applied-ai-018 commited on
Commit
8733894
·
verified ·
1 Parent(s): 2b3dce2

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cudnn/Descriptors.h +349 -0
  2. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cudnn/Exceptions.h +0 -0
  3. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cudnn/Handle.h +9 -0
  4. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cudnn/Types.h +14 -0
  5. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cudnn/Utils.h +21 -0
  6. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cudnn/cudnn-wrapper.h +15 -0
  7. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/functorch/BatchedTensorImpl.h +170 -0
  8. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/functorch/BatchingMetaprogramming.h +126 -0
  9. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/functorch/DynamicLayer.h +124 -0
  10. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/functorch/TensorWrapper.h +103 -0
  11. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/AdaptivePooling.h +39 -0
  12. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/BatchLinearAlgebra.h +321 -0
  13. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/BinaryOps.h +129 -0
  14. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/BucketizationUtils.h +173 -0
  15. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/CPUBlas.h +180 -0
  16. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/CPUFallback.h +45 -0
  17. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/CompositeRandomAccessor.h +34 -0
  18. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/ConvolutionMM3d.h +14 -0
  19. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Copy.h +20 -0
  20. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Cross.h +14 -0
  21. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/DilatedConvolutionUtils.h +229 -0
  22. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/DispatchStub.h +315 -0
  23. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Distance.h +20 -0
  24. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/DistributionTemplates.h +385 -0
  25. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Distributions.h +518 -0
  26. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/EmbeddingBag.h +139 -0
  27. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/FunctionOfAMatrixUtils.h +20 -0
  28. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/GridSampler.h +298 -0
  29. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/GridSamplerUtils.h +109 -0
  30. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Histogram.h +16 -0
  31. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/IndexingUtils.h +160 -0
  32. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Math.h +0 -0
  33. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/MathBitFallThroughLists.h +71 -0
  34. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/MathBitsFallback.h +157 -0
  35. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/MaxPooling.h +42 -0
  36. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/NonEmptyUtils.h +27 -0
  37. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/NonSymbolicBC.h +26 -0
  38. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Padding.h +62 -0
  39. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/PixelShuffle.h +47 -0
  40. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/PointwiseOps.h +28 -0
  41. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Pool.h +340 -0
  42. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Pow.h +69 -0
  43. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/RangeFactories.h +12 -0
  44. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/ReduceAllOps.h +16 -0
  45. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/ReduceOpsUtils.h +448 -0
  46. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/ReductionType.h +40 -0
  47. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Repeat.h +48 -0
  48. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Resize.h +172 -0
  49. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/ResizeCommon.h +75 -0
  50. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/ScatterGatherChecks.h +128 -0
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cudnn/Descriptors.h ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <string>
4
+
5
+ #include <ATen/cuda/CUDAContext.h>
6
+ #include <ATen/cuda/Exceptions.h>
7
+
8
+ #include <ATen/cudnn/cudnn-wrapper.h>
9
+ #include <ATen/cudnn/Utils.h>
10
+ #include <ATen/core/Tensor.h>
11
+ #include <ATen/TensorUtils.h>
12
+ #include <ATen/cuda/ATenCUDAGeneral.h>
13
+ #include <cuda.h>
14
+
15
+ #ifndef AT_PER_OPERATOR_HEADERS
16
+ #include <ATen/Functions.h>
17
+ #else
18
+ #include <ATen/ops/empty.h>
19
+ #endif
20
+
21
+ namespace at { namespace native {
22
+
23
+ std::string cudnnTypeToString(cudnnDataType_t dtype);
24
+
25
+ // TODO: Add constructors for all of the descriptors
26
+
27
+ inline int dataSize(cudnnDataType_t dataType)
28
+ {
29
+ switch (dataType) {
30
+ #if defined(CUDNN_VERSION) && CUDNN_VERSION >= 8200
31
+ case CUDNN_DATA_BFLOAT16:
32
+ #endif
33
+ case CUDNN_DATA_HALF: return 2;
34
+ case CUDNN_DATA_FLOAT: return 4;
35
+ default: return 8;
36
+ }
37
+ }
38
+
39
+ // The stride for a size-1 dimensions is not uniquely determined; in
40
+ // fact, it can be anything you want, because the fact that the
41
+ // tensor is size 1 at this dimension means that you will never actually
42
+ // try advancing your pointer by this stride.
43
+ //
44
+ // However, CuDNN has a much more stringent requirement on strides:
45
+ // if you are passing a contiguous input, it better be the case
46
+ // that the stride for dim i is the product of the sizes of dims
47
+ // i+1 to the end. This stride is indeed uniquely determined. This
48
+ // function modifies 'stride' in place so this invariant holds.
49
+ template <typename T>
50
+ static inline void fixSizeOneDimStride(int dim, const T *size, T *stride, bool nhwc) {
51
+ int64_t z = 1;
52
+ int index = 0;
53
+ std::vector<int> permutation(dim);
54
+
55
+ if (nhwc) {
56
+ permutation[index++] = 1;
57
+ }
58
+ for (int d = dim-1; d > 1; d--) {
59
+ permutation[index++] = d;
60
+ }
61
+ if (!nhwc) {
62
+ permutation[index++] = 1;
63
+ }
64
+ permutation[index++] = 0;
65
+ for (int d : permutation) {
66
+ if (size[d] == 1) {
67
+ stride[d] = z;
68
+ } else {
69
+ z *= size[d];
70
+ }
71
+ }
72
+ }
73
+
74
+ template <typename T, cudnnStatus_t (*dtor)(T*)>
75
+ struct DescriptorDeleter {
76
+ void operator()(T* x) {
77
+ if (x != nullptr) {
78
+ AT_CUDNN_CHECK(dtor(x));
79
+ }
80
+ }
81
+ };
82
+
83
+ // A generic class for wrapping cuDNN descriptor types. All you need
84
+ // is to give the underlying type the Descriptor_t points to (usually,
85
+ // if it's cudnnTensorDescriptor_t it points to cudnnTensorStruct),
86
+ // the constructor and the destructor. Subclasses are responsible
87
+ // for defining a set() function to actually set the descriptor.
88
+ //
89
+ // Descriptors default construct to a nullptr, and have a descriptor
90
+ // initialized the first time you call set() or any other initializing
91
+ // function.
92
+ template <typename T, cudnnStatus_t (*ctor)(T**), cudnnStatus_t (*dtor)(T*)>
93
+ class TORCH_CUDA_CPP_API Descriptor {
94
+ public:
95
+ // TODO: Figure out why const-correctness doesn't work here
96
+
97
+ // Use desc() to access the underlying descriptor pointer in
98
+ // a read-only fashion. Most client code should use this.
99
+ // If the descriptor was never initialized, this will return
100
+ // nullptr.
101
+ T* desc() const { return desc_.get(); }
102
+ T* desc() { return desc_.get(); }
103
+
104
+ // Use mut_desc() to access the underlying descriptor pointer
105
+ // if you intend to modify what it points to (e.g., using
106
+ // cudnnSetFooDescriptor). This will ensure that the descriptor
107
+ // is initialized. Code in this file will use this function.
108
+ T* mut_desc() { init(); return desc_.get(); }
109
+ protected:
110
+ void init() {
111
+ if (desc_ == nullptr) {
112
+ T* raw_desc;
113
+ AT_CUDNN_CHECK(ctor(&raw_desc));
114
+ desc_.reset(raw_desc);
115
+ }
116
+ }
117
+ private:
118
+ std::unique_ptr<T, DescriptorDeleter<T, dtor>> desc_;
119
+ };
120
+
121
+ class TORCH_CUDA_CPP_API TensorDescriptor : public Descriptor<
122
+ cudnnTensorStruct,
123
+ &cudnnCreateTensorDescriptor,
124
+ &cudnnDestroyTensorDescriptor> {
125
+ public:
126
+ TensorDescriptor() = default;
127
+ explicit TensorDescriptor(const at::Tensor &t, size_t pad = 0) {
128
+ set(t, pad);
129
+ }
130
+
131
+ // Note [CuDNN broadcast padding]
132
+ // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
133
+ // pad specifies the minimum dimensionality of the tensor descriptor
134
+ // we produce (it doesn't have anything to do with, e.g., convolution
135
+ // padding). If 't' is lower-dimensional than 'pad', the remaining
136
+ // dimensions (on the right) are padded with ones. This doesn't
137
+ // affect the underlying data layout. This is particularly useful for
138
+ // dealing with a peculiarity of the CuDNN API, which is that broadcasting in CuDNN is
139
+ // done in two steps: first, the client code is expected to pad out
140
+ // (the dimensions) input tensors to be the same dimension as the
141
+ // target broadcast, and then second, CuDNN takes of actually
142
+ // broadcasting size 1 dimensions.
143
+
144
+ void set(const at::Tensor &t, size_t pad = 0);
145
+ void set(const at::Tensor &t, at::MemoryFormat memory_format, size_t pad = 0);
146
+ void set(cudnnDataType_t dataType, IntArrayRef sizes, IntArrayRef strides, size_t pad = 0);
147
+
148
+ void print();
149
+
150
+ private:
151
+ void set(cudnnDataType_t dataType, IntArrayRef sizes, IntArrayRef strides, size_t pad, bool nhwc);
152
+
153
+ void set(cudnnDataType_t dataType, int dim, int* size, int* stride, bool nhwc) {
154
+ fixSizeOneDimStride<int>(dim, size, stride, nhwc);
155
+ AT_CUDNN_CHECK(cudnnSetTensorNdDescriptor(mut_desc(), dataType, dim, size, stride));
156
+ }
157
+ };
158
+
159
+ std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d);
160
+
161
+ class TORCH_CUDA_CPP_API FilterDescriptor : public Descriptor<
162
+ cudnnFilterStruct,
163
+ &cudnnCreateFilterDescriptor,
164
+ &cudnnDestroyFilterDescriptor> {
165
+ public:
166
+ void set(const at::Tensor &t, int64_t pad = 0) {
167
+ set(t, at::MemoryFormat::Contiguous, pad);
168
+ }
169
+
170
+ void set(const at::Tensor &t, const at::MemoryFormat memory_format, int64_t pad = 0);
171
+
172
+ void print();
173
+ private:
174
+ void set(cudnnDataType_t dataType, int dim, int* size, cudnnTensorFormat_t filter_format) {
175
+ AT_CUDNN_CHECK(cudnnSetFilterNdDescriptor(mut_desc(), dataType, filter_format, dim, size));
176
+ }
177
+ };
178
+
179
+ std::ostream& operator<<(std::ostream & out, const FilterDescriptor& d);
180
+
181
+ struct TORCH_CUDA_CPP_API ConvolutionDescriptor
182
+ : public Descriptor<
183
+ cudnnConvolutionStruct,
184
+ &cudnnCreateConvolutionDescriptor,
185
+ &cudnnDestroyConvolutionDescriptor> {
186
+ void set(cudnnDataType_t dataType, int dim, int* pad, int* stride, int * upscale /* aka dilation */, int groups, bool allow_tf32) {
187
+ cudnnDataType_t mathType = dataType;
188
+ if (dataType == CUDNN_DATA_HALF) mathType = CUDNN_DATA_FLOAT;
189
+ AT_CUDNN_CHECK(cudnnSetConvolutionNdDescriptor(mut_desc(), dim, pad, stride, upscale,
190
+ CUDNN_CROSS_CORRELATION, mathType));
191
+ AT_CUDNN_CHECK(cudnnSetConvolutionGroupCount(mut_desc(), groups));
192
+ // See Note [behavior of cudnnFind and cudnnGet]
193
+ AT_CUDNN_CHECK(cudnnSetConvolutionMathType(mut_desc(), CUDNN_DEFAULT_MATH));
194
+ if(dataType == CUDNN_DATA_HALF) {
195
+ AT_CUDNN_CHECK(cudnnSetConvolutionMathType(mut_desc(), CUDNN_TENSOR_OP_MATH));
196
+ } else if (dataType == CUDNN_DATA_FLOAT && !allow_tf32) {
197
+ #if defined(CUDNN_VERSION) && CUDNN_VERSION >= 8000
198
+ AT_CUDNN_CHECK(cudnnSetConvolutionMathType(mut_desc(), CUDNN_FMA_MATH));
199
+ #endif
200
+ }
201
+ }
202
+ };
203
+
204
+ struct TORCH_CUDA_CPP_API SpatialTransformerDescriptor
205
+ : public Descriptor<
206
+ cudnnSpatialTransformerStruct,
207
+ &cudnnCreateSpatialTransformerDescriptor,
208
+ &cudnnDestroySpatialTransformerDescriptor> {
209
+ void set(cudnnDataType_t dataType, int dim, int* size) {
210
+ AT_CUDNN_CHECK(cudnnSetSpatialTransformerNdDescriptor(mut_desc(), CUDNN_SAMPLER_BILINEAR, dataType, dim, size));
211
+ }
212
+ };
213
+
214
+ struct TORCH_CUDA_CPP_API DropoutDescriptor
215
+ : public Descriptor<
216
+ cudnnDropoutStruct,
217
+ &cudnnCreateDropoutDescriptor,
218
+ &cudnnDestroyDropoutDescriptor> {
219
+ at::Tensor state;
220
+
221
+ // Initialize a dropout descriptor's RNG state.
222
+ // WARNING: This function is very expensive, avoid calling this function!
223
+ void initialize_rng(cudnnHandle_t handle, float dropout, long long int seed, const TensorOptions& options) {
224
+ TORCH_INTERNAL_ASSERT(dropout > 0, "dropout must be nonzero; otherwise call set_no_dropout");
225
+ size_t state_size;
226
+ AT_CUDNN_CHECK(cudnnDropoutGetStatesSize(handle, &state_size));
227
+ AT_ASSERT(options.device().type() == kCUDA);
228
+ AT_ASSERT(options.dtype() == kByte);
229
+ state = at::empty({static_cast<int64_t>(state_size)}, options);
230
+ AT_CUDNN_CHECK(cudnnSetDropoutDescriptor(mut_desc(), handle, dropout, state.data_ptr(), state_size, seed));
231
+ }
232
+
233
+ // Restore a dropout descriptor given a dropout probability and existing RNG state.
234
+ void set(cudnnHandle_t handle, float dropout, at::Tensor state_) {
235
+ TORCH_INTERNAL_ASSERT(dropout > 0, "dropout must be nonzero; otherwise call set_no_dropout");
236
+ state = state_;
237
+ void *state_ptr = state.data_ptr();
238
+ size_t state_size = state.size(0);
239
+ // NB: The seed doesn't actually matter, so we give a dummy value
240
+ AT_CUDNN_CHECK(cudnnRestoreDropoutDescriptor(mut_desc(), handle, dropout, state_ptr, state_size, 0 /* seed */));
241
+ }
242
+
243
+ // Restore a dropout descriptor corresponding to no dropout
244
+ void set_no_dropout(cudnnHandle_t handle) {
245
+ // NB: seed doesn't matter when dropout = 0, because no random number
246
+ // initialization actually takes place when there is no dropout.
247
+ // NB: Empirically, cudnnSetDropoutDescriptor is cheap when
248
+ // dropout == 0
249
+ AT_CUDNN_CHECK(cudnnSetDropoutDescriptor(mut_desc(), handle, 0 /* dropout */, nullptr, 0 /* state_size */, 0 /* seed */));
250
+ }
251
+ };
252
+
253
+ struct TORCH_CUDA_CPP_API RNNDescriptor : public Descriptor<
254
+ cudnnRNNStruct,
255
+ &cudnnCreateRNNDescriptor,
256
+ &cudnnDestroyRNNDescriptor> {
257
+ DropoutDescriptor dropout_desc_;
258
+ void set(cudnnHandle_t handle, int hidden_size, int proj_size, int num_layers, DropoutDescriptor&& dropout_desc,
259
+ cudnnRNNInputMode_t input_mode, cudnnDirectionMode_t bidirectional,
260
+ cudnnRNNMode_t mode, cudnnDataType_t datatype, cudnnDataType_t input_type, cudnnRNNAlgo_t algo, bool allow_tf32) {
261
+ dropout_desc_ = std::move(dropout_desc);
262
+
263
+ AT_CUDNN_CHECK(cudnnSetRNNDescriptor_v6(
264
+ handle,
265
+ mut_desc(),
266
+ hidden_size,
267
+ num_layers,
268
+ dropout_desc_.desc(),
269
+ input_mode,
270
+ bidirectional,
271
+ mode,
272
+ algo,
273
+ datatype));
274
+ if (proj_size != 0) {
275
+ AT_CUDNN_CHECK(cudnnSetRNNProjectionLayers(
276
+ handle,
277
+ /*rnnDesc=*/mut_desc(),
278
+ /*recProjSize=*/proj_size,
279
+ /*outProjSize=*/0));
280
+ }
281
+ cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
282
+ if (prop->major >= 7) {
283
+ if (input_type == CUDNN_DATA_HALF) {
284
+ cudnnSetRNNMatrixMathType(mut_desc(), CUDNN_TENSOR_OP_MATH);
285
+ }
286
+ #if defined(CUDNN_VERSION) && CUDNN_VERSION >= 8000
287
+ else if (input_type == CUDNN_DATA_FLOAT && !allow_tf32) {
288
+ cudnnSetRNNMatrixMathType(mut_desc(), CUDNN_FMA_MATH);
289
+ }
290
+ #endif
291
+ else {
292
+ // Technically, as the default it's not necessary to explicitly
293
+ // set this.
294
+ cudnnSetRNNMatrixMathType(mut_desc(), CUDNN_DEFAULT_MATH);
295
+ }
296
+ }
297
+ }
298
+ };
299
+
300
+ struct TORCH_CUDA_CPP_API CTCLossDescriptor
301
+ : public Descriptor<
302
+ cudnnCTCLossStruct,
303
+ &cudnnCreateCTCLossDescriptor,
304
+ &cudnnDestroyCTCLossDescriptor> {
305
+ void set(cudnnDataType_t datatype) {
306
+ AT_CUDNN_CHECK(cudnnSetCTCLossDescriptor(mut_desc(), datatype));
307
+ }
308
+ #if CUDNN_VERSION >= 7600
309
+ void setEx(
310
+ cudnnDataType_t datatype,
311
+ cudnnLossNormalizationMode_t normMode,
312
+ cudnnNanPropagation_t gradMode) {
313
+ AT_CUDNN_CHECK(
314
+ cudnnSetCTCLossDescriptorEx(mut_desc(), datatype, normMode, gradMode));
315
+ }
316
+ #endif
317
+ };
318
+
319
+ struct TORCH_CUDA_CPP_API ActivationDescriptor
320
+ : public Descriptor<
321
+ cudnnActivationStruct,
322
+ &cudnnCreateActivationDescriptor,
323
+ &cudnnDestroyActivationDescriptor> {
324
+ void set(cudnnActivationMode_t mode) {
325
+ AT_ASSERT(
326
+ mode == CUDNN_ACTIVATION_RELU,
327
+ "TODO: support more cuDNN activation modes");
328
+ AT_CUDNN_CHECK(cudnnSetActivationDescriptor(
329
+ mut_desc(),
330
+ mode,
331
+ cudnnNanPropagation_t::CUDNN_NOT_PROPAGATE_NAN,
332
+ std::numeric_limits<double>::max()));
333
+ }
334
+ };
335
+
336
+ union Constant
337
+ {
338
+ float f;
339
+ double d;
340
+ Constant(cudnnDataType_t dataType, double value) {
341
+ if (dataType == CUDNN_DATA_HALF || dataType == CUDNN_DATA_FLOAT) {
342
+ f = static_cast<float>(value);
343
+ } else {
344
+ d = value;
345
+ }
346
+ }
347
+ };
348
+
349
+ }} // namespace
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cudnn/Exceptions.h ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cudnn/Handle.h ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/cudnn/cudnn-wrapper.h>
4
+ #include <ATen/cuda/ATenCUDAGeneral.h>
5
+
6
+ namespace at { namespace native {
7
+
8
+ TORCH_CUDA_CPP_API cudnnHandle_t getCudnnHandle();
9
+ }} // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cudnn/Types.h ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/cudnn/cudnn-wrapper.h>
4
+ #include <ATen/Tensor.h>
5
+
6
+ namespace at { namespace native {
7
+
8
+ TORCH_CUDA_CPP_API cudnnDataType_t
9
+ getCudnnDataTypeFromScalarType(const at::ScalarType dtype);
10
+ cudnnDataType_t getCudnnDataType(const at::Tensor& tensor);
11
+
12
+ int64_t cudnn_version();
13
+
14
+ }} // namespace at::cudnn
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cudnn/Utils.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/cuda/Exceptions.h>
5
+ #include <ATen/cudnn/cudnn-wrapper.h>
6
+ #include <ATen/cudnn/Handle.h>
7
+
8
+ namespace at { namespace native {
9
+
10
+ // cuDNN has a buggy check for tensor being contiguous (that is, it does
11
+ // not ignore stride for dimension that is equal to 0). This function
12
+ // makes tensors which have zero stride contiguous, by setting the
13
+ // strides to 1 as cuDNN likes.
14
+ inline Tensor contiguousIfZeroInStrides(const Tensor& t) {
15
+ for (auto s : t.strides()) {
16
+ if (s == 0) return t.contiguous();
17
+ }
18
+ return t;
19
+ }
20
+
21
+ }}
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cudnn/cudnn-wrapper.h ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <cudnn.h>
4
+
5
+ #define STRINGIFY(x) #x
6
+ #define STRING(x) STRINGIFY(x)
7
+
8
+ #if CUDNN_MAJOR < 6
9
+ #pragma message ("CuDNN v" STRING(CUDNN_MAJOR) " found, but need at least CuDNN v6. You can get the latest version of CuDNN from https://developer.nvidia.com/cudnn or disable CuDNN with USE_CUDNN=0")
10
+ #pragma message "We strongly encourage you to move to 6.0 and above."
11
+ #pragma message "This message is intended to annoy you enough to update."
12
+ #endif
13
+
14
+ #undef STRINGIFY
15
+ #undef STRING
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/functorch/BatchedTensorImpl.h ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Facebook, Inc. and its affiliates.
2
+ // All rights reserved.
3
+ //
4
+ // This source code is licensed under the BSD-style license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ #pragma once
8
+
9
+ #include <bitset>
10
+ #include <utility>
11
+
12
+ #include <ATen/ArrayRef.h>
13
+ #include <ATen/SmallVector.h>
14
+ #include <ATen/Tensor.h>
15
+
16
+ namespace at::functorch {
17
+
18
+ using Tensor = at::Tensor;
19
+
20
+ // We assume this in a few other places in the codebase,
21
+ // but there isn't a centralized definition.
22
+ constexpr int64_t kVmapMaxTensorDims = 64;
23
+
24
+ // The valid vmap levels range from [0, 64). This effectively means that we
25
+ // support a maximum of 64 nested vmaps.
26
+ constexpr int64_t kVmapNumLevels = 64;
27
+
28
+ // Store this number of elements of BatchDims on the stack. Most people will
29
+ // probably use <= 5 nested vmaps, but adjust this number as necessary.
30
+ constexpr int64_t kBatchDimsStackSize = 5;
31
+
32
+ // A BatchedTensorImpl holds an underlying Tensor and a single batch dim
33
+ // NB: We use the term "BatchedTensor" to mean a Tensor that is backed with a
34
+ // BatchedTensorImpl.
35
+ //
36
+ // The batch dimensions are treated as being "private"; they are not user-visible.
37
+ // For example, in the following Tensor,
38
+ // bt = BatchedTensorImpl(ones(2, 3, 5, 7), lvl=1, dim=0)
39
+ // dimension 0 is batch dimension.
40
+ //
41
+ // bt.sizes() returns (5, 7); bt.sum(0) performs a reduction over the (public)
42
+ // dim 0, which is equivalent to dim 3 in the underlying ones(2, 3, 5, 7) tensor.
43
+ struct TORCH_API BatchedTensorImpl : public c10::TensorImpl {
44
+ explicit BatchedTensorImpl(at::DispatchKeySet key_set, Tensor value, int64_t dim, int64_t level);
45
+
46
+ // Returns batch dimension of this tensor
47
+ int64_t bdim() const { return bdim_; }
48
+
49
+ // Returns batch dimension of this tensor
50
+ int64_t level() const { return level_; }
51
+
52
+ // BatchedTensorImpl wraps a Tensor
53
+ const Tensor& value() const { return value_; }
54
+
55
+ // Given a public dimension index, return the dimension index in the underlying
56
+ // value() tensor.
57
+ // For example, if we have
58
+ // bt = BatchedTensorImpl(ones(2, 3, 5, 7), lvl=1, dim=0)
59
+ // bt.actualDim(0) -> 1
60
+ // bt.actualDim(1) -> 2
61
+ // bt.actualDim(2) -> 3
62
+ // bt.actualDim(3) -> Error
63
+ int64_t actualDim(int64_t dim, bool wrap_dim = true) const;
64
+
65
+ IntArrayRef sizes_custom() const override;
66
+ SymIntArrayRef sym_sizes_custom() const override;
67
+ int64_t size_custom(int64_t d) const override;
68
+ c10::SymInt sym_size_custom(int64_t d) const override;
69
+ // We have to override this because we opted into CustomStrides
70
+ IntArrayRef strides_custom() const override;
71
+ SymIntArrayRef sym_strides_custom() const override;
72
+ // Override a bunch of methods inherited from TensorImpl to return error messages.
73
+ bool is_contiguous_custom(at::MemoryFormat memory_format=at::MemoryFormat::Contiguous) const override;
74
+ void set_size(int64_t dim, int64_t new_size) override;
75
+ void set_stride(int64_t dim, int64_t new_stride) override;
76
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
77
+ const c10::VariableVersion& version_counter,
78
+ bool allow_tensor_metadata_change) const override;
79
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
80
+ c10::VariableVersion&& version_counter,
81
+ bool allow_tensor_metadata_change) const override;
82
+ void shallow_copy_from(const c10::intrusive_ptr<TensorImpl>& impl) override;
83
+ #ifdef DEBUG
84
+ bool has_storage() const override;
85
+ #endif
86
+
87
+ void refreshTensorMetadata();
88
+
89
+ // Used in torchdim. torchdim uses non-lexical BatchedTensor; the way it
90
+ // accomplishes this is a hack where it is able to modify the levels of
91
+ // BatchedTensor to match the level of the current vmap transform.
92
+ void _unsafe_set_level(int64_t level) {
93
+ level_ = level;
94
+ }
95
+
96
+ // Used in batching rule for in-place view operations that can change
97
+ // the index of the bdim (think squeeze_, unsqueeze_)
98
+ void unsafe_set_bdim(int64_t bdim) {
99
+ // NB: you MUST call refreshTensorMetadata after doing this.
100
+ bdim_ = bdim;
101
+ }
102
+ private:
103
+ // see NOTE: [BatchedTensorImpl levels invariant]
104
+ void checkInvariants() const;
105
+ const char* tensorimpl_type_name() const override;
106
+
107
+ Tensor value_;
108
+
109
+ int64_t level_;
110
+ int64_t bdim_;
111
+ };
112
+
113
+ // NB: We use the term "BatchedTensor" to mean a Tensor that is backed with a
114
+ // BatchedTensorImpl.
115
+ inline bool isBatchedTensor(const Tensor& tensor) {
116
+ return tensor.unsafeGetTensorImpl()->key_set().has(DispatchKey::FuncTorchBatched) ||
117
+ tensor.unsafeGetTensorImpl()->key_set().has(DispatchKey::BatchedNestedTensor);
118
+ }
119
+
120
+ // It is unsafe to call this on a Tensor that is not backed by a
121
+ // BatchedTensorImpl. Please use `maybeGetBatchedImpl` whenever possible.
122
+ inline BatchedTensorImpl* unsafeGetBatchedImpl(Tensor tensor) {
123
+ return static_cast<BatchedTensorImpl*>(tensor.unsafeGetTensorImpl());
124
+ }
125
+
126
+ inline BatchedTensorImpl* maybeGetBatchedImpl(Tensor tensor) {
127
+ if (!isBatchedTensor(tensor)) {
128
+ return nullptr;
129
+ }
130
+ return unsafeGetBatchedImpl(std::move(tensor));
131
+ }
132
+
133
+ // Returns a bitset. If bit i is set, then that means dim i is a batchdim.
134
+ inline std::bitset<kVmapMaxTensorDims> createBatchDimBitset(int64_t dim) {
135
+ std::bitset<kVmapMaxTensorDims> is_bdim;
136
+ is_bdim.set(dim);
137
+ return is_bdim;
138
+ }
139
+
140
+ // Creates a bitset for the given level
141
+ inline std::bitset<kVmapNumLevels> createVmapLevelsBitset(int64_t level) {
142
+ std::bitset<kVmapNumLevels> result;
143
+ result.set(level);
144
+ return result;
145
+ }
146
+
147
+ // Use this to construct a BatchedTensor from a regular Tensor
148
+ TORCH_API Tensor makeBatched(const Tensor& tensor, int64_t dim, int64_t level);
149
+
150
+ // Adds a batch dim to `tensor`, returning a BatchedTensor
151
+ TORCH_API Tensor addBatchDim(const Tensor& tensor, int64_t dim, int64_t level);
152
+
153
+ // Certain dispatch keys must be propagated to the BatchedTensor (or, in general,
154
+ // any wrapper Tensor subclasses). This is because there are methods on Tensor
155
+ // that skip dispatch and check for the presence of a dispatch key (e.g. is_cpu()).
156
+ // TODO: should probably contain more (or all?) backend keys
157
+ constexpr DispatchKeySet kKeysToPropagateToWrapper({
158
+ DispatchKey::Negative,
159
+ DispatchKey::Conjugate,
160
+ DispatchKey::XLA,
161
+ DispatchKey::CUDA,
162
+ DispatchKey::CPU,
163
+ });
164
+
165
+ inline DispatchKeySet getKeysToPropagateToWrapper(const Tensor& tensor, DispatchKeySet to_propagate=kKeysToPropagateToWrapper) {
166
+ auto key_set = tensor.unsafeGetTensorImpl()->key_set();
167
+ return key_set & kKeysToPropagateToWrapper;
168
+ }
169
+
170
+ } // namespace at::functorch
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/functorch/BatchingMetaprogramming.h ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Facebook, Inc. and its affiliates.
2
+ // All rights reserved.
3
+ //
4
+ // This source code is licensed under the BSD-style license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ #pragma once
8
+ #include <ATen/Tensor.h>
9
+ #include <ATen/VmapGeneratedPlumbing.h>
10
+
11
+ // This file contains template metaprogramming things that are used for our
12
+ // batching rules.
13
+ //
14
+ // See NOTE: [vmap plumbing] for more details on why this is necessary.
15
+ // The plumbing has a bunch of metaprogramming hacks for determining the signature
16
+ // of a batching rule from the signature of the operator, many of which use the
17
+ // helper functions in this file.
18
+
19
+ namespace at::functorch {
20
+
21
+ // Metaprogramming things
22
+ template <class... Items> using typelist = c10::guts::typelist::typelist<Items...>;
23
+ template <class TypeList> using head_t = c10::guts::typelist::head_t<TypeList>;
24
+ template <class TL1, class TL2> using concat_t = c10::guts::typelist::concat_t<TL1, TL2>;
25
+ template <typename T> class debug_t;
26
+
27
+ // tail operation
28
+ template<class TypeList>
29
+ struct tail final {
30
+ static_assert(c10::guts::false_t<TypeList>::value,
31
+ "In typelist::tail<T>, the T argument must be typelist<...>.");
32
+ };
33
+ template<class Head, class... Tail>
34
+ struct tail<typelist<Head, Tail...>> final {
35
+ using type = typelist<Tail...>;
36
+ };
37
+ template<class TypeList> using tail_t = typename tail<TypeList>::type;
38
+
39
+ template <class First, class Second, class Next, class Tail>
40
+ struct IfFirstIsTensorAndSecondisBatchDimThenTailElseNext {
41
+ using type = Next;
42
+ };
43
+ template <class Next, class Tail>
44
+ struct IfFirstIsTensorAndSecondisBatchDimThenTailElseNext<Tensor, optional<int64_t>, Next, Tail> {
45
+ using type = Tail;
46
+ };
47
+ template <class Next, class Tail>
48
+ struct IfFirstIsTensorAndSecondisBatchDimThenTailElseNext<const Tensor&, optional<int64_t>, Next, Tail> {
49
+ using type = Tail;
50
+ };
51
+ template <class Next, class Tail>
52
+ struct IfFirstIsTensorAndSecondisBatchDimThenTailElseNext<Tensor&, optional<int64_t>, Next, Tail> {
53
+ using type = Tail;
54
+ };
55
+ template <class Next, class Tail>
56
+ struct IfFirstIsTensorAndSecondisBatchDimThenTailElseNext<optional<Tensor>, optional<int64_t>, Next, Tail> {
57
+ using type = Tail;
58
+ };
59
+ template <class Next, class Tail>
60
+ struct IfFirstIsTensorAndSecondisBatchDimThenTailElseNext<const optional<Tensor>&, optional<int64_t>, Next, Tail> {
61
+ using type = Tail;
62
+ };
63
+ template <class Next, class Tail>
64
+ struct IfFirstIsTensorAndSecondisBatchDimThenTailElseNext<optional<Tensor>&, optional<int64_t>, Next, Tail> {
65
+ using type = Tail;
66
+ };
67
+ template <class Next, class Tail>
68
+ struct IfFirstIsTensorAndSecondisBatchDimThenTailElseNext<std::vector<Tensor>, optional<int64_t>, Next, Tail> {
69
+ using type = Tail;
70
+ };
71
+ template <class TypeList> struct RemoveBatchDimAfterTensor {
72
+ using first = head_t<TypeList>;
73
+ using next = tail_t<TypeList>;
74
+ using second = head_t<next>;
75
+ using tail = tail_t<next>;
76
+
77
+ using type = concat_t<
78
+ typelist<first>,
79
+ typename RemoveBatchDimAfterTensor<
80
+ typename IfFirstIsTensorAndSecondisBatchDimThenTailElseNext<first, second, next, tail>::type
81
+ >::type
82
+ >;
83
+ };
84
+ template <class Type> struct RemoveBatchDimAfterTensor<typelist<Type>> {
85
+ using type = typelist<Type>;
86
+ };
87
+ template <> struct RemoveBatchDimAfterTensor<typelist<>> {
88
+ using type = typelist<>;
89
+ };
90
+ template<class TypeList> using remove_batch_dim_after_tensor_t = typename RemoveBatchDimAfterTensor<TypeList>::type;
91
+
92
+ template <typename T> struct UnpackSingleItemTuple {
93
+ using type = T;
94
+ };
95
+ template <typename T> struct UnpackSingleItemTuple<std::tuple<T>> {
96
+ using type = T;
97
+ };
98
+ template <typename T> using unpack_single_item_tuple_t = typename UnpackSingleItemTuple<T>::type;
99
+
100
+ template <typename Return, typename TupleArgs> struct BuildFunctionHelper;
101
+ template <typename Return, typename... Args> struct BuildFunctionHelper<Return, std::tuple<Args...>> {
102
+ using type = Return(Args...);
103
+ };
104
+ template <typename Return, typename TL>
105
+ struct BuildFunction {
106
+ using type = typename BuildFunctionHelper<Return, c10::guts::typelist::to_tuple_t<TL>>::type;
107
+ };
108
+ template <typename Return, typename TL> using build_function_t = typename BuildFunction<Return, TL>::type;
109
+
110
+
111
+ template <typename batch_rule_t> struct ToOperatorType {
112
+ using batch_rule_return_type = typename c10::guts::function_traits<batch_rule_t>::return_type;
113
+ using batch_rule_parameter_types = typename c10::guts::function_traits<batch_rule_t>::parameter_types;
114
+
115
+ using operator_parameter_types = remove_batch_dim_after_tensor_t<batch_rule_parameter_types>;
116
+ using operator_return_type =
117
+ unpack_single_item_tuple_t<
118
+ c10::guts::typelist::to_tuple_t<
119
+ remove_batch_dim_after_tensor_t<
120
+ c10::guts::typelist::from_tuple_t<batch_rule_return_type>>>>;
121
+
122
+ using type = build_function_t<operator_return_type, operator_parameter_types>;
123
+ };
124
+ template <typename batch_rule_t> using to_operator_t = typename ToOperatorType<batch_rule_t>::type;
125
+
126
+ } // namespace at::functorch
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/functorch/DynamicLayer.h ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Facebook, Inc. and its affiliates.
