+
else:
|
318 |
+
raise RuntimeError(f"Unsupported qscheme: {qscheme}")
|
319 |
+
result += "|" + "qscheme" + "=" + str(tm.qparams["qscheme"]) + r"\n"
|
320 |
+
return result
|
321 |
+
|
322 |
+
def _get_tensor_label(self, t: torch.Tensor) -> str:
|
323 |
+
return str(t.dtype) + str(list(t.shape)) + r"\n"
|
324 |
+
|
325 |
+
# when parse_stack_trace=True
|
326 |
+
# print file:lineno code
|
327 |
+
def _to_dot(
|
328 |
+
self,
|
329 |
+
graph_module: torch.fx.GraphModule,
|
330 |
+
name: str,
|
331 |
+
ignore_getattr: bool,
|
332 |
+
ignore_parameters_and_buffers: bool,
|
333 |
+
skip_node_names_in_args: bool,
|
334 |
+
parse_stack_trace: bool,
|
335 |
+
) -> pydot.Dot:
|
336 |
+
"""
|
337 |
+
Actual interface to visualize a fx.Graph. Note that it takes in the GraphModule instead of the Graph.
|
338 |
+
If ignore_parameters_and_buffers is True, the parameters and buffers
|
339 |
+
created with the module will not be added as nodes and edges.
|
340 |
+
"""
|
341 |
+
|
342 |
+
# "TB" means top-to-bottom rank direction in layout
|
343 |
+
dot_graph = pydot.Dot(name, rankdir="TB")
|
344 |
+
|
345 |
+
|
346 |
+
buf_name_to_subgraph = {}
|
347 |
+
|
348 |
+
for node in graph_module.graph.nodes:
|
349 |
+
if ignore_getattr and node.op == "get_attr":
|
350 |
+
continue
|
351 |
+
|
352 |
+
style = self._get_node_style(node)
|
353 |
+
dot_node = pydot.Node(
|
354 |
+
node.name, label=self._get_node_label(graph_module, node, skip_node_names_in_args, parse_stack_trace), **style
|
355 |
+
)
|
356 |
+
|
357 |
+
current_graph = dot_graph
|
358 |
+
|
359 |
+
buf_meta = node.meta.get('buf_meta', None)
|
360 |
+
if buf_meta is not None and buf_meta.n_origin > 1:
|
361 |
+
buf_name = buf_meta.name
|
362 |
+
if buf_name not in buf_name_to_subgraph:
|
363 |
+
buf_name_to_subgraph[buf_name] = pydot.Cluster(buf_name, label=buf_name)
|
364 |
+
current_graph = buf_name_to_subgraph.get(buf_name)
|
365 |
+
|
366 |
+
current_graph.add_node(dot_node)
|
367 |
+
|
368 |
+
def get_module_params_or_buffers():
|
369 |
+
for pname, ptensor in chain(
|
370 |
+
leaf_module.named_parameters(), leaf_module.named_buffers()
|
371 |
+
):
|
372 |
+
pname1 = node.name + "." + pname
|
373 |
+
label1 = (
|
374 |
+
pname1 + "|op_code=get_" + "parameter"
|
375 |
+
if isinstance(ptensor, torch.nn.Parameter)
|
376 |
+
else "buffer" + r"\l"
|
377 |
+
)
|
378 |
+
dot_w_node = pydot.Node(
|
379 |
+
pname1,
|
380 |
+
label="{" + label1 + self._get_tensor_label(ptensor) + "}",
|
381 |
+
**_WEIGHT_TEMPLATE,
|
382 |
+
)
|
383 |
+
dot_graph.add_node(dot_w_node)
|
384 |
+
dot_graph.add_edge(pydot.Edge(pname1, node.name))
|
385 |
+
|
386 |
+
if node.op == "call_module":
|
387 |
+
leaf_module = self._get_leaf_node(graph_module, node)
|
388 |
+
|
389 |
+
if not ignore_parameters_and_buffers and not isinstance(leaf_module, torch.fx.GraphModule):
|
390 |
+
get_module_params_or_buffers()
|
391 |
+
|
392 |
+
for subgraph in buf_name_to_subgraph.values():
|
393 |
+
subgraph.set('color', 'royalblue')
|
394 |
+
subgraph.set('penwidth', '2')
|
395 |
+
dot_graph.add_subgraph(subgraph)
|
396 |
+
|
397 |
+
for node in graph_module.graph.nodes:
|
398 |
+
if ignore_getattr and node.op == "get_attr":
|
399 |
+
continue
|
400 |
+
|
401 |
+
for user in node.users:
|
402 |
+
dot_graph.add_edge(pydot.Edge(node.name, user.name))
|
403 |
+
|
404 |
+
return dot_graph
|
405 |
+
|
406 |
+
else:
|
407 |
+
if not TYPE_CHECKING:
|
408 |
+
@compatibility(is_backward_compatible=False)
|
409 |
+
class FxGraphDrawer:
|
410 |
+
def __init__(
|
411 |
+
self,
|
412 |
+
graph_module: torch.fx.GraphModule,
|
413 |
+
name: str,
|
414 |
+
ignore_getattr: bool = False,
|
415 |
+
parse_stack_trace: bool = False,
|
416 |
+
):
|
417 |
+
raise RuntimeError('FXGraphDrawer requires the pydot package to be installed. Please install '
|
418 |
+
'pydot through your favorite Python package manager.')
|
env-llmeval/lib/python3.10/site-packages/torch/fx/proxy.py
ADDED
@@ -0,0 +1,563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import enum
|
2 |
+
import dis
|
3 |
+
import copy
|
4 |
+
import sys
|
5 |
+
import torch
|
6 |
+
import inspect
|
7 |
+
import operator
|
8 |
+
import traceback
|
9 |
+
import collections
|
10 |
+
|
11 |
+
from dataclasses import is_dataclass, fields
|
12 |
+
|
13 |
+
|
14 |
+
from .graph import magic_methods, reflectable_magic_methods, Graph
|
15 |
+
from typing import Tuple, Dict, OrderedDict, Optional, Any, Iterator, Callable
|
16 |
+
from .node import Target, Node, Argument, base_types, map_aggregate
|
17 |
+
from ._compatibility import compatibility
|
18 |
+
from .operator_schemas import check_for_mutable_operation
|
19 |
+
import torch.fx.traceback as fx_traceback
|
20 |
+
|
21 |
+
__all__ = ['TracerBase', 'GraphAppendingTracer', 'TraceError',
|
22 |
+
'Proxy', 'Attribute', 'ParameterProxy', 'Scope',
|
23 |
+
'ScopeContextManager']
|
24 |
+
|
25 |
+
|
26 |
+
@compatibility(is_backward_compatible=False)
|
27 |
+
class Scope:
|
28 |
+
""" Scope object that records the module path and the module type
|
29 |
+
of a module. Scope is used to track the information of the module
|
30 |
+
that contains a Node in a Graph of GraphModule. For example::
|
31 |
+
|
32 |
+
class Sub(torch.nn.Module):
|
33 |
+
def forward(self, x):
|
34 |
+
# This will be a call_method Node in GraphModule,
|
35 |
+
# scope for this would be (module_path="sub", module_type=Sub)
|
36 |
+
return x.transpose(1, 2)
|
37 |
+
|
38 |
+
class M(torch.nn.Module):
|
39 |
+
def __init__(self):
|
40 |
+
self.sub = Sub()
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
# This will be a call_method Node as well,
|
44 |
+
# scope for this would be (module_path="", None)
|
45 |
+
x = x.transpose(1, 2)
|
46 |
+
x = self.sub(x)
|
47 |
+
return x
|
48 |
+
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __init__(self, module_path: str, module_type: Any):
|
52 |
+
super().__init__()
|
53 |
+
self.module_path = module_path
|
54 |
+
self.module_type = module_type
|
55 |
+
|
56 |
+
|
57 |
+
@compatibility(is_backward_compatible=False)
|
58 |
+
class ScopeContextManager:
|
59 |
+
""" A context manager to track the Scope of Node during symbolic tracing.
|
60 |
+
When entering a forward function of a Module, we'll update the scope information of
|
61 |
+
the current module, and when we exit, we'll restore the previous scope information.
|
62 |
+
"""
|
63 |
+
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
scope: Scope,
|
67 |
+
current_scope: Scope,
|
68 |
+
):
|
69 |
+
super().__init__()
|
70 |
+
# Keep a copy of prev scope to restore on exit
|
71 |
+
self._prev_scope = copy.copy(scope)
|
72 |
+
# Update scope to current scope
|
73 |
+
scope.module_path = current_scope.module_path
|
74 |
+
scope.module_type = current_scope.module_type
|
75 |
+
# Save a reference so we can restore it
|
76 |
+
self._scope = scope
|
77 |
+
|
78 |
+
def __enter__(self):
|
79 |
+
return self._scope
|
80 |
+
|
81 |
+
def __exit__(self, *args):
|
82 |
+
self._scope.module_path = self._prev_scope.module_path
|
83 |
+
self._scope.module_type = self._prev_scope.module_type
|
84 |
+
return
|
85 |
+
|
86 |
+
|
87 |
+
_COPY_META_FIELDS = ["nn_module_stack", "source_fn_stack", "original_aten", "recompute", "from_node", "quantization_tag"]
|
88 |
+
|
89 |
+
|
90 |
+
@compatibility(is_backward_compatible=True)
|
91 |
+
class TracerBase:
|
92 |
+
graph: Graph
|
93 |
+
record_stack_traces : bool = False
|
94 |
+
# Feature flag for mutable schema checking
|
95 |
+
# Enableby default in 1.12
|
96 |
+
check_mutable_operations : bool = False
|
97 |
+
# Feature flag for assert tracing
|
98 |
+
trace_asserts : bool = False
|
99 |
+
# Feature flag for proxying accesses to buffer values
|
100 |
+
proxy_buffer_attributes : bool = False
|
101 |
+
|
102 |
+
# Name of the function to be traced. It will only be used when
|
103 |
+
# ``root`` is an instance of ``nn.Module``
|
104 |
+
traced_func_name: str = "forward"
|
105 |
+
|
106 |
+
# Maps the containing module's name to the operator name
|
107 |
+
scope : Scope
|
108 |
+
|
109 |
+
# Records the module call stack
|
110 |
+
module_stack: OrderedDict[str, Tuple[str, Any]]
|
111 |
+
|
112 |
+
# Mapping of node name to module scope
|
113 |
+
node_name_to_scope: Dict[str, Tuple[str, type]]
|
114 |
+
|
115 |
+
@compatibility(is_backward_compatible=True)
|
116 |
+
def create_node(self, kind : str, target : Target,
|
117 |
+
args : Tuple[Argument, ...], kwargs : Dict[str, Argument], name : Optional[str] = None,
|
118 |
+
type_expr : Optional[Any] = None) -> Node:
|
119 |
+
"""
|
120 |
+
Inserts a graph node given target, args, kwargs, and name.
