diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..084cd22bdf1d888efd46b759b91ccf95ee53c656
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__init__.py
@@ -0,0 +1,59 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available
+
+
+_import_structure = {}
+
+try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_barthez"] = ["BarthezTokenizer"]
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_barthez_fast"] = ["BarthezTokenizerFast"]
+
+
+if TYPE_CHECKING:
+ try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_barthez import BarthezTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_barthez_fast import BarthezTokenizerFast
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1a67d090cb560245520a3edb6a05e6e7cc2aca1f
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f9d79ac17c70d982d3f3115ef24b1663fb40eb15
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7241203d424068e4c2f25f3c594c03d612c76f75
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py
new file mode 100644
index 0000000000000000000000000000000000000000..f6ea253402f69ad013c432df2f41f371e92d3eda
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py
@@ -0,0 +1,304 @@
+# coding=utf-8
+# Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License
+""" Tokenization classes for the BARThez model."""
+
+
+import os
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple
+
+import sentencepiece as spm
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model",
+ "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model",
+ "moussaKam/barthez-orangesum-title": (
+ "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"
+ ),
+ },
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
+ "moussaKam/mbarthez": 1024,
+ "moussaKam/barthez": 1024,
+ "moussaKam/barthez-orangesum-title": 1024,
+}
+
+SPIECE_UNDERLINE = "▁"
+
+# TODO this class is useless. This is the most standard sentencpiece model. Let's find which one is closest and nuke this.
+
+
+class BarthezTokenizer(PreTrainedTokenizer):
+ """
+ Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a BARThez tokenizer. Based on
+ [SentencePiece](https://github.com/google/sentencepiece).
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+
+ Attributes:
+ sp_model (`SentencePieceProcessor`):
+ The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs,
+ ) -> None:
+ # Mask token behave like a normal word, i.e. include the space before it. Will have normalized=False by default this way
+ mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
+
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+
+ self.vocab_file = vocab_file
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(str(vocab_file))
+ super().__init__(
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ sp_model_kwargs=self.sp_model_kwargs,
+ **kwargs,
+ )
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A BARThez sequence has the following format:
+
+ - single sequence: ` X `
+ - pair of sequences: ` A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ @property
+ def vocab_size(self):
+ return len(self.sp_model)
+
+ def get_vocab(self):
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def _tokenize(self, text: str) -> List[str]:
+ return self.sp_model.encode(text, out_type=str)
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.sp_model.PieceToId(token)
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.sp_model.IdToPiece(index)
+
+ # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ current_sub_tokens = []
+ out_string = ""
+ prev_is_special = False
+ for token in tokens:
+ # make sure that special tokens are not decoded using sentencepiece model
+ if token in self.all_special_tokens:
+ if not prev_is_special:
+ out_string += " "
+ out_string += self.sp_model.decode(current_sub_tokens) + token
+ prev_is_special = True
+ current_sub_tokens = []
+ else:
+ current_sub_tokens.append(token)
+ prev_is_special = False
+ out_string += self.sp_model.decode(current_sub_tokens)
+ return out_string.strip()
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(self.vocab_file)
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..fb4a114b43bf626ce24e06ff773610022efd5cbf
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez_fast.py
@@ -0,0 +1,219 @@
+# coding=utf-8
+# Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License
+""" Tokenization classes for the BARThez model."""
+
+
+import os
+from shutil import copyfile
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import AddedToken
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import is_sentencepiece_available, logging
+
+
+if is_sentencepiece_available():
+ from .tokenization_barthez import BarthezTokenizer
+else:
+ BarthezTokenizer = None
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model",
+ "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model",
+ "moussaKam/barthez-orangesum-title": (
+ "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"
+ ),
+ },
+ "tokenizer_file": {
+ "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json",
+ "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json",
+ "moussaKam/barthez-orangesum-title": (
+ "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json"
+ ),
+ },
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
+ "moussaKam/mbarthez": 1024,
+ "moussaKam/barthez": 1024,
+ "moussaKam/barthez-orangesum-title": 1024,
+}
+
+SPIECE_UNDERLINE = "▁"
+
+
+class BarthezTokenizerFast(PreTrainedTokenizerFast):
+ """
+ Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a "fast" BARThez tokenizer. Based on
+ [SentencePiece](https://github.com/google/sentencepiece).
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ additional_special_tokens (`List[str]`, *optional*, defaults to `["NOTUSED", "NOTUSED"]`):
+ Additional special tokens used by the tokenizer.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+ model_input_names = ["input_ids", "attention_mask"]
+ slow_tokenizer_class = BarthezTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ **kwargs,
+ ):
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
+
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ **kwargs,
+ )
+
+ self.vocab_file = vocab_file
+
+ @property
+ def can_save_slow_tokenizer(self) -> bool:
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A BARThez sequence has the following format:
+
+ - single sequence: ` X `
+ - pair of sequences: ` A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not self.can_save_slow_tokenizer:
+ raise ValueError(
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
+ "tokenizer."
+ )
+
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+
+ return (out_vocab_file,)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..44070229aaa8591cb967a4ca7ff4867873072f8a
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__init__.py
@@ -0,0 +1,65 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
+
+
+_import_structure = {
+ "configuration_decision_transformer": [
+ "DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "DecisionTransformerConfig",
+ ],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_decision_transformer"] = [
+ "DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "DecisionTransformerGPT2Model",
+ "DecisionTransformerGPT2PreTrainedModel",
+ "DecisionTransformerModel",
+ "DecisionTransformerPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_decision_transformer import (
+ DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ DecisionTransformerConfig,
+ )
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_decision_transformer import (
+ DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
+ DecisionTransformerGPT2Model,
+ DecisionTransformerGPT2PreTrainedModel,
+ DecisionTransformerModel,
+ DecisionTransformerPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/configuration_decision_transformer.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/configuration_decision_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..88ff005469cd6db1fb904e423be66c63ee1f8632
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/configuration_decision_transformer.py
@@ -0,0 +1,161 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Decision Transformer model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "edbeeching/decision-transformer-gym-hopper-medium": (
+ "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"
+ ),
+ # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
+}
+
+
+class DecisionTransformerConfig(PretrainedConfig):
+ """
+ This is the configuration class to store the configuration of a [`DecisionTransformerModel`]. It is used to
+ instantiate a Decision Transformer model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the standard
+ DecisionTransformer architecture. Many of the config options are used to instatiate the GPT2 model that is used as
+ part of the architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ state_dim (`int`, *optional*, defaults to 17):
+ The state size for the RL environment
+ act_dim (`int`, *optional*, defaults to 4):
+ The size of the output action space
+ hidden_size (`int`, *optional*, defaults to 128):
+ The size of the hidden layers
+ max_ep_len (`int`, *optional*, defaults to 4096):
+ The maximum length of an episode in the environment
+ action_tanh (`bool`, *optional*, defaults to True):
+ Whether to use a tanh activation on action prediction
+ vocab_size (`int`, *optional*, defaults to 50257):
+ Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`DecisionTransformerModel`].
+ n_positions (`int`, *optional*, defaults to 1024):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ n_layer (`int`, *optional*, defaults to 3):
+ Number of hidden layers in the Transformer encoder.
+ n_head (`int`, *optional*, defaults to 1):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ n_inner (`int`, *optional*):
+ Dimensionality of the inner feed-forward layers. If unset, will default to 4 times `n_embd`.
+ activation_function (`str`, *optional*, defaults to `"gelu"`):
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ embd_pdrop (`int`, *optional*, defaults to 0.1):
+ The dropout ratio for the embeddings.
+ attn_pdrop (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention.
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
+ The epsilon to use in the layer normalization layers.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ scale_attn_weights (`bool`, *optional*, defaults to `True`):
+ Scale attention weights by dividing by sqrt(hidden_size)..
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models).
+ scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
+ Whether to additionally scale attention weights by `1 / layer_idx + 1`.
+ reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
+ Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
+ dot-product/softmax to float() when training with mixed precision.
+
+ Example:
+
+ ```python
+ >>> from transformers import DecisionTransformerConfig, DecisionTransformerModel
+
+ >>> # Initializing a DecisionTransformer configuration
+ >>> configuration = DecisionTransformerConfig()
+
+ >>> # Initializing a model (with random weights) from the configuration
+ >>> model = DecisionTransformerModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "decision_transformer"
+ keys_to_ignore_at_inference = ["past_key_values"]
+ attribute_map = {
+ "max_position_embeddings": "n_positions",
+ "num_attention_heads": "n_head",
+ "num_hidden_layers": "n_layer",
+ }
+
+ def __init__(
+ self,
+ state_dim=17,
+ act_dim=4,
+ hidden_size=128,
+ max_ep_len=4096,
+ action_tanh=True,
+ vocab_size=1,
+ n_positions=1024,
+ n_layer=3,
+ n_head=1,
+ n_inner=None,
+ activation_function="relu",
+ resid_pdrop=0.1,
+ embd_pdrop=0.1,
+ attn_pdrop=0.1,
+ layer_norm_epsilon=1e-5,
+ initializer_range=0.02,
+ scale_attn_weights=True,
+ use_cache=True,
+ bos_token_id=50256,
+ eos_token_id=50256,
+ scale_attn_by_inverse_layer_idx=False,
+ reorder_and_upcast_attn=False,
+ **kwargs,
+ ):
+ self.state_dim = state_dim
+ self.act_dim = act_dim
+ self.hidden_size = hidden_size
+ self.max_ep_len = max_ep_len
+ self.action_tanh = action_tanh
+ self.vocab_size = vocab_size
+ self.n_positions = n_positions
+ self.n_layer = n_layer
+ self.n_head = n_head
+ self.n_inner = n_inner
+ self.activation_function = activation_function
+ self.resid_pdrop = resid_pdrop
+ self.embd_pdrop = embd_pdrop
+ self.attn_pdrop = attn_pdrop
+ self.layer_norm_epsilon = layer_norm_epsilon
+ self.initializer_range = initializer_range
+ self.scale_attn_weights = scale_attn_weights
+ self.use_cache = use_cache
+ self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
+ self.reorder_and_upcast_attn = reorder_and_upcast_attn
+
+ self.bos_token_id = bos_token_id
+ self.eos_token_id = eos_token_id
+
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/modeling_decision_transformer.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/modeling_decision_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..fdfb5b37d22e62f5cd03eadf6d7d93907c24fc56
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/modeling_decision_transformer.py
@@ -0,0 +1,938 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Team The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch DecisionTransformer model."""
+
+import math
+import os
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.cuda.amp import autocast
+
+from ...activations import ACT2FN
+from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_decision_transformer import DecisionTransformerConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "edbeeching/decision-transformer-gym-hopper-medium"
+_CONFIG_FOR_DOC = "DecisionTransformerConfig"
+
+DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "edbeeching/decision-transformer-gym-hopper-medium",
+ # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
+]
+
+
+# Copied from transformers.models.gpt2.modeling_gpt2.load_tf_weights_in_gpt2
+def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
+ """Load tf checkpoints in a pytorch model"""
+ try:
+ import re
+
+ import tensorflow as tf
+ except ImportError:
+ logger.error(
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
+ "https://www.tensorflow.org/install/ for installation instructions."
+ )
+ raise
+ tf_path = os.path.abspath(gpt2_checkpoint_path)
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
+ # Load weights from TF model
+ init_vars = tf.train.list_variables(tf_path)
+ names = []
+ arrays = []
+ for name, shape in init_vars:
+ logger.info(f"Loading TF weight {name} with shape {shape}")
+ array = tf.train.load_variable(tf_path, name)
+ names.append(name)
+ arrays.append(array.squeeze())
+
+ for name, array in zip(names, arrays):
+ name = name[6:] # skip "model/"
+ name = name.split("/")
+ pointer = model
+ for m_name in name:
+ if re.fullmatch(r"[A-Za-z]+\d+", m_name):
+ scope_names = re.split(r"(\d+)", m_name)
+ else:
+ scope_names = [m_name]
+ if scope_names[0] == "w" or scope_names[0] == "g":
+ pointer = getattr(pointer, "weight")
+ elif scope_names[0] == "b":
+ pointer = getattr(pointer, "bias")
+ elif scope_names[0] == "wpe" or scope_names[0] == "wte":
+ pointer = getattr(pointer, scope_names[0])
+ pointer = getattr(pointer, "weight")
+ else:
+ pointer = getattr(pointer, scope_names[0])
+ if len(scope_names) >= 2:
+ num = int(scope_names[1])
+ pointer = pointer[num]
+ try:
+ if pointer.shape != array.shape:
+ raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
+ except ValueError as e:
+ e.args += (pointer.shape, array.shape)
+ raise
+ logger.info(f"Initialize PyTorch weight {name}")
+ pointer.data = torch.from_numpy(array)
+ return model
+
+
+# Copied from transformers.models.gpt2.modeling_gpt2.GPT2Attention with GPT2->DecisionTransformerGPT2
+class DecisionTransformerGPT2Attention(nn.Module):
+ def __init__(self, config, is_cross_attention=False, layer_idx=None):
+ super().__init__()
+
+ max_positions = config.max_position_embeddings
+ self.register_buffer(
+ "bias",
+ torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
+ 1, 1, max_positions, max_positions
+ ),
+ persistent=False,
+ )
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
+
+ self.embed_dim = config.hidden_size
+ self.num_heads = config.num_attention_heads
+ self.head_dim = self.embed_dim // self.num_heads
+ self.split_size = self.embed_dim
+ if self.head_dim * self.num_heads != self.embed_dim:
+ raise ValueError(
+ f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
+ f" {self.num_heads})."
+ )
+
+ self.scale_attn_weights = config.scale_attn_weights
+ self.is_cross_attention = is_cross_attention
+
+ # Layer-wise attention scaling, reordering, and upcasting
+ self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
+ self.layer_idx = layer_idx
+ self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
+
+ if self.is_cross_attention:
+ self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
+ self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
+ else:
+ self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
+ self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
+
+ self.attn_dropout = nn.Dropout(config.attn_pdrop)
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
+
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
+ index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
+
+ # Prune conv1d layers
+ self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
+ self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
+
+ # Update hyper params
+ self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
+ self.num_heads = self.num_heads - len(heads)
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
+
+ if self.scale_attn_weights:
+ attn_weights = attn_weights / torch.full(
+ [], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
+ )
+
+ # Layer-wise attention scaling
+ if self.scale_attn_by_inverse_layer_idx:
+ attn_weights = attn_weights / float(self.layer_idx + 1)
+
+ if not self.is_cross_attention:
+ # if only "normal" attention layer implements causal mask
+ query_length, key_length = query.size(-2), key.size(-2)
+ causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
+ mask_value = torch.finfo(attn_weights.dtype).min
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
+ mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
+ attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
+
+ if attention_mask is not None:
+ # Apply the attention mask
+ attn_weights = attn_weights + attention_mask
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
+ attn_weights = attn_weights.type(value.dtype)
+ attn_weights = self.attn_dropout(attn_weights)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attn_weights = attn_weights * head_mask
+
+ attn_output = torch.matmul(attn_weights, value)
+
+ return attn_output, attn_weights
+
+ def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
+ # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
+ bsz, num_heads, q_seq_len, dk = query.size()
+ _, _, k_seq_len, _ = key.size()
+
+ # Preallocate attn_weights for `baddbmm`
+ attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
+
+ # Compute Scale Factor
+ scale_factor = 1.0
+ if self.scale_attn_weights:
+ scale_factor /= float(value.size(-1)) ** 0.5
+
+ if self.scale_attn_by_inverse_layer_idx:
+ scale_factor /= float(self.layer_idx + 1)
+
+ # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
+ with autocast(enabled=False):
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
+ attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
+
+ if not self.is_cross_attention:
+ # if only "normal" attention layer implements causal mask
+ query_length, key_length = query.size(-2), key.size(-2)
+ causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
+ mask_value = torch.finfo(attn_weights.dtype).min
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
+
+ if attention_mask is not None:
+ # Apply the attention mask
+ attn_weights = attn_weights + attention_mask
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
+ if attn_weights.dtype != torch.float32:
+ raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
+ attn_weights = attn_weights.type(value.dtype)
+ attn_weights = self.attn_dropout(attn_weights)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attn_weights = attn_weights * head_mask
+
+ attn_output = torch.matmul(attn_weights, value)
+
+ return attn_output, attn_weights
+
+ def _split_heads(self, tensor, num_heads, attn_head_size):
+ """
+ Splits hidden_size dim into attn_head_size and num_heads
+ """
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
+ tensor = tensor.view(new_shape)
+ return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
+
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
+ """
+ Merges attn_head_size dim and num_attn_heads dim into hidden_size
+ """
+ tensor = tensor.permute(0, 2, 1, 3).contiguous()
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
+ return tensor.view(new_shape)
+
+ def forward(
+ self,
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = False,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
+ if encoder_hidden_states is not None:
+ if not hasattr(self, "q_attn"):
+ raise ValueError(
+ "If class is used as cross attention, the weights `q_attn` have to be defined. "
+ "Please make sure to instantiate class with `DecisionTransformerGPT2Attention(..., is_cross_attention=True)`."
+ )
+
+ query = self.q_attn(hidden_states)
+ key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
+ attention_mask = encoder_attention_mask
+ else:
+ query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
+
+ query = self._split_heads(query, self.num_heads, self.head_dim)
+ key = self._split_heads(key, self.num_heads, self.head_dim)
+ value = self._split_heads(value, self.num_heads, self.head_dim)
+
+ if layer_past is not None:
+ past_key, past_value = layer_past
+ key = torch.cat((past_key, key), dim=-2)
+ value = torch.cat((past_value, value), dim=-2)
+
+ if use_cache is True:
+ present = (key, value)
+ else:
+ present = None
+
+ if self.reorder_and_upcast_attn:
+ attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
+ else:
+ attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
+
+ attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
+ attn_output = self.c_proj(attn_output)
+ attn_output = self.resid_dropout(attn_output)
+
+ outputs = (attn_output, present)
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs # a, present, (attentions)
+
+
+# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP with GPT2->DecisionTransformerGPT2
+class DecisionTransformerGPT2MLP(nn.Module):
+ def __init__(self, intermediate_size, config):
+ super().__init__()
+ embed_dim = config.hidden_size
+ self.c_fc = Conv1D(intermediate_size, embed_dim)
+ self.c_proj = Conv1D(embed_dim, intermediate_size)
+ self.act = ACT2FN[config.activation_function]
+ self.dropout = nn.Dropout(config.resid_pdrop)
+
+ def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
+ hidden_states = self.c_fc(hidden_states)
+ hidden_states = self.act(hidden_states)
+ hidden_states = self.c_proj(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.gpt2.modeling_gpt2.GPT2Block with GPT2->DecisionTransformerGPT2
+class DecisionTransformerGPT2Block(nn.Module):
+ def __init__(self, config, layer_idx=None):
+ super().__init__()
+ hidden_size = config.hidden_size
+ inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
+
+ self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
+ self.attn = DecisionTransformerGPT2Attention(config, layer_idx=layer_idx)
+ self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
+
+ if config.add_cross_attention:
+ self.crossattention = DecisionTransformerGPT2Attention(
+ config, is_cross_attention=True, layer_idx=layer_idx
+ )
+ self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
+
+ self.mlp = DecisionTransformerGPT2MLP(inner_dim, config)
+
+ def forward(
+ self,
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = False,
+ output_attentions: Optional[bool] = False,
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
+ residual = hidden_states
+ hidden_states = self.ln_1(hidden_states)
+ attn_outputs = self.attn(
+ hidden_states,
+ layer_past=layer_past,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
+ outputs = attn_outputs[1:]
+ # residual connection
+ hidden_states = attn_output + residual
+
+ if encoder_hidden_states is not None:
+ # add one self-attention block for cross-attention
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
+ "cross-attention layers by setting `config.add_cross_attention=True`"
+ )
+ residual = hidden_states
+ hidden_states = self.ln_cross_attn(hidden_states)
+ cross_attn_outputs = self.crossattention(
+ hidden_states,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ output_attentions=output_attentions,
+ )
+ attn_output = cross_attn_outputs[0]
+ # residual connection
+ hidden_states = residual + attn_output
+ outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
+
+ residual = hidden_states
+ hidden_states = self.ln_2(hidden_states)
+ feed_forward_hidden_states = self.mlp(hidden_states)
+ # residual connection
+ hidden_states = residual + feed_forward_hidden_states
+
+ if use_cache:
+ outputs = (hidden_states,) + outputs
+ else:
+ outputs = (hidden_states,) + outputs[1:]
+
+ return outputs # hidden_states, present, (attentions, cross_attentions)
+
+
+class DecisionTransformerGPT2PreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = DecisionTransformerConfig
+ load_tf_weights = load_tf_weights_in_gpt2
+ base_model_prefix = "transformer"
+ is_parallelizable = True
+ supports_gradient_checkpointing = True
+
+ def __init__(self, *inputs, **kwargs):
+ super().__init__(*inputs, **kwargs)
+
+ def _init_weights(self, module):
+ """Initialize the weights."""
+ if isinstance(module, (nn.Linear, Conv1D)):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+ # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
+ # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
+ # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
+ # > -- GPT-2 :: https://openai.com/blog/better-language-models/
+ #
+ # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
+ for name, p in module.named_parameters():
+ if "c_proj" in name and "weight" in name:
+ # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
+ p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
+
+
+class DecisionTransformerGPT2Model(DecisionTransformerGPT2PreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.embed_dim = config.hidden_size
+
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
+ self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
+
+ self.drop = nn.Dropout(config.embd_pdrop)
+ self.h = nn.ModuleList(
+ [DecisionTransformerGPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
+ )
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
+
+ # Model parallel
+ self.model_parallel = False
+ self.device_map = None
+ self.gradient_checkpointing = False
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.wte
+
+ def set_input_embeddings(self, new_embeddings):
+ self.wte = new_embeddings
+
+ # Copied from transformers.models.gpt2.modeling_gpt2.GPT2Model.forward
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ batch_size = input_ids.shape[0]
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ batch_size = inputs_embeds.shape[0]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if token_type_ids is not None:
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
+
+ if past_key_values is None:
+ past_length = 0
+ past_key_values = tuple([None] * len(self.h))
+ else:
+ past_length = past_key_values[0][0].size(-2)
+ if position_ids is None:
+ position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
+ position_ids = position_ids.unsqueeze(0)
+
+ # GPT2Attention mask.
+ if attention_mask is not None:
+ if batch_size <= 0:
+ raise ValueError("batch_size has to be defined and > 0")
+ attention_mask = attention_mask.view(batch_size, -1)
+ # We create a 3D attention mask from a 2D tensor mask.
+ # Sizes are [batch_size, 1, 1, to_seq_length]
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
+ # this attention mask is more simple than the triangular masking of causal attention
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
+ attention_mask = attention_mask[:, None, None, :]
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and the dtype's smallest value for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+ attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.add_cross_attention and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # head_mask has shape n_layer x batch x n_heads x N x N
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.wte(input_ids)
+ position_embeds = self.wpe(position_ids)
+ hidden_states = inputs_embeds + position_embeds
+
+ if token_type_ids is not None:
+ token_type_embeds = self.wte(token_type_ids)
+ hidden_states = hidden_states + token_type_embeds
+
+ hidden_states = self.drop(hidden_states)
+
+ output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ presents = () if use_cache else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+ all_hidden_states = () if output_hidden_states else None
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
+ # Model parallel
+ if self.model_parallel:
+ torch.cuda.set_device(hidden_states.device)
+ # Ensure layer_past is on same device as hidden_states (might not be correct)
+ if layer_past is not None:
+ layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
+ # Ensure that attention_mask is always on the same device as hidden_states
+ if attention_mask is not None:
+ attention_mask = attention_mask.to(hidden_states.device)
+ if isinstance(head_mask, torch.Tensor):
+ head_mask = head_mask.to(hidden_states.device)
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ outputs = self._gradient_checkpointing_func(
+ block.__call__,
+ hidden_states,
+ None,
+ attention_mask,
+ head_mask[i],
+ encoder_hidden_states,
+ encoder_attention_mask,
+ use_cache,
+ output_attentions,
+ )
+ else:
+ outputs = block(
+ hidden_states,
+ layer_past=layer_past,
+ attention_mask=attention_mask,
+ head_mask=head_mask[i],
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = outputs[0]
+ if use_cache is True:
+ presents = presents + (outputs[1],)
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
+
+ # Model Parallel: If it's the last layer for that device, put things on the next device
+ if self.model_parallel:
+ for k, v in self.device_map.items():
+ if i == v[-1] and "cuda:" + str(k) != self.last_device:
+ hidden_states = hidden_states.to("cuda:" + str(k + 1))
+
+ hidden_states = self.ln_f(hidden_states)
+
+ hidden_states = hidden_states.view(output_shape)
+ # Add last hidden state
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
+ if v is not None
+ )
+
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=presents,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+@dataclass
+class DecisionTransformerOutput(ModelOutput):
+ """
+ Base class for model's outputs that also contains a pooling of the last hidden states.
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ state_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, state_dim)`):
+ Environment state predictions
+ action_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, action_dim)`):
+ Model action predictions
+ return_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, 1)`):
+ Predicted returns for each state
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ state_preds: torch.FloatTensor = None
+ action_preds: torch.FloatTensor = None
+ return_preds: torch.FloatTensor = None
+ hidden_states: torch.FloatTensor = None
+ attentions: torch.FloatTensor = None
+ last_hidden_state: torch.FloatTensor = None
+
+
+class DecisionTransformerPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = DecisionTransformerConfig
+ base_model_prefix = "decision_transformer"
+ main_input_name = "states"
+ supports_gradient_checkpointing = False
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+DECISION_TRANSFORMER_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`~DecisionTransformerConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+DECISION_TRANSFORMER_INPUTS_DOCSTRING = r"""
+ Args:
+ states (`torch.FloatTensor` of shape `(batch_size, episode_length, state_dim)`):
+ The states for each step in the trajectory
+ actions (`torch.FloatTensor` of shape `(batch_size, episode_length, act_dim)`):
+ The actions taken by the "expert" policy for the current state, these are masked for auto regressive
+ prediction
+ rewards (`torch.FloatTensor` of shape `(batch_size, episode_length, 1)`):
+ The rewards for each state, action
+ returns_to_go (`torch.FloatTensor` of shape `(batch_size, episode_length, 1)`):
+ The returns for each state in the trajectory
+ timesteps (`torch.LongTensor` of shape `(batch_size, episode_length)`):
+ The timestep for each step in the trajectory
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, episode_length)`):
+ Masking, used to mask the actions when performing autoregressive prediction
+"""
+
+
+@add_start_docstrings("The Decision Transformer Model", DECISION_TRANSFORMER_START_DOCSTRING)
+class DecisionTransformerModel(DecisionTransformerPreTrainedModel):
+ """
+
+ The model builds upon the GPT2 architecture to perform autoregressive prediction of actions in an offline RL
+ setting. Refer to the paper for more details: https://arxiv.org/abs/2106.01345
+
+ """
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+ self.hidden_size = config.hidden_size
+ # note: the only difference between this GPT2Model and the default Huggingface version
+ # is that the positional embeddings are removed (since we'll add those ourselves)
+ self.encoder = DecisionTransformerGPT2Model(config)
+
+ self.embed_timestep = nn.Embedding(config.max_ep_len, config.hidden_size)
+ self.embed_return = torch.nn.Linear(1, config.hidden_size)
+ self.embed_state = torch.nn.Linear(config.state_dim, config.hidden_size)
+ self.embed_action = torch.nn.Linear(config.act_dim, config.hidden_size)
+
+ self.embed_ln = nn.LayerNorm(config.hidden_size)
+
+ # note: we don't predict states or returns for the paper
+ self.predict_state = torch.nn.Linear(config.hidden_size, config.state_dim)
+ self.predict_action = nn.Sequential(
+ *([nn.Linear(config.hidden_size, config.act_dim)] + ([nn.Tanh()] if config.action_tanh else []))
+ )
+ self.predict_return = torch.nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(DECISION_TRANSFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=DecisionTransformerOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ states: Optional[torch.FloatTensor] = None,
+ actions: Optional[torch.FloatTensor] = None,
+ rewards: Optional[torch.FloatTensor] = None,
+ returns_to_go: Optional[torch.FloatTensor] = None,
+ timesteps: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], DecisionTransformerOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import DecisionTransformerModel
+ >>> import torch
+
+ >>> model = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-medium")
+ >>> # evaluation
+ >>> model = model.to(device)
+ >>> model.eval()
+
+ >>> env = gym.make("Hopper-v3")
+ >>> state_dim = env.observation_space.shape[0]
+ >>> act_dim = env.action_space.shape[0]
+
+ >>> state = env.reset()
+ >>> states = torch.from_numpy(state).reshape(1, 1, state_dim).to(device=device, dtype=torch.float32)
+ >>> actions = torch.zeros((1, 1, act_dim), device=device, dtype=torch.float32)
+ >>> rewards = torch.zeros(1, 1, device=device, dtype=torch.float32)
+ >>> target_return = torch.tensor(TARGET_RETURN, dtype=torch.float32).reshape(1, 1)
+ >>> timesteps = torch.tensor(0, device=device, dtype=torch.long).reshape(1, 1)
+ >>> attention_mask = torch.zeros(1, 1, device=device, dtype=torch.float32)
+
+ >>> # forward pass
+ >>> with torch.no_grad():
+ ... state_preds, action_preds, return_preds = model(
+ ... states=states,
+ ... actions=actions,
+ ... rewards=rewards,
+ ... returns_to_go=target_return,
+ ... timesteps=timesteps,
+ ... attention_mask=attention_mask,
+ ... return_dict=False,
+ ... )
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ batch_size, seq_length = states.shape[0], states.shape[1]
+
+ if attention_mask is None:
+ # attention mask for GPT: 1 if can be attended to, 0 if not
+ attention_mask = torch.ones((batch_size, seq_length), dtype=torch.long)
+
+ # embed each modality with a different head
+ state_embeddings = self.embed_state(states)
+ action_embeddings = self.embed_action(actions)
+ returns_embeddings = self.embed_return(returns_to_go)
+ time_embeddings = self.embed_timestep(timesteps)
+
+ # time embeddings are treated similar to positional embeddings
+ state_embeddings = state_embeddings + time_embeddings
+ action_embeddings = action_embeddings + time_embeddings
+ returns_embeddings = returns_embeddings + time_embeddings
+
+ # this makes the sequence look like (R_1, s_1, a_1, R_2, s_2, a_2, ...)
+ # which works nice in an autoregressive sense since states predict actions
+ stacked_inputs = (
+ torch.stack((returns_embeddings, state_embeddings, action_embeddings), dim=1)
+ .permute(0, 2, 1, 3)
+ .reshape(batch_size, 3 * seq_length, self.hidden_size)
+ )
+ stacked_inputs = self.embed_ln(stacked_inputs)
+
+ # to make the attention mask fit the stacked inputs, have to stack it as well
+ stacked_attention_mask = (
+ torch.stack((attention_mask, attention_mask, attention_mask), dim=1)
+ .permute(0, 2, 1)
+ .reshape(batch_size, 3 * seq_length)
+ )
+ device = stacked_inputs.device
+ # we feed in the input embeddings (not word indices as in NLP) to the model
+ encoder_outputs = self.encoder(
+ inputs_embeds=stacked_inputs,
+ attention_mask=stacked_attention_mask,
+ position_ids=torch.zeros(stacked_attention_mask.shape, device=device, dtype=torch.long),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ x = encoder_outputs[0]
+
+ # reshape x so that the second dimension corresponds to the original
+ # returns (0), states (1), or actions (2); i.e. x[:,1,t] is the token for s_t
+ x = x.reshape(batch_size, seq_length, 3, self.hidden_size).permute(0, 2, 1, 3)
+
+ # get predictions
+ return_preds = self.predict_return(x[:, 2]) # predict next return given state and action
+ state_preds = self.predict_state(x[:, 2]) # predict next state given state and action
+ action_preds = self.predict_action(x[:, 1]) # predict next action given state
+ if not return_dict:
+ return (state_preds, action_preds, return_preds)
+
+ return DecisionTransformerOutput(
+ last_hidden_state=encoder_outputs.last_hidden_state,
+ state_preds=state_preds,
+ action_preds=action_preds,
+ return_preds=return_preds,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..09ce039d25fd057608693a8d6c9d79358d970225
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__init__.py
@@ -0,0 +1,168 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_flax_available,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"],
+ "tokenization_electra": ["ElectraTokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_electra_fast"] = ["ElectraTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_electra"] = [
+ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "ElectraForCausalLM",
+ "ElectraForMaskedLM",
+ "ElectraForMultipleChoice",
+ "ElectraForPreTraining",
+ "ElectraForQuestionAnswering",
+ "ElectraForSequenceClassification",
+ "ElectraForTokenClassification",
+ "ElectraModel",
+ "ElectraPreTrainedModel",
+ "load_tf_weights_in_electra",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_electra"] = [
+ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFElectraForMaskedLM",
+ "TFElectraForMultipleChoice",
+ "TFElectraForPreTraining",
+ "TFElectraForQuestionAnswering",
+ "TFElectraForSequenceClassification",
+ "TFElectraForTokenClassification",
+ "TFElectraModel",
+ "TFElectraPreTrainedModel",
+ ]
+
+try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_flax_electra"] = [
+ "FlaxElectraForCausalLM",
+ "FlaxElectraForMaskedLM",
+ "FlaxElectraForMultipleChoice",
+ "FlaxElectraForPreTraining",
+ "FlaxElectraForQuestionAnswering",
+ "FlaxElectraForSequenceClassification",
+ "FlaxElectraForTokenClassification",
+ "FlaxElectraModel",
+ "FlaxElectraPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
+ from .tokenization_electra import ElectraTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_electra_fast import ElectraTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_electra import (
+ ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
+ ElectraForCausalLM,
+ ElectraForMaskedLM,
+ ElectraForMultipleChoice,
+ ElectraForPreTraining,
+ ElectraForQuestionAnswering,
+ ElectraForSequenceClassification,
+ ElectraForTokenClassification,
+ ElectraModel,
+ ElectraPreTrainedModel,
+ load_tf_weights_in_electra,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_electra import (
+ TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TFElectraForMaskedLM,
+ TFElectraForMultipleChoice,
+ TFElectraForPreTraining,
+ TFElectraForQuestionAnswering,
+ TFElectraForSequenceClassification,
+ TFElectraForTokenClassification,
+ TFElectraModel,
+ TFElectraPreTrainedModel,
+ )
+
+ try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_flax_electra import (
+ FlaxElectraForCausalLM,
+ FlaxElectraForMaskedLM,
+ FlaxElectraForMultipleChoice,
+ FlaxElectraForPreTraining,
+ FlaxElectraForQuestionAnswering,
+ FlaxElectraForSequenceClassification,
+ FlaxElectraForTokenClassification,
+ FlaxElectraModel,
+ FlaxElectraPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c0bda3dd001a8672653b963a4d071c165c04cadf
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/configuration_electra.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/configuration_electra.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4fdcb01ab44ca17c9f05418885209dc5511b3d23
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/configuration_electra.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/convert_electra_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/convert_electra_original_tf_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d625031fd6f4fb50bfd485001fccdbe234ef9fe7
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/convert_electra_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_electra.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_electra.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..380242b4d082b7f2055c8d5bb6bad08493079f9c
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_electra.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_flax_electra.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_flax_electra.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b3b65ae2474c88f1cc5fd46e1ce95d32a598ed27
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_flax_electra.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_tf_electra.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_tf_electra.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d26f1719945c55508fbdbf619cf7b6211937b115
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_tf_electra.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f05729383b64e30bc2b4f5894e4fa16f8a91ca00
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..efc23a9c528a8e2f7b346e63a6a49aec7c5b294e
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra_fast.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/configuration_electra.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/configuration_electra.py
new file mode 100644
index 0000000000000000000000000000000000000000..d45f62930212eca8b0cbc071c1bed513739a376e
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/configuration_electra.py
@@ -0,0 +1,199 @@
+# coding=utf-8
+# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" ELECTRA model configuration"""
+
+from collections import OrderedDict
+from typing import Mapping
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "google/electra-small-generator": "https://huggingface.co/google/electra-small-generator/resolve/main/config.json",
+ "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/config.json",
+ "google/electra-large-generator": "https://huggingface.co/google/electra-large-generator/resolve/main/config.json",
+ "google/electra-small-discriminator": (
+ "https://huggingface.co/google/electra-small-discriminator/resolve/main/config.json"
+ ),
+ "google/electra-base-discriminator": (
+ "https://huggingface.co/google/electra-base-discriminator/resolve/main/config.json"
+ ),
+ "google/electra-large-discriminator": (
+ "https://huggingface.co/google/electra-large-discriminator/resolve/main/config.json"
+ ),
+}
+
+
+class ElectraConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`ElectraModel`] or a [`TFElectraModel`]. It is
+ used to instantiate a ELECTRA model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the ELECTRA
+ [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`].
+ embedding_size (`int`, *optional*, defaults to 128):
+ Dimensionality of the encoder layers and the pooler layer.
+ hidden_size (`int`, *optional*, defaults to 256):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 4):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 1024):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ summary_type (`str`, *optional*, defaults to `"first"`):
+ Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
+
+ Has to be one of the following options:
+
+ - `"last"`: Take the last token hidden state (like XLNet).
+ - `"first"`: Take the first token hidden state (like BERT).
+ - `"mean"`: Take the mean of all tokens hidden states.
+ - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
+ - `"attn"`: Not implemented now, use multi-head attention.
+ summary_use_proj (`bool`, *optional*, defaults to `True`):
+ Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
+
+ Whether or not to add a projection after the vector extraction.
+ summary_activation (`str`, *optional*):
+ Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
+
+ Pass `"gelu"` for a gelu activation to the output, any other value will result in no activation.
+ summary_last_dropout (`float`, *optional*, defaults to 0.0):
+ Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
+
+ The dropout ratio to be used after the projection and activation.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ classifier_dropout (`float`, *optional*):
+ The dropout ratio for the classification head.
+
+ Examples:
+
+ ```python
+ >>> from transformers import ElectraConfig, ElectraModel
+
+ >>> # Initializing a ELECTRA electra-base-uncased style configuration
+ >>> configuration = ElectraConfig()
+
+ >>> # Initializing a model (with random weights) from the electra-base-uncased style configuration
+ >>> model = ElectraModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "electra"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ embedding_size=128,
+ hidden_size=256,
+ num_hidden_layers=12,
+ num_attention_heads=4,
+ intermediate_size=1024,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ summary_type="first",
+ summary_use_proj=True,
+ summary_activation="gelu",
+ summary_last_dropout=0.1,
+ pad_token_id=0,
+ position_embedding_type="absolute",
+ use_cache=True,
+ classifier_dropout=None,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.embedding_size = embedding_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.type_vocab_size = type_vocab_size
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+
+ self.summary_type = summary_type
+ self.summary_use_proj = summary_use_proj
+ self.summary_activation = summary_activation
+ self.summary_last_dropout = summary_last_dropout
+ self.position_embedding_type = position_embedding_type
+ self.use_cache = use_cache
+ self.classifier_dropout = classifier_dropout
+
+
+class ElectraOnnxConfig(OnnxConfig):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ if self.task == "multiple-choice":
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
+ else:
+ dynamic_axis = {0: "batch", 1: "sequence"}
+ return OrderedDict(
+ [
+ ("input_ids", dynamic_axis),
+ ("attention_mask", dynamic_axis),
+ ("token_type_ids", dynamic_axis),
+ ]
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..d5d6376d7b994281b8743d54baa8c4c23db9c05b
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py
@@ -0,0 +1,80 @@
+# coding=utf-8
+# Copyright 2018 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert ELECTRA checkpoint."""
+
+
+import argparse
+
+import torch
+
+from transformers import ElectraConfig, ElectraForMaskedLM, ElectraForPreTraining, load_tf_weights_in_electra
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+
+
+def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, discriminator_or_generator):
+ # Initialise PyTorch model
+ config = ElectraConfig.from_json_file(config_file)
+ print(f"Building PyTorch model from configuration: {config}")
+
+ if discriminator_or_generator == "discriminator":
+ model = ElectraForPreTraining(config)
+ elif discriminator_or_generator == "generator":
+ model = ElectraForMaskedLM(config)
+ else:
+ raise ValueError("The discriminator_or_generator argument should be either 'discriminator' or 'generator'")
+
+ # Load weights from tf checkpoint
+ load_tf_weights_in_electra(
+ model, config, tf_checkpoint_path, discriminator_or_generator=discriminator_or_generator
+ )
+
+ # Save pytorch-model
+ print(f"Save PyTorch model to {pytorch_dump_path}")
+ torch.save(model.state_dict(), pytorch_dump_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
+ )
+ parser.add_argument(
+ "--config_file",
+ default=None,
+ type=str,
+ required=True,
+ help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
+ )
+ parser.add_argument(
+ "--discriminator_or_generator",
+ default=None,
+ type=str,
+ required=True,
+ help=(
+ "Whether to export the generator or the discriminator. Should be a string, either 'discriminator' or "
+ "'generator'."
+ ),
+ )
+ args = parser.parse_args()
+ convert_tf_checkpoint_to_pytorch(
+ args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.discriminator_or_generator
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_electra.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_electra.py
new file mode 100644
index 0000000000000000000000000000000000000000..3aaa6141004fb3098f22147b69ca5072836af766
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_electra.py
@@ -0,0 +1,1686 @@
+# coding=utf-8
+# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch ELECTRA model."""