2
+ // All rights reserved.
3
+ //
4
+ // This source code is licensed under the BSD-style license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ #pragma once
8
+ #include <ATen/functorch/Macros.h>
9
+ #include <c10/core/DispatchKey.h>
10
+ #include <ATen/core/function_schema.h>
11
+ #include <c10/util/Optional.h>
12
+ #include <c10/core/impl/LocalDispatchKeySet.h>
13
+ #include <ATen/functorch/Interpreter.h>
14
+ #include <ATen/functorch/VmapInterpreter.h>
15
+ #include <ATen/functorch/ADInterpreters.h>
16
+ #include <ATen/functorch/FunctionalizeInterpreter.h>
17
+
18
+ // Forward declared
19
+ namespace c10 { struct AutogradMetaInterface; }
20
+
21
+ namespace at::functorch {
22
+
23
+ // This file contains the implementation of functorch's interpreter stack.
24
+ // See NOTE: [functorch interpreter stack] first before reading on.
25
+ //
26
+ // NB: the functorch interpreter stack is also referred to as:
27
+ // - the "dynamic layer stack" -- an older name for "interpreter" was
28
+ // "dynamic layer".
29
+ // - the "functorch mode stack". You can think of each functorch transform as a
30
+ // "mode" (in the same sense as torch_dispatch mode or torch_function mode),
31
+ // and functorch being an implementation of a "mode stack" where the modes
32
+ // may be arbitrary composed.
33
+
34
+ // DynamicLayer is basically the same thing as an Interpreter.
35
+ // It represents a functorch transform and it holds an Interpreter,
36
+ // which contains metadata related to the transform and instructions on
37
+ // how to perform the transform.
38
+ //
39
+ // TODO: we can excise DynamicLayer in favor of Interpreter,
40
+ // But I am going to leave it for now as a compatiblity shim to avoid
41
+ // needing to refactor a lot of callsites...
42
+ struct TORCH_API DynamicLayer {
43
+ explicit DynamicLayer(
44
+ TransformType transform_type,
45
+ int64_t layerId,
46
+ optional<c10::SymInt> batchSize = nullopt,
47
+ optional<RandomnessType> randomness = nullopt,
48
+ optional<bool> prev_grad_mode = nullopt,
49
+ optional<bool> pre_fwd_grad_mode = nullopt,
50
+ optional<bool> functionalize_add_back_views = nullopt);
51
+
52
+ TransformType key() const;
53
+ int64_t layerId() const;
54
+
55
+ const Interpreter& interpreter() const { return interpreter_; }
56
+ Interpreter& interpreter() { return interpreter_; }
57
+
58
+ // Only valid for vmap
59
+ c10::SymInt batchSize() const;
60
+ RandomnessType randomness() const;
61
+
62
+ private:
63
+ Interpreter interpreter_;
64
+ };
65
+
66
+ TORCH_API int64_t initAndPushDynamicLayer(
67
+ TransformType transform_type,
68
+ optional<c10::SymInt> batch_size = nullopt,
69
+ optional<RandomnessType> randomness = nullopt,
70
+ optional<bool> prev_grad_mode = nullopt,
71
+ optional<bool> prev_fwd_grad_mode = nullopt,
72
+ optional<bool> functionalize_add_back_views = nullopt);
73
+ TORCH_API DynamicLayer popDynamicLayerAndDeleteMetadata();
74
+ TORCH_API c10::optional<DynamicLayer> maybeCurrentDynamicLayer();
75
+ TORCH_API const std::vector<DynamicLayer>& getDynamicLayerStack();
76
+ TORCH_API void setDynamicLayerStack(const std::vector<DynamicLayer>& stack);
77
+ TORCH_API void setDynamicLayerFrontBackKeysIncluded(bool included);
78
+
79
+ // NOTE: [Life handles and lexically scoped transforms]
80
+ // functorch transforms are lexically scoped.
81
+ // Given a level, we store a "life handle" that is a boolean that tells us if the
82
+ // transform with that level is active or not.
83
+ //
84
+ // functorch's TensorWrapper (for grad transforms) stores a life handle.
85
+ // If a TensorWrapper escapes from the scope of the transform, then somehow
86
+ // it must know it escaped; it can tell by querying the life handle.
87
+ TORCH_API const std::shared_ptr<bool>& getLifeHandleForLevel(int64_t level);
88
+
89
+ // Returns if an operator is in-place. An operator is inplace if:
90
+ // 1. The first argument is a Tensor and it is being written to
91
+ // 2. The first argument is being returned
92
+ // 3. No other arguments are aliased
93
+ // Here is an example of an in-place operator:
94
+ // add_(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)
95
+ TORCH_API bool isInplaceOp(const c10::FunctionSchema& schema);
96
+
97
+ // Given the indices of unwrapped inputs and the schema, this returns the indices of any outputs that should remain unwrapped
98
+ TORCH_API c10::optional<size_t> findAliasedOutput(const FunctionSchema& schema, const int64_t immutable_input);
99
+
100
+ TORCH_API Tensor unwrapIfDead(const Tensor& tensor);
101
+ TORCH_API bool isDeadTensorWrapper(const Tensor& tensor);
102
+
103
+ // Pretty printers
104
+ TORCH_API std::ostream& operator<<(std::ostream& os, const DynamicLayer& layer);
105
+ TORCH_API std::ostream& operator<<(std::ostream& os, const std::vector<DynamicLayer>& dynamicLayerStack);
106
+
107
+ // While a functorch transform is active, torch.autograd.function._SingleLevelFunction
108
+ // is disabled by default. The following two APIs are APIs for enabling
109
+ // it. These are not user-facing APIs. We can delete this in the future, but
110
+ // it is useful for debugging when something goes wrong with the
111
+ // autograd.Function <> functorch interaction, which uses _SingleLevelFunction,
112
+ // because it leads to loud errors if something is incorrect.
113
+ TORCH_API void setSingleLevelAutogradFunctionAllowed(bool allowed);
114
+ TORCH_API bool getSingleLevelAutogradFunctionAllowed();
115
+
116
+ // While a functorch grad transform is active, Tensor.requires_grad_() gets
117
+ // disabled. These two functions are the mechanism to controlling that.
118
+ TORCH_API void setInplaceRequiresGradAllowed(bool allowed);
119
+ TORCH_API bool getInplaceRequiresGradAllowed();
120
+
121
+ TORCH_API DynamicLayer popDynamicLayer();
122
+ TORCH_API int64_t pushDynamicLayer(DynamicLayer&& layer);
123
+
124
+ } // namespace at::functorch
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/functorch/TensorWrapper.h ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Facebook, Inc. and its affiliates.
2
+ // All rights reserved.
3
+ //
4
+ // This source code is licensed under the BSD-style license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ #pragma once
8
+
9
+ #include <ATen/functorch/Macros.h>
10
+ #include <ATen/Tensor.h>
11
+ #include <ATen/functorch/Interpreter.h>
12
+
13
+ namespace at::functorch {
14
+
15
+ // NOTE: [functorch's TensorWrapper]
16
+ //
17
+ // Taking better suggestions for a name. TensorWrapper is the wrapper Tensor
18
+ // Subclass for functorch's grad-based transforms (grad, vjp, jvp). It is
19
+ // analogous to how vmap uses BatchedTensor as the wrapper Tensor subclass.
20
+ //
21
+ // If you're familiar with the Tensor-Variable merge, TensorWrapper is effectively
22
+ // another Variable.
23
+ //
24
+ // Consider grad(grad(torch.sin))(x). This wraps `x` as TensorWrapper(TensorWrapper(x)).
25
+ // The reason why is so that each TensorWrapper can hold its own AutogradMeta and
26
+ // participate in a **separate** autograd graph.
27
+ //
28
+ // There are alternative designs we could have chosen (e.g. each grad transform
29
+ // stores a weak map of Tensor -> AutogradMeta); the benefit of the TensorWrapper
30
+ // design is that we can re-use existing VariableType kernels (i.e. Autograd kernels)
31
+ // without much modification. Since a TensorWrapper looks like a regular Tensor,
32
+ // the VariableType kernel can pull out the AutogradMeta struct from where it
33
+ // expects and extend the autograd graph
34
+
35
+ struct TORCH_API TensorWrapper : public c10::TensorImpl {
36
+ explicit TensorWrapper(
37
+ c10::DispatchKeySet key_set,
38
+ Tensor value,
39
+ int64_t level,
40
+ std::shared_ptr<bool> is_alive,
41
+ bool is_immutable = false, // if true, this came from an operation that aliases an immutable tensor
42
+ bool use_value_sizes_strides = true);
43
+
44
+ void refreshMetadata();
45
+
46
+ const Tensor& value() const {
47
+ return value_;
48
+ }
49
+ optional<int64_t> level() const {
50
+ if (is_alive()) {
51
+ return level_;
52
+ }
53
+ return {};
54
+ }
55
+ bool is_immutable() const {
56
+ return is_immutable_;
57
+ }
58
+ bool is_alive() const;
59
+
60
+ // Overrides necessary for autograd
61
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
62
+ const c10::VariableVersion& version_counter,
63
+ bool allow_tensor_metadata_change) const override;
64
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
65
+ c10::VariableVersion&& version_counter,
66
+ bool allow_tensor_metadata_change) const override;
67
+ void shallow_copy_from(const c10::intrusive_ptr<TensorImpl>& impl) override;
68
+
69
+ private:
70
+ const char* tensorimpl_type_name() const override;
71
+ Tensor value_;
72
+ int64_t level_;
73
+ bool is_immutable_;
74
+
75
+ // TensorWrapper receives a boolean flag on whether or not the Grad Interpreter
76
+ // that created it is still alive or not.
77
+ // If the Grad Interpreter is no longer alive then it attempts to behave like
78
+ // a regular Tensor.
79
+ //
80
+ // When we exit the level, this wrapper may be marked as "not alive".
81
+ // Wrappers that are not alive:
82
+ // 1) May still have autograd metadata on them
83
+ // 2) Forward dispatches to the underlying value()
84
+ std::shared_ptr<bool> is_alive_;
85
+ };
86
+
87
+ // There are two variants of makeTensorWrapper: one that accepts a level
88
+ // and one that accepts an Interpreter.
89
+ //
90
+ // The one that accepts a level tries to automatically get the life handle from the
91
+ // interpreter on the DynamicLayerStack.
92
+ // It needs to be used with caution: if the interpreter is not on the
93
+ // DynamicLayerStack, then we won't be able to find the life handle.
94
+ //
95
+ // In practice this isn't a problem: when we're constructing TensorWrapper in
96
+ // Python, the corresponding interpreter is on the stack.
97
+ TORCH_API Tensor makeTensorWrapper(const Tensor& tensor, int64_t level, bool is_immutable=false);
98
+ TORCH_API Tensor makeTensorWrapper(const Tensor& tensor, const Interpreter& interpreter, bool is_immutable=false);
99
+ TORCH_API TensorWrapper* maybeGetTensorWrapper(const Tensor& tensor);
100
+ TORCH_API void dumpTensor(std::ostream & ss, const Tensor& tensor);
101
+ TORCH_API void dumpTensorCout(const Tensor& tensor);
102
+
103
+ } // namespace at::functorch
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/AdaptivePooling.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/native/DispatchStub.h>
5
+ #include <c10/util/ArrayRef.h>
6
+ #include <c10/util/irange.h>
7
+ #include <cmath>
8
+
9
+ namespace at::native {
10
+
11
+ using adaptive_avg_pooling_fn = void(*)(Tensor& output, const Tensor& input, IntArrayRef output_size);
12
+ using adaptive_avg_pooling_backward_fn = void(*)(Tensor& grad_input, const Tensor& grad_output);
13
+ DECLARE_DISPATCH(adaptive_avg_pooling_fn, adaptive_avg_pool2d_kernel);
14
+ DECLARE_DISPATCH(adaptive_avg_pooling_backward_fn, adaptive_avg_pool2d_backward_kernel);
15
+
16
+ using adaptive_max_pooling_fn = void(*)(const Tensor& output, const Tensor& indices, const Tensor& input, IntArrayRef output_size);
17
+ using adaptive_max_pooling_backward_fn = void(*)(const Tensor& grad_input, const Tensor& grad_output, const Tensor& indices);
18
+ DECLARE_DISPATCH(adaptive_max_pooling_fn, adaptive_max_pool2d_kernel);
19
+ DECLARE_DISPATCH(adaptive_max_pooling_backward_fn, adaptive_max_pool2d_backward_kernel);
20
+
21
+ static inline int64_t start_index(int64_t a, int64_t b, int64_t c) {
22
+ return (a / b) * c + ((a % b) * c) / b;
23
+ }
24
+
25
+ static inline int64_t end_index(int64_t a, int64_t b, int64_t c) {
26
+ return 1 + ((a + 1) * c - 1) / b;
27
+ }
28
+
29
+ static inline void adaptive_pool_empty_output_check(const Tensor& gradOutput_, const char* arg_name) {
30
+ int64_t ndim = gradOutput_.ndimension();
31
+ for (const auto i : c10::irange(1, ndim)) {
32
+ TORCH_CHECK(gradOutput_.size(i) > 0,
33
+ arg_name, "(): Expected grad_output to have non-zero size for non-batch dimensions, "
34
+ "but grad_output has sizes ", gradOutput_.sizes(), " with dimension ", i,
35
+ " being empty");
36
+ }
37
+ }
38
+
39
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/BatchLinearAlgebra.h ADDED
@@ -0,0 +1,321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/util/Optional.h>
4
+ #include <c10/util/string_view.h>
5
+ #include <ATen/Config.h>
6
+ #include <ATen/native/DispatchStub.h>
7
+
8
+ // Forward declare TI
9
+ namespace at {
10
+ class Tensor;
11
+ struct TensorIterator;
12
+
13
+ namespace native {
14
+ enum class TransposeType;
15
+ }
16
+
17
+ }
18
+
19
+ namespace at::native {
20
+
21
+ enum class LapackLstsqDriverType : int64_t { Gels, Gelsd, Gelsy, Gelss};
22
+
23
+ #if AT_BUILD_WITH_LAPACK()
24
+ // Define per-batch functions to be used in the implementation of batched
25
+ // linear algebra operations
26
+
27
+ template <class scalar_t>
28
+ void lapackCholesky(char uplo, int n, scalar_t *a, int lda, int *info);
29
+
30
+ template <class scalar_t>
31
+ void lapackCholeskyInverse(char uplo, int n, scalar_t *a, int lda, int *info);
32
+
33
+ template <class scalar_t, class value_t=scalar_t>
34
+ void lapackEig(char jobvl, char jobvr, int n, scalar_t *a, int lda, scalar_t *w, scalar_t* vl, int ldvl, scalar_t *vr, int ldvr, scalar_t *work, int lwork, value_t *rwork, int *info);
35
+
36
+ template <class scalar_t>
37
+ void lapackGeqrf(int m, int n, scalar_t *a, int lda, scalar_t *tau, scalar_t *work, int lwork, int *info);
38
+
39
+ template <class scalar_t>
40
+ void lapackOrgqr(int m, int n, int k, scalar_t *a, int lda, scalar_t *tau, scalar_t *work, int lwork, int *info);
41
+
42
+ template <class scalar_t>
43
+ void lapackOrmqr(char side, char trans, int m, int n, int k, scalar_t *a, int lda, scalar_t *tau, scalar_t *c, int ldc, scalar_t *work, int lwork, int *info);
44
+
45
+ template <class scalar_t, class value_t = scalar_t>
46
+ void lapackSyevd(char jobz, char uplo, int n, scalar_t* a, int lda, value_t* w, scalar_t* work, int lwork, value_t* rwork, int lrwork, int* iwork, int liwork, int* info);
47
+
48
+ template <class scalar_t>
49
+ void lapackGels(char trans, int m, int n, int nrhs,
50
+ scalar_t *a, int lda, scalar_t *b, int ldb,
51
+ scalar_t *work, int lwork, int *info);
52
+
53
+ template <class scalar_t, class value_t = scalar_t>
54
+ void lapackGelsd(int m, int n, int nrhs,
55
+ scalar_t *a, int lda, scalar_t *b, int ldb,
56
+ value_t *s, value_t rcond, int *rank,
57
+ scalar_t* work, int lwork,
58
+ value_t *rwork, int* iwork, int *info);
59
+
60
+ template <class scalar_t, class value_t = scalar_t>
61
+ void lapackGelsy(int m, int n, int nrhs,
62
+ scalar_t *a, int lda, scalar_t *b, int ldb,
63
+ int *jpvt, value_t rcond, int *rank,
64
+ scalar_t *work, int lwork, value_t* rwork, int *info);
65
+
66
+ template <class scalar_t, class value_t = scalar_t>
67
+ void lapackGelss(int m, int n, int nrhs,
68
+ scalar_t *a, int lda, scalar_t *b, int ldb,
69
+ value_t *s, value_t rcond, int *rank,
70
+ scalar_t *work, int lwork,
71
+ value_t *rwork, int *info);
72
+
73
+ template <LapackLstsqDriverType, class scalar_t, class value_t = scalar_t>
74
+ struct lapackLstsq_impl;
75
+
76
+ template <class scalar_t, class value_t>
77
+ struct lapackLstsq_impl<LapackLstsqDriverType::Gels, scalar_t, value_t> {
78
+ static void call(
79
+ char trans, int m, int n, int nrhs,
80
+ scalar_t *a, int lda, scalar_t *b, int ldb,
81
+ scalar_t *work, int lwork, int *info, // Gels flavor
82
+ int *jpvt, value_t rcond, int *rank, value_t* rwork, // Gelsy flavor
83
+ value_t *s, // Gelss flavor
84
+ int *iwork // Gelsd flavor
85
+ ) {
86
+ lapackGels<scalar_t>(
87
+ trans, m, n, nrhs,
88
+ a, lda, b, ldb,
89
+ work, lwork, info);
90
+ }
91
+ };
92
+
93
+ template <class scalar_t, class value_t>
94
+ struct lapackLstsq_impl<LapackLstsqDriverType::Gelsy, scalar_t, value_t> {
95
+ static void call(
96
+ char trans, int m, int n, int nrhs,
97
+ scalar_t *a, int lda, scalar_t *b, int ldb,
98
+ scalar_t *work, int lwork, int *info, // Gels flavor
99
+ int *jpvt, value_t rcond, int *rank, value_t* rwork, // Gelsy flavor
100
+ value_t *s, // Gelss flavor
101
+ int *iwork // Gelsd flavor
102
+ ) {
103
+ lapackGelsy<scalar_t, value_t>(
104
+ m, n, nrhs,
105
+ a, lda, b, ldb,
106
+ jpvt, rcond, rank,
107
+ work, lwork, rwork, info);
108
+ }
109
+ };
110
+
111
+ template <class scalar_t, class value_t>
112
+ struct lapackLstsq_impl<LapackLstsqDriverType::Gelsd, scalar_t, value_t> {
113
+ static void call(
114
+ char trans, int m, int n, int nrhs,
115
+ scalar_t *a, int lda, scalar_t *b, int ldb,
116
+ scalar_t *work, int lwork, int *info, // Gels flavor
117
+ int *jpvt, value_t rcond, int *rank, value_t* rwork, // Gelsy flavor
118
+ value_t *s, // Gelss flavor
119
+ int *iwork // Gelsd flavor
120
+ ) {
121
+ lapackGelsd<scalar_t, value_t>(
122
+ m, n, nrhs,
123
+ a, lda, b, ldb,
124
+ s, rcond, rank,
125
+ work, lwork,
126
+ rwork, iwork, info);
127
+ }
128
+ };
129
+
130
+ template <class scalar_t, class value_t>
131
+ struct lapackLstsq_impl<LapackLstsqDriverType::Gelss, scalar_t, value_t> {
132
+ static void call(
133
+ char trans, int m, int n, int nrhs,
134
+ scalar_t *a, int lda, scalar_t *b, int ldb,
135
+ scalar_t *work, int lwork, int *info, // Gels flavor
136
+ int *jpvt, value_t rcond, int *rank, value_t* rwork, // Gelsy flavor
137
+ value_t *s, // Gelss flavor
138
+ int *iwork // Gelsd flavor
139
+ ) {
140
+ lapackGelss<scalar_t, value_t>(
141
+ m, n, nrhs,
142
+ a, lda, b, ldb,
143
+ s, rcond, rank,
144
+ work, lwork,
145
+ rwork, info);
146
+ }
147
+ };
148
+
149
+ template <LapackLstsqDriverType driver_type, class scalar_t, class value_t = scalar_t>
150
+ void lapackLstsq(
151
+ char trans, int m, int n, int nrhs,
152
+ scalar_t *a, int lda, scalar_t *b, int ldb,
153
+ scalar_t *work, int lwork, int *info, // Gels flavor
154
+ int *jpvt, value_t rcond, int *rank, value_t* rwork, // Gelsy flavor
155
+ value_t *s, // Gelss flavor
156
+ int *iwork // Gelsd flavor
157
+ ) {
158
+ lapackLstsq_impl<driver_type, scalar_t, value_t>::call(
159
+ trans, m, n, nrhs,
160
+ a, lda, b, ldb,
161
+ work, lwork, info,
162
+ jpvt, rcond, rank, rwork,
163
+ s,
164
+ iwork);
165
+ }
166
+
167
+ template <class scalar_t>
168
+ void lapackLuSolve(char trans, int n, int nrhs, scalar_t *a, int lda, int *ipiv, scalar_t *b, int ldb, int *info);
169
+
170
+ template <class scalar_t>
171
+ void lapackLu(int m, int n, scalar_t *a, int lda, int *ipiv, int *info);
172
+
173
+ template <class scalar_t>
174
+ void lapackLdlHermitian(
175
+ char uplo,
176
+ int n,
177
+ scalar_t* a,
178
+ int lda,
179
+ int* ipiv,
180
+ scalar_t* work,
181
+ int lwork,
182
+ int* info);
183
+
184
+ template <class scalar_t>
185
+ void lapackLdlSymmetric(
186
+ char uplo,
187
+ int n,
188
+ scalar_t* a,
189
+ int lda,
190
+ int* ipiv,
191
+ scalar_t* work,
192
+ int lwork,
193
+ int* info);
194
+
195
+ template <class scalar_t>
196
+ void lapackLdlSolveHermitian(
197
+ char uplo,
198
+ int n,
199
+ int nrhs,
200
+ scalar_t* a,
201
+ int lda,
202
+ int* ipiv,
203
+ scalar_t* b,
204
+ int ldb,
205
+ int* info);
206
+
207
+ template <class scalar_t>
208
+ void lapackLdlSolveSymmetric(
209
+ char uplo,
210
+ int n,
211
+ int nrhs,
212
+ scalar_t* a,
213
+ int lda,
214
+ int* ipiv,
215
+ scalar_t* b,
216
+ int ldb,
217
+ int* info);
218
+
219
+ template<class scalar_t, class value_t=scalar_t>
220
+ void lapackSvd(char jobz, int m, int n, scalar_t *a, int lda, value_t *s, scalar_t *u, int ldu, scalar_t *vt, int ldvt, scalar_t *work, int lwork, value_t *rwork, int *iwork, int *info);
221
+ #endif
222
+
223
+ #if AT_BUILD_WITH_BLAS()
224
+ template <class scalar_t>
225
+ void blasTriangularSolve(char side, char uplo, char trans, char diag, int n, int nrhs, scalar_t* a, int lda, scalar_t* b, int ldb);
226
+ #endif
227
+
228
+ using cholesky_fn = void (*)(const Tensor& /*input*/, const Tensor& /*info*/, bool /*upper*/);
229
+ DECLARE_DISPATCH(cholesky_fn, cholesky_stub);
230
+
231
+ using cholesky_inverse_fn = Tensor& (*)(Tensor& /*result*/, Tensor& /*infos*/, bool /*upper*/);
232
+
233
+ DECLARE_DISPATCH(cholesky_inverse_fn, cholesky_inverse_stub);
234
+
235
+ using linalg_eig_fn = void (*)(Tensor& /*eigenvalues*/, Tensor& /*eigenvectors*/, Tensor& /*infos*/, const Tensor& /*input*/, bool /*compute_eigenvectors*/);
236
+
237
+ DECLARE_DISPATCH(linalg_eig_fn, linalg_eig_stub);
238
+
239
+ using geqrf_fn = void (*)(const Tensor& /*input*/, const Tensor& /*tau*/);
240
+ DECLARE_DISPATCH(geqrf_fn, geqrf_stub);
241
+
242
+ using orgqr_fn = Tensor& (*)(Tensor& /*result*/, const Tensor& /*tau*/);
243
+ DECLARE_DISPATCH(orgqr_fn, orgqr_stub);
244
+
245
+ using ormqr_fn = void (*)(const Tensor& /*input*/, const Tensor& /*tau*/, const Tensor& /*other*/, bool /*left*/, bool /*transpose*/);
246
+ DECLARE_DISPATCH(ormqr_fn, ormqr_stub);
247
+
248
+ using linalg_eigh_fn = void (*)(
249
+ const Tensor& /*eigenvalues*/,
250
+ const Tensor& /*eigenvectors*/,
251
+ const Tensor& /*infos*/,
252
+ bool /*upper*/,
253
+ bool /*compute_eigenvectors*/);
254
+ DECLARE_DISPATCH(linalg_eigh_fn, linalg_eigh_stub);
255
+
256
+ using lstsq_fn = void (*)(
257
+ const Tensor& /*a*/,
258
+ Tensor& /*b*/,
259
+ Tensor& /*rank*/,
260
+ Tensor& /*singular_values*/,
261
+ Tensor& /*infos*/,
262
+ double /*rcond*/,
263
+ std::string /*driver_name*/);
264
+ DECLARE_DISPATCH(lstsq_fn, lstsq_stub);
265
+
266
+ using triangular_solve_fn = void (*)(
267
+ const Tensor& /*A*/,
268
+ const Tensor& /*B*/,
269
+ bool /*left*/,
270
+ bool /*upper*/,
271
+ TransposeType /*transpose*/,
272
+ bool /*unitriangular*/);
273
+ DECLARE_DISPATCH(triangular_solve_fn, triangular_solve_stub);
274
+
275
+ using lu_factor_fn = void (*)(
276
+ const Tensor& /*input*/,
277
+ const Tensor& /*pivots*/,
278
+ const Tensor& /*infos*/,
279
+ bool /*compute_pivots*/);
280
+ DECLARE_DISPATCH(lu_factor_fn, lu_factor_stub);
281
+
282
+ using unpack_pivots_fn = void(*)(
283
+ TensorIterator& iter,
284
+ const int64_t dim_size,
285
+ const int64_t max_pivot);
286
+ DECLARE_DISPATCH(unpack_pivots_fn, unpack_pivots_stub);
287
+
288
+ using lu_solve_fn = void (*)(
289
+ const Tensor& /*LU*/,
290
+ const Tensor& /*pivots*/,
291
+ const Tensor& /*B*/,
292
+ TransposeType /*trans*/);
293
+ DECLARE_DISPATCH(lu_solve_fn, lu_solve_stub);
294
+
295
+ using ldl_factor_fn = void (*)(
296
+ const Tensor& /*LD*/,
297
+ const Tensor& /*pivots*/,
298
+ const Tensor& /*info*/,
299
+ bool /*upper*/,
300
+ bool /*hermitian*/);
301
+ DECLARE_DISPATCH(ldl_factor_fn, ldl_factor_stub);
302
+
303
+ using svd_fn = void (*)(
304
+ const Tensor& /*A*/,
305
+ const bool /*full_matrices*/,
306
+ const bool /*compute_uv*/,
307
+ const c10::optional<c10::string_view>& /*driver*/,
308
+ const Tensor& /*U*/,
309
+ const Tensor& /*S*/,
310
+ const Tensor& /*Vh*/,
311
+ const Tensor& /*info*/);
312
+ DECLARE_DISPATCH(svd_fn, svd_stub);
313
+
314
+ using ldl_solve_fn = void (*)(
315
+ const Tensor& /*LD*/,
316
+ const Tensor& /*pivots*/,
317
+ const Tensor& /*result*/,
318
+ bool /*upper*/,
319
+ bool /*hermitian*/);
320
+ DECLARE_DISPATCH(ldl_solve_fn, ldl_solve_stub);
321
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/BinaryOps.h ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/TensorBase.h>
4
+ #include <ATen/native/DispatchStub.h>
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/util/TypeSafeSignMath.h>
7
+ #if defined(__CUDA_ARCH__)
8
+ #include <c10/cuda/CUDAMathCompat.h>
9
+ #define compat_copysign c10::cuda::compat::copysign
10
+ #elif defined(__HIPCC__)
11
+ #include <c10/hip/HIPMathCompat.h>
12
+ #define compat_copysign c10::hip::compat::copysign
13
+ #else
14
+ #include <c10/util/copysign.h>
15
+ #define compat_copysign c10::copysign
16
+ #endif
17
+
18
+
19
+ namespace at {
20
+ struct TensorIterator;
21
+ struct TensorIteratorBase;
22
+ }
23
+
24
+ namespace at::native {
25
+
26
+ inline void alpha_check(const ScalarType dtype, const Scalar& alpha) {
27
+ TORCH_CHECK(! alpha.isBoolean() || dtype == ScalarType::Bool,
28
+ "Boolean alpha only supported for Boolean results.");
29
+ TORCH_CHECK(isFloatingType(dtype) || isComplexType(dtype)
30
+ || alpha.isIntegral(true),
31
+ "For integral input tensors, argument alpha must not be a floating point number.");
32
+ TORCH_CHECK(isComplexType(dtype) || !alpha.isComplex(),
33
+ "For non-complex input tensors, argument alpha must not be a complex number.")
34
+ }
35
+
36
+ // Basic checking for all sub functions.
37
+ inline void sub_check(const TensorBase& self, const TensorBase& other) {
38
+ TORCH_CHECK(self.scalar_type() != kBool || other.scalar_type() != kBool,
39
+ "Subtraction, the `-` operator, with two bool tensors is not supported. "
40
+ "Use the `^` or `logical_xor()` operator instead.")
41
+ TORCH_CHECK(self.scalar_type() != kBool && other.scalar_type() != kBool,
42
+ "Subtraction, the `-` operator, with a bool tensor is not supported. "
43
+ "If you are trying to invert a mask, use the `~` or `logical_not()` operator instead.");
44
+ }
45
+
46
+ inline void sub_check(const TensorBase& self, const Scalar& scalar) {
47
+ TORCH_CHECK(self.scalar_type() != kBool || !scalar.isBoolean(),
48
+ "Subtraction, the `-` operator, with two bool tensors is not supported. "
49
+ "Use the `^` or `logical_xor()` operator instead.")
50
+ TORCH_CHECK(self.scalar_type() != kBool && !scalar.isBoolean(),
51
+ "Subtraction, the `-` operator, with a bool tensor is not supported. "
52
+ "If you are trying to invert a mask, use the `~` or `logical_not()` operator instead.");
53
+ }
54
+
55
+ using structured_binary_fn_alpha = void(*)(TensorIteratorBase&, const Scalar& alpha);
56
+ using structured_binary_fn_double = void(*)(TensorIteratorBase&, double);
57
+ using structured_binary_fn = void(*)(TensorIteratorBase&);
58
+
59
+ using binary_fn_alpha = void(*)(TensorIteratorBase&, const Scalar& alpha);
60
+ using binary_fn_double = void(*)(TensorIterator&, double);
61
+ using binary_fn = void(*)(TensorIterator&);
62
+ using binary_clamp_fn_alpha =
63
+ void(*)(TensorIterator&, const Scalar& alpha, const Scalar& min_val, const Scalar& max_val);
64
+
65
+ // NB: codegenned
66
+ DECLARE_DISPATCH(structured_binary_fn_alpha, add_stub);
67
+
68
+ DECLARE_DISPATCH(binary_clamp_fn_alpha, add_clamp_stub);
69
+ DECLARE_DISPATCH(structured_binary_fn_alpha, sub_stub);
70
+ DECLARE_DISPATCH(structured_binary_fn, mul_stub);
71
+ DECLARE_DISPATCH(structured_binary_fn, div_true_stub);
72
+ DECLARE_DISPATCH(structured_binary_fn, div_floor_stub);
73
+ DECLARE_DISPATCH(structured_binary_fn, div_trunc_stub);
74
+ DECLARE_DISPATCH(structured_binary_fn, atan2_stub);
75
+ DECLARE_DISPATCH(structured_binary_fn, remainder_stub);
76
+ DECLARE_DISPATCH(structured_binary_fn, bitwise_and_stub);
77
+ DECLARE_DISPATCH(structured_binary_fn, bitwise_or_stub);
78
+ DECLARE_DISPATCH(structured_binary_fn, bitwise_xor_stub);
79
+ DECLARE_DISPATCH(structured_binary_fn, lshift_stub);
80
+ DECLARE_DISPATCH(structured_binary_fn, rshift_stub);
81
+ DECLARE_DISPATCH(binary_fn, logical_xor_stub);
82
+ DECLARE_DISPATCH(binary_fn, logical_and_stub);
83
+ DECLARE_DISPATCH(binary_fn, logical_or_stub);
84
+ DECLARE_DISPATCH(structured_binary_fn, lt_stub);
85
+ DECLARE_DISPATCH(structured_binary_fn, le_stub);
86
+ DECLARE_DISPATCH(structured_binary_fn, gt_stub);
87
+ DECLARE_DISPATCH(structured_binary_fn, ge_stub);
88
+ DECLARE_DISPATCH(structured_binary_fn, eq_stub);
89
+ DECLARE_DISPATCH(structured_binary_fn, ne_stub);
90
+ DECLARE_DISPATCH(binary_fn, max_elementwise_stub);
91
+ DECLARE_DISPATCH(binary_fn, min_elementwise_stub);
92
+ DECLARE_DISPATCH(structured_binary_fn, maximum_stub);
93
+ DECLARE_DISPATCH(structured_binary_fn, minimum_stub);
94
+ DECLARE_DISPATCH(structured_binary_fn, fmax_stub);
95
+ DECLARE_DISPATCH(structured_binary_fn, fmin_stub);
96
+ DECLARE_DISPATCH(structured_binary_fn_double, smooth_l1_stub);
97
+ DECLARE_DISPATCH(binary_fn_double, huber_stub);
98
+ DECLARE_DISPATCH(structured_binary_fn, sigmoid_backward_stub);
99
+ DECLARE_DISPATCH(binary_fn_alpha, logit_backward_stub);
100
+ DECLARE_DISPATCH(structured_binary_fn, tanh_backward_stub);
101
+ DECLARE_DISPATCH(structured_binary_fn, mse_stub);
102
+ DECLARE_DISPATCH(structured_binary_fn, fmod_stub);
103
+ DECLARE_DISPATCH(structured_binary_fn, logaddexp_stub);
104
+ DECLARE_DISPATCH(structured_binary_fn, logaddexp2_stub);
105
+ DECLARE_DISPATCH(structured_binary_fn, gcd_stub);
106
+ DECLARE_DISPATCH(structured_binary_fn, lcm_stub);
107
+ DECLARE_DISPATCH(structured_binary_fn, hypot_stub);
108
+ DECLARE_DISPATCH(structured_binary_fn, igamma_stub);
109
+ DECLARE_DISPATCH(structured_binary_fn, igammac_stub);
110
+ DECLARE_DISPATCH(structured_binary_fn, nextafter_stub);
111
+ DECLARE_DISPATCH(structured_binary_fn, heaviside_stub);
112
+ DECLARE_DISPATCH(structured_binary_fn, copysign_stub);
113
+ DECLARE_DISPATCH(structured_binary_fn, xlogy_stub);
114
+ DECLARE_DISPATCH(structured_binary_fn, xlog1py_stub);
115
+ DECLARE_DISPATCH(structured_binary_fn, zeta_stub);
116
+ DECLARE_DISPATCH(structured_binary_fn, chebyshev_polynomial_t_stub);
117
+ DECLARE_DISPATCH(structured_binary_fn, chebyshev_polynomial_u_stub);
118
+ DECLARE_DISPATCH(structured_binary_fn, chebyshev_polynomial_v_stub);
119
+ DECLARE_DISPATCH(structured_binary_fn, chebyshev_polynomial_w_stub);
120
+ DECLARE_DISPATCH(structured_binary_fn, hermite_polynomial_h_stub);
121
+ DECLARE_DISPATCH(structured_binary_fn, hermite_polynomial_he_stub);
122
+ DECLARE_DISPATCH(structured_binary_fn, laguerre_polynomial_l_stub);
123
+ DECLARE_DISPATCH(structured_binary_fn, legendre_polynomial_p_stub);
124
+ DECLARE_DISPATCH(structured_binary_fn, shifted_chebyshev_polynomial_t_stub);
125
+ DECLARE_DISPATCH(structured_binary_fn, shifted_chebyshev_polynomial_u_stub);
126
+ DECLARE_DISPATCH(structured_binary_fn, shifted_chebyshev_polynomial_v_stub);
127
+ DECLARE_DISPATCH(structured_binary_fn, shifted_chebyshev_polynomial_w_stub);
128
+
129
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/BucketizationUtils.h ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/native/TypeProperties.h>
5
+ #include <ATen/ScalarOps.h>
6
+
7
+ #ifndef AT_PER_OPERATOR_HEADERS
8
+ #include <ATen/NativeFunctions.h>
9
+ #else
10
+ #include <ATen/ops/result_type.h>
11
+ #endif
12
+
13
+ namespace at::native {
14
+
15
+ // original values given by raw_*. If an original value is not contiguous, will make a contiguous copy to
16
+ // the corresponding trimmed_* value. Additionally, if the dtypes of the boundary and input tensor do not
17
+ // match, will change them to be a common super type so comparisons are done between the same types.
