diff --git a/llmeval-env/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/INSTALLER b/llmeval-env/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/INSTALLER new file mode 100644 index 0000000000000000000000000000000000000000..a1b589e38a32041e49332e5e81c2d363dc418d68 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/INSTALLER @@ -0,0 +1 @@ +pip diff --git a/llmeval-env/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/LICENSE b/llmeval-env/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..d645695673349e3947e8e5ae42332d0ac3164cd7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/LICENSE @@ -0,0 +1,202 @@ + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/llmeval-env/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/WHEEL b/llmeval-env/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/WHEEL new file mode 100644 index 0000000000000000000000000000000000000000..98c0d20b7a64f4f998d7913e1d38a05dba20916c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/WHEEL @@ -0,0 +1,5 @@ +Wheel-Version: 1.0 +Generator: bdist_wheel (0.42.0) +Root-Is-Purelib: true +Tag: py3-none-any + diff --git a/llmeval-env/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/top_level.txt b/llmeval-env/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/top_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..46022f6ff2f40132150ed408c691d0f8d4ce88a5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/top_level.txt @@ -0,0 +1 @@ +absl diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2f6f479ea7aa30720a68b37e5b14e176c37f01c7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/_compat.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/_compat.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0a16f790985ea36708a03642557e2fd921241a9b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/_compat.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/_termui_impl.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/_termui_impl.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7068cc2aff2e2c69e028ae9d5884c0c3c4c59c87 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/_termui_impl.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/_textwrap.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/_textwrap.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d44d08e6dcc891b7976a64dacbed3a18fbabbe11 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/_textwrap.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/_winconsole.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/_winconsole.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b4ffad2d8e478f996541df1205b4b4b764f9953c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/_winconsole.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/core.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/core.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c4ddb1e13692a92bcdf327ad942a4694c2159a15 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/core.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/decorators.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/decorators.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0e74d6d4a7982a2c2956e131f266e82f283494de Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/decorators.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/exceptions.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/exceptions.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..078ec278e13bd4d504572cb76b35c18498be26b2 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/exceptions.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/formatting.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/formatting.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6cb7aeb9291ca4ee8fbc9a3acaed1f09e146e2fe Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/formatting.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/globals.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/globals.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fae308db8eb00154dda4f9f481fc304e9a412de6 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/globals.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/parser.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/parser.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1b1bed7e5225a1b31dfb12a009fcee74d52958d3 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/parser.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/shell_completion.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/shell_completion.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..08386a53b1491866d7941d915598d9cd06640779 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/shell_completion.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/termui.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/termui.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b60c44065ea3ce160820c8cb55905c1af1fa33fb Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/termui.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/testing.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/testing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3da3a5d1e1a9dff69e7cf7f4f18be9ab013a0062 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/testing.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/types.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/types.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..aa0a68779e352938c8cd94a5cbb3b035db6f849a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/types.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/__pycache__/utils.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4cd5f05c698b4652cbf77b700906c0479cfea9e1 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/click/__pycache__/utils.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/click/_compat.py b/llmeval-env/lib/python3.10/site-packages/click/_compat.py new file mode 100644 index 0000000000000000000000000000000000000000..23f8866598b4b4eb836b9d9b210ebd395fd0c557 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/click/_compat.py @@ -0,0 +1,623 @@ +import codecs +import io +import os +import re +import sys +import typing as t +from weakref import WeakKeyDictionary + +CYGWIN = sys.platform.startswith("cygwin") +WIN = sys.platform.startswith("win") +auto_wrap_for_ansi: t.Optional[t.Callable[[t.TextIO], t.TextIO]] = None +_ansi_re = re.compile(r"\033\[[;?0-9]*[a-zA-Z]") + + +def _make_text_stream( + stream: t.BinaryIO, + encoding: t.Optional[str], + errors: t.Optional[str], + force_readable: bool = False, + force_writable: bool = False, +) -> t.TextIO: + if encoding is None: + encoding = get_best_encoding(stream) + if errors is None: + errors = "replace" + return _NonClosingTextIOWrapper( + stream, + encoding, + errors, + line_buffering=True, + force_readable=force_readable, + force_writable=force_writable, + ) + + +def is_ascii_encoding(encoding: str) -> bool: + """Checks if a given encoding is ascii.""" + try: + return codecs.lookup(encoding).name == "ascii" + except LookupError: + return False + + +def get_best_encoding(stream: t.IO[t.Any]) -> str: + """Returns the default stream encoding if not found.""" + rv = getattr(stream, "encoding", None) or sys.getdefaultencoding() + if is_ascii_encoding(rv): + return "utf-8" + return rv + + +class _NonClosingTextIOWrapper(io.TextIOWrapper): + def __init__( + self, + stream: t.BinaryIO, + encoding: t.Optional[str], + errors: t.Optional[str], + force_readable: bool = False, + force_writable: bool = False, + **extra: t.Any, + ) -> None: + self._stream = stream = t.cast( + t.BinaryIO, _FixupStream(stream, force_readable, force_writable) + ) + super().__init__(stream, encoding, errors, **extra) + + def __del__(self) -> None: + try: + self.detach() + except Exception: + pass + + def isatty(self) -> bool: + # https://bitbucket.org/pypy/pypy/issue/1803 + return self._stream.isatty() + + +class _FixupStream: + """The new io interface needs more from streams than streams + traditionally implement. As such, this fix-up code is necessary in + some circumstances. + + The forcing of readable and writable flags are there because some tools + put badly patched objects on sys (one such offender are certain version + of jupyter notebook). + """ + + def __init__( + self, + stream: t.BinaryIO, + force_readable: bool = False, + force_writable: bool = False, + ): + self._stream = stream + self._force_readable = force_readable + self._force_writable = force_writable + + def __getattr__(self, name: str) -> t.Any: + return getattr(self._stream, name) + + def read1(self, size: int) -> bytes: + f = getattr(self._stream, "read1", None) + + if f is not None: + return t.cast(bytes, f(size)) + + return self._stream.read(size) + + def readable(self) -> bool: + if self._force_readable: + return True + x = getattr(self._stream, "readable", None) + if x is not None: + return t.cast(bool, x()) + try: + self._stream.read(0) + except Exception: + return False + return True + + def writable(self) -> bool: + if self._force_writable: + return True + x = getattr(self._stream, "writable", None) + if x is not None: + return t.cast(bool, x()) + try: + self._stream.write("") # type: ignore + except Exception: + try: + self._stream.write(b"") + except Exception: + return False + return True + + def seekable(self) -> bool: + x = getattr(self._stream, "seekable", None) + if x is not None: + return t.cast(bool, x()) + try: + self._stream.seek(self._stream.tell()) + except Exception: + return False + return True + + +def _is_binary_reader(stream: t.IO[t.Any], default: bool = False) -> bool: + try: + return isinstance(stream.read(0), bytes) + except Exception: + return default + # This happens in some cases where the stream was already + # closed. In this case, we assume the default. + + +def _is_binary_writer(stream: t.IO[t.Any], default: bool = False) -> bool: + try: + stream.write(b"") + except Exception: + try: + stream.write("") + return False + except Exception: + pass + return default + return True + + +def _find_binary_reader(stream: t.IO[t.Any]) -> t.Optional[t.BinaryIO]: + # We need to figure out if the given stream is already binary. + # This can happen because the official docs recommend detaching + # the streams to get binary streams. Some code might do this, so + # we need to deal with this case explicitly. + if _is_binary_reader(stream, False): + return t.cast(t.BinaryIO, stream) + + buf = getattr(stream, "buffer", None) + + # Same situation here; this time we assume that the buffer is + # actually binary in case it's closed. + if buf is not None and _is_binary_reader(buf, True): + return t.cast(t.BinaryIO, buf) + + return None + + +def _find_binary_writer(stream: t.IO[t.Any]) -> t.Optional[t.BinaryIO]: + # We need to figure out if the given stream is already binary. + # This can happen because the official docs recommend detaching + # the streams to get binary streams. Some code might do this, so + # we need to deal with this case explicitly. + if _is_binary_writer(stream, False): + return t.cast(t.BinaryIO, stream) + + buf = getattr(stream, "buffer", None) + + # Same situation here; this time we assume that the buffer is + # actually binary in case it's closed. + if buf is not None and _is_binary_writer(buf, True): + return t.cast(t.BinaryIO, buf) + + return None + + +def _stream_is_misconfigured(stream: t.TextIO) -> bool: + """A stream is misconfigured if its encoding is ASCII.""" + # If the stream does not have an encoding set, we assume it's set + # to ASCII. This appears to happen in certain unittest + # environments. It's not quite clear what the correct behavior is + # but this at least will force Click to recover somehow. + return is_ascii_encoding(getattr(stream, "encoding", None) or "ascii") + + +def _is_compat_stream_attr(stream: t.TextIO, attr: str, value: t.Optional[str]) -> bool: + """A stream attribute is compatible if it is equal to the + desired value or the desired value is unset and the attribute + has a value. + """ + stream_value = getattr(stream, attr, None) + return stream_value == value or (value is None and stream_value is not None) + + +def _is_compatible_text_stream( + stream: t.TextIO, encoding: t.Optional[str], errors: t.Optional[str] +) -> bool: + """Check if a stream's encoding and errors attributes are + compatible with the desired values. + """ + return _is_compat_stream_attr( + stream, "encoding", encoding + ) and _is_compat_stream_attr(stream, "errors", errors) + + +def _force_correct_text_stream( + text_stream: t.IO[t.Any], + encoding: t.Optional[str], + errors: t.Optional[str], + is_binary: t.Callable[[t.IO[t.Any], bool], bool], + find_binary: t.Callable[[t.IO[t.Any]], t.Optional[t.BinaryIO]], + force_readable: bool = False, + force_writable: bool = False, +) -> t.TextIO: + if is_binary(text_stream, False): + binary_reader = t.cast(t.BinaryIO, text_stream) + else: + text_stream = t.cast(t.TextIO, text_stream) + # If the stream looks compatible, and won't default to a + # misconfigured ascii encoding, return it as-is. + if _is_compatible_text_stream(text_stream, encoding, errors) and not ( + encoding is None and _stream_is_misconfigured(text_stream) + ): + return text_stream + + # Otherwise, get the underlying binary reader. + possible_binary_reader = find_binary(text_stream) + + # If that's not possible, silently use the original reader + # and get mojibake instead of exceptions. + if possible_binary_reader is None: + return text_stream + + binary_reader = possible_binary_reader + + # Default errors to replace instead of strict in order to get + # something that works. + if errors is None: + errors = "replace" + + # Wrap the binary stream in a text stream with the correct + # encoding parameters. + return _make_text_stream( + binary_reader, + encoding, + errors, + force_readable=force_readable, + force_writable=force_writable, + ) + + +def _force_correct_text_reader( + text_reader: t.IO[t.Any], + encoding: t.Optional[str], + errors: t.Optional[str], + force_readable: bool = False, +) -> t.TextIO: + return _force_correct_text_stream( + text_reader, + encoding, + errors, + _is_binary_reader, + _find_binary_reader, + force_readable=force_readable, + ) + + +def _force_correct_text_writer( + text_writer: t.IO[t.Any], + encoding: t.Optional[str], + errors: t.Optional[str], + force_writable: bool = False, +) -> t.TextIO: + return _force_correct_text_stream( + text_writer, + encoding, + errors, + _is_binary_writer, + _find_binary_writer, + force_writable=force_writable, + ) + + +def get_binary_stdin() -> t.BinaryIO: + reader = _find_binary_reader(sys.stdin) + if reader is None: + raise RuntimeError("Was not able to determine binary stream for sys.stdin.") + return reader + + +def get_binary_stdout() -> t.BinaryIO: + writer = _find_binary_writer(sys.stdout) + if writer is None: + raise RuntimeError("Was not able to determine binary stream for sys.stdout.") + return writer + + +def get_binary_stderr() -> t.BinaryIO: + writer = _find_binary_writer(sys.stderr) + if writer is None: + raise RuntimeError("Was not able to determine binary stream for sys.stderr.") + return writer + + +def get_text_stdin( + encoding: t.Optional[str] = None, errors: t.Optional[str] = None +) -> t.TextIO: + rv = _get_windows_console_stream(sys.stdin, encoding, errors) + if rv is not None: + return rv + return _force_correct_text_reader(sys.stdin, encoding, errors, force_readable=True) + + +def get_text_stdout( + encoding: t.Optional[str] = None, errors: t.Optional[str] = None +) -> t.TextIO: + rv = _get_windows_console_stream(sys.stdout, encoding, errors) + if rv is not None: + return rv + return _force_correct_text_writer(sys.stdout, encoding, errors, force_writable=True) + + +def get_text_stderr( + encoding: t.Optional[str] = None, errors: t.Optional[str] = None +) -> t.TextIO: + rv = _get_windows_console_stream(sys.stderr, encoding, errors) + if rv is not None: + return rv + return _force_correct_text_writer(sys.stderr, encoding, errors, force_writable=True) + + +def _wrap_io_open( + file: t.Union[str, "os.PathLike[str]", int], + mode: str, + encoding: t.Optional[str], + errors: t.Optional[str], +) -> t.IO[t.Any]: + """Handles not passing ``encoding`` and ``errors`` in binary mode.""" + if "b" in mode: + return open(file, mode) + + return open(file, mode, encoding=encoding, errors=errors) + + +def open_stream( + filename: "t.Union[str, os.PathLike[str]]", + mode: str = "r", + encoding: t.Optional[str] = None, + errors: t.Optional[str] = "strict", + atomic: bool = False, +) -> t.Tuple[t.IO[t.Any], bool]: + binary = "b" in mode + filename = os.fspath(filename) + + # Standard streams first. These are simple because they ignore the + # atomic flag. Use fsdecode to handle Path("-"). + if os.fsdecode(filename) == "-": + if any(m in mode for m in ["w", "a", "x"]): + if binary: + return get_binary_stdout(), False + return get_text_stdout(encoding=encoding, errors=errors), False + if binary: + return get_binary_stdin(), False + return get_text_stdin(encoding=encoding, errors=errors), False + + # Non-atomic writes directly go out through the regular open functions. + if not atomic: + return _wrap_io_open(filename, mode, encoding, errors), True + + # Some usability stuff for atomic writes + if "a" in mode: + raise ValueError( + "Appending to an existing file is not supported, because that" + " would involve an expensive `copy`-operation to a temporary" + " file. Open the file in normal `w`-mode and copy explicitly" + " if that's what you're after." + ) + if "x" in mode: + raise ValueError("Use the `overwrite`-parameter instead.") + if "w" not in mode: + raise ValueError("Atomic writes only make sense with `w`-mode.") + + # Atomic writes are more complicated. They work by opening a file + # as a proxy in the same folder and then using the fdopen + # functionality to wrap it in a Python file. Then we wrap it in an + # atomic file that moves the file over on close. + import errno + import random + + try: + perm: t.Optional[int] = os.stat(filename).st_mode + except OSError: + perm = None + + flags = os.O_RDWR | os.O_CREAT | os.O_EXCL + + if binary: + flags |= getattr(os, "O_BINARY", 0) + + while True: + tmp_filename = os.path.join( + os.path.dirname(filename), + f".__atomic-write{random.randrange(1 << 32):08x}", + ) + try: + fd = os.open(tmp_filename, flags, 0o666 if perm is None else perm) + break + except OSError as e: + if e.errno == errno.EEXIST or ( + os.name == "nt" + and e.errno == errno.EACCES + and os.path.isdir(e.filename) + and os.access(e.filename, os.W_OK) + ): + continue + raise + + if perm is not None: + os.chmod(tmp_filename, perm) # in case perm includes bits in umask + + f = _wrap_io_open(fd, mode, encoding, errors) + af = _AtomicFile(f, tmp_filename, os.path.realpath(filename)) + return t.cast(t.IO[t.Any], af), True + + +class _AtomicFile: + def __init__(self, f: t.IO[t.Any], tmp_filename: str, real_filename: str) -> None: + self._f = f + self._tmp_filename = tmp_filename + self._real_filename = real_filename + self.closed = False + + @property + def name(self) -> str: + return self._real_filename + + def close(self, delete: bool = False) -> None: + if self.closed: + return + self._f.close() + os.replace(self._tmp_filename, self._real_filename) + self.closed = True + + def __getattr__(self, name: str) -> t.Any: + return getattr(self._f, name) + + def __enter__(self) -> "_AtomicFile": + return self + + def __exit__(self, exc_type: t.Optional[t.Type[BaseException]], *_: t.Any) -> None: + self.close(delete=exc_type is not None) + + def __repr__(self) -> str: + return repr(self._f) + + +def strip_ansi(value: str) -> str: + return _ansi_re.sub("", value) + + +def _is_jupyter_kernel_output(stream: t.IO[t.Any]) -> bool: + while isinstance(stream, (_FixupStream, _NonClosingTextIOWrapper)): + stream = stream._stream + + return stream.__class__.__module__.startswith("ipykernel.") + + +def should_strip_ansi( + stream: t.Optional[t.IO[t.Any]] = None, color: t.Optional[bool] = None +) -> bool: + if color is None: + if stream is None: + stream = sys.stdin + return not isatty(stream) and not _is_jupyter_kernel_output(stream) + return not color + + +# On Windows, wrap the output streams with colorama to support ANSI +# color codes. +# NOTE: double check is needed so mypy does not analyze this on Linux +if sys.platform.startswith("win") and WIN: + from ._winconsole import _get_windows_console_stream + + def _get_argv_encoding() -> str: + import locale + + return locale.getpreferredencoding() + + _ansi_stream_wrappers: t.MutableMapping[t.TextIO, t.TextIO] = WeakKeyDictionary() + + def auto_wrap_for_ansi( # noqa: F811 + stream: t.TextIO, color: t.Optional[bool] = None + ) -> t.TextIO: + """Support ANSI color and style codes on Windows by wrapping a + stream with colorama. + """ + try: + cached = _ansi_stream_wrappers.get(stream) + except Exception: + cached = None + + if cached is not None: + return cached + + import colorama + + strip = should_strip_ansi(stream, color) + ansi_wrapper = colorama.AnsiToWin32(stream, strip=strip) + rv = t.cast(t.TextIO, ansi_wrapper.stream) + _write = rv.write + + def _safe_write(s): + try: + return _write(s) + except BaseException: + ansi_wrapper.reset_all() + raise + + rv.write = _safe_write + + try: + _ansi_stream_wrappers[stream] = rv + except Exception: + pass + + return rv + +else: + + def _get_argv_encoding() -> str: + return getattr(sys.stdin, "encoding", None) or sys.getfilesystemencoding() + + def _get_windows_console_stream( + f: t.TextIO, encoding: t.Optional[str], errors: t.Optional[str] + ) -> t.Optional[t.TextIO]: + return None + + +def term_len(x: str) -> int: + return len(strip_ansi(x)) + + +def isatty(stream: t.IO[t.Any]) -> bool: + try: + return stream.isatty() + except Exception: + return False + + +def _make_cached_stream_func( + src_func: t.Callable[[], t.Optional[t.TextIO]], + wrapper_func: t.Callable[[], t.TextIO], +) -> t.Callable[[], t.Optional[t.TextIO]]: + cache: t.MutableMapping[t.TextIO, t.TextIO] = WeakKeyDictionary() + + def func() -> t.Optional[t.TextIO]: + stream = src_func() + + if stream is None: + return None + + try: + rv = cache.get(stream) + except Exception: + rv = None + if rv is not None: + return rv + rv = wrapper_func() + try: + cache[stream] = rv + except Exception: + pass + return rv + + return func + + +_default_text_stdin = _make_cached_stream_func(lambda: sys.stdin, get_text_stdin) +_default_text_stdout = _make_cached_stream_func(lambda: sys.stdout, get_text_stdout) +_default_text_stderr = _make_cached_stream_func(lambda: sys.stderr, get_text_stderr) + + +binary_streams: t.Mapping[str, t.Callable[[], t.BinaryIO]] = { + "stdin": get_binary_stdin, + "stdout": get_binary_stdout, + "stderr": get_binary_stderr, +} + +text_streams: t.Mapping[ + str, t.Callable[[t.Optional[str], t.Optional[str]], t.TextIO] +] = { + "stdin": get_text_stdin, + "stdout": get_text_stdout, + "stderr": get_text_stderr, +} diff --git a/llmeval-env/lib/python3.10/site-packages/click/_termui_impl.py b/llmeval-env/lib/python3.10/site-packages/click/_termui_impl.py new file mode 100644 index 0000000000000000000000000000000000000000..f744657753caa6cdef1dcc41a4f0b5e3e9503ab8 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/click/_termui_impl.py @@ -0,0 +1,739 @@ +""" +This module contains implementations for the termui module. To keep the +import time of Click down, some infrequently used functionality is +placed in this module and only imported as needed. +""" +import contextlib +import math +import os +import sys +import time +import typing as t +from gettext import gettext as _ +from io import StringIO +from types import TracebackType + +from ._compat import _default_text_stdout +from ._compat import CYGWIN +from ._compat import get_best_encoding +from ._compat import isatty +from ._compat import open_stream +from ._compat import strip_ansi +from ._compat import term_len +from ._compat import WIN +from .exceptions import ClickException +from .utils import echo + +V = t.TypeVar("V") + +if os.name == "nt": + BEFORE_BAR = "\r" + AFTER_BAR = "\n" +else: + BEFORE_BAR = "\r\033[?25l" + AFTER_BAR = "\033[?25h\n" + + +class ProgressBar(t.Generic[V]): + def __init__( + self, + iterable: t.Optional[t.Iterable[V]], + length: t.Optional[int] = None, + fill_char: str = "#", + empty_char: str = " ", + bar_template: str = "%(bar)s", + info_sep: str = " ", + show_eta: bool = True, + show_percent: t.Optional[bool] = None, + show_pos: bool = False, + item_show_func: t.Optional[t.Callable[[t.Optional[V]], t.Optional[str]]] = None, + label: t.Optional[str] = None, + file: t.Optional[t.TextIO] = None, + color: t.Optional[bool] = None, + update_min_steps: int = 1, + width: int = 30, + ) -> None: + self.fill_char = fill_char + self.empty_char = empty_char + self.bar_template = bar_template + self.info_sep = info_sep + self.show_eta = show_eta + self.show_percent = show_percent + self.show_pos = show_pos + self.item_show_func = item_show_func + self.label: str = label or "" + + if file is None: + file = _default_text_stdout() + + # There are no standard streams attached to write to. For example, + # pythonw on Windows. + if file is None: + file = StringIO() + + self.file = file + self.color = color + self.update_min_steps = update_min_steps + self._completed_intervals = 0 + self.width: int = width + self.autowidth: bool = width == 0 + + if length is None: + from operator import length_hint + + length = length_hint(iterable, -1) + + if length == -1: + length = None + if iterable is None: + if length is None: + raise TypeError("iterable or length is required") + iterable = t.cast(t.Iterable[V], range(length)) + self.iter: t.Iterable[V] = iter(iterable) + self.length = length + self.pos = 0 + self.avg: t.List[float] = [] + self.last_eta: float + self.start: float + self.start = self.last_eta = time.time() + self.eta_known: bool = False + self.finished: bool = False + self.max_width: t.Optional[int] = None + self.entered: bool = False + self.current_item: t.Optional[V] = None + self.is_hidden: bool = not isatty(self.file) + self._last_line: t.Optional[str] = None + + def __enter__(self) -> "ProgressBar[V]": + self.entered = True + self.render_progress() + return self + + def __exit__( + self, + exc_type: t.Optional[t.Type[BaseException]], + exc_value: t.Optional[BaseException], + tb: t.Optional[TracebackType], + ) -> None: + self.render_finish() + + def __iter__(self) -> t.Iterator[V]: + if not self.entered: + raise RuntimeError("You need to use progress bars in a with block.") + self.render_progress() + return self.generator() + + def __next__(self) -> V: + # Iteration is defined in terms of a generator function, + # returned by iter(self); use that to define next(). This works + # because `self.iter` is an iterable consumed by that generator, + # so it is re-entry safe. Calling `next(self.generator())` + # twice works and does "what you want". + return next(iter(self)) + + def render_finish(self) -> None: + if self.is_hidden: + return + self.file.write(AFTER_BAR) + self.file.flush() + + @property + def pct(self) -> float: + if self.finished: + return 1.0 + return min(self.pos / (float(self.length or 1) or 1), 1.0) + + @property + def time_per_iteration(self) -> float: + if not self.avg: + return 0.0 + return sum(self.avg) / float(len(self.avg)) + + @property + def eta(self) -> float: + if self.length is not None and not self.finished: + return self.time_per_iteration * (self.length - self.pos) + return 0.0 + + def format_eta(self) -> str: + if self.eta_known: + t = int(self.eta) + seconds = t % 60 + t //= 60 + minutes = t % 60 + t //= 60 + hours = t % 24 + t //= 24 + if t > 0: + return f"{t}d {hours:02}:{minutes:02}:{seconds:02}" + else: + return f"{hours:02}:{minutes:02}:{seconds:02}" + return "" + + def format_pos(self) -> str: + pos = str(self.pos) + if self.length is not None: + pos += f"/{self.length}" + return pos + + def format_pct(self) -> str: + return f"{int(self.pct * 100): 4}%"[1:] + + def format_bar(self) -> str: + if self.length is not None: + bar_length = int(self.pct * self.width) + bar = self.fill_char * bar_length + bar += self.empty_char * (self.width - bar_length) + elif self.finished: + bar = self.fill_char * self.width + else: + chars = list(self.empty_char * (self.width or 1)) + if self.time_per_iteration != 0: + chars[ + int( + (math.cos(self.pos * self.time_per_iteration) / 2.0 + 0.5) + * self.width + ) + ] = self.fill_char + bar = "".join(chars) + return bar + + def format_progress_line(self) -> str: + show_percent = self.show_percent + + info_bits = [] + if self.length is not None and show_percent is None: + show_percent = not self.show_pos + + if self.show_pos: + info_bits.append(self.format_pos()) + if show_percent: + info_bits.append(self.format_pct()) + if self.show_eta and self.eta_known and not self.finished: + info_bits.append(self.format_eta()) + if self.item_show_func is not None: + item_info = self.item_show_func(self.current_item) + if item_info is not None: + info_bits.append(item_info) + + return ( + self.bar_template + % { + "label": self.label, + "bar": self.format_bar(), + "info": self.info_sep.join(info_bits), + } + ).rstrip() + + def render_progress(self) -> None: + import shutil + + if self.is_hidden: + # Only output the label as it changes if the output is not a + # TTY. Use file=stderr if you expect to be piping stdout. + if self._last_line != self.label: + self._last_line = self.label + echo(self.label, file=self.file, color=self.color) + + return + + buf = [] + # Update width in case the terminal has been resized + if self.autowidth: + old_width = self.width + self.width = 0 + clutter_length = term_len(self.format_progress_line()) + new_width = max(0, shutil.get_terminal_size().columns - clutter_length) + if new_width < old_width: + buf.append(BEFORE_BAR) + buf.append(" " * self.max_width) # type: ignore + self.max_width = new_width + self.width = new_width + + clear_width = self.width + if self.max_width is not None: + clear_width = self.max_width + + buf.append(BEFORE_BAR) + line = self.format_progress_line() + line_len = term_len(line) + if self.max_width is None or self.max_width < line_len: + self.max_width = line_len + + buf.append(line) + buf.append(" " * (clear_width - line_len)) + line = "".join(buf) + # Render the line only if it changed. + + if line != self._last_line: + self._last_line = line + echo(line, file=self.file, color=self.color, nl=False) + self.file.flush() + + def make_step(self, n_steps: int) -> None: + self.pos += n_steps + if self.length is not None and self.pos >= self.length: + self.finished = True + + if (time.time() - self.last_eta) < 1.0: + return + + self.last_eta = time.time() + + # self.avg is a rolling list of length <= 7 of steps where steps are + # defined as time elapsed divided by the total progress through + # self.length. + if self.pos: + step = (time.time() - self.start) / self.pos + else: + step = time.time() - self.start + + self.avg = self.avg[-6:] + [step] + + self.eta_known = self.length is not None + + def update(self, n_steps: int, current_item: t.Optional[V] = None) -> None: + """Update the progress bar by advancing a specified number of + steps, and optionally set the ``current_item`` for this new + position. + + :param n_steps: Number of steps to advance. + :param current_item: Optional item to set as ``current_item`` + for the updated position. + + .. versionchanged:: 8.0 + Added the ``current_item`` optional parameter. + + .. versionchanged:: 8.0 + Only render when the number of steps meets the + ``update_min_steps`` threshold. + """ + if current_item is not None: + self.current_item = current_item + + self._completed_intervals += n_steps + + if self._completed_intervals >= self.update_min_steps: + self.make_step(self._completed_intervals) + self.render_progress() + self._completed_intervals = 0 + + def finish(self) -> None: + self.eta_known = False + self.current_item = None + self.finished = True + + def generator(self) -> t.Iterator[V]: + """Return a generator which yields the items added to the bar + during construction, and updates the progress bar *after* the + yielded block returns. + """ + # WARNING: the iterator interface for `ProgressBar` relies on + # this and only works because this is a simple generator which + # doesn't create or manage additional state. If this function + # changes, the impact should be evaluated both against + # `iter(bar)` and `next(bar)`. `next()` in particular may call + # `self.generator()` repeatedly, and this must remain safe in + # order for that interface to work. + if not self.entered: + raise RuntimeError("You need to use progress bars in a with block.") + + if self.is_hidden: + yield from self.iter + else: + for rv in self.iter: + self.current_item = rv + + # This allows show_item_func to be updated before the + # item is processed. Only trigger at the beginning of + # the update interval. + if self._completed_intervals == 0: + self.render_progress() + + yield rv + self.update(1) + + self.finish() + self.render_progress() + + +def pager(generator: t.Iterable[str], color: t.Optional[bool] = None) -> None: + """Decide what method to use for paging through text.""" + stdout = _default_text_stdout() + + # There are no standard streams attached to write to. For example, + # pythonw on Windows. + if stdout is None: + stdout = StringIO() + + if not isatty(sys.stdin) or not isatty(stdout): + return _nullpager(stdout, generator, color) + pager_cmd = (os.environ.get("PAGER", None) or "").strip() + if pager_cmd: + if WIN: + return _tempfilepager(generator, pager_cmd, color) + return _pipepager(generator, pager_cmd, color) + if os.environ.get("TERM") in ("dumb", "emacs"): + return _nullpager(stdout, generator, color) + if WIN or sys.platform.startswith("os2"): + return _tempfilepager(generator, "more <", color) + if hasattr(os, "system") and os.system("(less) 2>/dev/null") == 0: + return _pipepager(generator, "less", color) + + import tempfile + + fd, filename = tempfile.mkstemp() + os.close(fd) + try: + if hasattr(os, "system") and os.system(f'more "{filename}"') == 0: + return _pipepager(generator, "more", color) + return _nullpager(stdout, generator, color) + finally: + os.unlink(filename) + + +def _pipepager(generator: t.Iterable[str], cmd: str, color: t.Optional[bool]) -> None: + """Page through text by feeding it to another program. Invoking a + pager through this might support colors. + """ + import subprocess + + env = dict(os.environ) + + # If we're piping to less we might support colors under the + # condition that + cmd_detail = cmd.rsplit("/", 1)[-1].split() + if color is None and cmd_detail[0] == "less": + less_flags = f"{os.environ.get('LESS', '')}{' '.join(cmd_detail[1:])}" + if not less_flags: + env["LESS"] = "-R" + color = True + elif "r" in less_flags or "R" in less_flags: + color = True + + c = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE, env=env) + stdin = t.cast(t.BinaryIO, c.stdin) + encoding = get_best_encoding(stdin) + try: + for text in generator: + if not color: + text = strip_ansi(text) + + stdin.write(text.encode(encoding, "replace")) + except (OSError, KeyboardInterrupt): + pass + else: + stdin.close() + + # Less doesn't respect ^C, but catches it for its own UI purposes (aborting + # search or other commands inside less). + # + # That means when the user hits ^C, the parent process (click) terminates, + # but less is still alive, paging the output and messing up the terminal. + # + # If the user wants to make the pager exit on ^C, they should set + # `LESS='-K'`. It's not our decision to make. + while True: + try: + c.wait() + except KeyboardInterrupt: + pass + else: + break + + +def _tempfilepager( + generator: t.Iterable[str], cmd: str, color: t.Optional[bool] +) -> None: + """Page through text by invoking a program on a temporary file.""" + import tempfile + + fd, filename = tempfile.mkstemp() + # TODO: This never terminates if the passed generator never terminates. + text = "".join(generator) + if not color: + text = strip_ansi(text) + encoding = get_best_encoding(sys.stdout) + with open_stream(filename, "wb")[0] as f: + f.write(text.encode(encoding)) + try: + os.system(f'{cmd} "{filename}"') + finally: + os.close(fd) + os.unlink(filename) + + +def _nullpager( + stream: t.TextIO, generator: t.Iterable[str], color: t.Optional[bool] +) -> None: + """Simply print unformatted text. This is the ultimate fallback.""" + for text in generator: + if not color: + text = strip_ansi(text) + stream.write(text) + + +class Editor: + def __init__( + self, + editor: t.Optional[str] = None, + env: t.Optional[t.Mapping[str, str]] = None, + require_save: bool = True, + extension: str = ".txt", + ) -> None: + self.editor = editor + self.env = env + self.require_save = require_save + self.extension = extension + + def get_editor(self) -> str: + if self.editor is not None: + return self.editor + for key in "VISUAL", "EDITOR": + rv = os.environ.get(key) + if rv: + return rv + if WIN: + return "notepad" + for editor in "sensible-editor", "vim", "nano": + if os.system(f"which {editor} >/dev/null 2>&1") == 0: + return editor + return "vi" + + def edit_file(self, filename: str) -> None: + import subprocess + + editor = self.get_editor() + environ: t.Optional[t.Dict[str, str]] = None + + if self.env: + environ = os.environ.copy() + environ.update(self.env) + + try: + c = subprocess.Popen(f'{editor} "{filename}"', env=environ, shell=True) + exit_code = c.wait() + if exit_code != 0: + raise ClickException( + _("{editor}: Editing failed").format(editor=editor) + ) + except OSError as e: + raise ClickException( + _("{editor}: Editing failed: {e}").format(editor=editor, e=e) + ) from e + + def edit(self, text: t.Optional[t.AnyStr]) -> t.Optional[t.AnyStr]: + import tempfile + + if not text: + data = b"" + elif isinstance(text, (bytes, bytearray)): + data = text + else: + if text and not text.endswith("\n"): + text += "\n" + + if WIN: + data = text.replace("\n", "\r\n").encode("utf-8-sig") + else: + data = text.encode("utf-8") + + fd, name = tempfile.mkstemp(prefix="editor-", suffix=self.extension) + f: t.BinaryIO + + try: + with os.fdopen(fd, "wb") as f: + f.write(data) + + # If the filesystem resolution is 1 second, like Mac OS + # 10.12 Extended, or 2 seconds, like FAT32, and the editor + # closes very fast, require_save can fail. Set the modified + # time to be 2 seconds in the past to work around this. + os.utime(name, (os.path.getatime(name), os.path.getmtime(name) - 2)) + # Depending on the resolution, the exact value might not be + # recorded, so get the new recorded value. + timestamp = os.path.getmtime(name) + + self.edit_file(name) + + if self.require_save and os.path.getmtime(name) == timestamp: + return None + + with open(name, "rb") as f: + rv = f.read() + + if isinstance(text, (bytes, bytearray)): + return rv + + return rv.decode("utf-8-sig").replace("\r\n", "\n") # type: ignore + finally: + os.unlink(name) + + +def open_url(url: str, wait: bool = False, locate: bool = False) -> int: + import subprocess + + def _unquote_file(url: str) -> str: + from urllib.parse import unquote + + if url.startswith("file://"): + url = unquote(url[7:]) + + return url + + if sys.platform == "darwin": + args = ["open"] + if wait: + args.append("-W") + if locate: + args.append("-R") + args.append(_unquote_file(url)) + null = open("/dev/null", "w") + try: + return subprocess.Popen(args, stderr=null).wait() + finally: + null.close() + elif WIN: + if locate: + url = _unquote_file(url.replace('"', "")) + args = f'explorer /select,"{url}"' + else: + url = url.replace('"', "") + wait_str = "/WAIT" if wait else "" + args = f'start {wait_str} "" "{url}"' + return os.system(args) + elif CYGWIN: + if locate: + url = os.path.dirname(_unquote_file(url).replace('"', "")) + args = f'cygstart "{url}"' + else: + url = url.replace('"', "") + wait_str = "-w" if wait else "" + args = f'cygstart {wait_str} "{url}"' + return os.system(args) + + try: + if locate: + url = os.path.dirname(_unquote_file(url)) or "." + else: + url = _unquote_file(url) + c = subprocess.Popen(["xdg-open", url]) + if wait: + return c.wait() + return 0 + except OSError: + if url.startswith(("http://", "https://")) and not locate and not wait: + import webbrowser + + webbrowser.open(url) + return 0 + return 1 + + +def _translate_ch_to_exc(ch: str) -> t.Optional[BaseException]: + if ch == "\x03": + raise KeyboardInterrupt() + + if ch == "\x04" and not WIN: # Unix-like, Ctrl+D + raise EOFError() + + if ch == "\x1a" and WIN: # Windows, Ctrl+Z + raise EOFError() + + return None + + +if WIN: + import msvcrt + + @contextlib.contextmanager + def raw_terminal() -> t.Iterator[int]: + yield -1 + + def getchar(echo: bool) -> str: + # The function `getch` will return a bytes object corresponding to + # the pressed character. Since Windows 10 build 1803, it will also + # return \x00 when called a second time after pressing a regular key. + # + # `getwch` does not share this probably-bugged behavior. Moreover, it + # returns a Unicode object by default, which is what we want. + # + # Either of these functions will return \x00 or \xe0 to indicate + # a special key, and you need to call the same function again to get + # the "rest" of the code. The fun part is that \u00e0 is + # "latin small letter a with grave", so if you type that on a French + # keyboard, you _also_ get a \xe0. + # E.g., consider the Up arrow. This returns \xe0 and then \x48. The + # resulting Unicode string reads as "a with grave" + "capital H". + # This is indistinguishable from when the user actually types + # "a with grave" and then "capital H". + # + # When \xe0 is returned, we assume it's part of a special-key sequence + # and call `getwch` again, but that means that when the user types + # the \u00e0 character, `getchar` doesn't return until a second + # character is typed. + # The alternative is returning immediately, but that would mess up + # cross-platform handling of arrow keys and others that start with + # \xe0. Another option is using `getch`, but then we can't reliably + # read non-ASCII characters, because return values of `getch` are + # limited to the current 8-bit codepage. + # + # Anyway, Click doesn't claim to do this Right(tm), and using `getwch` + # is doing the right thing in more situations than with `getch`. + func: t.Callable[[], str] + + if echo: + func = msvcrt.getwche # type: ignore + else: + func = msvcrt.getwch # type: ignore + + rv = func() + + if rv in ("\x00", "\xe0"): + # \x00 and \xe0 are control characters that indicate special key, + # see above. + rv += func() + + _translate_ch_to_exc(rv) + return rv + +else: + import tty + import termios + + @contextlib.contextmanager + def raw_terminal() -> t.Iterator[int]: + f: t.Optional[t.TextIO] + fd: int + + if not isatty(sys.stdin): + f = open("/dev/tty") + fd = f.fileno() + else: + fd = sys.stdin.fileno() + f = None + + try: + old_settings = termios.tcgetattr(fd) + + try: + tty.setraw(fd) + yield fd + finally: + termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) + sys.stdout.flush() + + if f is not None: + f.close() + except termios.error: + pass + + def getchar(echo: bool) -> str: + with raw_terminal() as fd: + ch = os.read(fd, 32).decode(get_best_encoding(sys.stdin), "replace") + + if echo and isatty(sys.stdout): + sys.stdout.write(ch) + + _translate_ch_to_exc(ch) + return ch diff --git a/llmeval-env/lib/python3.10/site-packages/click/_winconsole.py b/llmeval-env/lib/python3.10/site-packages/click/_winconsole.py new file mode 100644 index 0000000000000000000000000000000000000000..6b20df315b23ecd1e3d0ec32c11c0b5ced577efe --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/click/_winconsole.py @@ -0,0 +1,279 @@ +# This module is based on the excellent work by Adam Bartoš who +# provided a lot of what went into the implementation here in +# the discussion to issue1602 in the Python bug tracker. +# +# There are some general differences in regards to how this works +# compared to the original patches as we do not need to patch +# the entire interpreter but just work in our little world of +# echo and prompt. +import io +import sys +import time +import typing as t +from ctypes import byref +from ctypes import c_char +from ctypes import c_char_p +from ctypes import c_int +from ctypes import c_ssize_t +from ctypes import c_ulong +from ctypes import c_void_p +from ctypes import POINTER +from ctypes import py_object +from ctypes import Structure +from ctypes.wintypes import DWORD +from ctypes.wintypes import HANDLE +from ctypes.wintypes import LPCWSTR +from ctypes.wintypes import LPWSTR + +from ._compat import _NonClosingTextIOWrapper + +assert sys.platform == "win32" +import msvcrt # noqa: E402 +from ctypes import windll # noqa: E402 +from ctypes import WINFUNCTYPE # noqa: E402 + +c_ssize_p = POINTER(c_ssize_t) + +kernel32 = windll.kernel32 +GetStdHandle = kernel32.GetStdHandle +ReadConsoleW = kernel32.ReadConsoleW +WriteConsoleW = kernel32.WriteConsoleW +GetConsoleMode = kernel32.GetConsoleMode +GetLastError = kernel32.GetLastError +GetCommandLineW = WINFUNCTYPE(LPWSTR)(("GetCommandLineW", windll.kernel32)) +CommandLineToArgvW = WINFUNCTYPE(POINTER(LPWSTR), LPCWSTR, POINTER(c_int))( + ("CommandLineToArgvW", windll.shell32) +) +LocalFree = WINFUNCTYPE(c_void_p, c_void_p)(("LocalFree", windll.kernel32)) + +STDIN_HANDLE = GetStdHandle(-10) +STDOUT_HANDLE = GetStdHandle(-11) +STDERR_HANDLE = GetStdHandle(-12) + +PyBUF_SIMPLE = 0 +PyBUF_WRITABLE = 1 + +ERROR_SUCCESS = 0 +ERROR_NOT_ENOUGH_MEMORY = 8 +ERROR_OPERATION_ABORTED = 995 + +STDIN_FILENO = 0 +STDOUT_FILENO = 1 +STDERR_FILENO = 2 + +EOF = b"\x1a" +MAX_BYTES_WRITTEN = 32767 + +try: + from ctypes import pythonapi +except ImportError: + # On PyPy we cannot get buffers so our ability to operate here is + # severely limited. + get_buffer = None +else: + + class Py_buffer(Structure): + _fields_ = [ + ("buf", c_void_p), + ("obj", py_object), + ("len", c_ssize_t), + ("itemsize", c_ssize_t), + ("readonly", c_int), + ("ndim", c_int), + ("format", c_char_p), + ("shape", c_ssize_p), + ("strides", c_ssize_p), + ("suboffsets", c_ssize_p), + ("internal", c_void_p), + ] + + PyObject_GetBuffer = pythonapi.PyObject_GetBuffer + PyBuffer_Release = pythonapi.PyBuffer_Release + + def get_buffer(obj, writable=False): + buf = Py_buffer() + flags = PyBUF_WRITABLE if writable else PyBUF_SIMPLE + PyObject_GetBuffer(py_object(obj), byref(buf), flags) + + try: + buffer_type = c_char * buf.len + return buffer_type.from_address(buf.buf) + finally: + PyBuffer_Release(byref(buf)) + + +class _WindowsConsoleRawIOBase(io.RawIOBase): + def __init__(self, handle): + self.handle = handle + + def isatty(self): + super().isatty() + return True + + +class _WindowsConsoleReader(_WindowsConsoleRawIOBase): + def readable(self): + return True + + def readinto(self, b): + bytes_to_be_read = len(b) + if not bytes_to_be_read: + return 0 + elif bytes_to_be_read % 2: + raise ValueError( + "cannot read odd number of bytes from UTF-16-LE encoded console" + ) + + buffer = get_buffer(b, writable=True) + code_units_to_be_read = bytes_to_be_read // 2 + code_units_read = c_ulong() + + rv = ReadConsoleW( + HANDLE(self.handle), + buffer, + code_units_to_be_read, + byref(code_units_read), + None, + ) + if GetLastError() == ERROR_OPERATION_ABORTED: + # wait for KeyboardInterrupt + time.sleep(0.1) + if not rv: + raise OSError(f"Windows error: {GetLastError()}") + + if buffer[0] == EOF: + return 0 + return 2 * code_units_read.value + + +class _WindowsConsoleWriter(_WindowsConsoleRawIOBase): + def writable(self): + return True + + @staticmethod + def _get_error_message(errno): + if errno == ERROR_SUCCESS: + return "ERROR_SUCCESS" + elif errno == ERROR_NOT_ENOUGH_MEMORY: + return "ERROR_NOT_ENOUGH_MEMORY" + return f"Windows error {errno}" + + def write(self, b): + bytes_to_be_written = len(b) + buf = get_buffer(b) + code_units_to_be_written = min(bytes_to_be_written, MAX_BYTES_WRITTEN) // 2 + code_units_written = c_ulong() + + WriteConsoleW( + HANDLE(self.handle), + buf, + code_units_to_be_written, + byref(code_units_written), + None, + ) + bytes_written = 2 * code_units_written.value + + if bytes_written == 0 and bytes_to_be_written > 0: + raise OSError(self._get_error_message(GetLastError())) + return bytes_written + + +class ConsoleStream: + def __init__(self, text_stream: t.TextIO, byte_stream: t.BinaryIO) -> None: + self._text_stream = text_stream + self.buffer = byte_stream + + @property + def name(self) -> str: + return self.buffer.name + + def write(self, x: t.AnyStr) -> int: + if isinstance(x, str): + return self._text_stream.write(x) + try: + self.flush() + except Exception: + pass + return self.buffer.write(x) + + def writelines(self, lines: t.Iterable[t.AnyStr]) -> None: + for line in lines: + self.write(line) + + def __getattr__(self, name: str) -> t.Any: + return getattr(self._text_stream, name) + + def isatty(self) -> bool: + return self.buffer.isatty() + + def __repr__(self): + return f"" + + +def _get_text_stdin(buffer_stream: t.BinaryIO) -> t.TextIO: + text_stream = _NonClosingTextIOWrapper( + io.BufferedReader(_WindowsConsoleReader(STDIN_HANDLE)), + "utf-16-le", + "strict", + line_buffering=True, + ) + return t.cast(t.TextIO, ConsoleStream(text_stream, buffer_stream)) + + +def _get_text_stdout(buffer_stream: t.BinaryIO) -> t.TextIO: + text_stream = _NonClosingTextIOWrapper( + io.BufferedWriter(_WindowsConsoleWriter(STDOUT_HANDLE)), + "utf-16-le", + "strict", + line_buffering=True, + ) + return t.cast(t.TextIO, ConsoleStream(text_stream, buffer_stream)) + + +def _get_text_stderr(buffer_stream: t.BinaryIO) -> t.TextIO: + text_stream = _NonClosingTextIOWrapper( + io.BufferedWriter(_WindowsConsoleWriter(STDERR_HANDLE)), + "utf-16-le", + "strict", + line_buffering=True, + ) + return t.cast(t.TextIO, ConsoleStream(text_stream, buffer_stream)) + + +_stream_factories: t.Mapping[int, t.Callable[[t.BinaryIO], t.TextIO]] = { + 0: _get_text_stdin, + 1: _get_text_stdout, + 2: _get_text_stderr, +} + + +def _is_console(f: t.TextIO) -> bool: + if not hasattr(f, "fileno"): + return False + + try: + fileno = f.fileno() + except (OSError, io.UnsupportedOperation): + return False + + handle = msvcrt.get_osfhandle(fileno) + return bool(GetConsoleMode(handle, byref(DWORD()))) + + +def _get_windows_console_stream( + f: t.TextIO, encoding: t.Optional[str], errors: t.Optional[str] +) -> t.Optional[t.TextIO]: + if ( + get_buffer is not None + and encoding in {"utf-16-le", None} + and errors in {"strict", None} + and _is_console(f) + ): + func = _stream_factories.get(f.fileno()) + if func is not None: + b = getattr(f, "buffer", None) + + if b is None: + return None + + return func(b) diff --git a/llmeval-env/lib/python3.10/site-packages/click/decorators.py b/llmeval-env/lib/python3.10/site-packages/click/decorators.py new file mode 100644 index 0000000000000000000000000000000000000000..d9bba9502ca353bca5136f43c92436ff584f06e1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/click/decorators.py @@ -0,0 +1,561 @@ +import inspect +import types +import typing as t +from functools import update_wrapper +from gettext import gettext as _ + +from .core import Argument +from .core import Command +from .core import Context +from .core import Group +from .core import Option +from .core import Parameter +from .globals import get_current_context +from .utils import echo + +if t.TYPE_CHECKING: + import typing_extensions as te + + P = te.ParamSpec("P") + +R = t.TypeVar("R") +T = t.TypeVar("T") +_AnyCallable = t.Callable[..., t.Any] +FC = t.TypeVar("FC", bound=t.Union[_AnyCallable, Command]) + + +def pass_context(f: "t.Callable[te.Concatenate[Context, P], R]") -> "t.Callable[P, R]": + """Marks a callback as wanting to receive the current context + object as first argument. + """ + + def new_func(*args: "P.args", **kwargs: "P.kwargs") -> "R": + return f(get_current_context(), *args, **kwargs) + + return update_wrapper(new_func, f) + + +def pass_obj(f: "t.Callable[te.Concatenate[t.Any, P], R]") -> "t.Callable[P, R]": + """Similar to :func:`pass_context`, but only pass the object on the + context onwards (:attr:`Context.obj`). This is useful if that object + represents the state of a nested system. + """ + + def new_func(*args: "P.args", **kwargs: "P.kwargs") -> "R": + return f(get_current_context().obj, *args, **kwargs) + + return update_wrapper(new_func, f) + + +def make_pass_decorator( + object_type: t.Type[T], ensure: bool = False +) -> t.Callable[["t.Callable[te.Concatenate[T, P], R]"], "t.Callable[P, R]"]: + """Given an object type this creates a decorator that will work + similar to :func:`pass_obj` but instead of passing the object of the + current context, it will find the innermost context of type + :func:`object_type`. + + This generates a decorator that works roughly like this:: + + from functools import update_wrapper + + def decorator(f): + @pass_context + def new_func(ctx, *args, **kwargs): + obj = ctx.find_object(object_type) + return ctx.invoke(f, obj, *args, **kwargs) + return update_wrapper(new_func, f) + return decorator + + :param object_type: the type of the object to pass. + :param ensure: if set to `True`, a new object will be created and + remembered on the context if it's not there yet. + """ + + def decorator(f: "t.Callable[te.Concatenate[T, P], R]") -> "t.Callable[P, R]": + def new_func(*args: "P.args", **kwargs: "P.kwargs") -> "R": + ctx = get_current_context() + + obj: t.Optional[T] + if ensure: + obj = ctx.ensure_object(object_type) + else: + obj = ctx.find_object(object_type) + + if obj is None: + raise RuntimeError( + "Managed to invoke callback without a context" + f" object of type {object_type.__name__!r}" + " existing." + ) + + return ctx.invoke(f, obj, *args, **kwargs) + + return update_wrapper(new_func, f) + + return decorator # type: ignore[return-value] + + +def pass_meta_key( + key: str, *, doc_description: t.Optional[str] = None +) -> "t.Callable[[t.Callable[te.Concatenate[t.Any, P], R]], t.Callable[P, R]]": + """Create a decorator that passes a key from + :attr:`click.Context.meta` as the first argument to the decorated + function. + + :param key: Key in ``Context.meta`` to pass. + :param doc_description: Description of the object being passed, + inserted into the decorator's docstring. Defaults to "the 'key' + key from Context.meta". + + .. versionadded:: 8.0 + """ + + def decorator(f: "t.Callable[te.Concatenate[t.Any, P], R]") -> "t.Callable[P, R]": + def new_func(*args: "P.args", **kwargs: "P.kwargs") -> R: + ctx = get_current_context() + obj = ctx.meta[key] + return ctx.invoke(f, obj, *args, **kwargs) + + return update_wrapper(new_func, f) + + if doc_description is None: + doc_description = f"the {key!r} key from :attr:`click.Context.meta`" + + decorator.__doc__ = ( + f"Decorator that passes {doc_description} as the first argument" + " to the decorated function." + ) + return decorator # type: ignore[return-value] + + +CmdType = t.TypeVar("CmdType", bound=Command) + + +# variant: no call, directly as decorator for a function. +@t.overload +def command(name: _AnyCallable) -> Command: + ... + + +# variant: with positional name and with positional or keyword cls argument: +# @command(namearg, CommandCls, ...) or @command(namearg, cls=CommandCls, ...) +@t.overload +def command( + name: t.Optional[str], + cls: t.Type[CmdType], + **attrs: t.Any, +) -> t.Callable[[_AnyCallable], CmdType]: + ... + + +# variant: name omitted, cls _must_ be a keyword argument, @command(cls=CommandCls, ...) +@t.overload +def command( + name: None = None, + *, + cls: t.Type[CmdType], + **attrs: t.Any, +) -> t.Callable[[_AnyCallable], CmdType]: + ... + + +# variant: with optional string name, no cls argument provided. +@t.overload +def command( + name: t.Optional[str] = ..., cls: None = None, **attrs: t.Any +) -> t.Callable[[_AnyCallable], Command]: + ... + + +def command( + name: t.Union[t.Optional[str], _AnyCallable] = None, + cls: t.Optional[t.Type[CmdType]] = None, + **attrs: t.Any, +) -> t.Union[Command, t.Callable[[_AnyCallable], t.Union[Command, CmdType]]]: + r"""Creates a new :class:`Command` and uses the decorated function as + callback. This will also automatically attach all decorated + :func:`option`\s and :func:`argument`\s as parameters to the command. + + The name of the command defaults to the name of the function with + underscores replaced by dashes. If you want to change that, you can + pass the intended name as the first argument. + + All keyword arguments are forwarded to the underlying command class. + For the ``params`` argument, any decorated params are appended to + the end of the list. + + Once decorated the function turns into a :class:`Command` instance + that can be invoked as a command line utility or be attached to a + command :class:`Group`. + + :param name: the name of the command. This defaults to the function + name with underscores replaced by dashes. + :param cls: the command class to instantiate. This defaults to + :class:`Command`. + + .. versionchanged:: 8.1 + This decorator can be applied without parentheses. + + .. versionchanged:: 8.1 + The ``params`` argument can be used. Decorated params are + appended to the end of the list. + """ + + func: t.Optional[t.Callable[[_AnyCallable], t.Any]] = None + + if callable(name): + func = name + name = None + assert cls is None, "Use 'command(cls=cls)(callable)' to specify a class." + assert not attrs, "Use 'command(**kwargs)(callable)' to provide arguments." + + if cls is None: + cls = t.cast(t.Type[CmdType], Command) + + def decorator(f: _AnyCallable) -> CmdType: + if isinstance(f, Command): + raise TypeError("Attempted to convert a callback into a command twice.") + + attr_params = attrs.pop("params", None) + params = attr_params if attr_params is not None else [] + + try: + decorator_params = f.__click_params__ # type: ignore + except AttributeError: + pass + else: + del f.__click_params__ # type: ignore + params.extend(reversed(decorator_params)) + + if attrs.get("help") is None: + attrs["help"] = f.__doc__ + + if t.TYPE_CHECKING: + assert cls is not None + assert not callable(name) + + cmd = cls( + name=name or f.__name__.lower().replace("_", "-"), + callback=f, + params=params, + **attrs, + ) + cmd.__doc__ = f.__doc__ + return cmd + + if func is not None: + return decorator(func) + + return decorator + + +GrpType = t.TypeVar("GrpType", bound=Group) + + +# variant: no call, directly as decorator for a function. +@t.overload +def group(name: _AnyCallable) -> Group: + ... + + +# variant: with positional name and with positional or keyword cls argument: +# @group(namearg, GroupCls, ...) or @group(namearg, cls=GroupCls, ...) +@t.overload +def group( + name: t.Optional[str], + cls: t.Type[GrpType], + **attrs: t.Any, +) -> t.Callable[[_AnyCallable], GrpType]: + ... + + +# variant: name omitted, cls _must_ be a keyword argument, @group(cmd=GroupCls, ...) +@t.overload +def group( + name: None = None, + *, + cls: t.Type[GrpType], + **attrs: t.Any, +) -> t.Callable[[_AnyCallable], GrpType]: + ... + + +# variant: with optional string name, no cls argument provided. +@t.overload +def group( + name: t.Optional[str] = ..., cls: None = None, **attrs: t.Any +) -> t.Callable[[_AnyCallable], Group]: + ... + + +def group( + name: t.Union[str, _AnyCallable, None] = None, + cls: t.Optional[t.Type[GrpType]] = None, + **attrs: t.Any, +) -> t.Union[Group, t.Callable[[_AnyCallable], t.Union[Group, GrpType]]]: + """Creates a new :class:`Group` with a function as callback. This + works otherwise the same as :func:`command` just that the `cls` + parameter is set to :class:`Group`. + + .. versionchanged:: 8.1 + This decorator can be applied without parentheses. + """ + if cls is None: + cls = t.cast(t.Type[GrpType], Group) + + if callable(name): + return command(cls=cls, **attrs)(name) + + return command(name, cls, **attrs) + + +def _param_memo(f: t.Callable[..., t.Any], param: Parameter) -> None: + if isinstance(f, Command): + f.params.append(param) + else: + if not hasattr(f, "__click_params__"): + f.__click_params__ = [] # type: ignore + + f.__click_params__.append(param) # type: ignore + + +def argument( + *param_decls: str, cls: t.Optional[t.Type[Argument]] = None, **attrs: t.Any +) -> t.Callable[[FC], FC]: + """Attaches an argument to the command. All positional arguments are + passed as parameter declarations to :class:`Argument`; all keyword + arguments are forwarded unchanged (except ``cls``). + This is equivalent to creating an :class:`Argument` instance manually + and attaching it to the :attr:`Command.params` list. + + For the default argument class, refer to :class:`Argument` and + :class:`Parameter` for descriptions of parameters. + + :param cls: the argument class to instantiate. This defaults to + :class:`Argument`. + :param param_decls: Passed as positional arguments to the constructor of + ``cls``. + :param attrs: Passed as keyword arguments to the constructor of ``cls``. + """ + if cls is None: + cls = Argument + + def decorator(f: FC) -> FC: + _param_memo(f, cls(param_decls, **attrs)) + return f + + return decorator + + +def option( + *param_decls: str, cls: t.Optional[t.Type[Option]] = None, **attrs: t.Any +) -> t.Callable[[FC], FC]: + """Attaches an option to the command. All positional arguments are + passed as parameter declarations to :class:`Option`; all keyword + arguments are forwarded unchanged (except ``cls``). + This is equivalent to creating an :class:`Option` instance manually + and attaching it to the :attr:`Command.params` list. + + For the default option class, refer to :class:`Option` and + :class:`Parameter` for descriptions of parameters. + + :param cls: the option class to instantiate. This defaults to + :class:`Option`. + :param param_decls: Passed as positional arguments to the constructor of + ``cls``. + :param attrs: Passed as keyword arguments to the constructor of ``cls``. + """ + if cls is None: + cls = Option + + def decorator(f: FC) -> FC: + _param_memo(f, cls(param_decls, **attrs)) + return f + + return decorator + + +def confirmation_option(*param_decls: str, **kwargs: t.Any) -> t.Callable[[FC], FC]: + """Add a ``--yes`` option which shows a prompt before continuing if + not passed. If the prompt is declined, the program will exit. + + :param param_decls: One or more option names. Defaults to the single + value ``"--yes"``. + :param kwargs: Extra arguments are passed to :func:`option`. + """ + + def callback(ctx: Context, param: Parameter, value: bool) -> None: + if not value: + ctx.abort() + + if not param_decls: + param_decls = ("--yes",) + + kwargs.setdefault("is_flag", True) + kwargs.setdefault("callback", callback) + kwargs.setdefault("expose_value", False) + kwargs.setdefault("prompt", "Do you want to continue?") + kwargs.setdefault("help", "Confirm the action without prompting.") + return option(*param_decls, **kwargs) + + +def password_option(*param_decls: str, **kwargs: t.Any) -> t.Callable[[FC], FC]: + """Add a ``--password`` option which prompts for a password, hiding + input and asking to enter the value again for confirmation. + + :param param_decls: One or more option names. Defaults to the single + value ``"--password"``. + :param kwargs: Extra arguments are passed to :func:`option`. + """ + if not param_decls: + param_decls = ("--password",) + + kwargs.setdefault("prompt", True) + kwargs.setdefault("confirmation_prompt", True) + kwargs.setdefault("hide_input", True) + return option(*param_decls, **kwargs) + + +def version_option( + version: t.Optional[str] = None, + *param_decls: str, + package_name: t.Optional[str] = None, + prog_name: t.Optional[str] = None, + message: t.Optional[str] = None, + **kwargs: t.Any, +) -> t.Callable[[FC], FC]: + """Add a ``--version`` option which immediately prints the version + number and exits the program. + + If ``version`` is not provided, Click will try to detect it using + :func:`importlib.metadata.version` to get the version for the + ``package_name``. On Python < 3.8, the ``importlib_metadata`` + backport must be installed. + + If ``package_name`` is not provided, Click will try to detect it by + inspecting the stack frames. This will be used to detect the + version, so it must match the name of the installed package. + + :param version: The version number to show. If not provided, Click + will try to detect it. + :param param_decls: One or more option names. Defaults to the single + value ``"--version"``. + :param package_name: The package name to detect the version from. If + not provided, Click will try to detect it. + :param prog_name: The name of the CLI to show in the message. If not + provided, it will be detected from the command. + :param message: The message to show. The values ``%(prog)s``, + ``%(package)s``, and ``%(version)s`` are available. Defaults to + ``"%(prog)s, version %(version)s"``. + :param kwargs: Extra arguments are passed to :func:`option`. + :raise RuntimeError: ``version`` could not be detected. + + .. versionchanged:: 8.0 + Add the ``package_name`` parameter, and the ``%(package)s`` + value for messages. + + .. versionchanged:: 8.0 + Use :mod:`importlib.metadata` instead of ``pkg_resources``. The + version is detected based on the package name, not the entry + point name. The Python package name must match the installed + package name, or be passed with ``package_name=``. + """ + if message is None: + message = _("%(prog)s, version %(version)s") + + if version is None and package_name is None: + frame = inspect.currentframe() + f_back = frame.f_back if frame is not None else None + f_globals = f_back.f_globals if f_back is not None else None + # break reference cycle + # https://docs.python.org/3/library/inspect.html#the-interpreter-stack + del frame + + if f_globals is not None: + package_name = f_globals.get("__name__") + + if package_name == "__main__": + package_name = f_globals.get("__package__") + + if package_name: + package_name = package_name.partition(".")[0] + + def callback(ctx: Context, param: Parameter, value: bool) -> None: + if not value or ctx.resilient_parsing: + return + + nonlocal prog_name + nonlocal version + + if prog_name is None: + prog_name = ctx.find_root().info_name + + if version is None and package_name is not None: + metadata: t.Optional[types.ModuleType] + + try: + from importlib import metadata # type: ignore + except ImportError: + # Python < 3.8 + import importlib_metadata as metadata # type: ignore + + try: + version = metadata.version(package_name) # type: ignore + except metadata.PackageNotFoundError: # type: ignore + raise RuntimeError( + f"{package_name!r} is not installed. Try passing" + " 'package_name' instead." + ) from None + + if version is None: + raise RuntimeError( + f"Could not determine the version for {package_name!r} automatically." + ) + + echo( + message % {"prog": prog_name, "package": package_name, "version": version}, + color=ctx.color, + ) + ctx.exit() + + if not param_decls: + param_decls = ("--version",) + + kwargs.setdefault("is_flag", True) + kwargs.setdefault("expose_value", False) + kwargs.setdefault("is_eager", True) + kwargs.setdefault("help", _("Show the version and exit.")) + kwargs["callback"] = callback + return option(*param_decls, **kwargs) + + +def help_option(*param_decls: str, **kwargs: t.Any) -> t.Callable[[FC], FC]: + """Add a ``--help`` option which immediately prints the help page + and exits the program. + + This is usually unnecessary, as the ``--help`` option is added to + each command automatically unless ``add_help_option=False`` is + passed. + + :param param_decls: One or more option names. Defaults to the single + value ``"--help"``. + :param kwargs: Extra arguments are passed to :func:`option`. + """ + + def callback(ctx: Context, param: Parameter, value: bool) -> None: + if not value or ctx.resilient_parsing: + return + + echo(ctx.get_help(), color=ctx.color) + ctx.exit() + + if not param_decls: + param_decls = ("--help",) + + kwargs.setdefault("is_flag", True) + kwargs.setdefault("expose_value", False) + kwargs.setdefault("is_eager", True) + kwargs.setdefault("help", _("Show this message and exit.")) + kwargs["callback"] = callback + return option(*param_decls, **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/click/exceptions.py b/llmeval-env/lib/python3.10/site-packages/click/exceptions.py new file mode 100644 index 0000000000000000000000000000000000000000..fe68a3613f74e5e82da4e3eedc7d9451977838dd --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/click/exceptions.py @@ -0,0 +1,288 @@ +import typing as t +from gettext import gettext as _ +from gettext import ngettext + +from ._compat import get_text_stderr +from .utils import echo +from .utils import format_filename + +if t.TYPE_CHECKING: + from .core import Command + from .core import Context + from .core import Parameter + + +def _join_param_hints( + param_hint: t.Optional[t.Union[t.Sequence[str], str]] +) -> t.Optional[str]: + if param_hint is not None and not isinstance(param_hint, str): + return " / ".join(repr(x) for x in param_hint) + + return param_hint + + +class ClickException(Exception): + """An exception that Click can handle and show to the user.""" + + #: The exit code for this exception. + exit_code = 1 + + def __init__(self, message: str) -> None: + super().__init__(message) + self.message = message + + def format_message(self) -> str: + return self.message + + def __str__(self) -> str: + return self.message + + def show(self, file: t.Optional[t.IO[t.Any]] = None) -> None: + if file is None: + file = get_text_stderr() + + echo(_("Error: {message}").format(message=self.format_message()), file=file) + + +class UsageError(ClickException): + """An internal exception that signals a usage error. This typically + aborts any further handling. + + :param message: the error message to display. + :param ctx: optionally the context that caused this error. Click will + fill in the context automatically in some situations. + """ + + exit_code = 2 + + def __init__(self, message: str, ctx: t.Optional["Context"] = None) -> None: + super().__init__(message) + self.ctx = ctx + self.cmd: t.Optional["Command"] = self.ctx.command if self.ctx else None + + def show(self, file: t.Optional[t.IO[t.Any]] = None) -> None: + if file is None: + file = get_text_stderr() + color = None + hint = "" + if ( + self.ctx is not None + and self.ctx.command.get_help_option(self.ctx) is not None + ): + hint = _("Try '{command} {option}' for help.").format( + command=self.ctx.command_path, option=self.ctx.help_option_names[0] + ) + hint = f"{hint}\n" + if self.ctx is not None: + color = self.ctx.color + echo(f"{self.ctx.get_usage()}\n{hint}", file=file, color=color) + echo( + _("Error: {message}").format(message=self.format_message()), + file=file, + color=color, + ) + + +class BadParameter(UsageError): + """An exception that formats out a standardized error message for a + bad parameter. This is useful when thrown from a callback or type as + Click will attach contextual information to it (for instance, which + parameter it is). + + .. versionadded:: 2.0 + + :param param: the parameter object that caused this error. This can + be left out, and Click will attach this info itself + if possible. + :param param_hint: a string that shows up as parameter name. This + can be used as alternative to `param` in cases + where custom validation should happen. If it is + a string it's used as such, if it's a list then + each item is quoted and separated. + """ + + def __init__( + self, + message: str, + ctx: t.Optional["Context"] = None, + param: t.Optional["Parameter"] = None, + param_hint: t.Optional[str] = None, + ) -> None: + super().__init__(message, ctx) + self.param = param + self.param_hint = param_hint + + def format_message(self) -> str: + if self.param_hint is not None: + param_hint = self.param_hint + elif self.param is not None: + param_hint = self.param.get_error_hint(self.ctx) # type: ignore + else: + return _("Invalid value: {message}").format(message=self.message) + + return _("Invalid value for {param_hint}: {message}").format( + param_hint=_join_param_hints(param_hint), message=self.message + ) + + +class MissingParameter(BadParameter): + """Raised if click required an option or argument but it was not + provided when invoking the script. + + .. versionadded:: 4.0 + + :param param_type: a string that indicates the type of the parameter. + The default is to inherit the parameter type from + the given `param`. Valid values are ``'parameter'``, + ``'option'`` or ``'argument'``. + """ + + def __init__( + self, + message: t.Optional[str] = None, + ctx: t.Optional["Context"] = None, + param: t.Optional["Parameter"] = None, + param_hint: t.Optional[str] = None, + param_type: t.Optional[str] = None, + ) -> None: + super().__init__(message or "", ctx, param, param_hint) + self.param_type = param_type + + def format_message(self) -> str: + if self.param_hint is not None: + param_hint: t.Optional[str] = self.param_hint + elif self.param is not None: + param_hint = self.param.get_error_hint(self.ctx) # type: ignore + else: + param_hint = None + + param_hint = _join_param_hints(param_hint) + param_hint = f" {param_hint}" if param_hint else "" + + param_type = self.param_type + if param_type is None and self.param is not None: + param_type = self.param.param_type_name + + msg = self.message + if self.param is not None: + msg_extra = self.param.type.get_missing_message(self.param) + if msg_extra: + if msg: + msg += f". {msg_extra}" + else: + msg = msg_extra + + msg = f" {msg}" if msg else "" + + # Translate param_type for known types. + if param_type == "argument": + missing = _("Missing argument") + elif param_type == "option": + missing = _("Missing option") + elif param_type == "parameter": + missing = _("Missing parameter") + else: + missing = _("Missing {param_type}").format(param_type=param_type) + + return f"{missing}{param_hint}.{msg}" + + def __str__(self) -> str: + if not self.message: + param_name = self.param.name if self.param else None + return _("Missing parameter: {param_name}").format(param_name=param_name) + else: + return self.message + + +class NoSuchOption(UsageError): + """Raised if click attempted to handle an option that does not + exist. + + .. versionadded:: 4.0 + """ + + def __init__( + self, + option_name: str, + message: t.Optional[str] = None, + possibilities: t.Optional[t.Sequence[str]] = None, + ctx: t.Optional["Context"] = None, + ) -> None: + if message is None: + message = _("No such option: {name}").format(name=option_name) + + super().__init__(message, ctx) + self.option_name = option_name + self.possibilities = possibilities + + def format_message(self) -> str: + if not self.possibilities: + return self.message + + possibility_str = ", ".join(sorted(self.possibilities)) + suggest = ngettext( + "Did you mean {possibility}?", + "(Possible options: {possibilities})", + len(self.possibilities), + ).format(possibility=possibility_str, possibilities=possibility_str) + return f"{self.message} {suggest}" + + +class BadOptionUsage(UsageError): + """Raised if an option is generally supplied but the use of the option + was incorrect. This is for instance raised if the number of arguments + for an option is not correct. + + .. versionadded:: 4.0 + + :param option_name: the name of the option being used incorrectly. + """ + + def __init__( + self, option_name: str, message: str, ctx: t.Optional["Context"] = None + ) -> None: + super().__init__(message, ctx) + self.option_name = option_name + + +class BadArgumentUsage(UsageError): + """Raised if an argument is generally supplied but the use of the argument + was incorrect. This is for instance raised if the number of values + for an argument is not correct. + + .. versionadded:: 6.0 + """ + + +class FileError(ClickException): + """Raised if a file cannot be opened.""" + + def __init__(self, filename: str, hint: t.Optional[str] = None) -> None: + if hint is None: + hint = _("unknown error") + + super().__init__(hint) + self.ui_filename: str = format_filename(filename) + self.filename = filename + + def format_message(self) -> str: + return _("Could not open file {filename!r}: {message}").format( + filename=self.ui_filename, message=self.message + ) + + +class Abort(RuntimeError): + """An internal signalling exception that signals Click to abort.""" + + +class Exit(RuntimeError): + """An exception that indicates that the application should exit with some + status code. + + :param code: the status code to exit with. + """ + + __slots__ = ("exit_code",) + + def __init__(self, code: int = 0) -> None: + self.exit_code: int = code diff --git a/llmeval-env/lib/python3.10/site-packages/click/formatting.py b/llmeval-env/lib/python3.10/site-packages/click/formatting.py new file mode 100644 index 0000000000000000000000000000000000000000..ddd2a2f825f206164eb9efb0a5c41528365beb85 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/click/formatting.py @@ -0,0 +1,301 @@ +import typing as t +from contextlib import contextmanager +from gettext import gettext as _ + +from ._compat import term_len +from .parser import split_opt + +# Can force a width. This is used by the test system +FORCED_WIDTH: t.Optional[int] = None + + +def measure_table(rows: t.Iterable[t.Tuple[str, str]]) -> t.Tuple[int, ...]: + widths: t.Dict[int, int] = {} + + for row in rows: + for idx, col in enumerate(row): + widths[idx] = max(widths.get(idx, 0), term_len(col)) + + return tuple(y for x, y in sorted(widths.items())) + + +def iter_rows( + rows: t.Iterable[t.Tuple[str, str]], col_count: int +) -> t.Iterator[t.Tuple[str, ...]]: + for row in rows: + yield row + ("",) * (col_count - len(row)) + + +def wrap_text( + text: str, + width: int = 78, + initial_indent: str = "", + subsequent_indent: str = "", + preserve_paragraphs: bool = False, +) -> str: + """A helper function that intelligently wraps text. By default, it + assumes that it operates on a single paragraph of text but if the + `preserve_paragraphs` parameter is provided it will intelligently + handle paragraphs (defined by two empty lines). + + If paragraphs are handled, a paragraph can be prefixed with an empty + line containing the ``\\b`` character (``\\x08``) to indicate that + no rewrapping should happen in that block. + + :param text: the text that should be rewrapped. + :param width: the maximum width for the text. + :param initial_indent: the initial indent that should be placed on the + first line as a string. + :param subsequent_indent: the indent string that should be placed on + each consecutive line. + :param preserve_paragraphs: if this flag is set then the wrapping will + intelligently handle paragraphs. + """ + from ._textwrap import TextWrapper + + text = text.expandtabs() + wrapper = TextWrapper( + width, + initial_indent=initial_indent, + subsequent_indent=subsequent_indent, + replace_whitespace=False, + ) + if not preserve_paragraphs: + return wrapper.fill(text) + + p: t.List[t.Tuple[int, bool, str]] = [] + buf: t.List[str] = [] + indent = None + + def _flush_par() -> None: + if not buf: + return + if buf[0].strip() == "\b": + p.append((indent or 0, True, "\n".join(buf[1:]))) + else: + p.append((indent or 0, False, " ".join(buf))) + del buf[:] + + for line in text.splitlines(): + if not line: + _flush_par() + indent = None + else: + if indent is None: + orig_len = term_len(line) + line = line.lstrip() + indent = orig_len - term_len(line) + buf.append(line) + _flush_par() + + rv = [] + for indent, raw, text in p: + with wrapper.extra_indent(" " * indent): + if raw: + rv.append(wrapper.indent_only(text)) + else: + rv.append(wrapper.fill(text)) + + return "\n\n".join(rv) + + +class HelpFormatter: + """This class helps with formatting text-based help pages. It's + usually just needed for very special internal cases, but it's also + exposed so that developers can write their own fancy outputs. + + At present, it always writes into memory. + + :param indent_increment: the additional increment for each level. + :param width: the width for the text. This defaults to the terminal + width clamped to a maximum of 78. + """ + + def __init__( + self, + indent_increment: int = 2, + width: t.Optional[int] = None, + max_width: t.Optional[int] = None, + ) -> None: + import shutil + + self.indent_increment = indent_increment + if max_width is None: + max_width = 80 + if width is None: + width = FORCED_WIDTH + if width is None: + width = max(min(shutil.get_terminal_size().columns, max_width) - 2, 50) + self.width = width + self.current_indent = 0 + self.buffer: t.List[str] = [] + + def write(self, string: str) -> None: + """Writes a unicode string into the internal buffer.""" + self.buffer.append(string) + + def indent(self) -> None: + """Increases the indentation.""" + self.current_indent += self.indent_increment + + def dedent(self) -> None: + """Decreases the indentation.""" + self.current_indent -= self.indent_increment + + def write_usage( + self, prog: str, args: str = "", prefix: t.Optional[str] = None + ) -> None: + """Writes a usage line into the buffer. + + :param prog: the program name. + :param args: whitespace separated list of arguments. + :param prefix: The prefix for the first line. Defaults to + ``"Usage: "``. + """ + if prefix is None: + prefix = f"{_('Usage:')} " + + usage_prefix = f"{prefix:>{self.current_indent}}{prog} " + text_width = self.width - self.current_indent + + if text_width >= (term_len(usage_prefix) + 20): + # The arguments will fit to the right of the prefix. + indent = " " * term_len(usage_prefix) + self.write( + wrap_text( + args, + text_width, + initial_indent=usage_prefix, + subsequent_indent=indent, + ) + ) + else: + # The prefix is too long, put the arguments on the next line. + self.write(usage_prefix) + self.write("\n") + indent = " " * (max(self.current_indent, term_len(prefix)) + 4) + self.write( + wrap_text( + args, text_width, initial_indent=indent, subsequent_indent=indent + ) + ) + + self.write("\n") + + def write_heading(self, heading: str) -> None: + """Writes a heading into the buffer.""" + self.write(f"{'':>{self.current_indent}}{heading}:\n") + + def write_paragraph(self) -> None: + """Writes a paragraph into the buffer.""" + if self.buffer: + self.write("\n") + + def write_text(self, text: str) -> None: + """Writes re-indented text into the buffer. This rewraps and + preserves paragraphs. + """ + indent = " " * self.current_indent + self.write( + wrap_text( + text, + self.width, + initial_indent=indent, + subsequent_indent=indent, + preserve_paragraphs=True, + ) + ) + self.write("\n") + + def write_dl( + self, + rows: t.Sequence[t.Tuple[str, str]], + col_max: int = 30, + col_spacing: int = 2, + ) -> None: + """Writes a definition list into the buffer. This is how options + and commands are usually formatted. + + :param rows: a list of two item tuples for the terms and values. + :param col_max: the maximum width of the first column. + :param col_spacing: the number of spaces between the first and + second column. + """ + rows = list(rows) + widths = measure_table(rows) + if len(widths) != 2: + raise TypeError("Expected two columns for definition list") + + first_col = min(widths[0], col_max) + col_spacing + + for first, second in iter_rows(rows, len(widths)): + self.write(f"{'':>{self.current_indent}}{first}") + if not second: + self.write("\n") + continue + if term_len(first) <= first_col - col_spacing: + self.write(" " * (first_col - term_len(first))) + else: + self.write("\n") + self.write(" " * (first_col + self.current_indent)) + + text_width = max(self.width - first_col - 2, 10) + wrapped_text = wrap_text(second, text_width, preserve_paragraphs=True) + lines = wrapped_text.splitlines() + + if lines: + self.write(f"{lines[0]}\n") + + for line in lines[1:]: + self.write(f"{'':>{first_col + self.current_indent}}{line}\n") + else: + self.write("\n") + + @contextmanager + def section(self, name: str) -> t.Iterator[None]: + """Helpful context manager that writes a paragraph, a heading, + and the indents. + + :param name: the section name that is written as heading. + """ + self.write_paragraph() + self.write_heading(name) + self.indent() + try: + yield + finally: + self.dedent() + + @contextmanager + def indentation(self) -> t.Iterator[None]: + """A context manager that increases the indentation.""" + self.indent() + try: + yield + finally: + self.dedent() + + def getvalue(self) -> str: + """Returns the buffer contents.""" + return "".join(self.buffer) + + +def join_options(options: t.Sequence[str]) -> t.Tuple[str, bool]: + """Given a list of option strings this joins them in the most appropriate + way and returns them in the form ``(formatted_string, + any_prefix_is_slash)`` where the second item in the tuple is a flag that + indicates if any of the option prefixes was a slash. + """ + rv = [] + any_prefix_is_slash = False + + for opt in options: + prefix = split_opt(opt)[0] + + if prefix == "/": + any_prefix_is_slash = True + + rv.append((len(prefix), opt)) + + rv.sort(key=lambda x: x[0]) + return ", ".join(x[1] for x in rv), any_prefix_is_slash diff --git a/llmeval-env/lib/python3.10/site-packages/click/globals.py b/llmeval-env/lib/python3.10/site-packages/click/globals.py new file mode 100644 index 0000000000000000000000000000000000000000..480058f10dd6a8205d1bff0b94de7ae347a7629a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/click/globals.py @@ -0,0 +1,68 @@ +import typing as t +from threading import local + +if t.TYPE_CHECKING: + import typing_extensions as te + from .core import Context + +_local = local() + + +@t.overload +def get_current_context(silent: "te.Literal[False]" = False) -> "Context": + ... + + +@t.overload +def get_current_context(silent: bool = ...) -> t.Optional["Context"]: + ... + + +def get_current_context(silent: bool = False) -> t.Optional["Context"]: + """Returns the current click context. This can be used as a way to + access the current context object from anywhere. This is a more implicit + alternative to the :func:`pass_context` decorator. This function is + primarily useful for helpers such as :func:`echo` which might be + interested in changing its behavior based on the current context. + + To push the current context, :meth:`Context.scope` can be used. + + .. versionadded:: 5.0 + + :param silent: if set to `True` the return value is `None` if no context + is available. The default behavior is to raise a + :exc:`RuntimeError`. + """ + try: + return t.cast("Context", _local.stack[-1]) + except (AttributeError, IndexError) as e: + if not silent: + raise RuntimeError("There is no active click context.") from e + + return None + + +def push_context(ctx: "Context") -> None: + """Pushes a new context to the current stack.""" + _local.__dict__.setdefault("stack", []).append(ctx) + + +def pop_context() -> None: + """Removes the top level from the stack.""" + _local.stack.pop() + + +def resolve_color_default(color: t.Optional[bool] = None) -> t.Optional[bool]: + """Internal helper to get the default value of the color flag. If a + value is passed it's returned unchanged, otherwise it's looked up from + the current context. + """ + if color is not None: + return color + + ctx = get_current_context(silent=True) + + if ctx is not None: + return ctx.color + + return None diff --git a/llmeval-env/lib/python3.10/site-packages/click/shell_completion.py b/llmeval-env/lib/python3.10/site-packages/click/shell_completion.py new file mode 100644 index 0000000000000000000000000000000000000000..dc9e00b9b0c6f4903b674f03343e887bd490b081 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/click/shell_completion.py @@ -0,0 +1,596 @@ +import os +import re +import typing as t +from gettext import gettext as _ + +from .core import Argument +from .core import BaseCommand +from .core import Context +from .core import MultiCommand +from .core import Option +from .core import Parameter +from .core import ParameterSource +from .parser import split_arg_string +from .utils import echo + + +def shell_complete( + cli: BaseCommand, + ctx_args: t.MutableMapping[str, t.Any], + prog_name: str, + complete_var: str, + instruction: str, +) -> int: + """Perform shell completion for the given CLI program. + + :param cli: Command being called. + :param ctx_args: Extra arguments to pass to + ``cli.make_context``. + :param prog_name: Name of the executable in the shell. + :param complete_var: Name of the environment variable that holds + the completion instruction. + :param instruction: Value of ``complete_var`` with the completion + instruction and shell, in the form ``instruction_shell``. + :return: Status code to exit with. + """ + shell, _, instruction = instruction.partition("_") + comp_cls = get_completion_class(shell) + + if comp_cls is None: + return 1 + + comp = comp_cls(cli, ctx_args, prog_name, complete_var) + + if instruction == "source": + echo(comp.source()) + return 0 + + if instruction == "complete": + echo(comp.complete()) + return 0 + + return 1 + + +class CompletionItem: + """Represents a completion value and metadata about the value. The + default metadata is ``type`` to indicate special shell handling, + and ``help`` if a shell supports showing a help string next to the + value. + + Arbitrary parameters can be passed when creating the object, and + accessed using ``item.attr``. If an attribute wasn't passed, + accessing it returns ``None``. + + :param value: The completion suggestion. + :param type: Tells the shell script to provide special completion + support for the type. Click uses ``"dir"`` and ``"file"``. + :param help: String shown next to the value if supported. + :param kwargs: Arbitrary metadata. The built-in implementations + don't use this, but custom type completions paired with custom + shell support could use it. + """ + + __slots__ = ("value", "type", "help", "_info") + + def __init__( + self, + value: t.Any, + type: str = "plain", + help: t.Optional[str] = None, + **kwargs: t.Any, + ) -> None: + self.value: t.Any = value + self.type: str = type + self.help: t.Optional[str] = help + self._info = kwargs + + def __getattr__(self, name: str) -> t.Any: + return self._info.get(name) + + +# Only Bash >= 4.4 has the nosort option. +_SOURCE_BASH = """\ +%(complete_func)s() { + local IFS=$'\\n' + local response + + response=$(env COMP_WORDS="${COMP_WORDS[*]}" COMP_CWORD=$COMP_CWORD \ +%(complete_var)s=bash_complete $1) + + for completion in $response; do + IFS=',' read type value <<< "$completion" + + if [[ $type == 'dir' ]]; then + COMPREPLY=() + compopt -o dirnames + elif [[ $type == 'file' ]]; then + COMPREPLY=() + compopt -o default + elif [[ $type == 'plain' ]]; then + COMPREPLY+=($value) + fi + done + + return 0 +} + +%(complete_func)s_setup() { + complete -o nosort -F %(complete_func)s %(prog_name)s +} + +%(complete_func)s_setup; +""" + +_SOURCE_ZSH = """\ +#compdef %(prog_name)s + +%(complete_func)s() { + local -a completions + local -a completions_with_descriptions + local -a response + (( ! $+commands[%(prog_name)s] )) && return 1 + + response=("${(@f)$(env COMP_WORDS="${words[*]}" COMP_CWORD=$((CURRENT-1)) \ +%(complete_var)s=zsh_complete %(prog_name)s)}") + + for type key descr in ${response}; do + if [[ "$type" == "plain" ]]; then + if [[ "$descr" == "_" ]]; then + completions+=("$key") + else + completions_with_descriptions+=("$key":"$descr") + fi + elif [[ "$type" == "dir" ]]; then + _path_files -/ + elif [[ "$type" == "file" ]]; then + _path_files -f + fi + done + + if [ -n "$completions_with_descriptions" ]; then + _describe -V unsorted completions_with_descriptions -U + fi + + if [ -n "$completions" ]; then + compadd -U -V unsorted -a completions + fi +} + +if [[ $zsh_eval_context[-1] == loadautofunc ]]; then + # autoload from fpath, call function directly + %(complete_func)s "$@" +else + # eval/source/. command, register function for later + compdef %(complete_func)s %(prog_name)s +fi +""" + +_SOURCE_FISH = """\ +function %(complete_func)s; + set -l response (env %(complete_var)s=fish_complete COMP_WORDS=(commandline -cp) \ +COMP_CWORD=(commandline -t) %(prog_name)s); + + for completion in $response; + set -l metadata (string split "," $completion); + + if test $metadata[1] = "dir"; + __fish_complete_directories $metadata[2]; + else if test $metadata[1] = "file"; + __fish_complete_path $metadata[2]; + else if test $metadata[1] = "plain"; + echo $metadata[2]; + end; + end; +end; + +complete --no-files --command %(prog_name)s --arguments \ +"(%(complete_func)s)"; +""" + + +class ShellComplete: + """Base class for providing shell completion support. A subclass for + a given shell will override attributes and methods to implement the + completion instructions (``source`` and ``complete``). + + :param cli: Command being called. + :param prog_name: Name of the executable in the shell. + :param complete_var: Name of the environment variable that holds + the completion instruction. + + .. versionadded:: 8.0 + """ + + name: t.ClassVar[str] + """Name to register the shell as with :func:`add_completion_class`. + This is used in completion instructions (``{name}_source`` and + ``{name}_complete``). + """ + + source_template: t.ClassVar[str] + """Completion script template formatted by :meth:`source`. This must + be provided by subclasses. + """ + + def __init__( + self, + cli: BaseCommand, + ctx_args: t.MutableMapping[str, t.Any], + prog_name: str, + complete_var: str, + ) -> None: + self.cli = cli + self.ctx_args = ctx_args + self.prog_name = prog_name + self.complete_var = complete_var + + @property + def func_name(self) -> str: + """The name of the shell function defined by the completion + script. + """ + safe_name = re.sub(r"\W*", "", self.prog_name.replace("-", "_"), flags=re.ASCII) + return f"_{safe_name}_completion" + + def source_vars(self) -> t.Dict[str, t.Any]: + """Vars for formatting :attr:`source_template`. + + By default this provides ``complete_func``, ``complete_var``, + and ``prog_name``. + """ + return { + "complete_func": self.func_name, + "complete_var": self.complete_var, + "prog_name": self.prog_name, + } + + def source(self) -> str: + """Produce the shell script that defines the completion + function. By default this ``%``-style formats + :attr:`source_template` with the dict returned by + :meth:`source_vars`. + """ + return self.source_template % self.source_vars() + + def get_completion_args(self) -> t.Tuple[t.List[str], str]: + """Use the env vars defined by the shell script to return a + tuple of ``args, incomplete``. This must be implemented by + subclasses. + """ + raise NotImplementedError + + def get_completions( + self, args: t.List[str], incomplete: str + ) -> t.List[CompletionItem]: + """Determine the context and last complete command or parameter + from the complete args. Call that object's ``shell_complete`` + method to get the completions for the incomplete value. + + :param args: List of complete args before the incomplete value. + :param incomplete: Value being completed. May be empty. + """ + ctx = _resolve_context(self.cli, self.ctx_args, self.prog_name, args) + obj, incomplete = _resolve_incomplete(ctx, args, incomplete) + return obj.shell_complete(ctx, incomplete) + + def format_completion(self, item: CompletionItem) -> str: + """Format a completion item into the form recognized by the + shell script. This must be implemented by subclasses. + + :param item: Completion item to format. + """ + raise NotImplementedError + + def complete(self) -> str: + """Produce the completion data to send back to the shell. + + By default this calls :meth:`get_completion_args`, gets the + completions, then calls :meth:`format_completion` for each + completion. + """ + args, incomplete = self.get_completion_args() + completions = self.get_completions(args, incomplete) + out = [self.format_completion(item) for item in completions] + return "\n".join(out) + + +class BashComplete(ShellComplete): + """Shell completion for Bash.""" + + name = "bash" + source_template = _SOURCE_BASH + + @staticmethod + def _check_version() -> None: + import subprocess + + output = subprocess.run( + ["bash", "-c", 'echo "${BASH_VERSION}"'], stdout=subprocess.PIPE + ) + match = re.search(r"^(\d+)\.(\d+)\.