diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/cache_utils.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/cache_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e53cb679b3fe0a6d6d336f989162d64598f655b7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/cache_utils.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/feature_extraction_utils.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/feature_extraction_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e128694b274c6b8ac07428a3141013726383926d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/feature_extraction_utils.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/image_processing_utils.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/image_processing_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..38e212ae43f189a3ba7ec953f3519714f74a5a40 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/image_processing_utils.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/image_utils.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/image_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7061212589e3defd7990ef8d48b3bcb5ba47bf65 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/image_utils.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/optimization.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/optimization.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..84ea97fd70cebe9437800ecfe29e6f75044c3b45 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/optimization.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/safetensors_conversion.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/safetensors_conversion.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ae867a76c8fa091983e1226632c4296256c78c7c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/safetensors_conversion.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/tokenization_utils_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/tokenization_utils_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a46666404675d2e70b5ee3803cb0e56a38157964 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/tokenization_utils_fast.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/trainer_pt_utils.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/trainer_pt_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7c38c158b7fe7d6c542cc3097a70078243733c75 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/trainer_pt_utils.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/data/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/data/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..1a8ef35ff439e48caf92dba731f7c551f6dcf285 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/data/__init__.py @@ -0,0 +1,44 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from .data_collator import ( + DataCollatorForLanguageModeling, + DataCollatorForPermutationLanguageModeling, + DataCollatorForSeq2Seq, + DataCollatorForSOP, + DataCollatorForTokenClassification, + DataCollatorForWholeWordMask, + DataCollatorWithPadding, + DefaultDataCollator, + default_data_collator, +) +from .metrics import glue_compute_metrics, xnli_compute_metrics +from .processors import ( + DataProcessor, + InputExample, + InputFeatures, + SingleSentenceClassificationProcessor, + SquadExample, + SquadFeatures, + SquadV1Processor, + SquadV2Processor, + glue_convert_examples_to_features, + glue_output_modes, + glue_processors, + glue_tasks_num_labels, + squad_convert_examples_to_features, + xnli_output_modes, + xnli_processors, + xnli_tasks_num_labels, +) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/data/data_collator.py b/llmeval-env/lib/python3.10/site-packages/transformers/data/data_collator.py new file mode 100644 index 0000000000000000000000000000000000000000..b81e1f17573c97d33547256271b2ae54d3856ab9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/data/data_collator.py @@ -0,0 +1,1568 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import random +import warnings +from collections.abc import Mapping +from dataclasses import dataclass +from random import randint +from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union + +import numpy as np + +from ..models.bert import BertTokenizer, BertTokenizerFast +from ..tokenization_utils_base import PreTrainedTokenizerBase +from ..utils import PaddingStrategy + + +InputDataClass = NewType("InputDataClass", Any) + +""" +A DataCollator is a function that takes a list of samples from a Dataset and collate them into a batch, as a dictionary +of PyTorch/TensorFlow tensors or NumPy arrays. +""" +DataCollator = NewType("DataCollator", Callable[[List[InputDataClass]], Dict[str, Any]]) + + +class DataCollatorMixin: + def __call__(self, features, return_tensors=None): + if return_tensors is None: + return_tensors = self.return_tensors + if return_tensors == "tf": + return self.tf_call(features) + elif return_tensors == "pt": + return self.torch_call(features) + elif return_tensors == "np": + return self.numpy_call(features) + else: + raise ValueError(f"Framework '{return_tensors}' not recognized!") + + +def pad_without_fast_tokenizer_warning(tokenizer, *pad_args, **pad_kwargs): + """ + Pads without triggering the warning about how using the pad function is sub-optimal when using a fast tokenizer. + """ + + # To avoid errors when using Feature extractors + if not hasattr(tokenizer, "deprecation_warnings"): + return tokenizer.pad(*pad_args, **pad_kwargs) + + # Save the state of the warning, then disable it + warning_state = tokenizer.deprecation_warnings.get("Asking-to-pad-a-fast-tokenizer", False) + tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True + + try: + padded = tokenizer.pad(*pad_args, **pad_kwargs) + finally: + # Restore the state of the warning. + tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = warning_state + + return padded + + +def default_data_collator(features: List[InputDataClass], return_tensors="pt") -> Dict[str, Any]: + """ + Very simple data collator that simply collates batches of dict-like objects and performs special handling for + potential keys named: + + - `label`: handles a single value (int or float) per object + - `label_ids`: handles a list of values per object + + Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs + to the model. See glue and ner for example of how it's useful. + """ + + # In this function we'll make the assumption that all `features` in the batch + # have the same attributes. + # So we will look at the first element as a proxy for what attributes exist + # on the whole batch. + + if return_tensors == "pt": + return torch_default_data_collator(features) + elif return_tensors == "tf": + return tf_default_data_collator(features) + elif return_tensors == "np": + return numpy_default_data_collator(features) + + +@dataclass +class DefaultDataCollator(DataCollatorMixin): + """ + Very simple data collator that simply collates batches of dict-like objects and performs special handling for + potential keys named: + + - `label`: handles a single value (int or float) per object + - `label_ids`: handles a list of values per object + + Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs + to the model. See glue and ner for example of how it's useful. + + This is an object (like other data collators) rather than a pure function like default_data_collator. This can be + helpful if you need to set a return_tensors value at initialization. + + Args: + return_tensors (`str`, *optional*, defaults to `"pt"`): + The type of Tensor to return. Allowable values are "np", "pt" and "tf". + """ + + return_tensors: str = "pt" + + def __call__(self, features: List[Dict[str, Any]], return_tensors=None) -> Dict[str, Any]: + if return_tensors is None: + return_tensors = self.return_tensors + return default_data_collator(features, return_tensors) + + +def torch_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]: + import torch + + if not isinstance(features[0], Mapping): + features = [vars(f) for f in features] + first = features[0] + batch = {} + + # Special handling for labels. + # Ensure that tensor is created with the correct type + # (it should be automatically the case, but let's make sure of it.) + if "label" in first and first["label"] is not None: + label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"] + dtype = torch.long if isinstance(label, int) else torch.float + batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype) + elif "label_ids" in first and first["label_ids"] is not None: + if isinstance(first["label_ids"], torch.Tensor): + batch["labels"] = torch.stack([f["label_ids"] for f in features]) + else: + dtype = torch.long if isinstance(first["label_ids"][0], int) else torch.float + batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype) + + # Handling of all other possible keys. + # Again, we will use the first element to figure out which key/values are not None for this model. + for k, v in first.items(): + if k not in ("label", "label_ids") and v is not None and not isinstance(v, str): + if isinstance(v, torch.Tensor): + batch[k] = torch.stack([f[k] for f in features]) + elif isinstance(v, np.ndarray): + batch[k] = torch.tensor(np.stack([f[k] for f in features])) + else: + batch[k] = torch.tensor([f[k] for f in features]) + + return batch + + +def tf_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]: + import tensorflow as tf + + if not isinstance(features[0], Mapping): + features = [vars(f) for f in features] + first = features[0] + batch = {} + + # Special handling for labels. + # Ensure that tensor is created with the correct type + # (it should be automatically the case, but let's make sure of it.) + if "label" in first and first["label"] is not None: + label_col_name = "label" + elif "label_ids" in first and first["label_ids"] is not None: + label_col_name = "label_ids" + elif "labels" in first and first["labels"] is not None: + label_col_name = "labels" + else: + label_col_name = None + if label_col_name is not None: + if isinstance(first[label_col_name], tf.Tensor): + dtype = tf.int64 if first[label_col_name].dtype.is_integer else tf.float32 + elif isinstance(first[label_col_name], np.ndarray) or isinstance(first[label_col_name], np.generic): + dtype = tf.int64 if np.issubdtype(first[label_col_name].dtype, np.integer) else tf.float32 + elif isinstance(first[label_col_name], (tuple, list)): + dtype = tf.int64 if isinstance(first[label_col_name][0], int) else tf.float32 + else: + dtype = tf.int64 if isinstance(first[label_col_name], int) else tf.float32 + batch["labels"] = tf.convert_to_tensor([f[label_col_name] for f in features], dtype=dtype) + # Handling of all other possible keys. + # Again, we will use the first element to figure out which key/values are not None for this model. + for k, v in first.items(): + if k not in ("label", "label_ids", "labels") and v is not None and not isinstance(v, str): + if isinstance(v, (tf.Tensor, np.ndarray)): + batch[k] = tf.stack([f[k] for f in features]) + else: + batch[k] = tf.convert_to_tensor([f[k] for f in features]) + + return batch + + +def numpy_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]: + if not isinstance(features[0], Mapping): + features = [vars(f) for f in features] + first = features[0] + batch = {} + + # Special handling for labels. + # Ensure that tensor is created with the correct type + # (it should be automatically the case, but let's make sure of it.) + if "label" in first and first["label"] is not None: + label = first["label"].item() if isinstance(first["label"], np.ndarray) else first["label"] + dtype = np.int64 if isinstance(label, int) else np.float32 + batch["labels"] = np.array([f["label"] for f in features], dtype=dtype) + elif "label_ids" in first and first["label_ids"] is not None: + if isinstance(first["label_ids"], np.ndarray): + batch["labels"] = np.stack([f["label_ids"] for f in features]) + else: + dtype = np.int64 if isinstance(first["label_ids"][0], int) else np.float32 + batch["labels"] = np.array([f["label_ids"] for f in features], dtype=dtype) + + # Handling of all other possible keys. + # Again, we will use the first element to figure out which key/values are not None for this model. + for k, v in first.items(): + if k not in ("label", "label_ids") and v is not None and not isinstance(v, str): + if isinstance(v, np.ndarray): + batch[k] = np.stack([f[k] for f in features]) + else: + batch[k] = np.array([f[k] for f in features]) + + return batch + + +@dataclass +class DataCollatorWithPadding: + """ + Data collator that will dynamically pad the inputs received. + + Args: + tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): + The tokenizer used for encoding the data. + padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): + Select a strategy to pad the returned sequences (according to the model's padding side and padding index) + among: + + - `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single + sequence is provided). + - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum + acceptable input length for the model if that argument is not provided. + - `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths). + max_length (`int`, *optional*): + Maximum length of the returned list and optionally padding length (see above). + pad_to_multiple_of (`int`, *optional*): + If set will pad the sequence to a multiple of the provided value. + + This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= + 7.5 (Volta). + return_tensors (`str`, *optional*, defaults to `"pt"`): + The type of Tensor to return. Allowable values are "np", "pt" and "tf". + """ + + tokenizer: PreTrainedTokenizerBase + padding: Union[bool, str, PaddingStrategy] = True + max_length: Optional[int] = None + pad_to_multiple_of: Optional[int] = None + return_tensors: str = "pt" + + def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]: + batch = pad_without_fast_tokenizer_warning( + self.tokenizer, + features, + padding=self.padding, + max_length=self.max_length, + pad_to_multiple_of=self.pad_to_multiple_of, + return_tensors=self.return_tensors, + ) + if "label" in batch: + batch["labels"] = batch["label"] + del batch["label"] + if "label_ids" in batch: + batch["labels"] = batch["label_ids"] + del batch["label_ids"] + return batch + + +@dataclass +class DataCollatorForTokenClassification(DataCollatorMixin): + """ + Data collator that will dynamically pad the inputs received, as well as the labels. + + Args: + tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): + The tokenizer used for encoding the data. + padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): + Select a strategy to pad the returned sequences (according to the model's padding side and padding index) + among: + + - `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single + sequence is provided). + - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum + acceptable input length for the model if that argument is not provided. + - `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths). + max_length (`int`, *optional*): + Maximum length of the returned list and optionally padding length (see above). + pad_to_multiple_of (`int`, *optional*): + If set will pad the sequence to a multiple of the provided value. + + This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= + 7.5 (Volta). + label_pad_token_id (`int`, *optional*, defaults to -100): + The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions). + return_tensors (`str`, *optional*, defaults to `"pt"`): + The type of Tensor to return. Allowable values are "np", "pt" and "tf". + """ + + tokenizer: PreTrainedTokenizerBase + padding: Union[bool, str, PaddingStrategy] = True + max_length: Optional[int] = None + pad_to_multiple_of: Optional[int] = None + label_pad_token_id: int = -100 + return_tensors: str = "pt" + + def torch_call(self, features): + import torch + + label_name = "label" if "label" in features[0].keys() else "labels" + labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None + + no_labels_features = [{k: v for k, v in feature.items() if k != label_name} for feature in features] + + batch = pad_without_fast_tokenizer_warning( + self.tokenizer, + no_labels_features, + padding=self.padding, + max_length=self.max_length, + pad_to_multiple_of=self.pad_to_multiple_of, + return_tensors="pt", + ) + + if labels is None: + return batch + + sequence_length = batch["input_ids"].shape[1] + padding_side = self.tokenizer.padding_side + + def to_list(tensor_or_iterable): + if isinstance(tensor_or_iterable, torch.Tensor): + return tensor_or_iterable.tolist() + return list(tensor_or_iterable) + + if padding_side == "right": + batch[label_name] = [ + to_list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels + ] + else: + batch[label_name] = [ + [self.label_pad_token_id] * (sequence_length - len(label)) + to_list(label) for label in labels + ] + + batch[label_name] = torch.tensor(batch[label_name], dtype=torch.int64) + return batch + + def tf_call(self, features): + import tensorflow as tf + + label_name = "label" if "label" in features[0].keys() else "labels" + labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None + batch = pad_without_fast_tokenizer_warning( + self.tokenizer, + features, + padding=self.padding, + max_length=self.max_length, + pad_to_multiple_of=self.pad_to_multiple_of, + # Conversion to tensors will fail if we have labels as they are not of the same length yet. + return_tensors="tf" if labels is None else None, + ) + + if labels is None: + return batch + + sequence_length = tf.convert_to_tensor(batch["input_ids"]).shape[1] + padding_side = self.tokenizer.padding_side + if padding_side == "right": + batch["labels"] = [ + list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels + ] + else: + batch["labels"] = [ + [self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels + ] + + batch = {k: tf.convert_to_tensor(v, dtype=tf.int64) for k, v in batch.items()} + return batch + + def numpy_call(self, features): + label_name = "label" if "label" in features[0].keys() else "labels" + labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None + batch = pad_without_fast_tokenizer_warning( + self.tokenizer, + features, + padding=self.padding, + max_length=self.max_length, + pad_to_multiple_of=self.pad_to_multiple_of, + # Conversion to tensors will fail if we have labels as they are not of the same length yet. + return_tensors="np" if labels is None else None, + ) + + if labels is None: + return batch + + sequence_length = np.array(batch["input_ids"]).shape[1] + padding_side = self.tokenizer.padding_side + if padding_side == "right": + batch["labels"] = [ + list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels + ] + else: + batch["labels"] = [ + [self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels + ] + + batch = {k: np.array(v, dtype=np.int64) for k, v in batch.items()} + return batch + + +def _torch_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None): + """Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary.""" + import torch + + # Tensorize if necessary. + if isinstance(examples[0], (list, tuple, np.ndarray)): + examples = [torch.tensor(e, dtype=torch.long) for e in examples] + + length_of_first = examples[0].size(0) + + # Check if padding is necessary. + + are_tensors_same_length = all(x.size(0) == length_of_first for x in examples) + if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0): + return torch.stack(examples, dim=0) + + # If yes, check if we have a `pad_token`. + if tokenizer._pad_token is None: + raise ValueError( + "You are attempting to pad samples but the tokenizer you are using" + f" ({tokenizer.__class__.__name__}) does not have a pad token." + ) + + # Creating the full tensor and filling it with our data. + max_length = max(x.size(0) for x in examples) + if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): + max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of + result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id) + for i, example in enumerate(examples): + if tokenizer.padding_side == "right": + result[i, : example.shape[0]] = example + else: + result[i, -example.shape[0] :] = example + return result + + +def _tf_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None): + import tensorflow as tf + + """Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary.""" + # Tensorize if necessary. + if isinstance(examples[0], (list, tuple)): + examples = [tf.convert_to_tensor(e, dtype=tf.int64) for e in examples] + + # Check if padding is necessary. + length_of_first = len(examples[0]) + are_tensors_same_length = all(len(x) == length_of_first for x in examples) + if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0): + return tf.stack(examples, axis=0) + + # If yes, check if we have a `pad_token`. + if tokenizer._pad_token is None: + raise ValueError( + "You are attempting to pad samples but the tokenizer you are using" + f" ({tokenizer.__class__.__name__}) does not have a pad token." + ) + + # Creating the full tensor and filling it with our data. + max_length = max(len(x) for x in examples) + if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): + max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of + # result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id) + result = [] + rank = tf.rank(examples[0]) + paddings = np.zeros((rank, 2), dtype=np.int32) + for example in examples: + if tokenizer.padding_side == "right": + paddings[0, 1] = max_length - len(example) + else: + paddings[0, 0] = max_length - len(example) + result.append(tf.pad(example, paddings, constant_values=tokenizer.pad_token_id)) + return tf.stack(result, axis=0) + + +def _numpy_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None): + """Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary.""" + # Tensorize if necessary. + if isinstance(examples[0], (list, tuple)): + examples = [np.array(e, dtype=np.int64) for e in examples] + + # Check if padding is necessary. + length_of_first = len(examples[0]) + are_tensors_same_length = all(len(x) == length_of_first for x in examples) + if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0): + return np.stack(examples, axis=0) + + # If yes, check if we have a `pad_token`. + if tokenizer._pad_token is None: + raise ValueError( + "You are attempting to pad samples but the tokenizer you are using" + f" ({tokenizer.__class__.__name__}) does not have a pad token." + ) + + # Creating the full tensor and filling it with our data. + max_length = max(len(x) for x in examples) + if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): + max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of + result = np.full(shape=(len(examples), max_length), fill_value=tokenizer.pad_token_id, dtype=examples[0].dtype) + for i, example in enumerate(examples): + if tokenizer.padding_side == "right": + result[i, : example.shape[0]] = example + else: + result[i, -example.shape[0] :] = example + return result + + +def tolist(x): + if isinstance(x, list): + return x + elif hasattr(x, "numpy"): # Checks for TF tensors without needing the import + x = x.numpy() + return x.tolist() + + +@dataclass +class DataCollatorForSeq2Seq: + """ + Data collator that will dynamically pad the inputs received, as well as the labels. + + Args: + tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): + The tokenizer used for encoding the data. + model ([`PreTrainedModel`], *optional*): + The model that is being trained. If set and has the *prepare_decoder_input_ids_from_labels*, use it to + prepare the *decoder_input_ids* + + This is useful when using *label_smoothing* to avoid calculating loss twice. + padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): + Select a strategy to pad the returned sequences (according to the model's padding side and padding index) + among: + + - `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single + sequence is provided). + - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum + acceptable input length for the model if that argument is not provided. + - `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths). + max_length (`int`, *optional*): + Maximum length of the returned list and optionally padding length (see above). + pad_to_multiple_of (`int`, *optional*): + If set will pad the sequence to a multiple of the provided value. + + This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= + 7.5 (Volta). + label_pad_token_id (`int`, *optional*, defaults to -100): + The id to use when padding the labels (-100 will be automatically ignored by PyTorch loss functions). + return_tensors (`str`, *optional*, defaults to `"pt"`): + The type of Tensor to return. Allowable values are "np", "pt" and "tf". + """ + + tokenizer: PreTrainedTokenizerBase + model: Optional[Any] = None + padding: Union[bool, str, PaddingStrategy] = True + max_length: Optional[int] = None + pad_to_multiple_of: Optional[int] = None + label_pad_token_id: int = -100 + return_tensors: str = "pt" + + def __call__(self, features, return_tensors=None): + if return_tensors is None: + return_tensors = self.return_tensors + labels = [feature["labels"] for feature in features] if "labels" in features[0].keys() else None + # We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the + # same length to return tensors. + if labels is not None: + max_label_length = max(len(l) for l in labels) + if self.pad_to_multiple_of is not None: + max_label_length = ( + (max_label_length + self.pad_to_multiple_of - 1) + // self.pad_to_multiple_of + * self.pad_to_multiple_of + ) + + padding_side = self.tokenizer.padding_side + for feature in features: + remainder = [self.label_pad_token_id] * (max_label_length - len(feature["labels"])) + if isinstance(feature["labels"], list): + feature["labels"] = ( + feature["labels"] + remainder if padding_side == "right" else remainder + feature["labels"] + ) + elif padding_side == "right": + feature["labels"] = np.concatenate([feature["labels"], remainder]).astype(np.int64) + else: + feature["labels"] = np.concatenate([remainder, feature["labels"]]).astype(np.int64) + + features = pad_without_fast_tokenizer_warning( + self.tokenizer, + features, + padding=self.padding, + max_length=self.max_length, + pad_to_multiple_of=self.pad_to_multiple_of, + return_tensors=return_tensors, + ) + + # prepare decoder_input_ids + if ( + labels is not None + and self.model is not None + and hasattr(self.model, "prepare_decoder_input_ids_from_labels") + ): + decoder_input_ids = self.model.prepare_decoder_input_ids_from_labels(labels=features["labels"]) + features["decoder_input_ids"] = decoder_input_ids + + return features + + +@dataclass +class DataCollatorForLanguageModeling(DataCollatorMixin): + """ + Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they + are not all of the same length. + + Args: + tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): + The tokenizer used for encoding the data. + mlm (`bool`, *optional*, defaults to `True`): + Whether or not to use masked language modeling. If set to `False`, the labels are the same as the inputs + with the padding tokens ignored (by setting them to -100). Otherwise, the labels are -100 for non-masked + tokens and the value to predict for the masked token. + mlm_probability (`float`, *optional*, defaults to 0.15): + The probability with which to (randomly) mask tokens in the input, when `mlm` is set to `True`. + pad_to_multiple_of (`int`, *optional*): + If set will pad the sequence to a multiple of the provided value. + return_tensors (`str`): + The type of Tensor to return. Allowable values are "np", "pt" and "tf". + + + + For best performance, this data collator should be used with a dataset having items that are dictionaries or + BatchEncoding, with the `"special_tokens_mask"` key, as returned by a [`PreTrainedTokenizer`] or a + [`PreTrainedTokenizerFast`] with the argument `return_special_tokens_mask=True`. + + """ + + tokenizer: PreTrainedTokenizerBase + mlm: bool = True + mlm_probability: float = 0.15 + pad_to_multiple_of: Optional[int] = None + tf_experimental_compile: bool = False + return_tensors: str = "pt" + + def __post_init__(self): + if self.mlm and self.tokenizer.mask_token is None: + raise ValueError( + "This tokenizer does not have a mask token which is necessary for masked language modeling. " + "You should pass `mlm=False` to train on causal language modeling instead." + ) + if self.tf_experimental_compile: + import tensorflow as tf + + self.tf_mask_tokens = tf.function(self.tf_mask_tokens, jit_compile=True) + + @staticmethod + def tf_bernoulli(shape, probability): + import tensorflow as tf + + prob_matrix = tf.fill(shape, probability) + return tf.cast(prob_matrix - tf.random.uniform(shape, 0, 1) >= 0, tf.bool) + + def tf_mask_tokens( + self, inputs: Any, vocab_size, mask_token_id, special_tokens_mask: Optional[Any] = None + ) -> Tuple[Any, Any]: + """ + Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. + """ + import tensorflow as tf + + mask_token_id = tf.cast(mask_token_id, inputs.dtype) + + input_shape = tf.shape(inputs) + # 1 for a special token, 0 for a normal token in the special tokens mask + # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`) + masked_indices = self.tf_bernoulli(input_shape, self.mlm_probability) & ~special_tokens_mask + # Replace unmasked indices with -100 in the labels since we only compute loss on masked tokens + labels = tf.where(masked_indices, inputs, -100) + + # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) + indices_replaced = self.tf_bernoulli(input_shape, 0.8) & masked_indices + + inputs = tf.where(indices_replaced, mask_token_id, inputs) + + # 10% of the time, we replace masked input tokens with random word + indices_random = self.tf_bernoulli(input_shape, 0.1) & masked_indices & ~indices_replaced + random_words = tf.random.uniform(input_shape, maxval=vocab_size, dtype=inputs.dtype) + + inputs = tf.where(indices_random, random_words, inputs) + + # The rest of the time (10% of the time) we keep the masked input tokens unchanged + return inputs, labels + + def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]: + import tensorflow as tf + + # Handle dict or lists with proper padding and conversion to tensor. + if isinstance(examples[0], Mapping): + batch = pad_without_fast_tokenizer_warning( + self.tokenizer, examples, return_tensors="tf", pad_to_multiple_of=self.pad_to_multiple_of + ) + else: + batch = { + "input_ids": _tf_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) + } + + # If special token mask has been preprocessed, pop it from the dict. + special_tokens_mask = batch.pop("special_tokens_mask", None) + if self.mlm: + if special_tokens_mask is None: + special_tokens_mask = [ + self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) + for val in batch["input_ids"].numpy().tolist() + ] + # Cannot directly create as bool + special_tokens_mask = tf.cast(tf.convert_to_tensor(special_tokens_mask, dtype=tf.int64), tf.bool) + else: + special_tokens_mask = tf.cast(special_tokens_mask, tf.bool) + batch["input_ids"], batch["labels"] = self.tf_mask_tokens( + tf.cast(batch["input_ids"], tf.int64), + special_tokens_mask=special_tokens_mask, + mask_token_id=self.tokenizer.mask_token_id, + vocab_size=len(self.tokenizer), + ) + else: + labels = batch["input_ids"] + if self.tokenizer.pad_token_id is not None: + # Replace self.tokenizer.pad_token_id with -100 + labels = tf.where(labels == self.tokenizer.pad_token_id, -100, labels) + else: + labels = tf.identity(labels) # Makes a copy, just in case + batch["labels"] = labels + return batch + + def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]: + # Handle dict or lists with proper padding and conversion to tensor. + if isinstance(examples[0], Mapping): + batch = pad_without_fast_tokenizer_warning( + self.tokenizer, examples, return_tensors="pt", pad_to_multiple_of=self.pad_to_multiple_of + ) + else: + batch = { + "input_ids": _torch_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) + } + + # If special token mask has been preprocessed, pop it from the dict. + special_tokens_mask = batch.pop("special_tokens_mask", None) + if self.mlm: + batch["input_ids"], batch["labels"] = self.torch_mask_tokens( + batch["input_ids"], special_tokens_mask=special_tokens_mask + ) + else: + labels = batch["input_ids"].clone() + if self.tokenizer.pad_token_id is not None: + labels[labels == self.tokenizer.pad_token_id] = -100 + batch["labels"] = labels + return batch + + def torch_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[Any, Any]: + """ + Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. + """ + import torch + + labels = inputs.clone() + # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`) + probability_matrix = torch.full(labels.shape, self.mlm_probability) + if special_tokens_mask is None: + special_tokens_mask = [ + self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() + ] + special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool) + else: + special_tokens_mask = special_tokens_mask.bool() + + probability_matrix.masked_fill_(special_tokens_mask, value=0.0) + masked_indices = torch.bernoulli(probability_matrix).bool() + labels[~masked_indices] = -100 # We only compute loss on masked tokens + + # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) + indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices + inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) + + # 10% of the time, we replace masked input tokens with random word + indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced + random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long) + inputs[indices_random] = random_words[indices_random] + + # The rest of the time (10% of the time) we keep the masked input tokens unchanged + return inputs, labels + + def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]: + # Handle dict or lists with proper padding and conversion to tensor. + if isinstance(examples[0], Mapping): + batch = pad_without_fast_tokenizer_warning( + self.tokenizer, examples, return_tensors="np", pad_to_multiple_of=self.pad_to_multiple_of + ) + else: + batch = { + "input_ids": _numpy_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) + } + + # If special token mask has been preprocessed, pop it from the dict. + special_tokens_mask = batch.pop("special_tokens_mask", None) + if self.mlm: + batch["input_ids"], batch["labels"] = self.numpy_mask_tokens( + batch["input_ids"], special_tokens_mask=special_tokens_mask + ) + else: + labels = np.copy(batch["input_ids"]) + if self.tokenizer.pad_token_id is not None: + labels[labels == self.tokenizer.pad_token_id] = -100 + batch["labels"] = labels + return batch + + def numpy_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[Any, Any]: + """ + Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. + """ + labels = np.copy(inputs) + # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`) + probability_matrix = np.full(labels.shape, self.mlm_probability) + if special_tokens_mask is None: + special_tokens_mask = [ + self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() + ] + special_tokens_mask = np.array(special_tokens_mask, dtype=bool) + else: + special_tokens_mask = special_tokens_mask.astype(bool) + + probability_matrix[special_tokens_mask] = 0 + # Numpy doesn't have bernoulli, so we use a binomial with 1 trial + masked_indices = np.random.binomial(1, probability_matrix, size=probability_matrix.shape).astype(bool) + labels[~masked_indices] = -100 # We only compute loss on masked tokens + + # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) + indices_replaced = np.random.binomial(1, 0.8, size=labels.shape).astype(bool) & masked_indices + inputs[indices_replaced] = self.tokenizer.mask_token_id + + # 10% of the time, we replace masked input tokens with random word + # indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced + indices_random = ( + np.random.binomial(1, 0.5, size=labels.shape).astype(bool) & masked_indices & ~indices_replaced + ) + random_words = np.random.randint( + low=0, high=len(self.tokenizer), size=np.count_nonzero(indices_random), dtype=np.int64 + ) + inputs[indices_random] = random_words + + # The rest of the time (10% of the time) we keep the masked input tokens unchanged + return inputs, labels + + +@dataclass +class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling): + """ + Data collator used for language modeling that masks entire words. + + - collates batches of tensors, honoring their tokenizer's pad_token + - preprocesses batches for masked language modeling + + + + This collator relies on details of the implementation of subword tokenization by [`BertTokenizer`], specifically + that subword tokens are prefixed with *##*. For tokenizers that do not adhere to this scheme, this collator will + produce an output that is roughly equivalent to [`.DataCollatorForLanguageModeling`]. + + """ + + def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]: + if isinstance(examples[0], Mapping): + input_ids = [e["input_ids"] for e in examples] + else: + input_ids = examples + examples = [{"input_ids": e} for e in examples] + + batch_input = _torch_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) + + mask_labels = [] + for e in examples: + ref_tokens = [] + for id in tolist(e["input_ids"]): + token = self.tokenizer._convert_id_to_token(id) + ref_tokens.append(token) + + # For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢] + if "chinese_ref" in e: + ref_pos = tolist(e["chinese_ref"]) + len_seq = len(e["input_ids"]) + for i in range(len_seq): + if i in ref_pos: + ref_tokens[i] = "##" + ref_tokens[i] + mask_labels.append(self._whole_word_mask(ref_tokens)) + batch_mask = _torch_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) + inputs, labels = self.torch_mask_tokens(batch_input, batch_mask) + return {"input_ids": inputs, "labels": labels} + + def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]: + import tensorflow as tf + + if isinstance(examples[0], Mapping): + input_ids = [e["input_ids"] for e in examples] + else: + input_ids = examples + examples = [{"input_ids": e} for e in examples] + + batch_input = _tf_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) + + mask_labels = [] + for e in examples: + ref_tokens = [] + for id in tolist(e["input_ids"]): + token = self.tokenizer._convert_id_to_token(id) + ref_tokens.append(token) + + # For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢] + if "chinese_ref" in e: + ref_pos = tolist(e["chinese_ref"]) + len_seq = len(e["input_ids"]) + for i in range(len_seq): + if i in ref_pos: + ref_tokens[i] = "##" + ref_tokens[i] + mask_labels.append(self._whole_word_mask(ref_tokens)) + batch_mask = _tf_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) + inputs, labels = self.tf_mask_tokens(tf.cast(batch_input, tf.int64), batch_mask) + return {"input_ids": inputs, "labels": labels} + + def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]: + if isinstance(examples[0], Mapping): + input_ids = [e["input_ids"] for e in examples] + else: + input_ids = examples + examples = [{"input_ids": e} for e in examples] + + batch_input = _numpy_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) + + mask_labels = [] + for e in examples: + ref_tokens = [] + for id in tolist(e["input_ids"]): + token = self.tokenizer._convert_id_to_token(id) + ref_tokens.append(token) + + # For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢] + if "chinese_ref" in e: + ref_pos = tolist(e["chinese_ref"]) + len_seq = len(e["input_ids"]) + for i in range(len_seq): + if i in ref_pos: + ref_tokens[i] = "##" + ref_tokens[i] + mask_labels.append(self._whole_word_mask(ref_tokens)) + batch_mask = _numpy_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) + inputs, labels = self.numpy_mask_tokens(batch_input, batch_mask) + return {"input_ids": inputs, "labels": labels} + + def _whole_word_mask(self, input_tokens: List[str], max_predictions=512): + """ + Get 0/1 labels for masked tokens with whole word mask proxy + """ + if not isinstance(self.tokenizer, (BertTokenizer, BertTokenizerFast)): + warnings.warn( + "DataCollatorForWholeWordMask is only suitable for BertTokenizer-like tokenizers. " + "Please refer to the documentation for more information." + ) + + cand_indexes = [] + for i, token in enumerate(input_tokens): + if token == "[CLS]" or token == "[SEP]": + continue + + if len(cand_indexes) >= 1 and token.startswith("##"): + cand_indexes[-1].append(i) + else: + cand_indexes.append([i]) + + random.shuffle(cand_indexes) + num_to_predict = min(max_predictions, max(1, int(round(len(input_tokens) * self.mlm_probability)))) + masked_lms = [] + covered_indexes = set() + for index_set in cand_indexes: + if len(masked_lms) >= num_to_predict: + break + # If adding a whole-word mask would exceed the maximum number of + # predictions, then just skip this candidate. + if len(masked_lms) + len(index_set) > num_to_predict: + continue + is_any_index_covered = False + for index in index_set: + if index in covered_indexes: + is_any_index_covered = True + break + if is_any_index_covered: + continue + for index in index_set: + covered_indexes.add(index) + masked_lms.append(index) + + if len(covered_indexes) != len(masked_lms): + raise ValueError("Length of covered_indexes is not equal to length of masked_lms.") + mask_labels = [1 if i in covered_indexes else 0 for i in range(len(input_tokens))] + return mask_labels + + def torch_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]: + """ + Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set + 'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref. + """ + import torch + + if self.tokenizer.mask_token is None: + raise ValueError( + "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the" + " --mlm flag if you want to use this tokenizer." + ) + labels = inputs.clone() + # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa) + + probability_matrix = mask_labels + + special_tokens_mask = [ + self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() + ] + probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0) + if self.tokenizer._pad_token is not None: + padding_mask = labels.eq(self.tokenizer.pad_token_id) + probability_matrix.masked_fill_(padding_mask, value=0.0) + + masked_indices = probability_matrix.bool() + labels[~masked_indices] = -100 # We only compute loss on masked tokens + + # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) + indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices + inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) + + # 10% of the time, we replace masked input tokens with random word + indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced + random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long) + inputs[indices_random] = random_words[indices_random] + + # The rest of the time (10% of the time) we keep the masked input tokens unchanged + return inputs, labels + + def tf_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]: + """ + Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set + 'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref. + """ + import tensorflow as tf + + input_shape = tf.shape(inputs) + if self.tokenizer.mask_token is None: + raise ValueError( + "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the" + " --mlm flag if you want to use this tokenizer." + ) + labels = tf.identity(inputs) + # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa) + + masked_indices = tf.cast(mask_labels, tf.bool) + + special_tokens_mask = [ + self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels + ] + masked_indices = masked_indices & ~tf.cast(special_tokens_mask, dtype=tf.bool) + if self.tokenizer._pad_token is not None: + padding_mask = inputs == self.tokenizer.pad_token_id + masked_indices = masked_indices & ~padding_mask + + # Replace unmasked indices with -100 in the labels since we only compute loss on masked tokens + labels = tf.where(masked_indices, inputs, -100) + + # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) + indices_replaced = self.tf_bernoulli(input_shape, 0.8) & masked_indices + + inputs = tf.where(indices_replaced, self.tokenizer.mask_token_id, inputs) + + # 10% of the time, we replace masked input tokens with random word + indices_random = self.tf_bernoulli(input_shape, 0.5) & masked_indices & ~indices_replaced + random_words = tf.random.uniform(input_shape, maxval=len(self.tokenizer), dtype=tf.int64) + inputs = tf.where(indices_random, random_words, inputs) + + # The rest of the time (10% of the time) we keep the masked input tokens unchanged + return inputs, labels + + def numpy_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]: + """ + Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set + 'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref. + """ + if self.tokenizer.mask_token is None: + raise ValueError( + "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the" + " --mlm flag if you want to use this tokenizer." + ) + labels = np.copy(inputs) + # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa) + + masked_indices = mask_labels.astype(bool) + + special_tokens_mask = [ + self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() + ] + masked_indices[np.array(special_tokens_mask, dtype=bool)] = 0 + if self.tokenizer._pad_token is not None: + padding_mask = labels == self.tokenizer.pad_token_id + masked_indices[padding_mask] = 0 + + labels[~masked_indices] = -100 # We only compute loss on masked tokens + + # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) + indices_replaced = np.random.binomial(1, 0.8, size=labels.shape).astype(bool) & masked_indices + inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) + + # 10% of the time, we replace masked input tokens with random word + # indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced + indices_random = ( + np.random.binomial(1, 0.5, size=labels.shape).astype(bool) & masked_indices & ~indices_replaced + ) + random_words = np.random.randint(low=0, high=len(self.tokenizer), size=labels.shape, dtype=np.int64) + inputs[indices_random] = random_words[indices_random] + + # The rest of the time (10% of the time) we keep the masked input tokens unchanged + return inputs, labels + + +@dataclass +class DataCollatorForSOP(DataCollatorForLanguageModeling): + """ + Data collator used for sentence order prediction task. + + - collates batches of tensors, honoring their tokenizer's pad_token + - preprocesses batches for both masked language modeling and sentence order prediction + """ + + def __init__(self, *args, **kwargs): + warnings.warn( + "DataCollatorForSOP is deprecated and will be removed in a future version, you can now use " + "DataCollatorForLanguageModeling instead.", + FutureWarning, + ) + + def __call__(self, examples: List[Dict[str, Any]]) -> Dict[str, Any]: + import torch + from torch.nn.utils.rnn import pad_sequence + + input_ids = [example["input_ids"] for example in examples] + input_ids = _torch_collate_batch(input_ids, self.tokenizer) + input_ids, labels, attention_mask = self.mask_tokens(input_ids) + + token_type_ids = [example["token_type_ids"] for example in examples] + # size of segment_ids varied because randomness, padding zero to the end as the original implementation + token_type_ids = pad_sequence(token_type_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) + + sop_label_list = [example["sentence_order_label"] for example in examples] + sentence_order_label = torch.stack(sop_label_list) + + return { + "input_ids": input_ids, + "labels": labels, + "attention_mask": attention_mask, + "token_type_ids": token_type_ids, + "sentence_order_label": sentence_order_label, + } + + def mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any]: + """ + Prepare masked tokens inputs/labels/attention_mask for masked language modeling: 80% MASK, 10% random, 10% + original. N-gram not applied yet. + """ + import torch + + if self.tokenizer.mask_token is None: + raise ValueError( + "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the" + " --mlm flag if you want to use this tokenizer." + ) + + labels = inputs.clone() + # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa) + probability_matrix = torch.full(labels.shape, self.mlm_probability) + special_tokens_mask = [ + self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() + ] + probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0) + if self.tokenizer._pad_token is not None: + padding_mask = labels.eq(self.tokenizer.pad_token_id) + probability_matrix.masked_fill_(padding_mask, value=0.0) + masked_indices = torch.bernoulli(probability_matrix).bool() + # probability be `1` (masked), however in albert model attention mask `0` means masked, revert the value + attention_mask = (~masked_indices).float() + if self.tokenizer._pad_token is not None: + attention_padding_mask = labels.eq(self.tokenizer.pad_token_id) + attention_mask.masked_fill_(attention_padding_mask, value=1.0) + labels[~masked_indices] = -100 # We only compute loss on masked tokens, -100 is default for CE compute + + # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) + indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices + inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) + + # 10% of the time, we replace masked input tokens with random word + indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced + random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long) + inputs[indices_random] = random_words[indices_random] + + # The rest of the time (10% of the time) we keep the masked input tokens unchanged + return inputs, labels, attention_mask + + +@dataclass +class DataCollatorForPermutationLanguageModeling(DataCollatorMixin): + """ + Data collator used for permutation language modeling. + + - collates batches of tensors, honoring their tokenizer's pad_token + - preprocesses batches for permutation language modeling with procedures specific to XLNet + """ + + tokenizer: PreTrainedTokenizerBase + plm_probability: float = 1 / 6 + max_span_length: int = 5 # maximum length of a span of masked tokens + return_tensors: str = "pt" + + def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]: + if isinstance(examples[0], Mapping): + examples = [e["input_ids"] for e in examples] + batch = _torch_collate_batch(examples, self.tokenizer) + inputs, perm_mask, target_mapping, labels = self.torch_mask_tokens(batch) + return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels} + + def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]: + if isinstance(examples[0], Mapping): + examples = [e["input_ids"] for e in examples] + batch = _tf_collate_batch(examples, self.tokenizer) + inputs, perm_mask, target_mapping, labels = self.tf_mask_tokens(batch) + return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels} + + def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]: + if isinstance(examples[0], Mapping): + examples = [e["input_ids"] for e in examples] + batch = _numpy_collate_batch(examples, self.tokenizer) + inputs, perm_mask, target_mapping, labels = self.numpy_mask_tokens(batch) + return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels} + + def torch_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]: + """ + The masked tokens to be predicted for a particular sequence are determined by the following algorithm: + + 0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far). + 1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked) + 2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be + masked + 3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - + span_length]` and mask tokens `start_index:start_index + span_length` + 4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the + sequence to be processed), repeat from Step 1. + """ + import torch + + if self.tokenizer.mask_token is None: + raise ValueError( + "This tokenizer does not have a mask token which is necessary for permutation language modeling." + " Please add a mask token if you want to use this tokenizer." + ) + + if inputs.size(1) % 2 != 0: + raise ValueError( + "This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see" + " relevant comments in source code for details." + ) + + labels = inputs.clone() + # Creating the mask and target_mapping tensors + masked_indices = torch.full(labels.shape, 0, dtype=torch.bool) + target_mapping = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32) + + for i in range(labels.size(0)): + # Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far). + cur_len = 0 + max_len = labels.size(1) + + while cur_len < max_len: + # Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked) + span_length = torch.randint(1, self.max_span_length + 1, (1,)).item() + # Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked + context_length = int(span_length / self.plm_probability) + # Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length` + start_index = cur_len + torch.randint(context_length - span_length + 1, (1,)).item() + masked_indices[i, start_index : start_index + span_length] = 1 + # Set `cur_len = cur_len + context_length` + cur_len += context_length + + # Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether, + # the i-th predict corresponds to the i-th token. + target_mapping[i] = torch.eye(labels.size(1)) + + special_tokens_mask = torch.tensor( + [self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()], + dtype=torch.bool, + ) + masked_indices.masked_fill_(special_tokens_mask, value=0.0) + if self.tokenizer._pad_token is not None: + padding_mask = labels.eq(self.tokenizer.pad_token_id) + masked_indices.masked_fill_(padding_mask, value=0.0) + + # Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc. + non_func_mask = ~(padding_mask | special_tokens_mask) + + inputs[masked_indices] = self.tokenizer.mask_token_id + labels[~masked_indices] = -100 # We only compute loss on masked tokens + + perm_mask = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32) + + for i in range(labels.size(0)): + # Generate permutation indices i.e. sample a random factorisation order for the sequence. This will + # determine which tokens a given token can attend to (encoded in `perm_mask`). + # Note: Length of token sequence being permuted has to be less than or equal to reused sequence length + # (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation, + # we assume that reused length is half of sequence length and permutation length is equal to reused length. + # This requires that the sequence length be even. + + # Create a linear factorisation order + perm_index = torch.arange(labels.size(1)) + # Split this into two halves, assuming that half the sequence is reused each time + perm_index = perm_index.reshape((-1, labels.size(1) // 2)).transpose(0, 1) + # Permute the two halves such that they do not cross over + perm_index = perm_index[torch.randperm(labels.size(1) // 2)] + # Flatten this out into the desired permuted factorisation order + perm_index = torch.flatten(perm_index.transpose(0, 1)) + # Set the permutation indices of non-masked (non-functional) tokens to the + # smallest index (-1) so that: + # (1) They can be seen by all other positions + # (2) They cannot see masked positions, so there won't be information leak + perm_index.masked_fill_(~masked_indices[i] & non_func_mask[i], -1) + # The logic for whether the i-th token can attend on the j-th token based on the factorisation order: + # 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token + # 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token + perm_mask[i] = ( + perm_index.reshape((labels.size(1), 1)) <= perm_index.reshape((1, labels.size(1))) + ) & masked_indices[i] + + return inputs.long(), perm_mask, target_mapping, labels.long() + + def tf_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]: + """ + The masked tokens to be predicted for a particular sequence are determined by the following algorithm: + + 0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far). + 1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked) + 2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be + masked + 3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - + span_length]` and mask tokens `start_index:start_index + span_length` + 4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the + sequence to be processed), repeat from Step 1. + """ + import tensorflow as tf + + if self.tokenizer.mask_token is None: + raise ValueError( + "This tokenizer does not have a mask token which is necessary for permutation language modeling." + " Please add a mask token if you want to use this tokenizer." + ) + + if tf.shape(inputs)[1] % 2 != 0: + raise ValueError( + "This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see" + " relevant comments in source code for details." + ) + + labels = tf.identity(inputs) + # Creating the mask and target_mapping tensors + masked_indices = np.full(labels.shape.as_list(), 0, dtype=bool) + labels_shape = tf.shape(labels) + target_mapping = np.zeros((labels_shape[0], labels_shape[1], labels_shape[1]), dtype=np.float32) + + for i in range(len(labels)): + # Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far). + cur_len = 0 + max_len = tf.shape(labels)[1] + + while cur_len < max_len: + # Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked) + span_length = randint(1, self.max_span_length + 1) + # Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked + context_length = int(span_length / self.plm_probability) + # Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length` + start_index = cur_len + randint(0, context_length - span_length + 1) + masked_indices[i, start_index : start_index + span_length] = 1 + # Set `cur_len = cur_len + context_length` + cur_len += context_length + + # Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether, + # the i-th predict corresponds to the i-th token. + target_mapping[i] = np.eye(labels_shape[1]) + masked_indices = tf.cast(tf.convert_to_tensor(masked_indices), dtype=tf.bool) + target_mapping = tf.convert_to_tensor(target_mapping) + special_tokens_mask = tf.convert_to_tensor( + [ + self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) + for val in labels.numpy().tolist() + ], + ) + special_tokens_mask = tf.cast(special_tokens_mask, dtype=tf.bool) + masked_indices = masked_indices & ~special_tokens_mask + if self.tokenizer._pad_token is not None: + padding_mask = labels == self.tokenizer.pad_token_id + masked_indices = masked_indices & ~padding_mask + + # Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc. + non_func_mask = ~(padding_mask | special_tokens_mask) + + inputs = tf.where(masked_indices, self.tokenizer.mask_token_id, inputs) + labels = tf.where(masked_indices, labels, -100) # We only compute loss on masked tokens + + perm_mask = [] + + for i in range(len(labels)): + # Generate permutation indices i.e. sample a random factorisation order for the sequence. This will + # determine which tokens a given token can attend to (encoded in `perm_mask`). + # Note: Length of token sequence being permuted has to be less than or equal to reused sequence length + # (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation, + # we assume that reused length is half of sequence length and permutation length is equal to reused length. + # This requires that the sequence length be even. + + # Create a linear factorisation order + # tf.range is the equivalent of torch.arange + perm_index = tf.range(labels_shape[1]) + # Split this into two halves, assuming that half the sequence is reused each time + perm_index = tf.transpose(tf.reshape(perm_index, (-1, labels_shape[1] // 2))) + # Permute the two halves such that they do not cross over + perm_index = tf.random.shuffle(perm_index) # Shuffles along the first dimension + # Flatten this out into the desired permuted factorisation order + perm_index = tf.reshape(tf.transpose(perm_index), (-1,)) + # Set the permutation indices of non-masked (non-functional) tokens to the + # smallest index (-1) so that: + # (1) They can be seen by all other positions + # (2) They cannot see masked positions, so there won't be information leak + perm_index = tf.where(~masked_indices[i] & non_func_mask[i], -1, perm_index) + # The logic for whether the i-th token can attend on the j-th token based on the factorisation order: + # 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token + # 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token + perm_mask.append( + (tf.reshape(perm_index, (labels_shape[1], 1)) <= tf.reshape(perm_index, (1, labels_shape[1]))) + & masked_indices[i] + ) + perm_mask = tf.stack(perm_mask, axis=0) + + return tf.cast(inputs, tf.int64), tf.cast(perm_mask, tf.float32), target_mapping, tf.cast(labels, tf.int64) + + def numpy_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]: + """ + The masked tokens to be predicted for a particular sequence are determined by the following algorithm: + + 0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far). + 1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked) + 2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be + masked + 3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - + span_length]` and mask tokens `start_index:start_index + span_length` + 4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the + sequence to be processed), repeat from Step 1. + """ + if self.tokenizer.mask_token is None: + raise ValueError( + "This tokenizer does not have a mask token which is necessary for permutation language modeling." + " Please add a mask token if you want to use this tokenizer." + ) + + if inputs.shape[1] % 2 != 0: + raise ValueError( + "This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see" + " relevant comments in source code for details." + ) + + labels = np.copy(inputs) + # Creating the mask and target_mapping tensors + masked_indices = np.full(labels.shape, 0, dtype=bool) + target_mapping = np.zeros((labels.shape[0], labels.shape[1], labels.shape[1]), dtype=np.float32) + + for i in range(labels.shape[0]): + # Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far). + cur_len = 0 + max_len = labels.shape[1] + + while cur_len < max_len: + # Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked) + span_length = randint(1, self.max_span_length + 1) + # Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked + context_length = int(span_length / self.plm_probability) + # Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length` + start_index = cur_len + randint(0, context_length - span_length + 1) + masked_indices[i, start_index : start_index + span_length] = 1 + # Set `cur_len = cur_len + context_length` + cur_len += context_length + + # Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether, + # the i-th predict corresponds to the i-th token. + target_mapping[i] = np.eye(labels.shape[1]) + + special_tokens_mask = np.array( + [self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()], + dtype=bool, + ) + masked_indices[special_tokens_mask] = 0 + if self.tokenizer._pad_token is not None: + padding_mask = labels == self.tokenizer.pad_token_id + masked_indices[padding_mask] = 0.0 + + # Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc. + non_func_mask = ~(padding_mask | special_tokens_mask) + + inputs[masked_indices] = self.tokenizer.mask_token_id + labels[~masked_indices] = -100 # We only compute loss on masked tokens + + perm_mask = np.zeros((labels.shape[0], labels.shape[1], labels.shape[1]), dtype=np.float32) + + for i in range(labels.shape[0]): + # Generate permutation indices i.e. sample a random factorisation order for the sequence. This will + # determine which tokens a given token can attend to (encoded in `perm_mask`). + # Note: Length of token sequence being permuted has to be less than or equal to reused sequence length + # (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation, + # we assume that reused length is half of sequence length and permutation length is equal to reused length. + # This requires that the sequence length be even. + + # Create a linear factorisation order + perm_index = np.arange(labels.shape[1]) + # Split this into two halves, assuming that half the sequence is reused each time + perm_index = perm_index.reshape((-1, labels.shape[1] // 2)).T + # Permute the two halves such that they do not cross over + np.random.shuffle(perm_index) + # Flatten this out into the desired permuted factorisation order + perm_index = perm_index.T.flatten() + # Set the permutation indices of non-masked (non-functional) tokens to the + # smallest index (-1) so that: + # (1) They can be seen by all other positions + # (2) They cannot see masked positions, so there won't be information leak + perm_index[~masked_indices[i] & non_func_mask[i]] = -1 + # The logic for whether the i-th token can attend on the j-th token based on the factorisation order: + # 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token + # 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token + perm_mask[i] = ( + perm_index.reshape((labels.shape[1], 1)) <= perm_index.reshape((1, labels.shape[1])) + ) & masked_indices[i] + + return inputs.astype(np.int64), perm_mask, target_mapping, labels.astype(np.int64) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/squad.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/squad.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b0f806d023093adc918c88e922cfc17e25cf8f3c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/squad.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/glue.py b/llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/glue.py new file mode 100644 index 0000000000000000000000000000000000000000..72df3bece21925d15748d53bd82def67bfdd82bb --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/glue.py @@ -0,0 +1,161 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import time +import warnings +from dataclasses import dataclass, field +from enum import Enum +from typing import List, Optional, Union + +import torch +from filelock import FileLock +from torch.utils.data import Dataset + +from ...tokenization_utils_base import PreTrainedTokenizerBase +from ...utils import logging +from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors +from ..processors.utils import InputFeatures + + +logger = logging.get_logger(__name__) + + +@dataclass +class GlueDataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + + Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command + line. + """ + + task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys())}) + data_dir: str = field( + metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} + ) + max_seq_length: int = field( + default=128, + metadata={ + "help": ( + "The maximum total input sequence length after tokenization. Sequences longer " + "than this will be truncated, sequences shorter will be padded." + ) + }, + ) + overwrite_cache: bool = field( + default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} + ) + + def __post_init__(self): + self.task_name = self.task_name.lower() + + +class Split(Enum): + train = "train" + dev = "dev" + test = "test" + + +class GlueDataset(Dataset): + """ + This will be superseded by a framework-agnostic approach soon. + """ + + args: GlueDataTrainingArguments + output_mode: str + features: List[InputFeatures] + + def __init__( + self, + args: GlueDataTrainingArguments, + tokenizer: PreTrainedTokenizerBase, + limit_length: Optional[int] = None, + mode: Union[str, Split] = Split.train, + cache_dir: Optional[str] = None, + ): + warnings.warn( + "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " + "library. You can have a look at this example script for pointers: " + "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py", + FutureWarning, + ) + self.args = args + self.processor = glue_processors[args.task_name]() + self.output_mode = glue_output_modes[args.task_name] + if isinstance(mode, str): + try: + mode = Split[mode] + except KeyError: + raise KeyError("mode is not a valid split name") + # Load data features from cache or dataset file + cached_features_file = os.path.join( + cache_dir if cache_dir is not None else args.data_dir, + f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}", + ) + label_list = self.processor.get_labels() + if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( + "RobertaTokenizer", + "RobertaTokenizerFast", + "XLMRobertaTokenizer", + "BartTokenizer", + "BartTokenizerFast", + ): + # HACK(label indices are swapped in RoBERTa pretrained model) + label_list[1], label_list[2] = label_list[2], label_list[1] + self.label_list = label_list + + # Make sure only the first process in distributed training processes the dataset, + # and the others will use the cache. + lock_path = cached_features_file + ".lock" + with FileLock(lock_path): + if os.path.exists(cached_features_file) and not args.overwrite_cache: + start = time.time() + self.features = torch.load(cached_features_file) + logger.info( + f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start + ) + else: + logger.info(f"Creating features from dataset file at {args.data_dir}") + + if mode == Split.dev: + examples = self.processor.get_dev_examples(args.data_dir) + elif mode == Split.test: + examples = self.processor.get_test_examples(args.data_dir) + else: + examples = self.processor.get_train_examples(args.data_dir) + if limit_length is not None: + examples = examples[:limit_length] + self.features = glue_convert_examples_to_features( + examples, + tokenizer, + max_length=args.max_seq_length, + label_list=label_list, + output_mode=self.output_mode, + ) + start = time.time() + torch.save(self.features, cached_features_file) + # ^ This seems to take a lot of time so I want to investigate why and how we can improve. + logger.info( + f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" + ) + + def __len__(self): + return len(self.features) + + def __getitem__(self, i) -> InputFeatures: + return self.features[i] + + def get_labels(self): + return self.label_list diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/language_modeling.py b/llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/language_modeling.py new file mode 100644 index 0000000000000000000000000000000000000000..6c23bf23cf14d4953a278dd3584093d0af084133 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/language_modeling.py @@ -0,0 +1,530 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import json +import os +import pickle +import random +import time +import warnings +from typing import Dict, List, Optional + +import torch +from filelock import FileLock +from torch.utils.data import Dataset + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +DEPRECATION_WARNING = ( + "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " + "library. You can have a look at this example script for pointers: {0}" +) + + +class TextDataset(Dataset): + """ + This will be superseded by a framework-agnostic approach soon. + """ + + def __init__( + self, + tokenizer: PreTrainedTokenizer, + file_path: str, + block_size: int, + overwrite_cache=False, + cache_dir: Optional[str] = None, + ): + warnings.warn( + DEPRECATION_WARNING.format( + "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" + ), + FutureWarning, + ) + if os.path.isfile(file_path) is False: + raise ValueError(f"Input file path {file_path} not found") + + block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False) + + directory, filename = os.path.split(file_path) + cached_features_file = os.path.join( + cache_dir if cache_dir is not None else directory, + f"cached_lm_{tokenizer.__class__.__name__}_{block_size}_{filename}", + ) + + # Make sure only the first process in distributed training processes the dataset, + # and the others will use the cache. + lock_path = cached_features_file + ".lock" + with FileLock(lock_path): + if os.path.exists(cached_features_file) and not overwrite_cache: + start = time.time() + with open(cached_features_file, "rb") as handle: + self.examples = pickle.load(handle) + logger.info( + f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start + ) + + else: + logger.info(f"Creating features from dataset file at {directory}") + + self.examples = [] + with open(file_path, encoding="utf-8") as f: + text = f.read() + + tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text)) + + for i in range(0, len(tokenized_text) - block_size + 1, block_size): # Truncate in block of block_size + self.examples.append( + tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size]) + ) + # Note that we are losing the last truncated example here for the sake of simplicity (no padding) + # If your dataset is small, first you should look for a bigger one :-) and second you + # can change this behavior by adding (model specific) padding. + + start = time.time() + with open(cached_features_file, "wb") as handle: + pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL) + logger.info( + f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" + ) + + def __len__(self): + return len(self.examples) + + def __getitem__(self, i) -> torch.Tensor: + return torch.tensor(self.examples[i], dtype=torch.long) + + +class LineByLineTextDataset(Dataset): + """ + This will be superseded by a framework-agnostic approach soon. + """ + + def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int): + warnings.warn( + DEPRECATION_WARNING.format( + "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" + ), + FutureWarning, + ) + if os.path.isfile(file_path) is False: + raise ValueError(f"Input file path {file_path} not found") + # Here, we do not cache the features, operating under the assumption + # that we will soon use fast multithreaded tokenizers from the + # `tokenizers` repo everywhere =) + logger.info(f"Creating features from dataset file at {file_path}") + + with open(file_path, encoding="utf-8") as f: + lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())] + + batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size) + self.examples = batch_encoding["input_ids"] + self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples] + + def __len__(self): + return len(self.examples) + + def __getitem__(self, i) -> Dict[str, torch.tensor]: + return self.examples[i] + + +class LineByLineWithRefDataset(Dataset): + """ + This will be superseded by a framework-agnostic approach soon. + """ + + def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str): + warnings.warn( + DEPRECATION_WARNING.format( + "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_wwm.py" + ), + FutureWarning, + ) + if os.path.isfile(file_path) is False: + raise ValueError(f"Input file path {file_path} not found") + if os.path.isfile(ref_path) is False: + raise ValueError(f"Ref file path {file_path} not found") + # Here, we do not cache the features, operating under the assumption + # that we will soon use fast multithreaded tokenizers from the + # `tokenizers` repo everywhere =) + logger.info(f"Creating features from dataset file at {file_path}") + logger.info(f"Use ref segment results at {ref_path}") + with open(file_path, encoding="utf-8") as f: + data = f.readlines() # use this method to avoid delimiter '\u2029' to split a line + data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] + # Get ref inf from file + with open(ref_path, encoding="utf-8") as f: + ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())] + if len(data) != len(ref): + raise ValueError( + f"Length of Input file should be equal to Ref file. But the length of {file_path} is {len(data)} " + f"while length of {ref_path} is {len(ref)}" + ) + + batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size) + self.examples = batch_encoding["input_ids"] + self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples] + + n = len(self.examples) + for i in range(n): + self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long) + + def __len__(self): + return len(self.examples) + + def __getitem__(self, i) -> Dict[str, torch.tensor]: + return self.examples[i] + + +class LineByLineWithSOPTextDataset(Dataset): + """ + Dataset for sentence order prediction task, prepare sentence pairs for SOP task + """ + + def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int): + warnings.warn( + DEPRECATION_WARNING.format( + "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" + ), + FutureWarning, + ) + if os.path.isdir(file_dir) is False: + raise ValueError(f"{file_dir} is not a directory") + logger.info(f"Creating features from dataset file folder at {file_dir}") + self.examples = [] + # TODO: randomness could apply a random seed, ex. rng = random.Random(random_seed) + # file path looks like ./dataset/wiki_1, ./dataset/wiki_2 + for file_name in os.listdir(file_dir): + file_path = os.path.join(file_dir, file_name) + if os.path.isfile(file_path) is False: + raise ValueError(f"{file_path} is not a file") + article_open = False + with open(file_path, encoding="utf-8") as f: + original_lines = f.readlines() + article_lines = [] + for line in original_lines: + if "" in line: + article_open = False + document = [ + tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line)) + for line in article_lines[1:] + if (len(line) > 0 and not line.isspace()) + ] + + examples = self.create_examples_from_document(document, block_size, tokenizer) + self.examples.extend(examples) + article_lines = [] + else: + if article_open: + article_lines.append(line) + + logger.info("Dataset parse finished.") + + def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1): + """Creates examples for a single document.""" + + # Account for special tokens + max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True) + + # We *usually* want to fill up the entire sequence since we are padding + # to `block_size` anyways, so short sequences are generally wasted + # computation. However, we *sometimes* + # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter + # sequences to minimize the mismatch between pretraining and fine-tuning. + # The `target_seq_length` is just a rough target however, whereas + # `block_size` is a hard limit. + target_seq_length = max_num_tokens + if random.random() < short_seq_prob: + target_seq_length = random.randint(2, max_num_tokens) + + # We DON'T just concatenate all of the tokens from a document into a long + # sequence and choose an arbitrary split point because this would make the + # next sentence prediction task too easy. Instead, we split the input into + # segments "A" and "B" based on the actual "sentences" provided by the user + # input. + examples = [] + current_chunk = [] # a buffer stored current working segments + current_length = 0 + i = 0 + while i < len(document): + segment = document[i] # get a segment + if not segment: + i += 1 + continue + current_chunk.append(segment) # add a segment to current chunk + current_length += len(segment) # overall token length + # if current length goes to the target length or reaches the end of file, start building token a and b + if i == len(document) - 1 or current_length >= target_seq_length: + if current_chunk: + # `a_end` is how many segments from `current_chunk` go into the `A` (first) sentence. + a_end = 1 + # if current chunk has more than 2 sentences, pick part of it `A` (first) sentence + if len(current_chunk) >= 2: + a_end = random.randint(1, len(current_chunk) - 1) + # token a + tokens_a = [] + for j in range(a_end): + tokens_a.extend(current_chunk[j]) + + # token b + tokens_b = [] + for j in range(a_end, len(current_chunk)): + tokens_b.extend(current_chunk[j]) + + if len(tokens_a) == 0 or len(tokens_b) == 0: + continue + + # switch tokens_a and tokens_b randomly + if random.random() < 0.5: + is_next = False + tokens_a, tokens_b = tokens_b, tokens_a + else: + is_next = True + + def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens): + """Truncates a pair of sequences to a maximum sequence length.""" + while True: + total_length = len(tokens_a) + len(tokens_b) + if total_length <= max_num_tokens: + break + trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b + if not (len(trunc_tokens) >= 1): + raise ValueError("Sequence length to be truncated must be no less than one") + # We want to sometimes truncate from the front and sometimes from the + # back to add more randomness and avoid biases. + if random.random() < 0.5: + del trunc_tokens[0] + else: + trunc_tokens.pop() + + truncate_seq_pair(tokens_a, tokens_b, max_num_tokens) + if not (len(tokens_a) >= 1): + raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1") + if not (len(tokens_b) >= 1): + raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1") + + # add special tokens + input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b) + # add token type ids, 0 for sentence a, 1 for sentence b + token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b) + + example = { + "input_ids": torch.tensor(input_ids, dtype=torch.long), + "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), + "sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long), + } + examples.append(example) + current_chunk = [] # clear current chunk + current_length = 0 # reset current text length + i += 1 # go to next line + return examples + + def __len__(self): + return len(self.examples) + + def __getitem__(self, i) -> Dict[str, torch.tensor]: + return self.examples[i] + + +class TextDatasetForNextSentencePrediction(Dataset): + """ + This will be superseded by a framework-agnostic approach soon. + """ + + def __init__( + self, + tokenizer: PreTrainedTokenizer, + file_path: str, + block_size: int, + overwrite_cache=False, + short_seq_probability=0.1, + nsp_probability=0.5, + ): + warnings.warn( + DEPRECATION_WARNING.format( + "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" + ), + FutureWarning, + ) + if not os.path.isfile(file_path): + raise ValueError(f"Input file path {file_path} not found") + + self.short_seq_probability = short_seq_probability + self.nsp_probability = nsp_probability + + directory, filename = os.path.split(file_path) + cached_features_file = os.path.join( + directory, + f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}", + ) + + self.tokenizer = tokenizer + + # Make sure only the first process in distributed training processes the dataset, + # and the others will use the cache. + lock_path = cached_features_file + ".lock" + + # Input file format: + # (1) One sentence per line. These should ideally be actual sentences, not + # entire paragraphs or arbitrary spans of text. (Because we use the + # sentence boundaries for the "next sentence prediction" task). + # (2) Blank lines between documents. Document boundaries are needed so + # that the "next sentence prediction" task doesn't span between documents. + # + # Example: + # I am very happy. + # Here is the second sentence. + # + # A new document. + + with FileLock(lock_path): + if os.path.exists(cached_features_file) and not overwrite_cache: + start = time.time() + with open(cached_features_file, "rb") as handle: + self.examples = pickle.load(handle) + logger.info( + f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start + ) + else: + logger.info(f"Creating features from dataset file at {directory}") + + self.documents = [[]] + with open(file_path, encoding="utf-8") as f: + while True: + line = f.readline() + if not line: + break + line = line.strip() + + # Empty lines are used as document delimiters + if not line and len(self.documents[-1]) != 0: + self.documents.append([]) + tokens = tokenizer.tokenize(line) + tokens = tokenizer.convert_tokens_to_ids(tokens) + if tokens: + self.documents[-1].append(tokens) + + logger.info(f"Creating examples from {len(self.documents)} documents.") + self.examples = [] + for doc_index, document in enumerate(self.documents): + self.create_examples_from_document(document, doc_index, block_size) + + start = time.time() + with open(cached_features_file, "wb") as handle: + pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL) + logger.info( + f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" + ) + + def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int): + """Creates examples for a single document.""" + + max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True) + + # We *usually* want to fill up the entire sequence since we are padding + # to `block_size` anyways, so short sequences are generally wasted + # computation. However, we *sometimes* + # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter + # sequences to minimize the mismatch between pretraining and fine-tuning. + # The `target_seq_length` is just a rough target however, whereas + # `block_size` is a hard limit. + target_seq_length = max_num_tokens + if random.random() < self.short_seq_probability: + target_seq_length = random.randint(2, max_num_tokens) + + current_chunk = [] # a buffer stored current working segments + current_length = 0 + i = 0 + + while i < len(document): + segment = document[i] + current_chunk.append(segment) + current_length += len(segment) + if i == len(document) - 1 or current_length >= target_seq_length: + if current_chunk: + # `a_end` is how many segments from `current_chunk` go into the `A` + # (first) sentence. + a_end = 1 + if len(current_chunk) >= 2: + a_end = random.randint(1, len(current_chunk) - 1) + + tokens_a = [] + for j in range(a_end): + tokens_a.extend(current_chunk[j]) + + tokens_b = [] + + if len(current_chunk) == 1 or random.random() < self.nsp_probability: + is_random_next = True + target_b_length = target_seq_length - len(tokens_a) + + # This should rarely go for more than one iteration for large + # corpora. However, just to be careful, we try to make sure that + # the random document is not the same as the document + # we're processing. + for _ in range(10): + random_document_index = random.randint(0, len(self.documents) - 1) + if random_document_index != doc_index: + break + + random_document = self.documents[random_document_index] + random_start = random.randint(0, len(random_document) - 1) + for j in range(random_start, len(random_document)): + tokens_b.extend(random_document[j]) + if len(tokens_b) >= target_b_length: + break + # We didn't actually use these segments so we "put them back" so + # they don't go to waste. + num_unused_segments = len(current_chunk) - a_end + i -= num_unused_segments + # Actual next + else: + is_random_next = False + for j in range(a_end, len(current_chunk)): + tokens_b.extend(current_chunk[j]) + + if not (len(tokens_a) >= 1): + raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1") + if not (len(tokens_b) >= 1): + raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1") + + # add special tokens + input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b) + # add token type ids, 0 for sentence a, 1 for sentence b + token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b) + + example = { + "input_ids": torch.tensor(input_ids, dtype=torch.long), + "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), + "next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long), + } + + self.examples.append(example) + + current_chunk = [] + current_length = 0 + + i += 1 + + def __len__(self): + return len(self.examples) + + def __getitem__(self, i): + return self.examples[i] diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/squad.py b/llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/squad.py new file mode 100644 index 0000000000000000000000000000000000000000..d81217d818afff5e297e6992d979847cf7c0f4cc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/squad.py @@ -0,0 +1,229 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import time +from dataclasses import dataclass, field +from enum import Enum +from typing import Dict, List, Optional, Union + +import torch +from filelock import FileLock +from torch.utils.data import Dataset + +from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging +from ..processors.squad import SquadFeatures, SquadV1Processor, SquadV2Processor, squad_convert_examples_to_features + + +logger = logging.get_logger(__name__) + +MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) +MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) + + +@dataclass +class SquadDataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + model_type: str = field( + default=None, metadata={"help": "Model type selected in the list: " + ", ".join(MODEL_TYPES)} + ) + data_dir: str = field( + default=None, metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} + ) + max_seq_length: int = field( + default=128, + metadata={ + "help": ( + "The maximum total input sequence length after tokenization. Sequences longer " + "than this will be truncated, sequences shorter will be padded." + ) + }, + ) + doc_stride: int = field( + default=128, + metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, + ) + max_query_length: int = field( + default=64, + metadata={ + "help": ( + "The maximum number of tokens for the question. Questions longer than this will " + "be truncated to this length." + ) + }, + ) + max_answer_length: int = field( + default=30, + metadata={ + "help": ( + "The maximum length of an answer that can be generated. This is needed because the start " + "and end predictions are not conditioned on one another." + ) + }, + ) + overwrite_cache: bool = field( + default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} + ) + version_2_with_negative: bool = field( + default=False, metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} + ) + null_score_diff_threshold: float = field( + default=0.0, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} + ) + n_best_size: int = field( + default=20, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} + ) + lang_id: int = field( + default=0, + metadata={ + "help": ( + "language id of input for language-specific xlm models (see" + " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" + ) + }, + ) + threads: int = field(default=1, metadata={"help": "multiple threads for converting example to features"}) + + +class Split(Enum): + train = "train" + dev = "dev" + + +class SquadDataset(Dataset): + """ + This will be superseded by a framework-agnostic approach soon. + """ + + args: SquadDataTrainingArguments + features: List[SquadFeatures] + mode: Split + is_language_sensitive: bool + + def __init__( + self, + args: SquadDataTrainingArguments, + tokenizer: PreTrainedTokenizer, + limit_length: Optional[int] = None, + mode: Union[str, Split] = Split.train, + is_language_sensitive: Optional[bool] = False, + cache_dir: Optional[str] = None, + dataset_format: Optional[str] = "pt", + ): + self.args = args + self.is_language_sensitive = is_language_sensitive + self.processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor() + if isinstance(mode, str): + try: + mode = Split[mode] + except KeyError: + raise KeyError("mode is not a valid split name") + self.mode = mode + # Load data features from cache or dataset file + version_tag = "v2" if args.version_2_with_negative else "v1" + cached_features_file = os.path.join( + cache_dir if cache_dir is not None else args.data_dir, + f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}", + ) + + # Make