18
+ // For any trimmed_* tensor, if its outgoing value matches what it was incoming (typically null), then the
19
+ // corresponding raw_* version should be used since it was already contiguous of the right type.
20
+ inline void searchsorted_maybe_trim_input_tensors(
21
+ Tensor& trimmed_input,
22
+ Tensor& trimmed_boundaries,
23
+ Tensor& trimmed_sorter,
24
+ const Tensor& raw_input,
25
+ const Tensor& raw_boundaries,
26
+ const Tensor& raw_sorter) {
27
+ bool in_is_contiguous = raw_input.is_contiguous();
28
+ bool bd_is_contiguous = raw_boundaries.is_contiguous();
29
+ bool sort_is_contiguous = raw_sorter.is_contiguous();
30
+
31
+ if (!in_is_contiguous) {
32
+ TORCH_WARN_ONCE("torch.searchsorted(): input value tensor is non-contiguous, this will lower the performance due "
33
+ "to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous input value "
34
+ "tensor if possible. This message will only appear once per program.");
35
+ trimmed_input = raw_input.contiguous();
36
+ }
37
+ if (!bd_is_contiguous) {
38
+ TORCH_WARN_ONCE("torch.searchsorted(): boundary tensor is non-contiguous, this will lower the performance due "
39
+ "to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous boundary "
40
+ "tensor if possible. This message will only appear once per program.");
41
+ trimmed_boundaries = raw_boundaries.contiguous();
42
+ }
43
+ if (!sort_is_contiguous) {
44
+ TORCH_WARN_ONCE("torch.searchsorted(): sorter tensor is non-contiguous, this will lower the performance due "
45
+ "to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous sorter "
46
+ "tensor if possible. This message will only appear once per program.");
47
+ trimmed_sorter = raw_sorter.contiguous();
48
+ }
49
+ if (raw_input.dtype() != raw_boundaries.dtype()) {
50
+ at::native::ResultTypeState state = {};
51
+ state = at::native::update_result_type_state(raw_boundaries, state);
52
+ state = at::native::update_result_type_state(raw_input, state);
53
+ ScalarType common_stype = at::native::result_type(state);
54
+
55
+ TORCH_INTERNAL_ASSERT(common_stype != ScalarType::Undefined);
56
+ if (common_stype != raw_input.scalar_type()) {
57
+ trimmed_input = in_is_contiguous ? raw_input.to(common_stype) : trimmed_input.to(common_stype);
58
+ }
59
+ if (common_stype != raw_boundaries.scalar_type()) {
60
+ trimmed_boundaries = bd_is_contiguous ? raw_boundaries.to(common_stype) : trimmed_boundaries.to(common_stype);
61
+ }
62
+ }
63
+ }
64
+
65
+ /* unused but needed for internal jagged tensor class */
66
+ inline void searchsorted_maybe_trim_input_tensors(
67
+ Tensor& trimmed_input,
68
+ Tensor& trimmed_boundaries,
69
+ const Tensor& raw_input,
70
+ const Tensor& raw_boundaries) {
71
+ Tensor trimmed_sorter;
72
+ Tensor raw_sorter;
73
+ return searchsorted_maybe_trim_input_tensors(
74
+ trimmed_input,
75
+ trimmed_boundaries,
76
+ trimmed_sorter,
77
+ raw_input,
78
+ raw_boundaries,
79
+ raw_sorter);
80
+ }
81
+
82
+ inline bool searchsorted_dims_matched_before_last_dim(const Tensor& boundaries, const Tensor& input) {
83
+ if (boundaries.dim() != input.dim()) {
84
+ return false;
85
+ }
86
+ const auto& dims_bd = boundaries.sizes();
87
+ const auto& dims_in = input.sizes();
88
+ for (int64_t dim = 0; dim + 1 < boundaries.dim(); ++dim) {
89
+ if (dims_bd[dim] != dims_in[dim]) {
90
+ return false;
91
+ }
92
+ }
93
+ return true;
94
+ }
95
+
96
+ inline Tensor searchsorted_scalar_tensor(const Scalar& scalar, const c10::Device& device) {
97
+ auto tensor = c10::scalar_to_tensor(scalar, device);
98
+ // This is to adopt the scalar promotion rules defined in native/TypeProperties.h
99
+ // So we have the same type promotion rules as binary operations.
100
+ tensor.unsafeGetTensorImpl()->set_wrapped_number(true);
101
+ return tensor;
102
+ }
103
+
104
+ inline void searchsorted_pre_check(
105
+ const Tensor& boundaries,
106
+ const Tensor& input,
107
+ const Tensor& output,
108
+ const bool out_int32,
109
+ const bool right,
110
+ const c10::optional<c10::string_view> side_opt,
111
+ const Tensor& sorter) {
112
+ if (side_opt) {
113
+ const c10::string_view side = *side_opt;
114
+ TORCH_CHECK(side == "left" || side == "right", "torch.searchsorted(): side can only be 'left' or 'right' but ",
115
+ "got ", side);
116
+
117
+ // assume the user has not explicitly set (right=False, side="right")
118
+ TORCH_CHECK(!right || side == "right", "torch.searchsorted(): side and right can't be set to opposites, got side "
119
+ "of ", side, " while right was True");
120
+ }
121
+
122
+ TORCH_CHECK(boundaries.device() == input.device(), "torch.searchsorted(): boundaries and input value tensors ",
123
+ "should have same device type, but got boundaries tensor device type ", boundaries.device(), " and input value ",
124
+ "tensor device type ", input.device());
125
+
126
+ if (sorter.defined()) {
127
+ TORCH_CHECK(sorter.device() == boundaries.device(), "torch.searchsorted(): sorter and boundary tensors should ",
128
+ "have same device type, but got sorter tensor device type ", sorter.device(), " and input value tensor ",
129
+ "device type ", boundaries.device());
130
+
131
+ TORCH_CHECK(sorter.sizes() == boundaries.sizes(), "torch.searchsorted(): boundary and sorter must have the same "
132
+ "size, but got boundary tensor ", boundaries.sizes(), "and got sorter tensor ", sorter.sizes());
133
+
134
+ TORCH_CHECK(sorter.scalar_type() == ScalarType::Long, "torch.searchsorted(): sorter must be a tensor of long ",
135
+ "dtype but got dtype ", sorter.scalar_type());
136
+
137
+ if (sorter.numel() > 0) {
138
+ auto minmax = sorter.aminmax();
139
+ int64_t vmin = std::get<0>(minmax).item().toLong();
140
+ int64_t vmax = std::get<1>(minmax).item().toLong();
141
+ TORCH_CHECK(vmin >= 0 && vmax < sorter.sizes().back(), "torch.searchsorted(): sorter index out of range");
142
+ }
143
+ }
144
+
145
+ TORCH_CHECK(input.dim() > 0 || (input.dim() == 0 && input.numel() == 1 && boundaries.dim() == 1),
146
+ "torch.searchsorted(): input value can be a scalar only when boundaries tensor dimension is 1, but we got ",
147
+ "boundaries tensor dim(", boundaries.dim(), ") and input value's dim(", input.dim(), ") numel(",
148
+ input.numel(), ")");
149
+
150
+ TORCH_CHECK(boundaries.dim() != 0, "torch.searchsorted(): boundaries tensor should have positive dimension, but ",
151
+ "got 0 dimension");
152
+
153
+ TORCH_CHECK(boundaries.dim() == 1 || searchsorted_dims_matched_before_last_dim(boundaries, input),
154
+ "torch.searchsorted(): boundaries tensor should be 1 dimension or the first N-1 dimensions of boundaries tensor ",
155
+ "and input value tensor must match, but we got boundaries tensor ", boundaries.sizes(), " and input value tensor ",
156
+ input.sizes());
157
+
158
+ ScalarType output_dtype = output.scalar_type();
159
+ TORCH_CHECK(
160
+ (output_dtype == ScalarType::Long && !out_int32) ||
161
+ (output_dtype == ScalarType::Int && out_int32),
162
+ "torch.searchsorted(): output tensor's dtype is wrong, it can only be Int(int32) or Long(int64) depending on ",
163
+ "whether out_int32 flag is True, but we got output tensor's dtype ", output_dtype,
164
+ " and out_int32 flag is ", (out_int32 ? "True" : "False"));
165
+
166
+ if (out_int32) {
167
+ TORCH_CHECK(boundaries.sizes().back() < INT_MAX,
168
+ "torch.searchsorted(): the size of boundaries' last dimension should be less than ", INT_MAX, ", but we got ",
169
+ boundaries.sizes().back());
170
+ }
171
+ }
172
+
173
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/CPUBlas.h ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/OpMathType.h>
4
+ #include <ATen/native/DispatchStub.h>
5
+ #include <ATen/native/TransposeType.h>
6
+ #include <c10/util/complex.h>
7
+ #include <c10/core/ScalarType.h>
8
+ #include <c10/core/Scalar.h>
9
+
10
+ namespace at::native::cpublas {
11
+
12
+ namespace internal {
13
+ void normalize_last_dims(
14
+ TransposeType transa, TransposeType transb,
15
+ int64_t m, int64_t n, int64_t k,
16
+ int64_t *lda, int64_t *ldb, int64_t *ldc);
17
+ } // namespace internal
18
+
19
+ using gemm_fn = void(*)(
20
+ at::ScalarType type,
21
+ TransposeType transa, TransposeType transb,
22
+ int64_t m, int64_t n, int64_t k,
23
+ const Scalar& alpha,
24
+ const void *a, int64_t lda,
25
+ const void *b, int64_t ldb,
26
+ const Scalar& beta,
27
+ void *c, int64_t ldc);
28
+
29
+ DECLARE_DISPATCH(gemm_fn, gemm_stub);
30
+
31
+ template <typename scalar_t>
32
+ void gemm(
33
+ TransposeType transa, TransposeType transb,
34
+ int64_t m, int64_t n, int64_t k,
35
+ at::opmath_type<scalar_t> alpha,
36
+ const scalar_t *a, int64_t lda,
37
+ const scalar_t *b, int64_t ldb,
38
+ at::opmath_type<scalar_t> beta,
39
+ scalar_t *c, int64_t ldc) {
40
+ internal::normalize_last_dims(transa, transb, m, n, k, &lda, &ldb, &ldc);
41
+ gemm_stub(
42
+ kCPU, c10::CppTypeToScalarType<scalar_t>::value,
43
+ transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
44
+ }
45
+
46
+ void gemm(
47
+ TransposeType transa, TransposeType transb,
48
+ int64_t m, int64_t n, int64_t k,
49
+ double alpha,
50
+ const double *a, int64_t lda,
51
+ const double *b, int64_t ldb,
52
+ double beta,
53
+ double *c, int64_t ldc);
54
+
55
+ void gemm(
56
+ TransposeType transa, TransposeType transb,
57
+ int64_t m, int64_t n, int64_t k,
58
+ float alpha,
59
+ const float *a, int64_t lda,
60
+ const float *b, int64_t ldb,
61
+ float beta,
62
+ float *c, int64_t ldc);
63
+
64
+ void gemm(
65
+ TransposeType transa, TransposeType transb,
66
+ int64_t m, int64_t n, int64_t k,
67
+ float alpha,
68
+ const at::BFloat16 *a, int64_t lda,
69
+ const at::BFloat16 *b, int64_t ldb,
70
+ float beta,
71
+ at::BFloat16 *c, int64_t ldc);
72
+
73
+ void gemm(
74
+ TransposeType transa, TransposeType transb,
75
+ int64_t m, int64_t n, int64_t k,
76
+ const float alpha,
77
+ const at::BFloat16 *a, int64_t lda,
78
+ const at::BFloat16 *b, int64_t ldb,
79
+ const float beta,
80
+ float *c, int64_t ldc);
81
+
82
+ void gemm(
83
+ TransposeType transa, TransposeType transb,
84
+ int64_t m, int64_t n, int64_t k,
85
+ float alpha,
86
+ const at::Half *a, int64_t lda,
87
+ const at::Half *b, int64_t ldb,
88
+ float beta,
89
+ at::Half *c, int64_t ldc);
90
+
91
+ void gemm(
92
+ TransposeType transa, TransposeType transb,
93
+ int64_t m, int64_t n, int64_t k,
94
+ c10::complex<double> alpha,
95
+ const c10::complex<double> *a, int64_t lda,
96
+ const c10::complex<double> *b, int64_t ldb,
97
+ c10::complex<double> beta,
98
+ c10::complex<double> *c, int64_t ldc);
99
+
100
+ void gemm(
101
+ TransposeType transa, TransposeType transb,
102
+ int64_t m, int64_t n, int64_t k,
103
+ c10::complex<float> alpha,
104
+ const c10::complex<float> *a, int64_t lda,
105
+ const c10::complex<float> *b, int64_t ldb,
106
+ c10::complex<float> beta,
107
+ c10::complex<float> *c, int64_t ldc);
108
+
109
+ void gemm(
110
+ TransposeType transa, TransposeType transb,
111
+ int64_t m, int64_t n, int64_t k,
112
+ int64_t alpha,
113
+ const int64_t *a, int64_t lda,
114
+ const int64_t *b, int64_t ldb,
115
+ int64_t beta,
116
+ int64_t *c, int64_t ldc);
117
+
118
+ template <typename scalar_t>
119
+ void gemm_batched(
120
+ TransposeType transa, TransposeType transb,
121
+ int64_t batch_size, int64_t m, int64_t n, int64_t k,
122
+ scalar_t alpha,
123
+ const scalar_t * const *a, int64_t lda,
124
+ const scalar_t * const *b, int64_t ldb,
125
+ const scalar_t beta,
126
+ scalar_t * const *c, int64_t ldc);
127
+
128
+ template <typename scalar_t>
129
+ void gemm_batched_with_stride(
130
+ TransposeType transa, TransposeType transb,
131
+ int64_t batch_size, int64_t m, int64_t n, int64_t k,
132
+ scalar_t alpha,
133
+ const scalar_t *a, int64_t lda, int64_t batch_stride_a,
134
+ const scalar_t *b, int64_t ldb, int64_t batch_stride_b,
135
+ scalar_t beta,
136
+ scalar_t *c, int64_t ldc, int64_t batch_stride_c);
137
+
138
+ using axpy_fn = void(*)(at::ScalarType type, int64_t n, const Scalar& a, const void *x, int64_t incx, void *y, int64_t incy);
139
+
140
+ DECLARE_DISPATCH(axpy_fn, axpy_stub);
141
+
142
+ template<typename scalar_t>
143
+ void axpy(int64_t n, scalar_t a, const scalar_t *x, int64_t incx, scalar_t *y, int64_t incy){
144
+ if(n == 1)
145
+ {
146
+ incx = 1;
147
+ incy = 1;
148
+ }
149
+ axpy_stub(
150
+ kCPU, c10::CppTypeToScalarType<scalar_t>::value,
151
+ n, a, x, incx, y, incy);
152
+ }
153
+
154
+ void axpy(int64_t n, double a, const double *x, int64_t incx, double *y, int64_t incy);
155
+ void axpy(int64_t n, float a, const float *x, int64_t incx, float *y, int64_t incy);
156
+ void axpy(int64_t n, c10::complex<double> a, const c10::complex<double> *x, int64_t incx, c10::complex<double> *y, int64_t incy);
157
+ void axpy(int64_t n, c10::complex<float> a, const c10::complex<float> *x, int64_t incx, c10::complex<float> *y, int64_t incy);
158
+
159
+ using copy_fn = void(*)(at::ScalarType type, int64_t n, const void *x, int64_t incx, void *y, int64_t incy);
160
+
161
+ DECLARE_DISPATCH(copy_fn, copy_stub);
162
+
163
+ template<typename scalar_t>
164
+ void copy(int64_t n, const scalar_t *x, int64_t incx, scalar_t *y, int64_t incy) {
165
+ if(n == 1)
166
+ {
167
+ incx = 1;
168
+ incy = 1;
169
+ }
170
+ copy_stub(
171
+ kCPU, c10::CppTypeToScalarType<scalar_t>::value,
172
+ n, x, incx, y, incy);
173
+ }
174
+
175
+ void copy(int64_t n, const double *x, int64_t incx, double *y, int64_t incy);
176
+ void copy(int64_t n, const float *x, int64_t incx, float *y, int64_t incy);
177
+ void copy(int64_t n, const c10::complex<double> *x, int64_t incx, c10::complex<double> *y, int64_t incy);
178
+ void copy(int64_t n, const c10::complex<float> *x, int64_t incx, c10::complex<float> *y, int64_t incy);
179
+
180
+ } // namespace at::native::cpublas
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/CPUFallback.h ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/ivalue.h>
4
+ #include <ATen/core/stack.h>
5
+ #include <ATen/core/boxing/KernelFunction.h>
6
+ #include <ATen/core/dispatch/Dispatcher.h>
7
+ #include <c10/util/Metaprogramming.h>
8
+ #include <torch/library.h>
9
+
10
+ namespace at::native {
11
+
12
+ // This function implements a boxed fallback to CPU.
13
+ // External backends can add their own custom logging on top if it to customize their own CPU fallbacks.
14
+ TORCH_API void cpu_fallback(const c10::OperatorHandle& op, torch::jit::Stack* stack, bool error_on_views = false);
15
+
16
+ // This is a helper function that backends can use to directly call their boxed CPU fallback
17
+ // TODO: update and add a usage example after https://github.com/pytorch/pytorch/pull/58092 lands.
18
+ template<c10::KernelFunction::BoxedKernelFunction* fallback_fn, class Op, bool symint, class ReturnType, class... ParameterTypes>
19
+ struct _call_fallback_fn final {};
20
+
21
+ template<c10::KernelFunction::BoxedKernelFunction* fallback_fn, class Op, bool symint, class ReturnType, class... ParameterTypes>
22
+ struct _call_fallback_fn<fallback_fn, Op, symint, ReturnType(ParameterTypes...)> final {
23
+ static ReturnType call(typename c10::maybe_keep_symint<symint, ParameterTypes>::type... args) {
24
+ auto op = c10::Dispatcher::singleton()
25
+ // TODO: figure out how to make compiler happy without dynamic casts
26
+ .findSchemaOrThrow((const char*) Op::name, (const char*) Op::overload_name)
27
+ //.findSchemaOrThrow("a", "b")
28
+ .typed<ReturnType (typename c10::maybe_keep_symint<symint, ParameterTypes>::type...)>();
29
+ return c10::impl::BoxedKernelWrapper<ReturnType (typename c10::maybe_keep_symint<symint, ParameterTypes>::type...)>::call(
30
+ c10::BoxedKernel::makeFromFunction<fallback_fn>(),
31
+ op,
32
+ c10::DispatchKeySet(), // we know that the cpu_fallback doesn't use the dispatch keyset.
33
+ // TODO: get std::forward<> to work
34
+ args...
35
+ );
36
+ }
37
+ };
38
+
39
+ template<c10::KernelFunction::BoxedKernelFunction* fallback_fn, class Op>
40
+ using call_fallback_fn_symint = _call_fallback_fn<fallback_fn, Op, true, typename Op::schema>;
41
+
42
+ template<c10::KernelFunction::BoxedKernelFunction* fallback_fn, class Op>
43
+ using call_fallback_fn = _call_fallback_fn<fallback_fn, Op, false, typename Op::schema>;
44
+
45
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/CompositeRandomAccessor.h ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/native/CompositeRandomAccessorCommon.h>
4
+
5
+ namespace at::native {
6
+
7
+ struct TupleInfoCPU {
8
+ template <typename ...Types>
9
+ using tuple = std::tuple<Types...>;
10
+
11
+ template <typename ...Types>
12
+ static constexpr auto tie(Types&... args) noexcept {
13
+ return std::tie(args...);
14
+ }
15
+ };
16
+
17
+ template <typename KeyAccessor, typename ValueAccessor>
18
+ using CompositeRandomAccessorCPU =
19
+ CompositeRandomAccessor<KeyAccessor, ValueAccessor, TupleInfoCPU>;
20
+
21
+ template <typename Values, typename References>
22
+ void swap(
23
+ references_holder<Values, References> rh1,
24
+ references_holder<Values, References> rh2
25
+ ) {
26
+ return std::swap(rh1.data(), rh2.data());
27
+ }
28
+
29
+ template <int N, typename Values, typename References>
30
+ auto get(references_holder<Values, References> rh) -> decltype(std::get<N>(rh.data())) {
31
+ return std::get<N>(rh.data());
32
+ }
33
+
34
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/ConvolutionMM3d.h ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/Tensor.h>
2
+
3
+ namespace at::native {
4
+
5
+ std::tuple<Tensor, Tensor, Tensor> slow_conv3d_backward_cpu(
6
+ const Tensor& grad_output,
7
+ const Tensor& self,
8
+ const Tensor& weight,
9
+ IntArrayRef kernel_size,
10
+ IntArrayRef stride,
11
+ IntArrayRef padding,
12
+ std::array<bool, 3> output_mask);
13
+
14
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Copy.h ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/native/DispatchStub.h>
4
+
5
+ namespace at {
6
+
7
+ class Tensor;
8
+ struct TensorIterator;
9
+ class TensorBase;
10
+
11
+ namespace native {
12
+
13
+ using copy_fn = void (*)(TensorIterator&, bool non_blocking);
14
+
15
+ DECLARE_DISPATCH(copy_fn, copy_stub);
16
+
17
+ TORCH_API void copy_ignoring_overlaps(const TensorBase &dst, const TensorBase &src);
18
+
19
+ } // namespace native
20
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Cross.h ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/native/DispatchStub.h>
4
+
5
+ namespace at {
6
+ class Tensor;
7
+
8
+ namespace native {
9
+
10
+ using cross_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, const int64_t d);
11
+
12
+ DECLARE_DISPATCH(cross_fn, cross_stub);
13
+
14
+ }} // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/DilatedConvolutionUtils.h ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <algorithm>
4
+ #include <vector>
5
+
6
+ #include <ATen/div_rtn.h>
7
+ #include <ATen/core/Tensor.h>
8
+ #include <c10/util/irange.h>
9
+
10
+ #define TORCH_CHECK_DIM_SIZE(T, DIM, DIM_SIZE, SIZE) \
11
+ TORCH_CHECK( \
12
+ T.dim() == DIM && T.size(DIM_SIZE) == SIZE, \
13
+ "Need " #T " of dimension ", \
14
+ DIM, \
15
+ " and " #T ".size[", \
16
+ DIM_SIZE, \
17
+ "] == ", \
18
+ SIZE, \
19
+ " but got input to be of shape ", \
20
+ T.sizes())
21
+
22
+ namespace at::native::internal {
23
+ namespace {
24
+ inline bool all_positive(IntArrayRef& arr) {
25
+ return std::all_of(
26
+ arr.begin(), arr.end(), [](int64_t item) { return item > 0; });
27
+ }
28
+
29
+ inline bool all_nonnegative(std::vector<int64_t>& arr) {
30
+ return std::all_of(
31
+ arr.begin(), arr.end(), [](int64_t item) { return item >= 0; });
32
+ }
33
+
34
+ } // namespace
35
+
36
+ // calculate the rear part of output tensor sizes
37
+ template <int64_t dim>
38
+ std::vector<int64_t> get_output_size(
39
+ const Tensor& input,
40
+ IntArrayRef kernel_size,
41
+ IntArrayRef stride_size,
42
+ IntArrayRef pad_size,
43
+ IntArrayRef dilation_size) {
44
+ std::vector<int64_t> sizes;
45
+ for (const auto index : c10::irange(dim)) {
46
+ sizes.push_back(
47
+ div_rtn<int64_t>(
48
+ input.size(index + input.dim() - dim) + 2 * pad_size[index] -
49
+ (dilation_size[index] * (kernel_size[index] - 1) + 1),
50
+ stride_size[index]) +
51
+ 1);
52
+ }
53
+ return sizes;
54
+ }
55
+
56
+ // calculate the sizes of output tensor
57
+ template <int64_t dim>
58
+ std::vector<int64_t> get_output_size(
59
+ const Tensor& input,
60
+ const Tensor& weight,
61
+ IntArrayRef kernel_size,
62
+ IntArrayRef stride_size,
63
+ IntArrayRef pad_size,
64
+ IntArrayRef dilation_size) {
65
+ auto output_size = get_output_size<dim>(
66
+ input, kernel_size, stride_size, pad_size, dilation_size);
67
+ output_size.insert(output_size.begin(), weight.size(0));
68
+ if (input.dim() == dim + 2) {
69
+ output_size.insert(output_size.begin(), input.size(0));
70
+ }
71
+ return output_size;
72
+ }
73
+ /*
74
+ slow_conv_dilated_shape_check - check user-input to dilated convolution
75
+ forward and backward functions.
76
+ */
77
+ template <int64_t dim>
78
+ void slow_conv_dilated_shape_check(
79
+ const Tensor& input,
80
+ const Tensor& weight,
81
+ const Tensor& bias,
82
+ const Tensor& grad_output,
83
+ IntArrayRef kernel_size,
84
+ IntArrayRef stride_size,
85
+ IntArrayRef pad_size,
86
+ IntArrayRef dilation_size) {
87
+ /*
88
+ When the following tensors are defined:
89
+
90
+ bias, grad_weight, grad_output
91
+
92
+ then these are assumed to be contiguous without checking
93
+ because of these tensors are made contiguous by calling
94
+ .contiguous() method or by resizing of zero-sized tensors in
95
+ forward/backward functions.
96
+
97
+ When grad_weight is defined then it is assumed without
98
+ checking to have the same shape as weight, see backward
99
+ functions.
100
+ */
101
+ // Check size arguments
102
+ TORCH_CHECK(
103
+ kernel_size.size() == dim,
104
+ "kernel sizes length should be ",
105
+ dim,
106
+ ", but got ",
107
+ kernel_size.size());
108
+ TORCH_CHECK(
109
+ stride_size.size() == dim,
110
+ "strides length should be ",
111
+ dim,
112
+ ", but got ",
113
+ stride_size.size());
114
+ TORCH_CHECK(
115
+ dilation_size.size() == dim,
116
+ "dilations length should be ",
117
+ dim,
118
+ ", but got ",
119
+ dilation_size.size());
120
+ TORCH_CHECK(
121
+ pad_size.size() == dim,
122
+ "pads length should be ",
123
+ dim,
124
+ ", but got ",
125
+ pad_size.size());
126
+
127
+ TORCH_CHECK(
128
+ all_positive(kernel_size),
129
+ "kernel size should be greater than zero, but got ",
130
+ kernel_size);
131
+ TORCH_CHECK(
132
+ all_positive(stride_size),
133
+ "stride should be greater than zero, but got ",
134
+ stride_size);
135
+ TORCH_CHECK(
136
+ all_positive(dilation_size),
137
+ "dilation should be greater than zero, but got ",
138
+ dilation_size);
139
+
140
+ // check input
141
+ TORCH_CHECK(input.defined(), "input must be defined");
142
+ bool is_batch = input.dim() == dim + 2;
143
+ int64_t n = (is_batch ? 2 : 1);
144
+ int64_t ndim = n + dim;
145
+ if (!is_batch) {
146
+ // input dim has to be dim + 1 if not batched
147
+ TORCH_CHECK(
148
+ input.dim() == dim + 1,
149
+ "input must be 4D or 5D tensor but got ",
150
+ input.dim(),
151
+ "D tensor");
152
+ }
153
+
154
+ // check output sizes
155
+ auto output_size = get_output_size<dim>(
156
+ input, kernel_size, stride_size, pad_size, dilation_size);
157
+
158
+ TORCH_CHECK(
159
+ all_nonnegative(output_size),
160
+ "calculated output size ",
161
+ output_size,
162
+ " is too small (all sizes must be non-negative)");
163
+
164
+ // check weight
165
+ TORCH_CHECK(weight.defined(), "weight must be defined");
166
+ TORCH_CHECK(
167
+ weight.dim() == dim + 2,
168
+ "weight must be ",
169
+ dim + 2,
170
+ "D tensor but got ",
171
+ weight.dim(),
172
+ "D tensor dim=",
173
+ dim);
174
+ TORCH_CHECK(
175
+ weight.sizes().slice(2) == kernel_size,
176
+ "weight[2:] shape ",
177
+ weight.sizes().slice(2),
178
+ " must be equal to kernel_size ",
179
+ kernel_size);
180
+
181
+ TORCH_CHECK_DIM_SIZE(input, input.dim(), (is_batch ? 1 : 0), weight.size(1));
182
+
183
+ // check bias when present
184
+ if (bias.defined()) {
185
+ TORCH_CHECK(
186
+ bias.dim() == 1,
187
+ "bias must be 1D tensor but got ",
188
+ bias.dim(),
189
+ "D tensor");
190
+ TORCH_CHECK_DIM_SIZE(bias, 1, 0, weight.size(0));
191
+ }
192
+
193
+ // check grad_output when present
194
+ if (grad_output.defined()) {
195
+ TORCH_CHECK(
196
+ grad_output.dim() == ndim,
197
+ "grad_output must be ",
198
+ ndim,
199
+ "D tensor but got ",
200
+ grad_output.dim(),
201
+ "D tensor");
202
+ if (is_batch) {
203
+ TORCH_CHECK(
204
+ grad_output.size(0) == input.size(0),
205
+ "grad_output.size(0)=",
206
+ grad_output.size(0),
207
+ " must be input.size(0)=",
208
+ input.size(0));
209
+ }
210
+ TORCH_CHECK(
211
+ grad_output.size(n - 1) == weight.size(0),
212
+ "grad_output.size(",
213
+ n - 1,
214
+ ")=",
215
+ grad_output.size(n - 1),
216
+ " must be weight.size(0)=",
217
+ weight.size(0));
218
+ TORCH_CHECK(
219
+ grad_output.sizes().slice(n) == output_size,
220
+ "grad_output[",
221
+ n,
222
+ ":] shape",
223
+ grad_output.sizes().slice(n),
224
+ " must be equal to output size ",
225
+ output_size);
226
+ }
227
+ }
228
+
229
+ } // namespace at::native::internal
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/DispatchStub.h ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/core/DeviceType.h>
4
+ #include <c10/macros/Macros.h>
5
+
6
+ #include <atomic>
7
+ #include <utility>
8
+
9
+ // Implements instruction set specific function dispatch.
10
+ //
11
+ // Kernels that may make use of specialized instruction sets (e.g. AVX2) are
12
+ // compiled multiple times with different compiler flags (e.g. -mavx2). A
13
+ // DispatchStub contains a table of function pointers for a kernel. At runtime,
14
+ // the fastest available kernel is chosen based on the features reported by
15
+ // cpuinfo.
16
+ //
17
+ // Example:
18
+ //
19
+ // In native/MyKernel.h:
20
+ // using fn_type = void(*)(const Tensor& x);
21
+ // DECLARE_DISPATCH(fn_type, stub);
22
+ //
23
+ // In native/MyKernel.cpp
24
+ // DEFINE_DISPATCH(stub);
25
+ //
26
+ // In native/cpu/MyKernel.cpp:
27
+ // namespace {
28
+ // // use anonymous namespace so that different cpu versions won't conflict
29
+ // void kernel(const Tensor& x) { ... }
30
+ // }
31
+ // REGISTER_DISPATCH(stub, &kernel);
32
+ //
33
+ // To call:
34
+ // stub(kCPU, tensor);
35
+ //
36
+ // TODO: CPU instruction set selection should be folded into whatever
37
+ // the main dispatch mechanism is.
38
+
39
+ // ignore warnings about DispatchStub::DEFAULT, AVX, AVX2 defined elsewhere
40
+ C10_CLANG_DIAGNOSTIC_PUSH()
41
+ C10_CLANG_DIAGNOSTIC_IGNORE("-Wundefined-var-template")
42
+
43
+ namespace at::native {
44
+
45
+ enum class CPUCapability {
46
+ DEFAULT = 0,
47
+ #if defined(HAVE_VSX_CPU_DEFINITION)
48
+ VSX = 1,
49
+ #elif defined(HAVE_ZVECTOR_CPU_DEFINITION)
50
+ ZVECTOR = 1,
51
+ #else
52
+ AVX2 = 1,
53
+ AVX512 = 2,
54
+ #endif
55
+ NUM_OPTIONS
56
+ };
57
+
58
+ CPUCapability get_cpu_capability();
59
+
60
+ template <typename FnPtr, typename T>
61
+ struct DispatchStub;
62
+
63
+ /**
64
+ * The sole purpose of this class is to outline methods that don't need to be
65
+ * specialized or otherwise inlined and duplicated (by the compiler due to
66
+ * template expansion), since it causes size bloat if there are a significant
67
+ * number of specialization of the DispatchStub<> class.
68
+ */
69
+ struct TORCH_API DispatchStubImpl {
70
+ void* get_call_ptr(
71
+ c10::DeviceType device_type
72
+ , void *DEFAULT
73
+ #ifdef HAVE_AVX512_CPU_DEFINITION
74
+ , void *AVX512
75
+ #endif
76
+ #ifdef HAVE_AVX2_CPU_DEFINITION
77
+ , void *AVX2
78
+ #endif
79
+ #ifdef HAVE_VSX_CPU_DEFINITION
80
+ , void *VSX
81
+ #endif
82
+ #ifdef HAVE_ZVECTOR_CPU_DEFINITION
83
+ , void *ZVECTOR
84
+ #endif
85
+ );
86
+
87
+ /**
88
+ * The CPU Dispatch actual method is chosen in decreasing order of preference by
89
+ * DispatchStubImpl::choose_cpu_impl() in case none is found by
90
+ * DispatchStubImpl::get_call_ptr() in cpu_dispatch_ptr.
91
+ */
92
+ void* choose_cpu_impl(
93
+ void *DEFAULT
94
+ #ifdef HAVE_AVX512_CPU_DEFINITION
95
+ , void *AVX512
96
+ #endif
97
+ #ifdef HAVE_AVX2_CPU_DEFINITION
98
+ , void *AVX2
99
+ #endif
100
+ #ifdef HAVE_VSX_CPU_DEFINITION
101
+ , void *VSX
102
+ #endif
103
+ #ifdef HAVE_ZVECTOR_CPU_DEFINITION
104
+ , void *ZVECTOR
105
+ #endif
106
+ );
107
+
108
+ // Fixing dispatch error in Windows debug builds.
109
+ // See https://github.com/pytorch/pytorch/issues/22681 for more details.