\d+", output.stdout.decode()) + + if match is not None: + major, minor = match.groups() + + if major < "4" or major == "4" and minor < "4": + echo( + _( + "Shell completion is not supported for Bash" + " versions older than 4.4." + ), + err=True, + ) + else: + echo( + _("Couldn't detect Bash version, shell completion is not supported."), + err=True, + ) + + def source(self) -> str: + self._check_version() + return super().source() + + def get_completion_args(self) -> t.Tuple[t.List[str], str]: + cwords = split_arg_string(os.environ["COMP_WORDS"]) + cword = int(os.environ["COMP_CWORD"]) + args = cwords[1:cword] + + try: + incomplete = cwords[cword] + except IndexError: + incomplete = "" + + return args, incomplete + + def format_completion(self, item: CompletionItem) -> str: + return f"{item.type},{item.value}" + + +class ZshComplete(ShellComplete): + """Shell completion for Zsh.""" + + name = "zsh" + source_template = _SOURCE_ZSH + + def get_completion_args(self) -> t.Tuple[t.List[str], str]: + cwords = split_arg_string(os.environ["COMP_WORDS"]) + cword = int(os.environ["COMP_CWORD"]) + args = cwords[1:cword] + + try: + incomplete = cwords[cword] + except IndexError: + incomplete = "" + + return args, incomplete + + def format_completion(self, item: CompletionItem) -> str: + return f"{item.type}\n{item.value}\n{item.help if item.help else '_'}" + + +class FishComplete(ShellComplete): + """Shell completion for Fish.""" + + name = "fish" + source_template = _SOURCE_FISH + + def get_completion_args(self) -> t.Tuple[t.List[str], str]: + cwords = split_arg_string(os.environ["COMP_WORDS"]) + incomplete = os.environ["COMP_CWORD"] + args = cwords[1:] + + # Fish stores the partial word in both COMP_WORDS and + # COMP_CWORD, remove it from complete args. + if incomplete and args and args[-1] == incomplete: + args.pop() + + return args, incomplete + + def format_completion(self, item: CompletionItem) -> str: + if item.help: + return f"{item.type},{item.value}\t{item.help}" + + return f"{item.type},{item.value}" + + +ShellCompleteType = t.TypeVar("ShellCompleteType", bound=t.Type[ShellComplete]) + + +_available_shells: t.Dict[str, t.Type[ShellComplete]] = { + "bash": BashComplete, + "fish": FishComplete, + "zsh": ZshComplete, +} + + +def add_completion_class( + cls: ShellCompleteType, name: t.Optional[str] = None +) -> ShellCompleteType: + """Register a :class:`ShellComplete` subclass under the given name. + The name will be provided by the completion instruction environment + variable during completion. + + :param cls: The completion class that will handle completion for the + shell. + :param name: Name to register the class under. Defaults to the + class's ``name`` attribute. + """ + if name is None: + name = cls.name + + _available_shells[name] = cls + + return cls + + +def get_completion_class(shell: str) -> t.Optional[t.Type[ShellComplete]]: + """Look up a registered :class:`ShellComplete` subclass by the name + provided by the completion instruction environment variable. If the + name isn't registered, returns ``None``. + + :param shell: Name the class is registered under. + """ + return _available_shells.get(shell) + + +def _is_incomplete_argument(ctx: Context, param: Parameter) -> bool: + """Determine if the given parameter is an argument that can still + accept values. + + :param ctx: Invocation context for the command represented by the + parsed complete args. + :param param: Argument object being checked. + """ + if not isinstance(param, Argument): + return False + + assert param.name is not None + # Will be None if expose_value is False. + value = ctx.params.get(param.name) + return ( + param.nargs == -1 + or ctx.get_parameter_source(param.name) is not ParameterSource.COMMANDLINE + or ( + param.nargs > 1 + and isinstance(value, (tuple, list)) + and len(value) < param.nargs + ) + ) + + +def _start_of_option(ctx: Context, value: str) -> bool: + """Check if the value looks like the start of an option.""" + if not value: + return False + + c = value[0] + return c in ctx._opt_prefixes + + +def _is_incomplete_option(ctx: Context, args: t.List[str], param: Parameter) -> bool: + """Determine if the given parameter is an option that needs a value. + + :param args: List of complete args before the incomplete value. + :param param: Option object being checked. + """ + if not isinstance(param, Option): + return False + + if param.is_flag or param.count: + return False + + last_option = None + + for index, arg in enumerate(reversed(args)): + if index + 1 > param.nargs: + break + + if _start_of_option(ctx, arg): + last_option = arg + + return last_option is not None and last_option in param.opts + + +def _resolve_context( + cli: BaseCommand, + ctx_args: t.MutableMapping[str, t.Any], + prog_name: str, + args: t.List[str], +) -> Context: + """Produce the context hierarchy starting with the command and + traversing the complete arguments. This only follows the commands, + it doesn't trigger input prompts or callbacks. + + :param cli: Command being called. + :param prog_name: Name of the executable in the shell. + :param args: List of complete args before the incomplete value. + """ + ctx_args["resilient_parsing"] = True + ctx = cli.make_context(prog_name, args.copy(), **ctx_args) + args = ctx.protected_args + ctx.args + + while args: + command = ctx.command + + if isinstance(command, MultiCommand): + if not command.chain: + name, cmd, args = command.resolve_command(ctx, args) + + if cmd is None: + return ctx + + ctx = cmd.make_context(name, args, parent=ctx, resilient_parsing=True) + args = ctx.protected_args + ctx.args + else: + sub_ctx = ctx + + while args: + name, cmd, args = command.resolve_command(ctx, args) + + if cmd is None: + return ctx + + sub_ctx = cmd.make_context( + name, + args, + parent=ctx, + allow_extra_args=True, + allow_interspersed_args=False, + resilient_parsing=True, + ) + args = sub_ctx.args + + ctx = sub_ctx + args = [*sub_ctx.protected_args, *sub_ctx.args] + else: + break + + return ctx + + +def _resolve_incomplete( + ctx: Context, args: t.List[str], incomplete: str +) -> t.Tuple[t.Union[BaseCommand, Parameter], str]: + """Find the Click object that will handle the completion of the + incomplete value. Return the object and the incomplete value. + + :param ctx: Invocation context for the command represented by + the parsed complete args. + :param args: List of complete args before the incomplete value. + :param incomplete: Value being completed. May be empty. + """ + # Different shells treat an "=" between a long option name and + # value differently. Might keep the value joined, return the "=" + # as a separate item, or return the split name and value. Always + # split and discard the "=" to make completion easier. + if incomplete == "=": + incomplete = "" + elif "=" in incomplete and _start_of_option(ctx, incomplete): + name, _, incomplete = incomplete.partition("=") + args.append(name) + + # The "--" marker tells Click to stop treating values as options + # even if they start with the option character. If it hasn't been + # given and the incomplete arg looks like an option, the current + # command will provide option name completions. + if "--" not in args and _start_of_option(ctx, incomplete): + return ctx.command, incomplete + + params = ctx.command.get_params(ctx) + + # If the last complete arg is an option name with an incomplete + # value, the option will provide value completions. + for param in params: + if _is_incomplete_option(ctx, args, param): + return param, incomplete + + # It's not an option name or value. The first argument without a + # parsed value will provide value completions. + for param in params: + if _is_incomplete_argument(ctx, param): + return param, incomplete + + # There were no unparsed arguments, the command may be a group that + # will provide command name completions. + return ctx.command, incomplete diff --git a/llmeval-env/lib/python3.10/site-packages/click/termui.py b/llmeval-env/lib/python3.10/site-packages/click/termui.py new file mode 100644 index 0000000000000000000000000000000000000000..db7a4b286174fdf26f3251631a2066eda2fa5bea --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/click/termui.py @@ -0,0 +1,784 @@ +import inspect +import io +import itertools +import sys +import typing as t +from gettext import gettext as _ + +from ._compat import isatty +from ._compat import strip_ansi +from .exceptions import Abort +from .exceptions import UsageError +from .globals import resolve_color_default +from .types import Choice +from .types import convert_type +from .types import ParamType +from .utils import echo +from .utils import LazyFile + +if t.TYPE_CHECKING: + from ._termui_impl import ProgressBar + +V = t.TypeVar("V") + +# The prompt functions to use. The doc tools currently override these +# functions to customize how they work. +visible_prompt_func: t.Callable[[str], str] = input + +_ansi_colors = { + "black": 30, + "red": 31, + "green": 32, + "yellow": 33, + "blue": 34, + "magenta": 35, + "cyan": 36, + "white": 37, + "reset": 39, + "bright_black": 90, + "bright_red": 91, + "bright_green": 92, + "bright_yellow": 93, + "bright_blue": 94, + "bright_magenta": 95, + "bright_cyan": 96, + "bright_white": 97, +} +_ansi_reset_all = "\033[0m" + + +def hidden_prompt_func(prompt: str) -> str: + import getpass + + return getpass.getpass(prompt) + + +def _build_prompt( + text: str, + suffix: str, + show_default: bool = False, + default: t.Optional[t.Any] = None, + show_choices: bool = True, + type: t.Optional[ParamType] = None, +) -> str: + prompt = text + if type is not None and show_choices and isinstance(type, Choice): + prompt += f" ({', '.join(map(str, type.choices))})" + if default is not None and show_default: + prompt = f"{prompt} [{_format_default(default)}]" + return f"{prompt}{suffix}" + + +def _format_default(default: t.Any) -> t.Any: + if isinstance(default, (io.IOBase, LazyFile)) and hasattr(default, "name"): + return default.name + + return default + + +def prompt( + text: str, + default: t.Optional[t.Any] = None, + hide_input: bool = False, + confirmation_prompt: t.Union[bool, str] = False, + type: t.Optional[t.Union[ParamType, t.Any]] = None, + value_proc: t.Optional[t.Callable[[str], t.Any]] = None, + prompt_suffix: str = ": ", + show_default: bool = True, + err: bool = False, + show_choices: bool = True, +) -> t.Any: + """Prompts a user for input. This is a convenience function that can + be used to prompt a user for input later. + + If the user aborts the input by sending an interrupt signal, this + function will catch it and raise a :exc:`Abort` exception. + + :param text: the text to show for the prompt. + :param default: the default value to use if no input happens. If this + is not given it will prompt until it's aborted. + :param hide_input: if this is set to true then the input value will + be hidden. + :param confirmation_prompt: Prompt a second time to confirm the + value. Can be set to a string instead of ``True`` to customize + the message. + :param type: the type to use to check the value against. + :param value_proc: if this parameter is provided it's a function that + is invoked instead of the type conversion to + convert a value. + :param prompt_suffix: a suffix that should be added to the prompt. + :param show_default: shows or hides the default value in the prompt. + :param err: if set to true the file defaults to ``stderr`` instead of + ``stdout``, the same as with echo. + :param show_choices: Show or hide choices if the passed type is a Choice. + For example if type is a Choice of either day or week, + show_choices is true and text is "Group by" then the + prompt will be "Group by (day, week): ". + + .. versionadded:: 8.0 + ``confirmation_prompt`` can be a custom string. + + .. versionadded:: 7.0 + Added the ``show_choices`` parameter. + + .. versionadded:: 6.0 + Added unicode support for cmd.exe on Windows. + + .. versionadded:: 4.0 + Added the `err` parameter. + + """ + + def prompt_func(text: str) -> str: + f = hidden_prompt_func if hide_input else visible_prompt_func + try: + # Write the prompt separately so that we get nice + # coloring through colorama on Windows + echo(text.rstrip(" "), nl=False, err=err) + # Echo a space to stdout to work around an issue where + # readline causes backspace to clear the whole line. + return f(" ") + except (KeyboardInterrupt, EOFError): + # getpass doesn't print a newline if the user aborts input with ^C. + # Allegedly this behavior is inherited from getpass(3). + # A doc bug has been filed at https://bugs.python.org/issue24711 + if hide_input: + echo(None, err=err) + raise Abort() from None + + if value_proc is None: + value_proc = convert_type(type, default) + + prompt = _build_prompt( + text, prompt_suffix, show_default, default, show_choices, type + ) + + if confirmation_prompt: + if confirmation_prompt is True: + confirmation_prompt = _("Repeat for confirmation") + + confirmation_prompt = _build_prompt(confirmation_prompt, prompt_suffix) + + while True: + while True: + value = prompt_func(prompt) + if value: + break + elif default is not None: + value = default + break + try: + result = value_proc(value) + except UsageError as e: + if hide_input: + echo(_("Error: The value you entered was invalid."), err=err) + else: + echo(_("Error: {e.message}").format(e=e), err=err) # noqa: B306 + continue + if not confirmation_prompt: + return result + while True: + value2 = prompt_func(confirmation_prompt) + is_empty = not value and not value2 + if value2 or is_empty: + break + if value == value2: + return result + echo(_("Error: The two entered values do not match."), err=err) + + +def confirm( + text: str, + default: t.Optional[bool] = False, + abort: bool = False, + prompt_suffix: str = ": ", + show_default: bool = True, + err: bool = False, +) -> bool: + """Prompts for confirmation (yes/no question). + + If the user aborts the input by sending a interrupt signal this + function will catch it and raise a :exc:`Abort` exception. + + :param text: the question to ask. + :param default: The default value to use when no input is given. If + ``None``, repeat until input is given. + :param abort: if this is set to `True` a negative answer aborts the + exception by raising :exc:`Abort`. + :param prompt_suffix: a suffix that should be added to the prompt. + :param show_default: shows or hides the default value in the prompt. + :param err: if set to true the file defaults to ``stderr`` instead of + ``stdout``, the same as with echo. + + .. versionchanged:: 8.0 + Repeat until input is given if ``default`` is ``None``. + + .. versionadded:: 4.0 + Added the ``err`` parameter. + """ + prompt = _build_prompt( + text, + prompt_suffix, + show_default, + "y/n" if default is None else ("Y/n" if default else "y/N"), + ) + + while True: + try: + # Write the prompt separately so that we get nice + # coloring through colorama on Windows + echo(prompt.rstrip(" "), nl=False, err=err) + # Echo a space to stdout to work around an issue where + # readline causes backspace to clear the whole line. + value = visible_prompt_func(" ").lower().strip() + except (KeyboardInterrupt, EOFError): + raise Abort() from None + if value in ("y", "yes"): + rv = True + elif value in ("n", "no"): + rv = False + elif default is not None and value == "": + rv = default + else: + echo(_("Error: invalid input"), err=err) + continue + break + if abort and not rv: + raise Abort() + return rv + + +def echo_via_pager( + text_or_generator: t.Union[t.Iterable[str], t.Callable[[], t.Iterable[str]], str], + color: t.Optional[bool] = None, +) -> None: + """This function takes a text and shows it via an environment specific + pager on stdout. + + .. versionchanged:: 3.0 + Added the `color` flag. + + :param text_or_generator: the text to page, or alternatively, a + generator emitting the text to page. + :param color: controls if the pager supports ANSI colors or not. The + default is autodetection. + """ + color = resolve_color_default(color) + + if inspect.isgeneratorfunction(text_or_generator): + i = t.cast(t.Callable[[], t.Iterable[str]], text_or_generator)() + elif isinstance(text_or_generator, str): + i = [text_or_generator] + else: + i = iter(t.cast(t.Iterable[str], text_or_generator)) + + # convert every element of i to a text type if necessary + text_generator = (el if isinstance(el, str) else str(el) for el in i) + + from ._termui_impl import pager + + return pager(itertools.chain(text_generator, "\n"), color) + + +def progressbar( + iterable: t.Optional[t.Iterable[V]] = None, + length: t.Optional[int] = None, + label: t.Optional[str] = None, + show_eta: bool = True, + show_percent: t.Optional[bool] = None, + show_pos: bool = False, + item_show_func: t.Optional[t.Callable[[t.Optional[V]], t.Optional[str]]] = None, + fill_char: str = "#", + empty_char: str = "-", + bar_template: str = "%(label)s [%(bar)s] %(info)s", + info_sep: str = " ", + width: int = 36, + file: t.Optional[t.TextIO] = None, + color: t.Optional[bool] = None, + update_min_steps: int = 1, +) -> "ProgressBar[V]": + """This function creates an iterable context manager that can be used + to iterate over something while showing a progress bar. It will + either iterate over the `iterable` or `length` items (that are counted + up). While iteration happens, this function will print a rendered + progress bar to the given `file` (defaults to stdout) and will attempt + to calculate remaining time and more. By default, this progress bar + will not be rendered if the file is not a terminal. + + The context manager creates the progress bar. When the context + manager is entered the progress bar is already created. With every + iteration over the progress bar, the iterable passed to the bar is + advanced and the bar is updated. When the context manager exits, + a newline is printed and the progress bar is finalized on screen. + + Note: The progress bar is currently designed for use cases where the + total progress can be expected to take at least several seconds. + Because of this, the ProgressBar class object won't display + progress that is considered too fast, and progress where the time + between steps is less than a second. + + No printing must happen or the progress bar will be unintentionally + destroyed. + + Example usage:: + + with progressbar(items) as bar: + for item in bar: + do_something_with(item) + + Alternatively, if no iterable is specified, one can manually update the + progress bar through the `update()` method instead of directly + iterating over the progress bar. The update method accepts the number + of steps to increment the bar with:: + + with progressbar(length=chunks.total_bytes) as bar: + for chunk in chunks: + process_chunk(chunk) + bar.update(chunks.bytes) + + The ``update()`` method also takes an optional value specifying the + ``current_item`` at the new position. This is useful when used + together with ``item_show_func`` to customize the output for each + manual step:: + + with click.progressbar( + length=total_size, + label='Unzipping archive', + item_show_func=lambda a: a.filename + ) as bar: + for archive in zip_file: + archive.extract() + bar.update(archive.size, archive) + + :param iterable: an iterable to iterate over. If not provided the length + is required. + :param length: the number of items to iterate over. By default the + progressbar will attempt to ask the iterator about its + length, which might or might not work. If an iterable is + also provided this parameter can be used to override the + length. If an iterable is not provided the progress bar + will iterate over a range of that length. + :param label: the label to show next to the progress bar. + :param show_eta: enables or disables the estimated time display. This is + automatically disabled if the length cannot be + determined. + :param show_percent: enables or disables the percentage display. The + default is `True` if the iterable has a length or + `False` if not. + :param show_pos: enables or disables the absolute position display. The + default is `False`. + :param item_show_func: A function called with the current item which + can return a string to show next to the progress bar. If the + function returns ``None`` nothing is shown. The current item can + be ``None``, such as when entering and exiting the bar. + :param fill_char: the character to use to show the filled part of the + progress bar. + :param empty_char: the character to use to show the non-filled part of + the progress bar. + :param bar_template: the format string to use as template for the bar. + The parameters in it are ``label`` for the label, + ``bar`` for the progress bar and ``info`` for the + info section. + :param info_sep: the separator between multiple info items (eta etc.) + :param width: the width of the progress bar in characters, 0 means full + terminal width + :param file: The file to write to. If this is not a terminal then + only the label is printed. + :param color: controls if the terminal supports ANSI colors or not. The + default is autodetection. This is only needed if ANSI + codes are included anywhere in the progress bar output + which is not the case by default. + :param update_min_steps: Render only when this many updates have + completed. This allows tuning for very fast iterators. + + .. versionchanged:: 8.0 + Output is shown even if execution time is less than 0.5 seconds. + + .. versionchanged:: 8.0 + ``item_show_func`` shows the current item, not the previous one. + + .. versionchanged:: 8.0 + Labels are echoed if the output is not a TTY. Reverts a change + in 7.0 that removed all output. + + .. versionadded:: 8.0 + Added the ``update_min_steps`` parameter. + + .. versionchanged:: 4.0 + Added the ``color`` parameter. Added the ``update`` method to + the object. + + .. versionadded:: 2.0 + """ + from ._termui_impl import ProgressBar + + color = resolve_color_default(color) + return ProgressBar( + iterable=iterable, + length=length, + show_eta=show_eta, + show_percent=show_percent, + show_pos=show_pos, + item_show_func=item_show_func, + fill_char=fill_char, + empty_char=empty_char, + bar_template=bar_template, + info_sep=info_sep, + file=file, + label=label, + width=width, + color=color, + update_min_steps=update_min_steps, + ) + + +def clear() -> None: + """Clears the terminal screen. This will have the effect of clearing + the whole visible space of the terminal and moving the cursor to the + top left. This does not do anything if not connected to a terminal. + + .. versionadded:: 2.0 + """ + if not isatty(sys.stdout): + return + + # ANSI escape \033[2J clears the screen, \033[1;1H moves the cursor + echo("\033[2J\033[1;1H", nl=False) + + +def _interpret_color( + color: t.Union[int, t.Tuple[int, int, int], str], offset: int = 0 +) -> str: + if isinstance(color, int): + return f"{38 + offset};5;{color:d}" + + if isinstance(color, (tuple, list)): + r, g, b = color + return f"{38 + offset};2;{r:d};{g:d};{b:d}" + + return str(_ansi_colors[color] + offset) + + +def style( + text: t.Any, + fg: t.Optional[t.Union[int, t.Tuple[int, int, int], str]] = None, + bg: t.Optional[t.Union[int, t.Tuple[int, int, int], str]] = None, + bold: t.Optional[bool] = None, + dim: t.Optional[bool] = None, + underline: t.Optional[bool] = None, + overline: t.Optional[bool] = None, + italic: t.Optional[bool] = None, + blink: t.Optional[bool] = None, + reverse: t.Optional[bool] = None, + strikethrough: t.Optional[bool] = None, + reset: bool = True, +) -> str: + """Styles a text with ANSI styles and returns the new string. By + default the styling is self contained which means that at the end + of the string a reset code is issued. This can be prevented by + passing ``reset=False``. + + Examples:: + + click.echo(click.style('Hello World!', fg='green')) + click.echo(click.style('ATTENTION!', blink=True)) + click.echo(click.style('Some things', reverse=True, fg='cyan')) + click.echo(click.style('More colors', fg=(255, 12, 128), bg=117)) + + Supported color names: + + * ``black`` (might be a gray) + * ``red`` + * ``green`` + * ``yellow`` (might be an orange) + * ``blue`` + * ``magenta`` + * ``cyan`` + * ``white`` (might be light gray) + * ``bright_black`` + * ``bright_red`` + * ``bright_green`` + * ``bright_yellow`` + * ``bright_blue`` + * ``bright_magenta`` + * ``bright_cyan`` + * ``bright_white`` + * ``reset`` (reset the color code only) + + If the terminal supports it, color may also be specified as: + + - An integer in the interval [0, 255]. The terminal must support + 8-bit/256-color mode. + - An RGB tuple of three integers in [0, 255]. The terminal must + support 24-bit/true-color mode. + + See https://en.wikipedia.org/wiki/ANSI_color and + https://gist.github.com/XVilka/8346728 for more information. + + :param text: the string to style with ansi codes. + :param fg: if provided this will become the foreground color. + :param bg: if provided this will become the background color. + :param bold: if provided this will enable or disable bold mode. + :param dim: if provided this will enable or disable dim mode. This is + badly supported. + :param underline: if provided this will enable or disable underline. + :param overline: if provided this will enable or disable overline. + :param italic: if provided this will enable or disable italic. + :param blink: if provided this will enable or disable blinking. + :param reverse: if provided this will enable or disable inverse + rendering (foreground becomes background and the + other way round). + :param strikethrough: if provided this will enable or disable + striking through text. + :param reset: by default a reset-all code is added at the end of the + string which means that styles do not carry over. This + can be disabled to compose styles. + + .. versionchanged:: 8.0 + A non-string ``message`` is converted to a string. + + .. versionchanged:: 8.0 + Added support for 256 and RGB color codes. + + .. versionchanged:: 8.0 + Added the ``strikethrough``, ``italic``, and ``overline`` + parameters. + + .. versionchanged:: 7.0 + Added support for bright colors. + + .. versionadded:: 2.0 + """ + if not isinstance(text, str): + text = str(text) + + bits = [] + + if fg: + try: + bits.append(f"\033[{_interpret_color(fg)}m") + except KeyError: + raise TypeError(f"Unknown color {fg!r}") from None + + if bg: + try: + bits.append(f"\033[{_interpret_color(bg, 10)}m") + except KeyError: + raise TypeError(f"Unknown color {bg!r}") from None + + if bold is not None: + bits.append(f"\033[{1 if bold else 22}m") + if dim is not None: + bits.append(f"\033[{2 if dim else 22}m") + if underline is not None: + bits.append(f"\033[{4 if underline else 24}m") + if overline is not None: + bits.append(f"\033[{53 if overline else 55}m") + if italic is not None: + bits.append(f"\033[{3 if italic else 23}m") + if blink is not None: + bits.append(f"\033[{5 if blink else 25}m") + if reverse is not None: + bits.append(f"\033[{7 if reverse else 27}m") + if strikethrough is not None: + bits.append(f"\033[{9 if strikethrough else 29}m") + bits.append(text) + if reset: + bits.append(_ansi_reset_all) + return "".join(bits) + + +def unstyle(text: str) -> str: + """Removes ANSI styling information from a string. Usually it's not + necessary to use this function as Click's echo function will + automatically remove styling if necessary. + + .. versionadded:: 2.0 + + :param text: the text to remove style information from. + """ + return strip_ansi(text) + + +def secho( + message: t.Optional[t.Any] = None, + file: t.Optional[t.IO[t.AnyStr]] = None, + nl: bool = True, + err: bool = False, + color: t.Optional[bool] = None, + **styles: t.Any, +) -> None: + """This function combines :func:`echo` and :func:`style` into one + call. As such the following two calls are the same:: + + click.secho('Hello World!', fg='green') + click.echo(click.style('Hello World!', fg='green')) + + All keyword arguments are forwarded to the underlying functions + depending on which one they go with. + + Non-string types will be converted to :class:`str`. However, + :class:`bytes` are passed directly to :meth:`echo` without applying + style. If you want to style bytes that represent text, call + :meth:`bytes.decode` first. + + .. versionchanged:: 8.0 + A non-string ``message`` is converted to a string. Bytes are + passed through without style applied. + + .. versionadded:: 2.0 + """ + if message is not None and not isinstance(message, (bytes, bytearray)): + message = style(message, **styles) + + return echo(message, file=file, nl=nl, err=err, color=color) + + +def edit( + text: t.Optional[t.AnyStr] = None, + editor: t.Optional[str] = None, + env: t.Optional[t.Mapping[str, str]] = None, + require_save: bool = True, + extension: str = ".txt", + filename: t.Optional[str] = None, +) -> t.Optional[t.AnyStr]: + r"""Edits the given text in the defined editor. If an editor is given + (should be the full path to the executable but the regular operating + system search path is used for finding the executable) it overrides + the detected editor. Optionally, some environment variables can be + used. If the editor is closed without changes, `None` is returned. In + case a file is edited directly the return value is always `None` and + `require_save` and `extension` are ignored. + + If the editor cannot be opened a :exc:`UsageError` is raised. + + Note for Windows: to simplify cross-platform usage, the newlines are + automatically converted from POSIX to Windows and vice versa. As such, + the message here will have ``\n`` as newline markers. + + :param text: the text to edit. + :param editor: optionally the editor to use. Defaults to automatic + detection. + :param env: environment variables to forward to the editor. + :param require_save: if this is true, then not saving in the editor + will make the return value become `None`. + :param extension: the extension to tell the editor about. This defaults + to `.txt` but changing this might change syntax + highlighting. + :param filename: if provided it will edit this file instead of the + provided text contents. It will not use a temporary + file as an indirection in that case. + """ + from ._termui_impl import Editor + + ed = Editor(editor=editor, env=env, require_save=require_save, extension=extension) + + if filename is None: + return ed.edit(text) + + ed.edit_file(filename) + return None + + +def launch(url: str, wait: bool = False, locate: bool = False) -> int: + """This function launches the given URL (or filename) in the default + viewer application for this file type. If this is an executable, it + might launch the executable in a new session. The return value is + the exit code of the launched application. Usually, ``0`` indicates + success. + + Examples:: + + click.launch('https://click.palletsprojects.com/') + click.launch('/my/downloaded/file', locate=True) + + .. versionadded:: 2.0 + + :param url: URL or filename of the thing to launch. + :param wait: Wait for the program to exit before returning. This + only works if the launched program blocks. In particular, + ``xdg-open`` on Linux does not block. + :param locate: if this is set to `True` then instead of launching the + application associated with the URL it will attempt to + launch a file manager with the file located. This + might have weird effects if the URL does not point to + the filesystem. + """ + from ._termui_impl import open_url + + return open_url(url, wait=wait, locate=locate) + + +# If this is provided, getchar() calls into this instead. This is used +# for unittesting purposes. +_getchar: t.Optional[t.Callable[[bool], str]] = None + + +def getchar(echo: bool = False) -> str: + """Fetches a single character from the terminal and returns it. This + will always return a unicode character and under certain rare + circumstances this might return more than one character. The + situations which more than one character is returned is when for + whatever reason multiple characters end up in the terminal buffer or + standard input was not actually a terminal. + + Note that this will always read from the terminal, even if something + is piped into the standard input. + + Note for Windows: in rare cases when typing non-ASCII characters, this + function might wait for a second character and then return both at once. + This is because certain Unicode characters look like special-key markers. + + .. versionadded:: 2.0 + + :param echo: if set to `True`, the character read will also show up on + the terminal. The default is to not show it. + """ + global _getchar + + if _getchar is None: + from ._termui_impl import getchar as f + + _getchar = f + + return _getchar(echo) + + +def raw_terminal() -> t.ContextManager[int]: + from ._termui_impl import raw_terminal as f + + return f() + + +def pause(info: t.Optional[str] = None, err: bool = False) -> None: + """This command stops execution and waits for the user to press any + key to continue. This is similar to the Windows batch "pause" + command. If the program is not run through a terminal, this command + will instead do nothing. + + .. versionadded:: 2.0 + + .. versionadded:: 4.0 + Added the `err` parameter. + + :param info: The message to print before pausing. Defaults to + ``"Press any key to continue..."``. + :param err: if set to message goes to ``stderr`` instead of + ``stdout``, the same as with echo. + """ + if not isatty(sys.stdin) or not isatty(sys.stdout): + return + + if info is None: + info = _("Press any key to continue...") + + try: + if info: + echo(info, nl=False, err=err) + try: + getchar() + except (KeyboardInterrupt, EOFError): + pass + finally: + if info: + echo(err=err) diff --git a/llmeval-env/lib/python3.10/site-packages/click/testing.py b/llmeval-env/lib/python3.10/site-packages/click/testing.py new file mode 100644 index 0000000000000000000000000000000000000000..e0df0d2a657fe19523957b85964b9956e5c78a30 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/click/testing.py @@ -0,0 +1,479 @@ +import contextlib +import io +import os +import shlex +import shutil +import sys +import tempfile +import typing as t +from types import TracebackType + +from . import formatting +from . import termui +from . import utils +from ._compat import _find_binary_reader + +if t.TYPE_CHECKING: + from .core import BaseCommand + + +class EchoingStdin: + def __init__(self, input: t.BinaryIO, output: t.BinaryIO) -> None: + self._input = input + self._output = output + self._paused = False + + def __getattr__(self, x: str) -> t.Any: + return getattr(self._input, x) + + def _echo(self, rv: bytes) -> bytes: + if not self._paused: + self._output.write(rv) + + return rv + + def read(self, n: int = -1) -> bytes: + return self._echo(self._input.read(n)) + + def read1(self, n: int = -1) -> bytes: + return self._echo(self._input.read1(n)) # type: ignore + + def readline(self, n: int = -1) -> bytes: + return self._echo(self._input.readline(n)) + + def readlines(self) -> t.List[bytes]: + return [self._echo(x) for x in self._input.readlines()] + + def __iter__(self) -> t.Iterator[bytes]: + return iter(self._echo(x) for x in self._input) + + def __repr__(self) -> str: + return repr(self._input) + + +@contextlib.contextmanager +def _pause_echo(stream: t.Optional[EchoingStdin]) -> t.Iterator[None]: + if stream is None: + yield + else: + stream._paused = True + yield + stream._paused = False + + +class _NamedTextIOWrapper(io.TextIOWrapper): + def __init__( + self, buffer: t.BinaryIO, name: str, mode: str, **kwargs: t.Any + ) -> None: + super().__init__(buffer, **kwargs) + self._name = name + self._mode = mode + + @property + def name(self) -> str: + return self._name + + @property + def mode(self) -> str: + return self._mode + + +def make_input_stream( + input: t.Optional[t.Union[str, bytes, t.IO[t.Any]]], charset: str +) -> t.BinaryIO: + # Is already an input stream. + if hasattr(input, "read"): + rv = _find_binary_reader(t.cast(t.IO[t.Any], input)) + + if rv is not None: + return rv + + raise TypeError("Could not find binary reader for input stream.") + + if input is None: + input = b"" + elif isinstance(input, str): + input = input.encode(charset) + + return io.BytesIO(input) + + +class Result: + """Holds the captured result of an invoked CLI script.""" + + def __init__( + self, + runner: "CliRunner", + stdout_bytes: bytes, + stderr_bytes: t.Optional[bytes], + return_value: t.Any, + exit_code: int, + exception: t.Optional[BaseException], + exc_info: t.Optional[ + t.Tuple[t.Type[BaseException], BaseException, TracebackType] + ] = None, + ): + #: The runner that created the result + self.runner = runner + #: The standard output as bytes. + self.stdout_bytes = stdout_bytes + #: The standard error as bytes, or None if not available + self.stderr_bytes = stderr_bytes + #: The value returned from the invoked command. + #: + #: .. versionadded:: 8.0 + self.return_value = return_value + #: The exit code as integer. + self.exit_code = exit_code + #: The exception that happened if one did. + self.exception = exception + #: The traceback + self.exc_info = exc_info + + @property + def output(self) -> str: + """The (standard) output as unicode string.""" + return self.stdout + + @property + def stdout(self) -> str: + """The standard output as unicode string.""" + return self.stdout_bytes.decode(self.runner.charset, "replace").replace( + "\r\n", "\n" + ) + + @property + def stderr(self) -> str: + """The standard error as unicode string.""" + if self.stderr_bytes is None: + raise ValueError("stderr not separately captured") + return self.stderr_bytes.decode(self.runner.charset, "replace").replace( + "\r\n", "\n" + ) + + def __repr__(self) -> str: + exc_str = repr(self.exception) if self.exception else "okay" + return f"<{type(self).__name__} {exc_str}>" + + +class CliRunner: + """The CLI runner provides functionality to invoke a Click command line + script for unittesting purposes in a isolated environment. This only + works in single-threaded systems without any concurrency as it changes the + global interpreter state. + + :param charset: the character set for the input and output data. + :param env: a dictionary with environment variables for overriding. + :param echo_stdin: if this is set to `True`, then reading from stdin writes + to stdout. This is useful for showing examples in + some circumstances. Note that regular prompts + will automatically echo the input. + :param mix_stderr: if this is set to `False`, then stdout and stderr are + preserved as independent streams. This is useful for + Unix-philosophy apps that have predictable stdout and + noisy stderr, such that each may be measured + independently + """ + + def __init__( + self, + charset: str = "utf-8", + env: t.Optional[t.Mapping[str, t.Optional[str]]] = None, + echo_stdin: bool = False, + mix_stderr: bool = True, + ) -> None: + self.charset = charset + self.env: t.Mapping[str, t.Optional[str]] = env or {} + self.echo_stdin = echo_stdin + self.mix_stderr = mix_stderr + + def get_default_prog_name(self, cli: "BaseCommand") -> str: + """Given a command object it will return the default program name + for it. The default is the `name` attribute or ``"root"`` if not + set. + """ + return cli.name or "root" + + def make_env( + self, overrides: t.Optional[t.Mapping[str, t.Optional[str]]] = None + ) -> t.Mapping[str, t.Optional[str]]: + """Returns the environment overrides for invoking a script.""" + rv = dict(self.env) + if overrides: + rv.update(overrides) + return rv + + @contextlib.contextmanager + def isolation( + self, + input: t.Optional[t.Union[str, bytes, t.IO[t.Any]]] = None, + env: t.Optional[t.Mapping[str, t.Optional[str]]] = None, + color: bool = False, + ) -> t.Iterator[t.Tuple[io.BytesIO, t.Optional[io.BytesIO]]]: + """A context manager that sets up the isolation for invoking of a + command line tool. This sets up stdin with the given input data + and `os.environ` with the overrides from the given dictionary. + This also rebinds some internals in Click to be mocked (like the + prompt functionality). + + This is automatically done in the :meth:`invoke` method. + + :param input: the input stream to put into sys.stdin. + :param env: the environment overrides as dictionary. + :param color: whether the output should contain color codes. The + application can still override this explicitly. + + .. versionchanged:: 8.0 + ``stderr`` is opened with ``errors="backslashreplace"`` + instead of the default ``"strict"``. + + .. versionchanged:: 4.0 + Added the ``color`` parameter. + """ + bytes_input = make_input_stream(input, self.charset) + echo_input = None + + old_stdin = sys.stdin + old_stdout = sys.stdout + old_stderr = sys.stderr + old_forced_width = formatting.FORCED_WIDTH + formatting.FORCED_WIDTH = 80 + + env = self.make_env(env) + + bytes_output = io.BytesIO() + + if self.echo_stdin: + bytes_input = echo_input = t.cast( + t.BinaryIO, EchoingStdin(bytes_input, bytes_output) + ) + + sys.stdin = text_input = _NamedTextIOWrapper( + bytes_input, encoding=self.charset, name="", mode="r" + ) + + if self.echo_stdin: + # Force unbuffered reads, otherwise TextIOWrapper reads a + # large chunk which is echoed early. + text_input._CHUNK_SIZE = 1 # type: ignore + + sys.stdout = _NamedTextIOWrapper( + bytes_output, encoding=self.charset, name="", mode="w" + ) + + bytes_error = None + if self.mix_stderr: + sys.stderr = sys.stdout + else: + bytes_error = io.BytesIO() + sys.stderr = _NamedTextIOWrapper( + bytes_error, + encoding=self.charset, + name="", + mode="w", + errors="backslashreplace", + ) + + @_pause_echo(echo_input) # type: ignore + def visible_input(prompt: t.Optional[str] = None) -> str: + sys.stdout.write(prompt or "") + val = text_input.readline().rstrip("\r\n") + sys.stdout.write(f"{val}\n") + sys.stdout.flush() + return val + + @_pause_echo(echo_input) # type: ignore + def hidden_input(prompt: t.Optional[str] = None) -> str: + sys.stdout.write(f"{prompt or ''}\n") + sys.stdout.flush() + return text_input.readline().rstrip("\r\n") + + @_pause_echo(echo_input) # type: ignore + def _getchar(echo: bool) -> str: + char = sys.stdin.read(1) + + if echo: + sys.stdout.write(char) + + sys.stdout.flush() + return char + + default_color = color + + def should_strip_ansi( + stream: t.Optional[t.IO[t.Any]] = None, color: t.Optional[bool] = None + ) -> bool: + if color is None: + return not default_color + return not color + + old_visible_prompt_func = termui.visible_prompt_func + old_hidden_prompt_func = termui.hidden_prompt_func + old__getchar_func = termui._getchar + old_should_strip_ansi = utils.should_strip_ansi # type: ignore + termui.visible_prompt_func = visible_input + termui.hidden_prompt_func = hidden_input + termui._getchar = _getchar + utils.should_strip_ansi = should_strip_ansi # type: ignore + + old_env = {} + try: + for key, value in env.items(): + old_env[key] = os.environ.get(key) + if value is None: + try: + del os.environ[key] + except Exception: + pass + else: + os.environ[key] = value + yield (bytes_output, bytes_error) + finally: + for key, value in old_env.items(): + if value is None: + try: + del os.environ[key] + except Exception: + pass + else: + os.environ[key] = value + sys.stdout = old_stdout + sys.stderr = old_stderr + sys.stdin = old_stdin + termui.visible_prompt_func = old_visible_prompt_func + termui.hidden_prompt_func = old_hidden_prompt_func + termui._getchar = old__getchar_func + utils.should_strip_ansi = old_should_strip_ansi # type: ignore + formatting.FORCED_WIDTH = old_forced_width + + def invoke( + self, + cli: "BaseCommand", + args: t.Optional[t.Union[str, t.Sequence[str]]] = None, + input: t.Optional[t.Union[str, bytes, t.IO[t.Any]]] = None, + env: t.Optional[t.Mapping[str, t.Optional[str]]] = None, + catch_exceptions: bool = True, + color: bool = False, + **extra: t.Any, + ) -> Result: + """Invokes a command in an isolated environment. The arguments are + forwarded directly to the command line script, the `extra` keyword + arguments are passed to the :meth:`~clickpkg.Command.main` function of + the command. + + This returns a :class:`Result` object. + + :param cli: the command to invoke + :param args: the arguments to invoke. It may be given as an iterable + or a string. When given as string it will be interpreted + as a Unix shell command. More details at + :func:`shlex.split`. + :param input: the input data for `sys.stdin`. + :param env: the environment overrides. + :param catch_exceptions: Whether to catch any other exceptions than + ``SystemExit``. + :param extra: the keyword arguments to pass to :meth:`main`. + :param color: whether the output should contain color codes. The + application can still override this explicitly. + + .. versionchanged:: 8.0 + The result object has the ``return_value`` attribute with + the value returned from the invoked command. + + .. versionchanged:: 4.0 + Added the ``color`` parameter. + + .. versionchanged:: 3.0 + Added the ``catch_exceptions`` parameter. + + .. versionchanged:: 3.0 + The result object has the ``exc_info`` attribute with the + traceback if available. + """ + exc_info = None + with self.isolation(input=input, env=env, color=color) as outstreams: + return_value = None + exception: t.Optional[BaseException] = None + exit_code = 0 + + if isinstance(args, str): + args = shlex.split(args) + + try: + prog_name = extra.pop("prog_name") + except KeyError: + prog_name = self.get_default_prog_name(cli) + + try: + return_value = cli.main(args=args or (), prog_name=prog_name, **extra) + except SystemExit as e: + exc_info = sys.exc_info() + e_code = t.cast(t.Optional[t.Union[int, t.Any]], e.code) + + if e_code is None: + e_code = 0 + + if e_code != 0: + exception = e + + if not isinstance(e_code, int): + sys.stdout.write(str(e_code)) + sys.stdout.write("\n") + e_code = 1 + + exit_code = e_code + + except Exception as e: + if not catch_exceptions: + raise + exception = e + exit_code = 1 + exc_info = sys.exc_info() + finally: + sys.stdout.flush() + stdout = outstreams[0].getvalue() + if self.mix_stderr: + stderr = None + else: + stderr = outstreams[1].getvalue() # type: ignore + + return Result( + runner=self, + stdout_bytes=stdout, + stderr_bytes=stderr, + return_value=return_value, + exit_code=exit_code, + exception=exception, + exc_info=exc_info, # type: ignore + ) + + @contextlib.contextmanager + def isolated_filesystem( + self, temp_dir: t.Optional[t.Union[str, "os.PathLike[str]"]] = None + ) -> t.Iterator[str]: + """A context manager that creates a temporary directory and + changes the current working directory to it. This isolates tests + that affect the contents of the CWD to prevent them from + interfering with each other. + + :param temp_dir: Create the temporary directory under this + directory. If given, the created directory is not removed + when exiting. + + .. versionchanged:: 8.0 + Added the ``temp_dir`` parameter. + """ + cwd = os.getcwd() + dt = tempfile.mkdtemp(dir=temp_dir) + os.chdir(dt) + + try: + yield dt + finally: + os.chdir(cwd) + + if temp_dir is None: + try: + shutil.rmtree(dt) + except OSError: # noqa: B014 + pass diff --git a/llmeval-env/lib/python3.10/site-packages/click/utils.py b/llmeval-env/lib/python3.10/site-packages/click/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..d536434f0bd00cd6fd910c506f5b85a8e485b964 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/click/utils.py @@ -0,0 +1,624 @@ +import os +import re +import sys +import typing as t +from functools import update_wrapper +from types import ModuleType +from types import TracebackType + +from ._compat import _default_text_stderr +from ._compat import _default_text_stdout +from ._compat import _find_binary_writer +from ._compat import auto_wrap_for_ansi +from ._compat import binary_streams +from ._compat import open_stream +from ._compat import should_strip_ansi +from ._compat import strip_ansi +from ._compat import text_streams +from ._compat import WIN +from .globals import resolve_color_default + +if t.TYPE_CHECKING: + import typing_extensions as te + + P = te.ParamSpec("P") + +R = t.TypeVar("R") + + +def _posixify(name: str) -> str: + return "-".join(name.split()).lower() + + +def safecall(func: "t.Callable[P, R]") -> "t.Callable[P, t.Optional[R]]": + """Wraps a function so that it swallows exceptions.""" + + def wrapper(*args: "P.args", **kwargs: "P.kwargs") -> t.Optional[R]: + try: + return func(*args, **kwargs) + except Exception: + pass + return None + + return update_wrapper(wrapper, func) + + +def make_str(value: t.Any) -> str: + """Converts a value into a valid string.""" + if isinstance(value, bytes): + try: + return value.decode(sys.getfilesystemencoding()) + except UnicodeError: + return value.decode("utf-8", "replace") + return str(value) + + +def make_default_short_help(help: str, max_length: int = 45) -> str: + """Returns a condensed version of help string.""" + # Consider only the first paragraph. + paragraph_end = help.find("\n\n") + + if paragraph_end != -1: + help = help[:paragraph_end] + + # Collapse newlines, tabs, and spaces. + words = help.split() + + if not words: + return "" + + # The first paragraph started with a "no rewrap" marker, ignore it. + if words[0] == "\b": + words = words[1:] + + total_length = 0 + last_index = len(words) - 1 + + for i, word in enumerate(words): + total_length += len(word) + (i > 0) + + if total_length > max_length: # too long, truncate + break + + if word[-1] == ".": # sentence end, truncate without "..." + return " ".join(words[: i + 1]) + + if total_length == max_length and i != last_index: + break # not at sentence end, truncate with "..." + else: + return " ".join(words) # no truncation needed + + # Account for the length of the suffix. + total_length += len("...") + + # remove words until the length is short enough + while i > 0: + total_length -= len(words[i]) + (i > 0) + + if total_length <= max_length: + break + + i -= 1 + + return " ".join(words[:i]) + "..." + + +class LazyFile: + """A lazy file works like a regular file but it does not fully open + the file but it does perform some basic checks early to see if the + filename parameter does make sense. This is useful for safely opening + files for writing. + """ + + def __init__( + self, + filename: t.Union[str, "os.PathLike[str]"], + mode: str = "r", + encoding: t.Optional[str] = None, + errors: t.Optional[str] = "strict", + atomic: bool = False, + ): + self.name: str = os.fspath(filename) + self.mode = mode + self.encoding = encoding + self.errors = errors + self.atomic = atomic + self._f: t.Optional[t.IO[t.Any]] + self.should_close: bool + + if self.name == "-": + self._f, self.should_close = open_stream(filename, mode, encoding, errors) + else: + if "r" in mode: + # Open and close the file in case we're opening it for + # reading so that we can catch at least some errors in + # some cases early. + open(filename, mode).close() + self._f = None + self.should_close = True + + def __getattr__(self, name: str) -> t.Any: + return getattr(self.open(), name) + + def __repr__(self) -> str: + if self._f is not None: + return repr(self._f) + return f"" + + def open(self) -> t.IO[t.Any]: + """Opens the file if it's not yet open. This call might fail with + a :exc:`FileError`. Not handling this error will produce an error + that Click shows. + """ + if self._f is not None: + return self._f + try: + rv, self.should_close = open_stream( + self.name, self.mode, self.encoding, self.errors, atomic=self.atomic + ) + except OSError as e: # noqa: E402 + from .exceptions import FileError + + raise FileError(self.name, hint=e.strerror) from e + self._f = rv + return rv + + def close(self) -> None: + """Closes the underlying file, no matter what.""" + if self._f is not None: + self._f.close() + + def close_intelligently(self) -> None: + """This function only closes the file if it was opened by the lazy + file wrapper. For instance this will never close stdin. + """ + if self.should_close: + self.close() + + def __enter__(self) -> "LazyFile": + return self + + def __exit__( + self, + exc_type: t.Optional[t.Type[BaseException]], + exc_value: t.Optional[BaseException], + tb: t.Optional[TracebackType], + ) -> None: + self.close_intelligently() + + def __iter__(self) -> t.Iterator[t.AnyStr]: + self.open() + return iter(self._f) # type: ignore + + +class KeepOpenFile: + def __init__(self, file: t.IO[t.Any]) -> None: + self._file: t.IO[t.Any] = file + + def __getattr__(self, name: str) -> t.Any: + return getattr(self._file, name) + + def __enter__(self) -> "KeepOpenFile": + return self + + def __exit__( + self, + exc_type: t.Optional[t.Type[BaseException]], + exc_value: t.Optional[BaseException], + tb: t.Optional[TracebackType], + ) -> None: + pass + + def __repr__(self) -> str: + return repr(self._file) + + def __iter__(self) -> t.Iterator[t.AnyStr]: + return iter(self._file) + + +def echo( + message: t.Optional[t.Any] = None, + file: t.Optional[t.IO[t.Any]] = None, + nl: bool = True, + err: bool = False, + color: t.Optional[bool] = None, +) -> None: + """Print a message and newline to stdout or a file. This should be + used instead of :func:`print` because it provides better support + for different data, files, and environments. + + Compared to :func:`print`, this does the following: + + - Ensures that the output encoding is not misconfigured on Linux. + - Supports Unicode in the Windows console. + - Supports writing to binary outputs, and supports writing bytes + to text outputs. + - Supports colors and styles on Windows. + - Removes ANSI color and style codes if the output does not look + like an interactive terminal. + - Always flushes the output. + + :param message: The string or bytes to output. Other objects are + converted to strings. + :param file: The file to write to. Defaults to ``stdout``. + :param err: Write to ``stderr`` instead of ``stdout``. + :param nl: Print a newline after the message. Enabled by default. + :param color: Force showing or hiding colors and other styles. By + default Click will remove color if the output does not look like + an interactive terminal. + + .. versionchanged:: 6.0 + Support Unicode output on the Windows console. Click does not + modify ``sys.stdout``, so ``sys.stdout.write()`` and ``print()`` + will still not support Unicode. + + .. versionchanged:: 4.0 + Added the ``color`` parameter. + + .. versionadded:: 3.0 + Added the ``err`` parameter. + + .. versionchanged:: 2.0 + Support colors on Windows if colorama is installed. + """ + if file is None: + if err: + file = _default_text_stderr() + else: + file = _default_text_stdout() + + # There are no standard streams attached to write to. For example, + # pythonw on Windows. + if file is None: + return + + # Convert non bytes/text into the native string type. + if message is not None and not isinstance(message, (str, bytes, bytearray)): + out: t.Optional[t.Union[str, bytes]] = str(message) + else: + out = message + + if nl: + out = out or "" + if isinstance(out, str): + out += "\n" + else: + out += b"\n" + + if not out: + file.flush() + return + + # If there is a message and the value looks like bytes, we manually + # need to find the binary stream and write the message in there. + # This is done separately so that most stream types will work as you + # would expect. Eg: you can write to StringIO for other cases. + if isinstance(out, (bytes, bytearray)): + binary_file = _find_binary_writer(file) + + if binary_file is not None: + file.flush() + binary_file.write(out) + binary_file.flush() + return + + # ANSI style code support. For no message or bytes, nothing happens. + # When outputting to a file instead of a terminal, strip codes. + else: + color = resolve_color_default(color) + + if should_strip_ansi(file, color): + out = strip_ansi(out) + elif WIN: + if auto_wrap_for_ansi is not None: + file = auto_wrap_for_ansi(file) # type: ignore + elif not color: + out = strip_ansi(out) + + file.write(out) # type: ignore + file.flush() + + +def get_binary_stream(name: "te.Literal['stdin', 'stdout', 'stderr']") -> t.BinaryIO: + """Returns a system stream for byte processing. + + :param name: the name of the stream to open. Valid names are ``'stdin'``, + ``'stdout'`` and ``'stderr'`` + """ + opener = binary_streams.get(name) + if opener is None: + raise TypeError(f"Unknown standard stream '{name}'") + return opener() + + +def get_text_stream( + name: "te.Literal['stdin', 'stdout', 'stderr']", + encoding: t.Optional[str] = None, + errors: t.Optional[str] = "strict", +) -> t.TextIO: + """Returns a system stream for text processing. This usually returns + a wrapped stream around a binary stream returned from + :func:`get_binary_stream` but it also can take shortcuts for already + correctly configured streams. + + :param name: the name of the stream to open. Valid names are ``'stdin'``, + ``'stdout'`` and ``'stderr'`` + :param encoding: overrides the detected default encoding. + :param errors: overrides the default error mode. + """ + opener = text_streams.get(name) + if opener is None: + raise TypeError(f"Unknown standard stream '{name}'") + return opener(encoding, errors) + + +def open_file( + filename: str, + mode: str = "r", + encoding: t.Optional[str] = None, + errors: t.Optional[str] = "strict", + lazy: bool = False, + atomic: bool = False, +) -> t.IO[t.Any]: + """Open a file, with extra behavior to handle ``'-'`` to indicate + a standard stream, lazy open on write, and atomic write. Similar to + the behavior of the :class:`~click.File` param type. + + If ``'-'`` is given to open ``stdout`` or ``stdin``, the stream is + wrapped so that using it in a context manager will not close it. + This makes it possible to use the function without accidentally + closing a standard stream: + + .. code-block:: python + + with open_file(filename) as f: + ... + + :param filename: The name of the file to open, or ``'-'`` for + ``stdin``/``stdout``. + :param mode: The mode in which to open the file. + :param encoding: The encoding to decode or encode a file opened in + text mode. + :param errors: The error handling mode. + :param lazy: Wait to open the file until it is accessed. For read + mode, the file is temporarily opened to raise access errors + early, then closed until it is read again. + :param atomic: Write to a temporary file and replace the given file + on close. + + .. versionadded:: 3.0 + """ + if lazy: + return t.cast( + t.IO[t.Any], LazyFile(filename, mode, encoding, errors, atomic=atomic) + ) + + f, should_close = open_stream(filename, mode, encoding, errors, atomic=atomic) + + if not should_close: + f = t.cast(t.IO[t.Any], KeepOpenFile(f)) + + return f + + +def format_filename( + filename: "t.Union[str, bytes, os.PathLike[str], os.PathLike[bytes]]", + shorten: bool = False, +) -> str: + """Format a filename as a string for display. Ensures the filename can be + displayed by replacing any invalid bytes or surrogate escapes in the name + with the replacement character ``�``. + + Invalid bytes or surrogate escapes will raise an error when written to a + stream with ``errors="strict". This will typically happen with ``stdout`` + when the locale is something like ``en_GB.UTF-8``. + + Many scenarios *are* safe to write surrogates though, due to PEP 538 and + PEP 540, including: + + - Writing to ``stderr``, which uses ``errors="backslashreplace"``. + - The system has ``LANG=C.UTF-8``, ``C``, or ``POSIX``. Python opens + stdout and stderr with ``errors="surrogateescape"``. + - None of ``LANG/LC_*`` are set. Python assumes ``LANG=C.UTF-8``. + - Python is started in UTF-8 mode with ``PYTHONUTF8=1`` or ``-X utf8``. + Python opens stdout and stderr with ``errors="surrogateescape"``. + + :param filename: formats a filename for UI display. This will also convert + the filename into unicode without failing. + :param shorten: this optionally shortens the filename to strip of the + path that leads up to it. + """ + if shorten: + filename = os.path.basename(filename) + else: + filename = os.fspath(filename) + + if isinstance(filename, bytes): + filename = filename.decode(sys.getfilesystemencoding(), "replace") + else: + filename = filename.encode("utf-8", "surrogateescape").decode( + "utf-8", "replace" + ) + + return filename + + +def get_app_dir(app_name: str, roaming: bool = True, force_posix: bool = False) -> str: + r"""Returns the config folder for the application. The default behavior + is to return whatever is most appropriate for the operating system. + + To give you an idea, for an app called ``"Foo Bar"``, something like + the following folders could be returned: + + Mac OS X: + ``~/Library/Application Support/Foo Bar`` + Mac OS X (POSIX): + ``~/.foo-bar`` + Unix: + ``~/.config/foo-bar`` + Unix (POSIX): + ``~/.foo-bar`` + Windows (roaming): + ``C:\Users\\AppData\Roaming\Foo Bar`` + Windows (not roaming): + ``C:\Users\\AppData\Local\Foo Bar`` + + .. versionadded:: 2.0 + + :param app_name: the application name. This should be properly capitalized + and can contain whitespace. + :param roaming: controls if the folder should be roaming or not on Windows. + Has no effect otherwise. + :param force_posix: if this is set to `True` then on any POSIX system the + folder will be stored in the home folder with a leading + dot instead of the XDG config home or darwin's + application support folder. + """ + if WIN: + key = "APPDATA" if roaming else "LOCALAPPDATA" + folder = os.environ.get(key) + if folder is None: + folder = os.path.expanduser("~") + return os.path.join(folder, app_name) + if force_posix: + return os.path.join(os.path.expanduser(f"~/.{_posixify(app_name)}")) + if sys.platform == "darwin": + return os.path.join( + os.path.expanduser("~/Library/Application Support"), app_name + ) + return os.path.join( + os.environ.get("XDG_CONFIG_HOME", os.path.expanduser("~/.config")), + _posixify(app_name), + ) + + +class PacifyFlushWrapper: + """This wrapper is used to catch and suppress BrokenPipeErrors resulting + from ``.flush()`` being called on broken pipe during the shutdown/final-GC + of the Python interpreter. Notably ``.flush()`` is always called on + ``sys.stdout`` and ``sys.stderr``. So as to have minimal impact on any + other cleanup code, and the case where the underlying file is not a broken + pipe, all calls and attributes are proxied. + """ + + def __init__(self, wrapped: t.IO[t.Any]) -> None: + self.wrapped = wrapped + + def flush(self) -> None: + try: + self.wrapped.flush() + except OSError as e: + import errno + + if e.errno != errno.EPIPE: + raise + + def __getattr__(self, attr: str) -> t.Any: + return getattr(self.wrapped, attr) + + +def _detect_program_name( + path: t.Optional[str] = None, _main: t.Optional[ModuleType] = None +) -> str: + """Determine the command used to run the program, for use in help + text. If a file or entry point was executed, the file name is + returned. If ``python -m`` was used to execute a module or package, + ``python -m name`` is returned. + + This doesn't try to be too precise, the goal is to give a concise + name for help text. Files are only shown as their name without the + path. ``python`` is only shown for modules, and the full path to + ``sys.executable`` is not shown. + + :param path: The Python file being executed. Python puts this in + ``sys.argv[0]``, which is used by default. + :param _main: The ``__main__`` module. This should only be passed + during internal testing. + + .. versionadded:: 8.0 + Based on command args detection in the Werkzeug reloader. + + :meta private: + """ + if _main is None: + _main = sys.modules["__main__"] + + if not path: + path = sys.argv[0] + + # The value of __package__ indicates how Python was called. It may + # not exist if a setuptools script is installed as an egg. It may be + # set incorrectly for entry points created with pip on Windows. + # It is set to "" inside a Shiv or PEX zipapp. + if getattr(_main, "__package__", None) in {None, ""} or ( + os.name == "nt" + and _main.__package__ == "" + and not os.path.exists(path) + and os.path.exists(f"{path}.exe") + ): + # Executed a file, like "python app.py". + return os.path.basename(path) + + # Executed a module, like "python -m example". + # Rewritten by Python from "-m script" to "/path/to/script.py". + # Need to look at main module to determine how it was executed. + py_module = t.cast(str, _main.__package__) + name = os.path.splitext(os.path.basename(path))[0] + + # A submodule like "example.cli". + if name != "__main__": + py_module = f"{py_module}.{name}" + + return f"python -m {py_module.lstrip('.')}" + + +def _expand_args( + args: t.Iterable[str], + *, + user: bool = True, + env: bool = True, + glob_recursive: bool = True, +) -> t.List[str]: + """Simulate Unix shell expansion with Python functions. + + See :func:`glob.glob`, :func:`os.path.expanduser`, and + :func:`os.path.expandvars`. + + This is intended for use on Windows, where the shell does not do any + expansion. It may not exactly match what a Unix shell would do. + + :param args: List of command line arguments to expand. + :param user: Expand user home directory. + :param env: Expand environment variables. + :param glob_recursive: ``**`` matches directories recursively. + + .. versionchanged:: 8.1 + Invalid glob patterns are treated as empty expansions rather + than raising an error. + + .. versionadded:: 8.0 + + :meta private: + """ + from glob import glob + + out = [] + + for arg in args: + if user: + arg = os.path.expanduser(arg) + + if env: + arg = os.path.expandvars(arg) + + try: + matches = glob(arg, recursive=glob_recursive) + except re.error: + matches = [] + + if not matches: + out.append(arg) + else: + out.extend(matches) + + return out diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__init__.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..cbce3c74cbb829465513add94dbe33162e69ab09 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__init__.py @@ -0,0 +1,916 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# *********** +# `huggingface_hub` init has 2 modes: +# - Normal usage: +# If imported to use it, all modules and functions are lazy-loaded. This means +# they exist at top level in module but are imported only the first time they are +# used. This way, `from huggingface_hub import something` will import `something` +# quickly without the hassle of importing all the features from `huggingface_hub`. +# - Static check: +# If statically analyzed, all modules and functions are loaded normally. This way +# static typing check works properly as well as autocomplete in text editors and +# IDEs. +# +# The static model imports are done inside the `if TYPE_CHECKING:` statement at +# the bottom of this file. Since module/functions imports are duplicated, it is +# mandatory to make sure to add them twice when adding one. This is checked in the +# `make quality` command. +# +# To update the static imports, please run the following command and commit the changes. +# ``` +# # Use script +# python utils/check_static_imports.py --update-file +# +# # Or run style on codebase +# make style +# ``` +# +# *********** +# Lazy loader vendored from https://github.com/scientific-python/lazy_loader +import importlib +import os +import sys +from typing import TYPE_CHECKING + + +__version__ = "0.23.0" + +# Alphabetical order of definitions is ensured in tests +# WARNING: any comment added in this dictionary definition will be lost when +# re-generating the file ! +_SUBMOD_ATTRS = { + "_commit_scheduler": [ + "CommitScheduler", + ], + "_inference_endpoints": [ + "InferenceEndpoint", + "InferenceEndpointError", + "InferenceEndpointStatus", + "InferenceEndpointTimeoutError", + "InferenceEndpointType", + ], + "_login": [ + "interpreter_login", + "login", + "logout", + "notebook_login", + ], + "_multi_commits": [ + "MultiCommitException", + "plan_multi_commits", + ], + "_snapshot_download": [ + "snapshot_download", + ], + "_space_api": [ + "SpaceHardware", + "SpaceRuntime", + "SpaceStage", + "SpaceStorage", + "SpaceVariable", + ], + "_tensorboard_logger": [ + "HFSummaryWriter", + ], + "_webhooks_payload": [ + "WebhookPayload", + "WebhookPayloadComment", + "WebhookPayloadDiscussion", + "WebhookPayloadDiscussionChanges", + "WebhookPayloadEvent", + "WebhookPayloadMovedTo", + "WebhookPayloadRepo", + "WebhookPayloadUrl", + "WebhookPayloadWebhook", + ], + "_webhooks_server": [ + "WebhooksServer", + "webhook_endpoint", + ], + "community": [ + "Discussion", + "DiscussionComment", + "DiscussionCommit", + "DiscussionEvent", + "DiscussionStatusChange", + "DiscussionTitleChange", + "DiscussionWithDetails", + ], + "constants": [ + "CONFIG_NAME", + "FLAX_WEIGHTS_NAME", + "HUGGINGFACE_CO_URL_HOME", + "HUGGINGFACE_CO_URL_TEMPLATE", + "PYTORCH_WEIGHTS_NAME", + "REPO_TYPE_DATASET", + "REPO_TYPE_MODEL", + "REPO_TYPE_SPACE", + "TF2_WEIGHTS_NAME", + "TF_WEIGHTS_NAME", + ], + "fastai_utils": [ + "_save_pretrained_fastai", + "from_pretrained_fastai", + "push_to_hub_fastai", + ], + "file_download": [ + "HfFileMetadata", + "_CACHED_NO_EXIST", + "cached_download", + "get_hf_file_metadata", + "hf_hub_download", + "hf_hub_url", + "try_to_load_from_cache", + ], + "hf_api": [ + "Collection", + "CollectionItem", + "CommitInfo", + "CommitOperation", + "CommitOperationAdd", + "CommitOperationCopy", + "CommitOperationDelete", + "GitCommitInfo", + "GitRefInfo", + "GitRefs", + "HfApi", + "RepoUrl", + "User", + "UserLikes", + "accept_access_request", + "add_collection_item", + "add_space_secret", + "add_space_variable", + "cancel_access_request", + "change_discussion_status", + "comment_discussion", + "create_branch", + "create_collection", + "create_commit", + "create_commits_on_pr", + "create_discussion", + "create_inference_endpoint", + "create_pull_request", + "create_repo", + "create_tag", + "dataset_info", + "delete_branch", + "delete_collection", + "delete_collection_item", + "delete_file", + "delete_folder", + "delete_inference_endpoint", + "delete_repo", + "delete_space_secret", + "delete_space_storage", + "delete_space_variable", + "delete_tag", + "duplicate_space", + "edit_discussion_comment", + "file_exists", + "get_collection", + "get_dataset_tags", + "get_discussion_details", + "get_full_repo_name", + "get_inference_endpoint", + "get_model_tags", + "get_paths_info", + "get_repo_discussions", + "get_safetensors_metadata", + "get_space_runtime", + "get_space_variables", + "get_token_permission", + "grant_access", + "like", + "list_accepted_access_requests", + "list_collections", + "list_datasets", + "list_inference_endpoints", + "list_liked_repos", + "list_metrics", + "list_models", + "list_pending_access_requests", + "list_rejected_access_requests", + "list_repo_commits", + "list_repo_files", + "list_repo_likers", + "list_repo_refs", + "list_repo_tree", + "list_spaces", + "merge_pull_request", + "model_info", + "move_repo", + "parse_safetensors_file_metadata", + "pause_inference_endpoint", + "pause_space", + "preupload_lfs_files", + "reject_access_request", + "rename_discussion", + "repo_exists", + "repo_info", + "repo_type_and_id_from_hf_id", + "request_space_hardware", + "request_space_storage", + "restart_space", + "resume_inference_endpoint", + "revision_exists", + "run_as_future", + "scale_to_zero_inference_endpoint", + "set_space_sleep_time", + "space_info", + "super_squash_history", + "unlike", + "update_collection_item", + "update_collection_metadata", + "update_inference_endpoint", + "update_repo_visibility", + "upload_file", + "upload_folder", + "whoami", + ], + "hf_file_system": [ + "HfFileSystem", + "HfFileSystemFile", + "HfFileSystemResolvedPath", + "HfFileSystemStreamFile", + ], + "hub_mixin": [ + "ModelHubMixin", + "PyTorchModelHubMixin", + ], + "inference._client": [ + "InferenceClient", + "InferenceTimeoutError", + ], + "inference._generated._async_client": [ + "AsyncInferenceClient", + ], + "inference._generated.types": [ + "AudioClassificationInput", + "AudioClassificationOutputElement", + "AudioClassificationParameters", + "AudioToAudioInput", + "AudioToAudioOutputElement", + "AutomaticSpeechRecognitionGenerationParameters", + "AutomaticSpeechRecognitionInput", + "AutomaticSpeechRecognitionOutput", + "AutomaticSpeechRecognitionOutputChunk", + "AutomaticSpeechRecognitionParameters", + "ChatCompletionInput", + "ChatCompletionInputFunctionDefinition", + "ChatCompletionInputMessage", + "ChatCompletionInputTool", + "ChatCompletionInputToolCall", + "ChatCompletionInputToolTypeClass", + "ChatCompletionOutput", + "ChatCompletionOutputComplete", + "ChatCompletionOutputFunctionDefinition", + "ChatCompletionOutputLogprob", + "ChatCompletionOutputLogprobs", + "ChatCompletionOutputMessage", + "ChatCompletionOutputToolCall", + "ChatCompletionOutputTopLogprob", + "ChatCompletionOutputUsage", + "ChatCompletionStreamOutput", + "ChatCompletionStreamOutputChoice", + "ChatCompletionStreamOutputDelta", + "ChatCompletionStreamOutputDeltaToolCall", + "ChatCompletionStreamOutputFunction", + "ChatCompletionStreamOutputLogprob", + "ChatCompletionStreamOutputLogprobs", + "ChatCompletionStreamOutputTopLogprob", + "DepthEstimationInput", + "DepthEstimationOutput", + "DocumentQuestionAnsweringInput", + "DocumentQuestionAnsweringInputData", + "DocumentQuestionAnsweringOutputElement", + "DocumentQuestionAnsweringParameters", + "FeatureExtractionInput", + "FillMaskInput", + "FillMaskOutputElement", + "FillMaskParameters", + "ImageClassificationInput", + "ImageClassificationOutputElement", + "ImageClassificationParameters", + "ImageSegmentationInput", + "ImageSegmentationOutputElement", + "ImageSegmentationParameters", + "ImageToImageInput", + "ImageToImageOutput", + "ImageToImageParameters", + "ImageToImageTargetSize", + "ImageToTextGenerationParameters", + "ImageToTextInput", + "ImageToTextOutput", + "ImageToTextParameters", + "ObjectDetectionBoundingBox", + "ObjectDetectionInput", + "ObjectDetectionOutputElement", + "ObjectDetectionParameters", + "QuestionAnsweringInput", + "QuestionAnsweringInputData", + "QuestionAnsweringOutputElement", + "QuestionAnsweringParameters", + "SentenceSimilarityInput", + "SentenceSimilarityInputData", + "SummarizationGenerationParameters", + "SummarizationInput", + "SummarizationOutput", + "TableQuestionAnsweringInput", + "TableQuestionAnsweringInputData", + "TableQuestionAnsweringOutputElement", + "Text2TextGenerationInput", + "Text2TextGenerationOutput", + "Text2TextGenerationParameters", + "TextClassificationInput", + "TextClassificationOutputElement", + "TextClassificationParameters", + "TextGenerationInput", + "TextGenerationInputGenerateParameters", + "TextGenerationInputGrammarType", + "TextGenerationOutput", + "TextGenerationOutputBestOfSequence", + "TextGenerationOutputDetails", + "TextGenerationOutputPrefillToken", + "TextGenerationOutputToken", + "TextGenerationStreamOutput", + "TextGenerationStreamOutputStreamDetails", + "TextGenerationStreamOutputToken", + "TextToAudioGenerationParameters", + "TextToAudioInput", + "TextToAudioOutput", + "TextToAudioParameters", + "TextToImageInput", + "TextToImageOutput", + "TextToImageParameters", + "TextToImageTargetSize", + "TokenClassificationInput", + "TokenClassificationOutputElement", + "TokenClassificationParameters", + "TranslationGenerationParameters", + "TranslationInput", + "TranslationOutput", + "VideoClassificationInput", + "VideoClassificationOutputElement", + "VideoClassificationParameters", + "VisualQuestionAnsweringInput", + "VisualQuestionAnsweringInputData", + "VisualQuestionAnsweringOutputElement", + "VisualQuestionAnsweringParameters", + "ZeroShotClassificationInput", + "ZeroShotClassificationInputData", + "ZeroShotClassificationOutputElement", + "ZeroShotClassificationParameters", + "ZeroShotImageClassificationInput", + "ZeroShotImageClassificationInputData", + "ZeroShotImageClassificationOutputElement", + "ZeroShotImageClassificationParameters", + "ZeroShotObjectDetectionBoundingBox", + "ZeroShotObjectDetectionInput", + "ZeroShotObjectDetectionInputData", + "ZeroShotObjectDetectionOutputElement", + ], + "inference_api": [ + "InferenceApi", + ], + "keras_mixin": [ + "KerasModelHubMixin", + "from_pretrained_keras", + "push_to_hub_keras", + "save_pretrained_keras", + ], + "repocard": [ + "DatasetCard", + "ModelCard", + "RepoCard", + "SpaceCard", + "metadata_eval_result", + "metadata_load", + "metadata_save", + "metadata_update", + ], + "repocard_data": [ + "CardData", + "DatasetCardData", + "EvalResult", + "ModelCardData", + "SpaceCardData", + ], + "repository": [ + "Repository", + ], + "serialization": [ + "StateDictSplit", + "split_numpy_state_dict_into_shards", + "split_state_dict_into_shards_factory", + "split_tf_state_dict_into_shards", + "split_torch_state_dict_into_shards", + ], + "utils": [ + "CacheNotFound", + "CachedFileInfo", + "CachedRepoInfo", + "CachedRevisionInfo", + "CorruptedCacheException", + "DeleteCacheStrategy", + "HFCacheInfo", + "HfFolder", + "cached_assets_path", + "configure_http_backend", + "dump_environment_info", + "get_session", + "get_token", + "logging", + "scan_cache_dir", + ], + "utils.endpoint_helpers": [ + "DatasetFilter", + "ModelFilter", + ], +} + + +def _attach(package_name, submodules=None, submod_attrs=None): + """Attach lazily loaded submodules, functions, or other attributes. + + Typically, modules import submodules and attributes as follows: + + ```py + import mysubmodule + import anothersubmodule + + from .foo import someattr + ``` + + The idea is to replace a package's `__getattr__`, `__dir__`, and + `__all__`, such that all imports work exactly the way they would + with normal imports, except that the import occurs upon first use. + + The typical way to call this function, replacing the above imports, is: + + ```python + __getattr__, __dir__, __all__ = lazy.attach( + __name__, + ['mysubmodule', 'anothersubmodule'], + {'foo': ['someattr']} + ) + ``` + This functionality requires Python 3.7 or higher. + + Args: + package_name (`str`): + Typically use `__name__`. + submodules (`set`): + List of submodules to attach. + submod_attrs (`dict`): + Dictionary of submodule -> list of attributes / functions. + These attributes are imported as they are used. + + Returns: + __getattr__, __dir__, __all__ + + """ + if submod_attrs is None: + submod_attrs = {} + + if submodules is None: + submodules = set() + else: + submodules = set(submodules) + + attr_to_modules = {attr: mod for mod, attrs in submod_attrs.items() for attr in attrs} + + __all__ = list(submodules | attr_to_modules.keys()) + + def __getattr__(name): + if name in submodules: + return importlib.import_module(f"{package_name}.{name}") + elif name in attr_to_modules: + submod_path = f"{package_name}.{attr_to_modules[name]}" + submod = importlib.import_module(submod_path) + attr = getattr(submod, name) + + # If the attribute lives in a file (module) with the same + # name as the attribute, ensure that the attribute and *not* + # the module is accessible on the package. + if name == attr_to_modules[name]: + pkg = sys.modules[package_name] + pkg.__dict__[name] = attr + + return attr + else: + raise AttributeError(f"No {package_name} attribute {name}") + + def __dir__(): + return __all__ + + return __getattr__, __dir__, list(__all__) + + +__getattr__, __dir__, __all__ = _attach(__name__, submodules=[], submod_attrs=_SUBMOD_ATTRS) + +if os.environ.get("EAGER_IMPORT", ""): + for attr in __all__: + __getattr__(attr) + +# WARNING: any content below this statement is generated automatically. Any manual edit +# will be lost when re-generating this file ! +# +# To update the static imports, please run the following command and commit the changes. +# ``` +# # Use script +# python utils/check_static_imports.py --update-file +# +# # Or run style on codebase +# make style +# ``` +if TYPE_CHECKING: # pragma: no cover + from ._commit_scheduler import CommitScheduler # noqa: F401 + from ._inference_endpoints import ( + InferenceEndpoint, # noqa: F401 + InferenceEndpointError, # noqa: F401 + InferenceEndpointStatus, # noqa: F401 + InferenceEndpointTimeoutError, # noqa: F401 + InferenceEndpointType, # noqa: F401 + ) + from ._login import ( + interpreter_login, # noqa: F401 + login, # noqa: F401 + logout, # noqa: F401 + notebook_login, # noqa: F401 + ) + from ._multi_commits import ( + MultiCommitException, # noqa: F401 + plan_multi_commits, # noqa: F401 + ) + from ._snapshot_download import snapshot_download # noqa: F401 + from ._space_api import ( + SpaceHardware, # noqa: F401 + SpaceRuntime, # noqa: F401 + SpaceStage, # noqa: F401 + SpaceStorage, # noqa: F401 + SpaceVariable, # noqa: F401 + ) + from ._tensorboard_logger import HFSummaryWriter # noqa: F401 + from ._webhooks_payload import ( + WebhookPayload, # noqa: F401 + WebhookPayloadComment, # noqa: F401 + WebhookPayloadDiscussion, # noqa: F401 + WebhookPayloadDiscussionChanges, # noqa: F401 + WebhookPayloadEvent, # noqa: F401 + WebhookPayloadMovedTo, # noqa: F401 + WebhookPayloadRepo, # noqa: F401 + WebhookPayloadUrl, # noqa: F401 + WebhookPayloadWebhook, # noqa: F401 + ) + from ._webhooks_server import ( + WebhooksServer, # noqa: F401 + webhook_endpoint, # noqa: F401 + ) + from .community import ( + Discussion, # noqa: F401 + DiscussionComment, # noqa: F401 + DiscussionCommit, # noqa: F401 + DiscussionEvent, # noqa: F401 + DiscussionStatusChange, # noqa: F401 + DiscussionTitleChange, # noqa: F401 + DiscussionWithDetails, # noqa: F401 + ) + from .constants import ( + CONFIG_NAME, # noqa: F401 + FLAX_WEIGHTS_NAME, # noqa: F401 + HUGGINGFACE_CO_URL_HOME, # noqa: F401 + HUGGINGFACE_CO_URL_TEMPLATE, # noqa: F401 + PYTORCH_WEIGHTS_NAME, # noqa: F401 + REPO_TYPE_DATASET, # noqa: F401 + REPO_TYPE_MODEL, # noqa: F401 + REPO_TYPE_SPACE, # noqa: F401 + TF2_WEIGHTS_NAME, # noqa: F401 + TF_WEIGHTS_NAME, # noqa: F401 + ) + from .fastai_utils import ( + _save_pretrained_fastai, # noqa: F401 + from_pretrained_fastai, # noqa: F401 + push_to_hub_fastai, # noqa: F401 + ) + from .file_download import ( + _CACHED_NO_EXIST, # noqa: F401 + HfFileMetadata, # noqa: F401 + cached_download, # noqa: F401 + get_hf_file_metadata, # noqa: F401 + hf_hub_download, # noqa: F401 + hf_hub_url, # noqa: F401 + try_to_load_from_cache, # noqa: F401 + ) + from .hf_api import ( + Collection, # noqa: F401 + CollectionItem, # noqa: F401 + CommitInfo, # noqa: F401 + CommitOperation, # noqa: F401 + CommitOperationAdd, # noqa: F401 + CommitOperationCopy, # noqa: F401 + CommitOperationDelete, # noqa: F401 + GitCommitInfo, # noqa: F401 + GitRefInfo, # noqa: F401 + GitRefs, # noqa: F401 + HfApi, # noqa: F401 + RepoUrl, # noqa: F401 + User, # noqa: F401 + UserLikes, # noqa: F401 + accept_access_request, # noqa: F401 + add_collection_item, # noqa: F401 + add_space_secret, # noqa: F401 + add_space_variable, # noqa: F401 + cancel_access_request, # noqa: F401 + change_discussion_status, # noqa: F401 + comment_discussion, # noqa: F401 + create_branch, # noqa: F401 + create_collection, # noqa: F401 + create_commit, # noqa: F401 + create_commits_on_pr, # noqa: F401 + create_discussion, # noqa: F401 + create_inference_endpoint, # noqa: F401 + create_pull_request, # noqa: F401 + create_repo, # noqa: F401 + create_tag, # noqa: F401 + dataset_info, # noqa: F401 + delete_branch, # noqa: F401 + delete_collection, # noqa: F401 + delete_collection_item, # noqa: F401 + delete_file, # noqa: F401 + delete_folder, # noqa: F401 + delete_inference_endpoint, # noqa: F401 + delete_repo, # noqa: F401 + delete_space_secret, # noqa: F401 + delete_space_storage, # noqa: F401 + delete_space_variable, # noqa: F401 + delete_tag, # noqa: F401 + duplicate_space, # noqa: F401 + edit_discussion_comment, # noqa: F401 + file_exists, # noqa: F401 + get_collection, # noqa: F401 + get_dataset_tags, # noqa: F401 + get_discussion_details, # noqa: F401 + get_full_repo_name, # noqa: F401 + get_inference_endpoint, # noqa: F401 + get_model_tags, # noqa: F401 + get_paths_info, # noqa: F401 + get_repo_discussions, # noqa: F401 + get_safetensors_metadata, # noqa: F401 + get_space_runtime, # noqa: F401 + get_space_variables, # noqa: F401 + get_token_permission, # noqa: F401 + grant_access, # noqa: F401 + like, # noqa: F401 + list_accepted_access_requests, # noqa: F401 + list_collections, # noqa: F401 + list_datasets, # noqa: F401 + list_inference_endpoints, # noqa: F401 + list_liked_repos, # noqa: F401 + list_metrics, # noqa: F401 + list_models, # noqa: F401 + list_pending_access_requests, # noqa: F401 + list_rejected_access_requests, # noqa: F401 + list_repo_commits, # noqa: F401 + list_repo_files, # noqa: F401 + list_repo_likers, # noqa: F401 + list_repo_refs, # noqa: F401 + list_repo_tree, # noqa: F401 + list_spaces, # noqa: F401 + merge_pull_request, # noqa: F401 + model_info, # noqa: F401 + move_repo, # noqa: F401 + parse_safetensors_file_metadata, # noqa: F401 + pause_inference_endpoint, # noqa: F401 + pause_space, # noqa: F401 + preupload_lfs_files, # noqa: F401 + reject_access_request, # noqa: F401 + rename_discussion, # noqa: F401 + repo_exists, # noqa: F401 + repo_info, # noqa: F401 + repo_type_and_id_from_hf_id, # noqa: F401 + request_space_hardware, # noqa: F401 + request_space_storage, # noqa: F401 + restart_space, # noqa: F401 + resume_inference_endpoint, # noqa: F401 + revision_exists, # noqa: F401 + run_as_future, # noqa: F401 + scale_to_zero_inference_endpoint, # noqa: F401 + set_space_sleep_time, # noqa: F401 + space_info, # noqa: F401 + super_squash_history, # noqa: F401 + unlike, # noqa: F401 + update_collection_item, # noqa: F401 + update_collection_metadata, # noqa: F401 + update_inference_endpoint, # noqa: F401 + update_repo_visibility, # noqa: F401 + upload_file, # noqa: F401 + upload_folder, # noqa: F401 + whoami, # noqa: F401 + ) + from .hf_file_system import ( + HfFileSystem, # noqa: F401 + HfFileSystemFile, # noqa: F401 + HfFileSystemResolvedPath, # noqa: F401 + HfFileSystemStreamFile, # noqa: F401 + ) + from .hub_mixin import ( + ModelHubMixin, # noqa: F401 + PyTorchModelHubMixin, # noqa: F401 + ) + from .inference._client import ( + InferenceClient, # noqa: F401 + InferenceTimeoutError, # noqa: F401 + ) + from .inference._generated._async_client import AsyncInferenceClient # noqa: F401 + from .inference._generated.types import ( + AudioClassificationInput, # noqa: F401 + AudioClassificationOutputElement, # noqa: F401 + AudioClassificationParameters, # noqa: F401 + AudioToAudioInput, # noqa: F401 + AudioToAudioOutputElement, # noqa: F401 + AutomaticSpeechRecognitionGenerationParameters, # noqa: F401 + AutomaticSpeechRecognitionInput, # noqa: F401 + AutomaticSpeechRecognitionOutput, # noqa: F401 + AutomaticSpeechRecognitionOutputChunk, # noqa: F401 + AutomaticSpeechRecognitionParameters, # noqa: F401 + ChatCompletionInput, # noqa: F401 + ChatCompletionInputFunctionDefinition, # noqa: F401 + ChatCompletionInputMessage, # noqa: F401 + ChatCompletionInputTool, # noqa: F401 + ChatCompletionInputToolCall, # noqa: F401 + ChatCompletionInputToolTypeClass, # noqa: F401 + ChatCompletionOutput, # noqa: F401 + ChatCompletionOutputComplete, # noqa: F401 + ChatCompletionOutputFunctionDefinition, # noqa: F401 + ChatCompletionOutputLogprob, # noqa: F401 + ChatCompletionOutputLogprobs, # noqa: F401 + ChatCompletionOutputMessage, # noqa: F401 + ChatCompletionOutputToolCall, # noqa: F401 + ChatCompletionOutputTopLogprob, # noqa: F401 + ChatCompletionOutputUsage, # noqa: F401 + ChatCompletionStreamOutput, # noqa: F401 + ChatCompletionStreamOutputChoice, # noqa: F401 + ChatCompletionStreamOutputDelta, # noqa: F401 + ChatCompletionStreamOutputDeltaToolCall, # noqa: F401 + ChatCompletionStreamOutputFunction, # noqa: F401 + ChatCompletionStreamOutputLogprob, # noqa: F401 + ChatCompletionStreamOutputLogprobs, # noqa: F401 + ChatCompletionStreamOutputTopLogprob, # noqa: F401 + DepthEstimationInput, # noqa: F401 + DepthEstimationOutput, # noqa: F401 + DocumentQuestionAnsweringInput, # noqa: F401 + DocumentQuestionAnsweringInputData, # noqa: F401 + DocumentQuestionAnsweringOutputElement, # noqa: F401 + DocumentQuestionAnsweringParameters, # noqa: F401 + FeatureExtractionInput, # noqa: F401 + FillMaskInput, # noqa: F401 + FillMaskOutputElement, # noqa: F401 + FillMaskParameters, # noqa: F401 + ImageClassificationInput, # noqa: F401 + ImageClassificationOutputElement, # noqa: F401 + ImageClassificationParameters, # noqa: F401 + ImageSegmentationInput, # noqa: F401 + ImageSegmentationOutputElement, # noqa: F401 + ImageSegmentationParameters, # noqa: F401 + ImageToImageInput, # noqa: F401 + ImageToImageOutput, # noqa: F401 + ImageToImageParameters, # noqa: F401 + ImageToImageTargetSize, # noqa: F401 + ImageToTextGenerationParameters, # noqa: F401 + ImageToTextInput, # noqa: F401 + ImageToTextOutput, # noqa: F401 + ImageToTextParameters, # noqa: F401 + ObjectDetectionBoundingBox, # noqa: F401 + ObjectDetectionInput, # noqa: F401 + ObjectDetectionOutputElement, # noqa: F401 + ObjectDetectionParameters, # noqa: F401 + QuestionAnsweringInput, # noqa: F401 + QuestionAnsweringInputData, # noqa: F401 + QuestionAnsweringOutputElement, # noqa: F401 + QuestionAnsweringParameters, # noqa: F401 + SentenceSimilarityInput, # noqa: F401 + SentenceSimilarityInputData, # noqa: F401 + SummarizationGenerationParameters, # noqa: F401 + SummarizationInput, # noqa: F401 + SummarizationOutput, # noqa: F401 + TableQuestionAnsweringInput, # noqa: F401 + TableQuestionAnsweringInputData, # noqa: F401 + TableQuestionAnsweringOutputElement, # noqa: F401 + Text2TextGenerationInput, # noqa: F401 + Text2TextGenerationOutput, # noqa: F401 + Text2TextGenerationParameters, # noqa: F401 + TextClassificationInput, # noqa: F401 + TextClassificationOutputElement, # noqa: F401 + TextClassificationParameters, # noqa: F401 + TextGenerationInput, # noqa: F401 + TextGenerationInputGenerateParameters, # noqa: F401 + TextGenerationInputGrammarType, # noqa: F401 + TextGenerationOutput, # noqa: F401 + TextGenerationOutputBestOfSequence, # noqa: F401 + TextGenerationOutputDetails, # noqa: F401 + TextGenerationOutputPrefillToken, # noqa: F401 + TextGenerationOutputToken, # noqa: F401 + TextGenerationStreamOutput, # noqa: F401 + TextGenerationStreamOutputStreamDetails, # noqa: F401 + TextGenerationStreamOutputToken, # noqa: F401 + TextToAudioGenerationParameters, # noqa: F401 + TextToAudioInput, # noqa: F401 + TextToAudioOutput, # noqa: F401 + TextToAudioParameters, # noqa: F401 + TextToImageInput, # noqa: F401 + TextToImageOutput, # noqa: F401 + TextToImageParameters, # noqa: F401 + TextToImageTargetSize, # noqa: F401 + TokenClassificationInput, # noqa: F401 + TokenClassificationOutputElement, # noqa: F401 + TokenClassificationParameters, # noqa: F401 + TranslationGenerationParameters, # noqa: F401 + TranslationInput, # noqa: F401 + TranslationOutput, # noqa: F401 + VideoClassificationInput, # noqa: F401 + VideoClassificationOutputElement, # noqa: F401 + VideoClassificationParameters, # noqa: F401 + VisualQuestionAnsweringInput, # noqa: F401 + VisualQuestionAnsweringInputData, # noqa: F401 + VisualQuestionAnsweringOutputElement, # noqa: F401 + VisualQuestionAnsweringParameters, # noqa: F401 + ZeroShotClassificationInput, # noqa: F401 + ZeroShotClassificationInputData, # noqa: F401 + ZeroShotClassificationOutputElement, # noqa: F401 + ZeroShotClassificationParameters, # noqa: F401 + ZeroShotImageClassificationInput, # noqa: F401 + ZeroShotImageClassificationInputData, # noqa: F401 + ZeroShotImageClassificationOutputElement, # noqa: F401 + ZeroShotImageClassificationParameters, # noqa: F401 + ZeroShotObjectDetectionBoundingBox, # noqa: F401 + ZeroShotObjectDetectionInput, # noqa: F401 + ZeroShotObjectDetectionInputData, # noqa: F401 + ZeroShotObjectDetectionOutputElement, # noqa: F401 + ) + from .inference_api import InferenceApi # noqa: F401 + from .keras_mixin import ( + KerasModelHubMixin, # noqa: F401 + from_pretrained_keras, # noqa: F401 + push_to_hub_keras, # noqa: F401 + save_pretrained_keras, # noqa: F401 + ) + from .repocard import ( + DatasetCard, # noqa: F401 + ModelCard, # noqa: F401 + RepoCard, # noqa: F401 + SpaceCard, # noqa: F401 + metadata_eval_result, # noqa: F401 + metadata_load, # noqa: F401 + metadata_save, # noqa: F401 + metadata_update, # noqa: F401 + ) + from .repocard_data import ( + CardData, # noqa: F401 + DatasetCardData, # noqa: F401 + EvalResult, # noqa: F401 + ModelCardData, # noqa: F401 + SpaceCardData, # noqa: F401 + ) + from .repository import Repository # noqa: F401 + from .serialization import ( + StateDictSplit, # noqa: F401 + split_numpy_state_dict_into_shards, # noqa: F401 + split_state_dict_into_shards_factory, # noqa: F401 + split_tf_state_dict_into_shards, # noqa: F401 + split_torch_state_dict_into_shards, # noqa: F401 + ) + from .utils import ( + CachedFileInfo, # noqa: F401 + CachedRepoInfo, # noqa: F401 + CachedRevisionInfo, # noqa: F401 + CacheNotFound, # noqa: F401 + CorruptedCacheException, # noqa: F401 + DeleteCacheStrategy, # noqa: F401 + HFCacheInfo, # noqa: F401 + HfFolder, # noqa: F401 + cached_assets_path, # noqa: F401 + configure_http_backend, # noqa: F401 + dump_environment_info, # noqa: F401 + get_session, # noqa: F401 + get_token, # noqa: F401 + logging, # noqa: F401 + scan_cache_dir, # noqa: F401 + ) + from .utils.endpoint_helpers import ( + DatasetFilter, # noqa: F401 + ModelFilter, # noqa: F401 + ) diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_commit_scheduler.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_commit_scheduler.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..78e15aa453bc913dbd9108e4c084f1ade26e5ad6 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_commit_scheduler.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_inference_endpoints.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_inference_endpoints.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1ee60f6aff6ef17a35ee7211896e3ba4cdf4e1c8 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_inference_endpoints.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_local_folder.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_local_folder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1f7850b3f536ca0b943f4d80dc68114cf2a5980f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_local_folder.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_multi_commits.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_multi_commits.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ce320ce3e42573c9b295d48aa4615b1c0bcb6e6f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_multi_commits.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_space_api.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_space_api.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fe4a565ca248c4457978537c5b8e53a1088db06f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/_space_api.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/fastai_utils.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/fastai_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c4f8ac1efa7ed4c45e5b22b352178ff986a51482 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/fastai_utils.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/hf_file_system.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/hf_file_system.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6c823b8be1cebaaa79ba50e949f06639cb7eae41 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/hf_file_system.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/hub_mixin.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/hub_mixin.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4596a6cb8571a403ebbf16870958cda449152374 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/hub_mixin.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/keras_mixin.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/keras_mixin.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a5cc523ab1ba39cce2882eb2ee0fc58b1d45af6a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/keras_mixin.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/lfs.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/lfs.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..313e924d8b687f02452b3859d7e60733446d11b5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/lfs.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/repocard.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/repocard.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e33d9835415b80d53a09fc8b488cf77c27e859a3 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/__pycache__/repocard.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_commit_api.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_commit_api.py new file mode 100644 index 0000000000000000000000000000000000000000..b363e4e480328438e5b1a1b15bb36d9c556311af --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_commit_api.py @@ -0,0 +1,699 @@ +""" +Type definitions and utilities for the `create_commit` API +""" + +import base64 +import io +import os +import warnings +from collections import defaultdict +from contextlib import contextmanager +from dataclasses import dataclass, field +from itertools import groupby +from pathlib import Path, PurePosixPath +from typing import TYPE_CHECKING, Any, BinaryIO, Dict, Iterable, Iterator, List, Literal, Optional, Tuple, Union + +from tqdm.contrib.concurrent import thread_map + +from .constants import ENDPOINT, HF_HUB_ENABLE_HF_TRANSFER +from .file_download import hf_hub_url +from .lfs import UploadInfo, lfs_upload, post_lfs_batch_info +from .utils import ( + FORBIDDEN_FOLDERS, + EntryNotFoundError, + chunk_iterable, + get_session, + hf_raise_for_status, + logging, + tqdm_stream_file, + validate_hf_hub_args, +) +from .utils import tqdm as hf_tqdm + + +if TYPE_CHECKING: + from .hf_api import RepoFile + + +logger = logging.get_logger(__name__) + + +UploadMode = Literal["lfs", "regular"] + +# Max is 1,000 per request on the Hub for HfApi.get_paths_info +# Otherwise we get: +# HfHubHTTPError: 413 Client Error: Payload Too Large for url: https://huggingface.co/api/datasets/xxx (Request ID: xxx)\n\ntoo many parameters +# See https://github.com/huggingface/huggingface_hub/issues/1503 +FETCH_LFS_BATCH_SIZE = 500 + + +@dataclass +class CommitOperationDelete: + """ + Data structure holding necessary info to delete a file or a folder from a repository + on the Hub. + + Args: + path_in_repo (`str`): + Relative filepath in the repo, for example: `"checkpoints/1fec34a/weights.bin"` + for a file or `"checkpoints/1fec34a/"` for a folder. + is_folder (`bool` or `Literal["auto"]`, *optional*) + Whether the Delete Operation applies to a folder or not. If "auto", the path + type (file or folder) is guessed automatically by looking if path ends with + a "/" (folder) or not (file). To explicitly set the path type, you can set + `is_folder=True` or `is_folder=False`. + """ + + path_in_repo: str + is_folder: Union[bool, Literal["auto"]] = "auto" + + def __post_init__(self): + self.path_in_repo = _validate_path_in_repo(self.path_in_repo) + + if self.is_folder == "auto": + self.is_folder = self.path_in_repo.endswith("/") + if not isinstance(self.is_folder, bool): + raise ValueError( + f"Wrong value for `is_folder`. Must be one of [`True`, `False`, `'auto'`]. Got '{self.is_folder}'." + ) + + +@dataclass +class CommitOperationCopy: + """ + Data structure holding necessary info to copy a file in a repository on the Hub. + + Limitations: + - Only LFS files can be copied. To copy a regular file, you need to download it locally and re-upload it + - Cross-repository copies are not supported. + + Note: you can combine a [`CommitOperationCopy`] and a [`CommitOperationDelete`] to rename an LFS file on the Hub. + + Args: + src_path_in_repo (`str`): + Relative filepath in the repo of the file to be copied, e.g. `"checkpoints/1fec34a/weights.bin"`. + path_in_repo (`str`): + Relative filepath in the repo where to copy the file, e.g. `"checkpoints/1fec34a/weights_copy.bin"`. + src_revision (`str`, *optional*): + The git revision of the file to be copied. Can be any valid git revision. + Default to the target commit revision. + """ + + src_path_in_repo: str + path_in_repo: str + src_revision: Optional[str] = None + + def __post_init__(self): + self.src_path_in_repo = _validate_path_in_repo(self.src_path_in_repo) + self.path_in_repo = _validate_path_in_repo(self.path_in_repo) + + +@dataclass +class CommitOperationAdd: + """ + Data structure holding necessary info to upload a file to a repository on the Hub. + + Args: + path_in_repo (`str`): + Relative filepath in the repo, for example: `"checkpoints/1fec34a/weights.bin"` + path_or_fileobj (`str`, `Path`, `bytes`, or `BinaryIO`): + Either: + - a path to a local file (as `str` or `pathlib.Path`) to upload + - a buffer of bytes (`bytes`) holding the content of the file to upload + - a "file object" (subclass of `io.BufferedIOBase`), typically obtained + with `open(path, "rb")`. It must support `seek()` and `tell()` methods. + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `path_or_fileobj` is not one of `str`, `Path`, `bytes` or `io.BufferedIOBase`. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `path_or_fileobj` is a `str` or `Path` but not a path to an existing file. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `path_or_fileobj` is a `io.BufferedIOBase` but it doesn't support both + `seek()` and `tell()`. + """ + + path_in_repo: str + path_or_fileobj: Union[str, Path, bytes, BinaryIO] + upload_info: UploadInfo = field(init=False, repr=False) + + # Internal attributes + + # set to "lfs" or "regular" once known + _upload_mode: Optional[UploadMode] = field(init=False, repr=False, default=None) + + # set to True if .gitignore rules prevent the file from being uploaded as LFS + # (server-side check) + _should_ignore: Optional[bool] = field(init=False, repr=False, default=None) + + # set to True once the file has been uploaded as LFS + _is_uploaded: bool = field(init=False, repr=False, default=False) + + # set to True once the file has been committed + _is_committed: bool = field(init=False, repr=False, default=False) + + def __post_init__(self) -> None: + """Validates `path_or_fileobj` and compute `upload_info`.""" + self.path_in_repo = _validate_path_in_repo(self.path_in_repo) + + # Validate `path_or_fileobj` value + if isinstance(self.path_or_fileobj, Path): + self.path_or_fileobj = str(self.path_or_fileobj) + if isinstance(self.path_or_fileobj, str): + path_or_fileobj = os.path.normpath(os.path.expanduser(self.path_or_fileobj)) + if not os.path.isfile(path_or_fileobj): + raise ValueError(f"Provided path: '{path_or_fileobj}' is not a file on the local file system") + elif not isinstance(self.path_or_fileobj, (io.BufferedIOBase, bytes)): + # ^^ Inspired from: https://stackoverflow.com/questions/44584829/how-to-determine-if-file-is-opened-in-binary-or-text-mode + raise ValueError( + "path_or_fileobj must be either an instance of str, bytes or" + " io.BufferedIOBase. If you passed a file-like object, make sure it is" + " in binary mode." + ) + if isinstance(self.path_or_fileobj, io.BufferedIOBase): + try: + self.path_or_fileobj.tell() + self.path_or_fileobj.seek(0, os.SEEK_CUR) + except (OSError, AttributeError) as exc: + raise ValueError( + "path_or_fileobj is a file-like object but does not implement seek() and tell()" + ) from exc + + # Compute "upload_info" attribute + if isinstance(self.path_or_fileobj, str): + self.upload_info = UploadInfo.from_path(self.path_or_fileobj) + elif isinstance(self.path_or_fileobj, bytes): + self.upload_info = UploadInfo.from_bytes(self.path_or_fileobj) + else: + self.upload_info = UploadInfo.from_fileobj(self.path_or_fileobj) + + @contextmanager + def as_file(self, with_tqdm: bool = False) -> Iterator[BinaryIO]: + """ + A context manager that yields a file-like object allowing to read the underlying + data behind `path_or_fileobj`. + + Args: + with_tqdm (`bool`, *optional*, defaults to `False`): + If True, iterating over the file object will display a progress bar. Only + works if the file-like object is a path to a file. Pure bytes and buffers + are not supported. + + Example: + + ```python + >>> operation = CommitOperationAdd( + ... path_in_repo="remote/dir/weights.h5", + ... path_or_fileobj="./local/weights.h5", + ... ) + CommitOperationAdd(path_in_repo='remote/dir/weights.h5', path_or_fileobj='./local/weights.h5') + + >>> with operation.as_file() as file: + ... content = file.read() + + >>> with operation.as_file(with_tqdm=True) as file: + ... while True: + ... data = file.read(1024) + ... if not data: + ... break + config.json: 100%|█████████████████████████| 8.19k/8.19k [00:02<00:00, 3.72kB/s] + + >>> with operation.as_file(with_tqdm=True) as file: + ... requests.put(..., data=file) + config.json: 100%|█████████████████████████| 8.19k/8.19k [00:02<00:00, 3.72kB/s] + ``` + """ + if isinstance(self.path_or_fileobj, str) or isinstance(self.path_or_fileobj, Path): + if with_tqdm: + with tqdm_stream_file(self.path_or_fileobj) as file: + yield file + else: + with open(self.path_or_fileobj, "rb") as file: + yield file + elif isinstance(self.path_or_fileobj, bytes): + yield io.BytesIO(self.path_or_fileobj) + elif isinstance(self.path_or_fileobj, io.BufferedIOBase): + prev_pos = self.path_or_fileobj.tell() + yield self.path_or_fileobj + self.path_or_fileobj.seek(prev_pos, io.SEEK_SET) + + def b64content(self) -> bytes: + """ + The base64-encoded content of `path_or_fileobj` + + Returns: `bytes` + """ + with self.as_file() as file: + return base64.b64encode(file.read()) + + +def _validate_path_in_repo(path_in_repo: str) -> str: + # Validate `path_in_repo` value to prevent a server-side issue + if path_in_repo.startswith("/"): + path_in_repo = path_in_repo[1:] + if path_in_repo == "." or path_in_repo == ".." or path_in_repo.startswith("../"): + raise ValueError(f"Invalid `path_in_repo` in CommitOperation: '{path_in_repo}'") + if path_in_repo.startswith("./"): + path_in_repo = path_in_repo[2:] + for forbidden in FORBIDDEN_FOLDERS: + if any(part == forbidden for part in path_in_repo.split("/")): + raise ValueError( + f"Invalid `path_in_repo` in CommitOperation: cannot update files under a '{forbidden}/' folder (path:" + f" '{path_in_repo}')." + ) + return path_in_repo + + +CommitOperation = Union[CommitOperationAdd, CommitOperationCopy, CommitOperationDelete] + + +def _warn_on_overwriting_operations(operations: List[CommitOperation]) -> None: + """ + Warn user when a list of operations is expected to overwrite itself in a single + commit. + + Rules: + - If a filepath is updated by multiple `CommitOperationAdd` operations, a warning + message is triggered. + - If a filepath is updated at least once by a `CommitOperationAdd` and then deleted + by a `CommitOperationDelete`, a warning is triggered. + - If a `CommitOperationDelete` deletes a filepath that is then updated by a + `CommitOperationAdd`, no warning is triggered. This is usually useless (no need to + delete before upload) but can happen if a user deletes an entire folder and then + add new files to it. + """ + nb_additions_per_path: Dict[str, int] = defaultdict(int) + for operation in operations: + path_in_repo = operation.path_in_repo + if isinstance(operation, CommitOperationAdd): + if nb_additions_per_path[path_in_repo] > 0: + warnings.warn( + "About to update multiple times the same file in the same commit:" + f" '{path_in_repo}'. This can cause undesired inconsistencies in" + " your repo." + ) + nb_additions_per_path[path_in_repo] += 1 + for parent in PurePosixPath(path_in_repo).parents: + # Also keep track of number of updated files per folder + # => warns if deleting a folder overwrite some contained files + nb_additions_per_path[str(parent)] += 1 + if isinstance(operation, CommitOperationDelete): + if nb_additions_per_path[str(PurePosixPath(path_in_repo))] > 0: + if operation.is_folder: + warnings.warn( + "About to delete a folder containing files that have just been" + f" updated within the same commit: '{path_in_repo}'. This can" + " cause undesired inconsistencies in your repo." + ) + else: + warnings.warn( + "About to delete a file that have just been updated within the" + f" same commit: '{path_in_repo}'. This can cause undesired" + " inconsistencies in your repo." + ) + + +@validate_hf_hub_args +def _upload_lfs_files( + *, + additions: List[CommitOperationAdd], + repo_type: str, + repo_id: str, + headers: Dict[str, str], + endpoint: Optional[str] = None, + num_threads: int = 5, + revision: Optional[str] = None, +): + """ + Uploads the content of `additions` to the Hub using the large file storage protocol. + + Relevant external documentation: + - LFS Batch API: https://github.com/git-lfs/git-lfs/blob/main/docs/api/batch.md + + Args: + additions (`List` of `CommitOperationAdd`): + The files to be uploaded + repo_type (`str`): + Type of the repo to upload to: `"model"`, `"dataset"` or `"space"`. + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + headers (`Dict[str, str]`): + Headers to use for the request, including authorization headers and user agent. + num_threads (`int`, *optional*): + The number of concurrent threads to use when uploading. Defaults to 5. + revision (`str`, *optional*): + The git revision to upload to. + + Raises: `RuntimeError` if an upload failed for any reason + + Raises: `ValueError` if the server returns malformed responses + + Raises: `requests.HTTPError` if the LFS batch endpoint returned an HTTP + error + + """ + # Step 1: retrieve upload instructions from the LFS batch endpoint. + # Upload instructions are retrieved by chunk of 256 files to avoid reaching + # the payload limit. + batch_actions: List[Dict] = [] + for chunk in chunk_iterable(additions, chunk_size=256): + batch_actions_chunk, batch_errors_chunk = post_lfs_batch_info( + upload_infos=[op.upload_info for op in chunk], + repo_id=repo_id, + repo_type=repo_type, + revision=revision, + endpoint=endpoint, + headers=headers, + token=None, # already passed in 'headers' + ) + + # If at least 1 error, we do not retrieve information for other chunks + if batch_errors_chunk: + message = "\n".join( + [ + f'Encountered error for file with OID {err.get("oid")}: `{err.get("error", {}).get("message")}' + for err in batch_errors_chunk + ] + ) + raise ValueError(f"LFS batch endpoint returned errors:\n{message}") + + batch_actions += batch_actions_chunk + oid2addop = {add_op.upload_info.sha256.hex(): add_op for add_op in additions} + + # Step 2: ignore files that have already been uploaded + filtered_actions = [] + for action in batch_actions: + if action.get("actions") is None: + logger.debug( + f"Content of file {oid2addop[action['oid']].path_in_repo} is already" + " present upstream - skipping upload." + ) + else: + filtered_actions.append(action) + + if len(filtered_actions) == 0: + logger.debug("No LFS files to upload.") + return + + # Step 3: upload files concurrently according to these instructions + def _wrapped_lfs_upload(batch_action) -> None: + try: + operation = oid2addop[batch_action["oid"]] + lfs_upload(operation=operation, lfs_batch_action=batch_action, headers=headers, endpoint=endpoint) + except Exception as exc: + raise RuntimeError(f"Error while uploading '{operation.path_in_repo}' to the Hub.") from exc + + if HF_HUB_ENABLE_HF_TRANSFER: + logger.debug(f"Uploading {len(filtered_actions)} LFS files to the Hub using `hf_transfer`.") + for action in hf_tqdm(filtered_actions, name="huggingface_hub.lfs_upload"): + _wrapped_lfs_upload(action) + elif len(filtered_actions) == 1: + logger.debug("Uploading 1 LFS file to the Hub") + _wrapped_lfs_upload(filtered_actions[0]) + else: + logger.debug( + f"Uploading {len(filtered_actions)} LFS files to the Hub using up to {num_threads} threads concurrently" + ) + thread_map( + _wrapped_lfs_upload, + filtered_actions, + desc=f"Upload {len(filtered_actions)} LFS files", + max_workers=num_threads, + tqdm_class=hf_tqdm, + ) + + +def _validate_preupload_info(preupload_info: dict): + files = preupload_info.get("files") + if not isinstance(files, list): + raise ValueError("preupload_info is improperly formatted") + for file_info in files: + if not ( + isinstance(file_info, dict) + and isinstance(file_info.get("path"), str) + and isinstance(file_info.get("uploadMode"), str) + and (file_info["uploadMode"] in ("lfs", "regular")) + ): + raise ValueError("preupload_info is improperly formatted:") + return preupload_info + + +@validate_hf_hub_args +def _fetch_upload_modes( + additions: Iterable[CommitOperationAdd], + repo_type: str, + repo_id: str, + headers: Dict[str, str], + revision: str, + endpoint: Optional[str] = None, + create_pr: bool = False, + gitignore_content: Optional[str] = None, +) -> None: + """ + Requests the Hub "preupload" endpoint to determine whether each input file should be uploaded as a regular git blob + or as git LFS blob. Input `additions` are mutated in-place with the upload mode. + + Args: + additions (`Iterable` of :class:`CommitOperationAdd`): + Iterable of :class:`CommitOperationAdd` describing the files to + upload to the Hub. + repo_type (`str`): + Type of the repo to upload to: `"model"`, `"dataset"` or `"space"`. + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + headers (`Dict[str, str]`): + Headers to use for the request, including authorization headers and user agent. + revision (`str`): + The git revision to upload the files to. Can be any valid git revision. + gitignore_content (`str`, *optional*): + The content of the `.gitignore` file to know which files should be ignored. The order of priority + is to first check if `gitignore_content` is passed, then check if the `.gitignore` file is present + in the list of files to commit and finally default to the `.gitignore` file already hosted on the Hub + (if any). + Raises: + [`~utils.HfHubHTTPError`] + If the Hub API returned an error. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If the Hub API response is improperly formatted. + """ + endpoint = endpoint if endpoint is not None else ENDPOINT + + # Fetch upload mode (LFS or regular) chunk by chunk. + upload_modes: Dict[str, UploadMode] = {} + should_ignore_info: Dict[str, bool] = {} + + for chunk in chunk_iterable(additions, 256): + payload: Dict = { + "files": [ + { + "path": op.path_in_repo, + "sample": base64.b64encode(op.upload_info.sample).decode("ascii"), + "size": op.upload_info.size, + "sha": op.upload_info.sha256.hex(), + } + for op in chunk + ] + } + if gitignore_content is not None: + payload["gitIgnore"] = gitignore_content + + resp = get_session().post( + f"{endpoint}/api/{repo_type}s/{repo_id}/preupload/{revision}", + json=payload, + headers=headers, + params={"create_pr": "1"} if create_pr else None, + ) + hf_raise_for_status(resp) + preupload_info = _validate_preupload_info(resp.json()) + upload_modes.update(**{file["path"]: file["uploadMode"] for file in preupload_info["files"]}) + should_ignore_info.update(**{file["path"]: file["shouldIgnore"] for file in preupload_info["files"]}) + + # Set upload mode for each addition operation + for addition in additions: + addition._upload_mode = upload_modes[addition.path_in_repo] + addition._should_ignore = should_ignore_info[addition.path_in_repo] + + # Empty files cannot be uploaded as LFS (S3 would fail with a 501 Not Implemented) + # => empty files are uploaded as "regular" to still allow users to commit them. + for addition in additions: + if addition.upload_info.size == 0: + addition._upload_mode = "regular" + + +@validate_hf_hub_args +def _fetch_files_to_copy( + copies: Iterable[CommitOperationCopy], + repo_type: str, + repo_id: str, + headers: Dict[str, str], + revision: str, + endpoint: Optional[str] = None, +) -> Dict[Tuple[str, Optional[str]], Union["RepoFile", bytes]]: + """ + Fetch information about the files to copy. + + For LFS files, we only need their metadata (file size and sha256) while for regular files + we need to download the raw content from the Hub. + + Args: + copies (`Iterable` of :class:`CommitOperationCopy`): + Iterable of :class:`CommitOperationCopy` describing the files to + copy on the Hub. + repo_type (`str`): + Type of the repo to upload to: `"model"`, `"dataset"` or `"space"`. + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + headers (`Dict[str, str]`): + Headers to use for the request, including authorization headers and user agent. + revision (`str`): + The git revision to upload the files to. Can be any valid git revision. + + Returns: `Dict[Tuple[str, Optional[str]], Union[RepoFile, bytes]]]` + Key is the file path and revision of the file to copy. + Value is the raw content as bytes (for regular files) or the file information as a RepoFile (for LFS files). + + Raises: + [`~utils.HfHubHTTPError`] + If the Hub API returned an error. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If the Hub API response is improperly formatted. + """ + from .hf_api import HfApi, RepoFolder + + hf_api = HfApi(endpoint=endpoint, headers=headers) + files_to_copy: Dict[Tuple[str, Optional[str]], Union["RepoFile", bytes]] = {} + for src_revision, operations in groupby(copies, key=lambda op: op.src_revision): + operations = list(operations) # type: ignore + paths = [op.src_path_in_repo for op in operations] + for offset in range(0, len(paths), FETCH_LFS_BATCH_SIZE): + src_repo_files = hf_api.get_paths_info( + repo_id=repo_id, + paths=paths[offset : offset + FETCH_LFS_BATCH_SIZE], + revision=src_revision or revision, + repo_type=repo_type, + ) + for src_repo_file in src_repo_files: + if isinstance(src_repo_file, RepoFolder): + raise NotImplementedError("Copying a folder is not implemented.") + if src_repo_file.lfs: + files_to_copy[(src_repo_file.path, src_revision)] = src_repo_file + else: + # TODO: (optimization) download regular files to copy concurrently + url = hf_hub_url( + endpoint=endpoint, + repo_type=repo_type, + repo_id=repo_id, + revision=src_revision or revision, + filename=src_repo_file.path, + ) + response = get_session().get(url, headers=headers) + hf_raise_for_status(response) + files_to_copy[(src_repo_file.path, src_revision)] = response.content + for operation in operations: + if (operation.src_path_in_repo, src_revision) not in files_to_copy: + raise EntryNotFoundError( + f"Cannot copy {operation.src_path_in_repo} at revision " + f"{src_revision or revision}: file is missing on repo." + ) + return files_to_copy + + +def _prepare_commit_payload( + operations: Iterable[CommitOperation], + files_to_copy: Dict[Tuple[str, Optional[str]], Union["RepoFile", bytes]], + commit_message: str, + commit_description: Optional[str] = None, + parent_commit: Optional[str] = None, +) -> Iterable[Dict[str, Any]]: + """ + Builds the payload to POST to the `/commit` API of the Hub. + + Payload is returned as an iterator so that it can be streamed as a ndjson in the + POST request. + + For more information, see: + - https://github.com/huggingface/huggingface_hub/issues/1085#issuecomment-1265208073 + - http://ndjson.org/ + """ + commit_description = commit_description if commit_description is not None else "" + + # 1. Send a header item with the commit metadata + header_value = {"summary": commit_message, "description": commit_description} + if parent_commit is not None: + header_value["parentCommit"] = parent_commit + yield {"key": "header", "value": header_value} + + nb_ignored_files = 0 + + # 2. Send operations, one per line + for operation in operations: + # Skip ignored files + if isinstance(operation, CommitOperationAdd) and operation._should_ignore: + logger.debug(f"Skipping file '{operation.path_in_repo}' in commit (ignored by gitignore file).") + nb_ignored_files += 1 + continue + + # 2.a. Case adding a regular file + if isinstance(operation, CommitOperationAdd) and operation._upload_mode == "regular": + yield { + "key": "file", + "value": { + "content": operation.b64content().decode(), + "path": operation.path_in_repo, + "encoding": "base64", + }, + } + # 2.b. Case adding an LFS file + elif isinstance(operation, CommitOperationAdd) and operation._upload_mode == "lfs": + yield { + "key": "lfsFile", + "value": { + "path": operation.path_in_repo, + "algo": "sha256", + "oid": operation.upload_info.sha256.hex(), + "size": operation.upload_info.size, + }, + } + # 2.c. Case deleting a file or folder + elif isinstance(operation, CommitOperationDelete): + yield { + "key": "deletedFolder" if operation.is_folder else "deletedFile", + "value": {"path": operation.path_in_repo}, + } + # 2.d. Case copying a file or folder + elif isinstance(operation, CommitOperationCopy): + file_to_copy = files_to_copy[(operation.src_path_in_repo, operation.src_revision)] + if isinstance(file_to_copy, bytes): + yield { + "key": "file", + "value": { + "content": base64.b64encode(file_to_copy).decode(), + "path": operation.path_in_repo, + "encoding": "base64", + }, + } + elif file_to_copy.lfs: + yield { + "key": "lfsFile", + "value": { + "path": operation.path_in_repo, + "algo": "sha256", + "oid": file_to_copy.lfs.sha256, + }, + } + else: + raise ValueError( + "Malformed files_to_copy (should be raw file content as bytes or RepoFile objects with LFS info." + ) + # 2.e. Never expected to happen + else: + raise ValueError( + f"Unknown operation to commit. Operation: {operation}. Upload mode:" + f" {getattr(operation, '_upload_mode', None)}" + ) + + if nb_ignored_files > 0: + logger.info(f"Skipped {nb_ignored_files} file(s) in commit (ignored by gitignore file).") diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_commit_scheduler.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_commit_scheduler.py new file mode 100644 index 0000000000000000000000000000000000000000..62d7bf1d0d4395fb980bc4d17af028182d0e8361 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_commit_scheduler.py @@ -0,0 +1,327 @@ +import atexit +import logging +import os +import time +from concurrent.futures import Future +from dataclasses import dataclass +from io import SEEK_END, SEEK_SET, BytesIO +from pathlib import Path +from threading import Lock, Thread +from typing import Dict, List, Optional, Union + +from .hf_api import DEFAULT_IGNORE_PATTERNS, CommitInfo, CommitOperationAdd, HfApi +from .utils import filter_repo_objects + + +logger = logging.getLogger(__name__) + + +@dataclass(frozen=True) +class _FileToUpload: + """Temporary dataclass to store info about files to upload. Not meant to be used directly.""" + + local_path: Path + path_in_repo: str + size_limit: int + last_modified: float + + +class CommitScheduler: + """ + Scheduler to upload a local folder to the Hub at regular intervals (e.g. push to hub every 5 minutes). + + The scheduler is started when instantiated and run indefinitely. At the end of your script, a last commit is + triggered. Checkout the [upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload#scheduled-uploads) + to learn more about how to use it. + + Args: + repo_id (`str`): + The id of the repo to commit to. + folder_path (`str` or `Path`): + Path to the local folder to upload regularly. + every (`int` or `float`, *optional*): + The number of minutes between each commit. Defaults to 5 minutes. + path_in_repo (`str`, *optional*): + Relative path of the directory in the repo, for example: `"checkpoints/"`. Defaults to the root folder + of the repository. + repo_type (`str`, *optional*): + The type of the repo to commit to. Defaults to `model`. + revision (`str`, *optional*): + The revision of the repo to commit to. Defaults to `main`. + private (`bool`, *optional*): + Whether to make the repo private. Defaults to `False`. This value is ignored if the repo already exist. + token (`str`, *optional*): + The token to use to commit to the repo. Defaults to the token saved on the machine. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are uploaded. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not uploaded. + squash_history (`bool`, *optional*): + Whether to squash the history of the repo after each commit. Defaults to `False`. Squashing commits is + useful to avoid degraded performances on the repo when it grows too large. + hf_api (`HfApi`, *optional*): + The [`HfApi`] client to use to commit to the Hub. Can be set with custom settings (user agent, token,...). + + Example: + ```py + >>> from pathlib import Path + >>> from huggingface_hub import CommitScheduler + + # Scheduler uploads every 10 minutes + >>> csv_path = Path("watched_folder/data.csv") + >>> CommitScheduler(repo_id="test_scheduler", repo_type="dataset", folder_path=csv_path.parent, every=10) + + >>> with csv_path.open("a") as f: + ... f.write("first line") + + # Some time later (...) + >>> with csv_path.open("a") as f: + ... f.write("second line") + ``` + """ + + def __init__( + self, + *, + repo_id: str, + folder_path: Union[str, Path], + every: Union[int, float] = 5, + path_in_repo: Optional[str] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + private: bool = False, + token: Optional[str] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + squash_history: bool = False, + hf_api: Optional["HfApi"] = None, + ) -> None: + self.api = hf_api or HfApi(token=token) + + # Folder + self.folder_path = Path(folder_path).expanduser().resolve() + self.path_in_repo = path_in_repo or "" + self.allow_patterns = allow_patterns + + if ignore_patterns is None: + ignore_patterns = [] + elif isinstance(ignore_patterns, str): + ignore_patterns = [ignore_patterns] + self.ignore_patterns = ignore_patterns + DEFAULT_IGNORE_PATTERNS + + if self.folder_path.is_file(): + raise ValueError(f"'folder_path' must be a directory, not a file: '{self.folder_path}'.") + self.folder_path.mkdir(parents=True, exist_ok=True) + + # Repository + repo_url = self.api.create_repo(repo_id=repo_id, private=private, repo_type=repo_type, exist_ok=True) + self.repo_id = repo_url.repo_id + self.repo_type = repo_type + self.revision = revision + self.token = token + + # Keep track of already uploaded files + self.last_uploaded: Dict[Path, float] = {} # key is local path, value is timestamp + + # Scheduler + if not every > 0: + raise ValueError(f"'every' must be a positive integer, not '{every}'.") + self.lock = Lock() + self.every = every + self.squash_history = squash_history + + logger.info(f"Scheduled job to push '{self.folder_path}' to '{self.repo_id}' every {self.every} minutes.") + self._scheduler_thread = Thread(target=self._run_scheduler, daemon=True) + self._scheduler_thread.start() + atexit.register(self._push_to_hub) + + self.__stopped = False + + def stop(self) -> None: + """Stop the scheduler. + + A stopped scheduler cannot be restarted. Mostly for tests purposes. + """ + self.__stopped = True + + def _run_scheduler(self) -> None: + """Dumb thread waiting between each scheduled push to Hub.""" + while True: + self.last_future = self.trigger() + time.sleep(self.every * 60) + if self.__stopped: + break + + def trigger(self) -> Future: + """Trigger a `push_to_hub` and return a future. + + This method is automatically called every `every` minutes. You can also call it manually to trigger a commit + immediately, without waiting for the next scheduled commit. + """ + return self.api.run_as_future(self._push_to_hub) + + def _push_to_hub(self) -> Optional[CommitInfo]: + if self.__stopped: # If stopped, already scheduled commits are ignored + return None + + logger.info("(Background) scheduled commit triggered.") + try: + value = self.push_to_hub() + if self.squash_history: + logger.info("(Background) squashing repo history.") + self.api.super_squash_history(repo_id=self.repo_id, repo_type=self.repo_type, branch=self.revision) + return value + except Exception as e: + logger.error(f"Error while pushing to Hub: {e}") # Depending on the setup, error might be silenced + raise + + def push_to_hub(self) -> Optional[CommitInfo]: + """ + Push folder to the Hub and return the commit info. + + + + This method is not meant to be called directly. It is run in the background by the scheduler, respecting a + queue mechanism to avoid concurrent commits. Making a direct call to the method might lead to concurrency + issues. + + + + The default behavior of `push_to_hub` is to assume an append-only folder. It lists all files in the folder and + uploads only changed files. If no changes are found, the method returns without committing anything. If you want + to change this behavior, you can inherit from [`CommitScheduler`] and override this method. This can be useful + for example to compress data together in a single file before committing. For more details and examples, check + out our [integration guide](https://huggingface.co/docs/huggingface_hub/main/en/guides/upload#scheduled-uploads). + """ + # Check files to upload (with lock) + with self.lock: + logger.debug("Listing files to upload for scheduled commit.") + + # List files from folder (taken from `_prepare_upload_folder_additions`) + relpath_to_abspath = { + path.relative_to(self.folder_path).as_posix(): path + for path in sorted(self.folder_path.glob("**/*")) # sorted to be deterministic + if path.is_file() + } + prefix = f"{self.path_in_repo.strip('/')}/" if self.path_in_repo else "" + + # Filter with pattern + filter out unchanged files + retrieve current file size + files_to_upload: List[_FileToUpload] = [] + for relpath in filter_repo_objects( + relpath_to_abspath.keys(), allow_patterns=self.allow_patterns, ignore_patterns=self.ignore_patterns + ): + local_path = relpath_to_abspath[relpath] + stat = local_path.stat() + if self.last_uploaded.get(local_path) is None or self.last_uploaded[local_path] != stat.st_mtime: + files_to_upload.append( + _FileToUpload( + local_path=local_path, + path_in_repo=prefix + relpath, + size_limit=stat.st_size, + last_modified=stat.st_mtime, + ) + ) + + # Return if nothing to upload + if len(files_to_upload) == 0: + logger.debug("Dropping schedule commit: no changed file to upload.") + return None + + # Convert `_FileToUpload` as `CommitOperationAdd` (=> compute file shas + limit to file size) + logger.debug("Removing unchanged files since previous scheduled commit.") + add_operations = [ + CommitOperationAdd( + # Cap the file to its current size, even if the user append data to it while a scheduled commit is happening + path_or_fileobj=PartialFileIO(file_to_upload.local_path, size_limit=file_to_upload.size_limit), + path_in_repo=file_to_upload.path_in_repo, + ) + for file_to_upload in files_to_upload + ] + + # Upload files (append mode expected - no need for lock) + logger.debug("Uploading files for scheduled commit.") + commit_info = self.api.create_commit( + repo_id=self.repo_id, + repo_type=self.repo_type, + operations=add_operations, + commit_message="Scheduled Commit", + revision=self.revision, + ) + + # Successful commit: keep track of the latest "last_modified" for each file + for file in files_to_upload: + self.last_uploaded[file.local_path] = file.last_modified + return commit_info + + +class PartialFileIO(BytesIO): + """A file-like object that reads only the first part of a file. + + Useful to upload a file to the Hub when the user might still be appending data to it. Only the first part of the + file is uploaded (i.e. the part that was available when the filesystem was first scanned). + + In practice, only used internally by the CommitScheduler to regularly push a folder to the Hub with minimal + disturbance for the user. The object is passed to `CommitOperationAdd`. + + Only supports `read`, `tell` and `seek` methods. + + Args: + file_path (`str` or `Path`): + Path to the file to read. + size_limit (`int`): + The maximum number of bytes to read from the file. If the file is larger than this, only the first part + will be read (and uploaded). + """ + + def __init__(self, file_path: Union[str, Path], size_limit: int) -> None: + self._file_path = Path(file_path) + self._file = self._file_path.open("rb") + self._size_limit = min(size_limit, os.fstat(self._file.fileno()).st_size) + + def __del__(self) -> None: + self._file.close() + return super().__del__() + + def __repr__(self) -> str: + return f"" + + def __len__(self) -> int: + return self._size_limit + + def __getattribute__(self, name: str): + if name.startswith("_") or name in ("read", "tell", "seek"): # only 3 public methods supported + return super().__getattribute__(name) + raise NotImplementedError(f"PartialFileIO does not support '{name}'.") + + def tell(self) -> int: + """Return the current file position.""" + return self._file.tell() + + def seek(self, __offset: int, __whence: int = SEEK_SET) -> int: + """Change the stream position to the given offset. + + Behavior is the same as a regular file, except that the position is capped to the size limit. + """ + if __whence == SEEK_END: + # SEEK_END => set from the truncated end + __offset = len(self) + __offset + __whence = SEEK_SET + + pos = self._file.seek(__offset, __whence) + if pos > self._size_limit: + return self._file.seek(self._size_limit) + return pos + + def read(self, __size: Optional[int] = -1) -> bytes: + """Read at most `__size` bytes from the file. + + Behavior is the same as a regular file, except that it is capped to the size limit. + """ + current = self._file.tell() + if __size is None or __size < 0: + # Read until file limit + truncated_size = self._size_limit - current + else: + # Read until file limit or __size + truncated_size = min(__size, self._size_limit - current) + return self._file.read(truncated_size) diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_inference_endpoints.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_inference_endpoints.py new file mode 100644 index 0000000000000000000000000000000000000000..1fd2116d9f0fe475bed2c0cdd8cd66b4efb120ab --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_inference_endpoints.py @@ -0,0 +1,377 @@ +import time +from dataclasses import dataclass, field +from datetime import datetime +from enum import Enum +from typing import TYPE_CHECKING, Dict, Optional, Union + +from huggingface_hub.errors import InferenceEndpointError, InferenceEndpointTimeoutError + +from .inference._client import InferenceClient +from .inference._generated._async_client import AsyncInferenceClient +from .utils import get_session, logging, parse_datetime + + +if TYPE_CHECKING: + from .hf_api import HfApi + + +logger = logging.get_logger(__name__) + + +class InferenceEndpointStatus(str, Enum): + PENDING = "pending" + INITIALIZING = "initializing" + UPDATING = "updating" + UPDATE_FAILED = "updateFailed" + RUNNING = "running" + PAUSED = "paused" + FAILED = "failed" + SCALED_TO_ZERO = "scaledToZero" + + +class InferenceEndpointType(str, Enum): + PUBlIC = "public" + PROTECTED = "protected" + PRIVATE = "private" + + +@dataclass +class InferenceEndpoint: + """ + Contains information about a deployed Inference Endpoint. + + Args: + name (`str`): + The unique name of the Inference Endpoint. + namespace (`str`): + The namespace where the Inference Endpoint is located. + repository (`str`): + The name of the model repository deployed on this Inference Endpoint. + status ([`InferenceEndpointStatus`]): + The current status of the Inference Endpoint. + url (`str`, *optional*): + The URL of the Inference Endpoint, if available. Only a deployed Inference Endpoint will have a URL. + framework (`str`): + The machine learning framework used for the model. + revision (`str`): + The specific model revision deployed on the Inference Endpoint. + task (`str`): + The task associated with the deployed model. + created_at (`datetime.datetime`): + The timestamp when the Inference Endpoint was created. + updated_at (`datetime.datetime`): + The timestamp of the last update of the Inference Endpoint. + type ([`InferenceEndpointType`]): + The type of the Inference Endpoint (public, protected, private). + raw (`Dict`): + The raw dictionary data returned from the API. + token (`str` or `bool`, *optional*): + Authentication token for the Inference Endpoint, if set when requesting the API. Will default to the + locally saved token if not provided. Pass `token=False` if you don't want to send your token to the server. + + Example: + ```python + >>> from huggingface_hub import get_inference_endpoint + >>> endpoint = get_inference_endpoint("my-text-to-image") + >>> endpoint + InferenceEndpoint(name='my-text-to-image', ...) + + # Get status + >>> endpoint.status + 'running' + >>> endpoint.url + 'https://my-text-to-image.region.vendor.endpoints.huggingface.cloud' + + # Run inference + >>> endpoint.client.text_to_image(...) + + # Pause endpoint to save $$$ + >>> endpoint.pause() + + # ... + # Resume and wait for deployment + >>> endpoint.resume() + >>> endpoint.wait() + >>> endpoint.client.text_to_image(...) + ``` + """ + + # Field in __repr__ + name: str = field(init=False) + namespace: str + repository: str = field(init=False) + status: InferenceEndpointStatus = field(init=False) + url: Optional[str] = field(init=False) + + # Other fields + framework: str = field(repr=False, init=False) + revision: str = field(repr=False, init=False) + task: str = field(repr=False, init=False) + created_at: datetime = field(repr=False, init=False) + updated_at: datetime = field(repr=False, init=False) + type: InferenceEndpointType = field(repr=False, init=False) + + # Raw dict from the API + raw: Dict = field(repr=False) + + # Internal fields + _token: Union[str, bool, None] = field(repr=False, compare=False) + _api: "HfApi" = field(repr=False, compare=False) + + @classmethod + def from_raw( + cls, raw: Dict, namespace: str, token: Union[str, bool, None] = None, api: Optional["HfApi"] = None + ) -> "InferenceEndpoint": + """Initialize object from raw dictionary.""" + if api is None: + from .hf_api import HfApi + + api = HfApi() + if token is None: + token = api.token + + # All other fields are populated in __post_init__ + return cls(raw=raw, namespace=namespace, _token=token, _api=api) + + def __post_init__(self) -> None: + """Populate fields from raw dictionary.""" + self._populate_from_raw() + + @property + def client(self) -> InferenceClient: + """Returns a client to make predictions on this Inference Endpoint. + + Returns: + [`InferenceClient`]: an inference client pointing to the deployed endpoint. + + Raises: + [`InferenceEndpointError`]: If the Inference Endpoint is not yet deployed. + """ + if self.url is None: + raise InferenceEndpointError( + "Cannot create a client for this Inference Endpoint as it is not yet deployed. " + "Please wait for the Inference Endpoint to be deployed using `endpoint.wait()` and try again." + ) + return InferenceClient(model=self.url, token=self._token) + + @property + def async_client(self) -> AsyncInferenceClient: + """Returns a client to make predictions on this Inference Endpoint. + + Returns: + [`AsyncInferenceClient`]: an asyncio-compatible inference client pointing to the deployed endpoint. + + Raises: + [`InferenceEndpointError`]: If the Inference Endpoint is not yet deployed. + """ + if self.url is None: + raise InferenceEndpointError( + "Cannot create a client for this Inference Endpoint as it is not yet deployed. " + "Please wait for the Inference Endpoint to be deployed using `endpoint.wait()` and try again." + ) + return AsyncInferenceClient(model=self.url, token=self._token) + + def wait(self, timeout: Optional[int] = None, refresh_every: int = 5) -> "InferenceEndpoint": + """Wait for the Inference Endpoint to be deployed. + + Information from the server will be fetched every 1s. If the Inference Endpoint is not deployed after `timeout` + seconds, a [`InferenceEndpointTimeoutError`] will be raised. The [`InferenceEndpoint`] will be mutated in place with the latest + data. + + Args: + timeout (`int`, *optional*): + The maximum time to wait for the Inference Endpoint to be deployed, in seconds. If `None`, will wait + indefinitely. + refresh_every (`int`, *optional*): + The time to wait between each fetch of the Inference Endpoint status, in seconds. Defaults to 5s. + + Returns: + [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. + + Raises: + [`InferenceEndpointError`] + If the Inference Endpoint ended up in a failed state. + [`InferenceEndpointTimeoutError`] + If the Inference Endpoint is not deployed after `timeout` seconds. + """ + if timeout is not None and timeout < 0: + raise ValueError("`timeout` cannot be negative.") + if refresh_every <= 0: + raise ValueError("`refresh_every` must be positive.") + + start = time.time() + while True: + if self.url is not None: + # Means the URL is provisioned => check if the endpoint is reachable + response = get_session().get(self.url, headers=self._api._build_hf_headers(token=self._token)) + if response.status_code == 200: + logger.info("Inference Endpoint is ready to be used.") + return self + if self.status == InferenceEndpointStatus.FAILED: + raise InferenceEndpointError( + f"Inference Endpoint {self.name} failed to deploy. Please check the logs for more information." + ) + if timeout is not None: + if time.time() - start > timeout: + raise InferenceEndpointTimeoutError("Timeout while waiting for Inference Endpoint to be deployed.") + logger.info(f"Inference Endpoint is not deployed yet ({self.status}). Waiting {refresh_every}s...") + time.sleep(refresh_every) + self.fetch() + + def fetch(self) -> "InferenceEndpoint": + """Fetch latest information about the Inference Endpoint. + + Returns: + [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. + """ + obj = self._api.get_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token) # type: ignore [arg-type] + self.raw = obj.raw + self._populate_from_raw() + return self + + def update( + self, + *, + # Compute update + accelerator: Optional[str] = None, + instance_size: Optional[str] = None, + instance_type: Optional[str] = None, + min_replica: Optional[int] = None, + max_replica: Optional[int] = None, + # Model update + repository: Optional[str] = None, + framework: Optional[str] = None, + revision: Optional[str] = None, + task: Optional[str] = None, + ) -> "InferenceEndpoint": + """Update the Inference Endpoint. + + This method allows the update of either the compute configuration, the deployed model, or both. All arguments are + optional but at least one must be provided. + + This is an alias for [`HfApi.update_inference_endpoint`]. The current object is mutated in place with the + latest data from the server. + + Args: + accelerator (`str`, *optional*): + The hardware accelerator to be used for inference (e.g. `"cpu"`). + instance_size (`str`, *optional*): + The size or type of the instance to be used for hosting the model (e.g. `"large"`). + instance_type (`str`, *optional*): + The cloud instance type where the Inference Endpoint will be deployed (e.g. `"c6i"`). + min_replica (`int`, *optional*): + The minimum number of replicas (instances) to keep running for the Inference Endpoint. + max_replica (`int`, *optional*): + The maximum number of replicas (instances) to scale to for the Inference Endpoint. + + repository (`str`, *optional*): + The name of the model repository associated with the Inference Endpoint (e.g. `"gpt2"`). + framework (`str`, *optional*): + The machine learning framework used for the model (e.g. `"custom"`). + revision (`str`, *optional*): + The specific model revision to deploy on the Inference Endpoint (e.g. `"6c0e6080953db56375760c0471a8c5f2929baf11"`). + task (`str`, *optional*): + The task on which to deploy the model (e.g. `"text-classification"`). + + Returns: + [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. + """ + # Make API call + obj = self._api.update_inference_endpoint( + name=self.name, + namespace=self.namespace, + accelerator=accelerator, + instance_size=instance_size, + instance_type=instance_type, + min_replica=min_replica, + max_replica=max_replica, + repository=repository, + framework=framework, + revision=revision, + task=task, + token=self._token, # type: ignore [arg-type] + ) + + # Mutate current object + self.raw = obj.raw + self._populate_from_raw() + return self + + def pause(self) -> "InferenceEndpoint": + """Pause the Inference Endpoint. + + A paused Inference Endpoint will not be charged. It can be resumed at any time using [`InferenceEndpoint.resume`]. + This is different than scaling the Inference Endpoint to zero with [`InferenceEndpoint.scale_to_zero`], which + would be automatically restarted when a request is made to it. + + This is an alias for [`HfApi.pause_inference_endpoint`]. The current object is mutated in place with the + latest data from the server. + + Returns: + [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. + """ + obj = self._api.pause_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token) # type: ignore [arg-type] + self.raw = obj.raw + self._populate_from_raw() + return self + + def resume(self) -> "InferenceEndpoint": + """Resume the Inference Endpoint. + + This is an alias for [`HfApi.resume_inference_endpoint`]. The current object is mutated in place with the + latest data from the server. + + Returns: + [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. + """ + obj = self._api.resume_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token) # type: ignore [arg-type] + self.raw = obj.raw + self._populate_from_raw() + return self + + def scale_to_zero(self) -> "InferenceEndpoint": + """Scale Inference Endpoint to zero. + + An Inference Endpoint scaled to zero will not be charged. It will be resume on the next request to it, with a + cold start delay. This is different than pausing the Inference Endpoint with [`InferenceEndpoint.pause`], which + would require a manual resume with [`InferenceEndpoint.resume`]. + + This is an alias for [`HfApi.scale_to_zero_inference_endpoint`]. The current object is mutated in place with the + latest data from the server. + + Returns: + [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. + """ + obj = self._api.scale_to_zero_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token) # type: ignore [arg-type] + self.raw = obj.raw + self._populate_from_raw() + return self + + def delete(self) -> None: + """Delete the Inference Endpoint. + + This operation is not reversible. If you don't want to be charged for an Inference Endpoint, it is preferable + to pause it with [`InferenceEndpoint.pause`] or scale it to zero with [`InferenceEndpoint.scale_to_zero`]. + + This is an alias for [`HfApi.delete_inference_endpoint`]. + """ + self._api.delete_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token) # type: ignore [arg-type] + + def _populate_from_raw(self) -> None: + """Populate fields from raw dictionary. + + Called in __post_init__ + each time the Inference Endpoint is updated. + """ + # Repr fields + self.name = self.raw["name"] + self.repository = self.raw["model"]["repository"] + self.status = self.raw["status"]["state"] + self.url = self.raw["status"].get("url") + + # Other fields + self.framework = self.raw["model"]["framework"] + self.revision = self.raw["model"]["revision"] + self.task = self.raw["model"]["task"] + self.created_at = parse_datetime(self.raw["status"]["createdAt"]) + self.updated_at = parse_datetime(self.raw["status"]["updatedAt"]) + self.type = self.raw["type"] diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_local_folder.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_local_folder.py new file mode 100644 index 0000000000000000000000000000000000000000..40b66e1c11363575132c62dd55dc1a7b666d7ff9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_local_folder.py @@ -0,0 +1,229 @@ +# coding=utf-8 +# Copyright 2024-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains utilities to handle the `../.huggingface` folder in local directories. + +First discussed in https://github.com/huggingface/huggingface_hub/issues/1738 to store +download metadata when downloading files from the hub to a local directory (without +using the cache). + +./.huggingface folder structure: +[4.0K] data +├── [4.0K] .huggingface +│ └── [4.0K] download +│ ├── [ 16] file.parquet.metadata +│ ├── [ 16] file.txt.metadata +│ └── [4.0K] folder +│ └── [ 16] file.parquet.metadata +│ +├── [6.5G] file.parquet +├── [1.5K] file.txt +└── [4.0K] folder + └── [ 16] file.parquet + + +Metadata file structure: +``` +# file.txt.metadata +11c5a3d5811f50298f278a704980280950aedb10 +a16a55fda99d2f2e7b69cce5cf93ff4ad3049930 +1712656091.123 + +# file.parquet.metadata +11c5a3d5811f50298f278a704980280950aedb10 +7c5d3f4b8b76583b422fcb9189ad6c89d5d97a094541ce8932dce3ecabde1421 +1712656091.123 +} +``` +""" + +import logging +import os +import time +from dataclasses import dataclass +from functools import lru_cache +from pathlib import Path +from typing import Optional + +from .utils import WeakFileLock + + +logger = logging.getLogger(__name__) + + +@dataclass +class LocalDownloadFilePaths: + """ + Paths to the files related to a download process in a local dir. + + Returned by `get_local_download_paths`. + + Attributes: + file_path (`Path`): + Path where the file will be saved. + lock_path (`Path`): + Path to the lock file used to ensure atomicity when reading/writing metadata. + metadata_path (`Path`): + Path to the metadata file. + """ + + file_path: Path + lock_path: Path + metadata_path: Path + + def incomplete_path(self, etag: str) -> Path: + """Return the path where a file will be temporarily downloaded before being moved to `file_path`.""" + return self.metadata_path.with_suffix(f".{etag}.incomplete") + + +@dataclass +class LocalDownloadFileMetadata: + """ + Metadata about a file in the local directory related to a download process. + + Attributes: + filename (`str`): + Path of the file in the repo. + commit_hash (`str`): + Commit hash of the file in the repo. + etag (`str`): + ETag of the file in the repo. Used to check if the file has changed. + For LFS files, this is the sha256 of the file. For regular files, it corresponds to the git hash. + timestamp (`int`): + Unix timestamp of when the metadata was saved i.e. when the metadata was accurate. + """ + + filename: str + commit_hash: str + etag: str + timestamp: float + + +@lru_cache(maxsize=128) # ensure singleton +def get_local_download_paths(local_dir: Path, filename: str) -> LocalDownloadFilePaths: + """Compute paths to the files related to a download process. + + Folders containing the paths are all guaranteed to exist. + + Args: + local_dir (`Path`): + Path to the local directory in which files are downloaded. + filename (`str`): + Path of the file in the repo. + + Return: + [`LocalDownloadFilePaths`]: the paths to the files (file_path, lock_path, metadata_path, incomplete_path). + """ + # filename is the path in the Hub repository (separated by '/') + # make sure to have a cross platform transcription + sanitized_filename = os.path.join(*filename.split("/")) + if os.name == "nt": + if sanitized_filename.startswith("..\\") or "\\..\\" in sanitized_filename: + raise ValueError( + f"Invalid filename: cannot handle filename '{sanitized_filename}' on Windows. Please ask the repository" + " owner to rename this file." + ) + file_path = local_dir / sanitized_filename + metadata_path = _huggingface_dir(local_dir) / "download" / f"{sanitized_filename}.metadata" + lock_path = metadata_path.with_suffix(".lock") + + file_path.parent.mkdir(parents=True, exist_ok=True) + metadata_path.parent.mkdir(parents=True, exist_ok=True) + return LocalDownloadFilePaths(file_path=file_path, lock_path=lock_path, metadata_path=metadata_path) + + +def read_download_metadata(local_dir: Path, filename: str) -> Optional[LocalDownloadFileMetadata]: + """Read metadata about a file in the local directory related to a download process. + + Args: + local_dir (`Path`): + Path to the local directory in which files are downloaded. + filename (`str`): + Path of the file in the repo. + + Return: + `[LocalDownloadFileMetadata]` or `None`: the metadata if it exists, `None` otherwise. + """ + paths = get_local_download_paths(local_dir, filename) + # file_path = local_file_path(local_dir, filename) + # lock_path, metadata_path = _download_metadata_file_path(local_dir, filename) + with WeakFileLock(paths.lock_path): + if paths.metadata_path.exists(): + try: + with paths.metadata_path.open() as f: + commit_hash = f.readline().strip() + etag = f.readline().strip() + timestamp = float(f.readline().strip()) + metadata = LocalDownloadFileMetadata( + filename=filename, + commit_hash=commit_hash, + etag=etag, + timestamp=timestamp, + ) + except Exception as e: + # remove the metadata file if it is corrupted / not the right format + logger.warning( + f"Invalid metadata file {paths.metadata_path}: {e}. Removing it from disk and continue." + ) + try: + paths.metadata_path.unlink() + except Exception as e: + logger.warning(f"Could not remove corrupted metadata file {paths.metadata_path}: {e}") + + try: + # check if the file exists and hasn't been modified since the metadata was saved + stat = paths.file_path.stat() + if ( + stat.st_mtime - 1 <= metadata.timestamp + ): # allow 1s difference as stat.st_mtime might not be precise + return metadata + logger.info(f"Ignored metadata for '{filename}' (outdated). Will re-compute hash.") + except FileNotFoundError: + # file does not exist => metadata is outdated + return None + return None + + +def write_download_metadata(local_dir: Path, filename: str, commit_hash: str, etag: str) -> None: + """Write metadata about a file in the local directory related to a download process. + + Args: + local_dir (`Path`): + Path to the local directory in which files are downloaded. + """ + paths = get_local_download_paths(local_dir, filename) + with WeakFileLock(paths.lock_path): + with paths.metadata_path.open("w") as f: + f.write(f"{commit_hash}\n{etag}\n{time.time()}\n") + + +@lru_cache() +def _huggingface_dir(local_dir: Path) -> Path: + """Return the path to the `.huggingface` directory in a local directory.""" + # Wrap in lru_cache to avoid overwriting the .gitignore file if called multiple times + path = local_dir / ".huggingface" + path.mkdir(exist_ok=True, parents=True) + + # Create a .gitignore file in the .huggingface directory if it doesn't exist + # Should be thread-safe enough like this. + gitignore = path / ".gitignore" + gitignore_lock = path / ".gitignore.lock" + if not gitignore.exists(): + with WeakFileLock(gitignore_lock): + gitignore.write_text("*") + try: + gitignore_lock.unlink() + except OSError: # FileNotFoundError, PermissionError, etc. + pass + return path diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_login.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_login.py new file mode 100644 index 0000000000000000000000000000000000000000..84814056f3719579d151eb9af13c5560af96a847 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_login.py @@ -0,0 +1,397 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains methods to login to the Hub.""" + +import os +import subprocess +from functools import partial +from getpass import getpass +from pathlib import Path +from typing import Optional + +from . import constants +from .commands._cli_utils import ANSI +from .utils import ( + capture_output, + get_token, + is_google_colab, + is_notebook, + list_credential_helpers, + logging, + run_subprocess, + set_git_credential, + unset_git_credential, +) +from .utils._token import _get_token_from_environment, _get_token_from_google_colab + + +logger = logging.get_logger(__name__) + +_HF_LOGO_ASCII = """ + _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_| + _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _| + _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_| + _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _| + _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_| +""" + + +def login( + token: Optional[str] = None, + add_to_git_credential: bool = False, + new_session: bool = True, + write_permission: bool = False, +) -> None: + """Login the machine to access the Hub. + + The `token` is persisted in cache and set as a git credential. Once done, the machine + is logged in and the access token will be available across all `huggingface_hub` + components. If `token` is not provided, it will be prompted to the user either with + a widget (in a notebook) or via the terminal. + + To login from outside of a script, one can also use `huggingface-cli login` which is + a cli command that wraps [`login`]. + + + + [`login`] is a drop-in replacement method for [`notebook_login`] as it wraps and + extends its capabilities. + + + + + + When the token is not passed, [`login`] will automatically detect if the script runs + in a notebook or not. However, this detection might not be accurate due to the + variety of notebooks that exists nowadays. If that is the case, you can always force + the UI by using [`notebook_login`] or [`interpreter_login`]. + + + + Args: + token (`str`, *optional*): + User access token to generate from https://huggingface.co/settings/token. + add_to_git_credential (`bool`, defaults to `False`): + If `True`, token will be set as git credential. If no git credential helper + is configured, a warning will be displayed to the user. If `token` is `None`, + the value of `add_to_git_credential` is ignored and will be prompted again + to the end user. + new_session (`bool`, defaults to `True`): + If `True`, will request a token even if one is already saved on the machine. + write_permission (`bool`, defaults to `False`): + If `True`, requires a token with write permission. + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If an organization token is passed. Only personal account tokens are valid + to login. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If token is invalid. + [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError) + If running in a notebook but `ipywidgets` is not installed. + """ + if token is not None: + if not add_to_git_credential: + print( + "The token has not been saved to the git credentials helper. Pass " + "`add_to_git_credential=True` in this function directly or " + "`--add-to-git-credential` if using via `huggingface-cli` if " + "you want to set the git credential as well." + ) + _login(token, add_to_git_credential=add_to_git_credential, write_permission=write_permission) + elif is_notebook(): + notebook_login(new_session=new_session, write_permission=write_permission) + else: + interpreter_login(new_session=new_session, write_permission=write_permission) + + +def logout() -> None: + """Logout the machine from the Hub. + + Token is deleted from the machine and removed from git credential. + """ + if get_token() is None: + print("Not logged in!") + return + + # Delete token from git credentials + unset_git_credential() + + # Delete token file + try: + Path(constants.HF_TOKEN_PATH).unlink() + except FileNotFoundError: + pass + + # Check if still logged in + if _get_token_from_google_colab() is not None: + raise EnvironmentError( + "You are automatically logged in using a Google Colab secret.\n" + "To log out, you must unset the `HF_TOKEN` secret in your Colab settings." + ) + if _get_token_from_environment() is not None: + raise EnvironmentError( + "Token has been deleted from your machine but you are still logged in.\n" + "To log out, you must clear out both `HF_TOKEN` and `HUGGING_FACE_HUB_TOKEN` environment variables." + ) + + print("Successfully logged out.") + + +### +# Interpreter-based login (text) +### + + +def interpreter_login(new_session: bool = True, write_permission: bool = False) -> None: + """ + Displays a prompt to login to the HF website and store the token. + + This is equivalent to [`login`] without passing a token when not run in a notebook. + [`interpreter_login`] is useful if you want to force the use of the terminal prompt + instead of a notebook widget. + + For more details, see [`login`]. + + Args: + new_session (`bool`, defaults to `True`): + If `True`, will request a token even if one is already saved on the machine. + write_permission (`bool`, defaults to `False`): + If `True`, requires a token with write permission. + + """ + if not new_session and _current_token_okay(write_permission=write_permission): + print("User is already logged in.") + return + + from .commands.delete_cache import _ask_for_confirmation_no_tui + + print(_HF_LOGO_ASCII) + if get_token() is not None: + print( + " A token is already saved on your machine. Run `huggingface-cli" + " whoami` to get more information or `huggingface-cli logout` if you want" + " to log out." + ) + print(" Setting a new token will erase the existing one.") + + print(" To login, `huggingface_hub` requires a token generated from https://huggingface.co/settings/tokens .") + if os.name == "nt": + print("Token can be pasted using 'Right-Click'.") + token = getpass("Enter your token (input will not be visible): ") + add_to_git_credential = _ask_for_confirmation_no_tui("Add token as git credential?") + + _login(token=token, add_to_git_credential=add_to_git_credential, write_permission=write_permission) + + +### +# Notebook-based login (widget) +### + +NOTEBOOK_LOGIN_PASSWORD_HTML = """

Immediately click login after typing your password or +it might be stored in plain text in this notebook file.
""" + + +NOTEBOOK_LOGIN_TOKEN_HTML_START = """

Copy a token from your Hugging Face +tokens page and paste it below.
Immediately click login after copying +your token or it might be stored in plain text in this notebook file.
""" + + +NOTEBOOK_LOGIN_TOKEN_HTML_END = """ +Pro Tip: If you don't already have one, you can create a dedicated +'notebooks' token with 'write' access, that you can then easily reuse for all +notebooks. """ + + +def notebook_login(new_session: bool = True, write_permission: bool = False) -> None: + """ + Displays a widget to login to the HF website and store the token. + + This is equivalent to [`login`] without passing a token when run in a notebook. + [`notebook_login`] is useful if you want to force the use of the notebook widget + instead of a prompt in the terminal. + + For more details, see [`login`]. + + Args: + new_session (`bool`, defaults to `True`): + If `True`, will request a token even if one is already saved on the machine. + write_permission (`bool`, defaults to `False`): + If `True`, requires a token with write permission. + """ + try: + import ipywidgets.widgets as widgets # type: ignore + from IPython.display import display # type: ignore + except ImportError: + raise ImportError( + "The `notebook_login` function can only be used in a notebook (Jupyter or" + " Colab) and you need the `ipywidgets` module: `pip install ipywidgets`." + ) + if not new_session and _current_token_okay(write_permission=write_permission): + print("User is already logged in.") + return + + box_layout = widgets.Layout(display="flex", flex_flow="column", align_items="center", width="50%") + + token_widget = widgets.Password(description="Token:") + git_checkbox_widget = widgets.Checkbox(value=True, description="Add token as git credential?") + token_finish_button = widgets.Button(description="Login") + + login_token_widget = widgets.VBox( + [ + widgets.HTML(NOTEBOOK_LOGIN_TOKEN_HTML_START), + token_widget, + git_checkbox_widget, + token_finish_button, + widgets.HTML(NOTEBOOK_LOGIN_TOKEN_HTML_END), + ], + layout=box_layout, + ) + display(login_token_widget) + + # On click events + def login_token_event(t, write_permission: bool = False): + """ + Event handler for the login button. + + Args: + write_permission (`bool`, defaults to `False`): + If `True`, requires a token with write permission. + """ + token = token_widget.value + add_to_git_credential = git_checkbox_widget.value + # Erase token and clear value to make sure it's not saved in the notebook. + token_widget.value = "" + # Hide inputs + login_token_widget.children = [widgets.Label("Connecting...")] + try: + with capture_output() as captured: + _login(token, add_to_git_credential=add_to_git_credential, write_permission=write_permission) + message = captured.getvalue() + except Exception as error: + message = str(error) + # Print result (success message or error) + login_token_widget.children = [widgets.Label(line) for line in message.split("\n") if line.strip()] + + token_finish_button.on_click(partial(login_token_event, write_permission=write_permission)) + + +### +# Login private helpers +### + + +def _login(token: str, add_to_git_credential: bool, write_permission: bool = False) -> None: + from .hf_api import get_token_permission # avoid circular import + + if token.startswith("api_org"): + raise ValueError("You must use your personal account token, not an organization token.") + + permission = get_token_permission(token) + if permission is None: + raise ValueError("Invalid token passed!") + elif write_permission and permission != "write": + raise ValueError( + "Token is valid but is 'read-only' and a 'write' token is required.\nPlease provide a new token with" + " correct permission." + ) + print(f"Token is valid (permission: {permission}).") + + if add_to_git_credential: + if _is_git_credential_helper_configured(): + set_git_credential(token) + print( + "Your token has been saved in your configured git credential helpers" + + f" ({','.join(list_credential_helpers())})." + ) + else: + print("Token has not been saved to git credential helper.") + + # Save token + path = Path(constants.HF_TOKEN_PATH) + path.parent.mkdir(parents=True, exist_ok=True) + path.write_text(token) + print(f"Your token has been saved to {constants.HF_TOKEN_PATH}") + print("Login successful") + + +def _current_token_okay(write_permission: bool = False): + """Check if the current token is valid. + + Args: + write_permission (`bool`, defaults to `False`): + If `True`, requires a token with write permission. + + Returns: + `bool`: `True` if the current token is valid, `False` otherwise. + """ + from .hf_api import get_token_permission # avoid circular import + + permission = get_token_permission() + if permission is None or (write_permission and permission != "write"): + return False + return True + + +def _is_git_credential_helper_configured() -> bool: + """Check if a git credential helper is configured. + + Warns user if not the case (except for Google Colab where "store" is set by default + by `huggingface_hub`). + """ + helpers = list_credential_helpers() + if len(helpers) > 0: + return True # Do not warn: at least 1 helper is set + + # Only in Google Colab to avoid the warning message + # See https://github.com/huggingface/huggingface_hub/issues/1043#issuecomment-1247010710 + if is_google_colab(): + _set_store_as_git_credential_helper_globally() + return True # Do not warn: "store" is used by default in Google Colab + + # Otherwise, warn user + print( + ANSI.red( + "Cannot authenticate through git-credential as no helper is defined on your" + " machine.\nYou might have to re-authenticate when pushing to the Hugging" + " Face Hub.\nRun the following command in your terminal in case you want to" + " set the 'store' credential helper as default.\n\ngit config --global" + " credential.helper store\n\nRead" + " https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage for more" + " details." + ) + ) + return False + + +def _set_store_as_git_credential_helper_globally() -> None: + """Set globally the credential.helper to `store`. + + To be used only in Google Colab as we assume the user doesn't care about the git + credential config. It is the only particular case where we don't want to display the + warning message in [`notebook_login()`]. + + Related: + - https://github.com/huggingface/huggingface_hub/issues/1043 + - https://github.com/huggingface/huggingface_hub/issues/1051 + - https://git-scm.com/docs/git-credential-store + """ + try: + run_subprocess("git config --global credential.helper store") + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_multi_commits.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_multi_commits.py new file mode 100644 index 0000000000000000000000000000000000000000..c79377b092096140be8297087fa5ba1b1a813d43 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_multi_commits.py @@ -0,0 +1,306 @@ +# coding=utf-8 +# Copyright 2023-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains utilities to multi-commits (i.e. push changes iteratively on a PR).""" + +import re +from dataclasses import dataclass, field +from typing import TYPE_CHECKING, Iterable, List, Optional, Set, Tuple, Union + +from ._commit_api import CommitOperationAdd, CommitOperationDelete +from .community import DiscussionWithDetails +from .utils import experimental +from .utils._cache_manager import _format_size +from .utils.insecure_hashlib import sha256 + + +if TYPE_CHECKING: + from .hf_api import HfApi + + +class MultiCommitException(Exception): + """Base exception for any exception happening while doing a multi-commit.""" + + +MULTI_COMMIT_PR_DESCRIPTION_TEMPLATE = """ +## {commit_message} + +{commit_description} + +**Multi commit ID:** {multi_commit_id} + +Scheduled commits: + +{multi_commit_strategy} + +_This is a PR opened using the `huggingface_hub` library in the context of a multi-commit. PR can be commented as a usual PR. However, please be aware that manually updating the PR description, changing the PR status, or pushing new commits, is not recommended as it might corrupt the commit process. Learn more about multi-commits [in this guide](https://huggingface.co/docs/huggingface_hub/main/guides/upload)._ +""" + +MULTI_COMMIT_PR_COMPLETION_COMMENT_TEMPLATE = """ +Multi-commit is now completed! You can ping the repo owner to review the changes. This PR can now be commented or modified without risking to corrupt it. + +_This is a comment posted using the `huggingface_hub` library in the context of a multi-commit. Learn more about multi-commits [in this guide](https://huggingface.co/docs/huggingface_hub/main/guides/upload)._ +""" + +MULTI_COMMIT_PR_CLOSING_COMMENT_TEMPLATE = """ +`create_pr=False` has been passed so PR is automatically merged. + +_This is a comment posted using the `huggingface_hub` library in the context of a multi-commit. Learn more about multi-commits [in this guide](https://huggingface.co/docs/huggingface_hub/main/guides/upload)._ +""" + +MULTI_COMMIT_PR_CLOSE_COMMENT_FAILURE_NO_CHANGES_TEMPLATE = """ +Cannot merge Pull Requests as no changes are associated. This PR will be closed automatically. + +_This is a comment posted using the `huggingface_hub` library in the context of a multi-commit. Learn more about multi-commits [in this guide](https://huggingface.co/docs/huggingface_hub/main/guides/upload)._ +""" + +MULTI_COMMIT_PR_CLOSE_COMMENT_FAILURE_BAD_REQUEST_TEMPLATE = """ +An error occurred while trying to merge the Pull Request: `{error_message}`. + +_This is a comment posted using the `huggingface_hub` library in the context of a multi-commit. Learn more about multi-commits [in this guide](https://huggingface.co/docs/huggingface_hub/main/guides/upload)._ +""" + + +STEP_ID_REGEX = re.compile(r"- \[(?P[ |x])\].*(?P[a-fA-F0-9]{64})", flags=re.MULTILINE) + + +@experimental +def plan_multi_commits( + operations: Iterable[Union[CommitOperationAdd, CommitOperationDelete]], + max_operations_per_commit: int = 50, + max_upload_size_per_commit: int = 2 * 1024 * 1024 * 1024, +) -> Tuple[List[List[CommitOperationAdd]], List[List[CommitOperationDelete]]]: + """Split a list of operations in a list of commits to perform. + + Implementation follows a sub-optimal (yet simple) algorithm: + 1. Delete operations are grouped together by commits of maximum `max_operations_per_commits` operations. + 2. All additions exceeding `max_upload_size_per_commit` are committed 1 by 1. + 3. All remaining additions are grouped together and split each time the `max_operations_per_commit` or the + `max_upload_size_per_commit` limit is reached. + + We do not try to optimize the splitting to get the lowest number of commits as this is a NP-hard problem (see + [bin packing problem](https://en.wikipedia.org/wiki/Bin_packing_problem)). For our use case, it is not problematic + to use a sub-optimal solution so we favored an easy-to-explain implementation. + + Args: + operations (`List` of [`~hf_api.CommitOperation`]): + The list of operations to split into commits. + max_operations_per_commit (`int`): + Maximum number of operations in a single commit. Defaults to 50. + max_upload_size_per_commit (`int`): + Maximum size to upload (in bytes) in a single commit. Defaults to 2GB. Files bigger than this limit are + uploaded, 1 per commit. + + Returns: + `Tuple[List[List[CommitOperationAdd]], List[List[CommitOperationDelete]]]`: a tuple. First item is a list of + lists of [`CommitOperationAdd`] representing the addition commits to push. The second item is a list of lists + of [`CommitOperationDelete`] representing the deletion commits. + + + + `plan_multi_commits` is experimental. Its API and behavior is subject to change in the future without prior notice. + + + + Example: + ```python + >>> from huggingface_hub import HfApi, plan_multi_commits + >>> addition_commits, deletion_commits = plan_multi_commits( + ... operations=[ + ... CommitOperationAdd(...), + ... CommitOperationAdd(...), + ... CommitOperationDelete(...), + ... CommitOperationDelete(...), + ... CommitOperationAdd(...), + ... ], + ... ) + >>> HfApi().create_commits_on_pr( + ... repo_id="my-cool-model", + ... addition_commits=addition_commits, + ... deletion_commits=deletion_commits, + ... (...) + ... verbose=True, + ... ) + ``` + + + + The initial order of the operations is not guaranteed! All deletions will be performed before additions. If you are + not updating multiple times the same file, you are fine. + + + """ + addition_commits: List[List[CommitOperationAdd]] = [] + deletion_commits: List[List[CommitOperationDelete]] = [] + + additions: List[CommitOperationAdd] = [] + additions_size = 0 + deletions: List[CommitOperationDelete] = [] + for op in operations: + if isinstance(op, CommitOperationDelete): + # Group delete operations together + deletions.append(op) + if len(deletions) >= max_operations_per_commit: + deletion_commits.append(deletions) + deletions = [] + + elif op.upload_info.size >= max_upload_size_per_commit: + # Upload huge files 1 by 1 + addition_commits.append([op]) + + elif additions_size + op.upload_info.size < max_upload_size_per_commit: + # Group other additions and split if size limit is reached (either max_nb_files or max_upload_size) + additions.append(op) + additions_size += op.upload_info.size + + else: + addition_commits.append(additions) + additions = [op] + additions_size = op.upload_info.size + + if len(additions) >= max_operations_per_commit: + addition_commits.append(additions) + additions = [] + additions_size = 0 + + if len(additions) > 0: + addition_commits.append(additions) + if len(deletions) > 0: + deletion_commits.append(deletions) + + return addition_commits, deletion_commits + + +@dataclass +class MultiCommitStep: + """Dataclass containing a list of CommitOperation to commit at once. + + A [`MultiCommitStep`] is one atomic part of a [`MultiCommitStrategy`]. Each step is identified by its own + deterministic ID based on the list of commit operations (hexadecimal sha256). ID is persistent between re-runs if + the list of commits is kept the same. + """ + + operations: List[Union[CommitOperationAdd, CommitOperationDelete]] + + id: str = field(init=False) + completed: bool = False + + def __post_init__(self) -> None: + if len(self.operations) == 0: + raise ValueError("A MultiCommitStep must have at least 1 commit operation, got 0.") + + # Generate commit id + sha = sha256() + for op in self.operations: + if isinstance(op, CommitOperationAdd): + sha.update(b"ADD") + sha.update(op.path_in_repo.encode()) + sha.update(op.upload_info.sha256) + elif isinstance(op, CommitOperationDelete): + sha.update(b"DELETE") + sha.update(op.path_in_repo.encode()) + sha.update(str(op.is_folder).encode()) + else: + NotImplementedError() + self.id = sha.hexdigest() + + def __str__(self) -> str: + """Format a step for PR description. + + Formatting can be changed in the future as long as it is single line, starts with `- [ ]`/`- [x]` and contains + `self.id`. Must be able to match `STEP_ID_REGEX`. + """ + additions = [op for op in self.operations if isinstance(op, CommitOperationAdd)] + file_deletions = [op for op in self.operations if isinstance(op, CommitOperationDelete) and not op.is_folder] + folder_deletions = [op for op in self.operations if isinstance(op, CommitOperationDelete) and op.is_folder] + if len(additions) > 0: + return ( + f"- [{'x' if self.completed else ' '}] Upload {len(additions)} file(s) " + f"totalling {_format_size(sum(add.upload_info.size for add in additions))}" + f" ({self.id})" + ) + else: + return ( + f"- [{'x' if self.completed else ' '}] Delete {len(file_deletions)} file(s) and" + f" {len(folder_deletions)} folder(s) ({self.id})" + ) + + +@dataclass +class MultiCommitStrategy: + """Dataclass containing a list of [`MultiCommitStep`] to commit iteratively. + + A strategy is identified by its own deterministic ID based on the list of its steps (hexadecimal sha256). ID is + persistent between re-runs if the list of commits is kept the same. + """ + + addition_commits: List[MultiCommitStep] + deletion_commits: List[MultiCommitStep] + + id: str = field(init=False) + all_steps: Set[str] = field(init=False) + + def __post_init__(self) -> None: + self.all_steps = {step.id for step in self.addition_commits + self.deletion_commits} + if len(self.all_steps) < len(self.addition_commits) + len(self.deletion_commits): + raise ValueError("Got duplicate commits in MultiCommitStrategy. All commits must be unique.") + + if len(self.all_steps) == 0: + raise ValueError("A MultiCommitStrategy must have at least 1 commit, got 0.") + + # Generate strategy id + sha = sha256() + for step in self.addition_commits + self.deletion_commits: + sha.update("new step".encode()) + sha.update(step.id.encode()) + self.id = sha.hexdigest() + + +def multi_commit_create_pull_request( + api: "HfApi", + repo_id: str, + commit_message: str, + commit_description: Optional[str], + strategy: MultiCommitStrategy, + repo_type: Optional[str], + token: Union[str, bool, None] = None, +) -> DiscussionWithDetails: + return api.create_pull_request( + repo_id=repo_id, + title=f"[WIP] {commit_message} (multi-commit {strategy.id})", + description=multi_commit_generate_comment( + commit_message=commit_message, commit_description=commit_description, strategy=strategy + ), + token=token, + repo_type=repo_type, + ) + + +def multi_commit_generate_comment( + commit_message: str, + commit_description: Optional[str], + strategy: MultiCommitStrategy, +) -> str: + return MULTI_COMMIT_PR_DESCRIPTION_TEMPLATE.format( + commit_message=commit_message, + commit_description=commit_description or "", + multi_commit_id=strategy.id, + multi_commit_strategy="\n".join( + str(commit) for commit in strategy.deletion_commits + strategy.addition_commits + ), + ) + + +def multi_commit_parse_pr_description(description: str) -> Set[str]: + return {match[1] for match in STEP_ID_REGEX.findall(description)} diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_snapshot_download.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_snapshot_download.py new file mode 100644 index 0000000000000000000000000000000000000000..2a29da6838783aa03a7f920040dba8450a0b825c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_snapshot_download.py @@ -0,0 +1,305 @@ +import os +from pathlib import Path +from typing import Dict, List, Literal, Optional, Union + +import requests +from tqdm.auto import tqdm as base_tqdm +from tqdm.contrib.concurrent import thread_map + +from .constants import ( + DEFAULT_ETAG_TIMEOUT, + DEFAULT_REVISION, + HF_HUB_CACHE, + HF_HUB_ENABLE_HF_TRANSFER, + REPO_TYPES, +) +from .file_download import REGEX_COMMIT_HASH, hf_hub_download, repo_folder_name +from .hf_api import DatasetInfo, HfApi, ModelInfo, SpaceInfo +from .utils import ( + GatedRepoError, + LocalEntryNotFoundError, + OfflineModeIsEnabled, + RepositoryNotFoundError, + RevisionNotFoundError, + filter_repo_objects, + logging, + validate_hf_hub_args, +) +from .utils import tqdm as hf_tqdm + + +logger = logging.get_logger(__name__) + + +@validate_hf_hub_args +def snapshot_download( + repo_id: str, + *, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + cache_dir: Union[str, Path, None] = None, + local_dir: Union[str, Path, None] = None, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + user_agent: Optional[Union[Dict, str]] = None, + proxies: Optional[Dict] = None, + etag_timeout: float = DEFAULT_ETAG_TIMEOUT, + force_download: bool = False, + token: Optional[Union[bool, str]] = None, + local_files_only: bool = False, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + max_workers: int = 8, + tqdm_class: Optional[base_tqdm] = None, + headers: Optional[Dict[str, str]] = None, + endpoint: Optional[str] = None, + # Deprecated args + local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto", + resume_download: Optional[bool] = None, +) -> str: + """Download repo files. + + Download a whole snapshot of a repo's files at the specified revision. This is useful when you want all files from + a repo, because you don't know which ones you will need a priori. All files are nested inside a folder in order + to keep their actual filename relative to that folder. You can also filter which files to download using + `allow_patterns` and `ignore_patterns`. + + If `local_dir` is provided, the file structure from the repo will be replicated in this location. When using this + option, the `cache_dir` will not be used and a `.huggingface/` folder will be created at the root of `local_dir` + to store some metadata related to the downloaded files. While this mechanism is not as robust as the main + cache-system, it's optimized for regularly pulling the latest version of a repository. + + An alternative would be to clone the repo but this requires git and git-lfs to be installed and properly + configured. It is also not possible to filter which files to download when cloning a repository using git. + + Args: + repo_id (`str`): + A user or an organization name and a repo name separated by a `/`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if downloading from a dataset or space, + `None` or `"model"` if downloading from a model. Default is `None`. + revision (`str`, *optional*): + An optional Git revision id which can be a branch name, a tag, or a + commit hash. + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + local_dir (`str` or `Path`, *optional*): + If provided, the downloaded files will be placed under this directory. + library_name (`str`, *optional*): + The name of the library to which the object corresponds. + library_version (`str`, *optional*): + The version of the library. + user_agent (`str`, `dict`, *optional*): + The user-agent info in the form of a dictionary or a string. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to + `requests.request`. + etag_timeout (`float`, *optional*, defaults to `10`): + When fetching ETag, how many seconds to wait for the server to send + data before giving up which is passed to `requests.request`. + force_download (`bool`, *optional*, defaults to `False`): + Whether the file should be downloaded even if it already exists in the local cache. + token (`str`, `bool`, *optional*): + A token to be used for the download. + - If `True`, the token is read from the HuggingFace config + folder. + - If a string, it's used as the authentication token. + headers (`dict`, *optional*): + Additional headers to include in the request. Those headers take precedence over the others. + local_files_only (`bool`, *optional*, defaults to `False`): + If `True`, avoid downloading the file and return the path to the + local cached file if it exists. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are downloaded. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not downloaded. + max_workers (`int`, *optional*): + Number of concurrent threads to download files (1 thread = 1 file download). + Defaults to 8. + tqdm_class (`tqdm`, *optional*): + If provided, overwrites the default behavior for the progress bar. Passed + argument must inherit from `tqdm.auto.tqdm` or at least mimic its behavior. + Note that the `tqdm_class` is not passed to each individual download. + Defaults to the custom HF progress bar that can be disabled by setting + `HF_HUB_DISABLE_PROGRESS_BARS` environment variable. + + Returns: + `str`: folder path of the repo snapshot. + + Raises: + - [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + if `token=True` and the token cannot be found. + - [`OSError`](https://docs.python.org/3/library/exceptions.html#OSError) if + ETag cannot be determined. + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + """ + if cache_dir is None: + cache_dir = HF_HUB_CACHE + if revision is None: + revision = DEFAULT_REVISION + if isinstance(cache_dir, Path): + cache_dir = str(cache_dir) + + if repo_type is None: + repo_type = "model" + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type: {repo_type}. Accepted repo types are: {str(REPO_TYPES)}") + + storage_folder = os.path.join(cache_dir, repo_folder_name(repo_id=repo_id, repo_type=repo_type)) + + repo_info: Union[ModelInfo, DatasetInfo, SpaceInfo, None] = None + api_call_error: Optional[Exception] = None + if not local_files_only: + # try/except logic to handle different errors => taken from `hf_hub_download` + try: + # if we have internet connection we want to list files to download + api = HfApi( + library_name=library_name, + library_version=library_version, + user_agent=user_agent, + endpoint=endpoint, + headers=headers, + ) + repo_info = api.repo_info(repo_id=repo_id, repo_type=repo_type, revision=revision, token=token) + except (requests.exceptions.SSLError, requests.exceptions.ProxyError): + # Actually raise for those subclasses of ConnectionError + raise + except ( + requests.exceptions.ConnectionError, + requests.exceptions.Timeout, + OfflineModeIsEnabled, + ) as error: + # Internet connection is down + # => will try to use local files only + api_call_error = error + pass + except RevisionNotFoundError: + # The repo was found but the revision doesn't exist on the Hub (never existed or got deleted) + raise + except requests.HTTPError as error: + # Multiple reasons for an http error: + # - Repository is private and invalid/missing token sent + # - Repository is gated and invalid/missing token sent + # - Hub is down (error 500 or 504) + # => let's switch to 'local_files_only=True' to check if the files are already cached. + # (if it's not the case, the error will be re-raised) + api_call_error = error + pass + + # At this stage, if `repo_info` is None it means either: + # - internet connection is down + # - internet connection is deactivated (local_files_only=True or HF_HUB_OFFLINE=True) + # - repo is private/gated and invalid/missing token sent + # - Hub is down + # => let's look if we can find the appropriate folder in the cache: + # - if the specified revision is a commit hash, look inside "snapshots". + # - f the specified revision is a branch or tag, look inside "refs". + if repo_info is None: + # Try to get which commit hash corresponds to the specified revision + commit_hash = None + if REGEX_COMMIT_HASH.match(revision): + commit_hash = revision + else: + ref_path = os.path.join(storage_folder, "refs", revision) + if os.path.exists(ref_path): + # retrieve commit_hash from refs file + with open(ref_path) as f: + commit_hash = f.read() + + # Try to locate snapshot folder for this commit hash + if commit_hash is not None: + snapshot_folder = os.path.join(storage_folder, "snapshots", commit_hash) + if os.path.exists(snapshot_folder): + # Snapshot folder exists => let's return it + # (but we can't check if all the files are actually there) + return snapshot_folder + + # If we couldn't find the appropriate folder on disk, raise an error. + if local_files_only: + raise LocalEntryNotFoundError( + "Cannot find an appropriate cached snapshot folder for the specified revision on the local disk and " + "outgoing traffic has been disabled. To enable repo look-ups and downloads online, pass " + "'local_files_only=False' as input." + ) + elif isinstance(api_call_error, OfflineModeIsEnabled): + raise LocalEntryNotFoundError( + "Cannot find an appropriate cached snapshot folder for the specified revision on the local disk and " + "outgoing traffic has been disabled. To enable repo look-ups and downloads online, set " + "'HF_HUB_OFFLINE=0' as environment variable." + ) from api_call_error + elif isinstance(api_call_error, RepositoryNotFoundError) or isinstance(api_call_error, GatedRepoError): + # Repo not found => let's raise the actual error + raise api_call_error + else: + # Otherwise: most likely a connection issue or Hub downtime => let's warn the user + raise LocalEntryNotFoundError( + "An error happened while trying to locate the files on the Hub and we cannot find the appropriate" + " snapshot folder for the specified revision on the local disk. Please check your internet connection" + " and try again." + ) from api_call_error + + # At this stage, internet connection is up and running + # => let's download the files! + assert repo_info.sha is not None, "Repo info returned from server must have a revision sha." + assert repo_info.siblings is not None, "Repo info returned from server must have a siblings list." + filtered_repo_files = list( + filter_repo_objects( + items=[f.rfilename for f in repo_info.siblings], + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + ) + ) + commit_hash = repo_info.sha + snapshot_folder = os.path.join(storage_folder, "snapshots", commit_hash) + # if passed revision is not identical to commit_hash + # then revision has to be a branch name or tag name. + # In that case store a ref. + if revision != commit_hash: + ref_path = os.path.join(storage_folder, "refs", revision) + os.makedirs(os.path.dirname(ref_path), exist_ok=True) + with open(ref_path, "w") as f: + f.write(commit_hash) + + # we pass the commit_hash to hf_hub_download + # so no network call happens if we already + # have the file locally. + def _inner_hf_hub_download(repo_file: str): + return hf_hub_download( + repo_id, + filename=repo_file, + repo_type=repo_type, + revision=commit_hash, + endpoint=endpoint, + cache_dir=cache_dir, + local_dir=local_dir, + local_dir_use_symlinks=local_dir_use_symlinks, + library_name=library_name, + library_version=library_version, + user_agent=user_agent, + proxies=proxies, + etag_timeout=etag_timeout, + resume_download=resume_download, + force_download=force_download, + token=token, + headers=headers, + ) + + if HF_HUB_ENABLE_HF_TRANSFER: + # when using hf_transfer we don't want extra parallelism + # from the one hf_transfer provides + for file in filtered_repo_files: + _inner_hf_hub_download(file) + else: + thread_map( + _inner_hf_hub_download, + filtered_repo_files, + desc=f"Fetching {len(filtered_repo_files)} files", + max_workers=max_workers, + # User can use its own tqdm class or the default one from `huggingface_hub.utils` + tqdm_class=tqdm_class or hf_tqdm, + ) + + if local_dir is not None: + return str(os.path.realpath(local_dir)) + return snapshot_folder diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_space_api.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_space_api.py new file mode 100644 index 0000000000000000000000000000000000000000..da70bd05a66a96b450f04eab9171aa9b5f7420c7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_space_api.py @@ -0,0 +1,155 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from dataclasses import dataclass +from datetime import datetime +from enum import Enum +from typing import Dict, Optional + +from huggingface_hub.utils import parse_datetime + + +class SpaceStage(str, Enum): + """ + Enumeration of possible stage of a Space on the Hub. + + Value can be compared to a string: + ```py + assert SpaceStage.BUILDING == "BUILDING" + ``` + + Taken from https://github.com/huggingface/moon-landing/blob/main/server/repo_types/SpaceInfo.ts#L61 (private url). + """ + + # Copied from moon-landing > server > repo_types > SpaceInfo.ts (private repo) + NO_APP_FILE = "NO_APP_FILE" + CONFIG_ERROR = "CONFIG_ERROR" + BUILDING = "BUILDING" + BUILD_ERROR = "BUILD_ERROR" + RUNNING = "RUNNING" + RUNNING_BUILDING = "RUNNING_BUILDING" + RUNTIME_ERROR = "RUNTIME_ERROR" + DELETING = "DELETING" + STOPPED = "STOPPED" + PAUSED = "PAUSED" + + +class SpaceHardware(str, Enum): + """ + Enumeration of hardwares available to run your Space on the Hub. + + Value can be compared to a string: + ```py + assert SpaceHardware.CPU_BASIC == "cpu-basic" + ``` + + Taken from https://github.com/huggingface/moon-landing/blob/main/server/repo_types/SpaceInfo.ts#L73 (private url). + """ + + CPU_BASIC = "cpu-basic" + CPU_UPGRADE = "cpu-upgrade" + T4_SMALL = "t4-small" + T4_MEDIUM = "t4-medium" + ZERO_A10G = "zero-a10g" + A10G_SMALL = "a10g-small" + A10G_LARGE = "a10g-large" + A10G_LARGEX2 = "a10g-largex2" + A10G_LARGEX4 = "a10g-largex4" + A100_LARGE = "a100-large" + + +class SpaceStorage(str, Enum): + """ + Enumeration of persistent storage available for your Space on the Hub. + + Value can be compared to a string: + ```py + assert SpaceStorage.SMALL == "small" + ``` + + Taken from https://github.com/huggingface/moon-landing/blob/main/server/repo_types/SpaceHardwareFlavor.ts#L24 (private url). + """ + + SMALL = "small" + MEDIUM = "medium" + LARGE = "large" + + +@dataclass +class SpaceRuntime: + """ + Contains information about the current runtime of a Space. + + Args: + stage (`str`): + Current stage of the space. Example: RUNNING. + hardware (`str` or `None`): + Current hardware of the space. Example: "cpu-basic". Can be `None` if Space + is `BUILDING` for the first time. + requested_hardware (`str` or `None`): + Requested hardware. Can be different than `hardware` especially if the request + has just been made. Example: "t4-medium". Can be `None` if no hardware has + been requested yet. + sleep_time (`int` or `None`): + Number of seconds the Space will be kept alive after the last request. By default (if value is `None`), the + Space will never go to sleep if it's running on an upgraded hardware, while it will go to sleep after 48 + hours on a free 'cpu-basic' hardware. For more details, see https://huggingface.co/docs/hub/spaces-gpus#sleep-time. + raw (`dict`): + Raw response from the server. Contains more information about the Space + runtime like number of replicas, number of cpu, memory size,... + """ + + stage: SpaceStage + hardware: Optional[SpaceHardware] + requested_hardware: Optional[SpaceHardware] + sleep_time: Optional[int] + storage: Optional[SpaceStorage] + raw: Dict + + def __init__(self, data: Dict) -> None: + self.stage = data["stage"] + self.hardware = data.get("hardware", {}).get("current") + self.requested_hardware = data.get("hardware", {}).get("requested") + self.sleep_time = data.get("gcTimeout") + self.storage = data.get("storage") + self.raw = data + + +@dataclass +class SpaceVariable: + """ + Contains information about the current variables of a Space. + + Args: + key (`str`): + Variable key. Example: `"MODEL_REPO_ID"` + value (`str`): + Variable value. Example: `"the_model_repo_id"`. + description (`str` or None): + Description of the variable. Example: `"Model Repo ID of the implemented model"`. + updatedAt (`datetime` or None): + datetime of the last update of the variable (if the variable has been updated at least once). + """ + + key: str + value: str + description: Optional[str] + updated_at: Optional[datetime] + + def __init__(self, key: str, values: Dict) -> None: + self.key = key + self.value = values["value"] + self.description = values.get("description") + updated_at = values.get("updatedAt") + self.updated_at = parse_datetime(updated_at) if updated_at is not None else None diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_tensorboard_logger.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_tensorboard_logger.py new file mode 100644 index 0000000000000000000000000000000000000000..7c74b24939a101be8043326d07b4b7126dc97574 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_tensorboard_logger.py @@ -0,0 +1,179 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains a logger to push training logs to the Hub, using Tensorboard.""" + +from pathlib import Path +from typing import TYPE_CHECKING, List, Optional, Union + +from huggingface_hub._commit_scheduler import CommitScheduler + +from .utils import experimental + + +# Depending on user's setup, SummaryWriter can come either from 'tensorboardX' +# or from 'torch.utils.tensorboard'. Both are compatible so let's try to load +# from either of them. +try: + from tensorboardX import SummaryWriter + + is_summary_writer_available = True + +except ImportError: + try: + from torch.utils.tensorboard import SummaryWriter + + is_summary_writer_available = False + except ImportError: + # Dummy class to avoid failing at import. Will raise on instance creation. + SummaryWriter = object + is_summary_writer_available = False + +if TYPE_CHECKING: + from tensorboardX import SummaryWriter + + +class HFSummaryWriter(SummaryWriter): + """ + Wrapper around the tensorboard's `SummaryWriter` to push training logs to the Hub. + + Data is logged locally and then pushed to the Hub asynchronously. Pushing data to the Hub is done in a separate + thread to avoid blocking the training script. In particular, if the upload fails for any reason (e.g. a connection + issue), the main script will not be interrupted. Data is automatically pushed to the Hub every `commit_every` + minutes (default to every 5 minutes). + + + + `HFSummaryWriter` is experimental. Its API is subject to change in the future without prior notice. + + + + Args: + repo_id (`str`): + The id of the repo to which the logs will be pushed. + logdir (`str`, *optional*): + The directory where the logs will be written. If not specified, a local directory will be created by the + underlying `SummaryWriter` object. + commit_every (`int` or `float`, *optional*): + The frequency (in minutes) at which the logs will be pushed to the Hub. Defaults to 5 minutes. + squash_history (`bool`, *optional*): + Whether to squash the history of the repo after each commit. Defaults to `False`. Squashing commits is + useful to avoid degraded performances on the repo when it grows too large. + repo_type (`str`, *optional*): + The type of the repo to which the logs will be pushed. Defaults to "model". + repo_revision (`str`, *optional*): + The revision of the repo to which the logs will be pushed. Defaults to "main". + repo_private (`bool`, *optional*): + Whether to create a private repo or not. Defaults to False. This argument is ignored if the repo already + exists. + path_in_repo (`str`, *optional*): + The path to the folder in the repo where the logs will be pushed. Defaults to "tensorboard/". + repo_allow_patterns (`List[str]` or `str`, *optional*): + A list of patterns to include in the upload. Defaults to `"*.tfevents.*"`. Check out the + [upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder) for more details. + repo_ignore_patterns (`List[str]` or `str`, *optional*): + A list of patterns to exclude in the upload. Check out the + [upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder) for more details. + token (`str`, *optional*): + Authentication token. Will default to the stored token. See https://huggingface.co/settings/token for more + details + kwargs: + Additional keyword arguments passed to `SummaryWriter`. + + Examples: + ```py + >>> from huggingface_hub import HFSummaryWriter + + # Logs are automatically pushed every 15 minutes + >>> logger = HFSummaryWriter(repo_id="test_hf_logger", commit_every=15) + >>> logger.add_scalar("a", 1) + >>> logger.add_scalar("b", 2) + ... + + # You can also trigger a push manually + >>> logger.scheduler.trigger() + ``` + + ```py + >>> from huggingface_hub import HFSummaryWriter + + # Logs are automatically pushed every 5 minutes (default) + when exiting the context manager + >>> with HFSummaryWriter(repo_id="test_hf_logger") as logger: + ... logger.add_scalar("a", 1) + ... logger.add_scalar("b", 2) + ``` + """ + + @experimental + def __new__(cls, *args, **kwargs) -> "HFSummaryWriter": + if not is_summary_writer_available: + raise ImportError( + "You must have `tensorboard` installed to use `HFSummaryWriter`. Please run `pip install --upgrade" + " tensorboardX` first." + ) + return super().__new__(cls) + + def __init__( + self, + repo_id: str, + *, + logdir: Optional[str] = None, + commit_every: Union[int, float] = 5, + squash_history: bool = False, + repo_type: Optional[str] = None, + repo_revision: Optional[str] = None, + repo_private: bool = False, + path_in_repo: Optional[str] = "tensorboard", + repo_allow_patterns: Optional[Union[List[str], str]] = "*.tfevents.*", + repo_ignore_patterns: Optional[Union[List[str], str]] = None, + token: Optional[str] = None, + **kwargs, + ): + # Initialize SummaryWriter + super().__init__(logdir=logdir, **kwargs) + + # Check logdir has been correctly initialized and fail early otherwise. In practice, SummaryWriter takes care of it. + if not isinstance(self.logdir, str): + raise ValueError(f"`self.logdir` must be a string. Got '{self.logdir}' of type {type(self.logdir)}.") + + # Append logdir name to `path_in_repo` + if path_in_repo is None or path_in_repo == "": + path_in_repo = Path(self.logdir).name + else: + path_in_repo = path_in_repo.strip("/") + "/" + Path(self.logdir).name + + # Initialize scheduler + self.scheduler = CommitScheduler( + folder_path=self.logdir, + path_in_repo=path_in_repo, + repo_id=repo_id, + repo_type=repo_type, + revision=repo_revision, + private=repo_private, + token=token, + allow_patterns=repo_allow_patterns, + ignore_patterns=repo_ignore_patterns, + every=commit_every, + squash_history=squash_history, + ) + + # Exposing some high-level info at root level + self.repo_id = self.scheduler.repo_id + self.repo_type = self.scheduler.repo_type + self.repo_revision = self.scheduler.revision + + def __exit__(self, exc_type, exc_val, exc_tb): + """Push to hub in a non-blocking way when exiting the logger's context manager.""" + super().__exit__(exc_type, exc_val, exc_tb) + future = self.scheduler.trigger() + future.result() diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_webhooks_payload.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_webhooks_payload.py new file mode 100644 index 0000000000000000000000000000000000000000..288f4b08b9428980e99ca06703442eab62fad277 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_webhooks_payload.py @@ -0,0 +1,137 @@ +# coding=utf-8 +# Copyright 2023-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains data structures to parse the webhooks payload.""" + +from typing import List, Literal, Optional + +from .utils import is_pydantic_available + + +if is_pydantic_available(): + from pydantic import BaseModel +else: + # Define a dummy BaseModel to avoid import errors when pydantic is not installed + # Import error will be raised when trying to use the class + + class BaseModel: # type: ignore [no-redef] + def __init__(self, *args, **kwargs) -> None: + raise ImportError( + "You must have `pydantic` installed to use `WebhookPayload`. This is an optional dependency that" + " should be installed separately. Please run `pip install --upgrade pydantic` and retry." + ) + + +# This is an adaptation of the ReportV3 interface implemented in moon-landing. V0, V1 and V2 have been ignored as they +# are not in used anymore. To keep in sync when format is updated in +# https://github.com/huggingface/moon-landing/blob/main/server/lib/HFWebhooks.ts (internal link). + + +WebhookEvent_T = Literal[ + "create", + "delete", + "move", + "update", +] +RepoChangeEvent_T = Literal[ + "add", + "move", + "remove", + "update", +] +RepoType_T = Literal[ + "dataset", + "model", + "space", +] +DiscussionStatus_T = Literal[ + "closed", + "draft", + "open", + "merged", +] +SupportedWebhookVersion = Literal[3] + + +class ObjectId(BaseModel): + id: str + + +class WebhookPayloadUrl(BaseModel): + web: str + api: Optional[str] = None + + +class WebhookPayloadMovedTo(BaseModel): + name: str + owner: ObjectId + + +class WebhookPayloadWebhook(ObjectId): + version: SupportedWebhookVersion + + +class WebhookPayloadEvent(BaseModel): + action: WebhookEvent_T + scope: str + + +class WebhookPayloadDiscussionChanges(BaseModel): + base: str + mergeCommitId: Optional[str] = None + + +class WebhookPayloadComment(ObjectId): + author: ObjectId + hidden: bool + content: Optional[str] = None + url: WebhookPayloadUrl + + +class WebhookPayloadDiscussion(ObjectId): + num: int + author: ObjectId + url: WebhookPayloadUrl + title: str + isPullRequest: bool + status: DiscussionStatus_T + changes: Optional[WebhookPayloadDiscussionChanges] = None + pinned: Optional[bool] = None + + +class WebhookPayloadRepo(ObjectId): + owner: ObjectId + head_sha: Optional[str] = None + name: str + private: bool + subdomain: Optional[str] = None + tags: Optional[List[str]] = None + type: Literal["dataset", "model", "space"] + url: WebhookPayloadUrl + + +class WebhookPayloadUpdatedRef(BaseModel): + ref: str + oldSha: Optional[str] = None + newSha: Optional[str] = None + + +class WebhookPayload(BaseModel): + event: WebhookPayloadEvent + repo: WebhookPayloadRepo + discussion: Optional[WebhookPayloadDiscussion] = None + comment: Optional[WebhookPayloadComment] = None + webhook: WebhookPayloadWebhook + movedTo: Optional[WebhookPayloadMovedTo] = None + updatedRefs: Optional[List[WebhookPayloadUpdatedRef]] = None diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_webhooks_server.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_webhooks_server.py new file mode 100644 index 0000000000000000000000000000000000000000..9f925281353374e1dc1aa7ad7c5e0e2e81a94ac2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/_webhooks_server.py @@ -0,0 +1,384 @@ +# coding=utf-8 +# Copyright 2023-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains `WebhooksServer` and `webhook_endpoint` to create a webhook server easily.""" + +import atexit +import inspect +import os +from functools import wraps +from typing import TYPE_CHECKING, Any, Callable, Dict, Optional + +from .utils import experimental, is_fastapi_available, is_gradio_available + + +if TYPE_CHECKING: + import gradio as gr + from fastapi import Request + +if is_fastapi_available(): + from fastapi import FastAPI, Request + from fastapi.responses import JSONResponse +else: + # Will fail at runtime if FastAPI is not available + FastAPI = Request = JSONResponse = None # type: ignore [misc, assignment] + + +_global_app: Optional["WebhooksServer"] = None +_is_local = os.getenv("SYSTEM") != "spaces" + + +@experimental +class WebhooksServer: + """ + The [`WebhooksServer`] class lets you create an instance of a Gradio app that can receive Huggingface webhooks. + These webhooks can be registered using the [`~WebhooksServer.add_webhook`] decorator. Webhook endpoints are added to + the app as a POST endpoint to the FastAPI router. Once all the webhooks are registered, the `launch` method has to be + called to start the app. + + It is recommended to accept [`WebhookPayload`] as the first argument of the webhook function. It is a Pydantic + model that contains all the information about the webhook event. The data will be parsed automatically for you. + + Check out the [webhooks guide](../guides/webhooks_server) for a step-by-step tutorial on how to setup your + WebhooksServer and deploy it on a Space. + + + + `WebhooksServer` is experimental. Its API is subject to change in the future. + + + + + + You must have `gradio` installed to use `WebhooksServer` (`pip install --upgrade gradio`). + + + + Args: + ui (`gradio.Blocks`, optional): + A Gradio UI instance to be used as the Space landing page. If `None`, a UI displaying instructions + about the configured webhooks is created. + webhook_secret (`str`, optional): + A secret key to verify incoming webhook requests. You can set this value to any secret you want as long as + you also configure it in your [webhooks settings panel](https://huggingface.co/settings/webhooks). You + can also set this value as the `WEBHOOK_SECRET` environment variable. If no secret is provided, the + webhook endpoints are opened without any security. + + Example: + + ```python + import gradio as gr + from huggingface_hub import WebhooksServer, WebhookPayload + + with gr.Blocks() as ui: + ... + + app = WebhooksServer(ui=ui, webhook_secret="my_secret_key") + + @app.add_webhook("/say_hello") + async def hello(payload: WebhookPayload): + return {"message": "hello"} + + app.launch() + ``` + """ + + def __new__(cls, *args, **kwargs) -> "WebhooksServer": + if not is_gradio_available(): + raise ImportError( + "You must have `gradio` installed to use `WebhooksServer`. Please run `pip install --upgrade gradio`" + " first." + ) + if not is_fastapi_available(): + raise ImportError( + "You must have `fastapi` installed to use `WebhooksServer`. Please run `pip install --upgrade fastapi`" + " first." + ) + return super().