sure only the first process in distributed training processes the dataset, + # and the others will use the cache. + lock_path = cached_features_file + ".lock" + with FileLock(lock_path): + if os.path.exists(cached_features_file) and not args.overwrite_cache: + start = time.time() + self.old_features = torch.load(cached_features_file) + + # Legacy cache files have only features, while new cache files + # will have dataset and examples also. + self.features = self.old_features["features"] + self.dataset = self.old_features.get("dataset", None) + self.examples = self.old_features.get("examples", None) + logger.info( + f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start + ) + + if self.dataset is None or self.examples is None: + logger.warning( + f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" + " future run" + ) + else: + if mode == Split.dev: + self.examples = self.processor.get_dev_examples(args.data_dir) + else: + self.examples = self.processor.get_train_examples(args.data_dir) + + self.features, self.dataset = squad_convert_examples_to_features( + examples=self.examples, + tokenizer=tokenizer, + max_seq_length=args.max_seq_length, + doc_stride=args.doc_stride, + max_query_length=args.max_query_length, + is_training=mode == Split.train, + threads=args.threads, + return_dataset=dataset_format, + ) + + start = time.time() + torch.save( + {"features": self.features, "dataset": self.dataset, "examples": self.examples}, + cached_features_file, + ) + # ^ This seems to take a lot of time so I want to investigate why and how we can improve. + logger.info( + f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" + ) + + def __len__(self): + return len(self.features) + + def __getitem__(self, i) -> Dict[str, torch.Tensor]: + # Convert to Tensors and build dataset + feature = self.features[i] + + input_ids = torch.tensor(feature.input_ids, dtype=torch.long) + attention_mask = torch.tensor(feature.attention_mask, dtype=torch.long) + token_type_ids = torch.tensor(feature.token_type_ids, dtype=torch.long) + cls_index = torch.tensor(feature.cls_index, dtype=torch.long) + p_mask = torch.tensor(feature.p_mask, dtype=torch.float) + is_impossible = torch.tensor(feature.is_impossible, dtype=torch.float) + + inputs = { + "input_ids": input_ids, + "attention_mask": attention_mask, + "token_type_ids": token_type_ids, + } + + if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: + del inputs["token_type_ids"] + + if self.args.model_type in ["xlnet", "xlm"]: + inputs.update({"cls_index": cls_index, "p_mask": p_mask}) + if self.args.version_2_with_negative: + inputs.update({"is_impossible": is_impossible}) + if self.is_language_sensitive: + inputs.update({"langs": (torch.ones(input_ids.shape, dtype=torch.int64) * self.args.lang_id)}) + + if self.mode == Split.train: + start_positions = torch.tensor(feature.start_position, dtype=torch.long) + end_positions = torch.tensor(feature.end_position, dtype=torch.long) + inputs.update({"start_positions": start_positions, "end_positions": end_positions}) + + return inputs diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/kernels/deformable_detr/ms_deform_attn.h b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/deformable_detr/ms_deform_attn.h new file mode 100644 index 0000000000000000000000000000000000000000..119b1fa317d1e5fcfb61a4837e560e9248db05f3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/deformable_detr/ms_deform_attn.h @@ -0,0 +1,61 @@ +/*! +************************************************************************************************** +* Deformable DETR +* Copyright (c) 2020 SenseTime. All Rights Reserved. +* Licensed under the Apache License, Version 2.0 [see LICENSE for details] +************************************************************************************************** +* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 +************************************************************************************************** +*/ + +#pragma once + +#include "cpu/ms_deform_attn_cpu.h" + +#ifdef WITH_CUDA +#include "cuda/ms_deform_attn_cuda.h" +#endif + + +at::Tensor +ms_deform_attn_forward( + const at::Tensor &value, + const at::Tensor &spatial_shapes, + const at::Tensor &level_start_index, + const at::Tensor &sampling_loc, + const at::Tensor &attn_weight, + const int im2col_step) +{ + if (value.type().is_cuda()) + { +#ifdef WITH_CUDA + return ms_deform_attn_cuda_forward( + value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step); +#else + AT_ERROR("Not compiled with GPU support"); +#endif + } + AT_ERROR("Not implemented on the CPU"); +} + +std::vector +ms_deform_attn_backward( + const at::Tensor &value, + const at::Tensor &spatial_shapes, + const at::Tensor &level_start_index, + const at::Tensor &sampling_loc, + const at::Tensor &attn_weight, + const at::Tensor &grad_output, + const int im2col_step) +{ + if (value.type().is_cuda()) + { +#ifdef WITH_CUDA + return ms_deform_attn_cuda_backward( + value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step); +#else + AT_ERROR("Not compiled with GPU support"); +#endif + } + AT_ERROR("Not implemented on the CPU"); +} diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/kernels/deformable_detr/vision.cpp b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/deformable_detr/vision.cpp new file mode 100644 index 0000000000000000000000000000000000000000..6ce3875568b9ba8d660c90acc805077cca98f891 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/deformable_detr/vision.cpp @@ -0,0 +1,16 @@ +/*! +************************************************************************************************** +* Deformable DETR +* Copyright (c) 2020 SenseTime. All Rights Reserved. +* Licensed under the Apache License, Version 2.0 [see LICENSE for details] +************************************************************************************************** +* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 +************************************************************************************************** +*/ + +#include "ms_deform_attn.h" + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward"); + m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward"); +} \ No newline at end of file diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/kernels/rwkv/wkv_cuda_bf16.cu b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/rwkv/wkv_cuda_bf16.cu new file mode 100644 index 0000000000000000000000000000000000000000..042cb4aba1db98be5916aea1de86a7fed0b6510d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/rwkv/wkv_cuda_bf16.cu @@ -0,0 +1,186 @@ +#include +#include +#include "ATen/ATen.h" +#define MIN_VALUE (-1e38) +typedef at::BFloat16 bf16; + +__global__ void kernel_forward_bf16( + const int B, const int T, const int C, const float *__restrict__ const _w, const bf16 *__restrict__ const _u, + const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v, bf16 *__restrict__ const _y +) { + const int idx = blockIdx.x * blockDim.x + threadIdx.x; + const int _b = idx / C; + const int _c = idx % C; + const int _offset = _b * T * C + _c; + + float u = float(_u[_c]); + float w = _w[_c]; + const bf16 *__restrict__ const k = _k + _offset; + const bf16 *__restrict__ const v = _v + _offset; + bf16 *__restrict__ const y = _y + _offset; + + // aa and bb are running sums divided by exp(pp) (to avoid overflow) + float aa = 0, bb = 0, pp = MIN_VALUE; + for (int i = 0; i < T; i++) { + const int ii = i * C; + const float kk = float(k[ii]); + const float vv = float(v[ii]); + + float ww = u + kk; + float p = max(pp, ww); + float e1 = exp(pp - p); + float e2 = exp(ww - p); + y[ii] = bf16((e1 * aa + e2 * vv) / (e1 * bb + e2)); + + ww = w + pp; + p = max(ww, kk); + e1 = exp(ww - p); + e2 = exp(kk - p); + aa = e1 * aa + e2 * vv; + bb = e1 * bb + e2; + pp = p; + } +} + +__global__ void kernel_forward_with_state_bf16( + const int B, const int T, const int C, const float *__restrict__ const _w, const bf16 *__restrict__ const _u, + const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v, bf16 *__restrict__ const _y, + float *__restrict__ const _s +) { + const int idx = blockIdx.x * blockDim.x + threadIdx.x; + const int _b = idx / C; + const int _c = idx % C; + const int _offset_s = _b * C * 3 + _c * 3; + const int _offset = _b * T * C + _c; + + float u = float(_u[_c]); + float w = _w[_c]; + const bf16 *__restrict__ const k = _k + _offset; + const bf16 *__restrict__ const v = _v + _offset; + bf16 *__restrict__ const y = _y + _offset; + float *__restrict__ const s = _s + _offset_s; + + // aa and bb are running sums divided by exp(pp) (to avoid overflow) + float aa = s[0], bb = s[1], pp = s[2]; + for (int i = 0; i < T; i++) { + const int ii = i * C; + const float kk = float(k[ii]); + const float vv = float(v[ii]); + + float ww = u + kk; + float p = max(pp, ww); + float e1 = exp(pp - p); + float e2 = exp(ww - p); + y[ii] = bf16(e1 * aa + e2 * vv) / (e1 * bb + e2); + + ww = w + pp; + p = max(ww, kk); + e1 = exp(ww - p); + e2 = exp(kk - p); + aa = e1 * aa + e2 * vv; + bb = e1 * bb + e2; + pp = p; + } + s[0] = aa; + s[1] = bb; + s[2] = pp; +} + +__global__ void kernel_backward_bf16( + const int B, const int T, const int C, const float *__restrict__ const _w, const bf16 *__restrict__ const _u, + const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v, const bf16 *__restrict__ const _y, + const bf16 *__restrict__ const _gy, bf16 *__restrict__ const _gw, bf16 *__restrict__ const _gu, + bf16 *__restrict__ const _gk, bf16 *__restrict__ const _gv +) { + const int idx = blockIdx.x * blockDim.x + threadIdx.x; + const int _b = idx / C; + const int _c = idx % C; + const int _offset = _b * T * C + _c; + + float u = float(_u[_c]); + float w = _w[_c]; + const bf16 *__restrict__ const k = _k + _offset; + const bf16 *__restrict__ const v = _v + _offset; + const bf16 *__restrict__ const y = _y + _offset; + const bf16 *__restrict__ const gy = _gy + _offset; + bf16 *__restrict__ const gk = _gk + _offset; + bf16 *__restrict__ const gv = _gv + _offset; + + float q[Tmax], r[Tmax]; + + float gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE; + for (int i = 0; i < T; i++) { + const int ii = i * C; + const float kk = float(k[ii]); + const float vv = float(v[ii]); + const float yy = float(y[ii]); + + float ww = u + kk; + float p = max(pp, ww); + float e1 = exp(pp - p); + float e2 = exp(ww - p); + const float qq = float(gy[ii]) / (e1 * bb + e2); + gw += (ga - gb * yy) * e1 * qq; + gu += (vv - yy) * e2 * qq; + q[i] = qq; + r[i] = ww - p; + + ww = w + pp; + p = max(ww, kk); + e1 = exp(ww - p); + e2 = exp(kk - p); + ga = e1 * (aa + ga); + gb = e1 * (bb + gb); + aa = e1 * aa + e2 * vv; + bb = e1 * bb + e2; + pp = p; + } + const int _offsetBC = _b * C + _c; + _gw[_offsetBC] = bf16(gw * _w[_c]); // multiply by w because of w -> -exp(w) in python forward() + _gu[_offsetBC] = bf16(gu); + + aa = 0, bb = 0, pp = MIN_VALUE; + for (int i = T - 1; i >= 0; i--) { + const int ii = i * C; + const float kk = float(k[ii]); + const float vv = float(v[ii]); + const float yy = float(y[ii]); + const float qq = q[i]; + const float rr = r[i]; + + float e1 = qq * exp(rr); + float e2 = exp(kk + pp); + gk[ii] = bf16(e1 * (vv - yy) + e2 * (aa * vv + bb)); + gv[ii] = bf16(e1 + e2 * aa); + + const float ww = w + pp; + const float www = rr - u - kk; + const float p = max(ww, www); + e1 = exp(ww - p); + e2 = qq * exp(www - p); + aa = e1 * aa + e2; + bb = e1 * bb - e2 * yy; + pp = p; + } +} + +void cuda_forward_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y) { + dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance + assert(B * C % threadsPerBlock.x == 0); + dim3 numBlocks(B * C / threadsPerBlock.x); + kernel_forward_bf16<<>>(B, T, C, w, u, k, v, y); +} + +void cuda_forward_with_state_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, float *s) { + dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance + assert(B * C % threadsPerBlock.x == 0); + dim3 numBlocks(B * C / threadsPerBlock.x); + kernel_forward_with_state_bf16<<>>(B, T, C, w, u, k, v, y, s); +} + +void cuda_backward_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv) { + dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance + assert(B * C % threadsPerBlock.x == 0); + dim3 numBlocks(B * C / threadsPerBlock.x); + kernel_backward_bf16<<>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv); +} diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/kernels/rwkv/wkv_op.cpp b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/rwkv/wkv_op.cpp new file mode 100644 index 0000000000000000000000000000000000000000..55e7280665927b523a88021d5111daf28a63c905 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/rwkv/wkv_op.cpp @@ -0,0 +1,66 @@ +#include +#include "ATen/ATen.h" +typedef at::BFloat16 bf16; + +void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y); +void cuda_forward_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y); +void cuda_forward_with_state(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *s); +void cuda_forward_with_state_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, float *s); +void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv); +void cuda_backward_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv); + +void forward(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) { + const int B = k.size(0); + const int T = k.size(1); + const int C = k.size(2); + cuda_forward(B, T, C, w.data_ptr(), u.data_ptr(), k.data_ptr(), v.data_ptr(), y.data_ptr()); +} +void forward_bf16(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) { + const int B = k.size(0); + const int T = k.size(1); + const int C = k.size(2); + cuda_forward_bf16(B, T, C, w.data_ptr(), u.data_ptr(), k.data_ptr(), v.data_ptr(), y.data_ptr()); +} +void forward_with_state(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &s) { + const int B = k.size(0); + const int T = k.size(1); + const int C = k.size(2); + cuda_forward_with_state(B, T, C, w.data_ptr(), u.data_ptr(), k.data_ptr(), v.data_ptr(), y.data_ptr(), s.data_ptr()); +} +void forward_with_state_bf16(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &s) { + const int B = k.size(0); + const int T = k.size(1); + const int C = k.size(2); + cuda_forward_with_state_bf16(B, T, C, w.data_ptr(), u.data_ptr(), k.data_ptr(), v.data_ptr(), y.data_ptr(), s.data_ptr()); +} +void backward(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) { + const int B = k.size(0); + const int T = k.size(1); + const int C = k.size(2); + cuda_backward(B, T, C, w.data_ptr(), u.data_ptr(), k.data_ptr(), v.data_ptr(), y.data_ptr(), gy.data_ptr(), gw.data_ptr(), gu.data_ptr(), gk.data_ptr(), gv.data_ptr()); +} +void backward_bf16(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) { + const int B = k.size(0); + const int T = k.size(1); + const int C = k.size(2); + cuda_backward_bf16(B, T, C, w.data_ptr(), u.data_ptr(), k.data_ptr(), v.data_ptr(), y.data_ptr(), + gy.data_ptr(), gw.data_ptr(), gu.data_ptr(), gk.data_ptr(), gv.data_ptr()); +} + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def("forward", &forward, "wkv forward"); + m.def("forward_bf16", &forward_bf16, "wkv forward bf16"); + m.def("forward_with_state", &forward_with_state, "wkv forward with state"); + m.def("forward_with_state_bf16", &forward_with_state_bf16, "wkv forward with state bf16"); + m.def("backward", &backward, "wkv backward"); + m.def("backward_bf16", &backward_bf16, "wkv backward bf16"); +} + +TORCH_LIBRARY(wkv, m) { + m.def("forward", forward); + m.def("forward_bf16", forward_bf16); + m.def("forward_with_state", forward_with_state); + m.def("forward_with_state_bf16", forward_with_state_bf16); + m.def("backward", backward); + m.def("backward_bf16", backward_bf16); +} diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common.h b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common.h new file mode 100644 index 0000000000000000000000000000000000000000..e5085c88dd3ea9a12eec264a8c48946bf2b80b23 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common.h @@ -0,0 +1,10 @@ + +#define min(a, b) ((a)<(b)?(a):(b)) +#define max(a, b) ((a)>(b)?(a):(b)) +#define ceil_divide(a, b) ((a)/(b)+((a)%(b)!=0)) +#define select(cond, a, b) ((cond)?(a):(b)) +#define PI 3.141592 +#define EPSILON 1e-8 +#define MAX_VAL 1e12 +#define MIN_VAL -1e12 +#define EMPTY_VALUE -1 diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda.h b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda.h new file mode 100644 index 0000000000000000000000000000000000000000..97030870649a2fdac58cb26cf966e8f5c8cc7909 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda.h @@ -0,0 +1,9 @@ + +#define MAX_THREADS_PER_BLOCK 1024 +#define OPTIMAL_THREADS_PER_BLOCK 256 +#define WARP_SIZE 32 +#define MAX_NUM_BLOCK_X 2147483647 +#define MAX_NUM_BLOCK_Y 65535 +#define MAX_NUM_BLOCK_Z 65535 +#define MAX_SHARED_MEM_PER_BLOCK 48000 +#define FULL_MASK 0xffffffff diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda_device.h b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda_device.h new file mode 100644 index 0000000000000000000000000000000000000000..6674f93afdc25ab35c5d83881d00028bcf2989fc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda_device.h @@ -0,0 +1,79 @@ + +#include "common.h" + +template +__device__ int set_insert(T *set, int set_size, T value) { + int slot = value % set_size; + int start_slot = slot; + while (true) { + T prev = atomicCAS(&set[slot], EMPTY_VALUE, value); + if (prev == EMPTY_VALUE || prev == value) { + return slot; + } + slot = (slot + 1) % set_size; + if (slot == start_slot) { + return -1; + } + } + return -1; +} + +template +__device__ int set_lookup(T *set, int set_size, T value) { + int slot = value % set_size; + int start_slot = slot; + while (true) { + if (set[slot] == value) { + return slot; + } + slot = (slot + 1) % set_size; + if (slot == start_slot) { + return -1; + } + } + return -1; +} + +template +__device__ void init_buffer(T init_value, T *buffer, int buffer_size, int num_threads, int thread_id) { + __syncthreads(); + for (int i = 0; i < buffer_size; i = i + num_threads) { + int offset_idx = i + thread_id; + if (offset_idx < buffer_size) { + buffer[offset_idx] = init_value; + } + } + __syncthreads(); +} + +template +__device__ void copy_data(T *src_pt, T *dist_pt, int data_length, int num_threads, int thread_id) { + __syncthreads(); + for (int i = 0; i < data_length; i = i + num_threads) { + int offset_idx = i + thread_id; + if (offset_idx < data_length) { + dist_pt[offset_idx] = src_pt[offset_idx]; + } + } + __syncthreads(); +} + +template +__device__ void init_buffer_nonblocking(T init_value, T *buffer, int buffer_size, int num_threads, int thread_id) { + for (int i = 0; i < buffer_size; i = i + num_threads) { + int offset_idx = i + thread_id; + if (offset_idx < buffer_size) { + buffer[offset_idx] = init_value; + } + } +} + +template +__device__ void copy_data_nonblocking(T *src_pt, T *dist_pt, int data_length, int num_threads, int thread_id) { + for (int i = 0; i < data_length; i = i + num_threads) { + int offset_idx = i + thread_id; + if (offset_idx < data_length) { + dist_pt[offset_idx] = src_pt[offset_idx]; + } + } +} diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.cu b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.cu new file mode 100644 index 0000000000000000000000000000000000000000..c6b13e6cb5f53c9c62e51d2c399a14d14dab7037 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.cu @@ -0,0 +1,588 @@ +// File from https://github.com/mlpen/YOSO/blob/main/encoders/backbones/efficient_attentions/yoso/yoso_v1/cuda/fast_lsh_cumulation.cu + +#include +#include +#include "fast_lsh_cumulation.h" +#include "fast_lsh_cumulation_cuda.h" +#include "common_cuda.h" +#include "common.h" +#include +////////////////////////////////////////////////////////////////////////////////////////////////// +////////////////////////////////////////////////////////////////////////////////////////////////// + +std::vector fast_hash_ver1_kernel( + at::Tensor query_mask, + at::Tensor query_vector, + at::Tensor key_mask, + at::Tensor key_vector, + int num_hash_f, + int hash_code_len, + bool use_cuda +) { + + int batch_size = query_vector.size(0); + int num_query = query_vector.size(1); + int num_key = key_vector.size(1); + int vector_dim = query_vector.size(2); + + int num_hash_per_part = vector_dim / hash_code_len; + int num_part = max(1, ceil_divide(num_hash_f, num_hash_per_part)); + + at::Tensor Dmat = 2 * at::randint(0, 2, {batch_size, 3, num_part, vector_dim}, query_mask.options()) - 1; + at::Tensor query_hash_code = at::zeros({batch_size, num_query, num_hash_f}, query_mask.options()); + at::Tensor key_hash_code = at::zeros({batch_size, num_key, num_hash_f}, key_mask.options()); + + int *query_mask_ptr = query_mask.data_ptr(); + float *query_vector_ptr = query_vector.data_ptr(); + int *key_mask_ptr = key_mask.data_ptr(); + float *key_vector_ptr = key_vector.data_ptr(); + + int *Dmat_ptr = Dmat.data_ptr(); + + int *query_hash_code_ptr = query_hash_code.data_ptr(); + int *key_hash_code_ptr = key_hash_code.data_ptr(); + + if (use_cuda) { + { + dim3 threads(vector_dim); + dim3 blocks(num_part, num_query, batch_size); + int shared_mem = vector_dim * sizeof(float); + fast_hash_ver1_cuda_kernel<<>>( + query_mask_ptr, + query_vector_ptr, + Dmat_ptr, + query_hash_code_ptr, + batch_size, + num_query, + vector_dim, + num_part, + num_hash_f, + hash_code_len + ); + } + { + dim3 threads(vector_dim); + dim3 blocks(num_part, num_key, batch_size); + int shared_mem = vector_dim * sizeof(float); + fast_hash_ver1_cuda_kernel<<>>( + key_mask_ptr, + key_vector_ptr, + Dmat_ptr, + key_hash_code_ptr, + batch_size, + num_key, + vector_dim, + num_part, + num_hash_f, + hash_code_len + ); + } + } + + return {query_hash_code, key_hash_code}; + +} + +at::Tensor lsh_cumulation_ver1_kernel( + at::Tensor query_mask, + at::Tensor query_hash_code, + at::Tensor key_mask, + at::Tensor key_hash_code, + at::Tensor value, + int hashtable_capacity, + bool use_cuda +) { + + int batch_size = query_hash_code.size(0); + int num_hash_f = query_hash_code.size(2); + + int num_query = query_hash_code.size(1); + int num_key = key_hash_code.size(1); + int value_dim = value.size(2); + + at::Tensor hashtable_value = at::empty({batch_size, num_hash_f, hashtable_capacity, WARP_SIZE}, value.options()); + at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options()); + + if (use_cuda) { + int threads_x = WARP_SIZE; + int threads_y = OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE; + int block_x_step1 = num_key / threads_y; + int block_x_step2 = num_query / threads_y; + int block_y = batch_size; + + dim3 threads(threads_x, threads_y); + dim3 blocks_step1(block_x_step1, block_y); + dim3 blocks_step2(block_x_step2, block_y); + + int *query_mask_ptr = query_mask.data_ptr(); + int *query_hash_code_ptr = query_hash_code.data_ptr(); + int *key_mask_ptr = key_mask.data_ptr(); + int *key_hash_code_ptr = key_hash_code.data_ptr(); + float *value_ptr = value.data_ptr(); + float *hashtable_value_ptr = hashtable_value.data_ptr(); + float *cumulation_value_ptr = cumulation_value.data_ptr(); + + for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) { + + cudaMemset(hashtable_value_ptr, 0, (batch_size * num_hash_f * hashtable_capacity * WARP_SIZE) * sizeof(float)); + + lsh_cumulation_ver1_step1_cuda_kernel<<>>( + key_mask_ptr, + key_hash_code_ptr, + value_ptr, + hashtable_value_ptr, + batch_size, + num_hash_f, + hashtable_capacity, + num_key, + value_dim, + value_offset + ); + + lsh_cumulation_ver1_step2_cuda_kernel<<>>( + query_mask_ptr, + query_hash_code_ptr, + hashtable_value_ptr, + cumulation_value_ptr, + batch_size, + num_hash_f, + hashtable_capacity, + num_query, + value_dim, + value_offset + ); + } + + } + + return cumulation_value; + +} + +at::Tensor lsh_weighted_cumulation_ver1_kernel( + at::Tensor query_mask, + at::Tensor query_hash_code, + at::Tensor query_weight, + at::Tensor key_mask, + at::Tensor key_hash_code, + at::Tensor key_weight, + at::Tensor value, + int hashtable_capacity, + bool use_cuda +) { + + int batch_size = query_hash_code.size(0); + int num_hash_f = query_hash_code.size(2); + + int num_query = query_hash_code.size(1); + int num_key = key_hash_code.size(1); + int value_dim = value.size(2); + int weight_dim = query_weight.size(2); + + at::Tensor hashtable_value = at::zeros({batch_size, num_hash_f, hashtable_capacity, WARP_SIZE}, value.options()); + at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options()); + + if (use_cuda) { + int threads_x = WARP_SIZE; + int threads_y = OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE; + int block_x_step1 = num_key / threads_y; + int block_x_step2 = num_query / threads_y; + int block_y = batch_size; + + dim3 threads(threads_x, threads_y); + dim3 blocks_step1(block_x_step1, block_y); + dim3 blocks_step2(block_x_step2, block_y); + + int *query_mask_ptr = query_mask.data_ptr(); + int *query_hash_code_ptr = query_hash_code.data_ptr(); + float *query_weight_ptr = query_weight.data_ptr(); + int *key_mask_ptr = key_mask.data_ptr(); + int *key_hash_code_ptr = key_hash_code.data_ptr(); + float *key_weight_ptr = key_weight.data_ptr(); + float *value_ptr = value.data_ptr(); + float *hashtable_value_ptr = hashtable_value.data_ptr(); + float *cumulation_value_ptr = cumulation_value.data_ptr(); + + for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) { + for (int weight_idx = 0; weight_idx < weight_dim; weight_idx++) { + + cudaMemset(hashtable_value_ptr, 0, (batch_size * num_hash_f * hashtable_capacity * WARP_SIZE) * sizeof(float)); + + lsh_weighted_cumulation_ver1_step1_cuda_kernel<<>>( + key_mask_ptr, + key_hash_code_ptr, + key_weight_ptr, + value_ptr, + hashtable_value_ptr, + batch_size, + num_hash_f, + hashtable_capacity, + num_key, + value_dim, + weight_dim, + value_offset, + weight_idx + ); + + lsh_weighted_cumulation_ver1_step2_cuda_kernel<<>>( + query_mask_ptr, + query_hash_code_ptr, + query_weight_ptr, + hashtable_value_ptr, + cumulation_value_ptr, + batch_size, + num_hash_f, + hashtable_capacity, + num_query, + value_dim, + weight_dim, + value_offset, + weight_idx + ); + } + } + + } + + return cumulation_value; + +} + +at::Tensor lsh_weighted_cumulation_ver2_kernel( + at::Tensor query_mask, + at::Tensor query_hash_code, + at::Tensor query_weight, + at::Tensor key_mask, + at::Tensor key_hash_code, + at::Tensor key_weight, + at::Tensor value, + int hashtable_capacity, + bool use_cuda +) { + + int batch_size = query_hash_code.size(0); + int num_hash_f = query_hash_code.size(2); + + int num_query = query_hash_code.size(1); + int num_key = key_hash_code.size(1); + int value_dim = value.size(2); + int weight_dim = query_weight.size(2); + + at::Tensor count_sort_table = at::zeros({batch_size, num_hash_f, hashtable_capacity}, query_hash_code.options()); + at::Tensor key_sorted_idxes = at::zeros({batch_size, num_hash_f, num_key}, query_hash_code.options()); + at::Tensor query_info = at::zeros({batch_size, num_query, 2, num_hash_f}, query_hash_code.options()); + at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options()); + + if (use_cuda) { + + int *query_mask_ptr = query_mask.data_ptr(); + int *query_hash_code_ptr = query_hash_code.data_ptr(); + float *query_weight_ptr = query_weight.data_ptr(); + int *key_mask_ptr = key_mask.data_ptr(); + int *key_hash_code_ptr = key_hash_code.data_ptr(); + float *key_weight_ptr = key_weight.data_ptr(); + float *value_ptr = value.data_ptr(); + + int *count_sort_table_ptr = count_sort_table.data_ptr(); + int *key_sorted_idxes_ptr = key_sorted_idxes.data_ptr(); + int *query_info_ptr = query_info.data_ptr(); + + float *cumulation_value_ptr = cumulation_value.data_ptr(); + + { + dim3 threads_step13(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f)); + dim3 blocks_step13(num_key / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size); + dim3 threads_step2(min(hashtable_capacity, OPTIMAL_THREADS_PER_BLOCK)); + dim3 blocks_step2(num_hash_f, batch_size); + int shared_mem = hashtable_capacity * sizeof(float); + count_sort_step1_cuda_kernel<<>>( + key_mask_ptr, + key_hash_code_ptr, + count_sort_table_ptr, + batch_size, + num_hash_f, + hashtable_capacity, + num_key + ); + count_sort_step2_cuda_kernel<<>>( + count_sort_table_ptr, + batch_size, + num_hash_f, + hashtable_capacity + ); + count_sort_step3_cuda_kernel<<>>( + key_mask_ptr, + key_hash_code_ptr, + count_sort_table_ptr, + key_sorted_idxes_ptr, + batch_size, + num_hash_f, + hashtable_capacity, + num_key + ); + } + { + dim3 threads(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f)); + dim3 blocks(num_query / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size); + extract_query_info_cuda_kernel<<>>( + query_mask_ptr, + query_hash_code_ptr, + count_sort_table_ptr, + query_info_ptr, + batch_size, + num_hash_f, + hashtable_capacity, + num_query + ); + } + { + dim3 threads(WARP_SIZE, OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE); + dim3 blocks(num_query, num_hash_f, batch_size); + int shared_mem = (weight_dim + WARP_SIZE) * sizeof(float); + lsh_weighted_cumulation_ver2_step2_cuda_kernel<<>>( + query_mask_ptr, + query_info_ptr, + key_sorted_idxes_ptr, + query_weight_ptr, + key_weight_ptr, + value_ptr, + cumulation_value_ptr, + batch_size, + num_hash_f, + num_query, + num_key, + value_dim, + weight_dim + ); + } + } + + return cumulation_value; + +} + +at::Tensor lsh_weighted_cumulation_ver3_kernel( + at::Tensor query_mask, + at::Tensor query_hash_code, + at::Tensor query_weight, + at::Tensor key_mask, + at::Tensor key_hash_code, + at::Tensor key_weight, + at::Tensor value, + int hashtable_capacity, + bool use_cuda +) { + + int batch_size = query_hash_code.size(0); + int num_hash_f = query_hash_code.size(2); + + int num_query = query_hash_code.size(1); + int num_key = key_hash_code.size(1); + int value_dim = value.size(2); + int weight_dim = query_weight.size(2); + + at::Tensor count_sort_table = at::zeros({batch_size, num_hash_f, hashtable_capacity}, query_hash_code.options()); + at::Tensor query_sorted_idxes = at::zeros({batch_size, num_hash_f, num_query}, query_hash_code.options()); + at::Tensor key_info = at::zeros({batch_size, num_key, 2, num_hash_f}, query_hash_code.options()); + at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options()); + + if (use_cuda) { + + int *query_mask_ptr = query_mask.data_ptr(); + int *query_hash_code_ptr = query_hash_code.data_ptr(); + float *query_weight_ptr = query_weight.data_ptr(); + int *key_mask_ptr = key_mask.data_ptr(); + int *key_hash_code_ptr = key_hash_code.data_ptr(); + float *key_weight_ptr = key_weight.data_ptr(); + float *value_ptr = value.data_ptr(); + + int *count_sort_table_ptr = count_sort_table.data_ptr(); + int *query_sorted_idxes_ptr = query_sorted_idxes.data_ptr(); + int *key_info_ptr = key_info.data_ptr(); + + float *cumulation_value_ptr = cumulation_value.data_ptr(); + + { + dim3 threads_step13(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f)); + dim3 blocks_step13(num_query / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size); + dim3 threads_step2(min(hashtable_capacity, OPTIMAL_THREADS_PER_BLOCK)); + dim3 blocks_step2(num_hash_f, batch_size); + int shared_mem = hashtable_capacity * sizeof(float); + count_sort_step1_cuda_kernel<<>>( + query_mask_ptr, + query_hash_code_ptr, + count_sort_table_ptr, + batch_size, + num_hash_f, + hashtable_capacity, + num_query + ); + count_sort_step2_cuda_kernel<<>>( + count_sort_table_ptr, + batch_size, + num_hash_f, + hashtable_capacity + ); + count_sort_step3_cuda_kernel<<>>( + query_mask_ptr, + query_hash_code_ptr, + count_sort_table_ptr, + query_sorted_idxes_ptr, + batch_size, + num_hash_f, + hashtable_capacity, + num_query + ); + } + { + dim3 threads(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f)); + dim3 blocks(num_key / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size); + extract_query_info_cuda_kernel<<>>( + key_mask_ptr, + key_hash_code_ptr, + count_sort_table_ptr, + key_info_ptr, + batch_size, + num_hash_f, + hashtable_capacity, + num_key + ); + } + { + dim3 threads(WARP_SIZE, OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE); + dim3 blocks(num_key, num_hash_f, batch_size); + int shared_mem = (weight_dim + value_dim + WARP_SIZE) * sizeof(float); + lsh_weighted_cumulation_ver3_step2_cuda_kernel<<>>( + query_sorted_idxes_ptr, + key_mask_ptr, + key_info_ptr, + query_weight_ptr, + key_weight_ptr, + value_ptr, + cumulation_value_ptr, + batch_size, + num_hash_f, + num_query, + num_key, + value_dim, + weight_dim + ); + } + } + + return cumulation_value; + +} + +at::Tensor lsh_weighted_cumulation_ver4_kernel( + at::Tensor query_mask, + at::Tensor query_hash_code, + at::Tensor query_weight, + at::Tensor key_mask, + at::Tensor key_hash_code, + at::Tensor key_weight, + at::Tensor value, + int hashtable_capacity, + bool use_cuda +) { + + int batch_size = query_hash_code.size(0); + int num_hash_f = query_hash_code.size(2); + + int num_query = query_hash_code.size(1); + int num_key = key_hash_code.size(1); + int value_dim = value.size(2); + int weight_dim = query_weight.size(2); + + at::Tensor count_sort_table = at::zeros({batch_size, num_hash_f, hashtable_capacity}, query_hash_code.options()); + at::Tensor query_sorted_idxes = at::zeros({batch_size, num_hash_f, num_query}, query_hash_code.options()); + at::Tensor key_info = at::zeros({batch_size, num_key, 2, num_hash_f}, query_hash_code.options()); + at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options()); + + if (use_cuda) { + + int *query_mask_ptr = query_mask.data_ptr(); + int *query_hash_code_ptr = query_hash_code.data_ptr(); + float *query_weight_ptr = query_weight.data_ptr(); + int *key_mask_ptr = key_mask.data_ptr(); + int *key_hash_code_ptr = key_hash_code.data_ptr(); + float *key_weight_ptr = key_weight.data_ptr(); + float *value_ptr = value.data_ptr(); + + int *count_sort_table_ptr = count_sort_table.data_ptr(); + int *query_sorted_idxes_ptr = query_sorted_idxes.data_ptr(); + int *key_info_ptr = key_info.data_ptr(); + + float *cumulation_value_ptr = cumulation_value.data_ptr(); + + { + dim3 threads_step13(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f)); + dim3 blocks_step13(num_query / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size); + dim3 threads_step2(min(hashtable_capacity, OPTIMAL_THREADS_PER_BLOCK)); + dim3 blocks_step2(num_hash_f, batch_size); + int shared_mem = hashtable_capacity * sizeof(float); + count_sort_step1_cuda_kernel<<>>( + query_mask_ptr, + query_hash_code_ptr, + count_sort_table_ptr, + batch_size, + num_hash_f, + hashtable_capacity, + num_query + ); + count_sort_step2_cuda_kernel<<>>( + count_sort_table_ptr, + batch_size, + num_hash_f, + hashtable_capacity + ); + count_sort_step3_cuda_kernel<<>>( + query_mask_ptr, + query_hash_code_ptr, + count_sort_table_ptr, + query_sorted_idxes_ptr, + batch_size, + num_hash_f, + hashtable_capacity, + num_query + ); + } + { + dim3 threads(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f)); + dim3 blocks(num_key / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size); + extract_query_info_cuda_kernel<<>>( + key_mask_ptr, + key_hash_code_ptr, + count_sort_table_ptr, + key_info_ptr, + batch_size, + num_hash_f, + hashtable_capacity, + num_key + ); + } + { + dim3 threads(WARP_SIZE, OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE); + dim3 blocks(num_key, batch_size); + int shared_mem = (weight_dim + value_dim + 2 * num_hash_f) * sizeof(float); + lsh_weighted_cumulation_ver4_step2_cuda_kernel<<>>( + query_sorted_idxes_ptr, + key_mask_ptr, + key_info_ptr, + query_weight_ptr, + key_weight_ptr, + value_ptr, + cumulation_value_ptr, + batch_size, + num_hash_f, + num_query, + num_key, + value_dim, + weight_dim + ); + } + } + + return cumulation_value; + +} diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.h b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.h new file mode 100644 index 0000000000000000000000000000000000000000..dd48de0ed159f49ee3afe93b12aaae719fe87688 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.h @@ -0,0 +1,71 @@ +#include +#include +#include + +std::vector fast_hash_ver1_kernel( + at::Tensor query_mask, + at::Tensor query_vector, + at::Tensor key_mask, + at::Tensor key_vector, + int num_hash_f, + int hash_code_len, + bool use_cuda +); + +at::Tensor lsh_cumulation_ver1_kernel( + at::Tensor query_mask, + at::Tensor query_hash_code, + at::Tensor key_mask, + at::Tensor key_hash_code, + at::Tensor value, + int hashtable_capacity, + bool use_cuda +); + +at::Tensor lsh_weighted_cumulation_ver1_kernel( + at::Tensor query_mask, + at::Tensor query_hash_code, + at::Tensor query_weight, + at::Tensor key_mask, + at::Tensor key_hash_code, + at::Tensor key_weight, + at::Tensor value, + int hashtable_capacity, + bool use_cuda +); + +at::Tensor lsh_weighted_cumulation_ver2_kernel( + at::Tensor query_mask, + at::Tensor query_hash_code, + at::Tensor query_weight, + at::Tensor key_mask, + at::Tensor key_hash_code, + at::Tensor key_weight, + at::Tensor value, + int hashtable_capacity, + bool use_cuda +); + +at::Tensor lsh_weighted_cumulation_ver3_kernel( + at::Tensor query_mask, + at::Tensor query_hash_code, + at::Tensor query_weight, + at::Tensor key_mask, + at::Tensor key_hash_code, + at::Tensor key_weight, + at::Tensor value, + int hashtable_capacity, + bool use_cuda +); + +at::Tensor lsh_weighted_cumulation_ver4_kernel( + at::Tensor query_mask, + at::Tensor query_hash_code, + at::Tensor query_weight, + at::Tensor key_mask, + at::Tensor key_hash_code, + at::Tensor key_weight, + at::Tensor value, + int hashtable_capacity, + bool use_cuda +); diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_cuda.cu b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_cuda.cu new file mode 100644 index 0000000000000000000000000000000000000000..ebc6260dd6db3ecaf8cb7b35c3c1a6e1ab3851dc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_cuda.cu @@ -0,0 +1,825 @@ +// File from https://github.com/mlpen/YOSO/blob/main/encoders/backbones/efficient_attentions/yoso/yoso_v1/cuda/fast_lsh_cumulation_cuda.cu + +#include "fast_lsh_cumulation_cuda.h" +#include "common_cuda_device.h" +#include "common_cuda.h" +#include "common.h" +#include +////////////////////////////////////////////////////////////////////////////////////////////////// +////////////////////////////////////////////////////////////////////////////////////////////////// + +inline __device__ void fast_hadamard_transform(float *vector_buffer, int vector_dim, int dim_idx) { + int stride = vector_dim / 2; + while (stride > (WARP_SIZE / 2)) { + __syncthreads(); + int sign = 1 - ((dim_idx / stride) % 2) * 2; + float val1 = vector_buffer[dim_idx]; + float val2 = vector_buffer[dim_idx + sign * stride]; + __syncthreads(); + vector_buffer[dim_idx] = float(sign) * val1 + val2; + stride = stride / 2; + } + + float val = vector_buffer[dim_idx]; + #pragma unroll + for (stride = (WARP_SIZE / 2); stride > 0; stride = stride / 2) { + int sign = 1 - ((dim_idx / stride) % 2) * 2; + val = float(sign) * val + __shfl_xor_sync(FULL_MASK, val, stride); + } + vector_buffer[dim_idx] = val; +} + +__global__ void fast_hash_ver1_cuda_kernel( + int *mask, // [batch_size, num_vector] + float *vector, // [batch_size, num_vector, vector_dim] + int *Dmat, // [batch_size, 3, num_part, vector_dim] + int *hash_code, // [batch_size, num_vector, num_hash_f] + int batch_size, + int num_vector, + int vector_dim, + int num_part, + int num_hash_f, + int hash_code_len +) { + + int batch_idx = blockIdx.z; + int vector_idx = blockIdx.y; + int part_idx = blockIdx.x; + + int dim_idx = threadIdx.x; + + int batch_idx__vector_idx = batch_idx * num_vector + vector_idx; + if (mask[batch_idx__vector_idx] == 0) { + return; + } + + extern __shared__ float buffer[]; + float *vector_buffer = buffer; + + vector_buffer[dim_idx] = vector[batch_idx__vector_idx * vector_dim + dim_idx]; + + vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 0) * num_part + part_idx) * vector_dim + dim_idx]; + fast_hadamard_transform(vector_buffer, vector_dim, dim_idx); + vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 1) * num_part + part_idx) * vector_dim + dim_idx]; + fast_hadamard_transform(vector_buffer, vector_dim, dim_idx); + vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 2) * num_part + part_idx) * vector_dim + dim_idx]; + fast_hadamard_transform(vector_buffer, vector_dim, dim_idx); + + int num_hash_per_part = vector_dim / hash_code_len; + if (hash_code_len == 8 || hash_code_len == 16) { + int code = select(vector_buffer[dim_idx] > 0, 1 << (dim_idx % hash_code_len), 0); + for (int offset = 1; offset < hash_code_len; offset = offset * 2) { + code += __shfl_xor_sync(FULL_MASK, code, offset); + } + if (dim_idx % hash_code_len == 0) { + int hash_f_idx = part_idx * num_hash_per_part + dim_idx / hash_code_len; + if (hash_f_idx < num_hash_f) { + hash_code[batch_idx__vector_idx * num_hash_f + hash_f_idx] = code; + } + } + } else { + vector_buffer[dim_idx] = select(vector_buffer[dim_idx] > 0, 1 << (dim_idx % hash_code_len), 0); + __syncthreads(); + if (dim_idx < num_hash_per_part) { + int code = 0; + for (int i = 0; i < hash_code_len; i++) { + code += vector_buffer[dim_idx * hash_code_len + i]; + } + int hash_f_idx = part_idx * num_hash_per_part + dim_idx; + if (hash_f_idx < num_hash_f) { + hash_code[batch_idx__vector_idx * num_hash_f + hash_f_idx] = code; + } + } + } +} + +__global__ void lsh_cumulation_ver1_step1_cuda_kernel( + int *key_mask, // [batch_size, num_key] + int *key_hash_code, // [batch_size, num_key, num_hash_f] + float *value, // [batch_size, num_key, value_dim] + float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_key, + int value_dim, + int offset_warp +) { + + int warp_thread_idx = threadIdx.x; + + int batch_idx = blockIdx.y; + int key_idx = blockIdx.x * blockDim.y + threadIdx.y; + + int batch_idx__key_idx = batch_idx * num_key + key_idx; + if (key_mask[batch_idx__key_idx] == 0) { + return; + } + + if (num_hash_f > WARP_SIZE) { + float warp_value = value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx]; + for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) { + int warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_start + warp_thread_idx]; + #pragma unroll + for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) { + int current_hashcode = warp_hashcode; + current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset); + int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode; + atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value); + } + } + } else { + float warp_value = value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx]; + int warp_hashcode = 0; + if (warp_thread_idx < num_hash_f) { + warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + warp_thread_idx]; + } + for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) { + int current_hashcode = warp_hashcode; + current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx); + int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode; + atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value); + } + } + +} + +__global__ void lsh_cumulation_ver1_step2_cuda_kernel( + int *query_mask, // [batch_size, num_query] + int *query_hash_code, // [batch_size, num_query, num_hash_f] + float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE] + float *cumulation_value, // [batch_size, num_query, value_dim] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_query, + int value_dim, + int offset_warp +) { + + int warp_thread_idx = threadIdx.x; + + int batch_idx = blockIdx.y; + int query_idx = blockIdx.x * blockDim.y + threadIdx.y; + + int batch_idx__query_idx = batch_idx * num_query + query_idx; + if (query_mask[batch_idx__query_idx] == 0) { + return; + } + + if (num_hash_f > WARP_SIZE) { + float warp_value = 0; + for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) { + int warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_start + warp_thread_idx]; + #pragma unroll + for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) { + int current_hashcode = warp_hashcode; + current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset); + int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode; + warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx]; + } + } + cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] = warp_value / float(num_hash_f); + } else { + float warp_value = 0; + int warp_hashcode = 0; + if (warp_thread_idx < num_hash_f) { + warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + warp_thread_idx]; + } + for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) { + int current_hashcode = warp_hashcode; + current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx); + int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode; + warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx]; + } + cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] = warp_value / float(num_hash_f); + } + +} + +__global__ void lsh_weighted_cumulation_ver1_step1_cuda_kernel( + int *key_mask, // [batch_size, num_key] + int *key_hash_code, // [batch_size, num_key, num_hash_f] + float *key_weight, // [batch_size, num_key, weight_dim] + float *value, // [batch_size, num_key, value_dim] + float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_key, + int value_dim, + int weight_dim, + int offset_warp, + int weight_idx +) { + + int warp_thread_idx = threadIdx.x; + + int batch_idx = blockIdx.y; + int key_idx = blockIdx.x * blockDim.y + threadIdx.y; + + int batch_idx__key_idx = batch_idx * num_key + key_idx; + if (key_mask[batch_idx__key_idx] == 0) { + return; + } + + if (num_hash_f > WARP_SIZE) { + float warp_value = key_weight[batch_idx__key_idx * weight_dim + weight_idx] * value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx]; + for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) { + int warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_start + warp_thread_idx]; + #pragma unroll + for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) { + int current_hashcode = warp_hashcode; + current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset); + int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode; + atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value); + } + } + } else { + float warp_value = key_weight[batch_idx__key_idx * weight_dim + weight_idx] * value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx]; + int warp_hashcode = 0; + if (warp_thread_idx < num_hash_f) { + warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + warp_thread_idx]; + } + for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) { + int current_hashcode = warp_hashcode; + current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx); + int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode; + atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value); + } + } + +} + +__global__ void lsh_weighted_cumulation_ver1_step2_cuda_kernel( + int *query_mask, // [batch_size, num_query] + int *query_hash_code, // [batch_size, num_query, num_hash_f] + float *query_weight, // [batch_size, num_query, weight_dim] + float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE] + float *cumulation_value, // [batch_size, num_query, value_dim] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_query, + int value_dim, + int weight_dim, + int offset_warp, + int weight_idx +) { + + int warp_thread_idx = threadIdx.x; + + int batch_idx = blockIdx.y; + int query_idx = blockIdx.x * blockDim.y + threadIdx.y; + + int batch_idx__query_idx = batch_idx * num_query + query_idx; + if (query_mask[batch_idx__query_idx] == 0) { + return; + } + + if (num_hash_f > WARP_SIZE) { + float warp_value = 0; + for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) { + int warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_start + warp_thread_idx]; + #pragma unroll + for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) { + int current_hashcode = warp_hashcode; + current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset); + int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode; + warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx]; + } + } + float warp_weight = query_weight[batch_idx__query_idx * weight_dim + weight_idx]; + cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] += warp_weight * warp_value / float(num_hash_f); + } else { + float warp_value = 0; + int warp_hashcode = 0; + if (warp_thread_idx < num_hash_f) { + warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + warp_thread_idx]; + } + for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) { + int current_hashcode = warp_hashcode; + current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx); + int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode; + warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx]; + } + float warp_weight = query_weight[batch_idx__query_idx * weight_dim + weight_idx]; + cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] += warp_weight * warp_value / float(num_hash_f); + } + +} + +__global__ void count_sort_step1_cuda_kernel( + int *key_mask, // [batch_size, num_key] + int *key_hash_code, // [batch_size, num_key, num_hash_f] + int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_key +) { + + int batch_idx = blockIdx.y; + int key_idx = blockIdx.x * blockDim.y + threadIdx.y; + int hash_f_idx = threadIdx.x; + + int batch_idx__key_idx = batch_idx * num_key + key_idx; + if (key_mask[batch_idx__key_idx] == 0) { + return; + } + + int hash_code = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_idx]; + atomicAdd(&count_sort_table[(batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + hash_code], 1); + +} + +__global__ void count_sort_step2_cuda_kernel( + int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] + int batch_size, + int num_hash_f, + int hashtable_capacity +) { + + int batch_idx = blockIdx.y; + int hash_f_idx = blockIdx.x; + + int num_threads = blockDim.x; + int thread_id = threadIdx.x; + + int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx; + + extern __shared__ float buffer[]; + int *table_buffer = (int*)buffer; + + if (thread_id == 0) { + table_buffer[0] = 0; + } + copy_data(&count_sort_table[batch_idx__hash_f_idx * hashtable_capacity], &table_buffer[1], hashtable_capacity - 1, num_threads, thread_id); + + for (int table_idx_start = 0; table_idx_start < hashtable_capacity; table_idx_start = table_idx_start + num_threads) { + int thread_value = table_buffer[table_idx_start + thread_id]; + int next_thread_value = 0; + for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { + next_thread_value = __shfl_up_sync(FULL_MASK, thread_value, offset); + if (thread_id % WARP_SIZE >= offset) { + thread_value = thread_value + next_thread_value; + } + } + table_buffer[table_idx_start + thread_id] = thread_value; + } + __syncthreads(); + + if (hashtable_capacity > WARP_SIZE) { + if (thread_id < WARP_SIZE) { + for (int table_idx_start = WARP_SIZE; table_idx_start < hashtable_capacity; table_idx_start = table_idx_start + WARP_SIZE) { + table_buffer[table_idx_start + thread_id] += table_buffer[table_idx_start - 1]; + } + } + } + + copy_data(table_buffer, &count_sort_table[batch_idx__hash_f_idx * hashtable_capacity], hashtable_capacity, num_threads, thread_id); + +} + + +__global__ void count_sort_step3_cuda_kernel( + int *key_mask, // [batch_size, num_key] + int *key_hash_code, // [batch_size, num_key, num_hash_f] + int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] + int *key_sorted_idxes, // [batch_size, num_hash_f, num_key] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_key +) { + + int batch_idx = blockIdx.y; + int key_idx = blockIdx.x * blockDim.y + threadIdx.y; + int hash_f_idx = threadIdx.x; + + int batch_idx__key_idx = batch_idx * num_key + key_idx; + if (key_mask[batch_idx__key_idx] == 0) { + return; + } + + int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx; + + int hash_code = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_idx]; + int sort_idx = atomicAdd(&count_sort_table[batch_idx__hash_f_idx * hashtable_capacity + hash_code], 1); + key_sorted_idxes[batch_idx__hash_f_idx * num_key + sort_idx] = key_idx; + +} + +__global__ void extract_query_info_cuda_kernel( + int *query_mask, // [batch_size, num_query] + int *query_hash_code, // [batch_size, num_query, num_hash_f] + int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] + int *query_info, // [batch_size, num_query, 2, num_hash_f] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_query +) { + + int batch_idx = blockIdx.y; + int query_idx = blockIdx.x * blockDim.y + threadIdx.y; + int hash_f_idx = threadIdx.x; + + int batch_idx__query_idx = batch_idx * num_query + query_idx; + if (query_mask[batch_idx__query_idx] == 0) { + return; + } + + int hash_code = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_idx]; + int batch_idx__hash_f_idx__hash_code = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + hash_code; + + int key_offset = select(hash_code == 0, 0, count_sort_table[batch_idx__hash_f_idx__hash_code - 1]); + int key_count = count_sort_table[batch_idx__hash_f_idx__hash_code] - key_offset; + + query_info[batch_idx__query_idx * 2 * num_hash_f + hash_f_idx] = key_offset; + query_info[(batch_idx__query_idx * 2 + 1) * num_hash_f + hash_f_idx] = key_count; + +} + +__global__ void lsh_weighted_cumulation_ver2_step2_cuda_kernel( + int *query_mask, // [batch_size, num_query] + int *query_info, // [batch_size, num_query, 2, num_hash_f] + int *key_sorted_idxes, // [batch_size, num_hash_f, num_key] + float *query_weight, // [batch_size, num_query, weight_dim] + float *key_weight, // [batch_size, num_key, weight_dim] + float *value, // [batch_size, num_key, value_dim] + float *cumulation_value, // [batch_size, num_query, value_dim] + int batch_size, + int num_hash_f, + int num_query, + int num_key, + int value_dim, + int weight_dim +) { + + int batch_idx = blockIdx.z; + int hash_f_idx = blockIdx.y; + int query_idx = blockIdx.x; + + int num_threads = blockDim.y * blockDim.x; + int thread_id = threadIdx.y * blockDim.x + threadIdx.x; + + int num_warps = blockDim.y; + int warp_idx = threadIdx.y; + int warp_thread_idx = threadIdx.x; + + int batch_idx__query_idx = batch_idx * num_query + query_idx; + if (query_mask[batch_idx__query_idx] == 0) { + return; + } + + int key_offset = query_info[batch_idx__query_idx * 2 * num_hash_f + hash_f_idx]; + int key_count = query_info[(batch_idx__query_idx * 2 + 1) * num_hash_f + hash_f_idx]; + + if (key_count == 0) { + return; + } + + extern __shared__ float buffer[]; + + if (key_count == 1) { + if (warp_idx == 0) { + int key_idx = key_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_key + key_offset]; + int batch_idx__key_idx = batch_idx * num_key + key_idx; + float weight = 0; + for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) { + int weight_dim_idx = weight_offset + warp_thread_idx; + float val = query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx] * key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx]; + #pragma unroll + for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { + val += __shfl_xor_sync(FULL_MASK, val, offset); + } + weight = weight + val; + } + weight = weight / float(num_hash_f); + for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) { + int value_dim_idx = value_offset + warp_thread_idx; + float val = value[batch_idx__key_idx * value_dim + value_dim_idx]; + atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val); + } + } + } else { + float *weight_buffer = buffer; + int *key_idxes_buffer = (int*)&buffer[weight_dim]; + + copy_data_nonblocking(&query_weight[batch_idx__query_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id); + + while (key_count > 0) { + int work_size = min(WARP_SIZE, key_count); + copy_data_nonblocking(&key_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_key + key_offset], key_idxes_buffer, work_size, num_threads, thread_id); + __syncthreads(); + for (int work_offset = 0; work_offset < WARP_SIZE; work_offset = work_offset + num_warps) { + int work_idx = work_offset + warp_idx; + if (work_idx < key_count) { + int key_idx = key_idxes_buffer[work_idx]; + int batch_idx__key_idx = batch_idx * num_key + key_idx; + float weight = 0; + for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) { + int weight_dim_idx = weight_offset + warp_thread_idx; + float val = weight_buffer[weight_dim_idx] * key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx]; + #pragma unroll + for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { + val += __shfl_xor_sync(FULL_MASK, val, offset); + } + weight = weight + val; + } + weight = weight / float(num_hash_f); + for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) { + int value_dim_idx = value_offset + warp_thread_idx; + float val = value[batch_idx__key_idx * value_dim + value_dim_idx]; + atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val); + } + } + } + key_count = key_count - work_size; + key_offset = key_offset + work_size; + } + } + +} + +__global__ void lsh_weighted_cumulation_ver3_step2_cuda_kernel( + int *query_sorted_idxes, // [batch_size, num_hash_f, num_query] + int *key_mask, // [batch_size, num_key] + int *key_info, // [batch_size, num_key, 2, num_hash_f] + float *query_weight, // [batch_size, num_query, weight_dim] + float *key_weight, // [batch_size, num_key, weight_dim] + float *value, // [batch_size, num_key, value_dim] + float *cumulation_value, // [batch_size, num_query, value_dim] + int batch_size, + int num_hash_f, + int num_query, + int num_key, + int value_dim, + int weight_dim +) { + + int batch_idx = blockIdx.z; + int hash_f_idx = blockIdx.y; + int key_idx = blockIdx.x; + + int num_threads = blockDim.y * blockDim.x; + int thread_id = threadIdx.y * blockDim.x + threadIdx.x; + + int num_warps = blockDim.y; + int warp_idx = threadIdx.y; + int warp_thread_idx = threadIdx.x; + + int batch_idx__key_idx = batch_idx * num_key + key_idx; + if (key_mask[batch_idx__key_idx] == 0) { + return; + } + + int query_offset = key_info[batch_idx__key_idx * 2 * num_hash_f + hash_f_idx]; + int query_count = key_info[(batch_idx__key_idx * 2 + 1) * num_hash_f + hash_f_idx]; + + if (query_count == 0) { + return; + } + + extern __shared__ float buffer[]; + + if (query_count == 1) { + if (warp_idx == 0) { + int query_idx = query_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_query + query_offset]; + int batch_idx__query_idx = batch_idx * num_query + query_idx; + float weight = 0; + for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) { + int weight_dim_idx = weight_offset + warp_thread_idx; + float val = key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx]; + #pragma unroll + for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { + val += __shfl_xor_sync(FULL_MASK, val, offset); + } + weight = weight + val; + } + weight = weight / float(num_hash_f); + for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) { + int value_dim_idx = value_offset + warp_thread_idx; + float val = value[batch_idx__key_idx * value_dim + value_dim_idx]; + atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val); + } + } + } else { + float *weight_buffer = buffer; + float *value_buffer = &buffer[weight_dim]; + int *query_idxes_buffer = (int*)&buffer[weight_dim + value_dim]; + + copy_data_nonblocking(&key_weight[batch_idx__key_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id); + copy_data_nonblocking(&value[batch_idx__key_idx * value_dim], value_buffer, value_dim, num_threads, thread_id); + + while (query_count > 0) { + int work_size = min(WARP_SIZE, query_count); + copy_data_nonblocking(&query_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_query + query_offset], query_idxes_buffer, work_size, num_threads, thread_id); + __syncthreads(); + for (int work_offset = 0; work_offset < WARP_SIZE; work_offset = work_offset + num_warps) { + int work_idx = work_offset + warp_idx; + if (work_idx < query_count) { + int query_idx = query_idxes_buffer[work_idx]; + int batch_idx__query_idx = batch_idx * num_query + query_idx; + float weight = 0; + for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) { + int weight_dim_idx = weight_offset + warp_thread_idx; + float val = weight_buffer[weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx]; + #pragma unroll + for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { + val += __shfl_xor_sync(FULL_MASK, val, offset); + } + weight = weight + val; + } + weight = weight / float(num_hash_f); + for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) { + int value_dim_idx = value_offset + warp_thread_idx; + float val = value_buffer[value_dim_idx]; + atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val); + } + } + } + query_count = query_count - work_size; + query_offset = query_offset + work_size; + } + } + +} + +__global__ void lsh_weighted_cumulation_ver4_step2_cuda_kernel( + int *query_sorted_idxes, // [batch_size, num_hash_f, num_query] + int *key_mask, // [batch_size, num_key] + int *key_info, // [batch_size, num_key, 2, num_hash_f] + float *query_weight, // [batch_size, num_query, weight_dim] + float *key_weight, // [batch_size, num_key, weight_dim] + float *value, // [batch_size, num_key, value_dim] + float *cumulation_value, // [batch_size, num_query, value_dim] + int batch_size, + int num_hash_f, + int num_query, + int num_key, + int value_dim, + int weight_dim +) { + + int batch_idx = blockIdx.y; + int key_idx = blockIdx.x; + + int num_threads = blockDim.y * blockDim.x; + int thread_id = threadIdx.y * blockDim.x + threadIdx.x; + + int num_warps = blockDim.y; + int warp_idx = threadIdx.y; + int warp_thread_idx = threadIdx.x; + + int batch_idx__key_idx = batch_idx * num_key + key_idx; + if (key_mask[batch_idx__key_idx] == 0) { + return; + } + + extern __shared__ float buffer[]; + float *weight_buffer = buffer; + float *value_buffer = &buffer[weight_dim]; + int *key_info_buffer = (int*)&buffer[weight_dim + value_dim]; + + copy_data_nonblocking(&key_weight[batch_idx__key_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id); + copy_data_nonblocking(&value[batch_idx__key_idx * value_dim], value_buffer, value_dim, num_threads, thread_id); + copy_data_nonblocking(&key_info[batch_idx__key_idx * 2 * num_hash_f], key_info_buffer, 2 * num_hash_f, num_threads, thread_id); + + int *query_offset_buffer = key_info_buffer; + int *query_count_buffer = &key_info_buffer[num_hash_f]; + + const int hashtable_size = 1024 + OPTIMAL_THREADS_PER_BLOCK; + __shared__ int hashtable_query[hashtable_size]; + __shared__ int hashtable_count[hashtable_size]; + __shared__ int inserted_query[hashtable_size]; + __shared__ int query_counter[1]; + + int hash_f_idx_base = 0; + + while (true) { + + init_buffer_nonblocking(EMPTY_VALUE, hashtable_query, hashtable_size, num_threads, thread_id); + init_buffer_nonblocking(0, hashtable_count, hashtable_size, num_threads, thread_id); + init_buffer_nonblocking(EMPTY_VALUE, inserted_query, hashtable_size, num_threads, thread_id); + init_buffer_nonblocking(0, query_counter, 1, num_threads, thread_id); + __syncthreads(); + + while (hash_f_idx_base < num_hash_f) { + + int hash_f_idx = hash_f_idx_base + warp_idx; + int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx; + + int stop_flag = 0; + + int query_offset = query_offset_buffer[hash_f_idx]; + int query_count = query_count_buffer[hash_f_idx]; + + while (query_count > 0) { + + int work_size = min(query_count, WARP_SIZE); + + // try inserting query to set and check whether the query is new + int found_new_query = 0; + int query_idx = -1; + if (warp_thread_idx < work_size) { + query_idx = query_sorted_idxes[batch_idx__hash_f_idx * num_query + query_offset + warp_thread_idx]; + int slot = set_insert(hashtable_query, hashtable_size, query_idx); + if (slot >= 0) { + found_new_query = atomicAdd(&hashtable_count[slot], 1) == 0; + } + } + + // compute cumulative offset + int position_offset = found_new_query; + int next_position_offset = 0; + #pragma unroll + for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { + next_position_offset = __shfl_up_sync(FULL_MASK, position_offset, offset); + if (thread_id % WARP_SIZE >= offset) { + position_offset = position_offset + next_position_offset; + } + } + + // get the inserted query list end index + int inserted_query_base = 0; + if (thread_id % WARP_SIZE == WARP_SIZE - 1) { + inserted_query_base = atomicAdd(query_counter, position_offset); + } + inserted_query_base = __shfl_sync(FULL_MASK, inserted_query_base, WARP_SIZE - 1); + + // insert new queries to list + int insert_idx = inserted_query_base + position_offset - 1; + if (found_new_query) { + inserted_query[insert_idx] = query_idx; + } + + // remove inserted queries from list + query_offset_buffer[hash_f_idx] += work_size; + query_count_buffer[hash_f_idx] -= work_size; + query_offset += work_size; + query_count -= work_size; + + // if list is almost full, stop inserting + if (inserted_query_base + OPTIMAL_THREADS_PER_BLOCK > hashtable_size) { + stop_flag = 1; + break; + } + + } + + if (stop_flag) { + break; + } + + hash_f_idx_base = hash_f_idx_base + num_warps; + + } + + __syncthreads(); + + int num_distint_query = query_counter[0]; + + if (num_distint_query > 0) { + for (int idx_base = 0; idx_base < num_distint_query; idx_base = idx_base + num_warps) { + int idx = idx_base + warp_idx; + if (idx < num_distint_query) { + int query_idx = inserted_query[idx]; + int batch_idx__query_idx = batch_idx * num_query + query_idx; + + int slot = set_lookup(hashtable_query, hashtable_size, query_idx); + int duplicate_count = hashtable_count[slot]; + + float weight = 0; + for (int weight_idx_base = 0; weight_idx_base < weight_dim; weight_idx_base = weight_idx_base + WARP_SIZE) { + int weight_dim_idx = weight_idx_base + warp_thread_idx; + float val = weight_buffer[weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx]; + #pragma unroll + for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { + val += __shfl_xor_sync(FULL_MASK, val, offset); + } + weight = weight + val; + } + + weight = (float)duplicate_count * weight / float(num_hash_f); + + for (int value_idx_base = 0; value_idx_base < value_dim; value_idx_base = value_idx_base + WARP_SIZE) { + int value_dim_idx = value_idx_base + warp_thread_idx; + float val = value_buffer[value_dim_idx]; + atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val); + } + } + } + } else { + + // all computation is completed if num_distint_query == 0 + break; + + } + + __syncthreads(); + + } + +} diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_cuda.h b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_cuda.h new file mode 100644 index 0000000000000000000000000000000000000000..b2adc0f735358d0fcb6a056e7d19ba745977e129 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_cuda.h @@ -0,0 +1,157 @@ +__global__ void fast_hash_ver1_cuda_kernel( + int *mask, // [batch_size, num_vector] + float *vector, // [batch_size, num_vector, vector_dim] + int *Dmat, // [3, num_part, vector_dim] + int *hash_code, // [batch_size, num_vector, num_hash_f] + int batch_size, + int num_vector, + int vector_dim, + int num_part, + int num_hash_f, + int hash_code_len +); + +__global__ void lsh_cumulation_ver1_step1_cuda_kernel( + int *key_mask, // [batch_size, num_key] + int *key_hash_code, // [batch_size, num_key, num_hash_f] + float *value, // [batch_size, num_key, value_dim] + float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, value_dim] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_key, + int value_dim, + int offset_warp +); + +__global__ void lsh_cumulation_ver1_step2_cuda_kernel( + int *query_mask, // [batch_size, num_query] + int *query_hash_code, // [batch_size, num_query, num_hash_f] + float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, value_dim] + float *cumulation_value, // [batch_size, num_query, value_dim] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_query, + int value_dim, + int offset_warp +); + +__global__ void lsh_weighted_cumulation_ver1_step1_cuda_kernel( + int *key_mask, // [batch_size, num_key] + int *key_hash_code, // [batch_size, num_key, num_hash_f] + float *key_weight, // [batch_size, num_key, weight_dim] + float *value, // [batch_size, num_key, value_dim] + float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_key, + int value_dim, + int weight_dim, + int offset_warp, + int weight_idx +); + +__global__ void lsh_weighted_cumulation_ver1_step2_cuda_kernel( + int *query_mask, // [batch_size, num_query] + int *query_hash_code, // [batch_size, num_query, num_hash_f] + float *query_weight, // [batch_size, num_query, weight_dim] + float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE] + float *cumulation_value, // [batch_size, num_query, value_dim] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_query, + int value_dim, + int weight_dim, + int offset_warp, + int weight_idx +); + +__global__ void count_sort_step1_cuda_kernel( + int *key_mask, // [batch_size, num_key] + int *key_hash_code, // [batch_size, num_key, num_hash_f] + int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_key +); + +__global__ void count_sort_step2_cuda_kernel( + int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] + int batch_size, + int num_hash_f, + int hashtable_capacity +); + +__global__ void count_sort_step3_cuda_kernel( + int *key_mask, // [batch_size, num_key] + int *key_hash_code, // [batch_size, num_key, num_hash_f] + int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] + int *key_sorted_idxes, // [batch_size, num_hash_f, num_key] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_key +); + +__global__ void extract_query_info_cuda_kernel( + int *query_mask, // [batch_size, num_query] + int *query_hash_code, // [batch_size, num_query, num_hash_f] + int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] + int *query_info, // [batch_size, num_query, 2, num_hash_f] + int batch_size, + int num_hash_f, + int hashtable_capacity, + int num_query +); + +__global__ void lsh_weighted_cumulation_ver2_step2_cuda_kernel( + int *query_mask, // [batch_size, num_query] + int *query_info, // [batch_size, num_query, 2, num_hash_f] + int *key_sorted_idxes, // [batch_size, num_hash_f, num_key] + float *query_weight, // [batch_size, num_query, weight_dim] + float *key_weight, // [batch_size, num_key, weight_dim] + float *value, // [batch_size, num_key, value_dim] + float *cumulation_value, // [batch_size, num_query, value_dim] + int batch_size, + int num_hash_f, + int num_query, + int num_key, + int value_dim, + int weight_dim +); + +__global__ void lsh_weighted_cumulation_ver3_step2_cuda_kernel( + int *query_sorted_idxes, // [batch_size, num_hash_f, num_query] + int *key_mask, // [batch_size, num_key] + int *key_info, // [batch_size, num_key, 2, num_hash_f] + float *query_weight, // [batch_size, num_query, weight_dim] + float *key_weight, // [batch_size, num_key, weight_dim] + float *value, // [batch_size, num_key, value_dim] + float *cumulation_value, // [batch_size, num_query, value_dim] + int batch_size, + int num_hash_f, + int num_query, + int num_key, + int value_dim, + int weight_dim +); + +__global__ void lsh_weighted_cumulation_ver4_step2_cuda_kernel( + int *query_sorted_idxes, // [batch_size, num_hash_f, num_query] + int *key_mask, // [batch_size, num_key] + int *key_info, // [batch_size, num_key, 2, num_hash_f] + float *query_weight, // [batch_size, num_query, weight_dim] + float *key_weight, // [batch_size, num_key, weight_dim] + float *value, // [batch_size, num_key, value_dim] + float *cumulation_value, // [batch_size, num_query, value_dim] + int batch_size, + int num_hash_f, + int num_query, + int num_key, + int value_dim, + int weight_dim +); diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_torch.cpp b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_torch.cpp new file mode 100644 index 0000000000000000000000000000000000000000..e150a2be604b28f600ab345a8cc9e97819cca416 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_torch.cpp @@ -0,0 +1,128 @@ +#include +#include +#include "fast_lsh_cumulation.h" +#include "common_cuda.h" +#include + +std::vector fast_hash( + at::Tensor query_mask, + at::Tensor query_vector, + at::Tensor key_mask, + at::Tensor key_vector, + int num_hash_f, + int hash_code_len, + bool use_cuda, + int version +) { + return fast_hash_ver1_kernel( + query_mask, + query_vector, + key_mask, + key_vector, + num_hash_f, + hash_code_len, + use_cuda + ); +} + +at::Tensor lsh_cumulation( + at::Tensor query_mask, // [batch_size, num_query] + at::Tensor query_hash_code, // [batch_size, num_query, num_hash_f] + at::Tensor key_mask, // [batch_size, num_key] + at::Tensor key_hash_code, // [batch_size, num_key, num_hash_f] + at::Tensor value, // [batch_size, num_key, value_dim] + int hashtable_capacity, + bool use_cuda, + int version +) { + return lsh_cumulation_ver1_kernel( + query_mask, + query_hash_code, + key_mask, + key_hash_code, + value, + hashtable_capacity, + use_cuda + ); +} + +at::Tensor lsh_weighted_cumulation( + at::Tensor query_mask, // [batch_size, num_query] + at::Tensor query_hash_code, // [batch_size, num_query, num_hash_f] + at::Tensor query_weight, // [batch_size, num_query, weight_dim] + at::Tensor key_mask, // [batch_size, num_key] + at::Tensor key_hash_code, // [batch_size, num_key, num_hash_f] + at::Tensor key_weight, // [batch_size, num_key, weight_dim] + at::Tensor value, // [batch_size, num_key, value_dim] + int hashtable_capacity, + bool use_cuda, + int version +) { + if (version == 1) { + return lsh_weighted_cumulation_ver1_kernel( + query_mask, + query_hash_code, + query_weight, + key_mask, + key_hash_code, + key_weight, + value, + hashtable_capacity, + use_cuda + ); + } else if (version == 2) { + return lsh_weighted_cumulation_ver2_kernel( + query_mask, + query_hash_code, + query_weight, + key_mask, + key_hash_code, + key_weight, + value, + hashtable_capacity, + use_cuda + ); + } else if (version == 3) { + return lsh_weighted_cumulation_ver3_kernel( + query_mask, + query_hash_code, + query_weight, + key_mask, + key_hash_code, + key_weight, + value, + hashtable_capacity, + use_cuda + ); + } else if (version == 4) { + return lsh_weighted_cumulation_ver4_kernel( + query_mask, + query_hash_code, + query_weight, + key_mask, + key_hash_code, + key_weight, + value, + hashtable_capacity, + use_cuda + ); + } else { + return lsh_weighted_cumulation_ver3_kernel( + query_mask, + query_hash_code, + query_weight, + key_mask, + key_hash_code, + key_weight, + value, + hashtable_capacity, + use_cuda + ); + } +} + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def("fast_hash", &fast_hash, "Fast Hash (CUDA)"); + m.def("lsh_cumulation", &lsh_cumulation, "LSH Cumulation (CUDA)"); + m.def("lsh_weighted_cumulation", &lsh_weighted_cumulation, "LSH Weighted Cumulation (CUDA)"); +} diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e234a4b01db188e83c4e21ba000d24f60b13b286 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__init__.py @@ -0,0 +1,60 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], + "processing_git": ["GitProcessor"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_git"] = [ + "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", + "GitForCausalLM", + "GitModel", + "GitPreTrainedModel", + "GitVisionModel", + ] + +if TYPE_CHECKING: + from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig + from .processing_git import GitProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_git import ( + GIT_PRETRAINED_MODEL_ARCHIVE_LIST, + GitForCausalLM, + GitModel, + GitPreTrainedModel, + GitVisionModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..93c799ccd9ce7563915e7cf6656612df11b20e56 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/configuration_git.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/configuration_git.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3334e34075e7a2c58a842d3b6ad9a986286569ff Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/configuration_git.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/convert_git_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/convert_git_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..caa60cd7b17f16a509c54edf1831df2c1df0f840 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/convert_git_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/modeling_git.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/modeling_git.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..700208bb8a7db6a868dcefc2260ac97e8ae72b33 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/modeling_git.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/processing_git.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/processing_git.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bb8ae08edd6fc7a77f5f7bb8d2eab03784f49c3e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/processing_git.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/git/configuration_git.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/configuration_git.py new file mode 100644 index 0000000000000000000000000000000000000000..0c28bbabff6b0b15d27644599fc9692e19aa1d9e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/configuration_git.py @@ -0,0 +1,240 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +from typing import Union + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class GitVisionConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`GitVisionModel`]. It is used to instantiate a GIT + vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the vision encoder of the GIT + [microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. + layer_norm_eps (`float`, *optional*, defaults to 1e-5): + The epsilon used by the layer normalization layers. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + + Example: + + ```python + >>> from transformers import GitVisionConfig, GitVisionModel + + >>> # Initializing a GitVisionConfig with microsoft/git-base style configuration + >>> configuration = GitVisionConfig() + + >>> # Initializing a GitVisionModel (with random weights) from the microsoft/git-base style configuration + >>> model = GitVisionModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "git_vision_model" + + def __init__( + self, + hidden_size=768, + intermediate_size=3072, + num_hidden_layers=12, + num_attention_heads=12, + num_channels=3, + image_size=224, + patch_size=16, + hidden_act="quick_gelu", + layer_norm_eps=1e-5, + attention_dropout=0.0, + initializer_range=0.02, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.num_channels = num_channels + self.patch_size = patch_size + self.image_size = image_size + self.initializer_range = initializer_range + self.attention_dropout = attention_dropout + self.layer_norm_eps = layer_norm_eps + self.hidden_act = hidden_act + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": + cls._set_token_in_kwargs(kwargs) + + config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) + + # get the vision config dict if we are loading from GITConfig + if config_dict.get("model_type") == "git": + config_dict = config_dict["vision_config"] + + if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: + logger.warning( + f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " + f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." + ) + + return cls.from_dict(config_dict, **kwargs) + + +class GitConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`GitModel`]. It is used to instantiate a GIT model + according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the GIT + [microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vision_config (`dict`, *optional*): + Dictionary of configuration options used to initialize [`GitVisionConfig`]. + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the GIT model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`GitModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 6): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 1024): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + num_image_with_embedding (`int`, *optional*): + The number of temporal embeddings to add, in case the model is used for video captioning/VQA. + + Examples: + + ```python + >>> from transformers import GitConfig, GitModel + + >>> # Initializing a GIT microsoft/git-base style configuration + >>> configuration = GitConfig() + + >>> # Initializing a model (with random weights) from the microsoft/git-base style configuration + >>> model = GitModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "git" + + def __init__( + self, + vision_config=None, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=6, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=1024, + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=0, + position_embedding_type="absolute", + use_cache=True, + tie_word_embeddings=False, + bos_token_id=101, + eos_token_id=102, + num_image_with_embedding=None, + **kwargs, + ): + super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs) + + if vision_config is None: + vision_config = {} + logger.info("vision_config is None. initializing the GitVisionConfig with default values.") + + self.vision_config = GitVisionConfig(**vision_config) + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.use_cache = use_cache + self.tie_word_embeddings = tie_word_embeddings + self.num_image_with_embedding = num_image_with_embedding + + self.bos_token_id = bos_token_id + self.eos_token_id = eos_token_id diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/git/convert_git_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/convert_git_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..4e3e8e7b317905f9108acdd9e3b5b97c1445b24b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/convert_git_to_pytorch.py @@ -0,0 +1,428 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert GIT checkpoints from the original repository. + +URL: https://github.com/microsoft/GenerativeImage2Text/tree/main""" + + +import argparse +from pathlib import Path + +import numpy as np +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image +from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor + +from transformers import ( + AutoTokenizer, + CLIPImageProcessor, + GitConfig, + GitForCausalLM, + GitProcessor, + GitVisionConfig, + VideoMAEImageProcessor, +) +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def get_git_config(model_name): + if "base" in model_name and "vqa" in model_name: + image_size = 480 + elif "large" in model_name and "vqa" in model_name: + image_size = 420 + else: + image_size = 224 + + vision_config = GitVisionConfig(image_size=image_size) + + if "large" in model_name: + vision_config.patch_size = 14 + vision_config.hidden_size = 1024 + vision_config.intermediate_size = 4096 + vision_config.num_hidden_layers = 24 + vision_config.num_attention_heads = 16 + + is_video = "vatex" in model_name or "msrvtt" in model_name + num_image_with_embedding = 6 if is_video else None + config = GitConfig(vision_config=vision_config.to_dict(), num_image_with_embedding=num_image_with_embedding) + + return config, image_size, is_video + + +# here we list all keys to be renamed (original name on the left, our name on the right) +def create_rename_keys(config, prefix=""): + rename_keys = [] + + # image encoder + # ftm: off + rename_keys.append( + (f"{prefix}image_encoder.class_embedding", "git.image_encoder.vision_model.embeddings.class_embedding") + ) + rename_keys.append( + ( + f"{prefix}image_encoder.positional_embedding", + "git.image_encoder.vision_model.embeddings.position_embedding.weight", + ) + ) + rename_keys.append( + (f"{prefix}image_encoder.conv1.weight", "git.image_encoder.vision_model.embeddings.patch_embedding.weight") + ) + rename_keys.append((f"{prefix}image_encoder.ln_pre.weight", "git.image_encoder.vision_model.pre_layrnorm.weight")) + rename_keys.append((f"{prefix}image_encoder.ln_pre.bias", "git.image_encoder.vision_model.pre_layrnorm.bias")) + rename_keys.append( + (f"{prefix}image_encoder.ln_post.weight", "git.image_encoder.vision_model.post_layernorm.weight") + ) + rename_keys.append((f"{prefix}image_encoder.ln_post.bias", "git.image_encoder.vision_model.post_layernorm.bias")) + # fmt: on + rename_keys.append((f"{prefix}image_encoder.proj", "git.image_encoder.visual_projection.weight")) + + # fmt: off + for i in range(config.vision_config.num_hidden_layers): + # image encoder layers: output projection, 2 feedforward neural networks and 2 layernorms + rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.attn.out_proj.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.out_proj.weight")) + rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.attn.out_proj.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.out_proj.bias")) + rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_1.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm1.weight")) + rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_1.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm1.bias")) + rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_fc.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc1.weight")) + rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_fc.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc1.bias")) + rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_proj.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc2.weight")) + rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_proj.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc2.bias")) + rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_2.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm2.weight")) + rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_2.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm2.bias")) + # fmt: on + + # text decoder + # fmt: off + rename_keys.append((f"{prefix}textual.embedding.words.weight", "git.embeddings.word_embeddings.weight")) + rename_keys.append((f"{prefix}textual.embedding.positions.weight", "git.embeddings.position_embeddings.weight")) + rename_keys.append((f"{prefix}textual.visual_projection.0.weight", "git.visual_projection.visual_projection.0.weight")) + rename_keys.append((f"{prefix}textual.visual_projection.0.bias", "git.visual_projection.visual_projection.0.bias")) + rename_keys.append((f"{prefix}textual.visual_projection.1.weight", "git.visual_projection.visual_projection.1.weight")) + rename_keys.append((f"{prefix}textual.visual_projection.1.bias", "git.visual_projection.visual_projection.1.bias")) + + rename_keys.append((f"{prefix}textual.embedding.layer_norm.weight", "git.embeddings.LayerNorm.weight")) + rename_keys.append((f"{prefix}textual.embedding.layer_norm.bias", "git.embeddings.LayerNorm.bias")) + rename_keys.append((f"{prefix}textual.output.weight", "output.weight")) + rename_keys.append((f"{prefix}textual.output.bias", "output.bias")) + for i in range(config.num_hidden_layers): + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.query.weight", f"git.encoder.layer.{i}.attention.self.query.weight")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.query.bias", f"git.encoder.layer.{i}.attention.self.query.bias")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.key.weight", f"git.encoder.layer.{i}.attention.self.key.weight")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.key.bias", f"git.encoder.layer.{i}.attention.self.key.bias")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.value.weight", f"git.encoder.layer.{i}.attention.self.value.weight")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.value.bias", f"git.encoder.layer.{i}.attention.self.value.bias")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.dense.weight", f"git.encoder.layer.{i}.attention.output.dense.weight")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.dense.bias", f"git.encoder.layer.{i}.attention.output.dense.bias")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.LayerNorm.weight", f"git.encoder.layer.{i}.attention.output.LayerNorm.weight")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.LayerNorm.bias", f"git.encoder.layer.{i}.attention.output.LayerNorm.bias")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.intermediate.dense.weight", f"git.encoder.layer.{i}.intermediate.dense.weight")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.intermediate.dense.bias", f"git.encoder.layer.{i}.intermediate.dense.bias")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.dense.weight", f"git.encoder.layer.{i}.output.dense.weight")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.dense.bias", f"git.encoder.layer.{i}.output.dense.bias")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.LayerNorm.weight", f"git.encoder.layer.{i}.output.LayerNorm.weight")) + rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.LayerNorm.bias", f"git.encoder.layer.{i}.output.LayerNorm.bias")) + # fmt: on + + if config.num_image_with_embedding is not None: + rename_keys.append(("img_temperal_embedding.0", "git.img_temperal_embedding.0")) + rename_keys.append(("img_temperal_embedding.1", "git.img_temperal_embedding.1")) + rename_keys.append(("img_temperal_embedding.2", "git.img_temperal_embedding.2")) + rename_keys.append(("img_temperal_embedding.3", "git.img_temperal_embedding.3")) + rename_keys.append(("img_temperal_embedding.4", "git.img_temperal_embedding.4")) + rename_keys.append(("img_temperal_embedding.5", "git.img_temperal_embedding.5")) + + return rename_keys + + +def rename_key(dct, old, new): + val = dct.pop(old) + dct[new] = val.T if "image_encoder.visual_projection" in new else val + + +# we split up the matrix of each CLIP encoder layer into queries, keys and values +def read_in_q_k_v(state_dict, config, prefix=""): + dim = config.vision_config.hidden_size + for i in range(config.vision_config.num_hidden_layers): + # read in weights + bias of input projection layer (in the original implementation, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"{prefix}image_encoder.transformer.resblocks.{i}.attn.in_proj_weight") + in_proj_bias = state_dict.pop(f"{prefix}image_encoder.transformer.resblocks.