110
+ #if defined(_MSC_VER) && defined(_DEBUG)
111
+ std::atomic<void*> cpu_dispatch_ptr;
112
+ void* cuda_dispatch_ptr;
113
+ void* hip_dispatch_ptr;
114
+ void* mps_dispatch_ptr;
115
+ void* privateuse1_dispatch_ptr;
116
+ #else
117
+ std::atomic<void*> cpu_dispatch_ptr{nullptr};
118
+ void* cuda_dispatch_ptr = nullptr;
119
+ void* hip_dispatch_ptr = nullptr;
120
+ void* mps_dispatch_ptr = nullptr;
121
+ void* privateuse1_dispatch_ptr = nullptr;
122
+ #endif
123
+ };
124
+
125
+ template <typename rT, typename T, typename... Args>
126
+ struct DispatchStub<rT (*)(Args...), T> {
127
+ using FnPtr = rT (*) (Args...);
128
+
129
+ DispatchStub() = default;
130
+ DispatchStub(const DispatchStub&) = delete;
131
+ DispatchStub& operator=(const DispatchStub&) = delete;
132
+
133
+ private:
134
+ FnPtr get_call_ptr(c10::DeviceType device_type) {
135
+ return reinterpret_cast<FnPtr>(
136
+ impl.get_call_ptr(device_type
137
+ , reinterpret_cast<void*>(DEFAULT)
138
+ #ifdef HAVE_AVX512_CPU_DEFINITION
139
+ , reinterpret_cast<void*>(AVX512)
140
+ #endif
141
+ #ifdef HAVE_AVX2_CPU_DEFINITION
142
+ , reinterpret_cast<void*>(AVX2)
143
+ #endif
144
+ #ifdef HAVE_VSX_CPU_DEFINITION
145
+ , reinterpret_cast<void*>(VSX)
146
+ #endif
147
+ #ifdef HAVE_ZVECTOR_CPU_DEFINITION
148
+ , reinterpret_cast<void*>(ZVECTOR)
149
+ #endif
150
+ )
151
+ );
152
+ }
153
+
154
+ public:
155
+ template <typename... ArgTypes>
156
+ rT operator()(c10::DeviceType device_type, ArgTypes&&... args) {
157
+ FnPtr call_ptr = get_call_ptr(device_type);
158
+ return (*call_ptr)(std::forward<ArgTypes>(args)...);
159
+ }
160
+
161
+ void set_cuda_dispatch_ptr(FnPtr fn_ptr) {
162
+ impl.cuda_dispatch_ptr = reinterpret_cast<void*>(fn_ptr);
163
+ }
164
+
165
+ void set_hip_dispatch_ptr(FnPtr fn_ptr) {
166
+ impl.hip_dispatch_ptr = reinterpret_cast<void*>(fn_ptr);
167
+ }
168
+
169
+ void set_mps_dispatch_ptr(FnPtr fn_ptr) {
170
+ impl.mps_dispatch_ptr = reinterpret_cast<void*>(fn_ptr);
171
+ }
172
+
173
+ void set_privateuse1_dispatch_ptr(FnPtr fn_ptr) {
174
+ impl.privateuse1_dispatch_ptr = reinterpret_cast<void*>(fn_ptr);
175
+ }
176
+
177
+ static TORCH_API FnPtr DEFAULT;
178
+ #ifdef HAVE_AVX512_CPU_DEFINITION
179
+ static TORCH_API FnPtr AVX512;
180
+ #endif
181
+ #ifdef HAVE_AVX2_CPU_DEFINITION
182
+ static TORCH_API FnPtr AVX2;
183
+ #endif
184
+ #ifdef HAVE_VSX_CPU_DEFINITION
185
+ static TORCH_API FnPtr VSX;
186
+ #endif
187
+ #ifdef HAVE_ZVECTOR_CPU_DEFINITION
188
+ static TORCH_API FnPtr ZVECTOR;
189
+ #endif
190
+ private:
191
+ DispatchStubImpl impl;
192
+ };
193
+
194
+ namespace {
195
+ template <typename DispatchStub>
196
+ struct RegisterCUDADispatch {
197
+ RegisterCUDADispatch(DispatchStub &stub, typename DispatchStub::FnPtr value) {
198
+ stub.set_cuda_dispatch_ptr(value);
199
+ }
200
+ };
201
+
202
+ template <typename DispatchStub>
203
+ struct RegisterMPSDispatch {
204
+ RegisterMPSDispatch(DispatchStub &stub, typename DispatchStub::FnPtr value) {
205
+ stub.set_mps_dispatch_ptr(value);
206
+ }
207
+ };
208
+
209
+ template <typename DispatchStub>
210
+ struct RegisterHIPDispatch {
211
+ RegisterHIPDispatch(DispatchStub &stub, typename DispatchStub::FnPtr value) {
212
+ // TODO: make this point at hip_dispatch_ptr
213
+ stub.set_cuda_dispatch_ptr(value);
214
+ }
215
+ };
216
+
217
+ template <typename DispatchStub>
218
+ struct RegisterPRIVATEUSE1Dispatch {
219
+ RegisterPRIVATEUSE1Dispatch(DispatchStub &stub, typename DispatchStub::FnPtr value) {
220
+ stub.set_privateuse1_dispatch_ptr(value);
221
+ }
222
+ };
223
+
224
+ } // anonymous namespace
225
+ // Compiler will complain if you put things like std::tuple<Tensor, Tensor> in
226
+ // the `fn` argument of DECLARE_DISPATCH. Some possible workarounds, e.g.,
227
+ // adding parentheses and using helper struct to get rid of the parentheses, do
228
+ // not work with MSVC. So do a `using`-declaration if you need to pass in such
229
+ // `fn`, e.g., grid_sampler_2d_backward_cpu_kernel in GridSampleKernel.h.
230
+ #define DECLARE_DISPATCH(fn, name) \
231
+ struct name : DispatchStub<fn, name> { \
232
+ name() = default; \
233
+ name(const name&) = delete; \
234
+ name& operator=(const name&) = delete; \
235
+ }; \
236
+ extern TORCH_API struct name name
237
+
238
+ #define DEFINE_DISPATCH(name) struct name name
239
+
240
+ #define REGISTER_ARCH_DISPATCH(name, arch, fn) \
241
+ template <> name::FnPtr TORCH_API DispatchStub<name::FnPtr, struct name>::arch = fn;
242
+
243
+ #ifdef HAVE_AVX512_CPU_DEFINITION
244
+ #define REGISTER_AVX512_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, AVX512, fn)
245
+ #else
246
+ #define REGISTER_AVX512_DISPATCH(name, fn)
247
+ #endif
248
+
249
+ #ifdef HAVE_AVX2_CPU_DEFINITION
250
+ #define REGISTER_AVX2_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, AVX2, fn)
251
+ #else
252
+ #define REGISTER_AVX2_DISPATCH(name, fn)
253
+ #endif
254
+
255
+ #ifdef HAVE_VSX_CPU_DEFINITION
256
+ #define REGISTER_VSX_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, VSX, fn)
257
+ #else
258
+ #define REGISTER_VSX_DISPATCH(name, fn)
259
+ #endif
260
+
261
+ #ifdef HAVE_ZVECTOR_CPU_DEFINITION
262
+ #define REGISTER_ZVECTOR_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, ZVECTOR, fn)
263
+ #else
264
+ #define REGISTER_ZVECTOR_DISPATCH(name, fn)
265
+ #endif
266
+
267
+ // Macro to register the same kernel for all CPU arch types. This is useful
268
+ // if a kernel does not benefit from being recompiled across different arch types.
269
+ #define REGISTER_ALL_CPU_DISPATCH(name, fn) \
270
+ REGISTER_ARCH_DISPATCH(name, DEFAULT, fn) \
271
+ REGISTER_AVX512_DISPATCH(name, fn) \
272
+ REGISTER_AVX2_DISPATCH(name, fn) \
273
+ REGISTER_VSX_DISPATCH(name, fn) \
274
+ REGISTER_ZVECTOR_DISPATCH(name, fn)
275
+
276
+ #define REGISTER_NO_CPU_DISPATCH(name) \
277
+ REGISTER_ALL_CPU_DISPATCH(name, nullptr)
278
+
279
+ #define REGISTER_CUDA_DISPATCH(name, fn) \
280
+ static RegisterCUDADispatch<struct name> name ## __register(name, fn);
281
+
282
+ #define REGISTER_HIP_DISPATCH(name, fn) \
283
+ static RegisterHIPDispatch<struct name> name ## __register(name, fn);
284
+
285
+ #define REGISTER_MPS_DISPATCH(name, fn) \
286
+ static RegisterMPSDispatch<struct name> name ## __register(name, fn);
287
+
288
+ #define REGISTER_PRIVATEUSE1_DISPATCH(name, fn) \
289
+ static RegisterPRIVATEUSE1Dispatch<struct name> name ## __register(name, fn);
290
+
291
+ // NB: This macro must be used in an actual 'cu' file; if you try using
292
+ // it from a 'cpp' file it will not work!
293
+ #if defined(__CUDACC__)
294
+ #define REGISTER_DISPATCH(name, fn) REGISTER_CUDA_DISPATCH(name, fn)
295
+ #elif defined(__HIPCC__)
296
+ // TODO: cut this over to HIP dispatch once we stop pretending that CUDA
297
+ // is HIP in the PyTorch HIPify build.
298
+ #define REGISTER_DISPATCH(name, fn) REGISTER_CUDA_DISPATCH(name, fn)
299
+ // #define REGISTER_DISPATCH(name, fn) REGISTER_HIP_DISPATCH(name, fn)
300
+ #elif defined(__OBJC__) && defined(USE_MPS)
301
+ // NB: this macro must be used from a 'mm' file in order to dispatch a MPS kernel
302
+ #define REGISTER_DISPATCH(name, fn) REGISTER_MPS_DISPATCH(name, fn)
303
+ #elif defined(CPU_CAPABILITY)
304
+ // REGISTER_DISPATCH now dispatches an AVX512 kernel to nullptr but registers other dispatches.
305
+ // ALSO_REGISTER_AVX512_DISPATCH should be used for ensuring AVX512 dispatch, among others.
306
+ #ifdef CPU_CAPABILITY_AVX512
307
+ #define REGISTER_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, nullptr)
308
+ #else
309
+ #define REGISTER_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
310
+ #endif
311
+ #define ALSO_REGISTER_AVX512_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
312
+ #endif
313
+ } // namespace at::native
314
+
315
+ C10_CLANG_DIAGNOSTIC_POP()
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Distance.h ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/native/DispatchStub.h>
4
+
5
+ namespace at {
6
+ class Tensor;
7
+
8
+ namespace native {
9
+
10
+ using pdist_forward_fn = void(*)(Tensor&, const Tensor&, const double p);
11
+ using pdist_backward_fn = void(*)(Tensor&, const Tensor&, const Tensor&, const double p, const Tensor&);
12
+ using cdist_fn = void(*)(Tensor&, const Tensor&, const Tensor&, const double p);
13
+ using cdist_backward_fn = void(*)(Tensor&, const Tensor&, const Tensor&, const Tensor&, const double p, const Tensor&);
14
+
15
+ DECLARE_DISPATCH(pdist_forward_fn, pdist_forward_stub);
16
+ DECLARE_DISPATCH(pdist_backward_fn, pdist_backward_stub);
17
+ DECLARE_DISPATCH(cdist_fn, cdist_stub);
18
+ DECLARE_DISPATCH(cdist_backward_fn, cdist_backward_stub);
19
+
20
+ }} // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/DistributionTemplates.h ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/Dispatch.h>
5
+ #include <ATen/Generator.h>
6
+ #include <ATen/ExpandUtils.h>
7
+ #include <ATen/Tensor.h>
8
+ #include <ATen/MemoryOverlap.h>
9
+ #include <ATen/NamedTensorUtils.h>
10
+ #include <ATen/native/Resize.h>
11
+ #include <ATen/native/TensorIterator.h>
12
+ #include <c10/util/Optional.h>
13
+ #include <limits>
14
+ #include <cmath>
15
+
16
+ #ifndef AT_PER_OPERATOR_HEADERS
17
+ #include <ATen/Functions.h>
18
+ #else
19
+ #include <ATen/ops/empty_like.h>
20
+ #include <ATen/ops/empty.h>
21
+ #include <ATen/ops/full.h>
22
+ #include <ATen/ops/view_as_real.h>
23
+ #endif
24
+
25
+ namespace at::native::templates {
26
+
27
+ // ==================================================== Random ========================================================
28
+
29
+ // The purpose of `update_from` and `update_to` is to find the closest valid int64_t number that can be used as actual `from`.
30
+ // The current implementation of `random_` uses uint64_t arithmetics and casts the result to the target dtype(scalar_t).
31
+ // This casting can result in generating numbers that happen to be greater or equal to `to` value. For instance:
32
+ //
33
+ // auto actual = torch::empty({3, 3}, torch::half);
34
+ // actual.random_(0, 65504);
35
+ //
36
+ // If random's uint64_t arithmetics produces 65503 as a random value after casting to torch::half it becomes 65504
37
+ // and violates the requirement that random value must be less than `to`. To resolve this issue `update_from` and `update_to`
38
+ // moves `from` to the right and `to` to the left to the next closest value that won't go outside [from, to) after casting to
39
+ // the target dtype. For `to` = 65504 it moves left for (1 << (log2(to) - 11 + 1)) = 32 and becomes 65472, which is previous
40
+ // available number for torch::half dtype.
41
+ template<typename scalar_t>
42
+ int64_t update_from(int64_t from) {
43
+ static_assert(
44
+ std::is_floating_point<scalar_t>::value ||
45
+ std::is_same<scalar_t, at::Half>::value ||
46
+ std::is_same<scalar_t, at::BFloat16>::value, "scalar_t must be floating-point type");
47
+ const auto from_plus_1 = static_cast<int64_t>(static_cast<scalar_t>(from + 1));
48
+ if (from_plus_1 < from) {
49
+ int64_t from_ = std::abs(from + 1);
50
+ int n = 0;
51
+ while (from_ >>= 1) ++n;
52
+ // NOLINTNEXTLINE(clang-analyzer-core.UndefinedBinaryOperatorResult)
53
+ from = from_plus_1 + (1LL << (n - std::numeric_limits<scalar_t>::digits + 1));
54
+ }
55
+ return from;
56
+ }
57
+
58
+ template<typename scalar_t>
59
+ int64_t update_to(int64_t to) {
60
+ static_assert(
61
+ std::is_floating_point<scalar_t>::value ||
62
+ std::is_same<scalar_t, at::Half>::value ||
63
+ std::is_same<scalar_t, at::BFloat16>::value, "scalar_t must be floating-point type");
64
+ const auto to_minus_1 = static_cast<int64_t>(static_cast<scalar_t>(to - 1));
65
+ if (to_minus_1 >= to) {
66
+ int64_t to_ = std::abs(to - 1);
67
+ int n = 0;
68
+ while (to_ >>= 1) ++n;
69
+ // NOLINTNEXTLINE(clang-analyzer-core.UndefinedBinaryOperatorResult)
70
+ to = to_minus_1 - (1LL << (n - std::numeric_limits<scalar_t>::digits + 1));
71
+ }
72
+ return to;
73
+ }
74
+
75
+ // Return earlier for not invoking kernel.
76
+ // See https://github.com/pytorch/pytorch/issues/103418 for more details
77
+ #define CHECK_EMPTY_AND_RETURN(tensor) \
78
+ if (tensor.numel() == 0) { \
79
+ return tensor; \
80
+ }
81
+
82
+ template<template<typename> class random_kernel, typename RNG>
83
+ at::Tensor& random_impl(at::Tensor& self, c10::optional<Generator> generator) {
84
+ CHECK_EMPTY_AND_RETURN(self);
85
+ auto iter = at::TensorIterator::borrowing_nullary_op(self);
86
+ random_kernel<RNG>()(iter, generator);
87
+ return self;
88
+ }
89
+
90
+ #define CHECK_OUT_OF_BOUNDS(var, name, min, max, dtype) \
91
+ TORCH_CHECK(var >= min && var <= max, name , " is out of bounds for ", dtype); \
92
+
93
+ #define WARN_OUT_OF_BOUNDS(var, name, digits, dtype) \
94
+ if (var < -(1LL << digits) || var > (1LL << digits)) { \
95
+ TORCH_WARN(name , " is out of bounds [-(2^", digits, "), 2^", digits, "]. ", \
96
+ "Due to precision limitations ", dtype, " can support discrete uniform distribution only within this range. ", \
97
+ "This warning will become an error in version 1.7 release, please fix the code in advance"); \
98
+ }
99
+
100
+ static void check_from_to_in_range(int64_t from, int64_t to_inc, caffe2::TypeMeta dtype) {
101
+ const auto scalar_type = typeMetaToScalarType(dtype);
102
+ if (isFloatingType(scalar_type)) {
103
+ AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, scalar_type, "check_random_fp_bounds", [&] {
104
+ const auto min = static_cast<double>(std::numeric_limits<scalar_t>::lowest());
105
+ const auto max = static_cast<double>(std::numeric_limits<scalar_t>::max());
106
+ CHECK_OUT_OF_BOUNDS(from, "from", min, max, dtype);
107
+ CHECK_OUT_OF_BOUNDS(to_inc, "to - 1", min, max, dtype);
108
+
109
+ constexpr auto digits = std::numeric_limits<scalar_t>::digits;
110
+ WARN_OUT_OF_BOUNDS(from, "from", digits, dtype);
111
+ WARN_OUT_OF_BOUNDS(to_inc, "to - 1", digits, dtype);
112
+ });
113
+ } else if (isIntegralType(scalar_type, /*includeBool=*/true)) {
114
+ AT_DISPATCH_INTEGRAL_TYPES_AND(at::ScalarType::Bool, scalar_type, "check_random_integral_bounds", [&]() {
115
+ const auto min = static_cast<int64_t>(std::numeric_limits<scalar_t>::lowest());
116
+ const auto max = static_cast<int64_t>(std::numeric_limits<scalar_t>::max());
117
+ CHECK_OUT_OF_BOUNDS(from, "from", min, max, dtype);
118
+ CHECK_OUT_OF_BOUNDS(to_inc, "to - 1", min, max, dtype);
119
+ });
120
+ } else {
121
+ TORCH_CHECK(false, "check_random_bounds handles only integral, floating-point and boolean types");
122
+ }
123
+ }
124
+
125
+ template<template<typename> class random_from_to_kernel, typename RNG>
126
+ at::Tensor& random_from_to_impl(at::Tensor& self, int64_t from, c10::optional<int64_t> to_opt, c10::optional<Generator> generator) {
127
+ uint64_t range = 0;
128
+ auto iter = at::TensorIterator::borrowing_nullary_op(self);
129
+ if (to_opt.has_value()) {
130
+ // [from, to)
131
+ int64_t to = *to_opt;
132
+ TORCH_CHECK(from < to, "random_ expects 'from' to be less than 'to', but got from=", from, " >= to=", to);
133
+ if (isFloatingType(iter.dtype())) {
134
+ AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "random_update_from_to", [&] {
135
+ from = update_from<scalar_t>(from);
136
+ to = update_to<scalar_t>(to);
137
+ TORCH_CHECK(from < to, "random_ expects 'from' casted to dtype to be less than 'to' casted to dtype, but got from=", from, " >= to=", to);
138
+ });
139
+ }
140
+ check_from_to_in_range(from, to - 1, self.dtype());
141
+ CHECK_EMPTY_AND_RETURN(self);
142
+ range = static_cast<uint64_t>(to) - static_cast<uint64_t>(from);
143
+ random_from_to_kernel<RNG>()(iter, range, from, generator);
144
+ } else if (from != std::numeric_limits<int64_t>::lowest()) {
145
+ // [from, std::numeric_limits<int64_t>::max()]
146
+ int64_t to_inc = 0;
147
+ if (isFloatingType(iter.dtype())) {
148
+ AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "random_from_to_range_calc", [&] {
149
+ constexpr int64_t scalar_t_max = static_cast<int64_t>(1) << std::numeric_limits<scalar_t>::digits;
150
+ to_inc = scalar_t_max > std::numeric_limits<int64_t>::max() ? std::numeric_limits<int64_t>::max() : static_cast<int64_t>(scalar_t_max);
151
+ from = update_from<scalar_t>(from);
152
+ TORCH_CHECK(from < to_inc, "random_ expects 'from' casted to dtype to be less than or equal to 'to_inc' casted to dtype, but got from=", from, " > to_inc=", to_inc);
153
+ });
154
+ } else if (isIntegralType(iter.dtype(), /*includeBool=*/true)) {
155
+ AT_DISPATCH_INTEGRAL_TYPES_AND(at::ScalarType::Bool, self.scalar_type(), "random_from_to_range_calc", [&] {
156
+ if constexpr (std::is_same_v<scalar_t, bool>) {
157
+ to_inc = static_cast<int64_t>(true);
158
+ } else {
159
+ to_inc = static_cast<int64_t>(std::numeric_limits<scalar_t>::max());
160
+ }
161
+ });
162
+ } else {
163
+ TORCH_CHECK(false, "random_from_to_impl handles only integral, floating-point and boolean types");
164
+ }
165
+ check_from_to_in_range(from, to_inc, self.dtype());
166
+ CHECK_EMPTY_AND_RETURN(self);
167
+ range = static_cast<uint64_t>(to_inc) - static_cast<uint64_t>(from) + 1;
168
+ random_from_to_kernel<RNG>()(iter, range, from, generator);
169
+ } else {
170
+ // [std::numeric_limits<int64_t>::lowest(), std::numeric_limits<int64_t>::max()]
171
+ // range = 2^64
172
+ CHECK_EMPTY_AND_RETURN(self);
173
+ random_from_to_kernel<RNG>()(iter, generator);
174
+ }
175
+ return self;
176
+ }
177
+
178
+ // ==================================================== Normal ========================================================
179
+
180
+ #define CHECK_NORMAL_TENSOR_STD(std) \
181
+ do { \
182
+ TORCH_CHECK( \
183
+ !std.is_complex(), \
184
+ "normal expects standard deviation to be non-complex"); \
185
+ TORCH_CHECK( \
186
+ std.numel() == 0 || std.is_meta() || std.min().ge(0).item<bool>(), \
187
+ "normal expects all elements of std >= 0.0"); \
188
+ } while (0)
189
+
190
+ #define CHECK_NORMAL_STD(std) \
191
+ TORCH_CHECK(std >= 0.0, "normal expects std >= 0.0, but found std ", std);
192
+
193
+ template<template<typename> class normal_kernel, typename RNG>
194
+ Tensor& normal_impl_(Tensor& self, double mean, double std, c10::optional<Generator> gen) {
195
+ CHECK_NORMAL_STD(std);
196
+ CHECK_EMPTY_AND_RETURN(self);
197
+
198
+ if (self.is_complex()) {
199
+ auto float_tensor = at::view_as_real(self);
200
+ // variance for normal distribution of the real and imaginary values
201
+ // is half of the input variance
202
+ normal_kernel<RNG>()(float_tensor, mean, std/(std::sqrt(2)), gen);
203
+ } else {
204
+ normal_kernel<RNG>()(self, mean, std, gen);
205
+ }
206
+ return self;
207
+ }
208
+
209
+ template<template<typename> class normal_kernel, typename RNG>
210
+ Tensor& normal_out_impl(Tensor& output, const Tensor& mean, double std, c10::optional<Generator> gen) {
211
+ CHECK_NORMAL_STD(std);
212
+ auto std_tensor = at::empty_like(output, MemoryFormat::Contiguous);
213
+ auto shape = at::infer_size(mean.sizes(), std_tensor.sizes());
214
+ at::native::resize_output(output, shape);
215
+ normal_impl_<normal_kernel, RNG>(output, 0, std, gen);
216
+ output.add_(mean);
217
+ return output;
218
+ }
219
+
220
+ template<template<typename> class normal_kernel, typename RNG>
221
+ Tensor& normal_out_impl(Tensor& output, double mean, const Tensor& std, c10::optional<Generator> gen) {
222
+ CHECK_NORMAL_TENSOR_STD(std);
223
+ auto mean_tensor = at::full({}, mean, output.options());
224
+ auto shape = at::infer_size(mean_tensor.sizes(), std.sizes());
225
+ at::native::resize_output(output, shape);
226
+ normal_impl_<normal_kernel, RNG>(output, 0, 1, gen);
227
+ // CUDA NB: addcmul_out copies the tensor to be added into the output.
228
+ // The previous function here was addcmul_out(output, mean_tensor, output, std, 1);
229
+ // The third argument is not a constant reference and hence the samples in output are overwritten.
230
+ // Consequently, the computation performed is mean_tensor + mean_tensor * std instead of mean_tensor + output * std
231
+ output.mul_(std).add_(mean_tensor);
232
+ return output;
233
+ }
234
+
235
+ template<template<typename> class normal_kernel, typename RNG>
236
+ Tensor& normal_out_impl(Tensor& output, const Tensor& mean, const Tensor& std, c10::optional<Generator> gen) {
237
+ CHECK_NORMAL_TENSOR_STD(std);
238
+ auto shape = at::infer_size(mean.sizes(), std.sizes());
239
+ at::native::resize_output(output, shape);
240
+ normal_impl_<normal_kernel, RNG>(output, 0, 1, gen);
241
+ // CUDA NB: addcmul_out copies the tensor to be added into the output.
242
+ // The previous function here was addcmul_out(output, mean, output, std, 1);
243
+ // The third argument is not a constant reference and hence the samples in output are overwritten.
244
+ // Consequently, the computation performed is mean + mean * std instead of mean + output * std
245
+ output.mul_(std).add_(mean);
246
+ return output;
247
+ }
248
+
249
+ template<template<typename> class normal_kernel, typename RNG>
250
+ Tensor normal_impl(const Tensor& mean, double std, c10::optional<Generator> gen) {
251
+ CHECK_NORMAL_STD(std);
252
+ Tensor ret = at::empty_like(mean, MemoryFormat::Contiguous);
253
+ normal_out_impl<normal_kernel, RNG>(ret, mean, std, gen);
254
+ return ret;
255
+ }
256
+
257
+ template<template<typename> class normal_kernel, typename RNG>
258
+ Tensor normal_impl(double mean, const Tensor& std, c10::optional<Generator> gen) {
259
+ CHECK_NORMAL_TENSOR_STD(std);
260
+ Tensor ret = at::empty_like(std, MemoryFormat::Contiguous);
261
+ normal_out_impl<normal_kernel, RNG>(ret, mean, std, gen);
262
+ return ret;
263
+ }
264
+
265
+ template<template<typename> class normal_kernel, typename RNG>
266
+ Tensor normal_impl(const Tensor& mean, const Tensor& std, c10::optional<Generator> gen) {
267
+ CHECK_NORMAL_TENSOR_STD(std);
268
+ auto shape = at::infer_size(mean.sizes(), std.sizes());
269
+ Tensor ret = at::empty(shape, mean.options(), MemoryFormat::Contiguous);
270
+ normal_out_impl<normal_kernel, RNG>(ret, mean, std, gen);
271
+ return ret;
272
+ }
273
+
274
+ // ==================================================== Uniform =======================================================
275
+
276
+ template<template<typename> class uniform_kernel, typename RNG>
277
+ at::Tensor& uniform_impl_(at::Tensor& self, double from, double to, c10::optional<Generator> generator) {
278
+ if (self.is_complex()) {
279
+ CHECK_EMPTY_AND_RETURN(self);
280
+ auto float_tensor = at::view_as_real(self);
281
+ uniform_impl_<uniform_kernel, RNG>(float_tensor, from, to, generator);
282
+ } else {
283
+ AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "check_uniform_bounds", [&] {
284
+ const auto dtype = self.dtype();
285
+ const auto min = static_cast<double>(std::numeric_limits<scalar_t>::lowest());
286
+ const auto max = static_cast<double>(std::numeric_limits<scalar_t>::max());
287
+ CHECK_OUT_OF_BOUNDS(from, "from", min, max, dtype);
288
+ CHECK_OUT_OF_BOUNDS(to, "to", min, max, dtype);
289
+ TORCH_CHECK(from <= to, "uniform_ expects to return a [from, to) range, but found from=", from, " > to=", to);
290
+ TORCH_CHECK((to - from) <= std::numeric_limits<scalar_t>::max(),
291
+ "uniform_ expects to-from <= std::numeric_limits<", toString(self.scalar_type()),
292
+ ">::max(), but found to=", to, " and from=", from,
293
+ " which result in to-from to exceed the limit");
294
+ from = std::min(std::max(from, min), max);
295
+ to = std::max(std::min(to, max), min);
296
+ });
297
+ CHECK_EMPTY_AND_RETURN(self);
298
+ auto iter = at::TensorIterator::borrowing_nullary_op(self);
299
+ uniform_kernel<RNG>()(iter, from, to, generator);
300
+ }
301
+ return self;
302
+ }
303
+
304
+ // ================================================== LogNormal =======================================================
305
+
306
+ template<template<typename> class log_normal_kernel, typename RNG>
307
+ at::Tensor& log_normal_impl_(at::Tensor& self, double mean, double std, c10::optional<Generator> gen) {
308
+ TORCH_CHECK(std > 0.0, "log_normal_ expects std > 0.0, but found std=", std);
309
+ CHECK_EMPTY_AND_RETURN(self);
310
+ auto iter = TensorIterator::borrowing_nullary_op(self);
311
+ log_normal_kernel<RNG>()(iter, mean, std, gen);
312
+ return self;
313
+ }
314
+
315
+ // =================================================== Geometric ======================================================
316
+
317
+ template<template<typename> class geometric_kernel, typename RNG>
318
+ Tensor& geometric_impl_(Tensor& self, double p, c10::optional<Generator> gen) {
319
+ TORCH_CHECK(0 < p && p < 1, "geometric_ expects p to be in (0, 1), but got p=", p);
320
+ CHECK_EMPTY_AND_RETURN(self);
321
+ auto iter = TensorIterator::borrowing_nullary_op(self);
322
+ geometric_kernel<RNG>()(iter, p, gen);
323
+ return self;
324
+ }
325
+
326
+ // ================================================== Exponential =====================================================
327
+
328
+ template<template<typename> class exponential_kernel, typename RNG>
329
+ Tensor& exponential_impl_(Tensor& self, double lambda, c10::optional<Generator> gen) {
330
+ TORCH_CHECK(lambda > 0.0, "exponential_ expects lambda > 0.0, but found lambda=", lambda);
331
+ CHECK_EMPTY_AND_RETURN(self);
332
+ auto iter = TensorIterator::borrowing_nullary_op(self);
333
+ exponential_kernel<RNG>()(iter, lambda, gen);
334
+ return self;
335
+ }
336
+
337
+ // ==================================================== Cauchy ========================================================
338
+
339
+ template<template<typename> class cauchy_kernel, typename RNG>
340
+ Tensor& cauchy_impl_(Tensor& self, double median, double sigma, c10::optional<Generator> gen) {
341
+ // TODO: instead of variable name 'sigma', use 'gamma' or 'scale'
342
+ // the variance, squared sigma, is undefined for cauchy distribution
343
+ TORCH_CHECK(sigma > 0.0, "cauchy_ expects sigma > 0.0, but found sigma=", sigma);
344
+ TORCH_CHECK(at::isFloatingType(self.scalar_type()), "Cauchy distribution is a continuous probability distribution. dtype must be a floating point but you specified ", self.dtype());
345
+ CHECK_EMPTY_AND_RETURN(self);
346
+ auto iter = TensorIterator::borrowing_nullary_op(self);
347
+ cauchy_kernel<RNG>()(iter, median, sigma, gen);
348
+ return self;
349
+ }
350
+
351
+ // ==================================================== Bernoulli =====================================================
352
+
353
+ template<template<typename> class bernoulli_tensor_kernel, typename RNG>
354
+ Tensor& bernoulli_impl_(Tensor& self, const Tensor& p_, c10::optional<Generator> gen) {
355
+ CHECK_EMPTY_AND_RETURN(self);
356
+ NoNamesGuard guard;
357
+ at::assert_no_internal_overlap(self);
358
+ bernoulli_tensor_kernel<RNG>()(self, p_, gen);
359
+ return self;
360
+ }
361
+
362
+ template<template<typename> class bernoulli_scalar_kernel, typename RNG>
363
+ Tensor& bernoulli_impl_(Tensor& self, double p, c10::optional<Generator> gen) {
364
+ TORCH_CHECK(0 <= p && p <= 1, "bernoulli_ expects p to be in [0, 1], but got p=", p);
365
+ CHECK_EMPTY_AND_RETURN(self);
366
+ at::assert_no_internal_overlap(self);
367
+ bernoulli_scalar_kernel<RNG>()(self, p, gen);
368
+ return self;
369
+ }
370
+
371
+ template<template<typename> class bernoulli_tensor_kernel, typename RNG>
372
+ Tensor& bernoulli_out_impl(Tensor& result, const Tensor& self, c10::optional<Generator> gen) {
373
+ // result.resize_as_(self) requires self to have same dtype as result, so we
374
+ // use resize_ instead.
375
+ // TODO: Fix resize_as_. See pytorch/pytorch#11665.
376
+ result.resize_(self.sizes());
377
+ bernoulli_impl_<bernoulli_tensor_kernel, RNG>(result, self, gen);
378
+ namedinference::propagate_names(result, self);
379
+ return result;
380
+ }
381
+
382
+ #undef CHECK_OUT_OF_BOUNDS
383
+ #undef WARN_OUT_OF_BOUNDS
384
+
385
+ } // namespace at::native::templates
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Distributions.h ADDED
@@ -0,0 +1,518 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/native/Math.h>
4
+ #include <c10/macros/Macros.h>
5
+ #include <c10/util/MathConstants.h>
6
+
7
+ // ROCM hcc doesn't work well with using std:: in kernel functions
8
+ #if defined(__CUDA_ARCH__)
9
+ #include <c10/cuda/CUDAMathCompat.h>
10
+ #define compat_exp c10::cuda::compat::exp
11
+ #define compat_ceil c10::cuda::compat::ceil
12
+ #define compat_floor c10::cuda::compat::floor
13
+ #define compat_log c10::cuda::compat::log
14
+ #define compat_pow c10::cuda::compat::pow
15
+ #define compat_sqrt c10::cuda::compat::sqrt
16
+ #define compat_tan c10::cuda::compat::tan
17
+ #define compat_abs c10::cuda::compat::abs
18
+ #define compat_log1p c10::cuda::compat::log1p
19
+ #elif defined(__HIPCC__)
20
+ #include <c10/hip/HIPMathCompat.h>
21
+ #define compat_exp c10::hip::compat::exp
22
+ #define compat_ceil c10::hip::compat::ceil
23
+ #define compat_floor c10::hip::compat::floor
24
+ #define compat_log c10::hip::compat::log
25
+ #define compat_pow c10::hip::compat::pow
26
+ #define compat_sqrt c10::hip::compat::sqrt
27
+ #define compat_tan c10::hip::compat::tan
28
+ #define compat_abs c10::hip::compat::abs
29
+ #define compat_log1p c10::hip::compat::log1p
30
+ #else
31
+ #define compat_exp std::exp
32
+ #define compat_ceil std::ceil
33
+ #define compat_floor std::floor
34
+ #define compat_log std::log
35
+ #define compat_pow std::pow
36
+ #define compat_sqrt std::sqrt
37
+ #define compat_tan std::tan
38
+ #define compat_abs std::abs
39
+ #define compat_log1p std::log1p
40
+ #endif
41
+
42
+ namespace {
43
+
44
+ #if !defined(__CUDA_ARCH__) && !defined(__HIPCC__)
45
+ // we cannot use std::isnan directly due to some incompatibility of
46
+ // gcc constexpr'ing and nvcc
47
+ using std::isnan;
48
+ #endif
49
+
50
+ // Here sampler_t should be function type scalar_t(void). For gpu
51
+ // "sampler" is a device function, but since ROCM doesn't have
52
+ // equivalent to nvstd::function, we use a template type parameter to
53
+ // capture it.
