diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..084cd22bdf1d888efd46b759b91ccf95ee53c656 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__init__.py @@ -0,0 +1,59 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available + + +_import_structure = {} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_barthez"] = ["BarthezTokenizer"] + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_barthez_fast"] = ["BarthezTokenizerFast"] + + +if TYPE_CHECKING: + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_barthez import BarthezTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_barthez_fast import BarthezTokenizerFast + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1a67d090cb560245520a3edb6a05e6e7cc2aca1f Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f9d79ac17c70d982d3f3115ef24b1663fb40eb15 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7241203d424068e4c2f25f3c594c03d612c76f75 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py new file mode 100644 index 0000000000000000000000000000000000000000..f6ea253402f69ad013c432df2f41f371e92d3eda --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py @@ -0,0 +1,304 @@ +# coding=utf-8 +# Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License +""" Tokenization classes for the BARThez model.""" + + +import os +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", + "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", + "moussaKam/barthez-orangesum-title": ( + "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" + ), + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "moussaKam/mbarthez": 1024, + "moussaKam/barthez": 1024, + "moussaKam/barthez-orangesum-title": 1024, +} + +SPIECE_UNDERLINE = "▁" + +# TODO this class is useless. This is the most standard sentencpiece model. Let's find which one is closest and nuke this. + + +class BarthezTokenizer(PreTrainedTokenizer): + """ + Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a BARThez tokenizer. Based on + [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + # Mask token behave like a normal word, i.e. include the space before it. Will have normalized=False by default this way + mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token + + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + self.vocab_file = vocab_file + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(str(vocab_file)) + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A BARThez sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + @property + def vocab_size(self): + return len(self.sp_model) + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def _tokenize(self, text: str) -> List[str]: + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.sp_model.PieceToId(token) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.sp_model.IdToPiece(index) + + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + current_sub_tokens = [] + out_string = "" + prev_is_special = False + for token in tokens: + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + if not prev_is_special: + out_string += " " + out_string += self.sp_model.decode(current_sub_tokens) + token + prev_is_special = True + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + prev_is_special = False + out_string += self.sp_model.decode(current_sub_tokens) + return out_string.strip() + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(self.vocab_file) + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..fb4a114b43bf626ce24e06ff773610022efd5cbf --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez_fast.py @@ -0,0 +1,219 @@ +# coding=utf-8 +# Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License +""" Tokenization classes for the BARThez model.""" + + +import os +from shutil import copyfile +from typing import List, Optional, Tuple + +from ...tokenization_utils import AddedToken +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import is_sentencepiece_available, logging + + +if is_sentencepiece_available(): + from .tokenization_barthez import BarthezTokenizer +else: + BarthezTokenizer = None + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", + "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", + "moussaKam/barthez-orangesum-title": ( + "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" + ), + }, + "tokenizer_file": { + "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", + "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", + "moussaKam/barthez-orangesum-title": ( + "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" + ), + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "moussaKam/mbarthez": 1024, + "moussaKam/barthez": 1024, + "moussaKam/barthez-orangesum-title": 1024, +} + +SPIECE_UNDERLINE = "▁" + + +class BarthezTokenizerFast(PreTrainedTokenizerFast): + """ + Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a "fast" BARThez tokenizer. Based on + [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + additional_special_tokens (`List[str]`, *optional*, defaults to `["NOTUSED", "NOTUSED"]`): + Additional special tokens used by the tokenizer. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = BarthezTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + **kwargs, + ): + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + **kwargs, + ) + + self.vocab_file = vocab_file + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A BARThez sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file,) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..44070229aaa8591cb967a4ca7ff4867873072f8a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__init__.py @@ -0,0 +1,65 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_decision_transformer": [ + "DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "DecisionTransformerConfig", + ], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_decision_transformer"] = [ + "DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", + "DecisionTransformerGPT2Model", + "DecisionTransformerGPT2PreTrainedModel", + "DecisionTransformerModel", + "DecisionTransformerPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_decision_transformer import ( + DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + DecisionTransformerConfig, + ) + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_decision_transformer import ( + DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, + DecisionTransformerGPT2Model, + DecisionTransformerGPT2PreTrainedModel, + DecisionTransformerModel, + DecisionTransformerPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/configuration_decision_transformer.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/configuration_decision_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..88ff005469cd6db1fb904e423be66c63ee1f8632 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/configuration_decision_transformer.py @@ -0,0 +1,161 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Decision Transformer model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "edbeeching/decision-transformer-gym-hopper-medium": ( + "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" + ), + # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer +} + + +class DecisionTransformerConfig(PretrainedConfig): + """ + This is the configuration class to store the configuration of a [`DecisionTransformerModel`]. It is used to + instantiate a Decision Transformer model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the standard + DecisionTransformer architecture. Many of the config options are used to instatiate the GPT2 model that is used as + part of the architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + state_dim (`int`, *optional*, defaults to 17): + The state size for the RL environment + act_dim (`int`, *optional*, defaults to 4): + The size of the output action space + hidden_size (`int`, *optional*, defaults to 128): + The size of the hidden layers + max_ep_len (`int`, *optional*, defaults to 4096): + The maximum length of an episode in the environment + action_tanh (`bool`, *optional*, defaults to True): + Whether to use a tanh activation on action prediction + vocab_size (`int`, *optional*, defaults to 50257): + Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`DecisionTransformerModel`]. + n_positions (`int`, *optional*, defaults to 1024): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + n_layer (`int`, *optional*, defaults to 3): + Number of hidden layers in the Transformer encoder. + n_head (`int`, *optional*, defaults to 1): + Number of attention heads for each attention layer in the Transformer encoder. + n_inner (`int`, *optional*): + Dimensionality of the inner feed-forward layers. If unset, will default to 4 times `n_embd`. + activation_function (`str`, *optional*, defaults to `"gelu"`): + Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. + resid_pdrop (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + embd_pdrop (`int`, *optional*, defaults to 0.1): + The dropout ratio for the embeddings. + attn_pdrop (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention. + layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): + The epsilon to use in the layer normalization layers. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + scale_attn_weights (`bool`, *optional*, defaults to `True`): + Scale attention weights by dividing by sqrt(hidden_size).. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`): + Whether to additionally scale attention weights by `1 / layer_idx + 1`. + reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`): + Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention + dot-product/softmax to float() when training with mixed precision. + + Example: + + ```python + >>> from transformers import DecisionTransformerConfig, DecisionTransformerModel + + >>> # Initializing a DecisionTransformer configuration + >>> configuration = DecisionTransformerConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = DecisionTransformerModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "decision_transformer" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = { + "max_position_embeddings": "n_positions", + "num_attention_heads": "n_head", + "num_hidden_layers": "n_layer", + } + + def __init__( + self, + state_dim=17, + act_dim=4, + hidden_size=128, + max_ep_len=4096, + action_tanh=True, + vocab_size=1, + n_positions=1024, + n_layer=3, + n_head=1, + n_inner=None, + activation_function="relu", + resid_pdrop=0.1, + embd_pdrop=0.1, + attn_pdrop=0.1, + layer_norm_epsilon=1e-5, + initializer_range=0.02, + scale_attn_weights=True, + use_cache=True, + bos_token_id=50256, + eos_token_id=50256, + scale_attn_by_inverse_layer_idx=False, + reorder_and_upcast_attn=False, + **kwargs, + ): + self.state_dim = state_dim + self.act_dim = act_dim + self.hidden_size = hidden_size + self.max_ep_len = max_ep_len + self.action_tanh = action_tanh + self.vocab_size = vocab_size + self.n_positions = n_positions + self.n_layer = n_layer + self.n_head = n_head + self.n_inner = n_inner + self.activation_function = activation_function + self.resid_pdrop = resid_pdrop + self.embd_pdrop = embd_pdrop + self.attn_pdrop = attn_pdrop + self.layer_norm_epsilon = layer_norm_epsilon + self.initializer_range = initializer_range + self.scale_attn_weights = scale_attn_weights + self.use_cache = use_cache + self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx + self.reorder_and_upcast_attn = reorder_and_upcast_attn + + self.bos_token_id = bos_token_id + self.eos_token_id = eos_token_id + + super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/modeling_decision_transformer.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/modeling_decision_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..fdfb5b37d22e62f5cd03eadf6d7d93907c24fc56 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/modeling_decision_transformer.py @@ -0,0 +1,938 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Team The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch DecisionTransformer model.""" + +import math +import os +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.cuda.amp import autocast + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_decision_transformer import DecisionTransformerConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "edbeeching/decision-transformer-gym-hopper-medium" +_CONFIG_FOR_DOC = "DecisionTransformerConfig" + +DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "edbeeching/decision-transformer-gym-hopper-medium", + # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer +] + + +# Copied from transformers.models.gpt2.modeling_gpt2.load_tf_weights_in_gpt2 +def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path): + """Load tf checkpoints in a pytorch model""" + try: + import re + + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(gpt2_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + arrays = [] + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + arrays.append(array.squeeze()) + + for name, array in zip(names, arrays): + name = name[6:] # skip "model/" + name = name.split("/") + pointer = model + for m_name in name: + if re.fullmatch(r"[A-Za-z]+\d+", m_name): + scope_names = re.split(r"(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] == "w" or scope_names[0] == "g": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "b": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "wpe" or scope_names[0] == "wte": + pointer = getattr(pointer, scope_names[0]) + pointer = getattr(pointer, "weight") + else: + pointer = getattr(pointer, scope_names[0]) + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + try: + if pointer.shape != array.shape: + raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") + except ValueError as e: + e.args += (pointer.shape, array.shape) + raise + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array) + return model + + +# Copied from transformers.models.gpt2.modeling_gpt2.GPT2Attention with GPT2->DecisionTransformerGPT2 +class DecisionTransformerGPT2Attention(nn.Module): + def __init__(self, config, is_cross_attention=False, layer_idx=None): + super().__init__() + + max_positions = config.max_position_embeddings + self.register_buffer( + "bias", + torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( + 1, 1, max_positions, max_positions + ), + persistent=False, + ) + self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False) + + self.embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_heads + self.split_size = self.embed_dim + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {self.num_heads})." + ) + + self.scale_attn_weights = config.scale_attn_weights + self.is_cross_attention = is_cross_attention + + # Layer-wise attention scaling, reordering, and upcasting + self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx + self.layer_idx = layer_idx + self.reorder_and_upcast_attn = config.reorder_and_upcast_attn + + if self.is_cross_attention: + self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim) + self.q_attn = Conv1D(self.embed_dim, self.embed_dim) + else: + self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim) + self.c_proj = Conv1D(self.embed_dim, self.embed_dim) + + self.attn_dropout = nn.Dropout(config.attn_pdrop) + self.resid_dropout = nn.Dropout(config.resid_pdrop) + + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads) + index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) + + # Prune conv1d layers + self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) + self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) + + # Update hyper params + self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads)) + self.num_heads = self.num_heads - len(heads) + self.pruned_heads = self.pruned_heads.union(heads) + + def _attn(self, query, key, value, attention_mask=None, head_mask=None): + attn_weights = torch.matmul(query, key.transpose(-1, -2)) + + if self.scale_attn_weights: + attn_weights = attn_weights / torch.full( + [], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device + ) + + # Layer-wise attention scaling + if self.scale_attn_by_inverse_layer_idx: + attn_weights = attn_weights / float(self.layer_idx + 1) + + if not self.is_cross_attention: + # if only "normal" attention layer implements causal mask + query_length, key_length = query.size(-2), key.size(-2) + causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] + mask_value = torch.finfo(attn_weights.dtype).min + # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. + # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` + mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device) + attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value) + + if attention_mask is not None: + # Apply the attention mask + attn_weights = attn_weights + attention_mask + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise + attn_weights = attn_weights.type(value.dtype) + attn_weights = self.attn_dropout(attn_weights) + + # Mask heads if we want to + if head_mask is not None: + attn_weights = attn_weights * head_mask + + attn_output = torch.matmul(attn_weights, value) + + return attn_output, attn_weights + + def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None): + # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM) + bsz, num_heads, q_seq_len, dk = query.size() + _, _, k_seq_len, _ = key.size() + + # Preallocate attn_weights for `baddbmm` + attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device) + + # Compute Scale Factor + scale_factor = 1.0 + if self.scale_attn_weights: + scale_factor /= float(value.size(-1)) ** 0.5 + + if self.scale_attn_by_inverse_layer_idx: + scale_factor /= float(self.layer_idx + 1) + + # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk)) + with autocast(enabled=False): + q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len) + attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor) + attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len) + + if not self.is_cross_attention: + # if only "normal" attention layer implements causal mask + query_length, key_length = query.size(-2), key.size(-2) + causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] + mask_value = torch.finfo(attn_weights.dtype).min + # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. + # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` + mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) + attn_weights = torch.where(causal_mask, attn_weights, mask_value) + + if attention_mask is not None: + # Apply the attention mask + attn_weights = attn_weights + attention_mask + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise + if attn_weights.dtype != torch.float32: + raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32") + attn_weights = attn_weights.type(value.dtype) + attn_weights = self.attn_dropout(attn_weights) + + # Mask heads if we want to + if head_mask is not None: + attn_weights = attn_weights * head_mask + + attn_output = torch.matmul(attn_weights, value) + + return attn_output, attn_weights + + def _split_heads(self, tensor, num_heads, attn_head_size): + """ + Splits hidden_size dim into attn_head_size and num_heads + """ + new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) + tensor = tensor.view(new_shape) + return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) + + def _merge_heads(self, tensor, num_heads, attn_head_size): + """ + Merges attn_head_size dim and num_attn_heads dim into hidden_size + """ + tensor = tensor.permute(0, 2, 1, 3).contiguous() + new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) + return tensor.view(new_shape) + + def forward( + self, + hidden_states: Optional[Tuple[torch.FloatTensor]], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: + if encoder_hidden_states is not None: + if not hasattr(self, "q_attn"): + raise ValueError( + "If class is used as cross attention, the weights `q_attn` have to be defined. " + "Please make sure to instantiate class with `DecisionTransformerGPT2Attention(..., is_cross_attention=True)`." + ) + + query = self.q_attn(hidden_states) + key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2) + attention_mask = encoder_attention_mask + else: + query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) + + query = self._split_heads(query, self.num_heads, self.head_dim) + key = self._split_heads(key, self.num_heads, self.head_dim) + value = self._split_heads(value, self.num_heads, self.head_dim) + + if layer_past is not None: + past_key, past_value = layer_past + key = torch.cat((past_key, key), dim=-2) + value = torch.cat((past_value, value), dim=-2) + + if use_cache is True: + present = (key, value) + else: + present = None + + if self.reorder_and_upcast_attn: + attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask) + else: + attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) + + attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) + attn_output = self.c_proj(attn_output) + attn_output = self.resid_dropout(attn_output) + + outputs = (attn_output, present) + if output_attentions: + outputs += (attn_weights,) + + return outputs # a, present, (attentions) + + +# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP with GPT2->DecisionTransformerGPT2 +class DecisionTransformerGPT2MLP(nn.Module): + def __init__(self, intermediate_size, config): + super().__init__() + embed_dim = config.hidden_size + self.c_fc = Conv1D(intermediate_size, embed_dim) + self.c_proj = Conv1D(embed_dim, intermediate_size) + self.act = ACT2FN[config.activation_function] + self.dropout = nn.Dropout(config.resid_pdrop) + + def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: + hidden_states = self.c_fc(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.c_proj(hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states + + +# Copied from transformers.models.gpt2.modeling_gpt2.GPT2Block with GPT2->DecisionTransformerGPT2 +class DecisionTransformerGPT2Block(nn.Module): + def __init__(self, config, layer_idx=None): + super().__init__() + hidden_size = config.hidden_size + inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size + + self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) + self.attn = DecisionTransformerGPT2Attention(config, layer_idx=layer_idx) + self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) + + if config.add_cross_attention: + self.crossattention = DecisionTransformerGPT2Attention( + config, is_cross_attention=True, layer_idx=layer_idx + ) + self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) + + self.mlp = DecisionTransformerGPT2MLP(inner_dim, config) + + def forward( + self, + hidden_states: Optional[Tuple[torch.FloatTensor]], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: + residual = hidden_states + hidden_states = self.ln_1(hidden_states) + attn_outputs = self.attn( + hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + head_mask=head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + ) + attn_output = attn_outputs[0] # output_attn: a, present, (attentions) + outputs = attn_outputs[1:] + # residual connection + hidden_states = attn_output + residual + + if encoder_hidden_states is not None: + # add one self-attention block for cross-attention + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " + "cross-attention layers by setting `config.add_cross_attention=True`" + ) + residual = hidden_states + hidden_states = self.ln_cross_attn(hidden_states) + cross_attn_outputs = self.crossattention( + hidden_states, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + ) + attn_output = cross_attn_outputs[0] + # residual connection + hidden_states = residual + attn_output + outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights + + residual = hidden_states + hidden_states = self.ln_2(hidden_states) + feed_forward_hidden_states = self.mlp(hidden_states) + # residual connection + hidden_states = residual + feed_forward_hidden_states + + if use_cache: + outputs = (hidden_states,) + outputs + else: + outputs = (hidden_states,) + outputs[1:] + + return outputs # hidden_states, present, (attentions, cross_attentions) + + +class DecisionTransformerGPT2PreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = DecisionTransformerConfig + load_tf_weights = load_tf_weights_in_gpt2 + base_model_prefix = "transformer" + is_parallelizable = True + supports_gradient_checkpointing = True + + def __init__(self, *inputs, **kwargs): + super().__init__(*inputs, **kwargs) + + def _init_weights(self, module): + """Initialize the weights.""" + if isinstance(module, (nn.Linear, Conv1D)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: + # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale + # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. + # > -- GPT-2 :: https://openai.com/blog/better-language-models/ + # + # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py + for name, p in module.named_parameters(): + if "c_proj" in name and "weight" in name: + # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block + p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))) + + +class DecisionTransformerGPT2Model(DecisionTransformerGPT2PreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.embed_dim = config.hidden_size + + self.wte = nn.Embedding(config.vocab_size, self.embed_dim) + self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) + + self.drop = nn.Dropout(config.embd_pdrop) + self.h = nn.ModuleList( + [DecisionTransformerGPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)] + ) + self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) + + # Model parallel + self.model_parallel = False + self.device_map = None + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.wte + + def set_input_embeddings(self, new_embeddings): + self.wte = new_embeddings + + # Copied from transformers.models.gpt2.modeling_gpt2.GPT2Model.forward + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + batch_size = input_ids.shape[0] + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + batch_size = inputs_embeds.shape[0] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if token_type_ids is not None: + token_type_ids = token_type_ids.view(-1, input_shape[-1]) + + if past_key_values is None: + past_length = 0 + past_key_values = tuple([None] * len(self.h)) + else: + past_length = past_key_values[0][0].size(-2) + if position_ids is None: + position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0) + + # GPT2Attention mask. + if attention_mask is not None: + if batch_size <= 0: + raise ValueError("batch_size has to be defined and > 0") + attention_mask = attention_mask.view(batch_size, -1) + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask = attention_mask[:, None, None, :] + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and the dtype's smallest value for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility + attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.add_cross_attention and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # head_mask has shape n_layer x batch x n_heads x N x N + head_mask = self.get_head_mask(head_mask, self.config.n_layer) + + if inputs_embeds is None: + inputs_embeds = self.wte(input_ids) + position_embeds = self.wpe(position_ids) + hidden_states = inputs_embeds + position_embeds + + if token_type_ids is not None: + token_type_embeds = self.wte(token_type_ids) + hidden_states = hidden_states + token_type_embeds + + hidden_states = self.drop(hidden_states) + + output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + all_hidden_states = () if output_hidden_states else None + for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): + # Model parallel + if self.model_parallel: + torch.cuda.set_device(hidden_states.device) + # Ensure layer_past is on same device as hidden_states (might not be correct) + if layer_past is not None: + layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) + # Ensure that attention_mask is always on the same device as hidden_states + if attention_mask is not None: + attention_mask = attention_mask.to(hidden_states.device) + if isinstance(head_mask, torch.Tensor): + head_mask = head_mask.to(hidden_states.device) + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + outputs = self._gradient_checkpointing_func( + block.__call__, + hidden_states, + None, + attention_mask, + head_mask[i], + encoder_hidden_states, + encoder_attention_mask, + use_cache, + output_attentions, + ) + else: + outputs = block( + hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + head_mask=head_mask[i], + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + use_cache=use_cache, + output_attentions=output_attentions, + ) + + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) + + # Model Parallel: If it's the last layer for that device, put things on the next device + if self.model_parallel: + for k, v in self.device_map.items(): + if i == v[-1] and "cuda:" + str(k) != self.last_device: + hidden_states = hidden_states.to("cuda:" + str(k + 1)) + + hidden_states = self.ln_f(hidden_states) + + hidden_states = hidden_states.view(output_shape) + # Add last hidden state + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] + if v is not None + ) + + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +@dataclass +class DecisionTransformerOutput(ModelOutput): + """ + Base class for model's outputs that also contains a pooling of the last hidden states. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + state_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, state_dim)`): + Environment state predictions + action_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, action_dim)`): + Model action predictions + return_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, 1)`): + Predicted returns for each state + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + state_preds: torch.FloatTensor = None + action_preds: torch.FloatTensor = None + return_preds: torch.FloatTensor = None + hidden_states: torch.FloatTensor = None + attentions: torch.FloatTensor = None + last_hidden_state: torch.FloatTensor = None + + +class DecisionTransformerPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = DecisionTransformerConfig + base_model_prefix = "decision_transformer" + main_input_name = "states" + supports_gradient_checkpointing = False + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +DECISION_TRANSFORMER_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`~DecisionTransformerConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DECISION_TRANSFORMER_INPUTS_DOCSTRING = r""" + Args: + states (`torch.FloatTensor` of shape `(batch_size, episode_length, state_dim)`): + The states for each step in the trajectory + actions (`torch.FloatTensor` of shape `(batch_size, episode_length, act_dim)`): + The actions taken by the "expert" policy for the current state, these are masked for auto regressive + prediction + rewards (`torch.FloatTensor` of shape `(batch_size, episode_length, 1)`): + The rewards for each state, action + returns_to_go (`torch.FloatTensor` of shape `(batch_size, episode_length, 1)`): + The returns for each state in the trajectory + timesteps (`torch.LongTensor` of shape `(batch_size, episode_length)`): + The timestep for each step in the trajectory + attention_mask (`torch.FloatTensor` of shape `(batch_size, episode_length)`): + Masking, used to mask the actions when performing autoregressive prediction +""" + + +@add_start_docstrings("The Decision Transformer Model", DECISION_TRANSFORMER_START_DOCSTRING) +class DecisionTransformerModel(DecisionTransformerPreTrainedModel): + """ + + The model builds upon the GPT2 architecture to perform autoregressive prediction of actions in an offline RL + setting. Refer to the paper for more details: https://arxiv.org/abs/2106.01345 + + """ + + def __init__(self, config): + super().__init__(config) + self.config = config + self.hidden_size = config.hidden_size + # note: the only difference between this GPT2Model and the default Huggingface version + # is that the positional embeddings are removed (since we'll add those ourselves) + self.encoder = DecisionTransformerGPT2Model(config) + + self.embed_timestep = nn.Embedding(config.max_ep_len, config.hidden_size) + self.embed_return = torch.nn.Linear(1, config.hidden_size) + self.embed_state = torch.nn.Linear(config.state_dim, config.hidden_size) + self.embed_action = torch.nn.Linear(config.act_dim, config.hidden_size) + + self.embed_ln = nn.LayerNorm(config.hidden_size) + + # note: we don't predict states or returns for the paper + self.predict_state = torch.nn.Linear(config.hidden_size, config.state_dim) + self.predict_action = nn.Sequential( + *([nn.Linear(config.hidden_size, config.act_dim)] + ([nn.Tanh()] if config.action_tanh else [])) + ) + self.predict_return = torch.nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(DECISION_TRANSFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=DecisionTransformerOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + states: Optional[torch.FloatTensor] = None, + actions: Optional[torch.FloatTensor] = None, + rewards: Optional[torch.FloatTensor] = None, + returns_to_go: Optional[torch.FloatTensor] = None, + timesteps: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], DecisionTransformerOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import DecisionTransformerModel + >>> import torch + + >>> model = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-medium") + >>> # evaluation + >>> model = model.to(device) + >>> model.eval() + + >>> env = gym.make("Hopper-v3") + >>> state_dim = env.observation_space.shape[0] + >>> act_dim = env.action_space.shape[0] + + >>> state = env.reset() + >>> states = torch.from_numpy(state).reshape(1, 1, state_dim).to(device=device, dtype=torch.float32) + >>> actions = torch.zeros((1, 1, act_dim), device=device, dtype=torch.float32) + >>> rewards = torch.zeros(1, 1, device=device, dtype=torch.float32) + >>> target_return = torch.tensor(TARGET_RETURN, dtype=torch.float32).reshape(1, 1) + >>> timesteps = torch.tensor(0, device=device, dtype=torch.long).reshape(1, 1) + >>> attention_mask = torch.zeros(1, 1, device=device, dtype=torch.float32) + + >>> # forward pass + >>> with torch.no_grad(): + ... state_preds, action_preds, return_preds = model( + ... states=states, + ... actions=actions, + ... rewards=rewards, + ... returns_to_go=target_return, + ... timesteps=timesteps, + ... attention_mask=attention_mask, + ... return_dict=False, + ... ) + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + batch_size, seq_length = states.shape[0], states.shape[1] + + if attention_mask is None: + # attention mask for GPT: 1 if can be attended to, 0 if not + attention_mask = torch.ones((batch_size, seq_length), dtype=torch.long) + + # embed each modality with a different head + state_embeddings = self.embed_state(states) + action_embeddings = self.embed_action(actions) + returns_embeddings = self.embed_return(returns_to_go) + time_embeddings = self.embed_timestep(timesteps) + + # time embeddings are treated similar to positional embeddings + state_embeddings = state_embeddings + time_embeddings + action_embeddings = action_embeddings + time_embeddings + returns_embeddings = returns_embeddings + time_embeddings + + # this makes the sequence look like (R_1, s_1, a_1, R_2, s_2, a_2, ...) + # which works nice in an autoregressive sense since states predict actions + stacked_inputs = ( + torch.stack((returns_embeddings, state_embeddings, action_embeddings), dim=1) + .permute(0, 2, 1, 3) + .reshape(batch_size, 3 * seq_length, self.hidden_size) + ) + stacked_inputs = self.embed_ln(stacked_inputs) + + # to make the attention mask fit the stacked inputs, have to stack it as well + stacked_attention_mask = ( + torch.stack((attention_mask, attention_mask, attention_mask), dim=1) + .permute(0, 2, 1) + .reshape(batch_size, 3 * seq_length) + ) + device = stacked_inputs.device + # we feed in the input embeddings (not word indices as in NLP) to the model + encoder_outputs = self.encoder( + inputs_embeds=stacked_inputs, + attention_mask=stacked_attention_mask, + position_ids=torch.zeros(stacked_attention_mask.shape, device=device, dtype=torch.long), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + x = encoder_outputs[0] + + # reshape x so that the second dimension corresponds to the original + # returns (0), states (1), or actions (2); i.e. x[:,1,t] is the token for s_t + x = x.reshape(batch_size, seq_length, 3, self.hidden_size).permute(0, 2, 1, 3) + + # get predictions + return_preds = self.predict_return(x[:, 2]) # predict next return given state and action + state_preds = self.predict_state(x[:, 2]) # predict next state given state and action + action_preds = self.predict_action(x[:, 1]) # predict next action given state + if not return_dict: + return (state_preds, action_preds, return_preds) + + return DecisionTransformerOutput( + last_hidden_state=encoder_outputs.last_hidden_state, + state_preds=state_preds, + action_preds=action_preds, + return_preds=return_preds, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..09ce039d25fd057608693a8d6c9d79358d970225 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__init__.py @@ -0,0 +1,168 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], + "tokenization_electra": ["ElectraTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_electra_fast"] = ["ElectraTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_electra"] = [ + "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", + "ElectraForCausalLM", + "ElectraForMaskedLM", + "ElectraForMultipleChoice", + "ElectraForPreTraining", + "ElectraForQuestionAnswering", + "ElectraForSequenceClassification", + "ElectraForTokenClassification", + "ElectraModel", + "ElectraPreTrainedModel", + "load_tf_weights_in_electra", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_electra"] = [ + "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFElectraForMaskedLM", + "TFElectraForMultipleChoice", + "TFElectraForPreTraining", + "TFElectraForQuestionAnswering", + "TFElectraForSequenceClassification", + "TFElectraForTokenClassification", + "TFElectraModel", + "TFElectraPreTrainedModel", + ] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_electra"] = [ + "FlaxElectraForCausalLM", + "FlaxElectraForMaskedLM", + "FlaxElectraForMultipleChoice", + "FlaxElectraForPreTraining", + "FlaxElectraForQuestionAnswering", + "FlaxElectraForSequenceClassification", + "FlaxElectraForTokenClassification", + "FlaxElectraModel", + "FlaxElectraPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig + from .tokenization_electra import ElectraTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_electra_fast import ElectraTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_electra import ( + ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, + ElectraForCausalLM, + ElectraForMaskedLM, + ElectraForMultipleChoice, + ElectraForPreTraining, + ElectraForQuestionAnswering, + ElectraForSequenceClassification, + ElectraForTokenClassification, + ElectraModel, + ElectraPreTrainedModel, + load_tf_weights_in_electra, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_electra import ( + TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, + TFElectraForMaskedLM, + TFElectraForMultipleChoice, + TFElectraForPreTraining, + TFElectraForQuestionAnswering, + TFElectraForSequenceClassification, + TFElectraForTokenClassification, + TFElectraModel, + TFElectraPreTrainedModel, + ) + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_electra import ( + FlaxElectraForCausalLM, + FlaxElectraForMaskedLM, + FlaxElectraForMultipleChoice, + FlaxElectraForPreTraining, + FlaxElectraForQuestionAnswering, + FlaxElectraForSequenceClassification, + FlaxElectraForTokenClassification, + FlaxElectraModel, + FlaxElectraPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c0bda3dd001a8672653b963a4d071c165c04cadf Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/configuration_electra.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/configuration_electra.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4fdcb01ab44ca17c9f05418885209dc5511b3d23 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/configuration_electra.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/convert_electra_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/convert_electra_original_tf_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d625031fd6f4fb50bfd485001fccdbe234ef9fe7 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/convert_electra_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_electra.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_electra.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..380242b4d082b7f2055c8d5bb6bad08493079f9c Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_electra.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_flax_electra.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_flax_electra.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b3b65ae2474c88f1cc5fd46e1ce95d32a598ed27 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_flax_electra.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_tf_electra.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_tf_electra.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d26f1719945c55508fbdbf619cf7b6211937b115 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_tf_electra.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f05729383b64e30bc2b4f5894e4fa16f8a91ca00 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..efc23a9c528a8e2f7b346e63a6a49aec7c5b294e Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra_fast.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/configuration_electra.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/configuration_electra.py new file mode 100644 index 0000000000000000000000000000000000000000..d45f62930212eca8b0cbc071c1bed513739a376e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/configuration_electra.py @@ -0,0 +1,199 @@ +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" ELECTRA model configuration""" + +from collections import OrderedDict +from typing import Mapping + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "google/electra-small-generator": "https://huggingface.co/google/electra-small-generator/resolve/main/config.json", + "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/config.json", + "google/electra-large-generator": "https://huggingface.co/google/electra-large-generator/resolve/main/config.json", + "google/electra-small-discriminator": ( + "https://huggingface.co/google/electra-small-discriminator/resolve/main/config.json" + ), + "google/electra-base-discriminator": ( + "https://huggingface.co/google/electra-base-discriminator/resolve/main/config.json" + ), + "google/electra-large-discriminator": ( + "https://huggingface.co/google/electra-large-discriminator/resolve/main/config.json" + ), +} + + +class ElectraConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`ElectraModel`] or a [`TFElectraModel`]. It is + used to instantiate a ELECTRA model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the ELECTRA + [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`]. + embedding_size (`int`, *optional*, defaults to 128): + Dimensionality of the encoder layers and the pooler layer. + hidden_size (`int`, *optional*, defaults to 256): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 4): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 1024): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + summary_type (`str`, *optional*, defaults to `"first"`): + Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. + + Has to be one of the following options: + + - `"last"`: Take the last token hidden state (like XLNet). + - `"first"`: Take the first token hidden state (like BERT). + - `"mean"`: Take the mean of all tokens hidden states. + - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). + - `"attn"`: Not implemented now, use multi-head attention. + summary_use_proj (`bool`, *optional*, defaults to `True`): + Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. + + Whether or not to add a projection after the vector extraction. + summary_activation (`str`, *optional*): + Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. + + Pass `"gelu"` for a gelu activation to the output, any other value will result in no activation. + summary_last_dropout (`float`, *optional*, defaults to 0.0): + Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. + + The dropout ratio to be used after the projection and activation. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + classifier_dropout (`float`, *optional*): + The dropout ratio for the classification head. + + Examples: + + ```python + >>> from transformers import ElectraConfig, ElectraModel + + >>> # Initializing a ELECTRA electra-base-uncased style configuration + >>> configuration = ElectraConfig() + + >>> # Initializing a model (with random weights) from the electra-base-uncased style configuration + >>> model = ElectraModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "electra" + + def __init__( + self, + vocab_size=30522, + embedding_size=128, + hidden_size=256, + num_hidden_layers=12, + num_attention_heads=4, + intermediate_size=1024, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + summary_type="first", + summary_use_proj=True, + summary_activation="gelu", + summary_last_dropout=0.1, + pad_token_id=0, + position_embedding_type="absolute", + use_cache=True, + classifier_dropout=None, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, **kwargs) + + self.vocab_size = vocab_size + self.embedding_size = embedding_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + + self.summary_type = summary_type + self.summary_use_proj = summary_use_proj + self.summary_activation = summary_activation + self.summary_last_dropout = summary_last_dropout + self.position_embedding_type = position_embedding_type + self.use_cache = use_cache + self.classifier_dropout = classifier_dropout + + +class ElectraOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + return OrderedDict( + [ + ("input_ids", dynamic_axis), + ("attention_mask", dynamic_axis), + ("token_type_ids", dynamic_axis), + ] + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..d5d6376d7b994281b8743d54baa8c4c23db9c05b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py @@ -0,0 +1,80 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert ELECTRA checkpoint.""" + + +import argparse + +import torch + +from transformers import ElectraConfig, ElectraForMaskedLM, ElectraForPreTraining, load_tf_weights_in_electra +from transformers.utils import logging + + +logging.set_verbosity_info() + + +def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, discriminator_or_generator): + # Initialise PyTorch model + config = ElectraConfig.from_json_file(config_file) + print(f"Building PyTorch model from configuration: {config}") + + if discriminator_or_generator == "discriminator": + model = ElectraForPreTraining(config) + elif discriminator_or_generator == "generator": + model = ElectraForMaskedLM(config) + else: + raise ValueError("The discriminator_or_generator argument should be either 'discriminator' or 'generator'") + + # Load weights from tf checkpoint + load_tf_weights_in_electra( + model, config, tf_checkpoint_path, discriminator_or_generator=discriminator_or_generator + ) + + # Save pytorch-model + print(f"Save PyTorch model to {pytorch_dump_path}") + torch.save(model.state_dict(), pytorch_dump_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." + ) + parser.add_argument( + "--config_file", + default=None, + type=str, + required=True, + help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", + ) + parser.add_argument( + "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + parser.add_argument( + "--discriminator_or_generator", + default=None, + type=str, + required=True, + help=( + "Whether to export the generator or the discriminator. Should be a string, either 'discriminator' or " + "'generator'." + ), + ) + args = parser.parse_args() + convert_tf_checkpoint_to_pytorch( + args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.discriminator_or_generator + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_electra.