|
121 |
+
|
122 |
+
This method can be overridden to do extra checking, validation, or
|
123 |
+
modification of values used in node creation. For example, one might
|
124 |
+
want to disallow in-place operations from being recorded.
|
125 |
+
"""
|
126 |
+
if kind == 'call_function' and self.check_mutable_operations:
|
127 |
+
check_for_mutable_operation(target, args, kwargs)
|
128 |
+
|
129 |
+
node = self.graph.create_node(kind, target, args, kwargs, name, type_expr)
|
130 |
+
# TODO node_name_to_scope will be depreciated in favor of
|
131 |
+
# node.meta['nn_module_stack']
|
132 |
+
self.node_name_to_scope[node.name] = (
|
133 |
+
self.scope.module_path,
|
134 |
+
self.scope.module_type,
|
135 |
+
)
|
136 |
+
# Optionally set stack trace on the created Node for debugging purposes
|
137 |
+
if fx_traceback.has_preserved_node_meta():
|
138 |
+
current_meta: Dict[str, Any] = fx_traceback.get_current_meta()
|
139 |
+
|
140 |
+
stack_trace = current_meta.get("stack_trace")
|
141 |
+
if stack_trace:
|
142 |
+
node.stack_trace = stack_trace
|
143 |
+
# Explicitly set the stack_trace, nn_module_stack and source_fn on the node.meta
|
144 |
+
# If other meta fields are needed, they can be added here
|
145 |
+
for field in _COPY_META_FIELDS:
|
146 |
+
if field in current_meta:
|
147 |
+
node.meta[field] = copy.copy(current_meta[field])
|
148 |
+
|
149 |
+
# Here we decrement to account for the sequence_nr having
|
150 |
+
# just been incremented while tracing this lowered aten op.
|
151 |
+
new_seq_nr = torch.autograd._get_sequence_nr() - 1
|
152 |
+
# The sequence_nr increments every time a new autograd Node
|
153 |
+
# is created. During the FWD pass we store the sequence_nr
|
154 |
+
# corresponding to the last autograd Node created on this fx
|
155 |
+
# node's meta. A single aten op can create multiple autograd
|
156 |
+
# nodes as is the case with in-place foreach ops. During the
|
157 |
+
# BWD pass we retrieve the sequence_nr stored on the current
|
158 |
+
# executing autograd Node. See NOTE [ Sequence Number ].
|
159 |
+
if current_meta.get("in_grad_fn", False):
|
160 |
+
new_seq_nr = current_meta["grad_fn_seq_nr"]
|
161 |
+
node.meta["seq_nr"] = new_seq_nr
|
162 |
+
|
163 |
+
elif self.module_stack:
|
164 |
+
node.meta['nn_module_stack'] = copy.copy(self.module_stack)
|
165 |
+
return node
|
166 |
+
|
167 |
+
@compatibility(is_backward_compatible=True)
|
168 |
+
def proxy(self, node: Node) -> 'Proxy':
|
169 |
+
return Proxy(node, self)
|
170 |
+
|
171 |
+
@compatibility(is_backward_compatible=True)
|
172 |
+
def create_proxy(self, kind: str, target: Target, args: Tuple[Any, ...], kwargs: Dict[str, Any],
|
173 |
+
name: Optional[str] = None, type_expr : Optional[Any] = None,
|
174 |
+
proxy_factory_fn: Callable[[Node], 'Proxy'] = None):
|
175 |
+
'''
|
176 |
+
Create a Node from the given arguments, then return the Node
|
177 |
+
wrapped in a Proxy object.
|
178 |
+
|
179 |
+
If kind = 'placeholder', then we're creating a Node that
|
180 |
+
represents the parameter of a function. If we need to encode
|
181 |
+
a default parameter, we use the ``args`` tuple. ``args`` is
|
182 |
+
otherwise empty for ``placeholder`` Nodes.
|
183 |
+
'''
|
184 |
+
|
185 |
+
args_ = self.create_arg(args)
|
186 |
+
kwargs_ = self.create_arg(kwargs)
|
187 |
+
assert isinstance(args_, tuple)
|
188 |
+
assert isinstance(kwargs_, dict)
|
189 |
+
|
190 |
+
node = self.create_node(kind, target, args_, kwargs_, name, type_expr)
|
191 |
+
|
192 |
+
if not proxy_factory_fn:
|
193 |
+
proxy = self.proxy(node)
|
194 |
+
else:
|
195 |
+
proxy = proxy_factory_fn(node)
|
196 |
+
|
197 |
+
if self.record_stack_traces and not proxy.node.stack_trace:
|
198 |
+
user_frame = self._find_user_frame()
|
199 |
+
if user_frame:
|
200 |
+
summary = traceback.extract_stack(user_frame)
|
201 |
+
tb_lines = summary.format()
|
202 |
+
# stack_trace would have innermost frame at the bottom
|
203 |
+
proxy.node.stack_trace = ''.join(tb_lines)
|
204 |
+
|
205 |
+
return proxy
|
206 |
+
|
207 |
+
def _find_user_frame(self):
|
208 |
+
"""
|
209 |
+
Find the Python stack frame executing the user code during
|
210 |
+
symbolic tracing.
|
211 |
+
"""
|
212 |
+
# We have to do a little dance here. Basically, walk up the callstack and
|
213 |
+
# record the first frame not in the pytorch source. This is the frame executing
|
214 |
+
# the user code during tracing.
|
215 |
+
frame = inspect.currentframe()
|
216 |
+
|
217 |
+
pt_files = ['torch/fx/proxy.py',
|
218 |
+
'torch/fx/_symbolic_trace.py',
|
219 |
+
'torch/fx/experimental/proxy_tensor.py',
|
220 |
+
'torch/_ops.py',
|
221 |
+
'torch/_tensor.py',
|
222 |
+
'torch/utils/_python_dispatch.py',
|
223 |
+
'torch/_prims_common/wrappers.py',
|
224 |
+
'torch/_refs/__init__.py',
|
225 |
+
'torch/_refs/nn/functional/__init__.py',
|
226 |
+
'torch/utils/_stats.py',
|
227 |
+
]
|
228 |
+
while frame:
|
229 |
+
frame = frame.f_back
|
230 |
+
if frame and all(not frame.f_code.co_filename.endswith(file) for file in pt_files):
|
231 |
+
break
|
232 |
+
|
233 |
+
if not frame:
|
234 |
+
return None
|
235 |
+
|
236 |
+
return frame
|
237 |
+
|
238 |
+
@compatibility(is_backward_compatible=True)
|
239 |
+
def create_arg(self, a: Any) -> Argument:
|
240 |
+
"""
|
241 |
+
A method that lowers the objects seen as arguments during symbolic evaluation
|
242 |
+
into Argument types that can be stored in IR.
|
243 |
+
|
244 |
+
Can be override to support more trace-specific types.
|
245 |
+
"""
|
246 |
+
if not isinstance(a, Proxy) and hasattr(a, '__fx_create_arg__'):
|
247 |
+
return a.__fx_create_arg__(self)
|
248 |
+
# aggregates
|
249 |
+
elif isinstance(a, tuple) and hasattr(a, '_fields'):
|
250 |
+
# NamedTuple constructors don't seem to like getting a generator
|
251 |
+
# expression as an argument to their constructor, so build this
|
252 |
+
# intermediate tuple and unpack it into the NamedTuple constructor
|
253 |
+
args = tuple(self.create_arg(elem) for elem in a)
|
254 |
+
return type(a)(*args) # type: ignore[arg-type]
|
255 |
+
elif isinstance(a, (tuple, list)):
|
256 |
+
return type(a)(self.create_arg(elem) for elem in a)
|
257 |
+
elif isinstance(a, dict):
|
258 |
+
r = {}
|
259 |
+
for k, v in a.items():
|
260 |
+
# Check for invalid dict keys. We do not want a Proxy to appear
|
261 |
+
# anywhere within the key. Since keys can be collection types,
|
262 |
+
# we iterate through the key with map_aggregate
|
263 |
+
k = self.create_arg(k)
|
264 |
+
|
265 |
+
def no_node(arg):
|
266 |
+
if isinstance(arg, Node):
|
267 |
+
raise RuntimeError("Keys for dictionaries used as an argument cannot contain a "
|
268 |
+
f"Node. Got key: {k}")
|
269 |
+
map_aggregate(k, no_node)
|
270 |
+
|
271 |
+
r[k] = self.create_arg(v)
|
272 |
+
return r
|
273 |
+
elif isinstance(a, slice):
|
274 |
+
return slice(self.create_arg(a.start), self.create_arg(a.stop), self.create_arg(a.step))
|
275 |
+
|
276 |
+
elif isinstance(a, range):
|
277 |
+
return range(self.create_arg(a.start), self.create_arg(a.stop), self.create_arg(a.step))
|
278 |
+
|
279 |
+
elif isinstance(a, torch._ops.OpOverload):
|
280 |
+
return a
|
281 |
+
|
282 |
+
if isinstance(a, Proxy):
|
283 |
+
# base case: we unwrap the Proxy object
|
284 |
+
return a.node
|
285 |
+
|
286 |
+
if is_dataclass(a):
|
287 |
+
kwargs = {field.name: self.create_arg(getattr(a, field.name)) for field in fields(a)}
|
288 |
+
return self.create_node("call_function", a.__class__, (), kwargs)
|
289 |
+
|
290 |
+
elif isinstance(a, (*base_types, enum.Enum)) or a is None or a is ...:
|
291 |
+
return a
|
292 |
+
raise NotImplementedError(f"argument of type: {type(a)}")
|
293 |
+
|
294 |
+
@compatibility(is_backward_compatible=True)
|
295 |
+
def to_bool(self, obj: 'Proxy') -> bool:
|
296 |
+
"""Called when a proxy object is being converted to a boolean, such as
|
297 |
+
when used in control flow. Normally we don't know what to do because
|
298 |
+
we don't know the value of the proxy, but a custom tracer can attach more
|
299 |
+
information to the graph node using create_node and can choose to return a value.