54
+ template<typename scalar_t, typename sampler_t>
55
+ struct BaseSampler {
56
+ sampler_t sampler;
57
+ C10_DEVICE BaseSampler(const sampler_t& sampler): sampler(sampler) {}
58
+ C10_DEVICE scalar_t sample() {
59
+ return sampler();
60
+ }
61
+ };
62
+
63
+ // The function `sample_gamma` is
64
+ // is adapted from Numpy's distributions.c implementation.
65
+ // It is MIT licensed, so here is the copyright:
66
+
67
+ /* Copyright 2005 Robert Kern ([email protected])
68
+ *
69
+ * Permission is hereby granted, free of charge, to any person obtaining a
70
+ * copy of this software and associated documentation files (the
71
+ * "Software"), to deal in the Software without restriction, including
72
+ * without limitation the rights to use, copy, modify, merge, publish,
73
+ * distribute, sublicense, and/or sell copies of the Software, and to
74
+ * permit persons to whom the Software is furnished to do so, subject to
75
+ * the following conditions:
76
+ *
77
+ * The above copyright notice and this permission notice shall be included
78
+ * in all copies or substantial portions of the Software.
79
+ *
80
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
81
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
82
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
83
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
84
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
85
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
86
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
87
+ */
88
+
89
+ template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t, typename normal_sampler_t>
90
+ C10_DEVICE scalar_t sample_gamma(scalar_t alpha, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform, BaseSampler<accscalar_t, normal_sampler_t>& standard_normal) {
91
+ accscalar_t scale = 1.0f;
92
+
93
+ // Boost alpha for higher acceptance probability.
94
+ if (alpha < 1.0f) {
95
+ if (alpha == 0.f) return 0.f;
96
+ scale *= compat_pow(1 - standard_uniform.sample(), 1.0f / alpha);
97
+ alpha += 1.0f;
98
+ }
99
+
100
+ // This implements the acceptance-rejection method of Marsaglia and Tsang (2000)
101
+ // doi:10.1145/358407.358414
102
+ const accscalar_t d = alpha - 1.0f / 3.0f;
103
+ const accscalar_t c = 1.0f / compat_sqrt(9.0f * d);
104
+ for (;;) {
105
+ accscalar_t x, y;
106
+ do {
107
+ x = standard_normal.sample();
108
+ y = 1.0f + c * x;
109
+ } while (y <= 0);
110
+ const accscalar_t v = y * y * y;
111
+ const accscalar_t u = 1 - standard_uniform.sample();
112
+ const accscalar_t xx = x * x;
113
+ if (u < 1.0f - 0.0331f * xx * xx)
114
+ return static_cast<scalar_t>(scale * d * v);
115
+ if (compat_log(u) < 0.5f * xx + d * (1.0f - v + compat_log(v)))
116
+ return static_cast<scalar_t>(scale * d * v);
117
+ }
118
+ }
119
+
120
+ /* the functions stirling_approx_tail, binomial_inversion, and btrs are adapted
121
+ * from TensorFlow's random_binomial_op.cc implementation. That code is under
122
+ * copyright: 2019 The TensorFlow Authors.
123
+ *
124
+ * It was released under the Apache License, Version 2.0 (the "License"), available at:
125
+ * http://www.apache.org/licenses/LICENSE-2.0
126
+ */
127
+
128
+ template<typename scalar_t>
129
+ C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) {
130
+ const static scalar_t kTailValues[] = {
131
+ 0.0810614667953272,
132
+ 0.0413406959554092,
133
+ 0.0276779256849983,
134
+ 0.02079067210376509,
135
+ 0.0166446911898211,
136
+ 0.0138761288230707,
137
+ 0.0118967099458917,
138
+ 0.0104112652619720,
139
+ 0.00925546218271273,
140
+ 0.00833056343336287
141
+ };
142
+ if (k <= 9) {
143
+ return kTailValues[static_cast<size_t>(k)];
144
+ }
145
+ scalar_t kp1sq = (k + 1) * (k + 1);
146
+ return (1.0 / 12 - (1.0 / 360 - 1.0 / 1260 / kp1sq) / kp1sq) / (k + 1);
147
+ }
148
+
149
+
150
+ template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t>
151
+ C10_DEVICE scalar_t binomial_inversion(scalar_t count, scalar_t prob, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform) {
152
+ accscalar_t U;
153
+ accscalar_t geom_sum = 0;
154
+ scalar_t num_geom = 0;
155
+
156
+ accscalar_t logprob = compat_log1p(-prob);
157
+
158
+ while (1) {
159
+ U = standard_uniform.sample();
160
+ accscalar_t geom = compat_ceil(compat_log(U) / logprob);
161
+ geom_sum += geom;
162
+ if (geom_sum > count) {
163
+ break;
164
+ }
165
+ num_geom = num_geom + 1;
166
+ }
167
+ return num_geom;
168
+ }
169
+
170
+ template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t>
171
+ C10_DEVICE scalar_t btrs(scalar_t count, scalar_t prob, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform) {
172
+ scalar_t k;
173
+ accscalar_t U, V, us;
174
+
175
+ // This is spq in the paper.
176
+ const accscalar_t stddev = compat_sqrt(count * prob * (1 - prob));
177
+
178
+ // Other coefficients for Transformed Rejection sampling.
179
+ const accscalar_t b = 1.15 + 2.53 * stddev;
180
+ const accscalar_t a = -0.0873 + 0.0248 * b + 0.01 * prob;
181
+ const accscalar_t c = count * prob + 0.5;
182
+ const accscalar_t v_r = 0.92 - 4.2 / b;
183
+ const accscalar_t r = prob / (1 - prob);
184
+
185
+ const accscalar_t alpha = (2.83 + 5.1 / b) * stddev;
186
+ const accscalar_t m = compat_floor((count + 1) * prob);
187
+
188
+ while (1) {
189
+ U = standard_uniform.sample() - 0.5;
190
+ V = standard_uniform.sample();
191
+
192
+ us = 0.5 - compat_abs(U);
193
+ k = static_cast<scalar_t>(compat_floor((2 * a / us + b) * U + c));
194
+
195
+ // Reject non-sensical answers.
196
+ if (k < 0 || k > count) {
197
+ continue;
198
+ }
199
+ // Region for which the box is tight, and we can return our calculated value.
200
+ // This should happen 0.86 * v_r times. In the limit as n * p is large,
201
+ // the acceptance rate converges to ~79% (and in the lower regime it is ~24%).
202
+ if (us >= 0.07 && V <= v_r) {
203
+ return k;
204
+ }
205
+
206
+ // This deviates from Hormann's BTRS algorithm, as there is a log missing.
207
+ // For all (u, v) pairs outside of the bounding box, this calculates the
208
+ // transformed-reject ratio.
209
+ V = compat_log(V * alpha / (a / (us * us) + b));
210
+ accscalar_t upperbound =
211
+ ((m + 0.5) * compat_log((m + 1) / (r * (count - m + 1))) +
212
+ (count + 1) * compat_log((count - m + 1) / (count - k + 1)) +
213
+ (k + 0.5) * compat_log(r * (count - k + 1) / (k + 1)) +
214
+ stirling_approx_tail<accscalar_t>(m) + stirling_approx_tail<accscalar_t>(count - m) -
215
+ stirling_approx_tail<accscalar_t>(k) - stirling_approx_tail<accscalar_t>(count - k));
216
+
217
+ if (V <= upperbound) {
218
+ return k;
219
+ }
220
+ }
221
+ }
222
+
223
+ template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t>
224
+ C10_DEVICE scalar_t sample_binomial(scalar_t count, scalar_t prob, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform) {
225
+ if (count <= 0.0 || prob <= 0.0) {
226
+ return 0;
227
+ } else if (prob >= 1.0) {
228
+ return count;
229
+ } else if (prob <= 0.5) {
230
+ if (count * prob >= 10.0) {
231
+ // btrs
232
+ return btrs<scalar_t, accscalar_t, uniform_sampler_t>(count, prob, standard_uniform);
233
+ } else {
234
+ // binomial inversion
235
+ return binomial_inversion<scalar_t, accscalar_t, uniform_sampler_t>(count, prob, standard_uniform);
236
+ }
237
+ } else if (prob > 0.5) {
238
+ scalar_t qprob = 1.0 - prob;
239
+ if (count * qprob >= 10.0) {
240
+ // btrs
241
+ return count - btrs<scalar_t, accscalar_t, uniform_sampler_t>(count, qprob, standard_uniform);
242
+ } else {
243
+ // count - binomial inversion
244
+ return count - binomial_inversion<scalar_t, accscalar_t, uniform_sampler_t>(count, qprob, standard_uniform);
245
+ }
246
+ } else {
247
+ // prob is nan?
248
+ return static_cast<scalar_t>(NAN);
249
+ }
250
+ }
251
+
252
+ /*
253
+ * This function is derived from the implementation of the digamma function in the Cephes Math Library.
254
+ * See note [3-Clause BSD License for the Cephes Math Library] in ATen/native/Math.h.
255
+ */
256
+ template<typename scalar_t, typename accscalar_t>
257
+ C10_DEVICE static inline scalar_t digamma_one(scalar_t x) {
258
+ constexpr accscalar_t PSI_10 = 2.25175258906672110764;
259
+ if (x == 0) {
260
+ return INFINITY;
261
+ }
262
+ accscalar_t additional_summand = 0;
263
+ int x_is_integer = x == compat_floor(x);
264
+ if (x < 0) {
265
+ if (x_is_integer) {
266
+ return INFINITY;
267
+ }
268
+ // it is more standard to write this as recursion, but
269
+ // nvcc does not like that
270
+ additional_summand = -c10::pi<scalar_t> /
271
+ compat_tan(c10::pi<scalar_t> * x);
272
+ x = 1 - x;
273
+ }
274
+
275
+ // Push x to be >= 10
276
+ accscalar_t result = 0;
277
+ while (x < 10) {
278
+ result -= 1 / x;
279
+ x += 1;
280
+ }
281
+ if (x == 10) {
282
+ return result + PSI_10 + additional_summand;
283
+ }
284
+
285
+ // Compute asymptotic digamma
286
+ static const accscalar_t A[] = {
287
+ 8.33333333333333333333E-2,
288
+ -2.10927960927960927961E-2,
289
+ 7.57575757575757575758E-3,
290
+ -4.16666666666666666667E-3,
291
+ 3.96825396825396825397E-3,
292
+ -8.33333333333333333333E-3,
293
+ 8.33333333333333333333E-2,
294
+ };
295
+
296
+ accscalar_t y = 0;
297
+ if (x < 1.0e17f) {
298
+ accscalar_t z = 1.0 / (x * x);
299
+ y = z * polevl<accscalar_t>(z, A, 6);
300
+ }
301
+ return static_cast<scalar_t>(
302
+ result + compat_log(x) - (0.5f / x) - y + additional_summand);
303
+ }
304
+
305
+ // Computes the reparameterized gradient -(d/dalpha cdf(x;alpha)) / pdf(x;alpha)
306
+ // for random number x drawn from a standard Gamma distribution Gamma(alpha).
307
+ template <typename scalar_t, typename accscalar_t>
308
+ C10_HOST_DEVICE scalar_t standard_gamma_grad_one(scalar_t alpha_, scalar_t x_) {
309
+ // Use a Taylor series expansion for small x.
310
+ accscalar_t x = static_cast<accscalar_t>(x_);
311
+ accscalar_t alpha = static_cast<accscalar_t>(alpha_);
312
+ if (x < 0.8f) {
313
+ accscalar_t numer = 1;
314
+ accscalar_t denom = alpha;
315
+ auto series1 = numer / denom;
316
+ auto series2 = numer / (denom * denom);
317
+ for (int i = 1; i <= 5; ++i) {
318
+ numer *= -x / static_cast<accscalar_t>(i);
319
+ denom += 1;
320
+ series1 += numer / denom;
321
+ series2 += numer / (denom * denom);
322
+ }
323
+ const auto pow_x_alpha = compat_pow(x, alpha);
324
+ const auto gamma_pdf = compat_pow(x, alpha - 1) * compat_exp(-x);
325
+ const auto gamma_cdf = pow_x_alpha * series1;
326
+ const auto gamma_cdf_alpha =
327
+ (compat_log(x) - digamma_one<accscalar_t, accscalar_t>(alpha)) *
328
+ gamma_cdf -
329
+ pow_x_alpha * series2;
330
+ const auto result = -gamma_cdf_alpha / gamma_pdf;
331
+ return isnan(result) ? static_cast<scalar_t>( 0.f ) : static_cast<scalar_t>(result);
332
+ }
333
+
334
+ // Use a Rice saddle point expansion for large alpha.
335
+ if (alpha > 8.0f) {
336
+ if (0.9f * alpha <= x && x <= 1.1f * alpha) {
337
+ const auto numer_1 = 1 + 24 * alpha * (1 + 12 * alpha);
338
+ const auto numer_2 = 1440 * (alpha * alpha) + 6 * x * (53 - 120 * x)
339
+ - 65 * x * x / alpha + alpha * (107 + 3600 * x);
340
+ const auto denom = 1244160 * (alpha * alpha) * (alpha * alpha);
341
+ return static_cast<scalar_t>(numer_1 * numer_2 / denom);
342
+ }
343
+ const auto denom = compat_sqrt(8 * alpha);
344
+ const auto term2 = denom / (alpha - x);
345
+ const auto term3 = compat_pow(
346
+ x - alpha - alpha * compat_log(x / alpha),
347
+ static_cast<accscalar_t>(-1.5));
348
+ const auto term23 = (x < alpha) ? term2 - term3 : term2 + term3;
349
+ const auto term1 = compat_log(x / alpha) * term23 -
350
+ compat_sqrt(2 / alpha) * (alpha + x) / ((alpha - x) * (alpha - x));
351
+ const auto stirling = 1 + 1 / (12 * alpha) * (1 + 1 / (24 * alpha));
352
+ const auto numer = x * term1;
353
+ return static_cast<scalar_t>(-stirling * numer / denom);
354
+ }
355
+
356
+ // Use a bivariate rational approximation to the reparameterized gradient.
357
+ const auto u = compat_log(x / alpha);
358
+ const auto v = compat_log(alpha);
359
+ static const accscalar_t coef_uv[3][8] = {
360
+ {0.16009398, -0.094634809, 0.025146376, -0.0030648343,
361
+ 1, 0.32668115, 0.10406089, 0.0014179084},
362
+ {0.53487893, 0.1298071, 0.065735949, -0.0015649758,
363
+ 0.16639465, 0.020070113, -0.0035938915, -0.00058392623},
364
+ {0.040121004, -0.0065914022, -0.0026286047, -0.0013441777,
365
+ 0.017050642, -0.0021309326, 0.00085092367, -1.5247877e-07},
366
+ };
367
+ accscalar_t coef_v[8];
368
+ for (int i = 0; i < 8; ++ i) {
369
+ coef_v[i] = coef_uv[0][i] + u * (coef_uv[1][i] + u * coef_uv[2][i]);
370
+ }
371
+ const auto p = coef_v[0] + v * (coef_v[1] + v * (coef_v[2] + v * coef_v[3]));
372
+ const auto q = coef_v[4] + v * (coef_v[5] + v * (coef_v[6] + v * coef_v[7]));
373
+ return static_cast<scalar_t>(compat_exp(p / q));
374
+ }
375
+
376
+ // Approximate reparameterized gradient of Beta(x,alpha,beta) wrt alpha.
377
+ // Assumes x is close to zero and uses a Taylor expansion.
378
+ template <typename scalar_t, typename accscalar_t>
379
+ C10_DEVICE static inline scalar_t _beta_grad_alpha_small(scalar_t x, scalar_t alpha, scalar_t beta) {
380
+ const scalar_t factor = digamma_one<scalar_t, accscalar_t>(alpha)
381
+ - digamma_one<scalar_t, accscalar_t>(alpha + beta) - compat_log(x);
382
+ scalar_t numer = 1;
383
+ scalar_t series = numer / alpha * (factor + 1 / alpha);
384
+ for (int i = 1; i <= 10; ++i) {
385
+ scalar_t casted_i = static_cast<scalar_t>(i);
386
+ numer *= (casted_i - beta) * x / casted_i;
387
+ const scalar_t denom = alpha + casted_i;
388
+ series += numer / denom * (factor + 1 / denom);
389
+ }
390
+ const scalar_t result = x * compat_pow(1 - x, -beta) * series;
391
+ return isnan(result) ? static_cast<scalar_t>( 0.f ) : result;
392
+ }
393
+
394
+ // Approximate reparameterized gradient of Beta(x,alpha,beta) wrt beta.
395
+ // Assumes x is close to zero and uses a Taylor expansion.
396
+ template <typename scalar_t, typename accscalar_t>
397
+ C10_DEVICE static inline scalar_t _beta_grad_beta_small(scalar_t x, scalar_t alpha, scalar_t beta) {
398
+ const scalar_t factor = digamma_one<scalar_t, accscalar_t>(alpha + beta) - digamma_one<scalar_t, accscalar_t>(beta);
399
+ scalar_t numer = 1, betas = 1, dbetas = 0, series = factor / alpha;
400
+ for (int i = 1; i <= 8; ++i) {
401
+ scalar_t casted_i = static_cast<scalar_t>(i);
402
+ numer *= -x / casted_i;
403
+ dbetas = dbetas * (beta - casted_i) + betas;
404
+ betas = betas * (beta - casted_i);
405
+ series += numer / (alpha + casted_i) * (dbetas + factor * betas);
406
+ }
407
+ const scalar_t result = -compat_pow(1 - x, 1 - beta) * series;
408
+ return isnan(result) ? static_cast<scalar_t>( 0.f ) : result;
409
+ }
410
+
411
+ // Approximate reparameterized gradient of Beta(x,alpha,beta) wrt alpha.
412
+ // Assumes alpha and beta are both large and uses a Rice saddle point expansion.
413
+ // To ensure numerical stability, this computation is performed at higher precision.
414
+ template<typename scalar_t, typename accscalar_t>
415
+ C10_DEVICE static inline scalar_t _beta_grad_alpha_mid(accscalar_t x, accscalar_t alpha, accscalar_t beta) {
416
+ const accscalar_t total = alpha + beta;
417
+ const accscalar_t mean = alpha / total;
418
+ const accscalar_t std = compat_sqrt(alpha * beta / (total + 1)) / total;
419
+ if (mean - 0.1 * std <= x && x <= mean + 0.1 * std) {
420
+ // Avoid the singularity at x = mean.
421
+ const accscalar_t poly = 47 * x * (beta * beta) * (beta * beta) + alpha * (
422
+ (43 + 20 * (16 + 27 * beta) * x) * (beta * beta) * beta + alpha * (
423
+ 3 * (59 + 180 * beta - 90 * x) * (beta * beta) + alpha * (
424
+ (453 + 1620 * beta * (1 - x) - 455 * x) * beta + alpha * (
425
+ 8 * (1 - x) * (135 * beta - 11)))));
426
+ const accscalar_t prefactor_num = (1 + 12 * alpha) * (1 + 12 * beta) / (total * total);
427
+ const accscalar_t prefactor_den = 12960 * alpha * alpha * alpha * beta * beta * (1 + 12 * total);
428
+ return prefactor_num / (1 - x) * poly / prefactor_den;
429
+ }
430
+ const accscalar_t prefactor = -x / compat_sqrt(2 * alpha * beta / total);
431
+ const accscalar_t stirling = (1 + 1 / (12 * alpha) + 1 / (288 * alpha * alpha))
432
+ * (1 + 1 / (12 * beta) + 1 / (288 * beta * beta))
433
+ / (1 + 1 / (12 * total) + 1 / (288 * total * total));
434
+ const accscalar_t term1_num = 2 * (alpha * alpha) * (x - 1) + alpha * beta * (x - 1) - x * (beta * beta);
435
+ const accscalar_t axbx = alpha * (x - 1) + beta * x;
436
+ const accscalar_t term1_den = compat_sqrt(2 * alpha / beta) * compat_pow(total, static_cast<accscalar_t>(1.5f)) * axbx * axbx;
437
+ const accscalar_t term1 = term1_num / term1_den;
438
+ const accscalar_t term2 = 0.5f * compat_log(alpha / (total * x));
439
+ const accscalar_t term3_num = compat_sqrt(8 * alpha * beta / total);
440
+ const accscalar_t term3_den = beta * x + alpha * (x - 1);
441
+ const accscalar_t term3 = term3_num / term3_den;
442
+ const accscalar_t term4_base = beta * compat_log(beta / (total * (1 - x))) +
443
+ alpha * compat_log(alpha / (total * x));
444
+ const accscalar_t term4 = compat_pow(term4_base, static_cast<accscalar_t>(-1.5f));
445
+ const accscalar_t term1234 = term1 + term2 * (term3 + (x < mean ? term4 : -term4));
446
+ return static_cast<scalar_t>(stirling * prefactor * term1234);
447
+ }
448
+
449
+ // Computes a scaled reparameterized gradient
450
+ // -(d/dalpha cdf(x;alpha,beta)) / pdf(x;alpha,beta) / (1-x)
451
+ // for random number x drawn from a Beta distribution Beta(alpha,beta).
452
+ // This function inputs total=alpha+beta to make it easy to implement
453
+ // Dirichlet reparameterized gradients in terms of Betas.
454
+ template<typename scalar_t, typename accscalar_t>
455
+ C10_HOST_DEVICE static inline scalar_t dirichlet_grad_one(scalar_t x, scalar_t alpha, scalar_t total) {
456
+ accscalar_t x_ = static_cast<accscalar_t>(x);
457
+ accscalar_t alpha_ = static_cast<accscalar_t>(alpha);
458
+ accscalar_t total_ = static_cast<accscalar_t>(total);
459
+
460
+ const scalar_t beta = total - alpha;
461
+ const accscalar_t beta_ = total_ - alpha_;
462
+ const scalar_t boundary = total * x * (1 - x);
463
+
464
+ // Use an asymptotic approximation for x close to 0.
465
+ if (x <= 0.5f && boundary < 2.5f) {
466
+ return _beta_grad_alpha_small<scalar_t, accscalar_t>(x, alpha, beta);
467
+ }
468
+
469
+ // Use an asymptotic approximation for x close to 1.
470
+ if (x >= 0.5f && boundary < 0.75f) {
471
+ return -_beta_grad_beta_small<scalar_t, accscalar_t>(1 - x, beta, alpha);
472
+ }
473
+
474
+ // Use an asymptotic approximation when alpha and (total - alpha) are both large.
475
+ if (alpha > 6 && beta > 6) {
476
+ return _beta_grad_alpha_mid<scalar_t, accscalar_t>(x_, alpha_, beta_);
477
+ }
478
+
479
+ // Use a rational correction to an analytic approximation.
480
+ static const accscalar_t c[2][3][3][4] = {
481
+ {{{1.003668233, -0.01061107488, -0.0657888334, 0.01201642863},
482
+ {0.6336835991, -0.3557432599, 0.05486251648, -0.001465281033},
483
+ {-0.03276231906, 0.004474107445, 0.002429354597, -0.0001557569013}},
484
+ {{0.221950385, -0.3187676331, 0.01799915743, 0.01074823814},
485
+ {-0.2951249643, 0.06219954479, 0.01535556598, 0.001550077057},
486
+ {0.02155310298, 0.004170831599, 0.001292462449, 6.976601077e-05}},
487
+ {{-0.05980841433, 0.008441916499, 0.01085618172, 0.002319392565},
488
+ {0.02911413504, 0.01400243777, -0.002721828457, 0.000751041181},
489
+ {0.005900514878, -0.001936558688, -9.495446725e-06, 5.385558597e-05}}},
490
+ {{{1, -0.02924021934, -0.04438342661, 0.007285809825},
491
+ {0.6357567472, -0.3473456711, 0.05454656494, -0.002407477521},
492
+ {-0.03301322327, 0.004845219414, 0.00231480583, -0.0002307248149}},
493
+ {{0.5925320577, -0.1757678135, 0.01505928619, 0.000564515273},
494
+ {0.1014815858, -0.06589186703, 0.01272886114, -0.0007316646956},
495
+ {-0.007258481865, 0.001096195486, 0.0003934994223, -4.12701925e-05}},
496
+ {{0.06469649321, -0.0236701437, 0.002902096474, -5.896963079e-05},
497
+ {0.001925008108, -0.002869809258, 0.0008000589141, -6.063713228e-05},
498
+ {-0.0003477407336, 6.959756487e-05, 1.097287507e-05, -1.650964693e-06}}},
499
+ };
500
+ const accscalar_t u = compat_log(x_);
501
+ const accscalar_t a = compat_log(alpha_) - u;
502
+ const accscalar_t b = compat_log(total_) - a;
503
+ const accscalar_t pow_u[3] = {1, u, u * u};
504
+ const accscalar_t pow_a[3] = {1, a, a * a};
505
+ accscalar_t p = 0.0;
506
+ accscalar_t q = 0.0;
507
+ for (int i = 0; i < 3; ++i) {
508
+ for (int j = 0; j < 3; ++j) {
509
+ const accscalar_t ua = pow_u[i] * pow_a[j];
510
+ p += ua * (c[0][i][j][0] + b * (c[0][i][j][1] + b * (c[0][i][j][2] + b * c[0][i][j][3])));
511
+ q += ua * (c[1][i][j][0] + b * (c[1][i][j][1] + b * (c[1][i][j][2] + b * c[1][i][j][3])));
512
+ }
513
+ }
514
+ const accscalar_t approx = x_ * (digamma_one<scalar_t, accscalar_t>(total_) - digamma_one<scalar_t, accscalar_t>(alpha_)) / beta_;
515
+ return static_cast<scalar_t>(p / q * approx);
516
+ }
517
+
518
+ } // namespace
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/EmbeddingBag.h ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/Tensor.h>
2
+ #include <ATen/Config.h>
3
+ #include <cstdint>
4
+
5
+ #ifdef USE_FBGEMM
6
+ #include <fbgemm/FbgemmEmbedding.h>
7
+ #endif
8
+
9
+ namespace at::native {
10
+
11
+ void check_arguments(
12
+ const Tensor& weight,
13
+ const Tensor& indices,
14
+ const Tensor& offsets,
15
+ const int64_t mode,
16
+ const c10::optional<Tensor>& per_sample_weights,
17
+ bool include_last_offset);
18
+
19
+ void make_bag_size_out(
20
+ Tensor& bag_size_out,
21
+ const Tensor& offsets,
22
+ const Tensor& indices,
23
+ const int64_t mode,
24
+ const bool include_last_offset,
25
+ const bool requires_grad);
26
+
27
+ void make_max_indices_out(
28
+ Tensor& max_indices_out,
29
+ const Tensor& weight,
30
+ const Tensor& indices,
31
+ const Tensor& offsets,
32
+ const Tensor& bag_size,
33
+ const int64_t mode,
34
+ bool include_last_offset);
35
+
36
+ void make_offset2bag_out(
37
+ Tensor& offset2bag,
38
+ Tensor& output,
39
+ const Tensor& weight,
40
+ const Tensor& indices,
41
+ const Tensor& offsets,
42
+ const int64_t mode,
43
+ const c10::optional<Tensor>& per_sample_weights,
44
+ const int64_t padding_idx = -1);
45
+
46
+ #ifdef USE_FBGEMM
47
+
48
+ template<bool has_weight, typename TIndex, typename TData>
49
+ struct _CallbackAndBlockSize {
50
+ using TCallback = typename fbgemm::EmbeddingSpMDMKernelSignature<TData, TIndex, TIndex, TData>::Type;
51
+
52
+ int64_t blockSize = -1;
53
+ TCallback callback = nullptr;
54
+
55
+ static TCallback generateCallback(int64_t block_size) {
56
+ return fbgemm::GenerateEmbeddingSpMDM<TData, TIndex, TIndex, TData>(
57
+ block_size,
58
+ has_weight,
59
+ /* normalize_by_lengths */false,
60
+ /* prefetch */16,
61
+ /* is_weight_positional */false,
62
+ /* use_offsets */true);
63
+ }
64
+
65
+ _CallbackAndBlockSize() = default;
66
+
67
+ explicit _CallbackAndBlockSize(c10::optional<int64_t> maybe_block_size)
68
+ : blockSize(maybe_block_size.value_or(-1))
69
+ , callback(maybe_block_size.has_value() ? generateCallback(maybe_block_size.value()) : nullptr)
70
+ {}
71
+ };
72
+
73
+ template<typename... StorageMixins>
74
+ struct _EmbeddingBagKernelCacheImpl : private StorageMixins... {
75
+
76
+ _EmbeddingBagKernelCacheImpl() = default;
77
+ // use each of the mixins to store corresponding kernel and block size
78
+ explicit _EmbeddingBagKernelCacheImpl(c10::optional<int64_t> maybe_block_size)
79
+ : StorageMixins(maybe_block_size)...
80
+ {}
81
+
82
+ // this method is thread safe (call sites may call from different threads)
83
+ template<bool has_weight, typename TIndex, typename TData>
84
+ typename _CallbackAndBlockSize<has_weight, TIndex, TData>::TCallback
85
+ getCallback(int64_t block_size) const {
86
+ // if the cache doesn't store the kernel for the incoming block size
87
+ // (so it is different from the one stored in corresponding mixin)
88
+ // regenerate the kernel (not writing it into the cache so we avoid locks)
89
+ if (block_size != _CallbackAndBlockSize<has_weight, TIndex, TData>::blockSize) {
90
+ return _CallbackAndBlockSize<has_weight, TIndex, TData>::generateCallback(block_size);
91
+ }
92
+ // else retrieve the cached kernel from the corresponding mixin
93
+ return _CallbackAndBlockSize<has_weight, TIndex, TData>::callback;
94
+ }
95
+ };
96
+
97
+ // instantiate the cache with the list of storage mixins
98
+ // for each of the 8 _EmbeddingBagKernelCache* usages in the EmbeddingBag.cpp impl file
99
+ using _EmbeddingBagKernelCache = _EmbeddingBagKernelCacheImpl<
100
+ _CallbackAndBlockSize<true, int32_t, float>,
101
+ _CallbackAndBlockSize<false, int32_t, float>,
102
+ _CallbackAndBlockSize<true, int64_t, float>,
103
+ _CallbackAndBlockSize<false, int64_t, float>,
104
+ _CallbackAndBlockSize<true, int32_t, unsigned short>,
105
+ _CallbackAndBlockSize<false, int32_t, unsigned short>,
106
+ _CallbackAndBlockSize<true, int64_t, unsigned short>,
107
+ _CallbackAndBlockSize<false, int64_t, unsigned short>>;
108
+ #else
109
+ struct _EmbeddingBagKernelCache {
110
+ explicit _EmbeddingBagKernelCache(c10::optional<int64_t> /* maybe_block_size */) {}
111
+ };
112
+ #endif
113
+
114
+ void _embedding_bag_cpu_impl_out(Tensor& output, Tensor& offset2bag,
115
+ Tensor& bag_size, Tensor* max_indices,
116
+ const Tensor &weight, const Tensor &indices,
117
+ const Tensor &offsets, const int64_t mode = 0,
118
+ const c10::optional<Tensor>& per_sample_weights = c10::nullopt,
119
+ bool include_last_offset = false,
120
+ int64_t padding_idx = -1,
121
+ _EmbeddingBagKernelCache* fbgemm_kernel_cache = nullptr);
122
+
123
+ void _embedding_bag_cpu_out(
124
+ at::Tensor& output,
125
+ at::Tensor& offset2bag,
126
+ at::Tensor& bag_size,
127
+ at::Tensor* p_max_indices,
128
+ const at::Tensor& weight,
129
+ const at::Tensor& indices,
130
+ const at::Tensor& offsets,
131
+ const bool scale_grad_by_freq,
132
+ const int64_t mode,
133
+ const bool sparse,
134
+ const c10::optional<at::Tensor>& per_sample_weights,
135
+ const bool include_last_offset,
136
+ const c10::optional<int64_t>& padding_idx,
137
+ _EmbeddingBagKernelCache* fbgemm_kernel_cache = nullptr);
138
+
139
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/FunctionOfAMatrixUtils.h ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/native/DispatchStub.h>
4
+ #include <cstdint>
5
+
6
+ namespace at {
7
+ struct TensorIterator;
8
+
9
+ namespace native {
10
+
11
+ using _compute_linear_combination_fn = void(*)(
12
+ TensorIterator& iter,
13
+ int64_t in_stride,
14
+ int64_t coeff_stride,
15
+ int64_t num_summations
16
+ );
17
+
18
+ DECLARE_DISPATCH(_compute_linear_combination_fn, _compute_linear_combination_stub);
19
+
20
+ }} // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/GridSampler.h ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <algorithm>
4
+ #include <cmath>
5
+ #include <cstdint>
6
+ #include <utility>
7
+
8
+ #include <ATen/native/GridSamplerUtils.h>
9
+
10
+ namespace at::native {
11
+
12
+ using detail::GridSamplerInterpolation;
13
+ using detail::GridSamplerPadding;
14
+
15
+ // Unnormalizes a coordinate from the -1 to +1 scale to its pixel index value,
16
+ // where we view each pixel as an area between (idx - 0.5) and (idx + 0.5).
17
+ // if align_corners: -1 and +1 get sent to the centers of the corner pixels
18
+ // -1 --> 0
19
+ // +1 --> (size - 1)
20
+ // scale_factor = (size - 1) / 2
21
+ // if not align_corners: -1 and +1 get sent to the image edges
22
+ // -1 --> -0.5
23
+ // +1 --> (size - 1) + 0.5 == size - 0.5
24
+ // scale_factor = size / 2
25
+ template <typename scalar_t>
26
+ static inline scalar_t grid_sampler_unnormalize(scalar_t coord, int64_t size,
27
+ bool align_corners) {
28
+ if (align_corners) {
29
+ // unnormalize coord from [-1, 1] to [0, size - 1]
30
+ return ((coord + 1) / 2) * (size - 1);
31
+ } else {
32
+ // unnormalize coord from [-1, 1] to [-0.5, size - 0.5]
33
+ return ((coord + 1) * size - 1) / 2;
34
+ }
35
+ }
36
+
37
+ // grid_sampler_unnormalize_set_grad works the same as grid_sampler_unnormalize
38
+ // except that it also returns the `d output / d input` via pointer argument
39
+ // `grad_in`.
40
+ // This is useful in the backward pass of grid_sampler.
41
+ template <typename scalar_t>
42
+ static inline scalar_t grid_sampler_unnormalize_set_grad(scalar_t coord, int64_t size,
43
+ bool align_corners, scalar_t *grad_in) {
44
+ if (align_corners) {
45
+ // unnormalize coord from [-1, 1] to [0, size - 1]
46
+ *grad_in = static_cast<scalar_t>(size - 1) / 2;
47
+ return ((coord + 1) / 2) * (size - 1);
48
+ } else {
49
+ // unnormalize coord from [-1, 1] to [-0.5, size - 0.5]
50
+ *grad_in = static_cast<scalar_t>(size) / 2;
51
+ return ((coord + 1) * size - 1) / 2;
52
+ }
53
+ }
54
+
55
+ // Clips coordinates to between 0 and clip_limit - 1
56
+ template<typename scalar_t>
57
+ static inline scalar_t clip_coordinates(scalar_t in, int64_t clip_limit) {
58
+ return std::min(static_cast<scalar_t>(clip_limit - 1), std::max(in, static_cast<scalar_t>(0)));
59
+ }
60
+
61
+ // clip_coordinates_set_grad works similarly to clip_coordinates except that
62
+ // it also returns the `d output / d input` via pointer argument `grad_in`.
63
+ // This is useful in the backward pass of grid_sampler.
64
+ template<typename scalar_t>
65
+ static inline scalar_t clip_coordinates_set_grad(scalar_t in, int64_t clip_limit,
66
+ scalar_t *grad_in) {
67
+ // Note that it is important for the gradient calculation that borders
68
+ // are considered out of bounds.
69
+ if (in <= static_cast<scalar_t>(0)) {
70
+ *grad_in = static_cast<scalar_t>(0);
71
+ return static_cast<scalar_t>(0);
72
+ } else {
73
+ scalar_t max = static_cast<scalar_t>(clip_limit - 1);
74
+ if (in >= max) {
75
+ *grad_in = static_cast<scalar_t>(0);
76
+ return max;
77
+ } else {
78
+ *grad_in = static_cast<scalar_t>(1);
79
+ return in;
80
+ }
81
+ }
82
+ }
83
+
84
+ // Reflects coordinates until they fall between low and high (inclusive).