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_electra.py new file mode 100644 index 0000000000000000000000000000000000000000..3aaa6141004fb3098f22147b69ca5072836af766 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_electra.py @@ -0,0 +1,1686 @@ +# coding=utf-8 +# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch ELECTRA model.""" + +import math +import os +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN, get_activation +from ...modeling_outputs import ( + BaseModelOutputWithCrossAttentions, + BaseModelOutputWithPastAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel, SequenceSummary +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_electra import ElectraConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator" +_CONFIG_FOR_DOC = "ElectraConfig" + +ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "google/electra-small-generator", + "google/electra-base-generator", + "google/electra-large-generator", + "google/electra-small-discriminator", + "google/electra-base-discriminator", + "google/electra-large-discriminator", + # See all ELECTRA models at https://huggingface.co/models?filter=electra +] + + +def load_tf_weights_in_electra(model, config, tf_checkpoint_path, discriminator_or_generator="discriminator"): + """Load tf checkpoints in a pytorch model.""" + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + arrays = [] + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + arrays.append(array) + for name, array in zip(names, arrays): + original_name: str = name + + try: + if isinstance(model, ElectraForMaskedLM): + name = name.replace("electra/embeddings/", "generator/embeddings/") + + if discriminator_or_generator == "generator": + name = name.replace("electra/", "discriminator/") + name = name.replace("generator/", "electra/") + + name = name.replace("dense_1", "dense_prediction") + name = name.replace("generator_predictions/output_bias", "generator_lm_head/bias") + + name = name.split("/") + # print(original_name, name) + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if any(n in ["global_step", "temperature"] for n in name): + logger.info(f"Skipping {original_name}") + continue + pointer = model + for m_name in name: + if re.fullmatch(r"[A-Za-z]+_\d+", m_name): + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] == "kernel" or scope_names[0] == "gamma": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "output_bias" or scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "output_weights": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "squad": + pointer = getattr(pointer, "classifier") + else: + pointer = getattr(pointer, scope_names[0]) + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + if m_name.endswith("_embeddings"): + pointer = getattr(pointer, "weight") + elif m_name == "kernel": + array = np.transpose(array) + try: + if pointer.shape != array.shape: + raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") + except ValueError as e: + e.args += (pointer.shape, array.shape) + raise + print(f"Initialize PyTorch weight {name}", original_name) + pointer.data = torch.from_numpy(array) + except AttributeError as e: + print(f"Skipping {original_name}", name, e) + continue + return model + + +class ElectraEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + self.register_buffer( + "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False + ) + + # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + past_key_values_length: int = 0, + ) -> torch.Tensor: + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves + # issue #5664 + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Electra +class ElectraSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in ElectraModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput +class ElectraSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Electra +class ElectraAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = ElectraSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = ElectraSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class ElectraIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class ElectraOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Electra +class ElectraLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = ElectraAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = ElectraAttention(config, position_embedding_type="absolute") + self.intermediate = ElectraIntermediate(config) + self.output = ElectraOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Electra +class ElectraEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([ElectraLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +class ElectraDiscriminatorPredictions(nn.Module): + """Prediction module for the discriminator, made up of two dense layers.""" + + def __init__(self, config): + super().__init__() + + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = get_activation(config.hidden_act) + self.dense_prediction = nn.Linear(config.hidden_size, 1) + self.config = config + + def forward(self, discriminator_hidden_states): + hidden_states = self.dense(discriminator_hidden_states) + hidden_states = self.activation(hidden_states) + logits = self.dense_prediction(hidden_states).squeeze(-1) + + return logits + + +class ElectraGeneratorPredictions(nn.Module): + """Prediction module for the generator, made up of two dense layers.""" + + def __init__(self, config): + super().__init__() + + self.activation = get_activation("gelu") + self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) + self.dense = nn.Linear(config.hidden_size, config.embedding_size) + + def forward(self, generator_hidden_states): + hidden_states = self.dense(generator_hidden_states) + hidden_states = self.activation(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + + return hidden_states + + +class ElectraPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ElectraConfig + load_tf_weights = load_tf_weights_in_electra + base_model_prefix = "electra" + supports_gradient_checkpointing = True + + # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +@dataclass +class ElectraForPreTrainingOutput(ModelOutput): + """ + Output type of [`ElectraForPreTraining`]. + + Args: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + Total loss of the ELECTRA objective. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Prediction scores of the head (scores for each token before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +ELECTRA_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`ElectraConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +ELECTRA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + encoder_hidden_states (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to " + "the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the " + "hidden size and embedding size are different. " + "" + "Both the generator and discriminator checkpoints may be loaded into this model.", + ELECTRA_START_DOCSTRING, +) +class ElectraModel(ElectraPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.embeddings = ElectraEmbeddings(config) + + if config.embedding_size != config.hidden_size: + self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size) + + self.encoder = ElectraEncoder(config) + self.config = config + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithCrossAttentions]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + hidden_states = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + + if hasattr(self, "embeddings_project"): + hidden_states = self.embeddings_project(hidden_states) + + hidden_states = self.encoder( + hidden_states, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return hidden_states + + +class ElectraClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.activation = get_activation("gelu") + self.dropout = nn.Dropout(classifier_dropout) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + def forward(self, features, **kwargs): + x = features[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x) + x = self.dense(x) + x = self.activation(x) # although BERT uses tanh here, it seems Electra authors used gelu here + x = self.dropout(x) + x = self.out_proj(x) + return x + + +@add_start_docstrings( + """ + ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + ELECTRA_START_DOCSTRING, +) +class ElectraForSequenceClassification(ElectraPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + self.electra = ElectraModel(config) + self.classifier = ElectraClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="bhadresh-savani/electra-base-emotion", + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="'joy'", + expected_loss=0.06, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + discriminator_hidden_states = self.electra( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = discriminator_hidden_states[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + discriminator_hidden_states[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=discriminator_hidden_states.hidden_states, + attentions=discriminator_hidden_states.attentions, + ) + + +@add_start_docstrings( + """ + Electra model with a binary classification head on top as used during pretraining for identifying generated tokens. + + It is recommended to load the discriminator checkpoint into that model. + """, + ELECTRA_START_DOCSTRING, +) +class ElectraForPreTraining(ElectraPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.electra = ElectraModel(config) + self.discriminator_predictions = ElectraDiscriminatorPredictions(config) + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=ElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], ElectraForPreTrainingOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see `input_ids` docstring) + Indices should be in `[0, 1]`: + + - 0 indicates the token is an original token, + - 1 indicates the token was replaced. + + Returns: + + Examples: + + ```python + >>> from transformers import ElectraForPreTraining, AutoTokenizer + >>> import torch + + >>> discriminator = ElectraForPreTraining.from_pretrained("google/electra-base-discriminator") + >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-base-discriminator") + + >>> sentence = "The quick brown fox jumps over the lazy dog" + >>> fake_sentence = "The quick brown fox fake over the lazy dog" + + >>> fake_tokens = tokenizer.tokenize(fake_sentence, add_special_tokens=True) + >>> fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") + >>> discriminator_outputs = discriminator(fake_inputs) + >>> predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) + + >>> fake_tokens + ['[CLS]', 'the', 'quick', 'brown', 'fox', 'fake', 'over', 'the', 'lazy', 'dog', '[SEP]'] + + >>> predictions.squeeze().tolist() + [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + discriminator_hidden_states = self.electra( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + discriminator_sequence_output = discriminator_hidden_states[0] + + logits = self.discriminator_predictions(discriminator_sequence_output) + + loss = None + if labels is not None: + loss_fct = nn.BCEWithLogitsLoss() + if attention_mask is not None: + active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1 + active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss] + active_labels = labels[active_loss] + loss = loss_fct(active_logits, active_labels.float()) + else: + loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float()) + + if not return_dict: + output = (logits,) + discriminator_hidden_states[1:] + return ((loss,) + output) if loss is not None else output + + return ElectraForPreTrainingOutput( + loss=loss, + logits=logits, + hidden_states=discriminator_hidden_states.hidden_states, + attentions=discriminator_hidden_states.attentions, + ) + + +@add_start_docstrings( + """ + Electra model with a language modeling head on top. + + Even though both the discriminator and generator may be loaded into this model, the generator is the only model of + the two to have been trained for the masked language modeling task. + """, + ELECTRA_START_DOCSTRING, +) +class ElectraForMaskedLM(ElectraPreTrainedModel): + _tied_weights_keys = ["generator_lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + + self.electra = ElectraModel(config) + self.generator_predictions = ElectraGeneratorPredictions(config) + + self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size) + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.generator_lm_head + + def set_output_embeddings(self, word_embeddings): + self.generator_lm_head = word_embeddings + + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="google/electra-small-generator", + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + mask="[MASK]", + expected_output="'paris'", + expected_loss=1.22, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + generator_hidden_states = self.electra( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + generator_sequence_output = generator_hidden_states[0] + + prediction_scores = self.generator_predictions(generator_sequence_output) + prediction_scores = self.generator_lm_head(prediction_scores) + + loss = None + # Masked language modeling softmax layer + if labels is not None: + loss_fct = nn.CrossEntropyLoss() # -100 index = padding token + loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + generator_hidden_states[1:] + return ((loss,) + output) if loss is not None else output + + return MaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=generator_hidden_states.hidden_states, + attentions=generator_hidden_states.attentions, + ) + + +@add_start_docstrings( + """ + Electra model with a token classification head on top. + + Both the discriminator and generator may be loaded into this model. + """, + ELECTRA_START_DOCSTRING, +) +class ElectraForTokenClassification(ElectraPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.electra = ElectraModel(config) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="bhadresh-savani/electra-base-discriminator-finetuned-conll03-english", + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']", + expected_loss=0.11, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + discriminator_hidden_states = self.electra( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + discriminator_sequence_output = discriminator_hidden_states[0] + + discriminator_sequence_output = self.dropout(discriminator_sequence_output) + logits = self.classifier(discriminator_sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + discriminator_hidden_states[1:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=discriminator_hidden_states.hidden_states, + attentions=discriminator_hidden_states.attentions, + ) + + +@add_start_docstrings( + """ + ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + ELECTRA_START_DOCSTRING, +) +class ElectraForQuestionAnswering(ElectraPreTrainedModel): + config_class = ElectraConfig + base_model_prefix = "electra" + + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.electra = ElectraModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="bhadresh-savani/electra-base-squad2", + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + qa_target_start_index=11, + qa_target_end_index=12, + expected_output="'a nice puppet'", + expected_loss=2.64, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + discriminator_hidden_states = self.electra( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + ) + + sequence_output = discriminator_hidden_states[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = ( + start_logits, + end_logits, + ) + discriminator_hidden_states[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=discriminator_hidden_states.hidden_states, + attentions=discriminator_hidden_states.attentions, + ) + + +@add_start_docstrings( + """ + ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + ELECTRA_START_DOCSTRING, +) +class ElectraForMultipleChoice(ElectraPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.electra = ElectraModel(config) + self.sequence_summary = SequenceSummary(config) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + discriminator_hidden_states = self.electra( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = discriminator_hidden_states[0] + + pooled_output = self.sequence_summary(sequence_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + discriminator_hidden_states[1:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=discriminator_hidden_states.hidden_states, + attentions=discriminator_hidden_states.attentions, + ) + + +@add_start_docstrings( + """ELECTRA Model with a `language modeling` head on top for CLM fine-tuning.""", ELECTRA_START_DOCSTRING +) +class ElectraForCausalLM(ElectraPreTrainedModel): + _tied_weights_keys = ["generator_lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + + if not config.is_decoder: + logger.warning("If you want to use `ElectraForCausalLM` as a standalone, add `is_decoder=True.`") + + self.electra = ElectraModel(config) + self.generator_predictions = ElectraGeneratorPredictions(config) + self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size) + + self.init_weights() + + def get_output_embeddings(self): + return self.generator_lm_head + + def set_output_embeddings(self, new_embeddings): + self.generator_lm_head = new_embeddings + + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.Tensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are + ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, ElectraForCausalLM, ElectraConfig + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-base-generator") + >>> config = ElectraConfig.from_pretrained("google/electra-base-generator") + >>> config.is_decoder = True + >>> model = ElectraForCausalLM.from_pretrained("google/electra-base-generator", config=config) + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + outputs = self.electra( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.generator_lm_head(self.generator_predictions(sequence_output)) + + lm_loss = None + if labels is not None: + # we are doing next-token prediction; shift prediction scores and input ids by one + shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss() + lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[1:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=lm_loss, + logits=prediction_scores, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.prepare_inputs_for_generation + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): + input_shape = input_ids.shape + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_shape) + + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} + + # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM._reorder_cache + def _reorder_cache(self, past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_flax_electra.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_flax_electra.py new file mode 100644 index 0000000000000000000000000000000000000000..64d49eb17a460ae0a8aca59c54cf0e1557122361 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_flax_electra.py @@ -0,0 +1,1601 @@ +# coding=utf-8 +# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Callable, Optional, Tuple + +import flax +import flax.linen as nn +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen import partitioning as nn_partitioning +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutput, + FlaxBaseModelOutputWithPastAndCrossAttentions, + FlaxCausalLMOutputWithCrossAttentions, + FlaxMaskedLMOutput, + FlaxMultipleChoiceModelOutput, + FlaxQuestionAnsweringModelOutput, + FlaxSequenceClassifierOutput, + FlaxTokenClassifierOutput, +) +from ...modeling_flax_utils import ( + ACT2FN, + FlaxPreTrainedModel, + append_call_sample_docstring, + append_replace_return_docstrings, + overwrite_call_docstring, +) +from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_electra import ElectraConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator" +_CONFIG_FOR_DOC = "ElectraConfig" + +remat = nn_partitioning.remat + + +@flax.struct.dataclass +class FlaxElectraForPreTrainingOutput(ModelOutput): + """ + Output type of [`ElectraForPreTraining`]. + + Args: + logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + logits: jnp.ndarray = None + hidden_states: Optional[Tuple[jnp.ndarray]] = None + attentions: Optional[Tuple[jnp.ndarray]] = None + + +ELECTRA_START_DOCSTRING = r""" + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading, saving and converting weights from PyTorch models) + + This model is also a Flax Linen + [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a + regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`ElectraConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +ELECTRA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`numpy.ndarray` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`numpy.ndarray` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + head_mask (`numpy.ndarray` of shape `({0})`, `optional): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + +""" + + +class FlaxElectraEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.word_embeddings = nn.Embed( + self.config.vocab_size, + self.config.embedding_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + self.position_embeddings = nn.Embed( + self.config.max_position_embeddings, + self.config.embedding_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + self.token_type_embeddings = nn.Embed( + self.config.type_vocab_size, + self.config.embedding_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings.__call__ + def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True): + # Embed + inputs_embeds = self.word_embeddings(input_ids.astype("i4")) + position_embeds = self.position_embeddings(position_ids.astype("i4")) + token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) + + # Sum all embeddings + hidden_states = inputs_embeds + token_type_embeddings + position_embeds + + # Layer Norm + hidden_states = self.LayerNorm(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + return hidden_states + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->Electra +class FlaxElectraSelfAttention(nn.Module): + config: ElectraConfig + causal: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.head_dim = self.config.hidden_size // self.config.num_attention_heads + if self.config.hidden_size % self.config.num_attention_heads != 0: + raise ValueError( + "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " + " : {self.config.num_attention_heads}" + ) + + self.query = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.key = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.value = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + + if self.causal: + self.causal_mask = make_causal_mask( + jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" + ) + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,)) + + @nn.compact + # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = lax.dynamic_update_slice(cached_key.value, key, indices) + value = lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def __call__( + self, + hidden_states, + attention_mask, + layer_head_mask, + key_value_states: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic=True, + output_attentions: bool = False, + ): + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size = hidden_states.shape[0] + + # get query proj + query_states = self.query(hidden_states) + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self.key(key_value_states) + value_states = self.value(key_value_states) + else: + # self_attention + key_states = self.key(hidden_states) + value_states = self.value(hidden_states) + + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # handle cache prepare causal attention mask + if self.causal: + query_length, key_length = query_states.shape[1], key_states.shape[1] + if self.has_variable("cache", "cached_key"): + mask_shift = self.variables["cache"]["cache_index"] + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_mask = lax.dynamic_slice( + self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) + ) + else: + causal_mask = self.causal_mask[:, :, :query_length, :key_length] + causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) + + # combine masks if needed + if attention_mask is not None and self.causal: + attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) + attention_mask = combine_masks(attention_mask, causal_mask) + elif self.causal: + attention_mask = causal_mask + elif attention_mask is not None: + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + if self.causal and (self.has_variable("cache", "cached_key") or init_cache): + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + + # Convert the boolean attention mask to an attention bias. + if attention_mask is not None: + # attention mask in the form of attention bias + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), + ) + else: + attention_bias = None + + dropout_rng = None + if not deterministic and self.config.attention_probs_dropout_prob > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.config.attention_probs_dropout_prob, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + # Mask heads if we want to + if layer_head_mask is not None: + attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) + + outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) + return outputs + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->Electra +class FlaxElectraSelfOutput(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, hidden_states, input_tensor, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->Electra +class FlaxElectraAttention(nn.Module): + config: ElectraConfig + causal: bool = False + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.self = FlaxElectraSelfAttention(self.config, causal=self.causal, dtype=self.dtype) + self.output = FlaxElectraSelfOutput(self.config, dtype=self.dtype) + + def __call__( + self, + hidden_states, + attention_mask, + layer_head_mask, + key_value_states=None, + init_cache=False, + deterministic=True, + output_attentions: bool = False, + ): + # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length) + # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable + # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length) + attn_outputs = self.self( + hidden_states, + attention_mask, + layer_head_mask=layer_head_mask, + key_value_states=key_value_states, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + ) + attn_output = attn_outputs[0] + hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_outputs[1],) + + return outputs + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->Electra +class FlaxElectraIntermediate(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.intermediate_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.activation = ACT2FN[self.config.hidden_act] + + def __call__(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->Electra +class FlaxElectraOutput(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + + def __call__(self, hidden_states, attention_output, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.LayerNorm(hidden_states + attention_output) + return hidden_states + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->Electra +class FlaxElectraLayer(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.attention = FlaxElectraAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype) + self.intermediate = FlaxElectraIntermediate(self.config, dtype=self.dtype) + self.output = FlaxElectraOutput(self.config, dtype=self.dtype) + if self.config.add_cross_attention: + self.crossattention = FlaxElectraAttention(self.config, causal=False, dtype=self.dtype) + + def __call__( + self, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + ): + # Self Attention + attention_outputs = self.attention( + hidden_states, + attention_mask, + layer_head_mask=layer_head_mask, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + ) + attention_output = attention_outputs[0] + + # Cross-Attention Block + if encoder_hidden_states is not None: + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask=encoder_attention_mask, + layer_head_mask=layer_head_mask, + key_value_states=encoder_hidden_states, + deterministic=deterministic, + output_attentions=output_attentions, + ) + attention_output = cross_attention_outputs[0] + + hidden_states = self.intermediate(attention_output) + hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attention_outputs[1],) + if encoder_hidden_states is not None: + outputs += (cross_attention_outputs[1],) + return outputs + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->Electra +class FlaxElectraLayerCollection(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + if self.gradient_checkpointing: + FlaxElectraCheckpointLayer = remat(FlaxElectraLayer, static_argnums=(5, 6, 7)) + self.layers = [ + FlaxElectraCheckpointLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.num_hidden_layers) + ] + else: + self.layers = [ + FlaxElectraLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.num_hidden_layers) + ] + + def __call__( + self, + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + # Check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + if head_mask.shape[0] != (len(self.layers)): + raise ValueError( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for " + f" {head_mask.shape[0]}." + ) + + for i, layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + layer_outputs = layer( + hidden_states, + attention_mask, + head_mask[i] if head_mask is not None else None, + encoder_hidden_states, + encoder_attention_mask, + init_cache, + deterministic, + output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions) + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->Electra +class FlaxElectraEncoder(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + self.layer = FlaxElectraLayerCollection( + self.config, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + + def __call__( + self, + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + return self.layer( + hidden_states, + attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +class FlaxElectraGeneratorPredictions(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype) + + def __call__(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = ACT2FN[self.config.hidden_act](hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +class FlaxElectraDiscriminatorPredictions(nn.Module): + """Prediction module for the discriminator, made up of two dense layers.""" + + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype) + self.dense_prediction = nn.Dense(1, dtype=self.dtype) + + def __call__(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = ACT2FN[self.config.hidden_act](hidden_states) + hidden_states = self.dense_prediction(hidden_states).squeeze(-1) + return hidden_states + + +class FlaxElectraPreTrainedModel(FlaxPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ElectraConfig + base_model_prefix = "electra" + module_class: nn.Module = None + + def __init__( + self, + config: ElectraConfig, + input_shape: Tuple = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + gradient_checkpointing: bool = False, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing + def enable_gradient_checkpointing(self): + self._module = self.module_class( + config=self.config, + dtype=self.dtype, + gradient_checkpointing=True, + ) + + # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.init_weights + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + token_type_ids = jnp.zeros_like(input_ids) + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) + attention_mask = jnp.ones_like(input_ids) + head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + if self.config.add_cross_attention: + encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,)) + encoder_attention_mask = attention_mask + module_init_outputs = self.module.init( + rngs, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + return_dict=False, + ) + else: + module_init_outputs = self.module.init( + rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False + ) + + random_params = module_init_outputs["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache + def init_cache(self, batch_size, max_length): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + """ + # init input variables to retrieve cache + input_ids = jnp.ones((batch_size, max_length), dtype="i4") + attention_mask = jnp.ones_like(input_ids, dtype="i4") + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + init_variables = self.module.init( + jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def __call__( + self, + input_ids, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + params: dict = None, + dropout_rng: jax.random.PRNGKey = None, + train: bool = False, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + past_key_values: dict = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # init input tensors if not passed + if token_type_ids is None: + token_type_ids = jnp.ones_like(input_ids) + + if position_ids is None: + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + + if head_mask is None: + head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + if self.config.add_cross_attention: + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed + # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be + # changed by FlaxElectraAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + outputs = self.module.apply( + inputs, + jnp.array(input_ids, dtype="i4"), + jnp.array(attention_mask, dtype="i4"), + token_type_ids=jnp.array(token_type_ids, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + head_mask=jnp.array(head_mask, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + deterministic=not train, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + rngs=rngs, + mutable=mutable, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past_key_values = outputs + outputs["past_key_values"] = unfreeze(past_key_values["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past_key_values = outputs + outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] + + else: + outputs = self.module.apply( + inputs, + jnp.array(input_ids, dtype="i4"), + jnp.array(attention_mask, dtype="i4"), + token_type_ids=jnp.array(token_type_ids, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + head_mask=jnp.array(head_mask, dtype="i4"), + deterministic=not train, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + rngs=rngs, + ) + + return outputs + + +class FlaxElectraModule(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + self.embeddings = FlaxElectraEmbeddings(self.config, dtype=self.dtype) + if self.config.embedding_size != self.config.hidden_size: + self.embeddings_project = nn.Dense(self.config.hidden_size, dtype=self.dtype) + self.encoder = FlaxElectraEncoder( + self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask: Optional[np.ndarray] = None, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + embeddings = self.embeddings( + input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic + ) + if hasattr(self, "embeddings_project"): + embeddings = self.embeddings_project(embeddings) + + return self.encoder( + embeddings, + attention_mask, + head_mask=head_mask, + deterministic=deterministic, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +@add_start_docstrings( + "The bare Electra Model transformer outputting raw hidden-states without any specific head on top.", + ELECTRA_START_DOCSTRING, +) +class FlaxElectraModel(FlaxElectraPreTrainedModel): + module_class = FlaxElectraModule + + +append_call_sample_docstring(FlaxElectraModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC) + + +class FlaxElectraTiedDense(nn.Module): + embedding_size: int + dtype: jnp.dtype = jnp.float32 + precision = None + bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros + + def setup(self): + self.bias = self.param("bias", self.bias_init, (self.embedding_size,)) + + def __call__(self, x, kernel): + x = jnp.asarray(x, self.dtype) + kernel = jnp.asarray(kernel, self.dtype) + y = lax.dot_general( + x, + kernel, + (((x.ndim - 1,), (0,)), ((), ())), + precision=self.precision, + ) + bias = jnp.asarray(self.bias, self.dtype) + return y + bias + + +class FlaxElectraForMaskedLMModule(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.electra = FlaxElectraModule( + config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype) + if self.config.tie_word_embeddings: + self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype) + else: + self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + outputs = self.electra( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + prediction_scores = self.generator_predictions(hidden_states) + + if self.config.tie_word_embeddings: + shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"] + prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T) + else: + prediction_scores = self.generator_lm_head(prediction_scores) + + if not return_dict: + return (prediction_scores,) + outputs[1:] + + return FlaxMaskedLMOutput( + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings("""Electra Model with a `language modeling` head on top.""", ELECTRA_START_DOCSTRING) +class FlaxElectraForMaskedLM(FlaxElectraPreTrainedModel): + module_class = FlaxElectraForMaskedLMModule + + +append_call_sample_docstring(FlaxElectraForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC) + + +class FlaxElectraForPreTrainingModule(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.electra = FlaxElectraModule( + config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + self.discriminator_predictions = FlaxElectraDiscriminatorPredictions(config=self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.electra( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + + logits = self.discriminator_predictions(hidden_states) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxElectraForPreTrainingOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Electra model with a binary classification head on top as used during pretraining for identifying generated tokens. + + It is recommended to load the discriminator checkpoint into that model. + """, + ELECTRA_START_DOCSTRING, +) +class FlaxElectraForPreTraining(FlaxElectraPreTrainedModel): + module_class = FlaxElectraForPreTrainingModule + + +FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING = """ + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxElectraForPreTraining + + >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator") + >>> model = FlaxElectraForPreTraining.from_pretrained("google/electra-small-discriminator") + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.logits + ``` +""" + +overwrite_call_docstring( + FlaxElectraForPreTraining, + ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING, +) +append_replace_return_docstrings( + FlaxElectraForPreTraining, output_type=FlaxElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC +) + + +class FlaxElectraForTokenClassificationModule(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.electra = FlaxElectraModule( + config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + classifier_dropout = ( + self.config.classifier_dropout + if self.config.classifier_dropout is not None + else self.config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.electra( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + logits = self.classifier(hidden_states) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxTokenClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Electra model with a token classification head on top. + + Both the discriminator and generator may be loaded into this model. + """, + ELECTRA_START_DOCSTRING, +) +class FlaxElectraForTokenClassification(FlaxElectraPreTrainedModel): + module_class = FlaxElectraForTokenClassificationModule + + +append_call_sample_docstring( + FlaxElectraForTokenClassification, + _CHECKPOINT_FOR_DOC, + FlaxTokenClassifierOutput, + _CONFIG_FOR_DOC, +) + + +def identity(x, **kwargs): + return x + + +class FlaxElectraSequenceSummary(nn.Module): + r""" + Compute a single vector summary of a sequence hidden states. + + Args: + config ([`PretrainedConfig`]): + The config used by the model. Relevant arguments in the config class of the model are (refer to the actual + config class of your model for the default values it uses): + + - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction. + - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes + (otherwise to `config.hidden_size`). + - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output, + another string or `None` will add no activation. + - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation. + - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation. + """ + + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.summary = identity + if hasattr(self.config, "summary_use_proj") and self.config.summary_use_proj: + if ( + hasattr(self.config, "summary_proj_to_labels") + and self.config.summary_proj_to_labels + and self.config.num_labels > 0 + ): + num_classes = self.config.num_labels + else: + num_classes = self.config.hidden_size + self.summary = nn.Dense(num_classes, dtype=self.dtype) + + activation_string = getattr(self.config, "summary_activation", None) + self.activation = ACT2FN[activation_string] if activation_string else lambda x: x # noqa F407 + + self.first_dropout = identity + if hasattr(self.config, "summary_first_dropout") and self.config.summary_first_dropout > 0: + self.first_dropout = nn.Dropout(self.config.summary_first_dropout) + + self.last_dropout = identity + if hasattr(self.config, "summary_last_dropout") and self.config.summary_last_dropout > 0: + self.last_dropout = nn.Dropout(self.config.summary_last_dropout) + + def __call__(self, hidden_states, cls_index=None, deterministic: bool = True): + """ + Compute a single vector summary of a sequence hidden states. + + Args: + hidden_states (`jnp.ndarray` of shape `[batch_size, seq_len, hidden_size]`): + The hidden states of the last layer. + cls_index (`jnp.ndarray` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*): + Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token. + + Returns: + `jnp.ndarray`: The summary of the sequence hidden states. + """ + # NOTE: this doest "first" type summary always + output = hidden_states[:, 0] + output = self.first_dropout(output, deterministic=deterministic) + output = self.summary(output) + output = self.activation(output) + output = self.last_dropout(output, deterministic=deterministic) + return output + + +class FlaxElectraForMultipleChoiceModule(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.electra = FlaxElectraModule( + config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + self.sequence_summary = FlaxElectraSequenceSummary(config=self.config, dtype=self.dtype) + self.classifier = nn.Dense(1, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + num_choices = input_ids.shape[1] + input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None + attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None + token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None + position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None + + # Model + outputs = self.electra( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + pooled_output = self.sequence_summary(hidden_states, deterministic=deterministic) + logits = self.classifier(pooled_output) + + reshaped_logits = logits.reshape(-1, num_choices) + + if not return_dict: + return (reshaped_logits,) + outputs[1:] + + return FlaxMultipleChoiceModelOutput( + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + ELECTRA_START_DOCSTRING, +) +class FlaxElectraForMultipleChoice(FlaxElectraPreTrainedModel): + module_class = FlaxElectraForMultipleChoiceModule + + +# adapt docstring slightly for FlaxElectraForMultipleChoice +overwrite_call_docstring( + FlaxElectraForMultipleChoice, ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") +) +append_call_sample_docstring( + FlaxElectraForMultipleChoice, + _CHECKPOINT_FOR_DOC, + FlaxMultipleChoiceModelOutput, + _CONFIG_FOR_DOC, +) + + +class FlaxElectraForQuestionAnsweringModule(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.electra = FlaxElectraModule( + config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.electra( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + logits = self.qa_outputs(hidden_states) + start_logits, end_logits = logits.split(self.config.num_labels, axis=-1) + start_logits = start_logits.squeeze(-1) + end_logits = end_logits.squeeze(-1) + + if not return_dict: + return (start_logits, end_logits) + outputs[1:] + + return FlaxQuestionAnsweringModelOutput( + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + ELECTRA_START_DOCSTRING, +) +class FlaxElectraForQuestionAnswering(FlaxElectraPreTrainedModel): + module_class = FlaxElectraForQuestionAnsweringModule + + +append_call_sample_docstring( + FlaxElectraForQuestionAnswering, + _CHECKPOINT_FOR_DOC, + FlaxQuestionAnsweringModelOutput, + _CONFIG_FOR_DOC, +) + + +class FlaxElectraClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype) + classifier_dropout = ( + self.config.classifier_dropout + if self.config.classifier_dropout is not None + else self.config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.out_proj = nn.Dense(self.config.num_labels, dtype=self.dtype) + + def __call__(self, hidden_states, deterministic: bool = True): + x = hidden_states[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x, deterministic=deterministic) + x = self.dense(x) + x = ACT2FN["gelu"](x) # although BERT uses tanh here, it seems Electra authors used gelu + x = self.dropout(x, deterministic=deterministic) + x = self.out_proj(x) + return x + + +class FlaxElectraForSequenceClassificationModule(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.electra = FlaxElectraModule( + config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + self.classifier = FlaxElectraClassificationHead(config=self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.electra( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + logits = self.classifier(hidden_states, deterministic=deterministic) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxSequenceClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Electra Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + ELECTRA_START_DOCSTRING, +) +class FlaxElectraForSequenceClassification(FlaxElectraPreTrainedModel): + module_class = FlaxElectraForSequenceClassificationModule + + +append_call_sample_docstring( + FlaxElectraForSequenceClassification, + _CHECKPOINT_FOR_DOC, + FlaxSequenceClassifierOutput, + _CONFIG_FOR_DOC, +) + + +class FlaxElectraForCausalLMModule(nn.Module): + config: ElectraConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.electra = FlaxElectraModule( + config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype) + if self.config.tie_word_embeddings: + self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype) + else: + self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask: Optional[jnp.ndarray] = None, + token_type_ids: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + head_mask: Optional[jnp.ndarray] = None, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + outputs = self.electra( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + prediction_scores = self.generator_predictions(hidden_states) + + if self.config.tie_word_embeddings: + shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"] + prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T) + else: + prediction_scores = self.generator_lm_head(prediction_scores) + + if not return_dict: + return (prediction_scores,) + outputs[1:] + + return FlaxCausalLMOutputWithCrossAttentions( + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings( + """ + Electra Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for + autoregressive tasks. + """, + ELECTRA_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForCausalLM with Bert->Electra +class FlaxElectraForCausalLM(FlaxElectraPreTrainedModel): + module_class = FlaxElectraForCausalLMModule + + def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): + # initializing the cache + batch_size, seq_length = input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since the decoder uses a causal mask, those positions are masked anyway. + # Thus, we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if attention_mask is not None: + position_ids = attention_mask.cumsum(axis=-1) - 1 + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) + else: + position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) + + return { + "past_key_values": past_key_values, + "attention_mask": extended_attention_mask, + "position_ids": position_ids, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 + return model_kwargs + + +append_call_sample_docstring( + FlaxElectraForCausalLM, + _CHECKPOINT_FOR_DOC, + FlaxCausalLMOutputWithCrossAttentions, + _CONFIG_FOR_DOC, +) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_tf_electra.