__new__(cls) + + def __init__( + self, + ui: Optional["gr.Blocks"] = None, + webhook_secret: Optional[str] = None, + ) -> None: + self._ui = ui + + self.webhook_secret = webhook_secret or os.getenv("WEBHOOK_SECRET") + self.registered_webhooks: Dict[str, Callable] = {} + _warn_on_empty_secret(self.webhook_secret) + + def add_webhook(self, path: Optional[str] = None) -> Callable: + """ + Decorator to add a webhook to the [`WebhooksServer`] server. + + Args: + path (`str`, optional): + The URL path to register the webhook function. If not provided, the function name will be used as the + path. In any case, all webhooks are registered under `/webhooks`. + + Raises: + ValueError: If the provided path is already registered as a webhook. + + Example: + ```python + from huggingface_hub import WebhooksServer, WebhookPayload + + app = WebhooksServer() + + @app.add_webhook + async def trigger_training(payload: WebhookPayload): + if payload.repo.type == "dataset" and payload.event.action == "update": + # Trigger a training job if a dataset is updated + ... + + app.launch() + ``` + """ + # Usage: directly as decorator. Example: `@app.add_webhook` + if callable(path): + # If path is a function, it means it was used as a decorator without arguments + return self.add_webhook()(path) + + # Usage: provide a path. Example: `@app.add_webhook(...)` + @wraps(FastAPI.post) + def _inner_post(*args, **kwargs): + func = args[0] + abs_path = f"/webhooks/{(path or func.__name__).strip('/')}" + if abs_path in self.registered_webhooks: + raise ValueError(f"Webhook {abs_path} already exists.") + self.registered_webhooks[abs_path] = func + + return _inner_post + + def launch(self, prevent_thread_lock: bool = False, **launch_kwargs: Any) -> None: + """Launch the Gradio app and register webhooks to the underlying FastAPI server. + + Input parameters are forwarded to Gradio when launching the app. + """ + ui = self._ui or self._get_default_ui() + + # Start Gradio App + # - as non-blocking so that webhooks can be added afterwards + # - as shared if launch locally (to debug webhooks) + launch_kwargs.setdefault("share", _is_local) + self.fastapi_app, _, _ = ui.launch(prevent_thread_lock=True, **launch_kwargs) + + # Register webhooks to FastAPI app + for path, func in self.registered_webhooks.items(): + # Add secret check if required + if self.webhook_secret is not None: + func = _wrap_webhook_to_check_secret(func, webhook_secret=self.webhook_secret) + + # Add route to FastAPI app + self.fastapi_app.post(path)(func) + + # Print instructions and block main thread + url = (ui.share_url or ui.local_url).strip("/") + message = "\nWebhooks are correctly setup and ready to use:" + message += "\n" + "\n".join(f" - POST {url}{webhook}" for webhook in self.registered_webhooks) + message += "\nGo to https://huggingface.co/settings/webhooks to setup your webhooks." + print(message) + + if not prevent_thread_lock: + ui.block_thread() + + def _get_default_ui(self) -> "gr.Blocks": + """Default UI if not provided (lists webhooks and provides basic instructions).""" + import gradio as gr + + with gr.Blocks() as ui: + gr.Markdown("# This is an app to process 🤗 Webhooks") + gr.Markdown( + "Webhooks are a foundation for MLOps-related features. They allow you to listen for new changes on" + " specific repos or to all repos belonging to particular set of users/organizations (not just your" + " repos, but any repo). Check out this [guide](https://huggingface.co/docs/hub/webhooks) to get to" + " know more about webhooks on the Huggingface Hub." + ) + gr.Markdown( + f"{len(self.registered_webhooks)} webhook(s) are registered:" + + "\n\n" + + "\n ".join( + f"- [{webhook_path}]({_get_webhook_doc_url(webhook.__name__, webhook_path)})" + for webhook_path, webhook in self.registered_webhooks.items() + ) + ) + gr.Markdown( + "Go to https://huggingface.co/settings/webhooks to setup your webhooks." + + "\nYou app is running locally. Please look at the logs to check the full URL you need to set." + if _is_local + else ( + "\nThis app is running on a Space. You can find the corresponding URL in the options menu" + " (top-right) > 'Embed the Space'. The URL looks like 'https://{username}-{repo_name}.hf.space'." + ) + ) + return ui + + +@experimental +def webhook_endpoint(path: Optional[str] = None) -> Callable: + """Decorator to start a [`WebhooksServer`] and register the decorated function as a webhook endpoint. + + This is a helper to get started quickly. If you need more flexibility (custom landing page or webhook secret), + you can use [`WebhooksServer`] directly. You can register multiple webhook endpoints (to the same server) by using + this decorator multiple times. + + Check out the [webhooks guide](../guides/webhooks_server) for a step-by-step tutorial on how to setup your + server and deploy it on a Space. + + + + `webhook_endpoint` is experimental. Its API is subject to change in the future. + + + + + + You must have `gradio` installed to use `webhook_endpoint` (`pip install --upgrade gradio`). + + + + Args: + path (`str`, optional): + The URL path to register the webhook function. If not provided, the function name will be used as the path. + In any case, all webhooks are registered under `/webhooks`. + + Examples: + The default usage is to register a function as a webhook endpoint. The function name will be used as the path. + The server will be started automatically at exit (i.e. at the end of the script). + + ```python + from huggingface_hub import webhook_endpoint, WebhookPayload + + @webhook_endpoint + async def trigger_training(payload: WebhookPayload): + if payload.repo.type == "dataset" and payload.event.action == "update": + # Trigger a training job if a dataset is updated + ... + + # Server is automatically started at the end of the script. + ``` + + Advanced usage: register a function as a webhook endpoint and start the server manually. This is useful if you + are running it in a notebook. + + ```python + from huggingface_hub import webhook_endpoint, WebhookPayload + + @webhook_endpoint + async def trigger_training(payload: WebhookPayload): + if payload.repo.type == "dataset" and payload.event.action == "update": + # Trigger a training job if a dataset is updated + ... + + # Start the server manually + trigger_training.launch() + ``` + """ + if callable(path): + # If path is a function, it means it was used as a decorator without arguments + return webhook_endpoint()(path) + + @wraps(WebhooksServer.add_webhook) + def _inner(func: Callable) -> Callable: + app = _get_global_app() + app.add_webhook(path)(func) + if len(app.registered_webhooks) == 1: + # Register `app.launch` to run at exit (only once) + atexit.register(app.launch) + + @wraps(app.launch) + def _launch_now(): + # Run the app directly (without waiting atexit) + atexit.unregister(app.launch) + app.launch() + + func.launch = _launch_now # type: ignore + return func + + return _inner + + +def _get_global_app() -> WebhooksServer: + global _global_app + if _global_app is None: + _global_app = WebhooksServer() + return _global_app + + +def _warn_on_empty_secret(webhook_secret: Optional[str]) -> None: + if webhook_secret is None: + print("Webhook secret is not defined. This means your webhook endpoints will be open to everyone.") + print( + "To add a secret, set `WEBHOOK_SECRET` as environment variable or pass it at initialization: " + "\n\t`app = WebhooksServer(webhook_secret='my_secret', ...)`" + ) + print( + "For more details about webhook secrets, please refer to" + " https://huggingface.co/docs/hub/webhooks#webhook-secret." + ) + else: + print("Webhook secret is correctly defined.") + + +def _get_webhook_doc_url(webhook_name: str, webhook_path: str) -> str: + """Returns the anchor to a given webhook in the docs (experimental)""" + return "/docs#/default/" + webhook_name + webhook_path.replace("/", "_") + "_post" + + +def _wrap_webhook_to_check_secret(func: Callable, webhook_secret: str) -> Callable: + """Wraps a webhook function to check the webhook secret before calling the function. + + This is a hacky way to add the `request` parameter to the function signature. Since FastAPI based itself on route + parameters to inject the values to the function, we need to hack the function signature to retrieve the `Request` + object (and hence the headers). A far cleaner solution would be to use a middleware. However, since + `fastapi==0.90.1`, a middleware cannot be added once the app has started. And since the FastAPI app is started by + Gradio internals (and not by us), we cannot add a middleware. + + This method is called only when a secret has been defined by the user. If a request is sent without the + "x-webhook-secret", the function will return a 401 error (unauthorized). If the header is sent but is incorrect, + the function will return a 403 error (forbidden). + + Inspired by https://stackoverflow.com/a/33112180. + """ + initial_sig = inspect.signature(func) + + @wraps(func) + async def _protected_func(request: Request, **kwargs): + request_secret = request.headers.get("x-webhook-secret") + if request_secret is None: + return JSONResponse({"error": "x-webhook-secret header not set."}, status_code=401) + if request_secret != webhook_secret: + return JSONResponse({"error": "Invalid webhook secret."}, status_code=403) + + # Inject `request` in kwargs if required + if "request" in initial_sig.parameters: + kwargs["request"] = request + + # Handle both sync and async routes + if inspect.iscoroutinefunction(func): + return await func(**kwargs) + else: + return func(**kwargs) + + # Update signature to include request + if "request" not in initial_sig.parameters: + _protected_func.__signature__ = initial_sig.replace( # type: ignore + parameters=( + inspect.Parameter(name="request", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=Request), + ) + + tuple(initial_sig.parameters.values()) + ) + + # Return protected route + return _protected_func diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/community.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/community.py new file mode 100644 index 0000000000000000000000000000000000000000..387b0cc12174cafd9f4080d05cbc748e59a51b81 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/community.py @@ -0,0 +1,355 @@ +""" +Data structures to interact with Discussions and Pull Requests on the Hub. + +See [the Discussions and Pull Requests guide](https://huggingface.co/docs/hub/repositories-pull-requests-discussions) +for more information on Pull Requests, Discussions, and the community tab. +""" + +from dataclasses import dataclass +from datetime import datetime +from typing import List, Literal, Optional, Union + +from .constants import REPO_TYPE_MODEL +from .utils import parse_datetime + + +DiscussionStatus = Literal["open", "closed", "merged", "draft"] + + +@dataclass +class Discussion: + """ + A Discussion or Pull Request on the Hub. + + This dataclass is not intended to be instantiated directly. + + Attributes: + title (`str`): + The title of the Discussion / Pull Request + status (`str`): + The status of the Discussion / Pull Request. + It must be one of: + * `"open"` + * `"closed"` + * `"merged"` (only for Pull Requests ) + * `"draft"` (only for Pull Requests ) + num (`int`): + The number of the Discussion / Pull Request. + repo_id (`str`): + The id (`"{namespace}/{repo_name}"`) of the repo on which + the Discussion / Pull Request was open. + repo_type (`str`): + The type of the repo on which the Discussion / Pull Request was open. + Possible values are: `"model"`, `"dataset"`, `"space"`. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + is_pull_request (`bool`): + Whether or not this is a Pull Request. + created_at (`datetime`): + The `datetime` of creation of the Discussion / Pull Request. + endpoint (`str`): + Endpoint of the Hub. Default is https://huggingface.co. + git_reference (`str`, *optional*): + (property) Git reference to which changes can be pushed if this is a Pull Request, `None` otherwise. + url (`str`): + (property) URL of the discussion on the Hub. + """ + + title: str + status: DiscussionStatus + num: int + repo_id: str + repo_type: str + author: str + is_pull_request: bool + created_at: datetime + endpoint: str + + @property + def git_reference(self) -> Optional[str]: + """ + If this is a Pull Request , returns the git reference to which changes can be pushed. + Returns `None` otherwise. + """ + if self.is_pull_request: + return f"refs/pr/{self.num}" + return None + + @property + def url(self) -> str: + """Returns the URL of the discussion on the Hub.""" + if self.repo_type is None or self.repo_type == REPO_TYPE_MODEL: + return f"{self.endpoint}/{self.repo_id}/discussions/{self.num}" + return f"{self.endpoint}/{self.repo_type}s/{self.repo_id}/discussions/{self.num}" + + +@dataclass +class DiscussionWithDetails(Discussion): + """ + Subclass of [`Discussion`]. + + Attributes: + title (`str`): + The title of the Discussion / Pull Request + status (`str`): + The status of the Discussion / Pull Request. + It can be one of: + * `"open"` + * `"closed"` + * `"merged"` (only for Pull Requests ) + * `"draft"` (only for Pull Requests ) + num (`int`): + The number of the Discussion / Pull Request. + repo_id (`str`): + The id (`"{namespace}/{repo_name}"`) of the repo on which + the Discussion / Pull Request was open. + repo_type (`str`): + The type of the repo on which the Discussion / Pull Request was open. + Possible values are: `"model"`, `"dataset"`, `"space"`. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + is_pull_request (`bool`): + Whether or not this is a Pull Request. + created_at (`datetime`): + The `datetime` of creation of the Discussion / Pull Request. + events (`list` of [`DiscussionEvent`]) + The list of [`DiscussionEvents`] in this Discussion or Pull Request. + conflicting_files (`Union[List[str], bool, None]`, *optional*): + A list of conflicting files if this is a Pull Request. + `None` if `self.is_pull_request` is `False`. + `True` if there are conflicting files but the list can't be retrieved. + target_branch (`str`, *optional*): + The branch into which changes are to be merged if this is a + Pull Request . `None` if `self.is_pull_request` is `False`. + merge_commit_oid (`str`, *optional*): + If this is a merged Pull Request , this is set to the OID / SHA of + the merge commit, `None` otherwise. + diff (`str`, *optional*): + The git diff if this is a Pull Request , `None` otherwise. + endpoint (`str`): + Endpoint of the Hub. Default is https://huggingface.co. + git_reference (`str`, *optional*): + (property) Git reference to which changes can be pushed if this is a Pull Request, `None` otherwise. + url (`str`): + (property) URL of the discussion on the Hub. + """ + + events: List["DiscussionEvent"] + conflicting_files: Union[List[str], bool, None] + target_branch: Optional[str] + merge_commit_oid: Optional[str] + diff: Optional[str] + + +@dataclass +class DiscussionEvent: + """ + An event in a Discussion or Pull Request. + + Use concrete classes: + * [`DiscussionComment`] + * [`DiscussionStatusChange`] + * [`DiscussionCommit`] + * [`DiscussionTitleChange`] + + Attributes: + id (`str`): + The ID of the event. An hexadecimal string. + type (`str`): + The type of the event. + created_at (`datetime`): + A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) + object holding the creation timestamp for the event. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + """ + + id: str + type: str + created_at: datetime + author: str + + _event: dict + """Stores the original event data, in case we need to access it later.""" + + +@dataclass +class DiscussionComment(DiscussionEvent): + """A comment in a Discussion / Pull Request. + + Subclass of [`DiscussionEvent`]. + + + Attributes: + id (`str`): + The ID of the event. An hexadecimal string. + type (`str`): + The type of the event. + created_at (`datetime`): + A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) + object holding the creation timestamp for the event. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + content (`str`): + The raw markdown content of the comment. Mentions, links and images are not rendered. + edited (`bool`): + Whether or not this comment has been edited. + hidden (`bool`): + Whether or not this comment has been hidden. + """ + + content: str + edited: bool + hidden: bool + + @property + def rendered(self) -> str: + """The rendered comment, as a HTML string""" + return self._event["data"]["latest"]["html"] + + @property + def last_edited_at(self) -> datetime: + """The last edit time, as a `datetime` object.""" + return parse_datetime(self._event["data"]["latest"]["updatedAt"]) + + @property + def last_edited_by(self) -> str: + """The last edit time, as a `datetime` object.""" + return self._event["data"]["latest"].get("author", {}).get("name", "deleted") + + @property + def edit_history(self) -> List[dict]: + """The edit history of the comment""" + return self._event["data"]["history"] + + @property + def number_of_edits(self) -> int: + return len(self.edit_history) + + +@dataclass +class DiscussionStatusChange(DiscussionEvent): + """A change of status in a Discussion / Pull Request. + + Subclass of [`DiscussionEvent`]. + + Attributes: + id (`str`): + The ID of the event. An hexadecimal string. + type (`str`): + The type of the event. + created_at (`datetime`): + A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) + object holding the creation timestamp for the event. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + new_status (`str`): + The status of the Discussion / Pull Request after the change. + It can be one of: + * `"open"` + * `"closed"` + * `"merged"` (only for Pull Requests ) + """ + + new_status: str + + +@dataclass +class DiscussionCommit(DiscussionEvent): + """A commit in a Pull Request. + + Subclass of [`DiscussionEvent`]. + + Attributes: + id (`str`): + The ID of the event. An hexadecimal string. + type (`str`): + The type of the event. + created_at (`datetime`): + A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) + object holding the creation timestamp for the event. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + summary (`str`): + The summary of the commit. + oid (`str`): + The OID / SHA of the commit, as a hexadecimal string. + """ + + summary: str + oid: str + + +@dataclass +class DiscussionTitleChange(DiscussionEvent): + """A rename event in a Discussion / Pull Request. + + Subclass of [`DiscussionEvent`]. + + Attributes: + id (`str`): + The ID of the event. An hexadecimal string. + type (`str`): + The type of the event. + created_at (`datetime`): + A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) + object holding the creation timestamp for the event. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + old_title (`str`): + The previous title for the Discussion / Pull Request. + new_title (`str`): + The new title. + """ + + old_title: str + new_title: str + + +def deserialize_event(event: dict) -> DiscussionEvent: + """Instantiates a [`DiscussionEvent`] from a dict""" + event_id: str = event["id"] + event_type: str = event["type"] + created_at = parse_datetime(event["createdAt"]) + + common_args = dict( + id=event_id, + type=event_type, + created_at=created_at, + author=event.get("author", {}).get("name", "deleted"), + _event=event, + ) + + if event_type == "comment": + return DiscussionComment( + **common_args, + edited=event["data"]["edited"], + hidden=event["data"]["hidden"], + content=event["data"]["latest"]["raw"], + ) + if event_type == "status-change": + return DiscussionStatusChange( + **common_args, + new_status=event["data"]["status"], + ) + if event_type == "commit": + return DiscussionCommit( + **common_args, + summary=event["data"]["subject"], + oid=event["data"]["oid"], + ) + if event_type == "title-change": + return DiscussionTitleChange( + **common_args, + old_title=event["data"]["from"], + new_title=event["data"]["to"], + ) + + return DiscussionEvent(**common_args) diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/constants.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/constants.py new file mode 100644 index 0000000000000000000000000000000000000000..064aa60bdadc0d230004002f69cb64ca178c6c26 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/constants.py @@ -0,0 +1,213 @@ +import os +import re +import typing +from typing import Literal, Optional, Tuple + + +# Possible values for env variables + + +ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"} +ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"}) + + +def _is_true(value: Optional[str]) -> bool: + if value is None: + return False + return value.upper() in ENV_VARS_TRUE_VALUES + + +def _as_int(value: Optional[str]) -> Optional[int]: + if value is None: + return None + return int(value) + + +# Constants for file downloads + +PYTORCH_WEIGHTS_NAME = "pytorch_model.bin" +TF2_WEIGHTS_NAME = "tf_model.h5" +TF_WEIGHTS_NAME = "model.ckpt" +FLAX_WEIGHTS_NAME = "flax_model.msgpack" +CONFIG_NAME = "config.json" +REPOCARD_NAME = "README.md" +DEFAULT_ETAG_TIMEOUT = 10 +DEFAULT_DOWNLOAD_TIMEOUT = 10 +DEFAULT_REQUEST_TIMEOUT = 10 +DOWNLOAD_CHUNK_SIZE = 10 * 1024 * 1024 +HF_TRANSFER_CONCURRENCY = 100 + +# Constants for safetensors repos + +SAFETENSORS_SINGLE_FILE = "model.safetensors" +SAFETENSORS_INDEX_FILE = "model.safetensors.index.json" +SAFETENSORS_MAX_HEADER_LENGTH = 25_000_000 + +# Git-related constants + +DEFAULT_REVISION = "main" +REGEX_COMMIT_OID = re.compile(r"[A-Fa-f0-9]{5,40}") + +HUGGINGFACE_CO_URL_HOME = "https://huggingface.co/" + +_staging_mode = _is_true(os.environ.get("HUGGINGFACE_CO_STAGING")) + +_HF_DEFAULT_ENDPOINT = "https://huggingface.co" +_HF_DEFAULT_STAGING_ENDPOINT = "https://hub-ci.huggingface.co" +ENDPOINT = os.getenv("HF_ENDPOINT") or (_HF_DEFAULT_STAGING_ENDPOINT if _staging_mode else _HF_DEFAULT_ENDPOINT) + +HUGGINGFACE_CO_URL_TEMPLATE = ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" +HUGGINGFACE_HEADER_X_REPO_COMMIT = "X-Repo-Commit" +HUGGINGFACE_HEADER_X_LINKED_ETAG = "X-Linked-Etag" +HUGGINGFACE_HEADER_X_LINKED_SIZE = "X-Linked-Size" + +INFERENCE_ENDPOINT = os.environ.get("HF_INFERENCE_ENDPOINT", "https://api-inference.huggingface.co") + +# See https://huggingface.co/docs/inference-endpoints/index +INFERENCE_ENDPOINTS_ENDPOINT = "https://api.endpoints.huggingface.cloud/v2" + + +REPO_ID_SEPARATOR = "--" +# ^ this substring is not allowed in repo_ids on hf.co +# and is the canonical one we use for serialization of repo ids elsewhere. + + +REPO_TYPE_DATASET = "dataset" +REPO_TYPE_SPACE = "space" +REPO_TYPE_MODEL = "model" +REPO_TYPES = [None, REPO_TYPE_MODEL, REPO_TYPE_DATASET, REPO_TYPE_SPACE] +SPACES_SDK_TYPES = ["gradio", "streamlit", "docker", "static"] + +REPO_TYPES_URL_PREFIXES = { + REPO_TYPE_DATASET: "datasets/", + REPO_TYPE_SPACE: "spaces/", +} +REPO_TYPES_MAPPING = { + "datasets": REPO_TYPE_DATASET, + "spaces": REPO_TYPE_SPACE, + "models": REPO_TYPE_MODEL, +} + +DiscussionTypeFilter = Literal["all", "discussion", "pull_request"] +DISCUSSION_TYPES: Tuple[DiscussionTypeFilter, ...] = typing.get_args(DiscussionTypeFilter) +DiscussionStatusFilter = Literal["all", "open", "closed"] +DISCUSSION_STATUS: Tuple[DiscussionTypeFilter, ...] = typing.get_args(DiscussionStatusFilter) + +# default cache +default_home = os.path.join(os.path.expanduser("~"), ".cache") +HF_HOME = os.path.expanduser( + os.getenv( + "HF_HOME", + os.path.join(os.getenv("XDG_CACHE_HOME", default_home), "huggingface"), + ) +) +hf_cache_home = HF_HOME # for backward compatibility. TODO: remove this in 1.0.0 + +default_cache_path = os.path.join(HF_HOME, "hub") +default_assets_cache_path = os.path.join(HF_HOME, "assets") + +# Legacy env variables +HUGGINGFACE_HUB_CACHE = os.getenv("HUGGINGFACE_HUB_CACHE", default_cache_path) +HUGGINGFACE_ASSETS_CACHE = os.getenv("HUGGINGFACE_ASSETS_CACHE", default_assets_cache_path) + +# New env variables +HF_HUB_CACHE = os.getenv("HF_HUB_CACHE", HUGGINGFACE_HUB_CACHE) +HF_ASSETS_CACHE = os.getenv("HF_ASSETS_CACHE", HUGGINGFACE_ASSETS_CACHE) + +HF_HUB_OFFLINE = _is_true(os.environ.get("HF_HUB_OFFLINE") or os.environ.get("TRANSFORMERS_OFFLINE")) + +# Opt-out from telemetry requests +HF_HUB_DISABLE_TELEMETRY = ( + _is_true(os.environ.get("HF_HUB_DISABLE_TELEMETRY")) # HF-specific env variable + or _is_true(os.environ.get("DISABLE_TELEMETRY")) + or _is_true(os.environ.get("DO_NOT_TRACK")) # https://consoledonottrack.com/ +) + +# In the past, token was stored in a hardcoded location +# `_OLD_HF_TOKEN_PATH` is deprecated and will be removed "at some point". +# See https://github.com/huggingface/huggingface_hub/issues/1232 +_OLD_HF_TOKEN_PATH = os.path.expanduser("~/.huggingface/token") +HF_TOKEN_PATH = os.environ.get("HF_TOKEN_PATH", os.path.join(HF_HOME, "token")) + + +if _staging_mode: + # In staging mode, we use a different cache to ensure we don't mix up production and staging data or tokens + _staging_home = os.path.join(os.path.expanduser("~"), ".cache", "huggingface_staging") + HUGGINGFACE_HUB_CACHE = os.path.join(_staging_home, "hub") + _OLD_HF_TOKEN_PATH = os.path.join(_staging_home, "_old_token") + HF_TOKEN_PATH = os.path.join(_staging_home, "token") + +# Here, `True` will disable progress bars globally without possibility of enabling it +# programmatically. `False` will enable them without possibility of disabling them. +# If environment variable is not set (None), then the user is free to enable/disable +# them programmatically. +# TL;DR: env variable has priority over code +__HF_HUB_DISABLE_PROGRESS_BARS = os.environ.get("HF_HUB_DISABLE_PROGRESS_BARS") +HF_HUB_DISABLE_PROGRESS_BARS: Optional[bool] = ( + _is_true(__HF_HUB_DISABLE_PROGRESS_BARS) if __HF_HUB_DISABLE_PROGRESS_BARS is not None else None +) + +# Disable warning on machines that do not support symlinks (e.g. Windows non-developer) +HF_HUB_DISABLE_SYMLINKS_WARNING: bool = _is_true(os.environ.get("HF_HUB_DISABLE_SYMLINKS_WARNING")) + +# Disable warning when using experimental features +HF_HUB_DISABLE_EXPERIMENTAL_WARNING: bool = _is_true(os.environ.get("HF_HUB_DISABLE_EXPERIMENTAL_WARNING")) + +# Disable sending the cached token by default is all HTTP requests to the Hub +HF_HUB_DISABLE_IMPLICIT_TOKEN: bool = _is_true(os.environ.get("HF_HUB_DISABLE_IMPLICIT_TOKEN")) + +# Enable fast-download using external dependency "hf_transfer" +# See: +# - https://pypi.org/project/hf-transfer/ +# - https://github.com/huggingface/hf_transfer (private) +HF_HUB_ENABLE_HF_TRANSFER: bool = _is_true(os.environ.get("HF_HUB_ENABLE_HF_TRANSFER")) + + +# UNUSED +# We don't use symlinks in local dir anymore. +HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD: int = ( + _as_int(os.environ.get("HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD")) or 5 * 1024 * 1024 +) + +# Used to override the etag timeout on a system level +HF_HUB_ETAG_TIMEOUT: int = _as_int(os.environ.get("HF_HUB_ETAG_TIMEOUT")) or DEFAULT_ETAG_TIMEOUT + +# Used to override the get request timeout on a system level +HF_HUB_DOWNLOAD_TIMEOUT: int = _as_int(os.environ.get("HF_HUB_DOWNLOAD_TIMEOUT")) or DEFAULT_DOWNLOAD_TIMEOUT + +# List frameworks that are handled by the InferenceAPI service. Useful to scan endpoints and check which models are +# deployed and running. Since 95% of the models are using the top 4 frameworks listed below, we scan only those by +# default. We still keep the full list of supported frameworks in case we want to scan all of them. +MAIN_INFERENCE_API_FRAMEWORKS = [ + "diffusers", + "sentence-transformers", + "text-generation-inference", + "transformers", +] + +ALL_INFERENCE_API_FRAMEWORKS = MAIN_INFERENCE_API_FRAMEWORKS + [ + "adapter-transformers", + "allennlp", + "asteroid", + "bertopic", + "doctr", + "espnet", + "fairseq", + "fastai", + "fasttext", + "flair", + "k2", + "keras", + "mindspore", + "nemo", + "open_clip", + "paddlenlp", + "peft", + "pyannote-audio", + "sklearn", + "spacy", + "span-marker", + "speechbrain", + "stanza", + "timm", +] diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/errors.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/errors.py new file mode 100644 index 0000000000000000000000000000000000000000..3ddca2c0d60942b89a050018cf71a0db56071499 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/errors.py @@ -0,0 +1,96 @@ +"""Contains all custom errors.""" + +from requests import HTTPError + + +# HEADERS ERRORS + + +class LocalTokenNotFoundError(EnvironmentError): + """Raised if local token is required but not found.""" + + +# HTTP ERRORS + + +class OfflineModeIsEnabled(ConnectionError): + """Raised when a request is made but `HF_HUB_OFFLINE=1` is set as environment variable.""" + + +# INFERENCE CLIENT ERRORS + + +class InferenceTimeoutError(HTTPError, TimeoutError): + """Error raised when a model is unavailable or the request times out.""" + + +# INFERENCE ENDPOINT ERRORS + + +class InferenceEndpointError(Exception): + """Generic exception when dealing with Inference Endpoints.""" + + +class InferenceEndpointTimeoutError(InferenceEndpointError, TimeoutError): + """Exception for timeouts while waiting for Inference Endpoint.""" + + +# SAFETENSORS ERRORS + + +class SafetensorsParsingError(Exception): + """Raised when failing to parse a safetensors file metadata. + + This can be the case if the file is not a safetensors file or does not respect the specification. + """ + + +class NotASafetensorsRepoError(Exception): + """Raised when a repo is not a Safetensors repo i.e. doesn't have either a `model.safetensors` or a + `model.safetensors.index.json` file. + """ + + +# TEMPLATING ERRORS + + +class TemplateError(Exception): + """Any error raised while trying to fetch or render a chat template.""" + + +# TEXT GENERATION ERRORS + + +class TextGenerationError(HTTPError): + """Generic error raised if text-generation went wrong.""" + + +# Text Generation Inference Errors +class ValidationError(TextGenerationError): + """Server-side validation error.""" + + +class GenerationError(TextGenerationError): + pass + + +class OverloadedError(TextGenerationError): + pass + + +class IncompleteGenerationError(TextGenerationError): + pass + + +class UnknownError(TextGenerationError): + pass + + +# VALIDATION ERRORS + + +class HFValidationError(ValueError): + """Generic exception thrown by `huggingface_hub` validators. + + Inherits from [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError). + """ diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/fastai_utils.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/fastai_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..e586e8663c39e8d5bab3f57f667dbd878514e59d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/fastai_utils.py @@ -0,0 +1,425 @@ +import json +import os +from pathlib import Path +from pickle import DEFAULT_PROTOCOL, PicklingError +from typing import Any, Dict, List, Optional, Union + +from packaging import version + +from huggingface_hub import snapshot_download +from huggingface_hub.constants import CONFIG_NAME +from huggingface_hub.hf_api import HfApi +from huggingface_hub.utils import ( + SoftTemporaryDirectory, + get_fastai_version, + get_fastcore_version, + get_python_version, +) + +from .utils import logging, validate_hf_hub_args +from .utils._runtime import _PY_VERSION # noqa: F401 # for backward compatibility... + + +logger = logging.get_logger(__name__) + + +def _check_fastai_fastcore_versions( + fastai_min_version: str = "2.4", + fastcore_min_version: str = "1.3.27", +): + """ + Checks that the installed fastai and fastcore versions are compatible for pickle serialization. + + Args: + fastai_min_version (`str`, *optional*): + The minimum fastai version supported. + fastcore_min_version (`str`, *optional*): + The minimum fastcore version supported. + + + Raises the following error: + + - [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError) + if the fastai or fastcore libraries are not available or are of an invalid version. + + + """ + + if (get_fastcore_version() or get_fastai_version()) == "N/A": + raise ImportError( + f"fastai>={fastai_min_version} and fastcore>={fastcore_min_version} are" + f" required. Currently using fastai=={get_fastai_version()} and" + f" fastcore=={get_fastcore_version()}." + ) + + current_fastai_version = version.Version(get_fastai_version()) + current_fastcore_version = version.Version(get_fastcore_version()) + + if current_fastai_version < version.Version(fastai_min_version): + raise ImportError( + "`push_to_hub_fastai` and `from_pretrained_fastai` require a" + f" fastai>={fastai_min_version} version, but you are using fastai version" + f" {get_fastai_version()} which is incompatible. Upgrade with `pip install" + " fastai==2.5.6`." + ) + + if current_fastcore_version < version.Version(fastcore_min_version): + raise ImportError( + "`push_to_hub_fastai` and `from_pretrained_fastai` require a" + f" fastcore>={fastcore_min_version} version, but you are using fastcore" + f" version {get_fastcore_version()} which is incompatible. Upgrade with" + " `pip install fastcore==1.3.27`." + ) + + +def _check_fastai_fastcore_pyproject_versions( + storage_folder: str, + fastai_min_version: str = "2.4", + fastcore_min_version: str = "1.3.27", +): + """ + Checks that the `pyproject.toml` file in the directory `storage_folder` has fastai and fastcore versions + that are compatible with `from_pretrained_fastai` and `push_to_hub_fastai`. If `pyproject.toml` does not exist + or does not contain versions for fastai and fastcore, then it logs a warning. + + Args: + storage_folder (`str`): + Folder to look for the `pyproject.toml` file. + fastai_min_version (`str`, *optional*): + The minimum fastai version supported. + fastcore_min_version (`str`, *optional*): + The minimum fastcore version supported. + + + Raises the following errors: + + - [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError) + if the `toml` module is not installed. + - [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError) + if the `pyproject.toml` indicates a lower than minimum supported version of fastai or fastcore. + + + """ + + try: + import toml + except ModuleNotFoundError: + raise ImportError( + "`push_to_hub_fastai` and `from_pretrained_fastai` require the toml module." + " Install it with `pip install toml`." + ) + + # Checks that a `pyproject.toml`, with `build-system` and `requires` sections, exists in the repository. If so, get a list of required packages. + if not os.path.isfile(f"{storage_folder}/pyproject.toml"): + logger.warning( + "There is no `pyproject.toml` in the repository that contains the fastai" + " `Learner`. The `pyproject.toml` would allow us to verify that your fastai" + " and fastcore versions are compatible with those of the model you want to" + " load." + ) + return + pyproject_toml = toml.load(f"{storage_folder}/pyproject.toml") + + if "build-system" not in pyproject_toml.keys(): + logger.warning( + "There is no `build-system` section in the pyproject.toml of the repository" + " that contains the fastai `Learner`. The `build-system` would allow us to" + " verify that your fastai and fastcore versions are compatible with those" + " of the model you want to load." + ) + return + build_system_toml = pyproject_toml["build-system"] + + if "requires" not in build_system_toml.keys(): + logger.warning( + "There is no `requires` section in the pyproject.toml of the repository" + " that contains the fastai `Learner`. The `requires` would allow us to" + " verify that your fastai and fastcore versions are compatible with those" + " of the model you want to load." + ) + return + package_versions = build_system_toml["requires"] + + # Extracts contains fastai and fastcore versions from `pyproject.toml` if available. + # If the package is specified but not the version (e.g. "fastai" instead of "fastai=2.4"), the default versions are the highest. + fastai_packages = [pck for pck in package_versions if pck.startswith("fastai")] + if len(fastai_packages) == 0: + logger.warning("The repository does not have a fastai version specified in the `pyproject.toml`.") + # fastai_version is an empty string if not specified + else: + fastai_version = str(fastai_packages[0]).partition("=")[2] + if fastai_version != "" and version.Version(fastai_version) < version.Version(fastai_min_version): + raise ImportError( + "`from_pretrained_fastai` requires" + f" fastai>={fastai_min_version} version but the model to load uses" + f" {fastai_version} which is incompatible." + ) + + fastcore_packages = [pck for pck in package_versions if pck.startswith("fastcore")] + if len(fastcore_packages) == 0: + logger.warning("The repository does not have a fastcore version specified in the `pyproject.toml`.") + # fastcore_version is an empty string if not specified + else: + fastcore_version = str(fastcore_packages[0]).partition("=")[2] + if fastcore_version != "" and version.Version(fastcore_version) < version.Version(fastcore_min_version): + raise ImportError( + "`from_pretrained_fastai` requires" + f" fastcore>={fastcore_min_version} version, but you are using fastcore" + f" version {fastcore_version} which is incompatible." + ) + + +README_TEMPLATE = """--- +tags: +- fastai +--- + +# Amazing! + +🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! + +# Some next steps +1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! + +2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). + +3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! + +Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. + + +--- + + +# Model card + +## Model description +More information needed + +## Intended uses & limitations +More information needed + +## Training and evaluation data +More information needed +""" + +PYPROJECT_TEMPLATE = f"""[build-system] +requires = ["setuptools>=40.8.0", "wheel", "python={get_python_version()}", "fastai={get_fastai_version()}", "fastcore={get_fastcore_version()}"] +build-backend = "setuptools.build_meta:__legacy__" +""" + + +def _create_model_card(repo_dir: Path): + """ + Creates a model card for the repository. + + Args: + repo_dir (`Path`): + Directory where model card is created. + """ + readme_path = repo_dir / "README.md" + + if not readme_path.exists(): + with readme_path.open("w", encoding="utf-8") as f: + f.write(README_TEMPLATE) + + +def _create_model_pyproject(repo_dir: Path): + """ + Creates a `pyproject.toml` for the repository. + + Args: + repo_dir (`Path`): + Directory where `pyproject.toml` is created. + """ + pyproject_path = repo_dir / "pyproject.toml" + + if not pyproject_path.exists(): + with pyproject_path.open("w", encoding="utf-8") as f: + f.write(PYPROJECT_TEMPLATE) + + +def _save_pretrained_fastai( + learner, + save_directory: Union[str, Path], + config: Optional[Dict[str, Any]] = None, +): + """ + Saves a fastai learner to `save_directory` in pickle format using the default pickle protocol for the version of python used. + + Args: + learner (`Learner`): + The `fastai.Learner` you'd like to save. + save_directory (`str` or `Path`): + Specific directory in which you want to save the fastai learner. + config (`dict`, *optional*): + Configuration object. Will be uploaded as a .json file. Example: 'https://huggingface.co/espejelomar/fastai-pet-breeds-classification/blob/main/config.json'. + + + + Raises the following error: + + - [`RuntimeError`](https://docs.python.org/3/library/exceptions.html#RuntimeError) + if the config file provided is not a dictionary. + + + """ + _check_fastai_fastcore_versions() + + os.makedirs(save_directory, exist_ok=True) + + # if the user provides config then we update it with the fastai and fastcore versions in CONFIG_TEMPLATE. + if config is not None: + if not isinstance(config, dict): + raise RuntimeError(f"Provided config should be a dict. Got: '{type(config)}'") + path = os.path.join(save_directory, CONFIG_NAME) + with open(path, "w") as f: + json.dump(config, f) + + _create_model_card(Path(save_directory)) + _create_model_pyproject(Path(save_directory)) + + # learner.export saves the model in `self.path`. + learner.path = Path(save_directory) + os.makedirs(save_directory, exist_ok=True) + try: + learner.export( + fname="model.pkl", + pickle_protocol=DEFAULT_PROTOCOL, + ) + except PicklingError: + raise PicklingError( + "You are using a lambda function, i.e., an anonymous function. `pickle`" + " cannot pickle function objects and requires that all functions have" + " names. One possible solution is to name the function." + ) + + +@validate_hf_hub_args +def from_pretrained_fastai( + repo_id: str, + revision: Optional[str] = None, +): + """ + Load pretrained fastai model from the Hub or from a local directory. + + Args: + repo_id (`str`): + The location where the pickled fastai.Learner is. It can be either of the two: + - Hosted on the Hugging Face Hub. E.g.: 'espejelomar/fatai-pet-breeds-classification' or 'distilgpt2'. + You can add a `revision` by appending `@` at the end of `repo_id`. E.g.: `dbmdz/bert-base-german-cased@main`. + Revision is the specific model version to use. Since we use a git-based system for storing models and other + artifacts on the Hugging Face Hub, it can be a branch name, a tag name, or a commit id. + - Hosted locally. `repo_id` would be a directory containing the pickle and a pyproject.toml + indicating the fastai and fastcore versions used to build the `fastai.Learner`. E.g.: `./my_model_directory/`. + revision (`str`, *optional*): + Revision at which the repo's files are downloaded. See documentation of `snapshot_download`. + + Returns: + The `fastai.Learner` model in the `repo_id` repo. + """ + _check_fastai_fastcore_versions() + + # Load the `repo_id` repo. + # `snapshot_download` returns the folder where the model was stored. + # `cache_dir` will be the default '/root/.cache/huggingface/hub' + if not os.path.isdir(repo_id): + storage_folder = snapshot_download( + repo_id=repo_id, + revision=revision, + library_name="fastai", + library_version=get_fastai_version(), + ) + else: + storage_folder = repo_id + + _check_fastai_fastcore_pyproject_versions(storage_folder) + + from fastai.learner import load_learner # type: ignore + + return load_learner(os.path.join(storage_folder, "model.pkl")) + + +@validate_hf_hub_args +def push_to_hub_fastai( + learner, + *, + repo_id: str, + commit_message: str = "Push FastAI model using huggingface_hub.", + private: bool = False, + token: Optional[str] = None, + config: Optional[dict] = None, + branch: Optional[str] = None, + create_pr: Optional[bool] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + api_endpoint: Optional[str] = None, +): + """ + Upload learner checkpoint files to the Hub. + + Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use + `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more + details. + + Args: + learner (`Learner`): + The `fastai.Learner' you'd like to push to the Hub. + repo_id (`str`): + The repository id for your model in Hub in the format of "namespace/repo_name". The namespace can be your individual account or an organization to which you have write access (for example, 'stanfordnlp/stanza-de'). + commit_message (`str`, *optional*): + Message to commit while pushing. Will default to :obj:`"add model"`. + private (`bool`, *optional*, defaults to `False`): + Whether or not the repository created should be private. + token (`str`, *optional*): + The Hugging Face account token to use as HTTP bearer authorization for remote files. If :obj:`None`, the token will be asked by a prompt. + config (`dict`, *optional*): + Configuration object to be saved alongside the model weights. + branch (`str`, *optional*): + The git branch on which to push the model. This defaults to + the default branch as specified in your repository, which + defaults to `"main"`. + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request from `branch` with that commit. + Defaults to `False`. + api_endpoint (`str`, *optional*): + The API endpoint to use when pushing the model to the hub. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are pushed. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not pushed. + delete_patterns (`List[str]` or `str`, *optional*): + If provided, remote files matching any of the patterns will be deleted from the repo. + + Returns: + The url of the commit of your model in the given repository. + + + + Raises the following error: + + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if the user is not log on to the Hugging Face Hub. + + + """ + _check_fastai_fastcore_versions() + api = HfApi(endpoint=api_endpoint) + repo_id = api.create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True).repo_id + + # Push the files to the repo in a single commit + with SoftTemporaryDirectory() as tmp: + saved_path = Path(tmp) / repo_id + _save_pretrained_fastai(learner, saved_path, config=config) + return api.upload_folder( + repo_id=repo_id, + token=token, + folder_path=saved_path, + commit_message=commit_message, + revision=branch, + create_pr=create_pr, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + delete_patterns=delete_patterns, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/file_download.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/file_download.py new file mode 100644 index 0000000000000000000000000000000000000000..23d1d10686ccd258cb6c6cd02780ba3b0c779b76 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/file_download.py @@ -0,0 +1,1939 @@ +import copy +import errno +import fnmatch +import inspect +import json +import os +import re +import shutil +import stat +import time +import uuid +import warnings +from dataclasses import dataclass +from pathlib import Path +from typing import Any, BinaryIO, Dict, Literal, NoReturn, Optional, Tuple, Union +from urllib.parse import quote, urlparse + +import requests + +from . import __version__ # noqa: F401 # for backward compatibility +from ._local_folder import ( + get_local_download_paths, + read_download_metadata, + write_download_metadata, +) +from .constants import ( + DEFAULT_ETAG_TIMEOUT, + DEFAULT_REQUEST_TIMEOUT, + DEFAULT_REVISION, + DOWNLOAD_CHUNK_SIZE, + ENDPOINT, + HF_HUB_CACHE, + HF_HUB_DISABLE_SYMLINKS_WARNING, + HF_HUB_DOWNLOAD_TIMEOUT, + HF_HUB_ENABLE_HF_TRANSFER, + HF_HUB_ETAG_TIMEOUT, + HF_TRANSFER_CONCURRENCY, + HUGGINGFACE_CO_URL_TEMPLATE, + HUGGINGFACE_HEADER_X_LINKED_ETAG, + HUGGINGFACE_HEADER_X_LINKED_SIZE, + HUGGINGFACE_HEADER_X_REPO_COMMIT, + HUGGINGFACE_HUB_CACHE, # noqa: F401 # for backward compatibility + REPO_ID_SEPARATOR, + REPO_TYPES, + REPO_TYPES_URL_PREFIXES, +) +from .utils import ( + EntryNotFoundError, + FileMetadataError, + GatedRepoError, + LocalEntryNotFoundError, + OfflineModeIsEnabled, + RepositoryNotFoundError, + RevisionNotFoundError, + SoftTemporaryDirectory, + WeakFileLock, + build_hf_headers, + get_fastai_version, # noqa: F401 # for backward compatibility + get_fastcore_version, # noqa: F401 # for backward compatibility + get_graphviz_version, # noqa: F401 # for backward compatibility + get_jinja_version, # noqa: F401 # for backward compatibility + get_pydot_version, # noqa: F401 # for backward compatibility + get_session, + get_tf_version, # noqa: F401 # for backward compatibility + get_torch_version, # noqa: F401 # for backward compatibility + hf_raise_for_status, + is_fastai_available, # noqa: F401 # for backward compatibility + is_fastcore_available, # noqa: F401 # for backward compatibility + is_graphviz_available, # noqa: F401 # for backward compatibility + is_jinja_available, # noqa: F401 # for backward compatibility + is_pydot_available, # noqa: F401 # for backward compatibility + is_tf_available, # noqa: F401 # for backward compatibility + is_torch_available, # noqa: F401 # for backward compatibility + logging, + reset_sessions, + tqdm, + validate_hf_hub_args, +) +from .utils._runtime import _PY_VERSION # noqa: F401 # for backward compatibility +from .utils._typing import HTTP_METHOD_T +from .utils.insecure_hashlib import sha256 +from .utils.sha import sha_fileobj + + +logger = logging.get_logger(__name__) + +# Return value when trying to load a file from cache but the file does not exist in the distant repo. +_CACHED_NO_EXIST = object() +_CACHED_NO_EXIST_T = Any + +# Regex to get filename from a "Content-Disposition" header for CDN-served files +HEADER_FILENAME_PATTERN = re.compile(r'filename="(?P.*?)";') + +# Regex to check if the revision IS directly a commit_hash +REGEX_COMMIT_HASH = re.compile(r"^[0-9a-f]{40}$") + +# Regex to check if the file etag IS a valid sha256 +REGEX_SHA256 = re.compile(r"^[0-9a-f]{64}$") + +_are_symlinks_supported_in_dir: Dict[str, bool] = {} + + +def are_symlinks_supported(cache_dir: Union[str, Path, None] = None) -> bool: + """Return whether the symlinks are supported on the machine. + + Since symlinks support can change depending on the mounted disk, we need to check + on the precise cache folder. By default, the default HF cache directory is checked. + + Args: + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + + Returns: [bool] Whether symlinks are supported in the directory. + """ + # Defaults to HF cache + if cache_dir is None: + cache_dir = HF_HUB_CACHE + cache_dir = str(Path(cache_dir).expanduser().resolve()) # make it unique + + # Check symlink compatibility only once (per cache directory) at first time use + if cache_dir not in _are_symlinks_supported_in_dir: + _are_symlinks_supported_in_dir[cache_dir] = True + + os.makedirs(cache_dir, exist_ok=True) + with SoftTemporaryDirectory(dir=cache_dir) as tmpdir: + src_path = Path(tmpdir) / "dummy_file_src" + src_path.touch() + dst_path = Path(tmpdir) / "dummy_file_dst" + + # Relative source path as in `_create_symlink`` + relative_src = os.path.relpath(src_path, start=os.path.dirname(dst_path)) + try: + os.symlink(relative_src, dst_path) + except OSError: + # Likely running on Windows + _are_symlinks_supported_in_dir[cache_dir] = False + + if not HF_HUB_DISABLE_SYMLINKS_WARNING: + message = ( + "`huggingface_hub` cache-system uses symlinks by default to" + " efficiently store duplicated files but your machine does not" + f" support them in {cache_dir}. Caching files will still work" + " but in a degraded version that might require more space on" + " your disk. This warning can be disabled by setting the" + " `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For" + " more details, see" + " https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations." + ) + if os.name == "nt": + message += ( + "\nTo support symlinks on Windows, you either need to" + " activate Developer Mode or to run Python as an" + " administrator. In order to see activate developer mode," + " see this article:" + " https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development" + ) + warnings.warn(message) + + return _are_symlinks_supported_in_dir[cache_dir] + + +@dataclass(frozen=True) +class HfFileMetadata: + """Data structure containing information about a file versioned on the Hub. + + Returned by [`get_hf_file_metadata`] based on a URL. + + Args: + commit_hash (`str`, *optional*): + The commit_hash related to the file. + etag (`str`, *optional*): + Etag of the file on the server. + location (`str`): + Location where to download the file. Can be a Hub url or not (CDN). + size (`size`): + Size of the file. In case of an LFS file, contains the size of the actual + LFS file, not the pointer. + """ + + commit_hash: Optional[str] + etag: Optional[str] + location: str + size: Optional[int] + + +@validate_hf_hub_args +def hf_hub_url( + repo_id: str, + filename: str, + *, + subfolder: Optional[str] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + endpoint: Optional[str] = None, +) -> str: + """Construct the URL of a file from the given information. + + The resolved address can either be a huggingface.co-hosted url, or a link to + Cloudfront (a Content Delivery Network, or CDN) for large files which are + more than a few MBs. + + Args: + repo_id (`str`): + A namespace (user or an organization) name and a repo name separated + by a `/`. + filename (`str`): + The name of the file in the repo. + subfolder (`str`, *optional*): + An optional value corresponding to a folder inside the repo. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if downloading from a dataset or space, + `None` or `"model"` if downloading from a model. Default is `None`. + revision (`str`, *optional*): + An optional Git revision id which can be a branch name, a tag, or a + commit hash. + + Example: + + ```python + >>> from huggingface_hub import hf_hub_url + + >>> hf_hub_url( + ... repo_id="julien-c/EsperBERTo-small", filename="pytorch_model.bin" + ... ) + 'https://huggingface.co/julien-c/EsperBERTo-small/resolve/main/pytorch_model.bin' + ``` + + + + Notes: + + Cloudfront is replicated over the globe so downloads are way faster for + the end user (and it also lowers our bandwidth costs). + + Cloudfront aggressively caches files by default (default TTL is 24 + hours), however this is not an issue here because we implement a + git-based versioning system on huggingface.co, which means that we store + the files on S3/Cloudfront in a content-addressable way (i.e., the file + name is its hash). Using content-addressable filenames means cache can't + ever be stale. + + In terms of client-side caching from this library, we base our caching + on the objects' entity tag (`ETag`), which is an identifier of a + specific version of a resource [1]_. An object's ETag is: its git-sha1 + if stored in git, or its sha256 if stored in git-lfs. + + + + References: + + - [1] https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag + """ + if subfolder == "": + subfolder = None + if subfolder is not None: + filename = f"{subfolder}/{filename}" + + if repo_type not in REPO_TYPES: + raise ValueError("Invalid repo type") + + if repo_type in REPO_TYPES_URL_PREFIXES: + repo_id = REPO_TYPES_URL_PREFIXES[repo_type] + repo_id + + if revision is None: + revision = DEFAULT_REVISION + url = HUGGINGFACE_CO_URL_TEMPLATE.format( + repo_id=repo_id, revision=quote(revision, safe=""), filename=quote(filename) + ) + # Update endpoint if provided + if endpoint is not None and url.startswith(ENDPOINT): + url = endpoint + url[len(ENDPOINT) :] + return url + + +def url_to_filename(url: str, etag: Optional[str] = None) -> str: + """Generate a local filename from a url. + + Convert `url` into a hashed filename in a reproducible way. If `etag` is + specified, append its hash to the url's, delimited by a period. If the url + ends with .h5 (Keras HDF5 weights) adds '.h5' to the name so that TF 2.0 can + identify it as a HDF5 file (see + https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380) + + Args: + url (`str`): + The address to the file. + etag (`str`, *optional*): + The ETag of the file. + + Returns: + The generated filename. + """ + url_bytes = url.encode("utf-8") + filename = sha256(url_bytes).hexdigest() + + if etag: + etag_bytes = etag.encode("utf-8") + filename += "." + sha256(etag_bytes).hexdigest() + + if url.endswith(".h5"): + filename += ".h5" + + return filename + + +def filename_to_url( + filename, + cache_dir: Optional[str] = None, + legacy_cache_layout: bool = False, +) -> Tuple[str, str]: + """ + Return the url and etag (which may be `None`) stored for `filename`. Raise + `EnvironmentError` if `filename` or its stored metadata do not exist. + + Args: + filename (`str`): + The name of the file + cache_dir (`str`, *optional*): + The cache directory to use instead of the default one. + legacy_cache_layout (`bool`, *optional*, defaults to `False`): + If `True`, uses the legacy file cache layout i.e. just call `hf_hub_url` + then `cached_download`. This is deprecated as the new cache layout is + more powerful. + """ + if not legacy_cache_layout: + warnings.warn( + "`filename_to_url` uses the legacy way cache file layout", + FutureWarning, + ) + + if cache_dir is None: + cache_dir = HF_HUB_CACHE + if isinstance(cache_dir, Path): + cache_dir = str(cache_dir) + + cache_path = os.path.join(cache_dir, filename) + if not os.path.exists(cache_path): + raise EnvironmentError(f"file {cache_path} not found") + + meta_path = cache_path + ".json" + if not os.path.exists(meta_path): + raise EnvironmentError(f"file {meta_path} not found") + + with open(meta_path, encoding="utf-8") as meta_file: + metadata = json.load(meta_file) + url = metadata["url"] + etag = metadata["etag"] + + return url, etag + + +def _request_wrapper( + method: HTTP_METHOD_T, url: str, *, follow_relative_redirects: bool = False, **params +) -> requests.Response: + """Wrapper around requests methods to follow relative redirects if `follow_relative_redirects=True` even when + `allow_redirection=False`. + + Args: + method (`str`): + HTTP method, such as 'GET' or 'HEAD'. + url (`str`): + The URL of the resource to fetch. + follow_relative_redirects (`bool`, *optional*, defaults to `False`) + If True, relative redirection (redirection to the same site) will be resolved even when `allow_redirection` + kwarg is set to False. Useful when we want to follow a redirection to a renamed repository without + following redirection to a CDN. + **params (`dict`, *optional*): + Params to pass to `requests.request`. + """ + # Recursively follow relative redirects + if follow_relative_redirects: + response = _request_wrapper( + method=method, + url=url, + follow_relative_redirects=False, + **params, + ) + + # If redirection, we redirect only relative paths. + # This is useful in case of a renamed repository. + if 300 <= response.status_code <= 399: + parsed_target = urlparse(response.headers["Location"]) + if parsed_target.netloc == "": + # This means it is a relative 'location' headers, as allowed by RFC 7231. + # (e.g. '/path/to/resource' instead of 'http://domain.tld/path/to/resource') + # We want to follow this relative redirect ! + # + # Highly inspired by `resolve_redirects` from requests library. + # See https://github.com/psf/requests/blob/main/requests/sessions.py#L159 + next_url = urlparse(url)._replace(path=parsed_target.path).geturl() + return _request_wrapper(method=method, url=next_url, follow_relative_redirects=True, **params) + return response + + # Perform request and return if status_code is not in the retry list. + response = get_session().request(method=method, url=url, **params) + hf_raise_for_status(response) + return response + + +def http_get( + url: str, + temp_file: BinaryIO, + *, + proxies: Optional[Dict] = None, + resume_size: float = 0, + headers: Optional[Dict[str, str]] = None, + expected_size: Optional[int] = None, + displayed_filename: Optional[str] = None, + _nb_retries: int = 5, + _tqdm_bar: Optional[tqdm] = None, +) -> None: + """ + Download a remote file. Do not gobble up errors, and will return errors tailored to the Hugging Face Hub. + + If ConnectionError (SSLError) or ReadTimeout happen while streaming data from the server, it is most likely a + transient error (network outage?). We log a warning message and try to resume the download a few times before + giving up. The method gives up after 5 attempts if no new data has being received from the server. + + Args: + url (`str`): + The URL of the file to download. + temp_file (`BinaryIO`): + The file-like object where to save the file. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to `requests.request`. + resume_size (`float`, *optional*): + The number of bytes already downloaded. If set to 0 (default), the whole file is download. If set to a + positive number, the download will resume at the given position. + headers (`dict`, *optional*): + Dictionary of HTTP Headers to send with the request. + expected_size (`int`, *optional*): + The expected size of the file to download. If set, the download will raise an error if the size of the + received content is different from the expected one. + displayed_filename (`str`, *optional*): + The filename of the file that is being downloaded. Value is used only to display a nice progress bar. If + not set, the filename is guessed from the URL or the `Content-Disposition` header. + """ + hf_transfer = None + if HF_HUB_ENABLE_HF_TRANSFER: + if resume_size != 0: + warnings.warn("'hf_transfer' does not support `resume_size`: falling back to regular download method") + elif proxies is not None: + warnings.warn("'hf_transfer' does not support `proxies`: falling back to regular download method") + else: + try: + import hf_transfer # type: ignore[no-redef] + except ImportError: + raise ValueError( + "Fast download using 'hf_transfer' is enabled" + " (HF_HUB_ENABLE_HF_TRANSFER=1) but 'hf_transfer' package is not" + " available in your environment. Try `pip install hf_transfer`." + ) + + initial_headers = headers + headers = copy.deepcopy(headers) or {} + if resume_size > 0: + headers["Range"] = "bytes=%d-" % (resume_size,) + + r = _request_wrapper( + method="GET", url=url, stream=True, proxies=proxies, headers=headers, timeout=HF_HUB_DOWNLOAD_TIMEOUT + ) + hf_raise_for_status(r) + content_length = r.headers.get("Content-Length") + + # NOTE: 'total' is the total number of bytes to download, not the number of bytes in the file. + # If the file is compressed, the number of bytes in the saved file will be higher than 'total'. + total = resume_size + int(content_length) if content_length is not None else None + + if displayed_filename is None: + displayed_filename = url + content_disposition = r.headers.get("Content-Disposition") + if content_disposition is not None: + match = HEADER_FILENAME_PATTERN.search(content_disposition) + if match is not None: + # Means file is on CDN + displayed_filename = match.groupdict()["filename"] + + # Truncate filename if too long to display + if len(displayed_filename) > 40: + displayed_filename = f"(…){displayed_filename[-40:]}" + + consistency_error_message = ( + f"Consistency check failed: file should be of size {expected_size} but has size" + f" {{actual_size}} ({displayed_filename}).\nWe are sorry for the inconvenience. Please retry" + " with `force_download=True`.\nIf the issue persists, please let us know by opening an issue " + "on https://github.com/huggingface/huggingface_hub." + ) + + # Stream file to buffer + progress = _tqdm_bar + if progress is None: + progress = tqdm( + unit="B", + unit_scale=True, + total=total, + initial=resume_size, + desc=displayed_filename, + disable=True if (logger.getEffectiveLevel() == logging.NOTSET) else None, + # ^ set `disable=None` rather than `disable=False` by default to disable progress bar when no TTY attached + # see https://github.com/huggingface/huggingface_hub/pull/2000 + name="huggingface_hub.http_get", + ) + + if hf_transfer and total is not None and total > 5 * DOWNLOAD_CHUNK_SIZE: + supports_callback = "callback" in inspect.signature(hf_transfer.download).parameters + if not supports_callback: + warnings.warn( + "You are using an outdated version of `hf_transfer`. " + "Consider upgrading to latest version to enable progress bars " + "using `pip install -U hf_transfer`." + ) + try: + hf_transfer.download( + url=url, + filename=temp_file.name, + max_files=HF_TRANSFER_CONCURRENCY, + chunk_size=DOWNLOAD_CHUNK_SIZE, + headers=headers, + parallel_failures=3, + max_retries=5, + **({"callback": progress.update} if supports_callback else {}), + ) + except Exception as e: + raise RuntimeError( + "An error occurred while downloading using `hf_transfer`. Consider" + " disabling HF_HUB_ENABLE_HF_TRANSFER for better error handling." + ) from e + if not supports_callback: + progress.update(total) + if expected_size is not None and expected_size != os.path.getsize(temp_file.name): + raise EnvironmentError( + consistency_error_message.format( + actual_size=os.path.getsize(temp_file.name), + ) + ) + return + new_resume_size = resume_size + try: + for chunk in r.iter_content(chunk_size=DOWNLOAD_CHUNK_SIZE): + if chunk: # filter out keep-alive new chunks + progress.update(len(chunk)) + temp_file.write(chunk) + new_resume_size += len(chunk) + # Some data has been downloaded from the server so we reset the number of retries. + _nb_retries = 5 + except (requests.ConnectionError, requests.ReadTimeout) as e: + # If ConnectionError (SSLError) or ReadTimeout happen while streaming data from the server, it is most likely + # a transient error (network outage?). We log a warning message and try to resume the download a few times + # before giving up. Tre retry mechanism is basic but should be enough in most cases. + if _nb_retries <= 0: + logger.warning("Error while downloading from %s: %s\nMax retries exceeded.", url, str(e)) + raise + logger.warning("Error while downloading from %s: %s\nTrying to resume download...", url, str(e)) + time.sleep(1) + reset_sessions() # In case of SSLError it's best to reset the shared requests.Session objects + return http_get( + url=url, + temp_file=temp_file, + proxies=proxies, + resume_size=new_resume_size, + headers=initial_headers, + expected_size=expected_size, + _nb_retries=_nb_retries - 1, + _tqdm_bar=_tqdm_bar, + ) + + progress.close() + + if expected_size is not None and expected_size != temp_file.tell(): + raise EnvironmentError( + consistency_error_message.format( + actual_size=temp_file.tell(), + ) + ) + + +@validate_hf_hub_args +def cached_download( + url: str, + *, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + cache_dir: Union[str, Path, None] = None, + user_agent: Union[Dict, str, None] = None, + force_download: bool = False, + force_filename: Optional[str] = None, + proxies: Optional[Dict] = None, + etag_timeout: float = DEFAULT_ETAG_TIMEOUT, + resume_download: Optional[bool] = None, + token: Union[bool, str, None] = None, + local_files_only: bool = False, + legacy_cache_layout: bool = False, +) -> str: + """ + Download from a given URL and cache it if it's not already present in the + local cache. + + Given a URL, this function looks for the corresponding file in the local + cache. If it's not there, download it. Then return the path to the cached + file. + + Will raise errors tailored to the Hugging Face Hub. + + Args: + url (`str`): + The path to the file to be downloaded. + library_name (`str`, *optional*): + The name of the library to which the object corresponds. + library_version (`str`, *optional*): + The version of the library. + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + user_agent (`dict`, `str`, *optional*): + The user-agent info in the form of a dictionary or a string. + force_download (`bool`, *optional*, defaults to `False`): + Whether the file should be downloaded even if it already exists in + the local cache. + force_filename (`str`, *optional*): + Use this name instead of a generated file name. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to + `requests.request`. + etag_timeout (`float`, *optional* defaults to `10`): + When fetching ETag, how many seconds to wait for the server to send + data before giving up which is passed to `requests.request`. + token (`bool`, `str`, *optional*): + A token to be used for the download. + - If `True`, the token is read from the HuggingFace config + folder. + - If a string, it's used as the authentication token. + local_files_only (`bool`, *optional*, defaults to `False`): + If `True`, avoid downloading the file and return the path to the + local cached file if it exists. + legacy_cache_layout (`bool`, *optional*, defaults to `False`): + Set this parameter to `True` to mention that you'd like to continue + the old cache layout. Putting this to `True` manually will not raise + any warning when using `cached_download`. We recommend using + `hf_hub_download` to take advantage of the new cache. + + Returns: + Local path (string) of file or if networking is off, last version of + file cached on disk. + + + + Raises the following errors: + + - [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + if `token=True` and the token cannot be found. + - [`OSError`](https://docs.python.org/3/library/exceptions.html#OSError) + if ETag cannot be determined. + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + - [`~utils.EntryNotFoundError`] + If the file to download cannot be found. + - [`~utils.LocalEntryNotFoundError`] + If network is disabled or unavailable and file is not found in cache. + + + """ + if HF_HUB_ETAG_TIMEOUT != DEFAULT_ETAG_TIMEOUT: + # Respect environment variable above user value + etag_timeout = HF_HUB_ETAG_TIMEOUT + + if not legacy_cache_layout: + warnings.warn( + "'cached_download' is the legacy way to download files from the HF hub, please consider upgrading to" + " 'hf_hub_download'", + FutureWarning, + ) + if resume_download is not None: + warnings.warn( + "`resume_download` is deprecated and will be removed in version 1.0.0. " + "Downloads always resume when possible. " + "If you want to force a new download, use `force_download=True`.", + FutureWarning, + ) + + if cache_dir is None: + cache_dir = HF_HUB_CACHE + if isinstance(cache_dir, Path): + cache_dir = str(cache_dir) + + os.makedirs(cache_dir, exist_ok=True) + + headers = build_hf_headers( + token=token, + library_name=library_name, + library_version=library_version, + user_agent=user_agent, + ) + + url_to_download = url + etag = None + expected_size = None + if not local_files_only: + try: + # Temporary header: we want the full (decompressed) content size returned to be able to check the + # downloaded file size + headers["Accept-Encoding"] = "identity" + r = _request_wrapper( + method="HEAD", + url=url, + headers=headers, + allow_redirects=False, + follow_relative_redirects=True, + proxies=proxies, + timeout=etag_timeout, + ) + headers.pop("Accept-Encoding", None) + hf_raise_for_status(r) + etag = r.headers.get(HUGGINGFACE_HEADER_X_LINKED_ETAG) or r.headers.get("ETag") + # We favor a custom header indicating the etag of the linked resource, and + # we fallback to the regular etag header. + # If we don't have any of those, raise an error. + if etag is None: + raise FileMetadataError( + "Distant resource does not have an ETag, we won't be able to reliably ensure reproducibility." + ) + # We get the expected size of the file, to check the download went well. + expected_size = _int_or_none(r.headers.get("Content-Length")) + # In case of a redirect, save an extra redirect on the request.get call, + # and ensure we download the exact atomic version even if it changed + # between the HEAD and the GET (unlikely, but hey). + # Useful for lfs blobs that are stored on a CDN. + if 300 <= r.status_code <= 399: + url_to_download = r.headers["Location"] + headers.pop("authorization", None) + expected_size = None # redirected -> can't know the expected size + except (requests.exceptions.SSLError, requests.exceptions.ProxyError): + # Actually raise for those subclasses of ConnectionError + raise + except ( + requests.exceptions.ConnectionError, + requests.exceptions.Timeout, + OfflineModeIsEnabled, + ): + # Otherwise, our Internet connection is down. + # etag is None + pass + + filename = force_filename if force_filename is not None else url_to_filename(url, etag) + + # get cache path to put the file + cache_path = os.path.join(cache_dir, filename) + + # etag is None == we don't have a connection or we passed local_files_only. + # try to get the last downloaded one + if etag is None: + if os.path.exists(cache_path) and not force_download: + return cache_path + else: + matching_files = [ + file + for file in fnmatch.filter(os.listdir(cache_dir), filename.split(".")[0] + ".*") + if not file.endswith(".json") and not file.endswith(".lock") + ] + if len(matching_files) > 0 and not force_download and force_filename is None: + return os.path.join(cache_dir, matching_files[-1]) + else: + # If files cannot be found and local_files_only=True, + # the models might've been found if local_files_only=False + # Notify the user about that + if local_files_only: + raise LocalEntryNotFoundError( + "Cannot find the requested files in the cached path and" + " outgoing traffic has been disabled. To enable model look-ups" + " and downloads online, set 'local_files_only' to False." + ) + else: + raise LocalEntryNotFoundError( + "Connection error, and we cannot find the requested files in" + " the cached path. Please try again or make sure your Internet" + " connection is on." + ) + + # From now on, etag is not None. + if os.path.exists(cache_path) and not force_download: + return cache_path + + # Prevent parallel downloads of the same file with a lock. + lock_path = cache_path + ".lock" + + # Some Windows versions do not allow for paths longer than 255 characters. + # In this case, we must specify it is an extended path by using the "\\?\" prefix. + if os.name == "nt" and len(os.path.abspath(lock_path)) > 255: + lock_path = "\\\\?\\" + os.path.abspath(lock_path) + + if os.name == "nt" and len(os.path.abspath(cache_path)) > 255: + cache_path = "\\\\?\\" + os.path.abspath(cache_path) + + with WeakFileLock(lock_path): + _download_to_tmp_and_move( + incomplete_path=Path(cache_path + ".incomplete"), + destination_path=Path(cache_path), + url_to_download=url_to_download, + proxies=proxies, + headers=headers, + expected_size=expected_size, + filename=filename, + force_download=force_download, + ) + + if force_filename is None: + logger.info("creating metadata file for %s", cache_path) + meta = {"url": url, "etag": etag} + meta_path = cache_path + ".json" + with open(meta_path, "w") as meta_file: + json.dump(meta, meta_file) + + return cache_path + + +def _normalize_etag(etag: Optional[str]) -> Optional[str]: + """Normalize ETag HTTP header, so it can be used to create nice filepaths. + + The HTTP spec allows two forms of ETag: + ETag: W/"" + ETag: "" + + For now, we only expect the second form from the server, but we want to be future-proof so we support both. For + more context, see `TestNormalizeEtag` tests and https://github.com/huggingface/huggingface_hub/pull/1428. + + Args: + etag (`str`, *optional*): HTTP header + + Returns: + `str` or `None`: string that can be used as a nice directory name. + Returns `None` if input is None. + """ + if etag is None: + return None + return etag.lstrip("W/").strip('"') + + +def _create_relative_symlink(src: str, dst: str, new_blob: bool = False) -> None: + """Alias method used in `transformers` conversion script.""" + return _create_symlink(src=src, dst=dst, new_blob=new_blob) + + +def _create_symlink(src: str, dst: str, new_blob: bool = False) -> None: + """Create a symbolic link named dst pointing to src. + + By default, it will try to create a symlink using a relative path. Relative paths have 2 advantages: + - If the cache_folder is moved (example: back-up on a shared drive), relative paths within the cache folder will + not break. + - Relative paths seems to be better handled on Windows. Issue was reported 3 times in less than a week when + changing from relative to absolute paths. See https://github.com/huggingface/huggingface_hub/issues/1398, + https://github.com/huggingface/diffusers/issues/2729 and https://github.com/huggingface/transformers/pull/22228. + NOTE: The issue with absolute paths doesn't happen on admin mode. + When creating a symlink from the cache to a local folder, it is possible that a relative path cannot be created. + This happens when paths are not on the same volume. In that case, we use absolute paths. + + + The result layout looks something like + └── [ 128] snapshots + ├── [ 128] 2439f60ef33a0d46d85da5001d52aeda5b00ce9f + │ ├── [ 52] README.md -> ../../../blobs/d7edf6bd2a681fb0175f7735299831ee1b22b812 + │ └── [ 76] pytorch_model.bin -> ../../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + + If symlinks cannot be created on this platform (most likely to be Windows), the workaround is to avoid symlinks by + having the actual file in `dst`. If it is a new file (`new_blob=True`), we move it to `dst`. If it is not a new file + (`new_blob=False`), we don't know if the blob file is already referenced elsewhere. To avoid breaking existing + cache, the file is duplicated on the disk. + + In case symlinks are not supported, a warning message is displayed to the user once when loading `huggingface_hub`. + The warning message can be disabled with the `DISABLE_SYMLINKS_WARNING` environment variable. + """ + try: + os.remove(dst) + except OSError: + pass + + abs_src = os.path.abspath(os.path.expanduser(src)) + abs_dst = os.path.abspath(os.path.expanduser(dst)) + abs_dst_folder = os.path.dirname(abs_dst) + + # Use relative_dst in priority + try: + relative_src = os.path.relpath(abs_src, abs_dst_folder) + except ValueError: + # Raised on Windows if src and dst are not on the same volume. This is the case when creating a symlink to a + # local_dir instead of within the cache directory. + # See https://docs.python.org/3/library/os.path.html#os.path.relpath + relative_src = None + + try: + commonpath = os.path.commonpath([abs_src, abs_dst]) + _support_symlinks = are_symlinks_supported(commonpath) + except ValueError: + # Raised if src and dst are not on the same volume. Symlinks will still work on Linux/Macos. + # See https://docs.python.org/3/library/os.path.html#os.path.commonpath + _support_symlinks = os.name != "nt" + except PermissionError: + # Permission error means src and dst are not in the same volume (e.g. destination path has been provided + # by the user via `local_dir`. Let's test symlink support there) + _support_symlinks = are_symlinks_supported(abs_dst_folder) + except OSError as e: + # OS error (errno=30) means that the commonpath is readonly on Linux/MacOS. + if e.errno == errno.EROFS: + _support_symlinks = are_symlinks_supported(abs_dst_folder) + else: + raise + + # Symlinks are supported => let's create a symlink. + if _support_symlinks: + src_rel_or_abs = relative_src or abs_src + logger.debug(f"Creating pointer from {src_rel_or_abs} to {abs_dst}") + try: + os.symlink(src_rel_or_abs, abs_dst) + return + except FileExistsError: + if os.path.islink(abs_dst) and os.path.realpath(abs_dst) == os.path.realpath(abs_src): + # `abs_dst` already exists and is a symlink to the `abs_src` blob. It is most likely that the file has + # been cached twice concurrently (exactly between `os.remove` and `os.symlink`). Do nothing. + return + else: + # Very unlikely to happen. Means a file `dst` has been created exactly between `os.remove` and + # `os.symlink` and is not a symlink to the `abs_src` blob file. Raise exception. + raise + except PermissionError: + # Permission error means src and dst are not in the same volume (e.g. download to local dir) and symlink + # is supported on both volumes but not between them. Let's just make a hard copy in that case. + pass + + # Symlinks are not supported => let's move or copy the file. + if new_blob: + logger.info(f"Symlink not supported. Moving file from {abs_src} to {abs_dst}") + shutil.move(abs_src, abs_dst) + else: + logger.info(f"Symlink not supported. Copying file from {abs_src} to {abs_dst}") + shutil.copyfile(abs_src, abs_dst) + + +def _cache_commit_hash_for_specific_revision(storage_folder: str, revision: str, commit_hash: str) -> None: + """Cache reference between a revision (tag, branch or truncated commit hash) and the corresponding commit hash. + + Does nothing if `revision` is already a proper `commit_hash` or reference is already cached. + """ + if revision != commit_hash: + ref_path = Path(storage_folder) / "refs" / revision + ref_path.parent.mkdir(parents=True, exist_ok=True) + if not ref_path.exists() or commit_hash != ref_path.read_text(): + # Update ref only if has been updated. Could cause useless error in case + # repo is already cached and user doesn't have write access to cache folder. + # See https://github.com/huggingface/huggingface_hub/issues/1216. + ref_path.write_text(commit_hash) + + +@validate_hf_hub_args +def repo_folder_name(*, repo_id: str, repo_type: str) -> str: + """Return a serialized version of a hf.co repo name and type, safe for disk storage + as a single non-nested folder. + + Example: models--julien-c--EsperBERTo-small + """ + # remove all `/` occurrences to correctly convert repo to directory name + parts = [f"{repo_type}s", *repo_id.split("/")] + return REPO_ID_SEPARATOR.join(parts) + + +def _check_disk_space(expected_size: int, target_dir: Union[str, Path]) -> None: + """Check disk usage and log a warning if there is not enough disk space to download the file. + + Args: + expected_size (`int`): + The expected size of the file in bytes. + target_dir (`str`): + The directory where the file will be stored after downloading. + """ + + target_dir = Path(target_dir) # format as `Path` + for path in [target_dir] + list(target_dir.parents): # first check target_dir, then each parents one by one + try: + target_dir_free = shutil.disk_usage(path).free + if target_dir_free < expected_size: + warnings.warn( + "Not enough free disk space to download the file. " + f"The expected file size is: {expected_size / 1e6:.2f} MB. " + f"The target location {target_dir} only has {target_dir_free / 1e6:.2f} MB free disk space." + ) + return + except OSError: # raise on anything: file does not exist or space disk cannot be checked + pass + + +@validate_hf_hub_args +def hf_hub_download( + repo_id: str, + filename: str, + *, + subfolder: Optional[str] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + cache_dir: Union[str, Path, None] = None, + local_dir: Union[str, Path, None] = None, + user_agent: Union[Dict, str, None] = None, + force_download: bool = False, + proxies: Optional[Dict] = None, + etag_timeout: float = DEFAULT_ETAG_TIMEOUT, + token: Union[bool, str, None] = None, + local_files_only: bool = False, + headers: Optional[Dict[str, str]] = None, + endpoint: Optional[str] = None, + # Deprecated args + legacy_cache_layout: bool = False, + resume_download: Optional[bool] = None, + force_filename: Optional[str] = None, + local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto", +) -> str: + """Download a given file if it's not already present in the local cache. + + The new cache file layout looks like this: + - The cache directory contains one subfolder per repo_id (namespaced by repo type) + - inside each repo folder: + - refs is a list of the latest known revision => commit_hash pairs + - blobs contains the actual file blobs (identified by their git-sha or sha256, depending on + whether they're LFS files or not) + - snapshots contains one subfolder per commit, each "commit" contains the subset of the files + that have been resolved at that particular commit. Each filename is a symlink to the blob + at that particular commit. + + ``` + [ 96] . + └── [ 160] models--julien-c--EsperBERTo-small + ├── [ 160] blobs + │ ├── [321M] 403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + │ ├── [ 398] 7cb18dc9bafbfcf74629a4b760af1b160957a83e + │ └── [1.4K] d7edf6bd2a681fb0175f7735299831ee1b22b812 + ├── [ 96] refs + │ └── [ 40] main + └── [ 128] snapshots + ├── [ 128] 2439f60ef33a0d46d85da5001d52aeda5b00ce9f + │ ├── [ 52] README.md -> ../../blobs/d7edf6bd2a681fb0175f7735299831ee1b22b812 + │ └── [ 76] pytorch_model.bin -> ../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + └── [ 128] bbc77c8132af1cc5cf678da3f1ddf2de43606d48 + ├── [ 52] README.md -> ../../blobs/7cb18dc9bafbfcf74629a4b760af1b160957a83e + └── [ 76] pytorch_model.bin -> ../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + ``` + + If `local_dir` is provided, the file structure from the repo will be replicated in this location. When using this + option, the `cache_dir` will not be used and a `.huggingface/` folder will be created at the root of `local_dir` + to store some metadata related to the downloaded files. While this mechanism is not as robust as the main + cache-system, it's optimized for regularly pulling the latest version of a repository. + + Args: + repo_id (`str`): + A user or an organization name and a repo name separated by a `/`. + filename (`str`): + The name of the file in the repo. + subfolder (`str`, *optional*): + An optional value corresponding to a folder inside the model repo. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if downloading from a dataset or space, + `None` or `"model"` if downloading from a model. Default is `None`. + revision (`str`, *optional*): + An optional Git revision id which can be a branch name, a tag, or a + commit hash. + library_name (`str`, *optional*): + The name of the library to which the object corresponds. + library_version (`str`, *optional*): + The version of the library. + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + local_dir (`str` or `Path`, *optional*): + If provided, the downloaded file will be placed under this directory. + user_agent (`dict`, `str`, *optional*): + The user-agent info in the form of a dictionary or a string. + force_download (`bool`, *optional*, defaults to `False`): + Whether the file should be downloaded even if it already exists in + the local cache. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to + `requests.request`. + etag_timeout (`float`, *optional*, defaults to `10`): + When fetching ETag, how many seconds to wait for the server to send + data before giving up which is passed to `requests.request`. + token (`str`, `bool`, *optional*): + A token to be used for the download. + - If `True`, the token is read from the HuggingFace config + folder. + - If a string, it's used as the authentication token. + local_files_only (`bool`, *optional*, defaults to `False`): + If `True`, avoid downloading the file and return the path to the + local cached file if it exists. + headers (`dict`, *optional*): + Additional headers to be sent with the request. + legacy_cache_layout (`bool`, *optional*, defaults to `False`): + If `True`, uses the legacy file cache layout i.e. just call [`hf_hub_url`] + then `cached_download`. This is deprecated as the new cache layout is + more powerful. + + Returns: + `str`: Local path of file or if networking is off, last version of file cached on disk. + + Raises: + - [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + if `token=True` and the token cannot be found. + - [`OSError`](https://docs.python.org/3/library/exceptions.html#OSError) + if ETag cannot be determined. + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + - [`~utils.EntryNotFoundError`] + If the file to download cannot be found. + - [`~utils.LocalEntryNotFoundError`] + If network is disabled or unavailable and file is not found in cache. + """ + if HF_HUB_ETAG_TIMEOUT != DEFAULT_ETAG_TIMEOUT: + # Respect environment variable above user value + etag_timeout = HF_HUB_ETAG_TIMEOUT + + if force_filename is not None: + warnings.warn( + "The `force_filename` parameter is deprecated as a new caching system, " + "which keeps the filenames as they are on the Hub, is now in place.", + FutureWarning, + ) + legacy_cache_layout = True + if resume_download is not None: + warnings.warn( + "`resume_download` is deprecated and will be removed in version 1.0.0. " + "Downloads always resume when possible. " + "If you want to force a new download, use `force_download=True`.", + FutureWarning, + ) + + if legacy_cache_layout: + url = hf_hub_url( + repo_id, + filename, + subfolder=subfolder, + repo_type=repo_type, + revision=revision, + endpoint=endpoint, + ) + + return cached_download( + url, + library_name=library_name, + library_version=library_version, + cache_dir=cache_dir, + user_agent=user_agent, + force_download=force_download, + force_filename=force_filename, + proxies=proxies, + etag_timeout=etag_timeout, + token=token, + local_files_only=local_files_only, + legacy_cache_layout=legacy_cache_layout, + ) + + if cache_dir is None: + cache_dir = HF_HUB_CACHE + if revision is None: + revision = DEFAULT_REVISION + if isinstance(cache_dir, Path): + cache_dir = str(cache_dir) + if isinstance(local_dir, Path): + local_dir = str(local_dir) + + if subfolder == "": + subfolder = None + if subfolder is not None: + # This is used to create a URL, and not a local path, hence the forward slash. + filename = f"{subfolder}/{filename}" + + if repo_type is None: + repo_type = "model" + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type: {repo_type}. Accepted repo types are: {str(REPO_TYPES)}") + + headers = build_hf_headers( + token=token, + library_name=library_name, + library_version=library_version, + user_agent=user_agent, + headers=headers, + ) + + if local_dir is not None: + if local_dir_use_symlinks != "auto": + warnings.warn( + "`local_dir_use_symlinks` parameter is deprecated and will be ignored. " + "The process to download files to a local folder has been updated and do " + "not rely on symlinks anymore. You only need to pass a destination folder " + "as`local_dir`.\n" + "For more details, check out https://huggingface.co/docs/huggingface_hub/main/en/guides/download#download-files-to-local-folder." + ) + + return _hf_hub_download_to_local_dir( + # Destination + local_dir=local_dir, + # File info + repo_id=repo_id, + repo_type=repo_type, + filename=filename, + revision=revision, + # HTTP info + proxies=proxies, + etag_timeout=etag_timeout, + headers=headers, + endpoint=endpoint, + # Additional options + cache_dir=cache_dir, + force_download=force_download, + local_files_only=local_files_only, + ) + else: + return _hf_hub_download_to_cache_dir( + # Destination + cache_dir=cache_dir, + # File info + repo_id=repo_id, + filename=filename, + repo_type=repo_type, + revision=revision, + # HTTP info + headers=headers, + proxies=proxies, + etag_timeout=etag_timeout, + endpoint=endpoint, + # Additional options + local_files_only=local_files_only, + force_download=force_download, + ) + + +def _hf_hub_download_to_cache_dir( + *, + # Destination + cache_dir: str, + # File info + repo_id: str, + filename: str, + repo_type: str, + revision: str, + # HTTP info + headers: Dict[str, str], + proxies: Optional[Dict], + etag_timeout: float, + endpoint: Optional[str], + # Additional options + local_files_only: bool, + force_download: bool, +) -> str: + """Download a given file to a cache folder, if not already present. + + Method should not be called directly. Please use `hf_hub_download` instead. + """ + locks_dir = os.path.join(cache_dir, ".locks") + storage_folder = os.path.join(cache_dir, repo_folder_name(repo_id=repo_id, repo_type=repo_type)) + + # cross platform transcription of filename, to be used as a local file path. + relative_filename = os.path.join(*filename.split("/")) + if os.name == "nt": + if relative_filename.startswith("..\\") or "\\..\\" in relative_filename: + raise ValueError( + f"Invalid filename: cannot handle filename '{relative_filename}' on Windows. Please ask the repository" + " owner to rename this file." + ) + + # if user provides a commit_hash and they already have the file on disk, shortcut everything. + if REGEX_COMMIT_HASH.match(revision): + pointer_path = _get_pointer_path(storage_folder, revision, relative_filename) + if os.path.exists(pointer_path) and not force_download: + return pointer_path + + # Try to get metadata (etag, commit_hash, url, size) from the server. + # If we can't, a HEAD request error is returned. + (url_to_download, etag, commit_hash, expected_size, head_call_error) = _get_metadata_or_catch_error( + repo_id=repo_id, + filename=filename, + repo_type=repo_type, + revision=revision, + endpoint=endpoint, + proxies=proxies, + etag_timeout=etag_timeout, + headers=headers, + local_files_only=local_files_only, + storage_folder=storage_folder, + relative_filename=relative_filename, + ) + + # etag can be None for several reasons: + # 1. we passed local_files_only. + # 2. we don't have a connection + # 3. Hub is down (HTTP 500, 503, 504) + # 4. repo is not found -for example private or gated- and invalid/missing token sent + # 5. Hub is blocked by a firewall or proxy is not set correctly. + # => Try to get the last downloaded one from the specified revision. + # + # If the specified revision is a commit hash, look inside "snapshots". + # If the specified revision is a branch or tag, look inside "refs". + if head_call_error is not None: + # Couldn't make a HEAD call => let's try to find a local file + if not force_download: + commit_hash = None + if REGEX_COMMIT_HASH.match(revision): + commit_hash = revision + else: + ref_path = os.path.join(storage_folder, "refs", revision) + if os.path.isfile(ref_path): + with open(ref_path) as f: + commit_hash = f.read() + + # Return pointer file if exists + if commit_hash is not None: + pointer_path = _get_pointer_path(storage_folder, commit_hash, relative_filename) + if os.path.exists(pointer_path) and not force_download: + return pointer_path + + # Otherwise, raise appropriate error + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + + # From now on, etag, commit_hash, url and size are not None. + assert etag is not None, "etag must have been retrieved from server" + assert commit_hash is not None, "commit_hash must have been retrieved from server" + assert url_to_download is not None, "file location must have been retrieved from server" + assert expected_size is not None, "expected_size must have been retrieved from server" + blob_path = os.path.join(storage_folder, "blobs", etag) + pointer_path = _get_pointer_path(storage_folder, commit_hash, relative_filename) + + os.makedirs(os.path.dirname(blob_path), exist_ok=True) + os.makedirs(os.path.dirname(pointer_path), exist_ok=True) + + # if passed revision is not identical to commit_hash + # then revision has to be a branch name or tag name. + # In that case store a ref. + _cache_commit_hash_for_specific_revision(storage_folder, revision, commit_hash) + + # If file already exists, return it (except if force_download=True) + if not force_download: + if os.path.exists(pointer_path): + return pointer_path + + if os.path.exists(blob_path): + # we have the blob already, but not the pointer + _create_symlink(blob_path, pointer_path, new_blob=False) + return pointer_path + + # Prevent parallel downloads of the same file with a lock. + # etag could be duplicated across repos, + lock_path = os.path.join(locks_dir, repo_folder_name(repo_id=repo_id, repo_type=repo_type), f"{etag}.lock") + + # Some Windows versions do not allow for paths longer than 255 characters. + # In this case, we must specify it is an extended path by using the "\\?\" prefix. + if os.name == "nt" and len(os.path.abspath(lock_path)) > 255: + lock_path = "\\\\?\\" + os.path.abspath(lock_path) + + if os.name == "nt" and len(os.path.abspath(blob_path)) > 255: + blob_path = "\\\\?\\" + os.path.abspath(blob_path) + + Path(lock_path).parent.mkdir(parents=True, exist_ok=True) + with WeakFileLock(lock_path): + _download_to_tmp_and_move( + incomplete_path=Path(blob_path + ".incomplete"), + destination_path=Path(blob_path), + url_to_download=url_to_download, + proxies=proxies, + headers=headers, + expected_size=expected_size, + filename=filename, + force_download=force_download, + ) + _create_symlink(blob_path, pointer_path, new_blob=True) + + return pointer_path + + +def _hf_hub_download_to_local_dir( + *, + # Destination + local_dir: Union[str, Path], + # File info + repo_id: str, + repo_type: str, + filename: str, + revision: str, + # HTTP info + proxies: Optional[Dict], + etag_timeout: float, + headers: Dict[str, str], + endpoint: Optional[str], + # Additional options + cache_dir: str, + force_download: bool, + local_files_only: bool, +) -> str: + """Download a given file to a local folder, if not already present. + + Method should not be called directly. Please use `hf_hub_download` instead. + """ + local_dir = Path(local_dir) + paths = get_local_download_paths(local_dir=local_dir, filename=filename) + local_metadata = read_download_metadata(local_dir=local_dir, filename=filename) + + # Local file exists + metadata exists + commit_hash matches => return file + if ( + not force_download + and REGEX_COMMIT_HASH.match(revision) + and paths.file_path.is_file() + and local_metadata is not None + and local_metadata.commit_hash == revision + ): + return str(paths.file_path) + + # Local file doesn't exist or commit_hash doesn't match => we need the etag + (url_to_download, etag, commit_hash, expected_size, head_call_error) = _get_metadata_or_catch_error( + repo_id=repo_id, + filename=filename, + repo_type=repo_type, + revision=revision, + endpoint=endpoint, + proxies=proxies, + etag_timeout=etag_timeout, + headers=headers, + local_files_only=local_files_only, + ) + + if head_call_error is not None: + # No HEAD call but local file exists => default to local file + if not force_download and paths.file_path.is_file(): + logger.warning( + f"Couldn't access the Hub to check for update but local file already exists. Defaulting to existing file. (error: {head_call_error})" + ) + return str(paths.file_path) + # Otherwise => raise + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + + # From now on, etag, commit_hash, url and size are not None. + assert etag is not None, "etag must have been retrieved from server" + assert commit_hash is not None, "commit_hash must have been retrieved from server" + assert url_to_download is not None, "file location must have been retrieved from server" + assert expected_size is not None, "expected_size must have been retrieved from server" + + # Local file exists => check if it's up-to-date + if not force_download and paths.file_path.is_file(): + # etag matches => update metadata and return file + if local_metadata is not None and local_metadata.etag == etag: + write_download_metadata(local_dir=local_dir, filename=filename, commit_hash=commit_hash, etag=etag) + return str(paths.file_path) + + # metadata is outdated + etag is a sha256 + # => means it's an LFS file (large) + # => let's compute local hash and compare + # => if match, update metadata and return file + if local_metadata is None and REGEX_SHA256.match(etag) is not None: + with open(paths.file_path, "rb") as f: + file_hash = sha_fileobj(f).hex() + if file_hash == etag: + write_download_metadata(local_dir=local_dir, filename=filename, commit_hash=commit_hash, etag=etag) + return str(paths.file_path) + + # Local file doesn't exist or etag isn't a match => retrieve file from remote (or cache) + + # If we are lucky enough, the file is already in the cache => copy it + if not force_download: + cached_path = try_to_load_from_cache( + repo_id=repo_id, + filename=filename, + cache_dir=cache_dir, + revision=commit_hash, + repo_type=repo_type, + ) + if isinstance(cached_path, str): + with WeakFileLock(paths.lock_path): + paths.file_path.parent.mkdir(parents=True, exist_ok=True) + shutil.copyfile(cached_path, paths.file_path) + write_download_metadata(local_dir=local_dir, filename=filename, commit_hash=commit_hash, etag=etag) + return str(paths.file_path) + + # Otherwise, let's download the file! + with WeakFileLock(paths.lock_path): + paths.file_path.unlink(missing_ok=True) # delete outdated file first + _download_to_tmp_and_move( + incomplete_path=paths.incomplete_path(etag), + destination_path=paths.file_path, + url_to_download=url_to_download, + proxies=proxies, + headers=headers, + expected_size=expected_size, + filename=filename, + force_download=force_download, + ) + + write_download_metadata(local_dir=local_dir, filename=filename, commit_hash=commit_hash, etag=etag) + return str(paths.file_path) + + +@validate_hf_hub_args +def try_to_load_from_cache( + repo_id: str, + filename: str, + cache_dir: Union[str, Path, None] = None, + revision: Optional[str] = None, + repo_type: Optional[str] = None, +) -> Union[str, _CACHED_NO_EXIST_T, None]: + """ + Explores the cache to return the latest cached file for a given revision if found. + + This function will not raise any exception if the file in not cached. + + Args: + cache_dir (`str` or `os.PathLike`): + The folder where the cached files lie. + repo_id (`str`): + The ID of the repo on huggingface.co. + filename (`str`): + The filename to look for inside `repo_id`. + revision (`str`, *optional*): + The specific model version to use. Will default to `"main"` if it's not provided and no `commit_hash` is + provided either. + repo_type (`str`, *optional*): + The type of the repository. Will default to `"model"`. + + Returns: + `Optional[str]` or `_CACHED_NO_EXIST`: + Will return `None` if the file was not cached. Otherwise: + - The exact path to the cached file if it's found in the cache + - A special value `_CACHED_NO_EXIST` if the file does not exist at the given commit hash and this fact was + cached. + + Example: + + ```python + from huggingface_hub import try_to_load_from_cache, _CACHED_NO_EXIST + + filepath = try_to_load_from_cache() + if isinstance(filepath, str): + # file exists and is cached + ... + elif filepath is _CACHED_NO_EXIST: + # non-existence of file is cached + ... + else: + # file is not cached + ... + ``` + """ + if revision is None: + revision = "main" + if repo_type is None: + repo_type = "model" + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type: {repo_type}. Accepted repo types are: {str(REPO_TYPES)}") + if cache_dir is None: + cache_dir = HF_HUB_CACHE + + object_id = repo_id.replace("/", "--") + repo_cache = os.path.join(cache_dir, f"{repo_type}s--{object_id}") + if not os.path.isdir(repo_cache): + # No cache for this model + return None + + refs_dir = os.path.join(repo_cache, "refs") + snapshots_dir = os.path.join(repo_cache, "snapshots") + no_exist_dir = os.path.join(repo_cache, ".no_exist") + + # Resolve refs (for instance to convert main to the associated commit sha) + if os.path.isdir(refs_dir): + revision_file = os.path.join(refs_dir, revision) + if os.path.isfile(revision_file): + with open(revision_file) as f: + revision = f.read() + + # Check if file is cached as "no_exist" + if os.path.isfile(os.path.join(no_exist_dir, revision, filename)): + return _CACHED_NO_EXIST + + # Check if revision folder exists + if not os.path.exists(snapshots_dir): + return None + cached_shas = os.listdir(snapshots_dir) + if revision not in cached_shas: + # No cache for this revision and we won't try to return a random revision + return None + + # Check if file exists in cache + cached_file = os.path.join(snapshots_dir, revision, filename) + return cached_file if os.path.isfile(cached_file) else None + + +@validate_hf_hub_args +def get_hf_file_metadata( + url: str, + token: Union[bool, str, None] = None, + proxies: Optional[Dict] = None, + timeout: Optional[float] = DEFAULT_REQUEST_TIMEOUT, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + user_agent: Union[Dict, str, None] = None, + headers: Optional[Dict[str, str]] = None, +) -> HfFileMetadata: + """Fetch metadata of a file versioned on the Hub for a given url. + + Args: + url (`str`): + File url, for example returned by [`hf_hub_url`]. + token (`str` or `bool`, *optional*): + A token to be used for the download. + - If `True`, the token is read from the HuggingFace config + folder. + - If `False` or `None`, no token is provided. + - If a string, it's used as the authentication token. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to + `requests.request`. + timeout (`float`, *optional*, defaults to 10): + How many seconds to wait for the server to send metadata before giving up. + library_name (`str`, *optional*): + The name of the library to which the object corresponds. + library_version (`str`, *optional*): + The version of the library. + user_agent (`dict`, `str`, *optional*): + The user-agent info in the form of a dictionary or a string. + headers (`dict`, *optional*): + Additional headers to be sent with the request. + + Returns: + A [`HfFileMetadata`] object containing metadata such as location, etag, size and + commit_hash. + """ + headers = build_hf_headers( + token=token, + library_name=library_name, + library_version=library_version, + user_agent=user_agent, + headers=headers, + ) + headers["Accept-Encoding"] = "identity" # prevent any compression => we want to know the real size of the file + + # Retrieve metadata + r = _request_wrapper( + method="HEAD", + url=url, + headers=headers, + allow_redirects=False, + follow_relative_redirects=True, + proxies=proxies, + timeout=timeout, + ) + hf_raise_for_status(r) + + # Return + return HfFileMetadata( + commit_hash=r.headers.get(HUGGINGFACE_HEADER_X_REPO_COMMIT), + # We favor a custom header indicating the etag of the linked resource, and + # we fallback to the regular etag header. + etag=_normalize_etag(r.headers.get(HUGGINGFACE_HEADER_X_LINKED_ETAG) or r.headers.get("ETag")), + # Either from response headers (if redirected) or defaults to request url + # Do not use directly `url`, as `_request_wrapper` might have followed relative + # redirects. + location=r.headers.get("Location") or r.request.url, # type: ignore + size=_int_or_none(r.headers.get(HUGGINGFACE_HEADER_X_LINKED_SIZE) or r.headers.get("Content-Length")), + ) + + +def _get_metadata_or_catch_error( + *, + repo_id: str, + filename: str, + repo_type: str, + revision: str, + endpoint: Optional[str], + proxies: Optional[Dict], + etag_timeout: Optional[float], + headers: Dict[str, str], # mutated inplace! + local_files_only: bool, + relative_filename: Optional[str] = None, # only used to store `.no_exists` in cache + storage_folder: Optional[str] = None, # only used to store `.no_exists` in cache +) -> Union[ + # Either an exception is caught and returned + Tuple[None, None, None, None, Exception], + # Or the metadata is returned as + # `(url_to_download, etag, commit_hash, expected_size, None)` + Tuple[str, str, str, int, None], +]: + """Get metadata for a file on the Hub, safely handling network issues. + + Returns either the etag, commit_hash and expected size of the file, or the error + raised while fetching the metadata. + + NOTE: This function mutates `headers` inplace! It removes the `authorization` header + if the file is a LFS blob and the domain of the url is different from the + domain of the location (typically an S3 bucket). + """ + if local_files_only: + return ( + None, + None, + None, + None, + OfflineModeIsEnabled( + f"Cannot access file since 'local_files_only=True' as been set. (repo_id: {repo_id}, repo_type: {repo_type}, revision: {revision}, filename: {filename})" + ), + ) + + url = url = hf_hub_url(repo_id, filename, repo_type=repo_type, revision=revision, endpoint=endpoint) + url_to_download: str = url + etag: Optional[str] = None + commit_hash: Optional[str] = None + expected_size: Optional[int] = None + head_error_call: Optional[Exception] = None + + # Try to get metadata from the server. + # Do not raise yet if the file is not found or not accessible. + if not local_files_only: + try: + try: + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + except EntryNotFoundError as http_error: + if storage_folder is not None and relative_filename is not None: + # Cache the non-existence of the file + commit_hash = http_error.response.headers.get(HUGGINGFACE_HEADER_X_REPO_COMMIT) + if commit_hash is not None: + no_exist_file_path = Path(storage_folder) / ".no_exist" / commit_hash / relative_filename + no_exist_file_path.parent.mkdir(parents=True, exist_ok=True) + no_exist_file_path.touch() + _cache_commit_hash_for_specific_revision(storage_folder, revision, commit_hash) + raise + + # Commit hash must exist + commit_hash = metadata.commit_hash + if commit_hash is None: + raise FileMetadataError( + "Distant resource does not seem to be on huggingface.co. It is possible that a configuration issue" + " prevents you from downloading resources from https://huggingface.co. Please check your firewall" + " and proxy settings and make sure your SSL certificates are updated." + ) + + # Etag must exist + # If we don't have any of those, raise an error. + etag = metadata.etag + if etag is None: + raise FileMetadataError( + "Distant resource does not have an ETag, we won't be able to reliably ensure reproducibility." + ) + + # Size must exist + expected_size = metadata.size + if expected_size is None: + raise FileMetadataError("Distant resource does not have a Content-Length.") + + # In case of a redirect, save an extra redirect on the request.get call, + # and ensure we download the exact atomic version even if it changed + # between the HEAD and the GET (unlikely, but hey). + # + # If url domain is different => we are downloading from a CDN => url is signed => don't send auth + # If url domain is the same => redirect due to repo rename AND downloading a regular file => keep auth + if url != metadata.location: + url_to_download = metadata.location + if urlparse(url).netloc != urlparse(metadata.location).netloc: + # Remove authorization header when downloading a LFS blob + headers.pop("authorization", None) + except (requests.exceptions.SSLError, requests.exceptions.ProxyError): + # Actually raise for those subclasses of ConnectionError + raise + except ( + requests.exceptions.ConnectionError, + requests.exceptions.Timeout, + OfflineModeIsEnabled, + ) as error: + # Otherwise, our Internet connection is down. + # etag is None + head_error_call = error + except (RevisionNotFoundError, EntryNotFoundError): + # The repo was found but the revision or entry doesn't exist on the Hub (never existed or got deleted) + raise + except requests.HTTPError as error: + # Multiple reasons for an http error: + # - Repository is private and invalid/missing token sent + # - Repository is gated and invalid/missing token sent + # - Hub is down (error 500 or 504) + # => let's switch to 'local_files_only=True' to check if the files are already cached. + # (if it's not the case, the error will be re-raised) + head_error_call = error + except FileMetadataError as error: + # Multiple reasons for a FileMetadataError: + # - Wrong network configuration (proxy, firewall, SSL certificates) + # - Inconsistency on the Hub + # => let's switch to 'local_files_only=True' to check if the files are already cached. + # (if it's not the case, the error will be re-raised) + head_error_call = error + + if not (local_files_only or etag is not None or head_error_call is not None): + raise RuntimeError("etag is empty due to uncovered problems") + + return (url_to_download, etag, commit_hash, expected_size, head_error_call) # type: ignore [return-value] + + +def _raise_on_head_call_error(head_call_error: Exception, force_download: bool, local_files_only: bool) -> NoReturn: + """Raise an appropriate error when the HEAD call failed and we cannot locate a local file.""" + + # No head call => we cannot force download. + if force_download: + if local_files_only: + raise ValueError("Cannot pass 'force_download=True' and 'local_files_only=True' at the same time.") + elif isinstance(head_call_error, OfflineModeIsEnabled): + raise ValueError("Cannot pass 'force_download=True' when offline mode is enabled.") from head_call_error + else: + raise ValueError("Force download failed due to the above error.") from head_call_error + + # No head call + couldn't find an appropriate file on disk => raise an error. + if local_files_only: + raise LocalEntryNotFoundError( + "Cannot find the requested files in the disk cache and outgoing traffic has been disabled. To enable" + " hf.co look-ups and downloads online, set 'local_files_only' to False." + ) + elif isinstance(head_call_error, RepositoryNotFoundError) or isinstance(head_call_error, GatedRepoError): + # Repo not found or gated => let's raise the actual error + raise head_call_error + else: + # Otherwise: most likely a connection issue or Hub downtime => let's warn the user + raise LocalEntryNotFoundError( + "An error happened while trying to locate the file on the Hub and we cannot find the requested files" + " in the local cache. Please check your connection and try again or make sure your Internet connection" + " is on." + ) from head_call_error + + +def _download_to_tmp_and_move( + incomplete_path: Path, + destination_path: Path, + url_to_download: str, + proxies: Optional[Dict], + headers: Dict[str, str], + expected_size: Optional[int], + filename: str, + force_download: bool, +) -> None: + """Download content from a URL to a destination path. + + Internal logic: + - return early if file is already downloaded + - resume download if possible (from incomplete file) + - do not resume download if `force_download=True` or `HF_HUB_ENABLE_HF_TRANSFER=True` + - check disk space before downloading + - download content to a temporary file + - set correct permissions on temporary file + - move the temporary file to the destination path + + Both `incomplete_path` and `destination_path` must be on the same volume to avoid a local copy. + """ + if destination_path.exists() and not force_download: + # Do nothing if already exists (except if force_download=True) + return + + if incomplete_path.exists() and (force_download or (HF_HUB_ENABLE_HF_TRANSFER and not proxies)): + # By default, we will try to resume the download if possible. + # However, if the user has set `force_download=True` or if `hf_transfer` is enabled, then we should + # not resume the download => delete the incomplete file. + message = f"Removing incomplete file '{incomplete_path}'" + if force_download: + message += " (force_download=True)" + elif HF_HUB_ENABLE_HF_TRANSFER and not proxies: + message += " (hf_transfer=True)" + logger.info(message) + incomplete_path.unlink(missing_ok=True) + + with incomplete_path.open("ab") as f: + resume_size = f.tell() + message = f"Downloading '{filename}' to '{incomplete_path}'" + if resume_size > 0 and expected_size is not None: + message += f" (resume from {resume_size}/{expected_size})" + logger.info(message) + + if expected_size is not None: # might be None if HTTP header not set correctly + # Check disk space in both tmp and destination path + _check_disk_space(expected_size, incomplete_path.parent) + _check_disk_space(expected_size, destination_path.parent) + + http_get( + url_to_download, + f, + proxies=proxies, + resume_size=resume_size, + headers=headers, + expected_size=expected_size, + ) + + logger.info(f"Download complete. Moving file to {destination_path}") + _chmod_and_move(incomplete_path, destination_path) + + +def _int_or_none(value: Optional[str]) -> Optional[int]: + try: + return int(value) # type: ignore + except (TypeError, ValueError): + return None + + +def _chmod_and_move(src: Path, dst: Path) -> None: + """Set correct permission before moving a blob from tmp directory to cache dir. + + Do not take into account the `umask` from the process as there is no convenient way + to get it that is thread-safe. + + See: + - About umask: https://docs.python.org/3/library/os.html#os.umask + - Thread-safety: https://stackoverflow.com/a/70343066 + - About solution: https://github.com/huggingface/huggingface_hub/pull/1220#issuecomment-1326211591 + - Fix issue: https://github.com/huggingface/huggingface_hub/issues/1141 + - Fix issue: https://github.com/huggingface/huggingface_hub/issues/1215 + """ + # Get umask by creating a temporary file in the cached repo folder. + tmp_file = dst.parent.parent / f"tmp_{uuid.uuid4()}" + try: + tmp_file.touch() + cache_dir_mode = Path(tmp_file).stat().st_mode + os.chmod(str(src), stat.S_IMODE(cache_dir_mode)) + finally: + tmp_file.unlink() + + shutil.move(str(src), str(dst)) + + +def _get_pointer_path(storage_folder: str, revision: str, relative_filename: str) -> str: + # Using `os.path.abspath` instead of `Path.resolve()` to avoid resolving symlinks + snapshot_path = os.path.join(storage_folder, "snapshots") + pointer_path = os.path.join(snapshot_path, revision, relative_filename) + if Path(os.path.abspath(snapshot_path)) not in Path(os.path.abspath(pointer_path)).parents: + raise ValueError( + "Invalid pointer path: cannot create pointer path in snapshot folder if" + f" `storage_folder='{storage_folder}'`, `revision='{revision}'` and" + f" `relative_filename='{relative_filename}'`." + ) + return pointer_path diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/hf_api.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/hf_api.py new file mode 100644 index 0000000000000000000000000000000000000000..0e01d41da48ea16e36303b83ffb99baf9d671475 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/hf_api.py @@ -0,0 +1,8761 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from __future__ import annotations + +import inspect +import json +import re +import struct +import warnings +from concurrent.futures import Future, ThreadPoolExecutor +from dataclasses import asdict, dataclass, field +from datetime import datetime +from functools import wraps +from itertools import islice +from pathlib import Path +from typing import ( + Any, + BinaryIO, + Callable, + Dict, + Iterable, + Iterator, + List, + Literal, + Optional, + Tuple, + TypeVar, + Union, + overload, +) +from urllib.parse import quote + +import requests +from requests.exceptions import HTTPError +from tqdm.auto import tqdm as base_tqdm +from tqdm.contrib.concurrent import thread_map + +from ._commit_api import ( + CommitOperation, + CommitOperationAdd, + CommitOperationCopy, + CommitOperationDelete, + _fetch_files_to_copy, + _fetch_upload_modes, + _prepare_commit_payload, + _upload_lfs_files, + _warn_on_overwriting_operations, +) +from ._inference_endpoints import InferenceEndpoint, InferenceEndpointType +from ._multi_commits import ( + MULTI_COMMIT_PR_CLOSE_COMMENT_FAILURE_BAD_REQUEST_TEMPLATE, + MULTI_COMMIT_PR_CLOSE_COMMENT_FAILURE_NO_CHANGES_TEMPLATE, + MULTI_COMMIT_PR_CLOSING_COMMENT_TEMPLATE, + MULTI_COMMIT_PR_COMPLETION_COMMENT_TEMPLATE, + MultiCommitException, + MultiCommitStep, + MultiCommitStrategy, + multi_commit_create_pull_request, + multi_commit_generate_comment, + multi_commit_parse_pr_description, + plan_multi_commits, +) +from ._space_api import SpaceHardware, SpaceRuntime, SpaceStorage, SpaceVariable +from .community import ( + Discussion, + DiscussionComment, + DiscussionStatusChange, + DiscussionTitleChange, + DiscussionWithDetails, + deserialize_event, +) +from .constants import ( + DEFAULT_ETAG_TIMEOUT, + DEFAULT_REQUEST_TIMEOUT, + DEFAULT_REVISION, + DISCUSSION_STATUS, + DISCUSSION_TYPES, + ENDPOINT, + INFERENCE_ENDPOINTS_ENDPOINT, + REGEX_COMMIT_OID, + REPO_TYPE_MODEL, + REPO_TYPES, + REPO_TYPES_MAPPING, + REPO_TYPES_URL_PREFIXES, + SAFETENSORS_INDEX_FILE, + SAFETENSORS_MAX_HEADER_LENGTH, + SAFETENSORS_SINGLE_FILE, + SPACES_SDK_TYPES, + DiscussionStatusFilter, + DiscussionTypeFilter, +) +from .file_download import HfFileMetadata, get_hf_file_metadata, hf_hub_url +from .repocard_data import DatasetCardData, ModelCardData, SpaceCardData +from .utils import ( # noqa: F401 # imported for backward compatibility + DEFAULT_IGNORE_PATTERNS, + BadRequestError, + EntryNotFoundError, + GatedRepoError, + HfFolder, + HfHubHTTPError, + LocalTokenNotFoundError, + NotASafetensorsRepoError, + RepositoryNotFoundError, + RevisionNotFoundError, + SafetensorsFileMetadata, + SafetensorsParsingError, + SafetensorsRepoMetadata, + TensorInfo, + build_hf_headers, + experimental, + filter_repo_objects, + fix_hf_endpoint_in_url, + get_session, + hf_raise_for_status, + logging, + paginate, + parse_datetime, + validate_hf_hub_args, +) +from .utils import tqdm as hf_tqdm +from .utils._deprecation import _deprecate_arguments +from .utils._typing import CallableT +from .utils.endpoint_helpers import ( + DatasetFilter, + ModelFilter, + _is_emission_within_treshold, +) + + +R = TypeVar("R") # Return type +CollectionItemType_T = Literal["model", "dataset", "space", "paper"] + +USERNAME_PLACEHOLDER = "hf_user" +_REGEX_DISCUSSION_URL = re.compile(r".*/discussions/(\d+)$") + +_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE = ( + "\nNote: Creating a commit assumes that the repo already exists on the" + " Huggingface Hub. Please use `create_repo` if it's not the case." +) + +logger = logging.get_logger(__name__) + + +def repo_type_and_id_from_hf_id(hf_id: str, hub_url: Optional[str] = None) -> Tuple[Optional[str], Optional[str], str]: + """ + Returns the repo type and ID from a huggingface.co URL linking to a + repository + + Args: + hf_id (`str`): + An URL or ID of a repository on the HF hub. Accepted values are: + + - https://huggingface.co/// + - https://huggingface.co// + - hf://// + - hf:/// + - // + - / + - + hub_url (`str`, *optional*): + The URL of the HuggingFace Hub, defaults to https://huggingface.co + + Returns: + A tuple with three items: repo_type (`str` or `None`), namespace (`str` or + `None`) and repo_id (`str`). + + Raises: + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If URL cannot be parsed. + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `repo_type` is unknown. + """ + input_hf_id = hf_id + + hub_url = re.sub(r"https?://", "", hub_url if hub_url is not None else ENDPOINT) + is_hf_url = hub_url in hf_id and "@" not in hf_id + + HFFS_PREFIX = "hf://" + if hf_id.startswith(HFFS_PREFIX): # Remove "hf://" prefix if exists + hf_id = hf_id[len(HFFS_PREFIX) :] + + url_segments = hf_id.split("/") + is_hf_id = len(url_segments) <= 3 + + namespace: Optional[str] + if is_hf_url: + namespace, repo_id = url_segments[-2:] + if namespace == hub_url: + namespace = None + if len(url_segments) > 2 and hub_url not in url_segments[-3]: + repo_type = url_segments[-3] + elif namespace in REPO_TYPES_MAPPING: + # Mean canonical dataset or model + repo_type = REPO_TYPES_MAPPING[namespace] + namespace = None + else: + repo_type = None + elif is_hf_id: + if len(url_segments) == 3: + # Passed // or // + repo_type, namespace, repo_id = url_segments[-3:] + elif len(url_segments) == 2: + if url_segments[0] in REPO_TYPES_MAPPING: + # Passed '' or 'datasets/' for a canonical model or dataset + repo_type = REPO_TYPES_MAPPING[url_segments[0]] + namespace = None + repo_id = hf_id.split("/")[-1] + else: + # Passed / or / + namespace, repo_id = hf_id.split("/")[-2:] + repo_type = None + else: + # Passed + repo_id = url_segments[0] + namespace, repo_type = None, None + else: + raise ValueError(f"Unable to retrieve user and repo ID from the passed HF ID: {hf_id}") + + # Check if repo type is known (mapping "spaces" => "space" + empty value => `None`) + if repo_type in REPO_TYPES_MAPPING: + repo_type = REPO_TYPES_MAPPING[repo_type] + if repo_type == "": + repo_type = None + if repo_type not in REPO_TYPES: + raise ValueError(f"Unknown `repo_type`: '{repo_type}' ('{input_hf_id}')") + + return repo_type, namespace, repo_id + + +@dataclass +class LastCommitInfo(dict): + oid: str + title: str + date: datetime + + def __post_init__(self): # hack to make LastCommitInfo backward compatible + self.update(asdict(self)) + + +@dataclass +class BlobLfsInfo(dict): + size: int + sha256: str + pointer_size: int + + def __post_init__(self): # hack to make BlobLfsInfo backward compatible + self.update(asdict(self)) + + +@dataclass +class BlobSecurityInfo(dict): + safe: bool + av_scan: Optional[Dict] + pickle_import_scan: Optional[Dict] + + def __post_init__(self): # hack to make BlogSecurityInfo backward compatible + self.update(asdict(self)) + + +@dataclass +class TransformersInfo(dict): + auto_model: str + custom_class: Optional[str] = None + # possible `pipeline_tag` values: https://github.com/huggingface/huggingface.js/blob/3ee32554b8620644a6287e786b2a83bf5caf559c/packages/tasks/src/pipelines.ts#L72 + pipeline_tag: Optional[str] = None + processor: Optional[str] = None + + def __post_init__(self): # hack to make TransformersInfo backward compatible + self.update(asdict(self)) + + +@dataclass +class SafeTensorsInfo(dict): + parameters: List[Dict[str, int]] + total: int + + def __post_init__(self): # hack to make SafeTensorsInfo backward compatible + self.update(asdict(self)) + + +@dataclass +class CommitInfo(str): + """Data structure containing information about a newly created commit. + + Returned by any method that creates a commit on the Hub: [`create_commit`], [`upload_file`], [`upload_folder`], + [`delete_file`], [`delete_folder`]. It inherits from `str` for backward compatibility but using methods specific + to `str` is deprecated. + + Attributes: + commit_url (`str`): + Url where to find the commit. + + commit_message (`str`): + The summary (first line) of the commit that has been created. + + commit_description (`str`): + Description of the commit that has been created. Can be empty. + + oid (`str`): + Commit hash id. Example: `"91c54ad1727ee830252e457677f467be0bfd8a57"`. + + pr_url (`str`, *optional*): + Url to the PR that has been created, if any. Populated when `create_pr=True` + is passed. + + pr_revision (`str`, *optional*): + Revision of the PR that has been created, if any. Populated when + `create_pr=True` is passed. Example: `"refs/pr/1"`. + + pr_num (`int`, *optional*): + Number of the PR discussion that has been created, if any. Populated when + `create_pr=True` is passed. Can be passed as `discussion_num` in + [`get_discussion_details`]. Example: `1`. + + _url (`str`, *optional*): + Legacy url for `str` compatibility. Can be the url to the uploaded file on the Hub (if returned by + [`upload_file`]), to the uploaded folder on the Hub (if returned by [`upload_folder`]) or to the commit on + the Hub (if returned by [`create_commit`]). Defaults to `commit_url`. It is deprecated to use this + attribute. Please use `commit_url` instead. + """ + + commit_url: str + commit_message: str + commit_description: str + oid: str + pr_url: Optional[str] = None + + # Computed from `pr_url` in `__post_init__` + pr_revision: Optional[str] = field(init=False) + pr_num: Optional[str] = field(init=False) + + # legacy url for `str` compatibility (ex: url to uploaded file, url to uploaded folder, url to PR, etc.) + _url: str = field(repr=False, default=None) # type: ignore # defaults to `commit_url` + + def __new__(cls, *args, commit_url: str, _url: Optional[str] = None, **kwargs): + return str.__new__(cls, _url or commit_url) + + def __post_init__(self): + """Populate pr-related fields after initialization. + + See https://docs.python.org/3.10/library/dataclasses.html#post-init-processing. + """ + if self.pr_url is not None: + self.pr_revision = _parse_revision_from_pr_url(self.pr_url) + self.pr_num = int(self.pr_revision.split("/")[-1]) + else: + self.pr_revision = None + self.pr_num = None + + +@dataclass +class AccessRequest: + """Data structure containing information about a user access request. + + Attributes: + username (`str`): + Username of the user who requested access. + fullname (`str`): + Fullname of the user who requested access. + email (`str`): + Email of the user who requested access. + timestamp (`datetime`): + Timestamp of the request. + status (`Literal["pending", "accepted", "rejected"]`): + Status of the request. Can be one of `["pending", "accepted", "rejected"]`. + fields (`Dict[str, Any]`, *optional*): + Additional fields filled by the user in the gate form. + """ + + username: str + fullname: str + email: str + timestamp: datetime + status: Literal["pending", "accepted", "rejected"] + + # Additional fields filled by the user in the gate form + fields: Optional[Dict[str, Any]] = None + + +class RepoUrl(str): + """Subclass of `str` describing a repo URL on the Hub. + + `RepoUrl` is returned by `HfApi.create_repo`. It inherits from `str` for backward + compatibility. At initialization, the URL is parsed to populate properties: + - endpoint (`str`) + - namespace (`Optional[str]`) + - repo_name (`str`) + - repo_id (`str`) + - repo_type (`Literal["model", "dataset", "space"]`) + - url (`str`) + + Args: + url (`Any`): + String value of the repo url. + endpoint (`str`, *optional*): + Endpoint of the Hub. Defaults to . + + Example: + ```py + >>> RepoUrl('https://huggingface.co/gpt2') + RepoUrl('https://huggingface.co/gpt2', endpoint='https://huggingface.co', repo_type='model', repo_id='gpt2') + + >>> RepoUrl('https://hub-ci.huggingface.co/datasets/dummy_user/dummy_dataset', endpoint='https://hub-ci.huggingface.co') + RepoUrl('https://hub-ci.huggingface.co/datasets/dummy_user/dummy_dataset', endpoint='https://hub-ci.huggingface.co', repo_type='dataset', repo_id='dummy_user/dummy_dataset') + + >>> RepoUrl('hf://datasets/my-user/my-dataset') + RepoUrl('hf://datasets/my-user/my-dataset', endpoint='https://huggingface.co', repo_type='dataset', repo_id='user/dataset') + + >>> HfApi.create_repo("dummy_model") + RepoUrl('https://huggingface.co/Wauplin/dummy_model', endpoint='https://huggingface.co', repo_type='model', repo_id='Wauplin/dummy_model') + ``` + + Raises: + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If URL cannot be parsed. + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `repo_type` is unknown. + """ + + def __new__(cls, url: Any, endpoint: Optional[str] = None): + url = fix_hf_endpoint_in_url(url, endpoint=endpoint) + return super(RepoUrl, cls).__new__(cls, url) + + def __init__(self, url: Any, endpoint: Optional[str] = None) -> None: + super().__init__() + # Parse URL + self.endpoint = endpoint or ENDPOINT + repo_type, namespace, repo_name = repo_type_and_id_from_hf_id(self, hub_url=self.endpoint) + + # Populate fields + self.namespace = namespace + self.repo_name = repo_name + self.repo_id = repo_name if namespace is None else f"{namespace}/{repo_name}" + self.repo_type = repo_type or REPO_TYPE_MODEL + self.url = str(self) # just in case it's needed + + def __repr__(self) -> str: + return f"RepoUrl('{self}', endpoint='{self.endpoint}', repo_type='{self.repo_type}', repo_id='{self.repo_id}')" + + +@dataclass +class RepoSibling: + """ + Contains basic information about a repo file inside a repo on the Hub. + + + + All attributes of this class are optional except `rfilename`. This is because only the file names are returned when + listing repositories on the Hub (with [`list_models`], [`list_datasets`] or [`list_spaces`]). If you need more + information like file size, blob id or lfs details, you must request them specifically from one repo at a time + (using [`model_info`], [`dataset_info`] or [`space_info`]) as it adds more constraints on the backend server to + retrieve these. + + + + Attributes: + rfilename (str): + file name, relative to the repo root. + size (`int`, *optional*): + The file's size, in bytes. This attribute is defined when `files_metadata` argument of [`repo_info`] is set + to `True`. It's `None` otherwise. + blob_id (`str`, *optional*): + The file's git OID. This attribute is defined when `files_metadata` argument of [`repo_info`] is set to + `True`. It's `None` otherwise. + lfs (`BlobLfsInfo`, *optional*): + The file's LFS metadata. This attribute is defined when`files_metadata` argument of [`repo_info`] is set to + `True` and the file is stored with Git LFS. It's `None` otherwise. + """ + + rfilename: str + size: Optional[int] = None + blob_id: Optional[str] = None + lfs: Optional[BlobLfsInfo] = None + + +@dataclass +class RepoFile: + """ + Contains information about a file on the Hub. + + Attributes: + path (str): + file path relative to the repo root. + size (`int`): + The file's size, in bytes. + blob_id (`str`): + The file's git OID. + lfs (`BlobLfsInfo`): + The file's LFS metadata. + last_commit (`LastCommitInfo`, *optional*): + The file's last commit metadata. Only defined if [`list_repo_tree`] and [`get_paths_info`] + are called with `expand=True`. + security (`BlobSecurityInfo`, *optional*): + The file's security scan metadata. Only defined if [`list_repo_tree`] and [`get_paths_info`] + are called with `expand=True`. + """ + + path: str + size: int + blob_id: str + lfs: Optional[BlobLfsInfo] = None + last_commit: Optional[LastCommitInfo] = None + security: Optional[BlobSecurityInfo] = None + + def __init__(self, **kwargs): + self.path = kwargs.pop("path") + self.size = kwargs.pop("size") + self.blob_id = kwargs.pop("oid") + lfs = kwargs.pop("lfs", None) + if lfs is not None: + lfs = BlobLfsInfo(size=lfs["size"], sha256=lfs["oid"], pointer_size=lfs["pointerSize"]) + self.lfs = lfs + last_commit = kwargs.pop("lastCommit", None) or kwargs.pop("last_commit", None) + if last_commit is not None: + last_commit = LastCommitInfo( + oid=last_commit["id"], title=last_commit["title"], date=parse_datetime(last_commit["date"]) + ) + self.last_commit = last_commit + security = kwargs.pop("security", None) + if security is not None: + security = BlobSecurityInfo( + safe=security["safe"], av_scan=security["avScan"], pickle_import_scan=security["pickleImportScan"] + ) + self.security = security + + # backwards compatibility + self.rfilename = self.path + self.lastCommit = self.last_commit + + +@dataclass +class RepoFolder: + """ + Contains information about a folder on the Hub. + + Attributes: + path (str): + folder path relative to the repo root. + tree_id (`str`): + The folder's git OID. + last_commit (`LastCommitInfo`, *optional*): + The folder's last commit metadata. Only defined if [`list_repo_tree`] and [`get_paths_info`] + are called with `expand=True`. + """ + + path: str + tree_id: str + last_commit: Optional[LastCommitInfo] = None + + def __init__(self, **kwargs): + self.path = kwargs.pop("path") + self.tree_id = kwargs.pop("oid") + last_commit = kwargs.pop("lastCommit", None) or kwargs.pop("last_commit", None) + if last_commit is not None: + last_commit = LastCommitInfo( + oid=last_commit["id"], title=last_commit["title"], date=parse_datetime(last_commit["date"]) + ) + self.last_commit = last_commit + + +@dataclass +class ModelInfo: + """ + Contains information about a model on the Hub. + + + + Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made. + In general, the more specific the query, the more information is returned. On the contrary, when listing models + using [`list_models`] only a subset of the attributes are returned. + + + + Attributes: + id (`str`): + ID of model. + author (`str`, *optional*): + Author of the model. + sha (`str`, *optional*): + Repo SHA at this particular revision. + created_at (`datetime`, *optional*): + Date of creation of the repo on the Hub. Note that the lowest value is `2022-03-02T23:29:04.000Z`, + corresponding to the date when we began to store creation dates. + last_modified (`datetime`, *optional*): + Date of last commit to the repo. + private (`bool`): + Is the repo private. + disabled (`bool`, *optional*): + Is the repo disabled. + gated (`Literal["auto", "manual", False]`, *optional*): + Is the repo gated. + If so, whether there is manual or automatic approval. + downloads (`int`): + Number of downloads of the model over the last 30 days. + likes (`int`): + Number of likes of the model. + library_name (`str`, *optional*): + Library associated with the model. + tags (`List[str]`): + List of tags of the model. Compared to `card_data.tags`, contains extra tags computed by the Hub + (e.g. supported libraries, model's arXiv). + pipeline_tag (`str`, *optional*): + Pipeline tag associated with the model. + mask_token (`str`, *optional*): + Mask token used by the model. + widget_data (`Any`, *optional*): + Widget data associated with the model. + model_index (`Dict`, *optional*): + Model index for evaluation. + config (`Dict`, *optional*): + Model configuration. + transformers_info (`TransformersInfo`, *optional*): + Transformers-specific info (auto class, processor, etc.) associated with the model. + card_data (`ModelCardData`, *optional*): + Model Card Metadata as a [`huggingface_hub.repocard_data.ModelCardData`] object. + siblings (`List[RepoSibling]`): + List of [`huggingface_hub.hf_api.RepoSibling`] objects that constitute the model. + spaces (`List[str]`, *optional*): + List of spaces using the model. + safetensors (`SafeTensorsInfo`, *optional*): + Model's safetensors information. + """ + + id: str + author: Optional[str] + sha: Optional[str] + created_at: Optional[datetime] + last_modified: Optional[datetime] + private: bool + gated: Optional[Literal["auto", "manual", False]] + disabled: Optional[bool] + downloads: int + likes: int + library_name: Optional[str] + tags: List[str] + pipeline_tag: Optional[str] + mask_token: Optional[str] + card_data: Optional[ModelCardData] + widget_data: Optional[Any] + model_index: Optional[Dict] + config: Optional[Dict] + transformers_info: Optional[TransformersInfo] + siblings: Optional[List[RepoSibling]] + spaces: Optional[List[str]] + safetensors: Optional[SafeTensorsInfo] + + def __init__(self, **kwargs): + self.id = kwargs.pop("id") + self.author = kwargs.pop("author", None) + self.sha = kwargs.pop("sha", None) + last_modified = kwargs.pop("lastModified", None) or kwargs.pop("last_modified", None) + self.last_modified = parse_datetime(last_modified) if last_modified else None + created_at = kwargs.pop("createdAt", None) or kwargs.pop("created_at", None) + self.created_at = parse_datetime(created_at) if created_at else None + self.private = kwargs.pop("private") + self.gated = kwargs.pop("gated", None) + self.disabled = kwargs.pop("disabled", None) + self.downloads = kwargs.pop("downloads") + self.likes = kwargs.pop("likes") + self.library_name = kwargs.pop("library_name", None) + self.tags = kwargs.pop("tags") + self.pipeline_tag = kwargs.pop("pipeline_tag", None) + self.mask_token = kwargs.pop("mask_token", None) + card_data = kwargs.pop("cardData", None) or kwargs.pop("card_data", None) + self.card_data = ( + ModelCardData(**card_data, ignore_metadata_errors=True) if isinstance(card_data, dict) else card_data + ) + + self.widget_data = kwargs.pop("widgetData", None) + self.model_index = kwargs.pop("model-index", None) or kwargs.pop("model_index", None) + self.config = kwargs.pop("config", None) + transformers_info = kwargs.pop("transformersInfo", None) or kwargs.pop("transformers_info", None) + self.transformers_info = TransformersInfo(**transformers_info) if transformers_info else None + siblings = kwargs.pop("siblings", None) + self.siblings = ( + [ + RepoSibling( + rfilename=sibling["rfilename"], + size=sibling.get("size"), + blob_id=sibling.get("blobId"), + lfs=( + BlobLfsInfo( + size=sibling["lfs"]["size"], + sha256=sibling["lfs"]["sha256"], + pointer_size=sibling["lfs"]["pointerSize"], + ) + if sibling.get("lfs") + else None + ), + ) + for sibling in siblings + ] + if siblings + else None + ) + self.spaces = kwargs.pop("spaces", None) + safetensors = kwargs.pop("safetensors", None) + self.safetensors = ( + SafeTensorsInfo( + parameters=safetensors["parameters"], + total=safetensors["total"], + ) + if safetensors + else None + ) + + # backwards compatibility + self.lastModified = self.last_modified + self.cardData = self.card_data + self.transformersInfo = self.transformers_info + self.__dict__.update(**kwargs) + + +@dataclass +class DatasetInfo: + """ + Contains information about a dataset on the Hub. + + + + Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made. + In general, the more specific the query, the more information is returned. On the contrary, when listing datasets + using [`list_datasets`] only a subset of the attributes are returned. + + + + Attributes: + id (`str`): + ID of dataset. + author (`str`): + Author of the dataset. + sha (`str`): + Repo SHA at this particular revision. + created_at (`datetime`, *optional*): + Date of creation of the repo on the Hub. Note that the lowest value is `2022-03-02T23:29:04.000Z`, + corresponding to the date when we began to store creation dates. + last_modified (`datetime`, *optional*): + Date of last commit to the repo. + private (`bool`): + Is the repo private. + disabled (`bool`, *optional*): + Is the repo disabled. + gated (`Literal["auto", "manual", False]`, *optional*): + Is the repo gated. + If so, whether there is manual or automatic approval. + downloads (`int`): + Number of downloads of the dataset over the last 30 days. + likes (`int`): + Number of likes of the dataset. + tags (`List[str]`): + List of tags of the dataset. + card_data (`DatasetCardData`, *optional*): + Model Card Metadata as a [`huggingface_hub.repocard_data.DatasetCardData`] object. + siblings (`List[RepoSibling]`): + List of [`huggingface_hub.hf_api.RepoSibling`] objects that constitute the dataset. + """ + + id: str + author: Optional[str] + sha: Optional[str] + created_at: Optional[datetime] + last_modified: Optional[datetime] + private: bool + gated: Optional[Literal["auto", "manual", False]] + disabled: Optional[bool] + downloads: int + likes: int + paperswithcode_id: Optional[str] + tags: List[str] + card_data: Optional[DatasetCardData] + siblings: Optional[List[RepoSibling]] + + def __init__(self, **kwargs): + self.id = kwargs.pop("id") + self.author = kwargs.pop("author", None) + self.sha = kwargs.pop("sha", None) + created_at = kwargs.pop("createdAt", None) or kwargs.pop("created_at", None) + self.created_at = parse_datetime(created_at) if created_at else None + last_modified = kwargs.pop("lastModified", None) or kwargs.pop("last_modified", None) + self.last_modified = parse_datetime(last_modified) if last_modified else None + self.private = kwargs.pop("private") + self.gated = kwargs.pop("gated", None) + self.disabled = kwargs.pop("disabled", None) + self.downloads = kwargs.pop("downloads") + self.likes = kwargs.pop("likes") + self.paperswithcode_id = kwargs.pop("paperswithcode_id", None) + self.tags = kwargs.pop("tags") + card_data = kwargs.pop("cardData", None) or kwargs.pop("card_data", None) + self.card_data = ( + DatasetCardData(**card_data, ignore_metadata_errors=True) if isinstance(card_data, dict) else card_data + ) + siblings = kwargs.pop("siblings", None) + self.siblings = ( + [ + RepoSibling( + rfilename=sibling["rfilename"], + size=sibling.get("size"), + blob_id=sibling.get("blobId"), + lfs=( + BlobLfsInfo( + size=sibling["lfs"]["size"], + sha256=sibling["lfs"]["sha256"], + pointer_size=sibling["lfs"]["pointerSize"], + ) + if sibling.get("lfs") + else None + ), + ) + for sibling in siblings + ] + if siblings + else None + ) + + # backwards compatibility + self.lastModified = self.last_modified + self.cardData = self.card_data + self.__dict__.update(**kwargs) + + +@dataclass +class SpaceInfo: + """ + Contains information about a Space on the Hub. + + + + Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made. + In general, the more specific the query, the more information is returned. On the contrary, when listing spaces + using [`list_spaces`] only a subset of the attributes are returned. + + + + Attributes: + id (`str`): + ID of the Space. + author (`str`, *optional*): + Author of the Space. + sha (`str`, *optional*): + Repo SHA at this particular revision. + created_at (`datetime`, *optional*): + Date of creation of the repo on the Hub. Note that the lowest value is `2022-03-02T23:29:04.000Z`, + corresponding to the date when we began to store creation dates. + last_modified (`datetime`, *optional*): + Date of last commit to the repo. + private (`bool`): + Is the repo private. + gated (`Literal["auto", "manual", False]`, *optional*): + Is the repo gated. + If so, whether there is manual or automatic approval. + disabled (`bool`, *optional*): + Is the Space disabled. + host (`str`, *optional*): + Host URL of the Space. + subdomain (`str`, *optional*): + Subdomain of the Space. + likes (`int`): + Number of likes of the Space. + tags (`List[str]`): + List of tags of the Space. + siblings (`List[RepoSibling]`): + List of [`huggingface_hub.hf_api.RepoSibling`] objects that constitute the Space. + card_data (`SpaceCardData`, *optional*): + Space Card Metadata as a [`huggingface_hub.repocard_data.SpaceCardData`] object. + runtime (`SpaceRuntime`, *optional*): + Space runtime information as a [`huggingface_hub.hf_api.SpaceRuntime`] object. + sdk (`str`, *optional*): + SDK used by the Space. + models (`List[str]`, *optional*): + List of models used by the Space. + datasets (`List[str]`, *optional*): + List of datasets used by the Space. + """ + + id: str + author: Optional[str] + sha: Optional[str] + created_at: Optional[datetime] + last_modified: Optional[datetime] + private: bool + gated: Optional[Literal["auto", "manual", False]] + disabled: Optional[bool] + host: Optional[str] + subdomain: Optional[str] + likes: int + sdk: Optional[str] + tags: List[str] + siblings: Optional[List[RepoSibling]] + card_data: Optional[SpaceCardData] + runtime: Optional[SpaceRuntime] + models: Optional[List[str]] + datasets: Optional[List[str]] + + def __init__(self, **kwargs): + self.id = kwargs.pop("id") + self.author = kwargs.pop("author", None) + self.sha = kwargs.pop("sha", None) + created_at = kwargs.pop("createdAt", None) or kwargs.pop("created_at", None) + self.created_at = parse_datetime(created_at) if created_at else None + last_modified = kwargs.pop("lastModified", None) or kwargs.pop("last_modified", None) + self.last_modified = parse_datetime(last_modified) if last_modified else None + self.private = kwargs.pop("private") + self.gated = kwargs.pop("gated", None) + self.disabled = kwargs.pop("disabled", None) + self.host = kwargs.pop("host", None) + self.subdomain = kwargs.pop("subdomain", None) + self.likes = kwargs.pop("likes") + self.sdk = kwargs.pop("sdk", None) + self.tags = kwargs.pop("tags") + card_data = kwargs.pop("cardData", None) or kwargs.pop("card_data", None) + self.card_data = ( + SpaceCardData(**card_data, ignore_metadata_errors=True) if isinstance(card_data, dict) else card_data + ) + siblings = kwargs.pop("siblings", None) + self.siblings = ( + [ + RepoSibling( + rfilename=sibling["rfilename"], + size=sibling.get("size"), + blob_id=sibling.get("blobId"), + lfs=( + BlobLfsInfo( + size=sibling["lfs"]["size"], + sha256=sibling["lfs"]["sha256"], + pointer_size=sibling["lfs"]["pointerSize"], + ) + if sibling.get("lfs") + else None + ), + ) + for sibling in siblings + ] + if siblings + else None + ) + runtime = kwargs.pop("runtime", None) + self.runtime = SpaceRuntime(runtime) if runtime else None + self.models = kwargs.pop("models", None) + self.datasets = kwargs.pop("datasets", None) + + # backwards compatibility + self.lastModified = self.last_modified + self.cardData = self.card_data + self.__dict__.update(**kwargs) + + +@dataclass +class MetricInfo: + """ + Contains information about a metric on the Hub. + + Attributes: + id (`str`): + ID of the metric. E.g. `"accuracy"`. + space_id (`str`): + ID of the space associated with the metric. E.g. `"Accuracy"`. + description (`str`): + Description of the metric. + """ + + id: str + space_id: str + description: Optional[str] + + def __init__(self, **kwargs): + self.id = kwargs.pop("id") + self.space_id = kwargs.pop("spaceId") + self.description = kwargs.pop("description", None) + # backwards compatibility + self.spaceId = self.space_id + self.__dict__.update(**kwargs) + + +@dataclass +class CollectionItem: + """ + Contains information about an item of a Collection (model, dataset, Space or paper). + + Attributes: + item_object_id (`str`): + Unique ID of the item in the collection. + item_id (`str`): + ID of the underlying object on the Hub. Can be either a repo_id or a paper id + e.g. `"jbilcke-hf/ai-comic-factory"`, `"2307.09288"`. + item_type (`str`): + Type of the underlying object. Can be one of `"model"`, `"dataset"`, `"space"` or `"paper"`. + position (`int`): + Position of the item in the collection. + note (`str`, *optional*): + Note associated with the item, as plain text. + """ + + item_object_id: str # id in database + item_id: str # repo_id or paper id + item_type: str + position: int + note: Optional[str] = None + + def __init__( + self, _id: str, id: str, type: CollectionItemType_T, position: int, note: Optional[Dict] = None, **kwargs + ) -> None: + self.item_object_id: str = _id # id in database + self.item_id: str = id # repo_id or paper id + self.item_type: CollectionItemType_T = type + self.position: int = position + self.note: str = note["text"] if note is not None else None + + +@dataclass +class Collection: + """ + Contains information about a Collection on the Hub. + + Attributes: + slug (`str`): + Slug of the collection. E.g. `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + title (`str`): + Title of the collection. E.g. `"Recent models"`. + owner (`str`): + Owner of the collection. E.g. `"TheBloke"`. + items (`List[CollectionItem]`): + List of items in the collection. + last_updated (`datetime`): + Date of the last update of the collection. + position (`int`): + Position of the collection in the list of collections of the owner. + private (`bool`): + Whether the collection is private or not. + theme (`str`): + Theme of the collection. E.g. `"green"`. + upvotes (`int`): + Number of upvotes of the collection. + description (`str`, *optional*): + Description of the collection, as plain text. + url (`str`): + (property) URL of the collection on the Hub. + """ + + slug: str + title: str + owner: str + items: List[CollectionItem] + last_updated: datetime + position: int + private: bool + theme: str + upvotes: int + description: Optional[str] = None + + def __init__(self, **kwargs) -> None: + self.slug = kwargs.pop("slug") + self.title = kwargs.pop("title") + self.owner = kwargs.pop("owner") + self.items = [CollectionItem(**item) for item in kwargs.pop("items")] + self.last_updated = parse_datetime(kwargs.pop("lastUpdated")) + self.position = kwargs.pop("position") + self.private = kwargs.pop("private") + self.theme = kwargs.pop("theme") + self.upvotes = kwargs.pop("upvotes") + self.description = kwargs.pop("description", None) + endpoint = kwargs.pop("endpoint", None) + if endpoint is None: + endpoint = ENDPOINT + self._url = f"{endpoint}/collections/{self.slug}" + + @property + def url(self) -> str: + """Returns the URL of the collection on the Hub.""" + return self._url + + +@dataclass +class GitRefInfo: + """ + Contains information about a git reference for a repo on the Hub. + + Attributes: + name (`str`): + Name of the reference (e.g. tag name or branch name). + ref (`str`): + Full git ref on the Hub (e.g. `"refs/heads/main"` or `"refs/tags/v1.0"`). + target_commit (`str`): + OID of the target commit for the ref (e.g. `"e7da7f221d5bf496a48136c0cd264e630fe9fcc8"`) + """ + + name: str + ref: str + target_commit: str + + +@dataclass +class GitRefs: + """ + Contains information about all git references for a repo on the Hub. + + Object is returned by [`list_repo_refs`]. + + Attributes: + branches (`List[GitRefInfo]`): + A list of [`GitRefInfo`] containing information about branches on the repo. + converts (`List[GitRefInfo]`): + A list of [`GitRefInfo`] containing information about "convert" refs on the repo. + Converts are refs used (internally) to push preprocessed data in Dataset repos. + tags (`List[GitRefInfo]`): + A list of [`GitRefInfo`] containing information about tags on the repo. + pull_requests (`List[GitRefInfo]`, *optional*): + A list of [`GitRefInfo`] containing information about pull requests on the repo. + Only returned if `include_prs=True` is set. + """ + + branches: List[GitRefInfo] + converts: List[GitRefInfo] + tags: List[GitRefInfo] + pull_requests: Optional[List[GitRefInfo]] = None + + +@dataclass +class GitCommitInfo: + """ + Contains information about a git commit for a repo on the Hub. Check out [`list_repo_commits`] for more details. + + Attributes: + commit_id (`str`): + OID of the commit (e.g. `"e7da7f221d5bf496a48136c0cd264e630fe9fcc8"`) + authors (`List[str]`): + List of authors of the commit. + created_at (`datetime`): + Datetime when the commit was created. + title (`str`): + Title of the commit. This is a free-text value entered by the authors. + message (`str`): + Description of the commit. This is a free-text value entered by the authors. + formatted_title (`str`): + Title of the commit formatted as HTML. Only returned if `formatted=True` is set. + formatted_message (`str`): + Description of the commit formatted as HTML. Only returned if `formatted=True` is set. + """ + + commit_id: str + + authors: List[str] + created_at: datetime + title: str + message: str + + formatted_title: Optional[str] + formatted_message: Optional[str] + + +@dataclass +class UserLikes: + """ + Contains information about a user likes on the Hub. + + Attributes: + user (`str`): + Name of the user for which we fetched the likes. + total (`int`): + Total number of likes. + datasets (`List[str]`): + List of datasets liked by the user (as repo_ids). + models (`List[str]`): + List of models liked by the user (as repo_ids). + spaces (`List[str]`): + List of spaces liked by the user (as repo_ids). + """ + + # Metadata + user: str + total: int + + # User likes + datasets: List[str] + models: List[str] + spaces: List[str] + + +@dataclass +class User: + """ + Contains information about a user on the Hub. + + Attributes: + avatar_url (`str`): + URL of the user's avatar. + username (`str`): + Name of the user on the Hub (unique). + fullname (`str`): + User's full name. + is_pro (`bool`, *optional*): + Whether the user is a pro user. + num_models (`int`, *optional*): + Number of models created by the user. + num_datasets (`int`, *optional*): + Number of datasets created by the user. + num_spaces (`int`, *optional*): + Number of spaces created by the user. + num_discussions (`int`, *optional*): + Number of discussions initiated by the user. + num_papers (`int`, *optional*): + Number of papers authored by the user. + num_upvotes (`int`, *optional*): + Number of upvotes received by the user. + num_likes (`int`, *optional*): + Number of likes given by the user. + is_following (`bool`, *optional*): + Whether the authenticated user is following this user. + details (`str`, *optional*): + User's details. + """ + + # Metadata + avatar_url: str + username: str + fullname: str + is_pro: Optional[bool] = None + num_models: Optional[int] = None + num_datasets: Optional[int] = None + num_spaces: Optional[int] = None + num_discussions: Optional[int] = None + num_papers: Optional[int] = None + num_upvotes: Optional[int] = None + num_likes: Optional[int] = None + is_following: Optional[bool] = None + details: Optional[str] = None + + def __init__(self, **kwargs) -> None: + self.avatar_url = kwargs.get("avatarUrl", "") + self.username = kwargs.get("user", "") + self.fullname = kwargs.get("fullname", "") + self.is_pro = kwargs.get("isPro") + self.num_models = kwargs.get("numModels") + self.num_datasets = kwargs.get("numDatasets") + self.num_spaces = kwargs.get("numSpaces") + self.num_discussions = kwargs.get("numDiscussions") + self.num_papers = kwargs.get("numPapers") + self.num_upvotes = kwargs.get("numUpvotes") + self.num_likes = kwargs.get("numLikes") + self.user_type = kwargs.get("type") + self.is_following = kwargs.get("isFollowing") + self.details = kwargs.get("details") + + # forward compatibility + self.__dict__.update(**kwargs) + + +def future_compatible(fn: CallableT) -> CallableT: + """Wrap a method of `HfApi` to handle `run_as_future=True`. + + A method flagged as "future_compatible" will be called in a thread if `run_as_future=True` and return a + `concurrent.futures.Future` instance. Otherwise, it will be called normally and return the result. + """ + sig = inspect.signature(fn) + args_params = list(sig.parameters)[1:] # remove "self" from list + + @wraps(fn) + def _inner(self, *args, **kwargs): + # Get `run_as_future` value if provided (default to False) + if "run_as_future" in kwargs: + run_as_future = kwargs["run_as_future"] + kwargs["run_as_future"] = False # avoid recursion error + else: + run_as_future = False + for param, value in zip(args_params, args): + if param == "run_as_future": + run_as_future = value + break + + # Call the function in a thread if `run_as_future=True` + if run_as_future: + return self.run_as_future(fn, self, *args, **kwargs) + + # Otherwise, call the function normally + return fn(self, *args, **kwargs) + + _inner.is_future_compatible = True # type: ignore + return _inner # type: ignore + + +class HfApi: + def __init__( + self, + endpoint: Optional[str] = None, + token: Union[str, bool, None] = None, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + user_agent: Union[Dict, str, None] = None, + headers: Optional[Dict[str, str]] = None, + ) -> None: + """Create a HF client to interact with the Hub via HTTP. + + The client is initialized with some high-level settings used in all requests + made to the Hub (HF endpoint, authentication, user agents...). Using the `HfApi` + client is preferred but not mandatory as all of its public methods are exposed + directly at the root of `huggingface_hub`. + + Args: + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + library_name (`str`, *optional*): + The name of the library that is making the HTTP request. Will be added to + the user-agent header. Example: `"transformers"`. + library_version (`str`, *optional*): + The version of the library that is making the HTTP request. Will be added + to the user-agent header. Example: `"4.24.0"`. + user_agent (`str`, `dict`, *optional*): + The user agent info in the form of a dictionary or a single string. It will + be completed with information about the installed packages. + headers (`dict`, *optional*): + Additional headers to be sent with each request. Example: `{"X-My-Header": "value"}`. + Headers passed here are taking precedence over the default headers. + """ + self.endpoint = endpoint if endpoint is not None else ENDPOINT + self.token = token + self.library_name = library_name + self.library_version = library_version + self.user_agent = user_agent + self.headers = headers + self._thread_pool: Optional[ThreadPoolExecutor] = None + + def run_as_future(self, fn: Callable[..., R], *args, **kwargs) -> Future[R]: + """ + Run a method in the background and return a Future instance. + + The main goal is to run methods without blocking the main thread (e.g. to push data during a training). + Background jobs are queued to preserve order but are not ran in parallel. If you need to speed-up your scripts + by parallelizing lots of call to the API, you must setup and use your own [ThreadPoolExecutor](https://docs.python.org/3/library/concurrent.futures.html#threadpoolexecutor). + + Note: Most-used methods like [`upload_file`], [`upload_folder`] and [`create_commit`] have a `run_as_future: bool` + argument to directly call them in the background. This is equivalent to calling `api.run_as_future(...)` on them + but less verbose. + + Args: + fn (`Callable`): + The method to run in the background. + *args, **kwargs: + Arguments with which the method will be called. + + Return: + `Future`: a [Future](https://docs.python.org/3/library/concurrent.futures.html#future-objects) instance to + get the result of the task. + + Example: + ```py + >>> from huggingface_hub import HfApi + >>> api = HfApi() + >>> future = api.run_as_future(api.whoami) # instant + >>> future.done() + False + >>> future.result() # wait until complete and return result + (...) + >>> future.done() + True + ``` + """ + if self._thread_pool is None: + self._thread_pool = ThreadPoolExecutor(max_workers=1) + self._thread_pool + return self._thread_pool.submit(fn, *args, **kwargs) + + @validate_hf_hub_args + def whoami(self, token: Union[bool, str, None] = None) -> Dict: + """ + Call HF API to know "whoami". + + Args: + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + r = get_session().get( + f"{self.endpoint}/api/whoami-v2", + headers=self._build_hf_headers( + # If `token` is provided and not `None`, it will be used by default. + # Otherwise, the token must be retrieved from cache or env variable. + token=(token or self.token or True), + ), + ) + try: + hf_raise_for_status(r) + except HTTPError as e: + raise HTTPError( + "Invalid user token. If you didn't pass a user token, make sure you " + "are properly logged in by executing `huggingface-cli login`, and " + "if you did pass a user token, double-check it's correct.", + request=e.request, + response=e.response, + ) from e + return r.json() + + def get_token_permission(self, token: Union[bool, str, None] = None) -> Literal["read", "write", None]: + """ + Check if a given `token` is valid and return its permissions. + + For more details about tokens, please refer to https://huggingface.co/docs/hub/security-tokens#what-are-user-access-tokens. + + Args: + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Literal["read", "write", None]`: Permission granted by the token ("read" or "write"). Returns `None` if no + token passed or token is invalid. + """ + try: + return self.whoami(token=token)["auth"]["accessToken"]["role"] + except (LocalTokenNotFoundError, HTTPError): + return None + + def get_model_tags(self) -> Dict: + """ + List all valid model tags as a nested namespace object + """ + path = f"{self.endpoint}/api/models-tags-by-type" + r = get_session().get(path) + hf_raise_for_status(r) + return r.json() + + def get_dataset_tags(self) -> Dict: + """ + List all valid dataset tags as a nested namespace object. + """ + path = f"{self.endpoint}/api/datasets-tags-by-type" + r = get_session().get(path) + hf_raise_for_status(r) + return r.json() + + @validate_hf_hub_args + def list_models( + self, + *, + filter: Union[ModelFilter, str, Iterable[str], None] = None, + author: Optional[str] = None, + library: Optional[Union[str, List[str]]] = None, + language: Optional[Union[str, List[str]]] = None, + model_name: Optional[str] = None, + task: Optional[Union[str, List[str]]] = None, + trained_dataset: Optional[Union[str, List[str]]] = None, + tags: Optional[Union[str, List[str]]] = None, + search: Optional[str] = None, + emissions_thresholds: Optional[Tuple[float, float]] = None, + sort: Union[Literal["last_modified"], str, None] = None, + direction: Optional[Literal[-1]] = None, + limit: Optional[int] = None, + full: Optional[bool] = None, + cardData: bool = False, + fetch_config: bool = False, + token: Union[bool, str, None] = None, + pipeline_tag: Optional[str] = None, + ) -> Iterable[ModelInfo]: + """ + List models hosted on the Huggingface Hub, given some filters. + + Args: + filter ([`ModelFilter`] or `str` or `Iterable`, *optional*): + A string or [`ModelFilter`] which can be used to identify models + on the Hub. + author (`str`, *optional*): + A string which identify the author (user or organization) of the + returned models + library (`str` or `List`, *optional*): + A string or list of strings of foundational libraries models were + originally trained from, such as pytorch, tensorflow, or allennlp. + language (`str` or `List`, *optional*): + A string or list of strings of languages, both by name and country + code, such as "en" or "English" + model_name (`str`, *optional*): + A string that contain complete or partial names for models on the + Hub, such as "bert" or "bert-base-cased" + task (`str` or `List`, *optional*): + A string or list of strings of tasks models were designed for, such + as: "fill-mask" or "automatic-speech-recognition" + trained_dataset (`str` or `List`, *optional*): + A string tag or a list of string tags of the trained dataset for a + model on the Hub. + tags (`str` or `List`, *optional*): + A string tag or a list of tags to filter models on the Hub by, such + as `text-generation` or `spacy`. + search (`str`, *optional*): + A string that will be contained in the returned model ids. + emissions_thresholds (`Tuple`, *optional*): + A tuple of two ints or floats representing a minimum and maximum + carbon footprint to filter the resulting models with in grams. + sort (`Literal["last_modified"]` or `str`, *optional*): + The key with which to sort the resulting models. Possible values + are the properties of the [`huggingface_hub.hf_api.ModelInfo`] class. + direction (`Literal[-1]` or `int`, *optional*): + Direction in which to sort. The value `-1` sorts by descending + order while all other values sort by ascending order. + limit (`int`, *optional*): + The limit on the number of models fetched. Leaving this option + to `None` fetches all models. + full (`bool`, *optional*): + Whether to fetch all model data, including the `last_modified`, + the `sha`, the files and the `tags`. This is set to `True` by + default when using a filter. + cardData (`bool`, *optional*): + Whether to grab the metadata for the model as well. Can contain + useful information such as carbon emissions, metrics, and + datasets trained on. + fetch_config (`bool`, *optional*): + Whether to fetch the model configs as well. This is not included + in `full` due to its size. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + pipeline_tag (`str`, *optional*): + A string pipeline tag to filter models on the Hub by, such as `summarization` + + + Returns: + `Iterable[ModelInfo]`: an iterable of [`huggingface_hub.hf_api.ModelInfo`] objects. + + Example usage with the `filter` argument: + + ```python + >>> from huggingface_hub import HfApi + + >>> api = HfApi() + + >>> # List all models + >>> api.list_models() + + >>> # List only the text classification models + >>> api.list_models(filter="text-classification") + + >>> # List only models from the AllenNLP library + >>> api.list_models(filter="allennlp") + ``` + + Example usage with the `search` argument: + + ```python + >>> from huggingface_hub import HfApi + + >>> api = HfApi() + + >>> # List all models with "bert" in their name + >>> api.list_models(search="bert") + + >>> # List all models with "bert" in their name made by google + >>> api.list_models(search="bert", author="google") + ``` + """ + if emissions_thresholds is not None and cardData is None: + raise ValueError("`emissions_thresholds` were passed without setting `cardData=True`.") + + path = f"{self.endpoint}/api/models" + headers = self._build_hf_headers(token=token) + params = {} + filter_list = [] + + if filter is not None: + if isinstance(filter, ModelFilter): + params = self._unpack_model_filter(filter) + else: + params.update({"filter": filter}) + + params.update({"full": True}) + + # Build the filter list + if author: + params.update({"author": author}) + if model_name: + params.update({"search": model_name}) + if library: + filter_list.extend([library] if isinstance(library, str) else library) + if task: + filter_list.extend([task] if isinstance(task, str) else task) + if trained_dataset: + if not isinstance(trained_dataset, (list, tuple)): + trained_dataset = [trained_dataset] + for dataset in trained_dataset: + if not dataset.startswith("dataset:"): + dataset = f"dataset:{dataset}" + filter_list.append(dataset) + if language: + filter_list.extend([language] if isinstance(language, str) else language) + if tags: + filter_list.extend([tags] if isinstance(tags, str) else tags) + + if search: + params.update({"search": search}) + if sort is not None: + params.update({"sort": "lastModified" if sort == "last_modified" else sort}) + if direction is not None: + params.update({"direction": direction}) + if limit is not None: + params.update({"limit": limit}) + if full is not None: + if full: + params.update({"full": True}) + elif "full" in params: + del params["full"] + if fetch_config: + params.update({"config": True}) + if cardData: + params.update({"cardData": True}) + if pipeline_tag: + params.update({"pipeline_tag": pipeline_tag}) + + filter_value = params.get("filter", []) + if filter_value: + filter_list.extend([filter_value] if isinstance(filter_value, str) else list(filter_value)) + params.update({"filter": filter_list}) + + # `items` is a generator + items = paginate(path, params=params, headers=headers) + if limit is not None: + items = islice(items, limit) # Do not iterate over all pages + for item in items: + if "siblings" not in item: + item["siblings"] = None + model_info = ModelInfo(**item) + if emissions_thresholds is None or _is_emission_within_treshold(model_info, *emissions_thresholds): + yield model_info + + def _unpack_model_filter(self, model_filter: ModelFilter): + """ + Unpacks a [`ModelFilter`] into something readable for `list_models` + """ + model_str = "" + + # Handling author + if model_filter.author: + model_str = f"{model_filter.author}/" + + # Handling model_name + if model_filter.model_name: + model_str += model_filter.model_name + + filter_list: List[str] = [] + + # Handling tasks + if model_filter.task: + filter_list.extend([model_filter.task] if isinstance(model_filter.task, str) else model_filter.task) + + # Handling dataset + if model_filter.trained_dataset: + if not isinstance(model_filter.trained_dataset, (list, tuple)): + model_filter.trained_dataset = [model_filter.trained_dataset] + for dataset in model_filter.trained_dataset: + if "dataset:" not in dataset: + dataset = f"dataset:{dataset}" + filter_list.append(dataset) + + # Handling library + if model_filter.library: + filter_list.extend( + [model_filter.library] if isinstance(model_filter.library, str) else model_filter.library + ) + + # Handling tags + if model_filter.tags: + filter_list.extend([model_filter.tags] if isinstance(model_filter.tags, str) else model_filter.tags) + + query_dict: Dict[str, Any] = {} + if model_str: + query_dict["search"] = model_str + if isinstance(model_filter.language, list): + filter_list.extend(model_filter.language) + elif isinstance(model_filter.language, str): + filter_list.append(model_filter.language) + query_dict["filter"] = tuple(filter_list) + return query_dict + + @validate_hf_hub_args + def list_datasets( + self, + *, + filter: Union[DatasetFilter, str, Iterable[str], None] = None, + author: Optional[str] = None, + benchmark: Optional[Union[str, List[str]]] = None, + dataset_name: Optional[str] = None, + language_creators: Optional[Union[str, List[str]]] = None, + language: Optional[Union[str, List[str]]] = None, + multilinguality: Optional[Union[str, List[str]]] = None, + size_categories: Optional[Union[str, List[str]]] = None, + task_categories: Optional[Union[str, List[str]]] = None, + task_ids: Optional[Union[str, List[str]]] = None, + search: Optional[str] = None, + sort: Optional[Union[Literal["last_modified"], str]] = None, + direction: Optional[Literal[-1]] = None, + limit: Optional[int] = None, + full: Optional[bool] = None, + token: Union[bool, str, None] = None, + ) -> Iterable[DatasetInfo]: + """ + List datasets hosted on the Huggingface Hub, given some filters. + + Args: + filter ([`DatasetFilter`] or `str` or `Iterable`, *optional*): + A string or [`DatasetFilter`] which can be used to identify + datasets on the hub. + author (`str`, *optional*): + A string which identify the author of the returned datasets. + benchmark (`str` or `List`, *optional*): + A string or list of strings that can be used to identify datasets on + the Hub by their official benchmark. + dataset_name (`str`, *optional*): + A string or list of strings that can be used to identify datasets on + the Hub by its name, such as `SQAC` or `wikineural` + language_creators (`str` or `List`, *optional*): + A string or list of strings that can be used to identify datasets on + the Hub with how the data was curated, such as `crowdsourced` or + `machine_generated`. + language (`str` or `List`, *optional*): + A string or list of strings representing a two-character language to + filter datasets by on the Hub. + multilinguality (`str` or `List`, *optional*): + A string or list of strings representing a filter for datasets that + contain multiple languages. + size_categories (`str` or `List`, *optional*): + A string or list of strings that can be used to identify datasets on + the Hub by the size of the dataset such as `100K>> from huggingface_hub import HfApi + + >>> api = HfApi() + + >>> # List all datasets + >>> api.list_datasets() + + + >>> # List only the text classification datasets + >>> api.list_datasets(filter="task_categories:text-classification") + + + >>> # List only the datasets in russian for language modeling + >>> api.list_datasets( + ... filter=("language:ru", "task_ids:language-modeling") + ... ) + + >>> api.list_datasets(filter=filt) + ``` + + Example usage with the `search` argument: + + ```python + >>> from huggingface_hub import HfApi + + >>> api = HfApi() + + >>> # List all datasets with "text" in their name + >>> api.list_datasets(search="text") + + >>> # List all datasets with "text" in their name made by google + >>> api.list_datasets(search="text", author="google") + ``` + """ + path = f"{self.endpoint}/api/datasets" + headers = self._build_hf_headers(token=token) + params = {} + filter_list = [] + + if filter is not None: + if isinstance(filter, DatasetFilter): + params = self._unpack_dataset_filter(filter) + else: + params.update({"filter": filter}) + + # Build the filter list + if author: + params.update({"author": author}) + if dataset_name: + params.update({"search": dataset_name}) + + for attr in ( + benchmark, + language_creators, + language, + multilinguality, + size_categories, + task_categories, + task_ids, + ): + if attr: + if not isinstance(attr, (list, tuple)): + attr = [attr] + for data in attr: + if not data.startswith(f"{attr}:"): + data = f"{attr}:{data}" + filter_list.append(data) + + if search: + params.update({"search": search}) + if sort is not None: + params.update({"sort": "lastModified" if sort == "last_modified" else sort}) + if direction is not None: + params.update({"direction": direction}) + if limit is not None: + params.update({"limit": limit}) + if full: + params.update({"full": True}) + + filter_value = params.get("filter", []) + if filter_value: + filter_list.extend([filter_value] if isinstance(filter_value, str) else list(filter_value)) + params.update({"filter": filter_list}) + + items = paginate(path, params=params, headers=headers) + if limit is not None: + items = islice(items, limit) # Do not iterate over all pages + for item in items: + if "siblings" not in item: + item["siblings"] = None + yield DatasetInfo(**item) + + def _unpack_dataset_filter(self, dataset_filter: DatasetFilter): + """ + Unpacks a [`DatasetFilter`] into something readable for `list_datasets` + """ + dataset_str = "" + + # Handling author + if dataset_filter.author: + dataset_str = f"{dataset_filter.author}/" + + # Handling dataset_name + if dataset_filter.dataset_name: + dataset_str += dataset_filter.dataset_name + + filter_list = [] + data_attributes = [ + "benchmark", + "language_creators", + "language", + "multilinguality", + "size_categories", + "task_categories", + "task_ids", + ] + + for attr in data_attributes: + curr_attr = getattr(dataset_filter, attr) + if curr_attr is not None: + if not isinstance(curr_attr, (list, tuple)): + curr_attr = [curr_attr] + for data in curr_attr: + if f"{attr}:" not in data: + data = f"{attr}:{data}" + filter_list.append(data) + + query_dict: Dict[str, Any] = {} + if dataset_str is not None: + query_dict["search"] = dataset_str + query_dict["filter"] = tuple(filter_list) + return query_dict + + def list_metrics(self) -> List[MetricInfo]: + """ + Get the public list of all the metrics on huggingface.co + + Returns: + `List[MetricInfo]`: a list of [`MetricInfo`] objects which. + """ + path = f"{self.endpoint}/api/metrics" + r = get_session().get(path) + hf_raise_for_status(r) + d = r.json() + return [MetricInfo(**x) for x in d] + + @validate_hf_hub_args + def list_spaces( + self, + *, + filter: Union[str, Iterable[str], None] = None, + author: Optional[str] = None, + search: Optional[str] = None, + sort: Union[Literal["last_modified"], str, None] = None, + direction: Optional[Literal[-1]] = None, + limit: Optional[int] = None, + datasets: Union[str, Iterable[str], None] = None, + models: Union[str, Iterable[str], None] = None, + linked: bool = False, + full: Optional[bool] = None, + token: Union[bool, str, None] = None, + ) -> Iterable[SpaceInfo]: + """ + List spaces hosted on the Huggingface Hub, given some filters. + + Args: + filter (`str` or `Iterable`, *optional*): + A string tag or list of tags that can be used to identify Spaces on the Hub. + author (`str`, *optional*): + A string which identify the author of the returned Spaces. + search (`str`, *optional*): + A string that will be contained in the returned Spaces. + sort (`Literal["last_modified"]` or `str`, *optional*): + The key with which to sort the resulting Spaces. Possible + values are the properties of the [`huggingface_hub.hf_api.SpaceInfo`]` class. + direction (`Literal[-1]` or `int`, *optional*): + Direction in which to sort. The value `-1` sorts by descending + order while all other values sort by ascending order. + limit (`int`, *optional*): + The limit on the number of Spaces fetched. Leaving this option + to `None` fetches all Spaces. + datasets (`str` or `Iterable`, *optional*): + Whether to return Spaces that make use of a dataset. + The name of a specific dataset can be passed as a string. + models (`str` or `Iterable`, *optional*): + Whether to return Spaces that make use of a model. + The name of a specific model can be passed as a string. + linked (`bool`, *optional*): + Whether to return Spaces that make use of either a model or a dataset. + full (`bool`, *optional*): + Whether to fetch all Spaces data, including the `last_modified`, `siblings` + and `card_data` fields. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Iterable[SpaceInfo]`: an iterable of [`huggingface_hub.hf_api.SpaceInfo`] objects. + """ + path = f"{self.endpoint}/api/spaces" + headers = self._build_hf_headers(token=token) + params: Dict[str, Any] = {} + if filter is not None: + params.update({"filter": filter}) + if author is not None: + params.update({"author": author}) + if search is not None: + params.update({"search": search}) + if sort is not None: + params.update({"sort": "lastModified" if sort == "last_modified" else sort}) + if direction is not None: + params.update({"direction": direction}) + if limit is not None: + params.update({"limit": limit}) + if full: + params.update({"full": True}) + if linked: + params.update({"linked": True}) + if datasets is not None: + params.update({"datasets": datasets}) + if models is not None: + params.update({"models": models}) + + items = paginate(path, params=params, headers=headers) + if limit is not None: + items = islice(items, limit) # Do not iterate over all pages + for item in items: + if "siblings" not in item: + item["siblings"] = None + yield SpaceInfo(**item) + + @validate_hf_hub_args + def like( + self, + repo_id: str, + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> None: + """ + Like a given repo on the Hub (e.g. set as favorite). + + See also [`unlike`] and [`list_liked_repos`]. + + Args: + repo_id (`str`): + The repository to like. Example: `"user/my-cool-model"`. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if liking a dataset or space, `None` or + `"model"` if liking a model. Default is `None`. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private + but not authenticated or repo does not exist. + + Example: + ```python + >>> from huggingface_hub import like, list_liked_repos, unlike + >>> like("gpt2") + >>> "gpt2" in list_liked_repos().models + True + >>> unlike("gpt2") + >>> "gpt2" in list_liked_repos().models + False + ``` + """ + if repo_type is None: + repo_type = REPO_TYPE_MODEL + response = get_session().post( + url=f"{self.endpoint}/api/{repo_type}s/{repo_id}/like", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + + @validate_hf_hub_args + def unlike( + self, + repo_id: str, + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> None: + """ + Unlike a given repo on the Hub (e.g. remove from favorite list). + + See also [`like`] and [`list_liked_repos`]. + + Args: + repo_id (`str`): + The repository to unlike. Example: `"user/my-cool-model"`. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if unliking a dataset or space, `None` or + `"model"` if unliking a model. Default is `None`. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private + but not authenticated or repo does not exist. + + Example: + ```python + >>> from huggingface_hub import like, list_liked_repos, unlike + >>> like("gpt2") + >>> "gpt2" in list_liked_repos().models + True + >>> unlike("gpt2") + >>> "gpt2" in list_liked_repos().models + False + ``` + """ + if repo_type is None: + repo_type = REPO_TYPE_MODEL + response = get_session().delete( + url=f"{self.endpoint}/api/{repo_type}s/{repo_id}/like", headers=self._build_hf_headers(token=token) + ) + hf_raise_for_status(response) + + @validate_hf_hub_args + def list_liked_repos( + self, + user: Optional[str] = None, + *, + token: Union[bool, str, None] = None, + ) -> UserLikes: + """ + List all public repos liked by a user on huggingface.co. + + This list is public so token is optional. If `user` is not passed, it defaults to + the logged in user. + + See also [`like`] and [`unlike`]. + + Args: + user (`str`, *optional*): + Name of the user for which you want to fetch the likes. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`UserLikes`]: object containing the user name and 3 lists of repo ids (1 for + models, 1 for datasets and 1 for Spaces). + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `user` is not passed and no token found (either from argument or from machine). + + Example: + ```python + >>> from huggingface_hub import list_liked_repos + + >>> likes = list_liked_repos("julien-c") + + >>> likes.user + "julien-c" + + >>> likes.models + ["osanseviero/streamlit_1.15", "Xhaheen/ChatGPT_HF", ...] + ``` + """ + # User is either provided explicitly or retrieved from current token. + if user is None: + me = self.whoami(token=token) + if me["type"] == "user": + user = me["name"] + else: + raise ValueError( + "Cannot list liked repos. You must provide a 'user' as input or be logged in as a user." + ) + + path = f"{self.endpoint}/api/users/{user}/likes" + headers = self._build_hf_headers(token=token) + + likes = list(paginate(path, params={}, headers=headers)) + # Looping over a list of items similar to: + # { + # 'createdAt': '2021-09-09T21:53:27.000Z', + # 'repo': { + # 'name': 'PaddlePaddle/PaddleOCR', + # 'type': 'space' + # } + # } + # Let's loop 3 times over the received list. Less efficient but more straightforward to read. + return UserLikes( + user=user, + total=len(likes), + models=[like["repo"]["name"] for like in likes if like["repo"]["type"] == "model"], + datasets=[like["repo"]["name"] for like in likes if like["repo"]["type"] == "dataset"], + spaces=[like["repo"]["name"] for like in likes if like["repo"]["type"] == "space"], + ) + + @validate_hf_hub_args + def list_repo_likers( + self, + repo_id: str, + *, + repo_type: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> List[User]: + """ + List all users who liked a given repo on the hugging Face Hub. + + See also [`like`] and [`list_liked_repos`]. + + Args: + repo_id (`str`): + The repository to retrieve . Example: `"user/my-cool-model"`. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + + Returns: + `List[User]`: a list of [`User`] objects. + """ + + # Construct the API endpoint + if repo_type is None: + repo_type = REPO_TYPE_MODEL + path = f"{self.endpoint}/api/{repo_type}s/{repo_id}/likers" + headers = self._build_hf_headers(token=token) + + # Make the request + response = get_session().get(path, headers=headers) + hf_raise_for_status(response) + + # Parse the results into User objects + likers_data = response.json() + return [ + User( + username=user_data["user"], + fullname=user_data["fullname"], + avatar_url=user_data["avatarUrl"], + ) + for user_data in likers_data + ] + + @validate_hf_hub_args + def model_info( + self, + repo_id: str, + *, + revision: Optional[str] = None, + timeout: Optional[float] = None, + securityStatus: Optional[bool] = None, + files_metadata: bool = False, + token: Union[bool, str, None] = None, + ) -> ModelInfo: + """ + Get info on one specific model on huggingface.co + + Model can be private if you pass an acceptable token or are logged in. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + revision (`str`, *optional*): + The revision of the model repository from which to get the + information. + timeout (`float`, *optional*): + Whether to set a timeout for the request to the Hub. + securityStatus (`bool`, *optional*): + Whether to retrieve the security status from the model + repository as well. + files_metadata (`bool`, *optional*): + Whether or not to retrieve metadata for files in the repository + (size, LFS metadata, etc). Defaults to `False`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`huggingface_hub.hf_api.ModelInfo`]: The model repository information. + + + + Raises the following errors: + + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + + + """ + headers = self._build_hf_headers(token=token) + path = ( + f"{self.endpoint}/api/models/{repo_id}" + if revision is None + else (f"{self.endpoint}/api/models/{repo_id}/revision/{quote(revision, safe='')}") + ) + params = {} + if securityStatus: + params["securityStatus"] = True + if files_metadata: + params["blobs"] = True + r = get_session().get(path, headers=headers, timeout=timeout, params=params) + hf_raise_for_status(r) + data = r.json() + return ModelInfo(**data) + + @validate_hf_hub_args + def dataset_info( + self, + repo_id: str, + *, + revision: Optional[str] = None, + timeout: Optional[float] = None, + files_metadata: bool = False, + token: Union[bool, str, None] = None, + ) -> DatasetInfo: + """ + Get info on one specific dataset on huggingface.co. + + Dataset can be private if you pass an acceptable token. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + revision (`str`, *optional*): + The revision of the dataset repository from which to get the + information. + timeout (`float`, *optional*): + Whether to set a timeout for the request to the Hub. + files_metadata (`bool`, *optional*): + Whether or not to retrieve metadata for files in the repository + (size, LFS metadata, etc). Defaults to `False`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`hf_api.DatasetInfo`]: The dataset repository information. + + + + Raises the following errors: + + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + + + """ + headers = self._build_hf_headers(token=token) + path = ( + f"{self.endpoint}/api/datasets/{repo_id}" + if revision is None + else (f"{self.endpoint}/api/datasets/{repo_id}/revision/{quote(revision, safe='')}") + ) + params = {} + if files_metadata: + params["blobs"] = True + + r = get_session().get(path, headers=headers, timeout=timeout, params=params) + hf_raise_for_status(r) + data = r.json() + return DatasetInfo(**data) + + @validate_hf_hub_args + def space_info( + self, + repo_id: str, + *, + revision: Optional[str] = None, + timeout: Optional[float] = None, + files_metadata: bool = False, + token: Union[bool, str, None] = None, + ) -> SpaceInfo: + """ + Get info on one specific Space on huggingface.co. + + Space can be private if you pass an acceptable token. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + revision (`str`, *optional*): + The revision of the space repository from which to get the + information. + timeout (`float`, *optional*): + Whether to set a timeout for the request to the Hub. + files_metadata (`bool`, *optional*): + Whether or not to retrieve metadata for files in the repository + (size, LFS metadata, etc). Defaults to `False`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`~hf_api.SpaceInfo`]: The space repository information. + + + + Raises the following errors: + + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + + + """ + headers = self._build_hf_headers(token=token) + path = ( + f"{self.endpoint}/api/spaces/{repo_id}" + if revision is None + else (f"{self.endpoint}/api/spaces/{repo_id}/revision/{quote(revision, safe='')}") + ) + params = {} + if files_metadata: + params["blobs"] = True + + r = get_session().get(path, headers=headers, timeout=timeout, params=params) + hf_raise_for_status(r) + data = r.json() + return SpaceInfo(**data) + + @validate_hf_hub_args + def repo_info( + self, + repo_id: str, + *, + revision: Optional[str] = None, + repo_type: Optional[str] = None, + timeout: Optional[float] = None, + files_metadata: bool = False, + token: Union[bool, str, None] = None, + ) -> Union[ModelInfo, DatasetInfo, SpaceInfo]: + """ + Get the info object for a given repo of a given type. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + revision (`str`, *optional*): + The revision of the repository from which to get the + information. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if getting repository info from a dataset or a space, + `None` or `"model"` if getting repository info from a model. Default is `None`. + timeout (`float`, *optional*): + Whether to set a timeout for the request to the Hub. + files_metadata (`bool`, *optional*): + Whether or not to retrieve metadata for files in the repository + (size, LFS metadata, etc). Defaults to `False`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Union[SpaceInfo, DatasetInfo, ModelInfo]`: The repository information, as a + [`huggingface_hub.hf_api.DatasetInfo`], [`huggingface_hub.hf_api.ModelInfo`] + or [`huggingface_hub.hf_api.SpaceInfo`] object. + + + + Raises the following errors: + + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + + + """ + if repo_type is None or repo_type == "model": + method = self.model_info + elif repo_type == "dataset": + method = self.dataset_info # type: ignore + elif repo_type == "space": + method = self.space_info # type: ignore + else: + raise ValueError("Unsupported repo type.") + return method( + repo_id, + revision=revision, + token=token, + timeout=timeout, + files_metadata=files_metadata, + ) + + @validate_hf_hub_args + def repo_exists( + self, + repo_id: str, + *, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> bool: + """ + Checks if a repository exists on the Hugging Face Hub. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if getting repository info from a dataset or a space, + `None` or `"model"` if getting repository info from a model. Default is `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + True if the repository exists, False otherwise. + + Examples: + ```py + >>> from huggingface_hub import repo_exists + >>> repo_exists("google/gemma-7b") + True + >>> repo_exists("google/not-a-repo") + False + ``` + """ + try: + self.repo_info(repo_id=repo_id, repo_type=repo_type, token=token) + return True + except GatedRepoError: + return True # we don't have access but it exists + except RepositoryNotFoundError: + return False + + @validate_hf_hub_args + def revision_exists( + self, + repo_id: str, + revision: str, + *, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> bool: + """ + Checks if a specific revision exists on a repo on the Hugging Face Hub. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + revision (`str`): + The revision of the repository to check. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if getting repository info from a dataset or a space, + `None` or `"model"` if getting repository info from a model. Default is `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + True if the repository and the revision exists, False otherwise. + + Examples: + ```py + >>> from huggingface_hub import revision_exists + >>> revision_exists("google/gemma-7b", "float16") + True + >>> revision_exists("google/gemma-7b", "not-a-revision") + False + ``` + """ + try: + self.repo_info(repo_id=repo_id, revision=revision, repo_type=repo_type, token=token) + return True + except RevisionNotFoundError: + return False + except RepositoryNotFoundError: + return False + + @validate_hf_hub_args + def file_exists( + self, + repo_id: str, + filename: str, + *, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> bool: + """ + Checks if a file exists in a repository on the Hugging Face Hub. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + filename (`str`): + The name of the file to check, for example: + `"config.json"` + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if getting repository info from a dataset or a space, + `None` or `"model"` if getting repository info from a model. Default is `None`. + revision (`str`, *optional*): + The revision of the repository from which to get the information. Defaults to `"main"` branch. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + True if the file exists, False otherwise. + + Examples: + ```py + >>> from huggingface_hub import file_exists + >>> file_exists("bigcode/starcoder", "config.json") + True + >>> file_exists("bigcode/starcoder", "not-a-file") + False + >>> file_exists("bigcode/not-a-repo", "config.json") + False + ``` + """ + url = hf_hub_url( + repo_id=repo_id, repo_type=repo_type, revision=revision, filename=filename, endpoint=self.endpoint + ) + try: + if token is None: + token = self.token + get_hf_file_metadata(url, token=token) + return True + except GatedRepoError: # raise specifically on gated repo + raise + except (RepositoryNotFoundError, EntryNotFoundError, RevisionNotFoundError): + return False + + @validate_hf_hub_args + def list_repo_files( + self, + repo_id: str, + *, + revision: Optional[str] = None, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> List[str]: + """ + Get the list of files in a given repo. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated by a `/`. + revision (`str`, *optional*): + The revision of the model repository from which to get the information. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or space, `None` or `"model"` if uploading to + a model. Default is `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `List[str]`: the list of files in a given repository. + """ + return [ + f.rfilename + for f in self.list_repo_tree( + repo_id=repo_id, recursive=True, revision=revision, repo_type=repo_type, token=token + ) + if isinstance(f, RepoFile) + ] + + @validate_hf_hub_args + def list_repo_tree( + self, + repo_id: str, + path_in_repo: Optional[str] = None, + *, + recursive: bool = False, + expand: bool = False, + revision: Optional[str] = None, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> Iterable[Union[RepoFile, RepoFolder]]: + """ + List a repo tree's files and folders and get information about them. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated by a `/`. + path_in_repo (`str`, *optional*): + Relative path of the tree (folder) in the repo, for example: + `"checkpoints/1fec34a/results"`. Will default to the root tree (folder) of the repository. + recursive (`bool`, *optional*, defaults to `False`): + Whether to list tree's files and folders recursively. + expand (`bool`, *optional*, defaults to `False`): + Whether to fetch more information about the tree's files and folders (e.g. last commit and files' security scan results). This + operation is more expensive for the server so only 50 results are returned per page (instead of 1000). + As pagination is implemented in `huggingface_hub`, this is transparent for you except for the time it + takes to get the results. + revision (`str`, *optional*): + The revision of the repository from which to get the tree. Defaults to `"main"` branch. + repo_type (`str`, *optional*): + The type of the repository from which to get the tree (`"model"`, `"dataset"` or `"space"`. + Defaults to `"model"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Iterable[Union[RepoFile, RepoFolder]]`: + The information about the tree's files and folders, as an iterable of [`RepoFile`] and [`RepoFolder`] objects. The order of the files and folders is + not guaranteed. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo + does not exist. + [`~utils.RevisionNotFoundError`]: + If revision is not found (error 404) on the repo. + [`~utils.EntryNotFoundError`]: + If the tree (folder) does not exist (error 404) on the repo. + + Examples: + + Get information about a repo's tree. + ```py + >>> from huggingface_hub import list_repo_tree + >>> repo_tree = list_repo_tree("lysandre/arxiv-nlp") + >>> repo_tree + + >>> list(repo_tree) + [ + RepoFile(path='.gitattributes', size=391, blob_id='ae8c63daedbd4206d7d40126955d4e6ab1c80f8f', lfs=None, last_commit=None, security=None), + RepoFile(path='README.md', size=391, blob_id='43bd404b159de6fba7c2f4d3264347668d43af25', lfs=None, last_commit=None, security=None), + RepoFile(path='config.json', size=554, blob_id='2f9618c3a19b9a61add74f70bfb121335aeef666', lfs=None, last_commit=None, security=None), + RepoFile( + path='flax_model.msgpack', size=497764107, blob_id='8095a62ccb4d806da7666fcda07467e2d150218e', + lfs={'size': 497764107, 'sha256': 'd88b0d6a6ff9c3f8151f9d3228f57092aaea997f09af009eefd7373a77b5abb9', 'pointer_size': 134}, last_commit=None, security=None + ), + RepoFile(path='merges.txt', size=456318, blob_id='226b0752cac7789c48f0cb3ec53eda48b7be36cc', lfs=None, last_commit=None, security=None), + RepoFile( + path='pytorch_model.bin', size=548123560, blob_id='64eaa9c526867e404b68f2c5d66fd78e27026523', + lfs={'size': 548123560, 'sha256': '9be78edb5b928eba33aa88f431551348f7466ba9f5ef3daf1d552398722a5436', 'pointer_size': 134}, last_commit=None, security=None + ), + RepoFile(path='vocab.json', size=898669, blob_id='b00361fece0387ca34b4b8b8539ed830d644dbeb', lfs=None, last_commit=None, security=None)] + ] + ``` + + Get even more information about a repo's tree (last commit and files' security scan results) + ```py + >>> from huggingface_hub import list_repo_tree + >>> repo_tree = list_repo_tree("prompthero/openjourney-v4", expand=True) + >>> list(repo_tree) + [ + RepoFolder( + path='feature_extractor', + tree_id='aa536c4ea18073388b5b0bc791057a7296a00398', + last_commit={ + 'oid': '47b62b20b20e06b9de610e840282b7e6c3d51190', + 'title': 'Upload diffusers weights (#48)', + 'date': datetime.datetime(2023, 3, 21, 9, 5, 27, tzinfo=datetime.timezone.utc) + } + ), + RepoFolder( + path='safety_checker', + tree_id='65aef9d787e5557373fdf714d6c34d4fcdd70440', + last_commit={ + 'oid': '47b62b20b20e06b9de610e840282b7e6c3d51190', + 'title': 'Upload diffusers weights (#48)', + 'date': datetime.datetime(2023, 3, 21, 9, 5, 27, tzinfo=datetime.timezone.utc) + } + ), + RepoFile( + path='model_index.json', + size=582, + blob_id='d3d7c1e8c3e78eeb1640b8e2041ee256e24c9ee1', + lfs=None, + last_commit={ + 'oid': 'b195ed2d503f3eb29637050a886d77bd81d35f0e', + 'title': 'Fix deprecation warning by changing `CLIPFeatureExtractor` to `CLIPImageProcessor`. (#54)', + 'date': datetime.datetime(2023, 5, 15, 21, 41, 59, tzinfo=datetime.timezone.utc) + }, + security={ + 'safe': True, + 'av_scan': {'virusFound': False, 'virusNames': None}, + 'pickle_import_scan': None + } + ) + ... + ] + ``` + """ + repo_type = repo_type or REPO_TYPE_MODEL + revision = quote(revision, safe="") if revision is not None else DEFAULT_REVISION + headers = self._build_hf_headers(token=token) + + encoded_path_in_repo = "/" + quote(path_in_repo, safe="") if path_in_repo else "" + tree_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/tree/{revision}{encoded_path_in_repo}" + for path_info in paginate(path=tree_url, headers=headers, params={"recursive": recursive, "expand": expand}): + yield (RepoFile(**path_info) if path_info["type"] == "file" else RepoFolder(**path_info)) + + @validate_hf_hub_args + def list_repo_refs( + self, + repo_id: str, + *, + repo_type: Optional[str] = None, + include_pull_requests: bool = False, + token: Union[str, bool, None] = None, + ) -> GitRefs: + """ + Get the list of refs of a given repo (both tags and branches). + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if listing refs from a dataset or a Space, + `None` or `"model"` if listing from a model. Default is `None`. + include_pull_requests (`bool`, *optional*): + Whether to include refs from pull requests in the list. Defaults to `False`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Example: + ```py + >>> from huggingface_hub import HfApi + >>> api = HfApi() + >>> api.list_repo_refs("gpt2") + GitRefs(branches=[GitRefInfo(name='main', ref='refs/heads/main', target_commit='e7da7f221d5bf496a48136c0cd264e630fe9fcc8')], converts=[], tags=[]) + + >>> api.list_repo_refs("bigcode/the-stack", repo_type='dataset') + GitRefs( + branches=[ + GitRefInfo(name='main', ref='refs/heads/main', target_commit='18edc1591d9ce72aa82f56c4431b3c969b210ae3'), + GitRefInfo(name='v1.1.a1', ref='refs/heads/v1.1.a1', target_commit='f9826b862d1567f3822d3d25649b0d6d22ace714') + ], + converts=[], + tags=[ + GitRefInfo(name='v1.0', ref='refs/tags/v1.0', target_commit='c37a8cd1e382064d8aced5e05543c5f7753834da') + ] + ) + ``` + + Returns: + [`GitRefs`]: object containing all information about branches and tags for a + repo on the Hub. + """ + repo_type = repo_type or REPO_TYPE_MODEL + response = get_session().get( + f"{self.endpoint}/api/{repo_type}s/{repo_id}/refs", + headers=self._build_hf_headers(token=token), + params={"include_prs": 1} if include_pull_requests else {}, + ) + hf_raise_for_status(response) + data = response.json() + + def _format_as_git_ref_info(item: Dict) -> GitRefInfo: + return GitRefInfo(name=item["name"], ref=item["ref"], target_commit=item["targetCommit"]) + + return GitRefs( + branches=[_format_as_git_ref_info(item) for item in data["branches"]], + converts=[_format_as_git_ref_info(item) for item in data["converts"]], + tags=[_format_as_git_ref_info(item) for item in data["tags"]], + pull_requests=[_format_as_git_ref_info(item) for item in data["pullRequests"]] + if include_pull_requests + else None, + ) + + @validate_hf_hub_args + def list_repo_commits( + self, + repo_id: str, + *, + repo_type: Optional[str] = None, + token: Union[bool, str, None] = None, + revision: Optional[str] = None, + formatted: bool = False, + ) -> List[GitCommitInfo]: + """ + Get the list of commits of a given revision for a repo on the Hub. + + Commits are sorted by date (last commit first). + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated by a `/`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if listing commits from a dataset or a Space, `None` or `"model"` if + listing from a model. Default is `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + formatted (`bool`): + Whether to return the HTML-formatted title and description of the commits. Defaults to False. + + Example: + ```py + >>> from huggingface_hub import HfApi + >>> api = HfApi() + + # Commits are sorted by date (last commit first) + >>> initial_commit = api.list_repo_commits("gpt2")[-1] + + # Initial commit is always a system commit containing the `.gitattributes` file. + >>> initial_commit + GitCommitInfo( + commit_id='9b865efde13a30c13e0a33e536cf3e4a5a9d71d8', + authors=['system'], + created_at=datetime.datetime(2019, 2, 18, 10, 36, 15, tzinfo=datetime.timezone.utc), + title='initial commit', + message='', + formatted_title=None, + formatted_message=None + ) + + # Create an empty branch by deriving from initial commit + >>> api.create_branch("gpt2", "new_empty_branch", revision=initial_commit.commit_id) + ``` + + Returns: + List[[`GitCommitInfo`]]: list of objects containing information about the commits for a repo on the Hub. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo + does not exist. + [`~utils.RevisionNotFoundError`]: + If revision is not found (error 404) on the repo. + """ + repo_type = repo_type or REPO_TYPE_MODEL + revision = quote(revision, safe="") if revision is not None else DEFAULT_REVISION + + # Paginate over results and return the list of commits. + return [ + GitCommitInfo( + commit_id=item["id"], + authors=[author["user"] for author in item["authors"]], + created_at=parse_datetime(item["date"]), + title=item["title"], + message=item["message"], + formatted_title=item.get("formatted", {}).get("title"), + formatted_message=item.get("formatted", {}).get("message"), + ) + for item in paginate( + f"{self.endpoint}/api/{repo_type}s/{repo_id}/commits/{revision}", + headers=self._build_hf_headers(token=token), + params={"expand[]": "formatted"} if formatted else {}, + ) + ] + + @validate_hf_hub_args + def get_paths_info( + self, + repo_id: str, + paths: Union[List[str], str], + *, + expand: bool = False, + revision: Optional[str] = None, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> List[Union[RepoFile, RepoFolder]]: + """ + Get information about a repo's paths. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated by a `/`. + paths (`Union[List[str], str]`, *optional*): + The paths to get information about. If a path do not exist, it is ignored without raising + an exception. + expand (`bool`, *optional*, defaults to `False`): + Whether to fetch more information about the paths (e.g. last commit and files' security scan results). This + operation is more expensive for the server so only 50 results are returned per page (instead of 1000). + As pagination is implemented in `huggingface_hub`, this is transparent for you except for the time it + takes to get the results. + revision (`str`, *optional*): + The revision of the repository from which to get the information. Defaults to `"main"` branch. + repo_type (`str`, *optional*): + The type of the repository from which to get the information (`"model"`, `"dataset"` or `"space"`. + Defaults to `"model"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `List[Union[RepoFile, RepoFolder]]`: + The information about the paths, as a list of [`RepoFile`] and [`RepoFolder`] objects. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo + does not exist. + [`~utils.RevisionNotFoundError`]: + If revision is not found (error 404) on the repo. + + Example: + ```py + >>> from huggingface_hub import get_paths_info + >>> paths_info = get_paths_info("allenai/c4", ["README.md", "en"], repo_type="dataset") + >>> paths_info + [ + RepoFile(path='README.md', size=2379, blob_id='f84cb4c97182890fc1dbdeaf1a6a468fd27b4fff', lfs=None, last_commit=None, security=None), + RepoFolder(path='en', tree_id='dc943c4c40f53d02b31ced1defa7e5f438d5862e', last_commit=None) + ] + ``` + """ + repo_type = repo_type or REPO_TYPE_MODEL + revision = quote(revision, safe="") if revision is not None else DEFAULT_REVISION + headers = self._build_hf_headers(token=token) + + response = get_session().post( + f"{self.endpoint}/api/{repo_type}s/{repo_id}/paths-info/{revision}", + data={ + "paths": paths if isinstance(paths, list) else [paths], + "expand": expand, + }, + headers=headers, + ) + hf_raise_for_status(response) + paths_info = response.json() + return [ + RepoFile(**path_info) if path_info["type"] == "file" else RepoFolder(**path_info) + for path_info in paths_info + ] + + @validate_hf_hub_args + def super_squash_history( + self, + repo_id: str, + *, + branch: Optional[str] = None, + commit_message: Optional[str] = None, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> None: + """Squash commit history on a branch for a repo on the Hub. + + Squashing the repo history is useful when you know you'll make hundreds of commits and you don't want to + clutter the history. Squashing commits can only be performed from the head of a branch. + + + + Once squashed, the commit history cannot be retrieved. This is a non-revertible operation. + + + + + + Once the history of a branch has been squashed, it is not possible to merge it back into another branch since + their history will have diverged. + + + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated by a `/`. + branch (`str`, *optional*): + The branch to squash. Defaults to the head of the `"main"` branch. + commit_message (`str`, *optional*): + The commit message to use for the squashed commit. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if listing commits from a dataset or a Space, `None` or `"model"` if + listing from a model. Default is `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo + does not exist. + [`~utils.RevisionNotFoundError`]: + If the branch to squash cannot be found. + [`~utils.BadRequestError`]: + If invalid reference for a branch. You cannot squash history on tags. + + Example: + ```py + >>> from huggingface_hub import HfApi + >>> api = HfApi() + + # Create repo + >>> repo_id = api.create_repo("test-squash").repo_id + + # Make a lot of commits. + >>> api.upload_file(repo_id=repo_id, path_in_repo="file.txt", path_or_fileobj=b"content") + >>> api.upload_file(repo_id=repo_id, path_in_repo="lfs.bin", path_or_fileobj=b"content") + >>> api.upload_file(repo_id=repo_id, path_in_repo="file.txt", path_or_fileobj=b"another_content") + + # Squash history + >>> api.super_squash_history(repo_id=repo_id) + ``` + """ + if repo_type is None: + repo_type = REPO_TYPE_MODEL + if repo_type not in REPO_TYPES: + raise ValueError("Invalid repo type") + if branch is None: + branch = DEFAULT_REVISION + + # Prepare request + url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/super-squash/{branch}" + headers = self._build_hf_headers(token=token) + commit_message = commit_message or f"Super-squash branch '{branch}' using huggingface_hub" + + # Super-squash + response = get_session().post(url=url, headers=headers, json={"message": commit_message}) + hf_raise_for_status(response) + + @validate_hf_hub_args + def create_repo( + self, + repo_id: str, + *, + token: Union[str, bool, None] = None, + private: bool = False, + repo_type: Optional[str] = None, + exist_ok: bool = False, + space_sdk: Optional[str] = None, + space_hardware: Optional[SpaceHardware] = None, + space_storage: Optional[SpaceStorage] = None, + space_sleep_time: Optional[int] = None, + space_secrets: Optional[List[Dict[str, str]]] = None, + space_variables: Optional[List[Dict[str, str]]] = None, + ) -> RepoUrl: + """Create an empty repo on the HuggingFace Hub. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + private (`bool`, *optional*, defaults to `False`): + Whether the model repo should be private. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + exist_ok (`bool`, *optional*, defaults to `False`): + If `True`, do not raise an error if repo already exists. + space_sdk (`str`, *optional*): + Choice of SDK to use if repo_type is "space". Can be "streamlit", "gradio", "docker", or "static". + space_hardware (`SpaceHardware` or `str`, *optional*): + Choice of Hardware if repo_type is "space". See [`SpaceHardware`] for a complete list. + space_storage (`SpaceStorage` or `str`, *optional*): + Choice of persistent storage tier. Example: `"small"`. See [`SpaceStorage`] for a complete list. + space_sleep_time (`int`, *optional*): + Number of seconds of inactivity to wait before a Space is put to sleep. Set to `-1` if you don't want + your Space to sleep (default behavior for upgraded hardware). For free hardware, you can't configure + the sleep time (value is fixed to 48 hours of inactivity). + See https://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details. + space_secrets (`List[Dict[str, str]]`, *optional*): + A list of secret keys to set in your Space. Each item is in the form `{"key": ..., "value": ..., "description": ...}` where description is optional. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets. + space_variables (`List[Dict[str, str]]`, *optional*): + A list of public environment variables to set in your Space. Each item is in the form `{"key": ..., "value": ..., "description": ...}` where description is optional. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables. + + Returns: + [`RepoUrl`]: URL to the newly created repo. Value is a subclass of `str` containing + attributes like `endpoint`, `repo_type` and `repo_id`. + """ + organization, name = repo_id.split("/") if "/" in repo_id else (None, repo_id) + + path = f"{self.endpoint}/api/repos/create" + + if repo_type not in REPO_TYPES: + raise ValueError("Invalid repo type") + + json: Dict[str, Any] = {"name": name, "organization": organization, "private": private} + if repo_type is not None: + json["type"] = repo_type + if repo_type == "space": + if space_sdk is None: + raise ValueError( + "No space_sdk provided. `create_repo` expects space_sdk to be one" + f" of {SPACES_SDK_TYPES} when repo_type is 'space'`" + ) + if space_sdk not in SPACES_SDK_TYPES: + raise ValueError(f"Invalid space_sdk. Please choose one of {SPACES_SDK_TYPES}.") + json["sdk"] = space_sdk + + if space_sdk is not None and repo_type != "space": + warnings.warn("Ignoring provided space_sdk because repo_type is not 'space'.") + + function_args = [ + "space_hardware", + "space_storage", + "space_sleep_time", + "space_secrets", + "space_variables", + ] + json_keys = ["hardware", "storageTier", "sleepTimeSeconds", "secrets", "variables"] + values = [space_hardware, space_storage, space_sleep_time, space_secrets, space_variables] + + if repo_type == "space": + json.update({k: v for k, v in zip(json_keys, values) if v is not None}) + else: + provided_space_args = [key for key, value in zip(function_args, values) if value is not None] + + if provided_space_args: + warnings.warn(f"Ignoring provided {', '.join(provided_space_args)} because repo_type is not 'space'.") + + if getattr(self, "_lfsmultipartthresh", None): + # Testing purposes only. + # See https://github.com/huggingface/huggingface_hub/pull/733/files#r820604472 + json["lfsmultipartthresh"] = self._lfsmultipartthresh # type: ignore + headers = self._build_hf_headers(token=token) + + while True: + r = get_session().post(path, headers=headers, json=json) + if r.status_code == 409 and "Cannot create repo: another conflicting operation is in progress" in r.text: + # Since https://github.com/huggingface/moon-landing/pull/7272 (private repo), it is not possible to + # concurrently create repos on the Hub for a same user. This is rarely an issue, except when running + # tests. To avoid any inconvenience, we retry to create the repo for this specific error. + # NOTE: This could have being fixed directly in the tests but adding it here should fixed CIs for all + # dependent libraries. + # NOTE: If a fix is implemented server-side, we should be able to remove this retry mechanism. + logger.debug("Create repo failed due to a concurrency issue. Retrying...") + continue + break + + try: + hf_raise_for_status(r) + except HTTPError as err: + if exist_ok and err.response.status_code == 409: + # Repo already exists and `exist_ok=True` + pass + elif exist_ok and err.response.status_code == 403: + # No write permission on the namespace but repo might already exist + try: + self.repo_info(repo_id=repo_id, repo_type=repo_type, token=token) + if repo_type is None or repo_type == REPO_TYPE_MODEL: + return RepoUrl(f"{self.endpoint}/{repo_id}") + return RepoUrl(f"{self.endpoint}/{repo_type}/{repo_id}") + except HfHubHTTPError: + raise err + else: + raise + + d = r.json() + return RepoUrl(d["url"], endpoint=self.endpoint) + + @validate_hf_hub_args + def delete_repo( + self, + repo_id: str, + *, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + missing_ok: bool = False, + ) -> None: + """ + Delete a repo from the HuggingFace Hub. CAUTION: this is irreversible. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. + missing_ok (`bool`, *optional*, defaults to `False`): + If `True`, do not raise an error if repo does not exist. + + Raises: + - [`~utils.RepositoryNotFoundError`] + If the repository to delete from cannot be found and `missing_ok` is set to False (default). + """ + organization, name = repo_id.split("/") if "/" in repo_id else (None, repo_id) + + path = f"{self.endpoint}/api/repos/delete" + + if repo_type not in REPO_TYPES: + raise ValueError("Invalid repo type") + + json = {"name": name, "organization": organization} + if repo_type is not None: + json["type"] = repo_type + + headers = self._build_hf_headers(token=token) + r = get_session().delete(path, headers=headers, json=json) + try: + hf_raise_for_status(r) + except RepositoryNotFoundError: + if not missing_ok: + raise + + @validate_hf_hub_args + @_deprecate_arguments( + version="0.24.0", deprecated_args=("organization", "name"), custom_message="Use `repo_id` instead." + ) + def update_repo_visibility( + self, + repo_id: str, + private: bool = False, + *, + token: Union[str, bool, None] = None, + organization: Optional[str] = None, + repo_type: Optional[str] = None, + name: Optional[str] = None, + ) -> Dict[str, bool]: + """Update the visibility setting of a repository. + + Args: + repo_id (`str`, *optional*): + A namespace (user or an organization) and a repo name separated + by a `/`. + private (`bool`, *optional*, defaults to `False`): + Whether the model repo should be private. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + + Returns: + The HTTP response in json. + + + + Raises the following errors: + + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + + """ + if repo_type not in REPO_TYPES: + raise ValueError("Invalid repo type") + + organization, name = repo_id.split("/") if "/" in repo_id else (None, repo_id) + + if organization is None: + namespace = self.whoami(token)["name"] + else: + namespace = organization + + if repo_type is None: + repo_type = REPO_TYPE_MODEL # default repo type + + r = get_session().put( + url=f"{self.endpoint}/api/{repo_type}s/{namespace}/{name}/settings", + headers=self._build_hf_headers(token=token), + json={"private": private}, + ) + hf_raise_for_status(r) + return r.json() + + def move_repo( + self, + from_id: str, + to_id: str, + *, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ): + """ + Moving a repository from namespace1/repo_name1 to namespace2/repo_name2 + + Note there are certain limitations. For more information about moving + repositories, please see + https://hf.co/docs/hub/repositories-settings#renaming-or-transferring-a-repo. + + Args: + from_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. Original repository identifier. + to_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. Final repository identifier. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + + + Raises the following errors: + + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + + """ + if len(from_id.split("/")) != 2: + raise ValueError(f"Invalid repo_id: {from_id}. It should have a namespace (:namespace:/:repo_name:)") + + if len(to_id.split("/")) != 2: + raise ValueError(f"Invalid repo_id: {to_id}. It should have a namespace (:namespace:/:repo_name:)") + + if repo_type is None: + repo_type = REPO_TYPE_MODEL # Hub won't accept `None`. + + json = {"fromRepo": from_id, "toRepo": to_id, "type": repo_type} + + path = f"{self.endpoint}/api/repos/move" + headers = self._build_hf_headers(token=token) + r = get_session().post(path, headers=headers, json=json) + try: + hf_raise_for_status(r) + except HfHubHTTPError as e: + e.append_to_message( + "\nFor additional documentation please see" + " https://hf.co/docs/hub/repositories-settings#renaming-or-transferring-a-repo." + ) + raise + + @overload + def create_commit( # type: ignore + self, + repo_id: str, + operations: Iterable[CommitOperation], + *, + commit_message: str, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + num_threads: int = 5, + parent_commit: Optional[str] = None, + run_as_future: Literal[False] = ..., + ) -> CommitInfo: ... + + @overload + def create_commit( + self, + repo_id: str, + operations: Iterable[CommitOperation], + *, + commit_message: str, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + num_threads: int = 5, + parent_commit: Optional[str] = None, + run_as_future: Literal[True] = ..., + ) -> Future[CommitInfo]: ... + + @validate_hf_hub_args + @future_compatible + def create_commit( + self, + repo_id: str, + operations: Iterable[CommitOperation], + *, + commit_message: str, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + num_threads: int = 5, + parent_commit: Optional[str] = None, + run_as_future: bool = False, + ) -> Union[CommitInfo, Future[CommitInfo]]: + """ + Creates a commit in the given repo, deleting & uploading files as needed. + + + + The input list of `CommitOperation` will be mutated during the commit process. Do not reuse the same objects + for multiple commits. + + + + + + `create_commit` assumes that the repo already exists on the Hub. If you get a + Client error 404, please make sure you are authenticated and that `repo_id` and + `repo_type` are set correctly. If repo does not exist, create it first using + [`~hf_api.create_repo`]. + + + + + + `create_commit` is limited to 25k LFS files and a 1GB payload for regular files. + + + + Args: + repo_id (`str`): + The repository in which the commit will be created, for example: + `"username/custom_transformers"` + + operations (`Iterable` of [`~hf_api.CommitOperation`]): + An iterable of operations to include in the commit, either: + + - [`~hf_api.CommitOperationAdd`] to upload a file + - [`~hf_api.CommitOperationDelete`] to delete a file + - [`~hf_api.CommitOperationCopy`] to copy a file + + Operation objects will be mutated to include information relative to the upload. Do not reuse the + same objects for multiple commits. + + commit_message (`str`): + The summary (first line) of the commit that will be created. + + commit_description (`str`, *optional*): + The description of the commit that will be created + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request with that commit. Defaults to `False`. + If `revision` is not set, PR is opened against the `"main"` branch. If + `revision` is set and is a branch, PR is opened against this branch. If + `revision` is set and is not a branch name (example: a commit oid), an + `RevisionNotFoundError` is returned by the server. + + num_threads (`int`, *optional*): + Number of concurrent threads for uploading files. Defaults to 5. + Setting it to 2 means at most 2 files will be uploaded concurrently. + + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. + Shorthands (7 first characters) are also supported. If specified and `create_pr` is `False`, + the commit will fail if `revision` does not point to `parent_commit`. If specified and `create_pr` + is `True`, the pull request will be created from `parent_commit`. Specifying `parent_commit` + ensures the repo has not changed before committing the changes, and can be especially useful + if the repo is updated / committed to concurrently. + run_as_future (`bool`, *optional*): + Whether or not to run this method in the background. Background jobs are run sequentially without + blocking the main thread. Passing `run_as_future=True` will return a [Future](https://docs.python.org/3/library/concurrent.futures.html#future-objects) + object. Defaults to `False`. + + Returns: + [`CommitInfo`] or `Future`: + Instance of [`CommitInfo`] containing information about the newly created commit (commit hash, commit + url, pr url, commit message,...). If `run_as_future=True` is passed, returns a Future object which will + contain the result when executed. + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If commit message is empty. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If parent commit is not a valid commit OID. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If a README.md file with an invalid metadata section is committed. In this case, the commit will fail + early, before trying to upload any file. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `create_pr` is `True` and revision is neither `None` nor `"main"`. + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private + but not authenticated or repo does not exist. + """ + if parent_commit is not None and not REGEX_COMMIT_OID.fullmatch(parent_commit): + raise ValueError( + f"`parent_commit` is not a valid commit OID. It must match the following regex: {REGEX_COMMIT_OID}" + ) + + if commit_message is None or len(commit_message) == 0: + raise ValueError("`commit_message` can't be empty, please pass a value.") + + commit_description = commit_description if commit_description is not None else "" + repo_type = repo_type if repo_type is not None else REPO_TYPE_MODEL + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}") + unquoted_revision = revision or DEFAULT_REVISION + revision = quote(unquoted_revision, safe="") + create_pr = create_pr if create_pr is not None else False + + headers = self._build_hf_headers(token=token) + + operations = list(operations) + additions = [op for op in operations if isinstance(op, CommitOperationAdd)] + copies = [op for op in operations if isinstance(op, CommitOperationCopy)] + nb_additions = len(additions) + nb_copies = len(copies) + nb_deletions = len(operations) - nb_additions - nb_copies + + for addition in additions: + if addition._is_committed: + raise ValueError( + f"CommitOperationAdd {addition} has already being committed and cannot be reused. Please create a" + " new CommitOperationAdd object if you want to create a new commit." + ) + + logger.debug( + f"About to commit to the hub: {len(additions)} addition(s), {len(copies)} copie(s) and" + f" {nb_deletions} deletion(s)." + ) + + # If updating a README.md file, make sure the metadata format is valid + # It's better to fail early than to fail after all the files have been uploaded. + for addition in additions: + if addition.path_in_repo == "README.md": + with addition.as_file() as file: + response = get_session().post( + f"{ENDPOINT}/api/validate-yaml", + json={"content": file.read().decode(), "repoType": repo_type}, + headers=headers, + ) + # Handle warnings (example: empty metadata) + response_content = response.json() + message = "\n".join( + [f"- {warning.get('message')}" for warning in response_content.get("warnings", [])] + ) + if message: + warnings.warn(f"Warnings while validating metadata in README.md:\n{message}") + + # Raise on errors + try: + hf_raise_for_status(response) + except BadRequestError as e: + errors = response_content.get("errors", []) + message = "\n".join([f"- {error.get('message')}" for error in errors]) + raise ValueError(f"Invalid metadata in README.md.\n{message}") from e + + # If updating twice the same file or update then delete a file in a single commit + _warn_on_overwriting_operations(operations) + + self.preupload_lfs_files( + repo_id=repo_id, + additions=additions, + token=token, + repo_type=repo_type, + revision=unquoted_revision, # first-class methods take unquoted revision + create_pr=create_pr, + num_threads=num_threads, + free_memory=False, # do not remove `CommitOperationAdd.path_or_fileobj` on LFS files for "normal" users + ) + files_to_copy = _fetch_files_to_copy( + copies=copies, + repo_type=repo_type, + repo_id=repo_id, + headers=headers, + revision=revision, + endpoint=self.endpoint, + ) + commit_payload = _prepare_commit_payload( + operations=operations, + files_to_copy=files_to_copy, + commit_message=commit_message, + commit_description=commit_description, + parent_commit=parent_commit, + ) + commit_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/commit/{revision}" + + def _payload_as_ndjson() -> Iterable[bytes]: + for item in commit_payload: + yield json.dumps(item).encode() + yield b"\n" + + headers = { + # See https://github.com/huggingface/huggingface_hub/issues/1085#issuecomment-1265208073 + "Content-Type": "application/x-ndjson", + **headers, + } + data = b"".join(_payload_as_ndjson()) + params = {"create_pr": "1"} if create_pr else None + + try: + commit_resp = get_session().post(url=commit_url, headers=headers, data=data, params=params) + hf_raise_for_status(commit_resp, endpoint_name="commit") + except RepositoryNotFoundError as e: + e.append_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE) + raise + except EntryNotFoundError as e: + if nb_deletions > 0 and "A file with this name doesn't exist" in str(e): + e.append_to_message( + "\nMake sure to differentiate file and folder paths in delete" + " operations with a trailing '/' or using `is_folder=True/False`." + ) + raise + + # Mark additions as committed (cannot be reused in another commit) + for addition in additions: + addition._is_committed = True + + commit_data = commit_resp.json() + return CommitInfo( + commit_url=commit_data["commitUrl"], + commit_message=commit_message, + commit_description=commit_description, + oid=commit_data["commitOid"], + pr_url=commit_data["pullRequestUrl"] if create_pr else None, + ) + + @experimental + @validate_hf_hub_args + def create_commits_on_pr( + self, + *, + repo_id: str, + addition_commits: List[List[CommitOperationAdd]], + deletion_commits: List[List[CommitOperationDelete]], + commit_message: str, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + merge_pr: bool = True, + num_threads: int = 5, # TODO: use to multithread uploads + verbose: bool = False, + ) -> str: + """Push changes to the Hub in multiple commits. + + Commits are pushed to a draft PR branch. If the upload fails or gets interrupted, it can be resumed. Progress + is tracked in the PR description. At the end of the process, the PR is set as open and the title is updated to + match the initial commit message. If `merge_pr=True` is passed, the PR is merged automatically. + + All deletion commits are pushed first, followed by the addition commits. The order of the commits is not + guaranteed as we might implement parallel commits in the future. Be sure that your are not updating several + times the same file. + + + + `create_commits_on_pr` is experimental. Its API and behavior is subject to change in the future without prior notice. + + + + + + `create_commits_on_pr` assumes that the repo already exists on the Hub. If you get a Client error 404, please + make sure you are authenticated and that `repo_id` and `repo_type` are set correctly. If repo does not exist, + create it first using [`~hf_api.create_repo`]. + + + + Args: + repo_id (`str`): + The repository in which the commits will be pushed. Example: `"username/my-cool-model"`. + + addition_commits (`List` of `List` of [`~hf_api.CommitOperationAdd`]): + A list containing lists of [`~hf_api.CommitOperationAdd`]. Each sublist will result in a commit on the + PR. + + deletion_commits + A list containing lists of [`~hf_api.CommitOperationDelete`]. Each sublist will result in a commit on + the PR. Deletion commits are pushed before addition commits. + + commit_message (`str`): + The summary (first line) of the commit that will be created. Will also be the title of the PR. + + commit_description (`str`, *optional*): + The description of the commit that will be created. The description will be added to the PR. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or space, `None` or `"model"` if uploading to + a model. Default is `None`. + + merge_pr (`bool`): + If set to `True`, the Pull Request is merged at the end of the process. Defaults to `True`. + + num_threads (`int`, *optional*): + Number of concurrent threads for uploading files. Defaults to 5. + + verbose (`bool`): + If set to `True`, process will run on verbose mode i.e. print information about the ongoing tasks. + Defaults to `False`. + + Returns: + `str`: URL to the created PR. + + Example: + ```python + >>> from huggingface_hub import HfApi, plan_multi_commits + >>> addition_commits, deletion_commits = plan_multi_commits( + ... operations=[ + ... CommitOperationAdd(...), + ... CommitOperationAdd(...), + ... CommitOperationDelete(...), + ... CommitOperationDelete(...), + ... CommitOperationAdd(...), + ... ], + ... ) + >>> HfApi().create_commits_on_pr( + ... repo_id="my-cool-model", + ... addition_commits=addition_commits, + ... deletion_commits=deletion_commits, + ... (...) + ... verbose=True, + ... ) + ``` + + Raises: + [`MultiCommitException`]: + If an unexpected issue occur in the process: empty commits, unexpected commits in a PR, unexpected PR + description, etc. + """ + logger = logging.get_logger(__name__ + ".create_commits_on_pr") + if verbose: + logger.setLevel("INFO") + + # 1. Get strategy ID + logger.info( + f"Will create {len(deletion_commits)} deletion commit(s) and {len(addition_commits)} addition commit(s)," + f" totalling {sum(len(ops) for ops in addition_commits+deletion_commits)} atomic operations." + ) + strategy = MultiCommitStrategy( + addition_commits=[MultiCommitStep(operations=operations) for operations in addition_commits], # type: ignore + deletion_commits=[MultiCommitStep(operations=operations) for operations in deletion_commits], # type: ignore + ) + logger.info(f"Multi-commits strategy with ID {strategy.id}.") + + # 2. Get or create a PR with this strategy ID + for discussion in self.get_repo_discussions(repo_id=repo_id, repo_type=repo_type, token=token): + # search for a draft PR with strategy ID + if discussion.is_pull_request and discussion.status == "draft" and strategy.id in discussion.title: + pr = self.get_discussion_details( + repo_id=repo_id, discussion_num=discussion.num, repo_type=repo_type, token=token + ) + logger.info(f"PR already exists: {pr.url}. Will resume process where it stopped.") + break + else: + # did not find a PR matching the strategy ID + pr = multi_commit_create_pull_request( + self, + repo_id=repo_id, + commit_message=commit_message, + commit_description=commit_description, + strategy=strategy, + token=token, + repo_type=repo_type, + ) + logger.info(f"New PR created: {pr.url}") + + # 3. Parse PR description to check consistency with strategy (e.g. same commits are scheduled) + for event in pr.events: + if isinstance(event, DiscussionComment): + pr_comment = event + break + else: + raise MultiCommitException(f"PR #{pr.num} must have at least 1 comment") + + description_commits = multi_commit_parse_pr_description(pr_comment.content) + if len(description_commits) != len(strategy.all_steps): + raise MultiCommitException( + f"Corrupted multi-commit PR #{pr.num}: got {len(description_commits)} steps in" + f" description but {len(strategy.all_steps)} in strategy." + ) + for step_id in strategy.all_steps: + if step_id not in description_commits: + raise MultiCommitException( + f"Corrupted multi-commit PR #{pr.num}: expected step {step_id} but didn't find" + f" it (have {', '.join(description_commits)})." + ) + + # 4. Retrieve commit history (and check consistency) + commits_on_main_branch = { + commit.commit_id + for commit in self.list_repo_commits( + repo_id=repo_id, repo_type=repo_type, token=token, revision=DEFAULT_REVISION + ) + } + pr_commits = [ + commit + for commit in self.list_repo_commits( + repo_id=repo_id, repo_type=repo_type, token=token, revision=pr.git_reference + ) + if commit.commit_id not in commits_on_main_branch + ] + if len(pr_commits) > 0: + logger.info(f"Found {len(pr_commits)} existing commits on the PR.") + + # At this point `pr_commits` is a list of commits pushed to the PR. We expect all of these commits (if any) to have + # a step_id as title. We raise exception if an unexpected commit has been pushed. + if len(pr_commits) > len(strategy.all_steps): + raise MultiCommitException( + f"Corrupted multi-commit PR #{pr.num}: scheduled {len(strategy.all_steps)} steps but" + f" {len(pr_commits)} commits have already been pushed to the PR." + ) + + # Check which steps are already completed + remaining_additions = {step.id: step for step in strategy.addition_commits} + remaining_deletions = {step.id: step for step in strategy.deletion_commits} + for commit in pr_commits: + if commit.title in remaining_additions: + step = remaining_additions.pop(commit.title) + step.completed = True + elif commit.title in remaining_deletions: + step = remaining_deletions.pop(commit.title) + step.completed = True + + if len(remaining_deletions) > 0 and len(remaining_additions) < len(strategy.addition_commits): + raise MultiCommitException( + f"Corrupted multi-commit PR #{pr.num}: some addition commits have already been pushed to the PR but" + " deletion commits are not all completed yet." + ) + nb_remaining = len(remaining_deletions) + len(remaining_additions) + if len(pr_commits) > 0: + logger.info( + f"{nb_remaining} commits remaining ({len(remaining_deletions)} deletion commits and" + f" {len(remaining_additions)} addition commits)" + ) + + # 5. Push remaining commits to the PR + update description + # TODO: multi-thread this + for step in list(remaining_deletions.values()) + list(remaining_additions.values()): + # Push new commit + self.create_commit( + repo_id=repo_id, + repo_type=repo_type, + token=token, + commit_message=step.id, + revision=pr.git_reference, + num_threads=num_threads, + operations=step.operations, + create_pr=False, + ) + step.completed = True + nb_remaining -= 1 + logger.info(f" step {step.id} completed (still {nb_remaining} to go).") + + # Update PR description + self.edit_discussion_comment( + repo_id=repo_id, + repo_type=repo_type, + token=token, + discussion_num=pr.num, + comment_id=pr_comment.id, + new_content=multi_commit_generate_comment( + commit_message=commit_message, commit_description=commit_description, strategy=strategy + ), + ) + logger.info("All commits have been pushed.") + + # 6. Update PR (and merge) + self.rename_discussion( + repo_id=repo_id, + repo_type=repo_type, + token=token, + discussion_num=pr.num, + new_title=commit_message, + ) + self.change_discussion_status( + repo_id=repo_id, + repo_type=repo_type, + token=token, + discussion_num=pr.num, + new_status="open", + comment=MULTI_COMMIT_PR_COMPLETION_COMMENT_TEMPLATE, + ) + logger.info("PR is now open for reviews.") + + if merge_pr: # User don't want a PR => merge it + try: + self.merge_pull_request( + repo_id=repo_id, + repo_type=repo_type, + token=token, + discussion_num=pr.num, + comment=MULTI_COMMIT_PR_CLOSING_COMMENT_TEMPLATE, + ) + logger.info("PR has been automatically merged (`merge_pr=True` was passed).") + except BadRequestError as error: + if error.server_message is not None and "no associated changes" in error.server_message: + # PR cannot be merged as no changes are associated. We close the PR without merging with a comment to + # explain. + self.change_discussion_status( + repo_id=repo_id, + repo_type=repo_type, + token=token, + discussion_num=pr.num, + comment=MULTI_COMMIT_PR_CLOSE_COMMENT_FAILURE_NO_CHANGES_TEMPLATE, + new_status="closed", + ) + logger.warning("Couldn't merge the PR: no associated changes.") + else: + # PR cannot be merged for another reason (conflicting files for example). We comment the PR to explain + # and re-raise the exception. + self.comment_discussion( + repo_id=repo_id, + repo_type=repo_type, + token=token, + discussion_num=pr.num, + comment=MULTI_COMMIT_PR_CLOSE_COMMENT_FAILURE_BAD_REQUEST_TEMPLATE.format( + error_message=error.server_message + ), + ) + raise MultiCommitException( + f"Couldn't merge Pull Request in multi-commit: {error.server_message}" + ) from error + + return pr.url + + def preupload_lfs_files( + self, + repo_id: str, + additions: Iterable[CommitOperationAdd], + *, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + num_threads: int = 5, + free_memory: bool = True, + gitignore_content: Optional[str] = None, + ): + """Pre-upload LFS files to S3 in preparation on a future commit. + + This method is useful if you are generating the files to upload on-the-fly and you don't want to store them + in memory before uploading them all at once. + + + + This is a power-user method. You shouldn't need to call it directly to make a normal commit. + Use [`create_commit`] directly instead. + + + + + + Commit operations will be mutated during the process. In particular, the attached `path_or_fileobj` will be + removed after the upload to save memory (and replaced by an empty `bytes` object). Do not reuse the same + objects except to pass them to [`create_commit`]. If you don't want to remove the attached content from the + commit operation object, pass `free_memory=False`. + + + + Args: + repo_id (`str`): + The repository in which you will commit the files, for example: `"username/custom_transformers"`. + + operations (`Iterable` of [`CommitOperationAdd`]): + The list of files to upload. Warning: the objects in this list will be mutated to include information + relative to the upload. Do not reuse the same objects for multiple commits. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + The type of repository to upload to (e.g. `"model"` -default-, `"dataset"` or `"space"`). + + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + + create_pr (`boolean`, *optional*): + Whether or not you plan to create a Pull Request with that commit. Defaults to `False`. + + num_threads (`int`, *optional*): + Number of concurrent threads for uploading files. Defaults to 5. + Setting it to 2 means at most 2 files will be uploaded concurrently. + + gitignore_content (`str`, *optional*): + The content of the `.gitignore` file to know which files should be ignored. The order of priority + is to first check if `gitignore_content` is passed, then check if the `.gitignore` file is present + in the list of files to commit and finally default to the `.gitignore` file already hosted on the Hub + (if any). + + Example: + ```py + >>> from huggingface_hub import CommitOperationAdd, preupload_lfs_files, create_commit, create_repo + + >>> repo_id = create_repo("test_preupload").repo_id + + # Generate and preupload LFS files one by one + >>> operations = [] # List of all `CommitOperationAdd` objects that will be generated + >>> for i in range(5): + ... content = ... # generate binary content + ... addition = CommitOperationAdd(path_in_repo=f"shard_{i}_of_5.bin", path_or_fileobj=content) + ... preupload_lfs_files(repo_id, additions=[addition]) # upload + free memory + ... operations.append(addition) + + # Create commit + >>> create_commit(repo_id, operations=operations, commit_message="Commit all shards") + ``` + """ + repo_type = repo_type if repo_type is not None else REPO_TYPE_MODEL + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}") + revision = quote(revision, safe="") if revision is not None else DEFAULT_REVISION + create_pr = create_pr if create_pr is not None else False + headers = self._build_hf_headers(token=token) + + # Check if a `gitignore` file is being committed to the Hub. + additions = list(additions) + if gitignore_content is None: + for addition in additions: + if addition.path_in_repo == ".gitignore": + with addition.as_file() as f: + gitignore_content = f.read().decode() + break + + # Filter out already uploaded files + new_additions = [addition for addition in additions if not addition._is_uploaded] + + # Check which new files are LFS + try: + _fetch_upload_modes( + additions=new_additions, + repo_type=repo_type, + repo_id=repo_id, + headers=headers, + revision=revision, + endpoint=self.endpoint, + create_pr=create_pr or False, + gitignore_content=gitignore_content, + ) + except RepositoryNotFoundError as e: + e.append_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE) + raise + + # Filter out regular files + new_lfs_additions = [addition for addition in new_additions if addition._upload_mode == "lfs"] + + # Filter out files listed in .gitignore + new_lfs_additions_to_upload = [] + for addition in new_lfs_additions: + if addition._should_ignore: + logger.debug(f"Skipping upload for LFS file '{addition.path_in_repo}' (ignored by gitignore file).") + else: + new_lfs_additions_to_upload.append(addition) + if len(new_lfs_additions) != len(new_lfs_additions_to_upload): + logger.info( + f"Skipped upload for {len(new_lfs_additions) - len(new_lfs_additions_to_upload)} LFS file(s) " + "(ignored by gitignore file)." + ) + + # Upload new LFS files + _upload_lfs_files( + additions=new_lfs_additions_to_upload, + repo_type=repo_type, + repo_id=repo_id, + headers=headers, + endpoint=self.endpoint, + num_threads=num_threads, + # If `create_pr`, we don't want to check user permission on the revision as users with read permission + # should still be able to create PRs even if they don't have write permission on the target branch of the + # PR (i.e. `revision`). + revision=revision if not create_pr else None, + ) + for addition in new_lfs_additions_to_upload: + addition._is_uploaded = True + if free_memory: + addition.path_or_fileobj = b"" + + @overload + def upload_file( # type: ignore + self, + *, + path_or_fileobj: Union[str, Path, bytes, BinaryIO], + path_in_repo: str, + repo_id: str, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + run_as_future: Literal[False] = ..., + ) -> CommitInfo: ... + + @overload + def upload_file( + self, + *, + path_or_fileobj: Union[str, Path, bytes, BinaryIO], + path_in_repo: str, + repo_id: str, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + run_as_future: Literal[True] = ..., + ) -> Future[CommitInfo]: ... + + @validate_hf_hub_args + @future_compatible + def upload_file( + self, + *, + path_or_fileobj: Union[str, Path, bytes, BinaryIO], + path_in_repo: str, + repo_id: str, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + run_as_future: bool = False, + ) -> Union[CommitInfo, Future[CommitInfo]]: + """ + Upload a local file (up to 50 GB) to the given repo. The upload is done + through a HTTP post request, and doesn't require git or git-lfs to be + installed. + + Args: + path_or_fileobj (`str`, `Path`, `bytes`, or `IO`): + Path to a file on the local machine or binary data stream / + fileobj / buffer. + path_in_repo (`str`): + Relative filepath in the repo, for example: + `"checkpoints/1fec34a/weights.bin"` + repo_id (`str`): + The repository to which the file will be uploaded, for example: + `"username/custom_transformers"` + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + commit_message (`str`, *optional*): + The summary / title / first line of the generated commit + commit_description (`str` *optional*) + The description of the generated commit + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request with that commit. Defaults to `False`. + If `revision` is not set, PR is opened against the `"main"` branch. If + `revision` is set and is a branch, PR is opened against this branch. If + `revision` is set and is not a branch name (example: a commit oid), an + `RevisionNotFoundError` is returned by the server. + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. + If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. + If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. + Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be + especially useful if the repo is updated / committed to concurrently. + run_as_future (`bool`, *optional*): + Whether or not to run this method in the background. Background jobs are run sequentially without + blocking the main thread. Passing `run_as_future=True` will return a [Future](https://docs.python.org/3/library/concurrent.futures.html#future-objects) + object. Defaults to `False`. + + + Returns: + [`CommitInfo`] or `Future`: + Instance of [`CommitInfo`] containing information about the newly created commit (commit hash, commit + url, pr url, commit message,...). If `run_as_future=True` is passed, returns a Future object which will + contain the result when executed. + + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + + + + + + `upload_file` assumes that the repo already exists on the Hub. If you get a + Client error 404, please make sure you are authenticated and that `repo_id` and + `repo_type` are set correctly. If repo does not exist, create it first using + [`~hf_api.create_repo`]. + + + + Example: + + ```python + >>> from huggingface_hub import upload_file + + >>> with open("./local/filepath", "rb") as fobj: + ... upload_file( + ... path_or_fileobj=fileobj, + ... path_in_repo="remote/file/path.h5", + ... repo_id="username/my-dataset", + ... repo_type="dataset", + ... token="my_token", + ... ) + "https://huggingface.co/datasets/username/my-dataset/blob/main/remote/file/path.h5" + + >>> upload_file( + ... path_or_fileobj=".\\\\local\\\\file\\\\path", + ... path_in_repo="remote/file/path.h5", + ... repo_id="username/my-model", + ... token="my_token", + ... ) + "https://huggingface.co/username/my-model/blob/main/remote/file/path.h5" + + >>> upload_file( + ... path_or_fileobj=".\\\\local\\\\file\\\\path", + ... path_in_repo="remote/file/path.h5", + ... repo_id="username/my-model", + ... token="my_token", + ... create_pr=True, + ... ) + "https://huggingface.co/username/my-model/blob/refs%2Fpr%2F1/remote/file/path.h5" + ``` + """ + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}") + + commit_message = ( + commit_message if commit_message is not None else f"Upload {path_in_repo} with huggingface_hub" + ) + operation = CommitOperationAdd( + path_or_fileobj=path_or_fileobj, + path_in_repo=path_in_repo, + ) + + commit_info = self.create_commit( + repo_id=repo_id, + repo_type=repo_type, + operations=[operation], + commit_message=commit_message, + commit_description=commit_description, + token=token, + revision=revision, + create_pr=create_pr, + parent_commit=parent_commit, + ) + + if commit_info.pr_url is not None: + revision = quote(_parse_revision_from_pr_url(commit_info.pr_url), safe="") + if repo_type in REPO_TYPES_URL_PREFIXES: + repo_id = REPO_TYPES_URL_PREFIXES[repo_type] + repo_id + revision = revision if revision is not None else DEFAULT_REVISION + + return CommitInfo( + commit_url=commit_info.commit_url, + commit_message=commit_info.commit_message, + commit_description=commit_info.commit_description, + oid=commit_info.oid, + pr_url=commit_info.pr_url, + # Similar to `hf_hub_url` but it's "blob" instead of "resolve" + # TODO: remove this in v1.0 + _url=f"{self.endpoint}/{repo_id}/blob/{revision}/{path_in_repo}", + ) + + @overload + def upload_folder( # type: ignore + self, + *, + repo_id: str, + folder_path: Union[str, Path], + path_in_repo: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + multi_commits: Literal[False] = ..., + multi_commits_verbose: bool = False, + run_as_future: Literal[False] = ..., + ) -> CommitInfo: ... + + @overload + def upload_folder( # type: ignore + self, + *, + repo_id: str, + folder_path: Union[str, Path], + path_in_repo: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + multi_commits: Literal[True] = ..., + multi_commits_verbose: bool = False, + run_as_future: Literal[False] = ..., + ) -> str: # Only the PR url in multi-commits mode + ... + + @overload + def upload_folder( # type: ignore + self, + *, + repo_id: str, + folder_path: Union[str, Path], + path_in_repo: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + multi_commits: Literal[False] = ..., + multi_commits_verbose: bool = False, + run_as_future: Literal[True] = ..., + ) -> Future[CommitInfo]: ... + + @overload + def upload_folder( + self, + *, + repo_id: str, + folder_path: Union[str, Path], + path_in_repo: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + multi_commits: Literal[True] = ..., + multi_commits_verbose: bool = False, + run_as_future: Literal[True] = ..., + ) -> Future[str]: # Only the PR url in multi-commits mode + ... + + @validate_hf_hub_args + @future_compatible + def upload_folder( + self, + *, + repo_id: str, + folder_path: Union[str, Path], + path_in_repo: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + multi_commits: bool = False, + multi_commits_verbose: bool = False, + run_as_future: bool = False, + ) -> Union[CommitInfo, str, Future[CommitInfo], Future[str]]: + """ + Upload a local folder to the given repo. The upload is done through a HTTP requests, and doesn't require git or + git-lfs to be installed. + + The structure of the folder will be preserved. Files with the same name already present in the repository will + be overwritten. Others will be left untouched. + + Use the `allow_patterns` and `ignore_patterns` arguments to specify which files to upload. These parameters + accept either a single pattern or a list of patterns. Patterns are Standard Wildcards (globbing patterns) as + documented [here](https://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm). If both `allow_patterns` and + `ignore_patterns` are provided, both constraints apply. By default, all files from the folder are uploaded. + + Use the `delete_patterns` argument to specify remote files you want to delete. Input type is the same as for + `allow_patterns` (see above). If `path_in_repo` is also provided, the patterns are matched against paths + relative to this folder. For example, `upload_folder(..., path_in_repo="experiment", delete_patterns="logs/*")` + will delete any remote file under `./experiment/logs/`. Note that the `.gitattributes` file will not be deleted + even if it matches the patterns. + + Any `.git/` folder present in any subdirectory will be ignored. However, please be aware that the `.gitignore` + file is not taken into account. + + Uses `HfApi.create_commit` under the hood. + + Args: + repo_id (`str`): + The repository to which the file will be uploaded, for example: + `"username/custom_transformers"` + folder_path (`str` or `Path`): + Path to the folder to upload on the local file system + path_in_repo (`str`, *optional*): + Relative path of the directory in the repo, for example: + `"checkpoints/1fec34a/results"`. Will default to the root folder of the repository. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + commit_message (`str`, *optional*): + The summary / title / first line of the generated commit. Defaults to: + `f"Upload {path_in_repo} with huggingface_hub"` + commit_description (`str` *optional*): + The description of the generated commit + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request with that commit. Defaults to `False`. If `revision` is not + set, PR is opened against the `"main"` branch. If `revision` is set and is a branch, PR is opened + against this branch. If `revision` is set and is not a branch name (example: a commit oid), an + `RevisionNotFoundError` is returned by the server. If both `multi_commits` and `create_pr` are True, + the PR created in the multi-commit process is kept opened. + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. + If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. + If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. + Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be + especially useful if the repo is updated / committed to concurrently. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are uploaded. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not uploaded. + delete_patterns (`List[str]` or `str`, *optional*): + If provided, remote files matching any of the patterns will be deleted from the repo while committing + new files. This is useful if you don't know which files have already been uploaded. + Note: to avoid discrepancies the `.gitattributes` file is not deleted even if it matches the pattern. + multi_commits (`bool`): + If True, changes are pushed to a PR using a multi-commit process. Defaults to `False`. + multi_commits_verbose (`bool`): + If True and `multi_commits` is used, more information will be displayed to the user. + run_as_future (`bool`, *optional*): + Whether or not to run this method in the background. Background jobs are run sequentially without + blocking the main thread. Passing `run_as_future=True` will return a [Future](https://docs.python.org/3/library/concurrent.futures.html#future-objects) + object. Defaults to `False`. + + Returns: + [`CommitInfo`] or `Future`: + Instance of [`CommitInfo`] containing information about the newly created commit (commit hash, commit + url, pr url, commit message,...). If `run_as_future=True` is passed, returns a Future object which will + contain the result when executed. + [`str`] or `Future`: + If `multi_commits=True`, returns the url of the PR created to push the changes. If `run_as_future=True` + is passed, returns a Future object which will contain the result when executed. + + + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + + + + + + `upload_folder` assumes that the repo already exists on the Hub. If you get a Client error 404, please make + sure you are authenticated and that `repo_id` and `repo_type` are set correctly. If repo does not exist, create + it first using [`~hf_api.create_repo`]. + + + + + + `multi_commits` is experimental. Its API and behavior is subject to change in the future without prior notice. + + + + Example: + + ```python + # Upload checkpoints folder except the log files + >>> upload_folder( + ... folder_path="local/checkpoints", + ... path_in_repo="remote/experiment/checkpoints", + ... repo_id="username/my-dataset", + ... repo_type="datasets", + ... token="my_token", + ... ignore_patterns="**/logs/*.txt", + ... ) + # "https://huggingface.co/datasets/username/my-dataset/tree/main/remote/experiment/checkpoints" + + # Upload checkpoints folder including logs while deleting existing logs from the repo + # Useful if you don't know exactly which log files have already being pushed + >>> upload_folder( + ... folder_path="local/checkpoints", + ... path_in_repo="remote/experiment/checkpoints", + ... repo_id="username/my-dataset", + ... repo_type="datasets", + ... token="my_token", + ... delete_patterns="**/logs/*.txt", + ... ) + "https://huggingface.co/datasets/username/my-dataset/tree/main/remote/experiment/checkpoints" + + # Upload checkpoints folder while creating a PR + >>> upload_folder( + ... folder_path="local/checkpoints", + ... path_in_repo="remote/experiment/checkpoints", + ... repo_id="username/my-dataset", + ... repo_type="datasets", + ... token="my_token", + ... create_pr=True, + ... ) + "https://huggingface.co/datasets/username/my-dataset/tree/refs%2Fpr%2F1/remote/experiment/checkpoints" + + ``` + """ + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}") + + if multi_commits: + if revision is not None and revision != DEFAULT_REVISION: + raise ValueError("Cannot use `multi_commit` to commit changes other than the main branch.") + + # By default, upload folder to the root directory in repo. + if path_in_repo is None: + path_in_repo = "" + + # Do not upload .git folder + if ignore_patterns is None: + ignore_patterns = [] + elif isinstance(ignore_patterns, str): + ignore_patterns = [ignore_patterns] + ignore_patterns += DEFAULT_IGNORE_PATTERNS + + delete_operations = self._prepare_upload_folder_deletions( + repo_id=repo_id, + repo_type=repo_type, + revision=DEFAULT_REVISION if create_pr else revision, + token=token, + path_in_repo=path_in_repo, + delete_patterns=delete_patterns, + ) + add_operations = _prepare_upload_folder_additions( + folder_path, + path_in_repo, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + ) + + # Optimize operations: if some files will be overwritten, we don't need to delete them first + if len(add_operations) > 0: + added_paths = set(op.path_in_repo for op in add_operations) + delete_operations = [ + delete_op for delete_op in delete_operations if delete_op.path_in_repo not in added_paths + ] + commit_operations = delete_operations + add_operations + + commit_message = commit_message or "Upload folder using huggingface_hub" + if multi_commits: + addition_commits, deletion_commits = plan_multi_commits(operations=commit_operations) + pr_url = self.create_commits_on_pr( + repo_id=repo_id, + repo_type=repo_type, + addition_commits=addition_commits, + deletion_commits=deletion_commits, + commit_message=commit_message, + commit_description=commit_description, + token=token, + merge_pr=not create_pr, + verbose=multi_commits_verbose, + ) + # Defining a CommitInfo object is not really relevant in this case + # Let's return early with pr_url only (as string). + return pr_url + + commit_info = self.create_commit( + repo_type=repo_type, + repo_id=repo_id, + operations=commit_operations, + commit_message=commit_message, + commit_description=commit_description, + token=token, + revision=revision, + create_pr=create_pr, + parent_commit=parent_commit, + ) + + # Create url to uploaded folder (for legacy return value) + if create_pr and commit_info.pr_url is not None: + revision = quote(_parse_revision_from_pr_url(commit_info.pr_url), safe="") + if repo_type in REPO_TYPES_URL_PREFIXES: + repo_id = REPO_TYPES_URL_PREFIXES[repo_type] + repo_id + revision = revision if revision is not None else DEFAULT_REVISION + + return CommitInfo( + commit_url=commit_info.commit_url, + commit_message=commit_info.commit_message, + commit_description=commit_info.commit_description, + oid=commit_info.oid, + pr_url=commit_info.pr_url, + # Similar to `hf_hub_url` but it's "tree" instead of "resolve" + # TODO: remove this in v1.0 + _url=f"{self.endpoint}/{repo_id}/tree/{revision}/{path_in_repo}", + ) + + @validate_hf_hub_args + def delete_file( + self, + path_in_repo: str, + repo_id: str, + *, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + ) -> CommitInfo: + """ + Deletes a file in the given repo. + + Args: + path_in_repo (`str`): + Relative filepath in the repo, for example: + `"checkpoints/1fec34a/weights.bin"` + repo_id (`str`): + The repository from which the file will be deleted, for example: + `"username/custom_transformers"` + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if the file is in a dataset or + space, `None` or `"model"` if in a model. Default is `None`. + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + commit_message (`str`, *optional*): + The summary / title / first line of the generated commit. Defaults to + `f"Delete {path_in_repo} with huggingface_hub"`. + commit_description (`str` *optional*) + The description of the generated commit + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request with that commit. Defaults to `False`. + If `revision` is not set, PR is opened against the `"main"` branch. If + `revision` is set and is a branch, PR is opened against this branch. If + `revision` is set and is not a branch name (example: a commit oid), an + `RevisionNotFoundError` is returned by the server. + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. + If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. + If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. + Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be + especially useful if the repo is updated / committed to concurrently. + + + + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + - [`~utils.EntryNotFoundError`] + If the file to download cannot be found. + + + + """ + commit_message = ( + commit_message if commit_message is not None else f"Delete {path_in_repo} with huggingface_hub" + ) + + operations = [CommitOperationDelete(path_in_repo=path_in_repo)] + + return self.create_commit( + repo_id=repo_id, + repo_type=repo_type, + token=token, + operations=operations, + revision=revision, + commit_message=commit_message, + commit_description=commit_description, + create_pr=create_pr, + parent_commit=parent_commit, + ) + + @validate_hf_hub_args + def delete_folder( + self, + path_in_repo: str, + repo_id: str, + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + ) -> CommitInfo: + """ + Deletes a folder in the given repo. + + Simple wrapper around [`create_commit`] method. + + Args: + path_in_repo (`str`): + Relative folder path in the repo, for example: `"checkpoints/1fec34a"`. + repo_id (`str`): + The repository from which the folder will be deleted, for example: + `"username/custom_transformers"` + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + to the stored token. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if the folder is in a dataset or + space, `None` or `"model"` if in a model. Default is `None`. + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + commit_message (`str`, *optional*): + The summary / title / first line of the generated commit. Defaults to + `f"Delete folder {path_in_repo} with huggingface_hub"`. + commit_description (`str` *optional*) + The description of the generated commit. + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request with that commit. Defaults to `False`. + If `revision` is not set, PR is opened against the `"main"` branch. If + `revision` is set and is a branch, PR is opened against this branch. If + `revision` is set and is not a branch name (example: a commit oid), an + `RevisionNotFoundError` is returned by the server. + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. + If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. + If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. + Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be + especially useful if the repo is updated / committed to concurrently. + """ + return self.create_commit( + repo_id=repo_id, + repo_type=repo_type, + token=token, + operations=[CommitOperationDelete(path_in_repo=path_in_repo, is_folder=True)], + revision=revision, + commit_message=( + commit_message if commit_message is not None else f"Delete folder {path_in_repo} with huggingface_hub" + ), + commit_description=commit_description, + create_pr=create_pr, + parent_commit=parent_commit, + ) + + @validate_hf_hub_args + def get_hf_file_metadata( + self, + *, + url: str, + token: Union[bool, str, None] = None, + proxies: Optional[Dict] = None, + timeout: Optional[float] = DEFAULT_REQUEST_TIMEOUT, + ) -> HfFileMetadata: + """Fetch metadata of a file versioned on the Hub for a given url. + + Args: + url (`str`): + File url, for example returned by [`hf_hub_url`]. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to `requests.request`. + timeout (`float`, *optional*, defaults to 10): + How many seconds to wait for the server to send metadata before giving up. + + Returns: + A [`HfFileMetadata`] object containing metadata such as location, etag, size and commit_hash. + """ + if token is None: + # Cannot do `token = token or self.token` as token can be `False`. + token = self.token + + return get_hf_file_metadata( + url=url, + token=token, + proxies=proxies, + timeout=timeout, + library_name=self.library_name, + library_version=self.library_version, + user_agent=self.user_agent, + ) + + @validate_hf_hub_args + def hf_hub_download( + self, + repo_id: str, + filename: str, + *, + subfolder: Optional[str] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + cache_dir: Union[str, Path, None] = None, + local_dir: Union[str, Path, None] = None, + force_download: bool = False, + proxies: Optional[Dict] = None, + etag_timeout: float = DEFAULT_ETAG_TIMEOUT, + token: Union[bool, str, None] = None, + local_files_only: bool = False, + # Deprecated args + resume_download: Optional[bool] = None, + legacy_cache_layout: bool = False, + force_filename: Optional[str] = None, + local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto", + ) -> str: + """Download a given file if it's not already present in the local cache. + + The new cache file layout looks like this: + - The cache directory contains one subfolder per repo_id (namespaced by repo type) + - inside each repo folder: + - refs is a list of the latest known revision => commit_hash pairs + - blobs contains the actual file blobs (identified by their git-sha or sha256, depending on + whether they're LFS files or not) + - snapshots contains one subfolder per commit, each "commit" contains the subset of the files + that have been resolved at that particular commit. Each filename is a symlink to the blob + at that particular commit. + + ``` + [ 96] . + └── [ 160] models--julien-c--EsperBERTo-small + ├── [ 160] blobs + │ ├── [321M] 403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + │ ├── [ 398] 7cb18dc9bafbfcf74629a4b760af1b160957a83e + │ └── [1.4K] d7edf6bd2a681fb0175f7735299831ee1b22b812 + ├── [ 96] refs + │ └── [ 40] main + └── [ 128] snapshots + ├── [ 128] 2439f60ef33a0d46d85da5001d52aeda5b00ce9f + │ ├── [ 52] README.md -> ../../blobs/d7edf6bd2a681fb0175f7735299831ee1b22b812 + │ └── [ 76] pytorch_model.bin -> ../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + └── [ 128] bbc77c8132af1cc5cf678da3f1ddf2de43606d48 + ├── [ 52] README.md -> ../../blobs/7cb18dc9bafbfcf74629a4b760af1b160957a83e + └── [ 76] pytorch_model.bin -> ../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + ``` + + If `local_dir` is provided, the file structure from the repo will be replicated in this location. When using this + option, the `cache_dir` will not be used and a `.huggingface/` folder will be created at the root of `local_dir` + to store some metadata related to the downloaded files. While this mechanism is not as robust as the main + cache-system, it's optimized for regularly pulling the latest version of a repository. + + Args: + repo_id (`str`): + A user or an organization name and a repo name separated by a `/`. + filename (`str`): + The name of the file in the repo. + subfolder (`str`, *optional*): + An optional value corresponding to a folder inside the model repo. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if downloading from a dataset or space, + `None` or `"model"` if downloading from a model. Default is `None`. + revision (`str`, *optional*): + An optional Git revision id which can be a branch name, a tag, or a + commit hash. + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + local_dir (`str` or `Path`, *optional*): + If provided, the downloaded file will be placed under this directory. + force_download (`bool`, *optional*, defaults to `False`): + Whether the file should be downloaded even if it already exists in + the local cache. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to + `requests.request`. + etag_timeout (`float`, *optional*, defaults to `10`): + When fetching ETag, how many seconds to wait for the server to send + data before giving up which is passed to `requests.request`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + local_files_only (`bool`, *optional*, defaults to `False`): + If `True`, avoid downloading the file and return the path to the + local cached file if it exists. + + Returns: + `str`: Local path of file or if networking is off, last version of file cached on disk. + + Raises: + - [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + if `token=True` and the token cannot be found. + - [`OSError`](https://docs.python.org/3/library/exceptions.html#OSError) + if ETag cannot be determined. + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + - [`~utils.EntryNotFoundError`] + If the file to download cannot be found. + - [`~utils.LocalEntryNotFoundError`] + If network is disabled or unavailable and file is not found in cache. + """ + from .file_download import hf_hub_download + + if token is None: + # Cannot do `token = token or self.token` as token can be `False`. + token = self.token + + return hf_hub_download( + repo_id=repo_id, + filename=filename, + subfolder=subfolder, + repo_type=repo_type, + revision=revision, + endpoint=self.endpoint, + library_name=self.library_name, + library_version=self.library_version, + cache_dir=cache_dir, + local_dir=local_dir, + local_dir_use_symlinks=local_dir_use_symlinks, + user_agent=self.user_agent, + force_download=force_download, + force_filename=force_filename, + proxies=proxies, + etag_timeout=etag_timeout, + resume_download=resume_download, + token=token, + headers=self.headers, + local_files_only=local_files_only, + legacy_cache_layout=legacy_cache_layout, + ) + + @validate_hf_hub_args + def snapshot_download( + self, + repo_id: str, + *, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + cache_dir: Union[str, Path, None] = None, + local_dir: Union[str, Path, None] = None, + proxies: Optional[Dict] = None, + etag_timeout: float = DEFAULT_ETAG_TIMEOUT, + force_download: bool = False, + token: Union[bool, str, None] = None, + local_files_only: bool = False, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + max_workers: int = 8, + tqdm_class: Optional[base_tqdm] = None, + # Deprecated args + local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto", + resume_download: Optional[bool] = None, + ) -> str: + """Download repo files. + + Download a whole snapshot of a repo's files at the specified revision. This is useful when you want all files from + a repo, because you don't know which ones you will need a priori. All files are nested inside a folder in order + to keep their actual filename relative to that folder. You can also filter which files to download using + `allow_patterns` and `ignore_patterns`. + + If `local_dir` is provided, the file structure from the repo will be replicated in this location. When using this + option, the `cache_dir` will not be used and a `.huggingface/` folder will be created at the root of `local_dir` + to store some metadata related to the downloaded files.While this mechanism is not as robust as the main + cache-system, it's optimized for regularly pulling the latest version of a repository. + + An alternative would be to clone the repo but this requires git and git-lfs to be installed and properly + configured. It is also not possible to filter which files to download when cloning a repository using git. + + Args: + repo_id (`str`): + A user or an organization name and a repo name separated by a `/`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if downloading from a dataset or space, + `None` or `"model"` if downloading from a model. Default is `None`. + revision (`str`, *optional*): + An optional Git revision id which can be a branch name, a tag, or a + commit hash. + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + local_dir (`str` or `Path`, *optional*): + If provided, the downloaded files will be placed under this directory. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to + `requests.request`. + etag_timeout (`float`, *optional*, defaults to `10`): + When fetching ETag, how many seconds to wait for the server to send + data before giving up which is passed to `requests.request`. + force_download (`bool`, *optional*, defaults to `False`): + Whether the file should be downloaded even if it already exists in the local cache. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + local_files_only (`bool`, *optional*, defaults to `False`): + If `True`, avoid downloading the file and return the path to the + local cached file if it exists. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are downloaded. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not downloaded. + max_workers (`int`, *optional*): + Number of concurrent threads to download files (1 thread = 1 file download). + Defaults to 8. + tqdm_class (`tqdm`, *optional*): + If provided, overwrites the default behavior for the progress bar. Passed + argument must inherit from `tqdm.auto.tqdm` or at least mimic its behavior. + Note that the `tqdm_class` is not passed to each individual download. + Defaults to the custom HF progress bar that can be disabled by setting + `HF_HUB_DISABLE_PROGRESS_BARS` environment variable. + + Returns: + `str`: folder path of the repo snapshot. + + Raises: + - [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + if `token=True` and the token cannot be found. + - [`OSError`](https://docs.python.org/3/library/exceptions.html#OSError) if + ETag cannot be determined. + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + """ + from ._snapshot_download import snapshot_download + + if token is None: + # Cannot do `token = token or self.token` as token can be `False`. + token = self.token + + return snapshot_download( + repo_id=repo_id, + repo_type=repo_type, + revision=revision, + endpoint=self.endpoint, + cache_dir=cache_dir, + local_dir=local_dir, + local_dir_use_symlinks=local_dir_use_symlinks, + library_name=self.library_name, + library_version=self.library_version, + user_agent=self.user_agent, + proxies=proxies, + etag_timeout=etag_timeout, + resume_download=resume_download, + force_download=force_download, + token=token, + local_files_only=local_files_only, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + max_workers=max_workers, + tqdm_class=tqdm_class, + ) + + def get_safetensors_metadata( + self, + repo_id: str, + *, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> SafetensorsRepoMetadata: + """ + Parse metadata for a safetensors repo on the Hub. + + We first check if the repo has a single safetensors file or a sharded safetensors repo. If it's a single + safetensors file, we parse the metadata from this file. If it's a sharded safetensors repo, we parse the + metadata from the index file and then parse the metadata from each shard. + + To parse metadata from a single safetensors file, use [`parse_safetensors_file_metadata`]. + + For more details regarding the safetensors format, check out https://huggingface.co/docs/safetensors/index#format. + + Args: + repo_id (`str`): + A user or an organization name and a repo name separated by a `/`. + filename (`str`): + The name of the file in the repo. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if the file is in a dataset or space, `None` or `"model"` if in a + model. Default is `None`. + revision (`str`, *optional*): + The git revision to fetch the file from. Can be a branch name, a tag, or a commit hash. Defaults to the + head of the `"main"` branch. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`SafetensorsRepoMetadata`]: information related to safetensors repo. + + Raises: + - [`NotASafetensorsRepoError`]: if the repo is not a safetensors repo i.e. doesn't have either a + `model.safetensors` or a `model.safetensors.index.json` file. + - [`SafetensorsParsingError`]: if a safetensors file header couldn't be parsed correctly. + + Example: + ```py + # Parse repo with single weights file + >>> metadata = get_safetensors_metadata("bigscience/bloomz-560m") + >>> metadata + SafetensorsRepoMetadata( + metadata=None, + sharded=False, + weight_map={'h.0.input_layernorm.bias': 'model.safetensors', ...}, + files_metadata={'model.safetensors': SafetensorsFileMetadata(...)} + ) + >>> metadata.files_metadata["model.safetensors"].metadata + {'format': 'pt'} + + # Parse repo with sharded model + >>> metadata = get_safetensors_metadata("bigscience/bloom") + Parse safetensors files: 100%|██████████████████████████████████████████| 72/72 [00:12<00:00, 5.78it/s] + >>> metadata + SafetensorsRepoMetadata(metadata={'total_size': 352494542848}, sharded=True, weight_map={...}, files_metadata={...}) + >>> len(metadata.files_metadata) + 72 # All safetensors files have been fetched + + # Parse repo with sharded model + >>> get_safetensors_metadata("runwayml/stable-diffusion-v1-5") + NotASafetensorsRepoError: 'runwayml/stable-diffusion-v1-5' is not a safetensors repo. Couldn't find 'model.safetensors.index.json' or 'model.safetensors' files. + ``` + """ + if self.file_exists( # Single safetensors file => non-sharded model + repo_id=repo_id, filename=SAFETENSORS_SINGLE_FILE, repo_type=repo_type, revision=revision, token=token + ): + file_metadata = self.parse_safetensors_file_metadata( + repo_id=repo_id, filename=SAFETENSORS_SINGLE_FILE, repo_type=repo_type, revision=revision, token=token + ) + return SafetensorsRepoMetadata( + metadata=None, + sharded=False, + weight_map={tensor_name: SAFETENSORS_SINGLE_FILE for tensor_name in file_metadata.tensors.keys()}, + files_metadata={SAFETENSORS_SINGLE_FILE: file_metadata}, + ) + elif self.file_exists( # Multiple safetensors files => sharded with index + repo_id=repo_id, filename=SAFETENSORS_INDEX_FILE, repo_type=repo_type, revision=revision, token=token + ): + # Fetch index + index_file = self.hf_hub_download( + repo_id=repo_id, filename=SAFETENSORS_INDEX_FILE, repo_type=repo_type, revision=revision, token=token + ) + with open(index_file) as f: + index = json.load(f) + + weight_map = index.get("weight_map", {}) + + # Fetch metadata per shard + files_metadata = {} + + def _parse(filename: str) -> None: + files_metadata[filename] = self.parse_safetensors_file_metadata( + repo_id=repo_id, filename=filename, repo_type=repo_type, revision=revision, token=token + ) + + thread_map( + _parse, + set(weight_map.values()), + desc="Parse safetensors files", + tqdm_class=hf_tqdm, + ) + + return SafetensorsRepoMetadata( + metadata=index.get("metadata", None), + sharded=True, + weight_map=weight_map, + files_metadata=files_metadata, + ) + else: + # Not a safetensors repo + raise NotASafetensorsRepoError( + f"'{repo_id}' is not a safetensors repo. Couldn't find '{SAFETENSORS_INDEX_FILE}' or '{SAFETENSORS_SINGLE_FILE}' files." + ) + + def parse_safetensors_file_metadata( + self, + repo_id: str, + filename: str, + *, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> SafetensorsFileMetadata: + """ + Parse metadata from a safetensors file on the Hub. + + To parse metadata from all safetensors files in a repo at once, use [`get_safetensors_metadata`]. + + For more details regarding the safetensors format, check out https://huggingface.co/docs/safetensors/index#format. + + Args: + repo_id (`str`): + A user or an organization name and a repo name separated by a `/`. + filename (`str`): + The name of the file in the repo. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if the file is in a dataset or space, `None` or `"model"` if in a + model. Default is `None`. + revision (`str`, *optional*): + The git revision to fetch the file from. Can be a branch name, a tag, or a commit hash. Defaults to the + head of the `"main"` branch. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`SafetensorsFileMetadata`]: information related to a safetensors file. + + Raises: + - [`NotASafetensorsRepoError`]: if the repo is not a safetensors repo i.e. doesn't have either a + `model.safetensors` or a `model.safetensors.index.json` file. + - [`SafetensorsParsingError`]: if a safetensors file header couldn't be parsed correctly. + """ + url = hf_hub_url( + repo_id=repo_id, filename=filename, repo_type=repo_type, revision=revision, endpoint=self.endpoint + ) + _headers = self._build_hf_headers(token=token) + + # 1. Fetch first 100kb + # Empirically, 97% of safetensors files have a metadata size < 100kb (over the top 1000 models on the Hub). + # We assume fetching 100kb is faster than making 2 GET requests. Therefore we always fetch the first 100kb to + # avoid the 2nd GET in most cases. + # See https://github.com/huggingface/huggingface_hub/pull/1855#discussion_r1404286419. + response = get_session().get(url, headers={**_headers, "range": "bytes=0-100000"}) + hf_raise_for_status(response) + + # 2. Parse metadata size + metadata_size = struct.unpack(" SAFETENSORS_MAX_HEADER_LENGTH: + raise SafetensorsParsingError( + f"Failed to parse safetensors header for '{filename}' (repo '{repo_id}', revision " + f"'{revision or DEFAULT_REVISION}'): safetensors header is too big. Maximum supported size is " + f"{SAFETENSORS_MAX_HEADER_LENGTH} bytes (got {metadata_size})." + ) + + # 3.a. Get metadata from payload + if metadata_size <= 100000: + metadata_as_bytes = response.content[8 : 8 + metadata_size] + else: # 3.b. Request full metadata + response = get_session().get(url, headers={**_headers, "range": f"bytes=8-{metadata_size+7}"}) + hf_raise_for_status(response) + metadata_as_bytes = response.content + + # 4. Parse json header + try: + metadata_as_dict = json.loads(metadata_as_bytes.decode(errors="ignore")) + except json.JSONDecodeError as e: + raise SafetensorsParsingError( + f"Failed to parse safetensors header for '{filename}' (repo '{repo_id}', revision " + f"'{revision or DEFAULT_REVISION}'): header is not json-encoded string. Please make sure this is a " + "correctly formatted safetensors file." + ) from e + + try: + return SafetensorsFileMetadata( + metadata=metadata_as_dict.get("__metadata__", {}), + tensors={ + key: TensorInfo( + dtype=tensor["dtype"], + shape=tensor["shape"], + data_offsets=tuple(tensor["data_offsets"]), # type: ignore + ) + for key, tensor in metadata_as_dict.items() + if key != "__metadata__" + }, + ) + except (KeyError, IndexError) as e: + raise SafetensorsParsingError( + f"Failed to parse safetensors header for '{filename}' (repo '{repo_id}', revision " + f"'{revision or DEFAULT_REVISION}'): header format not recognized. Please make sure this is a correctly" + " formatted safetensors file." + ) from e + + @validate_hf_hub_args + def create_branch( + self, + repo_id: str, + *, + branch: str, + revision: Optional[str] = None, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + exist_ok: bool = False, + ) -> None: + """ + Create a new branch for a repo on the Hub, starting from the specified revision (defaults to `main`). + To find a revision suiting your needs, you can use [`list_repo_refs`] or [`list_repo_commits`]. + + Args: + repo_id (`str`): + The repository in which the branch will be created. + Example: `"user/my-cool-model"`. + + branch (`str`): + The name of the branch to create. + + revision (`str`, *optional*): + The git revision to create the branch from. It can be a branch name or + the OID/SHA of a commit, as a hexadecimal string. Defaults to the head + of the `"main"` branch. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if creating a branch on a dataset or + space, `None` or `"model"` if tagging a model. Default is `None`. + + exist_ok (`bool`, *optional*, defaults to `False`): + If `True`, do not raise an error if branch already exists. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private + but not authenticated or repo does not exist. + [`~utils.BadRequestError`]: + If invalid reference for a branch. Ex: `refs/pr/5` or 'refs/foo/bar'. + [`~utils.HfHubHTTPError`]: + If the branch already exists on the repo (error 409) and `exist_ok` is + set to `False`. + """ + if repo_type is None: + repo_type = REPO_TYPE_MODEL + branch = quote(branch, safe="") + + # Prepare request + branch_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/branch/{branch}" + headers = self._build_hf_headers(token=token) + payload = {} + if revision is not None: + payload["startingPoint"] = revision + + # Create branch + response = get_session().post(url=branch_url, headers=headers, json=payload) + try: + hf_raise_for_status(response) + except HfHubHTTPError as e: + if not (e.response.status_code == 409 and exist_ok): + raise + + @validate_hf_hub_args + def delete_branch( + self, + repo_id: str, + *, + branch: str, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> None: + """ + Delete a branch from a repo on the Hub. + + Args: + repo_id (`str`): + The repository in which a branch will be deleted. + Example: `"user/my-cool-model"`. + + branch (`str`): + The name of the branch to delete. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if creating a branch on a dataset or + space, `None` or `"model"` if tagging a model. Default is `None`. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private + but not authenticated or repo does not exist. + [`~utils.HfHubHTTPError`]: + If trying to delete a protected branch. Ex: `main` cannot be deleted. + [`~utils.HfHubHTTPError`]: + If trying to delete a branch that does not exist. + + """ + if repo_type is None: + repo_type = REPO_TYPE_MODEL + branch = quote(branch, safe="") + + # Prepare request + branch_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/branch/{branch}" + headers = self._build_hf_headers(token=token) + + # Delete branch + response = get_session().delete(url=branch_url, headers=headers) + hf_raise_for_status(response) + + @validate_hf_hub_args + def create_tag( + self, + repo_id: str, + *, + tag: str, + tag_message: Optional[str] = None, + revision: Optional[str] = None, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + exist_ok: bool = False, + ) -> None: + """ + Tag a given commit of a repo on the Hub. + + Args: + repo_id (`str`): + The repository in which a commit will be tagged. + Example: `"user/my-cool-model"`. + + tag (`str`): + The name of the tag to create. + + tag_message (`str`, *optional*): + The description of the tag to create. + + revision (`str`, *optional*): + The git revision to tag. It can be a branch name or the OID/SHA of a + commit, as a hexadecimal string. Shorthands (7 first characters) are + also supported. Defaults to the head of the `"main"` branch. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if tagging a dataset or + space, `None` or `"model"` if tagging a model. Default is + `None`. + + exist_ok (`bool`, *optional*, defaults to `False`): + If `True`, do not raise an error if tag already exists. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private + but not authenticated or repo does not exist. + [`~utils.RevisionNotFoundError`]: + If revision is not found (error 404) on the repo. + [`~utils.HfHubHTTPError`]: + If the branch already exists on the repo (error 409) and `exist_ok` is + set to `False`. + """ + if repo_type is None: + repo_type = REPO_TYPE_MODEL + revision = quote(revision, safe="") if revision is not None else DEFAULT_REVISION + + # Prepare request + tag_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/tag/{revision}" + headers = self._build_hf_headers(token=token) + payload = {"tag": tag} + if tag_message is not None: + payload["message"] = tag_message + + # Tag + response = get_session().post(url=tag_url, headers=headers, json=payload) + try: + hf_raise_for_status(response) + except HfHubHTTPError as e: + if not (e.response.status_code == 409 and exist_ok): + raise + + @validate_hf_hub_args + def delete_tag( + self, + repo_id: str, + *, + tag: str, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> None: + """ + Delete a tag from a repo on the Hub. + + Args: + repo_id (`str`): + The repository in which a tag will be deleted. + Example: `"user/my-cool-model"`. + + tag (`str`): + The name of the tag to delete. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if tagging a dataset or space, `None` or + `"model"` if tagging a model. Default is `None`. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private + but not authenticated or repo does not exist. + [`~utils.RevisionNotFoundError`]: + If tag is not found. + """ + if repo_type is None: + repo_type = REPO_TYPE_MODEL + tag = quote(tag, safe="") + + # Prepare request + tag_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/tag/{tag}" + headers = self._build_hf_headers(token=token) + + # Un-tag + response = get_session().delete(url=tag_url, headers=headers) + hf_raise_for_status(response) + + @validate_hf_hub_args + def get_full_repo_name( + self, + model_id: str, + *, + organization: Optional[str] = None, + token: Union[bool, str, None] = None, + ): + """ + Returns the repository name for a given model ID and optional + organization. + + Args: + model_id (`str`): + The name of the model. + organization (`str`, *optional*): + If passed, the repository name will be in the organization + namespace instead of the user namespace. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `str`: The repository name in the user's namespace + ({username}/{model_id}) if no organization is passed, and under the + organization namespace ({organization}/{model_id}) otherwise. + """ + if organization is None: + if "/" in model_id: + username = model_id.split("/")[0] + else: + username = self.whoami(token=token)["name"] # type: ignore + return f"{username}/{model_id}" + else: + return f"{organization}/{model_id}" + + @validate_hf_hub_args + def get_repo_discussions( + self, + repo_id: str, + *, + author: Optional[str] = None, + discussion_type: Optional[DiscussionTypeFilter] = None, + discussion_status: Optional[DiscussionStatusFilter] = None, + repo_type: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> Iterator[Discussion]: + """ + Fetches Discussions and Pull Requests for the given repo. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + author (`str`, *optional*): + Pass a value to filter by discussion author. `None` means no filter. + Default is `None`. + discussion_type (`str`, *optional*): + Set to `"pull_request"` to fetch only pull requests, `"discussion"` + to fetch only discussions. Set to `"all"` or `None` to fetch both. + Default is `None`. + discussion_status (`str`, *optional*): + Set to `"open"` (respectively `"closed"`) to fetch only open + (respectively closed) discussions. Set to `"all"` or `None` + to fetch both. + Default is `None`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if fetching from a dataset or + space, `None` or `"model"` if fetching from a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Iterator[Discussion]`: An iterator of [`Discussion`] objects. + + Example: + Collecting all discussions of a repo in a list: + + ```python + >>> from huggingface_hub import get_repo_discussions + >>> discussions_list = list(get_repo_discussions(repo_id="bert-base-uncased")) + ``` + + Iterating over discussions of a repo: + + ```python + >>> from huggingface_hub import get_repo_discussions + >>> for discussion in get_repo_discussions(repo_id="bert-base-uncased"): + ... print(discussion.num, discussion.title) + ``` + """ + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}") + if repo_type is None: + repo_type = REPO_TYPE_MODEL + if discussion_type is not None and discussion_type not in DISCUSSION_TYPES: + raise ValueError(f"Invalid discussion_type, must be one of {DISCUSSION_TYPES}") + if discussion_status is not None and discussion_status not in DISCUSSION_STATUS: + raise ValueError(f"Invalid discussion_status, must be one of {DISCUSSION_STATUS}") + + headers = self._build_hf_headers(token=token) + path = f"{self.endpoint}/api/{repo_type}s/{repo_id}/discussions" + + params: Dict[str, Union[str, int]] = {} + if discussion_type is not None: + params["type"] = discussion_type + if discussion_status is not None: + params["status"] = discussion_status + if author is not None: + params["author"] = author + + def _fetch_discussion_page(page_index: int): + params["p"] = page_index + resp = get_session().get(path, headers=headers, params=params) + hf_raise_for_status(resp) + paginated_discussions = resp.json() + total = paginated_discussions["count"] + start = paginated_discussions["start"] + discussions = paginated_discussions["discussions"] + has_next = (start + len(discussions)) < total + return discussions, has_next + + has_next, page_index = True, 0 + + while has_next: + discussions, has_next = _fetch_discussion_page(page_index=page_index) + for discussion in discussions: + yield Discussion( + title=discussion["title"], + num=discussion["num"], + author=discussion.get("author", {}).get("name", "deleted"), + created_at=parse_datetime(discussion["createdAt"]), + status=discussion["status"], + repo_id=discussion["repo"]["name"], + repo_type=discussion["repo"]["type"], + is_pull_request=discussion["isPullRequest"], + endpoint=self.endpoint, + ) + page_index = page_index + 1 + + @validate_hf_hub_args + def get_discussion_details( + self, + repo_id: str, + discussion_num: int, + *, + repo_type: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> DiscussionWithDetails: + """Fetches a Discussion's / Pull Request 's details from the Hub. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: [`DiscussionWithDetails`] + + + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + + """ + if not isinstance(discussion_num, int) or discussion_num <= 0: + raise ValueError("Invalid discussion_num, must be a positive integer") + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}") + if repo_type is None: + repo_type = REPO_TYPE_MODEL + + path = f"{self.endpoint}/api/{repo_type}s/{repo_id}/discussions/{discussion_num}" + headers = self._build_hf_headers(token=token) + resp = get_session().get(path, params={"diff": "1"}, headers=headers) + hf_raise_for_status(resp) + + discussion_details = resp.json() + is_pull_request = discussion_details["isPullRequest"] + + target_branch = discussion_details["changes"]["base"] if is_pull_request else None + conflicting_files = discussion_details["filesWithConflicts"] if is_pull_request else None + merge_commit_oid = discussion_details["changes"].get("mergeCommitId", None) if is_pull_request else None + + return DiscussionWithDetails( + title=discussion_details["title"], + num=discussion_details["num"], + author=discussion_details.get("author", {}).get("name", "deleted"), + created_at=parse_datetime(discussion_details["createdAt"]), + status=discussion_details["status"], + repo_id=discussion_details["repo"]["name"], + repo_type=discussion_details["repo"]["type"], + is_pull_request=discussion_details["isPullRequest"], + events=[deserialize_event(evt) for evt in discussion_details["events"]], + conflicting_files=conflicting_files, + target_branch=target_branch, + merge_commit_oid=merge_commit_oid, + diff=discussion_details.get("diff"), + endpoint=self.endpoint, + ) + + @validate_hf_hub_args + def create_discussion( + self, + repo_id: str, + title: str, + *, + token: Union[bool, str, None] = None, + description: Optional[str] = None, + repo_type: Optional[str] = None, + pull_request: bool = False, + ) -> DiscussionWithDetails: + """Creates a Discussion or Pull Request. + + Pull Requests created programmatically will be in `"draft"` status. + + Creating a Pull Request with changes can also be done at once with [`HfApi.create_commit`]. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + title (`str`): + The title of the discussion. It can be up to 200 characters long, + and must be at least 3 characters long. Leading and trailing whitespaces + will be stripped. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + description (`str`, *optional*): + An optional description for the Pull Request. + Defaults to `"Discussion opened with the huggingface_hub Python library"` + pull_request (`bool`, *optional*): + Whether to create a Pull Request or discussion. If `True`, creates a Pull Request. + If `False`, creates a discussion. Defaults to `False`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + + Returns: [`DiscussionWithDetails`] + + + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + """ + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}") + if repo_type is None: + repo_type = REPO_TYPE_MODEL + + if description is not None: + description = description.strip() + description = ( + description + if description + else ( + f"{'Pull Request' if pull_request else 'Discussion'} opened with the" + " [huggingface_hub Python" + " library](https://huggingface.co/docs/huggingface_hub)" + ) + ) + + headers = self._build_hf_headers(token=token) + resp = get_session().post( + f"{self.endpoint}/api/{repo_type}s/{repo_id}/discussions", + json={ + "title": title.strip(), + "description": description, + "pullRequest": pull_request, + }, + headers=headers, + ) + hf_raise_for_status(resp) + num = resp.json()["num"] + return self.get_discussion_details( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=num, + token=token, + ) + + @validate_hf_hub_args + def create_pull_request( + self, + repo_id: str, + title: str, + *, + token: Union[bool, str, None] = None, + description: Optional[str] = None, + repo_type: Optional[str] = None, + ) -> DiscussionWithDetails: + """Creates a Pull Request . Pull Requests created programmatically will be in `"draft"` status. + + Creating a Pull Request with changes can also be done at once with [`HfApi.create_commit`]; + + This is a wrapper around [`HfApi.create_discussion`]. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + title (`str`): + The title of the discussion. It can be up to 200 characters long, + and must be at least 3 characters long. Leading and trailing whitespaces + will be stripped. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + description (`str`, *optional*): + An optional description for the Pull Request. + Defaults to `"Discussion opened with the huggingface_hub Python library"` + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + + Returns: [`DiscussionWithDetails`] + + + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + """ + return self.create_discussion( + repo_id=repo_id, + title=title, + token=token, + description=description, + repo_type=repo_type, + pull_request=True, + ) + + def _post_discussion_changes( + self, + *, + repo_id: str, + discussion_num: int, + resource: str, + body: Optional[dict] = None, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> requests.Response: + """Internal utility to POST changes to a Discussion or Pull Request""" + if not isinstance(discussion_num, int) or discussion_num <= 0: + raise ValueError("Invalid discussion_num, must be a positive integer") + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}") + if repo_type is None: + repo_type = REPO_TYPE_MODEL + repo_id = f"{repo_type}s/{repo_id}" + + path = f"{self.endpoint}/api/{repo_id}/discussions/{discussion_num}/{resource}" + + headers = self._build_hf_headers(token=token) + resp = requests.post(path, headers=headers, json=body) + hf_raise_for_status(resp) + return resp + + @validate_hf_hub_args + def comment_discussion( + self, + repo_id: str, + discussion_num: int, + comment: str, + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> DiscussionComment: + """Creates a new comment on the given Discussion. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + comment (`str`): + The content of the comment to create. Comments support markdown formatting. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`DiscussionComment`]: the newly created comment + + + Examples: + ```python + + >>> comment = \"\"\" + ... Hello @otheruser! + ... + ... # This is a title + ... + ... **This is bold**, *this is italic* and ~this is strikethrough~ + ... And [this](http://url) is a link + ... \"\"\" + + >>> HfApi().comment_discussion( + ... repo_id="username/repo_name", + ... discussion_num=34 + ... comment=comment + ... ) + # DiscussionComment(id='deadbeef0000000', type='comment', ...) + + ``` + + + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + + """ + resp = self._post_discussion_changes( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=discussion_num, + token=token, + resource="comment", + body={"comment": comment}, + ) + return deserialize_event(resp.json()["newMessage"]) # type: ignore + + @validate_hf_hub_args + def rename_discussion( + self, + repo_id: str, + discussion_num: int, + new_title: str, + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> DiscussionTitleChange: + """Renames a Discussion. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + new_title (`str`): + The new title for the discussion + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`DiscussionTitleChange`]: the title change event + + + Examples: + ```python + >>> new_title = "New title, fixing a typo" + >>> HfApi().rename_discussion( + ... repo_id="username/repo_name", + ... discussion_num=34 + ... new_title=new_title + ... ) + # DiscussionTitleChange(id='deadbeef0000000', type='title-change', ...) + + ``` + + + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + + """ + resp = self._post_discussion_changes( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=discussion_num, + token=token, + resource="title", + body={"title": new_title}, + ) + return deserialize_event(resp.json()["newTitle"]) # type: ignore + + @validate_hf_hub_args + def change_discussion_status( + self, + repo_id: str, + discussion_num: int, + new_status: Literal["open", "closed"], + *, + token: Union[bool, str, None] = None, + comment: Optional[str] = None, + repo_type: Optional[str] = None, + ) -> DiscussionStatusChange: + """Closes or re-opens a Discussion or Pull Request. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + new_status (`str`): + The new status for the discussion, either `"open"` or `"closed"`. + comment (`str`, *optional*): + An optional comment to post with the status change. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`DiscussionStatusChange`]: the status change event + + + Examples: + ```python + >>> new_title = "New title, fixing a typo" + >>> HfApi().rename_discussion( + ... repo_id="username/repo_name", + ... discussion_num=34 + ... new_title=new_title + ... ) + # DiscussionStatusChange(id='deadbeef0000000', type='status-change', ...) + + ``` + + + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + + """ + if new_status not in ["open", "closed"]: + raise ValueError("Invalid status, valid statuses are: 'open' and 'closed'") + body: Dict[str, str] = {"status": new_status} + if comment and comment.strip(): + body["comment"] = comment.strip() + resp = self._post_discussion_changes( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=discussion_num, + token=token, + resource="status", + body=body, + ) + return deserialize_event(resp.json()["newStatus"]) # type: ignore + + @validate_hf_hub_args + def merge_pull_request( + self, + repo_id: str, + discussion_num: int, + *, + token: Union[bool, str, None] = None, + comment: Optional[str] = None, + repo_type: Optional[str] = None, + ): + """Merges a Pull Request. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + comment (`str`, *optional*): + An optional comment to post with the status change. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`DiscussionStatusChange`]: the status change event + + + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + + """ + self._post_discussion_changes( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=discussion_num, + token=token, + resource="merge", + body={"comment": comment.strip()} if comment and comment.strip() else None, + ) + + @validate_hf_hub_args + def edit_discussion_comment( + self, + repo_id: str, + discussion_num: int, + comment_id: str, + new_content: str, + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> DiscussionComment: + """Edits a comment on a Discussion / Pull Request. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + comment_id (`str`): + The ID of the comment to edit. + new_content (`str`): + The new content of the comment. Comments support markdown formatting. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`DiscussionComment`]: the edited comment + + + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + + """ + resp = self._post_discussion_changes( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=discussion_num, + token=token, + resource=f"comment/{comment_id.lower()}/edit", + body={"content": new_content}, + ) + return deserialize_event(resp.json()["updatedComment"]) # type: ignore + + @validate_hf_hub_args + def hide_discussion_comment( + self, + repo_id: str, + discussion_num: int, + comment_id: str, + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> DiscussionComment: + """Hides a comment on a Discussion / Pull Request. + + + Hidden comments' content cannot be retrieved anymore. Hiding a comment is irreversible. + + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + comment_id (`str`): + The ID of the comment to edit. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`DiscussionComment`]: the hidden comment + + + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + + """ + warnings.warn( + "Hidden comments' content cannot be retrieved anymore. Hiding a comment is irreversible.", + UserWarning, + ) + resp = self._post_discussion_changes( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=discussion_num, + token=token, + resource=f"comment/{comment_id.lower()}/hide", + ) + return deserialize_event(resp.json()["updatedComment"]) # type: ignore + + @validate_hf_hub_args + def add_space_secret( + self, + repo_id: str, + key: str, + value: str, + *, + description: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> None: + """Adds or updates a secret in a Space. + + Secrets allow to set secret keys or tokens to a Space without hardcoding them. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets. + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + key (`str`): + Secret key. Example: `"GITHUB_API_KEY"` + value (`str`): + Secret value. Example: `"your_github_api_key"`. + description (`str`, *optional*): + Secret description. Example: `"Github API key to access the Github API"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + payload = {"key": key, "value": value} + if description is not None: + payload["description"] = description + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/secrets", + headers=self._build_hf_headers(token=token), + json=payload, + ) + hf_raise_for_status(r) + + @validate_hf_hub_args + def delete_space_secret(self, repo_id: str, key: str, *, token: Union[bool, str, None] = None) -> None: + """Deletes a secret from a Space. + + Secrets allow to set secret keys or tokens to a Space without hardcoding them. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets. + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + key (`str`): + Secret key. Example: `"GITHUB_API_KEY"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + r = get_session().delete( + f"{self.endpoint}/api/spaces/{repo_id}/secrets", + headers=self._build_hf_headers(token=token), + json={"key": key}, + ) + hf_raise_for_status(r) + + @validate_hf_hub_args + def get_space_variables(self, repo_id: str, *, token: Union[bool, str, None] = None) -> Dict[str, SpaceVariable]: + """Gets all variables from a Space. + + Variables allow to set environment variables to a Space without hardcoding them. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables + + Args: + repo_id (`str`): + ID of the repo to query. Example: `"bigcode/in-the-stack"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + r = get_session().get( + f"{self.endpoint}/api/spaces/{repo_id}/variables", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(r) + return {k: SpaceVariable(k, v) for k, v in r.json().items()} + + @validate_hf_hub_args + def add_space_variable( + self, + repo_id: str, + key: str, + value: str, + *, + description: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> Dict[str, SpaceVariable]: + """Adds or updates a variable in a Space. + + Variables allow to set environment variables to a Space without hardcoding them. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + key (`str`): + Variable key. Example: `"MODEL_REPO_ID"` + value (`str`): + Variable value. Example: `"the_model_repo_id"`. + description (`str`): + Description of the variable. Example: `"Model Repo ID of the implemented model"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + payload = {"key": key, "value": value} + if description is not None: + payload["description"] = description + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/variables", + headers=self._build_hf_headers(token=token), + json=payload, + ) + hf_raise_for_status(r) + return {k: SpaceVariable(k, v) for k, v in r.json().items()} + + @validate_hf_hub_args + def delete_space_variable( + self, repo_id: str, key: str, *, token: Union[bool, str, None] = None + ) -> Dict[str, SpaceVariable]: + """Deletes a variable from a Space. + + Variables allow to set environment variables to a Space without hardcoding them. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + key (`str`): + Variable key. Example: `"MODEL_REPO_ID"` + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + r = get_session().delete( + f"{self.endpoint}/api/spaces/{repo_id}/variables", + headers=self._build_hf_headers(token=token), + json={"key": key}, + ) + hf_raise_for_status(r) + return {k: SpaceVariable(k, v) for k, v in r.json().items()} + + @validate_hf_hub_args + def get_space_runtime(self, repo_id: str, *, token: Union[bool, str, None] = None) -> SpaceRuntime: + """Gets runtime information about a Space. + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + Returns: + [`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware. + """ + r = get_session().get( + f"{self.endpoint}/api/spaces/{repo_id}/runtime", headers=self._build_hf_headers(token=token) + ) + hf_raise_for_status(r) + return SpaceRuntime(r.json()) + + @validate_hf_hub_args + def request_space_hardware( + self, + repo_id: str, + hardware: SpaceHardware, + *, + token: Union[bool, str, None] = None, + sleep_time: Optional[int] = None, + ) -> SpaceRuntime: + """Request new hardware for a Space. + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + hardware (`str` or [`SpaceHardware`]): + Hardware on which to run the Space. Example: `"t4-medium"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + sleep_time (`int`, *optional*): + Number of seconds of inactivity to wait before a Space is put to sleep. Set to `-1` if you don't want + your Space to sleep (default behavior for upgraded hardware). For free hardware, you can't configure + the sleep time (value is fixed to 48 hours of inactivity). + See https://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details. + Returns: + [`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware. + + + + It is also possible to request hardware directly when creating the Space repo! See [`create_repo`] for details. + + + """ + if sleep_time is not None and hardware == SpaceHardware.CPU_BASIC: + warnings.warn( + "If your Space runs on the default 'cpu-basic' hardware, it will go to sleep if inactive for more" + " than 48 hours. This value is not configurable. If you don't want your Space to deactivate or if" + " you want to set a custom sleep time, you need to upgrade to a paid Hardware.", + UserWarning, + ) + payload: Dict[str, Any] = {"flavor": hardware} + if sleep_time is not None: + payload["sleepTimeSeconds"] = sleep_time + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/hardware", + headers=self._build_hf_headers(token=token), + json=payload, + ) + hf_raise_for_status(r) + return SpaceRuntime(r.json()) + + @validate_hf_hub_args + def set_space_sleep_time( + self, repo_id: str, sleep_time: int, *, token: Union[bool, str, None] = None + ) -> SpaceRuntime: + """Set a custom sleep time for a Space running on upgraded hardware.. + + Your Space will go to sleep after X seconds of inactivity. You are not billed when your Space is in "sleep" + mode. If a new visitor lands on your Space, it will "wake it up". Only upgraded hardware can have a + configurable sleep time. To know more about the sleep stage, please refer to + https://huggingface.co/docs/hub/spaces-gpus#sleep-time. + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + sleep_time (`int`, *optional*): + Number of seconds of inactivity to wait before a Space is put to sleep. Set to `-1` if you don't want + your Space to pause (default behavior for upgraded hardware). For free hardware, you can't configure + the sleep time (value is fixed to 48 hours of inactivity). + See https://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + Returns: + [`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware. + + + + It is also possible to set a custom sleep time when requesting hardware with [`request_space_hardware`]. + + + """ + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/sleeptime", + headers=self._build_hf_headers(token=token), + json={"seconds": sleep_time}, + ) + hf_raise_for_status(r) + runtime = SpaceRuntime(r.json()) + + hardware = runtime.requested_hardware or runtime.hardware + if hardware == SpaceHardware.CPU_BASIC: + warnings.warn( + "If your Space runs on the default 'cpu-basic' hardware, it will go to sleep if inactive for more" + " than 48 hours. This value is not configurable. If you don't want your Space to deactivate or if" + " you want to set a custom sleep time, you need to upgrade to a paid Hardware.", + UserWarning, + ) + return runtime + + @validate_hf_hub_args + def pause_space(self, repo_id: str, *, token: Union[bool, str, None] = None) -> SpaceRuntime: + """Pause your Space. + + A paused Space stops executing until manually restarted by its owner. This is different from the sleeping + state in which free Spaces go after 48h of inactivity. Paused time is not billed to your account, no matter the + hardware you've selected. To restart your Space, use [`restart_space`] and go to your Space settings page. + + For more details, please visit [the docs](https://huggingface.co/docs/hub/spaces-gpus#pause). + + Args: + repo_id (`str`): + ID of the Space to pause. Example: `"Salesforce/BLIP2"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`SpaceRuntime`]: Runtime information about your Space including `stage=PAUSED` and requested hardware. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If your Space is not found (error 404). Most probably wrong repo_id or your space is private but you + are not authenticated. + [`~utils.HfHubHTTPError`]: + 403 Forbidden: only the owner of a Space can pause it. If you want to manage a Space that you don't + own, either ask the owner by opening a Discussion or duplicate the Space. + [`~utils.BadRequestError`]: + If your Space is a static Space. Static Spaces are always running and never billed. If you want to hide + a static Space, you can set it to private. + """ + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/pause", headers=self._build_hf_headers(token=token) + ) + hf_raise_for_status(r) + return SpaceRuntime(r.json()) + + @validate_hf_hub_args + def restart_space( + self, repo_id: str, *, token: Union[bool, str, None] = None, factory_reboot: bool = False + ) -> SpaceRuntime: + """Restart your Space. + + This is the only way to programmatically restart a Space if you've put it on Pause (see [`pause_space`]). You + must be the owner of the Space to restart it. If you are using an upgraded hardware, your account will be + billed as soon as the Space is restarted. You can trigger a restart no matter the current state of a Space. + + For more details, please visit [the docs](https://huggingface.co/docs/hub/spaces-gpus#pause). + + Args: + repo_id (`str`): + ID of the Space to restart. Example: `"Salesforce/BLIP2"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + factory_reboot (`bool`, *optional*): + If `True`, the Space will be rebuilt from scratch without caching any requirements. + + Returns: + [`SpaceRuntime`]: Runtime information about your Space. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If your Space is not found (error 404). Most probably wrong repo_id or your space is private but you + are not authenticated. + [`~utils.HfHubHTTPError`]: + 403 Forbidden: only the owner of a Space can restart it. If you want to restart a Space that you don't + own, either ask the owner by opening a Discussion or duplicate the Space. + [`~utils.BadRequestError`]: + If your Space is a static Space. Static Spaces are always running and never billed. If you want to hide + a static Space, you can set it to private. + """ + params = {} + if factory_reboot: + params["factory"] = "true" + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/restart", headers=self._build_hf_headers(token=token), params=params + ) + hf_raise_for_status(r) + return SpaceRuntime(r.json()) + + @validate_hf_hub_args + def duplicate_space( + self, + from_id: str, + to_id: Optional[str] = None, + *, + private: Optional[bool] = None, + token: Union[bool, str, None] = None, + exist_ok: bool = False, + hardware: Optional[SpaceHardware] = None, + storage: Optional[SpaceStorage] = None, + sleep_time: Optional[int] = None, + secrets: Optional[List[Dict[str, str]]] = None, + variables: Optional[List[Dict[str, str]]] = None, + ) -> RepoUrl: + """Duplicate a Space. + + Programmatically duplicate a Space. The new Space will be created in your account and will be in the same state + as the original Space (running or paused). You can duplicate a Space no matter the current state of a Space. + + Args: + from_id (`str`): + ID of the Space to duplicate. Example: `"pharma/CLIP-Interrogator"`. + to_id (`str`, *optional*): + ID of the new Space. Example: `"dog/CLIP-Interrogator"`. If not provided, the new Space will have the same + name as the original Space, but in your account. + private (`bool`, *optional*): + Whether the new Space should be private or not. Defaults to the same privacy as the original Space. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + exist_ok (`bool`, *optional*, defaults to `False`): + If `True`, do not raise an error if repo already exists. + hardware (`SpaceHardware` or `str`, *optional*): + Choice of Hardware. Example: `"t4-medium"`. See [`SpaceHardware`] for a complete list. + storage (`SpaceStorage` or `str`, *optional*): + Choice of persistent storage tier. Example: `"small"`. See [`SpaceStorage`] for a complete list. + sleep_time (`int`, *optional*): + Number of seconds of inactivity to wait before a Space is put to sleep. Set to `-1` if you don't want + your Space to sleep (default behavior for upgraded hardware). For free hardware, you can't configure + the sleep time (value is fixed to 48 hours of inactivity). + See https://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details. + secrets (`List[Dict[str, str]]`, *optional*): + A list of secret keys to set in your Space. Each item is in the form `{"key": ..., "value": ..., "description": ...}` where description is optional. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets. + variables (`List[Dict[str, str]]`, *optional*): + A list of public environment variables to set in your Space. Each item is in the form `{"key": ..., "value": ..., "description": ...}` where description is optional. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables. + + Returns: + [`RepoUrl`]: URL to the newly created repo. Value is a subclass of `str` containing + attributes like `endpoint`, `repo_type` and `repo_id`. + + Raises: + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`~utils.RepositoryNotFoundError`] + If one of `from_id` or `to_id` cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + Example: + ```python + >>> from huggingface_hub import duplicate_space + + # Duplicate a Space to your account + >>> duplicate_space("multimodalart/dreambooth-training") + RepoUrl('https://huggingface.co/spaces/nateraw/dreambooth-training',...) + + # Can set custom destination id and visibility flag. + >>> duplicate_space("multimodalart/dreambooth-training", to_id="my-dreambooth", private=True) + RepoUrl('https://huggingface.co/spaces/nateraw/my-dreambooth',...) + ``` + """ + # Parse to_id if provided + parsed_to_id = RepoUrl(to_id) if to_id is not None else None + + # Infer target repo_id + to_namespace = ( # set namespace manually or default to username + parsed_to_id.namespace + if parsed_to_id is not None and parsed_to_id.namespace is not None + else self.whoami(token)["name"] + ) + to_repo_name = parsed_to_id.repo_name if to_id is not None else RepoUrl(from_id).repo_name # type: ignore + + # repository must be a valid repo_id (namespace/repo_name). + payload: Dict[str, Any] = {"repository": f"{to_namespace}/{to_repo_name}"} + + keys = ["private", "hardware", "storageTier", "sleepTimeSeconds", "secrets", "variables"] + values = [private, hardware, storage, sleep_time, secrets, variables] + payload.update({k: v for k, v in zip(keys, values) if v is not None}) + + if sleep_time is not None and hardware == SpaceHardware.CPU_BASIC: + warnings.warn( + "If your Space runs on the default 'cpu-basic' hardware, it will go to sleep if inactive for more" + " than 48 hours. This value is not configurable. If you don't want your Space to deactivate or if" + " you want to set a custom sleep time, you need to upgrade to a paid Hardware.", + UserWarning, + ) + + r = get_session().post( + f"{self.endpoint}/api/spaces/{from_id}/duplicate", + headers=self._build_hf_headers(token=token), + json=payload, + ) + + try: + hf_raise_for_status(r) + except HTTPError as err: + if exist_ok and err.response.status_code == 409: + # Repo already exists and `exist_ok=True` + pass + else: + raise + + return RepoUrl(r.json()["url"], endpoint=self.endpoint) + + @validate_hf_hub_args + def request_space_storage( + self, + repo_id: str, + storage: SpaceStorage, + *, + token: Union[bool, str, None] = None, + ) -> SpaceRuntime: + """Request persistent storage for a Space. + + Args: + repo_id (`str`): + ID of the Space to update. Example: `"HuggingFaceH4/open_llm_leaderboard"`. + storage (`str` or [`SpaceStorage`]): + Storage tier. Either 'small', 'medium', or 'large'. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + Returns: + [`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware. + + + + It is not possible to decrease persistent storage after its granted. To do so, you must delete it + via [`delete_space_storage`]. + + + """ + payload: Dict[str, SpaceStorage] = {"tier": storage} + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/storage", + headers=self._build_hf_headers(token=token), + json=payload, + ) + hf_raise_for_status(r) + return SpaceRuntime(r.json()) + + @validate_hf_hub_args + def delete_space_storage( + self, + repo_id: str, + *, + token: Union[bool, str, None] = None, + ) -> SpaceRuntime: + """Delete persistent storage for a Space. + + Args: + repo_id (`str`): + ID of the Space to update. Example: `"HuggingFaceH4/open_llm_leaderboard"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + Returns: + [`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware. + Raises: + [`BadRequestError`] + If space has no persistent storage. + + """ + r = get_session().delete( + f"{self.endpoint}/api/spaces/{repo_id}/storage", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(r) + return SpaceRuntime(r.json()) + + ####################### + # Inference Endpoints # + ####################### + + def list_inference_endpoints( + self, namespace: Optional[str] = None, *, token: Union[bool, str, None] = None + ) -> List[InferenceEndpoint]: + """Lists all inference endpoints for the given namespace. + + Args: + namespace (`str`, *optional*): + The namespace to list endpoints for. Defaults to the current user. Set to `"*"` to list all endpoints + from all namespaces (i.e. personal namespace and all orgs the user belongs to). + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + List[`InferenceEndpoint`]: A list of all inference endpoints for the given namespace. + + Example: + ```python + >>> from huggingface_hub import HfApi + >>> api = HfApi() + >>> api.list_inference_endpoints() + [InferenceEndpoint(name='my-endpoint', ...), ...] + ``` + """ + # Special case: list all endpoints for all namespaces the user has access to + if namespace == "*": + user = self.whoami(token=token) + + # List personal endpoints first + endpoints: List[InferenceEndpoint] = list_inference_endpoints(namespace=self._get_namespace(token=token)) + + # Then list endpoints for all orgs the user belongs to and ignore 401 errors (no billing or no access) + for org in user.get("orgs", []): + try: + endpoints += list_inference_endpoints(namespace=org["name"], token=token) + except HfHubHTTPError as error: + if error.response.status_code == 401: # Either no billing or user don't have access) + logger.debug("Cannot list Inference Endpoints for org '%s': %s", org["name"], error) + pass + + return endpoints + + # Normal case: list endpoints for a specific namespace + namespace = namespace or self._get_namespace(token=token) + + response = get_session().get( + f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + + return [ + InferenceEndpoint.from_raw(endpoint, namespace=namespace, token=token) + for endpoint in response.json()["items"] + ] + + def create_inference_endpoint( + self, + name: str, + *, + repository: str, + framework: str, + accelerator: str, + instance_size: str, + instance_type: str, + region: str, + vendor: str, + account_id: Optional[str] = None, + min_replica: int = 0, + max_replica: int = 1, + revision: Optional[str] = None, + task: Optional[str] = None, + custom_image: Optional[Dict] = None, + type: InferenceEndpointType = InferenceEndpointType.PROTECTED, + namespace: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> InferenceEndpoint: + """Create a new Inference Endpoint. + + Args: + name (`str`): + The unique name for the new Inference Endpoint. + repository (`str`): + The name of the model repository associated with the Inference Endpoint (e.g. `"gpt2"`). + framework (`str`): + The machine learning framework used for the model (e.g. `"custom"`). + accelerator (`str`): + The hardware accelerator to be used for inference (e.g. `"cpu"`). + instance_size (`str`): + The size or type of the instance to be used for hosting the model (e.g. `"large"`). + instance_type (`str`): + The cloud instance type where the Inference Endpoint will be deployed (e.g. `"c6i"`). + region (`str`): + The cloud region in which the Inference Endpoint will be created (e.g. `"us-east-1"`). + vendor (`str`): + The cloud provider or vendor where the Inference Endpoint will be hosted (e.g. `"aws"`). + account_id (`str`, *optional*): + The account ID used to link a VPC to a private Inference Endpoint (if applicable). + min_replica (`int`, *optional*): + The minimum number of replicas (instances) to keep running for the Inference Endpoint. Defaults to 0. + max_replica (`int`, *optional*): + The maximum number of replicas (instances) to scale to for the Inference Endpoint. Defaults to 1. + revision (`str`, *optional*): + The specific model revision to deploy on the Inference Endpoint (e.g. `"6c0e6080953db56375760c0471a8c5f2929baf11"`). + task (`str`, *optional*): + The task on which to deploy the model (e.g. `"text-classification"`). + custom_image (`Dict`, *optional*): + A custom Docker image to use for the Inference Endpoint. This is useful if you want to deploy an + Inference Endpoint running on the `text-generation-inference` (TGI) framework (see examples). + type ([`InferenceEndpointType]`, *optional*): + The type of the Inference Endpoint, which can be `"protected"` (default), `"public"` or `"private"`. + namespace (`str`, *optional*): + The namespace where the Inference Endpoint will be created. Defaults to the current user's namespace. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`InferenceEndpoint`]: information about the updated Inference Endpoint. + + Example: + ```python + >>> from huggingface_hub import HfApi + >>> api = HfApi() + >>> create_inference_endpoint( + ... "my-endpoint-name", + ... repository="gpt2", + ... framework="pytorch", + ... task="text-generation", + ... accelerator="cpu", + ... vendor="aws", + ... region="us-east-1", + ... type="protected", + ... instance_size="medium", + ... instance_type="c6i", + ... ) + >>> endpoint + InferenceEndpoint(name='my-endpoint-name', status="pending",...) + + # Run inference on the endpoint + >>> endpoint.client.text_generation(...) + "..." + ``` + + ```python + # Start an Inference Endpoint running Zephyr-7b-beta on TGI + >>> from huggingface_hub import HfApi + >>> api = HfApi() + >>> create_inference_endpoint( + ... "aws-zephyr-7b-beta-0486", + ... repository="HuggingFaceH4/zephyr-7b-beta", + ... framework="pytorch", + ... task="text-generation", + ... accelerator="gpu", + ... vendor="aws", + ... region="us-east-1", + ... type="protected", + ... instance_size="medium", + ... instance_type="g5.2xlarge", + ... custom_image={ + ... "health_route": "/health", + ... "env": { + ... "MAX_BATCH_PREFILL_TOKENS": "2048", + ... "MAX_INPUT_LENGTH": "1024", + ... "MAX_TOTAL_TOKENS": "1512", + ... "MODEL_ID": "/repository" + ... }, + ... "url": "ghcr.io/huggingface/text-generation-inference:1.1.0", + ... }, + ... ) + + ``` + """ + namespace = namespace or self._get_namespace(token=token) + + image = {"custom": custom_image} if custom_image is not None else {"huggingface": {}} + payload: Dict = { + "accountId": account_id, + "compute": { + "accelerator": accelerator, + "instanceSize": instance_size, + "instanceType": instance_type, + "scaling": { + "maxReplica": max_replica, + "minReplica": min_replica, + }, + }, + "model": { + "framework": framework, + "repository": repository, + "revision": revision, + "task": task, + "image": image, + }, + "name": name, + "provider": { + "region": region, + "vendor": vendor, + }, + "type": type, + } + + response = get_session().post( + f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}", + headers=self._build_hf_headers(token=token), + json=payload, + ) + hf_raise_for_status(response) + + return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token) + + def get_inference_endpoint( + self, name: str, *, namespace: Optional[str] = None, token: Union[bool, str, None] = None + ) -> InferenceEndpoint: + """Get information about an Inference Endpoint. + + Args: + name (`str`): + The name of the Inference Endpoint to retrieve information about. + namespace (`str`, *optional*): + The namespace in which the Inference Endpoint is located. Defaults to the current user. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`InferenceEndpoint`]: information about the requested Inference Endpoint. + + Example: + ```python + >>> from huggingface_hub import HfApi + >>> api = HfApi() + >>> endpoint = api.get_inference_endpoint("my-text-to-image") + >>> endpoint + InferenceEndpoint(name='my-text-to-image', ...) + + # Get status + >>> endpoint.status + 'running' + >>> endpoint.url + 'https://my-text-to-image.region.vendor.endpoints.huggingface.cloud' + + # Run inference + >>> endpoint.client.text_to_image(...) + ``` + """ + namespace = namespace or self._get_namespace(token=token) + + response = get_session().get( + f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + + return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token) + + def update_inference_endpoint( + self, + name: str, + *, + # Compute update + accelerator: Optional[str] = None, + instance_size: Optional[str] = None, + instance_type: Optional[str] = None, + min_replica: Optional[int] = None, + max_replica: Optional[int] = None, + # Model update + repository: Optional[str] = None, + framework: Optional[str] = None, + revision: Optional[str] = None, + task: Optional[str] = None, + # Other + namespace: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> InferenceEndpoint: + """Update an Inference Endpoint. + + This method allows the update of either the compute configuration, the deployed model, or both. All arguments are + optional but at least one must be provided. + + For convenience, you can also update an Inference Endpoint using [`InferenceEndpoint.update`]. + + Args: + name (`str`): + The name of the Inference Endpoint to update. + + accelerator (`str`, *optional*): + The hardware accelerator to be used for inference (e.g. `"cpu"`). + instance_size (`str`, *optional*): + The size or type of the instance to be used for hosting the model (e.g. `"large"`). + instance_type (`str`, *optional*): + The cloud instance type where the Inference Endpoint will be deployed (e.g. `"c6i"`). + min_replica (`int`, *optional*): + The minimum number of replicas (instances) to keep running for the Inference Endpoint. + max_replica (`int`, *optional*): + The maximum number of replicas (instances) to scale to for the Inference Endpoint. + + repository (`str`, *optional*): + The name of the model repository associated with the Inference Endpoint (e.g. `"gpt2"`). + framework (`str`, *optional*): + The machine learning framework used for the model (e.g. `"custom"`). + revision (`str`, *optional*): + The specific model revision to deploy on the Inference Endpoint (e.g. `"6c0e6080953db56375760c0471a8c5f2929baf11"`). + task (`str`, *optional*): + The task on which to deploy the model (e.g. `"text-classification"`). + + namespace (`str`, *optional*): + The namespace where the Inference Endpoint will be updated. Defaults to the current user's namespace. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`InferenceEndpoint`]: information about the updated Inference Endpoint. + """ + namespace = namespace or self._get_namespace(token=token) + + payload: Dict = {} + if any(value is not None for value in (accelerator, instance_size, instance_type, min_replica, max_replica)): + payload["compute"] = { + "accelerator": accelerator, + "instanceSize": instance_size, + "instanceType": instance_type, + "scaling": { + "maxReplica": max_replica, + "minReplica": min_replica, + }, + } + if any(value is not None for value in (repository, framework, revision, task)): + payload["model"] = { + "framework": framework, + "repository": repository, + "revision": revision, + "task": task, + "image": {"huggingface": {}}, + } + + response = get_session().put( + f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}", + headers=self._build_hf_headers(token=token), + json=payload, + ) + hf_raise_for_status(response) + + return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token) + + def delete_inference_endpoint( + self, name: str, *, namespace: Optional[str] = None, token: Union[bool, str, None] = None + ) -> None: + """Delete an Inference Endpoint. + + This operation is not reversible. If you don't want to be charged for an Inference Endpoint, it is preferable + to pause it with [`pause_inference_endpoint`] or scale it to zero with [`scale_to_zero_inference_endpoint`]. + + For convenience, you can also delete an Inference Endpoint using [`InferenceEndpoint.delete`]. + + Args: + name (`str`): + The name of the Inference Endpoint to delete. + namespace (`str`, *optional*): + The namespace in which the Inference Endpoint is located. Defaults to the current user. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + namespace = namespace or self._get_namespace(token=token) + response = get_session().delete( + f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + + def pause_inference_endpoint( + self, name: str, *, namespace: Optional[str] = None, token: Union[bool, str, None] = None + ) -> InferenceEndpoint: + """Pause an Inference Endpoint. + + A paused Inference Endpoint will not be charged. It can be resumed at any time using [`resume_inference_endpoint`]. + This is different than scaling the Inference Endpoint to zero with [`scale_to_zero_inference_endpoint`], which + would be automatically restarted when a request is made to it. + + For convenience, you can also pause an Inference Endpoint using [`pause_inference_endpoint`]. + + Args: + name (`str`): + The name of the Inference Endpoint to pause. + namespace (`str`, *optional*): + The namespace in which the Inference Endpoint is located. Defaults to the current user. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`InferenceEndpoint`]: information about the paused Inference Endpoint. + """ + namespace = namespace or self._get_namespace(token=token) + + response = get_session().post( + f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}/pause", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + + return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token) + + def resume_inference_endpoint( + self, name: str, *, namespace: Optional[str] = None, token: Union[bool, str, None] = None + ) -> InferenceEndpoint: + """Resume an Inference Endpoint. + + For convenience, you can also resume an Inference Endpoint using [`InferenceEndpoint.resume`]. + + Args: + name (`str`): + The name of the Inference Endpoint to resume. + namespace (`str`, *optional*): + The namespace in which the Inference Endpoint is located. Defaults to the current user. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`InferenceEndpoint`]: information about the resumed Inference Endpoint. + """ + namespace = namespace or self._get_namespace(token=token) + + response = get_session().post( + f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}/resume", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + + return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token) + + def scale_to_zero_inference_endpoint( + self, name: str, *, namespace: Optional[str] = None, token: Union[bool, str, None] = None + ) -> InferenceEndpoint: + """Scale Inference Endpoint to zero. + + An Inference Endpoint scaled to zero will not be charged. It will be resume on the next request to it, with a + cold start delay. This is different than pausing the Inference Endpoint with [`pause_inference_endpoint`], which + would require a manual resume with [`resume_inference_endpoint`]. + + For convenience, you can also scale an Inference Endpoint to zero using [`InferenceEndpoint.scale_to_zero`]. + + Args: + name (`str`): + The name of the Inference Endpoint to scale to zero. + namespace (`str`, *optional*): + The namespace in which the Inference Endpoint is located. Defaults to the current user. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`InferenceEndpoint`]: information about the scaled-to-zero Inference Endpoint. + """ + namespace = namespace or self._get_namespace(token=token) + + response = get_session().post( + f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}/scale-to-zero", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + + return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token) + + def _get_namespace(self, token: Union[bool, str, None] = None) -> str: + """Get the default namespace for the current user.""" + me = self.whoami(token=token) + if me["type"] == "user": + return me["name"] + else: + raise ValueError( + "Cannot determine default namespace. You must provide a 'namespace' as input or be logged in as a" + " user." + ) + + ######################## + # Collection Endpoints # + ######################## + @validate_hf_hub_args + def list_collections( + self, + *, + owner: Union[List[str], str, None] = None, + item: Union[List[str], str, None] = None, + sort: Optional[Literal["lastModified", "trending", "upvotes"]] = None, + limit: Optional[int] = None, + token: Union[bool, str, None] = None, + ) -> Iterable[Collection]: + """List collections on the Huggingface Hub, given some filters. + + + + When listing collections, the item list per collection is truncated to 4 items maximum. To retrieve all items + from a collection, you must use [`get_collection`]. + + + + Args: + owner (`List[str]` or `str`, *optional*): + Filter by owner's username. + item (`List[str]` or `str`, *optional*): + Filter collections containing a particular items. Example: `"models/teknium/OpenHermes-2.5-Mistral-7B"`, `"datasets/squad"` or `"papers/2311.12983"`. + sort (`Literal["lastModified", "trending", "upvotes"]`, *optional*): + Sort collections by last modified, trending or upvotes. + limit (`int`, *optional*): + Maximum number of collections to be returned. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Iterable[Collection]`: an iterable of [`Collection`] objects. + """ + # Construct the API endpoint + path = f"{self.endpoint}/api/collections" + headers = self._build_hf_headers(token=token) + params: Dict = {} + if owner is not None: + params.update({"owner": owner}) + if item is not None: + params.update({"item": item}) + if sort is not None: + params.update({"sort": sort}) + if limit is not None: + params.update({"limit": limit}) + + # Paginate over the results until limit is reached + items = paginate(path, headers=headers, params=params) + if limit is not None: + items = islice(items, limit) # Do not iterate over all pages + + # Parse as Collection and return + for position, collection_data in enumerate(items): + yield Collection(position=position, **collection_data) + + def get_collection(self, collection_slug: str, *, token: Union[bool, str, None] = None) -> Collection: + """Gets information about a Collection on the Hub. + + Args: + collection_slug (`str`): + Slug of the collection of the Hub. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: [`Collection`] + + Example: + + ```py + >>> from huggingface_hub import get_collection + >>> collection = get_collection("TheBloke/recent-models-64f9a55bb3115b4f513ec026") + >>> collection.title + 'Recent models' + >>> len(collection.items) + 37 + >>> collection.items[0] + CollectionItem( + item_object_id='651446103cd773a050bf64c2', + item_id='TheBloke/U-Amethyst-20B-AWQ', + item_type='model', + position=88, + note=None + ) + ``` + """ + r = get_session().get( + f"{self.endpoint}/api/collections/{collection_slug}", headers=self._build_hf_headers(token=token) + ) + hf_raise_for_status(r) + return Collection(**{**r.json(), "endpoint": self.endpoint}) + + def create_collection( + self, + title: str, + *, + namespace: Optional[str] = None, + description: Optional[str] = None, + private: bool = False, + exists_ok: bool = False, + token: Union[bool, str, None] = None, + ) -> Collection: + """Create a new Collection on the Hub. + + Args: + title (`str`): + Title of the collection to create. Example: `"Recent models"`. + namespace (`str`, *optional*): + Namespace of the collection to create (username or org). Will default to the owner name. + description (`str`, *optional*): + Description of the collection to create. + private (`bool`, *optional*): + Whether the collection should be private or not. Defaults to `False` (i.e. public collection). + exists_ok (`bool`, *optional*): + If `True`, do not raise an error if collection already exists. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: [`Collection`] + + Example: + + ```py + >>> from huggingface_hub import create_collection + >>> collection = create_collection( + ... title="ICCV 2023", + ... description="Portfolio of models, papers and demos I presented at ICCV 2023", + ... ) + >>> collection.slug + "username/iccv-2023-64f9a55bb3115b4f513ec026" + ``` + """ + if namespace is None: + namespace = self.whoami(token)["name"] + + payload = { + "title": title, + "namespace": namespace, + "private": private, + } + if description is not None: + payload["description"] = description + + r = get_session().post( + f"{self.endpoint}/api/collections", headers=self._build_hf_headers(token=token), json=payload + ) + try: + hf_raise_for_status(r) + except HTTPError as err: + if exists_ok and err.response.status_code == 409: + # Collection already exists and `exists_ok=True` + slug = r.json()["slug"] + return self.get_collection(slug, token=token) + else: + raise + return Collection(**{**r.json(), "endpoint": self.endpoint}) + + def update_collection_metadata( + self, + collection_slug: str, + *, + title: Optional[str] = None, + description: Optional[str] = None, + position: Optional[int] = None, + private: Optional[bool] = None, + theme: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> Collection: + """Update metadata of a collection on the Hub. + + All arguments are optional. Only provided metadata will be updated. + + Args: + collection_slug (`str`): + Slug of the collection to update. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + title (`str`): + Title of the collection to update. + description (`str`, *optional*): + Description of the collection to update. + position (`int`, *optional*): + New position of the collection in the list of collections of the user. + private (`bool`, *optional*): + Whether the collection should be private or not. + theme (`str`, *optional*): + Theme of the collection on the Hub. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: [`Collection`] + + Example: + + ```py + >>> from huggingface_hub import update_collection_metadata + >>> collection = update_collection_metadata( + ... collection_slug="username/iccv-2023-64f9a55bb3115b4f513ec026", + ... title="ICCV Oct. 2023" + ... description="Portfolio of models, datasets, papers and demos I presented at ICCV Oct. 2023", + ... private=False, + ... theme="pink", + ... ) + >>> collection.slug + "username/iccv-oct-2023-64f9a55bb3115b4f513ec026" + # ^collection slug got updated but not the trailing ID + ``` + """ + payload = { + "position": position, + "private": private, + "theme": theme, + "title": title, + "description": description, + } + r = get_session().patch( + f"{self.endpoint}/api/collections/{collection_slug}", + headers=self._build_hf_headers(token=token), + # Only send not-none values to the API + json={key: value for key, value in payload.items() if value is not None}, + ) + hf_raise_for_status(r) + return Collection(**{**r.json()["data"], "endpoint": self.endpoint}) + + def delete_collection( + self, collection_slug: str, *, missing_ok: bool = False, token: Union[bool, str, None] = None + ) -> None: + """Delete a collection on the Hub. + + Args: + collection_slug (`str`): + Slug of the collection to delete. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + missing_ok (`bool`, *optional*): + If `True`, do not raise an error if collection doesn't exists. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Example: + + ```py + >>> from huggingface_hub import delete_collection + >>> collection = delete_collection("username/useless-collection-64f9a55bb3115b4f513ec026", missing_ok=True) + ``` + + + + This is a non-revertible action. A deleted collection cannot be restored. + + + """ + r = get_session().delete( + f"{self.endpoint}/api/collections/{collection_slug}", headers=self._build_hf_headers(token=token) + ) + try: + hf_raise_for_status(r) + except HTTPError as err: + if missing_ok and err.response.status_code == 404: + # Collection doesn't exists and `missing_ok=True` + return + else: + raise + + def add_collection_item( + self, + collection_slug: str, + item_id: str, + item_type: CollectionItemType_T, + *, + note: Optional[str] = None, + exists_ok: bool = False, + token: Union[bool, str, None] = None, + ) -> Collection: + """Add an item to a collection on the Hub. + + Args: + collection_slug (`str`): + Slug of the collection to update. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + item_id (`str`): + ID of the item to add to the collection. It can be the ID of a repo on the Hub (e.g. `"facebook/bart-large-mnli"`) + or a paper id (e.g. `"2307.09288"`). + item_type (`str`): + Type of the item to add. Can be one of `"model"`, `"dataset"`, `"space"` or `"paper"`. + note (`str`, *optional*): + A note to attach to the item in the collection. The maximum size for a note is 500 characters. + exists_ok (`bool`, *optional*): + If `True`, do not raise an error if item already exists. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: [`Collection`] + + Raises: + `HTTPError`: + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + `HTTPError`: + HTTP 404 if the item you try to add to the collection does not exist on the Hub. + `HTTPError`: + HTTP 409 if the item you try to add to the collection is already in the collection (and exists_ok=False) + + Example: + + ```py + >>> from huggingface_hub import add_collection_item + >>> collection = add_collection_item( + ... collection_slug="davanstrien/climate-64f99dc2a5067f6b65531bab", + ... item_id="pierre-loic/climate-news-articles", + ... item_type="dataset" + ... ) + >>> collection.items[-1].item_id + "pierre-loic/climate-news-articles" + # ^item got added to the collection on last position + + # Add item with a note + >>> add_collection_item( + ... collection_slug="davanstrien/climate-64f99dc2a5067f6b65531bab", + ... item_id="datasets/climate_fever", + ... item_type="dataset" + ... note="This dataset adopts the FEVER methodology that consists of 1,535 real-world claims regarding climate-change collected on the internet." + ... ) + (...) + ``` + """ + payload: Dict[str, Any] = {"item": {"id": item_id, "type": item_type}} + if note is not None: + payload["note"] = note + r = get_session().post( + f"{self.endpoint}/api/collections/{collection_slug}/items", + headers=self._build_hf_headers(token=token), + json=payload, + ) + try: + hf_raise_for_status(r) + except HTTPError as err: + if exists_ok and err.response.status_code == 409: + # Item already exists and `exists_ok=True` + return self.get_collection(collection_slug, token=token) + else: + raise + return Collection(**{**r.json(), "endpoint": self.endpoint}) + + def update_collection_item( + self, + collection_slug: str, + item_object_id: str, + *, + note: Optional[str] = None, + position: Optional[int] = None, + token: Union[bool, str, None] = None, + ) -> None: + """Update an item in a collection. + + Args: + collection_slug (`str`): + Slug of the collection to update. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + item_object_id (`str`): + ID of the item in the collection. This is not the id of the item on the Hub (repo_id or paper id). + It must be retrieved from a [`CollectionItem`] object. Example: `collection.items[0].item_object_id`. + note (`str`, *optional*): + A note to attach to the item in the collection. The maximum size for a note is 500 characters. + position (`int`, *optional*): + New position of the item in the collection. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Example: + + ```py + >>> from huggingface_hub import get_collection, update_collection_item + + # Get collection first + >>> collection = get_collection("TheBloke/recent-models-64f9a55bb3115b4f513ec026") + + # Update item based on its ID (add note + update position) + >>> update_collection_item( + ... collection_slug="TheBloke/recent-models-64f9a55bb3115b4f513ec026", + ... item_object_id=collection.items[-1].item_object_id, + ... note="Newly updated model!" + ... position=0, + ... ) + ``` + """ + payload = {"position": position, "note": note} + r = get_session().patch( + f"{self.endpoint}/api/collections/{collection_slug}/items/{item_object_id}", + headers=self._build_hf_headers(token=token), + # Only send not-none values to the API + json={key: value for key, value in payload.items() if value is not None}, + ) + hf_raise_for_status(r) + + def delete_collection_item( + self, + collection_slug: str, + item_object_id: str, + *, + missing_ok: bool = False, + token: Union[bool, str, None] = None, + ) -> None: + """Delete an item from a collection. + + Args: + collection_slug (`str`): + Slug of the collection to update. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + item_object_id (`str`): + ID of the item in the collection. This is not the id of the item on the Hub (repo_id or paper id). + It must be retrieved from a [`CollectionItem`] object. Example: `collection.items[0]._id`. + missing_ok (`bool`, *optional*): + If `True`, do not raise an error if item doesn't exists. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Example: + + ```py + >>> from huggingface_hub import get_collection, delete_collection_item + + # Get collection first + >>> collection = get_collection("TheBloke/recent-models-64f9a55bb3115b4f513ec026") + + # Delete item based on its ID + >>> delete_collection_item( + ... collection_slug="TheBloke/recent-models-64f9a55bb3115b4f513ec026", + ... item_object_id=collection.items[-1].item_object_id, + ... ) + ``` + """ + r = get_session().delete( + f"{self.endpoint}/api/collections/{collection_slug}/items/{item_object_id}", + headers=self._build_hf_headers(token=token), + ) + try: + hf_raise_for_status(r) + except HTTPError as err: + if missing_ok and err.response.status_code == 404: + # Item already deleted and `missing_ok=True` + return + else: + raise + + ########################## + # Manage access requests # + ########################## + + @validate_hf_hub_args + def list_pending_access_requests( + self, repo_id: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> List[AccessRequest]: + """ + Get pending access requests for a given gated repo. + + A pending request means the user has requested access to the repo but the request has not been processed yet. + If the approval mode is automatic, this list should be empty. Pending requests can be accepted or rejected + using [`accept_access_request`] and [`reject_access_request`]. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to get access requests for. + repo_type (`str`, *optional*): + The type of the repo to get access requests for. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `List[AccessRequest]`: A list of [`AccessRequest`] objects. Each time contains a `username`, `email`, + `status` and `timestamp` attribute. If the gated repo has a custom form, the `fields` attribute will + be populated with user's answers. + + Raises: + `HTTPError`: + HTTP 400 if the repo is not gated. + `HTTPError`: + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + + Example: + ```py + >>> from huggingface_hub import list_pending_access_requests, accept_access_request + + # List pending requests + >>> requests = list_pending_access_requests("meta-llama/Llama-2-7b") + >>> len(requests) + 411 + >>> requests[0] + [ + AccessRequest( + username='clem', + fullname='Clem 🤗', + email='***', + timestamp=datetime.datetime(2023, 11, 23, 18, 4, 53, 828000, tzinfo=datetime.timezone.utc), + status='pending', + fields=None, + ), + ... + ] + + # Accept Clem's request + >>> accept_access_request("meta-llama/Llama-2-7b", "clem") + ``` + """ + return self._list_access_requests(repo_id, "pending", repo_type=repo_type, token=token) + + @validate_hf_hub_args + def list_accepted_access_requests( + self, repo_id: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> List[AccessRequest]: + """ + Get accepted access requests for a given gated repo. + + An accepted request means the user has requested access to the repo and the request has been accepted. The user + can download any file of the repo. If the approval mode is automatic, this list should contains by default all + requests. Accepted requests can be cancelled or rejected at any time using [`cancel_access_request`] and + [`reject_access_request`]. A cancelled request will go back to the pending list while a rejected request will + go to the rejected list. In both cases, the user will lose access to the repo. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to get access requests for. + repo_type (`str`, *optional*): + The type of the repo to get access requests for. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `List[AccessRequest]`: A list of [`AccessRequest`] objects. Each time contains a `username`, `email`, + `status` and `timestamp` attribute. If the gated repo has a custom form, the `fields` attribute will + be populated with user's answers. + + Raises: + `HTTPError`: + HTTP 400 if the repo is not gated. + `HTTPError`: + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + + Example: + ```py + >>> from huggingface_hub import list_accepted_access_requests + + >>> requests = list_accepted_access_requests("meta-llama/Llama-2-7b") + >>> len(requests) + 411 + >>> requests[0] + [ + AccessRequest( + username='clem', + fullname='Clem 🤗', + email='***', + timestamp=datetime.datetime(2023, 11, 23, 18, 4, 53, 828000, tzinfo=datetime.timezone.utc), + status='accepted', + fields=None, + ), + ... + ] + ``` + """ + return self._list_access_requests(repo_id, "accepted", repo_type=repo_type, token=token) + + @validate_hf_hub_args + def list_rejected_access_requests( + self, repo_id: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> List[AccessRequest]: + """ + Get rejected access requests for a given gated repo. + + A rejected request means the user has requested access to the repo and the request has been explicitly rejected + by a repo owner (either you or another user from your organization). The user cannot download any file of the + repo. Rejected requests can be accepted or cancelled at any time using [`accept_access_request`] and + [`cancel_access_request`]. A cancelled request will go back to the pending list while an accepted request will + go to the accepted list. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to get access requests for. + repo_type (`str`, *optional*): + The type of the repo to get access requests for. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `List[AccessRequest]`: A list of [`AccessRequest`] objects. Each time contains a `username`, `email`, + `status` and `timestamp` attribute. If the gated repo has a custom form, the `fields` attribute will + be populated with user's answers. + + Raises: + `HTTPError`: + HTTP 400 if the repo is not gated. + `HTTPError`: + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + + Example: + ```py + >>> from huggingface_hub import list_rejected_access_requests + + >>> requests = list_rejected_access_requests("meta-llama/Llama-2-7b") + >>> len(requests) + 411 + >>> requests[0] + [ + AccessRequest( + username='clem', + fullname='Clem 🤗', + email='***', + timestamp=datetime.datetime(2023, 11, 23, 18, 4, 53, 828000, tzinfo=datetime.timezone.utc), + status='rejected', + fields=None, + ), + ... + ] + ``` + """ + return self._list_access_requests(repo_id, "rejected", repo_type=repo_type, token=token) + + def _list_access_requests( + self, + repo_id: str, + status: Literal["accepted", "rejected", "pending"], + repo_type: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> List[AccessRequest]: + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}") + if repo_type is None: + repo_type = REPO_TYPE_MODEL + + response = get_session().get( + f"{ENDPOINT}/api/{repo_type}s/{repo_id}/user-access-request/{status}", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + return [ + AccessRequest( + username=request["user"]["user"], + fullname=request["user"]["fullname"], + email=request["user"]["email"], + status=request["status"], + timestamp=parse_datetime(request["timestamp"]), + fields=request.get("fields"), # only if custom fields in form + ) + for request in response.json() + ] + + @validate_hf_hub_args + def cancel_access_request( + self, repo_id: str, user: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> None: + """ + Cancel an access request from a user for a given gated repo. + + A cancelled request will go back to the pending list and the user will lose access to the repo. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to cancel access request for. + user (`str`): + The username of the user which access request should be cancelled. + repo_type (`str`, *optional*): + The type of the repo to cancel access request for. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Raises: + `HTTPError`: + HTTP 400 if the repo is not gated. + `HTTPError`: + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + `HTTPError`: + HTTP 404 if the user does not exist on the Hub. + `HTTPError`: + HTTP 404 if the user access request cannot be found. + `HTTPError`: + HTTP 404 if the user access request is already in the pending list. + """ + self._handle_access_request(repo_id, user, "pending", repo_type=repo_type, token=token) + + @validate_hf_hub_args + def accept_access_request( + self, repo_id: str, user: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> None: + """ + Accept an access request from a user for a given gated repo. + + Once the request is accepted, the user will be able to download any file of the repo and access the community + tab. If the approval mode is automatic, you don't have to accept requests manually. An accepted request can be + cancelled or rejected at any time using [`cancel_access_request`] and [`reject_access_request`]. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to accept access request for. + user (`str`): + The username of the user which access request should be accepted. + repo_type (`str`, *optional*): + The type of the repo to accept access request for. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Raises: + `HTTPError`: + HTTP 400 if the repo is not gated. + `HTTPError`: + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + `HTTPError`: + HTTP 404 if the user does not exist on the Hub. + `HTTPError`: + HTTP 404 if the user access request cannot be found. + `HTTPError`: + HTTP 404 if the user access request is already in the accepted list. + """ + self._handle_access_request(repo_id, user, "accepted", repo_type=repo_type, token=token) + + @validate_hf_hub_args + def reject_access_request( + self, repo_id: str, user: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> None: + """ + Reject an access request from a user for a given gated repo. + + A rejected request will go to the rejected list. The user cannot download any file of the repo. Rejected + requests can be accepted or cancelled at any time using [`accept_access_request`] and [`cancel_access_request`]. + A cancelled request will go back to the pending list while an accepted request will go to the accepted list. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to reject access request for. + user (`str`): + The username of the user which access request should be rejected. + repo_type (`str`, *optional*): + The type of the repo to reject access request for. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Raises: + `HTTPError`: + HTTP 400 if the repo is not gated. + `HTTPError`: + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + `HTTPError`: + HTTP 404 if the user does not exist on the Hub. + `HTTPError`: + HTTP 404 if the user access request cannot be found. + `HTTPError`: + HTTP 404 if the user access request is already in the rejected list. + """ + self._handle_access_request(repo_id, user, "rejected", repo_type=repo_type, token=token) + + @validate_hf_hub_args + def _handle_access_request( + self, + repo_id: str, + user: str, + status: Literal["accepted", "rejected", "pending"], + repo_type: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> None: + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}") + if repo_type is None: + repo_type = REPO_TYPE_MODEL + + response = get_session().post( + f"{ENDPOINT}/api/{repo_type}s/{repo_id}/user-access-request/handle", + headers=self._build_hf_headers(token=token), + json={"user": user, "status": status}, + ) + hf_raise_for_status(response) + + @validate_hf_hub_args + def grant_access( + self, repo_id: str, user: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> None: + """ + Grant access to a user for a given gated repo. + + Granting access don't require for the user to send an access request by themselves. The user is automatically + added to the accepted list meaning they can download the files You can revoke the granted access at any time + using [`cancel_access_request`] or [`reject_access_request`]. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to grant access to. + user (`str`): + The username of the user to grant access. + repo_type (`str`, *optional*): + The type of the repo to grant access to. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Raises: + `HTTPError`: + HTTP 400 if the repo is not gated. + `HTTPError`: + HTTP 400 if the user already has access to the repo. + `HTTPError`: + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + `HTTPError`: + HTTP 404 if the user does not exist on the Hub. + """ + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}") + if repo_type is None: + repo_type = REPO_TYPE_MODEL + + response = get_session().post( + f"{ENDPOINT}/api/models/{repo_id}/user-access-request/grant", + headers=self._build_hf_headers(token=token), + json={"user": user}, + ) + hf_raise_for_status(response) + return response.json() + + ############# + # Internals # + ############# + + def _build_hf_headers( + self, + token: Union[bool, str, None] = None, + is_write_action: bool = False, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + user_agent: Union[Dict, str, None] = None, + ) -> Dict[str, str]: + """ + Alias for [`build_hf_headers`] that uses the token from [`HfApi`] client + when `token` is not provided. + """ + if token is None: + # Cannot do `token = token or self.token` as token can be `False`. + token = self.token + return build_hf_headers( + token=token, + is_write_action=is_write_action, + library_name=library_name or self.library_name, + library_version=library_version or self.library_version, + user_agent=user_agent or self.user_agent, + headers=self.headers, + ) + + def _prepare_upload_folder_deletions( + self, + repo_id: str, + repo_type: Optional[str], + revision: Optional[str], + path_in_repo: str, + delete_patterns: Optional[Union[List[str], str]], + token: Union[bool, str, None] = None, + ) -> List[CommitOperationDelete]: + """Generate the list of Delete operations for a commit to delete files from a repo. + + List remote files and match them against the `delete_patterns` constraints. Returns a list of [`CommitOperationDelete`] + with the matching items. + + Note: `.gitattributes` file is essential to make a repo work properly on the Hub. This file will always be + kept even if it matches the `delete_patterns` constraints. + """ + if delete_patterns is None: + # If no delete patterns, no need to list and filter remote files + return [] + + # List remote files + filenames = self.list_repo_files(repo_id=repo_id, revision=revision, repo_type=repo_type, token=token) + + # Compute relative path in repo + if path_in_repo and path_in_repo not in (".", "./"): + path_in_repo = path_in_repo.strip("/") + "/" # harmonize + relpath_to_abspath = { + file[len(path_in_repo) :]: file for file in filenames if file.startswith(path_in_repo) + } + else: + relpath_to_abspath = {file: file for file in filenames} + + # Apply filter on relative paths and return + return [ + CommitOperationDelete(path_in_repo=relpath_to_abspath[relpath], is_folder=False) + for relpath in filter_repo_objects(relpath_to_abspath.keys(), allow_patterns=delete_patterns) + if relpath_to_abspath[relpath] != ".gitattributes" + ] + + def get_user_overview(self, username: str) -> User: + """ + Get an overview of a user on the Hub. + + Args: + username (`str`): + Username of the user to get an overview of. + + Returns: + `User`: A [`User`] object with the user's overview. + + Raises: + `HTTPError`: + HTTP 404 If the user does not exist on the Hub. + """ + r = get_session().get(f"{ENDPOINT}/api/users/{username}/overview") + + hf_raise_for_status(r) + return User(**r.json()) + + def list_organization_members(self, organization: str) -> Iterable[User]: + """ + List of members of an organization on the Hub. + + Args: + organization (`str`): + Name of the organization to get the members of. + + Returns: + `Iterable[User]`: A list of [`User`] objects with the members of the organization. + + Raises: + `HTTPError`: + HTTP 404 If the organization does not exist on the Hub. + + """ + + r = get_session().get(f"{ENDPOINT}/api/organizations/{organization}/members") + + hf_raise_for_status(r) + + for member in r.json(): + yield User(**member) + + def list_user_followers(self, username: str) -> Iterable[User]: + """ + Get the list of followers of a user on the Hub. + + Args: + username (`str`): + Username of the user to get the followers of. + + Returns: + `Iterable[User]`: A list of [`User`] objects with the followers of the user. + + Raises: + `HTTPError`: + HTTP 404 If the user does not exist on the Hub. + + """ + + r = get_session().get(f"{ENDPOINT}/api/users/{username}/followers") + + hf_raise_for_status(r) + + for follower in r.json(): + yield User(**follower) + + def list_user_following(self, username: str) -> Iterable[User]: + """ + Get the list of users followed by a user on the Hub. + + Args: + username (`str`): + Username of the user to get the users followed by. + + Returns: + `Iterable[User]`: A list of [`User`] objects with the users followed by the user. + + Raises: + `HTTPError`: + HTTP 404 If the user does not exist on the Hub. + + """ + + r = get_session().get(f"{ENDPOINT}/api/users/{username}/following") + + hf_raise_for_status(r) + + for followed_user in r.json(): + yield User(**followed_user) + + +def _prepare_upload_folder_additions( + folder_path: Union[str, Path], + path_in_repo: str, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, +) -> List[CommitOperationAdd]: + """Generate the list of Add operations for a commit to upload a folder. + + Files not matching the `allow_patterns` (allowlist) and `ignore_patterns` (denylist) + constraints are discarded. + """ + folder_path = Path(folder_path).expanduser().resolve() + if not folder_path.is_dir(): + raise ValueError(f"Provided path: '{folder_path}' is not a directory") + + # List files from folder + relpath_to_abspath = { + path.relative_to(folder_path).as_posix(): path + for path in sorted(folder_path.glob("**/*")) # sorted to be deterministic + if path.is_file() + } + + # Filter files and return + # Patterns are applied on the path relative to `folder_path`. `path_in_repo` is prefixed after the filtering. + prefix = f"{path_in_repo.strip('/')}/" if path_in_repo else "" + return [ + CommitOperationAdd( + path_or_fileobj=relpath_to_abspath[relpath], # absolute path on disk + path_in_repo=prefix + relpath, # "absolute" path in repo + ) + for relpath in filter_repo_objects( + relpath_to_abspath.keys(), allow_patterns=allow_patterns, ignore_patterns=ignore_patterns + ) + ] + + +def _parse_revision_from_pr_url(pr_url: str) -> str: + """Safely parse revision number from a PR url. + + Example: + ```py + >>> _parse_revision_from_pr_url("https://huggingface.co/bigscience/bloom/discussions/2") + "refs/pr/2" + ``` + """ + re_match = re.match(_REGEX_DISCUSSION_URL, pr_url) + if re_match is None: + raise RuntimeError(f"Unexpected response from the hub, expected a Pull Request URL but got: '{pr_url}'") + return f"refs/pr/{re_match[1]}" + + +api = HfApi() + +whoami = api.whoami +get_token_permission = api.get_token_permission + +list_models = api.list_models +model_info = api.model_info + +list_datasets = api.list_datasets +dataset_info = api.dataset_info + +list_spaces = api.list_spaces +space_info = api.space_info + +repo_exists = api.repo_exists +revision_exists = api.revision_exists +file_exists = api.file_exists +repo_info = api.repo_info +list_repo_files = api.list_repo_files +list_repo_refs = api.list_repo_refs +list_repo_commits = api.list_repo_commits +list_repo_tree = api.list_repo_tree +get_paths_info = api.get_paths_info + +list_metrics = api.list_metrics + +get_model_tags = api.get_model_tags +get_dataset_tags = api.get_dataset_tags + +create_commit = api.create_commit +create_repo = api.create_repo +delete_repo = api.delete_repo +update_repo_visibility = api.update_repo_visibility +super_squash_history = api.super_squash_history +move_repo = api.move_repo +upload_file = api.upload_file +upload_folder = api.upload_folder +delete_file = api.delete_file +delete_folder = api.delete_folder +create_commits_on_pr = api.create_commits_on_pr +preupload_lfs_files = api.preupload_lfs_files +create_branch = api.create_branch +delete_branch = api.delete_branch +create_tag = api.create_tag +delete_tag = api.delete_tag +get_full_repo_name = api.get_full_repo_name + +# Safetensors helpers +get_safetensors_metadata = api.get_safetensors_metadata +parse_safetensors_file_metadata = api.parse_safetensors_file_metadata + +# Background jobs +run_as_future = api.run_as_future + +# Activity API +list_liked_repos = api.list_liked_repos +list_repo_likers = api.list_repo_likers +like = api.like +unlike = api.unlike + +# Community API +get_discussion_details = api.get_discussion_details +get_repo_discussions = api.get_repo_discussions +create_discussion = api.create_discussion +create_pull_request = api.create_pull_request +change_discussion_status = api.change_discussion_status +comment_discussion = api.comment_discussion +edit_discussion_comment = api.edit_discussion_comment +rename_discussion = api.rename_discussion +merge_pull_request = api.merge_pull_request + +# Space API +add_space_secret = api.add_space_secret +delete_space_secret = api.delete_space_secret +get_space_variables = api.get_space_variables +add_space_variable = api.add_space_variable +delete_space_variable = api.delete_space_variable +get_space_runtime = api.get_space_runtime +request_space_hardware = api.request_space_hardware +set_space_sleep_time = api.set_space_sleep_time +pause_space = api.pause_space +restart_space = api.restart_space +duplicate_space = api.duplicate_space +request_space_storage = api.request_space_storage +delete_space_storage = api.delete_space_storage + +# Inference Endpoint API +list_inference_endpoints = api.list_inference_endpoints +create_inference_endpoint = api.create_inference_endpoint +get_inference_endpoint = api.get_inference_endpoint +update_inference_endpoint = api.update_inference_endpoint +delete_inference_endpoint = api.delete_inference_endpoint +pause_inference_endpoint = api.pause_inference_endpoint +resume_inference_endpoint = api.resume_inference_endpoint +scale_to_zero_inference_endpoint = api.scale_to_zero_inference_endpoint + +# Collections API +get_collection = api.get_collection +list_collections = api.list_collections +create_collection = api.create_collection +update_collection_metadata = api.update_collection_metadata +delete_collection = api.delete_collection +add_collection_item = api.add_collection_item +update_collection_item = api.update_collection_item +delete_collection_item = api.delete_collection_item +delete_collection_item = api.delete_collection_item + +# Access requests API +list_pending_access_requests = api.list_pending_access_requests +list_accepted_access_requests = api.list_accepted_access_requests +list_rejected_access_requests = api.list_rejected_access_requests +cancel_access_request = api.cancel_access_request +accept_access_request = api.accept_access_request +reject_access_request = api.reject_access_request +grant_access = api.grant_access + +# User API +get_user_overview = api.get_user_overview +list_organization_members = api.list_organization_members +list_user_followers = api.list_user_followers +list_user_following = api.list_user_following diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py new file mode 100644 index 0000000000000000000000000000000000000000..250c723a688850315ed46688a520f045702b958c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py @@ -0,0 +1,876 @@ +import os +import re +import tempfile +from collections import deque +from dataclasses import dataclass, field +from datetime import datetime +from itertools import chain +from pathlib import Path +from typing import Any, Dict, List, NoReturn, Optional, Tuple, Union +from urllib.parse import quote, unquote + +import fsspec +from fsspec.callbacks import _DEFAULT_CALLBACK, NoOpCallback, TqdmCallback +from fsspec.utils import isfilelike +from requests import Response + +from ._commit_api import CommitOperationCopy, CommitOperationDelete +from .constants import ( + DEFAULT_REVISION, + ENDPOINT, + HF_HUB_DOWNLOAD_TIMEOUT, + HF_HUB_ETAG_TIMEOUT, + REPO_TYPE_MODEL, + REPO_TYPES_MAPPING, + REPO_TYPES_URL_PREFIXES, +) +from .file_download import hf_hub_url, http_get +from .hf_api import HfApi, LastCommitInfo, RepoFile +from .utils import ( + EntryNotFoundError, + HFValidationError, + RepositoryNotFoundError, + RevisionNotFoundError, + hf_raise_for_status, + http_backoff, +) + + +# Regex used to match special revisions with "/" in them (see #1710) +SPECIAL_REFS_REVISION_REGEX = re.compile( + r""" + (^refs\/convert\/\w+) # `refs/convert/parquet` revisions + | + (^refs\/pr\/\d+) # PR revisions + """, + re.VERBOSE, +) + + +@dataclass +class HfFileSystemResolvedPath: + """Data structure containing information about a resolved Hugging Face file system path.""" + + repo_type: str + repo_id: str + revision: str + path_in_repo: str + # The part placed after '@' in the initial path. It can be a quoted or unquoted refs revision. + # Used to reconstruct the unresolved path to return to the user. + _raw_revision: Optional[str] = field(default=None, repr=False) + + def unresolve(self) -> str: + repo_path = REPO_TYPES_URL_PREFIXES.get(self.repo_type, "") + self.repo_id + if self._raw_revision: + return f"{repo_path}@{self._raw_revision}/{self.path_in_repo}".rstrip("/") + elif self.revision != DEFAULT_REVISION: + return f"{repo_path}@{safe_revision(self.revision)}/{self.path_in_repo}".rstrip("/") + else: + return f"{repo_path}/{self.path_in_repo}".rstrip("/") + + +class HfFileSystem(fsspec.AbstractFileSystem): + """ + Access a remote Hugging Face Hub repository as if were a local file system. + + Args: + token (`str`, *optional*): + Authentication token, obtained with [`HfApi.login`] method. Will default to the stored token. + + Usage: + + ```python + >>> from huggingface_hub import HfFileSystem + + >>> fs = HfFileSystem() + + >>> # List files + >>> fs.glob("my-username/my-model/*.bin") + ['my-username/my-model/pytorch_model.bin'] + >>> fs.ls("datasets/my-username/my-dataset", detail=False) + ['datasets/my-username/my-dataset/.gitattributes', 'datasets/my-username/my-dataset/README.md', 'datasets/my-username/my-dataset/data.json'] + + >>> # Read/write files + >>> with fs.open("my-username/my-model/pytorch_model.bin") as f: + ... data = f.read() + >>> with fs.open("my-username/my-model/pytorch_model.bin", "wb") as f: + ... f.write(data) + ``` + """ + + root_marker = "" + protocol = "hf" + + def __init__( + self, + *args, + endpoint: Optional[str] = None, + token: Optional[str] = None, + **storage_options, + ): + super().__init__(*args, **storage_options) + self.endpoint = endpoint or ENDPOINT + self.token = token + self._api = HfApi(endpoint=endpoint, token=token) + # Maps (repo_type, repo_id, revision) to a 2-tuple with: + # * the 1st element indicating whether the repositoy and the revision exist + # * the 2nd element being the exception raised if the repository or revision doesn't exist + self._repo_and_revision_exists_cache: Dict[ + Tuple[str, str, Optional[str]], Tuple[bool, Optional[Exception]] + ] = {} + + def _repo_and_revision_exist( + self, repo_type: str, repo_id: str, revision: Optional[str] + ) -> Tuple[bool, Optional[Exception]]: + if (repo_type, repo_id, revision) not in self._repo_and_revision_exists_cache: + try: + self._api.repo_info(repo_id, revision=revision, repo_type=repo_type, timeout=HF_HUB_ETAG_TIMEOUT) + except (RepositoryNotFoundError, HFValidationError) as e: + self._repo_and_revision_exists_cache[(repo_type, repo_id, revision)] = False, e + self._repo_and_revision_exists_cache[(repo_type, repo_id, None)] = False, e + except RevisionNotFoundError as e: + self._repo_and_revision_exists_cache[(repo_type, repo_id, revision)] = False, e + self._repo_and_revision_exists_cache[(repo_type, repo_id, None)] = True, None + else: + self._repo_and_revision_exists_cache[(repo_type, repo_id, revision)] = True, None + self._repo_and_revision_exists_cache[(repo_type, repo_id, None)] = True, None + return self._repo_and_revision_exists_cache[(repo_type, repo_id, revision)] + + def resolve_path(self, path: str, revision: Optional[str] = None) -> HfFileSystemResolvedPath: + def _align_revision_in_path_with_revision( + revision_in_path: Optional[str], revision: Optional[str] + ) -> Optional[str]: + if revision is not None: + if revision_in_path is not None and revision_in_path != revision: + raise ValueError( + f'Revision specified in path ("{revision_in_path}") and in `revision` argument ("{revision}")' + " are not the same." + ) + else: + revision = revision_in_path + return revision + + path = self._strip_protocol(path) + if not path: + # can't list repositories at root + raise NotImplementedError("Access to repositories lists is not implemented.") + elif path.split("/")[0] + "/" in REPO_TYPES_URL_PREFIXES.values(): + if "/" not in path: + # can't list repositories at the repository type level + raise NotImplementedError("Access to repositories lists is not implemented.") + repo_type, path = path.split("/", 1) + repo_type = REPO_TYPES_MAPPING[repo_type] + else: + repo_type = REPO_TYPE_MODEL + if path.count("/") > 0: + if "@" in path: + repo_id, revision_in_path = path.split("@", 1) + if "/" in revision_in_path: + match = SPECIAL_REFS_REVISION_REGEX.search(revision_in_path) + if match is not None and revision in (None, match.group()): + # Handle `refs/convert/parquet` and PR revisions separately + path_in_repo = SPECIAL_REFS_REVISION_REGEX.sub("", revision_in_path).lstrip("/") + revision_in_path = match.group() + else: + revision_in_path, path_in_repo = revision_in_path.split("/", 1) + else: + path_in_repo = "" + revision = _align_revision_in_path_with_revision(unquote(revision_in_path), revision) + repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision) + if not repo_and_revision_exist: + _raise_file_not_found(path, err) + else: + revision_in_path = None + repo_id_with_namespace = "/".join(path.split("/")[:2]) + path_in_repo_with_namespace = "/".join(path.split("/")[2:]) + repo_id_without_namespace = path.split("/")[0] + path_in_repo_without_namespace = "/".join(path.split("/")[1:]) + repo_id = repo_id_with_namespace + path_in_repo = path_in_repo_with_namespace + repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision) + if not repo_and_revision_exist: + if isinstance(err, (RepositoryNotFoundError, HFValidationError)): + repo_id = repo_id_without_namespace + path_in_repo = path_in_repo_without_namespace + repo_and_revision_exist, _ = self._repo_and_revision_exist(repo_type, repo_id, revision) + if not repo_and_revision_exist: + _raise_file_not_found(path, err) + else: + _raise_file_not_found(path, err) + else: + repo_id = path + path_in_repo = "" + if "@" in path: + repo_id, revision_in_path = path.split("@", 1) + revision = _align_revision_in_path_with_revision(unquote(revision_in_path), revision) + else: + revision_in_path = None + repo_and_revision_exist, _ = self._repo_and_revision_exist(repo_type, repo_id, revision) + if not repo_and_revision_exist: + raise NotImplementedError("Access to repositories lists is not implemented.") + + revision = revision if revision is not None else DEFAULT_REVISION + return HfFileSystemResolvedPath(repo_type, repo_id, revision, path_in_repo, _raw_revision=revision_in_path) + + def invalidate_cache(self, path: Optional[str] = None) -> None: + if not path: + self.dircache.clear() + self._repo_and_revision_exists_cache.clear() + else: + path = self.resolve_path(path).unresolve() + while path: + self.dircache.pop(path, None) + path = self._parent(path) + + def _open( + self, + path: str, + mode: str = "rb", + revision: Optional[str] = None, + block_size: Optional[int] = None, + **kwargs, + ) -> "HfFileSystemFile": + if "a" in mode: + raise NotImplementedError("Appending to remote files is not yet supported.") + if block_size == 0: + return HfFileSystemStreamFile(self, path, mode=mode, revision=revision, block_size=block_size, **kwargs) + else: + return HfFileSystemFile(self, path, mode=mode, revision=revision, block_size=block_size, **kwargs) + + def _rm(self, path: str, revision: Optional[str] = None, **kwargs) -> None: + resolved_path = self.resolve_path(path, revision=revision) + self._api.delete_file( + path_in_repo=resolved_path.path_in_repo, + repo_id=resolved_path.repo_id, + token=self.token, + repo_type=resolved_path.repo_type, + revision=resolved_path.revision, + commit_message=kwargs.get("commit_message"), + commit_description=kwargs.get("commit_description"), + ) + self.invalidate_cache(path=resolved_path.unresolve()) + + def rm( + self, + path: str, + recursive: bool = False, + maxdepth: Optional[int] = None, + revision: Optional[str] = None, + **kwargs, + ) -> None: + resolved_path = self.resolve_path(path, revision=revision) + paths = self.expand_path(path, recursive=recursive, maxdepth=maxdepth, revision=revision) + paths_in_repo = [self.resolve_path(path).path_in_repo for path in paths if not self.isdir(path)] + operations = [CommitOperationDelete(path_in_repo=path_in_repo) for path_in_repo in paths_in_repo] + commit_message = f"Delete {path} " + commit_message += "recursively " if recursive else "" + commit_message += f"up to depth {maxdepth} " if maxdepth is not None else "" + # TODO: use `commit_description` to list all the deleted paths? + self._api.create_commit( + repo_id=resolved_path.repo_id, + repo_type=resolved_path.repo_type, + token=self.token, + operations=operations, + revision=resolved_path.revision, + commit_message=kwargs.get("commit_message", commit_message), + commit_description=kwargs.get("commit_description"), + ) + self.invalidate_cache(path=resolved_path.unresolve()) + + def ls( + self, path: str, detail: bool = True, refresh: bool = False, revision: Optional[str] = None, **kwargs + ) -> List[Union[str, Dict[str, Any]]]: + """List the contents of a directory.""" + resolved_path = self.resolve_path(path, revision=revision) + path = resolved_path.unresolve() + kwargs = {"expand_info": detail, **kwargs} + try: + out = self._ls_tree(path, refresh=refresh, revision=revision, **kwargs) + except EntryNotFoundError: + # Path could be a file + if not resolved_path.path_in_repo: + _raise_file_not_found(path, None) + out = self._ls_tree(self._parent(path), refresh=refresh, revision=revision, **kwargs) + out = [o for o in out if o["name"] == path] + if len(out) == 0: + _raise_file_not_found(path, None) + return out if detail else [o["name"] for o in out] + + def _ls_tree( + self, + path: str, + recursive: bool = False, + refresh: bool = False, + revision: Optional[str] = None, + expand_info: bool = True, + ): + resolved_path = self.resolve_path(path, revision=revision) + path = resolved_path.unresolve() + root_path = HfFileSystemResolvedPath( + resolved_path.repo_type, + resolved_path.repo_id, + resolved_path.revision, + path_in_repo="", + _raw_revision=resolved_path._raw_revision, + ).unresolve() + + out = [] + if path in self.dircache and not refresh: + cached_path_infos = self.dircache[path] + out.extend(cached_path_infos) + dirs_not_in_dircache = [] + if recursive: + # Use BFS to traverse the cache and build the "recursive "output + # (The Hub uses a so-called "tree first" strategy for the tree endpoint but we sort the output to follow the spec so the result is (eventually) the same) + dirs_to_visit = deque( + [path_info for path_info in cached_path_infos if path_info["type"] == "directory"] + ) + while dirs_to_visit: + dir_info = dirs_to_visit.popleft() + if dir_info["name"] not in self.dircache: + dirs_not_in_dircache.append(dir_info["name"]) + else: + cached_path_infos = self.dircache[dir_info["name"]] + out.extend(cached_path_infos) + dirs_to_visit.extend( + [path_info for path_info in cached_path_infos if path_info["type"] == "directory"] + ) + + dirs_not_expanded = [] + if expand_info: + # Check if there are directories with non-expanded entries + dirs_not_expanded = [self._parent(o["name"]) for o in out if o["last_commit"] is None] + + if (recursive and dirs_not_in_dircache) or (expand_info and dirs_not_expanded): + # If the dircache is incomplete, find the common path of the missing and non-expanded entries + # and extend the output with the result of `_ls_tree(common_path, recursive=True)` + common_prefix = os.path.commonprefix(dirs_not_in_dircache + dirs_not_expanded) + # Get the parent directory if the common prefix itself is not a directory + common_path = ( + common_prefix.rstrip("/") + if common_prefix.endswith("/") + or common_prefix == root_path + or common_prefix in chain(dirs_not_in_dircache, dirs_not_expanded) + else self._parent(common_prefix) + ) + out = [o for o in out if not o["name"].startswith(common_path + "/")] + for cached_path in self.dircache: + if cached_path.startswith(common_path + "/"): + self.dircache.pop(cached_path, None) + self.dircache.pop(common_path, None) + out.extend( + self._ls_tree( + common_path, + recursive=recursive, + refresh=True, + revision=revision, + expand_info=expand_info, + ) + ) + else: + tree = self._api.list_repo_tree( + resolved_path.repo_id, + resolved_path.path_in_repo, + recursive=recursive, + expand=expand_info, + revision=resolved_path.revision, + repo_type=resolved_path.repo_type, + ) + for path_info in tree: + if isinstance(path_info, RepoFile): + cache_path_info = { + "name": root_path + "/" + path_info.path, + "size": path_info.size, + "type": "file", + "blob_id": path_info.blob_id, + "lfs": path_info.lfs, + "last_commit": path_info.last_commit, + "security": path_info.security, + } + else: + cache_path_info = { + "name": root_path + "/" + path_info.path, + "size": 0, + "type": "directory", + "tree_id": path_info.tree_id, + "last_commit": path_info.last_commit, + } + parent_path = self._parent(cache_path_info["name"]) + self.dircache.setdefault(parent_path, []).append(cache_path_info) + out.append(cache_path_info) + return out + + def glob(self, path, **kwargs): + # Set expand_info=False by default to get a x10 speed boost + kwargs = {"expand_info": kwargs.get("detail", False), **kwargs} + path = self.resolve_path(path, revision=kwargs.get("revision")).unresolve() + return super().glob(path, **kwargs) + + def find( + self, + path: str, + maxdepth: Optional[int] = None, + withdirs: bool = False, + detail: bool = False, + refresh: bool = False, + revision: Optional[str] = None, + **kwargs, + ) -> Union[List[str], Dict[str, Dict[str, Any]]]: + if maxdepth: + return super().find( + path, maxdepth=maxdepth, withdirs=withdirs, detail=detail, refresh=refresh, revision=revision, **kwargs + ) + resolved_path = self.resolve_path(path, revision=revision) + path = resolved_path.unresolve() + kwargs = {"expand_info": detail, **kwargs} + try: + out = self._ls_tree(path, recursive=True, refresh=refresh, revision=resolved_path.revision, **kwargs) + except EntryNotFoundError: + # Path could be a file + if self.info(path, revision=revision, **kwargs)["type"] == "file": + out = {path: {}} + else: + out = {} + else: + if not withdirs: + out = [o for o in out if o["type"] != "directory"] + else: + # If `withdirs=True`, include the directory itself to be consistent with the spec + path_info = self.info(path, revision=resolved_path.revision, **kwargs) + out = [path_info] + out if path_info["type"] == "directory" else out + out = {o["name"]: o for o in out} + names = sorted(out) + if not detail: + return names + else: + return {name: out[name] for name in names} + + def cp_file(self, path1: str, path2: str, revision: Optional[str] = None, **kwargs) -> None: + resolved_path1 = self.resolve_path(path1, revision=revision) + resolved_path2 = self.resolve_path(path2, revision=revision) + + same_repo = ( + resolved_path1.repo_type == resolved_path2.repo_type and resolved_path1.repo_id == resolved_path2.repo_id + ) + + if same_repo: + commit_message = f"Copy {path1} to {path2}" + self._api.create_commit( + repo_id=resolved_path1.repo_id, + repo_type=resolved_path1.repo_type, + revision=resolved_path2.revision, + commit_message=kwargs.get("commit_message", commit_message), + commit_description=kwargs.get("commit_description", ""), + operations=[ + CommitOperationCopy( + src_path_in_repo=resolved_path1.path_in_repo, + path_in_repo=resolved_path2.path_in_repo, + src_revision=resolved_path1.revision, + ) + ], + ) + else: + with self.open(path1, "rb", revision=resolved_path1.revision) as f: + content = f.read() + commit_message = f"Copy {path1} to {path2}" + self._api.upload_file( + path_or_fileobj=content, + path_in_repo=resolved_path2.path_in_repo, + repo_id=resolved_path2.repo_id, + token=self.token, + repo_type=resolved_path2.repo_type, + revision=resolved_path2.revision, + commit_message=kwargs.get("commit_message", commit_message), + commit_description=kwargs.get("commit_description"), + ) + self.invalidate_cache(path=resolved_path1.unresolve()) + self.invalidate_cache(path=resolved_path2.unresolve()) + + def modified(self, path: str, **kwargs) -> datetime: + info = self.info(path, **kwargs) + return info["last_commit"]["date"] + + def info(self, path: str, refresh: bool = False, revision: Optional[str] = None, **kwargs) -> Dict[str, Any]: + resolved_path = self.resolve_path(path, revision=revision) + path = resolved_path.unresolve() + expand_info = kwargs.get( + "expand_info", True + ) # don't expose it as a parameter in the public API to follow the spec + if not resolved_path.path_in_repo: + # Path is the root directory + out = { + "name": path, + "size": 0, + "type": "directory", + } + if expand_info: + last_commit = self._api.list_repo_commits( + resolved_path.repo_id, repo_type=resolved_path.repo_type, revision=resolved_path.revision + )[-1] + out = { + **out, + "tree_id": None, # TODO: tree_id of the root directory? + "last_commit": LastCommitInfo( + oid=last_commit.commit_id, title=last_commit.title, date=last_commit.created_at + ), + } + else: + out = None + parent_path = self._parent(path) + if parent_path in self.dircache: + # Check if the path is in the cache + out1 = [o for o in self.dircache[parent_path] if o["name"] == path] + if not out1: + _raise_file_not_found(path, None) + out = out1[0] + if refresh or out is None or (expand_info and out and out["last_commit"] is None): + paths_info = self._api.get_paths_info( + resolved_path.repo_id, + resolved_path.path_in_repo, + expand=expand_info, + revision=resolved_path.revision, + repo_type=resolved_path.repo_type, + ) + if not paths_info: + _raise_file_not_found(path, None) + path_info = paths_info[0] + root_path = HfFileSystemResolvedPath( + resolved_path.repo_type, + resolved_path.repo_id, + resolved_path.revision, + path_in_repo="", + _raw_revision=resolved_path._raw_revision, + ).unresolve() + if isinstance(path_info, RepoFile): + out = { + "name": root_path + "/" + path_info.path, + "size": path_info.size, + "type": "file", + "blob_id": path_info.blob_id, + "lfs": path_info.lfs, + "last_commit": path_info.last_commit, + "security": path_info.security, + } + else: + out = { + "name": root_path + "/" + path_info.path, + "size": 0, + "type": "directory", + "tree_id": path_info.tree_id, + "last_commit": path_info.last_commit, + } + if not expand_info: + out = {k: out[k] for k in ["name", "size", "type"]} + assert out is not None + return out + + def exists(self, path, **kwargs): + """Is there a file at the given path""" + try: + self.info(path, **{**kwargs, "expand_info": False}) + return True + except: # noqa: E722 + # any exception allowed bar FileNotFoundError? + return False + + def isdir(self, path): + """Is this entry directory-like?""" + try: + return self.info(path, expand_info=False)["type"] == "directory" + except OSError: + return False + + def isfile(self, path): + """Is this entry file-like?""" + try: + return self.info(path, expand_info=False)["type"] == "file" + except: # noqa: E722 + return False + + def url(self, path: str) -> str: + """Get the HTTP URL of the given path""" + resolved_path = self.resolve_path(path) + url = hf_hub_url( + resolved_path.repo_id, + resolved_path.path_in_repo, + repo_type=resolved_path.repo_type, + revision=resolved_path.revision, + endpoint=self.endpoint, + ) + if self.isdir(path): + url = url.replace("/resolve/", "/tree/", 1) + return url + + def get_file(self, rpath, lpath, callback=_DEFAULT_CALLBACK, outfile=None, **kwargs) -> None: + """Copy single remote file to local.""" + revision = kwargs.get("revision") + unhandled_kwargs = set(kwargs.keys()) - {"revision"} + if not isinstance(callback, (NoOpCallback, TqdmCallback)) or len(unhandled_kwargs) > 0: + # for now, let's not handle custom callbacks + # and let's not handle custom kwargs + return super().get_file(rpath, lpath, callback=callback, outfile=outfile, **kwargs) + + # Taken from https://github.com/fsspec/filesystem_spec/blob/47b445ae4c284a82dd15e0287b1ffc410e8fc470/fsspec/spec.py#L883 + if isfilelike(lpath): + outfile = lpath + elif self.isdir(rpath): + os.makedirs(lpath, exist_ok=True) + return None + + if isinstance(lpath, (str, Path)): # otherwise, let's assume it's a file-like object + os.makedirs(os.path.dirname(lpath), exist_ok=True) + + # Open file if not already open + close_file = False + if outfile is None: + outfile = open(lpath, "wb") + close_file = True + initial_pos = outfile.tell() + + # Custom implementation of `get_file` to use `http_get`. + resolve_remote_path = self.resolve_path(rpath, revision=revision) + expected_size = self.info(rpath, revision=revision)["size"] + callback.set_size(expected_size) + try: + http_get( + url=hf_hub_url( + repo_id=resolve_remote_path.repo_id, + revision=resolve_remote_path.revision, + filename=resolve_remote_path.path_in_repo, + repo_type=resolve_remote_path.repo_type, + endpoint=self.endpoint, + ), + temp_file=outfile, + displayed_filename=rpath, + expected_size=expected_size, + resume_size=0, + headers=self._api._build_hf_headers(), + _tqdm_bar=callback.tqdm if isinstance(callback, TqdmCallback) else None, + ) + outfile.seek(initial_pos) + finally: + # Close file only if we opened it ourselves + if close_file: + outfile.close() + + @property + def transaction(self): + """A context within which files are committed together upon exit + + Requires the file class to implement `.commit()` and `.discard()` + for the normal and exception cases. + """ + # Taken from https://github.com/fsspec/filesystem_spec/blob/3fbb6fee33b46cccb015607630843dea049d3243/fsspec/spec.py#L231 + # See https://github.com/huggingface/huggingface_hub/issues/1733 + raise NotImplementedError("Transactional commits are not supported.") + + def start_transaction(self): + """Begin write transaction for deferring files, non-context version""" + # Taken from https://github.com/fsspec/filesystem_spec/blob/3fbb6fee33b46cccb015607630843dea049d3243/fsspec/spec.py#L241 + # See https://github.com/huggingface/huggingface_hub/issues/1733 + raise NotImplementedError("Transactional commits are not supported.") + + +class HfFileSystemFile(fsspec.spec.AbstractBufferedFile): + def __init__(self, fs: HfFileSystem, path: str, revision: Optional[str] = None, **kwargs): + try: + self.resolved_path = fs.resolve_path(path, revision=revision) + except FileNotFoundError as e: + if "w" in kwargs.get("mode", ""): + raise FileNotFoundError( + f"{e}.\nMake sure the repository and revision exist before writing data." + ) from e + raise + super().__init__(fs, self.resolved_path.unresolve(), **kwargs) + self.fs: HfFileSystem + + def __del__(self): + if not hasattr(self, "resolved_path"): + # Means that the constructor failed. Nothing to do. + return + return super().__del__() + + def _fetch_range(self, start: int, end: int) -> bytes: + headers = { + "range": f"bytes={start}-{end - 1}", + **self.fs._api._build_hf_headers(), + } + url = hf_hub_url( + repo_id=self.resolved_path.repo_id, + revision=self.resolved_path.revision, + filename=self.resolved_path.path_in_repo, + repo_type=self.resolved_path.repo_type, + endpoint=self.fs.endpoint, + ) + r = http_backoff( + "GET", + url, + headers=headers, + retry_on_status_codes=(502, 503, 504), + timeout=HF_HUB_DOWNLOAD_TIMEOUT, + ) + hf_raise_for_status(r) + return r.content + + def _initiate_upload(self) -> None: + self.temp_file = tempfile.NamedTemporaryFile(prefix="hffs-", delete=False) + + def _upload_chunk(self, final: bool = False) -> None: + self.buffer.seek(0) + block = self.buffer.read() + self.temp_file.write(block) + if final: + self.temp_file.close() + self.fs._api.upload_file( + path_or_fileobj=self.temp_file.name, + path_in_repo=self.resolved_path.path_in_repo, + repo_id=self.resolved_path.repo_id, + token=self.fs.token, + repo_type=self.resolved_path.repo_type, + revision=self.resolved_path.revision, + commit_message=self.kwargs.get("commit_message"), + commit_description=self.kwargs.get("commit_description"), + ) + os.remove(self.temp_file.name) + self.fs.invalidate_cache( + path=self.resolved_path.unresolve(), + ) + + def read(self, length=-1): + """Read remote file. + + If `length` is not provided or is -1, the entire file is downloaded and read. On POSIX systems and if + `hf_transfer` is not enabled, the file is loaded in memory directly. Otherwise, the file is downloaded to a + temporary file and read from there. + """ + if self.mode == "rb" and (length is None or length == -1) and self.loc == 0: + with self.fs.open(self.path, "rb", block_size=0) as f: # block_size=0 enables fast streaming + return f.read() + return super().read(length) + + def url(self) -> str: + return self.fs.url(self.path) + + +class HfFileSystemStreamFile(fsspec.spec.AbstractBufferedFile): + def __init__( + self, + fs: HfFileSystem, + path: str, + mode: str = "rb", + revision: Optional[str] = None, + block_size: int = 0, + cache_type: str = "none", + **kwargs, + ): + if block_size != 0: + raise ValueError(f"HfFileSystemStreamFile only supports block_size=0 but got {block_size}") + if cache_type != "none": + raise ValueError(f"HfFileSystemStreamFile only supports cache_type='none' but got {cache_type}") + if "w" in mode: + raise ValueError(f"HfFileSystemStreamFile only supports reading but got mode='{mode}'") + try: + self.resolved_path = fs.resolve_path(path, revision=revision) + except FileNotFoundError as e: + if "w" in kwargs.get("mode", ""): + raise FileNotFoundError( + f"{e}.\nMake sure the repository and revision exist before writing data." + ) from e + # avoid an unnecessary .info() call to instantiate .details + self.details = {"name": self.resolved_path.unresolve(), "size": None} + super().__init__( + fs, self.resolved_path.unresolve(), mode=mode, block_size=block_size, cache_type=cache_type, **kwargs + ) + self.response: Optional[Response] = None + self.fs: HfFileSystem + + def seek(self, loc: int, whence: int = 0): + if loc == 0 and whence == 1: + return + if loc == self.loc and whence == 0: + return + raise ValueError("Cannot seek streaming HF file") + + def read(self, length: int = -1): + read_args = (length,) if length >= 0 else () + if self.response is None or self.response.raw.isclosed(): + url = hf_hub_url( + repo_id=self.resolved_path.repo_id, + revision=self.resolved_path.revision, + filename=self.resolved_path.path_in_repo, + repo_type=self.resolved_path.repo_type, + endpoint=self.fs.endpoint, + ) + self.response = http_backoff( + "GET", + url, + headers=self.fs._api._build_hf_headers(), + retry_on_status_codes=(502, 503, 504), + stream=True, + timeout=HF_HUB_DOWNLOAD_TIMEOUT, + ) + hf_raise_for_status(self.response) + try: + out = self.response.raw.read(*read_args) + except Exception: + self.response.close() + + # Retry by recreating the connection + url = hf_hub_url( + repo_id=self.resolved_path.repo_id, + revision=self.resolved_path.revision, + filename=self.resolved_path.path_in_repo, + repo_type=self.resolved_path.repo_type, + endpoint=self.fs.endpoint, + ) + self.response = http_backoff( + "GET", + url, + headers={"Range": "bytes=%d-" % self.loc, **self.fs._api._build_hf_headers()}, + retry_on_status_codes=(502, 503, 504), + stream=True, + timeout=HF_HUB_DOWNLOAD_TIMEOUT, + ) + hf_raise_for_status(self.response) + try: + out = self.response.raw.read(*read_args) + except Exception: + self.response.close() + raise + self.loc += len(out) + return out + + def url(self) -> str: + return self.fs.url(self.path) + + def __del__(self): + if not hasattr(self, "resolved_path"): + # Means that the constructor failed. Nothing to do. + return + return super().