85
+ // The bounds are passed as twice their value so that half-integer values
86
+ // can be represented as ints.
87
+ template<typename scalar_t>
88
+ static inline scalar_t reflect_coordinates(scalar_t in, int64_t twice_low,
89
+ int64_t twice_high) {
90
+ if (twice_low == twice_high) {
91
+ return static_cast<scalar_t>(0);
92
+ }
93
+ scalar_t min = static_cast<scalar_t>(twice_low) / 2;
94
+ scalar_t span = static_cast<scalar_t>(twice_high - twice_low) / 2;
95
+ in = std::fabs(in - min);
96
+ // `fmod` returns same sign as `in`, which is positive after the `fabs` above.
97
+ scalar_t extra = std::fmod(in, span);
98
+ int flips = static_cast<int>(std::floor(in / span));
99
+ if (flips % 2 == 0) {
100
+ return extra + min;
101
+ } else {
102
+ return span - extra + min;
103
+ }
104
+ }
105
+
106
+ // reflect_coordinates_set_grad works similarly to reflect_coordinates except
107
+ // that it also returns the `d output / d input` via pointer argument
108
+ // `grad_in`.
109
+ // This is useful in the backward pass of grid_sampler.
110
+ template<typename scalar_t>
111
+ static inline scalar_t reflect_coordinates_set_grad(scalar_t in, int64_t twice_low,
112
+ int64_t twice_high, scalar_t *grad_in) {
113
+ if (twice_low == twice_high) {
114
+ *grad_in = static_cast<scalar_t>(0);
115
+ return static_cast<scalar_t>(0);
116
+ }
117
+ int grad_in_mult_;
118
+ scalar_t min = static_cast<scalar_t>(twice_low) / 2;
119
+ scalar_t span = static_cast<scalar_t>(twice_high - twice_low) / 2;
120
+ in = in - min;
121
+ if (in < static_cast<scalar_t>(0)) {
122
+ grad_in_mult_ = -1;
123
+ in = -in;
124
+ } else {
125
+ grad_in_mult_ = 1;
126
+ }
127
+ // `fmod` returns same sign as `in`, which is positive after the `if` above.
128
+ scalar_t extra = std::fmod(in, span);
129
+ int flips = static_cast<int>(std::floor(in / span));
130
+ if (flips % 2 == 0) {
131
+ *grad_in = static_cast<scalar_t>(grad_in_mult_);
132
+ return extra + min;
133
+ } else {
134
+ *grad_in = static_cast<scalar_t>(-grad_in_mult_);
135
+ return span - extra + min;
136
+ }
137
+ }
138
+
139
+ // Mapping the out-of-boundary points back into boundary
140
+ // This would only affect padding_mode=border or reflection
141
+ template<typename scalar_t>
142
+ static inline scalar_t compute_coordinates(scalar_t coord, int64_t size,
143
+ GridSamplerPadding padding_mode,
144
+ bool align_corners) {
145
+ if (padding_mode == GridSamplerPadding::Border) {
146
+ // clip coordinates to image borders
147
+ coord = clip_coordinates(coord, size);
148
+ } else if (padding_mode == GridSamplerPadding::Reflection) {
149
+ // reflect coordinates by image borders
150
+ if (align_corners) {
151
+ coord = reflect_coordinates(coord, 0, 2*(size - 1));
152
+ } else {
153
+ coord = reflect_coordinates(coord, -1, 2*size - 1);
154
+ }
155
+ // clip coordinates to image borders
156
+ coord = clip_coordinates(coord, size);
157
+ }
158
+ return coord;
159
+ }
160
+
161
+ // Computes the pixel source index value for a grid coordinate
162
+ template <typename scalar_t>
163
+ static inline scalar_t grid_sampler_compute_source_index(
164
+ scalar_t coord,
165
+ int64_t size,
166
+ GridSamplerPadding padding_mode,
167
+ bool align_corners) {
168
+ coord = grid_sampler_unnormalize(coord, size, align_corners);
169
+ coord = compute_coordinates(coord, size, padding_mode, align_corners);
170
+ return coord;
171
+ }
172
+
173
+ // grid_sampler_compute_source_index_set_grad works similarly to
174
+ // grid_sampler_compute_source_index except that it also returns the
175
+ // `d output / d input` via pointer argument `grad_in`.
176
+ // This is useful in the backward pass of grid_sampler.
177
+ template <typename scalar_t>
178
+ static inline scalar_t grid_sampler_compute_source_index_set_grad(
179
+ scalar_t coord,
180
+ int64_t size,
181
+ GridSamplerPadding padding_mode,
182
+ bool align_corners,
183
+ scalar_t *grad_in) {
184
+ scalar_t grad_clip, grad_refl;
185
+ coord = grid_sampler_unnormalize_set_grad(coord, size, align_corners, grad_in);
186
+ if (padding_mode == GridSamplerPadding::Border) {
187
+ // clip coordinates to image borders
188
+ coord = clip_coordinates_set_grad(coord, size, &grad_clip);
189
+ *grad_in = (*grad_in) * grad_clip;
190
+ } else if (padding_mode == GridSamplerPadding::Reflection) {
191
+ // reflect coordinates by image borders
192
+ if (align_corners) {
193
+ coord = reflect_coordinates_set_grad(coord, 0, 2*(size - 1), &grad_refl);
194
+ } else {
195
+ coord = reflect_coordinates_set_grad(coord, -1, 2*size - 1, &grad_refl);
196
+ }
197
+ // clip coordinates to image borders
198
+ coord = clip_coordinates_set_grad(coord, size, &grad_clip);
199
+ *grad_in = (*grad_in) * grad_refl * grad_clip;
200
+ }
201
+ return coord;
202
+ }
203
+
204
+ static inline bool within_bounds_2d(int64_t h, int64_t w, int64_t H, int64_t W) {
205
+ return h >= 0 && h < H && w >= 0 && w < W;
206
+ }
207
+
208
+ static inline bool within_bounds_3d(int64_t d, int64_t h, int64_t w, int64_t D, int64_t H, int64_t W) {
209
+ return d >= 0 && d < D && h >= 0 && h < H && w >= 0 && w < W;
210
+ }
211
+
212
+ template<typename scalar_t>
213
+ static inline scalar_t get_value_bounded(
214
+ scalar_t* data,
215
+ scalar_t x,
216
+ scalar_t y,
217
+ int64_t W,
218
+ int64_t H,
219
+ int64_t sW,
220
+ int64_t sH,
221
+ GridSamplerPadding padding_mode,
222
+ bool align_corners) {
223
+
224
+ x = compute_coordinates(x, W, padding_mode, align_corners);
225
+ y = compute_coordinates(y, H, padding_mode, align_corners);
226
+
227
+ int64_t ix = static_cast<int64_t>(x);
228
+ int64_t iy = static_cast<int64_t>(y);
229
+
230
+ if (within_bounds_2d(iy, ix, H, W)) {
231
+ return data[iy * sH + ix * sW];
232
+ }
233
+ return static_cast<scalar_t>(0);
234
+ }
235
+
236
+ template<typename scalar_t>
237
+ static inline void safe_add_2d(scalar_t *data, int64_t h, int64_t w,
238
+ int64_t sH, int64_t sW, int64_t H, int64_t W,
239
+ scalar_t delta) {
240
+ if (within_bounds_2d(h, w, H, W)) {
241
+ data[h * sH + w * sW] += delta;
242
+ }
243
+ }
244
+
245
+ template<typename scalar_t>
246
+ static inline void safe_add_3d(scalar_t *data, int64_t d, int64_t h, int64_t w,
247
+ int64_t sD, int64_t sH, int64_t sW,
248
+ int64_t D, int64_t H, int64_t W,
249
+ scalar_t delta) {
250
+ if (within_bounds_3d(d, h, w, D, H, W)) {
251
+ data[d * sD + h * sH + w * sW] += delta;
252
+ }
253
+ }
254
+
255
+ template<typename scalar_t>
256
+ static inline void add_value_bounded(
257
+ scalar_t* data,
258
+ scalar_t x,
259
+ scalar_t y,
260
+ int64_t W,
261
+ int64_t H,
262
+ int64_t sW,
263
+ int64_t sH,
264
+ scalar_t delta,
265
+ GridSamplerPadding padding_mode,
266
+ bool align_corners) {
267
+
268
+ x = compute_coordinates(x, W, padding_mode, align_corners);
269
+ y = compute_coordinates(y, H, padding_mode, align_corners);
270
+
271
+ int64_t ix = static_cast<int64_t>(x);
272
+ int64_t iy = static_cast<int64_t>(y);
273
+
274
+ safe_add_2d(data, iy, ix, sH, sW, H, W, delta);
275
+ }
276
+
277
+ // Calculate the differential of the cubic convolution, i.e. `d coeff / d x`
278
+ template<typename scalar_t>
279
+ static inline void get_cubic_coefficients_grad(
280
+ scalar_t coeffs[4],
281
+ scalar_t t) {
282
+
283
+ // Must be the same as forward calculation in
284
+ // aten/src/ATen/native/UpSample.h:get_cubic_upsample_coefficients
285
+ scalar_t A = -0.75;
286
+
287
+ scalar_t x;
288
+ x = -1 - t; // 1 < x = |-1 - tx| < 2
289
+ coeffs[0] = (-3 * A * x - 10 * A ) * x - 8 * A;
290
+ x = -t; // x = |0 - tx| <= 1
291
+ coeffs[1] = (-3 * (A + 2) * x - 2 * (A + 3)) * x;
292
+ x = 1 - t; // x = |1 - tx| <= 1
293
+ coeffs[2] = (3 * (A + 2) * x - 2 * (A + 3)) * x;
294
+ x = 2 - t; // 1 < x = |2 - tx| < 2
295
+ coeffs[3] = (3 * A * x - 10 * A) * x + 8 * A;
296
+ }
297
+
298
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/GridSamplerUtils.h ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // See NOTE: [Tensor vs. TensorBase]
4
+ // https://github.com/pytorch/pytorch/pull/66979
5
+ #include <ATen/core/TensorBase.h>
6
+ #include <ATen/native/TensorProperties.h>
7
+ #include <ATen/native/CanUse32BitIndexMath.h>
8
+
9
+ namespace at::native {
10
+
11
+ namespace detail {
12
+
13
+ enum class GridSamplerInterpolation {Bilinear, Nearest, Bicubic};
14
+ enum class GridSamplerPadding {Zeros, Border, Reflection};
15
+
16
+ } // namespace detail
17
+
18
+ using detail::GridSamplerInterpolation;
19
+ using detail::GridSamplerPadding;
20
+
21
+ namespace {
22
+
23
+ // See NOTE [ grid_sampler Native Functions ].
24
+ void check_grid_sampler_common(
25
+ const TensorBase& input,
26
+ const TensorBase& grid
27
+ ) {
28
+ auto input_opt = input.options();
29
+ auto grid_opt = grid.options();
30
+
31
+ TORCH_CHECK(
32
+ input.defined(),
33
+ "grid_sampler(): expected input to not be undefined");
34
+ TORCH_CHECK(
35
+ grid.defined(),
36
+ "grid_sampler(): expected grid to not be undefined");
37
+ TORCH_CHECK(
38
+ input_opt.device() == grid_opt.device(),
39
+ "grid_sampler(): expected input and grid to be on same device, but input "
40
+ "is on ", input_opt.device(), " and grid is on ", grid_opt.device());
41
+ TORCH_CHECK(
42
+ input_opt.layout() == kStrided && grid_opt.layout() == kStrided,
43
+ "grid_sampler(): expected input and grid to have torch.strided layout, but "
44
+ "input has ", input_opt.layout(), " and grid has ", grid_opt.layout());
45
+ TORCH_CHECK(
46
+ input.size(0) == grid.size(0),
47
+ "grid_sampler(): expected grid and input to have same batch size, but got "
48
+ "input with sizes ", input.sizes(), " and grid with sizes ", grid.sizes());
49
+ TORCH_CHECK(
50
+ grid.size(-1) == input.dim() - 2,
51
+ "grid_sampler(): expected grid to have size ", input.dim() - 2, " in last "
52
+ "dimension, but got grid with sizes ", grid.sizes());
53
+
54
+ for (const auto i : c10::irange(2, input.dim())) {
55
+ TORCH_CHECK(input.size(i) > 0,
56
+ "grid_sampler(): expected input to have non-empty spatial dimensions, "
57
+ "but input has sizes ", input.sizes(), " with dimension ", i, " being "
58
+ "empty");
59
+ }
60
+ }
61
+
62
+ // See NOTE [ grid_sampler Native Functions ].
63
+ void check_grid_sampler_2d(
64
+ const TensorBase& input,
65
+ const TensorBase& grid
66
+ ) {
67
+ TORCH_CHECK(
68
+ input.dim() == 4 && input.dim() == grid.dim(),
69
+ "grid_sampler(): expected 4D input and grid with same number of "
70
+ "dimensions, but got input with sizes ", input.sizes(),
71
+ " and grid with sizes ", grid.sizes());
72
+ }
73
+
74
+ // See NOTE [ grid_sampler Native Functions ].
75
+ void check_grid_sampler_3d(
76
+ const TensorBase& input,
77
+ const TensorBase& grid,
78
+ int64_t interpolation_mode
79
+ ) {
80
+ TORCH_CHECK(
81
+ input.dim() == 5 && input.dim() == grid.dim(),
82
+ "grid_sampler(): expected 5D input and grid with same number of "
83
+ "dimensions, but got input with sizes ", input.sizes(),
84
+ " and grid with sizes ", grid.sizes());
85
+ TORCH_CHECK(
86
+ !(input.dim() == 5 &&
87
+ static_cast<GridSamplerInterpolation>(interpolation_mode) ==
88
+ GridSamplerInterpolation::Bicubic),
89
+ "grid_sampler(): bicubic interpolation only supports 4D input");
90
+ }
91
+
92
+ // See NOTE [ grid_sampler Native Functions ].
93
+ // cudnn does not support inputs larger than 1024.
94
+ bool cond_cudnn_grid_sampler(
95
+ const TensorBase& input,
96
+ const TensorBase& grid
97
+ ) {
98
+ return (
99
+ at::native::cudnn_is_acceptable(input) &&
100
+ at::native::cudnn_is_acceptable(grid) &&
101
+ at::native::canUse32BitIndexMath(input) &&
102
+ at::native::canUse32BitIndexMath(grid) &&
103
+ input.dim() == 4 &&
104
+ input.sym_size(1) <= 1024);
105
+ }
106
+
107
+ } // anonymous namespace
108
+
109
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Histogram.h ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/native/DispatchStub.h>
5
+
6
+ namespace at::native {
7
+
8
+ using histogramdd_fn = void(*)(const Tensor&, const c10::optional<Tensor>&, bool, Tensor&, const TensorList&);
9
+ using histogramdd_linear_fn = void(*)(const Tensor&, const c10::optional<Tensor>&, bool, Tensor&, const TensorList&, bool);
10
+ using histogram_select_outer_bin_edges_fn = void(*)(const Tensor& input, const int64_t N, std::vector<double> &leftmost_edges, std::vector<double> &rightmost_edges);
11
+
12
+ DECLARE_DISPATCH(histogramdd_fn, histogramdd_stub);
13
+ DECLARE_DISPATCH(histogramdd_linear_fn, histogramdd_linear_stub);
14
+ DECLARE_DISPATCH(histogram_select_outer_bin_edges_fn, histogram_select_outer_bin_edges_stub);
15
+
16
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/IndexingUtils.h ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <ATen/ExpandUtils.h>
3
+ #include <ATen/native/CanUse32BitIndexMath.h>
4
+ #include <ATen/native/TensorIterator.h>
5
+ #include <ATen/core/IListRef.h>
6
+ #include <c10/util/irange.h>
7
+
8
+ namespace at::native {
9
+
10
+ [[noreturn]]
11
+ static void invalid_mask(const Tensor & self, int64_t idx, const Tensor & mask, int64_t maskIdx) {
12
+ TORCH_CHECK_INDEX(false, "The shape of the mask ", mask.sizes(), " at index ", maskIdx,
13
+ " does not match the shape of the indexed tensor ", self.sizes(), " at index ", idx);
14
+ }
15
+
16
+
17
+ static C10_UNUSED std::vector<Tensor> expandTensors(const Tensor & self, IOptTensorListRef indices) {
18
+ // If indices come in as ByteTensor or BoolTensor (masks), expand them into the equivalent indexing by LongTensors
19
+ std::vector<Tensor> result;
20
+ for (const auto& index_opt : indices) {
21
+ if (!index_opt.has_value()) {
22
+ result.emplace_back();
23
+ } else {
24
+ const auto& index = *index_opt;
25
+ if (index.scalar_type() == kByte || index.scalar_type() == kBool) {
26
+ if (index.scalar_type() == kByte) {
27
+ TORCH_WARN("indexing with dtype torch.uint8 is now deprecated," \
28
+ " please use a dtype torch.bool instead.");
29
+ }
30
+ // The sizes of the ByteTensor mask or bool tensor must match the sizes of the
31
+ // corresponding dimensions in self
32
+ for (const auto j : c10::irange(index.dim())) {
33
+ int64_t srcIdx = static_cast<int64_t>(result.size() + j);
34
+ if (index.size(j) != self.size(srcIdx)) {
35
+ invalid_mask(self, srcIdx, index, j);
36
+ }
37
+ }
38
+ // Replace with nonzeros
39
+ auto nonzero = index.nonzero();
40
+ for (const auto j : c10::irange(index.dim())) {
41
+ result.emplace_back(nonzero.select(1, j));
42
+ }
43
+ } else {
44
+ result.emplace_back(index);
45
+ }
46
+ }
47
+ }
48
+ return result;
49
+ }
50
+
51
+ static C10_UNUSED void checkIndexTensorTypes(IOptTensorListRef indices, bool allow_int=false) {
52
+ for (const auto& tensor : indices) {
53
+ if (tensor.has_value() && tensor->defined()) {
54
+ auto scalarType = tensor->scalar_type();
55
+ if (allow_int) {
56
+ if (scalarType != kLong && scalarType != kByte && scalarType != kBool && scalarType != kInt) {
57
+ TORCH_CHECK_INDEX(false, "tensors used as indices must be long, int, byte or bool tensors");
58
+ }
59
+ } else {
60
+ if (scalarType != kLong && scalarType != kByte && scalarType != kBool) {
61
+ TORCH_CHECK_INDEX(false, "tensors used as indices must be long, byte or bool tensors");
62
+ }
63
+ }
64
+ }
65
+ }
66
+ }
67
+
68
+ inline torch::List<c10::optional<Tensor>> toListOfOptionalTensors(ArrayRef<Tensor> list) {
69
+ torch::List<c10::optional<Tensor>> result;
70
+ result.reserve(list.size());
71
+ for (const Tensor& a : list) {
72
+ result.push_back(a);
73
+ }
74
+ return result;
75
+ }
76
+
77
+ inline torch::List<c10::optional<Tensor>> toListOfOptionalTensors(ArrayRef<IValue> list) {
78
+ torch::List<c10::optional<Tensor>> result;
79
+ result.reserve(list.size());
80
+ for (const IValue& a : list) {
81
+ result.push_back(a.isTensor() ? c10::optional<Tensor>(a.toTensor()) : c10::optional<Tensor>());
82
+ }
83
+ return result;
84
+ }
85
+
86
+ static C10_UNUSED bool hasContiguousSubspace(TensorList tl) {
87
+ // true if all the non-null tensors are adjacent
88
+ auto isDefined = [](const Tensor & tensor){ return tensor.defined(); };
89
+ auto isNull = [](const Tensor & tensor){ return !tensor.defined(); };
90
+ auto start = std::find_if(tl.begin(), tl.end(), isDefined);
91
+ auto stop = std::find_if(tl.rbegin(), tl.rend(), isDefined);
92
+ auto it = std::find_if(start, stop.base(), isNull);
93
+ return it == stop.base();
94
+ }
95
+
96
+
97
+ // Transposes the tensor and indices together so that all the non-null indices
98
+ // index the first k dimensions of the tensor. Returns the transposed tensor
99
+ // and the reordered indices. For example:
100
+ // transposeToFront(tensor, {nullptr, a, nullptr, b})
101
+ // returns
102
+ // tensor.permute([1, 3, 0, 2]), {a, b, nullptr, nullptr}
103
+ static C10_UNUSED std::tuple<Tensor, std::vector<Tensor>>
104
+ transposeToFront(const Tensor& self, TensorList indices) {
105
+ std::vector<int64_t> dims;
106
+ std::vector<Tensor> transposedIndices;
107
+ dims.reserve(self.dim());
108
+ for (const auto i : c10::irange(self.dim())) {
109
+ if (indices[i].defined()) {
110
+ dims.push_back(i);
111
+ transposedIndices.emplace_back(indices[i]);
112
+ }
113
+ }
114
+ for (const auto i : c10::irange(self.dim())) {
115
+ if (!indices[i].defined()) {
116
+ dims.push_back(i);
117
+ transposedIndices.emplace_back();
118
+ }
119
+ }
120
+ return std::make_tuple(self.permute(dims), std::move(transposedIndices));
121
+ }
122
+
123
+ inline std::tuple<Tensor, std::vector<Tensor>, std::vector<int64_t>>
124
+ transposeToFrontAndInvPerm(const Tensor& self, TensorList indices) {
125
+ std::vector<int64_t> dims;
126
+ std::vector<int64_t> invPerm;
127
+ std::vector<Tensor> transposedIndices;
128
+ dims.reserve(self.dim());
129
+ invPerm.resize(self.dim());
130
+ for (const auto i : c10::irange(self.dim())) {
131
+ if (indices[i].defined()) {
132
+ dims.push_back(i);
133
+ transposedIndices.emplace_back(indices[i]);
134
+ }
135
+ }
136
+ for (const auto i : c10::irange(self.dim())) {
137
+ if (!indices[i].defined()) {
138
+ dims.push_back(i);
139
+ transposedIndices.emplace_back();
140
+ }
141
+ }
142
+ for (const auto i : c10::irange(self.dim())) {
143
+ invPerm[dims[i]] = i;
144
+ }
145
+ return std::make_tuple(self.permute(dims), std::move(transposedIndices), std::move(invPerm));
146
+ }
147
+
148
+ struct AdvancedIndex {
149
+ AdvancedIndex(const Tensor& src, TensorList indices);
150
+
151
+ Tensor src;
152
+ std::vector<Tensor> indices;
153
+ DimVector indexed_sizes;
154
+ DimVector indexed_strides;
155
+ int64_t dims_before;
156
+ int64_t dims_after;
157
+ };
158
+
159
+
160
+ } //namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Math.h ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/MathBitFallThroughLists.h ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ namespace at {
4
+ // views and their in-place version ops
5
+ #define TORCH_VIEW_FNS(m) \
6
+ m.impl("as_strided_", torch::CppFunction::makeFallthrough()); \
7
+ m.impl("detach", torch::CppFunction::makeFallthrough()); \
8
+ m.impl("detach_", torch::CppFunction::makeFallthrough()); \
9
+ m.impl("diagonal", torch::CppFunction::makeFallthrough()); \
10
+ m.impl("expand", torch::CppFunction::makeFallthrough()); \
11
+ m.impl("expand_as", torch::CppFunction::makeFallthrough()); \
12
+ m.impl("movedim.int", torch::CppFunction::makeFallthrough()); \
13
+ m.impl("movedim.intlist", torch::CppFunction::makeFallthrough()); \
14
+ m.impl("narrow", torch::CppFunction::makeFallthrough()); \
15
+ m.impl("permute", torch::CppFunction::makeFallthrough()); \
16
+ m.impl("select.Dimname", torch::CppFunction::makeFallthrough()); \
17
+ m.impl("select.int", torch::CppFunction::makeFallthrough()); \
18
+ m.impl("squeeze", torch::CppFunction::makeFallthrough()); \
19
+ m.impl("squeeze_", torch::CppFunction::makeFallthrough()); \
20
+ m.impl("transpose.int", torch::CppFunction::makeFallthrough()); \
21
+ m.impl("transpose.Dimname", torch::CppFunction::makeFallthrough()); \
22
+ m.impl("transpose_", torch::CppFunction::makeFallthrough()); \
23
+ m.impl("t", torch::CppFunction::makeFallthrough()); \
24
+ m.impl("t_", torch::CppFunction::makeFallthrough()); \
25
+ m.impl("real", torch::CppFunction::makeFallthrough()); \
26
+ m.impl("imag", torch::CppFunction::makeFallthrough()); \
27
+ m.impl("view_as_real", torch::CppFunction::makeFallthrough()); \
28
+ m.impl("unflatten.int", torch::CppFunction::makeFallthrough()); \
29
+ m.impl("unflatten.Dimname", torch::CppFunction::makeFallthrough()); \
30
+ m.impl("unfold", torch::CppFunction::makeFallthrough()); \
31
+ m.impl("unsqueeze", torch::CppFunction::makeFallthrough()); \
32
+ m.impl("unsqueeze_", torch::CppFunction::makeFallthrough()); \
33
+ m.impl("view_as", torch::CppFunction::makeFallthrough()); \
34
+ m.impl("unbind.int", torch::CppFunction::makeFallthrough()); \
35
+ m.impl("unbind.Dimname", torch::CppFunction::makeFallthrough()); \
36
+ m.impl("split.Tensor", torch::CppFunction::makeFallthrough()); \
37
+ m.impl("split_with_sizes", torch::CppFunction::makeFallthrough()); \
38
+ m.impl("swapaxes", torch::CppFunction::makeFallthrough()); \
39
+ m.impl("swapdims", torch::CppFunction::makeFallthrough()); \
40
+ m.impl("chunk", torch::CppFunction::makeFallthrough()); \
41
+ m.impl("reshape", torch::CppFunction::makeFallthrough()); \
42
+ m.impl("alias", torch::CppFunction::makeFallthrough()); \
43
+ m.impl("hsplit.int", torch::CppFunction::makeFallthrough()); \
44
+ m.impl("hsplit.array", torch::CppFunction::makeFallthrough()); \
45
+ m.impl("dsplit.int", torch::CppFunction::makeFallthrough()); \
46
+ m.impl("dsplit.array", torch::CppFunction::makeFallthrough()); \
47
+ m.impl("vsplit.int", torch::CppFunction::makeFallthrough()); \
48
+ m.impl("vsplit.array", torch::CppFunction::makeFallthrough()); \
49
+ m.impl("conj", torch::CppFunction::makeFallthrough()); \
50
+ m.impl("_conj", torch::CppFunction::makeFallthrough()); \
51
+ m.impl("_unsafe_view", torch::CppFunction::makeFallthrough()); \
52
+ m.impl("resize_", torch::CppFunction::makeFallthrough());
53
+
54
+ #define TENSOR_UTILITIES_AND_CONSTRUCTORS(m) \
55
+ m.impl("empty_like", torch::CppFunction::makeFallthrough()); \
56
+ m.impl("empty.memory_format", torch::CppFunction::makeFallthrough()); \
57
+ m.impl("empty.out", torch::CppFunction::makeFallthrough()); \
58
+ m.impl("empty_strided", torch::CppFunction::makeFallthrough()); \
59
+ m.impl("full_like", torch::CppFunction::makeFallthrough()); \
60
+ m.impl("stride.int", torch::CppFunction::makeFallthrough()); \
61
+ m.impl("stride.Dimname", torch::CppFunction::makeFallthrough()); \
62
+ m.impl("size.int", torch::CppFunction::makeFallthrough()); \
63
+ m.impl("size.Dimname", torch::CppFunction::makeFallthrough()); \
64
+ m.impl("is_complex", torch::CppFunction::makeFallthrough()); \
65
+ m.impl("is_floating_point", torch::CppFunction::makeFallthrough()); \
66
+ m.impl("requires_grad_", torch::CppFunction::makeFallthrough());
67
+ }
68
+
69
+ #define TORCH_VIEW_FNS_NATIVE_FN_REGISTRATION(m) \
70
+ m.impl("as_strided", torch::CppFunction::makeFallthrough()); \
71
+ m.impl("view", torch::CppFunction::makeFallthrough());
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/MathBitsFallback.h ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/Tensor.h>
2
+ #include <ATen/core/dispatch/Dispatcher.h>
3
+ #include <ATen/core/op_registration/op_registration.h>
4
+ #include <ATen/native/UnaryOps.h>
5
+ #include <ATen/native/Resize.h>
6
+ #include <c10/util/irange.h>
7
+ #include <torch/library.h>
8
+
9
+ #ifndef AT_PER_OPERATOR_HEADERS
10
+ #include <ATen/Functions.h>
11
+ #else
12
+ #include <ATen/ops/clone.h>
13
+
14
+ #include <utility>
15
+ #endif
16
+
17
+ namespace at::native {
18
+ // This fallback should only be used for operations that are self inverse and have a corresponding tensor
19
+ // bit (internally implemented using DispatchKey) to maintain the state on tensor using tensor bit.
20
+ // Currently there are two tensor bits that trigger this fallback: conjugate bit and negative bit.
21
+ // Conjugate bit is set on a tensor when `.conj()` is called and neg bit is set on a tensor when `.conj().imag` is called.
22
+
23
+ // NOTE: To use this fallback, `clone` and `copy_` should fully understand and be able to correctly handle the semantic of your math bit.
24
+ struct MathOpFallback {
25
+ MathOpFallback(DispatchKey key_, string op_name_) : key(key_), op_name(std::move(op_name_)) {}
26
+ virtual bool is_bit_set(const Tensor&) = 0;
27
+ void fallback_impl(const c10::OperatorHandle& op, DispatchKeySet dispatch_keys, torch::jit::Stack* stack) {
28
+ /*
29
+ Situations to handle:
30
+ 1. Out-of-place operation. Easy: materialize all inputs and
31
+ call it a day.
32
+ 2. Inplace operation. Desugar x.add_(2) into x.conj_().add_(2).conj_().
33
+ Materialize other inputs as in (1).
34
+ 3. out= operation. Desugar add(x, 2, out=y) into y.copy_(add(x, 2))
35
+ Materialize other inputs as in (1).
36
+
37
+ It is important to be able to tell if we READ from an argument and if we
38
+ WRITE to an argument. Conservative approach is to assume that we always
39
+ READ from an argument, but in out= operations you can skip
40
+ conjugating inputs on entry that never get used. In the current schema we
41
+ can't easily tell if the operation is in in-place or out= operation.
42
+
43
+ Note:
44
+ 1. Mutable tensorlists containing tensors whose math bit set to true are disallowed.
45
+ 2. Mutable tensors with math bit set to true are unconditionally cloned to ensure
46
+ correct behavior in the case when the mutable tensor shares memory with non mutable arguments.
47
+
48
+ If we were to in-place resolve the math bit for mutable inputs, then the non-mutable inputs sharing partial or full memory
49
+ with these mutable inputs would read into wrong values in the following cases:
50
+ 1. Non mutable inputs have their math bit set to false.
51
+ 2. Math bit for mutable input(s) is resolved before the non mutable inputs (with bit set to true and sharing memory
52
+ with one or more mutable arg(s)) are cloned.
53
+ At the end, the final value of the mutable arguments from the stack are copied into the original input mutable tensor inputs.
54
+ */
55
+ const auto& arguments = op.schema().arguments();
56
+ const auto num_arguments = arguments.size();
57
+ const auto stack_start = stack->size() - num_arguments;
58
+
59
+ c10::optional<bool> is_write;
60
+ for (const auto i : c10::irange(num_arguments)) {
61
+ // Three possible states:
62
+ // 1. alias_info has no value --> out-of-place operation
63
+ // 2. alias_info does have a value, alias_info->is_write=True --> in-place or out= operation
64
+ // 3. alias_info does have a value, alias_info->is_write=False --> view operation
65
+ const AliasInfo* alias_info = arguments[i].alias_info();
66
+ if (alias_info != nullptr) {
67
+ if (is_write.has_value()) {
68
+ TORCH_CHECK(*is_write == alias_info->isWrite(),
69
+ "Unsupported operator for ", op_name, " fallback: ", op.schema().name(),
70
+ op_name, " fallback doesn't work for operators with a mix "
71
+ "mutable and non-mutable inputs that alias with outputs, "
72
+ "this must be implemented manually. "
73
+ "If you got this error on a core op, please report a bug to PyTorch.");
74
+ } else {
75
+ is_write = alias_info->isWrite();
76
+ }
77
+ }
78
+ }
79
+
80
+ if (is_write.has_value() && !*is_write) {
81
+ // We assume that view operators automatically handle the math bit
82
+ // correctly by propagating the dispatch key in key_set.
83
+ // This is not necessarily always right, so you should test these cases.
84
+ op.redispatchBoxed(dispatch_keys & c10::DispatchKeySet(DispatchKeySet::FULL_AFTER, key), stack);
85
+ return;
86
+ }
87
+
88
+ // Mutable inputs with math bit set to True and their clones
89
+ std::vector<std::pair<Tensor, Tensor>> mutable_inputs_with_their_clones;
90
+ for (const auto i : c10::irange(num_arguments)) {
91
+ auto& ivalue = (*stack)[stack_start + i];
92
+ if (!(ivalue.isTensor() || ivalue.isTensorList())) {
93
+ continue;
94
+ }
95
+ const auto& argument = arguments[i];
96
+ bool mut_arg = false;
97
+ if (argument.alias_info()) {
98
+ // Was already tested by is_write loop above
99
+ TORCH_INTERNAL_ASSERT_DEBUG_ONLY(argument.alias_info()->isWrite());
100
+ mut_arg = true;
101
+ }
102
+ if (ivalue.isTensor()) {
103
+ if (!is_bit_set(ivalue.toTensor())) {
104
+ continue;
105
+ }
106
+ auto tensor = std::move(ivalue).toTensor();
107
+ auto resolved_tensor = at::clone(tensor);
108
+ if (mut_arg) {
109
+ TORCH_CHECK(mutable_inputs_with_their_clones.empty(), op_name, " fallback does not support operators with more than one mutable tensors with ",
110
+ op_name, "bit set to true.");
111
+ mutable_inputs_with_their_clones.emplace_back(std::move(tensor), resolved_tensor);
112
+ }
113
+ (*stack)[stack_start + i] = std::move(resolved_tensor);
114
+ } else if (ivalue.isTensorList()) {
115
+ auto tensors = std::move(ivalue).toTensorList();
116
+ for(const auto j : c10::irange(tensors.size())) {
117
+ const auto& tensor = tensors[j];
118
+ if (!is_bit_set(tensor)) {
119
+ continue;
120
+ }
121
+ TORCH_CHECK(!mut_arg, " fallback doesn't currently support mutable TensorLists with ",
122
+ op_name, " inputs. Please materialize all the ", op_name, " input tensor(s) in the mutable TensorList inputs before calling ",
123
+ op.schema().name());
124
+ tensors[j] = at::clone(tensor);
125
+ }
126
+ (*stack)[stack_start + i] = std::move(tensors);
127
+ }
128
+ }
129
+
130
+ op.redispatchBoxed(dispatch_keys & c10::DispatchKeySet(DispatchKeySet::FULL_AFTER, key), stack);
131
+
132
+ TORCH_INTERNAL_ASSERT(mutable_inputs_with_their_clones.size() <= 1);
133
+
134
+ for (std::pair<Tensor, Tensor> mut_tensors: mutable_inputs_with_their_clones) {
135
+ auto& mutable_input = mut_tensors.first;
136
+ auto& cloned_mutable_input = mut_tensors.second;
137
+ auto& ivalue = (*stack)[stack_start];
138
+ auto returned_output = std::move(ivalue).toTensor();
139
+
140
+ // sanity check to ensure that the tensor in stack aliases the cloned_mutable_input
141
+ TORCH_INTERNAL_ASSERT(cloned_mutable_input.is_same(returned_output));
142
+
143
+ // necessary for out= arg
144
+ at::native::resize_output(mutable_input, returned_output.sizes());
145
+
146
+ mutable_input.copy_(returned_output);
147
+ (*stack)[stack_start] = std::move(mutable_input);
148
+ }
149
+ }
150
+
151
+ virtual ~MathOpFallback() = default;
152
+
153
+ DispatchKey key;
154
+ string op_name;
155
+ };
156
+
157
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/MaxPooling.h ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/Parallel.h>
5
+ #include <ATen/native/DispatchStub.h>
6
+
7
+ namespace at::native {
8
+
9
+ // TODO(Heitor) Template by dimension
10
+ struct PoolingParams1D {
11
+ int64_t NB; // Number of batches
12
+ int64_t NC; // Number of channels
13
+ int64_t IW; // Input width
14
+ int64_t OW; // Output width
15
+ int64_t KW; // Kernel width
16
+ int64_t SJ; // Column stride
17
+ int64_t PJ; // Column padding
18
+ int64_t DJ; // Column dilation
19
+
20
+ // Return index of input element for the given kernel and output index
21
+ inline int64_t index(int64_t kj, int64_t oj) const {
22
+ return oj * SJ + kj * DJ - PJ;
23
+ }
24
+
25
+ // Return index of first output within bounds for this kernel index
26
+ inline int64_t valid_output_start(int64_t kj) const {
27
+ int64_t ij = index(kj, 0);;
28
+ return ij < 0 ? at::divup(-ij, SJ) : 0;
29
+ }
30
+
31
+ // Return index one past last output within bounds for this kernel index
32
+ inline int64_t valid_output_end(int64_t kj) const {
33
+ int64_t ij = index(kj, OW - 1);
34
+ return ij >= IW ? OW - at::divup(ij - (IW - 1), SJ) : OW;
35
+ }
36
+ };
37
+
38
+ using pooling_fn = void (*)(Tensor&, const Tensor&, const PoolingParams1D&);
39
+
40
+ DECLARE_DISPATCH(pooling_fn, max_pool1d_stub);
41
+
42
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/NonEmptyUtils.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/TensorBase.h>
2
+ #include <algorithm>
3
+ #include <vector>
4
+
5
+ namespace at::native {
6
+
7
+ inline int64_t ensure_nonempty_dim(int64_t dim) {
8
+ return std::max<int64_t>(dim, 1);
9
+ }
10
+
11
+ inline int64_t ensure_nonempty_size(const TensorBase &t, int64_t dim) {
12
+ return t.dim() == 0 ? 1 : t.size(dim);
13
+ }
14
+
15
+ inline int64_t ensure_nonempty_stride(const TensorBase &t, int64_t dim) {
16
+ return t.dim() == 0 ? 1 : t.stride(dim);
17
+ }
18
+
19
+ using IdxVec = std::vector<int64_t>;
20
+ inline IdxVec ensure_nonempty_vec(IdxVec vec) {
21
+ if (vec.empty()) {
22
+ vec.push_back(1);
23
+ }
24
+ return vec;
25
+ }
26
+
27
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/NonSymbolicBC.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <ATen/core/Tensor.h>
3
+ #include <c10/util/irange.h>
4
+ #include <ATen/core/IListRef.h>
5
+
6
+ namespace at::native {
7
+ // This file contains non-symbolic signatures for ops that we have sym-intified the signature of.