+
+import math
+import os
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN, get_activation
+from ...modeling_outputs import (
+ BaseModelOutputWithCrossAttentions,
+ BaseModelOutputWithPastAndCrossAttentions,
+ CausalLMOutputWithCrossAttentions,
+ MaskedLMOutput,
+ MultipleChoiceModelOutput,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel, SequenceSummary
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_electra import ElectraConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
+_CONFIG_FOR_DOC = "ElectraConfig"
+
+ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "google/electra-small-generator",
+ "google/electra-base-generator",
+ "google/electra-large-generator",
+ "google/electra-small-discriminator",
+ "google/electra-base-discriminator",
+ "google/electra-large-discriminator",
+ # See all ELECTRA models at https://huggingface.co/models?filter=electra
+]
+
+
+def load_tf_weights_in_electra(model, config, tf_checkpoint_path, discriminator_or_generator="discriminator"):
+ """Load tf checkpoints in a pytorch model."""
+ try:
+ import re
+
+ import numpy as np
+ import tensorflow as tf
+ except ImportError:
+ logger.error(
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
+ "https://www.tensorflow.org/install/ for installation instructions."
+ )
+ raise
+ tf_path = os.path.abspath(tf_checkpoint_path)
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
+ # Load weights from TF model
+ init_vars = tf.train.list_variables(tf_path)
+ names = []
+ arrays = []
+ for name, shape in init_vars:
+ logger.info(f"Loading TF weight {name} with shape {shape}")
+ array = tf.train.load_variable(tf_path, name)
+ names.append(name)
+ arrays.append(array)
+ for name, array in zip(names, arrays):
+ original_name: str = name
+
+ try:
+ if isinstance(model, ElectraForMaskedLM):
+ name = name.replace("electra/embeddings/", "generator/embeddings/")
+
+ if discriminator_or_generator == "generator":
+ name = name.replace("electra/", "discriminator/")
+ name = name.replace("generator/", "electra/")
+
+ name = name.replace("dense_1", "dense_prediction")
+ name = name.replace("generator_predictions/output_bias", "generator_lm_head/bias")
+
+ name = name.split("/")
+ # print(original_name, name)
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
+ # which are not required for using pretrained model
+ if any(n in ["global_step", "temperature"] for n in name):
+ logger.info(f"Skipping {original_name}")
+ continue
+ pointer = model
+ for m_name in name:
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
+ scope_names = re.split(r"_(\d+)", m_name)
+ else:
+ scope_names = [m_name]
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
+ pointer = getattr(pointer, "weight")
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
+ pointer = getattr(pointer, "bias")
+ elif scope_names[0] == "output_weights":
+ pointer = getattr(pointer, "weight")
+ elif scope_names[0] == "squad":
+ pointer = getattr(pointer, "classifier")
+ else:
+ pointer = getattr(pointer, scope_names[0])
+ if len(scope_names) >= 2:
+ num = int(scope_names[1])
+ pointer = pointer[num]
+ if m_name.endswith("_embeddings"):
+ pointer = getattr(pointer, "weight")
+ elif m_name == "kernel":
+ array = np.transpose(array)
+ try:
+ if pointer.shape != array.shape:
+ raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
+ except ValueError as e:
+ e.args += (pointer.shape, array.shape)
+ raise
+ print(f"Initialize PyTorch weight {name}", original_name)
+ pointer.data = torch.from_numpy(array)
+ except AttributeError as e:
+ print(f"Skipping {original_name}", name, e)
+ continue
+ return model
+
+
+class ElectraEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer(
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
+ )
+
+ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ past_key_values_length: int = 0,
+ ) -> torch.Tensor:
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Electra
+class ElectraSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ use_cache = past_key_value is not None
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
+ if use_cache:
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
+ -1, 1
+ )
+ else:
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in ElectraModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
+class ElectraSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Electra
+class ElectraAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = ElectraSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = ElectraSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate
+class ElectraIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput
+class ElectraOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Electra
+class ElectraLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = ElectraAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = ElectraAttention(config, position_embedding_type="absolute")
+ self.intermediate = ElectraIntermediate(config)
+ self.output = ElectraOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Electra
+class ElectraEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([ElectraLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+class ElectraDiscriminatorPredictions(nn.Module):
+ """Prediction module for the discriminator, made up of two dense layers."""
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = get_activation(config.hidden_act)
+ self.dense_prediction = nn.Linear(config.hidden_size, 1)
+ self.config = config
+
+ def forward(self, discriminator_hidden_states):
+ hidden_states = self.dense(discriminator_hidden_states)
+ hidden_states = self.activation(hidden_states)
+ logits = self.dense_prediction(hidden_states).squeeze(-1)
+
+ return logits
+
+
+class ElectraGeneratorPredictions(nn.Module):
+ """Prediction module for the generator, made up of two dense layers."""
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.activation = get_activation("gelu")
+ self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
+ self.dense = nn.Linear(config.hidden_size, config.embedding_size)
+
+ def forward(self, generator_hidden_states):
+ hidden_states = self.dense(generator_hidden_states)
+ hidden_states = self.activation(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+
+ return hidden_states
+
+
+class ElectraPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ElectraConfig
+ load_tf_weights = load_tf_weights_in_electra
+ base_model_prefix = "electra"
+ supports_gradient_checkpointing = True
+
+ # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+@dataclass
+class ElectraForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`ElectraForPreTraining`].
+
+ Args:
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
+ Total loss of the ELECTRA objective.
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ Prediction scores of the head (scores for each token before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+ELECTRA_START_DOCSTRING = r"""
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ELECTRA_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ encoder_hidden_states (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
+ "the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
+ "hidden size and embedding size are different. "
+ ""
+ "Both the generator and discriminator checkpoints may be loaded into this model.",
+ ELECTRA_START_DOCSTRING,
+)
+class ElectraModel(ElectraPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.embeddings = ElectraEmbeddings(config)
+
+ if config.embedding_size != config.hidden_size:
+ self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)
+
+ self.encoder = ElectraEncoder(config)
+ self.config = config
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithCrossAttentions]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(input_shape, device=device)
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ hidden_states = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+
+ if hasattr(self, "embeddings_project"):
+ hidden_states = self.embeddings_project(hidden_states)
+
+ hidden_states = self.encoder(
+ hidden_states,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ return hidden_states
+
+
+class ElectraClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.activation = get_activation("gelu")
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
+
+ def forward(self, features, **kwargs):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x)
+ x = self.dense(x)
+ x = self.activation(x) # although BERT uses tanh here, it seems Electra authors used gelu here
+ x = self.dropout(x)
+ x = self.out_proj(x)
+ return x
+
+
+@add_start_docstrings(
+ """
+ ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class ElectraForSequenceClassification(ElectraPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+ self.electra = ElectraModel(config)
+ self.classifier = ElectraClassificationHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="bhadresh-savani/electra-base-emotion",
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="'joy'",
+ expected_loss=0.06,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ discriminator_hidden_states = self.electra(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = discriminator_hidden_states[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + discriminator_hidden_states[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=discriminator_hidden_states.hidden_states,
+ attentions=discriminator_hidden_states.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
+
+ It is recommended to load the discriminator checkpoint into that model.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class ElectraForPreTraining(ElectraPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.electra = ElectraModel(config)
+ self.discriminator_predictions = ElectraDiscriminatorPredictions(config)
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=ElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], ElectraForPreTrainingOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see `input_ids` docstring)
+ Indices should be in `[0, 1]`:
+
+ - 0 indicates the token is an original token,
+ - 1 indicates the token was replaced.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import ElectraForPreTraining, AutoTokenizer
+ >>> import torch
+
+ >>> discriminator = ElectraForPreTraining.from_pretrained("google/electra-base-discriminator")
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-base-discriminator")
+
+ >>> sentence = "The quick brown fox jumps over the lazy dog"
+ >>> fake_sentence = "The quick brown fox fake over the lazy dog"
+
+ >>> fake_tokens = tokenizer.tokenize(fake_sentence, add_special_tokens=True)
+ >>> fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
+ >>> discriminator_outputs = discriminator(fake_inputs)
+ >>> predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
+
+ >>> fake_tokens
+ ['[CLS]', 'the', 'quick', 'brown', 'fox', 'fake', 'over', 'the', 'lazy', 'dog', '[SEP]']
+
+ >>> predictions.squeeze().tolist()
+ [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0]
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ discriminator_hidden_states = self.electra(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ discriminator_sequence_output = discriminator_hidden_states[0]
+
+ logits = self.discriminator_predictions(discriminator_sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = nn.BCEWithLogitsLoss()
+ if attention_mask is not None:
+ active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
+ active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
+ active_labels = labels[active_loss]
+ loss = loss_fct(active_logits, active_labels.float())
+ else:
+ loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())
+
+ if not return_dict:
+ output = (logits,) + discriminator_hidden_states[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return ElectraForPreTrainingOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=discriminator_hidden_states.hidden_states,
+ attentions=discriminator_hidden_states.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Electra model with a language modeling head on top.
+
+ Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
+ the two to have been trained for the masked language modeling task.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class ElectraForMaskedLM(ElectraPreTrainedModel):
+ _tied_weights_keys = ["generator_lm_head.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.electra = ElectraModel(config)
+ self.generator_predictions = ElectraGeneratorPredictions(config)
+
+ self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.generator_lm_head
+
+ def set_output_embeddings(self, word_embeddings):
+ self.generator_lm_head = word_embeddings
+
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="google/electra-small-generator",
+ output_type=MaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ mask="[MASK]",
+ expected_output="'paris'",
+ expected_loss=1.22,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ generator_hidden_states = self.electra(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ generator_sequence_output = generator_hidden_states[0]
+
+ prediction_scores = self.generator_predictions(generator_sequence_output)
+ prediction_scores = self.generator_lm_head(prediction_scores)
+
+ loss = None
+ # Masked language modeling softmax layer
+ if labels is not None:
+ loss_fct = nn.CrossEntropyLoss() # -100 index = padding token
+ loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + generator_hidden_states[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MaskedLMOutput(
+ loss=loss,
+ logits=prediction_scores,
+ hidden_states=generator_hidden_states.hidden_states,
+ attentions=generator_hidden_states.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Electra model with a token classification head on top.
+
+ Both the discriminator and generator may be loaded into this model.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class ElectraForTokenClassification(ElectraPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.electra = ElectraModel(config)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="bhadresh-savani/electra-base-discriminator-finetuned-conll03-english",
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']",
+ expected_loss=0.11,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ discriminator_hidden_states = self.electra(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ discriminator_sequence_output = discriminator_hidden_states[0]
+
+ discriminator_sequence_output = self.dropout(discriminator_sequence_output)
+ logits = self.classifier(discriminator_sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + discriminator_hidden_states[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=discriminator_hidden_states.hidden_states,
+ attentions=discriminator_hidden_states.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class ElectraForQuestionAnswering(ElectraPreTrainedModel):
+ config_class = ElectraConfig
+ base_model_prefix = "electra"
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.electra = ElectraModel(config)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="bhadresh-savani/electra-base-squad2",
+ output_type=QuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ qa_target_start_index=11,
+ qa_target_end_index=12,
+ expected_output="'a nice puppet'",
+ expected_loss=2.64,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ start_positions: Optional[torch.Tensor] = None,
+ end_positions: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ discriminator_hidden_states = self.electra(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ )
+
+ sequence_output = discriminator_hidden_states[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (
+ start_logits,
+ end_logits,
+ ) + discriminator_hidden_states[1:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=discriminator_hidden_states.hidden_states,
+ attentions=discriminator_hidden_states.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class ElectraForMultipleChoice(ElectraPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.electra = ElectraModel(config)
+ self.sequence_summary = SequenceSummary(config)
+ self.classifier = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
+ inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ discriminator_hidden_states = self.electra(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = discriminator_hidden_states[0]
+
+ pooled_output = self.sequence_summary(sequence_output)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ output = (reshaped_logits,) + discriminator_hidden_states[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=discriminator_hidden_states.hidden_states,
+ attentions=discriminator_hidden_states.attentions,
+ )
+
+
+@add_start_docstrings(
+ """ELECTRA Model with a `language modeling` head on top for CLM fine-tuning.""", ELECTRA_START_DOCSTRING
+)
+class ElectraForCausalLM(ElectraPreTrainedModel):
+ _tied_weights_keys = ["generator_lm_head.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ if not config.is_decoder:
+ logger.warning("If you want to use `ElectraForCausalLM` as a standalone, add `is_decoder=True.`")
+
+ self.electra = ElectraModel(config)
+ self.generator_predictions = ElectraGeneratorPredictions(config)
+ self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
+
+ self.init_weights()
+
+ def get_output_embeddings(self):
+ return self.generator_lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.generator_lm_head = new_embeddings
+
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.Tensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
+ ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, ElectraForCausalLM, ElectraConfig
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-base-generator")
+ >>> config = ElectraConfig.from_pretrained("google/electra-base-generator")
+ >>> config.is_decoder = True
+ >>> model = ElectraForCausalLM.from_pretrained("google/electra-base-generator", config=config)
+
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> prediction_logits = outputs.logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ if labels is not None:
+ use_cache = False
+
+ outputs = self.electra(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.generator_lm_head(self.generator_predictions(sequence_output))
+
+ lm_loss = None
+ if labels is not None:
+ # we are doing next-token prediction; shift prediction scores and input ids by one
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
+ labels = labels[:, 1:].contiguous()
+ loss_fct = CrossEntropyLoss()
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[1:]
+ return ((lm_loss,) + output) if lm_loss is not None else output
+
+ return CausalLMOutputWithCrossAttentions(
+ loss=lm_loss,
+ logits=prediction_scores,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.prepare_inputs_for_generation
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
+ input_shape = input_ids.shape
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+ if attention_mask is None:
+ attention_mask = input_ids.new_ones(input_shape)
+
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
+
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM._reorder_cache
+ def _reorder_cache(self, past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_flax_electra.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_flax_electra.py
new file mode 100644
index 0000000000000000000000000000000000000000..64d49eb17a460ae0a8aca59c54cf0e1557122361
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_flax_electra.py
@@ -0,0 +1,1601 @@
+# coding=utf-8
+# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Callable, Optional, Tuple
+
+import flax
+import flax.linen as nn
+import jax
+import jax.numpy as jnp
+import numpy as np
+from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
+from flax.linen import combine_masks, make_causal_mask
+from flax.linen import partitioning as nn_partitioning
+from flax.linen.attention import dot_product_attention_weights
+from flax.traverse_util import flatten_dict, unflatten_dict
+from jax import lax
+
+from ...modeling_flax_outputs import (
+ FlaxBaseModelOutput,
+ FlaxBaseModelOutputWithPastAndCrossAttentions,
+ FlaxCausalLMOutputWithCrossAttentions,
+ FlaxMaskedLMOutput,
+ FlaxMultipleChoiceModelOutput,
+ FlaxQuestionAnsweringModelOutput,
+ FlaxSequenceClassifierOutput,
+ FlaxTokenClassifierOutput,
+)
+from ...modeling_flax_utils import (
+ ACT2FN,
+ FlaxPreTrainedModel,
+ append_call_sample_docstring,
+ append_replace_return_docstrings,
+ overwrite_call_docstring,
+)
+from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_electra import ElectraConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
+_CONFIG_FOR_DOC = "ElectraConfig"
+
+remat = nn_partitioning.remat
+
+
+@flax.struct.dataclass
+class FlaxElectraForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`ElectraForPreTraining`].
+
+ Args:
+ logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ logits: jnp.ndarray = None
+ hidden_states: Optional[Tuple[jnp.ndarray]] = None
+ attentions: Optional[Tuple[jnp.ndarray]] = None
+
+
+ELECTRA_START_DOCSTRING = r"""
+
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
+
+ This model is also a Flax Linen
+ [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
+ regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
+
+ Finally, this model supports inherent JAX features such as:
+
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
+
+ Parameters:
+ config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ELECTRA_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`numpy.ndarray` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+ head_mask (`numpy.ndarray` of shape `({0})`, `optional):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+
+"""
+
+
+class FlaxElectraEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.word_embeddings = nn.Embed(
+ self.config.vocab_size,
+ self.config.embedding_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ )
+ self.position_embeddings = nn.Embed(
+ self.config.max_position_embeddings,
+ self.config.embedding_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ )
+ self.token_type_embeddings = nn.Embed(
+ self.config.type_vocab_size,
+ self.config.embedding_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ )
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings.__call__
+ def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
+ # Embed
+ inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
+ position_embeds = self.position_embeddings(position_ids.astype("i4"))
+ token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
+
+ # Sum all embeddings
+ hidden_states = inputs_embeds + token_type_embeddings + position_embeds
+
+ # Layer Norm
+ hidden_states = self.LayerNorm(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->Electra
+class FlaxElectraSelfAttention(nn.Module):
+ config: ElectraConfig
+ causal: bool = False
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.head_dim = self.config.hidden_size // self.config.num_attention_heads
+ if self.config.hidden_size % self.config.num_attention_heads != 0:
+ raise ValueError(
+ "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
+ " : {self.config.num_attention_heads}"
+ )
+
+ self.query = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.key = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.value = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+
+ if self.causal:
+ self.causal_mask = make_causal_mask(
+ jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
+ )
+
+ def _split_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
+
+ def _merge_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
+
+ @nn.compact
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
+ def _concatenate_to_cache(self, key, value, query, attention_mask):
+ """
+ This function takes projected key, value states from a single input token and concatenates the states to cached
+ states from previous steps. This function is slighly adapted from the official Flax repository:
+ https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
+ """
+ # detect if we're initializing by absence of existing cache data.
+ is_initialized = self.has_variable("cache", "cached_key")
+ cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
+ cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
+ cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
+
+ if is_initialized:
+ *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
+ # update key, value caches with our new 1d spatial slices
+ cur_index = cache_index.value
+ indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
+ key = lax.dynamic_update_slice(cached_key.value, key, indices)
+ value = lax.dynamic_update_slice(cached_value.value, value, indices)
+ cached_key.value = key
+ cached_value.value = value
+ num_updated_cache_vectors = query.shape[1]
+ cache_index.value = cache_index.value + num_updated_cache_vectors
+ # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
+ pad_mask = jnp.broadcast_to(
+ jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
+ tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
+ )
+ attention_mask = combine_masks(pad_mask, attention_mask)
+ return key, value, attention_mask
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ key_value_states: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic=True,
+ output_attentions: bool = False,
+ ):
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+ batch_size = hidden_states.shape[0]
+
+ # get query proj
+ query_states = self.query(hidden_states)
+ # get key, value proj
+ if is_cross_attention:
+ # cross_attentions
+ key_states = self.key(key_value_states)
+ value_states = self.value(key_value_states)
+ else:
+ # self_attention
+ key_states = self.key(hidden_states)
+ value_states = self.value(hidden_states)
+
+ query_states = self._split_heads(query_states)
+ key_states = self._split_heads(key_states)
+ value_states = self._split_heads(value_states)
+
+ # handle cache prepare causal attention mask
+ if self.causal:
+ query_length, key_length = query_states.shape[1], key_states.shape[1]
+ if self.has_variable("cache", "cached_key"):
+ mask_shift = self.variables["cache"]["cache_index"]
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
+ causal_mask = lax.dynamic_slice(
+ self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
+ )
+ else:
+ causal_mask = self.causal_mask[:, :, :query_length, :key_length]
+ causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
+
+ # combine masks if needed
+ if attention_mask is not None and self.causal:
+ attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
+ attention_mask = combine_masks(attention_mask, causal_mask)
+ elif self.causal:
+ attention_mask = causal_mask
+ elif attention_mask is not None:
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
+
+ # During fast autoregressive decoding, we feed one position at a time,
+ # and cache the keys and values step by step.
+ if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
+ key_states, value_states, attention_mask = self._concatenate_to_cache(
+ key_states, value_states, query_states, attention_mask
+ )
+
+ # Convert the boolean attention mask to an attention bias.
+ if attention_mask is not None:
+ # attention mask in the form of attention bias
+ attention_bias = lax.select(
+ attention_mask > 0,
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
+ )
+ else:
+ attention_bias = None
+
+ dropout_rng = None
+ if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
+ dropout_rng = self.make_rng("dropout")
+
+ attn_weights = dot_product_attention_weights(
+ query_states,
+ key_states,
+ bias=attention_bias,
+ dropout_rng=dropout_rng,
+ dropout_rate=self.config.attention_probs_dropout_prob,
+ broadcast_dropout=True,
+ deterministic=deterministic,
+ dtype=self.dtype,
+ precision=None,
+ )
+
+ # Mask heads if we want to
+ if layer_head_mask is not None:
+ attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
+
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
+ attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
+
+ outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->Electra
+class FlaxElectraSelfOutput(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->Electra
+class FlaxElectraAttention(nn.Module):
+ config: ElectraConfig
+ causal: bool = False
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.self = FlaxElectraSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
+ self.output = FlaxElectraSelfOutput(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ key_value_states=None,
+ init_cache=False,
+ deterministic=True,
+ output_attentions: bool = False,
+ ):
+ # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
+ # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
+ # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
+ attn_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ layer_head_mask=layer_head_mask,
+ key_value_states=key_value_states,
+ init_cache=init_cache,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ attn_output = attn_outputs[0]
+ hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_outputs[1],)
+
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->Electra
+class FlaxElectraIntermediate(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.intermediate_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.activation = ACT2FN[self.config.hidden_act]
+
+ def __call__(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->Electra
+class FlaxElectraOutput(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+
+ def __call__(self, hidden_states, attention_output, deterministic: bool = True):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = self.LayerNorm(hidden_states + attention_output)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->Electra
+class FlaxElectraLayer(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.attention = FlaxElectraAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype)
+ self.intermediate = FlaxElectraIntermediate(self.config, dtype=self.dtype)
+ self.output = FlaxElectraOutput(self.config, dtype=self.dtype)
+ if self.config.add_cross_attention:
+ self.crossattention = FlaxElectraAttention(self.config, causal=False, dtype=self.dtype)
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ ):
+ # Self Attention
+ attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ layer_head_mask=layer_head_mask,
+ init_cache=init_cache,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ attention_output = attention_outputs[0]
+
+ # Cross-Attention Block
+ if encoder_hidden_states is not None:
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask=encoder_attention_mask,
+ layer_head_mask=layer_head_mask,
+ key_value_states=encoder_hidden_states,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+
+ hidden_states = self.intermediate(attention_output)
+ hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attention_outputs[1],)
+ if encoder_hidden_states is not None:
+ outputs += (cross_attention_outputs[1],)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->Electra
+class FlaxElectraLayerCollection(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ if self.gradient_checkpointing:
+ FlaxElectraCheckpointLayer = remat(FlaxElectraLayer, static_argnums=(5, 6, 7))
+ self.layers = [
+ FlaxElectraCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
+ for i in range(self.config.num_hidden_layers)
+ ]
+ else:
+ self.layers = [
+ FlaxElectraLayer(self.config, name=str(i), dtype=self.dtype)
+ for i in range(self.config.num_hidden_layers)
+ ]
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ all_attentions = () if output_attentions else None
+ all_hidden_states = () if output_hidden_states else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+
+ # Check if head_mask has a correct number of layers specified if desired
+ if head_mask is not None:
+ if head_mask.shape[0] != (len(self.layers)):
+ raise ValueError(
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
+ f" {head_mask.shape[0]}."
+ )
+
+ for i, layer in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ layer_outputs = layer(
+ hidden_states,
+ attention_mask,
+ head_mask[i] if head_mask is not None else None,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ init_cache,
+ deterministic,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
+
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->Electra
+class FlaxElectraEncoder(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.layer = FlaxElectraLayerCollection(
+ self.config,
+ dtype=self.dtype,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ return self.layer(
+ hidden_states,
+ attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ init_cache=init_cache,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+class FlaxElectraGeneratorPredictions(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype)
+
+ def __call__(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+class FlaxElectraDiscriminatorPredictions(nn.Module):
+ """Prediction module for the discriminator, made up of two dense layers."""
+
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
+ self.dense_prediction = nn.Dense(1, dtype=self.dtype)
+
+ def __call__(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
+ hidden_states = self.dense_prediction(hidden_states).squeeze(-1)
+ return hidden_states
+
+
+class FlaxElectraPreTrainedModel(FlaxPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ElectraConfig
+ base_model_prefix = "electra"
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: ElectraConfig,
+ input_shape: Tuple = (1, 1),
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ gradient_checkpointing: bool = False,
+ **kwargs,
+ ):
+ module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing
+ def enable_gradient_checkpointing(self):
+ self._module = self.module_class(
+ config=self.config,
+ dtype=self.dtype,
+ gradient_checkpointing=True,
+ )
+
+ # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.init_weights
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensors
+ input_ids = jnp.zeros(input_shape, dtype="i4")
+ token_type_ids = jnp.zeros_like(input_ids)
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
+ attention_mask = jnp.ones_like(input_ids)
+ head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
+
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ if self.config.add_cross_attention:
+ encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
+ encoder_attention_mask = attention_mask
+ module_init_outputs = self.module.init(
+ rngs,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ return_dict=False,
+ )
+ else:
+ module_init_outputs = self.module.init(
+ rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False
+ )
+
+ random_params = module_init_outputs["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
+ def init_cache(self, batch_size, max_length):
+ r"""
+ Args:
+ batch_size (`int`):
+ batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
+ max_length (`int`):
+ maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
+ cache.
+ """
+ # init input variables to retrieve cache
+ input_ids = jnp.ones((batch_size, max_length), dtype="i4")
+ attention_mask = jnp.ones_like(input_ids, dtype="i4")
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
+
+ init_variables = self.module.init(
+ jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
+ )
+ return unfreeze(init_variables["cache"])
+
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ token_type_ids=None,
+ position_ids=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ params: dict = None,
+ dropout_rng: jax.random.PRNGKey = None,
+ train: bool = False,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ past_key_values: dict = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ # init input tensors if not passed
+ if token_type_ids is None:
+ token_type_ids = jnp.ones_like(input_ids)
+
+ if position_ids is None:
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
+
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+
+ if head_mask is None:
+ head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ inputs = {"params": params or self.params}
+
+ if self.config.add_cross_attention:
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
+ # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
+ # changed by FlaxElectraAttention module
+ if past_key_values:
+ inputs["cache"] = past_key_values
+ mutable = ["cache"]
+ else:
+ mutable = False
+
+ outputs = self.module.apply(
+ inputs,
+ jnp.array(input_ids, dtype="i4"),
+ jnp.array(attention_mask, dtype="i4"),
+ token_type_ids=jnp.array(token_type_ids, dtype="i4"),
+ position_ids=jnp.array(position_ids, dtype="i4"),
+ head_mask=jnp.array(head_mask, dtype="i4"),
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ deterministic=not train,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ rngs=rngs,
+ mutable=mutable,
+ )
+
+ # add updated cache to model output
+ if past_key_values is not None and return_dict:
+ outputs, past_key_values = outputs
+ outputs["past_key_values"] = unfreeze(past_key_values["cache"])
+ return outputs
+ elif past_key_values is not None and not return_dict:
+ outputs, past_key_values = outputs
+ outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
+
+ else:
+ outputs = self.module.apply(
+ inputs,
+ jnp.array(input_ids, dtype="i4"),
+ jnp.array(attention_mask, dtype="i4"),
+ token_type_ids=jnp.array(token_type_ids, dtype="i4"),
+ position_ids=jnp.array(position_ids, dtype="i4"),
+ head_mask=jnp.array(head_mask, dtype="i4"),
+ deterministic=not train,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ rngs=rngs,
+ )
+
+ return outputs
+
+
+class FlaxElectraModule(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.embeddings = FlaxElectraEmbeddings(self.config, dtype=self.dtype)
+ if self.config.embedding_size != self.config.hidden_size:
+ self.embeddings_project = nn.Dense(self.config.hidden_size, dtype=self.dtype)
+ self.encoder = FlaxElectraEncoder(
+ self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
+ )
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask: Optional[np.ndarray] = None,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ embeddings = self.embeddings(
+ input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
+ )
+ if hasattr(self, "embeddings_project"):
+ embeddings = self.embeddings_project(embeddings)
+
+ return self.encoder(
+ embeddings,
+ attention_mask,
+ head_mask=head_mask,
+ deterministic=deterministic,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+@add_start_docstrings(
+ "The bare Electra Model transformer outputting raw hidden-states without any specific head on top.",
+ ELECTRA_START_DOCSTRING,
+)
+class FlaxElectraModel(FlaxElectraPreTrainedModel):
+ module_class = FlaxElectraModule
+
+
+append_call_sample_docstring(FlaxElectraModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
+
+
+class FlaxElectraTiedDense(nn.Module):
+ embedding_size: int
+ dtype: jnp.dtype = jnp.float32
+ precision = None
+ bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
+
+ def setup(self):
+ self.bias = self.param("bias", self.bias_init, (self.embedding_size,))
+
+ def __call__(self, x, kernel):
+ x = jnp.asarray(x, self.dtype)
+ kernel = jnp.asarray(kernel, self.dtype)
+ y = lax.dot_general(
+ x,
+ kernel,
+ (((x.ndim - 1,), (0,)), ((), ())),
+ precision=self.precision,
+ )
+ bias = jnp.asarray(self.bias, self.dtype)
+ return y + bias
+
+
+class FlaxElectraForMaskedLMModule(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.electra = FlaxElectraModule(
+ config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
+ )
+ self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype)
+ if self.config.tie_word_embeddings:
+ self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype)
+ else:
+ self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ token_type_ids=None,
+ position_ids=None,
+ head_mask=None,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ outputs = self.electra(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = outputs[0]
+ prediction_scores = self.generator_predictions(hidden_states)
+
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
+ prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T)
+ else:
+ prediction_scores = self.generator_lm_head(prediction_scores)
+
+ if not return_dict:
+ return (prediction_scores,) + outputs[1:]
+
+ return FlaxMaskedLMOutput(
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings("""Electra Model with a `language modeling` head on top.""", ELECTRA_START_DOCSTRING)
+class FlaxElectraForMaskedLM(FlaxElectraPreTrainedModel):
+ module_class = FlaxElectraForMaskedLMModule
+
+
+append_call_sample_docstring(FlaxElectraForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC)
+
+
+class FlaxElectraForPreTrainingModule(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.electra = FlaxElectraModule(
+ config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
+ )
+ self.discriminator_predictions = FlaxElectraDiscriminatorPredictions(config=self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ token_type_ids=None,
+ position_ids=None,
+ head_mask=None,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.electra(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = outputs[0]
+
+ logits = self.discriminator_predictions(hidden_states)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxElectraForPreTrainingOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
+
+ It is recommended to load the discriminator checkpoint into that model.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class FlaxElectraForPreTraining(FlaxElectraPreTrainedModel):
+ module_class = FlaxElectraForPreTrainingModule
+
+
+FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING = """
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, FlaxElectraForPreTraining
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator")
+ >>> model = FlaxElectraForPreTraining.from_pretrained("google/electra-small-discriminator")
+
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
+ >>> outputs = model(**inputs)
+
+ >>> prediction_logits = outputs.logits
+ ```
+"""
+
+overwrite_call_docstring(
+ FlaxElectraForPreTraining,
+ ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING,
+)
+append_replace_return_docstrings(
+ FlaxElectraForPreTraining, output_type=FlaxElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
+)
+
+
+class FlaxElectraForTokenClassificationModule(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.electra = FlaxElectraModule(
+ config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
+ )
+ classifier_dropout = (
+ self.config.classifier_dropout
+ if self.config.classifier_dropout is not None
+ else self.config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ token_type_ids=None,
+ position_ids=None,
+ head_mask=None,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.electra(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = outputs[0]
+
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ logits = self.classifier(hidden_states)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxTokenClassifierOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Electra model with a token classification head on top.
+
+ Both the discriminator and generator may be loaded into this model.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class FlaxElectraForTokenClassification(FlaxElectraPreTrainedModel):
+ module_class = FlaxElectraForTokenClassificationModule
+
+
+append_call_sample_docstring(
+ FlaxElectraForTokenClassification,
+ _CHECKPOINT_FOR_DOC,
+ FlaxTokenClassifierOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+def identity(x, **kwargs):
+ return x
+
+
+class FlaxElectraSequenceSummary(nn.Module):
+ r"""
+ Compute a single vector summary of a sequence hidden states.
+
+ Args:
+ config ([`PretrainedConfig`]):
+ The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
+ config class of your model for the default values it uses):
+
+ - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
+ - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
+ (otherwise to `config.hidden_size`).
+ - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
+ another string or `None` will add no activation.
+ - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
+ - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
+ """
+
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.summary = identity
+ if hasattr(self.config, "summary_use_proj") and self.config.summary_use_proj:
+ if (
+ hasattr(self.config, "summary_proj_to_labels")
+ and self.config.summary_proj_to_labels
+ and self.config.num_labels > 0
+ ):
+ num_classes = self.config.num_labels
+ else:
+ num_classes = self.config.hidden_size
+ self.summary = nn.Dense(num_classes, dtype=self.dtype)
+
+ activation_string = getattr(self.config, "summary_activation", None)
+ self.activation = ACT2FN[activation_string] if activation_string else lambda x: x # noqa F407
+
+ self.first_dropout = identity
+ if hasattr(self.config, "summary_first_dropout") and self.config.summary_first_dropout > 0:
+ self.first_dropout = nn.Dropout(self.config.summary_first_dropout)
+
+ self.last_dropout = identity
+ if hasattr(self.config, "summary_last_dropout") and self.config.summary_last_dropout > 0:
+ self.last_dropout = nn.Dropout(self.config.summary_last_dropout)
+
+ def __call__(self, hidden_states, cls_index=None, deterministic: bool = True):
+ """
+ Compute a single vector summary of a sequence hidden states.
+
+ Args:
+ hidden_states (`jnp.ndarray` of shape `[batch_size, seq_len, hidden_size]`):
+ The hidden states of the last layer.
+ cls_index (`jnp.ndarray` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
+ Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
+
+ Returns:
+ `jnp.ndarray`: The summary of the sequence hidden states.
+ """
+ # NOTE: this doest "first" type summary always
+ output = hidden_states[:, 0]
+ output = self.first_dropout(output, deterministic=deterministic)
+ output = self.summary(output)
+ output = self.activation(output)
+ output = self.last_dropout(output, deterministic=deterministic)
+ return output
+
+
+class FlaxElectraForMultipleChoiceModule(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.electra = FlaxElectraModule(
+ config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
+ )
+ self.sequence_summary = FlaxElectraSequenceSummary(config=self.config, dtype=self.dtype)
+ self.classifier = nn.Dense(1, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ token_type_ids=None,
+ position_ids=None,
+ head_mask=None,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ num_choices = input_ids.shape[1]
+ input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
+ attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
+ token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
+ position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
+
+ # Model
+ outputs = self.electra(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = outputs[0]
+ pooled_output = self.sequence_summary(hidden_states, deterministic=deterministic)
+ logits = self.classifier(pooled_output)
+
+ reshaped_logits = logits.reshape(-1, num_choices)
+
+ if not return_dict:
+ return (reshaped_logits,) + outputs[1:]
+
+ return FlaxMultipleChoiceModelOutput(
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class FlaxElectraForMultipleChoice(FlaxElectraPreTrainedModel):
+ module_class = FlaxElectraForMultipleChoiceModule
+
+
+# adapt docstring slightly for FlaxElectraForMultipleChoice
+overwrite_call_docstring(
+ FlaxElectraForMultipleChoice, ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+)
+append_call_sample_docstring(
+ FlaxElectraForMultipleChoice,
+ _CHECKPOINT_FOR_DOC,
+ FlaxMultipleChoiceModelOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+class FlaxElectraForQuestionAnsweringModule(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.electra = FlaxElectraModule(
+ config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
+ )
+ self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ token_type_ids=None,
+ position_ids=None,
+ head_mask=None,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.electra(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = outputs[0]
+ logits = self.qa_outputs(hidden_states)
+ start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
+ start_logits = start_logits.squeeze(-1)
+ end_logits = end_logits.squeeze(-1)
+
+ if not return_dict:
+ return (start_logits, end_logits) + outputs[1:]
+
+ return FlaxQuestionAnsweringModelOutput(
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class FlaxElectraForQuestionAnswering(FlaxElectraPreTrainedModel):
+ module_class = FlaxElectraForQuestionAnsweringModule
+
+
+append_call_sample_docstring(
+ FlaxElectraForQuestionAnswering,
+ _CHECKPOINT_FOR_DOC,
+ FlaxQuestionAnsweringModelOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+class FlaxElectraClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
+ classifier_dropout = (
+ self.config.classifier_dropout
+ if self.config.classifier_dropout is not None
+ else self.config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.out_proj = nn.Dense(self.config.num_labels, dtype=self.dtype)
+
+ def __call__(self, hidden_states, deterministic: bool = True):
+ x = hidden_states[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x, deterministic=deterministic)
+ x = self.dense(x)
+ x = ACT2FN["gelu"](x) # although BERT uses tanh here, it seems Electra authors used gelu
+ x = self.dropout(x, deterministic=deterministic)
+ x = self.out_proj(x)
+ return x
+
+
+class FlaxElectraForSequenceClassificationModule(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.electra = FlaxElectraModule(
+ config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
+ )
+ self.classifier = FlaxElectraClassificationHead(config=self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ token_type_ids=None,
+ position_ids=None,
+ head_mask=None,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.electra(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = outputs[0]
+ logits = self.classifier(hidden_states, deterministic=deterministic)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxSequenceClassifierOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Electra Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class FlaxElectraForSequenceClassification(FlaxElectraPreTrainedModel):
+ module_class = FlaxElectraForSequenceClassificationModule
+
+
+append_call_sample_docstring(
+ FlaxElectraForSequenceClassification,
+ _CHECKPOINT_FOR_DOC,
+ FlaxSequenceClassifierOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+class FlaxElectraForCausalLMModule(nn.Module):
+ config: ElectraConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.electra = FlaxElectraModule(
+ config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
+ )
+ self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype)
+ if self.config.tie_word_embeddings:
+ self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype)
+ else:
+ self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask: Optional[jnp.ndarray] = None,
+ token_type_ids: Optional[jnp.ndarray] = None,
+ position_ids: Optional[jnp.ndarray] = None,
+ head_mask: Optional[jnp.ndarray] = None,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ outputs = self.electra(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ init_cache=init_cache,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = outputs[0]
+ prediction_scores = self.generator_predictions(hidden_states)
+
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
+ prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T)
+ else:
+ prediction_scores = self.generator_lm_head(prediction_scores)
+
+ if not return_dict:
+ return (prediction_scores,) + outputs[1:]
+
+ return FlaxCausalLMOutputWithCrossAttentions(
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Electra Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
+ autoregressive tasks.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForCausalLM with Bert->Electra
+class FlaxElectraForCausalLM(FlaxElectraPreTrainedModel):
+ module_class = FlaxElectraForCausalLMModule
+
+ def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
+ # initializing the cache
+ batch_size, seq_length = input_ids.shape
+
+ past_key_values = self.init_cache(batch_size, max_length)
+ # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
+ # But since the decoder uses a causal mask, those positions are masked anyway.
+ # Thus, we can create a single static attention_mask here, which is more efficient for compilation
+ extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
+ if attention_mask is not None:
+ position_ids = attention_mask.cumsum(axis=-1) - 1
+ extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
+ else:
+ position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
+
+ return {
+ "past_key_values": past_key_values,
+ "attention_mask": extended_attention_mask,
+ "position_ids": position_ids,
+ }
+
+ def update_inputs_for_generation(self, model_outputs, model_kwargs):
+ model_kwargs["past_key_values"] = model_outputs.past_key_values
+ model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
+ return model_kwargs
+
+
+append_call_sample_docstring(
+ FlaxElectraForCausalLM,
+ _CHECKPOINT_FOR_DOC,
+ FlaxCausalLMOutputWithCrossAttentions,
+ _CONFIG_FOR_DOC,
+)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_tf_electra.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_tf_electra.py
new file mode 100644
index 0000000000000000000000000000000000000000..b0c8b4fa285d54fd3431e9e69fcefe4df4afd480
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_tf_electra.py
@@ -0,0 +1,1775 @@
+# coding=utf-8
+# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF Electra model."""