|
300 |
+
"""
|
301 |
+
raise TraceError('symbolically traced variables cannot be used as inputs to control flow')
|
302 |
+
|
303 |
+
@compatibility(is_backward_compatible=True)
|
304 |
+
def iter(self, obj: 'Proxy') -> Iterator:
|
305 |
+
"""Called when a proxy object is being iterated over, such as
|
306 |
+
when used in control flow. Normally we don't know what to do because
|
307 |
+
we don't know the value of the proxy, but a custom tracer can attach more
|
308 |
+
information to the graph node using create_node and can choose to return an iterator.
|
309 |
+
"""
|
310 |
+
raise TraceError('Proxy object cannot be iterated. This can be '
|
311 |
+
'attempted when the Proxy is used in a loop or'
|
312 |
+
' as a *args or **kwargs function argument. '
|
313 |
+
'See the torch.fx docs on pytorch.org for a '
|
314 |
+
'more detailed explanation of what types of '
|
315 |
+
'control flow can be traced, and check out the'
|
316 |
+
' Proxy docstring for help troubleshooting '
|
317 |
+
'Proxy iteration errors')
|
318 |
+
|
319 |
+
@compatibility(is_backward_compatible=True)
|
320 |
+
def keys(self, obj: 'Proxy') -> Any:
|
321 |
+
"""Called when a proxy object is has the keys() method called.
|
322 |
+
This is what happens when ** is called on a proxy. This should return an
|
323 |
+
iterator it ** is suppose to work in your custom tracer.
|
324 |
+
"""
|
325 |
+
return Attribute(obj, 'keys')()
|
326 |
+
|
327 |
+
|
328 |
+
# used in Proxy object when just appending to the graph while not tracing.
|
329 |
+
@compatibility(is_backward_compatible=True)
|
330 |
+
class GraphAppendingTracer(TracerBase):
|
331 |
+
def __init__(self, graph: Graph):
|
332 |
+
super().__init__()
|
333 |
+
self.graph = graph
|
334 |
+
self.scope = Scope("", None)
|
335 |
+
self.module_stack = collections.OrderedDict()
|
336 |
+
self.node_name_to_scope = {}
|
337 |
+
|
338 |
+
@compatibility(is_backward_compatible=False)
|
339 |
+
def assert_fn(x):
|
340 |
+
assert x
|
341 |
+
|
342 |
+
@compatibility(is_backward_compatible=True)
|
343 |
+
class TraceError(ValueError):
|
344 |
+
pass
|
345 |
+
|
346 |
+
@compatibility(is_backward_compatible=True)
|
347 |
+
class Proxy:
|
348 |
+
"""
|
349 |
+
``Proxy`` objects are ``Node`` wrappers that flow through the
|
350 |
+
program during symbolic tracing and record all the operations
|
351 |
+
(``torch`` function calls, method calls, operators) that they touch
|
352 |
+
into the growing FX Graph.
|
353 |
+
|
354 |
+
If you're doing graph transforms, you can wrap your own ``Proxy``
|
355 |
+
method around a raw ``Node`` so that you can use the overloaded
|
356 |
+
operators to add additional things to a ``Graph``.
|
357 |
+
|
358 |
+
``Proxy`` objects cannot be iterated. In other words, the symbolic
|
359 |
+
tracer will throw an error if a ``Proxy`` is used in a loop or as
|
360 |
+
an ``*args``/``**kwargs`` function argument.
|
361 |
+
|
362 |
+
There are two main ways around this:
|
363 |
+
1. Factor out the untraceable logic into a top-level function and
|
364 |
+
use ``fx.wrap`` on it.
|
365 |
+
2. If the control flow is static (i.e. the loop trip count is
|
366 |
+
based on some hyperparameter), the code can be kept in its original
|
367 |
+
position and refactored into something like::
|
368 |
+
|
369 |
+
for i in range(self.some_hyperparameter):
|
370 |
+
indexed_item = proxied_value[i]
|
371 |
+
|
372 |
+
For a more detailed description into the Proxy internals, check out
|
373 |
+
the "Proxy" section in `torch/fx/OVERVIEW.md`
|
374 |
+
"""
|
375 |
+
|
376 |
+
@compatibility(is_backward_compatible=True)
|
377 |
+
def __init__(self, node: Node, tracer: 'Optional[TracerBase]' = None):
|
378 |
+
if tracer is None:
|
379 |
+
# This allows you to create a Proxy object around a raw Node
|
380 |
+
tracer = GraphAppendingTracer(node.graph)
|
381 |
+
self.tracer = tracer
|
382 |
+
self.node = node
|
383 |
+
|
384 |
+
def __repr__(self) -> str:
|
385 |
+
return f'Proxy({self.node.name})'
|
386 |
+
|
387 |
+
def __getattr__(self, k) -> 'Attribute':
|
388 |
+
# note: not added to the graph yet, if this is a method call
|
389 |
+
# we peephole optimize to the method invocation
|
390 |
+
return Attribute(self, k)
|
391 |
+
|
392 |
+
def __call__(self, *args, **kwargs) -> 'Proxy':
|
393 |
+
return self.tracer.create_proxy('call_method', '__call__', (self,) + args, kwargs)
|
394 |
+
|
395 |
+
def __iter__(self) -> Iterator['Proxy']:
|
396 |
+
frame = inspect.currentframe()
|
397 |
+
assert frame is not None
|
398 |
+
calling_frame = frame.f_back
|
399 |
+
assert calling_frame is not None
|
400 |
+
inst_list = list(dis.get_instructions(calling_frame.f_code))
|
401 |
+
if sys.version_info >= (3, 11):
|
402 |
+
from bisect import bisect_left
|
403 |
+
inst_idx = bisect_left(inst_list, calling_frame.f_lasti, key=lambda x: x.offset)
|
404 |
+
else:
|
405 |
+
inst_idx = calling_frame.f_lasti // 2
|
406 |
+
inst = inst_list[inst_idx]
|
407 |
+
if inst.opname == 'UNPACK_SEQUENCE':
|
408 |
+
return (self[i] for i in range(inst.argval)) # type: ignore[index]
|
409 |
+
|
410 |
+
return self.tracer.iter(self)
|
411 |
+
|
412 |
+
def __abs__(self):
|
413 |
+
return self.tracer.create_proxy('call_function', operator.abs, (self,), {})
|
414 |
+
|
415 |
+
def __bool__(self) -> bool:
|
416 |
+
if self.tracer.trace_asserts:
|
417 |
+
# check if this boolean is used in an assertion, bytecode pattern for assertions
|
418 |
+
# is pretty stable for Python 3.7--3.9
|
419 |
+
frame = inspect.currentframe()
|
420 |
+
assert frame is not None
|
421 |
+
calling_frame = frame.f_back
|
422 |
+
assert calling_frame is not None
|
423 |
+
insts = list(dis.get_instructions(calling_frame.f_code))
|
424 |
+
if sys.version_info >= (3, 11):
|
425 |
+
from bisect import bisect_left
|
426 |
+
cur = bisect_left(insts, calling_frame.f_lasti, key=lambda x: x.offset)
|
427 |
+
else:
|
428 |
+
cur = calling_frame.f_lasti // 2
|
429 |
+
inst = insts[cur]
|
430 |
+
|
431 |
+
if inst.opname == 'POP_JUMP_IF_TRUE':
|
432 |
+
first = insts[cur + 1]
|
433 |
+
assert inst.arg is not None
|
434 |
+
last = insts[inst.arg // 2 - 1]
|
435 |
+
starts_with_assert = (first.opname == 'LOAD_GLOBAL' and first.argval == 'AssertionError'
|
436 |
+
or first.opname == 'LOAD_ASSERTION_ERROR')
|
437 |
+
if starts_with_assert and last.opname == 'RAISE_VARARGS':
|
438 |
+
self.tracer.create_proxy('call_function', assert_fn, (self,), {})
|
439 |
+
return True
|
440 |
+
|
441 |
+
return self.tracer.to_bool(self)
|
442 |
+
|
443 |
+
@compatibility(is_backward_compatible=True)
|
444 |
+
def keys(self):
|
445 |
+
return self.tracer.keys(self)
|
446 |
+
|
447 |
+
def __len__(self):
|
448 |
+
raise RuntimeError("'len' is not supported in symbolic tracing by default. If you want "
|
449 |
+
"this call to be recorded, please call torch.fx.wrap('len') at "
|
450 |
+
"module scope")
|
451 |
+
|
452 |
+
@classmethod
|
453 |
+
def __torch_function__(cls, orig_method, types, args=None, kwargs=None):
|
454 |
+
args = args if args else ()
|
455 |
+
kwargs = kwargs if kwargs else {}
|
456 |
+
|
457 |
+
tracers : Dict[Any, None] = {}
|
458 |
+
|
459 |
+
def find_tracer(a):
|
460 |
+
if isinstance(a, cls):
|
461 |
+
tracers[a.tracer] = None
|
462 |
+
torch.fx.node.map_aggregate(args, find_tracer)
|
463 |
+
torch.fx.node.map_aggregate(kwargs, find_tracer)
|
464 |
+
|
465 |
+
if len(tracers) > 1:
|
466 |
+
raise RuntimeError(f'Found multiple different tracers {list(tracers.keys())} while '
|
467 |
+
f'trying to trace operations {orig_method}')
|
468 |
+
tracer = next(iter(tracers.keys()))
|
469 |
+
|
470 |
+
if isinstance(orig_method, torch._C.ScriptMethod):
|
471 |
+
args = (orig_method.owner,) + args
|
472 |
+
return tracer.create_proxy('call_method', orig_method.name, args, kwargs)
|
473 |
+
if torch.overrides.is_tensor_method_or_property(orig_method):
|
474 |
+
return tracer.create_proxy('call_method', orig_method.__name__, args, kwargs)
|
475 |
+
else:
|
476 |
+
if isinstance(orig_method, torch._ops.HigherOrderOperator):
|
477 |
+
# TODO: Define how to symbolically trace HigherOrderOperators
|
478 |
+
raise RuntimeError("Unable to symbolically trace HigherOrderOperators")
|
479 |
+
return tracer.create_proxy('call_function', orig_method, args, kwargs,
|
480 |
+
name=tracer.graph._target_to_str(orig_method.__name__))
|
481 |
+
|
482 |
+
|
483 |
+
@compatibility(is_backward_compatible=True)
|
484 |
+
class Attribute(Proxy):
|
485 |
+