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_tf_electra.py new file mode 100644 index 0000000000000000000000000000000000000000..b0c8b4fa285d54fd3431e9e69fcefe4df4afd480 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_tf_electra.py @@ -0,0 +1,1775 @@ +# coding=utf-8 +# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF Electra model.""" + + +from __future__ import annotations + +import math +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutputWithPastAndCrossAttentions, + TFMaskedLMOutput, + TFMultipleChoiceModelOutput, + TFQuestionAnsweringModelOutput, + TFSequenceClassifierOutput, + TFTokenClassifierOutput, +) +from ...modeling_tf_utils import ( + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFMultipleChoiceLoss, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFSequenceSummary, + TFTokenClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_electra import ElectraConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator" +_CONFIG_FOR_DOC = "ElectraConfig" + +TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "google/electra-small-generator", + "google/electra-base-generator", + "google/electra-large-generator", + "google/electra-small-discriminator", + "google/electra-base-discriminator", + "google/electra-large-discriminator", + # See all ELECTRA models at https://huggingface.co/models?filter=electra +] + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Electra +class TFElectraSelfAttention(keras.layers.Layer): + def __init__(self, config: ElectraConfig, **kwargs): + super().__init__(**kwargs) + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number " + f"of attention heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.sqrt_att_head_size = math.sqrt(self.attention_head_size) + + self.query = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" + ) + self.key = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" + ) + self.value = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" + ) + self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) + + self.is_decoder = config.is_decoder + self.config = config + + def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) + + # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] + return tf.transpose(tensor, perm=[0, 2, 1, 3]) + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor, + encoder_attention_mask: tf.Tensor, + past_key_value: Tuple[tf.Tensor], + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + batch_size = shape_list(hidden_states)[0] + mixed_query_layer = self.query(inputs=hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) + key_layer = tf.concat([past_key_value[0], key_layer], axis=2) + value_layer = tf.concat([past_key_value[1], value_layer], axis=2) + else: + key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) + + query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + # (batch size, num_heads, seq_len_q, seq_len_k) + attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) + dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) + attention_scores = tf.divide(attention_scores, dk) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in TFElectraModel call() function) + attention_scores = tf.add(attention_scores, attention_mask) + + # Normalize the attention scores to probabilities. + attention_probs = stable_softmax(logits=attention_scores, axis=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(inputs=attention_probs, training=training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = tf.multiply(attention_probs, head_mask) + + attention_output = tf.matmul(attention_probs, value_layer) + attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) + + # (batch_size, seq_len_q, all_head_size) + attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) + outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Electra +class TFElectraSelfOutput(keras.layers.Layer): + def __init__(self, config: ElectraConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Electra +class TFElectraAttention(keras.layers.Layer): + def __init__(self, config: ElectraConfig, **kwargs): + super().__init__(**kwargs) + + self.self_attention = TFElectraSelfAttention(config, name="self") + self.dense_output = TFElectraSelfOutput(config, name="output") + + def prune_heads(self, heads): + raise NotImplementedError + + def call( + self, + input_tensor: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor, + encoder_attention_mask: tf.Tensor, + past_key_value: Tuple[tf.Tensor], + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + self_outputs = self.self_attention( + hidden_states=input_tensor, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = self.dense_output( + hidden_states=self_outputs[0], input_tensor=input_tensor, training=training + ) + # add attentions (possibly with past_key_value) if we output them + outputs = (attention_output,) + self_outputs[1:] + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attention", None) is not None: + with tf.name_scope(self.self_attention.name): + self.self_attention.build(None) + if getattr(self, "dense_output", None) is not None: + with tf.name_scope(self.dense_output.name): + self.dense_output.build(None) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Electra +class TFElectraIntermediate(keras.layers.Layer): + def __init__(self, config: ElectraConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Electra +class TFElectraOutput(keras.layers.Layer): + def __init__(self, config: ElectraConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Electra +class TFElectraLayer(keras.layers.Layer): + def __init__(self, config: ElectraConfig, **kwargs): + super().__init__(**kwargs) + + self.attention = TFElectraAttention(config, name="attention") + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = TFElectraAttention(config, name="crossattention") + self.intermediate = TFElectraIntermediate(config, name="intermediate") + self.bert_output = TFElectraOutput(config, name="output") + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor | None, + encoder_attention_mask: tf.Tensor | None, + past_key_value: Tuple[tf.Tensor] | None, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + input_tensor=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=self_attn_past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + input_tensor=attention_output, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + intermediate_output = self.intermediate(hidden_states=attention_output) + layer_output = self.bert_output( + hidden_states=intermediate_output, input_tensor=attention_output, training=training + ) + outputs = (layer_output,) + outputs # add attentions if we output them + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "bert_output", None) is not None: + with tf.name_scope(self.bert_output.name): + self.bert_output.build(None) + if getattr(self, "crossattention", None) is not None: + with tf.name_scope(self.crossattention.name): + self.crossattention.build(None) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Electra +class TFElectraEncoder(keras.layers.Layer): + def __init__(self, config: ElectraConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + self.layer = [TFElectraLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor | None, + encoder_attention_mask: tf.Tensor | None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None, + use_cache: Optional[bool], + output_attentions: bool, + output_hidden_states: bool, + return_dict: bool, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + past_key_value = past_key_values[i] if past_key_values is not None else None + + layer_outputs = layer_module( + hidden_states=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask[i], + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=past_key_value, + output_attentions=output_attentions, + training=training, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + if self.config.add_cross_attention and encoder_hidden_states is not None: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None + ) + + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Electra +class TFElectraPooler(keras.layers.Layer): + def __init__(self, config: ElectraConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(inputs=first_token_tensor) + + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.albert.modeling_tf_albert.TFAlbertEmbeddings with Albert->Electra +class TFElectraEmbeddings(keras.layers.Layer): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config: ElectraConfig, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.embedding_size = config.embedding_size + self.max_position_embeddings = config.max_position_embeddings + self.initializer_range = config.initializer_range + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.embedding_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("token_type_embeddings"): + self.token_type_embeddings = self.add_weight( + name="embeddings", + shape=[self.config.type_vocab_size, self.embedding_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("position_embeddings"): + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.embedding_size], + initializer=get_initializer(self.initializer_range), + ) + + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.embedding_size]) + + # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call + def call( + self, + input_ids: tf.Tensor = None, + position_ids: tf.Tensor = None, + token_type_ids: tf.Tensor = None, + inputs_embeds: tf.Tensor = None, + past_key_values_length=0, + training: bool = False, + ) -> tf.Tensor: + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + if input_ids is None and inputs_embeds is None: + raise ValueError("Need to provide either `input_ids` or `input_embeds`.") + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + input_shape = shape_list(inputs_embeds)[:-1] + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + if position_ids is None: + position_ids = tf.expand_dims( + tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0 + ) + + position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) + token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) + final_embeddings = inputs_embeds + position_embeds + token_type_embeds + final_embeddings = self.LayerNorm(inputs=final_embeddings) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +class TFElectraDiscriminatorPredictions(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense(config.hidden_size, name="dense") + self.dense_prediction = keras.layers.Dense(1, name="dense_prediction") + self.config = config + + def call(self, discriminator_hidden_states, training=False): + hidden_states = self.dense(discriminator_hidden_states) + hidden_states = get_tf_activation(self.config.hidden_act)(hidden_states) + logits = tf.squeeze(self.dense_prediction(hidden_states), -1) + + return logits + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "dense_prediction", None) is not None: + with tf.name_scope(self.dense_prediction.name): + self.dense_prediction.build([None, None, self.config.hidden_size]) + + +class TFElectraGeneratorPredictions(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dense = keras.layers.Dense(config.embedding_size, name="dense") + self.config = config + + def call(self, generator_hidden_states, training=False): + hidden_states = self.dense(generator_hidden_states) + hidden_states = get_tf_activation("gelu")(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.embedding_size]) + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFElectraPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ElectraConfig + base_model_prefix = "electra" + # When the model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"generator_lm_head.weight"] + _keys_to_ignore_on_load_missing = [r"dropout"] + + +@keras_serializable +class TFElectraMainLayer(keras.layers.Layer): + config_class = ElectraConfig + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.is_decoder = config.is_decoder + + self.embeddings = TFElectraEmbeddings(config, name="embeddings") + + if config.embedding_size != config.hidden_size: + self.embeddings_project = keras.layers.Dense(config.hidden_size, name="embeddings_project") + + self.encoder = TFElectraEncoder(config, name="encoder") + + def get_input_embeddings(self): + return self.embeddings + + def set_input_embeddings(self, value): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + def get_extended_attention_mask(self, attention_mask, input_shape, dtype, past_key_values_length=0): + batch_size, seq_length = input_shape + + if attention_mask is None: + attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask_shape = shape_list(attention_mask) + + mask_seq_length = seq_length + past_key_values_length + # Copied from `modeling_tf_t5.py` + # Provided a padding mask of dimensions [batch_size, mask_seq_length] + # - if the model is a decoder, apply a causal mask in addition to the padding mask + # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] + if self.is_decoder: + seq_ids = tf.range(mask_seq_length) + causal_mask = tf.less_equal( + tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), + seq_ids[None, :, None], + ) + causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) + extended_attention_mask = causal_mask * attention_mask[:, None, :] + attention_mask_shape = shape_list(extended_attention_mask) + extended_attention_mask = tf.reshape( + extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) + ) + if past_key_values_length > 0: + extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] + else: + extended_attention_mask = tf.reshape( + attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) + ) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = tf.cast(extended_attention_mask, dtype=dtype) + one_cst = tf.constant(1.0, dtype=dtype) + ten_thousand_cst = tf.constant(-10000.0, dtype=dtype) + extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) + + return extended_attention_mask + + def get_head_mask(self, head_mask): + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.config.num_hidden_layers + + return head_mask + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: + if not self.config.is_decoder: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + + if past_key_values is None: + past_key_values_length = 0 + past_key_values = [None] * len(self.encoder.layer) + else: + past_key_values_length = shape_list(past_key_values[0][0])[-2] + + if attention_mask is None: + attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + hidden_states = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + training=training, + ) + extended_attention_mask = self.get_extended_attention_mask( + attention_mask, input_shape, hidden_states.dtype, past_key_values_length + ) + + # Copied from `modeling_tf_t5.py` with -1e9 -> -10000 + if self.is_decoder and encoder_attention_mask is not None: + # If a 2D ou 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) + num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) + if num_dims_encoder_attention_mask == 3: + encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] + if num_dims_encoder_attention_mask == 2: + encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] + + # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition + # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 + # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, + # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) + + encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 + else: + encoder_extended_attention_mask = None + + head_mask = self.get_head_mask(head_mask) + + if hasattr(self, "embeddings_project"): + hidden_states = self.embeddings_project(hidden_states, training=training) + + hidden_states = self.encoder( + hidden_states=hidden_states, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "embeddings_project", None) is not None: + with tf.name_scope(self.embeddings_project.name): + self.embeddings_project.build([None, None, self.config.embedding_size]) + + +@dataclass +class TFElectraForPreTrainingOutput(ModelOutput): + """ + Output type of [`TFElectraForPreTraining`]. + + Args: + loss (*optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`): + Total loss of the ELECTRA objective. + logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Prediction scores of the head (scores for each token before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +ELECTRA_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`ElectraConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +ELECTRA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to " + "the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the " + "hidden size and embedding size are different. " + "" + "Both the generator and discriminator checkpoints may be loaded into this model.", + ELECTRA_START_DOCSTRING, +) +class TFElectraModel(TFElectraPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.electra = TFElectraMainLayer(config, name="electra") + + @unpack_inputs + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutputWithPastAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: + r""" + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + """ + outputs = self.electra( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "electra", None) is not None: + with tf.name_scope(self.electra.name): + self.electra.build(None) + + +@add_start_docstrings( + """ + Electra model with a binary classification head on top as used during pretraining for identifying generated tokens. + + Even though both the discriminator and generator may be loaded into this model, the discriminator is the only model + of the two to have the correct classification head to be used for this model. + """, + ELECTRA_START_DOCSTRING, +) +class TFElectraForPreTraining(TFElectraPreTrainedModel): + def __init__(self, config, **kwargs): + super().__init__(config, **kwargs) + + self.electra = TFElectraMainLayer(config, name="electra") + self.discriminator_predictions = TFElectraDiscriminatorPredictions(config, name="discriminator_predictions") + + @unpack_inputs + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[TFElectraForPreTrainingOutput, Tuple[tf.Tensor]]: + r""" + Returns: + + Examples: + + ```python + >>> import tensorflow as tf + >>> from transformers import AutoTokenizer, TFElectraForPreTraining + + >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator") + >>> model = TFElectraForPreTraining.from_pretrained("google/electra-small-discriminator") + >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 + >>> outputs = model(input_ids) + >>> scores = outputs[0] + ```""" + discriminator_hidden_states = self.electra( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + discriminator_sequence_output = discriminator_hidden_states[0] + logits = self.discriminator_predictions(discriminator_sequence_output) + + if not return_dict: + return (logits,) + discriminator_hidden_states[1:] + + return TFElectraForPreTrainingOutput( + logits=logits, + hidden_states=discriminator_hidden_states.hidden_states, + attentions=discriminator_hidden_states.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "electra", None) is not None: + with tf.name_scope(self.electra.name): + self.electra.build(None) + if getattr(self, "discriminator_predictions", None) is not None: + with tf.name_scope(self.discriminator_predictions.name): + self.discriminator_predictions.build(None) + + +class TFElectraMaskedLMHead(keras.layers.Layer): + def __init__(self, config, input_embeddings, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.embedding_size = config.embedding_size + self.input_embeddings = input_embeddings + + def build(self, input_shape): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + + super().build(input_shape) + + def get_output_embeddings(self): + return self.input_embeddings + + def set_output_embeddings(self, value): + self.input_embeddings.weight = value + self.input_embeddings.vocab_size = shape_list(value)[0] + + def get_bias(self): + return {"bias": self.bias} + + def set_bias(self, value): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states): + seq_length = shape_list(tensor=hidden_states)[1] + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) + hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) + hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) + + return hidden_states + + +@add_start_docstrings( + """ + Electra model with a language modeling head on top. + + Even though both the discriminator and generator may be loaded into this model, the generator is the only model of + the two to have been trained for the masked language modeling task. + """, + ELECTRA_START_DOCSTRING, +) +class TFElectraForMaskedLM(TFElectraPreTrainedModel, TFMaskedLanguageModelingLoss): + def __init__(self, config, **kwargs): + super().__init__(config, **kwargs) + + self.config = config + self.electra = TFElectraMainLayer(config, name="electra") + self.generator_predictions = TFElectraGeneratorPredictions(config, name="generator_predictions") + + if isinstance(config.hidden_act, str): + self.activation = get_tf_activation(config.hidden_act) + else: + self.activation = config.hidden_act + + self.generator_lm_head = TFElectraMaskedLMHead(config, self.electra.embeddings, name="generator_lm_head") + + def get_lm_head(self): + return self.generator_lm_head + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.generator_lm_head.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="google/electra-small-generator", + output_type=TFMaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + mask="[MASK]", + expected_output="'paris'", + expected_loss=1.22, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + generator_hidden_states = self.electra( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + generator_sequence_output = generator_hidden_states[0] + prediction_scores = self.generator_predictions(generator_sequence_output, training=training) + prediction_scores = self.generator_lm_head(prediction_scores, training=training) + loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) + + if not return_dict: + output = (prediction_scores,) + generator_hidden_states[1:] + + return ((loss,) + output) if loss is not None else output + + return TFMaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=generator_hidden_states.hidden_states, + attentions=generator_hidden_states.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "electra", None) is not None: + with tf.name_scope(self.electra.name): + self.electra.build(None) + if getattr(self, "generator_predictions", None) is not None: + with tf.name_scope(self.generator_predictions.name): + self.generator_predictions.build(None) + if getattr(self, "generator_lm_head", None) is not None: + with tf.name_scope(self.generator_lm_head.name): + self.generator_lm_head.build(None) + + +class TFElectraClassificationHead(keras.layers.Layer): + """Head for sentence-level classification tasks.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + classifier_dropout = ( + config.classifhidden_dropout_probier_dropout + if config.classifier_dropout is not None + else config.hidden_dropout_prob + ) + self.dropout = keras.layers.Dropout(classifier_dropout) + self.out_proj = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" + ) + self.config = config + + def call(self, inputs, **kwargs): + x = inputs[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x) + x = self.dense(x) + x = get_tf_activation("gelu")(x) # although BERT uses tanh here, it seems Electra authors used gelu here + x = self.dropout(x) + x = self.out_proj(x) + + return x + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + ELECTRA_START_DOCSTRING, +) +class TFElectraForSequenceClassification(TFElectraPreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + self.electra = TFElectraMainLayer(config, name="electra") + self.classifier = TFElectraClassificationHead(config, name="classifier") + + @unpack_inputs + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="bhadresh-savani/electra-base-emotion", + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="'joy'", + expected_loss=0.06, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + outputs = self.electra( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + logits = self.classifier(outputs[0]) + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[1:] + + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "electra", None) is not None: + with tf.name_scope(self.electra.name): + self.electra.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build(None) + + +@add_start_docstrings( + """ + ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + ELECTRA_START_DOCSTRING, +) +class TFElectraForMultipleChoice(TFElectraPreTrainedModel, TFMultipleChoiceLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.electra = TFElectraMainLayer(config, name="electra") + self.sequence_summary = TFSequenceSummary( + config, initializer_range=config.initializer_range, name="sequence_summary" + ) + self.classifier = keras.layers.Dense( + 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) + """ + + if input_ids is not None: + num_choices = shape_list(input_ids)[1] + seq_length = shape_list(input_ids)[2] + else: + num_choices = shape_list(inputs_embeds)[1] + seq_length = shape_list(inputs_embeds)[2] + + flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None + flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None + flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None + flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None + flat_inputs_embeds = ( + tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) + if inputs_embeds is not None + else None + ) + outputs = self.electra( + input_ids=flat_input_ids, + attention_mask=flat_attention_mask, + token_type_ids=flat_token_type_ids, + position_ids=flat_position_ids, + head_mask=head_mask, + inputs_embeds=flat_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + logits = self.sequence_summary(outputs[0]) + logits = self.classifier(logits) + reshaped_logits = tf.reshape(logits, (-1, num_choices)) + loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) + + if not return_dict: + output = (reshaped_logits,) + outputs[1:] + + return ((loss,) + output) if loss is not None else output + + return TFMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "electra", None) is not None: + with tf.name_scope(self.electra.name): + self.electra.build(None) + if getattr(self, "sequence_summary", None) is not None: + with tf.name_scope(self.sequence_summary.name): + self.sequence_summary.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + Electra model with a token classification head on top. + + Both the discriminator and generator may be loaded into this model. + """, + ELECTRA_START_DOCSTRING, +) +class TFElectraForTokenClassification(TFElectraPreTrainedModel, TFTokenClassificationLoss): + def __init__(self, config, **kwargs): + super().__init__(config, **kwargs) + + self.electra = TFElectraMainLayer(config, name="electra") + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = keras.layers.Dropout(classifier_dropout) + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="bhadresh-savani/electra-base-discriminator-finetuned-conll03-english", + output_type=TFTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']", + expected_loss=0.11, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + discriminator_hidden_states = self.electra( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + discriminator_sequence_output = discriminator_hidden_states[0] + discriminator_sequence_output = self.dropout(discriminator_sequence_output) + logits = self.classifier(discriminator_sequence_output) + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + discriminator_hidden_states[1:] + + return ((loss,) + output) if loss is not None else output + + return TFTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=discriminator_hidden_states.hidden_states, + attentions=discriminator_hidden_states.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "electra", None) is not None: + with tf.name_scope(self.electra.name): + self.electra.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + Electra Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + ELECTRA_START_DOCSTRING, +) +class TFElectraForQuestionAnswering(TFElectraPreTrainedModel, TFQuestionAnsweringLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + self.electra = TFElectraMainLayer(config, name="electra") + self.qa_outputs = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="bhadresh-savani/electra-base-squad2", + output_type=TFQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + qa_target_start_index=11, + qa_target_end_index=12, + expected_output="'a nice puppet'", + expected_loss=2.64, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: np.ndarray | tf.Tensor | None = None, + end_positions: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: + r""" + start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + discriminator_hidden_states = self.electra( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + discriminator_sequence_output = discriminator_hidden_states[0] + logits = self.qa_outputs(discriminator_sequence_output) + start_logits, end_logits = tf.split(logits, 2, axis=-1) + start_logits = tf.squeeze(start_logits, axis=-1) + end_logits = tf.squeeze(end_logits, axis=-1) + loss = None + + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions} + labels["end_position"] = end_positions + loss = self.hf_compute_loss(labels, (start_logits, end_logits)) + + if not return_dict: + output = ( + start_logits, + end_logits, + ) + discriminator_hidden_states[1:] + + return ((loss,) + output) if loss is not None else output + + return TFQuestionAnsweringModelOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=discriminator_hidden_states.hidden_states, + attentions=discriminator_hidden_states.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "electra", None) is not None: + with tf.name_scope(self.electra.name): + self.electra.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.hidden_size]) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra.py new file mode 100644 index 0000000000000000000000000000000000000000..6ea9a600a6e9570b93b18f83266985050fc28c7a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra.py @@ -0,0 +1,546 @@ +# coding=utf-8 +# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import collections +import os +import unicodedata +from typing import List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "google/electra-small-generator": ( + "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" + ), + "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", + "google/electra-large-generator": ( + "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" + ), + "google/electra-small-discriminator": ( + "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" + ), + "google/electra-base-discriminator": ( + "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" + ), + "google/electra-large-discriminator": ( + "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" + ), + } +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "google/electra-small-generator": 512, + "google/electra-base-generator": 512, + "google/electra-large-generator": 512, + "google/electra-small-discriminator": 512, + "google/electra-base-discriminator": 512, + "google/electra-large-discriminator": 512, +} + + +PRETRAINED_INIT_CONFIGURATION = { + "google/electra-small-generator": {"do_lower_case": True}, + "google/electra-base-generator": {"do_lower_case": True}, + "google/electra-large-generator": {"do_lower_case": True}, + "google/electra-small-discriminator": {"do_lower_case": True}, + "google/electra-base-discriminator": {"do_lower_case": True}, + "google/electra-large-discriminator": {"do_lower_case": True}, +} + + +# Copied from transformers.models.bert.tokenization_bert.load_vocab +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with Bert->Electra,BERT->Electra +class ElectraTokenizer(PreTrainedTokenizer): + r""" + Construct a Electra tokenizer. Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + do_basic_tokenize (`bool`, *optional*, defaults to `True`): + Whether or not to do basic tokenization before WordPiece. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original Electra). + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + + def __init__( + self, + vocab_file, + do_lower_case=True, + do_basic_tokenize=True, + never_split=None, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = ElectraTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer( + do_lower_case=do_lower_case, + never_split=never_split, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + ) + + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) + + super().__init__( + do_lower_case=do_lower_case, + do_basic_tokenize=do_basic_tokenize, + never_split=never_split, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + @property + def do_lower_case(self): + return self.basic_tokenizer.do_lower_case + + @property + def vocab_size(self): + return len(self.vocab) + + def get_vocab(self): + return dict(self.vocab, **self.added_tokens_encoder) + + def _tokenize(self, text, split_special_tokens=False): + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize( + text, never_split=self.all_special_tokens if not split_special_tokens else None + ): + # If the token is part of the never_split set + if token in self.basic_tokenizer.never_split: + split_tokens.append(token) + else: + split_tokens += self.wordpiece_tokenizer.tokenize(token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.ids_to_tokens.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A Electra sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Electra sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(token + "\n") + index += 1 + return (vocab_file,) + + +# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer +class BasicTokenizer(object): + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + do_split_on_punc (`bool`, *optional*, defaults to `True`): + In some instances we want to skip the basic punctuation splitting so that later tokenization can capture + the full context of the words, such as contractions. + """ + + def __init__( + self, + do_lower_case=True, + never_split=None, + tokenize_chinese_chars=True, + strip_accents=None, + do_split_on_punc=True, + ): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + self.do_split_on_punc = do_split_on_punc + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. + + Args: + never_split (`List[str]`, *optional*) + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + # prevents treating the same character with different unicode codepoints as different characters + unicode_normalized_text = unicodedata.normalize("NFC", text) + orig_tokens = whitespace_tokenize(unicode_normalized_text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if not self.do_split_on_punc or (never_split is not None and text in never_split): + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer +class WordpieceTokenizer(object): + """Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token, max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """ + Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform + tokenization using the given vocabulary. + + For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through *BasicTokenizer*. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..e76082de174dee0f3ce7ad44ce9c14ea1a3ca934 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra_fast.py @@ -0,0 +1,231 @@ +# coding=utf-8 +# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import json +from typing import List, Optional, Tuple + +from tokenizers import normalizers + +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from .tokenization_electra import ElectraTokenizer + + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "google/electra-small-generator": ( + "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" + ), + "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", + "google/electra-large-generator": ( + "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" + ), + "google/electra-small-discriminator": ( + "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" + ), + "google/electra-base-discriminator": ( + "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" + ), + "google/electra-large-discriminator": ( + "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" + ), + }, + "tokenizer_file": { + "google/electra-small-generator": ( + "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" + ), + "google/electra-base-generator": ( + "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" + ), + "google/electra-large-generator": ( + "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" + ), + "google/electra-small-discriminator": ( + "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" + ), + "google/electra-base-discriminator": ( + "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" + ), + "google/electra-large-discriminator": ( + "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" + ), + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "google/electra-small-generator": 512, + "google/electra-base-generator": 512, + "google/electra-large-generator": 512, + "google/electra-small-discriminator": 512, + "google/electra-base-discriminator": 512, + "google/electra-large-discriminator": 512, +} + +PRETRAINED_INIT_CONFIGURATION = { + "google/electra-small-generator": {"do_lower_case": True}, + "google/electra-base-generator": {"do_lower_case": True}, + "google/electra-large-generator": {"do_lower_case": True}, + "google/electra-small-discriminator": {"do_lower_case": True}, + "google/electra-base-discriminator": {"do_lower_case": True}, + "google/electra-large-discriminator": {"do_lower_case": True}, +} + + +# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with Bert->Electra , BERT->ELECTRA +class ElectraTokenizerFast(PreTrainedTokenizerFast): + r""" + Construct a "fast" ELECTRA tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + clean_text (`bool`, *optional*, defaults to `True`): + Whether or not to clean the text before tokenization by removing any control characters and replacing all + whitespaces by the classic one. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this + issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original ELECTRA). + wordpieces_prefix (`str`, *optional*, defaults to `"##"`): + The prefix for subwords. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + slow_tokenizer_class = ElectraTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + do_lower_case=True, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + do_lower_case=do_lower_case, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) + if ( + normalizer_state.get("lowercase", do_lower_case) != do_lower_case + or normalizer_state.get("strip_accents", strip_accents) != strip_accents + or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars + ): + normalizer_class = getattr(normalizers, normalizer_state.pop("type")) + normalizer_state["lowercase"] = do_lower_case + normalizer_state["strip_accents"] = strip_accents + normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars + self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) + + self.do_lower_case = do_lower_case + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A ELECTRA sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + + if token_ids_1 is not None: + output += token_ids_1 + [self.sep_token_id] + + return output + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ELECTRA sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..aae869bdff51041bda7632222eaa5065f97d36eb --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__init__.py @@ -0,0 +1,44 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available + + +_import_structure = {} + + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_mluke"] = ["MLukeTokenizer"] + +if TYPE_CHECKING: + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_mluke import MLukeTokenizer + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..187a5034fc888392e1b3fb0f10e7b01daa15e790 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/convert_mluke_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/convert_mluke_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d35570c25142de3a84051495db24ab42922cb812 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/convert_mluke_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/tokenization_mluke.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/tokenization_mluke.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7f6f0aef0a440e6d10a31deb08d8912106179c66 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/tokenization_mluke.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/convert_mluke_original_pytorch_checkpoint_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/convert_mluke_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..f361082fb3c5162bed9d6364ac3dd3a7bdf92104 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/convert_mluke_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,229 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert mLUKE checkpoint.""" + +import argparse +import json +import os +from collections import OrderedDict + +import torch + +from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer +from transformers.tokenization_utils_base import AddedToken + + +@torch.no_grad() +def convert_luke_checkpoint(checkpoint_path, metadata_path, entity_vocab_path, pytorch_dump_folder_path, model_size): + # Load configuration defined in the metadata file + with open(metadata_path) as metadata_file: + metadata = json.load(metadata_file) + config = LukeConfig(use_entity_aware_attention=True, **metadata["model_config"]) + + # Load in the weights from the checkpoint_path + state_dict = torch.load(checkpoint_path, map_location="cpu")["module"] + + # Load the entity vocab file + entity_vocab = load_original_entity_vocab(entity_vocab_path) + # add an entry for [MASK2] + entity_vocab["[MASK2]"] = max(entity_vocab.values()) + 1 + config.entity_vocab_size += 1 + + tokenizer = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"]) + + # Add special tokens to the token vocabulary for downstream tasks + entity_token_1 = AddedToken("", lstrip=False, rstrip=False) + entity_token_2 = AddedToken("", lstrip=False, rstrip=False) + tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_1, entity_token_2]}) + config.vocab_size += 2 + + print(f"Saving tokenizer to {pytorch_dump_folder_path}") + tokenizer.save_pretrained(pytorch_dump_folder_path) + with open(os.path.join(pytorch_dump_folder_path, "tokenizer_config.json"), "r") as f: + tokenizer_config = json.load(f) + tokenizer_config["tokenizer_class"] = "MLukeTokenizer" + with open(os.path.join(pytorch_dump_folder_path, "tokenizer_config.json"), "w") as f: + json.dump(tokenizer_config, f) + + with open(os.path.join(pytorch_dump_folder_path, MLukeTokenizer.vocab_files_names["entity_vocab_file"]), "w") as f: + json.dump(entity_vocab, f) + + tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path) + + # Initialize the embeddings of the special tokens + ent_init_index = tokenizer.convert_tokens_to_ids(["@"])[0] + ent2_init_index = tokenizer.convert_tokens_to_ids(["#"])[0] + + word_emb = state_dict["embeddings.word_embeddings.weight"] + ent_emb = word_emb[ent_init_index].unsqueeze(0) + ent2_emb = word_emb[ent2_init_index].unsqueeze(0) + state_dict["embeddings.word_embeddings.weight"] = torch.cat([word_emb, ent_emb, ent2_emb]) + # add special tokens for 'entity_predictions.bias' + for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: + decoder_bias = state_dict[bias_name] + ent_decoder_bias = decoder_bias[ent_init_index].unsqueeze(0) + ent2_decoder_bias = decoder_bias[ent2_init_index].unsqueeze(0) + state_dict[bias_name] = torch.cat([decoder_bias, ent_decoder_bias, ent2_decoder_bias]) + + # Initialize the query layers of the entity-aware self-attention mechanism + for layer_index in range(config.num_hidden_layers): + for matrix_name in ["query.weight", "query.bias"]: + prefix = f"encoder.layer.{layer_index}.attention.self." + state_dict[prefix + "w2e_" + matrix_name] = state_dict[prefix + matrix_name] + state_dict[prefix + "e2w_" + matrix_name] = state_dict[prefix + matrix_name] + state_dict[prefix + "e2e_" + matrix_name] = state_dict[prefix + matrix_name] + + # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks + entity_emb = state_dict["entity_embeddings.entity_embeddings.weight"] + entity_mask_emb = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0) + state_dict["entity_embeddings.entity_embeddings.weight"] = torch.cat([entity_emb, entity_mask_emb]) + # add [MASK2] for 'entity_predictions.bias' + entity_prediction_bias = state_dict["entity_predictions.bias"] + entity_mask_bias = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0) + state_dict["entity_predictions.bias"] = torch.cat([entity_prediction_bias, entity_mask_bias]) + + model = LukeForMaskedLM(config=config).eval() + + state_dict.pop("entity_predictions.decoder.weight") + state_dict.pop("lm_head.decoder.weight") + state_dict.pop("lm_head.decoder.bias") + state_dict_for_hugging_face = OrderedDict() + for key, value in state_dict.items(): + if not (key.startswith("lm_head") or key.startswith("entity_predictions")): + state_dict_for_hugging_face[f"luke.