+
+
+from __future__ import annotations
+
+import math
+import warnings
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import (
+ TFBaseModelOutputWithPastAndCrossAttentions,
+ TFMaskedLMOutput,
+ TFMultipleChoiceModelOutput,
+ TFQuestionAnsweringModelOutput,
+ TFSequenceClassifierOutput,
+ TFTokenClassifierOutput,
+)
+from ...modeling_tf_utils import (
+ TFMaskedLanguageModelingLoss,
+ TFModelInputType,
+ TFMultipleChoiceLoss,
+ TFPreTrainedModel,
+ TFQuestionAnsweringLoss,
+ TFSequenceClassificationLoss,
+ TFSequenceSummary,
+ TFTokenClassificationLoss,
+ get_initializer,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_electra import ElectraConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
+_CONFIG_FOR_DOC = "ElectraConfig"
+
+TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "google/electra-small-generator",
+ "google/electra-base-generator",
+ "google/electra-large-generator",
+ "google/electra-small-discriminator",
+ "google/electra-base-discriminator",
+ "google/electra-large-discriminator",
+ # See all ELECTRA models at https://huggingface.co/models?filter=electra
+]
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Electra
+class TFElectraSelfAttention(keras.layers.Layer):
+ def __init__(self, config: ElectraConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number "
+ f"of attention heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
+
+ self.query = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
+ )
+ self.key = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
+ )
+ self.value = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
+ )
+ self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
+
+ self.is_decoder = config.is_decoder
+ self.config = config
+
+ def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
+ tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
+
+ # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
+ return tf.transpose(tensor, perm=[0, 2, 1, 3])
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ encoder_hidden_states: tf.Tensor,
+ encoder_attention_mask: tf.Tensor,
+ past_key_value: Tuple[tf.Tensor],
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ batch_size = shape_list(hidden_states)[0]
+ mixed_query_layer = self.query(inputs=hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
+ value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
+ value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
+ key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
+ value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
+ value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
+
+ query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ # (batch size, num_heads, seq_len_q, seq_len_k)
+ attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
+ dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
+ attention_scores = tf.divide(attention_scores, dk)
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in TFElectraModel call() function)
+ attention_scores = tf.add(attention_scores, attention_mask)
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = stable_softmax(logits=attention_scores, axis=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(inputs=attention_probs, training=training)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = tf.multiply(attention_probs, head_mask)
+
+ attention_output = tf.matmul(attention_probs, value_layer)
+ attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
+
+ # (batch_size, seq_len_q, all_head_size)
+ attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
+ outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "query", None) is not None:
+ with tf.name_scope(self.query.name):
+ self.query.build([None, None, self.config.hidden_size])
+ if getattr(self, "key", None) is not None:
+ with tf.name_scope(self.key.name):
+ self.key.build([None, None, self.config.hidden_size])
+ if getattr(self, "value", None) is not None:
+ with tf.name_scope(self.value.name):
+ self.value.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Electra
+class TFElectraSelfOutput(keras.layers.Layer):
+ def __init__(self, config: ElectraConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
+ hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Electra
+class TFElectraAttention(keras.layers.Layer):
+ def __init__(self, config: ElectraConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.self_attention = TFElectraSelfAttention(config, name="self")
+ self.dense_output = TFElectraSelfOutput(config, name="output")
+
+ def prune_heads(self, heads):
+ raise NotImplementedError
+
+ def call(
+ self,
+ input_tensor: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ encoder_hidden_states: tf.Tensor,
+ encoder_attention_mask: tf.Tensor,
+ past_key_value: Tuple[tf.Tensor],
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ self_outputs = self.self_attention(
+ hidden_states=input_tensor,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ attention_output = self.dense_output(
+ hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
+ )
+ # add attentions (possibly with past_key_value) if we output them
+ outputs = (attention_output,) + self_outputs[1:]
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attention", None) is not None:
+ with tf.name_scope(self.self_attention.name):
+ self.self_attention.build(None)
+ if getattr(self, "dense_output", None) is not None:
+ with tf.name_scope(self.dense_output.name):
+ self.dense_output.build(None)
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Electra
+class TFElectraIntermediate(keras.layers.Layer):
+ def __init__(self, config: ElectraConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.intermediate_act_fn = config.hidden_act
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Electra
+class TFElectraOutput(keras.layers.Layer):
+ def __init__(self, config: ElectraConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
+ hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.intermediate_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Electra
+class TFElectraLayer(keras.layers.Layer):
+ def __init__(self, config: ElectraConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.attention = TFElectraAttention(config, name="attention")
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = TFElectraAttention(config, name="crossattention")
+ self.intermediate = TFElectraIntermediate(config, name="intermediate")
+ self.bert_output = TFElectraOutput(config, name="output")
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ encoder_hidden_states: tf.Tensor | None,
+ encoder_attention_mask: tf.Tensor | None,
+ past_key_value: Tuple[tf.Tensor] | None,
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ input_tensor=hidden_states,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=self_attn_past_key_value,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ input_tensor=attention_output,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=cross_attn_past_key_value,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ intermediate_output = self.intermediate(hidden_states=attention_output)
+ layer_output = self.bert_output(
+ hidden_states=intermediate_output, input_tensor=attention_output, training=training
+ )
+ outputs = (layer_output,) + outputs # add attentions if we output them
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "intermediate", None) is not None:
+ with tf.name_scope(self.intermediate.name):
+ self.intermediate.build(None)
+ if getattr(self, "bert_output", None) is not None:
+ with tf.name_scope(self.bert_output.name):
+ self.bert_output.build(None)
+ if getattr(self, "crossattention", None) is not None:
+ with tf.name_scope(self.crossattention.name):
+ self.crossattention.build(None)
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Electra
+class TFElectraEncoder(keras.layers.Layer):
+ def __init__(self, config: ElectraConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.layer = [TFElectraLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ encoder_hidden_states: tf.Tensor | None,
+ encoder_attention_mask: tf.Tensor | None,
+ past_key_values: Tuple[Tuple[tf.Tensor]] | None,
+ use_cache: Optional[bool],
+ output_attentions: bool,
+ output_hidden_states: bool,
+ return_dict: bool,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ layer_outputs = layer_module(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ head_mask=head_mask[i],
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention and encoder_hidden_states is not None:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ # Add last layer
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
+ )
+
+ return TFBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "layer", None) is not None:
+ for layer in self.layer:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Electra
+class TFElectraPooler(keras.layers.Layer):
+ def __init__(self, config: ElectraConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="tanh",
+ name="dense",
+ )
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(inputs=first_token_tensor)
+
+ return pooled_output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.albert.modeling_tf_albert.TFAlbertEmbeddings with Albert->Electra
+class TFElectraEmbeddings(keras.layers.Layer):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config: ElectraConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.embedding_size = config.embedding_size
+ self.max_position_embeddings = config.max_position_embeddings
+ self.initializer_range = config.initializer_range
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+
+ def build(self, input_shape=None):
+ with tf.name_scope("word_embeddings"):
+ self.weight = self.add_weight(
+ name="weight",
+ shape=[self.config.vocab_size, self.embedding_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ with tf.name_scope("token_type_embeddings"):
+ self.token_type_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.config.type_vocab_size, self.embedding_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ with tf.name_scope("position_embeddings"):
+ self.position_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.max_position_embeddings, self.embedding_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.embedding_size])
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call
+ def call(
+ self,
+ input_ids: tf.Tensor = None,
+ position_ids: tf.Tensor = None,
+ token_type_ids: tf.Tensor = None,
+ inputs_embeds: tf.Tensor = None,
+ past_key_values_length=0,
+ training: bool = False,
+ ) -> tf.Tensor:
+ """
+ Applies embedding based on inputs tensor.
+
+ Returns:
+ final_embeddings (`tf.Tensor`): output embedding tensor.
+ """
+ if input_ids is None and inputs_embeds is None:
+ raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
+
+ if input_ids is not None:
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
+
+ input_shape = shape_list(inputs_embeds)[:-1]
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ if position_ids is None:
+ position_ids = tf.expand_dims(
+ tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0
+ )
+
+ position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
+ token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
+ final_embeddings = inputs_embeds + position_embeds + token_type_embeds
+ final_embeddings = self.LayerNorm(inputs=final_embeddings)
+ final_embeddings = self.dropout(inputs=final_embeddings, training=training)
+
+ return final_embeddings
+
+
+class TFElectraDiscriminatorPredictions(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(config.hidden_size, name="dense")
+ self.dense_prediction = keras.layers.Dense(1, name="dense_prediction")
+ self.config = config
+
+ def call(self, discriminator_hidden_states, training=False):
+ hidden_states = self.dense(discriminator_hidden_states)
+ hidden_states = get_tf_activation(self.config.hidden_act)(hidden_states)
+ logits = tf.squeeze(self.dense_prediction(hidden_states), -1)
+
+ return logits
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "dense_prediction", None) is not None:
+ with tf.name_scope(self.dense_prediction.name):
+ self.dense_prediction.build([None, None, self.config.hidden_size])
+
+
+class TFElectraGeneratorPredictions(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dense = keras.layers.Dense(config.embedding_size, name="dense")
+ self.config = config
+
+ def call(self, generator_hidden_states, training=False):
+ hidden_states = self.dense(generator_hidden_states)
+ hidden_states = get_tf_activation("gelu")(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.embedding_size])
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+class TFElectraPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ElectraConfig
+ base_model_prefix = "electra"
+ # When the model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"generator_lm_head.weight"]
+ _keys_to_ignore_on_load_missing = [r"dropout"]
+
+
+@keras_serializable
+class TFElectraMainLayer(keras.layers.Layer):
+ config_class = ElectraConfig
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.is_decoder = config.is_decoder
+
+ self.embeddings = TFElectraEmbeddings(config, name="embeddings")
+
+ if config.embedding_size != config.hidden_size:
+ self.embeddings_project = keras.layers.Dense(config.hidden_size, name="embeddings_project")
+
+ self.encoder = TFElectraEncoder(config, name="encoder")
+
+ def get_input_embeddings(self):
+ return self.embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.weight = value
+ self.embeddings.vocab_size = shape_list(value)[0]
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ raise NotImplementedError
+
+ def get_extended_attention_mask(self, attention_mask, input_shape, dtype, past_key_values_length=0):
+ batch_size, seq_length = input_shape
+
+ if attention_mask is None:
+ attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
+
+ # We create a 3D attention mask from a 2D tensor mask.
+ # Sizes are [batch_size, 1, 1, to_seq_length]
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
+ # this attention mask is more simple than the triangular masking of causal attention
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
+ attention_mask_shape = shape_list(attention_mask)
+
+ mask_seq_length = seq_length + past_key_values_length
+ # Copied from `modeling_tf_t5.py`
+ # Provided a padding mask of dimensions [batch_size, mask_seq_length]
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
+ if self.is_decoder:
+ seq_ids = tf.range(mask_seq_length)
+ causal_mask = tf.less_equal(
+ tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
+ seq_ids[None, :, None],
+ )
+ causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
+ extended_attention_mask = causal_mask * attention_mask[:, None, :]
+ attention_mask_shape = shape_list(extended_attention_mask)
+ extended_attention_mask = tf.reshape(
+ extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
+ )
+ if past_key_values_length > 0:
+ extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
+ else:
+ extended_attention_mask = tf.reshape(
+ attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
+ )
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and -10000.0 for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+ extended_attention_mask = tf.cast(extended_attention_mask, dtype=dtype)
+ one_cst = tf.constant(1.0, dtype=dtype)
+ ten_thousand_cst = tf.constant(-10000.0, dtype=dtype)
+ extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
+
+ return extended_attention_mask
+
+ def get_head_mask(self, head_mask):
+ if head_mask is not None:
+ raise NotImplementedError
+ else:
+ head_mask = [None] * self.config.num_hidden_layers
+
+ return head_mask
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
+ if not self.config.is_decoder:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+
+ if past_key_values is None:
+ past_key_values_length = 0
+ past_key_values = [None] * len(self.encoder.layer)
+ else:
+ past_key_values_length = shape_list(past_key_values[0][0])[-2]
+
+ if attention_mask is None:
+ attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ hidden_states = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ training=training,
+ )
+ extended_attention_mask = self.get_extended_attention_mask(
+ attention_mask, input_shape, hidden_states.dtype, past_key_values_length
+ )
+
+ # Copied from `modeling_tf_t5.py` with -1e9 -> -10000
+ if self.is_decoder and encoder_attention_mask is not None:
+ # If a 2D ou 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
+ num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
+ if num_dims_encoder_attention_mask == 3:
+ encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
+ if num_dims_encoder_attention_mask == 2:
+ encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
+
+ # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
+ # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
+ # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
+ # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
+
+ encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
+ else:
+ encoder_extended_attention_mask = None
+
+ head_mask = self.get_head_mask(head_mask)
+
+ if hasattr(self, "embeddings_project"):
+ hidden_states = self.embeddings_project(hidden_states, training=training)
+
+ hidden_states = self.encoder(
+ hidden_states=hidden_states,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "embeddings_project", None) is not None:
+ with tf.name_scope(self.embeddings_project.name):
+ self.embeddings_project.build([None, None, self.config.embedding_size])
+
+
+@dataclass
+class TFElectraForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`TFElectraForPreTraining`].
+
+ Args:
+ loss (*optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`):
+ Total loss of the ELECTRA objective.
+ logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
+ Prediction scores of the head (scores for each token before SoftMax).
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ logits: tf.Tensor = None
+ hidden_states: Tuple[tf.Tensor] | None = None
+ attentions: Tuple[tf.Tensor] | None = None
+
+
+ELECTRA_START_DOCSTRING = r"""
+
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Parameters:
+ config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ELECTRA_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@add_start_docstrings(
+ "The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
+ "the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
+ "hidden size and embedding size are different. "
+ ""
+ "Both the generator and discriminator checkpoints may be loaded into this model.",
+ ELECTRA_START_DOCSTRING,
+)
+class TFElectraModel(TFElectraPreTrainedModel):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.electra = TFElectraMainLayer(config, name="electra")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFBaseModelOutputWithPastAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
+ r"""
+ encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`). Set to `False` during training, `True` during generation
+ """
+ outputs = self.electra(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "electra", None) is not None:
+ with tf.name_scope(self.electra.name):
+ self.electra.build(None)
+
+
+@add_start_docstrings(
+ """
+ Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
+
+ Even though both the discriminator and generator may be loaded into this model, the discriminator is the only model
+ of the two to have the correct classification head to be used for this model.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class TFElectraForPreTraining(TFElectraPreTrainedModel):
+ def __init__(self, config, **kwargs):
+ super().__init__(config, **kwargs)
+
+ self.electra = TFElectraMainLayer(config, name="electra")
+ self.discriminator_predictions = TFElectraDiscriminatorPredictions(config, name="discriminator_predictions")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=TFElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFElectraForPreTrainingOutput, Tuple[tf.Tensor]]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> import tensorflow as tf
+ >>> from transformers import AutoTokenizer, TFElectraForPreTraining
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator")
+ >>> model = TFElectraForPreTraining.from_pretrained("google/electra-small-discriminator")
+ >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
+ >>> outputs = model(input_ids)
+ >>> scores = outputs[0]
+ ```"""
+ discriminator_hidden_states = self.electra(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ discriminator_sequence_output = discriminator_hidden_states[0]
+ logits = self.discriminator_predictions(discriminator_sequence_output)
+
+ if not return_dict:
+ return (logits,) + discriminator_hidden_states[1:]
+
+ return TFElectraForPreTrainingOutput(
+ logits=logits,
+ hidden_states=discriminator_hidden_states.hidden_states,
+ attentions=discriminator_hidden_states.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "electra", None) is not None:
+ with tf.name_scope(self.electra.name):
+ self.electra.build(None)
+ if getattr(self, "discriminator_predictions", None) is not None:
+ with tf.name_scope(self.discriminator_predictions.name):
+ self.discriminator_predictions.build(None)
+
+
+class TFElectraMaskedLMHead(keras.layers.Layer):
+ def __init__(self, config, input_embeddings, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.embedding_size = config.embedding_size
+ self.input_embeddings = input_embeddings
+
+ def build(self, input_shape):
+ self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
+
+ super().build(input_shape)
+
+ def get_output_embeddings(self):
+ return self.input_embeddings
+
+ def set_output_embeddings(self, value):
+ self.input_embeddings.weight = value
+ self.input_embeddings.vocab_size = shape_list(value)[0]
+
+ def get_bias(self):
+ return {"bias": self.bias}
+
+ def set_bias(self, value):
+ self.bias = value["bias"]
+ self.config.vocab_size = shape_list(value["bias"])[0]
+
+ def call(self, hidden_states):
+ seq_length = shape_list(tensor=hidden_states)[1]
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
+ hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
+ hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
+
+ return hidden_states
+
+
+@add_start_docstrings(
+ """
+ Electra model with a language modeling head on top.
+
+ Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
+ the two to have been trained for the masked language modeling task.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class TFElectraForMaskedLM(TFElectraPreTrainedModel, TFMaskedLanguageModelingLoss):
+ def __init__(self, config, **kwargs):
+ super().__init__(config, **kwargs)
+
+ self.config = config
+ self.electra = TFElectraMainLayer(config, name="electra")
+ self.generator_predictions = TFElectraGeneratorPredictions(config, name="generator_predictions")
+
+ if isinstance(config.hidden_act, str):
+ self.activation = get_tf_activation(config.hidden_act)
+ else:
+ self.activation = config.hidden_act
+
+ self.generator_lm_head = TFElectraMaskedLMHead(config, self.electra.embeddings, name="generator_lm_head")
+
+ def get_lm_head(self):
+ return self.generator_lm_head
+
+ def get_prefix_bias_name(self):
+ warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
+ return self.name + "/" + self.generator_lm_head.name
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="google/electra-small-generator",
+ output_type=TFMaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ mask="[MASK]",
+ expected_output="'paris'",
+ expected_loss=1.22,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ """
+ generator_hidden_states = self.electra(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ generator_sequence_output = generator_hidden_states[0]
+ prediction_scores = self.generator_predictions(generator_sequence_output, training=training)
+ prediction_scores = self.generator_lm_head(prediction_scores, training=training)
+ loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
+
+ if not return_dict:
+ output = (prediction_scores,) + generator_hidden_states[1:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMaskedLMOutput(
+ loss=loss,
+ logits=prediction_scores,
+ hidden_states=generator_hidden_states.hidden_states,
+ attentions=generator_hidden_states.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "electra", None) is not None:
+ with tf.name_scope(self.electra.name):
+ self.electra.build(None)
+ if getattr(self, "generator_predictions", None) is not None:
+ with tf.name_scope(self.generator_predictions.name):
+ self.generator_predictions.build(None)
+ if getattr(self, "generator_lm_head", None) is not None:
+ with tf.name_scope(self.generator_lm_head.name):
+ self.generator_lm_head.build(None)
+
+
+class TFElectraClassificationHead(keras.layers.Layer):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ classifier_dropout = (
+ config.classifhidden_dropout_probier_dropout
+ if config.classifier_dropout is not None
+ else config.hidden_dropout_prob
+ )
+ self.dropout = keras.layers.Dropout(classifier_dropout)
+ self.out_proj = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
+ )
+ self.config = config
+
+ def call(self, inputs, **kwargs):
+ x = inputs[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x)
+ x = self.dense(x)
+ x = get_tf_activation("gelu")(x) # although BERT uses tanh here, it seems Electra authors used gelu here
+ x = self.dropout(x)
+ x = self.out_proj(x)
+
+ return x
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "out_proj", None) is not None:
+ with tf.name_scope(self.out_proj.name):
+ self.out_proj.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class TFElectraForSequenceClassification(TFElectraPreTrainedModel, TFSequenceClassificationLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.num_labels = config.num_labels
+ self.electra = TFElectraMainLayer(config, name="electra")
+ self.classifier = TFElectraClassificationHead(config, name="classifier")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="bhadresh-savani/electra-base-emotion",
+ output_type=TFSequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="'joy'",
+ expected_loss=0.06,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ outputs = self.electra(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ logits = self.classifier(outputs[0])
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFSequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "electra", None) is not None:
+ with tf.name_scope(self.electra.name):
+ self.electra.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build(None)
+
+
+@add_start_docstrings(
+ """
+ ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class TFElectraForMultipleChoice(TFElectraPreTrainedModel, TFMultipleChoiceLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.electra = TFElectraMainLayer(config, name="electra")
+ self.sequence_summary = TFSequenceSummary(
+ config, initializer_range=config.initializer_range, name="sequence_summary"
+ )
+ self.classifier = keras.layers.Dense(
+ 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
+ where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
+ """
+
+ if input_ids is not None:
+ num_choices = shape_list(input_ids)[1]
+ seq_length = shape_list(input_ids)[2]
+ else:
+ num_choices = shape_list(inputs_embeds)[1]
+ seq_length = shape_list(inputs_embeds)[2]
+
+ flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
+ flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
+ flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
+ flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
+ flat_inputs_embeds = (
+ tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
+ if inputs_embeds is not None
+ else None
+ )
+ outputs = self.electra(
+ input_ids=flat_input_ids,
+ attention_mask=flat_attention_mask,
+ token_type_ids=flat_token_type_ids,
+ position_ids=flat_position_ids,
+ head_mask=head_mask,
+ inputs_embeds=flat_inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ logits = self.sequence_summary(outputs[0])
+ logits = self.classifier(logits)
+ reshaped_logits = tf.reshape(logits, (-1, num_choices))
+ loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[1:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "electra", None) is not None:
+ with tf.name_scope(self.electra.name):
+ self.electra.build(None)
+ if getattr(self, "sequence_summary", None) is not None:
+ with tf.name_scope(self.sequence_summary.name):
+ self.sequence_summary.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ Electra model with a token classification head on top.
+
+ Both the discriminator and generator may be loaded into this model.
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class TFElectraForTokenClassification(TFElectraPreTrainedModel, TFTokenClassificationLoss):
+ def __init__(self, config, **kwargs):
+ super().__init__(config, **kwargs)
+
+ self.electra = TFElectraMainLayer(config, name="electra")
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = keras.layers.Dropout(classifier_dropout)
+ self.classifier = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="bhadresh-savani/electra-base-discriminator-finetuned-conll03-english",
+ output_type=TFTokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']",
+ expected_loss=0.11,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ discriminator_hidden_states = self.electra(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ discriminator_sequence_output = discriminator_hidden_states[0]
+ discriminator_sequence_output = self.dropout(discriminator_sequence_output)
+ logits = self.classifier(discriminator_sequence_output)
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + discriminator_hidden_states[1:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFTokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=discriminator_hidden_states.hidden_states,
+ attentions=discriminator_hidden_states.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "electra", None) is not None:
+ with tf.name_scope(self.electra.name):
+ self.electra.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ Electra Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ ELECTRA_START_DOCSTRING,
+)
+class TFElectraForQuestionAnswering(TFElectraPreTrainedModel, TFQuestionAnsweringLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+ self.electra = TFElectraMainLayer(config, name="electra")
+ self.qa_outputs = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="bhadresh-savani/electra-base-squad2",
+ output_type=TFQuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ qa_target_start_index=11,
+ qa_target_end_index=12,
+ expected_output="'a nice puppet'",
+ expected_loss=2.64,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ start_positions: np.ndarray | tf.Tensor | None = None,
+ end_positions: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ discriminator_hidden_states = self.electra(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ discriminator_sequence_output = discriminator_hidden_states[0]
+ logits = self.qa_outputs(discriminator_sequence_output)
+ start_logits, end_logits = tf.split(logits, 2, axis=-1)
+ start_logits = tf.squeeze(start_logits, axis=-1)
+ end_logits = tf.squeeze(end_logits, axis=-1)
+ loss = None
+
+ if start_positions is not None and end_positions is not None:
+ labels = {"start_position": start_positions}
+ labels["end_position"] = end_positions
+ loss = self.hf_compute_loss(labels, (start_logits, end_logits))
+
+ if not return_dict:
+ output = (
+ start_logits,
+ end_logits,
+ ) + discriminator_hidden_states[1:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFQuestionAnsweringModelOutput(
+ loss=loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=discriminator_hidden_states.hidden_states,
+ attentions=discriminator_hidden_states.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "electra", None) is not None:
+ with tf.name_scope(self.electra.name):
+ self.electra.build(None)
+ if getattr(self, "qa_outputs", None) is not None:
+ with tf.name_scope(self.qa_outputs.name):
+ self.qa_outputs.build([None, None, self.config.hidden_size])
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra.py
new file mode 100644
index 0000000000000000000000000000000000000000..6ea9a600a6e9570b93b18f83266985050fc28c7a
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra.py
@@ -0,0 +1,546 @@
+# coding=utf-8
+# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import collections
+import os
+import unicodedata
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "google/electra-small-generator": (
+ "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
+ ),
+ "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
+ "google/electra-large-generator": (
+ "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
+ ),
+ "google/electra-small-discriminator": (
+ "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
+ ),
+ "google/electra-base-discriminator": (
+ "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
+ ),
+ "google/electra-large-discriminator": (
+ "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
+ ),
+ }
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
+ "google/electra-small-generator": 512,
+ "google/electra-base-generator": 512,
+ "google/electra-large-generator": 512,
+ "google/electra-small-discriminator": 512,
+ "google/electra-base-discriminator": 512,
+ "google/electra-large-discriminator": 512,
+}
+
+
+PRETRAINED_INIT_CONFIGURATION = {
+ "google/electra-small-generator": {"do_lower_case": True},
+ "google/electra-base-generator": {"do_lower_case": True},
+ "google/electra-large-generator": {"do_lower_case": True},
+ "google/electra-small-discriminator": {"do_lower_case": True},
+ "google/electra-base-discriminator": {"do_lower_case": True},
+ "google/electra-large-discriminator": {"do_lower_case": True},
+}
+
+
+# Copied from transformers.models.bert.tokenization_bert.load_vocab
+def load_vocab(vocab_file):
+ """Loads a vocabulary file into a dictionary."""
+ vocab = collections.OrderedDict()
+ with open(vocab_file, "r", encoding="utf-8") as reader:
+ tokens = reader.readlines()
+ for index, token in enumerate(tokens):
+ token = token.rstrip("\n")
+ vocab[token] = index
+ return vocab
+
+
+# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
+def whitespace_tokenize(text):
+ """Runs basic whitespace cleaning and splitting on a piece of text."""
+ text = text.strip()
+ if not text:
+ return []
+ tokens = text.split()
+ return tokens
+
+
+# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with Bert->Electra,BERT->Electra
+class ElectraTokenizer(PreTrainedTokenizer):
+ r"""
+ Construct a Electra tokenizer. Based on WordPiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ do_basic_tokenize (`bool`, *optional*, defaults to `True`):
+ Whether or not to do basic tokenization before WordPiece.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original Electra).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+
+ def __init__(
+ self,
+ vocab_file,
+ do_lower_case=True,
+ do_basic_tokenize=True,
+ never_split=None,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ if not os.path.isfile(vocab_file):
+ raise ValueError(
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
+ " model use `tokenizer = ElectraTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
+ )
+ self.vocab = load_vocab(vocab_file)
+ self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
+ self.do_basic_tokenize = do_basic_tokenize
+ if do_basic_tokenize:
+ self.basic_tokenizer = BasicTokenizer(
+ do_lower_case=do_lower_case,
+ never_split=never_split,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ )
+
+ self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
+
+ super().__init__(
+ do_lower_case=do_lower_case,
+ do_basic_tokenize=do_basic_tokenize,
+ never_split=never_split,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ @property
+ def do_lower_case(self):
+ return self.basic_tokenizer.do_lower_case
+
+ @property
+ def vocab_size(self):
+ return len(self.vocab)
+
+ def get_vocab(self):
+ return dict(self.vocab, **self.added_tokens_encoder)
+
+ def _tokenize(self, text, split_special_tokens=False):
+ split_tokens = []
+ if self.do_basic_tokenize:
+ for token in self.basic_tokenizer.tokenize(
+ text, never_split=self.all_special_tokens if not split_special_tokens else None
+ ):
+ # If the token is part of the never_split set
+ if token in self.basic_tokenizer.never_split:
+ split_tokens.append(token)
+ else:
+ split_tokens += self.wordpiece_tokenizer.tokenize(token)
+ else:
+ split_tokens = self.wordpiece_tokenizer.tokenize(text)
+ return split_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.vocab.get(token, self.vocab.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.ids_to_tokens.get(index, self.unk_token)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ out_string = " ".join(tokens).replace(" ##", "").strip()
+ return out_string
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A Electra sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is not None:
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Electra sequence
+ pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ index = 0
+ if os.path.isdir(save_directory):
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ else:
+ vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
+ with open(vocab_file, "w", encoding="utf-8") as writer:
+ for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
+ " Please check that the vocabulary is not corrupted!"
+ )
+ index = token_index
+ writer.write(token + "\n")
+ index += 1
+ return (vocab_file,)
+
+
+# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
+class BasicTokenizer(object):
+ """
+ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
+
+ Args:
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ do_split_on_punc (`bool`, *optional*, defaults to `True`):
+ In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
+ the full context of the words, such as contractions.
+ """
+
+ def __init__(
+ self,
+ do_lower_case=True,
+ never_split=None,
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ do_split_on_punc=True,
+ ):
+ if never_split is None:
+ never_split = []
+ self.do_lower_case = do_lower_case
+ self.never_split = set(never_split)
+ self.tokenize_chinese_chars = tokenize_chinese_chars
+ self.strip_accents = strip_accents
+ self.do_split_on_punc = do_split_on_punc
+
+ def tokenize(self, text, never_split=None):
+ """
+ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
+
+ Args:
+ never_split (`List[str]`, *optional*)
+ Kept for backward compatibility purposes. Now implemented directly at the base class level (see
+ [`PreTrainedTokenizer.tokenize`]) List of token not to split.
+ """
+ # union() returns a new set by concatenating the two sets.
+ never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
+ text = self._clean_text(text)
+
+ # This was added on November 1st, 2018 for the multilingual and Chinese
+ # models. This is also applied to the English models now, but it doesn't
+ # matter since the English models were not trained on any Chinese data
+ # and generally don't have any Chinese data in them (there are Chinese
+ # characters in the vocabulary because Wikipedia does have some Chinese
+ # words in the English Wikipedia.).
+ if self.tokenize_chinese_chars:
+ text = self._tokenize_chinese_chars(text)
+ # prevents treating the same character with different unicode codepoints as different characters
+ unicode_normalized_text = unicodedata.normalize("NFC", text)
+ orig_tokens = whitespace_tokenize(unicode_normalized_text)
+ split_tokens = []
+ for token in orig_tokens:
+ if token not in never_split:
+ if self.do_lower_case:
+ token = token.lower()
+ if self.strip_accents is not False:
+ token = self._run_strip_accents(token)
+ elif self.strip_accents:
+ token = self._run_strip_accents(token)
+ split_tokens.extend(self._run_split_on_punc(token, never_split))
+
+ output_tokens = whitespace_tokenize(" ".join(split_tokens))
+ return output_tokens
+
+ def _run_strip_accents(self, text):
+ """Strips accents from a piece of text."""
+ text = unicodedata.normalize("NFD", text)
+ output = []
+ for char in text:
+ cat = unicodedata.category(char)
+ if cat == "Mn":
+ continue
+ output.append(char)
+ return "".join(output)
+
+ def _run_split_on_punc(self, text, never_split=None):
+ """Splits punctuation on a piece of text."""
+ if not self.do_split_on_punc or (never_split is not None and text in never_split):
+ return [text]
+ chars = list(text)
+ i = 0
+ start_new_word = True
+ output = []
+ while i < len(chars):
+ char = chars[i]
+ if _is_punctuation(char):
+ output.append([char])
+ start_new_word = True
+ else:
+ if start_new_word:
+ output.append([])
+ start_new_word = False
+ output[-1].append(char)
+ i += 1
+
+ return ["".join(x) for x in output]
+
+ def _tokenize_chinese_chars(self, text):
+ """Adds whitespace around any CJK character."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if self._is_chinese_char(cp):
+ output.append(" ")
+ output.append(char)
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+ def _is_chinese_char(self, cp):
+ """Checks whether CP is the codepoint of a CJK character."""
+ # This defines a "chinese character" as anything in the CJK Unicode block:
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
+ #
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
+ # despite its name. The modern Korean Hangul alphabet is a different block,
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
+ # space-separated words, so they are not treated specially and handled
+ # like the all of the other languages.
+ if (
+ (cp >= 0x4E00 and cp <= 0x9FFF)
+ or (cp >= 0x3400 and cp <= 0x4DBF) #
+ or (cp >= 0x20000 and cp <= 0x2A6DF) #
+ or (cp >= 0x2A700 and cp <= 0x2B73F) #
+ or (cp >= 0x2B740 and cp <= 0x2B81F) #
+ or (cp >= 0x2B820 and cp <= 0x2CEAF) #
+ or (cp >= 0xF900 and cp <= 0xFAFF)
+ or (cp >= 0x2F800 and cp <= 0x2FA1F) #
+ ): #
+ return True
+
+ return False
+
+ def _clean_text(self, text):
+ """Performs invalid character removal and whitespace cleanup on text."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if cp == 0 or cp == 0xFFFD or _is_control(char):
+ continue
+ if _is_whitespace(char):
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+
+# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
+class WordpieceTokenizer(object):
+ """Runs WordPiece tokenization."""
+
+ def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
+ self.vocab = vocab
+ self.unk_token = unk_token
+ self.max_input_chars_per_word = max_input_chars_per_word
+
+ def tokenize(self, text):
+ """
+ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
+ tokenization using the given vocabulary.
+
+ For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
+
+ Args:
+ text: A single token or whitespace separated tokens. This should have
+ already been passed through *BasicTokenizer*.
+
+ Returns:
+ A list of wordpiece tokens.
+ """
+
+ output_tokens = []
+ for token in whitespace_tokenize(text):
+ chars = list(token)
+ if len(chars) > self.max_input_chars_per_word:
+ output_tokens.append(self.unk_token)
+ continue
+
+ is_bad = False
+ start = 0
+ sub_tokens = []
+ while start < len(chars):
+ end = len(chars)
+ cur_substr = None
+ while start < end:
+ substr = "".join(chars[start:end])
+ if start > 0:
+ substr = "##" + substr
+ if substr in self.vocab:
+ cur_substr = substr
+ break
+ end -= 1
+ if cur_substr is None:
+ is_bad = True
+ break
+ sub_tokens.append(cur_substr)
+ start = end
+
+ if is_bad:
+ output_tokens.append(self.unk_token)
+ else:
+ output_tokens.extend(sub_tokens)
+ return output_tokens
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..e76082de174dee0f3ce7ad44ce9c14ea1a3ca934
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra_fast.py
@@ -0,0 +1,231 @@
+# coding=utf-8
+# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import json
+from typing import List, Optional, Tuple
+
+from tokenizers import normalizers
+
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from .tokenization_electra import ElectraTokenizer
+
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "google/electra-small-generator": (
+ "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
+ ),
+ "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
+ "google/electra-large-generator": (
+ "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
+ ),
+ "google/electra-small-discriminator": (
+ "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
+ ),
+ "google/electra-base-discriminator": (
+ "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
+ ),
+ "google/electra-large-discriminator": (
+ "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
+ ),
+ },
+ "tokenizer_file": {
+ "google/electra-small-generator": (
+ "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
+ ),
+ "google/electra-base-generator": (
+ "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
+ ),
+ "google/electra-large-generator": (
+ "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
+ ),
+ "google/electra-small-discriminator": (
+ "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
+ ),
+ "google/electra-base-discriminator": (
+ "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
+ ),
+ "google/electra-large-discriminator": (
+ "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
+ ),
+ },
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
+ "google/electra-small-generator": 512,
+ "google/electra-base-generator": 512,
+ "google/electra-large-generator": 512,
+ "google/electra-small-discriminator": 512,
+ "google/electra-base-discriminator": 512,
+ "google/electra-large-discriminator": 512,
+}
+
+PRETRAINED_INIT_CONFIGURATION = {
+ "google/electra-small-generator": {"do_lower_case": True},
+ "google/electra-base-generator": {"do_lower_case": True},
+ "google/electra-large-generator": {"do_lower_case": True},
+ "google/electra-small-discriminator": {"do_lower_case": True},
+ "google/electra-base-discriminator": {"do_lower_case": True},
+ "google/electra-large-discriminator": {"do_lower_case": True},
+}
+
+
+# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with Bert->Electra , BERT->ELECTRA
+class ElectraTokenizerFast(PreTrainedTokenizerFast):
+ r"""
+ Construct a "fast" ELECTRA tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ clean_text (`bool`, *optional*, defaults to `True`):
+ Whether or not to clean the text before tokenization by removing any control characters and replacing all
+ whitespaces by the classic one.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
+ issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original ELECTRA).
+ wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
+ The prefix for subwords.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+ slow_tokenizer_class = ElectraTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ do_lower_case=True,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ do_lower_case=do_lower_case,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
+ if (
+ normalizer_state.get("lowercase", do_lower_case) != do_lower_case
+ or normalizer_state.get("strip_accents", strip_accents) != strip_accents
+ or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
+ ):
+ normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
+ normalizer_state["lowercase"] = do_lower_case
+ normalizer_state["strip_accents"] = strip_accents
+ normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
+ self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
+
+ self.do_lower_case = do_lower_case
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A ELECTRA sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+
+ if token_ids_1 is not None:
+ output += token_ids_1 + [self.sep_token_id]
+
+ return output
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ELECTRA sequence
+ pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..aae869bdff51041bda7632222eaa5065f97d36eb
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__init__.py
@@ -0,0 +1,44 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
+
+
+_import_structure = {}
+
+
+try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_mluke"] = ["MLukeTokenizer"]
+
+if TYPE_CHECKING:
+ try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_mluke import MLukeTokenizer
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..187a5034fc888392e1b3fb0f10e7b01daa15e790
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/convert_mluke_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/convert_mluke_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d35570c25142de3a84051495db24ab42922cb812
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/convert_mluke_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/tokenization_mluke.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/tokenization_mluke.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7f6f0aef0a440e6d10a31deb08d8912106179c66
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/tokenization_mluke.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/convert_mluke_original_pytorch_checkpoint_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/convert_mluke_original_pytorch_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..f361082fb3c5162bed9d6364ac3dd3a7bdf92104
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/convert_mluke_original_pytorch_checkpoint_to_pytorch.py
@@ -0,0 +1,229 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert mLUKE checkpoint."""
+
+import argparse
+import json
+import os
+from collections import OrderedDict
+
+import torch
+
+from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
+from transformers.tokenization_utils_base import AddedToken
+
+
+@torch.no_grad()
+def convert_luke_checkpoint(checkpoint_path, metadata_path, entity_vocab_path, pytorch_dump_folder_path, model_size):
+ # Load configuration defined in the metadata file
+ with open(metadata_path) as metadata_file:
+ metadata = json.load(metadata_file)
+ config = LukeConfig(use_entity_aware_attention=True, **metadata["model_config"])
+
+ # Load in the weights from the checkpoint_path
+ state_dict = torch.load(checkpoint_path, map_location="cpu")["module"]
+
+ # Load the entity vocab file
+ entity_vocab = load_original_entity_vocab(entity_vocab_path)
+ # add an entry for [MASK2]
+ entity_vocab["[MASK2]"] = max(entity_vocab.values()) + 1
+ config.entity_vocab_size += 1
+
+ tokenizer = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"])
+
+ # Add special tokens to the token vocabulary for downstream tasks
+ entity_token_1 = AddedToken("", lstrip=False, rstrip=False)
+ entity_token_2 = AddedToken("", lstrip=False, rstrip=False)
+ tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_1, entity_token_2]})
+ config.vocab_size += 2
+
+ print(f"Saving tokenizer to {pytorch_dump_folder_path}")
+ tokenizer.save_pretrained(pytorch_dump_folder_path)
+ with open(os.path.join(pytorch_dump_folder_path, "tokenizer_config.json"), "r") as f:
+ tokenizer_config = json.load(f)
+ tokenizer_config["tokenizer_class"] = "MLukeTokenizer"
+ with open(os.path.join(pytorch_dump_folder_path, "tokenizer_config.json"), "w") as f:
+ json.dump(tokenizer_config, f)
+
+ with open(os.path.join(pytorch_dump_folder_path, MLukeTokenizer.vocab_files_names["entity_vocab_file"]), "w") as f:
+ json.dump(entity_vocab, f)
+
+ tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path)
+
+ # Initialize the embeddings of the special tokens
+ ent_init_index = tokenizer.convert_tokens_to_ids(["@"])[0]
+ ent2_init_index = tokenizer.convert_tokens_to_ids(["#"])[0]
+
+ word_emb = state_dict["embeddings.word_embeddings.weight"]
+ ent_emb = word_emb[ent_init_index].unsqueeze(0)
+ ent2_emb = word_emb[ent2_init_index].unsqueeze(0)
+ state_dict["embeddings.word_embeddings.weight"] = torch.cat([word_emb, ent_emb, ent2_emb])
+ # add special tokens for 'entity_predictions.bias'
+ for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
+ decoder_bias = state_dict[bias_name]
+ ent_decoder_bias = decoder_bias[ent_init_index].unsqueeze(0)
+ ent2_decoder_bias = decoder_bias[ent2_init_index].unsqueeze(0)
+ state_dict[bias_name] = torch.cat([decoder_bias, ent_decoder_bias, ent2_decoder_bias])
+
+ # Initialize the query layers of the entity-aware self-attention mechanism
+ for layer_index in range(config.num_hidden_layers):
+ for matrix_name in ["query.weight", "query.bias"]:
+ prefix = f"encoder.layer.{layer_index}.attention.self."
+ state_dict[prefix + "w2e_" + matrix_name] = state_dict[prefix + matrix_name]
+ state_dict[prefix + "e2w_" + matrix_name] = state_dict[prefix + matrix_name]
+ state_dict[prefix + "e2e_" + matrix_name] = state_dict[prefix + matrix_name]
+
+ # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
+ entity_emb = state_dict["entity_embeddings.entity_embeddings.weight"]
+ entity_mask_emb = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0)
+ state_dict["entity_embeddings.entity_embeddings.weight"] = torch.cat([entity_emb, entity_mask_emb])
+ # add [MASK2] for 'entity_predictions.bias'
+ entity_prediction_bias = state_dict["entity_predictions.bias"]
+ entity_mask_bias = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0)
+ state_dict["entity_predictions.bias"] = torch.cat([entity_prediction_bias, entity_mask_bias])
+
+ model = LukeForMaskedLM(config=config).eval()
+
+ state_dict.pop("entity_predictions.decoder.weight")
+ state_dict.pop("lm_head.decoder.weight")
+ state_dict.pop("lm_head.decoder.bias")
+ state_dict_for_hugging_face = OrderedDict()
+ for key, value in state_dict.items():
+ if not (key.startswith("lm_head") or key.startswith("entity_predictions")):
+ state_dict_for_hugging_face[f"luke.{key}"] = state_dict[key]
+ else:
+ state_dict_for_hugging_face[key] = state_dict[key]
+
+ missing_keys, unexpected_keys = model.load_state_dict(state_dict_for_hugging_face, strict=False)
+
+ if set(unexpected_keys) != {"luke.embeddings.position_ids"}:
+ raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}")
+ if set(missing_keys) != {
+ "lm_head.decoder.weight",
+ "lm_head.decoder.bias",
+ "entity_predictions.decoder.weight",
+ }:
+ raise ValueError(f"Unexpected missing_keys: {missing_keys}")
+
+ model.tie_weights()
+ assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
+ assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
+
+ # Check outputs
+ tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path, task="entity_classification")
+
+ text = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
+ span = (0, 9)
+ encoding = tokenizer(text, entity_spans=[span], return_tensors="pt")
+
+ outputs = model(**encoding)
+
+ # Verify word hidden states
+ if model_size == "large":
+ raise NotImplementedError
+ else: # base
+ expected_shape = torch.Size((1, 33, 768))
+ expected_slice = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]])
+
+ if not (outputs.last_hidden_state.shape == expected_shape):
+ raise ValueError(
+ f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}"
+ )
+ if not torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4):
+ raise ValueError
+
+ # Verify entity hidden states
+ if model_size == "large":
+ raise NotImplementedError
+ else: # base
+ expected_shape = torch.Size((1, 1, 768))
+ expected_slice = torch.tensor([[-0.1482, 0.0609, 0.0322]])
+
+ if not (outputs.entity_last_hidden_state.shape == expected_shape):
+ raise ValueError(
+ f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"
+ f" {expected_shape}"
+ )
+ if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, atol=1e-4):
+ raise ValueError
+
+ # Verify masked word/entity prediction
+ tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path)
+ text = "Tokyo is the capital of ."