@compatibility(is_backward_compatible=True)
|
486 |
+
def __init__(self, root: Proxy, attr: str):
|
487 |
+
self.root = root
|
488 |
+
self.attr = attr
|
489 |
+
self.tracer = root.tracer
|
490 |
+
self._node: Optional[Node] = None
|
491 |
+
|
492 |
+
@property
|
493 |
+
def node(self):
|
494 |
+
# the node for attributes is added lazily, since most will just be method calls
|
495 |
+
# which do not rely on the getitem call
|
496 |
+
if self._node is None:
|
497 |
+
self._node = self.tracer.create_proxy('call_function', getattr, (self.root, self.attr), {}).node
|
498 |
+
return self._node
|
499 |
+
|
500 |
+
def __call__(self, *args, **kwargs):
|
501 |
+
return self.tracer.create_proxy('call_method', self.attr, (self.root,) + args, kwargs)
|
502 |
+
|
503 |
+
|
504 |
+
@compatibility(is_backward_compatible=False)
|
505 |
+
class ParameterProxy(Proxy):
|
506 |
+
"""
|
507 |
+
A special proxy which lets "shape", "size", "dim", and a few other
|
508 |
+
attribute accesses pass through to the underlying module parameter object,
|
509 |
+
so that conditional tests on these attributes will not throw exception during tracing
|
510 |
+
"""
|
511 |
+
def __init__(self, tracer: TracerBase, node: Node, name, param):
|
512 |
+
super().__init__(node, tracer)
|
513 |
+
assert(isinstance(param, torch.nn.Parameter))
|
514 |
+
self.param = param
|
515 |
+
self.name = name
|
516 |
+
|
517 |
+
def __repr__(self) -> str:
|
518 |
+
return f'ParameterProxy({self.name})'
|
519 |
+
|
520 |
+
@property
|
521 |
+
def shape(self):
|
522 |
+
return self.param.shape
|
523 |
+
|
524 |
+
def size(self):
|
525 |
+
return self.param.size()
|
526 |
+
|
527 |
+
def dim(self):
|
528 |
+
return self.param.dim()
|
529 |
+
|
530 |
+
@property
|
531 |
+
def ndim(self):
|
532 |
+
return self.param.ndim
|
533 |
+
|
534 |
+
def numel(self):
|
535 |
+
return self.param.numel()
|
536 |
+
|
537 |
+
def nelement(self):
|
538 |
+
return self.param.nelement()
|
539 |
+
|
540 |
+
|
541 |
+
for method in magic_methods:
|
542 |
+
def _scope(method):
|
543 |
+
def impl(*args, **kwargs):
|
544 |
+
tracer = args[0].tracer
|
545 |
+
target = getattr(operator, method)
|
546 |
+
return tracer.create_proxy('call_function', target, args, kwargs)
|
547 |
+
impl.__name__ = method
|
548 |
+
as_magic = f'__{method.strip("_")}__'
|
549 |
+
setattr(Proxy, as_magic, impl)
|
550 |
+
_scope(method)
|
551 |
+
|
552 |
+
def _define_reflectable(orig_method_name):
|
553 |
+
method_name = f'__r{orig_method_name.strip("_")}__'
|
554 |
+
|
555 |
+
def impl(self, rhs):
|
556 |
+
target = getattr(operator, orig_method_name)
|
557 |
+
return self.tracer.create_proxy('call_function', target, (rhs, self), {})
|
558 |
+
impl.__name__ = method_name
|
559 |
+
impl.__qualname__ = method_name
|
560 |
+
setattr(Proxy, method_name, impl)
|
561 |
+
|
562 |
+
for orig_method_name in reflectable_magic_methods:
|
563 |
+
_define_reflectable(orig_method_name)
|
env-llmeval/lib/python3.10/site-packages/torch/fx/subgraph_rewriter.py
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .graph_module import GraphModule
|
2 |
+
from .graph import Graph
|
3 |
+
from .node import Node
|
4 |
+
from ._symbolic_trace import symbolic_trace
|
5 |
+
from ._compatibility import compatibility
|
6 |
+
|
7 |
+
import copy
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Set, Union
|
10 |
+
import torch
|
11 |
+
|
12 |
+
__all__ = ['Match', 'replace_pattern', 'replace_pattern_with_filters', "ReplacedPatterns"]
|
13 |
+
|
14 |
+
@compatibility(is_backward_compatible=True)
|
15 |
+
class Match(NamedTuple):
|
16 |
+
# Node from which the match was found
|
17 |
+
anchor: Node
|
18 |
+
# Maps nodes in the pattern subgraph to nodes in the larger graph
|
19 |
+
nodes_map: Dict[Node, Node]
|
20 |
+
|
21 |
+
@compatibility(is_backward_compatible=False)
|
22 |
+
@dataclass
|
23 |
+
class ReplacedPatterns:
|
24 |
+
# Node from which the match was found
|
25 |
+
anchor: Node
|
26 |
+
# Maps nodes in the pattern subgraph to nodes in the larger graph
|
27 |
+
nodes_map: Dict[Node, Node]
|
28 |
+
# List of nodes that were added into the graph
|
29 |
+
replacements: List[Node]
|
30 |
+
|
31 |
+
def _replace_attributes(gm: GraphModule, replacement: torch.nn.Module) -> None:
|
32 |
+
gm.delete_all_unused_submodules()
|
33 |
+
|
34 |
+
if isinstance(replacement, GraphModule):
|
35 |
+
replacement.graph.lint()
|
36 |
+
|
37 |
+
def try_get_attr(gm: torch.nn.Module, target: str) -> Optional[Any]:
|
38 |
+
module_path, _, attr_name = target.rpartition(".")
|
39 |
+
mod: torch.nn.Module = gm.get_submodule(module_path)
|
40 |
+
attr = getattr(mod, attr_name, None)
|
41 |
+
return attr
|
42 |
+
|
43 |
+
for node in gm.graph.nodes:
|
44 |
+
if node.op == "call_module" or node.op == "get_attr":
|
45 |
+
|
46 |
+
gm_attr = try_get_attr(gm, node.target)
|
47 |
+
replacement_attr = try_get_attr(replacement, node.target)
|
48 |
+
|
49 |
+
# CASE 1: This target already exists as an attribute in our
|
50 |
+
# result GraphModule. Whether or not it exists in
|
51 |
+
# `replacement`, the existing submodule takes precedence.
|
52 |
+
if gm_attr is not None:
|
53 |
+
continue
|
54 |
+
|
55 |
+
# CASE 2: The target exists as an attribute in `replacement`
|
56 |
+
# only, so we need to copy it over.
|
57 |
+
elif replacement_attr is not None:
|
58 |
+
new_attr = copy.deepcopy(replacement_attr)
|
59 |
+
if isinstance(replacement_attr, torch.nn.Module):
|
60 |
+
gm.add_submodule(node.target, new_attr)
|
61 |
+
else:
|
62 |
+
setattr(gm, node.target, new_attr)
|
63 |
+
|
64 |
+
# CASE 3: The target doesn't exist as an attribute in `gm`
|
65 |
+
# or `replacement`
|
66 |
+
else:
|
67 |
+
raise RuntimeError("Attempted to create a \"", node.op,
|
68 |
+
"\" node during subgraph rewriting "
|
69 |
+
f"with target {node.target}, but "
|
70 |
+
"the referenced attribute does not "
|
71 |
+
"exist in the replacement GraphModule")
|
72 |
+
|
73 |
+
gm.graph.lint()
|
74 |
+
|
75 |
+
|
76 |
+
@compatibility(is_backward_compatible=True)
|
77 |
+
def replace_pattern(
|
78 |
+
gm: GraphModule,
|
79 |
+
pattern: Union[Callable, GraphModule],
|
80 |
+
replacement: Union[Callable, GraphModule]
|
81 |
+
) -> List[Match]:
|
82 |
+
"""
|
83 |
+
Matches all possible non-overlapping sets of operators and their
|
84 |
+
data dependencies (``pattern``) in the Graph of a GraphModule
|
85 |
+
(``gm``), then replaces each of these matched subgraphs with another
|
86 |
+
subgraph (``replacement``).
|
87 |
+
|
88 |
+
Args:
|
89 |
+
``gm``: The GraphModule that wraps the Graph to operate on
|
90 |
+
``pattern``: The subgraph to match in ``gm`` for replacement
|
91 |
+
``replacement``: The subgraph to replace ``pattern`` with
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
List[Match]: A list of ``Match`` objects representing the places
|
95 |
+
in the original graph that ``pattern`` was matched to. The list
|
96 |
+
is empty if there are no matches. ``Match`` is defined as:
|
97 |
+
|
98 |
+
.. code-block:: python
|
99 |
+
|
100 |
+
class Match(NamedTuple):
|
101 |
+
# Node from which the match was found
|
102 |
+
anchor: Node
|
103 |
+
# Maps nodes in the pattern subgraph to nodes in the larger graph
|
104 |
+
nodes_map: Dict[Node, Node]
|
105 |
+
|
106 |
+
Examples:
|
107 |
+
|
108 |
+
.. code-block:: python
|
109 |
+
|
110 |
+
import torch
|
111 |
+
from torch.fx import symbolic_trace, subgraph_rewriter
|
112 |
+
|
113 |
+
class M(torch.nn.Module):
|
114 |
+
def __init__(self):
|
115 |
+
super().__init__()
|
116 |
+
|
117 |
+
def forward(self, x, w1, w2):
|
118 |
+
m1 = torch.cat([w1, w2]).sum()
|
119 |
+
m2 = torch.cat([w1, w2]).sum()
|
120 |
+
return x + torch.max(m1) + torch.max(m2)
|
121 |
+
|
122 |
+
def pattern(w1, w2):
|
123 |
+
return torch.cat([w1, w2]).sum()
|
124 |
+
|
125 |
+
def replacement(w1, w2):
|
126 |
+
return torch.stack([w1, w2])
|
127 |
+
|
128 |
+
traced_module = symbolic_trace(M())
|
129 |
+
|
130 |
+
subgraph_rewriter.replace_pattern(traced_module, pattern, replacement)
|
131 |
+
|
132 |
+
The above code will first match ``pattern`` in the ``forward``
|
133 |
+
method of ``traced_module``. Pattern-matching is done based on
|
134 |
+
use-def relationships, not node names. For example, if you had
|
135 |
+
``p = torch.cat([a, b])`` in ``pattern``, you could match
|
136 |
+
``m = torch.cat([a, b])`` in the original ``forward`` function,
|
137 |
+
despite the variable names being different (``p`` vs ``m``).