{key}"] = state_dict[key] + else: + state_dict_for_hugging_face[key] = state_dict[key] + + missing_keys, unexpected_keys = model.load_state_dict(state_dict_for_hugging_face, strict=False) + + if set(unexpected_keys) != {"luke.embeddings.position_ids"}: + raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}") + if set(missing_keys) != { + "lm_head.decoder.weight", + "lm_head.decoder.bias", + "entity_predictions.decoder.weight", + }: + raise ValueError(f"Unexpected missing_keys: {missing_keys}") + + model.tie_weights() + assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() + assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() + + # Check outputs + tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path, task="entity_classification") + + text = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." + span = (0, 9) + encoding = tokenizer(text, entity_spans=[span], return_tensors="pt") + + outputs = model(**encoding) + + # Verify word hidden states + if model_size == "large": + raise NotImplementedError + else: # base + expected_shape = torch.Size((1, 33, 768)) + expected_slice = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]]) + + if not (outputs.last_hidden_state.shape == expected_shape): + raise ValueError( + f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" + ) + if not torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4): + raise ValueError + + # Verify entity hidden states + if model_size == "large": + raise NotImplementedError + else: # base + expected_shape = torch.Size((1, 1, 768)) + expected_slice = torch.tensor([[-0.1482, 0.0609, 0.0322]]) + + if not (outputs.entity_last_hidden_state.shape == expected_shape): + raise ValueError( + f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" + f" {expected_shape}" + ) + if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, atol=1e-4): + raise ValueError + + # Verify masked word/entity prediction + tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path) + text = "Tokyo is the capital of ." + span = (24, 30) + encoding = tokenizer(text, entity_spans=[span], return_tensors="pt") + + outputs = model(**encoding) + + input_ids = encoding["input_ids"][0].tolist() + mask_position_id = input_ids.index(tokenizer.convert_tokens_to_ids("")) + predicted_id = outputs.logits[0][mask_position_id].argmax(dim=-1) + assert "Japan" == tokenizer.decode(predicted_id) + + predicted_entity_id = outputs.entity_logits[0][0].argmax().item() + multilingual_predicted_entities = [ + entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id + ] + assert [e for e in multilingual_predicted_entities if e.startswith("en:")][0] == "en:Japan" + + # Finally, save our PyTorch model and tokenizer + print("Saving PyTorch model to {}".format(pytorch_dump_folder_path)) + model.save_pretrained(pytorch_dump_folder_path) + + +def load_original_entity_vocab(entity_vocab_path): + SPECIAL_TOKENS = ["[MASK]", "[PAD]", "[UNK]"] + + data = [json.loads(line) for line in open(entity_vocab_path)] + + new_mapping = {} + for entry in data: + entity_id = entry["id"] + for entity_name, language in entry["entities"]: + if entity_name in SPECIAL_TOKENS: + new_mapping[entity_name] = entity_id + break + new_entity_name = f"{language}:{entity_name}" + new_mapping[new_entity_name] = entity_id + return new_mapping + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") + parser.add_argument( + "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." + ) + parser.add_argument( + "--entity_vocab_path", + default=None, + type=str, + help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." + ) + parser.add_argument( + "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." + ) + args = parser.parse_args() + convert_luke_checkpoint( + args.checkpoint_path, + args.metadata_path, + args.entity_vocab_path, + args.pytorch_dump_folder_path, + args.model_size, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/tokenization_mluke.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/tokenization_mluke.py new file mode 100644 index 0000000000000000000000000000000000000000..028de5d4f79c8c7ae2f9329bca909d2a601719a5 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/tokenization_mluke.py @@ -0,0 +1,1631 @@ +# coding=utf-8 +# Copyright 2021 Studio Ousia and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License +""" Tokenization classes for mLUKE.""" + + +import itertools +import json +import os +from collections.abc import Mapping +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple, Union + +import numpy as np +import sentencepiece as spm + +from ...tokenization_utils import PreTrainedTokenizer +from ...tokenization_utils_base import ( + ENCODE_KWARGS_DOCSTRING, + AddedToken, + BatchEncoding, + EncodedInput, + PaddingStrategy, + TensorType, + TextInput, + TextInputPair, + TruncationStrategy, + to_py_obj, +) +from ...utils import add_end_docstrings, is_tf_tensor, is_torch_tensor, logging + + +logger = logging.get_logger(__name__) + +EntitySpan = Tuple[int, int] +EntitySpanInput = List[EntitySpan] +Entity = str +EntityInput = List[Entity] + +SPIECE_UNDERLINE = "▁" + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "entity_vocab_file": "entity_vocab.json"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "studio-ousia/mluke-base": "https://huggingface.co/studio-ousia/mluke-base/resolve/main/vocab.json", + }, + "merges_file": { + "studio-ousia/mluke-base": "https://huggingface.co/studio-ousia/mluke-base/resolve/main/merges.txt", + }, + "entity_vocab_file": { + "studio-ousia/mluke-base": "https://huggingface.co/studio-ousia/mluke-base/resolve/main/entity_vocab.json", + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "studio-ousia/mluke-base": 512, +} + +ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" + return_token_type_ids (`bool`, *optional*): + Whether to return token type IDs. If left to the default, will return the token type IDs according to + the specific tokenizer's default, defined by the `return_outputs` attribute. + + [What are token type IDs?](../glossary#token-type-ids) + return_attention_mask (`bool`, *optional*): + Whether to return the attention mask. If left to the default, will return the attention mask according + to the specific tokenizer's default, defined by the `return_outputs` attribute. + + [What are attention masks?](../glossary#attention-mask) + return_overflowing_tokens (`bool`, *optional*, defaults to `False`): + Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch + of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead + of returning overflowing tokens. + return_special_tokens_mask (`bool`, *optional*, defaults to `False`): + Whether or not to return special tokens mask information. + return_offsets_mapping (`bool`, *optional*, defaults to `False`): + Whether or not to return `(char_start, char_end)` for each token. + + This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using + Python's tokenizer, this method will raise `NotImplementedError`. + return_length (`bool`, *optional*, defaults to `False`): + Whether or not to return the lengths of the encoded inputs. + verbose (`bool`, *optional*, defaults to `True`): + Whether or not to print more information and warnings. + **kwargs: passed to the `self.tokenize()` method + + Return: + [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: + + - **input_ids** -- List of token ids to be fed to a model. + + [What are input IDs?](../glossary#input-ids) + + - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or + if *"token_type_ids"* is in `self.model_input_names`). + + [What are token type IDs?](../glossary#token-type-ids) + + - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when + `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). + + [What are attention masks?](../glossary#attention-mask) + + - **entity_ids** -- List of entity ids to be fed to a model. + + [What are input IDs?](../glossary#input-ids) + + - **entity_position_ids** -- List of entity positions in the input sequence to be fed to a model. + + - **entity_token_type_ids** -- List of entity token type ids to be fed to a model (when + `return_token_type_ids=True` or if *"entity_token_type_ids"* is in `self.model_input_names`). + + [What are token type IDs?](../glossary#token-type-ids) + + - **entity_attention_mask** -- List of indices specifying which entities should be attended to by the model + (when `return_attention_mask=True` or if *"entity_attention_mask"* is in `self.model_input_names`). + + [What are attention masks?](../glossary#attention-mask) + + - **entity_start_positions** -- List of the start positions of entities in the word token sequence (when + `task="entity_span_classification"`). + - **entity_end_positions** -- List of the end positions of entities in the word token sequence (when + `task="entity_span_classification"`). + - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and + `return_overflowing_tokens=True`). + - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and + `return_overflowing_tokens=True`). + - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying + regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`). + - **length** -- The length of the inputs (when `return_length=True`) + +""" + + +class MLukeTokenizer(PreTrainedTokenizer): + """ + Adapted from [`XLMRobertaTokenizer`] and [`LukeTokenizer`]. Based on + [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + entity_vocab_file (`str`): + Path to the entity vocabulary file. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + task (`str`, *optional*): + Task for which you want to prepare sequences. One of `"entity_classification"`, + `"entity_pair_classification"`, or `"entity_span_classification"`. If you specify this argument, the entity + sequence is automatically created based on the given entity span(s). + max_entity_length (`int`, *optional*, defaults to 32): + The maximum length of `entity_ids`. + max_mention_length (`int`, *optional*, defaults to 30): + The maximum number of tokens inside an entity span. + entity_token_1 (`str`, *optional*, defaults to ``): + The special token used to represent an entity span in a word token sequence. This token is only used when + `task` is set to `"entity_classification"` or `"entity_pair_classification"`. + entity_token_2 (`str`, *optional*, defaults to ``): + The special token used to represent an entity span in a word token sequence. This token is only used when + `task` is set to `"entity_pair_classification"`. + additional_special_tokens (`List[str]`, *optional*, defaults to `["NOTUSED", "NOTUSED"]`): + Additional special tokens used by the tokenizer. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + entity_vocab_file, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + task=None, + max_entity_length=32, + max_mention_length=30, + entity_token_1="", + entity_token_2="", + entity_unk_token="[UNK]", + entity_pad_token="[PAD]", + entity_mask_token="[MASK]", + entity_mask2_token="[MASK2]", + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + # we add 2 special tokens for downstream tasks + # for more information about lstrip and rstrip, see https://github.com/huggingface/transformers/pull/2778 + entity_token_1 = ( + AddedToken(entity_token_1, lstrip=False, rstrip=False) + if isinstance(entity_token_1, str) + else entity_token_1 + ) + entity_token_2 = ( + AddedToken(entity_token_2, lstrip=False, rstrip=False) + if isinstance(entity_token_2, str) + else entity_token_2 + ) + additional_special_tokens = kwargs.pop("additional_special_tokens", []) + additional_special_tokens += [entity_token_1, entity_token_2] + + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(str(vocab_file)) + self.vocab_file = vocab_file + + # Original fairseq vocab and spm vocab must be "aligned": + # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 + # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- + # fairseq | '' | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' + # spm | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' + + # Mimic fairseq token-to-id alignment for the first 4 token + self.fairseq_tokens_to_ids = {"": 0, "": 1, "": 2, "": 3} + + # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab + self.fairseq_offset = 1 + + self.fairseq_tokens_to_ids[""] = len(self.sp_model) + self.fairseq_offset + self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} + + with open(entity_vocab_file, encoding="utf-8") as entity_vocab_handle: + self.entity_vocab = json.load(entity_vocab_handle) + for entity_special_token in [entity_unk_token, entity_pad_token, entity_mask_token, entity_mask2_token]: + if entity_special_token not in self.entity_vocab: + raise ValueError( + f"Specified entity special token ``{entity_special_token}`` is not found in entity_vocab. " + f"Probably an incorrect entity vocab file is loaded: {entity_vocab_file}." + ) + self.entity_unk_token_id = self.entity_vocab[entity_unk_token] + self.entity_pad_token_id = self.entity_vocab[entity_pad_token] + self.entity_mask_token_id = self.entity_vocab[entity_mask_token] + self.entity_mask2_token_id = self.entity_vocab[entity_mask2_token] + + self.task = task + if task is None or task == "entity_span_classification": + self.max_entity_length = max_entity_length + elif task == "entity_classification": + self.max_entity_length = 1 + elif task == "entity_pair_classification": + self.max_entity_length = 2 + else: + raise ValueError( + f"Task {task} not supported. Select task from ['entity_classification', 'entity_pair_classification'," + " 'entity_span_classification'] only." + ) + + self.max_mention_length = max_mention_length + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + sp_model_kwargs=self.sp_model_kwargs, + task=task, + max_entity_length=max_entity_length, + max_mention_length=max_mention_length, + entity_token_1=entity_token_1, + entity_token_2=entity_token_2, + entity_unk_token=entity_unk_token, + entity_pad_token=entity_pad_token, + entity_mask_token=entity_mask_token, + entity_mask2_token=entity_mask2_token, + additional_special_tokens=additional_special_tokens, + **kwargs, + ) + + @property + # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.vocab_size + def vocab_size(self): + return len(self.sp_model) + self.fairseq_offset + 1 # Add the token + + # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.get_vocab + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer._tokenize + def _tokenize(self, text: str) -> List[str]: + # TODO check if the t5/llama PR also applies here + return self.sp_model.encode(text, out_type=str) + + # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer._convert_token_to_id + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + if token in self.fairseq_tokens_to_ids: + return self.fairseq_tokens_to_ids[token] + spm_id = self.sp_model.PieceToId(token) + + # Need to return unknown token if the SP model returned 0 + return spm_id + self.fairseq_offset if spm_id else self.unk_token_id + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + if index in self.fairseq_ids_to_tokens: + return self.fairseq_ids_to_tokens[index] + return self.sp_model.IdToPiece(index - self.fairseq_offset) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (strings for sub-words) in a single string.""" + out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() + return out_string + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + state["sp_model_proto"] = self.sp_model.serialized_model_proto() + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.LoadFromSerializedProto(self.sp_model_proto) + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.__call__ + def __call__( + self, + text: Union[TextInput, List[TextInput]], + text_pair: Optional[Union[TextInput, List[TextInput]]] = None, + entity_spans: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None, + entity_spans_pair: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None, + entities: Optional[Union[EntityInput, List[EntityInput]]] = None, + entities_pair: Optional[Union[EntityInput, List[EntityInput]]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + max_entity_length: Optional[int] = None, + stride: int = 0, + is_split_into_words: Optional[bool] = False, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of + sequences, depending on the task you want to prepare them for. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this + tokenizer does not support tokenization based on pretokenized strings. + text_pair (`str`, `List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this + tokenizer does not support tokenization based on pretokenized strings. + entity_spans (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*): + The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each + with two integers denoting character-based start and end positions of entities. If you specify + `"entity_classification"` or `"entity_pair_classification"` as the `task` argument in the constructor, + the length of each sequence must be 1 or 2, respectively. If you specify `entities`, the length of each + sequence must be equal to the length of each sequence of `entities`. + entity_spans_pair (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*): + The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each + with two integers denoting character-based start and end positions of entities. If you specify the + `task` argument in the constructor, this argument is ignored. If you specify `entities_pair`, the + length of each sequence must be equal to the length of each sequence of `entities_pair`. + entities (`List[str]`, `List[List[str]]`, *optional*): + The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings + representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los + Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of + each sequence must be equal to the length of each sequence of `entity_spans`. If you specify + `entity_spans` without specifying this argument, the entity sequence or the batch of entity sequences + is automatically constructed by filling it with the [MASK] entity. + entities_pair (`List[str]`, `List[List[str]]`, *optional*): + The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings + representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los + Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of + each sequence must be equal to the length of each sequence of `entity_spans_pair`. If you specify + `entity_spans_pair` without specifying this argument, the entity sequence or the batch of entity + sequences is automatically constructed by filling it with the [MASK] entity. + max_entity_length (`int`, *optional*): + The maximum length of `entity_ids`. + """ + # Input type checking for clearer error + is_valid_single_text = isinstance(text, str) + is_valid_batch_text = isinstance(text, (list, tuple)) and (len(text) == 0 or (isinstance(text[0], str))) + if not (is_valid_single_text or is_valid_batch_text): + raise ValueError("text input must be of type `str` (single example) or `List[str]` (batch).") + + is_valid_single_text_pair = isinstance(text_pair, str) + is_valid_batch_text_pair = isinstance(text_pair, (list, tuple)) and ( + len(text_pair) == 0 or isinstance(text_pair[0], str) + ) + if not (text_pair is None or is_valid_single_text_pair or is_valid_batch_text_pair): + raise ValueError("text_pair input must be of type `str` (single example) or `List[str]` (batch).") + + is_batched = bool(isinstance(text, (list, tuple))) + + if is_batched: + batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text + if entities is None: + batch_entities_or_entities_pairs = None + else: + batch_entities_or_entities_pairs = ( + list(zip(entities, entities_pair)) if entities_pair is not None else entities + ) + + if entity_spans is None: + batch_entity_spans_or_entity_spans_pairs = None + else: + batch_entity_spans_or_entity_spans_pairs = ( + list(zip(entity_spans, entity_spans_pair)) if entity_spans_pair is not None else entity_spans + ) + + return self.batch_encode_plus( + batch_text_or_text_pairs=batch_text_or_text_pairs, + batch_entity_spans_or_entity_spans_pairs=batch_entity_spans_or_entity_spans_pairs, + batch_entities_or_entities_pairs=batch_entities_or_entities_pairs, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + max_entity_length=max_entity_length, + stride=stride, + is_split_into_words=is_split_into_words, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + else: + return self.encode_plus( + text=text, + text_pair=text_pair, + entity_spans=entity_spans, + entity_spans_pair=entity_spans_pair, + entities=entities, + entities_pair=entities_pair, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + max_entity_length=max_entity_length, + stride=stride, + is_split_into_words=is_split_into_words, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._encode_plus + def _encode_plus( + self, + text: Union[TextInput], + text_pair: Optional[Union[TextInput]] = None, + entity_spans: Optional[EntitySpanInput] = None, + entity_spans_pair: Optional[EntitySpanInput] = None, + entities: Optional[EntityInput] = None, + entities_pair: Optional[EntityInput] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + max_entity_length: Optional[int] = None, + stride: int = 0, + is_split_into_words: Optional[bool] = False, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + if return_offsets_mapping: + raise NotImplementedError( + "return_offset_mapping is not available when using Python tokenizers. " + "To use this feature, change your tokenizer to one deriving from " + "transformers.PreTrainedTokenizerFast. " + "More information on available tokenizers at " + "https://github.com/huggingface/transformers/pull/2674" + ) + + if is_split_into_words: + raise NotImplementedError("is_split_into_words is not supported in this tokenizer.") + + ( + first_ids, + second_ids, + first_entity_ids, + second_entity_ids, + first_entity_token_spans, + second_entity_token_spans, + ) = self._create_input_sequence( + text=text, + text_pair=text_pair, + entities=entities, + entities_pair=entities_pair, + entity_spans=entity_spans, + entity_spans_pair=entity_spans_pair, + **kwargs, + ) + + # prepare_for_model will create the attention_mask and token_type_ids + return self.prepare_for_model( + first_ids, + pair_ids=second_ids, + entity_ids=first_entity_ids, + pair_entity_ids=second_entity_ids, + entity_token_spans=first_entity_token_spans, + pair_entity_token_spans=second_entity_token_spans, + add_special_tokens=add_special_tokens, + padding=padding_strategy.value, + truncation=truncation_strategy.value, + max_length=max_length, + max_entity_length=max_entity_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + prepend_batch_axis=True, + return_attention_mask=return_attention_mask, + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + verbose=verbose, + ) + + # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._batch_encode_plus + def _batch_encode_plus( + self, + batch_text_or_text_pairs: Union[List[TextInput], List[TextInputPair]], + batch_entity_spans_or_entity_spans_pairs: Optional[ + Union[List[EntitySpanInput], List[Tuple[EntitySpanInput, EntitySpanInput]]] + ] = None, + batch_entities_or_entities_pairs: Optional[ + Union[List[EntityInput], List[Tuple[EntityInput, EntityInput]]] + ] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + max_entity_length: Optional[int] = None, + stride: int = 0, + is_split_into_words: Optional[bool] = False, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + if return_offsets_mapping: + raise NotImplementedError( + "return_offset_mapping is not available when using Python tokenizers. " + "To use this feature, change your tokenizer to one deriving from " + "transformers.PreTrainedTokenizerFast." + ) + + if is_split_into_words: + raise NotImplementedError("is_split_into_words is not supported in this tokenizer.") + + # input_ids is a list of tuples (one for each example in the batch) + input_ids = [] + entity_ids = [] + entity_token_spans = [] + for index, text_or_text_pair in enumerate(batch_text_or_text_pairs): + if not isinstance(text_or_text_pair, (list, tuple)): + text, text_pair = text_or_text_pair, None + else: + text, text_pair = text_or_text_pair + + entities, entities_pair = None, None + if batch_entities_or_entities_pairs is not None: + entities_or_entities_pairs = batch_entities_or_entities_pairs[index] + if entities_or_entities_pairs: + if isinstance(entities_or_entities_pairs[0], str): + entities, entities_pair = entities_or_entities_pairs, None + else: + entities, entities_pair = entities_or_entities_pairs + + entity_spans, entity_spans_pair = None, None + if batch_entity_spans_or_entity_spans_pairs is not None: + entity_spans_or_entity_spans_pairs = batch_entity_spans_or_entity_spans_pairs[index] + if len(entity_spans_or_entity_spans_pairs) > 0 and isinstance( + entity_spans_or_entity_spans_pairs[0], list + ): + entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs + else: + entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs, None + + ( + first_ids, + second_ids, + first_entity_ids, + second_entity_ids, + first_entity_token_spans, + second_entity_token_spans, + ) = self._create_input_sequence( + text=text, + text_pair=text_pair, + entities=entities, + entities_pair=entities_pair, + entity_spans=entity_spans, + entity_spans_pair=entity_spans_pair, + **kwargs, + ) + input_ids.append((first_ids, second_ids)) + entity_ids.append((first_entity_ids, second_entity_ids)) + entity_token_spans.append((first_entity_token_spans, second_entity_token_spans)) + + batch_outputs = self._batch_prepare_for_model( + input_ids, + batch_entity_ids_pairs=entity_ids, + batch_entity_token_spans_pairs=entity_token_spans, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + max_entity_length=max_entity_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + return_tensors=return_tensors, + verbose=verbose, + ) + + return BatchEncoding(batch_outputs) + + # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._check_entity_input_format + def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]): + if not isinstance(entity_spans, list): + raise ValueError("entity_spans should be given as a list") + elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple): + raise ValueError( + "entity_spans should be given as a list of tuples containing the start and end character indices" + ) + + if entities is not None: + if not isinstance(entities, list): + raise ValueError("If you specify entities, they should be given as a list") + + if len(entities) > 0 and not isinstance(entities[0], str): + raise ValueError("If you specify entities, they should be given as a list of entity names") + + if len(entities) != len(entity_spans): + raise ValueError("If you specify entities, entities and entity_spans must be the same length") + + # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._create_input_sequence + def _create_input_sequence( + self, + text: Union[TextInput], + text_pair: Optional[Union[TextInput]] = None, + entities: Optional[EntityInput] = None, + entities_pair: Optional[EntityInput] = None, + entity_spans: Optional[EntitySpanInput] = None, + entity_spans_pair: Optional[EntitySpanInput] = None, + **kwargs, + ) -> Tuple[list, list, list, list, list, list]: + def get_input_ids(text): + tokens = self.tokenize(text, **kwargs) + return self.convert_tokens_to_ids(tokens) + + def get_input_ids_and_entity_token_spans(text, entity_spans): + if entity_spans is None: + return get_input_ids(text), None + + cur = 0 + input_ids = [] + entity_token_spans = [None] * len(entity_spans) + + split_char_positions = sorted(frozenset(itertools.chain(*entity_spans))) + char_pos2token_pos = {} + + for split_char_position in split_char_positions: + orig_split_char_position = split_char_position + if ( + split_char_position > 0 and text[split_char_position - 1] == " " + ): # whitespace should be prepended to the following token + split_char_position -= 1 + if cur != split_char_position: + input_ids += get_input_ids(text[cur:split_char_position]) + cur = split_char_position + char_pos2token_pos[orig_split_char_position] = len(input_ids) + + input_ids += get_input_ids(text[cur:]) + + entity_token_spans = [ + (char_pos2token_pos[char_start], char_pos2token_pos[char_end]) for char_start, char_end in entity_spans + ] + + return input_ids, entity_token_spans + + first_ids, second_ids = None, None + first_entity_ids, second_entity_ids = None, None + first_entity_token_spans, second_entity_token_spans = None, None + + if self.task is None: + if entity_spans is None: + first_ids = get_input_ids(text) + else: + self._check_entity_input_format(entities, entity_spans) + + first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) + if entities is None: + first_entity_ids = [self.entity_mask_token_id] * len(entity_spans) + else: + first_entity_ids = [self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities] + + if text_pair is not None: + if entity_spans_pair is None: + second_ids = get_input_ids(text_pair) + else: + self._check_entity_input_format(entities_pair, entity_spans_pair) + + second_ids, second_entity_token_spans = get_input_ids_and_entity_token_spans( + text_pair, entity_spans_pair + ) + if entities_pair is None: + second_entity_ids = [self.entity_mask_token_id] * len(entity_spans_pair) + else: + second_entity_ids = [ + self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities_pair + ] + + elif self.task == "entity_classification": + if not (isinstance(entity_spans, list) and len(entity_spans) == 1 and isinstance(entity_spans[0], tuple)): + raise ValueError( + "Entity spans should be a list containing a single tuple " + "containing the start and end character indices of an entity" + ) + first_entity_ids = [self.entity_mask_token_id] + first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) + + # add special tokens to input ids + entity_token_start, entity_token_end = first_entity_token_spans[0] + first_ids = ( + first_ids[:entity_token_end] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_end:] + ) + first_ids = ( + first_ids[:entity_token_start] + + [self.additional_special_tokens_ids[0]] + + first_ids[entity_token_start:] + ) + first_entity_token_spans = [(entity_token_start, entity_token_end + 2)] + + elif self.task == "entity_pair_classification": + if not ( + isinstance(entity_spans, list) + and len(entity_spans) == 2 + and isinstance(entity_spans[0], tuple) + and isinstance(entity_spans[1], tuple) + ): + raise ValueError( + "Entity spans should be provided as a list of two tuples, " + "each tuple containing the start and end character indices of an entity" + ) + + head_span, tail_span = entity_spans + first_entity_ids = [self.entity_mask_token_id, self.entity_mask2_token_id] + first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) + + head_token_span, tail_token_span = first_entity_token_spans + token_span_with_special_token_ids = [ + (head_token_span, self.additional_special_tokens_ids[0]), + (tail_token_span, self.additional_special_tokens_ids[1]), + ] + if head_token_span[0] < tail_token_span[0]: + first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2) + first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4) + token_span_with_special_token_ids = reversed(token_span_with_special_token_ids) + else: + first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4) + first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2) + + for (entity_token_start, entity_token_end), special_token_id in token_span_with_special_token_ids: + first_ids = first_ids[:entity_token_end] + [special_token_id] + first_ids[entity_token_end:] + first_ids = first_ids[:entity_token_start] + [special_token_id] + first_ids[entity_token_start:] + + elif self.task == "entity_span_classification": + if not (isinstance(entity_spans, list) and len(entity_spans) > 0 and isinstance(entity_spans[0], tuple)): + raise ValueError( + "Entity spans should be provided as a list of tuples, " + "each tuple containing the start and end character indices of an entity" + ) + + first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) + first_entity_ids = [self.entity_mask_token_id] * len(entity_spans) + + else: + raise ValueError(f"Task {self.task} not supported") + + return ( + first_ids, + second_ids, + first_entity_ids, + second_entity_ids, + first_entity_token_spans, + second_entity_token_spans, + ) + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._batch_prepare_for_model + def _batch_prepare_for_model( + self, + batch_ids_pairs: List[Tuple[List[int], None]], + batch_entity_ids_pairs: List[Tuple[Optional[List[int]], Optional[List[int]]]], + batch_entity_token_spans_pairs: List[Tuple[Optional[List[Tuple[int, int]]], Optional[List[Tuple[int, int]]]]], + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + max_entity_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[str] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_length: bool = False, + verbose: bool = True, + ) -> BatchEncoding: + """ + Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It + adds special tokens, truncates sequences if overflowing while taking into account the special tokens and + manages a moving window (with user defined stride) for overflowing tokens + + + Args: + batch_ids_pairs: list of tokenized input ids or input ids pairs + batch_entity_ids_pairs: list of entity ids or entity ids pairs + batch_entity_token_spans_pairs: list of entity spans or entity spans pairs + max_entity_length: The maximum length of the entity sequence. + """ + + batch_outputs = {} + for input_ids, entity_ids, entity_token_span_pairs in zip( + batch_ids_pairs, batch_entity_ids_pairs, batch_entity_token_spans_pairs + ): + first_ids, second_ids = input_ids + first_entity_ids, second_entity_ids = entity_ids + first_entity_token_spans, second_entity_token_spans = entity_token_span_pairs + outputs = self.prepare_for_model( + first_ids, + second_ids, + entity_ids=first_entity_ids, + pair_entity_ids=second_entity_ids, + entity_token_spans=first_entity_token_spans, + pair_entity_token_spans=second_entity_token_spans, + add_special_tokens=add_special_tokens, + padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward + truncation=truncation_strategy.value, + max_length=max_length, + max_entity_length=max_entity_length, + stride=stride, + pad_to_multiple_of=None, # we pad in batch afterward + return_attention_mask=False, # we pad in batch afterward + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + return_tensors=None, # We convert the whole batch to tensors at the end + prepend_batch_axis=False, + verbose=verbose, + ) + + for key, value in outputs.items(): + if key not in batch_outputs: + batch_outputs[key] = [] + batch_outputs[key].append(value) + + batch_outputs = self.pad( + batch_outputs, + padding=padding_strategy.value, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + + batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) + + return batch_outputs + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.prepare_for_model + def prepare_for_model( + self, + ids: List[int], + pair_ids: Optional[List[int]] = None, + entity_ids: Optional[List[int]] = None, + pair_entity_ids: Optional[List[int]] = None, + entity_token_spans: Optional[List[Tuple[int, int]]] = None, + pair_entity_token_spans: Optional[List[Tuple[int, int]]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + max_entity_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + prepend_batch_axis: bool = False, + **kwargs, + ) -> BatchEncoding: + """ + Prepares a sequence of input id, entity id and entity span, or a pair of sequences of inputs ids, entity ids, + entity spans so that it can be used by the model. It adds special tokens, truncates sequences if overflowing + while taking into account the special tokens and manages a moving window (with user defined stride) for + overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first* + or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an + error. + + Args: + ids (`List[int]`): + Tokenized input ids of the first sequence. + pair_ids (`List[int]`, *optional*): + Tokenized input ids of the second sequence. + entity_ids (`List[int]`, *optional*): + Entity ids of the first sequence. + pair_entity_ids (`List[int]`, *optional*): + Entity ids of the second sequence. + entity_token_spans (`List[Tuple[int, int]]`, *optional*): + Entity spans of the first sequence. + pair_entity_token_spans (`List[Tuple[int, int]]`, *optional*): + Entity spans of the second sequence. + max_entity_length (`int`, *optional*): + The maximum length of the entity sequence. + """ + + # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' + padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + verbose=verbose, + **kwargs, + ) + + # Compute lengths + pair = bool(pair_ids is not None) + len_ids = len(ids) + len_pair_ids = len(pair_ids) if pair else 0 + + if return_token_type_ids and not add_special_tokens: + raise ValueError( + "Asking to return token_type_ids while setting add_special_tokens to False " + "results in an undefined behavior. Please set add_special_tokens to True or " + "set return_token_type_ids to None." + ) + if ( + return_overflowing_tokens + and truncation_strategy == TruncationStrategy.LONGEST_FIRST + and pair_ids is not None + ): + raise ValueError( + "Not possible to return overflowing tokens for pair of sequences with the " + "`longest_first`. Please select another truncation strategy than `longest_first`, " + "for instance `only_second` or `only_first`." + ) + + # Load from model defaults + if return_token_type_ids is None: + return_token_type_ids = "token_type_ids" in self.model_input_names + if return_attention_mask is None: + return_attention_mask = "attention_mask" in self.model_input_names + + encoded_inputs = {} + + # Compute the total size of the returned word encodings + total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) + + # Truncation: Handle max sequence length and max_entity_length + overflowing_tokens = [] + if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: + # truncate words up to max_length + ids, pair_ids, overflowing_tokens = self.truncate_sequences( + ids, + pair_ids=pair_ids, + num_tokens_to_remove=total_len - max_length, + truncation_strategy=truncation_strategy, + stride=stride, + ) + + if return_overflowing_tokens: + encoded_inputs["overflowing_tokens"] = overflowing_tokens + encoded_inputs["num_truncated_tokens"] = total_len - max_length + + # Add special tokens + if add_special_tokens: + sequence = self.build_inputs_with_special_tokens(ids, pair_ids) + token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) + entity_token_offset = 1 # 1 * token + pair_entity_token_offset = len(ids) + 3 # 1 * token & 2 * tokens + else: + sequence = ids + pair_ids if pair else ids + token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) + entity_token_offset = 0 + pair_entity_token_offset = len(ids) + + # Build output dictionary + encoded_inputs["input_ids"] = sequence + if return_token_type_ids: + encoded_inputs["token_type_ids"] = token_type_ids + if return_special_tokens_mask: + if add_special_tokens: + encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) + else: + encoded_inputs["special_tokens_mask"] = [0] * len(sequence) + + # Set max entity length + if not max_entity_length: + max_entity_length = self.max_entity_length + + if entity_ids is not None: + total_entity_len = 0 + num_invalid_entities = 0 + valid_entity_ids = [ent_id for ent_id, span in zip(entity_ids, entity_token_spans) if span[1] <= len(ids)] + valid_entity_token_spans = [span for span in entity_token_spans if span[1] <= len(ids)] + + total_entity_len += len(valid_entity_ids) + num_invalid_entities += len(entity_ids) - len(valid_entity_ids) + + valid_pair_entity_ids, valid_pair_entity_token_spans = None, None + if pair_entity_ids is not None: + valid_pair_entity_ids = [ + ent_id + for ent_id, span in zip(pair_entity_ids, pair_entity_token_spans) + if span[1] <= len(pair_ids) + ] + valid_pair_entity_token_spans = [span for span in pair_entity_token_spans if span[1] <= len(pair_ids)] + total_entity_len += len(valid_pair_entity_ids) + num_invalid_entities += len(pair_entity_ids) - len(valid_pair_entity_ids) + + if num_invalid_entities != 0: + logger.warning( + f"{num_invalid_entities} entities are ignored because their entity spans are invalid due to the" + " truncation of input tokens" + ) + + if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and total_entity_len > max_entity_length: + # truncate entities up to max_entity_length + valid_entity_ids, valid_pair_entity_ids, overflowing_entities = self.truncate_sequences( + valid_entity_ids, + pair_ids=valid_pair_entity_ids, + num_tokens_to_remove=total_entity_len - max_entity_length, + truncation_strategy=truncation_strategy, + stride=stride, + ) + valid_entity_token_spans = valid_entity_token_spans[: len(valid_entity_ids)] + if valid_pair_entity_token_spans is not None: + valid_pair_entity_token_spans = valid_pair_entity_token_spans[: len(valid_pair_entity_ids)] + + if return_overflowing_tokens: + encoded_inputs["overflowing_entities"] = overflowing_entities + encoded_inputs["num_truncated_entities"] = total_entity_len - max_entity_length + + final_entity_ids = valid_entity_ids + valid_pair_entity_ids if valid_pair_entity_ids else valid_entity_ids + encoded_inputs["entity_ids"] = list(final_entity_ids) + entity_position_ids = [] + entity_start_positions = [] + entity_end_positions = [] + for token_spans, offset in ( + (valid_entity_token_spans, entity_token_offset), + (valid_pair_entity_token_spans, pair_entity_token_offset), + ): + if token_spans is not None: + for start, end in token_spans: + start += offset + end += offset + position_ids = list(range(start, end))[: self.max_mention_length] + position_ids += [-1] * (self.max_mention_length - end + start) + entity_position_ids.append(position_ids) + entity_start_positions.append(start) + entity_end_positions.append(end - 1) + + encoded_inputs["entity_position_ids"] = entity_position_ids + if self.task == "entity_span_classification": + encoded_inputs["entity_start_positions"] = entity_start_positions + encoded_inputs["entity_end_positions"] = entity_end_positions + + if return_token_type_ids: + encoded_inputs["entity_token_type_ids"] = [0] * len(encoded_inputs["entity_ids"]) + + # Check lengths + self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) + + # Padding + if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: + encoded_inputs = self.pad( + encoded_inputs, + max_length=max_length, + max_entity_length=max_entity_length, + padding=padding_strategy.value, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + + if return_length: + encoded_inputs["length"] = len(encoded_inputs["input_ids"]) + + batch_outputs = BatchEncoding( + encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis + ) + + return batch_outputs + + # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.pad + def pad( + self, + encoded_inputs: Union[ + BatchEncoding, + List[BatchEncoding], + Dict[str, EncodedInput], + Dict[str, List[EncodedInput]], + List[Dict[str, EncodedInput]], + ], + padding: Union[bool, str, PaddingStrategy] = True, + max_length: Optional[int] = None, + max_entity_length: Optional[int] = None, + pad_to_multiple_of: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + verbose: bool = True, + ) -> BatchEncoding: + """ + Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length + in the batch. Padding side (left/right) padding token ids are defined at the tokenizer level (with + `self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`) .. note:: If the `encoded_inputs` passed + are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless + you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the + specific device of your tensors however. + + Args: + encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`): + Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of + tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str, + List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader + collate function. Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or + TensorFlow tensors), see the note above for the return type. + padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): + Select a strategy to pad the returned sequences (according to the model's padding side and padding + index) among: + + - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum + acceptable input length for the model if that argument is not provided. + - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different + lengths). + max_length (`int`, *optional*): + Maximum length of the returned list and optionally padding length (see above). + max_entity_length (`int`, *optional*): + The maximum length of the entity sequence. + pad_to_multiple_of (`int`, *optional*): + If set will pad the sequence to a multiple of the provided value. This is especially useful to enable + the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). + return_attention_mask (`bool`, *optional*): + Whether to return the attention mask. If left to the default, will return the attention mask according + to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention + masks?](../glossary#attention-mask) + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors instead of list of python integers. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return Numpy `np.ndarray` objects. + verbose (`bool`, *optional*, defaults to `True`): + Whether or not to print more information and warnings. + """ + # If we have a list of dicts, let's convert it in a dict of lists + # We do this to allow using this method as a collate_fn function in PyTorch Dataloader + if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping): + encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()} + + # The model's main input name, usually `input_ids`, has be passed for padding + if self.model_input_names[0] not in encoded_inputs: + raise ValueError( + "You should supply an encoding or a list of encodings to this method " + f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}" + ) + + required_input = encoded_inputs[self.model_input_names[0]] + + if not required_input: + if return_attention_mask: + encoded_inputs["attention_mask"] = [] + return encoded_inputs + + # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects + # and rebuild them afterwards if no return_tensors is specified + # Note that we lose the specific device the tensor may be on for PyTorch + + first_element = required_input[0] + if isinstance(first_element, (list, tuple)): + # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. + index = 0 + while len(required_input[index]) == 0: + index += 1 + if index < len(required_input): + first_element = required_input[index][0] + # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do. + if not isinstance(first_element, (int, list, tuple)): + if is_tf_tensor(first_element): + return_tensors = "tf" if return_tensors is None else return_tensors + elif is_torch_tensor(first_element): + return_tensors = "pt" if return_tensors is None else return_tensors + elif isinstance(first_element, np.ndarray): + return_tensors = "np" if return_tensors is None else return_tensors + else: + raise ValueError( + f"type of {first_element} unknown: {type(first_element)}. " + "Should be one of a python, numpy, pytorch or tensorflow object." + ) + + for key, value in encoded_inputs.items(): + encoded_inputs[key] = to_py_obj(value) + + # Convert padding_strategy in PaddingStrategy + padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies( + padding=padding, max_length=max_length, verbose=verbose + ) + + if max_entity_length is None: + max_entity_length = self.max_entity_length + + required_input = encoded_inputs[self.model_input_names[0]] + if required_input and not isinstance(required_input[0], (list, tuple)): + encoded_inputs = self._pad( + encoded_inputs, + max_length=max_length, + max_entity_length=max_entity_length, + padding_strategy=padding_strategy, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + return BatchEncoding(encoded_inputs, tensor_type=return_tensors) + + batch_size = len(required_input) + if any(len(v) != batch_size for v in encoded_inputs.values()): + raise ValueError("Some items in the output dictionary have a different batch size than others.") + + if padding_strategy == PaddingStrategy.LONGEST: + max_length = max(len(inputs) for inputs in required_input) + max_entity_length = ( + max(len(inputs) for inputs in encoded_inputs["entity_ids"]) if "entity_ids" in encoded_inputs else 0 + ) + padding_strategy = PaddingStrategy.MAX_LENGTH + + batch_outputs = {} + for i in range(batch_size): + inputs = {k: v[i] for k, v in encoded_inputs.items()} + outputs = self._pad( + inputs, + max_length=max_length, + max_entity_length=max_entity_length, + padding_strategy=padding_strategy, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + + for key, value in outputs.items(): + if key not in batch_outputs: + batch_outputs[key] = [] + batch_outputs[key].append(value) + + return BatchEncoding(batch_outputs, tensor_type=return_tensors) + + # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._pad + def _pad( + self, + encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], + max_length: Optional[int] = None, + max_entity_length: Optional[int] = None, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + pad_to_multiple_of: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + ) -> dict: + """ + Pad encoded inputs (on left/right and up to predefined length or max length in the batch) + + + Args: + encoded_inputs: + Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). + max_length: maximum length of the returned list and optionally padding length (see below). + Will truncate by taking into account the special tokens. + max_entity_length: The maximum length of the entity sequence. + padding_strategy: PaddingStrategy to use for padding. + + + - PaddingStrategy.LONGEST Pad to the longest sequence in the batch + - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) + - PaddingStrategy.DO_NOT_PAD: Do not pad + The tokenizer padding sides are defined in self.padding_side: + + + - 'left': pads on the left of the sequences + - 'right': pads on the right of the sequences + pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. + This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability + `>= 7.5` (Volta). + return_attention_mask: + (optional) Set to False to avoid returning attention mask (default: set to model specifics) + """ + entities_provided = bool("entity_ids" in encoded_inputs) + + # Load from model defaults + if return_attention_mask is None: + return_attention_mask = "attention_mask" in self.model_input_names + + if padding_strategy == PaddingStrategy.LONGEST: + max_length = len(encoded_inputs["input_ids"]) + if entities_provided: + max_entity_length = len(encoded_inputs["entity_ids"]) + + if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): + max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of + + if ( + entities_provided + and max_entity_length is not None + and pad_to_multiple_of is not None + and (max_entity_length % pad_to_multiple_of != 0) + ): + max_entity_length = ((max_entity_length // pad_to_multiple_of) + 1) * pad_to_multiple_of + + needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and ( + len(encoded_inputs["input_ids"]) != max_length + or (entities_provided and len(encoded_inputs["entity_ids"]) != max_entity_length) + ) + + # Initialize attention mask if not present. + if return_attention_mask and "attention_mask" not in encoded_inputs: + encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) + if entities_provided and return_attention_mask and "entity_attention_mask" not in encoded_inputs: + encoded_inputs["entity_attention_mask"] = [1] * len(encoded_inputs["entity_ids"]) + + if needs_to_be_padded: + difference = max_length - len(encoded_inputs["input_ids"]) + if entities_provided: + entity_difference = max_entity_length - len(encoded_inputs["entity_ids"]) + if self.padding_side == "right": + if return_attention_mask: + encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference + if entities_provided: + encoded_inputs["entity_attention_mask"] = ( + encoded_inputs["entity_attention_mask"] + [0] * entity_difference + ) + if "token_type_ids" in encoded_inputs: + encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"] + [0] * difference + if entities_provided: + encoded_inputs["entity_token_type_ids"] = ( + encoded_inputs["entity_token_type_ids"] + [0] * entity_difference + ) + if "special_tokens_mask" in encoded_inputs: + encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference + encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference + if entities_provided: + encoded_inputs["entity_ids"] = ( + encoded_inputs["entity_ids"] + [self.entity_pad_token_id] * entity_difference + ) + encoded_inputs["entity_position_ids"] = ( + encoded_inputs["entity_position_ids"] + [[-1] * self.max_mention_length] * entity_difference + ) + if self.task == "entity_span_classification": + encoded_inputs["entity_start_positions"] = ( + encoded_inputs["entity_start_positions"] + [0] * entity_difference + ) + encoded_inputs["entity_end_positions"] = ( + encoded_inputs["entity_end_positions"] + [0] * entity_difference + ) + + elif self.padding_side == "left": + if return_attention_mask: + encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] + if entities_provided: + encoded_inputs["entity_attention_mask"] = [0] * entity_difference + encoded_inputs[ + "entity_attention_mask" + ] + if "token_type_ids" in encoded_inputs: + encoded_inputs["token_type_ids"] = [0] * difference + encoded_inputs["token_type_ids"] + if entities_provided: + encoded_inputs["entity_token_type_ids"] = [0] * entity_difference + encoded_inputs[ + "entity_token_type_ids" + ] + if "special_tokens_mask" in encoded_inputs: + encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] + encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"] + if entities_provided: + encoded_inputs["entity_ids"] = [self.entity_pad_token_id] * entity_difference + encoded_inputs[ + "entity_ids" + ] + encoded_inputs["entity_position_ids"] = [ + [-1] * self.max_mention_length + ] * entity_difference + encoded_inputs["entity_position_ids"] + if self.task == "entity_span_classification": + encoded_inputs["entity_start_positions"] = [0] * entity_difference + encoded_inputs[ + "entity_start_positions" + ] + encoded_inputs["entity_end_positions"] = [0] * entity_difference + encoded_inputs[ + "entity_end_positions" + ] + else: + raise ValueError("Invalid padding strategy:" + str(self.padding_side)) + + return encoded_inputs + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str, str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + entity_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["entity_vocab_file"] + ) + + with open(entity_vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.entity_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + return out_vocab_file, entity_vocab_file + + # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.build_inputs_with_special_tokens + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An XLM-RoBERTa sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.get_special_tokens_mask + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] + + # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.create_token_type_ids_from_sequences + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does + not make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..993a99c0819bd655544545e325940c8ac73f41a9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__init__.py @@ -0,0 +1,130 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig"], + "tokenization_mpnet": ["MPNetTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_mpnet_fast"] = ["MPNetTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_mpnet"] = [ + "MPNET_PRETRAINED_MODEL_ARCHIVE_LIST", + "MPNetForMaskedLM", + "MPNetForMultipleChoice", + "MPNetForQuestionAnswering", + "MPNetForSequenceClassification", + "MPNetForTokenClassification", + "MPNetLayer", + "MPNetModel", + "MPNetPreTrainedModel", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_mpnet"] = [ + "TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFMPNetEmbeddings", + "TFMPNetForMaskedLM", + "TFMPNetForMultipleChoice", + "TFMPNetForQuestionAnswering", + "TFMPNetForSequenceClassification", + "TFMPNetForTokenClassification", + "TFMPNetMainLayer", + "TFMPNetModel", + "TFMPNetPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig + from .tokenization_mpnet import MPNetTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_mpnet_fast import MPNetTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_mpnet import ( + MPNET_PRETRAINED_MODEL_ARCHIVE_LIST, + MPNetForMaskedLM, + MPNetForMultipleChoice, + MPNetForQuestionAnswering, + MPNetForSequenceClassification, + MPNetForTokenClassification, + MPNetLayer, + MPNetModel, + MPNetPreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_mpnet import ( + TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST, + TFMPNetEmbeddings, + TFMPNetForMaskedLM, + TFMPNetForMultipleChoice, + TFMPNetForQuestionAnswering, + TFMPNetForSequenceClassification, + TFMPNetForTokenClassification, + TFMPNetMainLayer, + TFMPNetModel, + TFMPNetPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2febeef6ab7ca77402d64239b5d5cd757575c653 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/configuration_mpnet.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/configuration_mpnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8210b6ee95cf4d7fc0b3eb76853123272dba404b Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/configuration_mpnet.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_mpnet.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_mpnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ad24c7f437922defbccccb25b34cedf43e4a9e9f Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_mpnet.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_tf_mpnet.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_tf_mpnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c111f0cbc994bff759df89fba4ad4fb96242c3c Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_tf_mpnet.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c4e197465d1d9d73406aac114e332d06f4bfcd0f Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e47368270d69433fedf01bdc7a460111c8aa2132 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet_fast.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/configuration_mpnet.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/configuration_mpnet.py new file mode 100644 index 0000000000000000000000000000000000000000..fe492a963e5af24073a65fca502901d8dc6ef70b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/configuration_mpnet.py @@ -0,0 +1,117 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" MPNet model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/config.json", +} + + +class MPNetConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MPNetModel`] or a [`TFMPNetModel`]. It is used to + instantiate a MPNet model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the MPNet + [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 30527): + Vocabulary size of the MPNet model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`MPNetModel`] or [`TFMPNetModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + relative_attention_num_buckets (`int`, *optional*, defaults to 32): + The number of buckets to use for each attention layer. + + Examples: + + ```python + >>> from transformers import MPNetModel, MPNetConfig + + >>> # Initializing a MPNet mpnet-base style configuration + >>> configuration = MPNetConfig() + + >>> # Initializing a model from the mpnet-base style configuration + >>> model = MPNetModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "mpnet" + + def __init__( + self, + vocab_size=30527, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + initializer_range=0.02, + layer_norm_eps=1e-12, + relative_attention_num_buckets=32, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.relative_attention_num_buckets = relative_attention_num_buckets diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_mpnet.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_mpnet.py new file mode 100644 index 0000000000000000000000000000000000000000..86194607e21750713680a1a03cee0812fe9f65bb --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_mpnet.py @@ -0,0 +1,1055 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch MPNet model.""" + + +import math +from typing import Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN, gelu +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPooling, + MaskedLMOutput, + MultipleChoiceModelOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_mpnet import MPNetConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "microsoft/mpnet-base" +_CONFIG_FOR_DOC = "MPNetConfig" + + +MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "microsoft/mpnet-base", +] + + +class MPNetPreTrainedModel(PreTrainedModel): + config_class = MPNetConfig + pretrained_model_archive_map = MPNET_PRETRAINED_MODEL_ARCHIVE_LIST + base_model_prefix = "mpnet" + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +class MPNetEmbeddings(nn.Module): + def __init__(self, config): + super().__init__() + self.padding_idx = 1 + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx) + self.position_embeddings = nn.Embedding( + config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx + ) + + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + + def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, **kwargs): + if position_ids is None: + if input_ids is not None: + position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx) + else: + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) + + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, :seq_length] + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + position_embeddings = self.position_embeddings(position_ids) + + embeddings = inputs_embeds + position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + def create_position_ids_from_inputs_embeds(self, inputs_embeds): + """ + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + + Args: + inputs_embeds: torch.Tensor + + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape) + + +class MPNetSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.q = nn.Linear(config.hidden_size, self.all_head_size) + self.k = nn.Linear(config.hidden_size, self.all_head_size) + self.v = nn.Linear(config.hidden_size, self.all_head_size) + self.o = nn.Linear(config.hidden_size, config.hidden_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + position_bias=None, + output_attentions=False, + **kwargs, + ): + q = self.q(hidden_states) + k = self.k(hidden_states) + v = self.v(hidden_states) + + q = self.transpose_for_scores(q) + k = self.transpose_for_scores(k) + v = self.transpose_for_scores(v) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(q, k.transpose(-1, -2)) + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + # Apply relative position embedding (precomputed in MPNetEncoder) if provided. + if position_bias is not None: + attention_scores += position_bias + + if attention_mask is not None: + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + attention_probs = self.dropout(attention_probs) + + if head_mask is not None: + attention_probs = attention_probs * head_mask + + c = torch.matmul(attention_probs, v) + + c = c.permute(0, 2, 1, 3).contiguous() + new_c_shape = c.size()[:-2] + (self.all_head_size,) + c = c.view(*new_c_shape) + + o = self.o(c) + + outputs = (o, attention_probs) if output_attentions else (o,) + return outputs + + +class MPNetAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.attn = MPNetSelfAttention(config) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attn.num_attention_heads, self.attn.attention_head_size, self.pruned_heads + ) + + self.attn.q = prune_linear_layer(self.attn.q, index) + self.attn.k = prune_linear_layer(self.attn.k, index) + self.attn.v = prune_linear_layer(self.attn.v, index) + self.attn.o = prune_linear_layer(self.attn.o, index, dim=1) + + self.attn.num_attention_heads = self.attn.num_attention_heads - len(heads) + self.attn.all_head_size = self.attn.attention_head_size * self.attn.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + position_bias=None, + output_attentions=False, + **kwargs, + ): + self_outputs = self.attn( + hidden_states, + attention_mask, + head_mask, + position_bias, + output_attentions=output_attentions, + ) + attention_output = self.LayerNorm(self.dropout(self_outputs[0]) + hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class MPNetIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class MPNetOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class MPNetLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.attention = MPNetAttention(config) + self.intermediate = MPNetIntermediate(config) + self.output = MPNetOutput(config) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + position_bias=None, + output_attentions=False, + **kwargs, + ): + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + position_bias=position_bias, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + outputs = (layer_output,) + outputs + return outputs + + +class MPNetEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.n_heads = config.num_attention_heads + self.layer = nn.ModuleList([MPNetLayer(config) for _ in range(config.num_hidden_layers)]) + self.relative_attention_bias = nn.Embedding(config.relative_attention_num_buckets, self.n_heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = False, + **kwargs, + ): + position_bias = self.compute_position_bias(hidden_states) + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module( + hidden_states, + attention_mask, + head_mask[i], + position_bias, + output_attentions=output_attentions, + **kwargs, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + ) + + def compute_position_bias(self, x, position_ids=None, num_buckets=32): + bsz, qlen, klen = x.size(0), x.size(1), x.size(1) + if position_ids is not None: + context_position = position_ids[:, :, None] + memory_position = position_ids[:, None, :] + else: + context_position = torch.arange(qlen, dtype=torch.long)[:, None] + memory_position = torch.arange(klen, dtype=torch.long)[None, :] + + relative_position = memory_position - context_position + + rp_bucket = self.relative_position_bucket(relative_position, num_buckets=num_buckets) + rp_bucket = rp_bucket.to(x.device) + values = self.relative_attention_bias(rp_bucket) + values = values.permute([2, 0, 1]).unsqueeze(0) + values = values.expand((bsz, -1, qlen, klen)).contiguous() + return values + + @staticmethod + def relative_position_bucket(relative_position, num_buckets=32, max_distance=128): + ret = 0 + n = -relative_position + + num_buckets //= 2 + ret += (n < 0).to(torch.long) * num_buckets + n = torch.abs(n) + + max_exact = num_buckets // 2 + is_small = n < max_exact + + val_if_large = max_exact + ( + torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) + ).to(torch.long) + + val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) + ret += torch.where(is_small, n, val_if_large) + return ret + + +# Copied from transformers.models.bert.modeling_bert.BertPooler +class MPNetPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +MPNET_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MPNetConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MPNET_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare MPNet Model transformer outputting raw hidden-states without any specific head on top.", + MPNET_START_DOCSTRING, +) +class MPNetModel(MPNetPreTrainedModel): + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = MPNetEmbeddings(config) + self.encoder = MPNetEncoder(config) + self.pooler = MPNetPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class MPNetForMaskedLM(MPNetPreTrainedModel): + _tied_weights_keys = ["lm_head.decoder"] + + def __init__(self, config): + super().__init__(config) + + self.mpnet = MPNetModel(config, add_pooling_layer=False) + self.lm_head = MPNetLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mpnet( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class MPNetLMHead(nn.Module): + """MPNet Head for masked and permuted language modeling.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, features, **kwargs): + x = self.dense(features) + x = gelu(x) + x = self.layer_norm(x) + + # project back to size of vocabulary with bias + x = self.decoder(x) + + return x + + +@add_start_docstrings( + """ + MPNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled + output) e.g. for GLUE tasks. + """, + MPNET_START_DOCSTRING, +) +class MPNetForSequenceClassification(MPNetPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.num_labels = config.num_labels + self.mpnet = MPNetModel(config, add_pooling_layer=False) + self.classifier = MPNetClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mpnet( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MPNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + MPNET_START_DOCSTRING, +) +class MPNetForMultipleChoice(MPNetPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.mpnet = MPNetModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + flat_inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.mpnet( + flat_input_ids, + position_ids=flat_position_ids, + attention_mask=flat_attention_mask, + head_mask=head_mask, + inputs_embeds=flat_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MPNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + MPNET_START_DOCSTRING, +) +class MPNetForTokenClassification(MPNetPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.mpnet = MPNetModel(config, add_pooling_layer=False) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mpnet( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class MPNetClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + def forward(self, features, **kwargs): + x = features[:, 0, :] # take token (equiv. to BERT's [CLS] token) + x = self.dropout(x) + x = self.dense(x) + x = torch.tanh(x) + x = self.dropout(x) + x = self.out_proj(x) + return x + + +@add_start_docstrings( + """ + MPNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MPNET_START_DOCSTRING, +) +class MPNetForQuestionAnswering(MPNetPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.num_labels = config.num_labels + self.mpnet = MPNetModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mpnet( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +def create_position_ids_from_input_ids(input_ids, padding_idx): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. :param torch.Tensor x: :return torch.Tensor: + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask + return incremental_indices.long() + padding_idx diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_tf_mpnet.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_tf_mpnet.py new file mode 100644 index 0000000000000000000000000000000000000000..fe2825c76cee299ca52e489c2b849a5b42e8d2a9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_tf_mpnet.py @@ -0,0 +1,1346 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 MPNet model.""" + + +from __future__ import annotations + +import math +import warnings +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFBaseModelOutputWithPooling, + TFMaskedLMOutput, + TFMultipleChoiceModelOutput, + TFQuestionAnsweringModelOutput, + TFSequenceClassifierOutput, + TFTokenClassifierOutput, +) +from ...modeling_tf_utils import ( + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFMultipleChoiceLoss, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFTokenClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_mpnet import MPNetConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "microsoft/mpnet-base" +_CONFIG_FOR_DOC = "MPNetConfig" + +TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "microsoft/mpnet-base", +] + + +class TFMPNetPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MPNetConfig + base_model_prefix = "mpnet" + + +class TFMPNetEmbeddings(keras.layers.Layer): + """Construct the embeddings from word, position embeddings.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.padding_idx = 1 + self.config = config + self.hidden_size = config.hidden_size + self.max_position_embeddings = config.max_position_embeddings + self.initializer_range = config.initializer_range + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.hidden_size], + initializer=get_initializer(initializer_range=self.initializer_range), + ) + + with tf.name_scope("position_embeddings"): + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.hidden_size], + initializer=get_initializer(initializer_range=self.initializer_range), + ) + + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + def create_position_ids_from_input_ids(self, input_ids): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding + symbols are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + input_ids: tf.Tensor + Returns: tf.Tensor + """ + mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype) + incremental_indices = tf.math.cumsum(mask, axis=1) * mask + + return incremental_indices + self.padding_idx + + def call(self, input_ids=None, position_ids=None, inputs_embeds=None, training=False): + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + assert not (input_ids is None and inputs_embeds is None) + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + input_shape = shape_list(inputs_embeds)[:-1] + + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = self.create_position_ids_from_input_ids(input_ids=input_ids) + else: + position_ids = tf.expand_dims( + tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0 + ) + + position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) + final_embeddings = inputs_embeds + position_embeds + final_embeddings = self.LayerNorm(inputs=final_embeddings) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->MPNet +class TFMPNetPooler(keras.layers.Layer): + def __init__(self, config: MPNetConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(inputs=first_token_tensor) + + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFMPNetSelfAttention(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads}" + ) + + self.num_attention_heads = config.num_attention_heads + assert config.hidden_size % config.num_attention_heads == 0 + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.q = keras.layers.Dense( + self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="q" + ) + self.k = keras.layers.Dense( + self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="k" + ) + self.v = keras.layers.Dense( + self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="v" + ) + self.o = keras.layers.Dense( + config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="o" + ) + self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) + self.config = config + + def transpose_for_scores(self, x, batch_size): + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) + + return tf.transpose(x, perm=[0, 2, 1, 3]) + + def call(self, hidden_states, attention_mask, head_mask, output_attentions, position_bias=None, training=False): + batch_size = shape_list(hidden_states)[0] + + q = self.q(hidden_states) + k = self.k(hidden_states) + v = self.v(hidden_states) + + q = self.transpose_for_scores(q, batch_size) + k = self.transpose_for_scores(k, batch_size) + v = self.transpose_for_scores(v, batch_size) + + attention_scores = tf.matmul(q, k, transpose_b=True) + dk = tf.cast(shape_list(k)[-1], attention_scores.dtype) + attention_scores = attention_scores / tf.math.sqrt(dk) + + # Apply relative position embedding (precomputed in MPNetEncoder) if provided. + if position_bias is not None: + attention_scores += position_bias + + if attention_mask is not None: + attention_scores = attention_scores + attention_mask + + attention_probs = stable_softmax(attention_scores, axis=-1) + + attention_probs = self.dropout(attention_probs, training=training) + + if head_mask is not None: + attention_probs = attention_probs * head_mask + + c = tf.matmul(attention_probs, v) + c = tf.transpose(c, perm=[0, 2, 1, 3]) + c = tf.reshape(c, (batch_size, -1, self.all_head_size)) + o = self.o(c) + + outputs = (o, attention_probs) if output_attentions else (o,) + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "q", None) is not None: + with tf.name_scope(self.q.name): + self.q.build([None, None, self.config.hidden_size]) + if getattr(self, "k", None) is not None: + with tf.name_scope(self.k.name): + self.k.build([None, None, self.config.hidden_size]) + if getattr(self, "v", None) is not None: + with tf.name_scope(self.v.name): + self.v.build([None, None, self.config.hidden_size]) + if getattr(self, "o", None) is not None: + with tf.name_scope(self.o.name): + self.o.build([None, None, self.config.hidden_size]) + + +class TFMPNetAttention(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.attn = TFMPNetSelfAttention(config, name="attn") + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.config = config + + def prune_heads(self, heads): + raise NotImplementedError + + def call(self, input_tensor, attention_mask, head_mask, output_attentions, position_bias=None, training=False): + self_outputs = self.attn( + input_tensor, attention_mask, head_mask, output_attentions, position_bias=position_bias, training=training + ) + attention_output = self.LayerNorm(self.dropout(self_outputs[0]) + input_tensor) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attn", None) is not None: + with tf.name_scope(self.attn.name): + self.attn.build(None) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->MPNet +class TFMPNetIntermediate(keras.layers.Layer): + def __init__(self, config: MPNetConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->MPNet +class TFMPNetOutput(keras.layers.Layer): + def __init__(self, config: MPNetConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +class TFMPNetLayer(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.attention = TFMPNetAttention(config, name="attention") + self.intermediate = TFMPNetIntermediate(config, name="intermediate") + self.out = TFMPNetOutput(config, name="output") + + def call(self, hidden_states, attention_mask, head_mask, output_attentions, position_bias=None, training=False): + self_attention_outputs = self.attention( + hidden_states, attention_mask, head_mask, output_attentions, position_bias=position_bias, training=training + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + intermediate_output = self.intermediate(attention_output) + layer_output = self.out(intermediate_output, attention_output, training=training) + outputs = (layer_output,) + outputs # add attentions if we output them + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "out", None) is not None: + with tf.name_scope(self.out.name): + self.out.build(None) + + +class TFMPNetEncoder(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.n_heads = config.num_attention_heads + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.relative_attention_num_buckets = config.relative_attention_num_buckets + self.initializer_range = config.initializer_range + + self.layer = [TFMPNetLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + self.relative_attention_num_buckets = config.relative_attention_num_buckets + + def build(self, input_shape=None): + if self.built: + return + self.built = True + with tf.name_scope("relative_attention_bias"): + self.relative_attention_bias = self.add_weight( + name="embeddings", + shape=[self.relative_attention_num_buckets, self.n_heads], + initializer=get_initializer(self.initializer_range), + ) + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + def call( + self, + hidden_states, + attention_mask, + head_mask, + output_attentions, + output_hidden_states, + return_dict, + training=False, + ): + position_bias = self.compute_position_bias(hidden_states) + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module( + hidden_states, + attention_mask, + head_mask[i], + output_attentions, + position_bias=position_bias, + training=training, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + @staticmethod + def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128): + ret = 0 + n = -relative_position + + num_buckets //= 2 + ret += tf.cast(tf.math.less(n, 0), dtype=relative_position.dtype) * num_buckets + n = tf.math.abs(n) + + # now n is in the range [0, inf) + max_exact = num_buckets // 2 + is_small = tf.math.less(n, max_exact) + + val_if_large = max_exact + tf.cast( + tf.math.log(n / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact), + dtype=relative_position.dtype, + ) + + val_if_large = tf.math.minimum(val_if_large, num_buckets - 1) + ret += tf.where(is_small, n, val_if_large) + return ret + + def compute_position_bias(self, x, position_ids=None): + """Compute binned relative position bias""" + input_shape = shape_list(x) + qlen, klen = input_shape[1], input_shape[1] + + if position_ids is not None: + context_position = position_ids[:, :, None] + memory_position = position_ids[:, None, :] + else: + context_position = tf.range(qlen)[:, None] + memory_position = tf.range(klen)[None, :] + + relative_position = memory_position - context_position # shape (qlen, klen) + + rp_bucket = self._relative_position_bucket( + relative_position, + num_buckets=self.relative_attention_num_buckets, + ) + values = tf.gather(self.relative_attention_bias, rp_bucket) # shape (qlen, klen, num_heads) + values = tf.expand_dims(tf.transpose(values, [2, 0, 1]), axis=0) # shape (1, num_heads, qlen, klen) + return values + + +@keras_serializable +class TFMPNetMainLayer(keras.layers.Layer): + config_class = MPNetConfig + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.num_hidden_layers = config.num_hidden_layers + self.initializer_range = config.initializer_range + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.return_dict = config.use_return_dict + self.encoder = TFMPNetEncoder(config, name="encoder") + self.pooler = TFMPNetPooler(config, name="pooler") + # The embeddings must be the last declaration in order to follow the weights order + self.embeddings = TFMPNetEmbeddings(config, name="embeddings") + + # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings + def get_input_embeddings(self) -> keras.layers.Layer: + return self.embeddings + + # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings + def set_input_embeddings(self, value: tf.Variable): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + input_ids=None, + attention_mask=None, + position_ids=None, + head_mask=None, + inputs_embeds=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.fill(input_shape, 1) + + embedding_output = self.embeddings( + input_ids, + position_ids, + inputs_embeds, + training=training, + ) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = tf.cast(extended_attention_mask, embedding_output.dtype) + one_cst = tf.constant(1.0, dtype=embedding_output.dtype) + ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) + extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.num_hidden_layers + + encoder_outputs = self.encoder( + embedding_output, + extended_attention_mask, + head_mask, + output_attentions, + output_hidden_states, + return_dict, + training=training, + ) + + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) + + if not return_dict: + return ( + sequence_output, + pooled_output, + ) + encoder_outputs[1:] + + return TFBaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + + +MPNET_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`MPNetConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MPNET_INPUTS_DOCSTRING = r""" + Args: + input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare MPNet Model transformer outputting raw hidden-states without any specific head on top.", + MPNET_START_DOCSTRING, +) +class TFMPNetModel(TFMPNetPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.mpnet = TFMPNetMainLayer(config, name="mpnet") + + @unpack_inputs + @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: Optional[Union[np.array, tf.Tensor]] = None, + position_ids: Optional[Union[np.array, tf.Tensor]] = None, + head_mask: Optional[Union[np.array, tf.Tensor]] = None, + inputs_embeds: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: + outputs = self.mpnet( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mpnet", None) is not None: + with tf.name_scope(self.mpnet.name): + self.mpnet.build(None) + + +class TFMPNetLMHead(keras.layers.Layer): + """MPNet head for masked and permuted language modeling""" + + def __init__(self, config, input_embeddings, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.hidden_size = config.hidden_size + self.dense = keras.layers.Dense( + config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") + self.act = get_tf_activation("gelu") + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = input_embeddings + + def build(self, input_shape=None): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.hidden_size]) + + def get_output_embeddings(self): + return self.decoder + + def set_output_embeddings(self, value): + self.decoder.weight = value + self.decoder.vocab_size = shape_list(value)[0] + + def get_bias(self): + return {"bias": self.bias} + + def set_bias(self, value): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.layer_norm(hidden_states) + + # project back to size of vocabulary with bias + seq_length = shape_list(tensor=hidden_states)[1] + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) + hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) + hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) + + return hidden_states + + +@add_start_docstrings("""MPNet Model with a `language modeling` head on top.""", MPNET_START_DOCSTRING) +class TFMPNetForMaskedLM(TFMPNetPreTrainedModel, TFMaskedLanguageModelingLoss): + _keys_to_ignore_on_load_missing = [r"pooler"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.mpnet = TFMPNetMainLayer(config, name="mpnet") + self.lm_head = TFMPNetLMHead(config, self.mpnet.embeddings, name="lm_head") + + def get_lm_head(self): + return self.lm_head + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.lm_head.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: tf.Tensor | None = None, + training: bool = False, + ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + outputs = self.mpnet( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mpnet", None) is not None: + with tf.name_scope(self.mpnet.name): + self.mpnet.build(None) + if getattr(self, "lm_head", None) is not None: + with tf.name_scope(self.lm_head.name): + self.lm_head.build(None) + + +class TFMPNetClassificationHead(keras.layers.Layer): + """Head for sentence-level classification tasks.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense( + config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.out_proj = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" + ) + self.config = config + + def call(self, features, training=False): + x = features[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x, training=training) + x = self.dense(x) + x = self.dropout(x, training=training) + x = self.out_proj(x) + return x + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + MPNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled + output) e.g. for GLUE tasks. + """, + MPNET_START_DOCSTRING, +) +class TFMPNetForSequenceClassification(TFMPNetPreTrainedModel, TFSequenceClassificationLoss): + _keys_to_ignore_on_load_missing = [r"pooler"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.mpnet = TFMPNetMainLayer(config, name="mpnet") + self.classifier = TFMPNetClassificationHead(config, name="classifier") + + @unpack_inputs + @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: Optional[Union[np.array, tf.Tensor]] = None, + position_ids: Optional[Union[np.array, tf.Tensor]] = None, + head_mask: Optional[Union[np.array, tf.Tensor]] = None, + inputs_embeds: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: tf.Tensor | None = None, + training: bool = False, + ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + outputs = self.mpnet( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = outputs[0] + logits = self.classifier(sequence_output, training=training) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mpnet", None) is not None: + with tf.name_scope(self.mpnet.name): + self.mpnet.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build(None) + + +@add_start_docstrings( + """ + MPNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + MPNET_START_DOCSTRING, +) +class TFMPNetForMultipleChoice(TFMPNetPreTrainedModel, TFMultipleChoiceLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.mpnet = TFMPNetMainLayer(config, name="mpnet") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: tf.Tensor | None = None, + training: bool = False, + ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) + """ + if input_ids is not None: + num_choices = shape_list(input_ids)[1] + seq_length = shape_list(input_ids)[2] + else: + num_choices = shape_list(inputs_embeds)[1] + seq_length = shape_list(inputs_embeds)[2] + + flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None + flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None + flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None + flat_inputs_embeds = ( + tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) + if inputs_embeds is not None + else None + ) + outputs = self.mpnet( + flat_input_ids, + flat_attention_mask, + flat_position_ids, + head_mask, + flat_inputs_embeds, + output_attentions, + output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + pooled_output = self.dropout(pooled_output, training=training) + logits = self.classifier(pooled_output) + reshaped_logits = tf.reshape(logits, (-1, num_choices)) + loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mpnet", None) is not None: + with tf.name_scope(self.mpnet.name): + self.mpnet.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + MPNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + MPNET_START_DOCSTRING, +) +class TFMPNetForTokenClassification(TFMPNetPreTrainedModel, TFTokenClassificationLoss): + _keys_to_ignore_on_load_missing = [r"pooler"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + self.mpnet = TFMPNetMainLayer(config, name="mpnet") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: tf.Tensor | None = None, + training: bool = False, + ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + outputs = self.mpnet( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output, training=training) + logits = self.classifier(sequence_output) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mpnet", None) is not None: + with tf.name_scope(self.mpnet.name): + self.mpnet.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + MPNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MPNET_START_DOCSTRING, +) +class TFMPNetForQuestionAnswering(TFMPNetPreTrainedModel, TFQuestionAnsweringLoss): + _keys_to_ignore_on_load_missing = [r"pooler"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.mpnet = TFMPNetMainLayer(config, name="mpnet") + self.qa_outputs = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: Optional[Union[np.array, tf.Tensor]] = None, + position_ids: Optional[Union[np.array, tf.Tensor]] = None, + head_mask: Optional[Union[np.array, tf.Tensor]] = None, + inputs_embeds: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: tf.Tensor | None = None, + end_positions: tf.Tensor | None = None, + training: bool = False, + **kwargs, + ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: + r""" + start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + outputs = self.mpnet( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = tf.split(logits, 2, axis=-1) + start_logits = tf.squeeze(start_logits, axis=-1) + end_logits = tf.squeeze(end_logits, axis=-1) + loss = None + + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions, "end_position": end_positions} + loss = self.hf_compute_loss(labels, (start_logits, end_logits)) + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFQuestionAnsweringModelOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mpnet", None) is not None: + with tf.name_scope(self.mpnet.name): + self.mpnet.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.hidden_size]) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet.py new file mode 100644 index 0000000000000000000000000000000000000000..51b8d0ff15fd5a4b366742bce7097815719355c1 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet.py @@ -0,0 +1,546 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for MPNet.""" + +import collections +import os +import unicodedata +from typing import List, Optional, Tuple + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/vocab.txt", + } +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "microsoft/mpnet-base": 512, +} + +PRETRAINED_INIT_CONFIGURATION = { + "microsoft/mpnet-base": {"do_lower_case": True}, +} + + +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +class MPNetTokenizer(PreTrainedTokenizer): + """ + + This tokenizer inherits from [`BertTokenizer`] which contains most of the methods. Users should refer to the + superclass for more information regarding methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + do_basic_tokenize (`bool`, *optional*, defaults to `True`): + Whether or not to do basic tokenization before WordPiece. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + do_lower_case=True, + do_basic_tokenize=True, + never_split=None, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="[UNK]", + pad_token="", + mask_token="", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token + sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token + cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token + unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token + pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token + + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token + + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer( + do_lower_case=do_lower_case, + never_split=never_split, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + ) + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) + + super().