{i}.attn.in_proj_bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[ + :dim, : + ] + state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:dim] + state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[ + dim : dim * 2, : + ] + state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[ + dim : dim * 2 + ] + state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[ + -dim:, : + ] + state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-dim:] + + +# We will verify our results on an image +def prepare_img(model_name): + if "textvqa" in model_name: + filepath = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset") + image = Image.open(filepath).convert("RGB") + else: + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + image = Image.open(requests.get(url, stream=True).raw) + + return image + + +def prepare_video(): + from decord import VideoReader, cpu + + # set seed for reproducability + np.random.seed(0) + + def sample_frame_indices(clip_len, frame_sample_rate, seg_len): + """ + Sample a given number of frame indices from the video. + + Args: + clip_len (`int`): Total number of frames to sample. + frame_sample_rate (`int`): Sample every n-th frame. + seg_len (`int`): Maximum allowed index of sample's last frame. + + Returns: + indices (`List[int]`): List of sampled frame indices + """ + converted_len = int(clip_len * frame_sample_rate) + end_idx = np.random.randint(converted_len, seg_len) + start_idx = end_idx - converted_len + indices = np.linspace(start_idx, end_idx, num=clip_len) + indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) + return indices + + # video clip consists of 300 frames (10 seconds at 30 FPS) + file_path = hf_hub_download(repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset") + videoreader = VideoReader(file_path, num_threads=1, ctx=cpu(0)) + + # sample 6 frames + videoreader.seek(0) + indices = sample_frame_indices(clip_len=6, frame_sample_rate=4, seg_len=len(videoreader)) + video = videoreader.get_batch(indices).asnumpy() + + return video + + +@torch.no_grad() +def convert_git_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False): + """ + Copy/paste/tweak model's weights to our GIT structure. + """ + + model_name_to_url = { + "git-base": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE/snapshot/model.pt", + "git-base-coco": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_COCO/snapshot/model.pt", + "git-base-textcaps": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_TEXTCAPS/snapshot/model.pt", + "git-base-vqav2": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_VQAv2/snapshot/model.pt", + "git-base-textvqa": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_TEXTVQA/snapshot/model.pt", # todo + "git-base-vatex": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_VATEX/snapshot/model.pt", + "git-base-msrvtt-qa": ( + "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_MSRVTT_QA/snapshot/model.pt" + ), + "git-large": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE/snapshot/model.pt", + "git-large-coco": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_COCO/snapshot/model.pt", + "git-large-textcaps": ( + "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_TEXTCAPS/snapshot/model.pt" + ), + "git-large-vqav2": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_VQAv2/snapshot/model.pt", + "git-large-textvqa": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_TEXTVQA/snapshot/model.pt", + "git-large-vatex": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_VATEX/snapshot/model.pt", + "git-large-msrvtt-qa": ( + "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_MSRVTT_QA/snapshot/model.pt" + ), + "git-large-r": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_R/snapshot/model.pt", + "git-large-r-coco": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_R_COCO/snapshot/model.pt", + "git-large-r-textcaps": ( + "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_R_TEXTCAPS/snapshot/model.pt" + ), + } + + model_name_to_path = { + "git-large": "/Users/nielsrogge/Documents/GIT/git_large_model.pt", + "git-large-coco": "/Users/nielsrogge/Documents/GIT/git_large_coco_model.pt", + "git-large-textcaps": "/Users/nielsrogge/Documents/GIT/git_large_textcaps_model.pt", + "git-large-vqav2": "/Users/nielsrogge/Documents/GIT/git_large_vqav2_model.pt", + "git-large-textvqa": "/Users/nielsrogge/Documents/GIT/git_large_textvqa_model.pt", + } + + # define GIT configuration based on model name + config, image_size, is_video = get_git_config(model_name) + if "large" in model_name and not is_video and "large-r" not in model_name: + # large checkpoints take way too long to download + checkpoint_path = model_name_to_path[model_name] + state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] + else: + checkpoint_url = model_name_to_url[model_name] + state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", file_name=model_name)[ + "model" + ] + # rename keys + prefix = "module." if model_name == "git-base" else "" + rename_keys = create_rename_keys(config, prefix=prefix) + for src, dest in rename_keys: + rename_key(state_dict, src, dest) + read_in_q_k_v(state_dict, config, prefix=prefix) + + # load HuggingFace model + model = GitForCausalLM(config) + missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) + model.eval() + + print("Missing keys:", missing_keys) + print("Unexpected keys:", unexpected_keys) + + assert missing_keys == ["git.embeddings.position_ids", "git.image_encoder.vision_model.embeddings.position_ids"] + assert unexpected_keys == ["git.image_encoder.visual_projection.weight"] + + # verify results + image_processor = ( + VideoMAEImageProcessor( + size={"shortest_edge": image_size}, crop_size={"height": image_size, "width": image_size} + ) + if is_video + else CLIPImageProcessor( + size={"shortest_edge": image_size}, crop_size={"height": image_size, "width": image_size} + ) + ) + tokenizer = AutoTokenizer.from_pretrained( + "google-bert/bert-base-uncased", model_input_names=["input_ids", "attention_mask"] + ) + processor = GitProcessor(tokenizer=tokenizer, image_processor=image_processor) + + if is_video: + video = prepare_video() + pixel_values = processor(images=list(video), return_tensors="pt").pixel_values + else: + image = prepare_img(model_name) + image_transforms = Compose( + [ + Resize(image_size, interpolation=Image.BICUBIC), + CenterCrop(image_size), + ToTensor(), + Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), + ] + ) + original_pixel_values = image_transforms(image).unsqueeze(0) + pixel_values = processor(images=image, return_tensors="pt").pixel_values + + assert torch.allclose(pixel_values, original_pixel_values) + + input_ids = torch.tensor([[101]]) + outputs = model(input_ids, pixel_values=pixel_values) + logits = outputs.logits + print("Logits:", logits[0, -1, :3]) + + if model_name == "git-base": + expected_slice_logits = torch.tensor([-1.2832, -1.2835, -1.2840]) + elif model_name == "git-base-coco": + expected_slice_logits = torch.tensor([-0.9925, -0.9930, -0.9935]) + elif model_name == "git-base-textcaps": + expected_slice_logits = torch.tensor([-1.2980, -1.2983, -1.2985]) + elif model_name == "git-base-vqav2": + expected_slice_logits = torch.tensor([-0.8570, -0.8568, -0.8561]) + elif model_name == "git-base-textvqa": + expected_slice_logits = torch.tensor([-1.4085, -1.4083, -1.4082]) + elif model_name == "git-base-vatex": + expected_slice_logits = torch.tensor([-1.3451, -1.3447, -1.3447]) + elif model_name == "git-base-msrvtt-qa": + expected_slice_logits = torch.tensor([-0.8554, -0.8550, -0.8540]) + elif model_name == "git-large": + expected_slice_logits = torch.tensor([-1.1708, -1.1707, -1.1705]) + elif model_name == "git-large-coco": + expected_slice_logits = torch.tensor([-1.0425, -1.0423, -1.0422]) + elif model_name == "git-large-textcaps": + expected_slice_logits = torch.tensor([-1.2705, -1.2708, -1.2706]) + elif model_name == "git-large-vqav2": + expected_slice_logits = torch.tensor([-0.7042, -0.7043, -0.7043]) + elif model_name == "git-large-textvqa": + expected_slice_logits = torch.tensor([-0.8590, -0.8592, -0.8590]) + elif model_name == "git-large-vatex": + expected_slice_logits = torch.tensor([-1.0113, -1.0114, -1.0113]) + elif model_name == "git-large-msrvtt-qa": + expected_slice_logits = torch.tensor([0.0130, 0.0134, 0.0131]) + elif model_name == "git-large-r": + expected_slice_logits = torch.tensor([-1.1283, -1.1285, -1.1286]) + elif model_name == "git-large-r-coco": + expected_slice_logits = torch.tensor([-0.9641, -0.9641, -0.9641]) + elif model_name == "git-large-r-textcaps": + expected_slice_logits = torch.tensor([-1.1121, -1.1120, -1.1124]) + + assert torch.allclose(logits[0, -1, :3], expected_slice_logits, atol=1e-4) + print("Looks ok!") + + prompt = "" + if "textvqa" in model_name: + prompt = "what does the front of the bus say at the top?" + elif "msrvtt-qa" in model_name: + prompt = "what does the woman eat?" + elif "vqa" in model_name: + prompt = "what are the cats doing?" + input_ids = tokenizer(prompt, add_special_tokens=False).input_ids + input_ids = [processor.tokenizer.cls_token_id] + input_ids + input_ids = torch.tensor(input_ids).unsqueeze(0) + print("Generating caption...") + generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50) + print("Generated caption:", processor.batch_decode(generated_ids, skip_special_tokens=True)) + + if pytorch_dump_folder_path is not None: + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + processor.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + print(f"Pushing model and processor of {model_name} to the hub...") + model.push_to_hub(f"microsoft/{model_name}") + processor.push_to_hub(f"microsoft/{model_name}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--model_name", + default="git-base", + type=str, + help="Name of the model you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", + default=None, + type=str, + help="Path to the output PyTorch model directory.", + ) + parser.add_argument( + "--push_to_hub", + action="store_true", + help="Whether to push the model to the hub.", + ) + + args = parser.parse_args() + convert_git_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/git/modeling_git.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/modeling_git.py new file mode 100644 index 0000000000000000000000000000000000000000..c8953d498428eac44d3b4f2d26673557ab48c30a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/modeling_git.py @@ -0,0 +1,1543 @@ +# coding=utf-8 +# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. +# All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch GIT model.""" + + +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...file_utils import ModelOutput +from ...modeling_attn_mask_utils import _prepare_4d_attention_mask +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPast, + BaseModelOutputWithPooling, + CausalLMOutputWithPast, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from .configuration_git import GitConfig, GitVisionConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "microsoft/git-base" +_CONFIG_FOR_DOC = "GitConfig" + + +from ..deprecated._archive_maps import GIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Git +class GitVisionModelOutput(ModelOutput): + """ + Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. + + Args: + image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): + The image embeddings obtained by applying the projection layer to the pooler_output. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + image_embeds: Optional[torch.FloatTensor] = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +class GitEmbeddings(nn.Module): + """Construct the embeddings from word and position embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + past_key_values_length: int = 0, + ) -> torch.Tensor: + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] + + if inputs_embeds is None: + embeddings = self.word_embeddings(input_ids) + else: + embeddings = inputs_embeds + + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class GitSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.image_patch_tokens = int((config.vision_config.image_size / config.vision_config.patch_size) ** 2 + 1) + if config.num_image_with_embedding is not None: + self.image_patch_tokens *= config.num_image_with_embedding + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + pixel_values_present: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + cutoff = self.image_patch_tokens if pixel_values_present else 0 + if past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([key_layer[:, :, :cutoff, :], past_key_value[0], key_layer[:, :, -1:, :]], dim=2) + value_layer = torch.cat( + [value_layer[:, :, :cutoff, :], past_key_value[1], value_layer[:, :, -1:, :]], dim=2 + ) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + # NOTE: like in other caches, we store the text component. In GIT it means we discard the image component. + past_key_value = ( + key_layer[:, :, cutoff:, :], + value_layer[:, :, cutoff:, :], + ) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in GitModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput +class GitSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class GitAttention(nn.Module): + # Copied from transformers.models.bert.modeling_bert.BertAttention.__init__ with Bert->Git + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = GitSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = GitSelfOutput(config) + self.pruned_heads = set() + + # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + pixel_values_present: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + past_key_value, + output_attentions, + pixel_values_present, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class GitIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class GitOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class GitLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = GitAttention(config) + self.intermediate = GitIntermediate(config) + self.output = GitOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + pixel_values_present: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + pixel_values_present=pixel_values_present, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +class GitEncoder(nn.Module): + # Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Git + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([GitLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + pixel_values_present: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]: + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + past_key_value, + output_attentions, + pixel_values_present, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class GitPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = GitConfig + base_model_prefix = "git" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, GitVisionEmbeddings): + nn.init.normal_(module.class_embedding, mean=0.0, std=self.config.initializer_range) + nn.init.normal_(module.patch_embedding.weight, std=self.config.initializer_range) + nn.init.normal_(module.position_embedding.weight, std=self.config.initializer_range) + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +GIT_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`GitConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +GIT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`CLIPImageProcessor.__call__`] for details. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Git +class GitVisionEmbeddings(nn.Module): + def __init__(self, config: GitVisionConfig): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.image_size = config.image_size + self.patch_size = config.patch_size + + self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) + + self.patch_embedding = nn.Conv2d( + in_channels=config.num_channels, + out_channels=self.embed_dim, + kernel_size=self.patch_size, + stride=self.patch_size, + bias=False, + ) + + self.num_patches = (self.image_size // self.patch_size) ** 2 + self.num_positions = self.num_patches + 1 + self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) + self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) + + def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: + batch_size = pixel_values.shape[0] + target_dtype = self.patch_embedding.weight.dtype + patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] + patch_embeds = patch_embeds.flatten(2).transpose(1, 2) + + class_embeds = self.class_embedding.expand(batch_size, 1, -1) + embeddings = torch.cat([class_embeds, patch_embeds], dim=1) + embeddings = embeddings + self.position_embedding(self.position_ids) + return embeddings + + +# Copied from transformers.models.clip.modeling_clip.CLIPMLP +class GitVisionMLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.activation_fn = ACT2FN[config.hidden_act] + self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) + self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + hidden_states = self.fc2(hidden_states) + return hidden_states + + +# Copied from transformers.models.clip.modeling_clip.CLIPAttention +class GitVisionAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {self.num_heads})." + ) + self.scale = self.head_dim**-0.5 + self.dropout = config.attention_dropout + + self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + causal_attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + bsz, tgt_len, embed_dim = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scale + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + # apply the causal_attention_mask first + if causal_attention_mask is not None: + if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" + f" {causal_attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if output_attentions: + # this operation is a bit akward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped + + +# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->GitVision +class GitVisionEncoderLayer(nn.Module): + def __init__(self, config: GitVisionConfig): + super().__init__() + self.embed_dim = config.hidden_size + self.self_attn = GitVisionAttention(config) + self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + self.mlp = GitVisionMLP(config) + self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + causal_attention_mask: torch.Tensor, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + `(config.encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + + hidden_states = self.layer_norm1(hidden_states) + hidden_states, attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + causal_attention_mask=causal_attention_mask, + output_attentions=output_attentions, + ) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.layer_norm2(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->GitVision, CLIPConfig +class GitVisionEncoder(nn.Module): + """ + Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a + [`GitVisionEncoderLayer`]. + + Args: + config: GitVisionConfig + """ + + def __init__(self, config: GitVisionConfig): + super().__init__() + self.config = config + self.layers = nn.ModuleList([GitVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + inputs_embeds, + attention_mask: Optional[torch.Tensor] = None, + causal_attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Causal mask for the text model. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + hidden_states = inputs_embeds + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + causal_attention_mask, + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + causal_attention_mask, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +GIT_VISION_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using + [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class GitVisionTransformer(nn.Module): + # Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIPEncoder->GitVisionEncoder, CLIP->Git + def __init__(self, config: GitVisionConfig): + super().__init__() + self.config = config + embed_dim = config.hidden_size + + self.embeddings = GitVisionEmbeddings(config) + self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + self.encoder = GitVisionEncoder(config) + self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + + @add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + r""" + Returns: + + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + hidden_states = self.embeddings(pixel_values) + hidden_states = self.pre_layrnorm(hidden_states) + + encoder_outputs = self.encoder( + inputs_embeds=hidden_states, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = encoder_outputs[0] + + last_hidden_state = self.post_layernorm(last_hidden_state) + + if not return_dict: + return (last_hidden_state,) + encoder_outputs[1:] + + return BaseModelOutput( + last_hidden_state=last_hidden_state, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """The vision model from CLIP, used in GIT, without any head or projection on top.""", + GIT_START_DOCSTRING, +) +class GitVisionModel(GitPreTrainedModel): + config_class = GitVisionConfig + main_input_name = "pixel_values" + + # Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP->Git + def __init__(self, config: GitVisionConfig): + super().__init__(config) + self.vision_model = GitVisionTransformer(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.vision_model.embeddings.patch_embedding + + @add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, GitVisionModel + + >>> processor = AutoProcessor.from_pretrained("microsoft/git-base") + >>> model = GitVisionModel.from_pretrained("microsoft/git-base") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> inputs = processor(images=image, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> last_hidden_state = outputs.last_hidden_state + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + return self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +class GitProjection(nn.Module): + def __init__(self, config: GitConfig): + super().__init__() + self.config = config + self.visual_projection = nn.Sequential( + nn.Linear(config.vision_config.hidden_size, config.hidden_size), + nn.LayerNorm(config.hidden_size, eps=config.vision_config.layer_norm_eps), + ) + + def forward(self, embeddings: torch.Tensor) -> torch.Tensor: + return self.visual_projection(embeddings) + + +@add_start_docstrings( + "The bare GIT Model transformer consisting of a CLIP image encoder and text decoder outputting raw hidden-states" + " without any specific head on top.", + GIT_START_DOCSTRING, +) +class GitModel(GitPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + + self.embeddings = GitEmbeddings(config) + self.image_encoder = GitVisionModel(config.vision_config) + self.encoder = GitEncoder(config) + + self.visual_projection = GitProjection(config) + + if config.num_image_with_embedding is not None: + self.img_temperal_embedding = nn.ParameterList( + nn.Parameter(torch.zeros(1, 1, config.vision_config.hidden_size)) + for _ in range(config.num_image_with_embedding) + ) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + def _generate_future_mask(self, size: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor: + # Default mask is for forward direction. Flip for backward direction. + mask = torch.triu(torch.ones(size, size, device=device, dtype=dtype), diagonal=1) + mask = mask.masked_fill(mask == 1, float("-inf")) + return mask + + def create_attention_mask(self, tgt, memory, tgt_mask, past_key_values_length, memory_key_padding_mask=None): + num_tgt = tgt.shape[1] + num_memory = memory.shape[1] + device = tgt.device + dtype = tgt.dtype + top_left = torch.zeros((num_memory, num_memory), device=device, dtype=dtype) + top_right = torch.full( + (num_memory, num_tgt + past_key_values_length), + float("-inf"), + device=tgt.device, + dtype=dtype, + ) + bottom_left = torch.zeros( + (num_tgt, num_memory), + dtype=dtype, + device=tgt_mask.device, + ) + + if past_key_values_length > 0: + tgt_mask = torch.zeros( + (tgt_mask.shape[0], tgt_mask.shape[0] + past_key_values_length), + dtype=dtype, + device=tgt_mask.device, + ) + + left = torch.cat((top_left, bottom_left), dim=0) + right = torch.cat((top_right, tgt_mask.to(dtype)), dim=0) + + full_attention_mask = torch.cat((left, right), dim=1)[None, :] + + if memory_key_padding_mask is None: + memory_key_padding_mask = torch.full((memory.shape[0], memory.shape[1]), fill_value=False, device=device) + # if it is False, it means valid. That is, it is not a padding + if memory_key_padding_mask.dtype != torch.bool: + raise ValueError("Memory key padding mask must be a boolean tensor.") + zero_negative_infinity = torch.zeros_like(memory_key_padding_mask, dtype=tgt.dtype) + zero_negative_infinity[memory_key_padding_mask] = float("-inf") + full_attention_mask = full_attention_mask.expand( + (memory_key_padding_mask.shape[0], num_memory + num_tgt, num_memory + past_key_values_length + num_tgt) + ) + full_attention_mask = full_attention_mask.clone() + origin_left = full_attention_mask[:, :, :num_memory] + update = zero_negative_infinity[:, None, :] + full_attention_mask[:, :, :num_memory] = origin_left + update + + # add axis for multi-head + full_attention_mask = full_attention_mask[:, None, :, :] + + return full_attention_mask + + @add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: + r""" + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoProcessor, AutoModel + >>> import requests + >>> from PIL import Image + + >>> processor = AutoProcessor.from_pretrained("microsoft/git-base") + >>> model = AutoModel.from_pretrained("microsoft/git-base") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> text = "this is an image of two cats" + + >>> inputs = processor(text, images=image, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> last_hidden_state = outputs.last_hidden_state + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + seq_length = input_shape[1] + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + projected_visual_features = None + if pixel_values is not None: + if pixel_values.ndim == 4: + # here we assume pixel_values is of shape (batch_size, num_channels, height, width) + visual_features = self.image_encoder(pixel_values).last_hidden_state + + elif pixel_values.ndim == 5: + # here we assume pixel_values is of shape (batch_size, num_frames, num_channels, height, width) + visual_features = [] + for frame_idx in range(pixel_values.shape[1]): + visual_features_frame = self.image_encoder(pixel_values[:, frame_idx, :, :]).last_hidden_state + visual_features_frame += self.img_temperal_embedding[frame_idx] + visual_features.append(visual_features_frame) + + # finally, concatenate all features along sequence dimension + visual_features = torch.cat(visual_features, dim=1) + + else: + raise ValueError("pixel_values must be of rank 4 or 5") + + projected_visual_features = self.visual_projection(visual_features) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + + if projected_visual_features is None: + projected_visual_features = torch.zeros( + (embedding_output.shape[0], 0, embedding_output.shape[2]), + dtype=embedding_output.dtype, + device=embedding_output.device, + ) + + # Repeat visual features to match embedding batch size. + projected_visual_features = projected_visual_features.repeat( + embedding_output.size(0) // projected_visual_features.size(0), 1, 1 + ) + + # concatenate patch token and text token embeddings + hidden_states = torch.cat((projected_visual_features, embedding_output), dim=1) + + # By default, an additive causal mask is created + # for masking the future (one direction). + tgt_mask = self._generate_future_mask(seq_length, embedding_output.dtype, embedding_output.device) + + # Create an attention mask of shape (batch_size, 1, tgt_seq_len, src_seq_len) + combined_attention_mask = self.create_attention_mask( + tgt=embedding_output, + memory=projected_visual_features, + tgt_mask=tgt_mask, + past_key_values_length=past_key_values_length, + ) + + if attention_mask is not None: + # if the user provides an attention mask, we add it to the default one + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + expanded_attn_mask = _prepare_4d_attention_mask( + attention_mask, embedding_output.dtype, tgt_len=input_shape[-1] + ).to(embedding_output.device) + if past_key_values_length > 0: + expanded_attn_mask = expanded_attn_mask[:, :, -past_key_values_length:, :] + else: + combined_attention_mask[:, :, -input_shape[1] :, -input_shape[1] :] += expanded_attn_mask + + encoder_outputs = self.encoder( + hidden_states, + attention_mask=combined_attention_mask, + head_mask=head_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + pixel_values_present=pixel_values is not None, + ) + sequence_output = encoder_outputs[0] + + if not return_dict: + return (sequence_output,) + encoder_outputs[1:] + + return BaseModelOutputWithPast( + last_hidden_state=sequence_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """GIT Model with a `language modeling` head on top for autoregressive language modeling.""", GIT_START_DOCSTRING +) +class GitForCausalLM(GitPreTrainedModel): + _tied_weights_keys = ["output.weight"] + + def __init__(self, config): + super().__init__(config) + + self.git = GitModel(config) + self.output = nn.Linear(config.hidden_size, config.vocab_size) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.output + + def set_output_embeddings(self, new_embeddings): + self.output = new_embeddings + + @add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.Tensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are + ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + Returns: + + Examples: + + Image captioning example: + + ```python + >>> from transformers import AutoProcessor, AutoModelForCausalLM + >>> import requests + >>> from PIL import Image + + >>> processor = AutoProcessor.from_pretrained("microsoft/git-base-coco") + >>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> pixel_values = processor(images=image, return_tensors="pt").pixel_values + + >>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50) + >>> generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + >>> print(generated_caption) + two cats sleeping on a pink blanket next to remotes. + ``` + + Visual question answering (VQA) example: + + ```python + >>> from transformers import AutoProcessor, AutoModelForCausalLM + >>> from huggingface_hub import hf_hub_download + >>> from PIL import Image + + >>> processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa") + >>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa") + + >>> file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset") + >>> image = Image.open(file_path).convert("RGB") + + >>> pixel_values = processor(images=image, return_tensors="pt").pixel_values + + >>> question = "what does the front of the bus say at the top?" + + >>> input_ids = processor(text=question, add_special_tokens=False).input_ids + >>> input_ids = [processor.tokenizer.cls_token_id] + input_ids + >>> input_ids = torch.tensor(input_ids).unsqueeze(0) + + >>> generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50) + >>> print(processor.batch_decode(generated_ids, skip_special_tokens=True)) + ['what does the front of the bus say at the top? special'] + ``` + + Video captioning example: + + ```python + >>> import av + >>> import numpy as np + >>> from PIL import Image + >>> from huggingface_hub import hf_hub_download + >>> from transformers import AutoProcessor, AutoModelForCausalLM + + >>> processor = AutoProcessor.from_pretrained("microsoft/git-base-vatex") + >>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vatex") + + >>> # set seed for reproducability + >>> np.random.seed(45) + + + >>> def read_video_pyav(container, indices): + ... ''' + ... Decode the video with PyAV decoder. + ... Args: + ... container (`av.container.input.InputContainer`): PyAV container. + ... indices (`List[int]`): List of frame indices to decode. + ... Returns: + ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). + ... ''' + ... frames = [] + ... container.seek(0) + ... start_index = indices[0] + ... end_index = indices[-1] + ... for i, frame in enumerate(container.decode(video=0)): + ... if i > end_index: + ... break + ... if i >= start_index and i in indices: + ... frames.append(frame) + ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) + + + >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): + ... ''' + ... Sample a given number of frame indices from the video. + ... Args: + ... clip_len (`int`): Total number of frames to sample. + ... frame_sample_rate (`int`): Sample every n-th frame. + ... seg_len (`int`): Maximum allowed index of sample's last frame. + ... Returns: + ... indices (`List[int]`): List of sampled frame indices + ... ''' + ... converted_len = int(clip_len * frame_sample_rate) + ... end_idx = np.random.randint(converted_len, seg_len) + ... start_idx = end_idx - converted_len + ... indices = np.linspace(start_idx, end_idx, num=clip_len) + ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) + ... return indices + + + >>> # load video + >>> file_path = hf_hub_download( + ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" + ... ) + >>> container = av.open(file_path) + + >>> # sample frames + >>> num_frames = model.config.num_image_with_embedding + >>> indices = sample_frame_indices( + ... clip_len=num_frames, frame_sample_rate=4, seg_len=container.streams.video[0].frames + ... ) + >>> frames = read_video_pyav(container, indices) + + >>> pixel_values = processor(images=list(frames), return_tensors="pt").pixel_values + + >>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50) + + >>> print("Generated caption:", processor.batch_decode(generated_ids, skip_special_tokens=True)) + Generated caption: ['a woman is sitting at a table and she is talking about the food she is holding.'] + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + outputs = self.git( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + pixel_values=pixel_values, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + logits = self.output(sequence_output) + + loss = None + if labels is not None: + # we are doing next-token prediction; shift prediction scores and input ids by one + num_image_tokens = self.git.encoder.layer[0].attention.self.image_patch_tokens + shifted_logits = logits[:, num_image_tokens:-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss() + loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs + ): + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + input_ids = input_ids[:, -1:] + + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + input_shape = input_ids.shape + if attention_mask is None: + attention_mask = input_ids.new_ones(input_shape) + + return { + "input_ids": input_ids, + "attention_mask": attention_mask, + "pixel_values": kwargs.get("pixel_values", None), + "past_key_values": past_key_values, + "use_cache": use_cache, + } + + def _reorder_cache(self, past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/git/processing_git.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/processing_git.py new file mode 100644 index 0000000000000000000000000000000000000000..79f26f3bf24b14116c43a66b7e9ebb682ee667a2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/git/processing_git.py @@ -0,0 +1,113 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Image/Text processor class for GIT +""" + +from ...processing_utils import ProcessorMixin +from ...tokenization_utils_base import BatchEncoding + + +class GitProcessor(ProcessorMixin): + r""" + Constructs a GIT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor. + + [`GitProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the + [`~GitProcessor.__call__`] and [`~GitProcessor.decode`] for more information. + + Args: + image_processor ([`AutoImageProcessor`]): + The image processor is a required input. + tokenizer ([`AutoTokenizer`]): + The tokenizer is a required input. + """ + + attributes = ["image_processor", "tokenizer"] + image_processor_class = "AutoImageProcessor" + tokenizer_class = "AutoTokenizer" + + def __init__(self, image_processor, tokenizer): + super().__init__(image_processor, tokenizer) + self.current_processor = self.image_processor + + def __call__(self, text=None, images=None, return_tensors=None, **kwargs): + """ + Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` + and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode + the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to + CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring + of the above two methods for more information. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings + (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set + `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). + images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): + The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch + tensor. Both channels-first and channels-last formats are supported. + + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors of a particular framework. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return NumPy `np.ndarray` objects. + - `'jax'`: Return JAX `jnp.ndarray` objects. + + Returns: + [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: + + - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. + - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when + `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not + `None`). + - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. + """ + + if text is None and images is None: + raise ValueError("You have to specify either text or images. Both cannot be none.") + + if text is not None: + encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) + + if images is not None: + image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs) + + if text is not None and images is not None: + encoding["pixel_values"] = image_features.pixel_values + return encoding + elif text is not None: + return encoding + else: + return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) + + def batch_decode(self, *args, **kwargs): + """ + This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please + refer to the docstring of this method for more information. + """ + return self.tokenizer.batch_decode(*args, **kwargs) + + def decode(self, *args, **kwargs): + """ + This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to + the docstring of this method for more information. + """ + return self.tokenizer.decode(*args, **kwargs) + + @property + def model_input_names(self): + return ["input_ids", "attention_mask", "pixel_values"] diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3409af4cd78c62daa258303472fa5a6345b090d5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__init__.py @@ -0,0 +1,15 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from .auto import AutoHfQuantizer, AutoQuantizationConfig +from .base import HfQuantizer diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c4b1b4b714a79ef032e5352c214052e9c2221686 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/auto.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/auto.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4ed3287e6ac9c191f1b5734ea6aea2acdf414a5e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/auto.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/base.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/base.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2c0579b67b9776d6b67be2707a5be4b9b8fae89a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/base.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_aqlm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_aqlm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f3687d525e647421a22bf490d3eb4badb7efe1f5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_aqlm.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_awq.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_awq.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d91b2b9ca350d4b8e92099e10f7a5f27242b815c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_awq.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_4bit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_4bit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fb62be730883cf1414882c942ed6f75aa79e4747 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_4bit.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_8bit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_8bit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7a8068688b1a1527c6005c5822f01fb8d31ba984 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_8bit.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_gptq.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_gptq.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e9110daa6d52121b57ff7475da38e03d6390b0ea Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_gptq.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_quanto.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_quanto.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..34f99c4b185aea4fee4d789b4a6dd910a8d7ef51 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_quanto.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizers_utils.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizers_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2c2bb20bf482b8503d3a6bb056352520ae017919 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizers_utils.