8
+ // However, in certain cases (such as static runtime), we call the native versions of the ops directly.
9
+ // In those cases, we will duplicate the signature here with non-symbolic ints, and also duplicate the C++ implementation.
10
+ TORCH_API at::Tensor reshape(const at::Tensor& self, at::IntArrayRef proposed_shape);
11
+ TORCH_API at::Tensor narrow(const at::Tensor& self, int64_t dim, int64_t start, int64_t length);
12
+ TORCH_API at::Tensor _sparse_coo_tensor_unsafe(const at::Tensor & indices, const at::Tensor & values, at::IntArrayRef size, c10::optional<at::ScalarType> dtype=c10::nullopt, c10::optional<at::Layout> layout=c10::nullopt, c10::optional<at::Device> device=c10::nullopt, c10::optional<bool> pin_memory=c10::nullopt, c10::optional<bool> is_coalesced=c10::nullopt);
13
+ TORCH_API at::Tensor nll_loss(const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor>& weight_opt, int64_t reduction, int64_t ignore_index);
14
+ TORCH_API at::Tensor nll_loss2d(const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor>& weight_opt, int64_t reduction, int64_t ignore_index);
15
+ // The below ops don't get a duplicated C++ implementation.
16
+ // They are backward ops, which make them very unlikely to be called directly
17
+ // by external code (at::native::trace_backward).
18
+ // They get their own declaration for BC purposes however.
19
+ TORCH_API at::Tensor _embedding_bag_backward(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, bool sparse, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1);
20
+ TORCH_API at::Tensor _embedding_bag_sparse_backward(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, const at::Tensor & bag_size, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1);
21
+ TORCH_API at::Tensor value_selecting_reduction_backward(const at::Tensor & grad, int64_t dim, const at::Tensor & indices, at::IntArrayRef sizes, bool keepdim);
22
+ TORCH_API at::Tensor trace_backward(const at::Tensor & grad, at::IntArrayRef sizes);
23
+ TORCH_API at::Tensor index_select_backward(const at::Tensor & grad, at::IntArrayRef self_sizes, int64_t dim, const at::Tensor & index);
24
+ TORCH_API at::Tensor select(const at::Tensor& self, int64_t dim, int64_t index);
25
+ TORCH_API std::vector<Tensor> tensor_split(const Tensor& self, IntArrayRef indices, int64_t dim);
26
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Padding.h ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/native/DispatchStub.h>
5
+
6
+ namespace at::native {
7
+
8
+ using padding_fn = void (*)(const Tensor&, const Tensor&, IntArrayRef);
9
+
10
+ // reflection padding
11
+ DECLARE_DISPATCH(padding_fn, reflection_pad1d_kernel);
12
+ DECLARE_DISPATCH(padding_fn, reflection_pad1d_backward_kernel);
13
+ DECLARE_DISPATCH(padding_fn, reflection_pad2d_kernel);
14
+ DECLARE_DISPATCH(padding_fn, reflection_pad2d_backward_kernel);
15
+ DECLARE_DISPATCH(padding_fn, reflection_pad3d_kernel);
16
+ DECLARE_DISPATCH(padding_fn, reflection_pad3d_backward_kernel);
17
+
18
+ // replication padding
19
+ DECLARE_DISPATCH(padding_fn, replication_pad1d_kernel);
20
+ DECLARE_DISPATCH(padding_fn, replication_pad1d_backward_kernel);
21
+ DECLARE_DISPATCH(padding_fn, replication_pad2d_kernel);
22
+ DECLARE_DISPATCH(padding_fn, replication_pad2d_backward_kernel);
23
+ DECLARE_DISPATCH(padding_fn, replication_pad3d_kernel);
24
+ DECLARE_DISPATCH(padding_fn, replication_pad3d_backward_kernel);
25
+
26
+ namespace padding {
27
+
28
+ template <int dim>
29
+ static inline void check_valid_input(const Tensor& input, IntArrayRef padding) {
30
+
31
+ TORCH_CHECK(padding.size() == 2 * dim,
32
+ "padding size is expected to be ", 2 * dim,
33
+ ", but got: ", padding.size());
34
+
35
+ int input_dim = input.dim();
36
+
37
+ bool is_batch_mode = input_dim == (dim + 2);
38
+
39
+ bool valid_batch_mode = is_batch_mode;
40
+ bool valid_non_batch_mode = !is_batch_mode;
41
+
42
+ if (is_batch_mode) {
43
+ // allow batch size of 0-dim.
44
+ for (const auto d : c10::irange(1, input_dim)) {
45
+ valid_batch_mode = valid_batch_mode && input.size(d) != 0;
46
+ }
47
+ } else {
48
+ for (const auto d : c10::irange(0, input_dim)) {
49
+ valid_non_batch_mode = valid_non_batch_mode && input.size(d) != 0;
50
+ }
51
+ }
52
+
53
+ // allow empty batch size but not other dimensions.
54
+ TORCH_CHECK(valid_batch_mode || valid_non_batch_mode,
55
+ "Expected ", dim + 1, "D or ", dim + 2,
56
+ "D (batch mode) tensor with possibly 0 batch size and other non-zero dimensions for input, but got: ",
57
+ input.sizes());
58
+ }
59
+
60
+ } // namespace padding
61
+
62
+ } // at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/PixelShuffle.h ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/Tensor.h>
2
+ #include <c10/util/Exception.h>
3
+
4
+ namespace at {
5
+ namespace native {
6
+
7
+ inline void check_pixel_shuffle_shapes(const Tensor& self, int64_t upscale_factor) {
8
+ TORCH_CHECK(self.dim() >= 3,
9
+ "pixel_shuffle expects input to have at least 3 dimensions, but got input with ",
10
+ self.dim(), " dimension(s)");
11
+ TORCH_CHECK(upscale_factor > 0,
12
+ "pixel_shuffle expects a positive upscale_factor, but got ",
13
+ upscale_factor);
14
+ int64_t c = self.size(-3);
15
+ int64_t upscale_factor_squared = upscale_factor * upscale_factor;
16
+ TORCH_CHECK(c % upscale_factor_squared == 0,
17
+ "pixel_shuffle expects its input's 'channel' dimension to be divisible by the square of "
18
+ "upscale_factor, but input.size(-3)=", c, " is not divisible by ", upscale_factor_squared);
19
+ }
20
+
21
+ inline void check_pixel_unshuffle_shapes(const Tensor& self, int64_t downscale_factor) {
22
+ TORCH_CHECK(
23
+ self.dim() >= 3,
24
+ "pixel_unshuffle expects input to have at least 3 dimensions, but got input with ",
25
+ self.dim(),
26
+ " dimension(s)");
27
+ TORCH_CHECK(
28
+ downscale_factor > 0,
29
+ "pixel_unshuffle expects a positive downscale_factor, but got ",
30
+ downscale_factor);
31
+ int64_t h = self.size(-2);
32
+ int64_t w = self.size(-1);
33
+ TORCH_CHECK(
34
+ h % downscale_factor == 0,
35
+ "pixel_unshuffle expects height to be divisible by downscale_factor, but input.size(-2)=",
36
+ h,
37
+ " is not divisible by ",
38
+ downscale_factor);
39
+ TORCH_CHECK(
40
+ w % downscale_factor == 0,
41
+ "pixel_unshuffle expects width to be divisible by downscale_factor, but input.size(-1)=",
42
+ w,
43
+ " is not divisible by ",
44
+ downscale_factor);
45
+ }
46
+
47
+ }} // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/PointwiseOps.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Ternary and higher-order pointwise operations
2
+ #pragma once
3
+
4
+ #include <ATen/native/DispatchStub.h>
5
+
6
+ namespace c10 {
7
+ class Scalar;
8
+ }
9
+
10
+ namespace at {
11
+
12
+ struct TensorIterator;
13
+ struct TensorIteratorBase;
14
+
15
+ namespace native {
16
+
17
+ using pointwise_fn = void (*)(TensorIterator&, const Scalar& scalar);
18
+ using structured_pointwise_fn = void (*)(TensorIteratorBase&, const Scalar& scalar);
19
+ using pointwise_fn_double = void (*)(TensorIterator&, const Scalar&, double);
20
+
21
+ DECLARE_DISPATCH(structured_pointwise_fn, addcmul_stub);
22
+ DECLARE_DISPATCH(structured_pointwise_fn, addcdiv_stub);
23
+ DECLARE_DISPATCH(pointwise_fn_double, smooth_l1_backward_stub);
24
+ DECLARE_DISPATCH(pointwise_fn_double, huber_backward_stub);
25
+ DECLARE_DISPATCH(pointwise_fn, mse_backward_stub);
26
+
27
+ } // namespace native
28
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Pool.h ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/Tensor.h>
2
+ #include <ATen/div_rtn.h>
3
+ #include <ATen/TensorUtils.h>
4
+ #include <ATen/native/DispatchStub.h>
5
+ #include <c10/util/irange.h>
6
+
7
+ #include <utility>
8
+
9
+ #pragma once
10
+
11
+ namespace at::native {
12
+
13
+ using max_pool2d_fn = void(*)(const Tensor& output, const Tensor& indices, const Tensor& input,
14
+ int kW, int kH, int dW, int dH, int padW, int padH, int dilationW, int dilationH);
15
+ using max_pool2d_backward_fn = void(*)(const Tensor& grad_input, const Tensor& grad_output, const Tensor& indices);
16
+
17
+ DECLARE_DISPATCH(max_pool2d_fn, max_pool2d_kernel);
18
+ DECLARE_DISPATCH(max_pool2d_backward_fn, max_pool2d_backward_kernel);
19
+
20
+ // averge pooling has same signature for forward and backward
21
+ using avg_pool2d_fn = void(*)(const Tensor& output, const Tensor& input, int64_t kW, int64_t kH,
22
+ int64_t dW, int64_t dH, int64_t padW, int64_t padH, bool count_include_pad, c10::optional<int64_t> divisor_override);
23
+ using avg_pool2d_backward_fn = void(*)(const Tensor& output, const Tensor& input, int kW, int kH,
24
+ int dW, int dH, int padW, int padH, bool count_include_pad, c10::optional<int64_t> divisor_override);
25
+
26
+ DECLARE_DISPATCH(avg_pool2d_fn, avg_pool2d_kernel);
27
+ DECLARE_DISPATCH(avg_pool2d_backward_fn, avg_pool2d_backward_kernel);
28
+
29
+ using max_pool3d_fn = void(*)(Tensor& output, Tensor& indices, const Tensor& input,
30
+ int kW, int kH, int kD, int dW, int dH, int dD, int pW, int pH, int pD, int dilationW, int dilationH, int dilationD);
31
+ using max_pool3d_backward_fn = void(*)(Tensor& grad_input, const Tensor& grad_output, const Tensor& indices);
32
+
33
+ DECLARE_DISPATCH(max_pool3d_fn, max_pool3d_kernel);
34
+ DECLARE_DISPATCH(max_pool3d_backward_fn, max_pool3d_backward_kernel);
35
+ namespace {
36
+
37
+ template <typename dest_t, typename src_t>
38
+ static inline dest_t
39
+ safe_downcast(src_t v)
40
+ {
41
+ TORCH_CHECK(std::numeric_limits<dest_t>::min() <= v && v <= std::numeric_limits<dest_t>::max(),
42
+ "integer out of range");
43
+
44
+ return static_cast<dest_t>(v);
45
+ }
46
+
47
+ template<typename T>
48
+ static inline T pooling_output_shape_pad_lr(
49
+ T inputSize, T kernelSize, T pad_l, T pad_r, T stride, T dilation,
50
+ bool ceil_mode) {
51
+ T outputSize = div_rtn<T>(
52
+ inputSize + pad_l + pad_r - dilation * (kernelSize - 1) - 1 +
53
+ (ceil_mode ? stride - 1 : 0), stride) + 1;
54
+ if (ceil_mode) {
55
+ // ensure that the last pooling starts inside the image
56
+ // needed to avoid problems in ceil mode
57
+ if ((outputSize - 1) * stride >= inputSize + pad_l) {
58
+ --outputSize;
59
+ }
60
+ }
61
+ return outputSize;
62
+ }
63
+
64
+ template<typename T>
65
+ static inline T pooling_output_shape(
66
+ T inputSize, T kernelSize, T pad, T stride, T dilation, bool ceil_mode) {
67
+ TORCH_CHECK(stride != 0, "stride should not be zero");
68
+ TORCH_CHECK(pad >= 0,
69
+ "pad must be non-negative, but got pad: ", pad);
70
+ TORCH_CHECK(pad <= kernelSize / 2,
71
+ "pad should be at most half of kernel size, but got pad=",
72
+ pad, " and kernel_size=", kernelSize)
73
+ return pooling_output_shape_pad_lr(
74
+ inputSize, kernelSize, pad, pad, stride, dilation, ceil_mode);
75
+ }
76
+
77
+ template <typename T>
78
+ std::pair<T, T> _pooling_same_mode_padding_lr(
79
+ T inputSize, T kernelSize, T stride, T dilation) {
80
+ // NOTE: with strides, the output shape is ceil(inputSize/stride)
81
+ auto total_padding = T(dilation) * (kernelSize - 1);
82
+
83
+ // Prefer symmetric padding if possible
84
+ if (stride > 2 && (total_padding % 2 == 1)) {
85
+ // The floor in the output size calculation gives us a little wiggle room
86
+ auto wiggle_room = inputSize % stride - 1;
87
+ if (wiggle_room > 0) {
88
+ total_padding = total_padding - 1;
89
+ }
90
+ }
91
+
92
+ auto left = total_padding / 2;
93
+ return {left, total_padding - left};
94
+ }
95
+
96
+ inline std::pair<int64_t, int64_t> pooling_same_mode_padding_lr(
97
+ int64_t inputSize, int64_t kernelSize, int64_t stride, int64_t dilation) {
98
+ return _pooling_same_mode_padding_lr(inputSize, kernelSize, stride, dilation);
99
+ }
100
+
101
+ inline std::pair<c10::SymInt, c10::SymInt> pooling_same_mode_padding_lr(
102
+ c10::SymInt inputSize, c10::SymInt kernelSize, c10::SymInt stride, c10::SymInt dilation) {
103
+ return _pooling_same_mode_padding_lr(std::move(inputSize), std::move(kernelSize), std::move(stride), std::move(dilation));
104
+ }
105
+
106
+ // AveragePool2d/DilatedMaxPool2d (forward)
107
+ static inline void
108
+ pool2d_shape_check(
109
+ const Tensor& input,
110
+ int kH, int kW, int dH, int dW, int padH, int padW, int dilationH, int dilationW,
111
+ int64_t nInputPlane,
112
+ int64_t inputHeight, int64_t inputWidth,
113
+ int64_t outputHeight, int64_t outputWidth, MemoryFormat memory_format)
114
+ {
115
+ const int64_t ndim = input.ndimension();
116
+ const int64_t nOutputPlane = nInputPlane;
117
+
118
+ TORCH_CHECK(kW > 0 && kH > 0,
119
+ "kernel size should be greater than zero, but got ",
120
+ "kH: ", kH, " kW: ", kW);
121
+ TORCH_CHECK(dW > 0 && dH > 0,
122
+ "stride should be greater than zero, but got "
123
+ "dH: ", dH, " dW: ", dW);
124
+ TORCH_CHECK(dilationH > 0 && dilationW > 0,
125
+ "dilation should be greater than zero, but got ",
126
+ "dilationH: ", dilationH, " dilationW: ", dilationW);
127
+
128
+ bool valid_dims = input.size(1) != 0 && input.size(2) != 0;
129
+ if (memory_format == at::MemoryFormat::ChannelsLast){
130
+ // Expect tensor in NHWC format and allow 0-dim only for N.
131
+ TORCH_CHECK((ndim == 4 && valid_dims && input.size(3) != 0),
132
+ "Expected 4D (batch mode) tensor expected for input with channels_last layout"
133
+ " with optional 0 dim batch size for input, but got: ", input.sizes());
134
+ } else {
135
+ TORCH_CHECK((ndim == 3 && input.size(0) != 0 && valid_dims) ||
136
+ (ndim == 4 && valid_dims && input.size(3) != 0),
137
+ "Expected 3D or 4D (batch mode) tensor with optional 0 dim batch size for input, but got:",
138
+ input.sizes());
139
+ }
140
+
141
+ TORCH_CHECK(kW/2 >= padW && kH/2 >= padH,
142
+ "pad should be smaller than or equal to half of kernel size, but got ",
143
+ "padW = ", padW, ", padH = ", padH, ", kW = ", kW, ", kH = ", kH);
144
+
145
+ TORCH_CHECK(outputWidth >= 1 && outputHeight >= 1,
146
+ "Given input size: (",
147
+ nInputPlane, "x", inputHeight, "x", inputWidth, "). ",
148
+ "Calculated output size: (",
149
+ nOutputPlane, "x", outputHeight, "x", outputWidth, "). ",
150
+ "Output size is too small");
151
+ }
152
+
153
+ // DilatedMaxPool2d (backward)
154
+ static inline void
155
+ max_pool2d_backward_shape_check(
156
+ const Tensor& input,
157
+ const Tensor& gradOutput,
158
+ const Tensor& indices,
159
+ int kH, int kW, int dH, int dW, int padH, int padW, int dilationH, int dilationW,
160
+ int64_t nInputPlane,
161
+ int64_t inputHeight, int64_t inputWidth,
162
+ int64_t outputHeight, int64_t outputWidth, MemoryFormat memory_format)
163
+ {
164
+ pool2d_shape_check(
165
+ input,
166
+ kH, kW, dH, dW, padH, padW, dilationH, dilationW,
167
+ nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, memory_format);
168
+
169
+ const int64_t ndim = input.ndimension();
170
+ const int64_t nOutputPlane = nInputPlane;
171
+
172
+ check_dim_size(gradOutput, ndim, ndim-3, nOutputPlane);
173
+ check_dim_size(gradOutput, ndim, ndim-2, outputHeight);
174
+ check_dim_size(gradOutput, ndim, ndim-1, outputWidth);
175
+
176
+ check_dim_size(indices, ndim, ndim-3, nOutputPlane);
177
+ check_dim_size(indices, ndim, ndim-2, outputHeight);
178
+ check_dim_size(indices, ndim, ndim-1, outputWidth);
179
+ }
180
+
181
+ // AveragePool2d (backward)
182
+ static inline void
183
+ avg_pool2d_backward_shape_check(
184
+ const Tensor& input,
185
+ const Tensor& gradOutput,
186
+ int64_t /*nbatch*/,
187
+ int kH, int kW, int dH, int dW, int padH, int padW,
188
+ int64_t nInputPlane,
189
+ int64_t inputHeight, int64_t inputWidth,
190
+ int64_t outputHeight, int64_t outputWidth,
191
+ MemoryFormat memory_format)
192
+ {
193
+ pool2d_shape_check(
194
+ input,
195
+ kH, kW, dH, dW, padH, padW, 1, 1,
196
+ nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
197
+ memory_format);
198
+
199
+ const int64_t ndim = input.ndimension();
200
+ const int64_t nOutputPlane = nInputPlane;
201
+
202
+ check_dim_size(gradOutput, ndim, ndim-3, nOutputPlane);
203
+ check_dim_size(gradOutput, ndim, ndim-2, outputHeight);
204
+ check_dim_size(gradOutput, ndim, ndim-1, outputWidth);
205
+ }
206
+
207
+ // AveragePool3d/DilatedMaxPool3d (forward)
208
+ static inline void
209
+ pool3d_shape_check(
210
+ const Tensor& input,
211
+ int64_t nslices,
212
+ int kT, int kH, int kW,
213
+ int dT, int dH, int dW,
214
+ int pT, int pH, int pW,
215
+ int dilationT, int dilationH, int dilationW,
216
+ int64_t itime, int64_t iheight, int64_t iwidth,
217
+ int64_t otime, int64_t oheight, int64_t owidth,
218
+ const char *fn_name,
219
+ bool check_input_size=false)
220
+ {
221
+ const int64_t ndim = input.ndimension();
222
+
223
+ TORCH_CHECK(kT > 0 && kW > 0 && kH > 0,
224
+ "kernel size should be greater than zero, but got ",
225
+ "kT: ", kT, " kH: ", kH, " kW: ", kW);
226
+ TORCH_CHECK(dT > 0 && dW > 0 && dH > 0,
227
+ "stride should be greater than zero, but got ",
228
+ "dT: ", dT, " dH: ", dH, " dW: ", dW);
229
+ TORCH_CHECK(dilationT > 0 && dilationW > 0 && dilationH > 0,
230
+ "dilation should be greater than zero, but got ",
231
+ "dilationT: ", dilationT, " dilationH: ", dilationH, " dilationW: ", dilationW);
232
+
233
+ TORCH_CHECK(ndim == 4 || ndim == 5,
234
+ fn_name, ": Expected 4D or 5D tensor for input, but got: ", input.sizes());
235
+
236
+ for (const auto i : c10::irange(ndim)) {
237
+ if (ndim == 5 && i == 0) {
238
+ // size of batch-dim can be 0.
239
+ continue;
240
+ }
241
+ TORCH_CHECK(
242
+ input.size(i) > 0,
243
+ fn_name,
244
+ ": Expected input's non-batch dimensions to have positive length,"
245
+ " but input has a shape of ",
246
+ input.sizes(),
247
+ " and non-batch dimension ",
248
+ input.size(i),
249
+ " has length zero!")
250
+ }
251
+
252
+ if (check_input_size) { // AveragePool3d
253
+ TORCH_CHECK(itime >= kT && iheight >= kH && iwidth >= kW,
254
+ "input image ", "(T: ", itime, " H: ", iheight, " W: ", iwidth, ") smaller than ",
255
+ "kernel size ", "(kT: ", kT, " kH: ", kH, " kW: ", kW, ")");
256
+ }
257
+
258
+ TORCH_CHECK(kT/2 >= pT && kW/2 >= pW && kH/2 >= pH,
259
+ "pad should be smaller than or equal to half of kernel size, but got "
260
+ "kT: ", kT, " kW: ", kW, " kH: ", kH, " padT: ", pT, " padW: ", pW, " padH: ", pH);
261
+
262
+ TORCH_CHECK(otime >= 1 && owidth >= 1 && oheight >= 1,
263
+ "Given input size: (",
264
+ nslices,"x", itime, "x", iheight, "x", iwidth, "). ",
265
+ "Calculated output size: (",
266
+ nslices, "x", otime, "x", oheight, "x", owidth, "). ",
267
+ "Output size is too small");
268
+ }
269
+
270
+ static inline void
271
+ max_pool3d_backward_shape_check(
272
+ const Tensor& input,
273
+ const Tensor& gradOutput,
274
+ const Tensor& indices,
275
+ int64_t nslices,
276
+ int kT, int kH, int kW,
277
+ int dT, int dH, int dW,
278
+ int pT, int pH, int pW,
279
+ int dilationT, int dilationH, int dilationW,
280
+ int64_t itime, int64_t iheight, int64_t iwidth,
281
+ int64_t otime, int64_t oheight, int64_t owidth,
282
+ const char* fn_name)
283
+ {
284
+ const int64_t ndim = input.ndimension();
285
+
286
+ pool3d_shape_check(
287
+ input,
288
+ nslices,
289
+ kT, kH, kW,
290
+ dT, dH, dW,
291
+ pT, pH, pW,
292
+ dilationT, dilationH, dilationW,
293
+ itime, iheight, iwidth,
294
+ otime, oheight, owidth, fn_name);
295
+
296
+ check_dim_size(gradOutput, ndim, ndim-4, nslices);
297
+ check_dim_size(gradOutput, ndim, ndim-3, otime);
298
+ check_dim_size(gradOutput, ndim, ndim-2, oheight);
299
+ check_dim_size(gradOutput, ndim, ndim-1, owidth);
300
+
301
+ check_dim_size(indices, ndim, ndim-4, nslices);
302
+ check_dim_size(indices, ndim, ndim-3, otime);
303
+ check_dim_size(indices, ndim, ndim-2, oheight);
304
+ check_dim_size(indices, ndim, ndim-1, owidth);
305
+ }
306
+
307
+ static inline void
308
+ avg_pool3d_backward_shape_check(
309
+ const Tensor& input,
310
+ const Tensor& gradOutput,
311
+ int64_t nslices,
312
+ int kT, int kH, int kW,
313
+ int dT, int dH, int dW,
314
+ int pT, int pH, int pW,
315
+ int64_t itime, int64_t iheight, int64_t iwidth,
316
+ int64_t otime, int64_t oheight, int64_t owidth,
317
+ const char *fn_name)
318
+ {
319
+ const int64_t ndim = input.ndimension();
320
+
321
+ pool3d_shape_check(
322
+ input,
323
+ nslices,
324
+ kT, kH, kW,
325
+ dT, dH, dW,
326
+ pT, pH, pW,
327
+ 1, 1, 1,
328
+ itime, iheight, iwidth,
329
+ otime, oheight, owidth,
330
+ fn_name, true);
331
+
332
+ check_dim_size(gradOutput, ndim, ndim-4, nslices);
333
+ check_dim_size(gradOutput, ndim, ndim-3, otime);
334
+ check_dim_size(gradOutput, ndim, ndim-2, oheight);
335
+ check_dim_size(gradOutput, ndim, ndim-1, owidth);
336
+ }
337
+
338
+ } // anonymous namespace
339
+
340
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Pow.h ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/native/DispatchStub.h>
4
+
5
+ namespace c10 {
6
+ class Scalar;
7
+ }
8
+
9
+ namespace at {
10
+
11
+ struct TensorIterator;
12
+ struct TensorIteratorBase;
13
+
14
+ namespace native {
15
+
16
+ #if defined(__CUDACC__) || defined(__HIPCC__)
17
+ #define HOST_DEVICE __host__ __device__
18
+ #else
19
+ #define HOST_DEVICE
20
+ #endif
21
+
22
+ // integral power in pytorch allows for negative exponents, giving truncated integral results.
23
+ // e.g. since 2**-1==0.5, the truncated integral result is zero. 1**negative_exponent is the
24
+ // only non-zero result.
25
+ template <class T,
26
+ typename std::enable_if<std::is_integral<T>::value, T>::type* = nullptr>
27
+ static inline HOST_DEVICE __ubsan_ignore_signed_int_overflow__ T powi_impl(T a, T b) {
28
+ T result = 1;
29
+ while (b) {
30
+ if (b & 1) {
31
+ result *= a;
32
+ }
33
+ b /= 2;
34
+ a *= a;
35
+ }
36
+ return result;
37
+ }
38
+
39
+ template <class T,
40
+ typename std::enable_if<std::is_integral<T>::value && !std::is_signed<T>::value, T>::type* = nullptr>
41
+ static inline HOST_DEVICE T powi(T a, T b) {
42
+ return powi_impl(a, b);
43
+ }
44
+
45
+ template <class T,
46
+ typename std::enable_if<std::is_integral<T>::value && std::is_signed<T>::value, T>::type* = nullptr>
47
+ static inline HOST_DEVICE T powi(T a, T b) {
48
+ if ( b < 0 ) {
49
+ if ( a == 1 ) {
50
+ return 1;
51
+ } else if ( a == -1 ) {
52
+ auto negative = (-b) % static_cast<T>(2);
53
+ return negative ? -1 : 1;
54
+ } else {
55
+ return 0;
56
+ }
57
+ }
58
+ return powi_impl(a, b);
59
+ }
60
+
61
+ using pow_tensor_tensor_fn = void (*)(TensorIteratorBase&);
62
+ using pow_tensor_scalar_fn = void (*)(TensorIteratorBase&, const c10::Scalar&);
63
+
64
+ DECLARE_DISPATCH(pow_tensor_tensor_fn, pow_tensor_tensor_stub);
65
+ DECLARE_DISPATCH(pow_tensor_scalar_fn, pow_tensor_scalar_stub);
66
+
67
+ } // namespace native
68
+
69
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/RangeFactories.h ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/native/DispatchStub.h>
2
+ #include <c10/core/Scalar.h>
3
+
4
+ namespace at {
5
+ struct TensorIterator;
6
+
7
+ namespace native {
8
+
9
+ DECLARE_DISPATCH(void(*)(TensorIterator&, const Scalar&, const Scalar&, const Scalar&), arange_stub);
10
+ DECLARE_DISPATCH(void(*)(TensorIterator&, const Scalar&, const Scalar&, int64_t), linspace_stub);
11
+
12
+ }} // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/ReduceAllOps.h ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/native/DispatchStub.h>
4
+
5
+ namespace at {
6
+ class Tensor;
7
+ }
8
+
9
+ namespace at::native {
10
+
11
+ using reduce_all_fn = void (*)(Tensor & result, const Tensor & self);
12
+ using reduce_min_max_fn = void (*)(Tensor & max_result, Tensor & min_result, const Tensor & self);
13
+ DECLARE_DISPATCH(reduce_all_fn, min_all_stub);
14
+ DECLARE_DISPATCH(reduce_all_fn, max_all_stub);
15
+
16
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/ReduceOpsUtils.h ADDED
@@ -0,0 +1,448 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <limits>
4
+ #include <ATen/core/Tensor.h>
5
+ #include <ATen/native/Resize.h>
6
+ #include <ATen/native/TensorIterator.h>
7
+ #include <ATen/native/NonEmptyUtils.h>
8
+ #include <ATen/WrapDimUtilsMulti.h>
9
+ #include <c10/core/ScalarType.h>
10
+ #include <c10/util/irange.h>
11
+
12
+ #ifndef AT_PER_OPERATOR_HEADERS
13
+ #include <ATen/Functions.h>
14
+ #else
15
+ #include <ATen/ops/empty.h>
16
+ #include <ATen/ops/scalar_tensor.h>
17
+ #endif
18
+
19
+ namespace at::native {
20
+
21
+ // Maximum and minimum possible scalar values, including infinities
22
+ template <typename scalar_t>
23
+ constexpr scalar_t upper_bound() {
24
+ using lim = std::numeric_limits<scalar_t>;
25
+ return lim::has_infinity ? lim::infinity() : lim::max();
26
+ }
27
+
28
+ template <typename scalar_t>
29
+ constexpr scalar_t lower_bound() {
30
+ using lim = std::numeric_limits<scalar_t>;
31
+ return lim::has_infinity ? -lim::infinity() : lim::lowest();
32
+ }
33
+
34
+ static inline Tensor restride_dim(
35
+ const Tensor& src, int64_t dim,
36
+ IntArrayRef replacement_shape
37
+ ) {
38
+ auto strides = ensure_nonempty_vec(src.strides().vec());
39
+ strides[dim] = 0;
40
+ return src.as_strided(replacement_shape, strides);
41
+ }
42
+
43
+ inline void _dimreduce_setup(const Tensor &result, const Tensor &self,
44
+ int64_t dim) {
45
+ IntArrayRef self_sizes = self.sizes();
46
+ std::vector<int64_t> result_sizes;
47
+ result_sizes.insert(result_sizes.end(), self_sizes.begin(), self_sizes.end());
48
+ result_sizes[dim] = 1;
49
+ result.resize_(result_sizes);
50
+ }
51
+
52
+ inline bool _dimreduce_return_trivial(const Tensor &result, const Tensor &self,
53
+ const Scalar& ident, int64_t dim, bool keepdim) {
54
+ if (self.numel() == 1 && self.ndimension() == 0) {
55
+ result.resize_({});
56
+ result.fill_(self);
57
+ return true;
58
+ }
59
+ // Return identity
60
+ if (self.numel() == 0) {
61
+ _dimreduce_setup(result, self, dim);
62
+ result.fill_(ident);
63
+ if (!keepdim) result.squeeze_(dim);
64
+ return true;
65
+ }
66
+ return false;
67
+ }
68
+
69
+ inline bool _dimreduce_return_trivial_no_ident(Tensor &result, const Tensor &self,
70
+ int64_t /*dim*/, bool /*keepdim*/, const char* /*fn_name*/) {
71
+ if (self.numel() == 1 && self.ndimension() == 0) {
72
+ result.resize_({});
73
+ result.fill_(self);
74
+ return true;
75
+ }
76
+
77
+ return false;
78
+ }
79
+
80
+ inline c10::optional<Tensor> _allreduce_return_trivial(
81
+ const Tensor& self,
82
+ const Scalar& ident) {
83
+ // Return identity
84
+ if (self.numel() == 0) {
85
+ return at::scalar_tensor(ident, self.options());
86
+ }
87
+ return c10::nullopt;
88
+ }
89
+
90
+ #define OPTION_TYPE_EQUALITY_CHECK(option, out, self) \
91
+ { \
92
+ TORCH_CHECK(\
93
+ out.option() == self.option(),\
94
+ "expected ", #option, " ",\
95
+ self.option(),\
96
+ " but found ", out.option())\
97
+ }
98
+
99
+ static inline void check_scalar_type_device_layout_equal(const Tensor& out, const Tensor& self) {
100
+ OPTION_TYPE_EQUALITY_CHECK(scalar_type, out, self);
101
+ OPTION_TYPE_EQUALITY_CHECK(device, out.options(), self.options());
102
+ OPTION_TYPE_EQUALITY_CHECK(layout, out.options(), self.options());
103
+ }
104
+
105
+ static inline Tensor integer_upcast(const Tensor& self, c10::optional<ScalarType> dtype) {
106
+ ScalarType scalarType = self.scalar_type();
107
+ ScalarType upcast_scalarType = dtype.value_or(at::isIntegralType(scalarType, /*includeBool=*/true) ? ScalarType::Long : scalarType);
108
+ return self.toType(upcast_scalarType);
109
+ }
110
+
111
+ using DimMask = TensorIterator::DimMask;
112
+
113
+ static DimVector make_dim_vector(OptionalIntArrayRef opt_dims, int64_t ndim) {
114
+ if (opt_dims.has_value()) {
115
+ return DimVector(opt_dims.value());
116
+ } else {
117
+ std::vector<int64_t> all_dims(ndim);
118
+ std::iota(all_dims.begin(), all_dims.end(), 0);
119
+ return DimVector(all_dims);
120
+ }
121
+ }
122
+
123
+ static DimMask make_dim_mask(OptionalIntArrayRef opt_dims, int64_t ndim, bool allow_empty_dims=false) {
124
+ DimMask mask;
125
+ if (opt_dims.has_value()) {
126
+ auto dims = opt_dims.value();
127
+ if (dims.empty() && !allow_empty_dims) {
128
+ mask = DimMask().flip();
129
+ } else {
130
+ mask = at::dim_list_to_bitset(dims, ndim);
131
+ }
132
+ } else {
133
+ mask = DimMask().flip();
134
+ }
135
+ return mask;
136
+ }
137
+
138
+ inline DimVector shape_from_dim_mask(const Tensor& self, DimMask mask, bool keepdim) {
139
+ auto shape = DimVector(self.sizes());
140
+ for (int dim = shape.size() - 1; dim >= 0; dim--) {
141
+ if (mask[dim]) {
142
+ if (keepdim) {
143
+ shape[dim] = 1;
144
+ } else {
145
+ shape.erase(shape.begin() + dim);
146
+ }
147
+ }
148
+ }
149
+ return shape;
150
+ }
151
+
152
+ static void resize_reduction_result(
153
+ Tensor& result, const Tensor& self, DimMask mask, bool keepdim,
154
+ ScalarType /*dtype*/)
155
+ {
156
+ auto shape = shape_from_dim_mask(self, mask, keepdim);
157
+ TORCH_CHECK(result.defined(), "Cannot create a new tensor inside a reduction op. You likely tried to call an operator with an out argument but the out argument was an undefined tensor.");
158
+ at::native::resize_output(result, shape);
159
+ }
160
+
161
+ inline Tensor create_reduction_result(
162
+ const Tensor& self, at::OptionalIntArrayRef dim, bool keepdim, ScalarType dtype
163
+ ) {
164
+ DimMask mask = make_dim_mask(dim, self.dim());
165
+ auto shape = shape_from_dim_mask(self, mask, keepdim);
166
+ return at::empty(shape, self.options().dtype(dtype));
167
+ }
168
+
169
+ static Tensor review_reduce_result(const Tensor& result, int ndim, DimMask mask, bool keepdim) {
170
+ if (keepdim) {
171
+ return result;
172
+ }
173
+ auto shape = DimVector(result.sizes());
174
+ auto stride = DimVector(result.strides());
175
+ for (const auto dim : c10::irange(ndim)) {
176
+ if (mask[dim]) {
177
+ shape.insert(shape.begin() + dim, 1);
178
+ stride.insert(stride.begin() + dim, 0);
179
+ }
180
+ }
181
+ return result.as_strided(shape, stride);
182
+ }
183
+
184
+ static TensorIterator make_reduction(
185
+ const char* name, Tensor& result, const Tensor& self,
186
+ at::OptionalIntArrayRef dim_opt,
187
+ bool keepdim, ScalarType in_dtype, ScalarType out_dtype) {
188
+ // check that result type and dtype match if provided
189
+ TORCH_CHECK(
190
+ !result.defined() || result.scalar_type() == out_dtype,
191
+ name, ": provided dtype must match dtype of result. Got ",
192
+ toString(result.scalar_type()),
193
+ " and ",
194
+ toString(out_dtype),
195
+ ".");
196
+ // dim={} performs an all-reduce, same as dim=None
197
+ IntArrayRef dim = dim_opt.value_or(IntArrayRef{});
198
+ int64_t ndim = self.dim();
199
+ auto mask = make_dim_mask(dim, ndim);
200
+ resize_reduction_result(result, self, mask, keepdim, out_dtype);
201
+ auto viewed_result = review_reduce_result(result, ndim, mask, keepdim);
202
+ namedinference::propagate_names_for_reduction(result, self, dim, keepdim);
203
+ if (self.scalar_type() == in_dtype) {
204
+ return TensorIterator::reduce_op(viewed_result, self);
205
+ }
206
+ return TensorIterator::reduce_op(viewed_result, self.to(in_dtype));
207
+ }
208
+
209
+ static C10_UNUSED TensorIterator make_reduction(
210
+ const char* name, Tensor& result, const Tensor& self,
211
+ at::OptionalIntArrayRef dim, bool keepdim, ScalarType out_dtype) {
212
+ // special case for type promotion in mixed precision, improves computational
213
+ // efficiency.