__init__( + do_lower_case=do_lower_case, + do_basic_tokenize=do_basic_tokenize, + never_split=never_split, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + @property + def do_lower_case(self): + return self.basic_tokenizer.do_lower_case + + @property + def vocab_size(self): + return len(self.vocab) + + def get_vocab(self): + # "" is part of the vocab, but was wrongfully added at a wrong index in the fast saved version + vocab = self.added_tokens_encoder.copy() + vocab.update(self.vocab) + return vocab + + def _tokenize(self, text): + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): + # If the token is part of the never_split set + if token in self.basic_tokenizer.never_split: + split_tokens.append(token) + else: + split_tokens += self.wordpiece_tokenizer.tokenize(token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.ids_to_tokens.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A MPNet sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` methods. + + Args: + token_ids_0 (`List[int]`): + List of ids. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Set to True if the token list is already formatted with special tokens for the model + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Creates a mask from the two sequences passed to be used in a sequence-pair classification task. MPNet does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of ids. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(token + "\n") + index += 1 + return (vocab_file,) + + +# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer +class BasicTokenizer(object): + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + do_split_on_punc (`bool`, *optional*, defaults to `True`): + In some instances we want to skip the basic punctuation splitting so that later tokenization can capture + the full context of the words, such as contractions. + """ + + def __init__( + self, + do_lower_case=True, + never_split=None, + tokenize_chinese_chars=True, + strip_accents=None, + do_split_on_punc=True, + ): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + self.do_split_on_punc = do_split_on_punc + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. + + Args: + never_split (`List[str]`, *optional*) + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + # prevents treating the same character with different unicode codepoints as different characters + unicode_normalized_text = unicodedata.normalize("NFC", text) + orig_tokens = whitespace_tokenize(unicode_normalized_text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if not self.do_split_on_punc or (never_split is not None and text in never_split): + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer +class WordpieceTokenizer(object): + """Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token, max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """ + Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform + tokenization using the given vocabulary. + + For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through *BasicTokenizer*. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..1c9b1d5922278badb5984ea4c5eb9332b5e95f5a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet_fast.py @@ -0,0 +1,226 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Fast Tokenization classes for MPNet.""" + +import json +from typing import List, Optional, Tuple + +from tokenizers import normalizers + +from ...tokenization_utils import AddedToken +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_mpnet import MPNetTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/vocab.txt", + }, + "tokenizer_file": { + "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/tokenizer.json", + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "microsoft/mpnet-base": 512, +} + +PRETRAINED_INIT_CONFIGURATION = { + "microsoft/mpnet-base": {"do_lower_case": True}, +} + + +class MPNetTokenizerFast(PreTrainedTokenizerFast): + r""" + Construct a "fast" MPNet tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this + issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + slow_tokenizer_class = MPNetTokenizer + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + do_lower_case=True, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="[UNK]", + pad_token="", + mask_token="", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token + sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token + cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token + unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token + pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token + + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + do_lower_case=do_lower_case, + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + cls_token=cls_token, + unk_token=unk_token, + pad_token=pad_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) + if ( + pre_tok_state.get("lowercase", do_lower_case) != do_lower_case + or pre_tok_state.get("strip_accents", strip_accents) != strip_accents + ): + pre_tok_class = getattr(normalizers, pre_tok_state.pop("type")) + pre_tok_state["lowercase"] = do_lower_case + pre_tok_state["strip_accents"] = strip_accents + self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state) + + self.do_lower_case = do_lower_case + + @property + def mask_token(self) -> str: + """ + `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not + having been set. + + MPNet tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily + comprise the space before the **. + """ + if self._mask_token is None: + if self.verbose: + logger.error("Using mask_token, but it is not set yet.") + return None + return str(self._mask_token) + + @mask_token.setter + def mask_token(self, value): + """ + Overriding the default behavior of the mask token to have it eat the space before it. + + This is needed to preserve backward compatibility with all the previously used models based on MPNet. + """ + # Mask token behave like a normal word, i.e. include the space before it + # So we set lstrip to True + value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value + self._mask_token = value + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] + if token_ids_1 is None: + return output + + return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Creates a mask from the two sequences passed to be used in a sequence-pair classification task. MPNet does not + make use of token type ids, therefore a list of zeros is returned + + Args: + token_ids_0 (`List[int]`): + List of ids. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4c692f76432f4a9dee44efadede1192274a3ca96 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__init__.py @@ -0,0 +1,49 @@ +# flake8: noqa +# There's no way to ignore "F401 '...' imported but unused" warnings in this +# module, but to preserve other warnings. So, don't check this module at all. + +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = {"configuration_timm_backbone": ["TimmBackboneConfig"]} + + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_timm_backbone"] = ["TimmBackbone"] + + +if TYPE_CHECKING: + from .configuration_timm_backbone import TimmBackboneConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_timm_backbone import TimmBackbone + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5482cc5fb156f5c12de0daee5c64459402b89148 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/configuration_timm_backbone.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/configuration_timm_backbone.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d0d61991deda9a3db5a2e4a3c182c88cdd09eebf Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/configuration_timm_backbone.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/modeling_timm_backbone.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/modeling_timm_backbone.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a1a8474d11dbfd923499a795ca512ac40e3a96f2 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/modeling_timm_backbone.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/configuration_timm_backbone.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/configuration_timm_backbone.py new file mode 100644 index 0000000000000000000000000000000000000000..0f2f1b0b6c31348f2f25382029b700694a18d257 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/configuration_timm_backbone.py @@ -0,0 +1,83 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" Configuration for Backbone models""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class TimmBackboneConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration for a timm backbone [`TimmBackbone`]. + + It is used to instantiate a timm backbone model according to the specified arguments, defining the model. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + backbone (`str`, *optional*): + The timm checkpoint to load. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + features_only (`bool`, *optional*, defaults to `True`): + Whether to output only the features or also the logits. + use_pretrained_backbone (`bool`, *optional*, defaults to `True`): + Whether to use a pretrained backbone. + out_indices (`List[int]`, *optional*): + If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how + many stages the model has). Will default to the last stage if unset. + freeze_batch_norm_2d (`bool`, *optional*, defaults to `False`): + Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. + + Example: + ```python + >>> from transformers import TimmBackboneConfig, TimmBackbone + + >>> # Initializing a timm backbone + >>> configuration = TimmBackboneConfig("resnet50") + + >>> # Initializing a model from the configuration + >>> model = TimmBackbone(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ``` + """ + + model_type = "timm_backbone" + + def __init__( + self, + backbone=None, + num_channels=3, + features_only=True, + use_pretrained_backbone=True, + out_indices=None, + freeze_batch_norm_2d=False, + **kwargs, + ): + super().__init__(**kwargs) + self.backbone = backbone + self.num_channels = num_channels + self.features_only = features_only + self.use_pretrained_backbone = use_pretrained_backbone + self.use_timm_backbone = True + self.out_indices = out_indices if out_indices is not None else (-1,) + self.freeze_batch_norm_2d = freeze_batch_norm_2d diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/modeling_timm_backbone.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/modeling_timm_backbone.py new file mode 100644 index 0000000000000000000000000000000000000000..0c6fe67b75731f775800080260082fc023fd654f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/modeling_timm_backbone.py @@ -0,0 +1,158 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Optional, Tuple, Union + +import torch + +from ...modeling_outputs import BackboneOutput +from ...modeling_utils import PreTrainedModel +from ...utils import is_timm_available, is_torch_available, requires_backends +from ...utils.backbone_utils import BackboneMixin +from .configuration_timm_backbone import TimmBackboneConfig + + +if is_timm_available(): + import timm + + +if is_torch_available(): + from torch import Tensor + + +class TimmBackbone(PreTrainedModel, BackboneMixin): + """ + Wrapper class for timm models to be used as backbones. This enables using the timm models interchangeably with the + other models in the library keeping the same API. + """ + + main_input_name = "pixel_values" + supports_gradient_checkpointing = False + config_class = TimmBackboneConfig + + def __init__(self, config, **kwargs): + requires_backends(self, "timm") + super().__init__(config) + self.config = config + + if config.backbone is None: + raise ValueError("backbone is not set in the config. Please set it to a timm model name.") + + if config.backbone not in timm.list_models(): + raise ValueError(f"backbone {config.backbone} is not supported by timm.") + + if hasattr(config, "out_features") and config.out_features is not None: + raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") + + pretrained = getattr(config, "use_pretrained_backbone", None) + if pretrained is None: + raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") + + # We just take the final layer by default. This matches the default for the transformers models. + out_indices = config.out_indices if getattr(config, "out_indices", None) is not None else (-1,) + + self._backbone = timm.create_model( + config.backbone, + pretrained=pretrained, + # This is currently not possible for transformer architectures. + features_only=config.features_only, + in_chans=config.num_channels, + out_indices=out_indices, + **kwargs, + ) + + # Converts all `BatchNorm2d` and `SyncBatchNorm` or `BatchNormAct2d` and `SyncBatchNormAct2d` layers of provided module into `FrozenBatchNorm2d` or `FrozenBatchNormAct2d` respectively + if getattr(config, "freeze_batch_norm_2d", False): + self.freeze_batch_norm_2d() + + # These are used to control the output of the model when called. If output_hidden_states is True, then + # return_layers is modified to include all layers. + self._return_layers = self._backbone.return_layers + self._all_layers = {layer["module"]: str(i) for i, layer in enumerate(self._backbone.feature_info.info)} + super()._init_backbone(config) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): + requires_backends(cls, ["vision", "timm"]) + from ...models.timm_backbone import TimmBackboneConfig + + config = kwargs.pop("config", TimmBackboneConfig()) + + use_timm = kwargs.pop("use_timm_backbone", True) + if not use_timm: + raise ValueError("use_timm_backbone must be True for timm backbones") + + num_channels = kwargs.pop("num_channels", config.num_channels) + features_only = kwargs.pop("features_only", config.features_only) + use_pretrained_backbone = kwargs.pop("use_pretrained_backbone", config.use_pretrained_backbone) + out_indices = kwargs.pop("out_indices", config.out_indices) + config = TimmBackboneConfig( + backbone=pretrained_model_name_or_path, + num_channels=num_channels, + features_only=features_only, + use_pretrained_backbone=use_pretrained_backbone, + out_indices=out_indices, + ) + return super()._from_config(config, **kwargs) + + def freeze_batch_norm_2d(self): + timm.layers.freeze_batch_norm_2d(self._backbone) + + def unfreeze_batch_norm_2d(self): + timm.layers.unfreeze_batch_norm_2d(self._backbone) + + def _init_weights(self, module): + """ + Empty init weights function to ensure compatibility of the class in the library. + """ + pass + + def forward( + self, + pixel_values: torch.FloatTensor, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + + if output_attentions: + raise ValueError("Cannot output attentions for timm backbones at the moment") + + if output_hidden_states: + # We modify the return layers to include all the stages of the backbone + self._backbone.return_layers = self._all_layers + hidden_states = self._backbone(pixel_values, **kwargs) + self._backbone.return_layers = self._return_layers + feature_maps = tuple(hidden_states[i] for i in self.out_indices) + else: + feature_maps = self._backbone(pixel_values, **kwargs) + hidden_states = None + + feature_maps = tuple(feature_maps) + hidden_states = tuple(hidden_states) if hidden_states is not None else None + + if not return_dict: + output = (feature_maps,) + if output_hidden_states: + output = output + (hidden_states,) + return output + + return BackboneOutput(feature_maps=feature_maps, hidden_states=hidden_states, attentions=None) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..663b6d41aba605b98e97509cd7dbc4b0acf001f7 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__init__.py @@ -0,0 +1,75 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available + + +_import_structure = { + "configuration_videomae": ["VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "VideoMAEConfig"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_videomae"] = [ + "VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST", + "VideoMAEForPreTraining", + "VideoMAEModel", + "VideoMAEPreTrainedModel", + "VideoMAEForVideoClassification", + ] + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["feature_extraction_videomae"] = ["VideoMAEFeatureExtractor"] + _import_structure["image_processing_videomae"] = ["VideoMAEImageProcessor"] + +if TYPE_CHECKING: + from .configuration_videomae import VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP, VideoMAEConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_videomae import ( + VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST, + VideoMAEForPreTraining, + VideoMAEForVideoClassification, + VideoMAEModel, + VideoMAEPreTrainedModel, + ) + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .feature_extraction_videomae import VideoMAEFeatureExtractor + from .image_processing_videomae import VideoMAEImageProcessor + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c98d354d469a36ac2fabffb78a343df6302226b4 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/configuration_videomae.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/configuration_videomae.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8e75195042db7d87d1ae1ee46f83fbceb35e8d1c Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/configuration_videomae.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/convert_videomae_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/convert_videomae_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3ad08556e4a0ff0a8d92e807b9ebd9ac24b74448 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/convert_videomae_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/feature_extraction_videomae.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/feature_extraction_videomae.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dd55bfc7c89621da78e6a14bc553466d33021e21 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/feature_extraction_videomae.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/image_processing_videomae.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/image_processing_videomae.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b2aed2e975865d2ec2a5623763e8f345aa3ff2d7 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/image_processing_videomae.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/modeling_videomae.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/modeling_videomae.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..272ced2f214d669381b949a43612fe2e307a9d4c Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/modeling_videomae.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/configuration_videomae.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/configuration_videomae.py new file mode 100644 index 0000000000000000000000000000000000000000..1645b4985dac791341cf3c0357b9aa84332def5e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/configuration_videomae.py @@ -0,0 +1,149 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" VideoMAE model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "MCG-NJU/videomae-base": "https://huggingface.co/MCG-NJU/videomae-base/resolve/main/config.json", +} + + +class VideoMAEConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`VideoMAEModel`]. It is used to instantiate a + VideoMAE model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the VideoMAE + [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + num_frames (`int`, *optional*, defaults to 16): + The number of frames in each video. + tubelet_size (`int`, *optional*, defaults to 2): + The number of tubelets. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + qkv_bias (`bool`, *optional*, defaults to `True`): + Whether to add a bias to the queries, keys and values. + use_mean_pooling (`bool`, *optional*, defaults to `True`): + Whether to mean pool the final hidden states instead of using the final hidden state of the [CLS] token. + decoder_num_attention_heads (`int`, *optional*, defaults to 6): + Number of attention heads for each attention layer in the decoder. + decoder_hidden_size (`int`, *optional*, defaults to 384): + Dimensionality of the decoder. + decoder_num_hidden_layers (`int`, *optional*, defaults to 4): + Number of hidden layers in the decoder. + decoder_intermediate_size (`int`, *optional*, defaults to 1536): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder. + norm_pix_loss (`bool`, *optional*, defaults to `True`): + Whether to normalize the target patch pixels. + + Example: + + ```python + >>> from transformers import VideoMAEConfig, VideoMAEModel + + >>> # Initializing a VideoMAE videomae-base style configuration + >>> configuration = VideoMAEConfig() + + >>> # Randomly initializing a model from the configuration + >>> model = VideoMAEModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "videomae" + + def __init__( + self, + image_size=224, + patch_size=16, + num_channels=3, + num_frames=16, + tubelet_size=2, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.0, + attention_probs_dropout_prob=0.0, + initializer_range=0.02, + layer_norm_eps=1e-12, + qkv_bias=True, + use_mean_pooling=True, + decoder_num_attention_heads=6, + decoder_hidden_size=384, + decoder_num_hidden_layers=4, + decoder_intermediate_size=1536, + norm_pix_loss=True, + **kwargs, + ): + super().__init__(**kwargs) + + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_frames = num_frames + self.tubelet_size = tubelet_size + + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.qkv_bias = qkv_bias + self.use_mean_pooling = use_mean_pooling + + self.decoder_num_attention_heads = decoder_num_attention_heads + self.decoder_hidden_size = decoder_hidden_size + self.decoder_num_hidden_layers = decoder_num_hidden_layers + self.decoder_intermediate_size = decoder_intermediate_size + self.norm_pix_loss = norm_pix_loss diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/convert_videomae_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/convert_videomae_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..c98160a6bb82bbdc96f164455fee1b1b2c13992a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/convert_videomae_to_pytorch.py @@ -0,0 +1,324 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert VideoMAE checkpoints from the original repository: https://github.com/MCG-NJU/VideoMAE""" + +import argparse +import json + +import gdown +import numpy as np +import torch +from huggingface_hub import hf_hub_download + +from transformers import ( + VideoMAEConfig, + VideoMAEForPreTraining, + VideoMAEForVideoClassification, + VideoMAEImageProcessor, +) + + +def get_videomae_config(model_name): + config = VideoMAEConfig() + + set_architecture_configs(model_name, config) + + if "finetuned" not in model_name: + config.use_mean_pooling = False + + if "finetuned" in model_name: + repo_id = "huggingface/label-files" + if "kinetics" in model_name: + config.num_labels = 400 + filename = "kinetics400-id2label.json" + elif "ssv2" in model_name: + config.num_labels = 174 + filename = "something-something-v2-id2label.json" + else: + raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.") + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + + return config + + +def set_architecture_configs(model_name, config): + if "small" in model_name: + config.hidden_size = 384 + config.intermediate_size = 1536 + config.num_hidden_layers = 12 + config.num_attention_heads = 16 + config.decoder_num_hidden_layers = 12 + config.decoder_num_attention_heads = 3 + config.decoder_hidden_size = 192 + config.decoder_intermediate_size = 768 + elif "large" in model_name: + config.hidden_size = 1024 + config.intermediate_size = 4096 + config.num_hidden_layers = 24 + config.num_attention_heads = 16 + config.decoder_num_hidden_layers = 12 + config.decoder_num_attention_heads = 8 + config.decoder_hidden_size = 512 + config.decoder_intermediate_size = 2048 + elif "huge" in model_name: + config.hidden_size = 1280 + config.intermediate_size = 5120 + config.num_hidden_layers = 32 + config.num_attention_heads = 16 + config.decoder_num_hidden_layers = 12 + config.decoder_num_attention_heads = 8 + config.decoder_hidden_size = 640 + config.decoder_intermediate_size = 2560 + elif "base" not in model_name: + raise ValueError('Model name should include either "small", "base", "large", or "huge"') + + +def rename_key(name): + if "encoder." in name: + name = name.replace("encoder.", "") + if "cls_token" in name: + name = name.replace("cls_token", "videomae.embeddings.cls_token") + if "decoder_pos_embed" in name: + name = name.replace("decoder_pos_embed", "decoder.decoder_pos_embed") + if "pos_embed" in name and "decoder" not in name: + name = name.replace("pos_embed", "videomae.embeddings.position_embeddings") + if "patch_embed.proj" in name: + name = name.replace("patch_embed.proj", "videomae.embeddings.patch_embeddings.projection") + if "patch_embed.norm" in name: + name = name.replace("patch_embed.norm", "videomae.embeddings.norm") + if "decoder.blocks" in name: + name = name.replace("decoder.blocks", "decoder.decoder_layers") + if "blocks" in name: + name = name.replace("blocks", "videomae.encoder.layer") + if "attn.proj" in name: + name = name.replace("attn.proj", "attention.output.dense") + if "attn" in name and "bias" not in name: + name = name.replace("attn", "attention.self") + if "attn" in name: + name = name.replace("attn", "attention.attention") + if "norm1" in name: + name = name.replace("norm1", "layernorm_before") + if "norm2" in name: + name = name.replace("norm2", "layernorm_after") + if "mlp.fc1" in name: + name = name.replace("mlp.fc1", "intermediate.dense") + if "mlp.fc2" in name: + name = name.replace("mlp.fc2", "output.dense") + if "decoder_embed" in name: + name = name.replace("decoder_embed", "decoder.decoder_embed") + if "decoder_norm" in name: + name = name.replace("decoder_norm", "decoder.decoder_norm") + if "decoder_pred" in name: + name = name.replace("decoder_pred", "decoder.decoder_pred") + if "norm.weight" in name and "decoder" not in name and "fc" not in name: + name = name.replace("norm.weight", "videomae.layernorm.weight") + if "norm.bias" in name and "decoder" not in name and "fc" not in name: + name = name.replace("norm.bias", "videomae.layernorm.bias") + if "head" in name and "decoder" not in name: + name = name.replace("head", "classifier") + + return name + + +def convert_state_dict(orig_state_dict, config): + for key in orig_state_dict.copy().keys(): + val = orig_state_dict.pop(key) + + if key.startswith("encoder."): + key = key.replace("encoder.", "") + + if "qkv" in key: + key_split = key.split(".") + if key.startswith("decoder.blocks"): + dim = config.decoder_hidden_size + layer_num = int(key_split[2]) + prefix = "decoder.decoder_layers." + if "weight" in key: + orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :] + orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :] + orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :] + else: + dim = config.hidden_size + layer_num = int(key_split[1]) + prefix = "videomae.encoder.layer." + if "weight" in key: + orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :] + orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :] + orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :] + else: + orig_state_dict[rename_key(key)] = val + + return orig_state_dict + + +# We will verify our results on a video of eating spaghetti +# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227] +def prepare_video(): + file = hf_hub_download( + repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" + ) + video = np.load(file) + return list(video) + + +def convert_videomae_checkpoint(checkpoint_url, pytorch_dump_folder_path, model_name, push_to_hub): + config = get_videomae_config(model_name) + + if "finetuned" in model_name: + model = VideoMAEForVideoClassification(config) + else: + model = VideoMAEForPreTraining(config) + + # download original checkpoint, hosted on Google Drive + output = "pytorch_model.bin" + gdown.cached_download(checkpoint_url, output, quiet=False) + files = torch.load(output, map_location="cpu") + if "model" in files: + state_dict = files["model"] + else: + state_dict = files["module"] + new_state_dict = convert_state_dict(state_dict, config) + + model.load_state_dict(new_state_dict) + model.eval() + + # verify model on basic input + image_processor = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5]) + video = prepare_video() + inputs = image_processor(video, return_tensors="pt") + + if "finetuned" not in model_name: + local_path = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos", filename="bool_masked_pos.pt") + inputs["bool_masked_pos"] = torch.load(local_path) + + outputs = model(**inputs) + logits = outputs.logits + + model_names = [ + "videomae-small-finetuned-kinetics", + "videomae-small-finetuned-ssv2", + # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) + "videomae-base-short", + "videomae-base-short-finetuned-kinetics", + "videomae-base", + "videomae-base-finetuned-kinetics", + "videomae-large", + "videomae-large-finetuned-kinetics", + "videomae-huge-finetuned-kinetics", + # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) + "videomae-base-short-ssv2", + "videomae-base-short-finetuned-ssv2", + "videomae-base-ssv2", + "videomae-base-finetuned-ssv2", + ] + + # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] + if model_name == "videomae-small-finetuned-kinetics": + expected_shape = torch.Size([1, 400]) + expected_slice = torch.tensor([-0.9291, -0.4061, -0.9307]) + elif model_name == "videomae-small-finetuned-ssv2": + expected_shape = torch.Size([1, 174]) + expected_slice = torch.tensor([0.2671, -0.4689, -0.8235]) + elif model_name == "videomae-base": + expected_shape = torch.Size([1, 1408, 1536]) + expected_slice = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]]) + elif model_name == "videomae-base-short": + expected_shape = torch.Size([1, 1408, 1536]) + expected_slice = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]]) + # we verified the loss both for normalized and unnormalized targets for this one + expected_loss = torch.tensor([0.5142]) if config.norm_pix_loss else torch.tensor([0.6469]) + elif model_name == "videomae-large": + expected_shape = torch.Size([1, 1408, 1536]) + expected_slice = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]]) + elif model_name == "videomae-large-finetuned-kinetics": + expected_shape = torch.Size([1, 400]) + expected_slice = torch.tensor([0.0771, 0.0011, -0.3625]) + elif model_name == "videomae-huge-finetuned-kinetics": + expected_shape = torch.Size([1, 400]) + expected_slice = torch.tensor([0.2433, 0.1632, -0.4894]) + elif model_name == "videomae-base-short-finetuned-kinetics": + expected_shape = torch.Size([1, 400]) + expected_slice = torch.tensor([0.6588, 0.0990, -0.2493]) + elif model_name == "videomae-base-finetuned-kinetics": + expected_shape = torch.Size([1, 400]) + expected_slice = torch.tensor([0.3669, -0.0688, -0.2421]) + elif model_name == "videomae-base-short-ssv2": + expected_shape = torch.Size([1, 1408, 1536]) + expected_slice = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]]) + elif model_name == "videomae-base-short-finetuned-ssv2": + expected_shape = torch.Size([1, 174]) + expected_slice = torch.tensor([-0.0537, -0.1539, -0.3266]) + elif model_name == "videomae-base-ssv2": + expected_shape = torch.Size([1, 1408, 1536]) + expected_slice = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]]) + elif model_name == "videomae-base-finetuned-ssv2": + expected_shape = torch.Size([1, 174]) + expected_slice = torch.tensor([0.1961, -0.8337, -0.6389]) + else: + raise ValueError(f"Model name not supported. Should be one of {model_names}") + + # verify logits + assert logits.shape == expected_shape + if "finetuned" in model_name: + assert torch.allclose(logits[0, :3], expected_slice, atol=1e-4) + else: + print("Logits:", logits[0, :3, :3]) + assert torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4) + print("Logits ok!") + + # verify loss, if applicable + if model_name == "videomae-base-short": + loss = outputs.loss + assert torch.allclose(loss, expected_loss, atol=1e-4) + print("Loss ok!") + + if pytorch_dump_folder_path is not None: + print(f"Saving model and image processor to {pytorch_dump_folder_path}") + image_processor.save_pretrained(pytorch_dump_folder_path) + model.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + print("Pushing to the hub...") + model.push_to_hub(model_name, organization="nielsr") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--checkpoint_url", + default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4", + type=str, + help=( + "URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct" + " download link." + ), + ) + parser.add_argument( + "--pytorch_dump_folder_path", + default="/Users/nielsrogge/Documents/VideoMAE/Test", + type=str, + help="Path to the output PyTorch model directory.", + ) + parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.") + parser.add_argument( + "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." + ) + + args = parser.parse_args() + convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/feature_extraction_videomae.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/feature_extraction_videomae.py new file mode 100644 index 0000000000000000000000000000000000000000..4a90d10c9c55e83711a20e29a494782b6b8415f9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/feature_extraction_videomae.py @@ -0,0 +1,33 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for VideoMAE.""" + +import warnings + +from ...utils import logging +from .image_processing_videomae import VideoMAEImageProcessor + + +logger = logging.get_logger(__name__) + + +class VideoMAEFeatureExtractor(VideoMAEImageProcessor): + def __init__(self, *args, **kwargs) -> None: + warnings.warn( + "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." + " Please use VideoMAEImageProcessor instead.", + FutureWarning, + ) + super().__init__(*args, **kwargs) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/image_processing_videomae.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/image_processing_videomae.py new file mode 100644 index 0000000000000000000000000000000000000000..6563d69c6503ea6bc9777854073c84b9981c79d6 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/image_processing_videomae.py @@ -0,0 +1,364 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for VideoMAE.""" + +from typing import Dict, List, Optional, Union + +import numpy as np + +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import ( + get_resize_output_image_size, + resize, + to_channel_dimension_format, +) +from ...image_utils import ( + IMAGENET_STANDARD_MEAN, + IMAGENET_STANDARD_STD, + ChannelDimension, + ImageInput, + PILImageResampling, + infer_channel_dimension_format, + is_scaled_image, + is_valid_image, + to_numpy_array, + valid_images, + validate_kwargs, + validate_preprocess_arguments, +) +from ...utils import TensorType, is_vision_available, logging + + +if is_vision_available(): + import PIL + + +logger = logging.get_logger(__name__) + + +def make_batched(videos) -> List[List[ImageInput]]: + if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]): + return videos + + elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]): + return [videos] + + elif is_valid_image(videos): + return [[videos]] + + raise ValueError(f"Could not make batched video from {videos}") + + +class VideoMAEImageProcessor(BaseImageProcessor): + r""" + Constructs a VideoMAE image processor. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the + `do_resize` parameter in the `preprocess` method. + size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): + Size of the output image after resizing. The shortest edge of the image will be resized to + `size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overriden by + `size` in the `preprocess` method. + resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): + Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the + `preprocess` method. + do_center_crop (`bool`, *optional*, defaults to `True`): + Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop` + parameter in the `preprocess` method. + crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): + Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the + `preprocess` method. + do_rescale (`bool`, *optional*, defaults to `True`): + Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` + parameter in the `preprocess` method. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter + in the `preprocess` method. + do_normalize (`bool`, *optional*, defaults to `True`): + Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` + method. + image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): + Mean to use if normalizing the image. This is a float or list of floats the length of the number of + channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): + Standard deviation to use if normalizing the image. This is a float or list of floats the length of the + number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. + """ + + model_input_names = ["pixel_values"] + + def __init__( + self, + do_resize: bool = True, + size: Dict[str, int] = None, + resample: PILImageResampling = PILImageResampling.BILINEAR, + do_center_crop: bool = True, + crop_size: Dict[str, int] = None, + do_rescale: bool = True, + rescale_factor: Union[int, float] = 1 / 255, + do_normalize: bool = True, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + **kwargs, + ) -> None: + super().__init__(**kwargs) + size = size if size is not None else {"shortest_edge": 224} + size = get_size_dict(size, default_to_square=False) + crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} + crop_size = get_size_dict(crop_size, param_name="crop_size") + + self.do_resize = do_resize + self.size = size + self.do_center_crop = do_center_crop + self.crop_size = crop_size + self.resample = resample + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN + self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD + self._valid_processor_keys = [ + "videos", + "do_resize", + "size", + "resample", + "do_center_crop", + "crop_size", + "do_rescale", + "rescale_factor", + "do_normalize", + "image_mean", + "image_std", + "return_tensors", + "data_format", + "input_data_format", + ] + + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + resample: PILImageResampling = PILImageResampling.BILINEAR, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Resize an image. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will + have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its + shortest edge of length `s` while keeping the aspect ratio of the original image. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): + Resampling filter to use when resiizing the image. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the image. If not provided, it will be the same as the input image. + input_data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + size = get_size_dict(size, default_to_square=False) + if "shortest_edge" in size: + output_size = get_resize_output_image_size( + image, size["shortest_edge"], default_to_square=False, input_data_format=input_data_format + ) + elif "height" in size and "width" in size: + output_size = (size["height"], size["width"]) + else: + raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") + return resize( + image, + size=output_size, + resample=resample, + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + + def _preprocess_image( + self, + image: ImageInput, + do_resize: bool = None, + size: Dict[str, int] = None, + resample: PILImageResampling = None, + do_center_crop: bool = None, + crop_size: Dict[str, int] = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> np.ndarray: + """Preprocesses a single image.""" + validate_preprocess_arguments( + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_center_crop=do_center_crop, + crop_size=crop_size, + do_resize=do_resize, + size=size, + resample=resample, + ) + + # All transformations expect numpy arrays. + image = to_numpy_array(image) + + if is_scaled_image(image) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + + if input_data_format is None: + input_data_format = infer_channel_dimension_format(image) + + if do_resize: + image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) + + if do_center_crop: + image = self.center_crop(image, size=crop_size, input_data_format=input_data_format) + + if do_rescale: + image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) + + if do_normalize: + image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) + + image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) + return image + + def preprocess( + self, + videos: ImageInput, + do_resize: bool = None, + size: Dict[str, int] = None, + resample: PILImageResampling = None, + do_center_crop: bool = None, + crop_size: Dict[str, int] = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: ChannelDimension = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> PIL.Image.Image: + """ + Preprocess an image or batch of images. + + Args: + images (`ImageInput`): + Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If + passing in images with pixel values between 0 and 1, set `do_rescale=False`. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to `self.size`): + Size of the image after applying resize. + resample (`PILImageResampling`, *optional*, defaults to `self.resample`): + Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only + has an effect if `do_resize` is set to `True`. + do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`): + Whether to centre crop the image. + crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): + Size of the image after applying the centre crop. + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image values between [0 - 1]. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to rescale the image by if `do_rescale` is set to `True`. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Image mean. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Image standard deviation. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - Unset: Use the inferred channel dimension format of the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + do_resize = do_resize if do_resize is not None else self.do_resize + resample = resample if resample is not None else self.resample + do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + + size = size if size is not None else self.size + size = get_size_dict(size, default_to_square=False) + crop_size = crop_size if crop_size is not None else self.crop_size + crop_size = get_size_dict(crop_size, param_name="crop_size") + + validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) + + if not valid_images(videos): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + + videos = make_batched(videos) + + videos = [ + [ + self._preprocess_image( + image=img, + do_resize=do_resize, + size=size, + resample=resample, + do_center_crop=do_center_crop, + crop_size=crop_size, + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + data_format=data_format, + input_data_format=input_data_format, + ) + for img in video + ] + for video in videos + ] + + data = {"pixel_values": videos} + return BatchFeature(data=data, tensor_type=return_tensors) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/modeling_videomae.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/modeling_videomae.py new file mode 100644 index 0000000000000000000000000000000000000000..aac69b6c536be4b7fd0120479f58ab953f72ab68 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/modeling_videomae.py @@ -0,0 +1,1097 @@ +# coding=utf-8 +# Copyright 2022 Multimedia Computing Group, Nanjing University and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch VideoMAE (masked autoencoder) model.""" + + +import collections.abc +import math +from copy import deepcopy +from dataclasses import dataclass +from typing import Optional, Set, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from ...utils.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from .configuration_videomae import VideoMAEConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "VideoMAEConfig" +_CHECKPOINT_FOR_DOC = "MCG-NJU/videomae-base" + +VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "MCG-NJU/videomae-base", + # See all VideoMAE models at https://huggingface.co/models?filter=videomae +] + + +@dataclass +class VideoMAEDecoderOutput(ModelOutput): + """ + Class for VideoMAEDecoder's outputs, with potential hidden states and attentions. + + Args: + logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`): + Pixel reconstruction logits. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class VideoMAEForPreTrainingOutput(ModelOutput): + """ + Class for VideoMAEForPreTraining's outputs, with potential hidden states and attentions. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`): + Pixel reconstruction loss. + logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`): + Pixel reconstruction logits. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +# sin-cos position encoding +# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31 +def get_sinusoid_encoding_table(n_position, d_hid): + """Sinusoid position encoding table""" + + # TODO: make it with torch instead of numpy + def get_position_angle_vec(position): + return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] + + sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) + sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i + sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 + + return torch.FloatTensor(sinusoid_table).unsqueeze(0) + + +class VideoMAEEmbeddings(nn.Module): + """ + Construct the patch and position embeddings. + + """ + + def __init__(self, config): + super().__init__() + + self.patch_embeddings = VideoMAEPatchEmbeddings(config) + self.num_patches = self.patch_embeddings.num_patches + # fixed sin-cos embedding + self.position_embeddings = get_sinusoid_encoding_table(self.num_patches, config.hidden_size) + self.config = config + + def forward(self, pixel_values, bool_masked_pos): + # create patch embeddings + embeddings = self.patch_embeddings(pixel_values) + + # add position embeddings + embeddings = embeddings + self.position_embeddings.type_as(embeddings).to(embeddings.device).clone().detach() + + # only keep visible patches + # ~bool_masked_pos means visible + if bool_masked_pos is not None: + batch_size, _, num_channels = embeddings.shape + embeddings = embeddings[~bool_masked_pos] + embeddings = embeddings.reshape(batch_size, -1, num_channels) + + return embeddings + + +class VideoMAEPatchEmbeddings(nn.Module): + """ + Video to Patch Embedding. This module turns a batch of videos of shape (batch_size, num_frames, num_channels, + height, width) into a tensor of shape (batch_size, seq_len, hidden_size) to be consumed by a Transformer encoder. + + The seq_len (the number of patches) equals (number of frames // tubelet_size) * (height // patch_size) * (width // + patch_size). + + """ + + def __init__(self, config): + super().