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/auto.py b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/auto.py new file mode 100644 index 0000000000000000000000000000000000000000..616e206a45b596caacca8cfacc417de7e9a3cd8e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/auto.py @@ -0,0 +1,161 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import warnings +from typing import Dict, Optional, Union + +from ..models.auto.configuration_auto import AutoConfig +from ..utils.quantization_config import ( + AqlmConfig, + AwqConfig, + BitsAndBytesConfig, + GPTQConfig, + QuantizationConfigMixin, + QuantizationMethod, + QuantoConfig, +) +from .quantizer_aqlm import AqlmHfQuantizer +from .quantizer_awq import AwqQuantizer +from .quantizer_bnb_4bit import Bnb4BitHfQuantizer +from .quantizer_bnb_8bit import Bnb8BitHfQuantizer +from .quantizer_gptq import GptqHfQuantizer +from .quantizer_quanto import QuantoHfQuantizer + + +AUTO_QUANTIZER_MAPPING = { + "awq": AwqQuantizer, + "bitsandbytes_4bit": Bnb4BitHfQuantizer, + "bitsandbytes_8bit": Bnb8BitHfQuantizer, + "gptq": GptqHfQuantizer, + "aqlm": AqlmHfQuantizer, + "quanto": QuantoHfQuantizer, +} + +AUTO_QUANTIZATION_CONFIG_MAPPING = { + "awq": AwqConfig, + "bitsandbytes_4bit": BitsAndBytesConfig, + "bitsandbytes_8bit": BitsAndBytesConfig, + "gptq": GPTQConfig, + "aqlm": AqlmConfig, + "quanto": QuantoConfig, +} + + +class AutoQuantizationConfig: + """ + The Auto-HF quantization config class that takes care of automatically dispatching to the correct + quantization config given a quantization config stored in a dictionary. + """ + + @classmethod + def from_dict(cls, quantization_config_dict: Dict): + quant_method = quantization_config_dict.get("quant_method", None) + # We need a special care for bnb models to make sure everything is BC .. + if quantization_config_dict.get("load_in_8bit", False) or quantization_config_dict.get("load_in_4bit", False): + suffix = "_4bit" if quantization_config_dict.get("load_in_4bit", False) else "_8bit" + quant_method = QuantizationMethod.BITS_AND_BYTES + suffix + elif quant_method is None: + raise ValueError( + "The model's quantization config from the arguments has no `quant_method` attribute. Make sure that the model has been correctly quantized" + ) + + if quant_method not in AUTO_QUANTIZATION_CONFIG_MAPPING.keys(): + raise ValueError( + f"Unknown quantization type, got {quant_method} - supported types are:" + f" {list(AUTO_QUANTIZER_MAPPING.keys())}" + ) + + target_cls = AUTO_QUANTIZATION_CONFIG_MAPPING[quant_method] + return target_cls.from_dict(quantization_config_dict) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): + model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) + if getattr(model_config, "quantization_config", None) is None: + raise ValueError( + f"Did not found a `quantization_config` in {pretrained_model_name_or_path}. Make sure that the model is correctly quantized." + ) + quantization_config_dict = model_config.quantization_config + quantization_config = cls.from_dict(quantization_config_dict) + # Update with potential kwargs that are passed through from_pretrained. + quantization_config.update(kwargs) + return quantization_config + + +class AutoHfQuantizer: + """ + The Auto-HF quantizer class that takes care of automatically instantiating to the correct + `HfQuantizer` given the `QuantizationConfig`. + """ + + @classmethod + def from_config(cls, quantization_config: Union[QuantizationConfigMixin, Dict], **kwargs): + # Convert it to a QuantizationConfig if the q_config is a dict + if isinstance(quantization_config, dict): + quantization_config = AutoQuantizationConfig.from_dict(quantization_config) + + quant_method = quantization_config.quant_method + + # Again, we need a special care for bnb as we have a single quantization config + # class for both 4-bit and 8-bit quantization + if quant_method == QuantizationMethod.BITS_AND_BYTES: + if quantization_config.load_in_8bit: + quant_method += "_8bit" + else: + quant_method += "_4bit" + + if quant_method not in AUTO_QUANTIZER_MAPPING.keys(): + raise ValueError( + f"Unknown quantization type, got {quant_method} - supported types are:" + f" {list(AUTO_QUANTIZER_MAPPING.keys())}" + ) + + target_cls = AUTO_QUANTIZER_MAPPING[quant_method] + return target_cls(quantization_config, **kwargs) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): + quantization_config = AutoQuantizationConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) + return cls.from_config(quantization_config) + + @classmethod + def merge_quantization_configs( + cls, + quantization_config: Union[dict, QuantizationConfigMixin], + quantization_config_from_args: Optional[QuantizationConfigMixin], + ): + """ + handles situations where both quantization_config from args and quantization_config from model config are present. + """ + if quantization_config_from_args is not None: + warning_msg = ( + "You passed `quantization_config` or equivalent parameters to `from_pretrained` but the model you're loading" + " already has a `quantization_config` attribute. The `quantization_config` from the model will be used." + ) + else: + warning_msg = "" + + if isinstance(quantization_config, dict): + quantization_config = AutoQuantizationConfig.from_dict(quantization_config) + + if isinstance(quantization_config, (GPTQConfig, AwqConfig)) and quantization_config_from_args is not None: + # special case for GPTQ / AWQ config collision + loading_attr_dict = quantization_config_from_args.get_loading_attributes() + for attr, val in loading_attr_dict.items(): + setattr(quantization_config, attr, val) + warning_msg += f"However, loading attributes (e.g. {list(loading_attr_dict.keys())}) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored." + + if warning_msg != "": + warnings.warn(warning_msg) + + return quantization_config diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/base.py b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/base.py new file mode 100644 index 0000000000000000000000000000000000000000..226995eea0ca5bcbbff371169a0dcb48ef036c77 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/base.py @@ -0,0 +1,213 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from abc import ABC, abstractmethod +from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union + +from ..utils import is_torch_available +from ..utils.quantization_config import QuantizationConfigMixin + + +if TYPE_CHECKING: + from ..modeling_utils import PreTrainedModel + +if is_torch_available(): + import torch + + +class HfQuantizer(ABC): + """ + Abstract class of the HuggingFace quantizer. Supports for now quantizing HF transformers models for inference and/or quantization. + This class is used only for transformers.PreTrainedModel.from_pretrained and cannot be easily used outside the scope of that method + yet. + + Attributes + quantization_config (`transformers.utils.quantization_config.QuantizationConfigMixin`): + The quantization config that defines the quantization parameters of your model that you want to quantize. + modules_to_not_convert (`List[str]`, *optional*): + The list of module names to not convert when quantizing the model. + required_packages (`List[str]`, *optional*): + The list of required pip packages to install prior to using the quantizer + requires_calibration (`bool`): + Whether the quantization method requires to calibrate the model before using it. + requires_parameters_quantization (`bool`): + Whether the quantization method requires to create a new Parameter. For example, for bitsandbytes, it is + required to create a new xxxParameter in order to properly quantize the model. + """ + + requires_calibration = False + required_packages = None + requires_parameters_quantization = False + + def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): + self.quantization_config = quantization_config + + # -- Handle extra kwargs below -- + self.modules_to_not_convert = kwargs.pop("modules_to_not_convert", []) + self.pre_quantized = kwargs.pop("pre_quantized", True) + + if not self.pre_quantized and self.requires_calibration: + raise ValueError( + f"The quantization method {quantization_config.quant_method} does require the model to be pre-quantized." + f" You explicitly passed `pre_quantized=False` meaning your model weights are not quantized. Make sure to " + f"pass `pre_quantized=True` while knowing what you are doing." + ) + + def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": + """ + Some quantization methods require to explicitly set the dtype of the model to a + target dtype. You need to override this method in case you want to make sure that behavior is + preserved + + Args: + torch_dtype (`torch.dtype`): + The input dtype that is passed in `from_pretrained` + """ + return torch_dtype + + def update_device_map(self, device_map: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: + """ + Override this method if you want to pass a override the existing device map with a new + one. E.g. for bitsandbytes, since `accelerate` is a hard requirement, if no device_map is + passed, the device_map is set to `"auto"`` + + Args: + device_map (`Union[dict, str]`, *optional*): + The device_map that is passed through the `from_pretrained` method. + """ + return device_map + + def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": + """ + Override this method if you want to adjust the `target_dtype` variable used in `from_pretrained` + to compute the device_map in case the device_map is a `str`. E.g. for bitsandbytes we force-set `target_dtype` + to `torch.int8` and for 4-bit we pass a custom enum `accelerate.CustomDtype.int4`. + + Args: + torch_dtype (`torch.dtype`, *optional*): + The torch_dtype that is used to compute the device_map. + """ + return torch_dtype + + def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: + """ + Override this method if you want to adjust the `missing_keys`. + + Args: + missing_keys (`List[str]`, *optional*): + The list of missing keys in the checkpoint compared to the state dict of the model + """ + return missing_keys + + def get_special_dtypes_update(self, model, torch_dtype: "torch.dtype") -> Dict[str, "torch.dtype"]: + """ + returns dtypes for modules that are not quantized - used for the computation of the device_map in case + one passes a str as a device_map. The method will use the `modules_to_not_convert` that is modified + in `_process_model_before_weight_loading`. + + Args: + model (`~transformers.PreTrainedModel`): + The model to quantize + torch_dtype (`torch.dtype`): + The dtype passed in `from_pretrained` method. + """ + + return { + name: torch_dtype + for name, _ in model.named_parameters() + if any(m in name for m in self.modules_to_not_convert) + } + + def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: + """adjust max_memory argument for infer_auto_device_map() if extra memory is needed for quantization""" + return max_memory + + def check_quantized_param( + self, + model: "PreTrainedModel", + param_value: "torch.Tensor", + param_name: str, + state_dict: Dict[str, Any], + **kwargs, + ) -> bool: + """ + checks if a loaded state_dict component is part of quantized param + some validation; only defined if + requires_parameters_quantization == True for quantization methods that require to create a new parameters + for quantization. + """ + return False + + def create_quantized_param(self, *args, **kwargs) -> "torch.nn.Parameter": + """ + takes needed components from state_dict and creates quantized param; only applicable if + requires_parameters_quantization == True + """ + if not self.requires_parameters_quantization: + raise AttributeError( + f"`.create_quantized_param()` method is not supported by quantizer class {self.__class__.__name__}." + ) + + def validate_environment(self, *args, **kwargs): + """ + This method is used to potentially check for potential conflicts with arguments that are + passed in `from_pretrained`. You need to define it for all future quantizers that are integrated with transformers. + If no explicit check are needed, simply return nothing. + """ + return + + def preprocess_model(self, model: "PreTrainedModel", **kwargs): + """ + Setting model attributes and/or converting model before weights loading. At this point + the model should be initialized on the meta device so you can freely manipulate the skeleton + of the model in order to replace modules in-place. Make sure to override the abstract method `_process_model_before_weight_loading`. + + Args: + model (`~transformers.PreTrainedModel`): + The model to quantize + kwargs (`dict`, *optional*): + The keyword arguments that are passed along `_process_model_before_weight_loading`. + """ + model.is_quantized = True + model.quantization_method = self.quantization_config.quant_method + return self._process_model_before_weight_loading(model, **kwargs) + + def postprocess_model(self, model: "PreTrainedModel", **kwargs): + """ + Post-process the model post weights loading. + Make sure to override the abstract method `_process_model_after_weight_loading`. + + Args: + model (`~transformers.PreTrainedModel`): + The model to quantize + kwargs (`dict`, *optional*): + The keyword arguments that are passed along `_process_model_after_weight_loading`. + """ + return self._process_model_after_weight_loading(model, **kwargs) + + @abstractmethod + def _process_model_before_weight_loading(self, model, **kwargs): + ... + + @abstractmethod + def _process_model_after_weight_loading(self, model, **kwargs): + ... + + @property + @abstractmethod + def is_serializable(self): + ... + + @property + @abstractmethod + def is_trainable(self): + ... diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_aqlm.py b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_aqlm.py new file mode 100644 index 0000000000000000000000000000000000000000..530071616115ac9ab58cdcbdfcf38b90589b10c1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_aqlm.py @@ -0,0 +1,98 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import importlib +from typing import TYPE_CHECKING, Optional + +from packaging import version + +from .base import HfQuantizer + + +if TYPE_CHECKING: + from ..modeling_utils import PreTrainedModel + +from ..integrations import replace_with_aqlm_linear +from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available, logging +from ..utils.quantization_config import QuantizationConfigMixin + + +if is_torch_available(): + import torch + +logger = logging.get_logger(__name__) + + +class AqlmHfQuantizer(HfQuantizer): + """ + Quantizer of the AQLM method. Enables the loading of prequantized models. + """ + + requires_calibration = True + required_packages = ["aqlm"] + optimum_quantizer = None + + def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): + super().__init__(quantization_config, **kwargs) + self.quantization_config = quantization_config + + def validate_environment(self, *args, **kwargs): + if not is_accelerate_available(): + raise ImportError("Using `aqlm` quantization requires Accelerate: `pip install accelerate`") + + if not is_aqlm_available(): + raise ImportError("Using `aqlm` quantization requires AQLM: `pip install aqlm[gpu,cpu]`") + + def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": + if torch_dtype is None: + if torch.cuda.is_available(): + torch_dtype = torch.float16 + logger.info( + "CUDA available. Assuming AQLM inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually." + ) + else: + torch_dtype = torch.float32 + logger.info( + "CUDA is unavailable. Assuming AQLM inference on CPU and loading the model in `torch.float32`. To overwrite it, set `torch_dtype` manually." + ) + return torch_dtype + + def _process_model_before_weight_loading( + self, + model: "PreTrainedModel", + **kwargs, + ): + replace_with_aqlm_linear( + model, + quantization_config=self.quantization_config, + linear_weights_not_to_quantize=self.quantization_config.linear_weights_not_to_quantize, + ) + model.config.quantization_config = self.quantization_config + + def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): + return model + + @property + def is_trainable(self, model: Optional["PreTrainedModel"] = None): + aqlm_supports_training = version.parse(importlib.metadata.version("aqlm")) >= version.parse("1.0.2") + if aqlm_supports_training: + return True + else: + logger.warning( + f"Currently installed `aqlm` version ({importlib.metadata.version('aqlm')}) doesn't support training. If you wish to train a quantized model, please update `aqlm` with `pip install aqlm>=1.0.2`" + ) + return False + + @property + def is_serializable(self): + return True diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_awq.py b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_awq.py new file mode 100644 index 0000000000000000000000000000000000000000..5e66f9baf1c0a76fd44e56ca9bdfb7d6fddc236e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_awq.py @@ -0,0 +1,124 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import importlib.metadata +from typing import TYPE_CHECKING + +from packaging import version + +from .base import HfQuantizer + + +if TYPE_CHECKING: + from ..modeling_utils import PreTrainedModel + +from ..utils import is_accelerate_available, is_auto_awq_available, is_torch_available, logging +from ..utils.quantization_config import AWQLinearVersion + + +if is_torch_available(): + import torch + +logger = logging.get_logger(__name__) + + +class AwqQuantizer(HfQuantizer): + """ + 4-bit quantization for Activation-aware Weight Quantization(AWQ) (https://arxiv.org/abs/2306.00978) + """ + + # AWQ requires data callibration - we support only inference + requires_calibration = True + + required_packages = ["awq", "accelerate"] + + def __init__(self, quantization_config, **kwargs): + super().__init__(quantization_config, **kwargs) + + def validate_environment(self, device_map, **kwargs): + if not torch.cuda.is_available(): + raise RuntimeError("GPU is required to run AWQ quantized model.") + + if not is_auto_awq_available(): + raise ImportError("Loading an AWQ quantized model requires auto-awq library (`pip install autoawq`)") + + if not is_accelerate_available(): + raise ImportError("Loading an AWQ quantized model requires accelerate (`pip install accelerate`)") + + if device_map is None: + logger.warning_once( + "You have loaded an AWQ model on CPU and have a CUDA device available, make sure to set " + "your model on a GPU device in order to run your model." + ) + elif device_map is not None: + if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): + raise ValueError( + "You are attempting to load an AWQ model with a device_map that contains a CPU or disk device." + " This is not supported. Please remove the CPU or disk device from the device_map." + ) + + def update_torch_dtype(self, torch_dtype): + if torch_dtype is None: + torch_dtype = torch.float16 + elif torch_dtype != torch.float16: + logger.warning("We suggest you to set `torch_dtype=torch.float16` for better efficiency with AWQ.") + return torch_dtype + + def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): + from ..integrations import get_keys_to_not_convert, replace_with_awq_linear + + self.modules_to_not_convert = get_keys_to_not_convert(model) + + if self.quantization_config.modules_to_not_convert is not None: + self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert) + + model, has_been_replaced = replace_with_awq_linear( + model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert + ) + + if not has_been_replaced: + logger.warning( + "You are loading an AWQ model but no linear modules were found in your model." + " Please double check your model architecture, or submit an issue on github if you think this is a bug." + ) + + def _process_model_after_weight_loading(self, model): + if self.quantization_config.do_fuse: + from ..integrations import fuse_awq_modules + + model = fuse_awq_modules(model, self.quantization_config) + model._awq_is_fused = True # TODO: consider storing this flag in model.config instead + + if self.quantization_config.version == AWQLinearVersion.EXLLAMA: + from ..integrations import post_init_awq_exllama_modules + + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + + @property + def is_serializable(self): + # AWQ through auto-awq has been always serializable, except if the model is fused. + if self.quantization_config.do_fuse: + logger.warning("You cannot save an AWQ model that uses fused modules!") + return False + + if self.quantization_config.version == AWQLinearVersion.EXLLAMA: + logger.warning("You cannot save an AWQ model that uses Exllama backend!") + return False + + return True + + @property + def is_trainable(self): + # AWQ supports PEFT fine-tuning from version 0.2.0 + MIN_AWQ_VERSION_FOR_PEFT = "0.2.0" + return version.parse(importlib.metadata.version("autoawq")) >= version.parse(MIN_AWQ_VERSION_FOR_PEFT) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_bnb_4bit.py b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_bnb_4bit.py new file mode 100644 index 0000000000000000000000000000000000000000..112cfd644f15703c4018fa4384ac3fdaf1c1d97a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_bnb_4bit.py @@ -0,0 +1,317 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import importlib +from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union + +from packaging import version + +from .base import HfQuantizer +from .quantizers_utils import get_module_from_name + + +if TYPE_CHECKING: + from ..modeling_utils import PreTrainedModel + +from ..utils import is_accelerate_available, is_bitsandbytes_available, is_torch_available, logging + + +if is_torch_available(): + import torch + + from ..pytorch_utils import Conv1D + +logger = logging.get_logger(__name__) + + +class Bnb4BitHfQuantizer(HfQuantizer): + """ + 4-bit quantization from bitsandbytes.py quantization method: + before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the + layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call + saving: + from state dict, as usual; saves weights and `quant_state` components + loading: + need to locate `quant_state` components and pass to Param4bit constructor + """ + + use_keep_in_fp32_modules = True + requires_parameters_quantization = True + requires_calibration = False + + required_packages = ["bitsandbytes", "accelerate"] + + def __init__(self, quantization_config, **kwargs): + super().__init__(quantization_config, **kwargs) + + if self.quantization_config.llm_int8_skip_modules is not None: + self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules + + def validate_environment(self, *args, **kwargs): + if not (is_accelerate_available() and is_bitsandbytes_available()): + raise ImportError( + "Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install accelerate` " + "and the latest version of bitsandbytes: `pip install -i https://pypi.org/simple/ bitsandbytes`" + ) + + if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): + raise ValueError( + "Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make" + " sure the weights are in PyTorch format." + ) + + if not torch.cuda.is_available(): + raise RuntimeError("No GPU found. A GPU is needed for quantization.") + + device_map = kwargs.get("device_map", None) + if ( + device_map is not None + and isinstance(device_map, dict) + and not self.quantization_config.llm_int8_enable_fp32_cpu_offload + ): + device_map_without_lm_head = { + key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert + } + if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values(): + raise ValueError( + """ + Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the + quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules + in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to + `from_pretrained`. Check + https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu + for more details. + """ + ) + + if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.39.0"): + raise ValueError( + "You have a version of `bitsandbytes` that is not compatible with 4bit inference and training" + " make sure you have the latest version of `bitsandbytes` installed" + ) + + def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": + if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"): + from accelerate.utils import CustomDtype + + if target_dtype != torch.int8: + logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization") + return CustomDtype.INT4 + else: + raise ValueError( + "You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute" + " the appropriate device map, you should upgrade your `accelerate` library," + "`pip install --upgrade accelerate` or install it from source to support fp4 auto device map" + "calculation. You may encounter unexpected behavior, or pass your own device map" + ) + + def check_quantized_param( + self, + model: "PreTrainedModel", + param_value: "torch.Tensor", + param_name: str, + state_dict: Dict[str, Any], + **kwargs, + ) -> bool: + import bitsandbytes as bnb + + module, tensor_name = get_module_from_name(model, param_name) + if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Params4bit): + # Add here check for loaded components' dtypes once serialization is implemented + return True + elif isinstance(module, bnb.nn.Linear4bit) and tensor_name == "bias": + # bias could be loaded by regular set_module_tensor_to_device() from accelerate, + # but it would wrongly use uninitialized weight there. + return True + else: + return False + + def create_quantized_param( + self, + model: "PreTrainedModel", + param_value: "torch.Tensor", + param_name: str, + target_device: "torch.device", + state_dict: Dict[str, Any], + unexpected_keys: Optional[List[str]] = None, + ): + """ + combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device() + """ + import bitsandbytes as bnb + + module, tensor_name = get_module_from_name(model, param_name) + + if tensor_name not in module._parameters: + raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") + + old_value = getattr(module, tensor_name) + + if tensor_name == "bias": + if param_value is None: + new_value = old_value.to(target_device) + else: + new_value = param_value.to(target_device) + + new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad) + module._parameters[tensor_name] = new_value + return + + if not isinstance(module._parameters[tensor_name], bnb.nn.Params4bit): + raise ValueError("this function only loads `Linear4bit components`") + if ( + old_value.device == torch.device("meta") + and target_device not in ["meta", torch.device("meta")] + and param_value is None + ): + raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.") + + # construct `new_value` for the module._parameters[tensor_name]: + if self.pre_quantized: + # 4bit loading. Collecting components for restoring quantized weight + # This can be expanded to make a universal call for any quantized weight loading + + if not self.is_serializable: + raise ValueError( + "Detected int4 weights but the version of bitsandbytes is not compatible with int4 serialization. " + "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." + ) + + if (param_name + ".quant_state.bitsandbytes__fp4" not in state_dict) and ( + param_name + ".quant_state.bitsandbytes__nf4" not in state_dict + ): + raise ValueError( + f"Supplied state dict for {param_name} does not contain `bitsandbytes__*` and possibly other `quantized_stats` components." + ) + + quantized_stats = {} + for k, v in state_dict.items(): + if param_name + "." in k: + quantized_stats[k] = v + if unexpected_keys is not None and k in unexpected_keys: + unexpected_keys.remove(k) + + new_value = bnb.nn.Params4bit.from_prequantized( + data=param_value, + quantized_stats=quantized_stats, + requires_grad=False, + device=target_device, + ) + else: + new_value = param_value.to("cpu") + + # Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization. + # Since weights are saved in the correct "orientation", we skip transposing when loading. + if issubclass(module.source_cls, Conv1D): + new_value = new_value.T + + kwargs = old_value.__dict__ + new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device) + + module._parameters[tensor_name] = new_value + + # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.adjust_max_memory + def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: + # need more space for buffers that are created during quantization + max_memory = {key: val * 0.90 for key, val in max_memory.items()} + return max_memory + + # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_torch_dtype + def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": + if torch_dtype is None: + # We force the `dtype` to be float16, this is a requirement from `bitsandbytes` + logger.info( + "Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " + "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " + "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" + " torch_dtype=torch.float16 to remove this warning.", + torch_dtype, + ) + torch_dtype = torch.float16 + return torch_dtype + + # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_device_map + def update_device_map(self, device_map): + if device_map is None: + device_map = {"": torch.cuda.current_device()} + logger.info( + "The device_map was not initialized. " + "Setting device_map to {'':torch.cuda.current_device()}. " + "If you want to use the model for inference, please set device_map ='auto' " + ) + return device_map + + # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_before_weight_loading + def _process_model_before_weight_loading( + self, + model: "PreTrainedModel", + device_map, + keep_in_fp32_modules: List[str] = [], + **kwargs, + ): + from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear + + load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload + + # We keep some modules such as the lm_head in their original dtype for numerical stability reasons + if self.quantization_config.llm_int8_skip_modules is None: + self.modules_to_not_convert = get_keys_to_not_convert(model) + else: + self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules + + if not isinstance(self.modules_to_not_convert, list): + self.modules_to_not_convert = [self.modules_to_not_convert] + + self.modules_to_not_convert.extend(keep_in_fp32_modules) + + # Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk` + if isinstance(device_map, dict) and len(device_map.keys()) > 1: + keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] + + if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload: + raise ValueError( + "If you want to offload some keys to `cpu` or `disk`, you need to set " + "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " + " converted to 8-bit but kept in 32-bit." + ) + self.modules_to_not_convert.extend(keys_on_cpu) + + model = replace_with_bnb_linear( + model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config + ) + # TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here + + model.config.quantization_config = self.quantization_config + + # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_after_weight_loading with 8bit->4bit + def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): + model.is_loaded_in_4bit = True + model.is_4bit_serializable = self.is_serializable + return model + + @property + def is_serializable(self): + _is_4bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.41.3") + + if not _is_4bit_serializable: + logger.warning( + "You are calling `save_pretrained` to a 4-bit converted model, but your `bitsandbytes` version doesn't support it. " + "If you want to save 4-bit models, make sure to have `bitsandbytes>=0.41.3` installed." + ) + return False + + return True + + @property + def is_trainable(self) -> bool: + return True diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_bnb_8bit.py b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_bnb_8bit.py new file mode 100644 index 0000000000000000000000000000000000000000..b80e9bd3a1dfa27694bab0132c9b9306ee3f0e1f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_bnb_8bit.py @@ -0,0 +1,285 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import importlib +from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union + +from packaging import version + +from .base import HfQuantizer + + +if TYPE_CHECKING: + from ..modeling_utils import PreTrainedModel + +from ..utils import is_accelerate_available, is_bitsandbytes_available, is_torch_available, logging +from .quantizers_utils import get_module_from_name + + +if is_torch_available(): + import torch + + from ..pytorch_utils import Conv1D + +logger = logging.get_logger(__name__) + + +class Bnb8BitHfQuantizer(HfQuantizer): + """ + 8-bit quantization from bitsandbytes quantization method: + before loading: converts transformer layers into Linear8bitLt during loading: load 16bit weight and pass to the + layer object after: quantizes individual weights in Linear8bitLt into 8bit at fitst .cuda() call + saving: + from state dict, as usual; saves weights and 'SCB' component + loading: + need to locate SCB component and pass to the Linear8bitLt object + """ + + use_keep_in_fp32_modules = True + requires_parameters_quantization = True + requires_calibration = False + + required_packages = ["bitsandbytes", "accelerate"] + + def __init__(self, quantization_config, **kwargs): + super().__init__(quantization_config, **kwargs) + + if self.quantization_config.llm_int8_skip_modules is not None: + self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules + + def validate_environment(self, *args, **kwargs): + if not (is_accelerate_available() and is_bitsandbytes_available()): + raise ImportError( + "Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install accelerate` " + "and the latest version of bitsandbytes: `pip install -i https://pypi.org/simple/ bitsandbytes`" + ) + + if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): + raise ValueError( + "Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make" + " sure the weights are in PyTorch format." + ) + + if not torch.cuda.is_available(): + raise RuntimeError("No GPU found. A GPU is needed for quantization.") + + device_map = kwargs.get("device_map", None) + if ( + device_map is not None + and isinstance(device_map, dict) + and not self.quantization_config.llm_int8_enable_fp32_cpu_offload + ): + device_map_without_lm_head = { + key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert + } + if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values(): + raise ValueError( + """ + Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the + quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules + in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to + `from_pretrained`. Check + https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu + for more details. + """ + ) + + if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.2"): + raise ValueError( + "You have a version of `bitsandbytes` that is not compatible with 8bit inference and training" + " make sure you have the latest version of `bitsandbytes` installed" + ) + + def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: + # need more space for buffers that are created during quantization + max_memory = {key: val * 0.90 for key, val in max_memory.items()} + return max_memory + + def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": + if torch_dtype is None: + # We force the `dtype` to be float16, this is a requirement from `bitsandbytes` + logger.info( + "Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " + "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " + "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" + " torch_dtype=torch.float16 to remove this warning.", + torch_dtype, + ) + torch_dtype = torch.float16 + return torch_dtype + + def update_device_map(self, device_map): + if device_map is None: + device_map = {"": torch.cuda.current_device()} + logger.info( + "The device_map was not initialized. " + "Setting device_map to {'':torch.cuda.current_device()}. " + "If you want to use the model for inference, please set device_map ='auto' " + ) + return device_map + + def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": + if target_dtype != torch.int8: + logger.info("target_dtype {target_dtype} is replaced by `torch.int8` for 8-bit BnB quantization") + return torch.int8 + + def check_quantized_param( + self, + model: "PreTrainedModel", + param_value: "torch.Tensor", + param_name: str, + state_dict: Dict[str, Any], + **kwargs, + ): + import bitsandbytes as bnb + + module, tensor_name = get_module_from_name(model, param_name) + if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Int8Params): + if self.pre_quantized: + if param_name.replace("weight", "SCB") not in state_dict.keys(): + raise ValueError("Missing quantization component `SCB`") + if param_value.dtype != torch.int8: + raise ValueError( + f"Incompatible dtype `{param_value.dtype}` when loading 8-bit prequantized weight. Expected `torch.int8`." + ) + return True + return False + + def create_quantized_param( + self, + model: "PreTrainedModel", + param_value: "torch.Tensor", + param_name: str, + target_device: "torch.device", + state_dict: Dict[str, Any], + unexpected_keys: Optional[List[str]] = None, + ): + """ + combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device() + needs aux items from state dicts, if found - removes them from unexpected_keys + """ + import bitsandbytes as bnb + + fp16_statistics_key = param_name.replace("weight", "SCB") + fp16_weights_format_key = param_name.replace("weight", "weight_format") + + fp16_statistics = state_dict.get(fp16_statistics_key, None) + fp16_weights_format = state_dict.get(fp16_weights_format_key, None) + + module, tensor_name = get_module_from_name(model, param_name) + if tensor_name not in module._parameters: + raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") + + old_value = getattr(module, tensor_name) + + if not isinstance(module._parameters[tensor_name], bnb.nn.Int8Params): + raise ValueError(f"Parameter `{tensor_name}` should only be a `bnb.nn.Int8Params` instance.") + if ( + old_value.device == torch.device("meta") + and target_device not in ["meta", torch.device("meta")] + and param_value is None + ): + raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.") + + new_value = param_value.to("cpu") + if self.pre_quantized and not self.is_serializable: + raise ValueError( + "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " + "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." + ) + + # Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization. + # Since weights are saved in the correct "orientation", we skip transposing when loading. + if issubclass(module.source_cls, Conv1D): + if fp16_statistics is None: + new_value = new_value.T + + kwargs = old_value.__dict__ + new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(target_device) + + module._parameters[tensor_name] = new_value + if fp16_statistics is not None: + setattr(module.weight, "SCB", fp16_statistics.to(target_device)) + if unexpected_keys is not None: + unexpected_keys.remove(fp16_statistics_key) + + # We just need to pop the `weight_format` keys from the state dict to remove unneeded + # messages. The correct format is correctly retrieved during the first forward pass. + if fp16_weights_format is not None and unexpected_keys is not None: + unexpected_keys.remove(fp16_weights_format_key) + + def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): + model.is_loaded_in_8bit = True + model.is_8bit_serializable = self.is_serializable + return model + + def _process_model_before_weight_loading( + self, + model: "PreTrainedModel", + device_map, + keep_in_fp32_modules: List[str] = [], + **kwargs, + ): + from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear + + load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload + + # We keep some modules such as the lm_head in their original dtype for numerical stability reasons + if self.quantization_config.llm_int8_skip_modules is None: + self.modules_to_not_convert = get_keys_to_not_convert(model) + else: + self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules + + if not isinstance(self.modules_to_not_convert, list): + self.modules_to_not_convert = [self.modules_to_not_convert] + + self.modules_to_not_convert.extend(keep_in_fp32_modules) + + # Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk` + if isinstance(device_map, dict) and len(device_map.keys()) > 1: + keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] + + if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload: + raise ValueError( + "If you want to offload some keys to `cpu` or `disk`, you need to set " + "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " + " converted to 8-bit but kept in 32-bit." + ) + self.modules_to_not_convert.extend(keys_on_cpu) + + model = replace_with_bnb_linear( + model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config + ) + # TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here + + model.config.quantization_config = self.quantization_config + + @property + def is_serializable(self): + _bnb_supports_8bit_serialization = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse( + "0.37.2" + ) + + if not _bnb_supports_8bit_serialization: + logger.warning( + "You are calling `save_pretrained` to a 8-bit converted model, but your `bitsandbytes` version doesn't support it. " + "If you want to save 8-bit models, make sure to have `bitsandbytes>0.37.2` installed. You will most likely face errors or" + " unexpected behaviours." + ) + return False + + return True + + @property + def is_trainable(self) -> bool: + return version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.37.0") diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_gptq.py b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_gptq.py new file mode 100644 index 0000000000000000000000000000000000000000..ffc6f2090a8a7b3d6ac896655fda4f6c0632dea7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_gptq.py @@ -0,0 +1,94 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import importlib +from typing import TYPE_CHECKING, Optional + +from packaging import version + +from .base import HfQuantizer + + +if TYPE_CHECKING: + from ..modeling_utils import PreTrainedModel + +from ..utils import is_auto_gptq_available, is_optimum_available, is_torch_available, logging +from ..utils.quantization_config import GPTQConfig, QuantizationConfigMixin + + +if is_torch_available(): + import torch + +logger = logging.get_logger(__name__) + + +class GptqHfQuantizer(HfQuantizer): + """ + Quantizer of the GPTQ method - for GPTQ the quantizer support calibration of the model through + `auto_gptq` package. Quantization is done under the hood for users if they load a non-prequantized model. + """ + + requires_calibration = False + required_packages = ["optimum", "auto_gptq"] + optimum_quantizer = None + + def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): + super().__init__(quantization_config, **kwargs) + from optimum.gptq import GPTQQuantizer + + self.optimum_quantizer = GPTQQuantizer.from_dict(self.quantization_config.to_dict_optimum()) + + def validate_environment(self, *args, **kwargs): + gptq_supports_cpu = version.parse(importlib.metadata.version("auto-gptq")) > version.parse("0.4.2") + if not gptq_supports_cpu and not torch.cuda.is_available(): + raise RuntimeError("GPU is required to quantize or run quantize model.") + elif not (is_optimum_available() and is_auto_gptq_available()): + raise ImportError( + "Loading a GPTQ quantized model requires optimum (`pip install optimum`) and auto-gptq library (`pip install auto-gptq`)" + ) + elif version.parse(importlib.metadata.version("auto_gptq")) < version.parse("0.4.2"): + raise ImportError( + "You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq`" + ) + + def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": + if torch_dtype is None: + torch_dtype = torch.float16 + elif torch_dtype != torch.float16: + logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with GPTQ.") + return torch_dtype + + def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): + if model.__class__.main_input_name != "input_ids": + raise RuntimeError("We can only quantize pure text model.") + + if self.pre_quantized: + model = self.optimum_quantizer.convert_model(model) + + def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): + if self.pre_quantized: + model = self.optimum_quantizer.post_init_model(model) + else: + if self.quantization_config.tokenizer is None: + self.quantization_config.tokenizer = model.name_or_path + + self.optimum_quantizer.quantize_model(model, self.quantization_config.tokenizer) + model.config.quantization_config = GPTQConfig.from_dict(self.optimum_quantizer.to_dict()) + + @property + def is_trainable(self, model: Optional["PreTrainedModel"] = None): + return True + + @property + def is_serializable(self): + return True diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_quanto.py b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_quanto.py new file mode 100644 index 0000000000000000000000000000000000000000..e7e2219ab6621715e3275312d547ec2bfbd4b676 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_quanto.py @@ -0,0 +1,200 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import importlib +from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union + +from packaging import version + +from .base import HfQuantizer +from .quantizers_utils import get_module_from_name + + +if TYPE_CHECKING: + from ..modeling_utils import PreTrainedModel + +from ..utils import is_accelerate_available, is_quanto_available, is_torch_available, logging +from ..utils.quantization_config import QuantoConfig + + +if is_torch_available(): + import torch + +logger = logging.get_logger(__name__) + + +class QuantoHfQuantizer(HfQuantizer): + """ + Quantizer for the quanto library + """ + + required_packages = ["quanto", "accelerate"] + requires_parameters_quantization = True + requires_calibration = False + + def __init__(self, quantization_config: QuantoConfig, **kwargs): + super().__init__(quantization_config, **kwargs) + self.post_init() + + def post_init(self): + r""" + Safety checker + """ + if self.quantization_config.activations is not None and not self.pre_quantized: + raise ValueError( + "We don't support quantizing the activations with transformers library." + "Use quanto library for more complex use cases such as activations quantization, calibration and quantization aware training." + ) + + def validate_environment(self, *args, **kwargs): + if not is_quanto_available(): + raise ImportError("Loading a quanto quantized model requires quanto library (`pip install quanto`)") + if not is_accelerate_available(): + raise ImportError( + "Loading a quanto quantized model requires accelerate library (`pip install accelerate`)" + ) + + def update_device_map(self, device_map): + if device_map is None: + device_map = {"": "cpu"} + logger.info( + "The device_map was not initialized. " + "Setting device_map to {'':'cpu'}. " + "If you want to use the model for inference, please set device_map ='auto'" + ) + return device_map + + def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": + if torch_dtype is None: + logger.info("You did not specify `torch_dtype` in `from_pretrained`. Setting it to `torch.float32`.") + torch_dtype = torch.float32 + return torch_dtype + + def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: + import quanto + + not_missing_keys = [] + for name, module in model.named_modules(): + if isinstance(module, quanto.QModuleMixin): + for missing in missing_keys: + if ( + (name in missing or name in f"{prefix}.