+ span = (24, 30)
+ encoding = tokenizer(text, entity_spans=[span], return_tensors="pt")
+
+ outputs = model(**encoding)
+
+ input_ids = encoding["input_ids"][0].tolist()
+ mask_position_id = input_ids.index(tokenizer.convert_tokens_to_ids(""))
+ predicted_id = outputs.logits[0][mask_position_id].argmax(dim=-1)
+ assert "Japan" == tokenizer.decode(predicted_id)
+
+ predicted_entity_id = outputs.entity_logits[0][0].argmax().item()
+ multilingual_predicted_entities = [
+ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
+ ]
+ assert [e for e in multilingual_predicted_entities if e.startswith("en:")][0] == "en:Japan"
+
+ # Finally, save our PyTorch model and tokenizer
+ print("Saving PyTorch model to {}".format(pytorch_dump_folder_path))
+ model.save_pretrained(pytorch_dump_folder_path)
+
+
+def load_original_entity_vocab(entity_vocab_path):
+ SPECIAL_TOKENS = ["[MASK]", "[PAD]", "[UNK]"]
+
+ data = [json.loads(line) for line in open(entity_vocab_path)]
+
+ new_mapping = {}
+ for entry in data:
+ entity_id = entry["id"]
+ for entity_name, language in entry["entities"]:
+ if entity_name in SPECIAL_TOKENS:
+ new_mapping[entity_name] = entity_id
+ break
+ new_entity_name = f"{language}:{entity_name}"
+ new_mapping[new_entity_name] = entity_id
+ return new_mapping
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
+ parser.add_argument(
+ "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
+ )
+ parser.add_argument(
+ "--entity_vocab_path",
+ default=None,
+ type=str,
+ help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
+ )
+ parser.add_argument(
+ "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
+ )
+ args = parser.parse_args()
+ convert_luke_checkpoint(
+ args.checkpoint_path,
+ args.metadata_path,
+ args.entity_vocab_path,
+ args.pytorch_dump_folder_path,
+ args.model_size,
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/tokenization_mluke.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/tokenization_mluke.py
new file mode 100644
index 0000000000000000000000000000000000000000..028de5d4f79c8c7ae2f9329bca909d2a601719a5
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/tokenization_mluke.py
@@ -0,0 +1,1631 @@
+# coding=utf-8
+# Copyright 2021 Studio Ousia and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License
+""" Tokenization classes for mLUKE."""
+
+
+import itertools
+import json
+import os
+from collections.abc import Mapping
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+import numpy as np
+import sentencepiece as spm
+
+from ...tokenization_utils import PreTrainedTokenizer
+from ...tokenization_utils_base import (
+ ENCODE_KWARGS_DOCSTRING,
+ AddedToken,
+ BatchEncoding,
+ EncodedInput,
+ PaddingStrategy,
+ TensorType,
+ TextInput,
+ TextInputPair,
+ TruncationStrategy,
+ to_py_obj,
+)
+from ...utils import add_end_docstrings, is_tf_tensor, is_torch_tensor, logging
+
+
+logger = logging.get_logger(__name__)
+
+EntitySpan = Tuple[int, int]
+EntitySpanInput = List[EntitySpan]
+Entity = str
+EntityInput = List[Entity]
+
+SPIECE_UNDERLINE = "▁"
+
+VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "entity_vocab_file": "entity_vocab.json"}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "studio-ousia/mluke-base": "https://huggingface.co/studio-ousia/mluke-base/resolve/main/vocab.json",
+ },
+ "merges_file": {
+ "studio-ousia/mluke-base": "https://huggingface.co/studio-ousia/mluke-base/resolve/main/merges.txt",
+ },
+ "entity_vocab_file": {
+ "studio-ousia/mluke-base": "https://huggingface.co/studio-ousia/mluke-base/resolve/main/entity_vocab.json",
+ },
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
+ "studio-ousia/mluke-base": 512,
+}
+
+ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
+ return_token_type_ids (`bool`, *optional*):
+ Whether to return token type IDs. If left to the default, will return the token type IDs according to
+ the specific tokenizer's default, defined by the `return_outputs` attribute.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ return_attention_mask (`bool`, *optional*):
+ Whether to return the attention mask. If left to the default, will return the attention mask according
+ to the specific tokenizer's default, defined by the `return_outputs` attribute.
+
+ [What are attention masks?](../glossary#attention-mask)
+ return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
+ of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
+ of returning overflowing tokens.
+ return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
+ Whether or not to return special tokens mask information.
+ return_offsets_mapping (`bool`, *optional*, defaults to `False`):
+ Whether or not to return `(char_start, char_end)` for each token.
+
+ This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
+ Python's tokenizer, this method will raise `NotImplementedError`.
+ return_length (`bool`, *optional*, defaults to `False`):
+ Whether or not to return the lengths of the encoded inputs.
+ verbose (`bool`, *optional*, defaults to `True`):
+ Whether or not to print more information and warnings.
+ **kwargs: passed to the `self.tokenize()` method
+
+ Return:
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
+
+ - **input_ids** -- List of token ids to be fed to a model.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
+ if *"token_type_ids"* is in `self.model_input_names`).
+
+ [What are token type IDs?](../glossary#token-type-ids)
+
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ - **entity_ids** -- List of entity ids to be fed to a model.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ - **entity_position_ids** -- List of entity positions in the input sequence to be fed to a model.
+
+ - **entity_token_type_ids** -- List of entity token type ids to be fed to a model (when
+ `return_token_type_ids=True` or if *"entity_token_type_ids"* is in `self.model_input_names`).
+
+ [What are token type IDs?](../glossary#token-type-ids)
+
+ - **entity_attention_mask** -- List of indices specifying which entities should be attended to by the model
+ (when `return_attention_mask=True` or if *"entity_attention_mask"* is in `self.model_input_names`).
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ - **entity_start_positions** -- List of the start positions of entities in the word token sequence (when
+ `task="entity_span_classification"`).
+ - **entity_end_positions** -- List of the end positions of entities in the word token sequence (when
+ `task="entity_span_classification"`).
+ - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
+ `return_overflowing_tokens=True`).
+ - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
+ `return_overflowing_tokens=True`).
+ - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
+ regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
+ - **length** -- The length of the inputs (when `return_length=True`)
+
+"""
+
+
+class MLukeTokenizer(PreTrainedTokenizer):
+ """
+ Adapted from [`XLMRobertaTokenizer`] and [`LukeTokenizer`]. Based on
+ [SentencePiece](https://github.com/google/sentencepiece).
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ entity_vocab_file (`str`):
+ Path to the entity vocabulary file.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ task (`str`, *optional*):
+ Task for which you want to prepare sequences. One of `"entity_classification"`,
+ `"entity_pair_classification"`, or `"entity_span_classification"`. If you specify this argument, the entity
+ sequence is automatically created based on the given entity span(s).
+ max_entity_length (`int`, *optional*, defaults to 32):
+ The maximum length of `entity_ids`.
+ max_mention_length (`int`, *optional*, defaults to 30):
+ The maximum number of tokens inside an entity span.
+ entity_token_1 (`str`, *optional*, defaults to ``):
+ The special token used to represent an entity span in a word token sequence. This token is only used when
+ `task` is set to `"entity_classification"` or `"entity_pair_classification"`.
+ entity_token_2 (`str`, *optional*, defaults to ``):
+ The special token used to represent an entity span in a word token sequence. This token is only used when
+ `task` is set to `"entity_pair_classification"`.
+ additional_special_tokens (`List[str]`, *optional*, defaults to `["NOTUSED", "NOTUSED"]`):
+ Additional special tokens used by the tokenizer.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+
+ Attributes:
+ sp_model (`SentencePieceProcessor`):
+ The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ entity_vocab_file,
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ task=None,
+ max_entity_length=32,
+ max_mention_length=30,
+ entity_token_1="",
+ entity_token_2="",
+ entity_unk_token="[UNK]",
+ entity_pad_token="[PAD]",
+ entity_mask_token="[MASK]",
+ entity_mask2_token="[MASK2]",
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs,
+ ) -> None:
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
+
+ # we add 2 special tokens for downstream tasks
+ # for more information about lstrip and rstrip, see https://github.com/huggingface/transformers/pull/2778
+ entity_token_1 = (
+ AddedToken(entity_token_1, lstrip=False, rstrip=False)
+ if isinstance(entity_token_1, str)
+ else entity_token_1
+ )
+ entity_token_2 = (
+ AddedToken(entity_token_2, lstrip=False, rstrip=False)
+ if isinstance(entity_token_2, str)
+ else entity_token_2
+ )
+ additional_special_tokens = kwargs.pop("additional_special_tokens", [])
+ additional_special_tokens += [entity_token_1, entity_token_2]
+
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(str(vocab_file))
+ self.vocab_file = vocab_file
+
+ # Original fairseq vocab and spm vocab must be "aligned":
+ # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
+ # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
+ # fairseq | '' | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-'
+ # spm | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
+
+ # Mimic fairseq token-to-id alignment for the first 4 token
+ self.fairseq_tokens_to_ids = {"": 0, "": 1, "": 2, "": 3}
+
+ # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
+ self.fairseq_offset = 1
+
+ self.fairseq_tokens_to_ids[""] = len(self.sp_model) + self.fairseq_offset
+ self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
+
+ with open(entity_vocab_file, encoding="utf-8") as entity_vocab_handle:
+ self.entity_vocab = json.load(entity_vocab_handle)
+ for entity_special_token in [entity_unk_token, entity_pad_token, entity_mask_token, entity_mask2_token]:
+ if entity_special_token not in self.entity_vocab:
+ raise ValueError(
+ f"Specified entity special token ``{entity_special_token}`` is not found in entity_vocab. "
+ f"Probably an incorrect entity vocab file is loaded: {entity_vocab_file}."
+ )
+ self.entity_unk_token_id = self.entity_vocab[entity_unk_token]
+ self.entity_pad_token_id = self.entity_vocab[entity_pad_token]
+ self.entity_mask_token_id = self.entity_vocab[entity_mask_token]
+ self.entity_mask2_token_id = self.entity_vocab[entity_mask2_token]
+
+ self.task = task
+ if task is None or task == "entity_span_classification":
+ self.max_entity_length = max_entity_length
+ elif task == "entity_classification":
+ self.max_entity_length = 1
+ elif task == "entity_pair_classification":
+ self.max_entity_length = 2
+ else:
+ raise ValueError(
+ f"Task {task} not supported. Select task from ['entity_classification', 'entity_pair_classification',"
+ " 'entity_span_classification'] only."
+ )
+
+ self.max_mention_length = max_mention_length
+
+ super().__init__(
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ sp_model_kwargs=self.sp_model_kwargs,
+ task=task,
+ max_entity_length=max_entity_length,
+ max_mention_length=max_mention_length,
+ entity_token_1=entity_token_1,
+ entity_token_2=entity_token_2,
+ entity_unk_token=entity_unk_token,
+ entity_pad_token=entity_pad_token,
+ entity_mask_token=entity_mask_token,
+ entity_mask2_token=entity_mask2_token,
+ additional_special_tokens=additional_special_tokens,
+ **kwargs,
+ )
+
+ @property
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.vocab_size
+ def vocab_size(self):
+ return len(self.sp_model) + self.fairseq_offset + 1 # Add the token
+
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.get_vocab
+ def get_vocab(self):
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer._tokenize
+ def _tokenize(self, text: str) -> List[str]:
+ # TODO check if the t5/llama PR also applies here
+ return self.sp_model.encode(text, out_type=str)
+
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer._convert_token_to_id
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ if token in self.fairseq_tokens_to_ids:
+ return self.fairseq_tokens_to_ids[token]
+ spm_id = self.sp_model.PieceToId(token)
+
+ # Need to return unknown token if the SP model returned 0
+ return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ if index in self.fairseq_ids_to_tokens:
+ return self.fairseq_ids_to_tokens[index]
+ return self.sp_model.IdToPiece(index - self.fairseq_offset)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (strings for sub-words) in a single string."""
+ out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
+ return out_string
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.__call__
+ def __call__(
+ self,
+ text: Union[TextInput, List[TextInput]],
+ text_pair: Optional[Union[TextInput, List[TextInput]]] = None,
+ entity_spans: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None,
+ entity_spans_pair: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None,
+ entities: Optional[Union[EntityInput, List[EntityInput]]] = None,
+ entities_pair: Optional[Union[EntityInput, List[EntityInput]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ stride: int = 0,
+ is_split_into_words: Optional[bool] = False,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
+ sequences, depending on the task you want to prepare them for.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this
+ tokenizer does not support tokenization based on pretokenized strings.
+ text_pair (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this
+ tokenizer does not support tokenization based on pretokenized strings.
+ entity_spans (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*):
+ The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each
+ with two integers denoting character-based start and end positions of entities. If you specify
+ `"entity_classification"` or `"entity_pair_classification"` as the `task` argument in the constructor,
+ the length of each sequence must be 1 or 2, respectively. If you specify `entities`, the length of each
+ sequence must be equal to the length of each sequence of `entities`.
+ entity_spans_pair (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*):
+ The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each
+ with two integers denoting character-based start and end positions of entities. If you specify the
+ `task` argument in the constructor, this argument is ignored. If you specify `entities_pair`, the
+ length of each sequence must be equal to the length of each sequence of `entities_pair`.
+ entities (`List[str]`, `List[List[str]]`, *optional*):
+ The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings
+ representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los
+ Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of
+ each sequence must be equal to the length of each sequence of `entity_spans`. If you specify
+ `entity_spans` without specifying this argument, the entity sequence or the batch of entity sequences
+ is automatically constructed by filling it with the [MASK] entity.
+ entities_pair (`List[str]`, `List[List[str]]`, *optional*):
+ The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings
+ representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los
+ Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of
+ each sequence must be equal to the length of each sequence of `entity_spans_pair`. If you specify
+ `entity_spans_pair` without specifying this argument, the entity sequence or the batch of entity
+ sequences is automatically constructed by filling it with the [MASK] entity.
+ max_entity_length (`int`, *optional*):
+ The maximum length of `entity_ids`.
+ """
+ # Input type checking for clearer error
+ is_valid_single_text = isinstance(text, str)
+ is_valid_batch_text = isinstance(text, (list, tuple)) and (len(text) == 0 or (isinstance(text[0], str)))
+ if not (is_valid_single_text or is_valid_batch_text):
+ raise ValueError("text input must be of type `str` (single example) or `List[str]` (batch).")
+
+ is_valid_single_text_pair = isinstance(text_pair, str)
+ is_valid_batch_text_pair = isinstance(text_pair, (list, tuple)) and (
+ len(text_pair) == 0 or isinstance(text_pair[0], str)
+ )
+ if not (text_pair is None or is_valid_single_text_pair or is_valid_batch_text_pair):
+ raise ValueError("text_pair input must be of type `str` (single example) or `List[str]` (batch).")
+
+ is_batched = bool(isinstance(text, (list, tuple)))
+
+ if is_batched:
+ batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
+ if entities is None:
+ batch_entities_or_entities_pairs = None
+ else:
+ batch_entities_or_entities_pairs = (
+ list(zip(entities, entities_pair)) if entities_pair is not None else entities
+ )
+
+ if entity_spans is None:
+ batch_entity_spans_or_entity_spans_pairs = None
+ else:
+ batch_entity_spans_or_entity_spans_pairs = (
+ list(zip(entity_spans, entity_spans_pair)) if entity_spans_pair is not None else entity_spans
+ )
+
+ return self.batch_encode_plus(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ batch_entity_spans_or_entity_spans_pairs=batch_entity_spans_or_entity_spans_pairs,
+ batch_entities_or_entities_pairs=batch_entities_or_entities_pairs,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ stride=stride,
+ is_split_into_words=is_split_into_words,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+ else:
+ return self.encode_plus(
+ text=text,
+ text_pair=text_pair,
+ entity_spans=entity_spans,
+ entity_spans_pair=entity_spans_pair,
+ entities=entities,
+ entities_pair=entities_pair,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ stride=stride,
+ is_split_into_words=is_split_into_words,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._encode_plus
+ def _encode_plus(
+ self,
+ text: Union[TextInput],
+ text_pair: Optional[Union[TextInput]] = None,
+ entity_spans: Optional[EntitySpanInput] = None,
+ entity_spans_pair: Optional[EntitySpanInput] = None,
+ entities: Optional[EntityInput] = None,
+ entities_pair: Optional[EntityInput] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ stride: int = 0,
+ is_split_into_words: Optional[bool] = False,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ if return_offsets_mapping:
+ raise NotImplementedError(
+ "return_offset_mapping is not available when using Python tokenizers. "
+ "To use this feature, change your tokenizer to one deriving from "
+ "transformers.PreTrainedTokenizerFast. "
+ "More information on available tokenizers at "
+ "https://github.com/huggingface/transformers/pull/2674"
+ )
+
+ if is_split_into_words:
+ raise NotImplementedError("is_split_into_words is not supported in this tokenizer.")
+
+ (
+ first_ids,
+ second_ids,
+ first_entity_ids,
+ second_entity_ids,
+ first_entity_token_spans,
+ second_entity_token_spans,
+ ) = self._create_input_sequence(
+ text=text,
+ text_pair=text_pair,
+ entities=entities,
+ entities_pair=entities_pair,
+ entity_spans=entity_spans,
+ entity_spans_pair=entity_spans_pair,
+ **kwargs,
+ )
+
+ # prepare_for_model will create the attention_mask and token_type_ids
+ return self.prepare_for_model(
+ first_ids,
+ pair_ids=second_ids,
+ entity_ids=first_entity_ids,
+ pair_entity_ids=second_entity_ids,
+ entity_token_spans=first_entity_token_spans,
+ pair_entity_token_spans=second_entity_token_spans,
+ add_special_tokens=add_special_tokens,
+ padding=padding_strategy.value,
+ truncation=truncation_strategy.value,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ prepend_batch_axis=True,
+ return_attention_mask=return_attention_mask,
+ return_token_type_ids=return_token_type_ids,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_length=return_length,
+ verbose=verbose,
+ )
+
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._batch_encode_plus
+ def _batch_encode_plus(
+ self,
+ batch_text_or_text_pairs: Union[List[TextInput], List[TextInputPair]],
+ batch_entity_spans_or_entity_spans_pairs: Optional[
+ Union[List[EntitySpanInput], List[Tuple[EntitySpanInput, EntitySpanInput]]]
+ ] = None,
+ batch_entities_or_entities_pairs: Optional[
+ Union[List[EntityInput], List[Tuple[EntityInput, EntityInput]]]
+ ] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ stride: int = 0,
+ is_split_into_words: Optional[bool] = False,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ if return_offsets_mapping:
+ raise NotImplementedError(
+ "return_offset_mapping is not available when using Python tokenizers. "
+ "To use this feature, change your tokenizer to one deriving from "
+ "transformers.PreTrainedTokenizerFast."
+ )
+
+ if is_split_into_words:
+ raise NotImplementedError("is_split_into_words is not supported in this tokenizer.")
+
+ # input_ids is a list of tuples (one for each example in the batch)
+ input_ids = []
+ entity_ids = []
+ entity_token_spans = []
+ for index, text_or_text_pair in enumerate(batch_text_or_text_pairs):
+ if not isinstance(text_or_text_pair, (list, tuple)):
+ text, text_pair = text_or_text_pair, None
+ else:
+ text, text_pair = text_or_text_pair
+
+ entities, entities_pair = None, None
+ if batch_entities_or_entities_pairs is not None:
+ entities_or_entities_pairs = batch_entities_or_entities_pairs[index]
+ if entities_or_entities_pairs:
+ if isinstance(entities_or_entities_pairs[0], str):
+ entities, entities_pair = entities_or_entities_pairs, None
+ else:
+ entities, entities_pair = entities_or_entities_pairs
+
+ entity_spans, entity_spans_pair = None, None
+ if batch_entity_spans_or_entity_spans_pairs is not None:
+ entity_spans_or_entity_spans_pairs = batch_entity_spans_or_entity_spans_pairs[index]
+ if len(entity_spans_or_entity_spans_pairs) > 0 and isinstance(
+ entity_spans_or_entity_spans_pairs[0], list
+ ):
+ entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs
+ else:
+ entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs, None
+
+ (
+ first_ids,
+ second_ids,
+ first_entity_ids,
+ second_entity_ids,
+ first_entity_token_spans,
+ second_entity_token_spans,
+ ) = self._create_input_sequence(
+ text=text,
+ text_pair=text_pair,
+ entities=entities,
+ entities_pair=entities_pair,
+ entity_spans=entity_spans,
+ entity_spans_pair=entity_spans_pair,
+ **kwargs,
+ )
+ input_ids.append((first_ids, second_ids))
+ entity_ids.append((first_entity_ids, second_entity_ids))
+ entity_token_spans.append((first_entity_token_spans, second_entity_token_spans))
+
+ batch_outputs = self._batch_prepare_for_model(
+ input_ids,
+ batch_entity_ids_pairs=entity_ids,
+ batch_entity_token_spans_pairs=entity_token_spans,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ return_token_type_ids=return_token_type_ids,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_length=return_length,
+ return_tensors=return_tensors,
+ verbose=verbose,
+ )
+
+ return BatchEncoding(batch_outputs)
+
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._check_entity_input_format
+ def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]):
+ if not isinstance(entity_spans, list):
+ raise ValueError("entity_spans should be given as a list")
+ elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple):
+ raise ValueError(
+ "entity_spans should be given as a list of tuples containing the start and end character indices"
+ )
+
+ if entities is not None:
+ if not isinstance(entities, list):
+ raise ValueError("If you specify entities, they should be given as a list")
+
+ if len(entities) > 0 and not isinstance(entities[0], str):
+ raise ValueError("If you specify entities, they should be given as a list of entity names")
+
+ if len(entities) != len(entity_spans):
+ raise ValueError("If you specify entities, entities and entity_spans must be the same length")
+
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._create_input_sequence
+ def _create_input_sequence(
+ self,
+ text: Union[TextInput],
+ text_pair: Optional[Union[TextInput]] = None,
+ entities: Optional[EntityInput] = None,
+ entities_pair: Optional[EntityInput] = None,
+ entity_spans: Optional[EntitySpanInput] = None,
+ entity_spans_pair: Optional[EntitySpanInput] = None,
+ **kwargs,
+ ) -> Tuple[list, list, list, list, list, list]:
+ def get_input_ids(text):
+ tokens = self.tokenize(text, **kwargs)
+ return self.convert_tokens_to_ids(tokens)
+
+ def get_input_ids_and_entity_token_spans(text, entity_spans):
+ if entity_spans is None:
+ return get_input_ids(text), None
+
+ cur = 0
+ input_ids = []
+ entity_token_spans = [None] * len(entity_spans)
+
+ split_char_positions = sorted(frozenset(itertools.chain(*entity_spans)))
+ char_pos2token_pos = {}
+
+ for split_char_position in split_char_positions:
+ orig_split_char_position = split_char_position
+ if (
+ split_char_position > 0 and text[split_char_position - 1] == " "
+ ): # whitespace should be prepended to the following token
+ split_char_position -= 1
+ if cur != split_char_position:
+ input_ids += get_input_ids(text[cur:split_char_position])
+ cur = split_char_position
+ char_pos2token_pos[orig_split_char_position] = len(input_ids)
+
+ input_ids += get_input_ids(text[cur:])
+
+ entity_token_spans = [
+ (char_pos2token_pos[char_start], char_pos2token_pos[char_end]) for char_start, char_end in entity_spans
+ ]
+
+ return input_ids, entity_token_spans
+
+ first_ids, second_ids = None, None
+ first_entity_ids, second_entity_ids = None, None
+ first_entity_token_spans, second_entity_token_spans = None, None
+
+ if self.task is None:
+ if entity_spans is None:
+ first_ids = get_input_ids(text)
+ else:
+ self._check_entity_input_format(entities, entity_spans)
+
+ first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
+ if entities is None:
+ first_entity_ids = [self.entity_mask_token_id] * len(entity_spans)
+ else:
+ first_entity_ids = [self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities]
+
+ if text_pair is not None:
+ if entity_spans_pair is None:
+ second_ids = get_input_ids(text_pair)
+ else:
+ self._check_entity_input_format(entities_pair, entity_spans_pair)
+
+ second_ids, second_entity_token_spans = get_input_ids_and_entity_token_spans(
+ text_pair, entity_spans_pair
+ )
+ if entities_pair is None:
+ second_entity_ids = [self.entity_mask_token_id] * len(entity_spans_pair)
+ else:
+ second_entity_ids = [
+ self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities_pair
+ ]
+
+ elif self.task == "entity_classification":
+ if not (isinstance(entity_spans, list) and len(entity_spans) == 1 and isinstance(entity_spans[0], tuple)):
+ raise ValueError(
+ "Entity spans should be a list containing a single tuple "
+ "containing the start and end character indices of an entity"
+ )
+ first_entity_ids = [self.entity_mask_token_id]
+ first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
+
+ # add special tokens to input ids
+ entity_token_start, entity_token_end = first_entity_token_spans[0]
+ first_ids = (
+ first_ids[:entity_token_end] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_end:]
+ )
+ first_ids = (
+ first_ids[:entity_token_start]
+ + [self.additional_special_tokens_ids[0]]
+ + first_ids[entity_token_start:]
+ )
+ first_entity_token_spans = [(entity_token_start, entity_token_end + 2)]
+
+ elif self.task == "entity_pair_classification":
+ if not (
+ isinstance(entity_spans, list)
+ and len(entity_spans) == 2
+ and isinstance(entity_spans[0], tuple)
+ and isinstance(entity_spans[1], tuple)
+ ):
+ raise ValueError(
+ "Entity spans should be provided as a list of two tuples, "
+ "each tuple containing the start and end character indices of an entity"
+ )
+
+ head_span, tail_span = entity_spans
+ first_entity_ids = [self.entity_mask_token_id, self.entity_mask2_token_id]
+ first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
+
+ head_token_span, tail_token_span = first_entity_token_spans
+ token_span_with_special_token_ids = [
+ (head_token_span, self.additional_special_tokens_ids[0]),
+ (tail_token_span, self.additional_special_tokens_ids[1]),
+ ]
+ if head_token_span[0] < tail_token_span[0]:
+ first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2)
+ first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4)
+ token_span_with_special_token_ids = reversed(token_span_with_special_token_ids)
+ else:
+ first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4)
+ first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2)
+
+ for (entity_token_start, entity_token_end), special_token_id in token_span_with_special_token_ids:
+ first_ids = first_ids[:entity_token_end] + [special_token_id] + first_ids[entity_token_end:]
+ first_ids = first_ids[:entity_token_start] + [special_token_id] + first_ids[entity_token_start:]
+
+ elif self.task == "entity_span_classification":
+ if not (isinstance(entity_spans, list) and len(entity_spans) > 0 and isinstance(entity_spans[0], tuple)):
+ raise ValueError(
+ "Entity spans should be provided as a list of tuples, "
+ "each tuple containing the start and end character indices of an entity"
+ )
+
+ first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
+ first_entity_ids = [self.entity_mask_token_id] * len(entity_spans)
+
+ else:
+ raise ValueError(f"Task {self.task} not supported")
+
+ return (
+ first_ids,
+ second_ids,
+ first_entity_ids,
+ second_entity_ids,
+ first_entity_token_spans,
+ second_entity_token_spans,
+ )
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._batch_prepare_for_model
+ def _batch_prepare_for_model(
+ self,
+ batch_ids_pairs: List[Tuple[List[int], None]],
+ batch_entity_ids_pairs: List[Tuple[Optional[List[int]], Optional[List[int]]]],
+ batch_entity_token_spans_pairs: List[Tuple[Optional[List[Tuple[int, int]]], Optional[List[Tuple[int, int]]]]],
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[str] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ ) -> BatchEncoding:
+ """
+ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
+ adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
+ manages a moving window (with user defined stride) for overflowing tokens
+
+
+ Args:
+ batch_ids_pairs: list of tokenized input ids or input ids pairs
+ batch_entity_ids_pairs: list of entity ids or entity ids pairs
+ batch_entity_token_spans_pairs: list of entity spans or entity spans pairs
+ max_entity_length: The maximum length of the entity sequence.
+ """
+
+ batch_outputs = {}
+ for input_ids, entity_ids, entity_token_span_pairs in zip(
+ batch_ids_pairs, batch_entity_ids_pairs, batch_entity_token_spans_pairs
+ ):
+ first_ids, second_ids = input_ids
+ first_entity_ids, second_entity_ids = entity_ids
+ first_entity_token_spans, second_entity_token_spans = entity_token_span_pairs
+ outputs = self.prepare_for_model(
+ first_ids,
+ second_ids,
+ entity_ids=first_entity_ids,
+ pair_entity_ids=second_entity_ids,
+ entity_token_spans=first_entity_token_spans,
+ pair_entity_token_spans=second_entity_token_spans,
+ add_special_tokens=add_special_tokens,
+ padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
+ truncation=truncation_strategy.value,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ stride=stride,
+ pad_to_multiple_of=None, # we pad in batch afterward
+ return_attention_mask=False, # we pad in batch afterward
+ return_token_type_ids=return_token_type_ids,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_length=return_length,
+ return_tensors=None, # We convert the whole batch to tensors at the end
+ prepend_batch_axis=False,
+ verbose=verbose,
+ )
+
+ for key, value in outputs.items():
+ if key not in batch_outputs:
+ batch_outputs[key] = []
+ batch_outputs[key].append(value)
+
+ batch_outputs = self.pad(
+ batch_outputs,
+ padding=padding_strategy.value,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+
+ batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
+
+ return batch_outputs
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.prepare_for_model
+ def prepare_for_model(
+ self,
+ ids: List[int],
+ pair_ids: Optional[List[int]] = None,
+ entity_ids: Optional[List[int]] = None,
+ pair_entity_ids: Optional[List[int]] = None,
+ entity_token_spans: Optional[List[Tuple[int, int]]] = None,
+ pair_entity_token_spans: Optional[List[Tuple[int, int]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ prepend_batch_axis: bool = False,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Prepares a sequence of input id, entity id and entity span, or a pair of sequences of inputs ids, entity ids,
+ entity spans so that it can be used by the model. It adds special tokens, truncates sequences if overflowing
+ while taking into account the special tokens and manages a moving window (with user defined stride) for
+ overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first*
+ or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an
+ error.
+
+ Args:
+ ids (`List[int]`):
+ Tokenized input ids of the first sequence.
+ pair_ids (`List[int]`, *optional*):
+ Tokenized input ids of the second sequence.
+ entity_ids (`List[int]`, *optional*):
+ Entity ids of the first sequence.
+ pair_entity_ids (`List[int]`, *optional*):
+ Entity ids of the second sequence.
+ entity_token_spans (`List[Tuple[int, int]]`, *optional*):
+ Entity spans of the first sequence.
+ pair_entity_token_spans (`List[Tuple[int, int]]`, *optional*):
+ Entity spans of the second sequence.
+ max_entity_length (`int`, *optional*):
+ The maximum length of the entity sequence.
+ """
+
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ # Compute lengths
+ pair = bool(pair_ids is not None)
+ len_ids = len(ids)
+ len_pair_ids = len(pair_ids) if pair else 0
+
+ if return_token_type_ids and not add_special_tokens:
+ raise ValueError(
+ "Asking to return token_type_ids while setting add_special_tokens to False "
+ "results in an undefined behavior. Please set add_special_tokens to True or "
+ "set return_token_type_ids to None."
+ )
+ if (
+ return_overflowing_tokens
+ and truncation_strategy == TruncationStrategy.LONGEST_FIRST
+ and pair_ids is not None
+ ):
+ raise ValueError(
+ "Not possible to return overflowing tokens for pair of sequences with the "
+ "`longest_first`. Please select another truncation strategy than `longest_first`, "
+ "for instance `only_second` or `only_first`."
+ )
+
+ # Load from model defaults
+ if return_token_type_ids is None:
+ return_token_type_ids = "token_type_ids" in self.model_input_names
+ if return_attention_mask is None:
+ return_attention_mask = "attention_mask" in self.model_input_names
+
+ encoded_inputs = {}
+
+ # Compute the total size of the returned word encodings
+ total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
+
+ # Truncation: Handle max sequence length and max_entity_length
+ overflowing_tokens = []
+ if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
+ # truncate words up to max_length
+ ids, pair_ids, overflowing_tokens = self.truncate_sequences(
+ ids,
+ pair_ids=pair_ids,
+ num_tokens_to_remove=total_len - max_length,
+ truncation_strategy=truncation_strategy,
+ stride=stride,
+ )
+
+ if return_overflowing_tokens:
+ encoded_inputs["overflowing_tokens"] = overflowing_tokens
+ encoded_inputs["num_truncated_tokens"] = total_len - max_length
+
+ # Add special tokens
+ if add_special_tokens:
+ sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
+ token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
+ entity_token_offset = 1 # 1 * token
+ pair_entity_token_offset = len(ids) + 3 # 1 * token & 2 * tokens
+ else:
+ sequence = ids + pair_ids if pair else ids
+ token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
+ entity_token_offset = 0
+ pair_entity_token_offset = len(ids)
+
+ # Build output dictionary
+ encoded_inputs["input_ids"] = sequence
+ if return_token_type_ids:
+ encoded_inputs["token_type_ids"] = token_type_ids
+ if return_special_tokens_mask:
+ if add_special_tokens:
+ encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
+ else:
+ encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
+
+ # Set max entity length
+ if not max_entity_length:
+ max_entity_length = self.max_entity_length
+
+ if entity_ids is not None:
+ total_entity_len = 0
+ num_invalid_entities = 0
+ valid_entity_ids = [ent_id for ent_id, span in zip(entity_ids, entity_token_spans) if span[1] <= len(ids)]
+ valid_entity_token_spans = [span for span in entity_token_spans if span[1] <= len(ids)]
+
+ total_entity_len += len(valid_entity_ids)
+ num_invalid_entities += len(entity_ids) - len(valid_entity_ids)
+
+ valid_pair_entity_ids, valid_pair_entity_token_spans = None, None
+ if pair_entity_ids is not None:
+ valid_pair_entity_ids = [
+ ent_id
+ for ent_id, span in zip(pair_entity_ids, pair_entity_token_spans)
+ if span[1] <= len(pair_ids)
+ ]
+ valid_pair_entity_token_spans = [span for span in pair_entity_token_spans if span[1] <= len(pair_ids)]
+ total_entity_len += len(valid_pair_entity_ids)
+ num_invalid_entities += len(pair_entity_ids) - len(valid_pair_entity_ids)
+
+ if num_invalid_entities != 0:
+ logger.warning(
+ f"{num_invalid_entities} entities are ignored because their entity spans are invalid due to the"
+ " truncation of input tokens"
+ )
+
+ if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and total_entity_len > max_entity_length:
+ # truncate entities up to max_entity_length
+ valid_entity_ids, valid_pair_entity_ids, overflowing_entities = self.truncate_sequences(
+ valid_entity_ids,
+ pair_ids=valid_pair_entity_ids,
+ num_tokens_to_remove=total_entity_len - max_entity_length,
+ truncation_strategy=truncation_strategy,
+ stride=stride,
+ )
+ valid_entity_token_spans = valid_entity_token_spans[: len(valid_entity_ids)]
+ if valid_pair_entity_token_spans is not None:
+ valid_pair_entity_token_spans = valid_pair_entity_token_spans[: len(valid_pair_entity_ids)]
+
+ if return_overflowing_tokens:
+ encoded_inputs["overflowing_entities"] = overflowing_entities
+ encoded_inputs["num_truncated_entities"] = total_entity_len - max_entity_length
+
+ final_entity_ids = valid_entity_ids + valid_pair_entity_ids if valid_pair_entity_ids else valid_entity_ids
+ encoded_inputs["entity_ids"] = list(final_entity_ids)
+ entity_position_ids = []
+ entity_start_positions = []
+ entity_end_positions = []
+ for token_spans, offset in (
+ (valid_entity_token_spans, entity_token_offset),
+ (valid_pair_entity_token_spans, pair_entity_token_offset),
+ ):
+ if token_spans is not None:
+ for start, end in token_spans:
+ start += offset
+ end += offset
+ position_ids = list(range(start, end))[: self.max_mention_length]
+ position_ids += [-1] * (self.max_mention_length - end + start)
+ entity_position_ids.append(position_ids)
+ entity_start_positions.append(start)
+ entity_end_positions.append(end - 1)
+
+ encoded_inputs["entity_position_ids"] = entity_position_ids
+ if self.task == "entity_span_classification":
+ encoded_inputs["entity_start_positions"] = entity_start_positions
+ encoded_inputs["entity_end_positions"] = entity_end_positions
+
+ if return_token_type_ids:
+ encoded_inputs["entity_token_type_ids"] = [0] * len(encoded_inputs["entity_ids"])
+
+ # Check lengths
+ self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
+
+ # Padding
+ if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
+ encoded_inputs = self.pad(
+ encoded_inputs,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ padding=padding_strategy.value,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+
+ if return_length:
+ encoded_inputs["length"] = len(encoded_inputs["input_ids"])
+
+ batch_outputs = BatchEncoding(
+ encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
+ )
+
+ return batch_outputs
+
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.pad
+ def pad(
+ self,
+ encoded_inputs: Union[
+ BatchEncoding,
+ List[BatchEncoding],
+ Dict[str, EncodedInput],
+ Dict[str, List[EncodedInput]],
+ List[Dict[str, EncodedInput]],
+ ],
+ padding: Union[bool, str, PaddingStrategy] = True,
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ pad_to_multiple_of: Optional[int] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ verbose: bool = True,
+ ) -> BatchEncoding:
+ """
+ Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
+ in the batch. Padding side (left/right) padding token ids are defined at the tokenizer level (with
+ `self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`) .. note:: If the `encoded_inputs` passed
+ are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless
+ you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the
+ specific device of your tensors however.
+
+ Args:
+ encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
+ Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
+ tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
+ List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
+ collate function. Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or
+ TensorFlow tensors), see the note above for the return type.
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
+ index) among:
+
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
+ sequence if provided).
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
+ acceptable input length for the model if that argument is not provided.
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
+ lengths).
+ max_length (`int`, *optional*):
+ Maximum length of the returned list and optionally padding length (see above).
+ max_entity_length (`int`, *optional*):
+ The maximum length of the entity sequence.
+ pad_to_multiple_of (`int`, *optional*):
+ If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
+ the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
+ return_attention_mask (`bool`, *optional*):
+ Whether to return the attention mask. If left to the default, will return the attention mask according
+ to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention
+ masks?](../glossary#attention-mask)
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
+ If set, will return tensors instead of list of python integers. Acceptable values are:
+
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return Numpy `np.ndarray` objects.
+ verbose (`bool`, *optional*, defaults to `True`):
+ Whether or not to print more information and warnings.
+ """
+ # If we have a list of dicts, let's convert it in a dict of lists
+ # We do this to allow using this method as a collate_fn function in PyTorch Dataloader
+ if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping):
+ encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
+
+ # The model's main input name, usually `input_ids`, has be passed for padding
+ if self.model_input_names[0] not in encoded_inputs:
+ raise ValueError(
+ "You should supply an encoding or a list of encodings to this method "
+ f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
+ )
+
+ required_input = encoded_inputs[self.model_input_names[0]]
+
+ if not required_input:
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = []
+ return encoded_inputs
+
+ # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
+ # and rebuild them afterwards if no return_tensors is specified
+ # Note that we lose the specific device the tensor may be on for PyTorch
+
+ first_element = required_input[0]
+ if isinstance(first_element, (list, tuple)):
+ # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
+ index = 0
+ while len(required_input[index]) == 0:
+ index += 1
+ if index < len(required_input):
+ first_element = required_input[index][0]
+ # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
+ if not isinstance(first_element, (int, list, tuple)):
+ if is_tf_tensor(first_element):
+ return_tensors = "tf" if return_tensors is None else return_tensors
+ elif is_torch_tensor(first_element):
+ return_tensors = "pt" if return_tensors is None else return_tensors
+ elif isinstance(first_element, np.ndarray):
+ return_tensors = "np" if return_tensors is None else return_tensors
+ else:
+ raise ValueError(
+ f"type of {first_element} unknown: {type(first_element)}. "
+ "Should be one of a python, numpy, pytorch or tensorflow object."
+ )
+
+ for key, value in encoded_inputs.items():
+ encoded_inputs[key] = to_py_obj(value)
+
+ # Convert padding_strategy in PaddingStrategy
+ padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
+ padding=padding, max_length=max_length, verbose=verbose
+ )
+
+ if max_entity_length is None:
+ max_entity_length = self.max_entity_length
+
+ required_input = encoded_inputs[self.model_input_names[0]]
+ if required_input and not isinstance(required_input[0], (list, tuple)):
+ encoded_inputs = self._pad(
+ encoded_inputs,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ padding_strategy=padding_strategy,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+ return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
+
+ batch_size = len(required_input)
+ if any(len(v) != batch_size for v in encoded_inputs.values()):
+ raise ValueError("Some items in the output dictionary have a different batch size than others.")