|
138 |
+
|
139 |
+
The ``return`` statement in ``pattern`` is matched based on its
|
140 |
+
value only; it may or may not match to the ``return`` statement in
|
141 |
+
the larger graph. In other words, the pattern doesn't have to extend
|
142 |
+
to the end of the larger graph.
|
143 |
+
|
144 |
+
When the pattern is matched, it will be removed from the larger
|
145 |
+
function and replaced by ``replacement``. If there are multiple
|
146 |
+
matches for ``pattern`` in the larger function, each non-overlapping
|
147 |
+
match will be replaced. In the case of a match overlap, the first
|
148 |
+
found match in the set of overlapping matches will be replaced.
|
149 |
+
("First" here being defined as the first in a topological ordering
|
150 |
+
of the Nodes' use-def relationships. In most cases, the first Node
|
151 |
+
is the parameter that appears directly after ``self``, while the
|
152 |
+
last Node is whatever the function returns.)
|
153 |
+
|
154 |
+
One important thing to note is that the parameters of the
|
155 |
+
``pattern`` Callable must be used in the Callable itself,
|
156 |
+
and the parameters of the ``replacement`` Callable must match
|
157 |
+
the pattern. The first rule is why, in the above code block, the
|
158 |
+
``forward`` function has parameters ``x, w1, w2``, but the
|
159 |
+
``pattern`` function only has parameters ``w1, w2``. ``pattern``
|
160 |
+
doesn't use ``x``, so it shouldn't specify ``x`` as a parameter.
|
161 |
+
As an example of the second rule, consider replacing
|
162 |
+
|
163 |
+
.. code-block:: python
|
164 |
+
|
165 |
+
def pattern(x, y):
|
166 |
+
return torch.neg(x) + torch.relu(y)
|
167 |
+
|
168 |
+
with
|
169 |
+
|
170 |
+
.. code-block:: python
|
171 |
+
|
172 |
+
def replacement(x, y):
|
173 |
+
return torch.relu(x)
|
174 |
+
|
175 |
+
In this case, ``replacement`` needs the same number of parameters
|
176 |
+
as ``pattern`` (both ``x`` and ``y``), even though the parameter
|
177 |
+
``y`` isn't used in ``replacement``.
|
178 |
+
|
179 |
+
After calling ``subgraph_rewriter.replace_pattern``, the generated
|
180 |
+
Python code looks like this:
|
181 |
+
|
182 |
+
.. code-block:: python
|
183 |
+
|
184 |
+
def forward(self, x, w1, w2):
|
185 |
+
stack_1 = torch.stack([w1, w2])
|
186 |
+
sum_1 = stack_1.sum()
|
187 |
+
stack_2 = torch.stack([w1, w2])
|
188 |
+
sum_2 = stack_2.sum()
|
189 |
+
max_1 = torch.max(sum_1)
|
190 |
+
add_1 = x + max_1
|
191 |
+
max_2 = torch.max(sum_2)
|
192 |
+
add_2 = add_1 + max_2
|
193 |
+
return add_2
|
194 |
+
"""
|
195 |
+
match_and_replacements = _replace_pattern(gm, pattern, replacement)
|
196 |
+
return [Match(anchor=m.anchor, nodes_map=m.nodes_map) for m in match_and_replacements]
|
197 |
+
|
198 |
+
|
199 |
+
# Experimental API, not backward compatible
|
200 |
+
@compatibility(is_backward_compatible=False)
|
201 |
+
def replace_pattern_with_filters(
|
202 |
+
gm: GraphModule,
|
203 |
+
pattern: Union[Callable, Graph, GraphModule],
|
204 |
+
replacement: Union[Callable, Graph, GraphModule],
|
205 |
+
match_filters: Optional[List[Callable[["InternalMatch", Graph, Graph], bool]]] = None, # type: ignore[name-defined]
|
206 |
+
ignore_literals: bool = False,
|
207 |
+
) -> List[ReplacedPatterns]:
|
208 |
+
"""
|
209 |
+
See replace_pattern for documentation. This function is an overload with an additional match_filter argument.
|
210 |
+
|
211 |
+
Args:
|
212 |
+
``match_filters``: A list of functions that take in
|
213 |
+
(match: InternalMatch, original_graph: Graph, pattern_graph: Graph) and return a boolean indicating
|
214 |
+
whether the match satisfies the condition.
|
215 |
+
See matcher_utils.py for definition of InternalMatch.
|
216 |
+
"""
|
217 |
+
|
218 |
+
return _replace_pattern(gm, pattern, replacement, match_filters, ignore_literals)
|
219 |
+
|
220 |
+
|
221 |
+
def _replace_pattern(
|
222 |
+
gm: GraphModule,
|
223 |
+
pattern: Union[Callable, Graph, GraphModule],
|
224 |
+
replacement: Union[Callable, Graph, GraphModule],
|
225 |
+
match_filters: Optional[List[Callable[["InternalMatch", Graph, Graph], bool]]] = None, # type: ignore[name-defined]
|
226 |
+
ignore_literals: bool = False,
|
227 |
+
) -> List[ReplacedPatterns]:
|
228 |
+
|
229 |
+
from torch.fx.passes.utils.matcher_utils import SubgraphMatcher, InternalMatch
|
230 |
+
|
231 |
+
if match_filters is None:
|
232 |
+
match_filters = []
|
233 |
+
|
234 |
+
# Get the graphs for `gm`, `pattern`, `replacement`
|
235 |
+
original_graph: Graph = gm.graph
|
236 |
+
|
237 |
+
if isinstance(pattern, GraphModule):
|
238 |
+
pattern_graph = pattern.graph
|
239 |
+
elif isinstance(pattern, Graph):
|
240 |
+
pattern_graph = pattern
|
241 |
+
else:
|
242 |
+
pattern_graph = symbolic_trace(pattern).graph
|
243 |
+
|
244 |
+
if isinstance(replacement, GraphModule):
|
245 |
+
replacement_graph = replacement.graph
|
246 |
+
elif isinstance(replacement, Graph):
|
247 |
+
replacement_graph = replacement
|
248 |
+
else:
|
249 |
+
replacement_graph = symbolic_trace(replacement).graph
|
250 |
+
|
251 |
+
matcher = SubgraphMatcher(pattern_graph, match_output=False, match_placeholder=False,
|
252 |
+
remove_overlapping_matches=True, ignore_literals=ignore_literals)
|
253 |
+
_matches: List[InternalMatch] = matcher.match(original_graph)
|
254 |
+
|
255 |
+
# Filter out matches that don't match the filter
|
256 |
+
_matches = [
|
257 |
+
m for m in _matches
|
258 |
+
if all(match_filter(m, original_graph, pattern_graph)
|
259 |
+
for match_filter in match_filters)
|
260 |
+
]
|
261 |
+
|
262 |
+
replacement_placeholders = [n for n in replacement_graph.nodes if n.op == "placeholder"]
|
263 |
+
|
264 |
+
# As we progressively replace nodes, we'll need to keep track of how the match results should change
|
265 |
+
match_changed_node: Dict[Node, Node] = {}
|
266 |
+
|
267 |
+
match_and_replacements = []
|
268 |
+
for match in _matches:
|
269 |
+
|
270 |
+
# Build connecting between replacement graph's input and original graph input producer node
|
271 |
+
|
272 |
+
# Initialize `val_map` with mappings from placeholder nodes in
|
273 |
+
# `replacement` to their corresponding node in `original_graph`
|
274 |
+
assert len(match.placeholder_nodes) == len(replacement_placeholders)
|
275 |
+
val_map: Dict[Node, Node] = {}
|
276 |
+
for rn, gn in zip(replacement_placeholders, match.placeholder_nodes):
|
277 |
+
if isinstance(gn, Node):
|
278 |
+
val_map[rn] = match_changed_node.get(gn, gn)
|
279 |
+
if gn != val_map[rn]:
|
280 |
+
# Update match.placeholder_nodes and match.nodes_map with the node that replaced gn
|
281 |
+
gn_ind = match.placeholder_nodes.index(gn)
|
282 |
+
match.placeholder_nodes[gn_ind] = match_changed_node[gn]
|
283 |
+
map_key = list(match.nodes_map.keys())[list(match.nodes_map.values()).index(gn)]
|
284 |
+
match.nodes_map[map_key] = match_changed_node[gn]
|
285 |
+
else:
|
286 |
+
val_map[rn] = gn
|
287 |
+
|
288 |
+
# Copy the replacement graph over
|
289 |
+
user_nodes: Set[Node] = set()
|
290 |
+
for n in match.returning_nodes:
|
291 |
+
for user in n.users:
|
292 |
+
user_nodes.add(user)
|
293 |
+
assert user_nodes, "The returning_nodes should have at least one user node"
|
294 |
+
|
295 |
+
if len(user_nodes) == 1:
|
296 |
+
first_user_node = next(iter(user_nodes))
|
297 |
+
else:
|
298 |
+
# If there are multiple user nodes, we need to find the first user node
|
299 |
+
# in the current execution order of the `original_graph`
|
300 |
+
for n in original_graph.nodes:
|
301 |
+
if n in user_nodes:
|
302 |
+
first_user_node = n
|
303 |
+
break
|
304 |
+
|
305 |
+
with original_graph.inserting_before(first_user_node):
|
306 |
+
copied_returning_nodes = original_graph.graph_copy(replacement_graph, val_map)
|
307 |
+
|
308 |
+
if isinstance(copied_returning_nodes, Node):
|
309 |
+
copied_returning_nodes = (copied_returning_nodes, )
|
310 |
+
|
311 |
+
# Get a list of nodes that have been replaced into the graph
|
312 |
+
replacement_nodes: List[Node] = [v for v in val_map.values() if v not in match.placeholder_nodes]
|
313 |
+
|
314 |
+
# Hook the output Node of the replacement subgraph in to the
|
315 |
+
# original Graph at the correct location
|
316 |
+
assert len(match.returning_nodes) == len(copied_returning_nodes)
|
317 |
+
for gn, copied_node in zip(match.returning_nodes, copied_returning_nodes):
|
318 |
+
gn.replace_all_uses_with(copied_node)
|
319 |
+
match_changed_node[gn] = copied_node
|
320 |
+
# Remove the original nodes
|
321 |
+
for node in reversed(pattern_graph.nodes):
|
322 |
+
if node.op != "placeholder" and node.op != "output":
|
323 |
+
gn = match.nodes_map[node]
|
324 |
+
gm.graph.erase_node(gn)
|
325 |
+
|
326 |
+
match_and_replacements.append(
|
327 |
+
ReplacedPatterns(
|
328 |
+
anchor=match.anchors[0],
|
329 |
+
nodes_map=match.nodes_map,
|
330 |
+
replacements=replacement_nodes
|
331 |
+
)
|
332 |
+
)
|
333 |
+
|
334 |
+
# Update the passed-in GraphModule to reflect the new state of
|
335 |
+
# `original_graph`
|
336 |
+
gm.recompile()
|
337 |
+
|
338 |
+
# If `replacement` was an nn.Module, we'll need to make sure that
|
339 |
+
# all the submodules have been copied over correctly
|
340 |
+
if isinstance(replacement, torch.nn.Module):
|
341 |
+
_replace_attributes(gm, replacement)
|
342 |
+
|
343 |
+
return match_and_replacements
|
env-llmeval/lib/python3.10/site-packages/torch/fx/tensor_type.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.fx.experimental.unification import Var # type: ignore[attr-defined]
|
2 |
+
|
3 |
+
from ._compatibility import compatibility
|
4 |
+
|
5 |
+
|
6 |
+
@compatibility(is_backward_compatible=False)
|
7 |
+
class TensorType:
|
8 |
+
"""
|
9 |
+
TensorType defines a type for tensors, which consists of a list of dimensions.