{missing}") + and not missing.endswith(".weight") + and not missing.endswith(".bias") + ): + not_missing_keys.append(missing) + return [k for k in missing_keys if k not in not_missing_keys] + + def check_quantized_param( + self, + model: "PreTrainedModel", + param_value: "torch.Tensor", + param_name: str, + state_dict: Dict[str, Any], + **kwargs, + ) -> bool: + """ + Check if a parameter needs to be quantized. + """ + import quanto + + device_map = kwargs.get("device_map", None) + param_device = kwargs.get("param_device", None) + # we don't quantize the model if the module is going to be offloaded to the cpu + if device_map is not None and param_device is not None: + device_map_values = set(device_map.values()) + if param_device == "cpu" and len(device_map_values) > 1: + if not (device_map_values == {"cpu"} or device_map_values == {"cpu", "disk"}): + return False + + module, tensor_name = get_module_from_name(model, param_name) + # We only quantize the weights and the bias is not quantized. + if isinstance(module, quanto.QModuleMixin) and "weight" in tensor_name: + # if the weights are quantized, don't need to recreate it again with `create_quantized_param` + return not module.frozen + else: + return False + + def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: + max_memory = {key: val * 0.90 for key, val in max_memory.items()} + return max_memory + + def create_quantized_param( + self, + model: "PreTrainedModel", + param_value: "torch.Tensor", + param_name: str, + target_device: "torch.device", + *args, + **kwargs, + ): + """ + Create the quantized parameter by calling .freeze() after setting it to the module. + """ + from accelerate.utils import set_module_tensor_to_device + + set_module_tensor_to_device(model, param_name, target_device, param_value) + module, _ = get_module_from_name(model, param_name) + module.freeze() + module.weight.requires_grad = False + + def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": + if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.27.0"): + from accelerate.utils import CustomDtype + + mapping = { + "int8": torch.int8, + "float8": CustomDtype.FP8, + "int4": CustomDtype.INT4, + "int2": CustomDtype.INT2, + } + target_dtype = mapping[self.quantization_config.weights] + return target_dtype + else: + raise ValueError( + "You are using `device_map='auto'` on a quanto quantized model. To automatically compute" + " the appropriate device map, you should upgrade your `accelerate` library," + "`pip install --upgrade accelerate` or install it from source." + ) + + def _process_model_before_weight_loading( + self, model: "PreTrainedModel", keep_in_fp32_modules: List[str] = [], **kwargs + ): + from ..integrations import get_keys_to_not_convert, replace_with_quanto_layers + + # We keep some modules such as the lm_head in their original dtype for numerical stability reasons + if self.quantization_config.modules_to_not_convert is None: + self.modules_to_not_convert = get_keys_to_not_convert(model) + else: + self.modules_to_not_convert = self.quantization_config.modules_to_not_convert + + if not isinstance(self.modules_to_not_convert, list): + self.modules_to_not_convert = [self.modules_to_not_convert] + + self.modules_to_not_convert.extend(keep_in_fp32_modules) + + model, _ = replace_with_quanto_layers( + model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config + ) + model.config.quantization_config = self.quantization_config + + def _process_model_after_weight_loading(self, model): + return model + + @property + def is_trainable(self, model: Optional["PreTrainedModel"] = None): + return False + + @property + def is_serializable(self): + return False diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizers_utils.py b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizers_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..6ae287bf251b51337b8588b2e0176178316e7e96 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizers_utils.py @@ -0,0 +1,26 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import Any, Tuple + + +def get_module_from_name(module, tensor_name: str) -> Tuple[Any, str]: + if "." in tensor_name: + splits = tensor_name.split(".") + for split in splits[:-1]: + new_module = getattr(module, split) + if new_module is None: + raise ValueError(f"{module} has no attribute {split}.") + module = new_module + tensor_name = splits[-1] + return module, tensor_name diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..68d66eb275e0b6fef2db1cdda810fe11e360aba9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/__init__.py @@ -0,0 +1,71 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ..utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_torch_available, +) + + +_import_structure = { + "agents": ["Agent", "AzureOpenAiAgent", "HfAgent", "LocalAgent", "OpenAiAgent"], + "base": ["PipelineTool", "RemoteTool", "Tool", "launch_gradio_demo", "load_tool"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["document_question_answering"] = ["DocumentQuestionAnsweringTool"] + _import_structure["image_captioning"] = ["ImageCaptioningTool"] + _import_structure["image_question_answering"] = ["ImageQuestionAnsweringTool"] + _import_structure["image_segmentation"] = ["ImageSegmentationTool"] + _import_structure["speech_to_text"] = ["SpeechToTextTool"] + _import_structure["text_classification"] = ["TextClassificationTool"] + _import_structure["text_question_answering"] = ["TextQuestionAnsweringTool"] + _import_structure["text_summarization"] = ["TextSummarizationTool"] + _import_structure["text_to_speech"] = ["TextToSpeechTool"] + _import_structure["translation"] = ["TranslationTool"] + +if TYPE_CHECKING: + from .agents import Agent, AzureOpenAiAgent, HfAgent, LocalAgent, OpenAiAgent + from .base import PipelineTool, RemoteTool, Tool, launch_gradio_demo, load_tool + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .document_question_answering import DocumentQuestionAnsweringTool + from .image_captioning import ImageCaptioningTool + from .image_question_answering import ImageQuestionAnsweringTool + from .image_segmentation import ImageSegmentationTool + from .speech_to_text import SpeechToTextTool + from .text_classification import TextClassificationTool + from .text_question_answering import TextQuestionAnsweringTool + from .text_summarization import TextSummarizationTool + from .text_to_speech import TextToSpeechTool + from .translation import TranslationTool +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/__pycache__/base.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/tools/__pycache__/base.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cfa7e3daf46117a9e5096dba4ca6af3a4b5a6dc5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/tools/__pycache__/base.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/__pycache__/document_question_answering.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/tools/__pycache__/document_question_answering.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5b3b8b12ca63dba26fc910b5f368486034210e36 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/tools/__pycache__/document_question_answering.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/__pycache__/image_question_answering.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/tools/__pycache__/image_question_answering.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..43a88cd4e1141d309814058713d2bf6822622cda Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/tools/__pycache__/image_question_answering.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/agent_types.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/agent_types.py new file mode 100644 index 0000000000000000000000000000000000000000..f1c3261d57cacc0d0299467f0fa566340e4b5a94 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/agent_types.py @@ -0,0 +1,277 @@ +# coding=utf-8 +# Copyright 2023 HuggingFace Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import os +import pathlib +import tempfile +import uuid + +import numpy as np + +from ..utils import is_soundfile_availble, is_torch_available, is_vision_available, logging + + +logger = logging.get_logger(__name__) + +if is_vision_available(): + import PIL.Image + from PIL import Image + from PIL.Image import Image as ImageType +else: + ImageType = object + +if is_torch_available(): + import torch + +if is_soundfile_availble(): + import soundfile as sf + + +class AgentType: + """ + Abstract class to be reimplemented to define types that can be returned by agents. + + These objects serve three purposes: + + - They behave as they were the type they're meant to be, e.g., a string for text, a PIL.Image for images + - They can be stringified: str(object) in order to return a string defining the object + - They should be displayed correctly in ipython notebooks/colab/jupyter + """ + + def __init__(self, value): + self._value = value + + def __str__(self): + return self.to_string() + + def to_raw(self): + logger.error( + "This is a raw AgentType of unknown type. Display in notebooks and string conversion will be unreliable" + ) + return self._value + + def to_string(self) -> str: + logger.error( + "This is a raw AgentType of unknown type. Display in notebooks and string conversion will be unreliable" + ) + return str(self._value) + + +class AgentText(AgentType, str): + """ + Text type returned by the agent. Behaves as a string. + """ + + def to_raw(self): + return self._value + + def to_string(self): + return self._value + + +class AgentImage(AgentType, ImageType): + """ + Image type returned by the agent. Behaves as a PIL.Image. + """ + + def __init__(self, value): + super().__init__(value) + + if not is_vision_available(): + raise ImportError("PIL must be installed in order to handle images.") + + self._path = None + self._raw = None + self._tensor = None + + if isinstance(value, ImageType): + self._raw = value + elif isinstance(value, (str, pathlib.Path)): + self._path = value + elif isinstance(value, torch.Tensor): + self._tensor = value + else: + raise ValueError(f"Unsupported type for {self.__class__.__name__}: {type(value)}") + + def _ipython_display_(self, include=None, exclude=None): + """ + Displays correctly this type in an ipython notebook (ipython, colab, jupyter, ...) + """ + from IPython.display import Image, display + + display(Image(self.to_string())) + + def to_raw(self): + """ + Returns the "raw" version of that object. In the case of an AgentImage, it is a PIL.Image. + """ + if self._raw is not None: + return self._raw + + if self._path is not None: + self._raw = Image.open(self._path) + return self._raw + + def to_string(self): + """ + Returns the stringified version of that object. In the case of an AgentImage, it is a path to the serialized + version of the image. + """ + if self._path is not None: + return self._path + + if self._raw is not None: + directory = tempfile.mkdtemp() + self._path = os.path.join(directory, str(uuid.uuid4()) + ".png") + self._raw.save(self._path) + + return self._path + + if self._tensor is not None: + array = self._tensor.cpu().detach().numpy() + + # There is likely simpler than load into image into save + img = Image.fromarray((array * 255).astype(np.uint8)) + + directory = tempfile.mkdtemp() + self._path = os.path.join(directory, str(uuid.uuid4()) + ".png") + + img.save(self._path) + + return self._path + + +class AgentAudio(AgentType): + """ + Audio type returned by the agent. + """ + + def __init__(self, value, samplerate=16_000): + super().__init__(value) + + if not is_soundfile_availble(): + raise ImportError("soundfile must be installed in order to handle audio.") + + self._path = None + self._tensor = None + + self.samplerate = samplerate + + if isinstance(value, (str, pathlib.Path)): + self._path = value + elif isinstance(value, torch.Tensor): + self._tensor = value + else: + raise ValueError(f"Unsupported audio type: {type(value)}") + + def _ipython_display_(self, include=None, exclude=None): + """ + Displays correctly this type in an ipython notebook (ipython, colab, jupyter, ...) + """ + from IPython.display import Audio, display + + display(Audio(self.to_string(), rate=self.samplerate)) + + def to_raw(self): + """ + Returns the "raw" version of that object. It is a `torch.Tensor` object. + """ + if self._tensor is not None: + return self._tensor + + if self._path is not None: + tensor, self.samplerate = sf.read(self._path) + self._tensor = torch.tensor(tensor) + return self._tensor + + def to_string(self): + """ + Returns the stringified version of that object. In the case of an AgentAudio, it is a path to the serialized + version of the audio. + """ + if self._path is not None: + return self._path + + if self._tensor is not None: + directory = tempfile.mkdtemp() + self._path = os.path.join(directory, str(uuid.uuid4()) + ".wav") + sf.write(self._path, self._tensor, samplerate=self.samplerate) + return self._path + + +AGENT_TYPE_MAPPING = {"text": AgentText, "image": AgentImage, "audio": AgentAudio} +INSTANCE_TYPE_MAPPING = {str: AgentText} + +if is_vision_available(): + INSTANCE_TYPE_MAPPING[PIL.Image] = AgentImage + + +def handle_agent_inputs(*args, **kwargs): + args = [(arg.to_raw() if isinstance(arg, AgentType) else arg) for arg in args] + kwargs = {k: (v.to_raw() if isinstance(v, AgentType) else v) for k, v in kwargs.items()} + return args, kwargs + + +def handle_agent_outputs(outputs, output_types=None): + if isinstance(outputs, dict): + decoded_outputs = {} + for i, (k, v) in enumerate(outputs.items()): + if output_types is not None: + # If the class has defined outputs, we can map directly according to the class definition + if output_types[i] in AGENT_TYPE_MAPPING: + decoded_outputs[k] = AGENT_TYPE_MAPPING[output_types[i]](v) + else: + decoded_outputs[k] = AgentType(v) + + else: + # If the class does not have defined output, then we map according to the type + for _k, _v in INSTANCE_TYPE_MAPPING.items(): + if isinstance(v, _k): + decoded_outputs[k] = _v(v) + if k not in decoded_outputs: + decoded_outputs[k] = AgentType[v] + + elif isinstance(outputs, (list, tuple)): + decoded_outputs = type(outputs)() + for i, v in enumerate(outputs): + if output_types is not None: + # If the class has defined outputs, we can map directly according to the class definition + if output_types[i] in AGENT_TYPE_MAPPING: + decoded_outputs.append(AGENT_TYPE_MAPPING[output_types[i]](v)) + else: + decoded_outputs.append(AgentType(v)) + else: + # If the class does not have defined output, then we map according to the type + found = False + for _k, _v in INSTANCE_TYPE_MAPPING.items(): + if isinstance(v, _k): + decoded_outputs.append(_v(v)) + found = True + + if not found: + decoded_outputs.append(AgentType(v)) + + else: + if output_types[0] in AGENT_TYPE_MAPPING: + # If the class has defined outputs, we can map directly according to the class definition + decoded_outputs = AGENT_TYPE_MAPPING[output_types[0]](outputs) + + else: + # If the class does not have defined output, then we map according to the type + for _k, _v in INSTANCE_TYPE_MAPPING.items(): + if isinstance(outputs, _k): + return _v(outputs) + return AgentType(outputs) + + return decoded_outputs diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/base.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/base.py new file mode 100644 index 0000000000000000000000000000000000000000..2a7d05a0322b7d0d6798d4541acea35e5ad82377 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/base.py @@ -0,0 +1,765 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import base64 +import importlib +import inspect +import io +import json +import os +import tempfile +from typing import Any, Dict, List, Optional, Union + +from huggingface_hub import create_repo, hf_hub_download, metadata_update, upload_folder +from huggingface_hub.utils import RepositoryNotFoundError, build_hf_headers, get_session + +from ..dynamic_module_utils import custom_object_save, get_class_from_dynamic_module, get_imports +from ..image_utils import is_pil_image +from ..models.auto import AutoProcessor +from ..utils import ( + CONFIG_NAME, + cached_file, + is_accelerate_available, + is_torch_available, + is_vision_available, + logging, +) +from .agent_types import handle_agent_inputs, handle_agent_outputs + + +logger = logging.get_logger(__name__) + +if is_torch_available(): + import torch + +if is_accelerate_available(): + from accelerate import PartialState + from accelerate.utils import send_to_device + + +TOOL_CONFIG_FILE = "tool_config.json" + + +def get_repo_type(repo_id, repo_type=None, **hub_kwargs): + if repo_type is not None: + return repo_type + try: + hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space", **hub_kwargs) + return "space" + except RepositoryNotFoundError: + try: + hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="model", **hub_kwargs) + return "model" + except RepositoryNotFoundError: + raise EnvironmentError(f"`{repo_id}` does not seem to be a valid repo identifier on the Hub.") + except Exception: + return "model" + except Exception: + return "space" + + +# docstyle-ignore +APP_FILE_TEMPLATE = """from transformers import launch_gradio_demo +from {module_name} import {class_name} + +launch_gradio_demo({class_name}) +""" + + +class Tool: + """ + A base class for the functions used by the agent. Subclass this and implement the `__call__` method as well as the + following class attributes: + + - **description** (`str`) -- A short description of what your tool does, the inputs it expects and the output(s) it + will return. For instance 'This is a tool that downloads a file from a `url`. It takes the `url` as input, and + returns the text contained in the file'. + - **name** (`str`) -- A performative name that will be used for your tool in the prompt to the agent. For instance + `"text-classifier"` or `"image_generator"`. + - **inputs** (`List[str]`) -- The list of modalities expected for the inputs (in the same order as in the call). + Modalitiies should be `"text"`, `"image"` or `"audio"`. This is only used by `launch_gradio_demo` or to make a + nice space from your tool. + - **outputs** (`List[str]`) -- The list of modalities returned but the tool (in the same order as the return of the + call method). Modalitiies should be `"text"`, `"image"` or `"audio"`. This is only used by `launch_gradio_demo` + or to make a nice space from your tool. + + You can also override the method [`~Tool.setup`] if your tool as an expensive operation to perform before being + usable (such as loading a model). [`~Tool.setup`] will be called the first time you use your tool, but not at + instantiation. + """ + + description: str = "This is a tool that ..." + name: str = "" + + inputs: List[str] + outputs: List[str] + + def __init__(self, *args, **kwargs): + self.is_initialized = False + + def __call__(self, *args, **kwargs): + return NotImplemented("Write this method in your subclass of `Tool`.") + + def setup(self): + """ + Overwrite this method here for any operation that is expensive and needs to be executed before you start using + your tool. Such as loading a big model. + """ + self.is_initialized = True + + def save(self, output_dir): + """ + Saves the relevant code files for your tool so it can be pushed to the Hub. This will copy the code of your + tool in `output_dir` as well as autogenerate: + + - a config file named `tool_config.json` + - an `app.py` file so that your tool can be converted to a space + - a `requirements.txt` containing the names of the module used by your tool (as detected when inspecting its + code) + + You should only use this method to save tools that are defined in a separate module (not `__main__`). + + Args: + output_dir (`str`): The folder in which you want to save your tool. + """ + os.makedirs(output_dir, exist_ok=True) + # Save module file + if self.__module__ == "__main__": + raise ValueError( + f"We can't save the code defining {self} in {output_dir} as it's been defined in __main__. You " + "have to put this code in a separate module so we can include it in the saved folder." + ) + module_files = custom_object_save(self, output_dir) + + module_name = self.__class__.__module__ + last_module = module_name.split(".")[-1] + full_name = f"{last_module}.{self.__class__.__name__}" + + # Save config file + config_file = os.path.join(output_dir, "tool_config.json") + if os.path.isfile(config_file): + with open(config_file, "r", encoding="utf-8") as f: + tool_config = json.load(f) + else: + tool_config = {} + + tool_config = {"tool_class": full_name, "description": self.description, "name": self.name} + with open(config_file, "w", encoding="utf-8") as f: + f.write(json.dumps(tool_config, indent=2, sort_keys=True) + "\n") + + # Save app file + app_file = os.path.join(output_dir, "app.py") + with open(app_file, "w", encoding="utf-8") as f: + f.write(APP_FILE_TEMPLATE.format(module_name=last_module, class_name=self.__class__.__name__)) + + # Save requirements file + requirements_file = os.path.join(output_dir, "requirements.txt") + imports = [] + for module in module_files: + imports.extend(get_imports(module)) + imports = list(set(imports)) + with open(requirements_file, "w", encoding="utf-8") as f: + f.write("\n".join(imports) + "\n") + + @classmethod + def from_hub( + cls, + repo_id: str, + model_repo_id: Optional[str] = None, + token: Optional[str] = None, + remote: bool = False, + **kwargs, + ): + """ + Loads a tool defined on the Hub. + + + + Loading a tool from the Hub means that you'll download the tool and execute it locally. + ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when + installing a package using pip/npm/apt. + + + + Args: + repo_id (`str`): + The name of the repo on the Hub where your tool is defined. + model_repo_id (`str`, *optional*): + If your tool uses a model and you want to use a different model than the default, you can pass a second + repo ID or an endpoint url to this argument. + token (`str`, *optional*): + The token to identify you on hf.co. If unset, will use the token generated when running + `huggingface-cli login` (stored in `~/.huggingface`). + remote (`bool`, *optional*, defaults to `False`): + Whether to use your tool by downloading the model or (if it is available) with an inference endpoint. + kwargs (additional keyword arguments, *optional*): + Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as + `cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the + others will be passed along to its init. + """ + if remote and model_repo_id is None: + endpoints = get_default_endpoints() + if repo_id not in endpoints: + raise ValueError( + f"Could not infer a default endpoint for {repo_id}, you need to pass one using the " + "`model_repo_id` argument." + ) + model_repo_id = endpoints[repo_id] + hub_kwargs_names = [ + "cache_dir", + "force_download", + "resume_download", + "proxies", + "revision", + "repo_type", + "subfolder", + "local_files_only", + ] + hub_kwargs = {k: v for k, v in kwargs.items() if k in hub_kwargs_names} + + # Try to get the tool config first. + hub_kwargs["repo_type"] = get_repo_type(repo_id, **hub_kwargs) + resolved_config_file = cached_file( + repo_id, + TOOL_CONFIG_FILE, + token=token, + **hub_kwargs, + _raise_exceptions_for_gated_repo=False, + _raise_exceptions_for_missing_entries=False, + _raise_exceptions_for_connection_errors=False, + ) + is_tool_config = resolved_config_file is not None + if resolved_config_file is None: + resolved_config_file = cached_file( + repo_id, + CONFIG_NAME, + token=token, + **hub_kwargs, + _raise_exceptions_for_gated_repo=False, + _raise_exceptions_for_missing_entries=False, + _raise_exceptions_for_connection_errors=False, + ) + if resolved_config_file is None: + raise EnvironmentError( + f"{repo_id} does not appear to provide a valid configuration in `tool_config.json` or `config.json`." + ) + + with open(resolved_config_file, encoding="utf-8") as reader: + config = json.load(reader) + + if not is_tool_config: + if "custom_tool" not in config: + raise EnvironmentError( + f"{repo_id} does not provide a mapping to custom tools in its configuration `config.json`." + ) + custom_tool = config["custom_tool"] + else: + custom_tool = config + + tool_class = custom_tool["tool_class"] + tool_class = get_class_from_dynamic_module(tool_class, repo_id, token=token, **hub_kwargs) + + if len(tool_class.name) == 0: + tool_class.name = custom_tool["name"] + if tool_class.name != custom_tool["name"]: + logger.warning( + f"{tool_class.__name__} implements a different name in its configuration and class. Using the tool " + "configuration name." + ) + tool_class.name = custom_tool["name"] + + if len(tool_class.description) == 0: + tool_class.description = custom_tool["description"] + if tool_class.description != custom_tool["description"]: + logger.warning( + f"{tool_class.__name__} implements a different description in its configuration and class. Using the " + "tool configuration description." + ) + tool_class.description = custom_tool["description"] + + if remote: + return RemoteTool(model_repo_id, token=token, tool_class=tool_class) + return tool_class(model_repo_id, token=token, **kwargs) + + def push_to_hub( + self, + repo_id: str, + commit_message: str = "Upload tool", + private: Optional[bool] = None, + token: Optional[Union[bool, str]] = None, + create_pr: bool = False, + ) -> str: + """ + Upload the tool to the Hub. + + Parameters: + repo_id (`str`): + The name of the repository you want to push your tool to. It should contain your organization name when + pushing to a given organization. + commit_message (`str`, *optional*, defaults to `"Upload tool"`): + Message to commit while pushing. + private (`bool`, *optional*): + Whether or not the repository created should be private. + token (`bool` or `str`, *optional*): + The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated + when running `huggingface-cli login` (stored in `~/.huggingface`). + create_pr (`bool`, *optional*, defaults to `False`): + Whether or not to create a PR with the uploaded files or directly commit. + """ + repo_url = create_repo( + repo_id=repo_id, token=token, private=private, exist_ok=True, repo_type="space", space_sdk="gradio" + ) + repo_id = repo_url.repo_id + metadata_update(repo_id, {"tags": ["tool"]}, repo_type="space") + + with tempfile.TemporaryDirectory() as work_dir: + # Save all files. + self.save(work_dir) + logger.info(f"Uploading the following files to {repo_id}: {','.join(os.listdir(work_dir))}") + return upload_folder( + repo_id=repo_id, + commit_message=commit_message, + folder_path=work_dir, + token=token, + create_pr=create_pr, + repo_type="space", + ) + + @staticmethod + def from_gradio(gradio_tool): + """ + Creates a [`Tool`] from a gradio tool. + """ + + class GradioToolWrapper(Tool): + def __init__(self, _gradio_tool): + super().__init__() + self.name = _gradio_tool.name + self.description = _gradio_tool.description + + GradioToolWrapper.__call__ = gradio_tool.run + return GradioToolWrapper(gradio_tool) + + +class RemoteTool(Tool): + """ + A [`Tool`] that will make requests to an inference endpoint. + + Args: + endpoint_url (`str`, *optional*): + The url of the endpoint to use. + token (`str`, *optional*): + The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when + running `huggingface-cli login` (stored in `~/.huggingface`). + tool_class (`type`, *optional*): + The corresponding `tool_class` if this is a remote version of an existing tool. Will help determine when + the output should be converted to another type (like images). + """ + + def __init__(self, endpoint_url=None, token=None, tool_class=None): + self.endpoint_url = endpoint_url + self.client = EndpointClient(endpoint_url, token=token) + self.tool_class = tool_class + + def prepare_inputs(self, *args, **kwargs): + """ + Prepare the inputs received for the HTTP client sending data to the endpoint. Positional arguments will be + matched with the signature of the `tool_class` if it was provided at instantation. Images will be encoded into + bytes. + + You can override this method in your custom class of [`RemoteTool`]. + """ + inputs = kwargs.copy() + if len(args) > 0: + if self.tool_class is not None: + # Match args with the signature + if issubclass(self.tool_class, PipelineTool): + call_method = self.tool_class.encode + else: + call_method = self.tool_class.__call__ + signature = inspect.signature(call_method).parameters + parameters = [ + k + for k, p in signature.items() + if p.kind not in [inspect._ParameterKind.VAR_POSITIONAL, inspect._ParameterKind.VAR_KEYWORD] + ] + if parameters[0] == "self": + parameters = parameters[1:] + if len(args) > len(parameters): + raise ValueError( + f"{self.tool_class} only accepts {len(parameters)} arguments but {len(args)} were given." + ) + for arg, name in zip(args, parameters): + inputs[name] = arg + elif len(args) > 1: + raise ValueError("A `RemoteTool` can only accept one positional input.") + elif len(args) == 1: + if is_pil_image(args[0]): + return {"inputs": self.client.encode_image(args[0])} + return {"inputs": args[0]} + + for key, value in inputs.items(): + if is_pil_image(value): + inputs[key] = self.client.encode_image(value) + + return {"inputs": inputs} + + def extract_outputs(self, outputs): + """ + You can override this method in your custom class of [`RemoteTool`] to apply some custom post-processing of the + outputs of the endpoint. + """ + return outputs + + def __call__(self, *args, **kwargs): + args, kwargs = handle_agent_inputs(*args, **kwargs) + + output_image = self.tool_class is not None and self.tool_class.outputs == ["image"] + inputs = self.prepare_inputs(*args, **kwargs) + if isinstance(inputs, dict): + outputs = self.client(**inputs, output_image=output_image) + else: + outputs = self.client(inputs, output_image=output_image) + if isinstance(outputs, list) and len(outputs) == 1 and isinstance(outputs[0], list): + outputs = outputs[0] + + outputs = handle_agent_outputs(outputs, self.tool_class.outputs if self.tool_class is not None else None) + + return self.extract_outputs(outputs) + + +class PipelineTool(Tool): + """ + A [`Tool`] tailored towards Transformer models. On top of the class attributes of the base class [`Tool`], you will + need to specify: + + - **model_class** (`type`) -- The class to use to load the model in this tool. + - **default_checkpoint** (`str`) -- The default checkpoint that should be used when the user doesn't specify one. + - **pre_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the + pre-processor + - **post_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the + post-processor (when different from the pre-processor). + + Args: + model (`str` or [`PreTrainedModel`], *optional*): + The name of the checkpoint to use for the model, or the instantiated model. If unset, will default to the + value of the class attribute `default_checkpoint`. + pre_processor (`str` or `Any`, *optional*): + The name of the checkpoint to use for the pre-processor, or the instantiated pre-processor (can be a + tokenizer, an image processor, a feature extractor or a processor). Will default to the value of `model` if + unset. + post_processor (`str` or `Any`, *optional*): + The name of the checkpoint to use for the post-processor, or the instantiated pre-processor (can be a + tokenizer, an image processor, a feature extractor or a processor). Will default to the `pre_processor` if + unset. + device (`int`, `str` or `torch.device`, *optional*): + The device on which to execute the model. Will default to any accelerator available (GPU, MPS etc...), the + CPU otherwise. + device_map (`str` or `dict`, *optional*): + If passed along, will be used to instantiate the model. + model_kwargs (`dict`, *optional*): + Any keyword argument to send to the model instantiation. + token (`str`, *optional*): + The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when + running `huggingface-cli login` (stored in `~/.huggingface`). + hub_kwargs (additional keyword arguments, *optional*): + Any additional keyword argument to send to the methods that will load the data from the Hub. + """ + + pre_processor_class = AutoProcessor + model_class = None + post_processor_class = AutoProcessor + default_checkpoint = None + + def __init__( + self, + model=None, + pre_processor=None, + post_processor=None, + device=None, + device_map=None, + model_kwargs=None, + token=None, + **hub_kwargs, + ): + if not is_torch_available(): + raise ImportError("Please install torch in order to use this tool.") + + if not is_accelerate_available(): + raise ImportError("Please install accelerate in order to use this tool.") + + if model is None: + if self.default_checkpoint is None: + raise ValueError("This tool does not implement a default checkpoint, you need to pass one.") + model = self.default_checkpoint + if pre_processor is None: + pre_processor = model + + self.model = model + self.pre_processor = pre_processor + self.post_processor = post_processor + self.device = device + self.device_map = device_map + self.model_kwargs = {} if model_kwargs is None else model_kwargs + if device_map is not None: + self.model_kwargs["device_map"] = device_map + self.hub_kwargs = hub_kwargs + self.hub_kwargs["token"] = token + + super().__init__() + + def setup(self): + """ + Instantiates the `pre_processor`, `model` and `post_processor` if necessary. + """ + if isinstance(self.pre_processor, str): + self.pre_processor = self.pre_processor_class.from_pretrained(self.pre_processor, **self.hub_kwargs) + + if isinstance(self.model, str): + self.model = self.model_class.from_pretrained(self.model, **self.model_kwargs, **self.hub_kwargs) + + if self.post_processor is None: + self.post_processor = self.pre_processor + elif isinstance(self.post_processor, str): + self.post_processor = self.post_processor_class.from_pretrained(self.post_processor, **self.hub_kwargs) + + if self.device is None: + if self.device_map is not None: + self.device = list(self.model.hf_device_map.values())[0] + else: + self.device = PartialState().default_device + + if self.device_map is None: + self.model.to(self.device) + + super().setup() + + def encode(self, raw_inputs): + """ + Uses the `pre_processor` to prepare the inputs for the `model`. + """ + return self.pre_processor(raw_inputs) + + def forward(self, inputs): + """ + Sends the inputs through the `model`. + """ + with torch.no_grad(): + return self.model(**inputs) + + def decode(self, outputs): + """ + Uses the `post_processor` to decode the model output. + """ + return self.post_processor(outputs) + + def __call__(self, *args, **kwargs): + args, kwargs = handle_agent_inputs(*args, **kwargs) + + if not self.is_initialized: + self.setup() + + encoded_inputs = self.encode(*args, **kwargs) + encoded_inputs = send_to_device(encoded_inputs, self.device) + outputs = self.forward(encoded_inputs) + outputs = send_to_device(outputs, "cpu") + decoded_outputs = self.decode(outputs) + + return handle_agent_outputs(decoded_outputs, self.outputs) + + +def launch_gradio_demo(tool_class: Tool): + """ + Launches a gradio demo for a tool. The corresponding tool class needs to properly implement the class attributes + `inputs` and `outputs`. + + Args: + tool_class (`type`): The class of the tool for which to launch the demo. + """ + try: + import gradio as gr + except ImportError: + raise ImportError("Gradio should be installed in order to launch a gradio demo.") + + tool = tool_class() + + def fn(*args, **kwargs): + return tool(*args, **kwargs) + + gr.Interface( + fn=fn, + inputs=tool_class.inputs, + outputs=tool_class.outputs, + title=tool_class.__name__, + article=tool.description, + ).launch() + + +TASK_MAPPING = { + "document-question-answering": "DocumentQuestionAnsweringTool", + "image-captioning": "ImageCaptioningTool", + "image-question-answering": "ImageQuestionAnsweringTool", + "image-segmentation": "ImageSegmentationTool", + "speech-to-text": "SpeechToTextTool", + "summarization": "TextSummarizationTool", + "text-classification": "TextClassificationTool", + "text-question-answering": "TextQuestionAnsweringTool", + "text-to-speech": "TextToSpeechTool", + "translation": "TranslationTool", +} + + +def get_default_endpoints(): + endpoints_file = cached_file("huggingface-tools/default-endpoints", "default_endpoints.json", repo_type="dataset") + with open(endpoints_file, "r", encoding="utf-8") as f: + endpoints = json.load(f) + return endpoints + + +def supports_remote(task_or_repo_id): + endpoints = get_default_endpoints() + return task_or_repo_id in endpoints + + +def load_tool(task_or_repo_id, model_repo_id=None, remote=False, token=None, **kwargs): + """ + Main function to quickly load a tool, be it on the Hub or in the Transformers library. + + + + Loading a tool means that you'll download the tool and execute it locally. + ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when + installing a package using pip/npm/apt. + + + + Args: + task_or_repo_id (`str`): + The task for which to load the tool or a repo ID of a tool on the Hub. Tasks implemented in Transformers + are: + + - `"document-question-answering"` + - `"image-captioning"` + - `"image-question-answering"` + - `"image-segmentation"` + - `"speech-to-text"` + - `"summarization"` + - `"text-classification"` + - `"text-question-answering"` + - `"text-to-speech"` + - `"translation"` + + model_repo_id (`str`, *optional*): + Use this argument to use a different model than the default one for the tool you selected. + remote (`bool`, *optional*, defaults to `False`): + Whether to use your tool by downloading the model or (if it is available) with an inference endpoint. + token (`str`, *optional*): + The token to identify you on hf.co. If unset, will use the token generated when running `huggingface-cli + login` (stored in `~/.huggingface`). + kwargs (additional keyword arguments, *optional*): + Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as + `cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the others + will be passed along to its init. + """ + if task_or_repo_id in TASK_MAPPING: + tool_class_name = TASK_MAPPING[task_or_repo_id] + main_module = importlib.import_module("transformers") + tools_module = main_module.tools + tool_class = getattr(tools_module, tool_class_name) + + if remote: + if model_repo_id is None: + endpoints = get_default_endpoints() + if task_or_repo_id not in endpoints: + raise ValueError( + f"Could not infer a default endpoint for {task_or_repo_id}, you need to pass one using the " + "`model_repo_id` argument." + ) + model_repo_id = endpoints[task_or_repo_id] + return RemoteTool(model_repo_id, token=token, tool_class=tool_class) + else: + return tool_class(model_repo_id, token=token, **kwargs) + else: + logger.warning_once( + f"You're loading a tool from the Hub from {model_repo_id}. Please make sure this is a source that you " + f"trust as the code within that tool will be executed on your machine. Always verify the code of " + f"the tools that you load. We recommend specifying a `revision` to ensure you're loading the " + f"code that you have checked." + ) + return Tool.from_hub(task_or_repo_id, model_repo_id=model_repo_id, token=token, remote=remote, **kwargs) + + +def add_description(description): + """ + A decorator that adds a description to a function. + """ + + def inner(func): + func.description = description + func.name = func.__name__ + return func + + return inner + + +## Will move to the Hub +class EndpointClient: + def __init__(self, endpoint_url: str, token: Optional[str] = None): + self.headers = {**build_hf_headers(token=token), "Content-Type": "application/json"} + self.endpoint_url = endpoint_url + + @staticmethod + def encode_image(image): + _bytes = io.BytesIO() + image.save(_bytes, format="PNG") + b64 = base64.b64encode(_bytes.getvalue()) + return b64.decode("utf-8") + + @staticmethod + def decode_image(raw_image): + if not is_vision_available(): + raise ImportError( + "This tool returned an image but Pillow is not installed. Please install it (`pip install Pillow`)." + ) + + from PIL import Image + + b64 = base64.b64decode(raw_image) + _bytes = io.BytesIO(b64) + return Image.open(_bytes) + + def __call__( + self, + inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None, + params: Optional[Dict] = None, + data: Optional[bytes] = None, + output_image: bool = False, + ) -> Any: + # Build payload + payload = {} + if inputs: + payload["inputs"] = inputs + if params: + payload["parameters"] = params + + # Make API call + response = get_session().post(self.endpoint_url, headers=self.headers, json=payload, data=data) + + # By default, parse the response for the user. + if output_image: + return self.decode_image(response.content) + else: + return response.json() diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/document_question_answering.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/document_question_answering.py new file mode 100644 index 0000000000000000000000000000000000000000..7b5e8782bd785f18001a4d7f3e3dac6a840506c5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/document_question_answering.py @@ -0,0 +1,80 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import re + +from ..models.auto import AutoProcessor +from ..models.vision_encoder_decoder import VisionEncoderDecoderModel +from ..utils import is_vision_available +from .base import PipelineTool + + +if is_vision_available(): + from PIL import Image + + +class DocumentQuestionAnsweringTool(PipelineTool): + default_checkpoint = "naver-clova-ix/donut-base-finetuned-docvqa" + description = ( + "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " + "should be the document containing the information, as well as a `question` that is the question about the " + "document. It returns a text that contains the answer to the question." + ) + name = "document_qa" + pre_processor_class = AutoProcessor + model_class = VisionEncoderDecoderModel + + inputs = ["image", "text"] + outputs = ["text"] + + def __init__(self, *args, **kwargs): + if not is_vision_available(): + raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool.") + + super().__init__(*args, **kwargs) + + def encode(self, document: "Image", question: str): + task_prompt = "{user_input}" + prompt = task_prompt.replace("{user_input}", question) + decoder_input_ids = self.pre_processor.tokenizer( + prompt, add_special_tokens=False, return_tensors="pt" + ).input_ids + pixel_values = self.pre_processor(document, return_tensors="pt").pixel_values + + return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} + + def forward(self, inputs): + return self.model.generate( + inputs["pixel_values"].to(self.device), + decoder_input_ids=inputs["decoder_input_ids"].to(self.device), + max_length=self.model.decoder.config.max_position_embeddings, + early_stopping=True, + pad_token_id=self.pre_processor.tokenizer.pad_token_id, + eos_token_id=self.pre_processor.tokenizer.eos_token_id, + use_cache=True, + num_beams=1, + bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]], + return_dict_in_generate=True, + ).sequences + + def decode(self, outputs): + sequence = self.pre_processor.batch_decode(outputs)[0] + sequence = sequence.replace(self.pre_processor.tokenizer.eos_token, "") + sequence = sequence.replace(self.pre_processor.tokenizer.pad_token, "") + sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token + sequence = self.pre_processor.token2json(sequence) + + return sequence["answer"] diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/evaluate_agent.