+
+ if padding_strategy == PaddingStrategy.LONGEST:
+ max_length = max(len(inputs) for inputs in required_input)
+ max_entity_length = (
+ max(len(inputs) for inputs in encoded_inputs["entity_ids"]) if "entity_ids" in encoded_inputs else 0
+ )
+ padding_strategy = PaddingStrategy.MAX_LENGTH
+
+ batch_outputs = {}
+ for i in range(batch_size):
+ inputs = {k: v[i] for k, v in encoded_inputs.items()}
+ outputs = self._pad(
+ inputs,
+ max_length=max_length,
+ max_entity_length=max_entity_length,
+ padding_strategy=padding_strategy,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+
+ for key, value in outputs.items():
+ if key not in batch_outputs:
+ batch_outputs[key] = []
+ batch_outputs[key].append(value)
+
+ return BatchEncoding(batch_outputs, tensor_type=return_tensors)
+
+ # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._pad
+ def _pad(
+ self,
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
+ max_length: Optional[int] = None,
+ max_entity_length: Optional[int] = None,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ pad_to_multiple_of: Optional[int] = None,
+ return_attention_mask: Optional[bool] = None,
+ ) -> dict:
+ """
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
+
+
+ Args:
+ encoded_inputs:
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
+ max_length: maximum length of the returned list and optionally padding length (see below).
+ Will truncate by taking into account the special tokens.
+ max_entity_length: The maximum length of the entity sequence.
+ padding_strategy: PaddingStrategy to use for padding.
+
+
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
+ The tokenizer padding sides are defined in self.padding_side:
+
+
+ - 'left': pads on the left of the sequences
+ - 'right': pads on the right of the sequences
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
+ `>= 7.5` (Volta).
+ return_attention_mask:
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
+ """
+ entities_provided = bool("entity_ids" in encoded_inputs)
+
+ # Load from model defaults
+ if return_attention_mask is None:
+ return_attention_mask = "attention_mask" in self.model_input_names
+
+ if padding_strategy == PaddingStrategy.LONGEST:
+ max_length = len(encoded_inputs["input_ids"])
+ if entities_provided:
+ max_entity_length = len(encoded_inputs["entity_ids"])
+
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
+
+ if (
+ entities_provided
+ and max_entity_length is not None
+ and pad_to_multiple_of is not None
+ and (max_entity_length % pad_to_multiple_of != 0)
+ ):
+ max_entity_length = ((max_entity_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
+
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and (
+ len(encoded_inputs["input_ids"]) != max_length
+ or (entities_provided and len(encoded_inputs["entity_ids"]) != max_entity_length)
+ )
+
+ # Initialize attention mask if not present.
+ if return_attention_mask and "attention_mask" not in encoded_inputs:
+ encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"])
+ if entities_provided and return_attention_mask and "entity_attention_mask" not in encoded_inputs:
+ encoded_inputs["entity_attention_mask"] = [1] * len(encoded_inputs["entity_ids"])
+
+ if needs_to_be_padded:
+ difference = max_length - len(encoded_inputs["input_ids"])
+ if entities_provided:
+ entity_difference = max_entity_length - len(encoded_inputs["entity_ids"])
+ if self.padding_side == "right":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
+ if entities_provided:
+ encoded_inputs["entity_attention_mask"] = (
+ encoded_inputs["entity_attention_mask"] + [0] * entity_difference
+ )
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"] + [0] * difference
+ if entities_provided:
+ encoded_inputs["entity_token_type_ids"] = (
+ encoded_inputs["entity_token_type_ids"] + [0] * entity_difference
+ )
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
+ encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference
+ if entities_provided:
+ encoded_inputs["entity_ids"] = (
+ encoded_inputs["entity_ids"] + [self.entity_pad_token_id] * entity_difference
+ )
+ encoded_inputs["entity_position_ids"] = (
+ encoded_inputs["entity_position_ids"] + [[-1] * self.max_mention_length] * entity_difference
+ )
+ if self.task == "entity_span_classification":
+ encoded_inputs["entity_start_positions"] = (
+ encoded_inputs["entity_start_positions"] + [0] * entity_difference
+ )
+ encoded_inputs["entity_end_positions"] = (
+ encoded_inputs["entity_end_positions"] + [0] * entity_difference
+ )
+
+ elif self.padding_side == "left":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
+ if entities_provided:
+ encoded_inputs["entity_attention_mask"] = [0] * entity_difference + encoded_inputs[
+ "entity_attention_mask"
+ ]
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = [0] * difference + encoded_inputs["token_type_ids"]
+ if entities_provided:
+ encoded_inputs["entity_token_type_ids"] = [0] * entity_difference + encoded_inputs[
+ "entity_token_type_ids"
+ ]
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
+ encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"]
+ if entities_provided:
+ encoded_inputs["entity_ids"] = [self.entity_pad_token_id] * entity_difference + encoded_inputs[
+ "entity_ids"
+ ]
+ encoded_inputs["entity_position_ids"] = [
+ [-1] * self.max_mention_length
+ ] * entity_difference + encoded_inputs["entity_position_ids"]
+ if self.task == "entity_span_classification":
+ encoded_inputs["entity_start_positions"] = [0] * entity_difference + encoded_inputs[
+ "entity_start_positions"
+ ]
+ encoded_inputs["entity_end_positions"] = [0] * entity_difference + encoded_inputs[
+ "entity_end_positions"
+ ]
+ else:
+ raise ValueError("Invalid padding strategy:" + str(self.padding_side))
+
+ return encoded_inputs
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str, str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ entity_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["entity_vocab_file"]
+ )
+
+ with open(entity_vocab_file, "w", encoding="utf-8") as f:
+ f.write(json.dumps(self.entity_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
+
+ return out_vocab_file, entity_vocab_file
+
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.build_inputs_with_special_tokens
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. An XLM-RoBERTa sequence has the following format:
+
+ - single sequence: ` X `
+ - pair of sequences: ` A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
+
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.get_special_tokens_mask
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
+
+ # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.create_token_type_ids_from_sequences
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
+ not make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+
+ """
+
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..993a99c0819bd655544545e325940c8ac73f41a9
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__init__.py
@@ -0,0 +1,130 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_flax_available,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig"],
+ "tokenization_mpnet": ["MPNetTokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_mpnet_fast"] = ["MPNetTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_mpnet"] = [
+ "MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "MPNetForMaskedLM",
+ "MPNetForMultipleChoice",
+ "MPNetForQuestionAnswering",
+ "MPNetForSequenceClassification",
+ "MPNetForTokenClassification",
+ "MPNetLayer",
+ "MPNetModel",
+ "MPNetPreTrainedModel",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_mpnet"] = [
+ "TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFMPNetEmbeddings",
+ "TFMPNetForMaskedLM",
+ "TFMPNetForMultipleChoice",
+ "TFMPNetForQuestionAnswering",
+ "TFMPNetForSequenceClassification",
+ "TFMPNetForTokenClassification",
+ "TFMPNetMainLayer",
+ "TFMPNetModel",
+ "TFMPNetPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig
+ from .tokenization_mpnet import MPNetTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_mpnet_fast import MPNetTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_mpnet import (
+ MPNET_PRETRAINED_MODEL_ARCHIVE_LIST,
+ MPNetForMaskedLM,
+ MPNetForMultipleChoice,
+ MPNetForQuestionAnswering,
+ MPNetForSequenceClassification,
+ MPNetForTokenClassification,
+ MPNetLayer,
+ MPNetModel,
+ MPNetPreTrainedModel,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_mpnet import (
+ TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TFMPNetEmbeddings,
+ TFMPNetForMaskedLM,
+ TFMPNetForMultipleChoice,
+ TFMPNetForQuestionAnswering,
+ TFMPNetForSequenceClassification,
+ TFMPNetForTokenClassification,
+ TFMPNetMainLayer,
+ TFMPNetModel,
+ TFMPNetPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2febeef6ab7ca77402d64239b5d5cd757575c653
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/configuration_mpnet.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/configuration_mpnet.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8210b6ee95cf4d7fc0b3eb76853123272dba404b
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/configuration_mpnet.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_mpnet.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_mpnet.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ad24c7f437922defbccccb25b34cedf43e4a9e9f
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_mpnet.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_tf_mpnet.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_tf_mpnet.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1c111f0cbc994bff759df89fba4ad4fb96242c3c
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_tf_mpnet.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c4e197465d1d9d73406aac114e332d06f4bfcd0f
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e47368270d69433fedf01bdc7a460111c8aa2132
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet_fast.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/configuration_mpnet.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/configuration_mpnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..fe492a963e5af24073a65fca502901d8dc6ef70b
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/configuration_mpnet.py
@@ -0,0 +1,117 @@
+# coding=utf-8
+# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" MPNet model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/config.json",
+}
+
+
+class MPNetConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`MPNetModel`] or a [`TFMPNetModel`]. It is used to
+ instantiate a MPNet model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the MPNet
+ [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30527):
+ Vocabulary size of the MPNet model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`MPNetModel`] or [`TFMPNetModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ relative_attention_num_buckets (`int`, *optional*, defaults to 32):
+ The number of buckets to use for each attention layer.
+
+ Examples:
+
+ ```python
+ >>> from transformers import MPNetModel, MPNetConfig
+
+ >>> # Initializing a MPNet mpnet-base style configuration
+ >>> configuration = MPNetConfig()
+
+ >>> # Initializing a model from the mpnet-base style configuration
+ >>> model = MPNetModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "mpnet"
+
+ def __init__(
+ self,
+ vocab_size=30527,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ relative_attention_num_buckets=32,
+ pad_token_id=1,
+ bos_token_id=0,
+ eos_token_id=2,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.relative_attention_num_buckets = relative_attention_num_buckets
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_mpnet.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_mpnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..86194607e21750713680a1a03cee0812fe9f65bb
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_mpnet.py
@@ -0,0 +1,1055 @@
+# coding=utf-8
+# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch MPNet model."""
+
+
+import math
+from typing import Optional, Tuple, Union
+
+import torch
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN, gelu
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPooling,
+ MaskedLMOutput,
+ MultipleChoiceModelOutput,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_mpnet import MPNetConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "microsoft/mpnet-base"
+_CONFIG_FOR_DOC = "MPNetConfig"
+
+
+MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "microsoft/mpnet-base",
+]
+
+
+class MPNetPreTrainedModel(PreTrainedModel):
+ config_class = MPNetConfig
+ pretrained_model_archive_map = MPNET_PRETRAINED_MODEL_ARCHIVE_LIST
+ base_model_prefix = "mpnet"
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+class MPNetEmbeddings(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.padding_idx = 1
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx)
+ self.position_embeddings = nn.Embedding(
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
+ )
+
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+
+ def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, **kwargs):
+ if position_ids is None:
+ if input_ids is not None:
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx)
+ else:
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
+
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, :seq_length]
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ position_embeddings = self.position_embeddings(position_ids)
+
+ embeddings = inputs_embeds + position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
+ """
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
+
+ Args:
+ inputs_embeds: torch.Tensor
+
+ Returns: torch.Tensor
+ """
+ input_shape = inputs_embeds.size()[:-1]
+ sequence_length = input_shape[1]
+
+ position_ids = torch.arange(
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
+ )
+ return position_ids.unsqueeze(0).expand(input_shape)
+
+
+class MPNetSelfAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.q = nn.Linear(config.hidden_size, self.all_head_size)
+ self.k = nn.Linear(config.hidden_size, self.all_head_size)
+ self.v = nn.Linear(config.hidden_size, self.all_head_size)
+ self.o = nn.Linear(config.hidden_size, config.hidden_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ position_bias=None,
+ output_attentions=False,
+ **kwargs,
+ ):
+ q = self.q(hidden_states)
+ k = self.k(hidden_states)
+ v = self.v(hidden_states)
+
+ q = self.transpose_for_scores(q)
+ k = self.transpose_for_scores(k)
+ v = self.transpose_for_scores(v)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(q, k.transpose(-1, -2))
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+
+ # Apply relative position embedding (precomputed in MPNetEncoder) if provided.
+ if position_bias is not None:
+ attention_scores += position_bias
+
+ if attention_mask is not None:
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ attention_probs = self.dropout(attention_probs)
+
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ c = torch.matmul(attention_probs, v)
+
+ c = c.permute(0, 2, 1, 3).contiguous()
+ new_c_shape = c.size()[:-2] + (self.all_head_size,)
+ c = c.view(*new_c_shape)
+
+ o = self.o(c)
+
+ outputs = (o, attention_probs) if output_attentions else (o,)
+ return outputs
+
+
+class MPNetAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.attn = MPNetSelfAttention(config)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.attn.num_attention_heads, self.attn.attention_head_size, self.pruned_heads
+ )
+
+ self.attn.q = prune_linear_layer(self.attn.q, index)
+ self.attn.k = prune_linear_layer(self.attn.k, index)
+ self.attn.v = prune_linear_layer(self.attn.v, index)
+ self.attn.o = prune_linear_layer(self.attn.o, index, dim=1)
+
+ self.attn.num_attention_heads = self.attn.num_attention_heads - len(heads)
+ self.attn.all_head_size = self.attn.attention_head_size * self.attn.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ position_bias=None,
+ output_attentions=False,
+ **kwargs,
+ ):
+ self_outputs = self.attn(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ position_bias,
+ output_attentions=output_attentions,
+ )
+ attention_output = self.LayerNorm(self.dropout(self_outputs[0]) + hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate
+class MPNetIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput
+class MPNetOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class MPNetLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.attention = MPNetAttention(config)
+ self.intermediate = MPNetIntermediate(config)
+ self.output = MPNetOutput(config)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ position_bias=None,
+ output_attentions=False,
+ **kwargs,
+ ):
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ position_bias=position_bias,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ outputs = (layer_output,) + outputs
+ return outputs
+
+
+class MPNetEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.n_heads = config.num_attention_heads
+ self.layer = nn.ModuleList([MPNetLayer(config) for _ in range(config.num_hidden_layers)])
+ self.relative_attention_bias = nn.Embedding(config.relative_attention_num_buckets, self.n_heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = False,
+ **kwargs,
+ ):
+ position_bias = self.compute_position_bias(hidden_states)
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ head_mask[i],
+ position_bias,
+ output_attentions=output_attentions,
+ **kwargs,
+ )
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ # Add last layer
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_attentions,
+ )
+
+ def compute_position_bias(self, x, position_ids=None, num_buckets=32):
+ bsz, qlen, klen = x.size(0), x.size(1), x.size(1)
+ if position_ids is not None:
+ context_position = position_ids[:, :, None]
+ memory_position = position_ids[:, None, :]
+ else:
+ context_position = torch.arange(qlen, dtype=torch.long)[:, None]
+ memory_position = torch.arange(klen, dtype=torch.long)[None, :]
+
+ relative_position = memory_position - context_position
+
+ rp_bucket = self.relative_position_bucket(relative_position, num_buckets=num_buckets)
+ rp_bucket = rp_bucket.to(x.device)
+ values = self.relative_attention_bias(rp_bucket)
+ values = values.permute([2, 0, 1]).unsqueeze(0)
+ values = values.expand((bsz, -1, qlen, klen)).contiguous()
+ return values
+
+ @staticmethod
+ def relative_position_bucket(relative_position, num_buckets=32, max_distance=128):
+ ret = 0
+ n = -relative_position
+
+ num_buckets //= 2
+ ret += (n < 0).to(torch.long) * num_buckets
+ n = torch.abs(n)
+
+ max_exact = num_buckets // 2
+ is_small = n < max_exact
+
+ val_if_large = max_exact + (
+ torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
+ ).to(torch.long)
+
+ val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
+ ret += torch.where(is_small, n, val_if_large)
+ return ret
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPooler
+class MPNetPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+MPNET_START_DOCSTRING = r"""
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`MPNetConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+MPNET_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare MPNet Model transformer outputting raw hidden-states without any specific head on top.",
+ MPNET_START_DOCSTRING,
+)
+class MPNetModel(MPNetPreTrainedModel):
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = MPNetEmbeddings(config)
+ self.encoder = MPNetEncoder(config)
+ self.pooler = MPNetPooler(config) if add_pooling_layer else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPooling,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if attention_mask is None:
+ attention_mask = torch.ones(input_shape, device=device)
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+ embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds)
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+class MPNetForMaskedLM(MPNetPreTrainedModel):
+ _tied_weights_keys = ["lm_head.decoder"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.mpnet = MPNetModel(config, add_pooling_layer=False)
+ self.lm_head = MPNetLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.mpnet(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.lm_head(sequence_output)
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class MPNetLMHead(nn.Module):
+ """MPNet Head for masked and permuted language modeling."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
+ self.decoder.bias = self.bias
+
+ def forward(self, features, **kwargs):
+ x = self.dense(features)
+ x = gelu(x)
+ x = self.layer_norm(x)
+
+ # project back to size of vocabulary with bias
+ x = self.decoder(x)
+
+ return x
+
+
+@add_start_docstrings(
+ """
+ MPNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
+ output) e.g. for GLUE tasks.
+ """,
+ MPNET_START_DOCSTRING,
+)
+class MPNetForSequenceClassification(MPNetPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.mpnet = MPNetModel(config, add_pooling_layer=False)
+ self.classifier = MPNetClassificationHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.mpnet(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ MPNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ MPNET_START_DOCSTRING,
+)
+class MPNetForMultipleChoice(MPNetPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.mpnet = MPNetModel(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ flat_inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ outputs = self.mpnet(
+ flat_input_ids,
+ position_ids=flat_position_ids,
+ attention_mask=flat_attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=flat_inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ pooled_output = outputs[1]
+
+ pooled_output = self.dropout(pooled_output)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ MPNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ MPNET_START_DOCSTRING,
+)
+class MPNetForTokenClassification(MPNetPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.mpnet = MPNetModel(config, add_pooling_layer=False)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.mpnet(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class MPNetClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
+
+ def forward(self, features, **kwargs):
+ x = features[:, 0, :] # take token (equiv. to BERT's [CLS] token)
+ x = self.dropout(x)
+ x = self.dense(x)
+ x = torch.tanh(x)
+ x = self.dropout(x)
+ x = self.out_proj(x)
+ return x
+
+
+@add_start_docstrings(
+ """
+ MPNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ MPNET_START_DOCSTRING,
+)
+class MPNetForQuestionAnswering(MPNetPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.mpnet = MPNetModel(config, add_pooling_layer=False)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=QuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.mpnet(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+def create_position_ids_from_input_ids(input_ids, padding_idx):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
+ are ignored. This is modified from fairseq's `utils.make_positions`. :param torch.Tensor x: :return torch.Tensor:
+ """
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
+ mask = input_ids.ne(padding_idx).int()
+ incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask
+ return incremental_indices.long() + padding_idx
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_tf_mpnet.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_tf_mpnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..fe2825c76cee299ca52e489c2b849a5b42e8d2a9
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_tf_mpnet.py
@@ -0,0 +1,1346 @@
+# coding=utf-8
+# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 MPNet model."""
+
+
+from __future__ import annotations
+
+import math
+import warnings
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import (
+ TFBaseModelOutput,
+ TFBaseModelOutputWithPooling,
+ TFMaskedLMOutput,
+ TFMultipleChoiceModelOutput,
+ TFQuestionAnsweringModelOutput,
+ TFSequenceClassifierOutput,
+ TFTokenClassifierOutput,
+)
+from ...modeling_tf_utils import (
+ TFMaskedLanguageModelingLoss,
+ TFModelInputType,
+ TFMultipleChoiceLoss,
+ TFPreTrainedModel,
+ TFQuestionAnsweringLoss,
+ TFSequenceClassificationLoss,
+ TFTokenClassificationLoss,
+ get_initializer,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+)
+from .configuration_mpnet import MPNetConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "microsoft/mpnet-base"
+_CONFIG_FOR_DOC = "MPNetConfig"
+
+TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "microsoft/mpnet-base",
+]
+
+
+class TFMPNetPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = MPNetConfig
+ base_model_prefix = "mpnet"
+
+
+class TFMPNetEmbeddings(keras.layers.Layer):
+ """Construct the embeddings from word, position embeddings."""
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.padding_idx = 1
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.max_position_embeddings = config.max_position_embeddings
+ self.initializer_range = config.initializer_range
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+
+ def build(self, input_shape=None):
+ with tf.name_scope("word_embeddings"):
+ self.weight = self.add_weight(
+ name="weight",
+ shape=[self.config.vocab_size, self.hidden_size],
+ initializer=get_initializer(initializer_range=self.initializer_range),
+ )
+
+ with tf.name_scope("position_embeddings"):
+ self.position_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.max_position_embeddings, self.hidden_size],
+ initializer=get_initializer(initializer_range=self.initializer_range),
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+ def create_position_ids_from_input_ids(self, input_ids):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
+ symbols are ignored. This is modified from fairseq's `utils.make_positions`.
+
+ Args:
+ input_ids: tf.Tensor
+ Returns: tf.Tensor
+ """
+ mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype)
+ incremental_indices = tf.math.cumsum(mask, axis=1) * mask
+
+ return incremental_indices + self.padding_idx
+
+ def call(self, input_ids=None, position_ids=None, inputs_embeds=None, training=False):
+ """
+ Applies embedding based on inputs tensor.
+
+ Returns:
+ final_embeddings (`tf.Tensor`): output embedding tensor.
+ """
+ assert not (input_ids is None and inputs_embeds is None)
+
+ if input_ids is not None:
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
+
+ input_shape = shape_list(inputs_embeds)[:-1]
+
+ if position_ids is None:
+ if input_ids is not None:
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
+ position_ids = self.create_position_ids_from_input_ids(input_ids=input_ids)
+ else:
+ position_ids = tf.expand_dims(
+ tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0
+ )
+
+ position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
+ final_embeddings = inputs_embeds + position_embeds
+ final_embeddings = self.LayerNorm(inputs=final_embeddings)
+ final_embeddings = self.dropout(inputs=final_embeddings, training=training)
+
+ return final_embeddings
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->MPNet
+class TFMPNetPooler(keras.layers.Layer):
+ def __init__(self, config: MPNetConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="tanh",
+ name="dense",
+ )
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(inputs=first_token_tensor)
+
+ return pooled_output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+class TFMPNetSelfAttention(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads}"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ assert config.hidden_size % config.num_attention_heads == 0
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.q = keras.layers.Dense(
+ self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="q"
+ )
+ self.k = keras.layers.Dense(
+ self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="k"
+ )
+ self.v = keras.layers.Dense(
+ self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="v"
+ )
+ self.o = keras.layers.Dense(
+ config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="o"
+ )
+ self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
+ self.config = config
+
+ def transpose_for_scores(self, x, batch_size):
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
+ x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
+
+ return tf.transpose(x, perm=[0, 2, 1, 3])
+
+ def call(self, hidden_states, attention_mask, head_mask, output_attentions, position_bias=None, training=False):
+ batch_size = shape_list(hidden_states)[0]
+
+ q = self.q(hidden_states)
+ k = self.k(hidden_states)
+ v = self.v(hidden_states)
+
+ q = self.transpose_for_scores(q, batch_size)
+ k = self.transpose_for_scores(k, batch_size)
+ v = self.transpose_for_scores(v, batch_size)
+
+ attention_scores = tf.matmul(q, k, transpose_b=True)
+ dk = tf.cast(shape_list(k)[-1], attention_scores.dtype)
+ attention_scores = attention_scores / tf.math.sqrt(dk)
+
+ # Apply relative position embedding (precomputed in MPNetEncoder) if provided.
+ if position_bias is not None:
+ attention_scores += position_bias
+
+ if attention_mask is not None:
+ attention_scores = attention_scores + attention_mask
+
+ attention_probs = stable_softmax(attention_scores, axis=-1)
+
+ attention_probs = self.dropout(attention_probs, training=training)
+
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ c = tf.matmul(attention_probs, v)
+ c = tf.transpose(c, perm=[0, 2, 1, 3])
+ c = tf.reshape(c, (batch_size, -1, self.all_head_size))
+ o = self.o(c)
+
+ outputs = (o, attention_probs) if output_attentions else (o,)
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "q", None) is not None:
+ with tf.name_scope(self.q.name):
+ self.q.build([None, None, self.config.hidden_size])
+ if getattr(self, "k", None) is not None:
+ with tf.name_scope(self.k.name):
+ self.k.build([None, None, self.config.hidden_size])
+ if getattr(self, "v", None) is not None:
+ with tf.name_scope(self.v.name):
+ self.v.build([None, None, self.config.hidden_size])
+ if getattr(self, "o", None) is not None:
+ with tf.name_scope(self.o.name):
+ self.o.build([None, None, self.config.hidden_size])
+
+
+class TFMPNetAttention(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.attn = TFMPNetSelfAttention(config, name="attn")
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def prune_heads(self, heads):
+ raise NotImplementedError
+
+ def call(self, input_tensor, attention_mask, head_mask, output_attentions, position_bias=None, training=False):
+ self_outputs = self.attn(
+ input_tensor, attention_mask, head_mask, output_attentions, position_bias=position_bias, training=training
+ )
+ attention_output = self.LayerNorm(self.dropout(self_outputs[0]) + input_tensor)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attn", None) is not None:
+ with tf.name_scope(self.attn.name):
+ self.attn.build(None)
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->MPNet
+class TFMPNetIntermediate(keras.layers.Layer):
+ def __init__(self, config: MPNetConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.intermediate_act_fn = config.hidden_act
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->MPNet
+class TFMPNetOutput(keras.layers.Layer):
+ def __init__(self, config: MPNetConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
+ hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.intermediate_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+class TFMPNetLayer(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.attention = TFMPNetAttention(config, name="attention")
+ self.intermediate = TFMPNetIntermediate(config, name="intermediate")
+ self.out = TFMPNetOutput(config, name="output")
+
+ def call(self, hidden_states, attention_mask, head_mask, output_attentions, position_bias=None, training=False):
+ self_attention_outputs = self.attention(
+ hidden_states, attention_mask, head_mask, output_attentions, position_bias=position_bias, training=training
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.out(intermediate_output, attention_output, training=training)
+ outputs = (layer_output,) + outputs # add attentions if we output them
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "intermediate", None) is not None:
+ with tf.name_scope(self.intermediate.name):
+ self.intermediate.build(None)
+ if getattr(self, "out", None) is not None:
+ with tf.name_scope(self.out.name):
+ self.out.build(None)
+
+
+class TFMPNetEncoder(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.n_heads = config.num_attention_heads
+ self.output_attentions = config.output_attentions
+ self.output_hidden_states = config.output_hidden_states
+ self.relative_attention_num_buckets = config.relative_attention_num_buckets
+ self.initializer_range = config.initializer_range
+
+ self.layer = [TFMPNetLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
+ self.relative_attention_num_buckets = config.relative_attention_num_buckets
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ with tf.name_scope("relative_attention_bias"):
+ self.relative_attention_bias = self.add_weight(
+ name="embeddings",
+ shape=[self.relative_attention_num_buckets, self.n_heads],
+ initializer=get_initializer(self.initializer_range),
+ )
+ if getattr(self, "layer", None) is not None:
+ for layer in self.layer:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+ def call(
+ self,
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ training=False,
+ ):
+ position_bias = self.compute_position_bias(hidden_states)
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ head_mask[i],
+ output_attentions,
+ position_bias=position_bias,
+ training=training,
+ )
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ # Add last layer
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
+
+ return TFBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+ @staticmethod
+ def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128):
+ ret = 0
+ n = -relative_position
+
+ num_buckets //= 2
+ ret += tf.cast(tf.math.less(n, 0), dtype=relative_position.dtype) * num_buckets
+ n = tf.math.abs(n)
+
+ # now n is in the range [0, inf)
+ max_exact = num_buckets // 2
+ is_small = tf.math.less(n, max_exact)
+
+ val_if_large = max_exact + tf.cast(
+ tf.math.log(n / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact),
+ dtype=relative_position.dtype,
+ )
+
+ val_if_large = tf.math.minimum(val_if_large, num_buckets - 1)
+ ret += tf.where(is_small, n, val_if_large)
+ return ret
+
+ def compute_position_bias(self, x, position_ids=None):
+ """Compute binned relative position bias"""
+ input_shape = shape_list(x)
+ qlen, klen = input_shape[1], input_shape[1]
+
+ if position_ids is not None:
+ context_position = position_ids[:, :, None]
+ memory_position = position_ids[:, None, :]
+ else:
+ context_position = tf.range(qlen)[:, None]
+ memory_position = tf.range(klen)[None, :]
+
+ relative_position = memory_position - context_position # shape (qlen, klen)
+
+ rp_bucket = self._relative_position_bucket(
+ relative_position,
+ num_buckets=self.relative_attention_num_buckets,
+ )
+ values = tf.gather(self.relative_attention_bias, rp_bucket) # shape (qlen, klen, num_heads)
+ values = tf.expand_dims(tf.transpose(values, [2, 0, 1]), axis=0) # shape (1, num_heads, qlen, klen)
+ return values
+
+
+@keras_serializable
+class TFMPNetMainLayer(keras.layers.Layer):
+ config_class = MPNetConfig
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.num_hidden_layers = config.num_hidden_layers
+ self.initializer_range = config.initializer_range
+ self.output_attentions = config.output_attentions
+ self.output_hidden_states = config.output_hidden_states
+ self.return_dict = config.use_return_dict
+ self.encoder = TFMPNetEncoder(config, name="encoder")
+ self.pooler = TFMPNetPooler(config, name="pooler")
+ # The embeddings must be the last declaration in order to follow the weights order
+ self.embeddings = TFMPNetEmbeddings(config, name="embeddings")
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings
+ def get_input_embeddings(self) -> keras.layers.Layer:
+ return self.embeddings
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings
+ def set_input_embeddings(self, value: tf.Variable):
+ self.embeddings.weight = value
+ self.embeddings.vocab_size = shape_list(value)[0]
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ raise NotImplementedError
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ position_ids=None,
+ head_mask=None,
+ inputs_embeds=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ training=False,
+ ):
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if attention_mask is None:
+ attention_mask = tf.fill(input_shape, 1)
+
+ embedding_output = self.embeddings(
+ input_ids,
+ position_ids,
+ inputs_embeds,
+ training=training,
+ )
+
+ # We create a 3D attention mask from a 2D tensor mask.
+ # Sizes are [batch_size, 1, 1, to_seq_length]
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
+ # this attention mask is more simple than the triangular masking of causal attention
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
+ extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and -10000.0 for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+ extended_attention_mask = tf.cast(extended_attention_mask, embedding_output.dtype)
+ one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
+ ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
+ extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ if head_mask is not None:
+ raise NotImplementedError
+ else:
+ head_mask = [None] * self.num_hidden_layers
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ extended_attention_mask,
+ head_mask,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ training=training,
+ )
+
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(sequence_output)
+
+ if not return_dict:
+ return (
+ sequence_output,
+ pooled_output,
+ ) + encoder_outputs[1:]
+
+ return TFBaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "pooler", None) is not None:
+ with tf.name_scope(self.pooler.name):
+ self.pooler.build(None)
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+
+
+MPNET_START_DOCSTRING = r"""
+
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Args:
+ config ([`MPNetConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+MPNET_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@add_start_docstrings(
+ "The bare MPNet Model transformer outputting raw hidden-states without any specific head on top.",
+ MPNET_START_DOCSTRING,
+)
+class TFMPNetModel(TFMPNetPreTrainedModel):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.mpnet = TFMPNetMainLayer(config, name="mpnet")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFBaseModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: Optional[Union[np.array, tf.Tensor]] = None,
+ position_ids: Optional[Union[np.array, tf.Tensor]] = None,
+ head_mask: Optional[Union[np.array, tf.Tensor]] = None,
+ inputs_embeds: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
+ outputs = self.mpnet(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "mpnet", None) is not None:
+ with tf.name_scope(self.mpnet.name):
+ self.mpnet.build(None)
+
+
+class TFMPNetLMHead(keras.layers.Layer):
+ """MPNet head for masked and permuted language modeling"""
+
+ def __init__(self, config, input_embeddings, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.dense = keras.layers.Dense(
+ config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
+ self.act = get_tf_activation("gelu")
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = input_embeddings
+
+ def build(self, input_shape=None):
+ self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "layer_norm", None) is not None:
+ with tf.name_scope(self.layer_norm.name):
+ self.layer_norm.build([None, None, self.config.hidden_size])
+
+ def get_output_embeddings(self):
+ return self.decoder
+
+ def set_output_embeddings(self, value):
+ self.decoder.weight = value
+ self.decoder.vocab_size = shape_list(value)[0]
+
+ def get_bias(self):
+ return {"bias": self.bias}
+
+ def set_bias(self, value):
+ self.bias = value["bias"]
+ self.config.vocab_size = shape_list(value["bias"])[0]
+
+ def call(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.act(hidden_states)
+ hidden_states = self.layer_norm(hidden_states)
+
+ # project back to size of vocabulary with bias
+ seq_length = shape_list(tensor=hidden_states)[1]
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
+ hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
+ hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
+
+ return hidden_states
+
+
+@add_start_docstrings("""MPNet Model with a `language modeling` head on top.""", MPNET_START_DOCSTRING)
+class TFMPNetForMaskedLM(TFMPNetPreTrainedModel, TFMaskedLanguageModelingLoss):
+ _keys_to_ignore_on_load_missing = [r"pooler"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.mpnet = TFMPNetMainLayer(config, name="mpnet")
+ self.lm_head = TFMPNetLMHead(config, self.mpnet.embeddings, name="lm_head")
+
+ def get_lm_head(self):
+ return self.lm_head
+
+ def get_prefix_bias_name(self):
+ warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
+ return self.name + "/" + self.lm_head.name
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: tf.Tensor | None = None,
+ training: bool = False,
+ ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ """
+ outputs = self.mpnet(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ prediction_scores = self.lm_head(sequence_output)
+
+ loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMaskedLMOutput(
+ loss=loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "mpnet", None) is not None:
+ with tf.name_scope(self.mpnet.name):
+ self.mpnet.build(None)
+ if getattr(self, "lm_head", None) is not None:
+ with tf.name_scope(self.lm_head.name):
+ self.lm_head.build(None)
+
+
+class TFMPNetClassificationHead(keras.layers.Layer):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="tanh",
+ name="dense",
+ )
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.out_proj = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
+ )
+ self.config = config
+
+ def call(self, features, training=False):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x, training=training)
+ x = self.dense(x)
+ x = self.dropout(x, training=training)
+ x = self.out_proj(x)
+ return x
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "out_proj", None) is not None:
+ with tf.name_scope(self.out_proj.name):
+ self.out_proj.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ MPNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
+ output) e.g. for GLUE tasks.
+ """,
+ MPNET_START_DOCSTRING,
+)
+class TFMPNetForSequenceClassification(TFMPNetPreTrainedModel, TFSequenceClassificationLoss):
+ _keys_to_ignore_on_load_missing = [r"pooler"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.num_labels = config.num_labels
+
+ self.mpnet = TFMPNetMainLayer(config, name="mpnet")
+ self.classifier = TFMPNetClassificationHead(config, name="classifier")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFSequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: Optional[Union[np.array, tf.Tensor]] = None,
+ position_ids: Optional[Union[np.array, tf.Tensor]] = None,
+ head_mask: Optional[Union[np.array, tf.Tensor]] = None,
+ inputs_embeds: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: tf.Tensor | None = None,
+ training: bool = False,
+ ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ outputs = self.mpnet(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output, training=training)
+
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFSequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "mpnet", None) is not None:
+ with tf.name_scope(self.mpnet.name):
+ self.mpnet.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build(None)
+
+
+@add_start_docstrings(
+ """
+ MPNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ MPNET_START_DOCSTRING,
+)
+class TFMPNetForMultipleChoice(TFMPNetPreTrainedModel, TFMultipleChoiceLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.mpnet = TFMPNetMainLayer(config, name="mpnet")
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.classifier = keras.layers.Dense(
+ 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: tf.Tensor | None = None,
+ training: bool = False,
+ ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
+ where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
+ """
+ if input_ids is not None:
+ num_choices = shape_list(input_ids)[1]
+ seq_length = shape_list(input_ids)[2]
+ else:
+ num_choices = shape_list(inputs_embeds)[1]
+ seq_length = shape_list(inputs_embeds)[2]
+
+ flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
+ flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
+ flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
+ flat_inputs_embeds = (
+ tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
+ if inputs_embeds is not None
+ else None
+ )
+ outputs = self.mpnet(
+ flat_input_ids,
+ flat_attention_mask,
+ flat_position_ids,
+ head_mask,
+ flat_inputs_embeds,
+ output_attentions,
+ output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ pooled_output = outputs[1]
+ pooled_output = self.dropout(pooled_output, training=training)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = tf.reshape(logits, (-1, num_choices))
+ loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "mpnet", None) is not None:
+ with tf.name_scope(self.mpnet.name):
+ self.mpnet.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ MPNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ MPNET_START_DOCSTRING,
+)
+class TFMPNetForTokenClassification(TFMPNetPreTrainedModel, TFTokenClassificationLoss):
+ _keys_to_ignore_on_load_missing = [r"pooler"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+ self.mpnet = TFMPNetMainLayer(config, name="mpnet")
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.classifier = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFTokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: tf.Tensor | None = None,
+ training: bool = False,
+ ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ outputs = self.mpnet(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output, training=training)
+ logits = self.classifier(sequence_output)
+
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFTokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "mpnet", None) is not None:
+ with tf.name_scope(self.mpnet.name):
+ self.mpnet.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ MPNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ MPNET_START_DOCSTRING,
+)
+class TFMPNetForQuestionAnswering(TFMPNetPreTrainedModel, TFQuestionAnsweringLoss):
+ _keys_to_ignore_on_load_missing = [r"pooler"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.num_labels = config.num_labels
+
+ self.mpnet = TFMPNetMainLayer(config, name="mpnet")
+ self.qa_outputs = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFQuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: Optional[Union[np.array, tf.Tensor]] = None,
+ position_ids: Optional[Union[np.array, tf.Tensor]] = None,
+ head_mask: Optional[Union[np.array, tf.Tensor]] = None,
+ inputs_embeds: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ start_positions: tf.Tensor | None = None,
+ end_positions: tf.Tensor | None = None,
+ training: bool = False,
+ **kwargs,
+ ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ outputs = self.mpnet(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = tf.split(logits, 2, axis=-1)
+ start_logits = tf.squeeze(start_logits, axis=-1)
+ end_logits = tf.squeeze(end_logits, axis=-1)
+ loss = None
+
+ if start_positions is not None and end_positions is not None:
+ labels = {"start_position": start_positions, "end_position": end_positions}
+ loss = self.hf_compute_loss(labels, (start_logits, end_logits))
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFQuestionAnsweringModelOutput(
+ loss=loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "mpnet", None) is not None:
+ with tf.name_scope(self.mpnet.name):
+ self.mpnet.build(None)
+ if getattr(self, "qa_outputs", None) is not None:
+ with tf.name_scope(self.qa_outputs.name):
+ self.qa_outputs.build([None, None, self.config.hidden_size])
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..51b8d0ff15fd5a4b366742bce7097815719355c1
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet.py
@@ -0,0 +1,546 @@
+# coding=utf-8
+# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for MPNet."""
+
+import collections
+import os
+import unicodedata
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/vocab.txt",
+ }
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
+ "microsoft/mpnet-base": 512,
+}
+
+PRETRAINED_INIT_CONFIGURATION = {
+ "microsoft/mpnet-base": {"do_lower_case": True},
+}
+
+
+def load_vocab(vocab_file):
+ """Loads a vocabulary file into a dictionary."""
+ vocab = collections.OrderedDict()
+ with open(vocab_file, "r", encoding="utf-8") as reader:
+ tokens = reader.readlines()
+ for index, token in enumerate(tokens):
+ token = token.rstrip("\n")
+ vocab[token] = index
+ return vocab
+
+
+def whitespace_tokenize(text):
+ """Runs basic whitespace cleaning and splitting on a piece of text."""
+ text = text.strip()
+ if not text:
+ return []
+ tokens = text.split()
+ return tokens
+
+
+class MPNetTokenizer(PreTrainedTokenizer):
+ """
+
+ This tokenizer inherits from [`BertTokenizer`] which contains most of the methods. Users should refer to the
+ superclass for more information regarding methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ do_basic_tokenize (`bool`, *optional*, defaults to `True`):
+ Whether or not to do basic tokenization before WordPiece.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ do_lower_case=True,
+ do_basic_tokenize=True,
+ never_split=None,
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="[UNK]",
+ pad_token="",
+ mask_token="",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
+ eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
+ sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
+ cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
+ unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
+ pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
+
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
+
+ if not os.path.isfile(vocab_file):
+ raise ValueError(
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
+ " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
+ )
+ self.vocab = load_vocab(vocab_file)
+ self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
+ self.do_basic_tokenize = do_basic_tokenize
+ if do_basic_tokenize:
+ self.basic_tokenizer = BasicTokenizer(
+ do_lower_case=do_lower_case,
+ never_split=never_split,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ )
+ self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
+
+ super().__init__(
+ do_lower_case=do_lower_case,
+ do_basic_tokenize=do_basic_tokenize,
+ never_split=never_split,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ @property
+ def do_lower_case(self):
+ return self.basic_tokenizer.do_lower_case
+
+ @property
+ def vocab_size(self):
+ return len(self.vocab)
+
+ def get_vocab(self):
+ # "" is part of the vocab, but was wrongfully added at a wrong index in the fast saved version
+ vocab = self.added_tokens_encoder.copy()
+ vocab.update(self.vocab)
+ return vocab
+
+ def _tokenize(self, text):
+ split_tokens = []
+ if self.do_basic_tokenize:
+ for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
+ # If the token is part of the never_split set
+ if token in self.basic_tokenizer.never_split:
+ split_tokens.append(token)
+ else:
+ split_tokens += self.wordpiece_tokenizer.tokenize(token)
+ else:
+ split_tokens = self.wordpiece_tokenizer.tokenize(text)
+ return split_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.vocab.get(token, self.vocab.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.ids_to_tokens.get(index, self.unk_token)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ out_string = " ".join(tokens).replace(" ##", "").strip()
+ return out_string
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A MPNet sequence has the following format:
+
+ - single sequence: ` X `
+ - pair of sequences: ` A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` methods.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of ids.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Set to True if the token list is already formatted with special tokens for the model
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. MPNet does not
+ make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of ids.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ index = 0
+ if os.path.isdir(save_directory):
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ else:
+ vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
+ with open(vocab_file, "w", encoding="utf-8") as writer:
+ for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
+ " Please check that the vocabulary is not corrupted!"