|
10 |
+
Example:
|
11 |
+
class M(torch.nn.Module):
|
12 |
+
def forward(self, x:TensorType((1,2,3, Dyn)), y:TensorType((1,2,3, Dyn))):
|
13 |
+
return torch.add(x, y)
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, dim):
|
17 |
+
self.__origin__ = TensorType
|
18 |
+
self.__args__ = dim
|
19 |
+
|
20 |
+
def __repr__(self):
|
21 |
+
return f'TensorType[{self.__args__}]'
|
22 |
+
|
23 |
+
def __eq__(self, other):
|
24 |
+
if isinstance(other, self.__class__):
|
25 |
+
return list(self.__args__) == list(other.__args__)
|
26 |
+
else:
|
27 |
+
return False
|
28 |
+
|
29 |
+
@staticmethod
|
30 |
+
def __class_getitem__(*args):
|
31 |
+
if len(args) == 1 and isinstance(args[0], tuple):
|
32 |
+
args = args[0]
|
33 |
+
return TensorType(tuple(args))
|
34 |
+
|
35 |
+
|
36 |
+
class _DynType:
|
37 |
+
"""
|
38 |
+
_DynType defines a type which stands for the absence of type information.
|
39 |
+
"""
|
40 |
+
def __init__(self):
|
41 |
+
self.__name__ = '_DynType'
|
42 |
+
|
43 |
+
def __eq__(self, other):
|
44 |
+
return isinstance(other, self.__class__)
|
45 |
+
|
46 |
+
def __str__(self):
|
47 |
+
return "Dyn"
|
48 |
+
|
49 |
+
def __repr__(self):
|
50 |
+
return "Dyn"
|
51 |
+
|
52 |
+
|
53 |
+
Dyn = _DynType()
|
54 |
+
|
55 |
+
@compatibility(is_backward_compatible=False)
|
56 |
+
def is_consistent(t1, t2):
|
57 |
+
"""
|
58 |
+
A binary relation denoted by ~ that determines if t1 is consistent with t2.
|
59 |
+
The relation is reflexive, symmetric but not transitive.
|
60 |
+
returns True if t1 and t2 are consistent and False otherwise.
|
61 |
+
Example:
|
62 |
+
Dyn ~ TensorType((1,2,3))
|
63 |
+
int ~ Dyn
|
64 |
+
int ~ int
|
65 |
+
TensorType((1,Dyn,3)) ~ TensorType((1,2,3))
|
66 |
+
"""
|
67 |
+
|
68 |
+
if t1 == t2:
|
69 |
+
return True
|
70 |
+
|
71 |
+
if t1 == Dyn or t2 == Dyn or isinstance(t1, Var) or isinstance(t2, Var):
|
72 |
+
return True
|
73 |
+
|
74 |
+
if isinstance(t1, TensorType) and isinstance(t2, TensorType):
|
75 |
+
return len(t1.__args__) == len(t2.__args__) and \
|
76 |
+
all(is_consistent(elem1, elem2) for elem1, elem2 in zip(t1.__args__, t2.__args__))
|
77 |
+
else:
|
78 |
+
return False
|
79 |
+
|
80 |
+
|
81 |
+
@compatibility(is_backward_compatible=False)
|
82 |
+
def is_more_precise(t1, t2):
|
83 |
+
"""
|
84 |
+
A binary relation denoted by <= that determines if t1 is more precise than t2.
|
85 |
+
The relation is reflexive and transitive.
|
86 |
+
returns True if t1 is more precise than t2 and False otherwise.
|
87 |
+
Example:
|
88 |
+
Dyn >= TensorType((1,2,3))
|
89 |
+
int >= Dyn
|
90 |
+
int >= int
|
91 |
+
TensorType((1,Dyn,3)) <= TensorType((1,2,3))
|
92 |
+
"""
|
93 |
+
if t1 == t2:
|
94 |
+
return True
|
95 |
+
|
96 |
+
if isinstance(t2, _DynType):
|
97 |
+
return True
|
98 |
+
|
99 |
+
if isinstance(t1, TensorType) and isinstance(t2, TensorType):
|
100 |
+
return len(t1.__args__) == len(t2.__args__) and \
|
101 |
+
all(is_more_precise(elem1, elem2) for elem1, elem2 in zip(t1.__args__, t2.__args__))
|
102 |
+
|
103 |
+
else:
|
104 |
+
return False
|
env-llmeval/lib/python3.10/site-packages/torch/fx/traceback.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import traceback
|
2 |
+
from contextlib import contextmanager
|
3 |
+
from typing import List, Any, Dict
|
4 |
+
from ._compatibility import compatibility
|
5 |
+
|
6 |
+
__all__ = ['preserve_node_meta', 'has_preserved_node_meta',
|
7 |
+
'set_stack_trace', 'set_grad_fn_seq_nr', 'reset_grad_fn_seq_nr',
|
8 |
+
'format_stack', 'set_current_meta', 'get_current_meta']
|
9 |
+
|
10 |
+
current_meta: Dict[str, Any] = {}
|
11 |
+
should_preserve_node_meta = False
|
12 |
+
|
13 |
+
|
14 |
+
@compatibility(is_backward_compatible=False)
|
15 |
+
@contextmanager
|
16 |
+
def preserve_node_meta():
|
17 |
+
global should_preserve_node_meta
|
18 |
+
|
19 |
+
saved_should_preserve_node_meta = should_preserve_node_meta
|
20 |
+
try:
|
21 |
+
should_preserve_node_meta = True
|
22 |
+
yield
|
23 |
+
finally:
|
24 |
+
should_preserve_node_meta = saved_should_preserve_node_meta
|
25 |
+
|
26 |
+
|
27 |
+
@compatibility(is_backward_compatible=False)
|
28 |
+
def set_stack_trace(stack : List[str]):
|
29 |
+
global current_meta
|
30 |
+
|
31 |
+
if should_preserve_node_meta and stack:
|
32 |
+
current_meta["stack_trace"] = "".join(stack)
|
33 |
+
|
34 |
+
|
35 |
+
@compatibility(is_backward_compatible=False)
|
36 |
+
def set_grad_fn_seq_nr(seq_nr):
|
37 |
+
global current_meta
|
38 |
+
|
39 |
+
if should_preserve_node_meta:
|
40 |
+
# The seq_nr is captured by eager mode in the grad_fn during forward
|
41 |
+
current_meta["prev_grad_fn_seq_nr"] = current_meta.get("grad_fn_seq_nr", None)
|
42 |
+
current_meta["prev_in_grad_fn"] = current_meta.get("in_grad_fn", None)
|
43 |
+
current_meta["grad_fn_seq_nr"] = seq_nr
|
44 |
+
current_meta["in_grad_fn"] = True
|
45 |
+
|
46 |
+
|
47 |
+
@compatibility(is_backward_compatible=False)
|
48 |
+
def reset_grad_fn_seq_nr():