214
+ // not generalize this to common mismatched input/output types to avoid cross
215
+ // product of templated kernel launches.
216
+ const bool gpu_lowp_to_f32 = (
217
+ self.is_cuda() && (self.scalar_type() == kHalf || self.scalar_type() == kBFloat16) && out_dtype == kFloat);
218
+ auto in_dtype = gpu_lowp_to_f32 ? self.scalar_type()
219
+ : self.is_complex() ? c10::toComplexType(out_dtype)
220
+ : out_dtype;
221
+ return make_reduction(name, result, self, dim, keepdim, in_dtype, out_dtype);
222
+ }
223
+
224
+ static TensorIterator make_reduction(
225
+ const char* name, Tensor& result1, Tensor& result2, const Tensor& self,
226
+ at::OptionalIntArrayRef dim_opt, bool keepdim, ScalarType dtype1,
227
+ ScalarType dtype2) {
228
+ // check that result type and dtype match if provided
229
+ TORCH_CHECK(
230
+ (!result1.defined() || result1.scalar_type() == dtype1) && (!result2.defined() || result2.scalar_type() == dtype2),
231
+ name, ": provided dtype must match dtype of result. Got ",
232
+ toString(result1.scalar_type()), toString(result2.scalar_type()),
233
+ " and ",
234
+ toString(dtype1), toString(dtype2),
235
+ ".");
236
+
237
+ // dim={} performs an all-reduce, same as dim=None
238
+ auto dim = dim_opt.value_or(IntArrayRef{});
239
+ int64_t ndim = self.dim();
240
+ DimMask mask = make_dim_mask(dim, ndim);
241
+ resize_reduction_result(result1, self, mask, keepdim, dtype1);
242
+ auto viewed_result1 = review_reduce_result(result1, ndim, mask, keepdim);
243
+
244
+ resize_reduction_result(result2, self, mask, keepdim, dtype2);
245
+ auto viewed_result2 = review_reduce_result(result2, ndim, mask, keepdim);
246
+
247
+ namedinference::propagate_names_for_reduction(result1, self, dim, keepdim);
248
+ namedinference::propagate_names_for_reduction(result2, self, dim, keepdim);
249
+
250
+ // special case for type promotion in mixed precision, improves computational
251
+ // efficiency.
252
+ // We don't generalize this to common mismatched input/output types to avoid cross
253
+ // product of templated kernel launches.
254
+ if (self.scalar_type() == dtype1 ||
255
+ (self.is_cuda() && self.scalar_type() == kHalf && dtype1 == kFloat)) {
256
+ return TensorIterator::reduce_op(viewed_result1, viewed_result2, self);
257
+ }
258
+ return TensorIterator::reduce_op(viewed_result1, viewed_result2, self.to(dtype1));
259
+ }
260
+
261
+ static C10_UNUSED TensorIterator make_reduction(
262
+ const char* name, Tensor& result1, Tensor& result2, const Tensor& self,
263
+ at::OptionalIntArrayRef dim, bool keepdim, ScalarType dtype) {
264
+ return make_reduction(name, result1, result2, self, dim, keepdim, dtype, dtype);
265
+ }
266
+
267
+ static void zero_numel_check_dims(const Tensor& self, const int64_t dim, const char *fn_name) {
268
+ if (self.ndimension() == 0) {
269
+ TORCH_CHECK_INDEX(dim == 0 || dim == -1, fn_name,
270
+ ": Expected reduction dim -1 or 0 for scalar but got ", dim);
271
+ }
272
+ else {
273
+ TORCH_CHECK_INDEX(self.size(dim) != 0, fn_name,
274
+ ": Expected reduction dim ", dim, " to have non-zero size.");
275
+ }
276
+ }
277
+
278
+ static void zero_numel_check_dims(const Tensor& self, const IntArrayRef dim, const char *fn_name) {
279
+ TORCH_CHECK(
280
+ !dim.empty(),
281
+ fn_name, ": Expected reduction dim to be specified for input.numel() == 0. ",
282
+ "Specify the reduction dim with the 'dim' argument.");
283
+ for (const int64_t d : dim) {
284
+ zero_numel_check_dims(self, d, fn_name);
285
+ }
286
+ }
287
+
288
+ static std::vector<int64_t> get_zero_numel_tensor_size(
289
+ const Tensor& self,
290
+ const int64_t dim,
291
+ const bool keepdim,
292
+ const char* fn_name) {
293
+ TORCH_INTERNAL_ASSERT(self.numel() == 0, fn_name, ": Expected self.numel() == 0.");
294
+ zero_numel_check_dims(self, dim, fn_name);
295
+ std::vector<int64_t> sizes;
296
+ if (keepdim) {
297
+ sizes = self.sizes().vec();
298
+ sizes[dim] = 1;
299
+ }
300
+ else {
301
+ for (const auto d : c10::irange(self.dim())) {
302
+ if (d != dim) {
303
+ sizes.push_back(self.sizes()[d]);
304
+ }
305
+ }
306
+ }
307
+ return sizes;
308
+ }
309
+
310
+ // Resize the result tensor and indices when result.numel() == 0 depending on values of
311
+ // dim and keepdim for returning tensors containing reduction results.
312
+ // This function should be called when you are reducing a zero-numel tensor and want to
313
+ // resize the output and return it. This function exists for resizing zero-numel
314
+ // tensors when the size of the reduction dimension is non-zero.
315
+ static C10_UNUSED void zero_numel_tensor_resize(Tensor& result, Tensor& result_indices,
316
+ const Tensor& self, const int64_t dim,
317
+ const bool keepdim, const char *fn_name) {
318
+ auto sizes = get_zero_numel_tensor_size(self, dim, keepdim, fn_name);
319
+ at::native::resize_output(result, sizes);
320
+ at::native::resize_output(result_indices, sizes);
321
+ }
322
+
323
+ inline ScalarType get_dtype_from_self(
324
+ const Tensor& self,
325
+ const c10::optional<ScalarType>& dtype,
326
+ bool promote_integers) {
327
+ if (dtype.has_value()) {
328
+ return dtype.value();
329
+ }
330
+ ScalarType src_type = self.scalar_type();
331
+ if (promote_integers && at::isIntegralType(src_type, /*includeBool=*/true)) {
332
+ return kLong;
333
+ }
334
+ return src_type;
335
+ }
336
+
337
+ inline ScalarType get_dtype_from_result(Tensor& result, c10::optional<ScalarType> dtype) {
338
+ TORCH_CHECK(result.defined(), "Cannot create a new tensor inside a reduction op. You likely tried to call an operator with an out argument but the out argument was an undefined tensor.");
339
+ if (dtype.has_value()) {
340
+ return dtype.value();
341
+ } else {
342
+ return result.scalar_type();
343
+ }
344
+ }
345
+
346
+
347
+ } // namespace at::native
348
+
349
+ namespace at::meta {
350
+
351
+ static C10_UNUSED DimVector get_reduction_shape(
352
+ const Tensor& self,
353
+ IntArrayRef dims,
354
+ bool keepdim,
355
+ bool allow_empty_dims=false) {
356
+ auto mask = native::make_dim_mask(dims, self.dim(), allow_empty_dims);
357
+ return native::shape_from_dim_mask(self, mask, keepdim);
358
+ }
359
+
360
+ static void resize_reduction(
361
+ impl::MetaBase& meta,
362
+ const Tensor& self,
363
+ OptionalIntArrayRef opt_dims,
364
+ bool keepdim,
365
+ ScalarType out_dtype,
366
+ bool allow_empty_dims=false) {
367
+ DimVector dims_ = at::native::make_dim_vector(opt_dims, self.dim());
368
+ maybe_wrap_dims(dims_, self.dim());
369
+ auto shape = get_reduction_shape(self, dims_, keepdim, allow_empty_dims);
370
+ meta.set_output_raw_strided(0, shape, {}, self.options().dtype(out_dtype));
371
+ namedinference::propagate_names_for_reduction(
372
+ meta.maybe_get_output(), self, dims_, keepdim);
373
+ }
374
+
375
+ static void resize_reduction_with_indices(
376
+ impl::MetaBase& meta,
377
+ const Tensor& self,
378
+ IntArrayRef dims,
379
+ bool keepdim,
380
+ ScalarType out_dtype) {
381
+ DimVector dims_(dims);
382
+ maybe_wrap_dims(dims_, self.dim());
383
+ auto shape = get_reduction_shape(self, dims_, keepdim);
384
+ meta.set_output_raw_strided(0, shape, {}, self.options().dtype(out_dtype));
385
+ meta.set_output_raw_strided(1, shape, {}, self.options().dtype(kLong));
386
+ namedinference::propagate_names_for_reduction(
387
+ meta.maybe_get_output(0), self, dims_, keepdim);
388
+ namedinference::propagate_names_for_reduction(
389
+ meta.maybe_get_output(1), self, dims_, keepdim);
390
+ }
391
+
392
+ static TensorIterator make_reduction(
393
+ const Tensor& self,
394
+ const Tensor& result,
395
+ OptionalIntArrayRef opt_dims,
396
+ bool keepdim,
397
+ ScalarType in_dtype) {
398
+ int64_t ndim = self.dim();
399
+ auto mask = at::native::make_dim_mask(opt_dims, ndim);
400
+ auto viewed_result =
401
+ at::native::review_reduce_result(result, ndim, mask, keepdim);
402
+ if (self.scalar_type() == in_dtype) {
403
+ return TensorIterator::reduce_op(viewed_result, self);
404
+ }
405
+ return TensorIterator::reduce_op(viewed_result, self.to(in_dtype));
406
+ }
407
+
408
+ static TensorIterator make_reduction(
409
+ const Tensor& self,
410
+ const Tensor& result1,
411
+ const Tensor& result2,
412
+ IntArrayRef dims,
413
+ bool keepdim,
414
+ ScalarType dtype1,
415
+ ScalarType /*dtype2*/) {
416
+ int64_t ndim = self.dim();
417
+ auto mask = at::native::make_dim_mask(dims, ndim);
418
+ auto viewed_result1 = at::native::review_reduce_result(result1, ndim, mask, keepdim);
419
+ auto viewed_result2 = at::native::review_reduce_result(result2, ndim, mask, keepdim);
420
+ // special case for type promotion in mixed precision, improves computational efficiency.
421
+ // We don't generalize this to common mismatched input/output types to avoid cross product
422
+ // of templated kernel launches.
423
+ if (self.scalar_type() == dtype1 ||
424
+ (self.is_cuda() && self.scalar_type() == kHalf && dtype1 == kFloat)) {
425
+ return TensorIterator::reduce_op(viewed_result1, viewed_result2, self);
426
+ }
427
+ return TensorIterator::reduce_op(viewed_result1, viewed_result2, self.to(dtype1));
428
+ }
429
+
430
+ static C10_UNUSED TensorIterator make_reduction_from_out_ty(
431
+ const Tensor& self,
432
+ const Tensor& result,
433
+ OptionalIntArrayRef opt_dims,
434
+ bool keepdim,
435
+ ScalarType out_dtype) {
436
+ // special case for type promotion in mixed precision, improves computational
437
+ // efficiency.
438
+ // not generalize this to common mismatched input/output types to avoid cross
439
+ // product of templated kernel launches.
440
+ const bool gpu_lowp_to_f32 =
441
+ (self.is_cuda() &&
442
+ (self.scalar_type() == kHalf || self.scalar_type() == kBFloat16) &&
443
+ out_dtype == kFloat);
444
+ auto in_dtype = gpu_lowp_to_f32 ? self.scalar_type() : out_dtype;
445
+ return make_reduction(self, result, opt_dims, keepdim, in_dtype);
446
+ }
447
+
448
+ } // namespace at::meta
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/ReductionType.h ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/core/Scalar.h>
4
+
5
+ namespace at::native {
6
+
7
+ enum class ReductionType {MAX, MEAN, MIN, SUM, PROD};
8
+
9
+ static inline ReductionType get_reduction_enum(const c10::string_view& reduce) {
10
+ if (reduce == "max" || reduce == "amax") {
11
+ return ReductionType::MAX;
12
+ } else if (reduce == "mean") {
13
+ return ReductionType::MEAN;
14
+ } else if (reduce == "min" || reduce == "amin") {
15
+ return ReductionType::MIN;
16
+ } else if (reduce == "sum") {
17
+ return ReductionType::SUM;
18
+ } else if (reduce == "prod") {
19
+ return ReductionType::PROD;
20
+ } else {
21
+ TORCH_CHECK(false, "reduce argument must be either sum, prod, mean, amax or amin, got ", reduce);
22
+ }
23
+ }
24
+
25
+ // used for `scatter_reduce`, old options for BC.
26
+ static inline ReductionType get_operator_enum(const c10::string_view reduce, bool use_new_options) {
27
+ if (use_new_options) {
28
+ return get_reduction_enum(reduce);
29
+ } else {
30
+ if (reduce == "add") {
31
+ return ReductionType::SUM;
32
+ } else if (reduce == "multiply") {
33
+ return ReductionType::PROD;
34
+ } else {
35
+ TORCH_CHECK(false, "reduce argument must be either add or multiply.")
36
+ }
37
+ }
38
+ }
39
+
40
+ } // at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Repeat.h ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/TensorOperators.h>
5
+
6
+ #ifndef AT_PER_OPERATOR_HEADERS
7
+ #include <ATen/Functions.h>
8
+ #else
9
+ #include <ATen/ops/empty.h>
10
+ #include <ATen/ops/empty_like.h>
11
+ #endif
12
+
13
+ namespace at::native {
14
+
15
+ template <
16
+ typename index_t,
17
+ void compute(index_t*, int64_t*, index_t*, int64_t, int64_t)>
18
+ static inline Tensor repeat_interleave_common(
19
+ const Tensor& repeats,
20
+ c10::optional<int64_t> output_size) {
21
+ TORCH_CHECK(
22
+ repeats.dim() == 1, "repeat_interleave only accept 1D vector as repeat");
23
+ TORCH_CHECK(
24
+ repeats.scalar_type() == at::kLong || repeats.scalar_type() == at::kInt,
25
+ "repeats has to be Long or Int tensor");
26
+ if (repeats.size(0) == 0) {
27
+ return at::empty_like(repeats, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
28
+ }
29
+ Tensor repeats_ = repeats.contiguous();
30
+ Tensor cumsum = repeats.cumsum(0);
31
+ int64_t total;
32
+ if (output_size.has_value()) {
33
+ total = output_size.value();
34
+ } else {
35
+ total = cumsum[-1].item<int64_t>();
36
+ TORCH_CHECK(
37
+ (repeats >= 0).all().item<uint8_t>(), "repeats can not be negative");
38
+ }
39
+
40
+ Tensor result = at::empty({total}, repeats.options());
41
+ index_t* repeat_ptr = repeats_.data_ptr<index_t>();
42
+ int64_t* cumsum_ptr = cumsum.data_ptr<int64_t>();
43
+ index_t* result_ptr = result.data_ptr<index_t>();
44
+ compute(repeat_ptr, cumsum_ptr, result_ptr, repeats.size(0), total);
45
+ return result;
46
+ }
47
+
48
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/Resize.h ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/native/ResizeCommon.h>
5
+ #include <ATen/EmptyTensor.h>
6
+ #include <ATen/TensorUtils.h>
7
+
8
+ #include <c10/core/CPUAllocator.h>
9
+
10
+ #include <utility>
11
+
12
+
13
+ namespace at::native {
14
+
15
+ // TODO: make all operations that resize given outputs use this function
16
+ // for consistency and maintainability.
17
+ // Some operations like `cat` might not be able to make the use of
18
+ // resize_output directly. For more details to understand how it works in `cat`,
19
+ // see https://github.com/pytorch/pytorch/pull/62560#discussion_r687363362
20
+ // Resizes outputs
21
+ // Functions accepting output tensors, like with the "out" kwarg, should
22
+ // call this function to handle resizing their output tensor.
23
+ // Issues a warning if the output tensor has one or more elements and
24
+ // needs resizing
25
+ // NOTE: In the future the warning will become an error
26
+ // Returns a bool saying whether or not the resize actually happened or not
27
+ TORCH_API bool resize_output(const Tensor& output, IntArrayRef shape);
28
+ // WARNING: Do NOT call this directly. If you are resizing an output and want
29
+ // to support dynamic shapes call at::resize__symint and resize_output_check_symint.
30
+ // For more details, see: https://github.com/pytorch/pytorch/pull/111530/files#r1365845272
31
+ TORCH_API bool resize_output_symint(const Tensor& output, SymIntArrayRef shape);
32
+
33
+ // Utility for resize_output
34
+ // Returns a bool saying resize should happen or not and
35
+ // raises a warning if resizing for one or more elements
36
+ TORCH_API bool resize_output_check(const Tensor& output, IntArrayRef shape);
37
+ TORCH_API bool resize_output_check_symint(const Tensor& output, SymIntArrayRef shape);
38
+
39
+ TORCH_API void resize_bytes_cpu(StorageImpl* storage, size_t size_bytes);
40
+ TORCH_API void resize_bytes_meta(StorageImpl* storage, c10::SymInt size_bytes);
41
+
42
+ static inline void maybe_resize_storage_cpu(TensorImpl* self, size_t new_size_bytes) {
43
+ // It does not make sense to try to resize a storage
44
+ // to hold 0 elements, and this can break
45
+ // if storage_offset is positive but
46
+ // new_size is 0, so just bail in that case
47
+ // (same comment is in cuda/Resize.h)
48
+ if (self->numel() == 0) {
49
+ return;
50
+ }
51
+
52
+ const Storage& storage = self->unsafe_storage();
53
+ if (!storage) {
54
+ auto new_storage = c10::make_intrusive<StorageImpl>(
55
+ StorageImpl::use_byte_size_t(),
56
+ new_size_bytes,
57
+ c10::GetCPUAllocator(),
58
+ true);
59
+ self->set_storage_keep_dtype(std::move(new_storage));
60
+ } else if (new_size_bytes > storage.nbytes()) {
61
+ resize_bytes_cpu(storage.unsafeGetStorageImpl(), new_size_bytes);
62
+ }
63
+ }
64
+
65
+ TORCH_API TensorImpl* resize_impl_cpu_(
66
+ TensorImpl* self,
67
+ IntArrayRef size,
68
+ at::OptionalIntArrayRef stride,
69
+ bool resize_storage = true);
70
+
71
+ template <typename T>
72
+ T maybe_convert_symint(c10::SymInt) = delete;
73
+
74
+ template <>
75
+ inline c10::SymInt maybe_convert_symint(c10::SymInt x) { return x; }
76
+
77
+ template <>
78
+ inline int64_t maybe_convert_symint(c10::SymInt x) { return x.guard_int(__FILE__, __LINE__); }
79
+
80
+ template <typename T>
81
+ static inline void checkInBoundsForStorage(
82
+ ArrayRef<T> size,
83
+ ArrayRef<T> stride,
84
+ T storage_offset,
85
+ const caffe2::TypeMeta& data_type,
86
+ const Storage& new_storage) {
87
+ T storage_size_bytes =
88
+ at::detail::computeStorageNbytes(size, stride, data_type.itemsize());
89
+ T storage_offset_bytes = storage_offset * data_type.itemsize();
90
+ if (storage_size_bytes == 0) {
91
+ // NB: (a tensor with arbitrary 0 dims)'s storage can have any numel.
92
+ return;
93
+ }
94
+ T new_storage_size_bytes = maybe_convert_symint<T>(new_storage.sym_nbytes());
95
+ TORCH_CHECK(
96
+ storage_size_bytes + storage_offset_bytes <= new_storage_size_bytes,
97
+ "setStorage: sizes ",
98
+ size,
99
+ ", strides ",
100
+ stride,
101
+ ","
102
+ " storage offset ",
103
+ storage_offset,
104
+ ", and itemsize ",
105
+ data_type.itemsize(),
106
+ " requiring a storage size of ",
107
+ storage_size_bytes + storage_offset_bytes,
108
+ " are out of bounds for storage of size ",
109
+ new_storage_size_bytes);
110
+ }
111
+
112
+ template <typename T>
113
+ static inline void checkSetStorage(Tensor& result, Storage storage, T storage_offset,
114
+ ArrayRef<T> size, ArrayRef<T> stride) {
115
+ // FIXME: stride should be optional
116
+ if (stride.data()) {
117
+ TORCH_CHECK(size.size() == stride.size(), "unequal size length (", size.size(),
118
+ ") and stride length (", stride.size(), ")");
119
+ }
120
+
121
+ #ifdef DEBUG
122
+ TORCH_CHECK(size.size() <= INT_MAX, "size length (", size.size(), ") greater than INT_MAX");
123
+ #endif
124
+
125
+ // storage: note this can't be replaced with result.set_(storage) as the semantics of that
126
+ // function is to set the tensor size to be equal to the size of the storage.
127
+ if (!result.storage().is_alias_of(storage)) {
128
+ // Caffe2 might have tensors whose storages are null, but we
129
+ // don't allow it in PyTorch.
130
+ TORCH_INTERNAL_ASSERT(storage);
131
+ TORCH_INTERNAL_ASSERT(result.storage());
132
+
133
+ // We used to allow this, but this breaks device caching.
134
+ // Let's put an actual error message for this one.
135
+ TORCH_CHECK(result.storage().device() == storage.device(),
136
+ "Attempted to set the storage of a tensor on device \"", result.storage().device(),
137
+ "\" to a storage on different device \"", storage.device(),
138
+ "\". This is no longer allowed; the devices must match.");
139
+ result.unsafeGetTensorImpl()->set_storage_keep_dtype(std::move(storage));
140
+ }
141
+
142
+ // storageOffset
143
+ TORCH_CHECK(storage_offset >= 0, "Tensor: invalid storage offset ", storage_offset);
144
+ }
145
+
146
+ /**
147
+ * Set self's sizes, strides, and storage_offset.
148
+ * (size, stride, storage_offset) must be in bounds for self's storage.
149
+ */
150
+ template <typename T>
151
+ inline void setStrided(
152
+ const Tensor& self,
153
+ ArrayRef<T> size,
154
+ ArrayRef<T> stride,
155
+ T storage_offset) {
156
+ TORCH_CHECK(size.size() == stride.size(), "mismatch in length of strides and shape");
157
+ for (const auto& val : stride) {
158
+ TORCH_CHECK(val >= 0,
159
+ "as_strided: Negative strides are not supported at the moment, "
160
+ "got strides: ", stride);
161
+ }
162
+
163
+ auto* self_ = self.unsafeGetTensorImpl();
164
+ checkInBoundsForStorage(
165
+ size, stride, storage_offset, self_->dtype(), self_->storage());
166
+
167
+ /* storage offset */
168
+ TORCH_CHECK(storage_offset >= 0, "Tensor: invalid storage offset ", storage_offset);
169
+ self_->set_sizes_and_strides(size, stride, c10::make_optional(storage_offset));
170
+ }
171
+
172
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/ResizeCommon.h ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/native/TensorFactories.h>
5
+ #include <ATen/NamedTensorUtils.h>
6
+ #include <c10/util/irange.h>
7
+
8
+ #ifndef AT_PER_OPERATOR_HEADERS
9
+ #include <ATen/NativeFunctions.h>
10
+ #else
11
+ #include <ATen/ops/empty.h>
12
+ #endif
13
+
14
+ namespace at::native {
15
+
16
+ template <typename T>
17
+ inline T storage_size_for(ArrayRef<T> size, ArrayRef<T> stride) {
18
+ TORCH_INTERNAL_ASSERT_DEBUG_ONLY(size.size() == stride.size(),
19
+ "storage_size_for(size, stride) requires that size and stride ",
20
+ "have the same size as a precondition.");
21
+ T storage_size = 1;
22
+ for (const auto dim : c10::irange(size.size())) {
23
+ if (size[dim] == 0) {
24
+ storage_size = 0;
25
+ break;
26
+ }
27
+ storage_size += (size[dim] - 1) * stride[dim];
28
+ }
29
+ return storage_size;
30
+ }
31
+
32
+ inline const Tensor& resize_named_tensor_(
33
+ const Tensor& self,
34
+ IntArrayRef size,
35
+ c10::optional<MemoryFormat> optional_memory_format) {
36
+ TORCH_INTERNAL_ASSERT(self.has_names());
37
+ TORCH_CHECK(
38
+ self.sizes() == size,
39
+ "Cannot resize named tensor with resize_ or resize_as_ (tried to resize "
40
+ "Tensor",
41
+ self.names(),
42
+ " with size ",
43
+ self.sizes(),
44
+ " to ",
45
+ size,
46
+ "). This may be caused by passing a named tensor ",
47
+ "as an `out=` argument; please ensure that the sizes are the same. ");
48
+ TORCH_CHECK(
49
+ !optional_memory_format.has_value(),
50
+ "Unsupported memory format for named tensor resize ",
51
+ optional_memory_format.value());
52
+ return self;
53
+ }
54
+
55
+ // For deterministic output, fill new elements that were added after a storage
56
+ // resize with NaN or MAX_INT. `old_storage_nbytes` is the size of the storage
57
+ // before the resize happened.
58
+ inline const Tensor& fill_resize_deterministic_(const Tensor& tensor, int64_t old_storage_nbytes) {
59
+ const at::Storage& storage = tensor.unsafeGetTensorImpl()->unsafe_storage();
60
+ int64_t new_storage_nbytes = storage.nbytes();
61
+ int64_t old_storage_numel = old_storage_nbytes / tensor.itemsize();
62
+ int64_t new_storage_numel = new_storage_nbytes / tensor.itemsize();
63
+ if (new_storage_numel > old_storage_numel) {
64
+ at::Tensor tensor_view = at::empty({}, at::TensorOptions().dtype(tensor.scalar_type()).device(tensor.device()));
65
+ tensor_view.set_(
66
+ storage,
67
+ /*storage_offset=*/old_storage_numel,
68
+ /*size=*/{new_storage_numel - old_storage_numel},
69
+ /*stride=*/{1});
70
+ at::native::fill_empty_deterministic_(tensor_view);
71
+ }
72
+ return tensor;
73
+ }
74
+
75
+ } // namespace at::native
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/ScatterGatherChecks.h ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <vector>
4
+ #include <ATen/core/Tensor.h>
5
+ #include <ATen/native/ReduceOpsUtils.h>
6
+ #include <c10/util/irange.h>
7
+
8
+ namespace at::native {
9
+
10
+ namespace {
11
+
12
+ // checks whether index.dtype == int64
13
+ // and self.dtype == src.dtype if src is a Tensor
14
+ static void scatter_gather_dtype_check(
15
+ const std::string& method_name,
16
+ const Tensor& self,
17
+ const Tensor& index,
18
+ const c10::optional<Tensor>& src_opt = c10::nullopt
19
+ ) {
20
+ if (index.numel() != 0) {
21
+ TORCH_CHECK(
22
+ index.scalar_type() == at::ScalarType::Long,
23
+ method_name, "(): Expected dtype int64 for index"
24
+ );
25
+ }
26
+
27
+ if (src_opt.has_value()) {
28
+ const auto& src = src_opt.value();
29
+ TORCH_CHECK(
30
+ self.scalar_type() == src.scalar_type(),
31
+ method_name, "(): Expected self.dtype to be equal to src.dtype"
32
+ );
33
+ }
34
+ }
35
+
36
+ // Used for `gather`-like methods
37
+ // Note: self means the input tensor here
38
+ // Test:
39
+ // 1. index.size(d) <= self.size(d) for all d != dim
40
+ // 2. index.dim() == self.dim()
41
+ static C10_UNUSED void gather_shape_check(const Tensor& self, int64_t dim,
42
+ const Tensor& index
43
+ ) {
44
+ auto self_dims = ensure_nonempty_dim(self.dim());
45
+ TORCH_CHECK(self_dims == ensure_nonempty_dim(index.dim()),
46
+ "Index tensor must have the same number of dimensions as input tensor"
47
+ );
48
+
49
+ for (const auto i : c10::irange(self_dims)) {
50
+ if (i != dim) {
51
+ TORCH_CHECK(
52
+ ensure_nonempty_size(index, i) <= ensure_nonempty_size(self, i),
53
+ "Size does not match at dimension ", i,
54
+ " expected index ", index.sizes(),
55
+ " to be smaller than self ", self.sizes(),
56
+ " apart from dimension ", dim
57
+ );
58
+ }
59
+ }
60
+ }
61
+
62
+ // Used for `scatter` and `scatter_add`
63
+ // Tests:
64
+ // 1. index.size(d) <= self.size(d) for all d != dim
65
+ // 2. index.size(d) <= src.size(d) for all d if src is a Tensor
66
+ // 3. index.dim() == self.dim() == src.dim()
67
+ static C10_UNUSED void scatter_shape_check(
68
+ const Tensor& self, int64_t dim, const Tensor& index,
69
+ const c10::optional<Tensor>& src_opt = c10::nullopt
70
+ ) {
71
+ if (index.numel() == 0) return;
72
+ TORCH_CHECK(
73
+ ensure_nonempty_dim(self.dim()) == ensure_nonempty_dim(index.dim()),
74
+ "Index tensor must have the same number of dimensions as self tensor"
75
+ );
76
+
77
+ bool is_wrong_shape = false;
78
+ int64_t self_dims = ensure_nonempty_dim(self.dim());
79
+
80
+ // Check: index.size(d) <= self.size(d) for all d != dim
81
+ for (const auto d : c10::irange(self_dims)) {
82
+ int64_t index_d_size = ensure_nonempty_size(index, d);
83
+ if (d == dim) continue;
84
+ if (index_d_size > ensure_nonempty_size(self, d)) {
85
+ is_wrong_shape = true;
86
+ break;
87
+ }
88
+ }
89
+
90
+ // Check: index.size(d) <= src.size(d) for all d if src is Tensor
91
+ if (!is_wrong_shape && src_opt.has_value()) {
92
+ const auto& src = src_opt.value();
93
+ for (const auto d : c10::irange(self_dims)) {
94
+ int64_t index_d_size = ensure_nonempty_size(index, d);
95
+ if (index_d_size > ensure_nonempty_size(src, d)) {
96
+ is_wrong_shape = true;
97
+ break;
98
+ }
99
+ }
100
+ }
101
+
102
+ if (src_opt.has_value()) {
103
+ const auto& src = src_opt.value();
104
+
105
+ TORCH_CHECK(
106
+ ensure_nonempty_dim(src.dim()) == ensure_nonempty_dim(index.dim()),
107
+ "Index tensor must have the same number of dimensions as src tensor"
108
+ );
109
+
110
+ TORCH_CHECK(!is_wrong_shape,
111
+ "Expected index ", index.sizes(),
112
+ " to be smaller than self ", self.sizes(),
113
+ " apart from dimension ", dim,
114
+ " and to be smaller size than src ", src.sizes()
115
+ );
116
+ }
117
+ else {
118
+ TORCH_CHECK(!is_wrong_shape,
119
+ "Expected index ", index.sizes(),
120
+ " to be smaller than self ", self.sizes(),
121
+ " apart from dimension ", dim
122
+ );
123
+ }
124
+ }
125
+
126
+ } // anonymous namespace
127
+
128
+ } // namespace at::native