+ )
+ index = token_index
+ writer.write(token + "\n")
+ index += 1
+ return (vocab_file,)
+
+
+# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
+class BasicTokenizer(object):
+ """
+ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
+
+ Args:
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ do_split_on_punc (`bool`, *optional*, defaults to `True`):
+ In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
+ the full context of the words, such as contractions.
+ """
+
+ def __init__(
+ self,
+ do_lower_case=True,
+ never_split=None,
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ do_split_on_punc=True,
+ ):
+ if never_split is None:
+ never_split = []
+ self.do_lower_case = do_lower_case
+ self.never_split = set(never_split)
+ self.tokenize_chinese_chars = tokenize_chinese_chars
+ self.strip_accents = strip_accents
+ self.do_split_on_punc = do_split_on_punc
+
+ def tokenize(self, text, never_split=None):
+ """
+ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
+
+ Args:
+ never_split (`List[str]`, *optional*)
+ Kept for backward compatibility purposes. Now implemented directly at the base class level (see
+ [`PreTrainedTokenizer.tokenize`]) List of token not to split.
+ """
+ # union() returns a new set by concatenating the two sets.
+ never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
+ text = self._clean_text(text)
+
+ # This was added on November 1st, 2018 for the multilingual and Chinese
+ # models. This is also applied to the English models now, but it doesn't
+ # matter since the English models were not trained on any Chinese data
+ # and generally don't have any Chinese data in them (there are Chinese
+ # characters in the vocabulary because Wikipedia does have some Chinese
+ # words in the English Wikipedia.).
+ if self.tokenize_chinese_chars:
+ text = self._tokenize_chinese_chars(text)
+ # prevents treating the same character with different unicode codepoints as different characters
+ unicode_normalized_text = unicodedata.normalize("NFC", text)
+ orig_tokens = whitespace_tokenize(unicode_normalized_text)
+ split_tokens = []
+ for token in orig_tokens:
+ if token not in never_split:
+ if self.do_lower_case:
+ token = token.lower()
+ if self.strip_accents is not False:
+ token = self._run_strip_accents(token)
+ elif self.strip_accents:
+ token = self._run_strip_accents(token)
+ split_tokens.extend(self._run_split_on_punc(token, never_split))
+
+ output_tokens = whitespace_tokenize(" ".join(split_tokens))
+ return output_tokens
+
+ def _run_strip_accents(self, text):
+ """Strips accents from a piece of text."""
+ text = unicodedata.normalize("NFD", text)
+ output = []
+ for char in text:
+ cat = unicodedata.category(char)
+ if cat == "Mn":
+ continue
+ output.append(char)
+ return "".join(output)
+
+ def _run_split_on_punc(self, text, never_split=None):
+ """Splits punctuation on a piece of text."""
+ if not self.do_split_on_punc or (never_split is not None and text in never_split):
+ return [text]
+ chars = list(text)
+ i = 0
+ start_new_word = True
+ output = []
+ while i < len(chars):
+ char = chars[i]
+ if _is_punctuation(char):
+ output.append([char])
+ start_new_word = True
+ else:
+ if start_new_word:
+ output.append([])
+ start_new_word = False
+ output[-1].append(char)
+ i += 1
+
+ return ["".join(x) for x in output]
+
+ def _tokenize_chinese_chars(self, text):
+ """Adds whitespace around any CJK character."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if self._is_chinese_char(cp):
+ output.append(" ")
+ output.append(char)
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+ def _is_chinese_char(self, cp):
+ """Checks whether CP is the codepoint of a CJK character."""
+ # This defines a "chinese character" as anything in the CJK Unicode block:
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
+ #
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
+ # despite its name. The modern Korean Hangul alphabet is a different block,
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
+ # space-separated words, so they are not treated specially and handled
+ # like the all of the other languages.
+ if (
+ (cp >= 0x4E00 and cp <= 0x9FFF)
+ or (cp >= 0x3400 and cp <= 0x4DBF) #
+ or (cp >= 0x20000 and cp <= 0x2A6DF) #
+ or (cp >= 0x2A700 and cp <= 0x2B73F) #
+ or (cp >= 0x2B740 and cp <= 0x2B81F) #
+ or (cp >= 0x2B820 and cp <= 0x2CEAF) #
+ or (cp >= 0xF900 and cp <= 0xFAFF)
+ or (cp >= 0x2F800 and cp <= 0x2FA1F) #
+ ): #
+ return True
+
+ return False
+
+ def _clean_text(self, text):
+ """Performs invalid character removal and whitespace cleanup on text."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if cp == 0 or cp == 0xFFFD or _is_control(char):
+ continue
+ if _is_whitespace(char):
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+
+# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
+class WordpieceTokenizer(object):
+ """Runs WordPiece tokenization."""
+
+ def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
+ self.vocab = vocab
+ self.unk_token = unk_token
+ self.max_input_chars_per_word = max_input_chars_per_word
+
+ def tokenize(self, text):
+ """
+ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
+ tokenization using the given vocabulary.
+
+ For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
+
+ Args:
+ text: A single token or whitespace separated tokens. This should have
+ already been passed through *BasicTokenizer*.
+
+ Returns:
+ A list of wordpiece tokens.
+ """
+
+ output_tokens = []
+ for token in whitespace_tokenize(text):
+ chars = list(token)
+ if len(chars) > self.max_input_chars_per_word:
+ output_tokens.append(self.unk_token)
+ continue
+
+ is_bad = False
+ start = 0
+ sub_tokens = []
+ while start < len(chars):
+ end = len(chars)
+ cur_substr = None
+ while start < end:
+ substr = "".join(chars[start:end])
+ if start > 0:
+ substr = "##" + substr
+ if substr in self.vocab:
+ cur_substr = substr
+ break
+ end -= 1
+ if cur_substr is None:
+ is_bad = True
+ break
+ sub_tokens.append(cur_substr)
+ start = end
+
+ if is_bad:
+ output_tokens.append(self.unk_token)
+ else:
+ output_tokens.extend(sub_tokens)
+ return output_tokens
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..1c9b1d5922278badb5984ea4c5eb9332b5e95f5a
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet_fast.py
@@ -0,0 +1,226 @@
+# coding=utf-8
+# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Fast Tokenization classes for MPNet."""
+
+import json
+from typing import List, Optional, Tuple
+
+from tokenizers import normalizers
+
+from ...tokenization_utils import AddedToken
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import logging
+from .tokenization_mpnet import MPNetTokenizer
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/vocab.txt",
+ },
+ "tokenizer_file": {
+ "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/tokenizer.json",
+ },
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
+ "microsoft/mpnet-base": 512,
+}
+
+PRETRAINED_INIT_CONFIGURATION = {
+ "microsoft/mpnet-base": {"do_lower_case": True},
+}
+
+
+class MPNetTokenizerFast(PreTrainedTokenizerFast):
+ r"""
+ Construct a "fast" MPNet tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
+ issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+ slow_tokenizer_class = MPNetTokenizer
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ do_lower_case=True,
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="[UNK]",
+ pad_token="",
+ mask_token="",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
+ sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
+ cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
+
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
+
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ do_lower_case=do_lower_case,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
+ if (
+ pre_tok_state.get("lowercase", do_lower_case) != do_lower_case
+ or pre_tok_state.get("strip_accents", strip_accents) != strip_accents
+ ):
+ pre_tok_class = getattr(normalizers, pre_tok_state.pop("type"))
+ pre_tok_state["lowercase"] = do_lower_case
+ pre_tok_state["strip_accents"] = strip_accents
+ self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state)
+
+ self.do_lower_case = do_lower_case
+
+ @property
+ def mask_token(self) -> str:
+ """
+ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
+ having been set.
+
+ MPNet tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily
+ comprise the space before the **.
+ """
+ if self._mask_token is None:
+ if self.verbose:
+ logger.error("Using mask_token, but it is not set yet.")
+ return None
+ return str(self._mask_token)
+
+ @mask_token.setter
+ def mask_token(self, value):
+ """
+ Overriding the default behavior of the mask token to have it eat the space before it.
+
+ This is needed to preserve backward compatibility with all the previously used models based on MPNet.
+ """
+ # Mask token behave like a normal word, i.e. include the space before it
+ # So we set lstrip to True
+ value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value
+ self._mask_token = value
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
+ if token_ids_1 is None:
+ return output
+
+ return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. MPNet does not
+ make use of token type ids, therefore a list of zeros is returned
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of ids.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..4c692f76432f4a9dee44efadede1192274a3ca96
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__init__.py
@@ -0,0 +1,49 @@
+# flake8: noqa
+# There's no way to ignore "F401 '...' imported but unused" warnings in this
+# module, but to preserve other warnings. So, don't check this module at all.
+
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
+
+
+_import_structure = {"configuration_timm_backbone": ["TimmBackboneConfig"]}
+
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_timm_backbone"] = ["TimmBackbone"]
+
+
+if TYPE_CHECKING:
+ from .configuration_timm_backbone import TimmBackboneConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_timm_backbone import TimmBackbone
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5482cc5fb156f5c12de0daee5c64459402b89148
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/configuration_timm_backbone.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/configuration_timm_backbone.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d0d61991deda9a3db5a2e4a3c182c88cdd09eebf
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/configuration_timm_backbone.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/modeling_timm_backbone.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/modeling_timm_backbone.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a1a8474d11dbfd923499a795ca512ac40e3a96f2
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/modeling_timm_backbone.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/configuration_timm_backbone.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/configuration_timm_backbone.py
new file mode 100644
index 0000000000000000000000000000000000000000..0f2f1b0b6c31348f2f25382029b700694a18d257
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/configuration_timm_backbone.py
@@ -0,0 +1,83 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+""" Configuration for Backbone models"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class TimmBackboneConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration for a timm backbone [`TimmBackbone`].
+
+ It is used to instantiate a timm backbone model according to the specified arguments, defining the model.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ backbone (`str`, *optional*):
+ The timm checkpoint to load.
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ features_only (`bool`, *optional*, defaults to `True`):
+ Whether to output only the features or also the logits.
+ use_pretrained_backbone (`bool`, *optional*, defaults to `True`):
+ Whether to use a pretrained backbone.
+ out_indices (`List[int]`, *optional*):
+ If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
+ many stages the model has). Will default to the last stage if unset.
+ freeze_batch_norm_2d (`bool`, *optional*, defaults to `False`):
+ Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`.
+
+ Example:
+ ```python
+ >>> from transformers import TimmBackboneConfig, TimmBackbone
+
+ >>> # Initializing a timm backbone
+ >>> configuration = TimmBackboneConfig("resnet50")
+
+ >>> # Initializing a model from the configuration
+ >>> model = TimmBackbone(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```
+ """
+
+ model_type = "timm_backbone"
+
+ def __init__(
+ self,
+ backbone=None,
+ num_channels=3,
+ features_only=True,
+ use_pretrained_backbone=True,
+ out_indices=None,
+ freeze_batch_norm_2d=False,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.backbone = backbone
+ self.num_channels = num_channels
+ self.features_only = features_only
+ self.use_pretrained_backbone = use_pretrained_backbone
+ self.use_timm_backbone = True
+ self.out_indices = out_indices if out_indices is not None else (-1,)
+ self.freeze_batch_norm_2d = freeze_batch_norm_2d
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/modeling_timm_backbone.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/modeling_timm_backbone.py
new file mode 100644
index 0000000000000000000000000000000000000000..0c6fe67b75731f775800080260082fc023fd654f
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/modeling_timm_backbone.py
@@ -0,0 +1,158 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Optional, Tuple, Union
+
+import torch
+
+from ...modeling_outputs import BackboneOutput
+from ...modeling_utils import PreTrainedModel
+from ...utils import is_timm_available, is_torch_available, requires_backends
+from ...utils.backbone_utils import BackboneMixin
+from .configuration_timm_backbone import TimmBackboneConfig
+
+
+if is_timm_available():
+ import timm
+
+
+if is_torch_available():
+ from torch import Tensor
+
+
+class TimmBackbone(PreTrainedModel, BackboneMixin):
+ """
+ Wrapper class for timm models to be used as backbones. This enables using the timm models interchangeably with the
+ other models in the library keeping the same API.
+ """
+
+ main_input_name = "pixel_values"
+ supports_gradient_checkpointing = False
+ config_class = TimmBackboneConfig
+
+ def __init__(self, config, **kwargs):
+ requires_backends(self, "timm")
+ super().__init__(config)
+ self.config = config
+
+ if config.backbone is None:
+ raise ValueError("backbone is not set in the config. Please set it to a timm model name.")
+
+ if config.backbone not in timm.list_models():
+ raise ValueError(f"backbone {config.backbone} is not supported by timm.")
+
+ if hasattr(config, "out_features") and config.out_features is not None:
+ raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.")
+
+ pretrained = getattr(config, "use_pretrained_backbone", None)
+ if pretrained is None:
+ raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.")
+
+ # We just take the final layer by default. This matches the default for the transformers models.
+ out_indices = config.out_indices if getattr(config, "out_indices", None) is not None else (-1,)
+
+ self._backbone = timm.create_model(
+ config.backbone,
+ pretrained=pretrained,
+ # This is currently not possible for transformer architectures.
+ features_only=config.features_only,
+ in_chans=config.num_channels,
+ out_indices=out_indices,
+ **kwargs,
+ )
+
+ # Converts all `BatchNorm2d` and `SyncBatchNorm` or `BatchNormAct2d` and `SyncBatchNormAct2d` layers of provided module into `FrozenBatchNorm2d` or `FrozenBatchNormAct2d` respectively
+ if getattr(config, "freeze_batch_norm_2d", False):
+ self.freeze_batch_norm_2d()
+
+ # These are used to control the output of the model when called. If output_hidden_states is True, then
+ # return_layers is modified to include all layers.
+ self._return_layers = self._backbone.return_layers
+ self._all_layers = {layer["module"]: str(i) for i, layer in enumerate(self._backbone.feature_info.info)}
+ super()._init_backbone(config)
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
+ requires_backends(cls, ["vision", "timm"])
+ from ...models.timm_backbone import TimmBackboneConfig
+
+ config = kwargs.pop("config", TimmBackboneConfig())
+
+ use_timm = kwargs.pop("use_timm_backbone", True)
+ if not use_timm:
+ raise ValueError("use_timm_backbone must be True for timm backbones")
+
+ num_channels = kwargs.pop("num_channels", config.num_channels)
+ features_only = kwargs.pop("features_only", config.features_only)
+ use_pretrained_backbone = kwargs.pop("use_pretrained_backbone", config.use_pretrained_backbone)
+ out_indices = kwargs.pop("out_indices", config.out_indices)
+ config = TimmBackboneConfig(
+ backbone=pretrained_model_name_or_path,
+ num_channels=num_channels,
+ features_only=features_only,
+ use_pretrained_backbone=use_pretrained_backbone,
+ out_indices=out_indices,
+ )
+ return super()._from_config(config, **kwargs)
+
+ def freeze_batch_norm_2d(self):
+ timm.layers.freeze_batch_norm_2d(self._backbone)
+
+ def unfreeze_batch_norm_2d(self):
+ timm.layers.unfreeze_batch_norm_2d(self._backbone)
+
+ def _init_weights(self, module):
+ """
+ Empty init weights function to ensure compatibility of the class in the library.
+ """
+ pass
+
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> Union[BackboneOutput, Tuple[Tensor, ...]]:
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+
+ if output_attentions:
+ raise ValueError("Cannot output attentions for timm backbones at the moment")
+
+ if output_hidden_states:
+ # We modify the return layers to include all the stages of the backbone
+ self._backbone.return_layers = self._all_layers
+ hidden_states = self._backbone(pixel_values, **kwargs)
+ self._backbone.return_layers = self._return_layers
+ feature_maps = tuple(hidden_states[i] for i in self.out_indices)
+ else:
+ feature_maps = self._backbone(pixel_values, **kwargs)
+ hidden_states = None
+
+ feature_maps = tuple(feature_maps)
+ hidden_states = tuple(hidden_states) if hidden_states is not None else None
+
+ if not return_dict:
+ output = (feature_maps,)
+ if output_hidden_states:
+ output = output + (hidden_states,)
+ return output
+
+ return BackboneOutput(feature_maps=feature_maps, hidden_states=hidden_states, attentions=None)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..663b6d41aba605b98e97509cd7dbc4b0acf001f7
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__init__.py
@@ -0,0 +1,75 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
+
+
+_import_structure = {
+ "configuration_videomae": ["VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "VideoMAEConfig"],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_videomae"] = [
+ "VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "VideoMAEForPreTraining",
+ "VideoMAEModel",
+ "VideoMAEPreTrainedModel",
+ "VideoMAEForVideoClassification",
+ ]
+
+try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["feature_extraction_videomae"] = ["VideoMAEFeatureExtractor"]
+ _import_structure["image_processing_videomae"] = ["VideoMAEImageProcessor"]
+
+if TYPE_CHECKING:
+ from .configuration_videomae import VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP, VideoMAEConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_videomae import (
+ VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST,
+ VideoMAEForPreTraining,
+ VideoMAEForVideoClassification,
+ VideoMAEModel,
+ VideoMAEPreTrainedModel,
+ )
+
+ try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .feature_extraction_videomae import VideoMAEFeatureExtractor
+ from .image_processing_videomae import VideoMAEImageProcessor
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c98d354d469a36ac2fabffb78a343df6302226b4
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/configuration_videomae.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/configuration_videomae.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8e75195042db7d87d1ae1ee46f83fbceb35e8d1c
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/configuration_videomae.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/convert_videomae_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/convert_videomae_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3ad08556e4a0ff0a8d92e807b9ebd9ac24b74448
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/convert_videomae_to_pytorch.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/feature_extraction_videomae.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/feature_extraction_videomae.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..dd55bfc7c89621da78e6a14bc553466d33021e21
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/feature_extraction_videomae.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/image_processing_videomae.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/image_processing_videomae.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b2aed2e975865d2ec2a5623763e8f345aa3ff2d7
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/image_processing_videomae.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/modeling_videomae.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/modeling_videomae.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..272ced2f214d669381b949a43612fe2e307a9d4c
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__pycache__/modeling_videomae.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/configuration_videomae.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/configuration_videomae.py
new file mode 100644
index 0000000000000000000000000000000000000000..1645b4985dac791341cf3c0357b9aa84332def5e
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/configuration_videomae.py
@@ -0,0 +1,149 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" VideoMAE model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "MCG-NJU/videomae-base": "https://huggingface.co/MCG-NJU/videomae-base/resolve/main/config.json",
+}
+
+
+class VideoMAEConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`VideoMAEModel`]. It is used to instantiate a
+ VideoMAE model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the VideoMAE
+ [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ image_size (`int`, *optional*, defaults to 224):
+ The size (resolution) of each image.
+ patch_size (`int`, *optional*, defaults to 16):
+ The size (resolution) of each patch.
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ num_frames (`int`, *optional*, defaults to 16):
+ The number of frames in each video.
+ tubelet_size (`int`, *optional*, defaults to 2):
+ The number of tubelets.
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ qkv_bias (`bool`, *optional*, defaults to `True`):
+ Whether to add a bias to the queries, keys and values.
+ use_mean_pooling (`bool`, *optional*, defaults to `True`):
+ Whether to mean pool the final hidden states instead of using the final hidden state of the [CLS] token.
+ decoder_num_attention_heads (`int`, *optional*, defaults to 6):
+ Number of attention heads for each attention layer in the decoder.
+ decoder_hidden_size (`int`, *optional*, defaults to 384):
+ Dimensionality of the decoder.
+ decoder_num_hidden_layers (`int`, *optional*, defaults to 4):
+ Number of hidden layers in the decoder.
+ decoder_intermediate_size (`int`, *optional*, defaults to 1536):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder.
+ norm_pix_loss (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the target patch pixels.
+
+ Example:
+
+ ```python
+ >>> from transformers import VideoMAEConfig, VideoMAEModel
+
+ >>> # Initializing a VideoMAE videomae-base style configuration
+ >>> configuration = VideoMAEConfig()
+
+ >>> # Randomly initializing a model from the configuration
+ >>> model = VideoMAEModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "videomae"
+
+ def __init__(
+ self,
+ image_size=224,
+ patch_size=16,
+ num_channels=3,
+ num_frames=16,
+ tubelet_size=2,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.0,
+ attention_probs_dropout_prob=0.0,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ qkv_bias=True,
+ use_mean_pooling=True,
+ decoder_num_attention_heads=6,
+ decoder_hidden_size=384,
+ decoder_num_hidden_layers=4,
+ decoder_intermediate_size=1536,
+ norm_pix_loss=True,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.num_frames = num_frames
+ self.tubelet_size = tubelet_size
+
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.qkv_bias = qkv_bias
+ self.use_mean_pooling = use_mean_pooling
+
+ self.decoder_num_attention_heads = decoder_num_attention_heads
+ self.decoder_hidden_size = decoder_hidden_size
+ self.decoder_num_hidden_layers = decoder_num_hidden_layers
+ self.decoder_intermediate_size = decoder_intermediate_size
+ self.norm_pix_loss = norm_pix_loss
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/convert_videomae_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/convert_videomae_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..c98160a6bb82bbdc96f164455fee1b1b2c13992a
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/convert_videomae_to_pytorch.py
@@ -0,0 +1,324 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert VideoMAE checkpoints from the original repository: https://github.com/MCG-NJU/VideoMAE"""
+
+import argparse
+import json
+
+import gdown
+import numpy as np
+import torch
+from huggingface_hub import hf_hub_download
+
+from transformers import (
+ VideoMAEConfig,
+ VideoMAEForPreTraining,
+ VideoMAEForVideoClassification,
+ VideoMAEImageProcessor,
+)
+
+
+def get_videomae_config(model_name):
+ config = VideoMAEConfig()
+
+ set_architecture_configs(model_name, config)
+
+ if "finetuned" not in model_name:
+ config.use_mean_pooling = False
+
+ if "finetuned" in model_name:
+ repo_id = "huggingface/label-files"
+ if "kinetics" in model_name:
+ config.num_labels = 400
+ filename = "kinetics400-id2label.json"
+ elif "ssv2" in model_name:
+ config.num_labels = 174
+ filename = "something-something-v2-id2label.json"
+ else:
+ raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.")
+ id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
+ id2label = {int(k): v for k, v in id2label.items()}
+ config.id2label = id2label
+ config.label2id = {v: k for k, v in id2label.items()}
+
+ return config
+
+
+def set_architecture_configs(model_name, config):
+ if "small" in model_name:
+ config.hidden_size = 384
+ config.intermediate_size = 1536
+ config.num_hidden_layers = 12
+ config.num_attention_heads = 16
+ config.decoder_num_hidden_layers = 12
+ config.decoder_num_attention_heads = 3
+ config.decoder_hidden_size = 192
+ config.decoder_intermediate_size = 768
+ elif "large" in model_name:
+ config.hidden_size = 1024
+ config.intermediate_size = 4096
+ config.num_hidden_layers = 24
+ config.num_attention_heads = 16
+ config.decoder_num_hidden_layers = 12
+ config.decoder_num_attention_heads = 8
+ config.decoder_hidden_size = 512
+ config.decoder_intermediate_size = 2048
+ elif "huge" in model_name:
+ config.hidden_size = 1280
+ config.intermediate_size = 5120
+ config.num_hidden_layers = 32
+ config.num_attention_heads = 16
+ config.decoder_num_hidden_layers = 12
+ config.decoder_num_attention_heads = 8
+ config.decoder_hidden_size = 640
+ config.decoder_intermediate_size = 2560
+ elif "base" not in model_name:
+ raise ValueError('Model name should include either "small", "base", "large", or "huge"')
+
+
+def rename_key(name):
+ if "encoder." in name:
+ name = name.replace("encoder.", "")
+ if "cls_token" in name:
+ name = name.replace("cls_token", "videomae.embeddings.cls_token")
+ if "decoder_pos_embed" in name:
+ name = name.replace("decoder_pos_embed", "decoder.decoder_pos_embed")
+ if "pos_embed" in name and "decoder" not in name:
+ name = name.replace("pos_embed", "videomae.embeddings.position_embeddings")
+ if "patch_embed.proj" in name:
+ name = name.replace("patch_embed.proj", "videomae.embeddings.patch_embeddings.projection")
+ if "patch_embed.norm" in name:
+ name = name.replace("patch_embed.norm", "videomae.embeddings.norm")
+ if "decoder.blocks" in name:
+ name = name.replace("decoder.blocks", "decoder.decoder_layers")
+ if "blocks" in name:
+ name = name.replace("blocks", "videomae.encoder.layer")
+ if "attn.proj" in name:
+ name = name.replace("attn.proj", "attention.output.dense")
+ if "attn" in name and "bias" not in name:
+ name = name.replace("attn", "attention.self")
+ if "attn" in name:
+ name = name.replace("attn", "attention.attention")
+ if "norm1" in name:
+ name = name.replace("norm1", "layernorm_before")
+ if "norm2" in name:
+ name = name.replace("norm2", "layernorm_after")
+ if "mlp.fc1" in name:
+ name = name.replace("mlp.fc1", "intermediate.dense")
+ if "mlp.fc2" in name:
+ name = name.replace("mlp.fc2", "output.dense")
+ if "decoder_embed" in name:
+ name = name.replace("decoder_embed", "decoder.decoder_embed")
+ if "decoder_norm" in name:
+ name = name.replace("decoder_norm", "decoder.decoder_norm")
+ if "decoder_pred" in name:
+ name = name.replace("decoder_pred", "decoder.decoder_pred")
+ if "norm.weight" in name and "decoder" not in name and "fc" not in name:
+ name = name.replace("norm.weight", "videomae.layernorm.weight")
+ if "norm.bias" in name and "decoder" not in name and "fc" not in name:
+ name = name.replace("norm.bias", "videomae.layernorm.bias")
+ if "head" in name and "decoder" not in name:
+ name = name.replace("head", "classifier")
+
+ return name
+
+
+def convert_state_dict(orig_state_dict, config):
+ for key in orig_state_dict.copy().keys():
+ val = orig_state_dict.pop(key)
+
+ if key.startswith("encoder."):
+ key = key.replace("encoder.", "")
+
+ if "qkv" in key:
+ key_split = key.split(".")
+ if key.startswith("decoder.blocks"):
+ dim = config.decoder_hidden_size
+ layer_num = int(key_split[2])
+ prefix = "decoder.decoder_layers."
+ if "weight" in key:
+ orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :]
+ orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :]
+ orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :]
+ else:
+ dim = config.hidden_size
+ layer_num = int(key_split[1])
+ prefix = "videomae.encoder.layer."
+ if "weight" in key:
+ orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :]
+ orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :]
+ orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :]
+ else:
+ orig_state_dict[rename_key(key)] = val
+
+ return orig_state_dict
+
+
+# We will verify our results on a video of eating spaghetti
+# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227]
+def prepare_video():
+ file = hf_hub_download(
+ repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset"
+ )
+ video = np.load(file)
+ return list(video)
+
+
+def convert_videomae_checkpoint(checkpoint_url, pytorch_dump_folder_path, model_name, push_to_hub):
+ config = get_videomae_config(model_name)
+
+ if "finetuned" in model_name:
+ model = VideoMAEForVideoClassification(config)
+ else:
+ model = VideoMAEForPreTraining(config)
+
+ # download original checkpoint, hosted on Google Drive
+ output = "pytorch_model.bin"
+ gdown.cached_download(checkpoint_url, output, quiet=False)
+ files = torch.load(output, map_location="cpu")
+ if "model" in files:
+ state_dict = files["model"]
+ else:
+ state_dict = files["module"]
+ new_state_dict = convert_state_dict(state_dict, config)
+
+ model.load_state_dict(new_state_dict)
+ model.eval()
+
+ # verify model on basic input
+ image_processor = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5])
+ video = prepare_video()
+ inputs = image_processor(video, return_tensors="pt")
+
+ if "finetuned" not in model_name:
+ local_path = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos", filename="bool_masked_pos.pt")
+ inputs["bool_masked_pos"] = torch.load(local_path)
+
+ outputs = model(**inputs)
+ logits = outputs.logits
+
+ model_names = [
+ "videomae-small-finetuned-kinetics",
+ "videomae-small-finetuned-ssv2",
+ # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
+ "videomae-base-short",
+ "videomae-base-short-finetuned-kinetics",
+ "videomae-base",
+ "videomae-base-finetuned-kinetics",
+ "videomae-large",
+ "videomae-large-finetuned-kinetics",
+ "videomae-huge-finetuned-kinetics",
+ # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
+ "videomae-base-short-ssv2",
+ "videomae-base-short-finetuned-ssv2",
+ "videomae-base-ssv2",
+ "videomae-base-finetuned-ssv2",
+ ]
+
+ # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
+ if model_name == "videomae-small-finetuned-kinetics":
+ expected_shape = torch.Size([1, 400])
+ expected_slice = torch.tensor([-0.9291, -0.4061, -0.9307])
+ elif model_name == "videomae-small-finetuned-ssv2":
+ expected_shape = torch.Size([1, 174])
+ expected_slice = torch.tensor([0.2671, -0.4689, -0.8235])
+ elif model_name == "videomae-base":
+ expected_shape = torch.Size([1, 1408, 1536])
+ expected_slice = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]])
+ elif model_name == "videomae-base-short":
+ expected_shape = torch.Size([1, 1408, 1536])
+ expected_slice = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]])
+ # we verified the loss both for normalized and unnormalized targets for this one
+ expected_loss = torch.tensor([0.5142]) if config.norm_pix_loss else torch.tensor([0.6469])
+ elif model_name == "videomae-large":
+ expected_shape = torch.Size([1, 1408, 1536])
+ expected_slice = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]])
+ elif model_name == "videomae-large-finetuned-kinetics":
+ expected_shape = torch.Size([1, 400])
+ expected_slice = torch.tensor([0.0771, 0.0011, -0.3625])
+ elif model_name == "videomae-huge-finetuned-kinetics":
+ expected_shape = torch.Size([1, 400])
+ expected_slice = torch.tensor([0.2433, 0.1632, -0.4894])
+ elif model_name == "videomae-base-short-finetuned-kinetics":
+ expected_shape = torch.Size([1, 400])
+ expected_slice = torch.tensor([0.6588, 0.0990, -0.2493])
+ elif model_name == "videomae-base-finetuned-kinetics":
+ expected_shape = torch.Size([1, 400])
+ expected_slice = torch.tensor([0.3669, -0.0688, -0.2421])
+ elif model_name == "videomae-base-short-ssv2":
+ expected_shape = torch.Size([1, 1408, 1536])
+ expected_slice = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]])
+ elif model_name == "videomae-base-short-finetuned-ssv2":
+ expected_shape = torch.Size([1, 174])
+ expected_slice = torch.tensor([-0.0537, -0.1539, -0.3266])
+ elif model_name == "videomae-base-ssv2":
+ expected_shape = torch.Size([1, 1408, 1536])
+ expected_slice = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]])
+ elif model_name == "videomae-base-finetuned-ssv2":
+ expected_shape = torch.Size([1, 174])
+ expected_slice = torch.tensor([0.1961, -0.8337, -0.6389])
+ else:
+ raise ValueError(f"Model name not supported. Should be one of {model_names}")
+
+ # verify logits
+ assert logits.shape == expected_shape
+ if "finetuned" in model_name:
+ assert torch.allclose(logits[0, :3], expected_slice, atol=1e-4)
+ else:
+ print("Logits:", logits[0, :3, :3])
+ assert torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4)
+ print("Logits ok!")
+
+ # verify loss, if applicable
+ if model_name == "videomae-base-short":
+ loss = outputs.loss
+ assert torch.allclose(loss, expected_loss, atol=1e-4)
+ print("Loss ok!")
+
+ if pytorch_dump_folder_path is not None:
+ print(f"Saving model and image processor to {pytorch_dump_folder_path}")
+ image_processor.save_pretrained(pytorch_dump_folder_path)
+ model.save_pretrained(pytorch_dump_folder_path)
+
+ if push_to_hub:
+ print("Pushing to the hub...")
+ model.push_to_hub(model_name, organization="nielsr")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--checkpoint_url",
+ default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4",
+ type=str,
+ help=(
+ "URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct"
+ " download link."
+ ),
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path",
+ default="/Users/nielsrogge/Documents/VideoMAE/Test",
+ type=str,
+ help="Path to the output PyTorch model directory.",
+ )
+ parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.")
+ parser.add_argument(
+ "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
+ )
+
+ args = parser.parse_args()
+ convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/feature_extraction_videomae.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/feature_extraction_videomae.py
new file mode 100644
index 0000000000000000000000000000000000000000..4a90d10c9c55e83711a20e29a494782b6b8415f9
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/feature_extraction_videomae.py
@@ -0,0 +1,33 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Feature extractor class for VideoMAE."""
+
+import warnings
+
+from ...utils import logging
+from .image_processing_videomae import VideoMAEImageProcessor
+
+
+logger = logging.get_logger(__name__)
+
+
+class VideoMAEFeatureExtractor(VideoMAEImageProcessor):
+ def __init__(self, *args, **kwargs) -> None:
+ warnings.warn(
+ "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
+ " Please use VideoMAEImageProcessor instead.",
+ FutureWarning,
+ )
+ super().__init__(*args, **kwargs)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/image_processing_videomae.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/image_processing_videomae.py
new file mode 100644
index 0000000000000000000000000000000000000000..6563d69c6503ea6bc9777854073c84b9981c79d6
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/image_processing_videomae.py
@@ -0,0 +1,364 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for VideoMAE."""
+
+from typing import Dict, List, Optional, Union
+
+import numpy as np
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
+from ...image_transforms import (
+ get_resize_output_image_size,
+ resize,
+ to_channel_dimension_format,
+)
+from ...image_utils import (
+ IMAGENET_STANDARD_MEAN,
+ IMAGENET_STANDARD_STD,
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ is_valid_image,
+ to_numpy_array,
+ valid_images,
+ validate_kwargs,
+ validate_preprocess_arguments,
+)
+from ...utils import TensorType, is_vision_available, logging
+
+
+if is_vision_available():
+ import PIL
+
+
+logger = logging.get_logger(__name__)
+
+
+def make_batched(videos) -> List[List[ImageInput]]:
+ if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
+ return videos
+
+ elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
+ return [videos]
+
+ elif is_valid_image(videos):
+ return [[videos]]
+
+ raise ValueError(f"Could not make batched video from {videos}")
+
+
+class VideoMAEImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a VideoMAE image processor.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
+ `do_resize` parameter in the `preprocess` method.
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
+ Size of the output image after resizing. The shortest edge of the image will be resized to
+ `size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overriden by
+ `size` in the `preprocess` method.
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
+ Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
+ `preprocess` method.
+ do_center_crop (`bool`, *optional*, defaults to `True`):
+ Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop`
+ parameter in the `preprocess` method.
+ crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
+ Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the
+ `preprocess` method.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
+ parameter in the `preprocess` method.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
+ in the `preprocess` method.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
+ method.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
+ """
+
+ model_input_names = ["pixel_values"]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ do_center_crop: bool = True,
+ crop_size: Dict[str, int] = None,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+ size = size if size is not None else {"shortest_edge": 224}
+ size = get_size_dict(size, default_to_square=False)
+ crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
+ crop_size = get_size_dict(crop_size, param_name="crop_size")
+
+ self.do_resize = do_resize
+ self.size = size
+ self.do_center_crop = do_center_crop
+ self.crop_size = crop_size
+ self.resample = resample
+ self.do_rescale = do_rescale
+ self.rescale_factor = rescale_factor
+ self.do_normalize = do_normalize
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
+ self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
+ self._valid_processor_keys = [
+ "videos",
+ "do_resize",
+ "size",
+ "resample",
+ "do_center_crop",
+ "crop_size",
+ "do_rescale",
+ "rescale_factor",
+ "do_normalize",
+ "image_mean",
+ "image_std",
+ "return_tensors",
+ "data_format",
+ "input_data_format",
+ ]
+
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resize an image.
+
+ Args:
+ image (`np.ndarray`):
+ Image to resize.
+ size (`Dict[str, int]`):
+ Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will
+ have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its
+ shortest edge of length `s` while keeping the aspect ratio of the original image.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
+ Resampling filter to use when resiizing the image.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
+ input_data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ """
+ size = get_size_dict(size, default_to_square=False)
+ if "shortest_edge" in size:
+ output_size = get_resize_output_image_size(
+ image, size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
+ )
+ elif "height" in size and "width" in size:
+ output_size = (size["height"], size["width"])
+ else:
+ raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}")
+ return resize(
+ image,
+ size=output_size,
+ resample=resample,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+
+ def _preprocess_image(
+ self,
+ image: ImageInput,
+ do_resize: bool = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_center_crop: bool = None,
+ crop_size: Dict[str, int] = None,
+ do_rescale: bool = None,
+ rescale_factor: float = None,
+ do_normalize: bool = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> np.ndarray:
+ """Preprocesses a single image."""
+ validate_preprocess_arguments(
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_center_crop=do_center_crop,
+ crop_size=crop_size,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ )
+
+ # All transformations expect numpy arrays.
+ image = to_numpy_array(image)
+
+ if is_scaled_image(image) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ input_data_format = infer_channel_dimension_format(image)
+
+ if do_resize:
+ image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
+
+ if do_center_crop:
+ image = self.center_crop(image, size=crop_size, input_data_format=input_data_format)
+
+ if do_rescale:
+ image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
+
+ if do_normalize:
+ image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
+
+ image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
+ return image
+
+ def preprocess(
+ self,
+ videos: ImageInput,
+ do_resize: bool = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_center_crop: bool = None,
+ crop_size: Dict[str, int] = None,
+ do_rescale: bool = None,
+ rescale_factor: float = None,
+ do_normalize: bool = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: ChannelDimension = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> PIL.Image.Image:
+ """
+ Preprocess an image or batch of images.
+
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
+ Size of the image after applying resize.
+ resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
+ has an effect if `do_resize` is set to `True`.
+ do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`):
+ Whether to centre crop the image.
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
+ Size of the image after applying the centre crop.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image values between [0 - 1].
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the inferred channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ resample = resample if resample is not None else self.resample
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+
+ size = size if size is not None else self.size
+ size = get_size_dict(size, default_to_square=False)
+ crop_size = crop_size if crop_size is not None else self.crop_size
+ crop_size = get_size_dict(crop_size, param_name="crop_size")
+
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
+
+ if not valid_images(videos):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+
+ videos = make_batched(videos)
+
+ videos = [
+ [
+ self._preprocess_image(
+ image=img,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ do_center_crop=do_center_crop,
+ crop_size=crop_size,
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ )
+ for img in video
+ ]
+ for video in videos
+ ]
+
+ data = {"pixel_values": videos}
+ return BatchFeature(data=data, tensor_type=return_tensors)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/modeling_videomae.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/modeling_videomae.py
new file mode 100644
index 0000000000000000000000000000000000000000..aac69b6c536be4b7fd0120479f58ab953f72ab68
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/modeling_videomae.py
@@ -0,0 +1,1097 @@
+# coding=utf-8
+# Copyright 2022 Multimedia Computing Group, Nanjing University and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch VideoMAE (masked autoencoder) model."""
+
+
+import collections.abc
+import math
+from copy import deepcopy
+from dataclasses import dataclass
+from typing import Optional, Set, Tuple, Union
+
+import numpy as np
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from ...utils.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
+from .configuration_videomae import VideoMAEConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "VideoMAEConfig"
+_CHECKPOINT_FOR_DOC = "MCG-NJU/videomae-base"
+
+VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "MCG-NJU/videomae-base",
+ # See all VideoMAE models at https://huggingface.co/models?filter=videomae
+]
+
+
+@dataclass
+class VideoMAEDecoderOutput(ModelOutput):
+ """
+ Class for VideoMAEDecoder's outputs, with potential hidden states and attentions.
+
+ Args:
+ logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`):
+ Pixel reconstruction logits.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
+ plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class VideoMAEForPreTrainingOutput(ModelOutput):
+ """
+ Class for VideoMAEForPreTraining's outputs, with potential hidden states and attentions.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`):
+ Pixel reconstruction loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`):
+ Pixel reconstruction logits.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
+ plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+# sin-cos position encoding
+# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
+def get_sinusoid_encoding_table(n_position, d_hid):
+ """Sinusoid position encoding table"""
+
+ # TODO: make it with torch instead of numpy
+ def get_position_angle_vec(position):
+ return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
+
+ sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
+ sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
+ sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
+
+ return torch.FloatTensor(sinusoid_table).unsqueeze(0)
+
+
+class VideoMAEEmbeddings(nn.Module):
+ """
+ Construct the patch and position embeddings.
+
+ """
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.patch_embeddings = VideoMAEPatchEmbeddings(config)
+ self.num_patches = self.patch_embeddings.num_patches
+ # fixed sin-cos embedding
+ self.position_embeddings = get_sinusoid_encoding_table(self.num_patches, config.hidden_size)
+ self.config = config
+
+ def forward(self, pixel_values, bool_masked_pos):
+ # create patch embeddings
+ embeddings = self.patch_embeddings(pixel_values)
+
+ # add position embeddings
+ embeddings = embeddings + self.position_embeddings.type_as(embeddings).to(embeddings.device).clone().detach()
+
+ # only keep visible patches
+ # ~bool_masked_pos means visible
+ if bool_masked_pos is not None:
+ batch_size, _, num_channels = embeddings.shape
+ embeddings = embeddings[~bool_masked_pos]
+ embeddings = embeddings.reshape(batch_size, -1, num_channels)
+
+ return embeddings
+
+
+class VideoMAEPatchEmbeddings(nn.Module):
+ """
+ Video to Patch Embedding. This module turns a batch of videos of shape (batch_size, num_frames, num_channels,
+ height, width) into a tensor of shape (batch_size, seq_len, hidden_size) to be consumed by a Transformer encoder.