__init__() + + image_size = config.image_size + patch_size = config.patch_size + num_channels = config.num_channels + hidden_size = config.hidden_size + num_frames = config.num_frames + tubelet_size = config.tubelet_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + self.image_size = image_size + self.patch_size = patch_size + self.tubelet_size = int(tubelet_size) + num_patches = ( + (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) * (num_frames // self.tubelet_size) + ) + self.num_channels = num_channels + self.num_patches = num_patches + self.projection = nn.Conv3d( + in_channels=num_channels, + out_channels=hidden_size, + kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), + stride=(self.tubelet_size, patch_size[0], patch_size[1]), + ) + + def forward(self, pixel_values): + batch_size, num_frames, num_channels, height, width = pixel_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." + ) + # permute to (batch_size, num_channels, num_frames, height, width) + pixel_values = pixel_values.permute(0, 2, 1, 3, 4) + embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) + return embeddings + + +class VideoMAESelfAttention(nn.Module): + def __init__(self, config: VideoMAEConfig) -> None: + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) + self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False) + + if config.qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(self.all_head_size)) + self.v_bias = nn.Parameter(torch.zeros(self.all_head_size)) + else: + self.q_bias = None + self.v_bias = None + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + k_bias = torch.zeros_like(self.v_bias, requires_grad=False) if self.q_bias is not None else None + keys = nn.functional.linear(input=hidden_states, weight=self.key.weight, bias=k_bias) + values = nn.functional.linear(input=hidden_states, weight=self.value.weight, bias=self.v_bias) + queries = nn.functional.linear(input=hidden_states, weight=self.query.weight, bias=self.q_bias) + + key_layer = self.transpose_for_scores(keys) + value_layer = self.transpose_for_scores(values) + query_layer = self.transpose_for_scores(queries) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->VideoMAE +class VideoMAESelfOutput(nn.Module): + """ + The residual connection is defined in VideoMAELayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: VideoMAEConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->VideoMAE +class VideoMAEAttention(nn.Module): + def __init__(self, config: VideoMAEConfig) -> None: + super().__init__() + self.attention = VideoMAESelfAttention(config) + self.output = VideoMAESelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads: Set[int]) -> None: + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_outputs = self.attention(hidden_states, head_mask, output_attentions) + + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTIntermediate ViT->VideoMAE +class VideoMAEIntermediate(nn.Module): + def __init__(self, config: VideoMAEConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTOutput ViT->VideoMAE +class VideoMAEOutput(nn.Module): + def __init__(self, config: VideoMAEConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + hidden_states = hidden_states + input_tensor + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->VideoMAE +class VideoMAELayer(nn.Module): + """This corresponds to the Block class in the timm implementation.""" + + def __init__(self, config: VideoMAEConfig) -> None: + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = VideoMAEAttention(config) + self.intermediate = VideoMAEIntermediate(config) + self.output = VideoMAEOutput(config) + self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_attention_outputs = self.attention( + self.layernorm_before(hidden_states), # in VideoMAE, layernorm is applied before self-attention + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # first residual connection + hidden_states = attention_output + hidden_states + + # in VideoMAE, layernorm is also applied after self-attention + layer_output = self.layernorm_after(hidden_states) + layer_output = self.intermediate(layer_output) + + # second residual connection is done here + layer_output = self.output(layer_output, hidden_states) + + outputs = (layer_output,) + outputs + + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->VideoMAE +class VideoMAEEncoder(nn.Module): + def __init__(self, config: VideoMAEConfig) -> None: + super().__init__() + self.config = config + self.layer = nn.ModuleList([VideoMAELayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class VideoMAEPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = VideoMAEConfig + base_model_prefix = "videomae" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv3d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +VIDEOMAE_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`VideoMAEConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +VIDEOMAE_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`VideoMAEImageProcessor.__call__`] for details. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare VideoMAE Model transformer outputting raw hidden-states without any specific head on top.", + VIDEOMAE_START_DOCSTRING, +) +class VideoMAEModel(VideoMAEPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + + self.embeddings = VideoMAEEmbeddings(config) + self.encoder = VideoMAEEncoder(config) + + if config.use_mean_pooling: + self.layernorm = None + else: + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + bool_masked_pos: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the + batch must have the same number of masked patches. If `None`, then all patches are considered. Sequence + length is `(num_frames // tubelet_size) * (image_size // patch_size) ** 2`. + + Returns: + + Examples: + + ```python + >>> import av + >>> import numpy as np + + >>> from transformers import AutoImageProcessor, VideoMAEModel + >>> from huggingface_hub import hf_hub_download + + >>> np.random.seed(0) + + + >>> def read_video_pyav(container, indices): + ... ''' + ... Decode the video with PyAV decoder. + ... Args: + ... container (`av.container.input.InputContainer`): PyAV container. + ... indices (`List[int]`): List of frame indices to decode. + ... Returns: + ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). + ... ''' + ... frames = [] + ... container.seek(0) + ... start_index = indices[0] + ... end_index = indices[-1] + ... for i, frame in enumerate(container.decode(video=0)): + ... if i > end_index: + ... break + ... if i >= start_index and i in indices: + ... frames.append(frame) + ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) + + + >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): + ... ''' + ... Sample a given number of frame indices from the video. + ... Args: + ... clip_len (`int`): Total number of frames to sample. + ... frame_sample_rate (`int`): Sample every n-th frame. + ... seg_len (`int`): Maximum allowed index of sample's last frame. + ... Returns: + ... indices (`List[int]`): List of sampled frame indices + ... ''' + ... converted_len = int(clip_len * frame_sample_rate) + ... end_idx = np.random.randint(converted_len, seg_len) + ... start_idx = end_idx - converted_len + ... indices = np.linspace(start_idx, end_idx, num=clip_len) + ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) + ... return indices + + + >>> # video clip consists of 300 frames (10 seconds at 30 FPS) + >>> file_path = hf_hub_download( + ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" + ... ) + >>> container = av.open(file_path) + + >>> # sample 16 frames + >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames) + >>> video = read_video_pyav(container, indices) + + >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base") + >>> model = VideoMAEModel.from_pretrained("MCG-NJU/videomae-base") + + >>> # prepare video for the model + >>> inputs = image_processor(list(video), return_tensors="pt") + + >>> # forward pass + >>> outputs = model(**inputs) + >>> last_hidden_states = outputs.last_hidden_state + >>> list(last_hidden_states.shape) + [1, 1568, 768] + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings(pixel_values, bool_masked_pos) + + encoder_outputs = self.encoder( + embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + if self.layernorm is not None: + sequence_output = self.layernorm(sequence_output) + + if not return_dict: + return (sequence_output,) + encoder_outputs[1:] + + return BaseModelOutput( + last_hidden_state=sequence_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class VideoMAEDecoder(nn.Module): + def __init__(self, config, num_patches): + super().__init__() + + decoder_num_labels = config.num_channels * config.tubelet_size * config.patch_size**2 + + decoder_config = deepcopy(config) + decoder_config.hidden_size = config.decoder_hidden_size + decoder_config.num_hidden_layers = config.decoder_num_hidden_layers + decoder_config.num_attention_heads = config.decoder_num_attention_heads + decoder_config.intermediate_size = config.decoder_intermediate_size + self.decoder_layers = nn.ModuleList( + [VideoMAELayer(decoder_config) for _ in range(config.decoder_num_hidden_layers)] + ) + + self.norm = nn.LayerNorm(config.decoder_hidden_size) + self.head = ( + nn.Linear(config.decoder_hidden_size, decoder_num_labels) if decoder_num_labels > 0 else nn.Identity() + ) + + self.gradient_checkpointing = False + self.config = config + + def forward( + self, + hidden_states, + return_token_num, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + # apply Transformer layers (blocks) + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + for i, layer_module in enumerate(self.decoder_layers): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + None, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, head_mask=None, output_attentions=output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if return_token_num > 0: + hidden_states = hidden_states[:, -return_token_num:] + + # predictor projection + hidden_states = self.norm(hidden_states) + logits = self.head(hidden_states) + + if not return_dict: + return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None) + return VideoMAEDecoderOutput(logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions) + + +@add_start_docstrings( + "The VideoMAE Model transformer with the decoder on top for self-supervised pre-training.", + VIDEOMAE_START_DOCSTRING, +) +class VideoMAEForPreTraining(VideoMAEPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + + self.videomae = VideoMAEModel(config) + + self.encoder_to_decoder = nn.Linear(config.hidden_size, config.decoder_hidden_size, bias=False) + self.mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size)) + self.position_embeddings = get_sinusoid_encoding_table( + self.videomae.embeddings.num_patches, config.decoder_hidden_size + ) + + self.decoder = VideoMAEDecoder(config, num_patches=self.videomae.embeddings.num_patches) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=VideoMAEForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + bool_masked_pos: torch.BoolTensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, VideoMAEForPreTrainingOutput]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the + batch must have the same number of masked patches. Sequence length is `(num_frames // tubelet_size) * + (image_size // patch_size) ** 2`. + + Returns: + + Examples: + ```python + >>> from transformers import AutoImageProcessor, VideoMAEForPreTraining + >>> import numpy as np + >>> import torch + + >>> num_frames = 16 + >>> video = list(np.random.randint(0, 256, (num_frames, 3, 224, 224))) + + >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base") + >>> model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base") + + >>> pixel_values = image_processor(video, return_tensors="pt").pixel_values + + >>> num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2 + >>> seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame + >>> bool_masked_pos = torch.randint(0, 2, (1, seq_length)).bool() + + >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) + >>> loss = outputs.loss + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.videomae( + pixel_values, + bool_masked_pos=bool_masked_pos, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + sequence_output = self.encoder_to_decoder( + sequence_output + ) # [batch_size, num_visible_patches, decoder_hidden_size] + batch_size, seq_len, num_channels = sequence_output.shape + + # we don't unshuffle the correct visible token order, but shuffle the position embeddings accordingly. + if bool_masked_pos is None: + raise ValueError("One must provided a boolean mask ") + expanded_position_embeddings = self.position_embeddings.expand(batch_size, -1, -1).type_as(pixel_values) + expanded_position_embeddings = expanded_position_embeddings.to(pixel_values.device).clone().detach() + pos_emb_visible = expanded_position_embeddings[~bool_masked_pos].reshape(batch_size, -1, num_channels) + pos_emb_mask = expanded_position_embeddings[bool_masked_pos].reshape(batch_size, -1, num_channels) + + # [batch_size, num_patches, decoder_hidden_size] + x_full = torch.cat([sequence_output + pos_emb_visible, self.mask_token + pos_emb_mask], dim=1) + + # [batch_size, num_masked_patches, num_channels * patch_size * patch_size] + decoder_outputs = self.decoder(x_full, pos_emb_mask.shape[1]) + logits = decoder_outputs.logits + + loss = None + with torch.no_grad(): + # calculate the labels to be predicted + if self.config.num_channels != 3: + # Can't unnormalize with default means/stds + frames = pixel_values + else: + # first, unnormalize the frames + device = pixel_values.device + dtype = pixel_values.dtype + mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device=device, dtype=dtype)[None, None, :, None, None] + std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device=device, dtype=dtype)[None, None, :, None, None] + frames = pixel_values * std + mean # in [0, 1] + + batch_size, time, num_channels, height, width = frames.shape + tubelet_size, patch_size = self.config.tubelet_size, self.config.patch_size + if self.config.norm_pix_loss: + # step 1: split up dimensions (time by tubelet_size, height by patch_size, width by patch_size) + frames = frames.view( + batch_size, + time // tubelet_size, + tubelet_size, + num_channels, + height // patch_size, + patch_size, + width // patch_size, + patch_size, + ) + # step 2: move dimensions to concatenate: + frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous() + # step 3: concatenate: + frames = frames.view( + batch_size, + time // tubelet_size * height // patch_size * width // patch_size, + tubelet_size * patch_size * patch_size, + num_channels, + ) + # step 4: normalize. The authors find that the mean is about 0.48 and standard deviation is about 0.08. + frames_norm = (frames - frames.mean(dim=-2, keepdim=True)) / ( + frames.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6 + ) + # step 5: reshape to (batch_size, T//ts * H//ps * W//ps, ts * ps * ps * C) + videos_patch = frames_norm.view( + batch_size, + time // tubelet_size * height // patch_size * width // patch_size, + tubelet_size * patch_size * patch_size * num_channels, + ) + else: + if self.config.num_channels != 3: + raise ValueError( + "Can't unnormalize non-RGB images. Consider setting config.norm_pix_loss to False." + ) + # step 1: split up dimensions (time by tubelet_size, height by patch_size, width by patch_size) + frames = frames.view( + batch_size, + time // tubelet_size, + tubelet_size, + num_channels, + height // patch_size, + patch_size, + width // patch_size, + patch_size, + ) + # step 2: move dimensions to concatenate: (batch_size, T//ts, H//ps, W//ps, ts, ps, ps, C) + frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous() + # step 3: concatenate + videos_patch = frames.view( + batch_size, + time // tubelet_size * height // patch_size * width // patch_size, + tubelet_size * patch_size * patch_size * num_channels, + ) + + batch_size, _, num_channels = videos_patch.shape + labels = videos_patch[bool_masked_pos].reshape(batch_size, -1, num_channels) + + loss_fct = MSELoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return VideoMAEForPreTrainingOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """VideoMAE Model transformer with a video classification head on top (a linear layer on top of the average pooled hidden + states of all tokens) e.g. for ImageNet.""", + VIDEOMAE_START_DOCSTRING, +) +class VideoMAEForVideoClassification(VideoMAEPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.num_labels = config.num_labels + self.videomae = VideoMAEModel(config) + + # Classifier head + self.fc_norm = nn.LayerNorm(config.hidden_size) if config.use_mean_pooling else None + self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ImageClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> import av + >>> import torch + >>> import numpy as np + + >>> from transformers import AutoImageProcessor, VideoMAEForVideoClassification + >>> from huggingface_hub import hf_hub_download + + >>> np.random.seed(0) + + + >>> def read_video_pyav(container, indices): + ... ''' + ... Decode the video with PyAV decoder. + ... Args: + ... container (`av.container.input.InputContainer`): PyAV container. + ... indices (`List[int]`): List of frame indices to decode. + ... Returns: + ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). + ... ''' + ... frames = [] + ... container.seek(0) + ... start_index = indices[0] + ... end_index = indices[-1] + ... for i, frame in enumerate(container.decode(video=0)): + ... if i > end_index: + ... break + ... if i >= start_index and i in indices: + ... frames.append(frame) + ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) + + + >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): + ... ''' + ... Sample a given number of frame indices from the video. + ... Args: + ... clip_len (`int`): Total number of frames to sample. + ... frame_sample_rate (`int`): Sample every n-th frame. + ... seg_len (`int`): Maximum allowed index of sample's last frame. + ... Returns: + ... indices (`List[int]`): List of sampled frame indices + ... ''' + ... converted_len = int(clip_len * frame_sample_rate) + ... end_idx = np.random.randint(converted_len, seg_len) + ... start_idx = end_idx - converted_len + ... indices = np.linspace(start_idx, end_idx, num=clip_len) + ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) + ... return indices + + + >>> # video clip consists of 300 frames (10 seconds at 30 FPS) + >>> file_path = hf_hub_download( + ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" + ... ) + >>> container = av.open(file_path) + + >>> # sample 16 frames + >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames) + >>> video = read_video_pyav(container, indices) + + >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics") + >>> model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics") + + >>> inputs = image_processor(list(video), return_tensors="pt") + + >>> with torch.no_grad(): + ... outputs = model(**inputs) + ... logits = outputs.logits + + >>> # model predicts one of the 400 Kinetics-400 classes + >>> predicted_label = logits.argmax(-1).item() + >>> print(model.config.id2label[predicted_label]) + eating spaghetti + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.videomae( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + if self.fc_norm is not None: + sequence_output = self.fc_norm(sequence_output.mean(1)) + else: + sequence_output = sequence_output[:, 0] + + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/convert_dino_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/convert_dino_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..7eec823ad5d1d80a5a438693dbaee49189d7731f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/convert_dino_to_pytorch.py @@ -0,0 +1,219 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert ViT checkpoints trained with the DINO method.""" + + +import argparse +import json +from pathlib import Path + +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +# here we list all keys to be renamed (original name on the left, our name on the right) +def create_rename_keys(config, base_model=False): + rename_keys = [] + for i in range(config.num_hidden_layers): + # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms + rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) + rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) + rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight")) + rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) + rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) + rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) + rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) + rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) + rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) + rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) + + # projection layer + position embeddings + rename_keys.extend( + [ + ("cls_token", "vit.embeddings.cls_token"), + ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), + ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), + ("pos_embed", "vit.embeddings.position_embeddings"), + ] + ) + + if base_model: + # layernorm + pooler + rename_keys.extend( + [ + ("norm.weight", "layernorm.weight"), + ("norm.bias", "layernorm.bias"), + ] + ) + + # if just the base model, we should remove "vit" from all keys that start with "vit" + rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] + else: + # layernorm + classification head + rename_keys.extend( + [ + ("norm.weight", "vit.layernorm.weight"), + ("norm.bias", "vit.layernorm.bias"), + ("head.weight", "classifier.weight"), + ("head.bias", "classifier.bias"), + ] + ) + + return rename_keys + + +# we split up the matrix of each encoder layer into queries, keys and values +def read_in_q_k_v(state_dict, config, base_model=False): + for i in range(config.num_hidden_layers): + if base_model: + prefix = "" + else: + prefix = "vit." + # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") + in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ + : config.hidden_size, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ + config.hidden_size : config.hidden_size * 2, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ + config.hidden_size : config.hidden_size * 2 + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ + -config.hidden_size :, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] + + +def remove_classification_head_(state_dict): + ignore_keys = ["head.weight", "head.bias"] + for k in ignore_keys: + state_dict.pop(k, None) + + +def rename_key(dct, old, new): + val = dct.pop(old) + dct[new] = val + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im = Image.open(requests.get(url, stream=True).raw) + return im + + +@torch.no_grad() +def convert_vit_checkpoint(model_name, pytorch_dump_folder_path, base_model=True): + """ + Copy/paste/tweak model's weights to our ViT structure. + """ + + # define default ViT configuration + config = ViTConfig() + # patch_size + if model_name[-1] == "8": + config.patch_size = 8 + # set labels if required + if not base_model: + config.num_labels = 1000 + repo_id = "huggingface/label-files" + filename = "imagenet-1k-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + # size of the architecture + if model_name in ["dino_vits8", "dino_vits16"]: + config.hidden_size = 384 + config.intermediate_size = 1536 + config.num_hidden_layers = 12 + config.num_attention_heads = 6 + + # load original model from torch hub + original_model = torch.hub.load("facebookresearch/dino:main", model_name) + original_model.eval() + + # load state_dict of original model, remove and rename some keys + state_dict = original_model.state_dict() + if base_model: + remove_classification_head_(state_dict) + rename_keys = create_rename_keys(config, base_model=base_model) + for src, dest in rename_keys: + rename_key(state_dict, src, dest) + read_in_q_k_v(state_dict, config, base_model) + + # load HuggingFace model + if base_model: + model = ViTModel(config, add_pooling_layer=False).eval() + else: + model = ViTForImageClassification(config).eval() + model.load_state_dict(state_dict) + + # Check outputs on an image, prepared by ViTImageProcessor + image_processor = ViTImageProcessor() + encoding = image_processor(images=prepare_img(), return_tensors="pt") + pixel_values = encoding["pixel_values"] + outputs = model(pixel_values) + + if base_model: + final_hidden_state_cls_token = original_model(pixel_values) + assert torch.allclose(final_hidden_state_cls_token, outputs.last_hidden_state[:, 0, :], atol=1e-1) + else: + logits = original_model(pixel_values) + assert logits.shape == outputs.logits.shape + assert torch.allclose(logits, outputs.logits, atol=1e-3) + + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + print(f"Saving model {model_name} to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + print(f"Saving image processor to {pytorch_dump_folder_path}") + image_processor.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--model_name", + default="dino_vitb16", + type=str, + help="Name of the model trained with DINO you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." + ) + parser.add_argument( + "--base_model", + action="store_true", + help="Whether to only convert the base model (no projection head weights).", + ) + + parser.set_defaults(base_model=True) + args = parser.parse_args() + convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/convert_vit_timm_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/convert_vit_timm_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..0ccd9b9f6685fe375955fdee7298c17cf308de86 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/convert_vit_timm_to_pytorch.py @@ -0,0 +1,255 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert ViT and non-distilled DeiT checkpoints from the timm library.""" + + +import argparse +from pathlib import Path + +import requests +import timm +import torch +from PIL import Image +from timm.data import ImageNetInfo, infer_imagenet_subset + +from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +# here we list all keys to be renamed (original name on the left, our name on the right) +def create_rename_keys(config, base_model=False): + rename_keys = [] + for i in range(config.num_hidden_layers): + # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms + rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) + rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) + rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight")) + rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) + rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) + rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) + rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) + rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) + rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) + rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) + + # projection layer + position embeddings + rename_keys.extend( + [ + ("cls_token", "vit.embeddings.cls_token"), + ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), + ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), + ("pos_embed", "vit.embeddings.position_embeddings"), + ] + ) + + if base_model: + # layernorm + rename_keys.extend( + [ + ("norm.weight", "layernorm.weight"), + ("norm.bias", "layernorm.bias"), + ] + ) + + # if just the base model, we should remove "vit" from all keys that start with "vit" + rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] + else: + # layernorm + classification head + rename_keys.extend( + [ + ("norm.weight", "vit.layernorm.weight"), + ("norm.bias", "vit.layernorm.bias"), + ("head.weight", "classifier.weight"), + ("head.bias", "classifier.bias"), + ] + ) + + return rename_keys + + +# we split up the matrix of each encoder layer into queries, keys and values +def read_in_q_k_v(state_dict, config, base_model=False): + for i in range(config.num_hidden_layers): + if base_model: + prefix = "" + else: + prefix = "vit." + # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") + in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ + : config.hidden_size, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ + config.hidden_size : config.hidden_size * 2, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ + config.hidden_size : config.hidden_size * 2 + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ + -config.hidden_size :, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] + + +def remove_classification_head_(state_dict): + ignore_keys = ["head.weight", "head.bias"] + for k in ignore_keys: + state_dict.pop(k, None) + + +def rename_key(dct, old, new): + val = dct.pop(old) + dct[new] = val + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im = Image.open(requests.get(url, stream=True).raw) + return im + + +@torch.no_grad() +def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path): + """ + Copy/paste/tweak model's weights to our ViT structure. + """ + + # define default ViT configuration + config = ViTConfig() + base_model = False + + # load original model from timm + timm_model = timm.create_model(vit_name, pretrained=True) + timm_model.eval() + + # detect unsupported ViT models in transformers + # fc_norm is present + if not isinstance(getattr(timm_model, "fc_norm", None), torch.nn.Identity): + raise ValueError(f"{vit_name} is not supported in transformers because of the presence of fc_norm.") + + # use of global average pooling in combination (or without) class token + if getattr(timm_model, "global_pool", None) == "avg": + raise ValueError(f"{vit_name} is not supported in transformers because of use of global average pooling.") + + # CLIP style vit with norm_pre layer present + if "clip" in vit_name and not isinstance(getattr(timm_model, "norm_pre", None), torch.nn.Identity): + raise ValueError( + f"{vit_name} is not supported in transformers because it's a CLIP style ViT with norm_pre layer." + ) + + # SigLIP style vit with attn_pool layer present + if "siglip" in vit_name and getattr(timm_model, "global_pool", None) == "map": + raise ValueError( + f"{vit_name} is not supported in transformers because it's a SigLIP style ViT with attn_pool." + ) + + # use of layer scale in ViT model blocks + if not isinstance(getattr(timm_model.blocks[0], "ls1", None), torch.nn.Identity) or not isinstance( + getattr(timm_model.blocks[0], "ls2", None), torch.nn.Identity + ): + raise ValueError(f"{vit_name} is not supported in transformers because it uses a layer scale in its blocks.") + + # Hybrid ResNet-ViTs + if not isinstance(timm_model.patch_embed, timm.layers.PatchEmbed): + raise ValueError(f"{vit_name} is not supported in transformers because it is a hybrid ResNet-ViT.") + + # get patch size and image size from the patch embedding submodule + config.patch_size = timm_model.patch_embed.patch_size[0] + config.image_size = timm_model.patch_embed.img_size[0] + + # retrieve architecture-specific parameters from the timm model + config.hidden_size = timm_model.embed_dim + config.intermediate_size = timm_model.blocks[0].mlp.fc1.out_features + config.num_hidden_layers = len(timm_model.blocks) + config.num_attention_heads = timm_model.blocks[0].attn.num_heads + + # check whether the model has a classification head or not + if timm_model.num_classes != 0: + config.num_labels = timm_model.num_classes + # infer ImageNet subset from timm model + imagenet_subset = infer_imagenet_subset(timm_model) + dataset_info = ImageNetInfo(imagenet_subset) + config.id2label = {i: dataset_info.index_to_label_name(i) for i in range(dataset_info.num_classes())} + config.label2id = {v: k for k, v in config.id2label.items()} + else: + print(f"{vit_name} is going to be converted as a feature extractor only.") + base_model = True + + # load state_dict of original model + state_dict = timm_model.state_dict() + + # remove and rename some keys in the state dict + if base_model: + remove_classification_head_(state_dict) + rename_keys = create_rename_keys(config, base_model) + for src, dest in rename_keys: + rename_key(state_dict, src, dest) + read_in_q_k_v(state_dict, config, base_model) + + # load HuggingFace model + if base_model: + model = ViTModel(config, add_pooling_layer=False).eval() + else: + model = ViTForImageClassification(config).eval() + model.load_state_dict(state_dict) + + # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor + if "deit" in vit_name: + image_processor = DeiTImageProcessor(size=config.image_size) + else: + image_processor = ViTImageProcessor(size=config.image_size) + encoding = image_processor(images=prepare_img(), return_tensors="pt") + pixel_values = encoding["pixel_values"] + outputs = model(pixel_values) + + if base_model: + timm_pooled_output = timm_model.forward_features(pixel_values) + assert timm_pooled_output.shape == outputs.last_hidden_state.shape + assert torch.allclose(timm_pooled_output, outputs.last_hidden_state, atol=1e-1) + else: + timm_logits = timm_model(pixel_values) + assert timm_logits.shape == outputs.logits.shape + assert torch.allclose(timm_logits, outputs.logits, atol=1e-3) + + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + print(f"Saving model {vit_name} to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + print(f"Saving image processor to {pytorch_dump_folder_path}") + image_processor.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--vit_name", + default="vit_base_patch16_224", + type=str, + help="Name of the ViT timm model you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." + ) + + args = parser.parse_args() + convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/image_processing_vit.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/image_processing_vit.py new file mode 100644 index 0000000000000000000000000000000000000000..4c7d8de714f72d996d69273eb83c20b4c685a115 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/image_processing_vit.py @@ -0,0 +1,289 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for ViT.""" + +from typing import Dict, List, Optional, Union + +import numpy as np + +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import resize, to_channel_dimension_format +from ...image_utils import ( + IMAGENET_STANDARD_MEAN, + IMAGENET_STANDARD_STD, + ChannelDimension, + ImageInput, + PILImageResampling, + infer_channel_dimension_format, + is_scaled_image, + make_list_of_images, + to_numpy_array, + valid_images, + validate_kwargs, + validate_preprocess_arguments, +) +from ...utils import TensorType, logging + + +logger = logging.get_logger(__name__) + + +class ViTImageProcessor(BaseImageProcessor): + r""" + Constructs a ViT image processor. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Whether to resize the image's (height, width) dimensions to the specified `(size["height"], + size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. + size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`): + Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` + method. + resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): + Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the + `preprocess` method. + do_rescale (`bool`, *optional*, defaults to `True`): + Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` + parameter in the `preprocess` method. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the + `preprocess` method. + do_normalize (`bool`, *optional*, defaults to `True`): + Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` + method. + image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): + Mean to use if normalizing the image. This is a float or list of floats the length of the number of + channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): + Standard deviation to use if normalizing the image. This is a float or list of floats the length of the + number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. + """ + + model_input_names = ["pixel_values"] + + def __init__( + self, + do_resize: bool = True, + size: Optional[Dict[str, int]] = None, + resample: PILImageResampling = PILImageResampling.BILINEAR, + do_rescale: bool = True, + rescale_factor: Union[int, float] = 1 / 255, + do_normalize: bool = True, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + **kwargs, + ) -> None: + super().__init__(**kwargs) + size = size if size is not None else {"height": 224, "width": 224} + size = get_size_dict(size) + self.do_resize = do_resize + self.do_rescale = do_rescale + self.do_normalize = do_normalize + self.size = size + self.resample = resample + self.rescale_factor = rescale_factor + self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN + self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD + self._valid_processor_keys = [ + "images", + "do_resize", + "size", + "resample", + "do_rescale", + "rescale_factor", + "do_normalize", + "image_mean", + "image_std", + "return_tensors", + "data_format", + "input_data_format", + ] + + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + resample: PILImageResampling = PILImageResampling.BILINEAR, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Resize an image to `(size["height"], size["width"])`. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): + `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. + data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the output image. If unset, the channel dimension format of the input + image is used. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + + Returns: + `np.ndarray`: The resized image. + """ + size = get_size_dict(size) + if "height" not in size or "width" not in size: + raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") + output_size = (size["height"], size["width"]) + return resize( + image, + size=output_size, + resample=resample, + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + + def preprocess( + self, + images: ImageInput, + do_resize: Optional[bool] = None, + size: Dict[str, int] = None, + resample: PILImageResampling = None, + do_rescale: Optional[bool] = None, + rescale_factor: Optional[float] = None, + do_normalize: Optional[bool] = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ): + """ + Preprocess an image or batch of images. + + Args: + images (`ImageInput`): + Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If + passing in images with pixel values between 0 and 1, set `do_rescale=False`. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to `self.size`): + Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after + resizing. + resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): + `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has + an effect if `do_resize` is set to `True`. + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image values between [0 - 1]. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to rescale the image by if `do_rescale` is set to `True`. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Image mean to use if `do_normalize` is set to `True`. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Image standard deviation to use if `do_normalize` is set to `True`. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - Unset: Use the channel dimension format of the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + do_resize = do_resize if do_resize is not None else self.do_resize + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + resample = resample if resample is not None else self.resample + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + + size = size if size is not None else self.size + size_dict = get_size_dict(size) + + images = make_list_of_images(images) + + validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + validate_preprocess_arguments( + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_resize=do_resize, + size=size, + resample=resample, + ) + + # All transformations expect numpy arrays. + images = [to_numpy_array(image) for image in images] + + if is_scaled_image(images[0]) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + + if input_data_format is None: + # We assume that all images have the same channel dimension format. + input_data_format = infer_channel_dimension_format(images[0]) + + if do_resize: + images = [ + self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format) + for image in images + ] + + if do_rescale: + images = [ + self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) + for image in images + ] + + if do_normalize: + images = [ + self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) + for image in images + ] + + images = [ + to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images + ] + + data = {"pixel_values": images} + return BatchFeature(data=data, tensor_type=return_tensors) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_flax_vit.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_flax_vit.py new file mode 100644 index 0000000000000000000000000000000000000000..586c8b62f6dad084cb3034c355e279908a6ba725 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_flax_vit.py @@ -0,0 +1,673 @@ +# coding=utf-8 +# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict + +from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling, FlaxSequenceClassifierOutput +from ...modeling_flax_utils import ( + ACT2FN, + FlaxPreTrainedModel, + append_replace_return_docstrings, + overwrite_call_docstring, +) +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward +from .configuration_vit import ViTConfig + + +VIT_START_DOCSTRING = r""" + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading, saving and converting weights from PyTorch models) + + This model is also a + [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as + a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and + behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`ViTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +VIT_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] + for details. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class FlaxViTPatchEmbeddings(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + image_size = self.config.image_size + patch_size = self.config.patch_size + num_patches = (image_size // patch_size) * (image_size // patch_size) + self.num_patches = num_patches + self.num_channels = self.config.num_channels + self.projection = nn.Conv( + self.config.hidden_size, + kernel_size=(patch_size, patch_size), + strides=(patch_size, patch_size), + padding="VALID", + dtype=self.dtype, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, "fan_in", "truncated_normal" + ), + ) + + def __call__(self, pixel_values): + num_channels = pixel_values.shape[-1] + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + embeddings = self.projection(pixel_values) + batch_size, _, _, channels = embeddings.shape + return jnp.reshape(embeddings, (batch_size, -1, channels)) + + +class FlaxViTEmbeddings(nn.Module): + """Construct the CLS token, position and patch embeddings.""" + + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.cls_token = self.param( + "cls_token", + jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"), + (1, 1, self.config.hidden_size), + ) + self.patch_embeddings = FlaxViTPatchEmbeddings(self.config, dtype=self.dtype) + num_patches = self.patch_embeddings.num_patches + self.position_embeddings = self.param( + "position_embeddings", + jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"), + (1, num_patches + 1, self.config.hidden_size), + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, pixel_values, deterministic=True): + batch_size = pixel_values.shape[0] + + embeddings = self.patch_embeddings(pixel_values) + + cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size)) + embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1) + embeddings = embeddings + self.position_embeddings + embeddings = self.dropout(embeddings, deterministic=deterministic) + return embeddings + + +class FlaxViTSelfAttention(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + if self.config.hidden_size % self.config.num_attention_heads != 0: + raise ValueError( + "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads`:" + " {self.config.num_attention_heads}" + ) + + self.query = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal" + ), + use_bias=self.config.qkv_bias, + ) + self.key = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal" + ), + use_bias=self.config.qkv_bias, + ) + self.value = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal" + ), + use_bias=self.config.qkv_bias, + ) + + def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False): + head_dim = self.config.hidden_size // self.config.num_attention_heads + + query_states = self.query(hidden_states).reshape( + hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) + ) + value_states = self.value(hidden_states).reshape( + hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) + ) + key_states = self.key(hidden_states).reshape( + hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) + ) + + dropout_rng = None + if not deterministic and self.config.attention_probs_dropout_prob > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + dropout_rng=dropout_rng, + dropout_rate=self.config.attention_probs_dropout_prob, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) + + outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) + return outputs + + +class FlaxViTSelfOutput(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, "fan_in", "truncated_normal" + ), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, hidden_states, input_tensor, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + return hidden_states + + +class FlaxViTAttention(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.attention = FlaxViTSelfAttention(self.config, dtype=self.dtype) + self.output = FlaxViTSelfOutput(self.config, dtype=self.dtype) + + def __call__(self, hidden_states, deterministic=True, output_attentions: bool = False): + attn_outputs = self.attention(hidden_states, deterministic=deterministic, output_attentions=output_attentions) + attn_output = attn_outputs[0] + hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_outputs[1],) + + return outputs + + +class FlaxViTIntermediate(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.intermediate_size, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, "fan_in", "truncated_normal" + ), + dtype=self.dtype, + ) + self.activation = ACT2FN[self.config.hidden_act] + + def __call__(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +class FlaxViTOutput(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, "fan_in", "truncated_normal" + ), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, hidden_states, attention_output, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = hidden_states + attention_output + return hidden_states + + +class FlaxViTLayer(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.attention = FlaxViTAttention(self.config, dtype=self.dtype) + self.intermediate = FlaxViTIntermediate(self.config, dtype=self.dtype) + self.output = FlaxViTOutput(self.config, dtype=self.dtype) + self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + + def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False): + attention_outputs = self.attention( + self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention + deterministic=deterministic, + output_attentions=output_attentions, + ) + + attention_output = attention_outputs[0] + + # first residual connection + attention_output = attention_output + hidden_states + + # in ViT, layernorm is also applied after self-attention + layer_output = self.layernorm_after(attention_output) + + hidden_states = self.intermediate(layer_output) + hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attention_outputs[1],) + return outputs + + +class FlaxViTLayerCollection(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxViTLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) + ] + + def __call__( + self, + hidden_states, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + for i, layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + layer_outputs = layer(hidden_states, deterministic=deterministic, output_attentions=output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions += (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = (hidden_states,) + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +class FlaxViTEncoder(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layer = FlaxViTLayerCollection(self.config, dtype=self.dtype) + + def __call__( + self, + hidden_states, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + return self.layer( + hidden_states, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +class FlaxViTPooler(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, "fan_in", "truncated_normal" + ), + dtype=self.dtype, + ) + + def __call__(self, hidden_states): + cls_hidden_state = hidden_states[:, 0] + cls_hidden_state = self.dense(cls_hidden_state) + return nn.tanh(cls_hidden_state) + + +class FlaxViTPreTrainedModel(FlaxPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ViTConfig + base_model_prefix = "vit" + main_input_name = "pixel_values" + module_class: nn.Module = None + + def __init__( + self, + config: ViTConfig, + input_shape=None, + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + if input_shape is None: + input_shape = (1, config.image_size, config.image_size, config.num_channels) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + pixel_values = jnp.zeros(input_shape, dtype=self.dtype) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def __call__( + self, + pixel_values, + params: dict = None, + dropout_rng: jax.random.PRNGKey = None, + train: bool = False, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + return self.module.apply( + {"params": params or self.params}, + jnp.array(pixel_values, dtype=jnp.float32), + not train, + output_attentions, + output_hidden_states, + return_dict, + rngs=rngs, + ) + + +class FlaxViTModule(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + add_pooling_layer: bool = True + + def setup(self): + self.embeddings = FlaxViTEmbeddings(self.config, dtype=self.dtype) + self.encoder = FlaxViTEncoder(self.config, dtype=self.dtype) + self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.pooler = FlaxViTPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None + + def __call__( + self, + pixel_values, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + hidden_states = self.embeddings(pixel_values, deterministic=deterministic) + + outputs = self.encoder( + hidden_states, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + hidden_states = self.layernorm(hidden_states) + pooled = self.pooler(hidden_states) if self.add_pooling_layer else None + + if not return_dict: + # if pooled is None, don't return it + if pooled is None: + return (hidden_states,) + outputs[1:] + return (hidden_states, pooled) + outputs[1:] + + return FlaxBaseModelOutputWithPooling( + last_hidden_state=hidden_states, + pooler_output=pooled, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.", + VIT_START_DOCSTRING, +) +class FlaxViTModel(FlaxViTPreTrainedModel): + module_class = FlaxViTModule + + +FLAX_VISION_MODEL_DOCSTRING = """ + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, FlaxViTModel + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") + >>> model = FlaxViTModel.from_pretrained("google/vit-base-patch16-224-in21k") + + >>> inputs = image_processor(images=image, return_tensors="np") + >>> outputs = model(**inputs) + >>> last_hidden_states = outputs.last_hidden_state + ``` +""" + +overwrite_call_docstring(FlaxViTModel, FLAX_VISION_MODEL_DOCSTRING) +append_replace_return_docstrings(FlaxViTModel, output_type=FlaxBaseModelOutputWithPooling, config_class=ViTConfig) + + +class FlaxViTForImageClassificationModule(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.vit = FlaxViTModule(config=self.config, dtype=self.dtype, add_pooling_layer=False) + self.classifier = nn.Dense( + self.config.num_labels, + dtype=self.dtype, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, "fan_in", "truncated_normal" + ), + ) + + def __call__( + self, + pixel_values=None, + deterministic: bool = True, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.vit( + pixel_values, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.classifier(hidden_states[:, 0, :]) + + if not return_dict: + output = (logits,) + outputs[2:] + return output + + return FlaxSequenceClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of + the [CLS] token) e.g. for ImageNet. + """, + VIT_START_DOCSTRING, +) +class FlaxViTForImageClassification(FlaxViTPreTrainedModel): + module_class = FlaxViTForImageClassificationModule + + +FLAX_VISION_CLASSIF_DOCSTRING = """ + Returns: + + Example: + + ```python + >>> from transformers import AutoImageProcessor, FlaxViTForImageClassification + >>> from PIL import Image + >>> import jax + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224") + >>> model = FlaxViTForImageClassification.from_pretrained("google/vit-base-patch16-224") + + >>> inputs = image_processor(images=image, return_tensors="np") + >>> outputs = model(**inputs) + >>> logits = outputs.logits + + >>> # model predicts one of the 1000 ImageNet classes + >>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1) + >>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()]) + ``` +""" + +overwrite_call_docstring(FlaxViTForImageClassification, FLAX_VISION_CLASSIF_DOCSTRING) +append_replace_return_docstrings( + FlaxViTForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=ViTConfig +) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_vit.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_vit.py new file mode 100644 index 0000000000000000000000000000000000000000..734ccf6a9e80f4a5f231b92a00bc0c3a1037c5a8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_vit.py @@ -0,0 +1,841 @@ +# coding=utf-8 +# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch ViT model.""" + + +import collections.abc +import math +from typing import Dict, List, Optional, Set, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPooling, + ImageClassifierOutput, + MaskedImageModelingOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_vit import ViTConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "ViTConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k" +_EXPECTED_OUTPUT_SHAPE = [1, 197, 768] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224" +_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat" + + +VIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "google/vit-base-patch16-224", + # See all ViT models at https://huggingface.co/models?filter=vit +] + + +class ViTEmbeddings(nn.Module): + """ + Construct the CLS token, position and patch embeddings. Optionally, also the mask token. + """ + + def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None: + super().__init__() + + self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) + self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None + self.patch_embeddings = ViTPatchEmbeddings(config) + num_patches = self.patch_embeddings.num_patches + self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.config = config + + def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: + """ + This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher + resolution images. + + Source: + https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 + """ + + num_patches = embeddings.shape[1] - 1 + num_positions = self.position_embeddings.shape[1] - 1 + if num_patches == num_positions and height == width: + return self.position_embeddings + class_pos_embed = self.position_embeddings[:, 0] + patch_pos_embed = self.position_embeddings[:, 1:] + dim = embeddings.shape[-1] + h0 = height // self.config.patch_size + w0 = width // self.config.patch_size + # we add a small number to avoid floating point error in the interpolation + # see discussion at https://github.com/facebookresearch/dino/issues/8 + h0, w0 = h0 + 0.1, w0 + 0.1 + patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) + patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed, + scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), + mode="bicubic", + align_corners=False, + ) + assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1] + patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) + return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) + + def forward( + self, + pixel_values: torch.Tensor, + bool_masked_pos: Optional[torch.BoolTensor] = None, + interpolate_pos_encoding: bool = False, + ) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) + + if bool_masked_pos is not None: + seq_length = embeddings.shape[1] + mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) + # replace the masked visual tokens by mask_tokens + mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) + embeddings = embeddings * (1.0 - mask) + mask_tokens * mask + + # add the [CLS] token to the embedded patch tokens + cls_tokens = self.cls_token.expand(batch_size, -1, -1) + embeddings = torch.cat((cls_tokens, embeddings), dim=1) + + # add positional encoding to each token + if interpolate_pos_encoding: + embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) + else: + embeddings = embeddings + self.position_embeddings + + embeddings = self.dropout(embeddings) + + return embeddings + + +class ViTPatchEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + f" Expected {self.num_channels} but got {num_channels}." + ) + if not interpolate_pos_encoding: + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model" + f" ({self.image_size[0]}*{self.image_size[1]})." + ) + embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) + return embeddings + + +class ViTSelfAttention(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +class ViTSelfOutput(nn.Module): + """ + The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +class ViTAttention(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.attention = ViTSelfAttention(config) + self.output = ViTSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads: Set[int]) -> None: + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_outputs = self.attention(hidden_states, head_mask, output_attentions) + + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class ViTIntermediate(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + +class ViTOutput(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + hidden_states = hidden_states + input_tensor + + return hidden_states + + +class ViTLayer(nn.Module): + """This corresponds to the Block class in the timm implementation.""" + + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = ViTAttention(config) + self.intermediate = ViTIntermediate(config) + self.output = ViTOutput(config) + self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_attention_outputs = self.attention( + self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # first residual connection + hidden_states = attention_output + hidden_states + + # in ViT, layernorm is also applied after self-attention + layer_output = self.layernorm_after(hidden_states) + layer_output = self.intermediate(layer_output) + + # second residual connection is done here + layer_output = self.output(layer_output, hidden_states) + + outputs = (layer_output,) + outputs + + return outputs + + +class ViTEncoder(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.config = config + self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class ViTPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ViTConfig + base_model_prefix = "vit" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + _no_split_modules = ["ViTEmbeddings", "ViTLayer"] + + def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid + # `trunc_normal_cpu` not implemented in `half` issues + module.weight.data = nn.init.trunc_normal_( + module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range + ).to(module.weight.dtype) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, ViTEmbeddings): + module.position_embeddings.data = nn.init.trunc_normal_( + module.position_embeddings.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ).to(module.position_embeddings.dtype) + + module.cls_token.data = nn.init.trunc_normal_( + module.cls_token.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ).to(module.cls_token.dtype) + + +VIT_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`ViTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +VIT_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] + for details. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + interpolate_pos_encoding (`bool`, *optional*): + Whether to interpolate the pre-trained position encodings. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.", + VIT_START_DOCSTRING, +) +class ViTModel(ViTPreTrainedModel): + def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False): + super().__init__(config) + self.config = config + + self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token) + self.encoder = ViTEncoder(config) + + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.pooler = ViTPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> ViTPatchEmbeddings: + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) + expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype + if pixel_values.dtype != expected_dtype: + pixel_values = pixel_values.to(expected_dtype) + + embedding_output = self.embeddings( + pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding + ) + + encoder_outputs = self.encoder( + embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) + return head_outputs + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class ViTPooler(nn.Module): + def __init__(self, config: ViTConfig): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +@add_start_docstrings( + """ViT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886). + + + + Note that we provide a script to pre-train this model on custom data in our [examples + directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). + + + """, + VIT_START_DOCSTRING, +) +class ViTForMaskedImageModeling(ViTPreTrainedModel): + def __init__(self, config: ViTConfig) -> None: + super().__init__(config) + + self.vit = ViTModel(config, add_pooling_layer=False, use_mask_token=True) + + self.decoder = nn.Sequential( + nn.Conv2d( + in_channels=config.hidden_size, + out_channels=config.encoder_stride**2 * config.num_channels, + kernel_size=1, + ), + nn.PixelShuffle(config.encoder_stride), + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, MaskedImageModelingOutput]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + + Returns: + + Examples: + ```python + >>> from transformers import AutoImageProcessor, ViTForMaskedImageModeling + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") + >>> model = ViTForMaskedImageModeling.from_pretrained("google/vit-base-patch16-224-in21k") + + >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 + >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values + >>> # create random boolean mask of shape (batch_size, num_patches) + >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() + + >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) + >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction + >>> list(reconstructed_pixel_values.shape) + [1, 3, 224, 224] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if bool_masked_pos is not None and (self.config.patch_size != self.config.encoder_stride): + raise ValueError( + "When `bool_masked_pos` is provided, `patch_size` must be equal to `encoder_stride` to ensure that " + "the reconstructed image has the same dimensions as the input. " + f"Got `patch_size` = {self.config.patch_size} and `encoder_stride` = {self.config.encoder_stride}." + ) + + outputs = self.vit( + pixel_values, + bool_masked_pos=bool_masked_pos, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + interpolate_pos_encoding=interpolate_pos_encoding, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + # Reshape to (batch_size, num_channels, height, width) + sequence_output = sequence_output[:, 1:] + batch_size, sequence_length, num_channels = sequence_output.shape + height = width = math.floor(sequence_length**0.5) + sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) + + # Reconstruct pixel values + reconstructed_pixel_values = self.decoder(sequence_output) + + masked_im_loss = None + if bool_masked_pos is not None: + size = self.config.image_size // self.config.patch_size + bool_masked_pos = bool_masked_pos.reshape(-1, size, size) + mask = ( + bool_masked_pos.repeat_interleave(self.config.patch_size, 1) + .repeat_interleave(self.config.patch_size, 2) + .unsqueeze(1) + .contiguous() + ) + reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") + masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels + + if not return_dict: + output = (reconstructed_pixel_values,) + outputs[1:] + return ((masked_im_loss,) + output) if masked_im_loss is not None else output + + return MaskedImageModelingOutput( + loss=masked_im_loss, + reconstruction=reconstructed_pixel_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of + the [CLS] token) e.g. for ImageNet. + + + + Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by + setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained + position embeddings to the higher resolution. + + + """, + VIT_START_DOCSTRING, +) +class ViTForImageClassification(ViTPreTrainedModel): + def __init__(self, config: ViTConfig) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.vit = ViTModel(config, add_pooling_layer=False) + + # Classifier head + self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=ImageClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, ImageClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.vit( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + interpolate_pos_encoding=interpolate_pos_encoding, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.classifier(sequence_output[:, 0, :]) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5779e8411cbaa3a731573a0ef5a5db11c69c6007 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/configuration_vitdet.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/configuration_vitdet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8a6c9400dae23f959d8649c577ccad52cce65906 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/configuration_vitdet.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/modeling_vitdet.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/modeling_vitdet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cb36a9051aa1796d495615b429c3b5d9bf9f003b Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/modeling_vitdet.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/configuration_vitdet.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/configuration_vitdet.py new file mode 100644 index 0000000000000000000000000000000000000000..2b1f37e311434cac0cd00b9da25ab934144a9e88 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/configuration_vitdet.py @@ -0,0 +1,158 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" VitDet model configuration""" + + +from ...configuration_utils import PretrainedConfig +from ...utils import logging +from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices + + +logger = logging.get_logger(__name__) + +VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "facebook/vit-det-base": "https://huggingface.co/facebook/vit-det-base/resolve/main/config.json", +} + + +class VitDetConfig(BackboneConfigMixin, PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`VitDetModel`]. It is used to instantiate an + VitDet model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the VitDet + [google/vitdet-base-patch16-224](https://huggingface.co/google/vitdet-base-patch16-224) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + mlp_ratio (`int`, *optional*, defaults to 4): + Ratio of mlp hidden dim to embedding dim. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the layer normalization layers. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + pretrain_image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image during pretraining. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + qkv_bias (`bool`, *optional*, defaults to `True`): + Whether to add a bias to the queries, keys and values. + drop_path_rate (`float`, *optional*, defaults to 0.0): + Stochastic depth rate. + window_block_indices (`List[int]`, *optional*, defaults to `[]`): + List of indices of blocks that should have window attention instead of regular global self-attention. + residual_block_indices (`List[int]`, *optional*, defaults to `[]`): + List of indices of blocks that should have an extra residual block after the MLP. + use_absolute_position_embeddings (`bool`, *optional*, defaults to `True`): + Whether to add absolute position embeddings to the patch embeddings. + use_relative_position_embeddings (`bool`, *optional*, defaults to `False`): + Whether to add relative position embeddings to the attention maps. + window_size (`int`, *optional*, defaults to 0): + The size of the attention window. + out_features (`List[str]`, *optional*): + If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. + (depending on how many stages the model has). If unset and `out_indices` is set, will default to the + corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + out_indices (`List[int]`, *optional*): + If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how + many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. + If unset and `out_features` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + + Example: + + ```python + >>> from transformers import VitDetConfig, VitDetModel + + >>> # Initializing a VitDet configuration + >>> configuration = VitDetConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = VitDetModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "vitdet" + + def __init__( + self, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + mlp_ratio=4, + hidden_act="gelu", + dropout_prob=0.0, + initializer_range=0.02, + layer_norm_eps=1e-6, + image_size=224, + pretrain_image_size=224, + patch_size=16, + num_channels=3, + qkv_bias=True, + drop_path_rate=0.0, + window_block_indices=[], + residual_block_indices=[], + use_absolute_position_embeddings=True, + use_relative_position_embeddings=False, + window_size=0, + out_features=None, + out_indices=None, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.mlp_ratio = mlp_ratio + self.hidden_act = hidden_act + self.dropout_prob = dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.image_size = image_size + self.pretrain_image_size = pretrain_image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.qkv_bias = qkv_bias + self.drop_path_rate = drop_path_rate + self.window_block_indices = window_block_indices + self.residual_block_indices = residual_block_indices + self.use_absolute_position_embeddings = use_absolute_position_embeddings + self.use_relative_position_embeddings = use_relative_position_embeddings + self.window_size = window_size + + self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)] + self._out_features, self._out_indices = get_aligned_output_features_output_indices( + out_features=out_features, out_indices=out_indices, stage_names=self.stage_names + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/modeling_vitdet.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/modeling_vitdet.py new file mode 100644 index 0000000000000000000000000000000000000000..7af69d28697cd86468e63f372f1f272a1ba4b6f8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/modeling_vitdet.py @@ -0,0 +1,876 @@ +# coding=utf-8 +# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch ViTDet backbone.""" + + +import collections.abc +import math +from typing import Dict, List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn + +from ...activations import ACT2FN +from ...modeling_outputs import BackboneOutput, BaseModelOutput +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from ...utils.backbone_utils import BackboneMixin +from .configuration_vitdet import VitDetConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "VitDetConfig" + + +VITDET_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "facebook/vit-det-base", + # See all ViTDet models at https://huggingface.co/models?filter=vitdet +] + + +class VitDetEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) to be consumed by a Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.pretrain_image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + + if config.use_absolute_position_embeddings: + # Initialize absolute positional embedding with pretrain image size. + num_positions = num_patches + 1 + self.position_embeddings = nn.Parameter(torch.zeros(1, num_positions, config.hidden_size)) + else: + self.position_embeddings = None + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def get_absolute_positions(self, abs_pos_embeddings, has_cls_token, height, width): + """ + Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token dimension for the + original embeddings. + + Args: + abs_pos_embeddings (`torch.Tensor`): + Absolute positional embeddings with (1, num_position, num_channels). + has_cls_token (`bool`): + If true, has 1 embedding in abs_pos_embeddings for cls token. + height (`int`): + Height of input image tokens. + width (`int`): + Width of input image tokens. + + Returns: + Absolute positional embeddings after processing with shape (1, height, width, num_channels) + """ + if has_cls_token: + abs_pos_embeddings = abs_pos_embeddings[:, 1:] + num_position = abs_pos_embeddings.shape[1] + size = int(math.sqrt(num_position)) + if size * size != num_position: + raise ValueError("Absolute position embeddings must be a square number.") + + if size != height or size != width: + new_abs_pos_embeddings = nn.functional.interpolate( + abs_pos_embeddings.reshape(1, size, size, -1).permute(0, 3, 1, 2), + size=(height, width), + mode="bicubic", + align_corners=False, + ) + + return new_abs_pos_embeddings.permute(0, 2, 3, 1) + else: + return abs_pos_embeddings.reshape(1, height, width, -1) + + def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: + num_channels = pixel_values.shape[1] + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + f" Expected {self.num_channels} but got {num_channels}." + ) + embeddings = self.projection(pixel_values) + + if self.position_embeddings is not None: + # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) + embeddings = embeddings.permute(0, 2, 3, 1) + # add position embeddings + embeddings = embeddings + self.get_absolute_positions( + self.position_embeddings, True, embeddings.shape[1], embeddings.shape[2] + ) + # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width) + embeddings = embeddings.permute(0, 3, 1, 2) + + return embeddings + + +def get_rel_pos(q_size, k_size, rel_pos): + """ + Get relative positional embeddings according to the relative positions of query and key sizes. + + Args: + q_size (`int`): + Size of query q. + k_size (`int`): + Size of key k. + rel_pos (`torch.Tensor`): + Relative position embeddings (num_embeddings, num_channels). + + Returns: + Extracted positional embeddings according to relative positions. + """ + max_rel_dist = int(2 * max(q_size, k_size) - 1) + # Interpolate rel pos if needed. + if rel_pos.shape[0] != max_rel_dist: + # Interpolate rel position embeddings. + rel_pos_resized = nn.functional.interpolate( + rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), + size=max_rel_dist, + mode="linear", + ) + rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) + else: + rel_pos_resized = rel_pos + + # Scale the coords with short length if shapes for q and k are different. + q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) + k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) + relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) + + return rel_pos_resized[relative_coords.long()] + + +def add_decomposed_relative_positions(attn, queries, rel_pos_h, rel_pos_w, q_size, k_size): + """ + Calculate decomposed Relative Positional Embeddings as introduced in + [MViT2](https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py). + + Args: + attn (`torch.Tensor`): + Attention map. + queries (`torch.Tensor`): + Query q in the attention layer with shape (batch_size, queries_height * queries_width, num_channels). + rel_pos_h (`torch.Tensor`): + Relative position embeddings (Lh, num_channels) for height axis. + rel_pos_w (`torch.Tensor`): + Relative position embeddings (Lw, num_channels) for width axis. + q_size (`Tuple[int]`): + Spatial sequence size of query q with (queries_height, queries_width). + k_size (`Tuple[int]`]): + Spatial sequence size of key k with (keys_height, keys_width). + + Returns: + attn (Tensor): attention map with added relative positional embeddings. + """ + queries_height, queries_width = q_size + keys_height, keys_width = k_size + relative_height = get_rel_pos(queries_height, keys_height, rel_pos_h) + relative_width = get_rel_pos(queries_width, keys_width, rel_pos_w) + + batch_size, _, dim = queries.shape + r_q = queries.reshape(batch_size, queries_height, queries_width, dim) + relative_height = torch.einsum("bhwc,hkc->bhwk", r_q, relative_height) + relative_weight = torch.einsum("bhwc,wkc->bhwk", r_q, relative_width) + + attn = ( + attn.view(batch_size, queries_height, queries_width, keys_height, keys_width) + + relative_height[:, :, :, :, None] + + relative_weight[:, :, :, None, :] + ).view(batch_size, queries_height * queries_width, keys_height * keys_width) + + return attn + + +class VitDetAttention(nn.Module): + """Multi-head Attention block with relative position embeddings.""" + + def __init__(self, config, input_size=None): + """ + Args: + config (`VitDetConfig`): + Model configuration. + input_size (`Tuple[int]`, *optional*): + Input resolution, only required in case relative position embeddings are added. + """ + super().__init__() + + dim = config.hidden_size + num_heads = config.num_attention_heads + + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim**-0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias) + self.proj = nn.Linear(dim, dim) + + self.use_relative_position_embeddings = config.use_relative_position_embeddings + if self.use_relative_position_embeddings: + # initialize relative positional embeddings + self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) + + def forward(self, hidden_state, output_attentions=False): + batch_size, height, width, _ = hidden_state.shape + # qkv with shape (3, batch_size, num_heads, height * width, num_channels) + qkv = self.qkv(hidden_state).reshape(batch_size, height * width, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + # queries, keys and values have shape (batch_size * num_heads, height * width, num_channels) + queries, keys, values = qkv.reshape(3, batch_size * self.num_heads, height * width, -1).unbind(0) + + attention_scores = (queries * self.scale) @ keys.transpose(-2, -1) + + if self.use_relative_position_embeddings: + attention_scores = add_decomposed_relative_positions( + attention_scores, queries, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width) + ) + + attention_probs = attention_scores.softmax(dim=-1) + + hidden_state = attention_probs @ values + hidden_state = hidden_state.view(batch_size, self.num_heads, height, width, -1) + hidden_state = hidden_state.permute(0, 2, 3, 1, 4) + hidden_state = hidden_state.reshape(batch_size, height, width, -1) + hidden_state = self.proj(hidden_state) + + if output_attentions: + attention_probs = attention_probs.reshape( + batch_size, self.num_heads, attention_probs.shape[-2], attention_probs.shape[-1] + ) + outputs = (hidden_state, attention_probs) + else: + outputs = (hidden_state,) + + return outputs + + +# Copied from transformers.models.beit.modeling_beit.drop_path +def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, + however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the + layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the + argument. + """ + if drop_prob == 0.0 or not training: + return input + keep_prob = 1 - drop_prob + shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) + random_tensor.floor_() # binarize + output = input.div(keep_prob) * random_tensor + return output + + +# Copied from transformers.models.beit.modeling_beit.BeitDropPath +class VitDetDropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob: Optional[float] = None) -> None: + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + return drop_path(hidden_states, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return "p={}".format(self.drop_prob) + + +class VitDetLayerNorm(nn.Module): + """ + A LayerNorm variant, popularized by Transformers, that performs point-wise mean and variance normalization over the + channel dimension for inputs that have shape (batch_size, channels, height, width). + https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 + """ + + def __init__(self, normalized_shape, eps=1e-6): + super().__init__() + self.weight = nn.Parameter(torch.ones(normalized_shape)) + self.bias = nn.Parameter(torch.zeros(normalized_shape)) + self.eps = eps + self.normalized_shape = (normalized_shape,) + + def forward(self, x): + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x + + +class VitDetResBottleneckBlock(nn.Module): + """ + The standard bottleneck residual block without the last activation layer. It contains 3 conv layers with kernels + 1x1, 3x3, 1x1. + """ + + def __init__(self, config, in_channels, out_channels, bottleneck_channels): + """ + Args: + config (`VitDetConfig`): + Model configuration. + in_channels (`int`): + Number of input channels. + out_channels (`int`): + Number of output channels. + bottleneck_channels (`int`): + Number of output channels for the 3x3 "bottleneck" conv layers. + """ + super().__init__() + self.conv1 = nn.Conv2d(in_channels, bottleneck_channels, 1, bias=False) + self.norm1 = VitDetLayerNorm(bottleneck_channels) + self.act1 = ACT2FN[config.hidden_act] + + self.conv2 = nn.Conv2d(bottleneck_channels, bottleneck_channels, 3, padding=1, bias=False) + self.norm2 = VitDetLayerNorm(bottleneck_channels) + self.act2 = ACT2FN[config.hidden_act] + + self.conv3 = nn.Conv2d(bottleneck_channels, out_channels, 1, bias=False) + self.norm3 = VitDetLayerNorm(out_channels) + + def forward(self, x): + out = x + for layer in self.children(): + out = layer(out) + + out = x + out + return out + + +class VitDetMlp(nn.Module): + def __init__(self, config, in_features: int, hidden_features: int) -> None: + super().__init__() + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = ACT2FN[config.hidden_act] + self.fc2 = nn.Linear(hidden_features, in_features) + self.drop = nn.Dropout(config.dropout_prob) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + + return x + + +def window_partition(hidden_state, window_size): + """ + Partition into non-overlapping windows with padding if needed. + + Args: + hidden_state (`torch.Tensor`): + Input tokens with [batch_size, height, width, num_channels]. + window_size (`int`): + Window size. + + Returns: + `tuple(torch.FloatTensor)` comprising various elements: + - windows: windows after partition with [batch_size * num_windows, window_size, window_size, num_channels]. + - (patch_height, patch_width): padded height and width before partition + """ + batch_size, height, width, num_channels = hidden_state.shape + + pad_height = (window_size - height % window_size) % window_size + pad_width = (window_size - width % window_size) % window_size + if pad_height > 0 or pad_width > 0: + hidden_state = nn.functional.pad(hidden_state, (0, 0, 0, pad_width, 0, pad_height)) + patch_height, patch_width = height + pad_height, width + pad_width + + hidden_state = hidden_state.view( + batch_size, patch_height // window_size, window_size, patch_width // window_size, window_size, num_channels + ) + windows = hidden_state.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) + return windows, (patch_height, patch_width) + + +def window_unpartition(windows, window_size, pad_height_width, height_width): + """ + Window unpartition into original sequences and removing padding. + + Args: + windows (`torch.Tensor`): + Input tokens with [batch_size * num_windows, window_size, window_size, num_channels]. + window_size (`int`): + Window size. + pad_height_width (`Tuple[int]`): + Padded height and width (patch_height, patch_width). + height_width (`Tuple[int]`): + Original height and width before padding. + + Returns: + hidden_state: unpartitioned sequences with [batch_size, height, width, num_channels]. + """ + patch_height, patch_width = pad_height_width + height, width = height_width + batch_size = windows.shape[0] // (patch_height * patch_width // window_size // window_size) + hidden_state = windows.view( + batch_size, patch_height // window_size, patch_width // window_size, window_size, window_size, -1 + ) + hidden_state = hidden_state.permute(0, 1, 3, 2, 4, 5).contiguous().view(batch_size, patch_height, patch_width, -1) + + if patch_height > height or patch_width > width: + hidden_state = hidden_state[:, :height, :width, :].contiguous() + return hidden_state + + +class VitDetLayer(nn.Module): + """This corresponds to the Block class in the original implementation.""" + + def __init__( + self, config: VitDetConfig, drop_path_rate: float = 0, window_size: int = 0, use_residual_block: bool = False + ) -> None: + super().__init__() + + dim = config.hidden_size + input_size = (config.image_size // config.patch_size, config.image_size // config.patch_size) + + self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps) + self.attention = VitDetAttention( + config, input_size=input_size if window_size == 0 else (window_size, window_size) + ) + + self.drop_path = VitDetDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() + self.norm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps) + self.mlp = VitDetMlp(config=config, in_features=dim, hidden_features=int(dim * config.mlp_ratio)) + + self.window_size = window_size + + self.use_residual_block = use_residual_block + if self.use_residual_block: + # Use a residual block with bottleneck channel as dim // 2 + self.residual = VitDetResBottleneckBlock( + config=config, + in_channels=dim, + out_channels=dim, + bottleneck_channels=dim // 2, + ) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + hidden_states = hidden_states.permute(0, 2, 3, 1) + + shortcut = hidden_states + + hidden_states = self.norm1(hidden_states) + + # Window partition + if self.window_size > 0: + height, width = hidden_states.shape[1], hidden_states.shape[2] + hidden_states, pad_height_width = window_partition(hidden_states, self.window_size) + + self_attention_outputs = self.attention( + hidden_states, + output_attentions=output_attentions, + ) + hidden_states = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # Reverse window partition + if self.window_size > 0: + hidden_states = window_unpartition(hidden_states, self.window_size, pad_height_width, (height, width)) + + # first residual connection + hidden_states = shortcut + self.drop_path(hidden_states) + + hidden_states = hidden_states + self.drop_path(self.mlp(self.norm2(hidden_states))) + + hidden_states = hidden_states.permute(0, 3, 1, 2) + + if self.use_residual_block: + hidden_states = self.residual(hidden_states) + + outputs = (hidden_states,) + outputs + + return outputs + + +class VitDetEncoder(nn.Module): + def __init__(self, config: VitDetConfig) -> None: + super().__init__() + self.config = config + depth = config.num_hidden_layers + + # stochastic depth decay rule + drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, depth)] + + layers = [] + for i in range(depth): + layers.append( + VitDetLayer( + config, + drop_path_rate=drop_path_rate[i], + window_size=config.window_size if i in config.window_block_indices else 0, + use_residual_block=i in config.residual_block_indices, + ) + ) + + self.layer = nn.ModuleList(layers) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +def caffe2_msra_fill(module: nn.Module) -> None: + """ + Initialize `module.weight` using the "MSRAFill" implemented in Caffe2. Also initializes `module.bias` to 0. + + Source: https://detectron2.readthedocs.io/en/latest/_modules/fvcore/nn/weight_init.html. + + Args: + module (torch.nn.Module): module to initialize. + """ + nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") + if module.bias is not None: + nn.init.constant_(module.bias, 0) + + +class VitDetPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = VitDetConfig + base_model_prefix = "vitdet" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + _no_split_modules = [] + + def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid + # `trunc_normal_cpu` not implemented in `half` issues + module.weight.data = nn.init.trunc_normal_( + module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range + ).to(module.weight.dtype) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + elif isinstance(module, VitDetEmbeddings): + module.position_embeddings.data = nn.init.trunc_normal_( + module.position_embeddings.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ).to(module.position_embeddings.dtype) + + elif isinstance(module, VitDetAttention) and self.config.use_relative_position_embeddings: + module.rel_pos_h.data = nn.init.trunc_normal_( + module.rel_pos_h.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ) + module.rel_pos_w.data = nn.init.trunc_normal_( + module.rel_pos_w.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ) + + elif isinstance(module, VitDetResBottleneckBlock): + for layer in [module.conv1, module.conv2, module.conv3]: + caffe2_msra_fill(layer) + for layer in [module.norm1, module.norm2]: + layer.weight.data.fill_(1.0) + layer.bias.data.zero_() + # zero init last norm layer. + module.norm3.weight.data.zero_() + module.norm3.bias.data.zero_() + + +VITDET_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`VitDetConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +VITDET_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] + for details. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare VitDet Transformer model outputting raw hidden-states without any specific head on top.", + VITDET_START_DOCSTRING, +) +class VitDetModel(VitDetPreTrainedModel): + def __init__(self, config: VitDetConfig): + super().__init__(config) + self.config = config + + self.embeddings = VitDetEmbeddings(config) + self.encoder = VitDetEncoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> VitDetEmbeddings: + return self.embeddings.projection + + def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(VITDET_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + """ + Returns: + + Examples: + + ```python + >>> from transformers import VitDetConfig, VitDetModel + >>> import torch + + >>> config = VitDetConfig() + >>> model = VitDetModel(config) + + >>> pixel_values = torch.randn(1, 3, 224, 224) + + >>> with torch.no_grad(): + ... outputs = model(pixel_values) + + >>> last_hidden_states = outputs.last_hidden_state + >>> list(last_hidden_states.shape) + [1, 768, 14, 14] + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings(pixel_values) + + encoder_outputs = self.encoder( + embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + + if not return_dict: + return (sequence_output,) + encoder_outputs[1:] + + return BaseModelOutput( + last_hidden_state=sequence_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """ + ViTDet backbone, to be used with frameworks like Mask R-CNN. + """, + VITDET_START_DOCSTRING, +) +class VitDetBackbone(VitDetPreTrainedModel, BackboneMixin): + def __init__(self, config): + super().__init__(config) + super()._init_backbone(config) + + self.embeddings = VitDetEmbeddings(config) + self.encoder = VitDetEncoder(config) + self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)] + + # initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> VitDetEmbeddings: + return self.embeddings.projection + + @add_start_docstrings_to_model_forward(VITDET_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.Tensor, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> BackboneOutput: + """ + Returns: + + Examples: + + ```python + >>> from transformers import VitDetConfig, VitDetBackbone + >>> import torch + + >>> config = VitDetConfig() + >>> model = VitDetBackbone(config) + + >>> pixel_values = torch.randn(1, 3, 224, 224) + + >>> with torch.no_grad(): + ... outputs = model(pixel_values) + + >>> feature_maps = outputs.feature_maps + >>> list(feature_maps[-1].shape) + [1, 768, 14, 14] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + + embedding_output = self.embeddings(pixel_values) + + outputs = self.encoder( + embedding_output, + output_hidden_states=True, + output_attentions=output_attentions, + return_dict=return_dict, + ) + + hidden_states = outputs.hidden_states if return_dict else outputs[1] + + feature_maps = () + for stage, hidden_state in zip(self.stage_names, hidden_states): + if stage in self.out_features: + feature_maps += (hidden_state,) + + if not return_dict: + if output_hidden_states: + output = (feature_maps,) + outputs[1:] + else: + output = (feature_maps,) + outputs[2:] + return output + + return BackboneOutput( + feature_maps=feature_maps, + hidden_states=outputs.hidden_states if output_hidden_states else None, + attentions=outputs.attentions, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d80bf513a310c08f422b1541caa855ea1fa63ea8 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/convert_wavlm_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/convert_wavlm_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..19985d5e87c880ead8fa86580202fd82633281f4 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/convert_wavlm_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/convert_wavlm_original_s3prl_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/convert_wavlm_original_s3prl_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..31252e788270507fe4df7e53e99cae4ed9d83c26 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/convert_wavlm_original_s3prl_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/modeling_wavlm.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/modeling_wavlm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4bbaa8f9f85fb176fb1800850561f69deb3e8e00 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/modeling_wavlm.cpython-310.pyc differ