|
49 |
+
# NB: reset state properly, this would be helpful towards supporting
|
50 |
+
# reentrant autograd if we actually wanted to do that.
|
51 |
+
global current_meta
|
52 |
+
|
53 |
+
if should_preserve_node_meta:
|
54 |
+
if current_meta["prev_grad_fn_seq_nr"] is None:
|
55 |
+
assert current_meta["prev_in_grad_fn"] is None
|
56 |
+
del current_meta["grad_fn_seq_nr"]
|
57 |
+
del current_meta["in_grad_fn"]
|
58 |
+
current_meta["grad_fn_seq_nr"] = current_meta["prev_grad_fn_seq_nr"]
|
59 |
+
current_meta["in_grad_fn"] = current_meta["prev_in_grad_fn"]
|
60 |
+
|
61 |
+
|
62 |
+
@compatibility(is_backward_compatible=False)
|
63 |
+
def format_stack() -> List[str]:
|
64 |
+
if should_preserve_node_meta:
|
65 |
+
return [current_meta.get("stack_trace", "")]
|
66 |
+
else:
|
67 |
+
# fallback to traceback.format_stack()
|
68 |
+
return traceback.format_list(traceback.extract_stack()[:-1])
|
69 |
+
|
70 |
+
|
71 |
+
@compatibility(is_backward_compatible=False)
|
72 |
+
def has_preserved_node_meta() -> bool:
|
73 |
+
return should_preserve_node_meta
|
74 |
+
|
75 |
+
|
76 |
+
@compatibility(is_backward_compatible=False)
|
77 |
+
@contextmanager
|
78 |
+
def set_current_meta(node):
|
79 |
+
global current_meta
|
80 |
+
if should_preserve_node_meta and node.meta:
|
81 |
+
saved_meta = current_meta
|
82 |
+
try:
|
83 |
+
current_meta = node.meta.copy()
|
84 |
+
|
85 |
+
# Append (node.name, node.target) onto "from_node" for provenance tracking
|
86 |
+
if "from_node" not in current_meta:
|
87 |
+
current_meta["from_node"] = [(node.name, node.target)]
|
88 |
+
elif current_meta["from_node"][-1][0] != node.name:
|
89 |
+
current_meta["from_node"].append((node.name, node.target))
|
90 |
+
|
91 |
+
yield
|
92 |
+
finally:
|
93 |
+
current_meta = saved_meta
|
94 |
+
else:
|
95 |
+
yield
|
96 |
+
|
97 |
+
|
98 |
+
@compatibility(is_backward_compatible=False)
|
99 |
+
def get_current_meta() -> Dict[str, Any]:
|
100 |
+
return current_meta
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__init__.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .quantize import * # noqa: F403
|
2 |
+
from .observer import * # noqa: F403
|
3 |
+
from .qconfig import * # noqa: F403
|
4 |
+
from .fake_quantize import * # noqa: F403
|
5 |
+
from .fuse_modules import fuse_modules
|
6 |
+
from .stubs import * # noqa: F403
|
7 |
+
from .quant_type import * # noqa: F403
|
8 |
+
from .quantize_jit import * # noqa: F403
|
9 |
+
|
10 |
+
# from .quantize_fx import *
|
11 |
+
from .quantization_mappings import * # noqa: F403
|
12 |
+
from .fuser_method_mappings import * # noqa: F403
|
13 |
+
|
14 |
+
|
15 |
+
def default_eval_fn(model, calib_data):
|
16 |
+
r"""
|
17 |
+
Default evaluation function takes a torch.utils.data.Dataset or a list of
|
18 |
+
input Tensors and run the model on the dataset
|
19 |
+
"""
|
20 |
+
for data, target in calib_data:
|
21 |
+
model(data)
|
22 |
+
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
"QuantWrapper",
|
26 |
+
"QuantStub",
|
27 |
+
"DeQuantStub",
|
28 |
+
# Top level API for eager mode quantization
|
29 |
+
"quantize",
|
30 |
+
"quantize_dynamic",
|
31 |
+
"quantize_qat",
|
32 |
+
"prepare",
|
33 |
+
"convert",
|
34 |
+
"prepare_qat",
|
35 |
+
# Top level API for graph mode quantization on TorchScript
|
36 |
+
"quantize_jit",
|
37 |
+
"quantize_dynamic_jit",
|
38 |
+
"_prepare_ondevice_dynamic_jit",
|
39 |
+
"_convert_ondevice_dynamic_jit",
|
40 |
+
"_quantize_ondevice_dynamic_jit",
|
41 |
+
# Top level API for graph mode quantization on GraphModule(torch.fx)
|
42 |
+
# 'fuse_fx', 'quantize_fx', # TODO: add quantize_dynamic_fx
|
43 |
+
# 'prepare_fx', 'prepare_dynamic_fx', 'convert_fx',
|
44 |
+
"QuantType", # quantization type
|
45 |
+
# custom module APIs
|
46 |
+
"get_default_static_quant_module_mappings",
|
47 |
+
"get_static_quant_module_class",
|
48 |
+
"get_default_dynamic_quant_module_mappings",
|
49 |
+
"get_default_qat_module_mappings",
|
50 |
+
"get_default_qconfig_propagation_list",
|
51 |
+
"get_default_compare_output_module_list",
|
52 |
+
"get_quantized_operator",
|
53 |
+
"get_fuser_method",
|
54 |
+
# Sub functions for `prepare` and `swap_module`
|
55 |
+
"propagate_qconfig_",
|
56 |
+
"add_quant_dequant",
|
57 |
+
"swap_module",
|
58 |
+
"default_eval_fn",
|
59 |
+
# Observers
|
60 |
+
"ObserverBase",
|
61 |
+
"WeightObserver",
|
62 |
+
"HistogramObserver",
|
63 |
+
"observer",
|
64 |
+
"default_observer",
|
65 |
+
"default_weight_observer",
|
66 |
+
"default_placeholder_observer",
|
67 |
+
"default_per_channel_weight_observer",
|
68 |
+
# FakeQuantize (for qat)
|
69 |
+
"default_fake_quant",
|
70 |
+
"default_weight_fake_quant",
|
71 |
+
"default_fixed_qparams_range_neg1to1_fake_quant",
|
72 |
+
"default_fixed_qparams_range_0to1_fake_quant",
|
73 |
+
"default_per_channel_weight_fake_quant",
|
74 |
+
"default_histogram_fake_quant",
|
75 |
+
# QConfig
|
76 |
+
"QConfig",
|
77 |
+
"default_qconfig",
|
78 |
+
"default_dynamic_qconfig",
|
79 |
+
"float16_dynamic_qconfig",
|
80 |
+
"float_qparams_weight_only_qconfig",
|
81 |
+
# QAT utilities
|
82 |
+
"default_qat_qconfig",
|
83 |
+
"prepare_qat",
|
84 |
+
"quantize_qat",
|
85 |
+
# module transformations
|
86 |
+
"fuse_modules",
|
87 |
+
]
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.84 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/_numeric_suite.cpython-310.pyc
ADDED
Binary file (1.04 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/_numeric_suite_fx.cpython-310.pyc
ADDED
Binary file (1.01 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/_quantized_conversions.cpython-310.pyc
ADDED
Binary file (2.69 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/fake_quantize.cpython-310.pyc
ADDED
Binary file (1.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/fuse_modules.cpython-310.pyc
ADDED
Binary file (802 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/fuser_method_mappings.cpython-310.pyc
ADDED
Binary file (720 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/observer.cpython-310.pyc
ADDED
Binary file (1.38 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/qconfig.cpython-310.pyc
ADDED
Binary file (1.18 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/quant_type.cpython-310.pyc
ADDED
Binary file (594 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/quantization_mappings.cpython-310.pyc
ADDED
Binary file (1.43 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/quantize.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/quantize_fx.cpython-310.pyc
ADDED
Binary file (990 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/quantize_jit.cpython-310.pyc
ADDED
Binary file (963 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/stubs.cpython-310.pyc
ADDED
Binary file (591 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (1.08 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/_numeric_suite.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: F401
|
2 |
+
r"""
|
3 |
+
This file is in the process of migration to `torch/ao/quantization`, and
|
4 |
+
is kept here for compatibility while the migration process is ongoing.
|
5 |
+
If you are adding a new entry/functionality, please, add it to the
|
6 |
+
`torch/ao/ns/_numeric_suite.py`, while adding an import statement
|
7 |
+
here.
|
8 |
+
"""
|
9 |
+
|
10 |
+
from torch.ao.ns._numeric_suite import (
|
11 |
+
_convert_tuple_to_list,
|
12 |
+
_dequantize_tensor_list,
|
13 |
+
_find_match,
|
14 |
+
_get_logger_dict_helper,
|
15 |
+
_is_identical_module_type,
|
16 |
+
compare_model_outputs,
|
17 |
+
compare_model_stub,
|
18 |
+
compare_weights,
|
19 |
+
get_logger_dict,
|
20 |
+
get_matching_activations,
|
21 |
+
Logger,
|
22 |
+
NON_LEAF_MODULE_TO_ADD_OBSERVER_ALLOW_LIST,
|
23 |
+
OutputLogger,
|
24 |
+
prepare_model_outputs,
|
25 |
+
prepare_model_with_stubs,
|
26 |
+
Shadow,
|
27 |
+
ShadowLogger,
|
28 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/_numeric_suite_fx.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: F401
|
2 |
+
r"""
|
3 |
+
This file is in the process of migration to `torch/ao/quantization`, and
|
4 |
+
is kept here for compatibility while the migration process is ongoing.
|
5 |
+
If you are adding a new entry/functionality, please, add it to the
|
6 |
+
`torch/ao/ns/_numeric_suite_fx.py`, while adding an import statement
|
7 |
+
here.