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/evaluate_agent.py new file mode 100644 index 0000000000000000000000000000000000000000..e9d14fab56cd6b2a10916d6daaf8ecfdd9900f6a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/evaluate_agent.py @@ -0,0 +1,692 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from .agents import BASE_PYTHON_TOOLS, clean_code_for_chat +from .python_interpreter import InterpretorError, evaluate + + +### Fake tools for test +def classifier(text, labels): + return f"This is the classification of {text} along {labels}." + + +def translator(text, src_lang, tgt_lang): + return f"This is the translation of {text} from {src_lang} to {tgt_lang}." + + +def speaker(text): + return f"This is actually a sound reading {text}." + + +def transcriber(audio): + if "sound" not in audio: + raise ValueError(f"`audio` ({audio}) is not a sound.") + return f"This is the transcribed text from {audio}." + + +def image_generator(prompt): + return f"This is actually an image representing {prompt}." + + +def image_captioner(image): + if "image" not in image: + raise ValueError(f"`image` ({image}) is not an image.") + return f"This is a description of {image}." + + +def image_transformer(image, prompt): + if "image" not in image: + raise ValueError(f"`image` ({image}) is not an image.") + return f"This is a transformation of {image} according to {prompt}." + + +def question_answerer(text, question): + return f"This is the answer to {question} from {text}." + + +def image_qa(image, question): + if "image" not in image: + raise ValueError(f"`image` ({image}) is not an image.") + return f"This is the answer to {question} from {image}." + + +def text_downloader(url): + return f"This is the content of {url}." + + +def summarizer(text): + return f"This is a summary of {text}." + + +def video_generator(prompt, seconds=2): + return f"A video of {prompt}" + + +def document_qa(image, question): + return f"This is the answer to {question} from the document {image}." + + +def image_segmenter(image, prompt): + return f"This is the mask of {prompt} in {image}" + + +TEST_TOOLS = { + "text_classifier": classifier, + "translator": translator, + "text_reader": speaker, + "summarizer": summarizer, + "transcriber": transcriber, + "image_generator": image_generator, + "image_captioner": image_captioner, + "image_transformer": image_transformer, + "text_qa": question_answerer, + "text_downloader": text_downloader, + "image_qa": image_qa, + "video_generator": video_generator, + "document_qa": document_qa, + "image_segmenter": image_segmenter, +} + + +class Problem: + """ + A class regrouping all the information to solve a problem on which we will evaluate agents. + + Args: + task (`str` ou `list[str]`): + One or several descriptions of the task to perform. If a list, it should contain variations on the + phrasing, but for the same task. + inputs (`list[str]` or `dict[str, str]`): + The inputs that will be fed to the tools. For this testing environment, only strings are accepted as + values. Pass along a dictionary when you want to specify the values of each inputs, or just the list of + inputs expected (the value used will be `<>` in this case). + answer (`str` or `list[str`]): + The theoretical answer (or list of possible valid answers) to the problem, as code. + """ + + def __init__(self, task, inputs, answer): + self.task = task + self.inputs = inputs + self.answer = answer + + +### The list of problems the agent will be evaluated on. +EVALUATION_TASKS = [ + Problem( + task=[ + "Is the following `text` (in Spanish) positive or negative?", + "Is the text in the variable `text` (in Spanish) positive or negative?", + "Translate the following `text` from Spanish to English then tell me if its positive or negative.", + ], + inputs=["text"], + answer="""text_classifier(translator(text, src_lang="Spanish", tgt_lang="English"), labels=["positive", "negative"])""", + ), + Problem( + task=[ + "Tell me out loud what the `image` contains.", + "Describe the following `image` out loud.", + "Find what is in the picture stored in `image` then read it out loud.", + ], + inputs=["image"], + answer=[ + "text_reader(image_captioner(image))", + "text_reader(image_qa(image, question='What is in the image?'))", + ], + ), + Problem( + task=[ + "Generate an image from the text given in `text_input`. Then transform it according to the text in `prompt`.", + "Use the following `text_input` to generate an image, then transform it by using the text in `prompt`.", + ], + inputs=["text_input", "prompt"], + answer="image_transformer(image_generator(text_input), prompt)", + ), + Problem( + task=[ + "Download the content of `url`, summarize it then generate an image from its content.", + "Use a summary of the web page at `url` to generate an image.", + "Summarize the content of the web page at `url`, and use the result to generate an image.", + ], + inputs=["url"], + answer="image_generator(summarizer(text_downloader(url)))", + ), + Problem( + task=[ + "Transform the following `image` using the prompt in `text`. The prompt is in Spanish.", + "Use the text prompt in `text` (in Spanish) to transform the following `image`.", + "Translate the `text` from Spanish to English then use it to transform the picture in `image`.", + ], + inputs=["text", "image"], + answer="image_transformer(image, translator(text, src_lang='Spanish', tgt_lang='English'))", + ), + Problem( + task=[ + "Download the content of `url`, summarize it then read it out loud to me.", + "Read me a summary of the web page at `url`.", + ], + inputs=["url"], + answer="text_reader(summarizer(text_downloader(url)))", + ), + Problem( + task=[ + "Generate an image from the text given in `text_input`.", + ], + inputs=["text_input"], + answer="image_generator(text_input)", + ), + Problem( + task=[ + "Replace the beaver in the `image` by the `prompt`.", + "Transform the `image` so that it contains the `prompt`.", + "Use `prompt` to transform this `image`.", + ], + inputs=["image", "prompt"], + answer="image_transformer(image, prompt)", + ), + Problem( + task=[ + "Provide me the summary of the `text`, then read it to me before transcribing it and translating it in French.", + "Summarize `text`, read it out loud then transcribe the audio and translate it in French.", + "Read me a summary of the `text` out loud. Transcribe this and translate it in French.", + ], + inputs=["text"], + answer="translator(transcriber(text_reader(summarizer(text))), src_lang='English', tgt_lang='French')", + ), + Problem( + task=["Generate a video of the `prompt`", "Animate a `prompt`", "Make me a short video using `prompt`."], + inputs={"prompt": "A lobster swimming"}, + answer="video_generator('A lobster swimming')", + ), + Problem( + task=[ + "Download the following file `url`, summarize it in a few words and generate a video from it." + "Fetch the file at this `url`, summarize it, and create an animation out of it." + ], + inputs=["url"], + answer="video_generator(summarizer(text_downloader(url)))", + ), +] + + +EVALUATION_CHATS = [ + [ + Problem( + task=[ + "Translate the following `text` from Spanish to English.", + "Translate the following `text` from Spanish to English.", + ], + inputs=["text"], + answer="translated_text=translator(text, src_lang='Spanish', tgt_lang='English')", + ), + Problem( + task=[ + "Is it positive or negative?", + "Tell me if its positive or negative.", + ], + inputs=[], + answer="text_classifier(translated_text, labels=['positive', 'negative'])", + ), + ], + [ + Problem( + task=[ + "What does this `image` contain?", + "Describe the following `image`.", + "Find what is in the picture stored in `image`", + ], + inputs=["image"], + answer=[ + "description=image_captioner(image)", + "description=image_qa(image, question='What is in the image?')", + ], + ), + Problem( + task=["Now, read the description out loud.", "Great! Can you read it out loud?", "Read it out loud."], + inputs=[], + answer=["audio=text_reader(description)", "audio=text_reader(description)"], + ), + ], + [ + Problem( + task=[ + "Generate an image from the text given in `text_input`.", + "Use the following `text_input` to generate an image", + ], + inputs=["text_input"], + answer="image = image_generator(text_input)", + ), + Problem( + task=[ + "Transform it according to the text in `prompt`.", + "Transform it by using the text in `prompt`.", + ], + inputs=["prompt"], + answer="image_transformer(image, prompt)", + ), + ], + [ + Problem( + task=[ + "Download the content of `url` and summarize it.", + "Summarize the content of the web page at `url`.", + ], + inputs=["url"], + answer="summary = summarizer(text_downloader(url))", + ), + Problem( + task=[ + "Generate an image from its content.", + "Use the previous result to generate an image.", + ], + inputs=[], + answer="image_generator(summary)", + ), + ], + [ + Problem( + task=[ + "Translate this Spanish `text` in English.", + "Translate the `text` from Spanish to English.", + ], + inputs=["text"], + answer="translated_text = translator(text, src_lang='Spanish', tgt_lang='English')", + ), + Problem( + task=[ + "Transform the following `image` using the translated `text`.", + "Use the previous result to transform the following `image`.", + ], + inputs=["image"], + answer="image_transformer(image, translated_text)", + ), + ], + [ + Problem( + task=["Download the content of `url`.", "Get me the text on the weg page `url`."], + inputs=["url"], + answer="text = text_downloader(url)", + ), + Problem( + task=["Summarize this text.", "Summarize this text."], + inputs=[], + answer="summary = summarizer(text)", + ), + Problem( + task=["Read it out loud to me.", "Read me the previous result."], + inputs=[], + answer="text_reader(summary)", + ), + ], + [ + Problem( + task=[ + "Generate an image from the text given in `text_input`.", + ], + inputs=["text_input"], + answer="image_generator(text_input)", + ), + ], + [ + Problem( + task=[ + "Replace the beaver in the `image` by the `prompt`.", + "Transform the `image` so that it contains the `prompt`.", + "Use `prompt` to transform this `image`.", + ], + inputs=["image", "prompt"], + answer="image_transformer(image, prompt)", + ), + ], + [ + Problem( + task=["Provide me the summary of the `text`.", "Summarize `text`."], + inputs=["text"], + answer="summary = summarizer(text)", + ), + Problem( + task=["Read this summary to me.", "Read it out loud."], + inputs=[], + answer="audio = text_reader(summarizer(text))", + ), + Problem( + task=["Transcribing the previous result back in text.", "Transcribe the audio."], + inputs=[], + answer="text = transcriber(audio)", + ), + Problem( + task=["Translating the last result in French.", "Translate this in French."], + inputs=[], + answer="translator(text, src_lang='English', tgt_lang='French')", + ), + ], + [ + Problem( + task=["Generate a video of the `prompt`", "Animate a `prompt`", "Make me a short video using `prompt`."], + inputs={"prompt": "A lobster swimming"}, + answer="video_generator('A lobster swimming')", + ), + ], + [ + Problem( + task=[ + "Download the content of `url` and summarize it.", + "Summarize the content of the web page at `url`.", + ], + inputs=["url"], + answer="summary = summarizer(text_downloader(url))", + ), + Problem( + task=["generate a video from it.", "Create an animation from the last result."], + inputs=[], + answer="video_generator(summary)", + ), + ], +] + + +def get_theoretical_tools(agent_answer, theoretical_answer, code_answer): + if not isinstance(theoretical_answer, list): + return {name for name in TEST_TOOLS if name in code_answer} + + if isinstance(agent_answer, dict): + for one_answer, one_code in zip(theoretical_answer, code_answer): + if one_answer in agent_answer.values(): + return {name for name in TEST_TOOLS if name in one_code} + + for one_answer, one_code in zip(theoretical_answer, code_answer): + if agent_answer == one_answer: + return {name for name in TEST_TOOLS if name in one_code} + + return {name for name in TEST_TOOLS if name in code_answer[0]} + + +def evaluate_code(code, inputs=None, state=None, verbose=False, return_interpretor_error=False): + tools = BASE_PYTHON_TOOLS.copy() + for name, tool in TEST_TOOLS.items(): + if name not in code: + continue + tools[name] = tool + + if isinstance(inputs, dict): + inputs = inputs.copy() + elif inputs is not None: + inputs = {inp: f"<<{inp}>>" for inp in inputs} + + if state is not None: + state.update(inputs) + else: + state = inputs + + try: + return evaluate(code, tools, state) + except InterpretorError as e: + return str(e) + except Exception as e: + if verbose: + print(e) + return None + + +def score_code(agent_answer, theoretical_answer, verbose: bool = False): + if verbose: + print(agent_answer, theoretical_answer) + theoretical_answer = theoretical_answer if isinstance(theoretical_answer, list) else [theoretical_answer] + + if agent_answer in theoretical_answer: + if verbose: + print("Perfect!") + return 1 + elif isinstance(agent_answer, dict) and any(v in theoretical_answer for v in agent_answer.values()): + if verbose: + print("Almsot perfect, result in state!") + return 0.75 + else: + if verbose: + print("Result is not the right one but code executed.") + return 0.3 + + +def evaluate_one_result(explanation, code, agent_answer, theoretical_answer, answer, verbose=False): + tools_in_explanation = {name for name in TEST_TOOLS if f"`{name}`" in explanation} + theoretical_tools = get_theoretical_tools(agent_answer, theoretical_answer, answer) + if tools_in_explanation == theoretical_tools: + tool_selection_score = 1.0 + tool_selection_errors = None + else: + missing_tools = len(theoretical_tools - tools_in_explanation) + unexpected_tools = len(tools_in_explanation - theoretical_tools) + tool_selection_score = max(0, 1.0 - 0.25 * missing_tools - 0.25 * unexpected_tools) + + tool_selection_errors = { + "selected_tools": tools_in_explanation, + "theoretical_tools": theoretical_tools, + } + + tools_in_code = {name for name in TEST_TOOLS if name in code} + if tools_in_code == theoretical_tools: + tool_used_score = 1.0 + tool_used_errors = None + else: + missing_tools = len(theoretical_tools - tools_in_code) + unexpected_tools = len(tools_in_code - theoretical_tools) + tool_used_score = max(0, 1.0 - 0.25 * missing_tools - 0.25 * unexpected_tools) + + tool_used_errors = { + "selected_tools": tools_in_explanation, + "theoretical_tools": theoretical_tools, + } + + score = score_code(agent_answer, theoretical_answer, verbose=verbose) + if score < 1.0: + code_errors = { + "code_produced": code, + "evaluation": agent_answer, + "theoretical_answer": theoretical_answer, + } + else: + code_errors = None + + return (tool_selection_score, tool_used_score, score), (tool_selection_errors, tool_used_errors, code_errors) + + +def evaluate_agent(agent, batch_size=8, verbose=False, return_errors=False): + """ + Evaluates a new agent on all `EVALUATION_TASKS`. + + Example: + + ```py + agent = NewOpenAiAgent(model="text-davinci-003", api_key=your_api_key) + bads = new_evaluate_agent(agent) + for bad in bads: + print(bad) + ``` + """ + # Sanity check + agent_tools = set(agent.toolbox.keys()) + if agent_tools != set(TEST_TOOLS): + missing_tools = set(TEST_TOOLS) - agent_tools + unexpected_tools = set(agent_tools) - TEST_TOOLS + raise ValueError( + f"Fix the test tools in the evaluate_agent module. Tools mising: {missing_tools}. Extra tools: {unexpected_tools}." + ) + + eval_tasks = [] + eval_idx = [] + for idx, pb in enumerate(EVALUATION_TASKS): + if isinstance(pb.task, list): + eval_tasks.extend(pb.task) + eval_idx.extend([idx] * len(pb.task)) + else: + eval_tasks.append(pb.task) + eval_idx.append(idx) + + tool_selection_score = 0 + tool_used_score = 0 + code_score = 0 + + if return_errors: + tool_selection_errors = {} + tool_used_errors = {} + code_errors = {} + + for start_idx in range(0, len(eval_tasks), batch_size): + end_idx = min(start_idx + batch_size, len(eval_tasks)) + batch_tasks = eval_tasks[start_idx:end_idx] + + prompts = [agent.format_prompt(task) for task in batch_tasks] + results = agent.generate_many(prompts, stop=["Task:"]) + + for idx, result in enumerate(results): + problem = EVALUATION_TASKS[eval_idx[start_idx + idx]] + if verbose: + print(f"====Task {start_idx + idx}====\n{batch_tasks[idx]}\n") + explanation, code = agent.clean_code_for_run(result) + + # Evaluate agent answer and code answer + agent_answer = evaluate_code(code, problem.inputs, verbose=verbose) + if isinstance(problem.answer, list): + theoretical_answer = [evaluate_code(answer, problem.inputs) for answer in problem.answer] + else: + theoretical_answer = evaluate_code(problem.answer, problem.inputs) + + scores, errors = evaluate_one_result( + explanation, code, agent_answer, theoretical_answer, problem.answer, verbose=verbose + ) + + tool_selection_score += scores[0] + tool_used_score += scores[1] + code_score += scores[2] + + if return_errors: + if errors[0] is not None: + tool_selection_errors[batch_tasks[idx]] = errors[0] + if errors[1] is not None: + tool_used_errors[batch_tasks[idx]] = errors[1] + if errors[2] is not None: + code_errors[batch_tasks[idx]] = errors[2] + + scores = { + "tool selection score": 100 * (tool_selection_score / len(eval_tasks)), + "tool used score": 100 * (tool_used_score / len(eval_tasks)), + "code score": 100 * (code_score / len(eval_tasks)), + } + + if return_errors: + return scores, tool_selection_errors, tool_used_errors, code_errors + else: + return scores + + +def evaluate_chat_agent(agent, verbose=False, return_errors=False): + """ + Evaluates a new agent on all `EVALUATION_CHATS`. + + Example: + + ```py + agent = NewOpenAiAgent(model="text-davinci-003", api_key=your_api_key) + bads = new_evaluate_agent(agent) + for bad in bads: + print(bad) + ``` + """ + # Sanity check + agent_tools = set(agent.toolbox.keys()) + if agent_tools != set(TEST_TOOLS): + missing_tools = set(TEST_TOOLS) - agent_tools + unexpected_tools = agent_tools - set(TEST_TOOLS) + raise ValueError( + f"Fix the test tools in the evaluate_agent module. Tools mising: {missing_tools}. Extra tools: {unexpected_tools}." + ) + + tool_selection_score = 0 + tool_used_score = 0 + code_score = 0 + total_steps = 0 + + if return_errors: + tool_selection_errors = {} + tool_used_errors = {} + code_errors = {} + + for chat_problem in EVALUATION_CHATS: + if isinstance(chat_problem[0].task, str): + resolved_problems = [chat_problem] + else: + resolved_problems = [ + [Problem(task=pb.task[i], inputs=pb.inputs, answer=pb.answer) for pb in chat_problem] + for i in range(len(chat_problem[0].task)) + ] + for problem in resolved_problems: + agent.prepare_for_new_chat() + agent_state = {} + theoretical_state = ( + [{} for _ in range(len(problem[0].answer))] if isinstance(problem[0].answer, list) else {} + ) + + for step, step_problem in enumerate(problem): + if verbose: + print(step_problem.task) + total_steps += 1 + prompt = agent.format_prompt(step_problem.task, chat_mode=True) + result = agent.generate_one(prompt, stop=["Human:", "====="]) + agent.chat_history = prompt + result + "\n" + + explanation, code = clean_code_for_chat(result) + + if verbose: + print(f"==Explanation from the agent==\n{explanation}") + print(f"\n==Code generated by the agent==\n{code}") + + # Evaluate agent answer and code answer + agent_answer = evaluate_code(code, step_problem.inputs, state=agent_state, verbose=verbose) + + answer = step_problem.answer + if isinstance(answer, list): + theoretical_answer = [ + evaluate_code(a, step_problem.inputs, state=state) + for a, state in zip(answer, theoretical_state) + ] + else: + theoretical_answer = evaluate_code(answer, step_problem.inputs, state=theoretical_state) + + scores, errors = evaluate_one_result( + explanation, code, agent_answer, theoretical_answer, answer, verbose=verbose + ) + + tool_selection_score += scores[0] + tool_used_score += scores[1] + code_score += scores[2] + + if return_errors: + if errors[0] is not None: + tool_selection_errors[step_problem.task] = errors[0] + if errors[1] is not None: + tool_used_errors[step_problem.task] = errors[1] + if errors[2] is not None: + code_errors[step_problem.task] = errors[2] + + scores = { + "tool selection score": 100 * (tool_selection_score / total_steps), + "tool used score": 100 * (tool_used_score / total_steps), + "code score": 100 * (code_score / total_steps), + } + + if return_errors: + return scores, tool_selection_errors, tool_used_errors, code_errors + else: + return scores diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/image_captioning.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/image_captioning.py new file mode 100644 index 0000000000000000000000000000000000000000..cfcf0bc8dc2834bf10ba7c03929743692756837a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/image_captioning.py @@ -0,0 +1,51 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ..models.auto import AutoModelForVision2Seq +from ..utils import requires_backends +from .base import PipelineTool + + +if TYPE_CHECKING: + from PIL import Image + + +class ImageCaptioningTool(PipelineTool): + default_checkpoint = "Salesforce/blip-image-captioning-base" + description = ( + "This is a tool that generates a description of an image. It takes an input named `image` which should be the " + "image to caption, and returns a text that contains the description in English." + ) + name = "image_captioner" + model_class = AutoModelForVision2Seq + + inputs = ["image"] + outputs = ["text"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["vision"]) + super().__init__(*args, **kwargs) + + def encode(self, image: "Image"): + return self.pre_processor(images=image, return_tensors="pt") + + def forward(self, inputs): + return self.model.generate(**inputs) + + def decode(self, outputs): + return self.pre_processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/image_question_answering.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/image_question_answering.py new file mode 100644 index 0000000000000000000000000000000000000000..a9d9ef82b514778a363c9cefea301122860382f2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/image_question_answering.py @@ -0,0 +1,57 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +import torch + +from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor +from ..utils import requires_backends +from .base import PipelineTool + + +if TYPE_CHECKING: + from PIL import Image + + +class ImageQuestionAnsweringTool(PipelineTool): + default_checkpoint = "dandelin/vilt-b32-finetuned-vqa" + description = ( + "This is a tool that answers a question about an image. It takes an input named `image` which should be the " + "image containing the information, as well as a `question` which should be the question in English. It " + "returns a text that is the answer to the question." + ) + name = "image_qa" + pre_processor_class = AutoProcessor + model_class = AutoModelForVisualQuestionAnswering + + inputs = ["image", "text"] + outputs = ["text"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["vision"]) + super().__init__(*args, **kwargs) + + def encode(self, image: "Image", question: str): + return self.pre_processor(image, question, return_tensors="pt") + + def forward(self, inputs): + with torch.no_grad(): + return self.model(**inputs).logits + + def decode(self, outputs): + idx = outputs.argmax(-1).item() + return self.model.config.id2label[idx] diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/image_segmentation.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/image_segmentation.py new file mode 100644 index 0000000000000000000000000000000000000000..ce2615d8bfd8590fc62ba3e31db582cc43d8eec6 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/image_segmentation.py @@ -0,0 +1,58 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import numpy as np +import torch + +from ..models.clipseg import CLIPSegForImageSegmentation +from ..utils import is_vision_available, requires_backends +from .base import PipelineTool + + +if is_vision_available(): + from PIL import Image + + +class ImageSegmentationTool(PipelineTool): + description = ( + "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image. " + "It takes two arguments named `image` which should be the original image, and `label` which should be a text " + "describing the elements what should be identified in the segmentation mask. The tool returns the mask." + ) + default_checkpoint = "CIDAS/clipseg-rd64-refined" + name = "image_segmenter" + model_class = CLIPSegForImageSegmentation + + inputs = ["image", "text"] + outputs = ["image"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["vision"]) + super().__init__(*args, **kwargs) + + def encode(self, image: "Image", label: str): + return self.pre_processor(text=[label], images=[image], padding=True, return_tensors="pt") + + def forward(self, inputs): + with torch.no_grad(): + logits = self.model(**inputs).logits + return logits + + def decode(self, outputs): + array = outputs.cpu().detach().numpy() + array[array <= 0] = 0 + array[array > 0] = 1 + return Image.fromarray((array * 255).astype(np.uint8)) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/prompts.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/prompts.py new file mode 100644 index 0000000000000000000000000000000000000000..2dbb799f859ffe50ff9ca509308a1823f407203f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/prompts.py @@ -0,0 +1,48 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import re + +from ..utils import cached_file + + +# docstyle-ignore +CHAT_MESSAGE_PROMPT = """ +Human: <> + +Assistant: """ + + +DEFAULT_PROMPTS_REPO = "huggingface-tools/default-prompts" +PROMPT_FILES = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} + + +def download_prompt(prompt_or_repo_id, agent_name, mode="run"): + """ + Downloads and caches the prompt from a repo and returns it contents (if necessary) + """ + if prompt_or_repo_id is None: + prompt_or_repo_id = DEFAULT_PROMPTS_REPO + + # prompt is considered a repo ID when it does not contain any kind of space + if re.search("\\s", prompt_or_repo_id) is not None: + return prompt_or_repo_id + + prompt_file = cached_file( + prompt_or_repo_id, PROMPT_FILES[mode], repo_type="dataset", user_agent={"agent": agent_name} + ) + with open(prompt_file, "r", encoding="utf-8") as f: + return f.read() diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/python_interpreter.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/python_interpreter.py new file mode 100644 index 0000000000000000000000000000000000000000..960be1a2a2654918c0cc9820745cefde20e74e9a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/python_interpreter.py @@ -0,0 +1,253 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import ast +import difflib +from collections.abc import Mapping +from typing import Any, Callable, Dict + + +class InterpretorError(ValueError): + """ + An error raised when the interpretor cannot evaluate a Python expression, due to syntax error or unsupported + operations. + """ + + pass + + +def evaluate(code: str, tools: Dict[str, Callable], state=None, chat_mode=False): + """ + Evaluate a python expression using the content of the variables stored in a state and only evaluating a given set + of functions. + + This function will recurse through the nodes of the tree provided. + + Args: + code (`str`): + The code to evaluate. + tools (`Dict[str, Callable]`): + The functions that may be called during the evaluation. Any call to another function will fail with an + `InterpretorError`. + state (`Dict[str, Any]`): + A dictionary mapping variable names to values. The `state` should contain the initial inputs but will be + updated by this function to contain all variables as they are evaluated. + chat_mode (`bool`, *optional*, defaults to `False`): + Whether or not the function is called from `Agent.chat`. + """ + try: + expression = ast.parse(code) + except SyntaxError as e: + print("The code generated by the agent is not valid.\n", e) + return + if state is None: + state = {} + result = None + for idx, node in enumerate(expression.body): + try: + line_result = evaluate_ast(node, state, tools) + except InterpretorError as e: + msg = f"Evaluation of the code stopped at line {idx} before the end because of the following error" + if chat_mode: + msg += ( + f". Copy paste the following error message and send it back to the agent:\nI get an error: '{e}'" + ) + else: + msg += f":\n{e}" + print(msg) + break + if line_result is not None: + result = line_result + + return result + + +def evaluate_ast(expression: ast.AST, state: Dict[str, Any], tools: Dict[str, Callable]): + """ + Evaluate an absract syntax tree using the content of the variables stored in a state and only evaluating a given + set of functions. + + This function will recurse trough the nodes of the tree provided. + + Args: + expression (`ast.AST`): + The code to evaluate, as an abastract syntax tree. + state (`Dict[str, Any]`): + A dictionary mapping variable names to values. The `state` is updated if need be when the evaluation + encounters assignements. + tools (`Dict[str, Callable]`): + The functions that may be called during the evaluation. Any call to another function will fail with an + `InterpretorError`. + """ + if isinstance(expression, ast.Assign): + # Assignement -> we evaluate the assignement which should update the state + # We return the variable assigned as it may be used to determine the final result. + return evaluate_assign(expression, state, tools) + elif isinstance(expression, ast.Call): + # Function call -> we return the value of the function call + return evaluate_call(expression, state, tools) + elif isinstance(expression, ast.Constant): + # Constant -> just return the value + return expression.value + elif isinstance(expression, ast.Dict): + # Dict -> evaluate all keys and values + keys = [evaluate_ast(k, state, tools) for k in expression.keys] + values = [evaluate_ast(v, state, tools) for v in expression.values] + return dict(zip(keys, values)) + elif isinstance(expression, ast.Expr): + # Expression -> evaluate the content + return evaluate_ast(expression.value, state, tools) + elif isinstance(expression, ast.For): + # For loop -> execute the loop + return evaluate_for(expression, state, tools) + elif isinstance(expression, ast.FormattedValue): + # Formatted value (part of f-string) -> evaluate the content and return + return evaluate_ast(expression.value, state, tools) + elif isinstance(expression, ast.If): + # If -> execute the right branch + return evaluate_if(expression, state, tools) + elif hasattr(ast, "Index") and isinstance(expression, ast.Index): + return evaluate_ast(expression.value, state, tools) + elif isinstance(expression, ast.JoinedStr): + return "".join([str(evaluate_ast(v, state, tools)) for v in expression.values]) + elif isinstance(expression, ast.List): + # List -> evaluate all elements + return [evaluate_ast(elt, state, tools) for elt in expression.elts] + elif isinstance(expression, ast.Name): + # Name -> pick up the value in the state + return evaluate_name(expression, state, tools) + elif isinstance(expression, ast.Subscript): + # Subscript -> return the value of the indexing + return evaluate_subscript(expression, state, tools) + else: + # For now we refuse anything else. Let's add things as we need them. + raise InterpretorError(f"{expression.__class__.__name__} is not supported.") + + +def evaluate_assign(assign, state, tools): + var_names = assign.targets + result = evaluate_ast(assign.value, state, tools) + + if len(var_names) == 1: + state[var_names[0].id] = result + else: + if len(result) != len(var_names): + raise InterpretorError(f"Expected {len(var_names)} values but got {len(result)}.") + for var_name, r in zip(var_names, result): + state[var_name.id] = r + return result + + +def evaluate_call(call, state, tools): + if not isinstance(call.func, ast.Name): + raise InterpretorError( + f"It is not permitted to evaluate other functions than the provided tools (tried to execute {call.func} of " + f"type {type(call.func)}." + ) + func_name = call.func.id + if func_name not in tools: + raise InterpretorError( + f"It is not permitted to evaluate other functions than the provided tools (tried to execute {call.func.id})." + ) + + func = tools[func_name] + # Todo deal with args + args = [evaluate_ast(arg, state, tools) for arg in call.args] + kwargs = {keyword.arg: evaluate_ast(keyword.value, state, tools) for keyword in call.keywords} + return func(*args, **kwargs) + + +def evaluate_subscript(subscript, state, tools): + index = evaluate_ast(subscript.slice, state, tools) + value = evaluate_ast(subscript.value, state, tools) + if isinstance(value, (list, tuple)): + return value[int(index)] + if index in value: + return value[index] + if isinstance(index, str) and isinstance(value, Mapping): + close_matches = difflib.get_close_matches(index, list(value.keys())) + if len(close_matches) > 0: + return value[close_matches[0]] + + raise InterpretorError(f"Could not index {value} with '{index}'.") + + +def evaluate_name(name, state, tools): + if name.id in state: + return state[name.id] + close_matches = difflib.get_close_matches(name.id, list(state.keys())) + if len(close_matches) > 0: + return state[close_matches[0]] + raise InterpretorError(f"The variable `{name.id}` is not defined.") + + +def evaluate_condition(condition, state, tools): + if len(condition.ops) > 1: + raise InterpretorError("Cannot evaluate conditions with multiple operators") + + left = evaluate_ast(condition.left, state, tools) + comparator = condition.ops[0] + right = evaluate_ast(condition.comparators[0], state, tools) + + if isinstance(comparator, ast.Eq): + return left == right + elif isinstance(comparator, ast.NotEq): + return left != right + elif isinstance(comparator, ast.Lt): + return left < right + elif isinstance(comparator, ast.LtE): + return left <= right + elif isinstance(comparator, ast.Gt): + return left > right + elif isinstance(comparator, ast.GtE): + return left >= right + elif isinstance(comparator, ast.Is): + return left is right + elif isinstance(comparator, ast.IsNot): + return left is not right + elif isinstance(comparator, ast.In): + return left in right + elif isinstance(comparator, ast.NotIn): + return left not in right + else: + raise InterpretorError(f"Operator not supported: {comparator}") + + +def evaluate_if(if_statement, state, tools): + result = None + if evaluate_condition(if_statement.test, state, tools): + for line in if_statement.body: + line_result = evaluate_ast(line, state, tools) + if line_result is not None: + result = line_result + else: + for line in if_statement.orelse: + line_result = evaluate_ast(line, state, tools) + if line_result is not None: + result = line_result + return result + + +def evaluate_for(for_loop, state, tools): + result = None + iterator = evaluate_ast(for_loop.iter, state, tools) + for counter in iterator: + state[for_loop.target.id] = counter + for expression in for_loop.body: + line_result = evaluate_ast(expression, state, tools) + if line_result is not None: + result = line_result + return result diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/speech_to_text.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/speech_to_text.py new file mode 100644 index 0000000000000000000000000000000000000000..d3b8fd29ee1ad0809cf8b003df50a470e609400f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/speech_to_text.py @@ -0,0 +1,41 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor +from .base import PipelineTool + + +class SpeechToTextTool(PipelineTool): + default_checkpoint = "openai/whisper-base" + description = ( + "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " + "transcribed text." + ) + name = "transcriber" + pre_processor_class = WhisperProcessor + model_class = WhisperForConditionalGeneration + + inputs = ["audio"] + outputs = ["text"] + + def encode(self, audio): + return self.pre_processor(audio, return_tensors="pt").input_features + + def forward(self, inputs): + return self.model.generate(inputs=inputs) + + def decode(self, outputs): + return self.pre_processor.batch_decode(outputs, skip_special_tokens=True)[0] diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/text_classification.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/text_classification.py new file mode 100644 index 0000000000000000000000000000000000000000..f04cdc05b6ac67cd285a1011d83a7bb2854adfe1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/text_classification.py @@ -0,0 +1,70 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import torch + +from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer +from .base import PipelineTool + + +class TextClassificationTool(PipelineTool): + """ + Example: + + ```py + from transformers.tools import TextClassificationTool + + classifier = TextClassificationTool() + classifier("This is a super nice API!", labels=["positive", "negative"]) + ``` + """ + + default_checkpoint = "facebook/bart-large-mnli" + description = ( + "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " + "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " + "It returns the most likely label in the list of provided `labels` for the input text." + ) + name = "text_classifier" + pre_processor_class = AutoTokenizer + model_class = AutoModelForSequenceClassification + + inputs = ["text", ["text"]] + outputs = ["text"] + + def setup(self): + super().setup() + config = self.model.config + self.entailment_id = -1 + for idx, label in config.id2label.items(): + if label.lower().startswith("entail"): + self.entailment_id = int(idx) + if self.entailment_id == -1: + raise ValueError("Could not determine the entailment ID from the model config, please pass it at init.") + + def encode(self, text, labels): + self._labels = labels + return self.pre_processor( + [text] * len(labels), + [f"This example is {label}" for label in labels], + return_tensors="pt", + padding="max_length", + ) + + def decode(self, outputs): + logits = outputs.logits + label_id = torch.argmax(logits[:, 2]).item() + return self._labels[label_id] diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/text_question_answering.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/text_question_answering.py new file mode 100644 index 0000000000000000000000000000000000000000..2a7c2fc09a63499871bc729825b812c79348c762 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/text_question_answering.py @@ -0,0 +1,52 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from ..models.auto import AutoModelForSeq2SeqLM, AutoTokenizer +from .base import PipelineTool + + +QA_PROMPT = """Here is a text containing a lot of information: '''{text}'''. + +Can you answer this question about the text: '{question}'""" + + +class TextQuestionAnsweringTool(PipelineTool): + default_checkpoint = "google/flan-t5-base" + description = ( + "This is a tool that answers questions related to a text. It takes two arguments named `text`, which is the " + "text where to find the answer, and `question`, which is the question, and returns the answer to the question." + ) + name = "text_qa" + pre_processor_class = AutoTokenizer + model_class = AutoModelForSeq2SeqLM + + inputs = ["text", "text"] + outputs = ["text"] + + def encode(self, text: str, question: str): + prompt = QA_PROMPT.format(text=text, question=question) + return self.pre_processor(prompt, return_tensors="pt") + + def forward(self, inputs): + output_ids = self.model.generate(**inputs) + + in_b, _ = inputs["input_ids"].shape + out_b = output_ids.shape[0] + + return output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:])[0][0] + + def decode(self, outputs): + return self.pre_processor.decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/text_summarization.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/text_summarization.py new file mode 100644 index 0000000000000000000000000000000000000000..8eedf234ae50b51e23e829cae2b8de4f3ad287e5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/text_summarization.py @@ -0,0 +1,52 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from ..models.auto import AutoModelForSeq2SeqLM, AutoTokenizer +from .base import PipelineTool + + +class TextSummarizationTool(PipelineTool): + """ + Example: + + ```py + from transformers.tools import TextSummarizationTool + + summarizer = TextSummarizationTool() + summarizer(long_text) + ``` + """ + + default_checkpoint = "philschmid/bart-large-cnn-samsum" + description = ( + "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " + "and returns a summary of the text." + ) + name = "summarizer" + pre_processor_class = AutoTokenizer + model_class = AutoModelForSeq2SeqLM + + inputs = ["text"] + outputs = ["text"] + + def encode(self, text): + return self.pre_processor(text, return_tensors="pt", truncation=True) + + def forward(self, inputs): + return self.model.generate(**inputs)[0] + + def decode(self, outputs): + return self.pre_processor.decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/text_to_speech.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/text_to_speech.py new file mode 100644 index 0000000000000000000000000000000000000000..9faed77b01a35c3bd9c9530cd421f02e348a13af --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/text_to_speech.py @@ -0,0 +1,65 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import torch + +from ..models.speecht5 import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor +from ..utils import is_datasets_available +from .base import PipelineTool + + +if is_datasets_available(): + from datasets import load_dataset + + +class TextToSpeechTool(PipelineTool): + default_checkpoint = "microsoft/speecht5_tts" + description = ( + "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " + "text to read (in English) and returns a waveform object containing the sound." + ) + name = "text_reader" + pre_processor_class = SpeechT5Processor + model_class = SpeechT5ForTextToSpeech + post_processor_class = SpeechT5HifiGan + + inputs = ["text"] + outputs = ["audio"] + + def setup(self): + if self.post_processor is None: + self.post_processor = "microsoft/speecht5_hifigan" + super().setup() + + def encode(self, text, speaker_embeddings=None): + inputs = self.pre_processor(text=text, return_tensors="pt", truncation=True) + + if speaker_embeddings is None: + if not is_datasets_available(): + raise ImportError("Datasets needs to be installed if not passing speaker embeddings.") + + embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") + speaker_embeddings = torch.tensor(embeddings_dataset[7305]["xvector"]).unsqueeze(0) + + return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} + + def forward(self, inputs): + with torch.no_grad(): + return self.model.generate_speech(**inputs) + + def decode(self, outputs): + with torch.no_grad(): + return self.post_processor(outputs).cpu().detach() diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/tools/translation.py b/llmeval-env/lib/python3.10/site-packages/transformers/tools/translation.py new file mode 100644 index 0000000000000000000000000000000000000000..50a164d5bd6f4f7b647374484bd20c95e74c5dc9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/tools/translation.py @@ -0,0 +1,271 @@ +#!/usr/bin/env python +# coding=utf-8 + +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from ..models.auto import AutoModelForSeq2SeqLM, AutoTokenizer +from .base import PipelineTool + + +LANGUAGE_CODES = { + "Acehnese Arabic": "ace_Arab", + "Acehnese Latin": "ace_Latn", + "Mesopotamian Arabic": "acm_Arab", + "Ta'izzi-Adeni Arabic": "acq_Arab", + "Tunisian Arabic": "aeb_Arab", + "Afrikaans": "afr_Latn", + "South Levantine Arabic": "ajp_Arab", + "Akan": "aka_Latn", + "Amharic": "amh_Ethi", + "North Levantine Arabic": "apc_Arab", + "Modern Standard Arabic": "arb_Arab", + "Modern Standard Arabic Romanized": "arb_Latn", + "Najdi Arabic": "ars_Arab", + "Moroccan Arabic": "ary_Arab", + "Egyptian Arabic": "arz_Arab", + "Assamese": "asm_Beng", + "Asturian": "ast_Latn", + "Awadhi": "awa_Deva", + "Central Aymara": "ayr_Latn", + "South Azerbaijani": "azb_Arab", + "North Azerbaijani": "azj_Latn", + "Bashkir": "bak_Cyrl", + "Bambara": "bam_Latn", + "Balinese": "ban_Latn", + "Belarusian": "bel_Cyrl", + "Bemba": "bem_Latn", + "Bengali": "ben_Beng", + "Bhojpuri": "bho_Deva", + "Banjar Arabic": "bjn_Arab", + "Banjar Latin": "bjn_Latn", + "Standard Tibetan": "bod_Tibt", + "Bosnian": "bos_Latn", + "Buginese": "bug_Latn", + "Bulgarian": "bul_Cyrl", + "Catalan": "cat_Latn", + "Cebuano": "ceb_Latn", + "Czech": "ces_Latn", + "Chokwe": "cjk_Latn", + "Central Kurdish": "ckb_Arab", + "Crimean Tatar": "crh_Latn", + "Welsh": "cym_Latn", + "Danish": "dan_Latn", + "German": "deu_Latn", + "Southwestern Dinka": "dik_Latn", + "Dyula": "dyu_Latn", + "Dzongkha": "dzo_Tibt", + "Greek": "ell_Grek", + "English": "eng_Latn", + "Esperanto": "epo_Latn", + "Estonian": "est_Latn", + "Basque": "eus_Latn", + "Ewe": "ewe_Latn", + "Faroese": "fao_Latn", + "Fijian": "fij_Latn", + "Finnish": "fin_Latn", + "Fon": "fon_Latn", + "French": "fra_Latn", + "Friulian": "fur_Latn", + "Nigerian Fulfulde": "fuv_Latn", + "Scottish Gaelic": "gla_Latn", + "Irish": "gle_Latn", + "Galician": "glg_Latn", + "Guarani": "grn_Latn", + "Gujarati": "guj_Gujr", + "Haitian Creole": "hat_Latn", + "Hausa": "hau_Latn", + "Hebrew": "heb_Hebr", + "Hindi": "hin_Deva", + "Chhattisgarhi": "hne_Deva", + "Croatian": "hrv_Latn", + "Hungarian": "hun_Latn", + "Armenian": "hye_Armn", + "Igbo": "ibo_Latn", + "Ilocano": "ilo_Latn", + "Indonesian": "ind_Latn", + "Icelandic": "isl_Latn", + "Italian": "ita_Latn", + "Javanese": "jav_Latn", + "Japanese": "jpn_Jpan", + "Kabyle": "kab_Latn", + "Jingpho": "kac_Latn", + "Kamba": "kam_Latn", + "Kannada": "kan_Knda", + "Kashmiri Arabic": "kas_Arab", + "Kashmiri Devanagari": "kas_Deva", + "Georgian": "kat_Geor", + "Central Kanuri Arabic": "knc_Arab", + "Central Kanuri Latin": "knc_Latn", + "Kazakh": "kaz_Cyrl", + "Kabiyè": "kbp_Latn", + "Kabuverdianu": "kea_Latn", + "Khmer": "khm_Khmr", + "Kikuyu": "kik_Latn", + "Kinyarwanda": "kin_Latn", + "Kyrgyz": "kir_Cyrl", + "Kimbundu": "kmb_Latn", + "Northern Kurdish": "kmr_Latn", + "Kikongo": "kon_Latn", + "Korean": "kor_Hang", + "Lao": "lao_Laoo", + "Ligurian": "lij_Latn", + "Limburgish": "lim_Latn", + "Lingala": "lin_Latn", + "Lithuanian": "lit_Latn", + "Lombard": "lmo_Latn", + "Latgalian": "ltg_Latn", + "Luxembourgish": "ltz_Latn", + "Luba-Kasai": "lua_Latn", + "Ganda": "lug_Latn", + "Luo": "luo_Latn", + "Mizo": "lus_Latn", + "Standard Latvian": "lvs_Latn", + "Magahi": "mag_Deva", + "Maithili": "mai_Deva", + "Malayalam": "mal_Mlym", + "Marathi": "mar_Deva", + "Minangkabau Arabic ": "min_Arab", + "Minangkabau Latin": "min_Latn", + "Macedonian": "mkd_Cyrl", + "Plateau Malagasy": "plt_Latn", + "Maltese": "mlt_Latn", + "Meitei Bengali": "mni_Beng", + "Halh Mongolian": "khk_Cyrl", + "Mossi": "mos_Latn", + "Maori": "mri_Latn", + "Burmese": "mya_Mymr", + "Dutch": "nld_Latn", + "Norwegian Nynorsk": "nno_Latn", + "Norwegian Bokmål": "nob_Latn", + "Nepali": "npi_Deva", + "Northern Sotho": "nso_Latn", + "Nuer": "nus_Latn", + "Nyanja": "nya_Latn", + "Occitan": "oci_Latn", + "West Central Oromo": "gaz_Latn", + "Odia": "ory_Orya", + "Pangasinan": "pag_Latn", + "Eastern Panjabi": "pan_Guru", + "Papiamento": "pap_Latn", + "Western Persian": "pes_Arab", + "Polish": "pol_Latn", + "Portuguese": "por_Latn", + "Dari": "prs_Arab", + "Southern Pashto": "pbt_Arab", + "Ayacucho Quechua": "quy_Latn", + "Romanian": "ron_Latn", + "Rundi": "run_Latn", + "Russian": "rus_Cyrl", + "Sango": "sag_Latn", + "Sanskrit": "san_Deva", + "Santali": "sat_Olck", + "Sicilian": "scn_Latn", + "Shan": "shn_Mymr", + "Sinhala": "sin_Sinh", + "Slovak": "slk_Latn", + "Slovenian": "slv_Latn", + "Samoan": "smo_Latn", + "Shona": "sna_Latn", + "Sindhi": "snd_Arab", + "Somali": "som_Latn", + "Southern Sotho": "sot_Latn", + "Spanish": "spa_Latn", + "Tosk Albanian": "als_Latn", + "Sardinian": "srd_Latn", + "Serbian": "srp_Cyrl", + "Swati": "ssw_Latn", + "Sundanese": "sun_Latn", + "Swedish": "swe_Latn", + "Swahili": "swh_Latn", + "Silesian": "szl_Latn", + "Tamil": "tam_Taml", + "Tatar": "tat_Cyrl", + "Telugu": "tel_Telu", + "Tajik": "tgk_Cyrl", + "Tagalog": "tgl_Latn", + "Thai": "tha_Thai", + "Tigrinya": "tir_Ethi", + "Tamasheq Latin": "taq_Latn", + "Tamasheq Tifinagh": "taq_Tfng", + "Tok Pisin": "tpi_Latn", + "Tswana": "tsn_Latn", + "Tsonga": "tso_Latn", + "Turkmen": "tuk_Latn", + "Tumbuka": "tum_Latn", + "Turkish": "tur_Latn", + "Twi": "twi_Latn", + "Central Atlas Tamazight": "tzm_Tfng", + "Uyghur": "uig_Arab", + "Ukrainian": "ukr_Cyrl", + "Umbundu": "umb_Latn", + "Urdu": "urd_Arab", + "Northern Uzbek": "uzn_Latn", + "Venetian": "vec_Latn", + "Vietnamese": "vie_Latn", + "Waray": "war_Latn", + "Wolof": "wol_Latn", + "Xhosa": "xho_Latn", + "Eastern Yiddish": "ydd_Hebr", + "Yoruba": "yor_Latn", + "Yue Chinese": "yue_Hant", + "Chinese Simplified": "zho_Hans", + "Chinese Traditional": "zho_Hant", + "Standard Malay": "zsm_Latn", + "Zulu": "zul_Latn", +} + + +class TranslationTool(PipelineTool): + """ + Example: + + ```py + from transformers.tools import TranslationTool + + translator = TranslationTool() + translator("This is a super nice API!", src_lang="English", tgt_lang="French") + ``` + """ + + default_checkpoint = "facebook/nllb-200-distilled-600M" + description = ( + "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " + "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " + "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " + "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." + ) + name = "translator" + pre_processor_class = AutoTokenizer + model_class = AutoModelForSeq2SeqLM + lang_to_code = LANGUAGE_CODES + + inputs = ["text", "text", "text"] + outputs = ["text"] + + def encode(self, text, src_lang, tgt_lang): + if src_lang not in self.lang_to_code: + raise ValueError(f"{src_lang} is not a supported language.") + if tgt_lang not in self.lang_to_code: + raise ValueError(f"{tgt_lang} is not a supported language.") + src_lang = self.lang_to_code[src_lang] + tgt_lang = self.lang_to_code[tgt_lang] + return self.pre_processor._build_translation_inputs( + text, return_tensors="pt", src_lang=src_lang, tgt_lang=tgt_lang + ) + + def forward(self, inputs): + return self.model.generate(**inputs) + + def decode(self, outputs): + return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=True)