+
+ The seq_len (the number of patches) equals (number of frames // tubelet_size) * (height // patch_size) * (width //
+ patch_size).
+
+ """
+
+ def __init__(self, config):
+ super().__init__()
+
+ image_size = config.image_size
+ patch_size = config.patch_size
+ num_channels = config.num_channels
+ hidden_size = config.hidden_size
+ num_frames = config.num_frames
+ tubelet_size = config.tubelet_size
+
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.tubelet_size = int(tubelet_size)
+ num_patches = (
+ (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) * (num_frames // self.tubelet_size)
+ )
+ self.num_channels = num_channels
+ self.num_patches = num_patches
+ self.projection = nn.Conv3d(
+ in_channels=num_channels,
+ out_channels=hidden_size,
+ kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]),
+ stride=(self.tubelet_size, patch_size[0], patch_size[1]),
+ )
+
+ def forward(self, pixel_values):
+ batch_size, num_frames, num_channels, height, width = pixel_values.shape
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ )
+ if height != self.image_size[0] or width != self.image_size[1]:
+ raise ValueError(
+ f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
+ )
+ # permute to (batch_size, num_channels, num_frames, height, width)
+ pixel_values = pixel_values.permute(0, 2, 1, 3, 4)
+ embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
+ return embeddings
+
+
+class VideoMAESelfAttention(nn.Module):
+ def __init__(self, config: VideoMAEConfig) -> None:
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
+ f"heads {config.num_attention_heads}."
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
+
+ if config.qkv_bias:
+ self.q_bias = nn.Parameter(torch.zeros(self.all_head_size))
+ self.v_bias = nn.Parameter(torch.zeros(self.all_head_size))
+ else:
+ self.q_bias = None
+ self.v_bias = None
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ k_bias = torch.zeros_like(self.v_bias, requires_grad=False) if self.q_bias is not None else None
+ keys = nn.functional.linear(input=hidden_states, weight=self.key.weight, bias=k_bias)
+ values = nn.functional.linear(input=hidden_states, weight=self.value.weight, bias=self.v_bias)
+ queries = nn.functional.linear(input=hidden_states, weight=self.query.weight, bias=self.q_bias)
+
+ key_layer = self.transpose_for_scores(keys)
+ value_layer = self.transpose_for_scores(values)
+ query_layer = self.transpose_for_scores(queries)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ return outputs
+
+
+# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->VideoMAE
+class VideoMAESelfOutput(nn.Module):
+ """
+ The residual connection is defined in VideoMAELayer instead of here (as is the case with other models), due to the
+ layernorm applied before each block.
+ """
+
+ def __init__(self, config: VideoMAEConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ return hidden_states
+
+
+# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->VideoMAE
+class VideoMAEAttention(nn.Module):
+ def __init__(self, config: VideoMAEConfig) -> None:
+ super().__init__()
+ self.attention = VideoMAESelfAttention(config)
+ self.output = VideoMAESelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads: Set[int]) -> None:
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.attention.query = prune_linear_layer(self.attention.query, index)
+ self.attention.key = prune_linear_layer(self.attention.key, index)
+ self.attention.value = prune_linear_layer(self.attention.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ self_outputs = self.attention(hidden_states, head_mask, output_attentions)
+
+ attention_output = self.output(self_outputs[0], hidden_states)
+
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.vit.modeling_vit.ViTIntermediate ViT->VideoMAE
+class VideoMAEIntermediate(nn.Module):
+ def __init__(self, config: VideoMAEConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+
+# Copied from transformers.models.vit.modeling_vit.ViTOutput ViT->VideoMAE
+class VideoMAEOutput(nn.Module):
+ def __init__(self, config: VideoMAEConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ hidden_states = hidden_states + input_tensor
+
+ return hidden_states
+
+
+# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->VideoMAE
+class VideoMAELayer(nn.Module):
+ """This corresponds to the Block class in the timm implementation."""
+
+ def __init__(self, config: VideoMAEConfig) -> None:
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = VideoMAEAttention(config)
+ self.intermediate = VideoMAEIntermediate(config)
+ self.output = VideoMAEOutput(config)
+ self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ self_attention_outputs = self.attention(
+ self.layernorm_before(hidden_states), # in VideoMAE, layernorm is applied before self-attention
+ head_mask,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ # first residual connection
+ hidden_states = attention_output + hidden_states
+
+ # in VideoMAE, layernorm is also applied after self-attention
+ layer_output = self.layernorm_after(hidden_states)
+ layer_output = self.intermediate(layer_output)
+
+ # second residual connection is done here
+ layer_output = self.output(layer_output, hidden_states)
+
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+
+# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->VideoMAE
+class VideoMAEEncoder(nn.Module):
+ def __init__(self, config: VideoMAEConfig) -> None:
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([VideoMAELayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ) -> Union[tuple, BaseModelOutput]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ layer_head_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class VideoMAEPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = VideoMAEConfig
+ base_model_prefix = "videomae"
+ main_input_name = "pixel_values"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, (nn.Linear, nn.Conv3d)):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+VIDEOMAE_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`VideoMAEConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+VIDEOMAE_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
+ [`VideoMAEImageProcessor.__call__`] for details.
+
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare VideoMAE Model transformer outputting raw hidden-states without any specific head on top.",
+ VIDEOMAE_START_DOCSTRING,
+)
+class VideoMAEModel(VideoMAEPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = VideoMAEEmbeddings(config)
+ self.encoder = VideoMAEEncoder(config)
+
+ if config.use_mean_pooling:
+ self.layernorm = None
+ else:
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.patch_embeddings
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ r"""
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the
+ batch must have the same number of masked patches. If `None`, then all patches are considered. Sequence
+ length is `(num_frames // tubelet_size) * (image_size // patch_size) ** 2`.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> import av
+ >>> import numpy as np
+
+ >>> from transformers import AutoImageProcessor, VideoMAEModel
+ >>> from huggingface_hub import hf_hub_download
+
+ >>> np.random.seed(0)
+
+
+ >>> def read_video_pyav(container, indices):
+ ... '''
+ ... Decode the video with PyAV decoder.
+ ... Args:
+ ... container (`av.container.input.InputContainer`): PyAV container.
+ ... indices (`List[int]`): List of frame indices to decode.
+ ... Returns:
+ ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
+ ... '''
+ ... frames = []
+ ... container.seek(0)
+ ... start_index = indices[0]
+ ... end_index = indices[-1]
+ ... for i, frame in enumerate(container.decode(video=0)):
+ ... if i > end_index:
+ ... break
+ ... if i >= start_index and i in indices:
+ ... frames.append(frame)
+ ... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
+
+
+ >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
+ ... '''
+ ... Sample a given number of frame indices from the video.
+ ... Args:
+ ... clip_len (`int`): Total number of frames to sample.
+ ... frame_sample_rate (`int`): Sample every n-th frame.
+ ... seg_len (`int`): Maximum allowed index of sample's last frame.
+ ... Returns:
+ ... indices (`List[int]`): List of sampled frame indices
+ ... '''
+ ... converted_len = int(clip_len * frame_sample_rate)
+ ... end_idx = np.random.randint(converted_len, seg_len)
+ ... start_idx = end_idx - converted_len
+ ... indices = np.linspace(start_idx, end_idx, num=clip_len)
+ ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
+ ... return indices
+
+
+ >>> # video clip consists of 300 frames (10 seconds at 30 FPS)
+ >>> file_path = hf_hub_download(
+ ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
+ ... )
+ >>> container = av.open(file_path)
+
+ >>> # sample 16 frames
+ >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
+ >>> video = read_video_pyav(container, indices)
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
+ >>> model = VideoMAEModel.from_pretrained("MCG-NJU/videomae-base")
+
+ >>> # prepare video for the model
+ >>> inputs = image_processor(list(video), return_tensors="pt")
+
+ >>> # forward pass
+ >>> outputs = model(**inputs)
+ >>> last_hidden_states = outputs.last_hidden_state
+ >>> list(last_hidden_states.shape)
+ [1, 1568, 768]
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(pixel_values, bool_masked_pos)
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ if self.layernorm is not None:
+ sequence_output = self.layernorm(sequence_output)
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return BaseModelOutput(
+ last_hidden_state=sequence_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+class VideoMAEDecoder(nn.Module):
+ def __init__(self, config, num_patches):
+ super().__init__()
+
+ decoder_num_labels = config.num_channels * config.tubelet_size * config.patch_size**2
+
+ decoder_config = deepcopy(config)
+ decoder_config.hidden_size = config.decoder_hidden_size
+ decoder_config.num_hidden_layers = config.decoder_num_hidden_layers
+ decoder_config.num_attention_heads = config.decoder_num_attention_heads
+ decoder_config.intermediate_size = config.decoder_intermediate_size
+ self.decoder_layers = nn.ModuleList(
+ [VideoMAELayer(decoder_config) for _ in range(config.decoder_num_hidden_layers)]
+ )
+
+ self.norm = nn.LayerNorm(config.decoder_hidden_size)
+ self.head = (
+ nn.Linear(config.decoder_hidden_size, decoder_num_labels) if decoder_num_labels > 0 else nn.Identity()
+ )
+
+ self.gradient_checkpointing = False
+ self.config = config
+
+ def forward(
+ self,
+ hidden_states,
+ return_token_num,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ # apply Transformer layers (blocks)
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ for i, layer_module in enumerate(self.decoder_layers):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ None,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, head_mask=None, output_attentions=output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if return_token_num > 0:
+ hidden_states = hidden_states[:, -return_token_num:]
+
+ # predictor projection
+ hidden_states = self.norm(hidden_states)
+ logits = self.head(hidden_states)
+
+ if not return_dict:
+ return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None)
+ return VideoMAEDecoderOutput(logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions)
+
+
+@add_start_docstrings(
+ "The VideoMAE Model transformer with the decoder on top for self-supervised pre-training.",
+ VIDEOMAE_START_DOCSTRING,
+)
+class VideoMAEForPreTraining(VideoMAEPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+
+ self.videomae = VideoMAEModel(config)
+
+ self.encoder_to_decoder = nn.Linear(config.hidden_size, config.decoder_hidden_size, bias=False)
+ self.mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size))
+ self.position_embeddings = get_sinusoid_encoding_table(
+ self.videomae.embeddings.num_patches, config.decoder_hidden_size
+ )
+
+ self.decoder = VideoMAEDecoder(config, num_patches=self.videomae.embeddings.num_patches)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=VideoMAEForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ bool_masked_pos: torch.BoolTensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[tuple, VideoMAEForPreTrainingOutput]:
+ r"""
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the
+ batch must have the same number of masked patches. Sequence length is `(num_frames // tubelet_size) *
+ (image_size // patch_size) ** 2`.
+
+ Returns:
+
+ Examples:
+ ```python
+ >>> from transformers import AutoImageProcessor, VideoMAEForPreTraining
+ >>> import numpy as np
+ >>> import torch
+
+ >>> num_frames = 16
+ >>> video = list(np.random.randint(0, 256, (num_frames, 3, 224, 224)))
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
+ >>> model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base")
+
+ >>> pixel_values = image_processor(video, return_tensors="pt").pixel_values
+
+ >>> num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2
+ >>> seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame
+ >>> bool_masked_pos = torch.randint(0, 2, (1, seq_length)).bool()
+
+ >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
+ >>> loss = outputs.loss
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.videomae(
+ pixel_values,
+ bool_masked_pos=bool_masked_pos,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ sequence_output = self.encoder_to_decoder(
+ sequence_output
+ ) # [batch_size, num_visible_patches, decoder_hidden_size]
+ batch_size, seq_len, num_channels = sequence_output.shape
+
+ # we don't unshuffle the correct visible token order, but shuffle the position embeddings accordingly.
+ if bool_masked_pos is None:
+ raise ValueError("One must provided a boolean mask ")
+ expanded_position_embeddings = self.position_embeddings.expand(batch_size, -1, -1).type_as(pixel_values)
+ expanded_position_embeddings = expanded_position_embeddings.to(pixel_values.device).clone().detach()
+ pos_emb_visible = expanded_position_embeddings[~bool_masked_pos].reshape(batch_size, -1, num_channels)
+ pos_emb_mask = expanded_position_embeddings[bool_masked_pos].reshape(batch_size, -1, num_channels)
+
+ # [batch_size, num_patches, decoder_hidden_size]
+ x_full = torch.cat([sequence_output + pos_emb_visible, self.mask_token + pos_emb_mask], dim=1)
+
+ # [batch_size, num_masked_patches, num_channels * patch_size * patch_size]
+ decoder_outputs = self.decoder(x_full, pos_emb_mask.shape[1])
+ logits = decoder_outputs.logits
+
+ loss = None
+ with torch.no_grad():
+ # calculate the labels to be predicted
+ if self.config.num_channels != 3:
+ # Can't unnormalize with default means/stds
+ frames = pixel_values
+ else:
+ # first, unnormalize the frames
+ device = pixel_values.device
+ dtype = pixel_values.dtype
+ mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device=device, dtype=dtype)[None, None, :, None, None]
+ std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device=device, dtype=dtype)[None, None, :, None, None]
+ frames = pixel_values * std + mean # in [0, 1]
+
+ batch_size, time, num_channels, height, width = frames.shape
+ tubelet_size, patch_size = self.config.tubelet_size, self.config.patch_size
+ if self.config.norm_pix_loss:
+ # step 1: split up dimensions (time by tubelet_size, height by patch_size, width by patch_size)
+ frames = frames.view(
+ batch_size,
+ time // tubelet_size,
+ tubelet_size,
+ num_channels,
+ height // patch_size,
+ patch_size,
+ width // patch_size,
+ patch_size,
+ )
+ # step 2: move dimensions to concatenate:
+ frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous()
+ # step 3: concatenate:
+ frames = frames.view(
+ batch_size,
+ time // tubelet_size * height // patch_size * width // patch_size,
+ tubelet_size * patch_size * patch_size,
+ num_channels,
+ )
+ # step 4: normalize. The authors find that the mean is about 0.48 and standard deviation is about 0.08.
+ frames_norm = (frames - frames.mean(dim=-2, keepdim=True)) / (
+ frames.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6
+ )
+ # step 5: reshape to (batch_size, T//ts * H//ps * W//ps, ts * ps * ps * C)
+ videos_patch = frames_norm.view(
+ batch_size,
+ time // tubelet_size * height // patch_size * width // patch_size,
+ tubelet_size * patch_size * patch_size * num_channels,
+ )
+ else:
+ if self.config.num_channels != 3:
+ raise ValueError(
+ "Can't unnormalize non-RGB images. Consider setting config.norm_pix_loss to False."
+ )
+ # step 1: split up dimensions (time by tubelet_size, height by patch_size, width by patch_size)
+ frames = frames.view(
+ batch_size,
+ time // tubelet_size,
+ tubelet_size,
+ num_channels,
+ height // patch_size,
+ patch_size,
+ width // patch_size,
+ patch_size,
+ )
+ # step 2: move dimensions to concatenate: (batch_size, T//ts, H//ps, W//ps, ts, ps, ps, C)
+ frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous()
+ # step 3: concatenate
+ videos_patch = frames.view(
+ batch_size,
+ time // tubelet_size * height // patch_size * width // patch_size,
+ tubelet_size * patch_size * patch_size * num_channels,
+ )
+
+ batch_size, _, num_channels = videos_patch.shape
+ labels = videos_patch[bool_masked_pos].reshape(batch_size, -1, num_channels)
+
+ loss_fct = MSELoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return VideoMAEForPreTrainingOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """VideoMAE Model transformer with a video classification head on top (a linear layer on top of the average pooled hidden
+ states of all tokens) e.g. for ImageNet.""",
+ VIDEOMAE_START_DOCSTRING,
+)
+class VideoMAEForVideoClassification(VideoMAEPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.videomae = VideoMAEModel(config)
+
+ # Classifier head
+ self.fc_norm = nn.LayerNorm(config.hidden_size) if config.use_mean_pooling else None
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, ImageClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> import av
+ >>> import torch
+ >>> import numpy as np
+
+ >>> from transformers import AutoImageProcessor, VideoMAEForVideoClassification
+ >>> from huggingface_hub import hf_hub_download
+
+ >>> np.random.seed(0)
+
+
+ >>> def read_video_pyav(container, indices):
+ ... '''
+ ... Decode the video with PyAV decoder.
+ ... Args:
+ ... container (`av.container.input.InputContainer`): PyAV container.
+ ... indices (`List[int]`): List of frame indices to decode.
+ ... Returns:
+ ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
+ ... '''
+ ... frames = []
+ ... container.seek(0)
+ ... start_index = indices[0]
+ ... end_index = indices[-1]
+ ... for i, frame in enumerate(container.decode(video=0)):
+ ... if i > end_index:
+ ... break
+ ... if i >= start_index and i in indices:
+ ... frames.append(frame)
+ ... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
+
+
+ >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
+ ... '''
+ ... Sample a given number of frame indices from the video.
+ ... Args:
+ ... clip_len (`int`): Total number of frames to sample.
+ ... frame_sample_rate (`int`): Sample every n-th frame.
+ ... seg_len (`int`): Maximum allowed index of sample's last frame.
+ ... Returns:
+ ... indices (`List[int]`): List of sampled frame indices
+ ... '''
+ ... converted_len = int(clip_len * frame_sample_rate)
+ ... end_idx = np.random.randint(converted_len, seg_len)
+ ... start_idx = end_idx - converted_len
+ ... indices = np.linspace(start_idx, end_idx, num=clip_len)
+ ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
+ ... return indices
+
+
+ >>> # video clip consists of 300 frames (10 seconds at 30 FPS)
+ >>> file_path = hf_hub_download(
+ ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
+ ... )
+ >>> container = av.open(file_path)
+
+ >>> # sample 16 frames
+ >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
+ >>> video = read_video_pyav(container, indices)
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
+ >>> model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
+
+ >>> inputs = image_processor(list(video), return_tensors="pt")
+
+ >>> with torch.no_grad():
+ ... outputs = model(**inputs)
+ ... logits = outputs.logits
+
+ >>> # model predicts one of the 400 Kinetics-400 classes
+ >>> predicted_label = logits.argmax(-1).item()
+ >>> print(model.config.id2label[predicted_label])
+ eating spaghetti
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.videomae(
+ pixel_values,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ if self.fc_norm is not None:
+ sequence_output = self.fc_norm(sequence_output.mean(1))
+ else:
+ sequence_output = sequence_output[:, 0]
+
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return ImageClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/convert_dino_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/convert_dino_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..7eec823ad5d1d80a5a438693dbaee49189d7731f
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/convert_dino_to_pytorch.py
@@ -0,0 +1,219 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert ViT checkpoints trained with the DINO method."""
+
+
+import argparse
+import json
+from pathlib import Path
+
+import requests
+import torch
+from huggingface_hub import hf_hub_download
+from PIL import Image
+
+from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+# here we list all keys to be renamed (original name on the left, our name on the right)
+def create_rename_keys(config, base_model=False):
+ rename_keys = []
+ for i in range(config.num_hidden_layers):
+ # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
+ rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight"))
+ rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias"))
+ rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight"))
+ rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias"))
+ rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight"))
+ rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias"))
+ rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight"))
+ rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias"))
+ rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight"))
+ rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias"))
+
+ # projection layer + position embeddings
+ rename_keys.extend(
+ [
+ ("cls_token", "vit.embeddings.cls_token"),
+ ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
+ ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
+ ("pos_embed", "vit.embeddings.position_embeddings"),
+ ]
+ )
+
+ if base_model:
+ # layernorm + pooler
+ rename_keys.extend(
+ [
+ ("norm.weight", "layernorm.weight"),
+ ("norm.bias", "layernorm.bias"),
+ ]
+ )
+
+ # if just the base model, we should remove "vit" from all keys that start with "vit"
+ rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys]
+ else:
+ # layernorm + classification head
+ rename_keys.extend(
+ [
+ ("norm.weight", "vit.layernorm.weight"),
+ ("norm.bias", "vit.layernorm.bias"),
+ ("head.weight", "classifier.weight"),
+ ("head.bias", "classifier.bias"),
+ ]
+ )
+
+ return rename_keys
+
+
+# we split up the matrix of each encoder layer into queries, keys and values
+def read_in_q_k_v(state_dict, config, base_model=False):
+ for i in range(config.num_hidden_layers):
+ if base_model:
+ prefix = ""
+ else:
+ prefix = "vit."
+ # read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
+ in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
+ in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
+ # next, add query, keys and values (in that order) to the state dict
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
+ : config.hidden_size, :
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
+ config.hidden_size : config.hidden_size * 2, :
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
+ config.hidden_size : config.hidden_size * 2
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
+ -config.hidden_size :, :
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
+
+
+def remove_classification_head_(state_dict):
+ ignore_keys = ["head.weight", "head.bias"]
+ for k in ignore_keys:
+ state_dict.pop(k, None)
+
+
+def rename_key(dct, old, new):
+ val = dct.pop(old)
+ dct[new] = val
+
+
+# We will verify our results on an image of cute cats
+def prepare_img():
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ im = Image.open(requests.get(url, stream=True).raw)
+ return im
+
+
+@torch.no_grad()
+def convert_vit_checkpoint(model_name, pytorch_dump_folder_path, base_model=True):
+ """
+ Copy/paste/tweak model's weights to our ViT structure.
+ """
+
+ # define default ViT configuration
+ config = ViTConfig()
+ # patch_size
+ if model_name[-1] == "8":
+ config.patch_size = 8
+ # set labels if required
+ if not base_model:
+ config.num_labels = 1000
+ repo_id = "huggingface/label-files"
+ filename = "imagenet-1k-id2label.json"
+ id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
+ id2label = {int(k): v for k, v in id2label.items()}
+ config.id2label = id2label
+ config.label2id = {v: k for k, v in id2label.items()}
+ # size of the architecture
+ if model_name in ["dino_vits8", "dino_vits16"]:
+ config.hidden_size = 384
+ config.intermediate_size = 1536
+ config.num_hidden_layers = 12
+ config.num_attention_heads = 6
+
+ # load original model from torch hub
+ original_model = torch.hub.load("facebookresearch/dino:main", model_name)
+ original_model.eval()
+
+ # load state_dict of original model, remove and rename some keys
+ state_dict = original_model.state_dict()
+ if base_model:
+ remove_classification_head_(state_dict)
+ rename_keys = create_rename_keys(config, base_model=base_model)
+ for src, dest in rename_keys:
+ rename_key(state_dict, src, dest)
+ read_in_q_k_v(state_dict, config, base_model)
+
+ # load HuggingFace model
+ if base_model:
+ model = ViTModel(config, add_pooling_layer=False).eval()
+ else:
+ model = ViTForImageClassification(config).eval()
+ model.load_state_dict(state_dict)
+
+ # Check outputs on an image, prepared by ViTImageProcessor
+ image_processor = ViTImageProcessor()
+ encoding = image_processor(images=prepare_img(), return_tensors="pt")
+ pixel_values = encoding["pixel_values"]
+ outputs = model(pixel_values)
+
+ if base_model:
+ final_hidden_state_cls_token = original_model(pixel_values)
+ assert torch.allclose(final_hidden_state_cls_token, outputs.last_hidden_state[:, 0, :], atol=1e-1)
+ else:
+ logits = original_model(pixel_values)
+ assert logits.shape == outputs.logits.shape
+ assert torch.allclose(logits, outputs.logits, atol=1e-3)
+
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
+ print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
+ model.save_pretrained(pytorch_dump_folder_path)
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
+ image_processor.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--model_name",
+ default="dino_vitb16",
+ type=str,
+ help="Name of the model trained with DINO you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
+ )
+ parser.add_argument(
+ "--base_model",
+ action="store_true",
+ help="Whether to only convert the base model (no projection head weights).",
+ )
+
+ parser.set_defaults(base_model=True)
+ args = parser.parse_args()
+ convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/convert_vit_timm_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/convert_vit_timm_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..0ccd9b9f6685fe375955fdee7298c17cf308de86
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/convert_vit_timm_to_pytorch.py
@@ -0,0 +1,255 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert ViT and non-distilled DeiT checkpoints from the timm library."""
+
+
+import argparse
+from pathlib import Path
+
+import requests
+import timm
+import torch
+from PIL import Image
+from timm.data import ImageNetInfo, infer_imagenet_subset
+
+from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+# here we list all keys to be renamed (original name on the left, our name on the right)
+def create_rename_keys(config, base_model=False):
+ rename_keys = []
+ for i in range(config.num_hidden_layers):
+ # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
+ rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight"))
+ rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias"))
+ rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight"))
+ rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias"))
+ rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight"))
+ rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias"))
+ rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight"))
+ rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias"))
+ rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight"))
+ rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias"))
+
+ # projection layer + position embeddings
+ rename_keys.extend(
+ [
+ ("cls_token", "vit.embeddings.cls_token"),
+ ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
+ ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
+ ("pos_embed", "vit.embeddings.position_embeddings"),
+ ]
+ )
+
+ if base_model:
+ # layernorm
+ rename_keys.extend(
+ [
+ ("norm.weight", "layernorm.weight"),
+ ("norm.bias", "layernorm.bias"),
+ ]
+ )
+
+ # if just the base model, we should remove "vit" from all keys that start with "vit"
+ rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys]
+ else:
+ # layernorm + classification head
+ rename_keys.extend(
+ [
+ ("norm.weight", "vit.layernorm.weight"),
+ ("norm.bias", "vit.layernorm.bias"),
+ ("head.weight", "classifier.weight"),
+ ("head.bias", "classifier.bias"),
+ ]
+ )
+
+ return rename_keys
+
+
+# we split up the matrix of each encoder layer into queries, keys and values
+def read_in_q_k_v(state_dict, config, base_model=False):
+ for i in range(config.num_hidden_layers):
+ if base_model:
+ prefix = ""
+ else:
+ prefix = "vit."
+ # read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
+ in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
+ in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
+ # next, add query, keys and values (in that order) to the state dict
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
+ : config.hidden_size, :
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
+ config.hidden_size : config.hidden_size * 2, :
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
+ config.hidden_size : config.hidden_size * 2
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
+ -config.hidden_size :, :
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
+
+
+def remove_classification_head_(state_dict):
+ ignore_keys = ["head.weight", "head.bias"]
+ for k in ignore_keys:
+ state_dict.pop(k, None)
+
+
+def rename_key(dct, old, new):
+ val = dct.pop(old)
+ dct[new] = val
+
+
+# We will verify our results on an image of cute cats
+def prepare_img():
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ im = Image.open(requests.get(url, stream=True).raw)
+ return im
+
+
+@torch.no_grad()
+def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path):
+ """
+ Copy/paste/tweak model's weights to our ViT structure.
+ """
+
+ # define default ViT configuration
+ config = ViTConfig()
+ base_model = False
+
+ # load original model from timm
+ timm_model = timm.create_model(vit_name, pretrained=True)
+ timm_model.eval()
+
+ # detect unsupported ViT models in transformers
+ # fc_norm is present
+ if not isinstance(getattr(timm_model, "fc_norm", None), torch.nn.Identity):
+ raise ValueError(f"{vit_name} is not supported in transformers because of the presence of fc_norm.")
+
+ # use of global average pooling in combination (or without) class token
+ if getattr(timm_model, "global_pool", None) == "avg":
+ raise ValueError(f"{vit_name} is not supported in transformers because of use of global average pooling.")
+
+ # CLIP style vit with norm_pre layer present
+ if "clip" in vit_name and not isinstance(getattr(timm_model, "norm_pre", None), torch.nn.Identity):
+ raise ValueError(
+ f"{vit_name} is not supported in transformers because it's a CLIP style ViT with norm_pre layer."
+ )
+
+ # SigLIP style vit with attn_pool layer present
+ if "siglip" in vit_name and getattr(timm_model, "global_pool", None) == "map":
+ raise ValueError(
+ f"{vit_name} is not supported in transformers because it's a SigLIP style ViT with attn_pool."
+ )
+
+ # use of layer scale in ViT model blocks
+ if not isinstance(getattr(timm_model.blocks[0], "ls1", None), torch.nn.Identity) or not isinstance(
+ getattr(timm_model.blocks[0], "ls2", None), torch.nn.Identity
+ ):
+ raise ValueError(f"{vit_name} is not supported in transformers because it uses a layer scale in its blocks.")
+
+ # Hybrid ResNet-ViTs
+ if not isinstance(timm_model.patch_embed, timm.layers.PatchEmbed):
+ raise ValueError(f"{vit_name} is not supported in transformers because it is a hybrid ResNet-ViT.")
+
+ # get patch size and image size from the patch embedding submodule
+ config.patch_size = timm_model.patch_embed.patch_size[0]
+ config.image_size = timm_model.patch_embed.img_size[0]
+
+ # retrieve architecture-specific parameters from the timm model
+ config.hidden_size = timm_model.embed_dim
+ config.intermediate_size = timm_model.blocks[0].mlp.fc1.out_features
+ config.num_hidden_layers = len(timm_model.blocks)
+ config.num_attention_heads = timm_model.blocks[0].attn.num_heads
+
+ # check whether the model has a classification head or not
+ if timm_model.num_classes != 0:
+ config.num_labels = timm_model.num_classes
+ # infer ImageNet subset from timm model
+ imagenet_subset = infer_imagenet_subset(timm_model)
+ dataset_info = ImageNetInfo(imagenet_subset)
+ config.id2label = {i: dataset_info.index_to_label_name(i) for i in range(dataset_info.num_classes())}
+ config.label2id = {v: k for k, v in config.id2label.items()}
+ else:
+ print(f"{vit_name} is going to be converted as a feature extractor only.")
+ base_model = True
+
+ # load state_dict of original model
+ state_dict = timm_model.state_dict()
+
+ # remove and rename some keys in the state dict
+ if base_model:
+ remove_classification_head_(state_dict)
+ rename_keys = create_rename_keys(config, base_model)
+ for src, dest in rename_keys:
+ rename_key(state_dict, src, dest)
+ read_in_q_k_v(state_dict, config, base_model)
+
+ # load HuggingFace model
+ if base_model:
+ model = ViTModel(config, add_pooling_layer=False).eval()
+ else:
+ model = ViTForImageClassification(config).eval()
+ model.load_state_dict(state_dict)
+
+ # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
+ if "deit" in vit_name:
+ image_processor = DeiTImageProcessor(size=config.image_size)
+ else:
+ image_processor = ViTImageProcessor(size=config.image_size)
+ encoding = image_processor(images=prepare_img(), return_tensors="pt")
+ pixel_values = encoding["pixel_values"]
+ outputs = model(pixel_values)
+
+ if base_model:
+ timm_pooled_output = timm_model.forward_features(pixel_values)
+ assert timm_pooled_output.shape == outputs.last_hidden_state.shape
+ assert torch.allclose(timm_pooled_output, outputs.last_hidden_state, atol=1e-1)
+ else:
+ timm_logits = timm_model(pixel_values)
+ assert timm_logits.shape == outputs.logits.shape
+ assert torch.allclose(timm_logits, outputs.logits, atol=1e-3)
+
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
+ print(f"Saving model {vit_name} to {pytorch_dump_folder_path}")
+ model.save_pretrained(pytorch_dump_folder_path)
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
+ image_processor.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--vit_name",
+ default="vit_base_patch16_224",
+ type=str,
+ help="Name of the ViT timm model you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
+ )
+
+ args = parser.parse_args()
+ convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/image_processing_vit.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/image_processing_vit.py
new file mode 100644
index 0000000000000000000000000000000000000000..4c7d8de714f72d996d69273eb83c20b4c685a115
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/image_processing_vit.py
@@ -0,0 +1,289 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for ViT."""
+
+from typing import Dict, List, Optional, Union
+
+import numpy as np
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
+from ...image_transforms import resize, to_channel_dimension_format
+from ...image_utils import (
+ IMAGENET_STANDARD_MEAN,
+ IMAGENET_STANDARD_STD,
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+ validate_kwargs,
+ validate_preprocess_arguments,
+)
+from ...utils import TensorType, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class ViTImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a ViT image processor.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
+ size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
+ size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
+ Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
+ method.
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
+ Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
+ `preprocess` method.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
+ parameter in the `preprocess` method.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
+ `preprocess` method.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
+ method.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
+ """
+
+ model_input_names = ["pixel_values"]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ size: Optional[Dict[str, int]] = None,
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+ size = size if size is not None else {"height": 224, "width": 224}
+ size = get_size_dict(size)
+ self.do_resize = do_resize
+ self.do_rescale = do_rescale
+ self.do_normalize = do_normalize
+ self.size = size
+ self.resample = resample
+ self.rescale_factor = rescale_factor
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
+ self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
+ self._valid_processor_keys = [
+ "images",
+ "do_resize",
+ "size",
+ "resample",
+ "do_rescale",
+ "rescale_factor",
+ "do_normalize",
+ "image_mean",
+ "image_std",
+ "return_tensors",
+ "data_format",
+ "input_data_format",
+ ]
+
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resize an image to `(size["height"], size["width"])`.
+
+ Args:
+ image (`np.ndarray`):
+ Image to resize.
+ size (`Dict[str, int]`):
+ Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
+ `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
+ data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the output image. If unset, the channel dimension format of the input
+ image is used. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+
+ Returns:
+ `np.ndarray`: The resized image.
+ """
+ size = get_size_dict(size)
+ if "height" not in size or "width" not in size:
+ raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
+ output_size = (size["height"], size["width"])
+ return resize(
+ image,
+ size=output_size,
+ resample=resample,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+
+ def preprocess(
+ self,
+ images: ImageInput,
+ do_resize: Optional[bool] = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_rescale: Optional[bool] = None,
+ rescale_factor: Optional[float] = None,
+ do_normalize: Optional[bool] = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ):
+ """
+ Preprocess an image or batch of images.
+
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
+ Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
+ resizing.
+ resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
+ `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
+ an effect if `do_resize` is set to `True`.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image values between [0 - 1].
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean to use if `do_normalize` is set to `True`.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation to use if `do_normalize` is set to `True`.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ resample = resample if resample is not None else self.resample
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+
+ size = size if size is not None else self.size
+ size_dict = get_size_dict(size)
+
+ images = make_list_of_images(images)
+
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+ validate_preprocess_arguments(
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ )
+
+ # All transformations expect numpy arrays.
+ images = [to_numpy_array(image) for image in images]
+
+ if is_scaled_image(images[0]) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ if do_resize:
+ images = [
+ self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_rescale:
+ images = [
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_normalize:
+ images = [
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ images = [
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
+ ]
+
+ data = {"pixel_values": images}
+ return BatchFeature(data=data, tensor_type=return_tensors)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_flax_vit.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_flax_vit.py
new file mode 100644
index 0000000000000000000000000000000000000000..586c8b62f6dad084cb3034c355e279908a6ba725
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_flax_vit.py
@@ -0,0 +1,673 @@
+# coding=utf-8
+# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Optional, Tuple
+
+import flax.linen as nn
+import jax
+import jax.numpy as jnp
+from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
+from flax.linen.attention import dot_product_attention_weights
+from flax.traverse_util import flatten_dict, unflatten_dict
+
+from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling, FlaxSequenceClassifierOutput
+from ...modeling_flax_utils import (
+ ACT2FN,
+ FlaxPreTrainedModel,
+ append_replace_return_docstrings,
+ overwrite_call_docstring,
+)
+from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward
+from .configuration_vit import ViTConfig
+
+
+VIT_START_DOCSTRING = r"""
+
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
+
+ This model is also a
+ [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
+ a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
+ behavior.
+
+ Finally, this model supports inherent JAX features such as:
+
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
+
+ Parameters:
+ config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
+ `jax.numpy.bfloat16` (on TPUs).
+
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
+ specified all the computation will be performed with the given `dtype`.
+
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
+ parameters.**
+
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
+ [`~FlaxPreTrainedModel.to_bf16`].
+"""
+
+VIT_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
+ for details.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+class FlaxViTPatchEmbeddings(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ image_size = self.config.image_size
+ patch_size = self.config.patch_size
+ num_patches = (image_size // patch_size) * (image_size // patch_size)
+ self.num_patches = num_patches
+ self.num_channels = self.config.num_channels
+ self.projection = nn.Conv(
+ self.config.hidden_size,
+ kernel_size=(patch_size, patch_size),
+ strides=(patch_size, patch_size),
+ padding="VALID",
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, "fan_in", "truncated_normal"
+ ),
+ )
+
+ def __call__(self, pixel_values):
+ num_channels = pixel_values.shape[-1]
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ )
+ embeddings = self.projection(pixel_values)
+ batch_size, _, _, channels = embeddings.shape
+ return jnp.reshape(embeddings, (batch_size, -1, channels))
+
+
+class FlaxViTEmbeddings(nn.Module):
+ """Construct the CLS token, position and patch embeddings."""
+
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.cls_token = self.param(
+ "cls_token",
+ jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"),
+ (1, 1, self.config.hidden_size),
+ )
+ self.patch_embeddings = FlaxViTPatchEmbeddings(self.config, dtype=self.dtype)
+ num_patches = self.patch_embeddings.num_patches
+ self.position_embeddings = self.param(
+ "position_embeddings",
+ jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"),
+ (1, num_patches + 1, self.config.hidden_size),
+ )
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, pixel_values, deterministic=True):
+ batch_size = pixel_values.shape[0]
+
+ embeddings = self.patch_embeddings(pixel_values)
+
+ cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size))
+ embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1)
+ embeddings = embeddings + self.position_embeddings
+ embeddings = self.dropout(embeddings, deterministic=deterministic)
+ return embeddings
+
+
+class FlaxViTSelfAttention(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ if self.config.hidden_size % self.config.num_attention_heads != 0:
+ raise ValueError(
+ "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads`:"
+ " {self.config.num_attention_heads}"
+ )
+
+ self.query = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal"
+ ),
+ use_bias=self.config.qkv_bias,
+ )
+ self.key = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal"
+ ),
+ use_bias=self.config.qkv_bias,
+ )
+ self.value = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal"
+ ),
+ use_bias=self.config.qkv_bias,
+ )
+
+ def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False):
+ head_dim = self.config.hidden_size // self.config.num_attention_heads
+
+ query_states = self.query(hidden_states).reshape(
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
+ )
+ value_states = self.value(hidden_states).reshape(
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
+ )
+ key_states = self.key(hidden_states).reshape(
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
+ )
+
+ dropout_rng = None
+ if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
+ dropout_rng = self.make_rng("dropout")
+
+ attn_weights = dot_product_attention_weights(
+ query_states,
+ key_states,
+ dropout_rng=dropout_rng,
+ dropout_rate=self.config.attention_probs_dropout_prob,
+ broadcast_dropout=True,
+ deterministic=deterministic,
+ dtype=self.dtype,
+ precision=None,
+ )
+
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
+ attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
+
+ outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
+ return outputs
+
+
+class FlaxViTSelfOutput(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, "fan_in", "truncated_normal"
+ ),
+ dtype=self.dtype,
+ )
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ return hidden_states
+
+
+class FlaxViTAttention(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.attention = FlaxViTSelfAttention(self.config, dtype=self.dtype)
+ self.output = FlaxViTSelfOutput(self.config, dtype=self.dtype)
+
+ def __call__(self, hidden_states, deterministic=True, output_attentions: bool = False):
+ attn_outputs = self.attention(hidden_states, deterministic=deterministic, output_attentions=output_attentions)
+ attn_output = attn_outputs[0]
+ hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_outputs[1],)
+
+ return outputs
+
+
+class FlaxViTIntermediate(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.intermediate_size,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, "fan_in", "truncated_normal"
+ ),
+ dtype=self.dtype,
+ )
+ self.activation = ACT2FN[self.config.hidden_act]
+
+ def __call__(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+class FlaxViTOutput(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, "fan_in", "truncated_normal"
+ ),
+ dtype=self.dtype,
+ )
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, hidden_states, attention_output, deterministic: bool = True):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = hidden_states + attention_output
+ return hidden_states
+
+
+class FlaxViTLayer(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.attention = FlaxViTAttention(self.config, dtype=self.dtype)
+ self.intermediate = FlaxViTIntermediate(self.config, dtype=self.dtype)
+ self.output = FlaxViTOutput(self.config, dtype=self.dtype)
+ self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+
+ def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False):
+ attention_outputs = self.attention(
+ self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+
+ attention_output = attention_outputs[0]
+
+ # first residual connection
+ attention_output = attention_output + hidden_states
+
+ # in ViT, layernorm is also applied after self-attention
+ layer_output = self.layernorm_after(attention_output)
+
+ hidden_states = self.intermediate(layer_output)
+ hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attention_outputs[1],)
+ return outputs
+
+
+class FlaxViTLayerCollection(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layers = [
+ FlaxViTLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
+ ]
+
+ def __call__(
+ self,
+ hidden_states,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ all_attentions = () if output_attentions else None
+ all_hidden_states = () if output_hidden_states else None
+
+ for i, layer in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ layer_outputs = layer(hidden_states, deterministic=deterministic, output_attentions=output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions += (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ outputs = (hidden_states,)
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+
+class FlaxViTEncoder(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layer = FlaxViTLayerCollection(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ hidden_states,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ return self.layer(
+ hidden_states,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+class FlaxViTPooler(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, "fan_in", "truncated_normal"
+ ),
+ dtype=self.dtype,
+ )
+
+ def __call__(self, hidden_states):
+ cls_hidden_state = hidden_states[:, 0]
+ cls_hidden_state = self.dense(cls_hidden_state)
+ return nn.tanh(cls_hidden_state)
+
+
+class FlaxViTPreTrainedModel(FlaxPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ViTConfig
+ base_model_prefix = "vit"
+ main_input_name = "pixel_values"
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: ViTConfig,
+ input_shape=None,
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ **kwargs,
+ ):
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
+ if input_shape is None:
+ input_shape = (1, config.image_size, config.image_size, config.num_channels)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensors
+ pixel_values = jnp.zeros(input_shape, dtype=self.dtype)
+
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ def __call__(
+ self,
+ pixel_values,
+ params: dict = None,
+ dropout_rng: jax.random.PRNGKey = None,
+ train: bool = False,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ return self.module.apply(
+ {"params": params or self.params},
+ jnp.array(pixel_values, dtype=jnp.float32),
+ not train,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ rngs=rngs,
+ )
+
+
+class FlaxViTModule(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ add_pooling_layer: bool = True
+
+ def setup(self):
+ self.embeddings = FlaxViTEmbeddings(self.config, dtype=self.dtype)
+ self.encoder = FlaxViTEncoder(self.config, dtype=self.dtype)
+ self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.pooler = FlaxViTPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None
+
+ def __call__(
+ self,
+ pixel_values,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ hidden_states = self.embeddings(pixel_values, deterministic=deterministic)
+
+ outputs = self.encoder(
+ hidden_states,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = outputs[0]
+ hidden_states = self.layernorm(hidden_states)
+ pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
+
+ if not return_dict:
+ # if pooled is None, don't return it
+ if pooled is None:
+ return (hidden_states,) + outputs[1:]
+ return (hidden_states, pooled) + outputs[1:]
+
+ return FlaxBaseModelOutputWithPooling(
+ last_hidden_state=hidden_states,
+ pooler_output=pooled,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.",
+ VIT_START_DOCSTRING,
+)
+class FlaxViTModel(FlaxViTPreTrainedModel):
+ module_class = FlaxViTModule
+
+
+FLAX_VISION_MODEL_DOCSTRING = """
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoImageProcessor, FlaxViTModel
+ >>> from PIL import Image
+ >>> import requests
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
+ >>> model = FlaxViTModel.from_pretrained("google/vit-base-patch16-224-in21k")
+
+ >>> inputs = image_processor(images=image, return_tensors="np")
+ >>> outputs = model(**inputs)
+ >>> last_hidden_states = outputs.last_hidden_state
+ ```
+"""
+
+overwrite_call_docstring(FlaxViTModel, FLAX_VISION_MODEL_DOCSTRING)
+append_replace_return_docstrings(FlaxViTModel, output_type=FlaxBaseModelOutputWithPooling, config_class=ViTConfig)
+
+
+class FlaxViTForImageClassificationModule(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.vit = FlaxViTModule(config=self.config, dtype=self.dtype, add_pooling_layer=False)
+ self.classifier = nn.Dense(
+ self.config.num_labels,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, "fan_in", "truncated_normal"
+ ),
+ )
+
+ def __call__(
+ self,
+ pixel_values=None,
+ deterministic: bool = True,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.vit(
+ pixel_values,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ logits = self.classifier(hidden_states[:, 0, :])
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return output
+
+ return FlaxSequenceClassifierOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
+ the [CLS] token) e.g. for ImageNet.