|
8 |
+
"""
|
9 |
+
|
10 |
+
from torch.ao.ns._numeric_suite_fx import (
|
11 |
+
_add_loggers_impl,
|
12 |
+
_add_loggers_one_model,
|
13 |
+
_add_shadow_loggers_impl,
|
14 |
+
_extract_logger_info_one_model,
|
15 |
+
_extract_weights_impl,
|
16 |
+
_extract_weights_one_model,
|
17 |
+
add_loggers,
|
18 |
+
add_shadow_loggers,
|
19 |
+
extend_logger_results_with_comparison,
|
20 |
+
extract_logger_info,
|
21 |
+
extract_shadow_logger_info,
|
22 |
+
extract_weights,
|
23 |
+
NSTracer,
|
24 |
+
OutputLogger,
|
25 |
+
RNNReturnType,
|
26 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/_quantized_conversions.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
# Pack pairs of int4 values into int8, in row major order; first int4
|
5 |
+
# value goes into lower order bits, and second int4 value into higher
|
6 |
+
# order bits of resulting int8 value.
|
7 |
+
def pack_int4_to_int8(weight):
|
8 |
+
assert weight.dim() == 2
|
9 |
+
assert weight.shape[1] % 2 == 0
|
10 |
+
assert weight.dtype == torch.int8
|
11 |
+
return ((weight[:, 1::2] & 0xF) << 4) | (weight[:, 0::2] & 0xF)
|
12 |
+
|
13 |
+
|
14 |
+
# Unpack quandruples of bits in int8 values into int4 values, in row
|
15 |
+
# major order; lower 4 bits go into first int4 value goes, and upper 4
|
16 |
+
# bits go into second int4 value.
|
17 |
+
def unpack_int8_to_int4(weight):
|
18 |
+
assert weight.dim() == 2
|
19 |
+
assert weight.dtype == torch.int8
|
20 |
+
return torch.stack((weight & 0xF, (weight >> 4) & 0xF), dim=2).view(
|
21 |
+
weight.shape[0], 2 * weight.shape[1]
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
# Transpose the weight matrix, and then reorder its elements according
|
26 |
+
# to underlying requirements of CUTLASS library, so that it could be
|
27 |
+
# used for CUTLASS-based mixed datatypes linear operation.
|
28 |
+
def quantized_weight_reorder_for_mixed_dtypes_linear_cutlass(
|
29 |
+
weight, dtypeq, transpose=False
|
30 |
+
):
|
31 |
+
assert weight.dim() == 2
|
32 |
+
assert weight.dtype == torch.int8
|
33 |
+
assert dtypeq == torch.int8 or dtypeq == torch.quint4x2
|
34 |
+
assert weight.device.type == "cuda"
|
35 |
+
|
36 |
+
device = weight.device
|
37 |
+
|
38 |
+
# subbyte_transpose
|
39 |
+
if not transpose:
|
40 |
+
if dtypeq == torch.int8:
|
41 |
+
outp = weight.T
|
42 |
+
elif dtypeq == torch.quint4x2:
|
43 |
+
outp = pack_int4_to_int8(unpack_int8_to_int4(weight.view(torch.int8)).T)
|
44 |
+
else:
|
45 |
+
outp = weight
|
46 |
+
|
47 |
+
ncols, nrows = outp.shape
|
48 |
+
assert nrows % (32 if dtypeq == torch.quint4x2 else 64) == 0
|
49 |
+
assert ncols % 64 == 0
|
50 |
+
|
51 |
+
# permute_B_rows_for_mixed_gemm
|
52 |
+
# (permute cols actually, as transpose is applied first here)
|
53 |
+
if dtypeq == torch.quint4x2:
|
54 |
+
cols_permuted = (
|
55 |
+
torch.tensor(
|
56 |
+
[0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15],
|
57 |
+
device=device,
|
58 |
+
)
|
59 |
+
+ (torch.arange(0, nrows // 16, device=device).reshape(-1, 1) * 16).expand(
|
60 |
+
nrows // 16, 16
|
61 |
+
)
|
62 |
+
).view(-1)
|
63 |
+
else:
|
64 |
+
cols_permuted = (
|
65 |
+
torch.tensor(
|
66 |
+
[0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15],
|
67 |
+
device=device,
|
68 |
+
)
|
69 |
+
+ (torch.arange(0, nrows // 16, device=device).reshape(-1, 1) * 16).expand(
|
70 |
+
nrows // 16, 16
|
71 |
+
)
|
72 |
+
).view(-1)
|
73 |
+
outp = outp.index_copy(1, cols_permuted, outp)
|
74 |
+
|
75 |
+
# interleave_column_major_tensor
|
76 |
+
magic0 = 4 if dtypeq == torch.quint4x2 else 2
|
77 |
+
magic1 = 32 // magic0
|
78 |
+
|
79 |
+
tmp0 = (
|
80 |
+
(torch.arange(0, ncols // magic0, device=device) * (nrows // 4 * magic0))
|
81 |
+
.view(-1, 1)
|
82 |
+
.repeat(1, nrows // 4 * magic0)
|
83 |
+
.view(-1)
|
84 |
+
)
|
85 |
+
tmp1 = (
|
86 |
+
(torch.arange(0, nrows // 4 // magic1, device=device) * (magic0 * magic1))
|
87 |
+
.view(-1, 1)
|
88 |
+
.repeat(1, magic1)
|
89 |
+
.view(-1)
|
90 |
+
.repeat(ncols)
|
91 |
+
)
|
92 |
+
tmp2 = (
|
93 |
+
(torch.arange(0, magic0, device=device) * magic1)
|
94 |
+
.view(-1, 1)
|
95 |
+
.repeat(1, nrows // 4)
|
96 |
+
.view(-1)
|
97 |
+
.repeat(ncols // magic0)
|
98 |
+
)
|
99 |
+
tmp3 = torch.arange(0, magic1, device=device).repeat(nrows // 4 * ncols // magic1)
|
100 |
+
|
101 |
+
outp_offsets = tmp0 + tmp1 + tmp2 + tmp3
|
102 |
+
|
103 |
+
tmp = outp.view(-1).view(torch.int32)
|
104 |
+
outp = torch.zeros_like(tmp)
|
105 |
+
outp.scatter_(0, outp_offsets, tmp)
|
106 |
+
outp = outp.view(weight.dtype)
|
107 |
+
|
108 |
+
# add_bias_and_interleave_quantized_tensor_inplace
|
109 |
+
tmp = outp.view(-1)
|
110 |
+
|
111 |
+
outp = torch.empty_like(tmp)
|
112 |
+
if dtypeq == torch.int8:
|
113 |
+
tmp = (tmp.to(torch.int) + 128).to(tmp.dtype)
|
114 |
+
outp[0::4] = tmp[0::4]
|
115 |
+
outp[1::4] = tmp[2::4]
|
116 |
+
outp[2::4] = tmp[1::4]
|
117 |
+
outp[3::4] = tmp[3::4]
|
118 |
+
elif dtypeq == torch.quint4x2:
|
119 |
+
tmp0 = ((tmp & 0xF) + 8) & 0xF
|
120 |
+
tmp0 = (tmp0[1::2] << 4) | tmp0[0::2]
|
121 |
+
tmp1 = (((tmp >> 4) & 0xF) + 8) & 0xF
|
122 |
+
tmp1 = (tmp1[1::2] << 4) | tmp1[0::2]
|
123 |
+
outp[0::4] = tmp0[0::2]
|
124 |
+
outp[1::4] = tmp0[1::2]
|
125 |
+
outp[2::4] = tmp1[0::2]
|
126 |
+
outp[3::4] = tmp1[1::2]
|
127 |
+
|
128 |
+
if dtypeq == torch.quint4x2:
|
129 |
+
nrows *= 2
|
130 |
+
ncols //= 2
|
131 |
+
|
132 |
+
return outp.view(nrows, ncols).view(torch.uint8)
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/fake_quantize.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: F401
|
2 |
+
r"""
|
3 |
+
This file is in the process of migration to `torch/ao/quantization`, and
|
4 |
+
is kept here for compatibility while the migration process is ongoing.
|
5 |
+
If you are adding a new entry/functionality, please, add it to the
|
6 |
+
`torch/ao/quantization/fake_quantize.py`, while adding an import statement
|
7 |
+
here.
|
8 |
+
"""
|
9 |
+
|
10 |
+
from torch.ao.quantization.fake_quantize import (
|
11 |
+
_is_fake_quant_script_module,
|
12 |
+
_is_per_channel,
|
13 |
+
_is_per_tensor,
|
14 |
+
_is_symmetric_quant,
|
15 |
+
default_fake_quant,
|
16 |
+
default_fixed_qparams_range_0to1_fake_quant,
|
17 |
+
default_fixed_qparams_range_neg1to1_fake_quant,
|
18 |
+
default_fused_act_fake_quant,
|
19 |
+
default_fused_per_channel_wt_fake_quant,
|
20 |
+
default_fused_wt_fake_quant,
|
21 |
+
default_histogram_fake_quant,
|
22 |
+
default_per_channel_weight_fake_quant,
|
23 |
+
default_weight_fake_quant,
|
24 |
+
disable_fake_quant,
|
25 |
+
disable_observer,
|
26 |
+
enable_fake_quant,
|
27 |
+
enable_observer,
|
28 |
+
FakeQuantize,
|
29 |
+
FakeQuantizeBase,
|
30 |
+
FixedQParamsFakeQuantize,
|
31 |
+
FusedMovingAvgObsFakeQuantize,
|
32 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/fuse_modules.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: F401
|
2 |
+
r"""
|
3 |
+
This file is in the process of migration to `torch/ao/quantization`, and
|
4 |
+
is kept here for compatibility while the migration process is ongoing.
|
5 |
+
If you are adding a new entry/functionality, please, add it to the
|
6 |
+
`torch/ao/quantization/fuse_modules.py`, while adding an import statement
|
7 |
+
here.
|
8 |
+
"""
|
9 |
+
|
10 |
+
# TODO: These functions are not used outside the `fuse_modules.py`
|
11 |
+
# Keeping here for now, need to remove them later.
|
12 |
+
from torch.ao.quantization.fuse_modules import (
|
13 |
+
_fuse_modules,
|
14 |
+
_get_module,
|
15 |
+
_set_module,
|
16 |
+
fuse_known_modules,
|
17 |
+
fuse_modules,
|
18 |
+
get_fuser_method,
|
19 |
+
)
|
20 |
+
|
21 |
+
# for backward compatiblity
|
22 |
+
from torch.ao.quantization.fuser_method_mappings import fuse_conv_bn, fuse_conv_bn_relu
|
env-llmeval/lib/python3.10/site-packages/torch/quantization/fuser_method_mappings.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: F401
|
2 |
+
r"""
|
3 |
+
This file is in the process of migration to `torch/ao/quantization`, and
|
4 |
+
is kept here for compatibility while the migration process is ongoing.
|
5 |
+
If you are adding a new entry/functionality, please, add it to the
|
6 |
+
`torch/ao/quantization/fuser_method_mappings.py`, while adding an import statement
|
7 |
+
here.
|
8 |
+
"""
|
9 |
+
from torch.ao.quantization.fuser_method_mappings import (
|
10 |
+
_DEFAULT_OP_LIST_TO_FUSER_METHOD,
|
11 |
+
fuse_conv_bn,
|
12 |
+
fuse_conv_bn_relu,
|
13 |
+
fuse_linear_bn,
|
14 |
+
get_fuser_method,
|
15 |
+
)
|