+ """,
+ VIT_START_DOCSTRING,
+)
+class FlaxViTForImageClassification(FlaxViTPreTrainedModel):
+ module_class = FlaxViTForImageClassificationModule
+
+
+FLAX_VISION_CLASSIF_DOCSTRING = """
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoImageProcessor, FlaxViTForImageClassification
+ >>> from PIL import Image
+ >>> import jax
+ >>> import requests
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
+ >>> model = FlaxViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
+
+ >>> inputs = image_processor(images=image, return_tensors="np")
+ >>> outputs = model(**inputs)
+ >>> logits = outputs.logits
+
+ >>> # model predicts one of the 1000 ImageNet classes
+ >>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1)
+ >>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()])
+ ```
+"""
+
+overwrite_call_docstring(FlaxViTForImageClassification, FLAX_VISION_CLASSIF_DOCSTRING)
+append_replace_return_docstrings(
+ FlaxViTForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=ViTConfig
+)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_vit.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_vit.py
new file mode 100644
index 0000000000000000000000000000000000000000..734ccf6a9e80f4a5f231b92a00bc0c3a1037c5a8
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_vit.py
@@ -0,0 +1,841 @@
+# coding=utf-8
+# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch ViT model."""
+
+
+import collections.abc
+import math
+from typing import Dict, List, Optional, Set, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPooling,
+ ImageClassifierOutput,
+ MaskedImageModelingOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_vit import ViTConfig
+
+
+logger = logging.get_logger(__name__)
+
+# General docstring
+_CONFIG_FOR_DOC = "ViTConfig"
+
+# Base docstring
+_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k"
+_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
+
+# Image classification docstring
+_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224"
+_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
+
+
+VIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "google/vit-base-patch16-224",
+ # See all ViT models at https://huggingface.co/models?filter=vit
+]
+
+
+class ViTEmbeddings(nn.Module):
+ """
+ Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
+ """
+
+ def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None:
+ super().__init__()
+
+ self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
+ self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
+ self.patch_embeddings = ViTPatchEmbeddings(config)
+ num_patches = self.patch_embeddings.num_patches
+ self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size))
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
+ """
+ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
+ resolution images.
+
+ Source:
+ https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
+ """
+
+ num_patches = embeddings.shape[1] - 1
+ num_positions = self.position_embeddings.shape[1] - 1
+ if num_patches == num_positions and height == width:
+ return self.position_embeddings
+ class_pos_embed = self.position_embeddings[:, 0]
+ patch_pos_embed = self.position_embeddings[:, 1:]
+ dim = embeddings.shape[-1]
+ h0 = height // self.config.patch_size
+ w0 = width // self.config.patch_size
+ # we add a small number to avoid floating point error in the interpolation
+ # see discussion at https://github.com/facebookresearch/dino/issues/8
+ h0, w0 = h0 + 0.1, w0 + 0.1
+ patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
+ patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
+ patch_pos_embed = nn.functional.interpolate(
+ patch_pos_embed,
+ scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
+ mode="bicubic",
+ align_corners=False,
+ )
+ assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
+
+ def forward(
+ self,
+ pixel_values: torch.Tensor,
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
+ interpolate_pos_encoding: bool = False,
+ ) -> torch.Tensor:
+ batch_size, num_channels, height, width = pixel_values.shape
+ embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
+
+ if bool_masked_pos is not None:
+ seq_length = embeddings.shape[1]
+ mask_tokens = self.mask_token.expand(batch_size, seq_length, -1)
+ # replace the masked visual tokens by mask_tokens
+ mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
+ embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
+
+ # add the [CLS] token to the embedded patch tokens
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1)
+ embeddings = torch.cat((cls_tokens, embeddings), dim=1)
+
+ # add positional encoding to each token
+ if interpolate_pos_encoding:
+ embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
+ else:
+ embeddings = embeddings + self.position_embeddings
+
+ embeddings = self.dropout(embeddings)
+
+ return embeddings
+
+
+class ViTPatchEmbeddings(nn.Module):
+ """
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
+ Transformer.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ image_size, patch_size = config.image_size, config.patch_size
+ num_channels, hidden_size = config.num_channels, config.hidden_size
+
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.num_patches = num_patches
+
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
+
+ def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
+ batch_size, num_channels, height, width = pixel_values.shape
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ f" Expected {self.num_channels} but got {num_channels}."
+ )
+ if not interpolate_pos_encoding:
+ if height != self.image_size[0] or width != self.image_size[1]:
+ raise ValueError(
+ f"Input image size ({height}*{width}) doesn't match model"
+ f" ({self.image_size[0]}*{self.image_size[1]})."
+ )
+ embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
+ return embeddings
+
+
+class ViTSelfAttention(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
+ f"heads {config.num_attention_heads}."
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ mixed_query_layer = self.query(hidden_states)
+
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ return outputs
+
+
+class ViTSelfOutput(nn.Module):
+ """
+ The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the
+ layernorm applied before each block.
+ """
+
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ return hidden_states
+
+
+class ViTAttention(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.attention = ViTSelfAttention(config)
+ self.output = ViTSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads: Set[int]) -> None:
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.attention.query = prune_linear_layer(self.attention.query, index)
+ self.attention.key = prune_linear_layer(self.attention.key, index)
+ self.attention.value = prune_linear_layer(self.attention.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ self_outputs = self.attention(hidden_states, head_mask, output_attentions)
+
+ attention_output = self.output(self_outputs[0], hidden_states)
+
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+class ViTIntermediate(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+
+class ViTOutput(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ hidden_states = hidden_states + input_tensor
+
+ return hidden_states
+
+
+class ViTLayer(nn.Module):
+ """This corresponds to the Block class in the timm implementation."""
+
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = ViTAttention(config)
+ self.intermediate = ViTIntermediate(config)
+ self.output = ViTOutput(config)
+ self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ self_attention_outputs = self.attention(
+ self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
+ head_mask,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ # first residual connection
+ hidden_states = attention_output + hidden_states
+
+ # in ViT, layernorm is also applied after self-attention
+ layer_output = self.layernorm_after(hidden_states)
+ layer_output = self.intermediate(layer_output)
+
+ # second residual connection is done here
+ layer_output = self.output(layer_output, hidden_states)
+
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+
+class ViTEncoder(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ) -> Union[tuple, BaseModelOutput]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ layer_head_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class ViTPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ViTConfig
+ base_model_prefix = "vit"
+ main_input_name = "pixel_values"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["ViTEmbeddings", "ViTLayer"]
+
+ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
+ """Initialize the weights"""
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
+ # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
+ # `trunc_normal_cpu` not implemented in `half` issues
+ module.weight.data = nn.init.trunc_normal_(
+ module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
+ ).to(module.weight.dtype)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, ViTEmbeddings):
+ module.position_embeddings.data = nn.init.trunc_normal_(
+ module.position_embeddings.data.to(torch.float32),
+ mean=0.0,
+ std=self.config.initializer_range,
+ ).to(module.position_embeddings.dtype)
+
+ module.cls_token.data = nn.init.trunc_normal_(
+ module.cls_token.data.to(torch.float32),
+ mean=0.0,
+ std=self.config.initializer_range,
+ ).to(module.cls_token.dtype)
+
+
+VIT_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+VIT_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
+ for details.
+
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ interpolate_pos_encoding (`bool`, *optional*):
+ Whether to interpolate the pre-trained position encodings.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.",
+ VIT_START_DOCSTRING,
+)
+class ViTModel(ViTPreTrainedModel):
+ def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token)
+ self.encoder = ViTEncoder(config)
+
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.pooler = ViTPooler(config) if add_pooling_layer else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self) -> ViTPatchEmbeddings:
+ return self.embeddings.patch_embeddings
+
+ def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPooling,
+ config_class=_CONFIG_FOR_DOC,
+ modality="vision",
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
+ )
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ interpolate_pos_encoding: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?)
+ expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype
+ if pixel_values.dtype != expected_dtype:
+ pixel_values = pixel_values.to(expected_dtype)
+
+ embedding_output = self.embeddings(
+ pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
+ )
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ sequence_output = self.layernorm(sequence_output)
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
+ return head_outputs + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+class ViTPooler(nn.Module):
+ def __init__(self, config: ViTConfig):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states):
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+@add_start_docstrings(
+ """ViT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886).
+
+
+
+ Note that we provide a script to pre-train this model on custom data in our [examples
+ directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
+
+
+ """,
+ VIT_START_DOCSTRING,
+)
+class ViTForMaskedImageModeling(ViTPreTrainedModel):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__(config)
+
+ self.vit = ViTModel(config, add_pooling_layer=False, use_mask_token=True)
+
+ self.decoder = nn.Sequential(
+ nn.Conv2d(
+ in_channels=config.hidden_size,
+ out_channels=config.encoder_stride**2 * config.num_channels,
+ kernel_size=1,
+ ),
+ nn.PixelShuffle(config.encoder_stride),
+ )
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ interpolate_pos_encoding: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[tuple, MaskedImageModelingOutput]:
+ r"""
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
+
+ Returns:
+
+ Examples:
+ ```python
+ >>> from transformers import AutoImageProcessor, ViTForMaskedImageModeling
+ >>> import torch
+ >>> from PIL import Image
+ >>> import requests
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
+ >>> model = ViTForMaskedImageModeling.from_pretrained("google/vit-base-patch16-224-in21k")
+
+ >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
+ >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
+ >>> # create random boolean mask of shape (batch_size, num_patches)
+ >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
+
+ >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
+ >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
+ >>> list(reconstructed_pixel_values.shape)
+ [1, 3, 224, 224]
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if bool_masked_pos is not None and (self.config.patch_size != self.config.encoder_stride):
+ raise ValueError(
+ "When `bool_masked_pos` is provided, `patch_size` must be equal to `encoder_stride` to ensure that "
+ "the reconstructed image has the same dimensions as the input. "
+ f"Got `patch_size` = {self.config.patch_size} and `encoder_stride` = {self.config.encoder_stride}."
+ )
+
+ outputs = self.vit(
+ pixel_values,
+ bool_masked_pos=bool_masked_pos,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ interpolate_pos_encoding=interpolate_pos_encoding,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ # Reshape to (batch_size, num_channels, height, width)
+ sequence_output = sequence_output[:, 1:]
+ batch_size, sequence_length, num_channels = sequence_output.shape
+ height = width = math.floor(sequence_length**0.5)
+ sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
+
+ # Reconstruct pixel values
+ reconstructed_pixel_values = self.decoder(sequence_output)
+
+ masked_im_loss = None
+ if bool_masked_pos is not None:
+ size = self.config.image_size // self.config.patch_size
+ bool_masked_pos = bool_masked_pos.reshape(-1, size, size)
+ mask = (
+ bool_masked_pos.repeat_interleave(self.config.patch_size, 1)
+ .repeat_interleave(self.config.patch_size, 2)
+ .unsqueeze(1)
+ .contiguous()
+ )
+ reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none")
+ masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels
+
+ if not return_dict:
+ output = (reconstructed_pixel_values,) + outputs[1:]
+ return ((masked_im_loss,) + output) if masked_im_loss is not None else output
+
+ return MaskedImageModelingOutput(
+ loss=masked_im_loss,
+ reconstruction=reconstructed_pixel_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
+ the [CLS] token) e.g. for ImageNet.
+
+
+
+ Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by
+ setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
+ position embeddings to the higher resolution.
+
+
+ """,
+ VIT_START_DOCSTRING,
+)
+class ViTForImageClassification(ViTPreTrainedModel):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.vit = ViTModel(config, add_pooling_layer=False)
+
+ # Classifier head
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
+ output_type=ImageClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
+ )
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ interpolate_pos_encoding: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[tuple, ImageClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.vit(
+ pixel_values,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ interpolate_pos_encoding=interpolate_pos_encoding,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.classifier(sequence_output[:, 0, :])
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return ImageClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5779e8411cbaa3a731573a0ef5a5db11c69c6007
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/configuration_vitdet.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/configuration_vitdet.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8a6c9400dae23f959d8649c577ccad52cce65906
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/configuration_vitdet.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/modeling_vitdet.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/modeling_vitdet.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cb36a9051aa1796d495615b429c3b5d9bf9f003b
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__pycache__/modeling_vitdet.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/configuration_vitdet.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/configuration_vitdet.py
new file mode 100644
index 0000000000000000000000000000000000000000..2b1f37e311434cac0cd00b9da25ab934144a9e88
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/configuration_vitdet.py
@@ -0,0 +1,158 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" VitDet model configuration"""
+
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
+
+
+logger = logging.get_logger(__name__)
+
+VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "facebook/vit-det-base": "https://huggingface.co/facebook/vit-det-base/resolve/main/config.json",
+}
+
+
+class VitDetConfig(BackboneConfigMixin, PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`VitDetModel`]. It is used to instantiate an
+ VitDet model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the VitDet
+ [google/vitdet-base-patch16-224](https://huggingface.co/google/vitdet-base-patch16-224) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ mlp_ratio (`int`, *optional*, defaults to 4):
+ Ratio of mlp hidden dim to embedding dim.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
+ The epsilon used by the layer normalization layers.
+ image_size (`int`, *optional*, defaults to 224):
+ The size (resolution) of each image.
+ pretrain_image_size (`int`, *optional*, defaults to 224):
+ The size (resolution) of each image during pretraining.
+ patch_size (`int`, *optional*, defaults to 16):
+ The size (resolution) of each patch.
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ qkv_bias (`bool`, *optional*, defaults to `True`):
+ Whether to add a bias to the queries, keys and values.
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
+ Stochastic depth rate.
+ window_block_indices (`List[int]`, *optional*, defaults to `[]`):
+ List of indices of blocks that should have window attention instead of regular global self-attention.
+ residual_block_indices (`List[int]`, *optional*, defaults to `[]`):
+ List of indices of blocks that should have an extra residual block after the MLP.
+ use_absolute_position_embeddings (`bool`, *optional*, defaults to `True`):
+ Whether to add absolute position embeddings to the patch embeddings.
+ use_relative_position_embeddings (`bool`, *optional*, defaults to `False`):
+ Whether to add relative position embeddings to the attention maps.
+ window_size (`int`, *optional*, defaults to 0):
+ The size of the attention window.
+ out_features (`List[str]`, *optional*):
+ If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
+ (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
+ corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
+ same order as defined in the `stage_names` attribute.
+ out_indices (`List[int]`, *optional*):
+ If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
+ many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
+ If unset and `out_features` is unset, will default to the last stage. Must be in the
+ same order as defined in the `stage_names` attribute.
+
+ Example:
+
+ ```python
+ >>> from transformers import VitDetConfig, VitDetModel
+
+ >>> # Initializing a VitDet configuration
+ >>> configuration = VitDetConfig()
+
+ >>> # Initializing a model (with random weights) from the configuration
+ >>> model = VitDetModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "vitdet"
+
+ def __init__(
+ self,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ mlp_ratio=4,
+ hidden_act="gelu",
+ dropout_prob=0.0,
+ initializer_range=0.02,
+ layer_norm_eps=1e-6,
+ image_size=224,
+ pretrain_image_size=224,
+ patch_size=16,
+ num_channels=3,
+ qkv_bias=True,
+ drop_path_rate=0.0,
+ window_block_indices=[],
+ residual_block_indices=[],
+ use_absolute_position_embeddings=True,
+ use_relative_position_embeddings=False,
+ window_size=0,
+ out_features=None,
+ out_indices=None,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.mlp_ratio = mlp_ratio
+ self.hidden_act = hidden_act
+ self.dropout_prob = dropout_prob
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.image_size = image_size
+ self.pretrain_image_size = pretrain_image_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.qkv_bias = qkv_bias
+ self.drop_path_rate = drop_path_rate
+ self.window_block_indices = window_block_indices
+ self.residual_block_indices = residual_block_indices
+ self.use_absolute_position_embeddings = use_absolute_position_embeddings
+ self.use_relative_position_embeddings = use_relative_position_embeddings
+ self.window_size = window_size
+
+ self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)]
+ self._out_features, self._out_indices = get_aligned_output_features_output_indices(
+ out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/modeling_vitdet.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/modeling_vitdet.py
new file mode 100644
index 0000000000000000000000000000000000000000..7af69d28697cd86468e63f372f1f272a1ba4b6f8
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/modeling_vitdet.py
@@ -0,0 +1,876 @@
+# coding=utf-8
+# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch ViTDet backbone."""
+
+
+import collections.abc
+import math
+from typing import Dict, List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+
+from ...activations import ACT2FN
+from ...modeling_outputs import BackboneOutput, BaseModelOutput
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from ...utils.backbone_utils import BackboneMixin
+from .configuration_vitdet import VitDetConfig
+
+
+logger = logging.get_logger(__name__)
+
+# General docstring
+_CONFIG_FOR_DOC = "VitDetConfig"
+
+
+VITDET_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "facebook/vit-det-base",
+ # See all ViTDet models at https://huggingface.co/models?filter=vitdet
+]
+
+
+class VitDetEmbeddings(nn.Module):
+ """
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
+ `hidden_states` (patch embeddings) to be consumed by a Transformer.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ image_size, patch_size = config.pretrain_image_size, config.patch_size
+ num_channels, hidden_size = config.num_channels, config.hidden_size
+
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.num_patches = num_patches
+
+ if config.use_absolute_position_embeddings:
+ # Initialize absolute positional embedding with pretrain image size.
+ num_positions = num_patches + 1
+ self.position_embeddings = nn.Parameter(torch.zeros(1, num_positions, config.hidden_size))
+ else:
+ self.position_embeddings = None
+
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
+
+ def get_absolute_positions(self, abs_pos_embeddings, has_cls_token, height, width):
+ """
+ Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token dimension for the
+ original embeddings.
+
+ Args:
+ abs_pos_embeddings (`torch.Tensor`):
+ Absolute positional embeddings with (1, num_position, num_channels).
+ has_cls_token (`bool`):
+ If true, has 1 embedding in abs_pos_embeddings for cls token.
+ height (`int`):
+ Height of input image tokens.
+ width (`int`):
+ Width of input image tokens.
+
+ Returns:
+ Absolute positional embeddings after processing with shape (1, height, width, num_channels)
+ """
+ if has_cls_token:
+ abs_pos_embeddings = abs_pos_embeddings[:, 1:]
+ num_position = abs_pos_embeddings.shape[1]
+ size = int(math.sqrt(num_position))
+ if size * size != num_position:
+ raise ValueError("Absolute position embeddings must be a square number.")
+
+ if size != height or size != width:
+ new_abs_pos_embeddings = nn.functional.interpolate(
+ abs_pos_embeddings.reshape(1, size, size, -1).permute(0, 3, 1, 2),
+ size=(height, width),
+ mode="bicubic",
+ align_corners=False,
+ )
+
+ return new_abs_pos_embeddings.permute(0, 2, 3, 1)
+ else:
+ return abs_pos_embeddings.reshape(1, height, width, -1)
+
+ def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
+ num_channels = pixel_values.shape[1]
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ f" Expected {self.num_channels} but got {num_channels}."
+ )
+ embeddings = self.projection(pixel_values)
+
+ if self.position_embeddings is not None:
+ # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
+ embeddings = embeddings.permute(0, 2, 3, 1)
+ # add position embeddings
+ embeddings = embeddings + self.get_absolute_positions(
+ self.position_embeddings, True, embeddings.shape[1], embeddings.shape[2]
+ )
+ # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
+ embeddings = embeddings.permute(0, 3, 1, 2)
+
+ return embeddings
+
+
+def get_rel_pos(q_size, k_size, rel_pos):
+ """
+ Get relative positional embeddings according to the relative positions of query and key sizes.
+
+ Args:
+ q_size (`int`):
+ Size of query q.
+ k_size (`int`):
+ Size of key k.
+ rel_pos (`torch.Tensor`):
+ Relative position embeddings (num_embeddings, num_channels).
+
+ Returns:
+ Extracted positional embeddings according to relative positions.
+ """
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
+ # Interpolate rel pos if needed.
+ if rel_pos.shape[0] != max_rel_dist:
+ # Interpolate rel position embeddings.
+ rel_pos_resized = nn.functional.interpolate(
+ rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
+ size=max_rel_dist,
+ mode="linear",
+ )
+ rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
+ else:
+ rel_pos_resized = rel_pos
+
+ # Scale the coords with short length if shapes for q and k are different.
+ q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
+ k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
+
+ return rel_pos_resized[relative_coords.long()]
+
+
+def add_decomposed_relative_positions(attn, queries, rel_pos_h, rel_pos_w, q_size, k_size):
+ """
+ Calculate decomposed Relative Positional Embeddings as introduced in
+ [MViT2](https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py).
+
+ Args:
+ attn (`torch.Tensor`):
+ Attention map.
+ queries (`torch.Tensor`):
+ Query q in the attention layer with shape (batch_size, queries_height * queries_width, num_channels).
+ rel_pos_h (`torch.Tensor`):
+ Relative position embeddings (Lh, num_channels) for height axis.
+ rel_pos_w (`torch.Tensor`):
+ Relative position embeddings (Lw, num_channels) for width axis.
+ q_size (`Tuple[int]`):
+ Spatial sequence size of query q with (queries_height, queries_width).
+ k_size (`Tuple[int]`]):
+ Spatial sequence size of key k with (keys_height, keys_width).
+
+ Returns:
+ attn (Tensor): attention map with added relative positional embeddings.
+ """
+ queries_height, queries_width = q_size
+ keys_height, keys_width = k_size
+ relative_height = get_rel_pos(queries_height, keys_height, rel_pos_h)
+ relative_width = get_rel_pos(queries_width, keys_width, rel_pos_w)
+
+ batch_size, _, dim = queries.shape
+ r_q = queries.reshape(batch_size, queries_height, queries_width, dim)
+ relative_height = torch.einsum("bhwc,hkc->bhwk", r_q, relative_height)
+ relative_weight = torch.einsum("bhwc,wkc->bhwk", r_q, relative_width)
+
+ attn = (
+ attn.view(batch_size, queries_height, queries_width, keys_height, keys_width)
+ + relative_height[:, :, :, :, None]
+ + relative_weight[:, :, :, None, :]
+ ).view(batch_size, queries_height * queries_width, keys_height * keys_width)
+
+ return attn
+
+
+class VitDetAttention(nn.Module):
+ """Multi-head Attention block with relative position embeddings."""
+
+ def __init__(self, config, input_size=None):
+ """
+ Args:
+ config (`VitDetConfig`):
+ Model configuration.
+ input_size (`Tuple[int]`, *optional*):
+ Input resolution, only required in case relative position embeddings are added.
+ """
+ super().__init__()
+
+ dim = config.hidden_size
+ num_heads = config.num_attention_heads
+
+ self.num_heads = num_heads
+ head_dim = dim // num_heads
+ self.scale = head_dim**-0.5
+
+ self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
+ self.proj = nn.Linear(dim, dim)
+
+ self.use_relative_position_embeddings = config.use_relative_position_embeddings
+ if self.use_relative_position_embeddings:
+ # initialize relative positional embeddings
+ self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
+ self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
+
+ def forward(self, hidden_state, output_attentions=False):
+ batch_size, height, width, _ = hidden_state.shape
+ # qkv with shape (3, batch_size, num_heads, height * width, num_channels)
+ qkv = self.qkv(hidden_state).reshape(batch_size, height * width, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
+ # queries, keys and values have shape (batch_size * num_heads, height * width, num_channels)
+ queries, keys, values = qkv.reshape(3, batch_size * self.num_heads, height * width, -1).unbind(0)
+
+ attention_scores = (queries * self.scale) @ keys.transpose(-2, -1)
+
+ if self.use_relative_position_embeddings:
+ attention_scores = add_decomposed_relative_positions(
+ attention_scores, queries, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
+ )
+
+ attention_probs = attention_scores.softmax(dim=-1)
+
+ hidden_state = attention_probs @ values
+ hidden_state = hidden_state.view(batch_size, self.num_heads, height, width, -1)
+ hidden_state = hidden_state.permute(0, 2, 3, 1, 4)
+ hidden_state = hidden_state.reshape(batch_size, height, width, -1)
+ hidden_state = self.proj(hidden_state)
+
+ if output_attentions:
+ attention_probs = attention_probs.reshape(
+ batch_size, self.num_heads, attention_probs.shape[-2], attention_probs.shape[-1]
+ )
+ outputs = (hidden_state, attention_probs)
+ else:
+ outputs = (hidden_state,)
+
+ return outputs
+
+
+# Copied from transformers.models.beit.modeling_beit.drop_path
+def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
+ """
+ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
+
+ Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
+ however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
+ layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
+ argument.
+ """
+ if drop_prob == 0.0 or not training:
+ return input
+ keep_prob = 1 - drop_prob
+ shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
+ random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
+ random_tensor.floor_() # binarize
+ output = input.div(keep_prob) * random_tensor
+ return output
+
+
+# Copied from transformers.models.beit.modeling_beit.BeitDropPath
+class VitDetDropPath(nn.Module):
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
+
+ def __init__(self, drop_prob: Optional[float] = None) -> None:
+ super().__init__()
+ self.drop_prob = drop_prob
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ return drop_path(hidden_states, self.drop_prob, self.training)
+
+ def extra_repr(self) -> str:
+ return "p={}".format(self.drop_prob)
+
+
+class VitDetLayerNorm(nn.Module):
+ """
+ A LayerNorm variant, popularized by Transformers, that performs point-wise mean and variance normalization over the
+ channel dimension for inputs that have shape (batch_size, channels, height, width).
+ https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119
+ """
+
+ def __init__(self, normalized_shape, eps=1e-6):
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(normalized_shape))
+ self.bias = nn.Parameter(torch.zeros(normalized_shape))
+ self.eps = eps
+ self.normalized_shape = (normalized_shape,)
+
+ def forward(self, x):
+ u = x.mean(1, keepdim=True)
+ s = (x - u).pow(2).mean(1, keepdim=True)
+ x = (x - u) / torch.sqrt(s + self.eps)
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
+ return x
+
+
+class VitDetResBottleneckBlock(nn.Module):
+ """
+ The standard bottleneck residual block without the last activation layer. It contains 3 conv layers with kernels
+ 1x1, 3x3, 1x1.
+ """
+
+ def __init__(self, config, in_channels, out_channels, bottleneck_channels):
+ """
+ Args:
+ config (`VitDetConfig`):
+ Model configuration.
+ in_channels (`int`):
+ Number of input channels.
+ out_channels (`int`):
+ Number of output channels.
+ bottleneck_channels (`int`):
+ Number of output channels for the 3x3 "bottleneck" conv layers.
+ """
+ super().__init__()
+ self.conv1 = nn.Conv2d(in_channels, bottleneck_channels, 1, bias=False)
+ self.norm1 = VitDetLayerNorm(bottleneck_channels)
+ self.act1 = ACT2FN[config.hidden_act]
+
+ self.conv2 = nn.Conv2d(bottleneck_channels, bottleneck_channels, 3, padding=1, bias=False)
+ self.norm2 = VitDetLayerNorm(bottleneck_channels)
+ self.act2 = ACT2FN[config.hidden_act]
+
+ self.conv3 = nn.Conv2d(bottleneck_channels, out_channels, 1, bias=False)
+ self.norm3 = VitDetLayerNorm(out_channels)
+
+ def forward(self, x):
+ out = x
+ for layer in self.children():
+ out = layer(out)
+
+ out = x + out
+ return out
+
+
+class VitDetMlp(nn.Module):
+ def __init__(self, config, in_features: int, hidden_features: int) -> None:
+ super().__init__()
+ self.fc1 = nn.Linear(in_features, hidden_features)
+ self.act = ACT2FN[config.hidden_act]
+ self.fc2 = nn.Linear(hidden_features, in_features)
+ self.drop = nn.Dropout(config.dropout_prob)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ x = self.fc1(x)
+ x = self.act(x)
+ x = self.drop(x)
+ x = self.fc2(x)
+ x = self.drop(x)
+
+ return x
+
+
+def window_partition(hidden_state, window_size):
+ """
+ Partition into non-overlapping windows with padding if needed.
+
+ Args:
+ hidden_state (`torch.Tensor`):
+ Input tokens with [batch_size, height, width, num_channels].
+ window_size (`int`):
+ Window size.
+
+ Returns:
+ `tuple(torch.FloatTensor)` comprising various elements:
+ - windows: windows after partition with [batch_size * num_windows, window_size, window_size, num_channels].
+ - (patch_height, patch_width): padded height and width before partition
+ """
+ batch_size, height, width, num_channels = hidden_state.shape
+
+ pad_height = (window_size - height % window_size) % window_size
+ pad_width = (window_size - width % window_size) % window_size
+ if pad_height > 0 or pad_width > 0:
+ hidden_state = nn.functional.pad(hidden_state, (0, 0, 0, pad_width, 0, pad_height))
+ patch_height, patch_width = height + pad_height, width + pad_width
+
+ hidden_state = hidden_state.view(
+ batch_size, patch_height // window_size, window_size, patch_width // window_size, window_size, num_channels
+ )
+ windows = hidden_state.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
+ return windows, (patch_height, patch_width)
+
+
+def window_unpartition(windows, window_size, pad_height_width, height_width):
+ """
+ Window unpartition into original sequences and removing padding.
+
+ Args:
+ windows (`torch.Tensor`):
+ Input tokens with [batch_size * num_windows, window_size, window_size, num_channels].
+ window_size (`int`):
+ Window size.
+ pad_height_width (`Tuple[int]`):
+ Padded height and width (patch_height, patch_width).
+ height_width (`Tuple[int]`):
+ Original height and width before padding.
+
+ Returns:
+ hidden_state: unpartitioned sequences with [batch_size, height, width, num_channels].
+ """
+ patch_height, patch_width = pad_height_width
+ height, width = height_width
+ batch_size = windows.shape[0] // (patch_height * patch_width // window_size // window_size)
+ hidden_state = windows.view(
+ batch_size, patch_height // window_size, patch_width // window_size, window_size, window_size, -1
+ )
+ hidden_state = hidden_state.permute(0, 1, 3, 2, 4, 5).contiguous().view(batch_size, patch_height, patch_width, -1)
+
+ if patch_height > height or patch_width > width:
+ hidden_state = hidden_state[:, :height, :width, :].contiguous()
+ return hidden_state
+
+
+class VitDetLayer(nn.Module):
+ """This corresponds to the Block class in the original implementation."""
+
+ def __init__(
+ self, config: VitDetConfig, drop_path_rate: float = 0, window_size: int = 0, use_residual_block: bool = False
+ ) -> None:
+ super().__init__()
+
+ dim = config.hidden_size
+ input_size = (config.image_size // config.patch_size, config.image_size // config.patch_size)
+
+ self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
+ self.attention = VitDetAttention(
+ config, input_size=input_size if window_size == 0 else (window_size, window_size)
+ )
+
+ self.drop_path = VitDetDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
+ self.norm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
+ self.mlp = VitDetMlp(config=config, in_features=dim, hidden_features=int(dim * config.mlp_ratio))
+
+ self.window_size = window_size
+
+ self.use_residual_block = use_residual_block
+ if self.use_residual_block:
+ # Use a residual block with bottleneck channel as dim // 2
+ self.residual = VitDetResBottleneckBlock(
+ config=config,
+ in_channels=dim,
+ out_channels=dim,
+ bottleneck_channels=dim // 2,
+ )
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ hidden_states = hidden_states.permute(0, 2, 3, 1)
+
+ shortcut = hidden_states
+
+ hidden_states = self.norm1(hidden_states)
+
+ # Window partition
+ if self.window_size > 0:
+ height, width = hidden_states.shape[1], hidden_states.shape[2]
+ hidden_states, pad_height_width = window_partition(hidden_states, self.window_size)
+
+ self_attention_outputs = self.attention(
+ hidden_states,
+ output_attentions=output_attentions,
+ )
+ hidden_states = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ # Reverse window partition
+ if self.window_size > 0:
+ hidden_states = window_unpartition(hidden_states, self.window_size, pad_height_width, (height, width))
+
+ # first residual connection
+ hidden_states = shortcut + self.drop_path(hidden_states)
+
+ hidden_states = hidden_states + self.drop_path(self.mlp(self.norm2(hidden_states)))
+
+ hidden_states = hidden_states.permute(0, 3, 1, 2)
+
+ if self.use_residual_block:
+ hidden_states = self.residual(hidden_states)
+
+ outputs = (hidden_states,) + outputs
+
+ return outputs
+
+
+class VitDetEncoder(nn.Module):
+ def __init__(self, config: VitDetConfig) -> None:
+ super().__init__()
+ self.config = config
+ depth = config.num_hidden_layers
+
+ # stochastic depth decay rule
+ drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, depth)]
+
+ layers = []
+ for i in range(depth):
+ layers.append(
+ VitDetLayer(
+ config,
+ drop_path_rate=drop_path_rate[i],
+ window_size=config.window_size if i in config.window_block_indices else 0,
+ use_residual_block=i in config.residual_block_indices,
+ )
+ )
+
+ self.layer = nn.ModuleList(layers)
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ) -> Union[tuple, BaseModelOutput]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ layer_head_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+def caffe2_msra_fill(module: nn.Module) -> None:
+ """
+ Initialize `module.weight` using the "MSRAFill" implemented in Caffe2. Also initializes `module.bias` to 0.
+
+ Source: https://detectron2.readthedocs.io/en/latest/_modules/fvcore/nn/weight_init.html.
+
+ Args:
+ module (torch.nn.Module): module to initialize.
+ """
+ nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
+ if module.bias is not None:
+ nn.init.constant_(module.bias, 0)
+
+
+class VitDetPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = VitDetConfig
+ base_model_prefix = "vitdet"
+ main_input_name = "pixel_values"
+ supports_gradient_checkpointing = True
+ _no_split_modules = []
+
+ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
+ """Initialize the weights"""
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
+ # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
+ # `trunc_normal_cpu` not implemented in `half` issues
+ module.weight.data = nn.init.trunc_normal_(
+ module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
+ ).to(module.weight.dtype)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+ elif isinstance(module, VitDetEmbeddings):
+ module.position_embeddings.data = nn.init.trunc_normal_(
+ module.position_embeddings.data.to(torch.float32),
+ mean=0.0,
+ std=self.config.initializer_range,
+ ).to(module.position_embeddings.dtype)
+
+ elif isinstance(module, VitDetAttention) and self.config.use_relative_position_embeddings:
+ module.rel_pos_h.data = nn.init.trunc_normal_(
+ module.rel_pos_h.data.to(torch.float32),
+ mean=0.0,
+ std=self.config.initializer_range,
+ )
+ module.rel_pos_w.data = nn.init.trunc_normal_(
+ module.rel_pos_w.data.to(torch.float32),
+ mean=0.0,
+ std=self.config.initializer_range,
+ )
+
+ elif isinstance(module, VitDetResBottleneckBlock):
+ for layer in [module.conv1, module.conv2, module.conv3]:
+ caffe2_msra_fill(layer)
+ for layer in [module.norm1, module.norm2]:
+ layer.weight.data.fill_(1.0)
+ layer.bias.data.zero_()
+ # zero init last norm layer.
+ module.norm3.weight.data.zero_()
+ module.norm3.bias.data.zero_()
+
+
+VITDET_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`VitDetConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+VITDET_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
+ for details.
+
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare VitDet Transformer model outputting raw hidden-states without any specific head on top.",
+ VITDET_START_DOCSTRING,
+)
+class VitDetModel(VitDetPreTrainedModel):
+ def __init__(self, config: VitDetConfig):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = VitDetEmbeddings(config)
+ self.encoder = VitDetEncoder(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self) -> VitDetEmbeddings:
+ return self.embeddings.projection
+
+ def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(VITDET_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ """
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import VitDetConfig, VitDetModel
+ >>> import torch
+
+ >>> config = VitDetConfig()
+ >>> model = VitDetModel(config)
+
+ >>> pixel_values = torch.randn(1, 3, 224, 224)
+
+ >>> with torch.no_grad():
+ ... outputs = model(pixel_values)
+
+ >>> last_hidden_states = outputs.last_hidden_state
+ >>> list(last_hidden_states.shape)
+ [1, 768, 14, 14]
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(pixel_values)
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return BaseModelOutput(
+ last_hidden_state=sequence_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ViTDet backbone, to be used with frameworks like Mask R-CNN.
+ """,
+ VITDET_START_DOCSTRING,
+)
+class VitDetBackbone(VitDetPreTrainedModel, BackboneMixin):
+ def __init__(self, config):
+ super().__init__(config)
+ super()._init_backbone(config)
+
+ self.embeddings = VitDetEmbeddings(config)
+ self.encoder = VitDetEncoder(config)
+ self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
+
+ # initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self) -> VitDetEmbeddings:
+ return self.embeddings.projection
+
+ @add_start_docstrings_to_model_forward(VITDET_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: torch.Tensor,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> BackboneOutput:
+ """
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import VitDetConfig, VitDetBackbone
+ >>> import torch
+
+ >>> config = VitDetConfig()
+ >>> model = VitDetBackbone(config)
+
+ >>> pixel_values = torch.randn(1, 3, 224, 224)
+
+ >>> with torch.no_grad():
+ ... outputs = model(pixel_values)
+
+ >>> feature_maps = outputs.feature_maps
+ >>> list(feature_maps[-1].shape)
+ [1, 768, 14, 14]
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+
+ embedding_output = self.embeddings(pixel_values)
+
+ outputs = self.encoder(
+ embedding_output,
+ output_hidden_states=True,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs.hidden_states if return_dict else outputs[1]
+
+ feature_maps = ()
+ for stage, hidden_state in zip(self.stage_names, hidden_states):
+ if stage in self.out_features:
+ feature_maps += (hidden_state,)
+
+ if not return_dict:
+ if output_hidden_states:
+ output = (feature_maps,) + outputs[1:]
+ else:
+ output = (feature_maps,) + outputs[2:]
+ return output
+
+ return BackboneOutput(
+ feature_maps=feature_maps,
+ hidden_states=outputs.hidden_states if output_hidden_states else None,
+ attentions=outputs.attentions,
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d80bf513a310c08f422b1541caa855ea1fa63ea8
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/convert_wavlm_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/convert_wavlm_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..19985d5e87c880ead8fa86580202fd82633281f4
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/convert_wavlm_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/convert_wavlm_original_s3prl_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/convert_wavlm_original_s3prl_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..31252e788270507fe4df7e53e99cae4ed9d83c26
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/convert_wavlm_original_s3prl_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/modeling_wavlm.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/modeling_wavlm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4bbaa8f9f85fb176fb1800850561f69deb3e8e00
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/wavlm/__pycache__/modeling_wavlm.cpython-310.pyc differ