__del__() + + def __reduce__(self): + return reopen, (self.fs, self.path, self.mode, self.blocksize, self.cache.name) + + +def safe_revision(revision: str) -> str: + return revision if SPECIAL_REFS_REVISION_REGEX.match(revision) else safe_quote(revision) + + +def safe_quote(s: str) -> str: + return quote(s, safe="") + + +def _raise_file_not_found(path: str, err: Optional[Exception]) -> NoReturn: + msg = path + if isinstance(err, RepositoryNotFoundError): + msg = f"{path} (repository not found)" + elif isinstance(err, RevisionNotFoundError): + msg = f"{path} (revision not found)" + elif isinstance(err, HFValidationError): + msg = f"{path} (invalid repository id)" + raise FileNotFoundError(msg) from err + + +def reopen(fs: HfFileSystem, path: str, mode: str, block_size: int, cache_type: str): + return fs.open(path, mode=mode, block_size=block_size, cache_type=cache_type) diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/hub_mixin.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/hub_mixin.py new file mode 100644 index 0000000000000000000000000000000000000000..600beb2b9fd12077a921c622497c2a03e61ab7df --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/hub_mixin.py @@ -0,0 +1,788 @@ +import inspect +import json +import os +from dataclasses import asdict, dataclass, is_dataclass +from pathlib import Path +from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Type, TypeVar, Union, get_args + +from .constants import CONFIG_NAME, PYTORCH_WEIGHTS_NAME, SAFETENSORS_SINGLE_FILE +from .file_download import hf_hub_download +from .hf_api import HfApi +from .repocard import ModelCard, ModelCardData +from .utils import ( + EntryNotFoundError, + HfHubHTTPError, + SoftTemporaryDirectory, + is_jsonable, + is_safetensors_available, + is_torch_available, + logging, + validate_hf_hub_args, +) + + +if TYPE_CHECKING: + from _typeshed import DataclassInstance + +if is_torch_available(): + import torch # type: ignore + +if is_safetensors_available(): + from safetensors.torch import load_model as load_model_as_safetensor + from safetensors.torch import save_model as save_model_as_safetensor + + +logger = logging.get_logger(__name__) + +# Generic variable that is either ModelHubMixin or a subclass thereof +T = TypeVar("T", bound="ModelHubMixin") +# Generic variable to represent an args type +ARGS_T = TypeVar("ARGS_T") +ENCODER_T = Callable[[ARGS_T], Any] +DECODER_T = Callable[[Any], ARGS_T] +CODER_T = Tuple[ENCODER_T, DECODER_T] + + +DEFAULT_MODEL_CARD = """ +--- +# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 +# Doc / guide: https://huggingface.co/docs/hub/model-cards +{{ card_data }} +--- + +This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: +- Library: {{ repo_url | default("[More Information Needed]", true) }} +- Docs: {{ docs_url | default("[More Information Needed]", true) }} +""" + + +@dataclass +class MixinInfo: + model_card_template: str + model_card_data: ModelCardData + repo_url: Optional[str] = None + docs_url: Optional[str] = None + + +class ModelHubMixin: + """ + A generic mixin to integrate ANY machine learning framework with the Hub. + + To integrate your framework, your model class must inherit from this class. Custom logic for saving/loading models + have to be overwritten in [`_from_pretrained`] and [`_save_pretrained`]. [`PyTorchModelHubMixin`] is a good example + of mixin integration with the Hub. Check out our [integration guide](../guides/integrations) for more instructions. + + When inheriting from [`ModelHubMixin`], you can define class-level attributes. These attributes are not passed to + `__init__` but to the class definition itself. This is useful to define metadata about the library integrating + [`ModelHubMixin`]. + + For more details on how to integrate the mixin with your library, checkout the [integration guide](../guides/integrations). + + Args: + repo_url (`str`, *optional*): + URL of the library repository. Used to generate model card. + docs_url (`str`, *optional*): + URL of the library documentation. Used to generate model card. + model_card_template (`str`, *optional*): + Template of the model card. Used to generate model card. Defaults to a generic template. + languages (`List[str]`, *optional*): + Languages supported by the library. Used to generate model card. + library_name (`str`, *optional*): + Name of the library integrating ModelHubMixin. Used to generate model card. + license (`str`, *optional*): + License of the library integrating ModelHubMixin. Used to generate model card. + E.g: "apache-2.0" + license_name (`str`, *optional*): + Name of the library integrating ModelHubMixin. Used to generate model card. + Only used if `license` is set to `other`. + E.g: "coqui-public-model-license". + license_link (`str`, *optional*): + URL to the license of the library integrating ModelHubMixin. Used to generate model card. + Only used if `license` is set to `other` and `license_name` is set. + E.g: "https://coqui.ai/cpml". + pipeline_tag (`str`, *optional*): + Tag of the pipeline. Used to generate model card. E.g. "text-classification". + tags (`List[str]`, *optional*): + Tags to be added to the model card. Used to generate model card. E.g. ["x-custom-tag", "arxiv:2304.12244"] + coders (`Dict[Type, Tuple[Callable, Callable]]`, *optional*): + Dictionary of custom types and their encoders/decoders. Used to encode/decode arguments that are not + jsonable by default. E.g dataclasses, argparse.Namespace, OmegaConf, etc. + + Example: + + ```python + >>> from huggingface_hub import ModelHubMixin + + # Inherit from ModelHubMixin + >>> class MyCustomModel( + ... ModelHubMixin, + ... library_name="my-library", + ... tags=["x-custom-tag", "arxiv:2304.12244"], + ... repo_url="https://github.com/huggingface/my-cool-library", + ... docs_url="https://huggingface.co/docs/my-cool-library", + ... # ^ optional metadata to generate model card + ... ): + ... def __init__(self, size: int = 512, device: str = "cpu"): + ... # define how to initialize your model + ... super().__init__() + ... ... + ... + ... def _save_pretrained(self, save_directory: Path) -> None: + ... # define how to serialize your model + ... ... + ... + ... @classmethod + ... def from_pretrained( + ... cls: Type[T], + ... pretrained_model_name_or_path: Union[str, Path], + ... *, + ... force_download: bool = False, + ... resume_download: Optional[bool] = None, + ... proxies: Optional[Dict] = None, + ... token: Optional[Union[str, bool]] = None, + ... cache_dir: Optional[Union[str, Path]] = None, + ... local_files_only: bool = False, + ... revision: Optional[str] = None, + ... **model_kwargs, + ... ) -> T: + ... # define how to deserialize your model + ... ... + + >>> model = MyCustomModel(size=256, device="gpu") + + # Save model weights to local directory + >>> model.save_pretrained("my-awesome-model") + + # Push model weights to the Hub + >>> model.push_to_hub("my-awesome-model") + + # Download and initialize weights from the Hub + >>> reloaded_model = MyCustomModel.from_pretrained("username/my-awesome-model") + >>> reloaded_model.size + 256 + + # Model card has been correctly populated + >>> from huggingface_hub import ModelCard + >>> card = ModelCard.load("username/my-awesome-model") + >>> card.data.tags + ["x-custom-tag", "pytorch_model_hub_mixin", "model_hub_mixin"] + >>> card.data.library_name + "my-library" + ``` + """ + + _hub_mixin_config: Optional[Union[dict, "DataclassInstance"]] = None + # ^ optional config attribute automatically set in `from_pretrained` + _hub_mixin_info: MixinInfo + # ^ information about the library integrating ModelHubMixin (used to generate model card) + _hub_mixin_inject_config: bool # whether `_from_pretrained` expects `config` or not + _hub_mixin_init_parameters: Dict[str, inspect.Parameter] # __init__ parameters + _hub_mixin_jsonable_default_values: Dict[str, Any] # default values for __init__ parameters + _hub_mixin_jsonable_custom_types: Tuple[Type, ...] # custom types that can be encoded/decoded + _hub_mixin_coders: Dict[Type, CODER_T] # encoders/decoders for custom types + # ^ internal values to handle config + + def __init_subclass__( + cls, + *, + # Generic info for model card + repo_url: Optional[str] = None, + docs_url: Optional[str] = None, + # Model card template + model_card_template: str = DEFAULT_MODEL_CARD, + # Model card metadata + languages: Optional[List[str]] = None, + library_name: Optional[str] = None, + license: Optional[str] = None, + license_name: Optional[str] = None, + license_link: Optional[str] = None, + pipeline_tag: Optional[str] = None, + tags: Optional[List[str]] = None, + # How to encode/decode arguments with custom type into a JSON config? + coders: Optional[ + Dict[Type, CODER_T] + # Key is a type. + # Value is a tuple (encoder, decoder). + # Example: {MyCustomType: (lambda x: x.value, lambda data: MyCustomType(data))} + ] = None, + ) -> None: + """Inspect __init__ signature only once when subclassing + handle modelcard.""" + super().__init_subclass__() + + # Will be reused when creating modelcard + tags = tags or [] + tags.append("model_hub_mixin") + cls._hub_mixin_info = MixinInfo( + model_card_template=model_card_template, + repo_url=repo_url, + docs_url=docs_url, + model_card_data=ModelCardData( + languages=languages, + library_name=library_name, + license=license, + license_name=license_name, + license_link=license_link, + pipeline_tag=pipeline_tag, + tags=tags, + ), + ) + + # Handle encoders/decoders for args + cls._hub_mixin_coders = coders or {} + cls._hub_mixin_jsonable_custom_types = tuple(cls._hub_mixin_coders.keys()) + + # Inspect __init__ signature to handle config + cls._hub_mixin_init_parameters = dict(inspect.signature(cls.__init__).parameters) + cls._hub_mixin_jsonable_default_values = { + param.name: cls._encode_arg(param.default) + for param in cls._hub_mixin_init_parameters.values() + if param.default is not inspect.Parameter.empty and cls._is_jsonable(param.default) + } + cls._hub_mixin_inject_config = "config" in inspect.signature(cls._from_pretrained).parameters + + def __new__(cls, *args, **kwargs) -> "ModelHubMixin": + """Create a new instance of the class and handle config. + + 3 cases: + - If `self._hub_mixin_config` is already set, do nothing. + - If `config` is passed as a dataclass, set it as `self._hub_mixin_config`. + - Otherwise, build `self._hub_mixin_config` from default values and passed values. + """ + instance = super().__new__(cls) + + # If `config` is already set, return early + if instance._hub_mixin_config is not None: + return instance + + # Infer passed values + passed_values = { + **{ + key: value + for key, value in zip( + # [1:] to skip `self` parameter + list(cls._hub_mixin_init_parameters)[1:], + args, + ) + }, + **kwargs, + } + + # If config passed as dataclass => set it and return early + if is_dataclass(passed_values.get("config")): + instance._hub_mixin_config = passed_values["config"] + return instance + + # Otherwise, build config from default + passed values + init_config = { + # default values + **cls._hub_mixin_jsonable_default_values, + # passed values + **{ + key: cls._encode_arg(value) # Encode custom types as jsonable value + for key, value in passed_values.items() + if instance._is_jsonable(value) # Only if jsonable or we have a custom encoder + }, + } + init_config.pop("config", {}) + + # Populate `init_config` with provided config + provided_config = passed_values.get("config") + if isinstance(provided_config, dict): + init_config.update(provided_config) + + # Set `config` attribute and return + if init_config != {}: + instance._hub_mixin_config = init_config + return instance + + @classmethod + def _is_jsonable(cls, value: Any) -> bool: + """Check if a value is JSON serializable.""" + if isinstance(value, cls._hub_mixin_jsonable_custom_types): + return True + return is_jsonable(value) + + @classmethod + def _encode_arg(cls, arg: Any) -> Any: + """Encode an argument into a JSON serializable format.""" + for type_, (encoder, _) in cls._hub_mixin_coders.items(): + if isinstance(arg, type_): + return encoder(arg) + return arg + + @classmethod + def _decode_arg(cls, expected_type: Type[ARGS_T], value: Any) -> ARGS_T: + """Decode a JSON serializable value into an argument.""" + for type_, (_, decoder) in cls._hub_mixin_coders.items(): + if issubclass(expected_type, type_): + return decoder(value) + return value + + def save_pretrained( + self, + save_directory: Union[str, Path], + *, + config: Optional[Union[dict, "DataclassInstance"]] = None, + repo_id: Optional[str] = None, + push_to_hub: bool = False, + **push_to_hub_kwargs, + ) -> Optional[str]: + """ + Save weights in local directory. + + Args: + save_directory (`str` or `Path`): + Path to directory in which the model weights and configuration will be saved. + config (`dict` or `DataclassInstance`, *optional*): + Model configuration specified as a key/value dictionary or a dataclass instance. + push_to_hub (`bool`, *optional*, defaults to `False`): + Whether or not to push your model to the Huggingface Hub after saving it. + repo_id (`str`, *optional*): + ID of your repository on the Hub. Used only if `push_to_hub=True`. Will default to the folder name if + not provided. + kwargs: + Additional key word arguments passed along to the [`~ModelHubMixin.push_to_hub`] method. + Returns: + `str` or `None`: url of the commit on the Hub if `push_to_hub=True`, `None` otherwise. + """ + save_directory = Path(save_directory) + save_directory.mkdir(parents=True, exist_ok=True) + + # Remove config.json if already exists. After `_save_pretrained` we don't want to overwrite config.json + # as it might have been saved by the custom `_save_pretrained` already. However we do want to overwrite + # an existing config.json if it was not saved by `_save_pretrained`. + config_path = save_directory / CONFIG_NAME + config_path.unlink(missing_ok=True) + + # save model weights/files (framework-specific) + self._save_pretrained(save_directory) + + # save config (if provided and if not serialized yet in `_save_pretrained`) + if config is None: + config = self._hub_mixin_config + if config is not None: + if is_dataclass(config): + config = asdict(config) # type: ignore[arg-type] + if not config_path.exists(): + config_str = json.dumps(config, sort_keys=True, indent=2) + config_path.write_text(config_str) + + # save model card + model_card_path = save_directory / "README.md" + if not model_card_path.exists(): # do not overwrite if already exists + self.generate_model_card().save(save_directory / "README.md") + + # push to the Hub if required + if push_to_hub: + kwargs = push_to_hub_kwargs.copy() # soft-copy to avoid mutating input + if config is not None: # kwarg for `push_to_hub` + kwargs["config"] = config + if repo_id is None: + repo_id = save_directory.name # Defaults to `save_directory` name + return self.push_to_hub(repo_id=repo_id, **kwargs) + return None + + def _save_pretrained(self, save_directory: Path) -> None: + """ + Overwrite this method in subclass to define how to save your model. + Check out our [integration guide](../guides/integrations) for instructions. + + Args: + save_directory (`str` or `Path`): + Path to directory in which the model weights and configuration will be saved. + """ + raise NotImplementedError + + @classmethod + @validate_hf_hub_args + def from_pretrained( + cls: Type[T], + pretrained_model_name_or_path: Union[str, Path], + *, + force_download: bool = False, + resume_download: Optional[bool] = None, + proxies: Optional[Dict] = None, + token: Optional[Union[str, bool]] = None, + cache_dir: Optional[Union[str, Path]] = None, + local_files_only: bool = False, + revision: Optional[str] = None, + **model_kwargs, + ) -> T: + """ + Download a model from the Huggingface Hub and instantiate it. + + Args: + pretrained_model_name_or_path (`str`, `Path`): + - Either the `model_id` (string) of a model hosted on the Hub, e.g. `bigscience/bloom`. + - Or a path to a `directory` containing model weights saved using + [`~transformers.PreTrainedModel.save_pretrained`], e.g., `../path/to/my_model_directory/`. + revision (`str`, *optional*): + Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. + Defaults to the latest commit on `main` branch. + force_download (`bool`, *optional*, defaults to `False`): + Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding + the existing cache. + proxies (`Dict[str, str]`, *optional*): + A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', + 'http://hostname': 'foo.bar:4012'}`. The proxies are used on every request. + token (`str` or `bool`, *optional*): + The token to use as HTTP bearer authorization for remote files. By default, it will use the token + cached when running `huggingface-cli login`. + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + local_files_only (`bool`, *optional*, defaults to `False`): + If `True`, avoid downloading the file and return the path to the local cached file if it exists. + model_kwargs (`Dict`, *optional*): + Additional kwargs to pass to the model during initialization. + """ + model_id = str(pretrained_model_name_or_path) + config_file: Optional[str] = None + if os.path.isdir(model_id): + if CONFIG_NAME in os.listdir(model_id): + config_file = os.path.join(model_id, CONFIG_NAME) + else: + logger.warning(f"{CONFIG_NAME} not found in {Path(model_id).resolve()}") + else: + try: + config_file = hf_hub_download( + repo_id=model_id, + filename=CONFIG_NAME, + revision=revision, + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + resume_download=resume_download, + token=token, + local_files_only=local_files_only, + ) + except HfHubHTTPError as e: + logger.info(f"{CONFIG_NAME} not found on the HuggingFace Hub: {str(e)}") + + # Read config + config = None + if config_file is not None: + with open(config_file, "r", encoding="utf-8") as f: + config = json.load(f) + + # Decode custom types in config + for key, value in config.items(): + if key in cls._hub_mixin_init_parameters: + expected_type = cls._hub_mixin_init_parameters[key].annotation + if expected_type is not inspect.Parameter.empty: + config[key] = cls._decode_arg(expected_type, value) + + # Populate model_kwargs from config + for param in cls._hub_mixin_init_parameters.values(): + if param.name not in model_kwargs and param.name in config: + model_kwargs[param.name] = config[param.name] + + # Check if `config` argument was passed at init + if "config" in cls._hub_mixin_init_parameters: + # Check if `config` argument is a dataclass + config_annotation = cls._hub_mixin_init_parameters["config"].annotation + if config_annotation is inspect.Parameter.empty: + pass # no annotation + elif is_dataclass(config_annotation): + config = _load_dataclass(config_annotation, config) + else: + # if Optional/Union annotation => check if a dataclass is in the Union + for _sub_annotation in get_args(config_annotation): + if is_dataclass(_sub_annotation): + config = _load_dataclass(_sub_annotation, config) + break + + # Forward config to model initialization + model_kwargs["config"] = config + + # Inject config if `**kwargs` are expected + if is_dataclass(cls): + for key in cls.__dataclass_fields__: + if key not in model_kwargs and key in config: + model_kwargs[key] = config[key] + elif any(param.kind == inspect.Parameter.VAR_KEYWORD for param in cls._hub_mixin_init_parameters.values()): + for key, value in config.items(): + if key not in model_kwargs: + model_kwargs[key] = value + + # Finally, also inject if `_from_pretrained` expects it + if cls._hub_mixin_inject_config: + model_kwargs["config"] = config + + instance = cls._from_pretrained( + model_id=str(model_id), + revision=revision, + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + resume_download=resume_download, + local_files_only=local_files_only, + token=token, + **model_kwargs, + ) + + # Implicitly set the config as instance attribute if not already set by the class + # This way `config` will be available when calling `save_pretrained` or `push_to_hub`. + if config is not None and (getattr(instance, "_hub_mixin_config", None) in (None, {})): + instance._hub_mixin_config = config + + return instance + + @classmethod + def _from_pretrained( + cls: Type[T], + *, + model_id: str, + revision: Optional[str], + cache_dir: Optional[Union[str, Path]], + force_download: bool, + proxies: Optional[Dict], + resume_download: Optional[bool], + local_files_only: bool, + token: Optional[Union[str, bool]], + **model_kwargs, + ) -> T: + """Overwrite this method in subclass to define how to load your model from pretrained. + + Use [`hf_hub_download`] or [`snapshot_download`] to download files from the Hub before loading them. Most + args taken as input can be directly passed to those 2 methods. If needed, you can add more arguments to this + method using "model_kwargs". For example [`PyTorchModelHubMixin._from_pretrained`] takes as input a `map_location` + parameter to set on which device the model should be loaded. + + Check out our [integration guide](../guides/integrations) for more instructions. + + Args: + model_id (`str`): + ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`). + revision (`str`, *optional*): + Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the + latest commit on `main` branch. + force_download (`bool`, *optional*, defaults to `False`): + Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding + the existing cache. + proxies (`Dict[str, str]`, *optional*): + A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128', + 'http://hostname': 'foo.bar:4012'}`). + token (`str` or `bool`, *optional*): + The token to use as HTTP bearer authorization for remote files. By default, it will use the token + cached when running `huggingface-cli login`. + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + local_files_only (`bool`, *optional*, defaults to `False`): + If `True`, avoid downloading the file and return the path to the local cached file if it exists. + model_kwargs: + Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method. + """ + raise NotImplementedError + + @validate_hf_hub_args + def push_to_hub( + self, + repo_id: str, + *, + config: Optional[Union[dict, "DataclassInstance"]] = None, + commit_message: str = "Push model using huggingface_hub.", + private: bool = False, + token: Optional[str] = None, + branch: Optional[str] = None, + create_pr: Optional[bool] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + ) -> str: + """ + Upload model checkpoint to the Hub. + + Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use + `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more + details. + + Args: + repo_id (`str`): + ID of the repository to push to (example: `"username/my-model"`). + config (`dict` or `DataclassInstance`, *optional*): + Model configuration specified as a key/value dictionary or a dataclass instance. + commit_message (`str`, *optional*): + Message to commit while pushing. + private (`bool`, *optional*, defaults to `False`): + Whether the repository created should be private. + token (`str`, *optional*): + The token to use as HTTP bearer authorization for remote files. By default, it will use the token + cached when running `huggingface-cli login`. + branch (`str`, *optional*): + The git branch on which to push the model. This defaults to `"main"`. + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request from `branch` with that commit. Defaults to `False`. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are pushed. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not pushed. + delete_patterns (`List[str]` or `str`, *optional*): + If provided, remote files matching any of the patterns will be deleted from the repo. + + Returns: + The url of the commit of your model in the given repository. + """ + api = HfApi(token=token) + repo_id = api.create_repo(repo_id=repo_id, private=private, exist_ok=True).repo_id + + # Push the files to the repo in a single commit + with SoftTemporaryDirectory() as tmp: + saved_path = Path(tmp) / repo_id + self.save_pretrained(saved_path, config=config) + return api.upload_folder( + repo_id=repo_id, + repo_type="model", + folder_path=saved_path, + commit_message=commit_message, + revision=branch, + create_pr=create_pr, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + delete_patterns=delete_patterns, + ) + + def generate_model_card(self, *args, **kwargs) -> ModelCard: + card = ModelCard.from_template( + card_data=self._hub_mixin_info.model_card_data, + template_str=self._hub_mixin_info.model_card_template, + repo_url=self._hub_mixin_info.repo_url, + docs_url=self._hub_mixin_info.docs_url, + ) + return card + + +class PyTorchModelHubMixin(ModelHubMixin): + """ + Implementation of [`ModelHubMixin`] to provide model Hub upload/download capabilities to PyTorch models. The model + is set in evaluation mode by default using `model.eval()` (dropout modules are deactivated). To train the model, + you should first set it back in training mode with `model.train()`. + + See [`ModelHubMixin`] for more details on how to use the mixin. + + Example: + + ```python + >>> import torch + >>> import torch.nn as nn + >>> from huggingface_hub import PyTorchModelHubMixin + + >>> class MyModel( + ... nn.Module, + ... PyTorchModelHubMixin, + ... library_name="keras-nlp", + ... repo_url="https://github.com/keras-team/keras-nlp", + ... docs_url="https://keras.io/keras_nlp/", + ... # ^ optional metadata to generate model card + ... ): + ... def __init__(self, hidden_size: int = 512, vocab_size: int = 30000, output_size: int = 4): + ... super().__init__() + ... self.param = nn.Parameter(torch.rand(hidden_size, vocab_size)) + ... self.linear = nn.Linear(output_size, vocab_size) + + ... def forward(self, x): + ... return self.linear(x + self.param) + >>> model = MyModel(hidden_size=256) + + # Save model weights to local directory + >>> model.save_pretrained("my-awesome-model") + + # Push model weights to the Hub + >>> model.push_to_hub("my-awesome-model") + + # Download and initialize weights from the Hub + >>> model = MyModel.from_pretrained("username/my-awesome-model") + >>> model.hidden_size + 256 + ``` + """ + + def __init_subclass__(cls, *args, tags: Optional[List[str]] = None, **kwargs) -> None: + tags = tags or [] + tags.append("pytorch_model_hub_mixin") + kwargs["tags"] = tags + return super().__init_subclass__(*args, **kwargs) + + def _save_pretrained(self, save_directory: Path) -> None: + """Save weights from a Pytorch model to a local directory.""" + model_to_save = self.module if hasattr(self, "module") else self # type: ignore + save_model_as_safetensor(model_to_save, str(save_directory / SAFETENSORS_SINGLE_FILE)) + + @classmethod + def _from_pretrained( + cls, + *, + model_id: str, + revision: Optional[str], + cache_dir: Optional[Union[str, Path]], + force_download: bool, + proxies: Optional[Dict], + resume_download: Optional[bool], + local_files_only: bool, + token: Union[str, bool, None], + map_location: str = "cpu", + strict: bool = False, + **model_kwargs, + ): + """Load Pytorch pretrained weights and return the loaded model.""" + model = cls(**model_kwargs) + if os.path.isdir(model_id): + print("Loading weights from local directory") + model_file = os.path.join(model_id, SAFETENSORS_SINGLE_FILE) + return cls._load_as_safetensor(model, model_file, map_location, strict) + else: + try: + model_file = hf_hub_download( + repo_id=model_id, + filename=SAFETENSORS_SINGLE_FILE, + revision=revision, + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + resume_download=resume_download, + token=token, + local_files_only=local_files_only, + ) + return cls._load_as_safetensor(model, model_file, map_location, strict) + except EntryNotFoundError: + model_file = hf_hub_download( + repo_id=model_id, + filename=PYTORCH_WEIGHTS_NAME, + revision=revision, + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + resume_download=resume_download, + token=token, + local_files_only=local_files_only, + ) + return cls._load_as_pickle(model, model_file, map_location, strict) + + @classmethod + def _load_as_pickle(cls, model: T, model_file: str, map_location: str, strict: bool) -> T: + state_dict = torch.load(model_file, map_location=torch.device(map_location)) + model.load_state_dict(state_dict, strict=strict) # type: ignore + model.eval() # type: ignore + return model + + @classmethod + def _load_as_safetensor(cls, model: T, model_file: str, map_location: str, strict: bool) -> T: + load_model_as_safetensor(model, model_file, strict=strict) # type: ignore [arg-type] + if map_location != "cpu": + # TODO: remove this once https://github.com/huggingface/safetensors/pull/449 is merged. + logger.warning( + "Loading model weights on other devices than 'cpu' is not supported natively." + " This means that the model is loaded on 'cpu' first and then copied to the device." + " This leads to a slower loading time." + " Support for loading directly on other devices is planned to be added in future releases." + " See https://github.com/huggingface/huggingface_hub/pull/2086 for more details." + ) + model.to(map_location) # type: ignore [attr-defined] + return model + + +def _load_dataclass(datacls: Type["DataclassInstance"], data: dict) -> "DataclassInstance": + """Load a dataclass instance from a dictionary. + + Fields not expected by the dataclass are ignored. + """ + return datacls(**{k: v for k, v in data.items() if k in datacls.__dataclass_fields__}) diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference_api.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference_api.py new file mode 100644 index 0000000000000000000000000000000000000000..c889a6d8720a5242f50f81955916df3cb33357e1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference_api.py @@ -0,0 +1,217 @@ +import io +from typing import Any, Dict, List, Optional, Union + +from .constants import INFERENCE_ENDPOINT +from .hf_api import HfApi +from .utils import build_hf_headers, get_session, is_pillow_available, logging, validate_hf_hub_args +from .utils._deprecation import _deprecate_method + + +logger = logging.get_logger(__name__) + + +ALL_TASKS = [ + # NLP + "text-classification", + "token-classification", + "table-question-answering", + "question-answering", + "zero-shot-classification", + "translation", + "summarization", + "conversational", + "feature-extraction", + "text-generation", + "text2text-generation", + "fill-mask", + "sentence-similarity", + # Audio + "text-to-speech", + "automatic-speech-recognition", + "audio-to-audio", + "audio-classification", + "voice-activity-detection", + # Computer vision + "image-classification", + "object-detection", + "image-segmentation", + "text-to-image", + "image-to-image", + # Others + "tabular-classification", + "tabular-regression", +] + + +class InferenceApi: + """Client to configure requests and make calls to the HuggingFace Inference API. + + Example: + + ```python + >>> from huggingface_hub.inference_api import InferenceApi + + >>> # Mask-fill example + >>> inference = InferenceApi("bert-base-uncased") + >>> inference(inputs="The goal of life is [MASK].") + [{'sequence': 'the goal of life is life.', 'score': 0.10933292657136917, 'token': 2166, 'token_str': 'life'}] + + >>> # Question Answering example + >>> inference = InferenceApi("deepset/roberta-base-squad2") + >>> inputs = { + ... "question": "What's my name?", + ... "context": "My name is Clara and I live in Berkeley.", + ... } + >>> inference(inputs) + {'score': 0.9326569437980652, 'start': 11, 'end': 16, 'answer': 'Clara'} + + >>> # Zero-shot example + >>> inference = InferenceApi("typeform/distilbert-base-uncased-mnli") + >>> inputs = "Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!" + >>> params = {"candidate_labels": ["refund", "legal", "faq"]} + >>> inference(inputs, params) + {'sequence': 'Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!', 'labels': ['refund', 'faq', 'legal'], 'scores': [0.9378499388694763, 0.04914155602455139, 0.013008488342165947]} + + >>> # Overriding configured task + >>> inference = InferenceApi("bert-base-uncased", task="feature-extraction") + + >>> # Text-to-image + >>> inference = InferenceApi("stabilityai/stable-diffusion-2-1") + >>> inference("cat") + + + >>> # Return as raw response to parse the output yourself + >>> inference = InferenceApi("mio/amadeus") + >>> response = inference("hello world", raw_response=True) + >>> response.headers + {"Content-Type": "audio/flac", ...} + >>> response.content # raw bytes from server + b'(...)' + ``` + """ + + @validate_hf_hub_args + @_deprecate_method( + version="1.0", + message=( + "`InferenceApi` client is deprecated in favor of the more feature-complete `InferenceClient`. Check out" + " this guide to learn how to convert your script to use it:" + " https://huggingface.co/docs/huggingface_hub/guides/inference#legacy-inferenceapi-client." + ), + ) + def __init__( + self, + repo_id: str, + task: Optional[str] = None, + token: Optional[str] = None, + gpu: bool = False, + ): + """Inits headers and API call information. + + Args: + repo_id (``str``): + Id of repository (e.g. `user/bert-base-uncased`). + task (``str``, `optional`, defaults ``None``): + Whether to force a task instead of using task specified in the + repository. + token (`str`, `optional`): + The API token to use as HTTP bearer authorization. This is not + the authentication token. You can find the token in + https://huggingface.co/settings/token. Alternatively, you can + find both your organizations and personal API tokens using + `HfApi().whoami(token)`. + gpu (`bool`, `optional`, defaults `False`): + Whether to use GPU instead of CPU for inference(requires Startup + plan at least). + """ + self.options = {"wait_for_model": True, "use_gpu": gpu} + self.headers = build_hf_headers(token=token) + + # Configure task + model_info = HfApi(token=token).model_info(repo_id=repo_id) + if not model_info.pipeline_tag and not task: + raise ValueError( + "Task not specified in the repository. Please add it to the model card" + " using pipeline_tag" + " (https://huggingface.co/docs#how-is-a-models-type-of-inference-api-and-widget-determined)" + ) + + if task and task != model_info.pipeline_tag: + if task not in ALL_TASKS: + raise ValueError(f"Invalid task {task}. Make sure it's valid.") + + logger.warning( + "You're using a different task than the one specified in the" + " repository. Be sure to know what you're doing :)" + ) + self.task = task + else: + assert model_info.pipeline_tag is not None, "Pipeline tag cannot be None" + self.task = model_info.pipeline_tag + + self.api_url = f"{INFERENCE_ENDPOINT}/pipeline/{self.task}/{repo_id}" + + def __repr__(self): + # Do not add headers to repr to avoid leaking token. + return f"InferenceAPI(api_url='{self.api_url}', task='{self.task}', options={self.options})" + + def __call__( + self, + inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None, + params: Optional[Dict] = None, + data: Optional[bytes] = None, + raw_response: bool = False, + ) -> Any: + """Make a call to the Inference API. + + Args: + inputs (`str` or `Dict` or `List[str]` or `List[List[str]]`, *optional*): + Inputs for the prediction. + params (`Dict`, *optional*): + Additional parameters for the models. Will be sent as `parameters` in the + payload. + data (`bytes`, *optional*): + Bytes content of the request. In this case, leave `inputs` and `params` empty. + raw_response (`bool`, defaults to `False`): + If `True`, the raw `Response` object is returned. You can parse its content + as preferred. By default, the content is parsed into a more practical format + (json dictionary or PIL Image for example). + """ + # Build payload + payload: Dict[str, Any] = { + "options": self.options, + } + if inputs: + payload["inputs"] = inputs + if params: + payload["parameters"] = params + + # Make API call + response = get_session().post(self.api_url, headers=self.headers, json=payload, data=data) + + # Let the user handle the response + if raw_response: + return response + + # By default, parse the response for the user. + content_type = response.headers.get("Content-Type") or "" + if content_type.startswith("image"): + if not is_pillow_available(): + raise ImportError( + f"Task '{self.task}' returned as image but Pillow is not installed." + " Please install it (`pip install Pillow`) or pass" + " `raw_response=True` to get the raw `Response` object and parse" + " the image by yourself." + ) + + from PIL import Image + + return Image.open(io.BytesIO(response.content)) + elif content_type == "application/json": + return response.json() + else: + raise NotImplementedError( + f"{content_type} output type is not implemented yet. You can pass" + " `raw_response=True` to get the raw `Response` object and parse the" + " output by yourself." + ) diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/keras_mixin.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/keras_mixin.py new file mode 100644 index 0000000000000000000000000000000000000000..e1c9e09fac0b04aeba4542ded308888511bc0f6e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/keras_mixin.py @@ -0,0 +1,499 @@ +import collections.abc as collections +import json +import os +import warnings +from functools import wraps +from pathlib import Path +from shutil import copytree +from typing import Any, Dict, List, Optional, Union + +from huggingface_hub import ModelHubMixin, snapshot_download +from huggingface_hub.utils import ( + get_tf_version, + is_graphviz_available, + is_pydot_available, + is_tf_available, + yaml_dump, +) + +from .constants import CONFIG_NAME +from .hf_api import HfApi +from .utils import SoftTemporaryDirectory, logging, validate_hf_hub_args +from .utils._typing import CallableT + + +logger = logging.get_logger(__name__) + +keras = None +if is_tf_available(): + # Depending on which version of TensorFlow is installed, we need to import + # keras from the correct location. + # See https://github.com/tensorflow/tensorflow/releases/tag/v2.16.1. + # Note: saving a keras model only works with Keras<3.0. + try: + import tf_keras as keras # type: ignore + except ImportError: + import tensorflow as tf # type: ignore + + keras = tf.keras + + +def _requires_keras_2_model(fn: CallableT) -> CallableT: + # Wrapper to raise if user tries to save a Keras 3.x model + @wraps(fn) + def _inner(model, *args, **kwargs): + if not hasattr(model, "history"): # hacky way to check if model is Keras 2.x + raise NotImplementedError( + f"Cannot use '{fn.__name__}': Keras 3.x is not supported." + " Please save models manually and upload them using `upload_folder` or `huggingface-cli upload`." + ) + return fn(model, *args, **kwargs) + + return _inner # type: ignore [return-value] + + +def _flatten_dict(dictionary, parent_key=""): + """Flatten a nested dictionary. + Reference: https://stackoverflow.com/a/6027615/10319735 + + Args: + dictionary (`dict`): + The nested dictionary to be flattened. + parent_key (`str`): + The parent key to be prefixed to the children keys. + Necessary for recursing over the nested dictionary. + + Returns: + The flattened dictionary. + """ + items = [] + for key, value in dictionary.items(): + new_key = f"{parent_key}.{key}" if parent_key else key + if isinstance(value, collections.MutableMapping): + items.extend( + _flatten_dict( + value, + new_key, + ).items() + ) + else: + items.append((new_key, value)) + return dict(items) + + +def _create_hyperparameter_table(model): + """Parse hyperparameter dictionary into a markdown table.""" + table = None + if model.optimizer is not None: + optimizer_params = model.optimizer.get_config() + # flatten the configuration + optimizer_params = _flatten_dict(optimizer_params) + optimizer_params["training_precision"] = keras.mixed_precision.global_policy().name + table = "| Hyperparameters | Value |\n| :-- | :-- |\n" + for key, value in optimizer_params.items(): + table += f"| {key} | {value} |\n" + return table + + +def _plot_network(model, save_directory): + keras.utils.plot_model( + model, + to_file=f"{save_directory}/model.png", + show_shapes=False, + show_dtype=False, + show_layer_names=True, + rankdir="TB", + expand_nested=False, + dpi=96, + layer_range=None, + ) + + +def _create_model_card( + model, + repo_dir: Path, + plot_model: bool = True, + metadata: Optional[dict] = None, +): + """ + Creates a model card for the repository. + + Do not overwrite an existing README.md file. + """ + readme_path = repo_dir / "README.md" + if readme_path.exists(): + return + + hyperparameters = _create_hyperparameter_table(model) + if plot_model and is_graphviz_available() and is_pydot_available(): + _plot_network(model, repo_dir) + if metadata is None: + metadata = {} + metadata["library_name"] = "keras" + model_card: str = "---\n" + model_card += yaml_dump(metadata, default_flow_style=False) + model_card += "---\n" + model_card += "\n## Model description\n\nMore information needed\n" + model_card += "\n## Intended uses & limitations\n\nMore information needed\n" + model_card += "\n## Training and evaluation data\n\nMore information needed\n" + if hyperparameters is not None: + model_card += "\n## Training procedure\n" + model_card += "\n### Training hyperparameters\n" + model_card += "\nThe following hyperparameters were used during training:\n\n" + model_card += hyperparameters + model_card += "\n" + if plot_model and os.path.exists(f"{repo_dir}/model.png"): + model_card += "\n ## Model Plot\n" + model_card += "\n
" + model_card += "\nView Model Plot\n" + path_to_plot = "./model.png" + model_card += f"\n![Model Image]({path_to_plot})\n" + model_card += "\n
" + + readme_path.write_text(model_card) + + +@_requires_keras_2_model +def save_pretrained_keras( + model, + save_directory: Union[str, Path], + config: Optional[Dict[str, Any]] = None, + include_optimizer: bool = False, + plot_model: bool = True, + tags: Optional[Union[list, str]] = None, + **model_save_kwargs, +): + """ + Saves a Keras model to save_directory in SavedModel format. Use this if + you're using the Functional or Sequential APIs. + + Args: + model (`Keras.Model`): + The [Keras + model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) + you'd like to save. The model must be compiled and built. + save_directory (`str` or `Path`): + Specify directory in which you want to save the Keras model. + config (`dict`, *optional*): + Configuration object to be saved alongside the model weights. + include_optimizer(`bool`, *optional*, defaults to `False`): + Whether or not to include optimizer in serialization. + plot_model (`bool`, *optional*, defaults to `True`): + Setting this to `True` will plot the model and put it in the model + card. Requires graphviz and pydot to be installed. + tags (Union[`str`,`list`], *optional*): + List of tags that are related to model or string of a single tag. See example tags + [here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1). + model_save_kwargs(`dict`, *optional*): + model_save_kwargs will be passed to + [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model). + """ + if keras is None: + raise ImportError("Called a Tensorflow-specific function but could not import it.") + + if not model.built: + raise ValueError("Model should be built before trying to save") + + save_directory = Path(save_directory) + save_directory.mkdir(parents=True, exist_ok=True) + + # saving config + if config: + if not isinstance(config, dict): + raise RuntimeError(f"Provided config to save_pretrained_keras should be a dict. Got: '{type(config)}'") + + with (save_directory / CONFIG_NAME).open("w") as f: + json.dump(config, f) + + metadata = {} + if isinstance(tags, list): + metadata["tags"] = tags + elif isinstance(tags, str): + metadata["tags"] = [tags] + + task_name = model_save_kwargs.pop("task_name", None) + if task_name is not None: + warnings.warn( + "`task_name` input argument is deprecated. Pass `tags` instead.", + FutureWarning, + ) + if "tags" in metadata: + metadata["tags"].append(task_name) + else: + metadata["tags"] = [task_name] + + if model.history is not None: + if model.history.history != {}: + path = save_directory / "history.json" + if path.exists(): + warnings.warn( + "`history.json` file already exists, it will be overwritten by the history of this version.", + UserWarning, + ) + with path.open("w", encoding="utf-8") as f: + json.dump(model.history.history, f, indent=2, sort_keys=True) + + _create_model_card(model, save_directory, plot_model, metadata) + keras.models.save_model(model, save_directory, include_optimizer=include_optimizer, **model_save_kwargs) + + +def from_pretrained_keras(*args, **kwargs) -> "KerasModelHubMixin": + r""" + Instantiate a pretrained Keras model from a pre-trained model from the Hub. + The model is expected to be in `SavedModel` format. + + Args: + pretrained_model_name_or_path (`str` or `os.PathLike`): + Can be either: + - A string, the `model id` of a pretrained model hosted inside a + model repo on huggingface.co. Valid model ids can be located + at the root-level, like `bert-base-uncased`, or namespaced + under a user or organization name, like + `dbmdz/bert-base-german-cased`. + - You can add `revision` by appending `@` at the end of model_id + simply like this: `dbmdz/bert-base-german-cased@main` Revision + is the specific model version to use. It can be a branch name, + a tag name, or a commit id, since we use a git-based system + for storing models and other artifacts on huggingface.co, so + `revision` can be any identifier allowed by git. + - A path to a `directory` containing model weights saved using + [`~transformers.PreTrainedModel.save_pretrained`], e.g., + `./my_model_directory/`. + - `None` if you are both providing the configuration and state + dictionary (resp. with keyword arguments `config` and + `state_dict`). + force_download (`bool`, *optional*, defaults to `False`): + Whether to force the (re-)download of the model weights and + configuration files, overriding the cached versions if they exist. + proxies (`Dict[str, str]`, *optional*): + A dictionary of proxy servers to use by protocol or endpoint, e.g., + `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The + proxies are used on each request. + token (`str` or `bool`, *optional*): + The token to use as HTTP bearer authorization for remote files. If + `True`, will use the token generated when running `transformers-cli + login` (stored in `~/.huggingface`). + cache_dir (`Union[str, os.PathLike]`, *optional*): + Path to a directory in which a downloaded pretrained model + configuration should be cached if the standard cache should not be + used. + local_files_only(`bool`, *optional*, defaults to `False`): + Whether to only look at local files (i.e., do not try to download + the model). + model_kwargs (`Dict`, *optional*): + model_kwargs will be passed to the model during initialization + + + + Passing `token=True` is required when you want to use a private + model. + + + """ + return KerasModelHubMixin.from_pretrained(*args, **kwargs) + + +@validate_hf_hub_args +@_requires_keras_2_model +def push_to_hub_keras( + model, + repo_id: str, + *, + config: Optional[dict] = None, + commit_message: str = "Push Keras model using huggingface_hub.", + private: bool = False, + api_endpoint: Optional[str] = None, + token: Optional[str] = None, + branch: Optional[str] = None, + create_pr: Optional[bool] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + log_dir: Optional[str] = None, + include_optimizer: bool = False, + tags: Optional[Union[list, str]] = None, + plot_model: bool = True, + **model_save_kwargs, +): + """ + Upload model checkpoint to the Hub. + + Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use + `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more + details. + + Args: + model (`Keras.Model`): + The [Keras model](`https://www.tensorflow.org/api_docs/python/tf/keras/Model`) you'd like to push to the + Hub. The model must be compiled and built. + repo_id (`str`): + ID of the repository to push to (example: `"username/my-model"`). + commit_message (`str`, *optional*, defaults to "Add Keras model"): + Message to commit while pushing. + private (`bool`, *optional*, defaults to `False`): + Whether the repository created should be private. + api_endpoint (`str`, *optional*): + The API endpoint to use when pushing the model to the hub. + token (`str`, *optional*): + The token to use as HTTP bearer authorization for remote files. If + not set, will use the token set when logging in with + `huggingface-cli login` (stored in `~/.huggingface`). + branch (`str`, *optional*): + The git branch on which to push the model. This defaults to + the default branch as specified in your repository, which + defaults to `"main"`. + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request from `branch` with that commit. + Defaults to `False`. + config (`dict`, *optional*): + Configuration object to be saved alongside the model weights. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are pushed. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not pushed. + delete_patterns (`List[str]` or `str`, *optional*): + If provided, remote files matching any of the patterns will be deleted from the repo. + log_dir (`str`, *optional*): + TensorBoard logging directory to be pushed. The Hub automatically + hosts and displays a TensorBoard instance if log files are included + in the repository. + include_optimizer (`bool`, *optional*, defaults to `False`): + Whether or not to include optimizer during serialization. + tags (Union[`list`, `str`], *optional*): + List of tags that are related to model or string of a single tag. See example tags + [here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1). + plot_model (`bool`, *optional*, defaults to `True`): + Setting this to `True` will plot the model and put it in the model + card. Requires graphviz and pydot to be installed. + model_save_kwargs(`dict`, *optional*): + model_save_kwargs will be passed to + [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model). + + Returns: + The url of the commit of your model in the given repository. + """ + api = HfApi(endpoint=api_endpoint) + repo_id = api.create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True).repo_id + + # Push the files to the repo in a single commit + with SoftTemporaryDirectory() as tmp: + saved_path = Path(tmp) / repo_id + save_pretrained_keras( + model, + saved_path, + config=config, + include_optimizer=include_optimizer, + tags=tags, + plot_model=plot_model, + **model_save_kwargs, + ) + + # If `log_dir` provided, delete remote logs and upload new ones + if log_dir is not None: + delete_patterns = ( + [] + if delete_patterns is None + else ( + [delete_patterns] # convert `delete_patterns` to a list + if isinstance(delete_patterns, str) + else delete_patterns + ) + ) + delete_patterns.append("logs/*") + copytree(log_dir, saved_path / "logs") + + return api.upload_folder( + repo_type="model", + repo_id=repo_id, + folder_path=saved_path, + commit_message=commit_message, + token=token, + revision=branch, + create_pr=create_pr, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + delete_patterns=delete_patterns, + ) + + +class KerasModelHubMixin(ModelHubMixin): + """ + Implementation of [`ModelHubMixin`] to provide model Hub upload/download + capabilities to Keras models. + + + ```python + >>> import tensorflow as tf + >>> from huggingface_hub import KerasModelHubMixin + + + >>> class MyModel(tf.keras.Model, KerasModelHubMixin): + ... def __init__(self, **kwargs): + ... super().__init__() + ... self.config = kwargs.pop("config", None) + ... self.dummy_inputs = ... + ... self.layer = ... + + ... def call(self, *args): + ... return ... + + + >>> # Initialize and compile the model as you normally would + >>> model = MyModel() + >>> model.compile(...) + >>> # Build the graph by training it or passing dummy inputs + >>> _ = model(model.dummy_inputs) + >>> # Save model weights to local directory + >>> model.save_pretrained("my-awesome-model") + >>> # Push model weights to the Hub + >>> model.push_to_hub("my-awesome-model") + >>> # Download and initialize weights from the Hub + >>> model = MyModel.from_pretrained("username/super-cool-model") + ``` + """ + + def _save_pretrained(self, save_directory): + save_pretrained_keras(self, save_directory) + + @classmethod + def _from_pretrained( + cls, + model_id, + revision, + cache_dir, + force_download, + proxies, + resume_download, + local_files_only, + token, + config: Optional[Dict[str, Any]] = None, + **model_kwargs, + ): + """Here we just call [`from_pretrained_keras`] function so both the mixin and + functional APIs stay in sync. + + TODO - Some args above aren't used since we are calling + snapshot_download instead of hf_hub_download. + """ + if keras is None: + raise ImportError("Called a TensorFlow-specific function but could not import it.") + + # Root is either a local filepath matching model_id or a cached snapshot + if not os.path.isdir(model_id): + storage_folder = snapshot_download( + repo_id=model_id, + revision=revision, + cache_dir=cache_dir, + library_name="keras", + library_version=get_tf_version(), + ) + else: + storage_folder = model_id + + # TODO: change this in a future PR. We are not returning a KerasModelHubMixin instance here... + model = keras.models.load_model(storage_folder) + + # For now, we add a new attribute, config, to store the config loaded from the hub/a local dir. + model.config = config + + return model diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/lfs.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/lfs.py new file mode 100644 index 0000000000000000000000000000000000000000..f4322e2ab3de9127a87981064e10be35a27446fc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/lfs.py @@ -0,0 +1,549 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Git LFS related type definitions and utilities""" + +import inspect +import io +import os +import re +import warnings +from contextlib import AbstractContextManager +from dataclasses import dataclass +from math import ceil +from os.path import getsize +from pathlib import Path +from typing import TYPE_CHECKING, BinaryIO, Dict, Iterable, List, Optional, Tuple, TypedDict +from urllib.parse import unquote + +from huggingface_hub.constants import ENDPOINT, HF_HUB_ENABLE_HF_TRANSFER, REPO_TYPES_URL_PREFIXES + +from .utils import ( + build_hf_headers, + fix_hf_endpoint_in_url, + get_session, + hf_raise_for_status, + http_backoff, + logging, + tqdm, + validate_hf_hub_args, +) +from .utils.sha import sha256, sha_fileobj + + +if TYPE_CHECKING: + from ._commit_api import CommitOperationAdd + +logger = logging.get_logger(__name__) + +OID_REGEX = re.compile(r"^[0-9a-f]{40}$") + +LFS_MULTIPART_UPLOAD_COMMAND = "lfs-multipart-upload" + +LFS_HEADERS = { + "Accept": "application/vnd.git-lfs+json", + "Content-Type": "application/vnd.git-lfs+json", +} + + +@dataclass +class UploadInfo: + """ + Dataclass holding required information to determine whether a blob + should be uploaded to the hub using the LFS protocol or the regular protocol + + Args: + sha256 (`bytes`): + SHA256 hash of the blob + size (`int`): + Size in bytes of the blob + sample (`bytes`): + First 512 bytes of the blob + """ + + sha256: bytes + size: int + sample: bytes + + @classmethod + def from_path(cls, path: str): + size = getsize(path) + with io.open(path, "rb") as file: + sample = file.peek(512)[:512] + sha = sha_fileobj(file) + return cls(size=size, sha256=sha, sample=sample) + + @classmethod + def from_bytes(cls, data: bytes): + sha = sha256(data).digest() + return cls(size=len(data), sample=data[:512], sha256=sha) + + @classmethod + def from_fileobj(cls, fileobj: BinaryIO): + sample = fileobj.read(512) + fileobj.seek(0, io.SEEK_SET) + sha = sha_fileobj(fileobj) + size = fileobj.tell() + fileobj.seek(0, io.SEEK_SET) + return cls(size=size, sha256=sha, sample=sample) + + +@validate_hf_hub_args +def post_lfs_batch_info( + upload_infos: Iterable[UploadInfo], + token: Optional[str], + repo_type: str, + repo_id: str, + revision: Optional[str] = None, + endpoint: Optional[str] = None, + headers: Optional[Dict[str, str]] = None, +) -> Tuple[List[dict], List[dict]]: + """ + Requests the LFS batch endpoint to retrieve upload instructions + + Learn more: https://github.com/git-lfs/git-lfs/blob/main/docs/api/batch.md + + Args: + upload_infos (`Iterable` of `UploadInfo`): + `UploadInfo` for the files that are being uploaded, typically obtained + from `CommitOperationAdd.upload_info` + repo_type (`str`): + Type of the repo to upload to: `"model"`, `"dataset"` or `"space"`. + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + revision (`str`, *optional*): + The git revision to upload to. + headers (`dict`, *optional*): + Additional headers to include in the request + + Returns: + `LfsBatchInfo`: 2-tuple: + - First element is the list of upload instructions from the server + - Second element is an list of errors, if any + + Raises: + `ValueError`: If an argument is invalid or the server response is malformed + + `HTTPError`: If the server returned an error + """ + endpoint = endpoint if endpoint is not None else ENDPOINT + url_prefix = "" + if repo_type in REPO_TYPES_URL_PREFIXES: + url_prefix = REPO_TYPES_URL_PREFIXES[repo_type] + batch_url = f"{endpoint}/{url_prefix}{repo_id}.git/info/lfs/objects/batch" + payload: Dict = { + "operation": "upload", + "transfers": ["basic", "multipart"], + "objects": [ + { + "oid": upload.sha256.hex(), + "size": upload.size, + } + for upload in upload_infos + ], + "hash_algo": "sha256", + } + if revision is not None: + payload["ref"] = {"name": unquote(revision)} # revision has been previously 'quoted' + + headers = { + **LFS_HEADERS, + **build_hf_headers(token=token), + **(headers or {}), + } + resp = get_session().post(batch_url, headers=headers, json=payload) + hf_raise_for_status(resp) + batch_info = resp.json() + + objects = batch_info.get("objects", None) + if not isinstance(objects, list): + raise ValueError("Malformed response from server") + + return ( + [_validate_batch_actions(obj) for obj in objects if "error" not in obj], + [_validate_batch_error(obj) for obj in objects if "error" in obj], + ) + + +class PayloadPartT(TypedDict): + partNumber: int + etag: str + + +class CompletionPayloadT(TypedDict): + """Payload that will be sent to the Hub when uploading multi-part.""" + + oid: str + parts: List[PayloadPartT] + + +def lfs_upload( + operation: "CommitOperationAdd", + lfs_batch_action: Dict, + token: Optional[str] = None, + headers: Optional[Dict[str, str]] = None, + endpoint: Optional[str] = None, +) -> None: + """ + Handles uploading a given object to the Hub with the LFS protocol. + + Can be a No-op if the content of the file is already present on the hub large file storage. + + Args: + operation (`CommitOperationAdd`): + The add operation triggering this upload. + lfs_batch_action (`dict`): + Upload instructions from the LFS batch endpoint for this object. See [`~utils.lfs.post_lfs_batch_info`] for + more details. + headers (`dict`, *optional*): + Headers to include in the request, including authentication and user agent headers. + + Raises: + - `ValueError` if `lfs_batch_action` is improperly formatted + - `HTTPError` if the upload resulted in an error + """ + # 0. If LFS file is already present, skip upload + _validate_batch_actions(lfs_batch_action) + actions = lfs_batch_action.get("actions") + if actions is None: + # The file was already uploaded + logger.debug(f"Content of file {operation.path_in_repo} is already present upstream - skipping upload") + return + + # 1. Validate server response (check required keys in dict) + upload_action = lfs_batch_action["actions"]["upload"] + _validate_lfs_action(upload_action) + verify_action = lfs_batch_action["actions"].get("verify") + if verify_action is not None: + _validate_lfs_action(verify_action) + + # 2. Upload file (either single part or multi-part) + header = upload_action.get("header", {}) + chunk_size = header.get("chunk_size") + upload_url = fix_hf_endpoint_in_url(upload_action["href"], endpoint=endpoint) + if chunk_size is not None: + try: + chunk_size = int(chunk_size) + except (ValueError, TypeError): + raise ValueError( + f"Malformed response from LFS batch endpoint: `chunk_size` should be an integer. Got '{chunk_size}'." + ) + _upload_multi_part(operation=operation, header=header, chunk_size=chunk_size, upload_url=upload_url) + else: + _upload_single_part(operation=operation, upload_url=upload_url) + + # 3. Verify upload went well + if verify_action is not None: + _validate_lfs_action(verify_action) + verify_url = fix_hf_endpoint_in_url(verify_action["href"], endpoint) + verify_resp = get_session().post( + verify_url, + headers=build_hf_headers(token=token, headers=headers), + json={"oid": operation.upload_info.sha256.hex(), "size": operation.upload_info.size}, + ) + hf_raise_for_status(verify_resp) + logger.debug(f"{operation.path_in_repo}: Upload successful") + + +def _validate_lfs_action(lfs_action: dict): + """validates response from the LFS batch endpoint""" + if not ( + isinstance(lfs_action.get("href"), str) + and (lfs_action.get("header") is None or isinstance(lfs_action.get("header"), dict)) + ): + raise ValueError("lfs_action is improperly formatted") + return lfs_action + + +def _validate_batch_actions(lfs_batch_actions: dict): + """validates response from the LFS batch endpoint""" + if not (isinstance(lfs_batch_actions.get("oid"), str) and isinstance(lfs_batch_actions.get("size"), int)): + raise ValueError("lfs_batch_actions is improperly formatted") + + upload_action = lfs_batch_actions.get("actions", {}).get("upload") + verify_action = lfs_batch_actions.get("actions", {}).get("verify") + if upload_action is not None: + _validate_lfs_action(upload_action) + if verify_action is not None: + _validate_lfs_action(verify_action) + return lfs_batch_actions + + +def _validate_batch_error(lfs_batch_error: dict): + """validates response from the LFS batch endpoint""" + if not (isinstance(lfs_batch_error.get("oid"), str) and isinstance(lfs_batch_error.get("size"), int)): + raise ValueError("lfs_batch_error is improperly formatted") + error_info = lfs_batch_error.get("error") + if not ( + isinstance(error_info, dict) + and isinstance(error_info.get("message"), str) + and isinstance(error_info.get("code"), int) + ): + raise ValueError("lfs_batch_error is improperly formatted") + return lfs_batch_error + + +def _upload_single_part(operation: "CommitOperationAdd", upload_url: str) -> None: + """ + Uploads `fileobj` as a single PUT HTTP request (basic LFS transfer protocol) + + Args: + upload_url (`str`): + The URL to PUT the file to. + fileobj: + The file-like object holding the data to upload. + + Returns: `requests.Response` + + Raises: `requests.HTTPError` if the upload resulted in an error + """ + with operation.as_file(with_tqdm=True) as fileobj: + # S3 might raise a transient 500 error -> let's retry if that happens + response = http_backoff("PUT", upload_url, data=fileobj, retry_on_status_codes=(500, 502, 503, 504)) + hf_raise_for_status(response) + + +def _upload_multi_part(operation: "CommitOperationAdd", header: Dict, chunk_size: int, upload_url: str) -> None: + """ + Uploads file using HF multipart LFS transfer protocol. + """ + # 1. Get upload URLs for each part + sorted_parts_urls = _get_sorted_parts_urls(header=header, upload_info=operation.upload_info, chunk_size=chunk_size) + + # 2. Upload parts (either with hf_transfer or in pure Python) + use_hf_transfer = HF_HUB_ENABLE_HF_TRANSFER + if ( + HF_HUB_ENABLE_HF_TRANSFER + and not isinstance(operation.path_or_fileobj, str) + and not isinstance(operation.path_or_fileobj, Path) + ): + warnings.warn( + "hf_transfer is enabled but does not support uploading from bytes or BinaryIO, falling back to regular" + " upload" + ) + use_hf_transfer = False + + response_headers = ( + _upload_parts_hf_transfer(operation=operation, sorted_parts_urls=sorted_parts_urls, chunk_size=chunk_size) + if use_hf_transfer + else _upload_parts_iteratively(operation=operation, sorted_parts_urls=sorted_parts_urls, chunk_size=chunk_size) + ) + + # 3. Send completion request + completion_res = get_session().post( + upload_url, + json=_get_completion_payload(response_headers, operation.upload_info.sha256.hex()), + headers=LFS_HEADERS, + ) + hf_raise_for_status(completion_res) + + +def _get_sorted_parts_urls(header: Dict, upload_info: UploadInfo, chunk_size: int) -> List[str]: + sorted_part_upload_urls = [ + upload_url + for _, upload_url in sorted( + [ + (int(part_num, 10), upload_url) + for part_num, upload_url in header.items() + if part_num.isdigit() and len(part_num) > 0 + ], + key=lambda t: t[0], + ) + ] + num_parts = len(sorted_part_upload_urls) + if num_parts != ceil(upload_info.size / chunk_size): + raise ValueError("Invalid server response to upload large LFS file") + return sorted_part_upload_urls + + +def _get_completion_payload(response_headers: List[Dict], oid: str) -> CompletionPayloadT: + parts: List[PayloadPartT] = [] + for part_number, header in enumerate(response_headers): + etag = header.get("etag") + if etag is None or etag == "": + raise ValueError(f"Invalid etag (`{etag}`) returned for part {part_number + 1}") + parts.append( + { + "partNumber": part_number + 1, + "etag": etag, + } + ) + return {"oid": oid, "parts": parts} + + +def _upload_parts_iteratively( + operation: "CommitOperationAdd", sorted_parts_urls: List[str], chunk_size: int +) -> List[Dict]: + headers = [] + with operation.as_file(with_tqdm=True) as fileobj: + for part_idx, part_upload_url in enumerate(sorted_parts_urls): + with SliceFileObj( + fileobj, + seek_from=chunk_size * part_idx, + read_limit=chunk_size, + ) as fileobj_slice: + # S3 might raise a transient 500 error -> let's retry if that happens + part_upload_res = http_backoff( + "PUT", part_upload_url, data=fileobj_slice, retry_on_status_codes=(500, 502, 503, 504) + ) + hf_raise_for_status(part_upload_res) + headers.append(part_upload_res.headers) + return headers # type: ignore + + +def _upload_parts_hf_transfer( + operation: "CommitOperationAdd", sorted_parts_urls: List[str], chunk_size: int +) -> List[Dict]: + # Upload file using an external Rust-based package. Upload is faster but support less features (no progress bars). + try: + from hf_transfer import multipart_upload + except ImportError: + raise ValueError( + "Fast uploading using 'hf_transfer' is enabled (HF_HUB_ENABLE_HF_TRANSFER=1) but 'hf_transfer' package is" + " not available in your environment. Try `pip install hf_transfer`." + ) + + supports_callback = "callback" in inspect.signature(multipart_upload).parameters + if not supports_callback: + warnings.warn( + "You are using an outdated version of `hf_transfer`. Consider upgrading to latest version to enable progress bars using `pip install -U hf_transfer`." + ) + + total = operation.upload_info.size + desc = operation.path_in_repo + if len(desc) > 40: + desc = f"(…){desc[-40:]}" + + # set `disable=None` rather than `disable=False` by default to disable progress bar when no TTY attached + # see https://github.com/huggingface/huggingface_hub/pull/2000 + disable = True if (logger.getEffectiveLevel() == logging.NOTSET) else None + + with tqdm( + unit="B", + unit_scale=True, + total=total, + initial=0, + desc=desc, + disable=disable, + name="huggingface_hub.lfs_upload", + ) as progress: + try: + output = multipart_upload( + file_path=operation.path_or_fileobj, + parts_urls=sorted_parts_urls, + chunk_size=chunk_size, + max_files=128, + parallel_failures=127, # could be removed + max_retries=5, + **({"callback": progress.update} if supports_callback else {}), + ) + except Exception as e: + raise RuntimeError( + "An error occurred while uploading using `hf_transfer`. Consider disabling HF_HUB_ENABLE_HF_TRANSFER for" + " better error handling." + ) from e + if not supports_callback: + progress.update(total) + return output + + +class SliceFileObj(AbstractContextManager): + """ + Utility context manager to read a *slice* of a seekable file-like object as a seekable, file-like object. + + This is NOT thread safe + + Inspired by stackoverflow.com/a/29838711/593036 + + Credits to @julien-c + + Args: + fileobj (`BinaryIO`): + A file-like object to slice. MUST implement `tell()` and `seek()` (and `read()` of course). + `fileobj` will be reset to its original position when exiting the context manager. + seek_from (`int`): + The start of the slice (offset from position 0 in bytes). + read_limit (`int`): + The maximum number of bytes to read from the slice. + + Attributes: + previous_position (`int`): + The previous position + + Examples: + + Reading 200 bytes with an offset of 128 bytes from a file (ie bytes 128 to 327): + ```python + >>> with open("path/to/file", "rb") as file: + ... with SliceFileObj(file, seek_from=128, read_limit=200) as fslice: + ... fslice.read(...) + ``` + + Reading a file in chunks of 512 bytes + ```python + >>> import os + >>> chunk_size = 512 + >>> file_size = os.getsize("path/to/file") + >>> with open("path/to/file", "rb") as file: + ... for chunk_idx in range(ceil(file_size / chunk_size)): + ... with SliceFileObj(file, seek_from=chunk_idx * chunk_size, read_limit=chunk_size) as fslice: + ... chunk = fslice.read(...) + + ``` + """ + + def __init__(self, fileobj: BinaryIO, seek_from: int, read_limit: int): + self.fileobj = fileobj + self.seek_from = seek_from + self.read_limit = read_limit + + def __enter__(self): + self._previous_position = self.fileobj.tell() + end_of_stream = self.fileobj.seek(0, os.SEEK_END) + self._len = min(self.read_limit, end_of_stream - self.seek_from) + # ^^ The actual number of bytes that can be read from the slice + self.fileobj.seek(self.seek_from, io.SEEK_SET) + return self + + def __exit__(self, exc_type, exc_value, traceback): + self.fileobj.seek(self._previous_position, io.SEEK_SET) + + def read(self, n: int = -1): + pos = self.tell() + if pos >= self._len: + return b"" + remaining_amount = self._len - pos + data = self.fileobj.read(remaining_amount if n < 0 else min(n, remaining_amount)) + return data + + def tell(self) -> int: + return self.fileobj.tell() - self.seek_from + + def seek(self, offset: int, whence: int = os.SEEK_SET) -> int: + start = self.seek_from + end = start + self._len + if whence in (os.SEEK_SET, os.SEEK_END): + offset = start + offset if whence == os.SEEK_SET else end + offset + offset = max(start, min(offset, end)) + whence = os.SEEK_SET + elif whence == os.SEEK_CUR: + cur_pos = self.fileobj.tell() + offset = max(start - cur_pos, min(offset, end - cur_pos)) + else: + raise ValueError(f"whence value {whence} is not supported") + return self.fileobj.seek(offset, whence) - self.seek_from + + def __iter__(self): + yield self.read(n=4 * 1024 * 1024) diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/repocard.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/repocard.py new file mode 100644 index 0000000000000000000000000000000000000000..2ea7fc136cef1e9d78d3c4f44b1516a1ebe64158 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/repocard.py @@ -0,0 +1,828 @@ +import os +import re +from pathlib import Path +from typing import Any, Dict, Literal, Optional, Type, Union + +import requests +import yaml + +from huggingface_hub.file_download import hf_hub_download +from huggingface_hub.hf_api import upload_file +from huggingface_hub.repocard_data import ( + CardData, + DatasetCardData, + EvalResult, + ModelCardData, + SpaceCardData, + eval_results_to_model_index, + model_index_to_eval_results, +) +from huggingface_hub.utils import get_session, is_jinja_available, yaml_dump + +from .constants import REPOCARD_NAME +from .utils import EntryNotFoundError, SoftTemporaryDirectory, logging, validate_hf_hub_args + + +logger = logging.get_logger(__name__) + + +TEMPLATE_MODELCARD_PATH = Path(__file__).parent / "templates" / "modelcard_template.md" +TEMPLATE_DATASETCARD_PATH = Path(__file__).parent / "templates" / "datasetcard_template.md" + +# exact same regex as in the Hub server. Please keep in sync. +# See https://github.com/huggingface/moon-landing/blob/main/server/lib/ViewMarkdown.ts#L18 +REGEX_YAML_BLOCK = re.compile(r"^(\s*---[\r\n]+)([\S\s]*?)([\r\n]+---(\r\n|\n|$))") + + +class RepoCard: + card_data_class = CardData + default_template_path = TEMPLATE_MODELCARD_PATH + repo_type = "model" + + def __init__(self, content: str, ignore_metadata_errors: bool = False): + """Initialize a RepoCard from string content. The content should be a + Markdown file with a YAML block at the beginning and a Markdown body. + + Args: + content (`str`): The content of the Markdown file. + + Example: + ```python + >>> from huggingface_hub.repocard import RepoCard + >>> text = ''' + ... --- + ... language: en + ... license: mit + ... --- + ... + ... # My repo + ... ''' + >>> card = RepoCard(text) + >>> card.data.to_dict() + {'language': 'en', 'license': 'mit'} + >>> card.text + '\\n# My repo\\n' + + ``` + + Raises the following error: + + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + when the content of the repo card metadata is not a dictionary. + + + """ + + # Set the content of the RepoCard, as well as underlying .data and .text attributes. + # See the `content` property setter for more details. + self.ignore_metadata_errors = ignore_metadata_errors + self.content = content + + @property + def content(self): + """The content of the RepoCard, including the YAML block and the Markdown body.""" + line_break = _detect_line_ending(self._content) or "\n" + return f"---{line_break}{self.data.to_yaml(line_break=line_break)}{line_break}---{line_break}{self.text}" + + @content.setter + def content(self, content: str): + """Set the content of the RepoCard.""" + self._content = content + + match = REGEX_YAML_BLOCK.search(content) + if match: + # Metadata found in the YAML block + yaml_block = match.group(2) + self.text = content[match.end() :] + data_dict = yaml.safe_load(yaml_block) + + if data_dict is None: + data_dict = {} + + # The YAML block's data should be a dictionary + if not isinstance(data_dict, dict): + raise ValueError("repo card metadata block should be a dict") + else: + # Model card without metadata... create empty metadata + logger.warning("Repo card metadata block was not found. Setting CardData to empty.") + data_dict = {} + self.text = content + + self.data = self.card_data_class(**data_dict, ignore_metadata_errors=self.ignore_metadata_errors) + + def __str__(self): + return self.content + + def save(self, filepath: Union[Path, str]): + r"""Save a RepoCard to a file. + + Args: + filepath (`Union[Path, str]`): Filepath to the markdown file to save. + + Example: + ```python + >>> from huggingface_hub.repocard import RepoCard + >>> card = RepoCard("---\nlanguage: en\n---\n# This is a test repo card") + >>> card.save("/tmp/test.md") + + ``` + """ + filepath = Path(filepath) + filepath.parent.mkdir(parents=True, exist_ok=True) + # Preserve newlines as in the existing file. + with open(filepath, mode="w", newline="", encoding="utf-8") as f: + f.write(str(self)) + + @classmethod + def load( + cls, + repo_id_or_path: Union[str, Path], + repo_type: Optional[str] = None, + token: Optional[str] = None, + ignore_metadata_errors: bool = False, + ): + """Initialize a RepoCard from a Hugging Face Hub repo's README.md or a local filepath. + + Args: + repo_id_or_path (`Union[str, Path]`): + The repo ID associated with a Hugging Face Hub repo or a local filepath. + repo_type (`str`, *optional*): + The type of Hugging Face repo to push to. Defaults to None, which will use use "model". Other options + are "dataset" and "space". Not used when loading from a local filepath. If this is called from a child + class, the default value will be the child class's `repo_type`. + token (`str`, *optional*): + Authentication token, obtained with `huggingface_hub.HfApi.login` method. Will default to the stored token. + ignore_metadata_errors (`str`): + If True, errors while parsing the metadata section will be ignored. Some information might be lost during + the process. Use it at your own risk. + + Returns: + [`huggingface_hub.repocard.RepoCard`]: The RepoCard (or subclass) initialized from the repo's + README.md file or filepath. + + Example: + ```python + >>> from huggingface_hub.repocard import RepoCard + >>> card = RepoCard.load("nateraw/food") + >>> assert card.data.tags == ["generated_from_trainer", "image-classification", "pytorch"] + + ``` + """ + + if Path(repo_id_or_path).exists(): + card_path = Path(repo_id_or_path) + elif isinstance(repo_id_or_path, str): + card_path = Path( + hf_hub_download( + repo_id_or_path, + REPOCARD_NAME, + repo_type=repo_type or cls.repo_type, + token=token, + ) + ) + else: + raise ValueError(f"Cannot load RepoCard: path not found on disk ({repo_id_or_path}).") + + # Preserve newlines in the existing file. + with card_path.open(mode="r", newline="", encoding="utf-8") as f: + return cls(f.read(), ignore_metadata_errors=ignore_metadata_errors) + + def validate(self, repo_type: Optional[str] = None): + """Validates card against Hugging Face Hub's card validation logic. + Using this function requires access to the internet, so it is only called + internally by [`huggingface_hub.repocard.RepoCard.push_to_hub`]. + + Args: + repo_type (`str`, *optional*, defaults to "model"): + The type of Hugging Face repo to push to. Options are "model", "dataset", and "space". + If this function is called from a child class, the default will be the child class's `repo_type`. + + + Raises the following errors: + + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if the card fails validation checks. + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the request to the Hub API fails for any other reason. + + + """ + + # If repo type is provided, otherwise, use the repo type of the card. + repo_type = repo_type or self.repo_type + + body = { + "repoType": repo_type, + "content": str(self), + } + headers = {"Accept": "text/plain"} + + try: + r = get_session().post("https://huggingface.co/api/validate-yaml", body, headers=headers) + r.raise_for_status() + except requests.exceptions.HTTPError as exc: + if r.status_code == 400: + raise ValueError(r.text) + else: + raise exc + + def push_to_hub( + self, + repo_id: str, + token: Optional[str] = None, + repo_type: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + ): + """Push a RepoCard to a Hugging Face Hub repo. + + Args: + repo_id (`str`): + The repo ID of the Hugging Face Hub repo to push to. Example: "nateraw/food". + token (`str`, *optional*): + Authentication token, obtained with `huggingface_hub.HfApi.login` method. Will default to + the stored token. + repo_type (`str`, *optional*, defaults to "model"): + The type of Hugging Face repo to push to. Options are "model", "dataset", and "space". If this + function is called by a child class, it will default to the child class's `repo_type`. + commit_message (`str`, *optional*): + The summary / title / first line of the generated commit. + commit_description (`str`, *optional*) + The description of the generated commit. + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + create_pr (`bool`, *optional*): + Whether or not to create a Pull Request with this commit. Defaults to `False`. + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. + If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. + If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. + Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be + especially useful if the repo is updated / committed to concurrently. + Returns: + `str`: URL of the commit which updated the card metadata. + """ + + # If repo type is provided, otherwise, use the repo type of the card. + repo_type = repo_type or self.repo_type + + # Validate card before pushing to hub + self.validate(repo_type=repo_type) + + with SoftTemporaryDirectory() as tmpdir: + tmp_path = Path(tmpdir) / REPOCARD_NAME + tmp_path.write_text(str(self)) + url = upload_file( + path_or_fileobj=str(tmp_path), + path_in_repo=REPOCARD_NAME, + repo_id=repo_id, + token=token, + repo_type=repo_type, + commit_message=commit_message, + commit_description=commit_description, + create_pr=create_pr, + revision=revision, + parent_commit=parent_commit, + ) + return url + + @classmethod + def from_template( + cls, + card_data: CardData, + template_path: Optional[str] = None, + template_str: Optional[str] = None, + **template_kwargs, + ): + """Initialize a RepoCard from a template. By default, it uses the default template. + + Templates are Jinja2 templates that can be customized by passing keyword arguments. + + Args: + card_data (`huggingface_hub.CardData`): + A huggingface_hub.CardData instance containing the metadata you want to include in the YAML + header of the repo card on the Hugging Face Hub. + template_path (`str`, *optional*): + A path to a markdown file with optional Jinja template variables that can be filled + in with `template_kwargs`. Defaults to the default template. + + Returns: + [`huggingface_hub.repocard.RepoCard`]: A RepoCard instance with the specified card data and content from the + template. + """ + if is_jinja_available(): + import jinja2 + else: + raise ImportError( + "Using RepoCard.from_template requires Jinja2 to be installed. Please" + " install it with `pip install Jinja2`." + ) + + kwargs = card_data.to_dict().copy() + kwargs.update(template_kwargs) # Template_kwargs have priority + + if template_path is not None: + template_str = Path(template_path).read_text() + if template_str is None: + template_str = Path(cls.default_template_path).read_text() + template = jinja2.Template(template_str) + content = template.render(card_data=card_data.to_yaml(), **kwargs) + return cls(content) + + +class ModelCard(RepoCard): + card_data_class = ModelCardData + default_template_path = TEMPLATE_MODELCARD_PATH + repo_type = "model" + + @classmethod + def from_template( # type: ignore # violates Liskov property but easier to use + cls, + card_data: ModelCardData, + template_path: Optional[str] = None, + template_str: Optional[str] = None, + **template_kwargs, + ): + """Initialize a ModelCard from a template. By default, it uses the default template, which can be found here: + https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md + + Templates are Jinja2 templates that can be customized by passing keyword arguments. + + Args: + card_data (`huggingface_hub.ModelCardData`): + A huggingface_hub.ModelCardData instance containing the metadata you want to include in the YAML + header of the model card on the Hugging Face Hub. + template_path (`str`, *optional*): + A path to a markdown file with optional Jinja template variables that can be filled + in with `template_kwargs`. Defaults to the default template. + + Returns: + [`huggingface_hub.ModelCard`]: A ModelCard instance with the specified card data and content from the + template. + + Example: + ```python + >>> from huggingface_hub import ModelCard, ModelCardData, EvalResult + + >>> # Using the Default Template + >>> card_data = ModelCardData( + ... language='en', + ... license='mit', + ... library_name='timm', + ... tags=['image-classification', 'resnet'], + ... datasets=['beans'], + ... metrics=['accuracy'], + ... ) + >>> card = ModelCard.from_template( + ... card_data, + ... model_description='This model does x + y...' + ... ) + + >>> # Including Evaluation Results + >>> card_data = ModelCardData( + ... language='en', + ... tags=['image-classification', 'resnet'], + ... eval_results=[ + ... EvalResult( + ... task_type='image-classification', + ... dataset_type='beans', + ... dataset_name='Beans', + ... metric_type='accuracy', + ... metric_value=0.9, + ... ), + ... ], + ... model_name='my-cool-model', + ... ) + >>> card = ModelCard.from_template(card_data) + + >>> # Using a Custom Template + >>> card_data = ModelCardData( + ... language='en', + ... tags=['image-classification', 'resnet'] + ... ) + >>> card = ModelCard.from_template( + ... card_data=card_data, + ... template_path='./src/huggingface_hub/templates/modelcard_template.md', + ... custom_template_var='custom value', # will be replaced in template if it exists + ... ) + + ``` + """ + return super().from_template(card_data, template_path, template_str, **template_kwargs) + + +class DatasetCard(RepoCard): + card_data_class = DatasetCardData + default_template_path = TEMPLATE_DATASETCARD_PATH + repo_type = "dataset" + + @classmethod + def from_template( # type: ignore # violates Liskov property but easier to use + cls, + card_data: DatasetCardData, + template_path: Optional[str] = None, + template_str: Optional[str] = None, + **template_kwargs, + ): + """Initialize a DatasetCard from a template. By default, it uses the default template, which can be found here: + https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md + + Templates are Jinja2 templates that can be customized by passing keyword arguments. + + Args: + card_data (`huggingface_hub.DatasetCardData`): + A huggingface_hub.DatasetCardData instance containing the metadata you want to include in the YAML + header of the dataset card on the Hugging Face Hub. + template_path (`str`, *optional*): + A path to a markdown file with optional Jinja template variables that can be filled + in with `template_kwargs`. Defaults to the default template. + + Returns: + [`huggingface_hub.DatasetCard`]: A DatasetCard instance with the specified card data and content from the + template. + + Example: + ```python + >>> from huggingface_hub import DatasetCard, DatasetCardData + + >>> # Using the Default Template + >>> card_data = DatasetCardData( + ... language='en', + ... license='mit', + ... annotations_creators='crowdsourced', + ... task_categories=['text-classification'], + ... task_ids=['sentiment-classification', 'text-scoring'], + ... multilinguality='monolingual', + ... pretty_name='My Text Classification Dataset', + ... ) + >>> card = DatasetCard.from_template( + ... card_data, + ... pretty_name=card_data.pretty_name, + ... ) + + >>> # Using a Custom Template + >>> card_data = DatasetCardData( + ... language='en', + ... license='mit', + ... ) + >>> card = DatasetCard.from_template( + ... card_data=card_data, + ... template_path='./src/huggingface_hub/templates/datasetcard_template.md', + ... custom_template_var='custom value', # will be replaced in template if it exists + ... ) + + ``` + """ + return super().from_template(card_data, template_path, template_str, **template_kwargs) + + +class SpaceCard(RepoCard): + card_data_class = SpaceCardData + default_template_path = TEMPLATE_MODELCARD_PATH + repo_type = "space" + + +def _detect_line_ending(content: str) -> Literal["\r", "\n", "\r\n", None]: # noqa: F722 + """Detect the line ending of a string. Used by RepoCard to avoid making huge diff on newlines. + + Uses same implementation as in Hub server, keep it in sync. + + Returns: + str: The detected line ending of the string. + """ + cr = content.count("\r") + lf = content.count("\n") + crlf = content.count("\r\n") + if cr + lf == 0: + return None + if crlf == cr and crlf == lf: + return "\r\n" + if cr > lf: + return "\r" + else: + return "\n" + + +def metadata_load(local_path: Union[str, Path]) -> Optional[Dict]: + content = Path(local_path).read_text() + match = REGEX_YAML_BLOCK.search(content) + if match: + yaml_block = match.group(2) + data = yaml.safe_load(yaml_block) + if data is None or isinstance(data, dict): + return data + raise ValueError("repo card metadata block should be a dict") + else: + return None + + +def metadata_save(local_path: Union[str, Path], data: Dict) -> None: + """ + Save the metadata dict in the upper YAML part Trying to preserve newlines as + in the existing file. Docs about open() with newline="" parameter: + https://docs.python.org/3/library/functions.html?highlight=open#open Does + not work with "^M" linebreaks, which are replaced by \n + """ + line_break = "\n" + content = "" + # try to detect existing newline character + if os.path.exists(local_path): + with open(local_path, "r", newline="", encoding="utf8") as readme: + content = readme.read() + if isinstance(readme.newlines, tuple): + line_break = readme.newlines[0] + elif isinstance(readme.newlines, str): + line_break = readme.newlines + + # creates a new file if it not + with open(local_path, "w", newline="", encoding="utf8") as readme: + data_yaml = yaml_dump(data, sort_keys=False, line_break=line_break) + # sort_keys: keep dict order + match = REGEX_YAML_BLOCK.search(content) + if match: + output = content[: match.start()] + f"---{line_break}{data_yaml}---{line_break}" + content[match.end() :] + else: + output = f"---{line_break}{data_yaml}---{line_break}{content}" + + readme.write(output) + readme.close() + + +def metadata_eval_result( + *, + model_pretty_name: str, + task_pretty_name: str, + task_id: str, + metrics_pretty_name: str, + metrics_id: str, + metrics_value: Any, + dataset_pretty_name: str, + dataset_id: str, + metrics_config: Optional[str] = None, + metrics_verified: bool = False, + dataset_config: Optional[str] = None, + dataset_split: Optional[str] = None, + dataset_revision: Optional[str] = None, + metrics_verification_token: Optional[str] = None, +) -> Dict: + """ + Creates a metadata dict with the result from a model evaluated on a dataset. + + Args: + model_pretty_name (`str`): + The name of the model in natural language. + task_pretty_name (`str`): + The name of a task in natural language. + task_id (`str`): + Example: automatic-speech-recognition. A task id. + metrics_pretty_name (`str`): + A name for the metric in natural language. Example: Test WER. + metrics_id (`str`): + Example: wer. A metric id from https://hf.co/metrics. + metrics_value (`Any`): + The value from the metric. Example: 20.0 or "20.0 ± 1.2". + dataset_pretty_name (`str`): + The name of the dataset in natural language. + dataset_id (`str`): + Example: common_voice. A dataset id from https://hf.co/datasets. + metrics_config (`str`, *optional*): + The name of the metric configuration used in `load_metric()`. + Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. + metrics_verified (`bool`, *optional*, defaults to `False`): + Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set. + dataset_config (`str`, *optional*): + Example: fr. The name of the dataset configuration used in `load_dataset()`. + dataset_split (`str`, *optional*): + Example: test. The name of the dataset split used in `load_dataset()`. + dataset_revision (`str`, *optional*): + Example: 5503434ddd753f426f4b38109466949a1217c2bb. The name of the dataset dataset revision + used in `load_dataset()`. + metrics_verification_token (`bool`, *optional*): + A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. + + Returns: + `dict`: a metadata dict with the result from a model evaluated on a dataset. + + Example: + ```python + >>> from huggingface_hub import metadata_eval_result + >>> results = metadata_eval_result( + ... model_pretty_name="RoBERTa fine-tuned on ReactionGIF", + ... task_pretty_name="Text Classification", + ... task_id="text-classification", + ... metrics_pretty_name="Accuracy", + ... metrics_id="accuracy", + ... metrics_value=0.2662102282047272, + ... dataset_pretty_name="ReactionJPEG", + ... dataset_id="julien-c/reactionjpeg", + ... dataset_config="default", + ... dataset_split="test", + ... ) + >>> results == { + ... 'model-index': [ + ... { + ... 'name': 'RoBERTa fine-tuned on ReactionGIF', + ... 'results': [ + ... { + ... 'task': { + ... 'type': 'text-classification', + ... 'name': 'Text Classification' + ... }, + ... 'dataset': { + ... 'name': 'ReactionJPEG', + ... 'type': 'julien-c/reactionjpeg', + ... 'config': 'default', + ... 'split': 'test' + ... }, + ... 'metrics': [ + ... { + ... 'type': 'accuracy', + ... 'value': 0.2662102282047272, + ... 'name': 'Accuracy', + ... 'verified': False + ... } + ... ] + ... } + ... ] + ... } + ... ] + ... } + True + + ``` + """ + + return { + "model-index": eval_results_to_model_index( + model_name=model_pretty_name, + eval_results=[ + EvalResult( + task_name=task_pretty_name, + task_type=task_id, + metric_name=metrics_pretty_name, + metric_type=metrics_id, + metric_value=metrics_value, + dataset_name=dataset_pretty_name, + dataset_type=dataset_id, + metric_config=metrics_config, + verified=metrics_verified, + verify_token=metrics_verification_token, + dataset_config=dataset_config, + dataset_split=dataset_split, + dataset_revision=dataset_revision, + ) + ], + ) + } + + +@validate_hf_hub_args +def metadata_update( + repo_id: str, + metadata: Dict, + *, + repo_type: Optional[str] = None, + overwrite: bool = False, + token: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + revision: Optional[str] = None, + create_pr: bool = False, + parent_commit: Optional[str] = None, +) -> str: + """ + Updates the metadata in the README.md of a repository on the Hugging Face Hub. + If the README.md file doesn't exist yet, a new one is created with metadata and an + the default ModelCard or DatasetCard template. For `space` repo, an error is thrown + as a Space cannot exist without a `README.md` file. + + Args: + repo_id (`str`): + The name of the repository. + metadata (`dict`): + A dictionary containing the metadata to be updated. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if updating to a dataset or space, + `None` or `"model"` if updating to a model. Default is `None`. + overwrite (`bool`, *optional*, defaults to `False`): + If set to `True` an existing field can be overwritten, otherwise + attempting to overwrite an existing field will cause an error. + token (`str`, *optional*): + The Hugging Face authentication token. + commit_message (`str`, *optional*): + The summary / title / first line of the generated commit. Defaults to + `f"Update metadata with huggingface_hub"` + commit_description (`str` *optional*) + The description of the generated commit + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the + `"main"` branch. + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request from `revision` with that commit. + Defaults to `False`. + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. + If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. + If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. + Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be + especially useful if the repo is updated / committed to concurrently. + Returns: + `str`: URL of the commit which updated the card metadata. + + Example: + ```python + >>> from huggingface_hub import metadata_update + >>> metadata = {'model-index': [{'name': 'RoBERTa fine-tuned on ReactionGIF', + ... 'results': [{'dataset': {'name': 'ReactionGIF', + ... 'type': 'julien-c/reactiongif'}, + ... 'metrics': [{'name': 'Recall', + ... 'type': 'recall', + ... 'value': 0.7762102282047272}], + ... 'task': {'name': 'Text Classification', + ... 'type': 'text-classification'}}]}]} + >>> url = metadata_update("hf-internal-testing/reactiongif-roberta-card", metadata) + + ``` + """ + commit_message = commit_message if commit_message is not None else "Update metadata with huggingface_hub" + + # Card class given repo_type + card_class: Type[RepoCard] + if repo_type is None or repo_type == "model": + card_class = ModelCard + elif repo_type == "dataset": + card_class = DatasetCard + elif repo_type == "space": + card_class = RepoCard + else: + raise ValueError(f"Unknown repo_type: {repo_type}") + + # Either load repo_card from the Hub or create an empty one. + # NOTE: Will not create the repo if it doesn't exist. + try: + card = card_class.load(repo_id, token=token, repo_type=repo_type) + except EntryNotFoundError: + if repo_type == "space": + raise ValueError("Cannot update metadata on a Space that doesn't contain a `README.md` file.") + + # Initialize a ModelCard or DatasetCard from default template and no data. + card = card_class.from_template(CardData()) + + for key, value in metadata.items(): + if key == "model-index": + # if the new metadata doesn't include a name, either use existing one or repo name + if "name" not in value[0]: + value[0]["name"] = getattr(card, "model_name", repo_id) + model_name, new_results = model_index_to_eval_results(value) + if card.data.eval_results is None: + card.data.eval_results = new_results + card.data.model_name = model_name + else: + existing_results = card.data.eval_results + + # Iterate over new results + # Iterate over existing results + # If both results describe the same metric but value is different: + # If overwrite=True: overwrite the metric value + # Else: raise ValueError + # Else: append new result to existing ones. + for new_result in new_results: + result_found = False + for existing_result in existing_results: + if new_result.is_equal_except_value(existing_result): + if new_result != existing_result and not overwrite: + raise ValueError( + "You passed a new value for the existing metric" + f" 'name: {new_result.metric_name}, type: " + f"{new_result.metric_type}'. Set `overwrite=True`" + " to overwrite existing metrics." + ) + result_found = True + existing_result.metric_value = new_result.metric_value + if existing_result.verified is True: + existing_result.verify_token = new_result.verify_token + if not result_found: + card.data.eval_results.append(new_result) + else: + # Any metadata that is not a result metric + if card.data.get(key) is not None and not overwrite and card.data.get(key) != value: + raise ValueError( + f"You passed a new value for the existing meta data field '{key}'." + " Set `overwrite=True` to overwrite existing metadata." + ) + else: + card.data[key] = value + + return card.push_to_hub( + repo_id, + token=token, + repo_type=repo_type, + commit_message=commit_message, + commit_description=commit_description, + create_pr=create_pr, + revision=revision, + parent_commit=parent_commit, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/repocard_data.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/repocard_data.py new file mode 100644 index 0000000000000000000000000000000000000000..c85c450cdbad00f1e2850fab431b3b22862a8539 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/repocard_data.py @@ -0,0 +1,729 @@ +import copy +from collections import defaultdict +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union + +from huggingface_hub.utils import logging, yaml_dump + + +logger = logging.get_logger(__name__) + + +@dataclass +class EvalResult: + """ + Flattened representation of individual evaluation results found in model-index of Model Cards. + + For more information on the model-index spec, see https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1. + + Args: + task_type (`str`): + The task identifier. Example: "image-classification". + dataset_type (`str`): + The dataset identifier. Example: "common_voice". Use dataset id from https://hf.co/datasets. + dataset_name (`str`): + A pretty name for the dataset. Example: "Common Voice (French)". + metric_type (`str`): + The metric identifier. Example: "wer". Use metric id from https://hf.co/metrics. + metric_value (`Any`): + The metric value. Example: 0.9 or "20.0 ± 1.2". + task_name (`str`, *optional*): + A pretty name for the task. Example: "Speech Recognition". + dataset_config (`str`, *optional*): + The name of the dataset configuration used in `load_dataset()`. + Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: + https://hf.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name + dataset_split (`str`, *optional*): + The split used in `load_dataset()`. Example: "test". + dataset_revision (`str`, *optional*): + The revision (AKA Git Sha) of the dataset used in `load_dataset()`. + Example: 5503434ddd753f426f4b38109466949a1217c2bb + dataset_args (`Dict[str, Any]`, *optional*): + The arguments passed during `Metric.compute()`. Example for `bleu`: `{"max_order": 4}` + metric_name (`str`, *optional*): + A pretty name for the metric. Example: "Test WER". + metric_config (`str`, *optional*): + The name of the metric configuration used in `load_metric()`. + Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. + See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations + metric_args (`Dict[str, Any]`, *optional*): + The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4 + verified (`bool`, *optional*): + Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set. + verify_token (`str`, *optional*): + A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. + source_name (`str`, *optional*): + The name of the source of the evaluation result. Example: "Open LLM Leaderboard". + source_url (`str`, *optional*): + The URL of the source of the evaluation result. Example: "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard". + """ + + # Required + + # The task identifier + # Example: automatic-speech-recognition + task_type: str + + # The dataset identifier + # Example: common_voice. Use dataset id from https://hf.co/datasets + dataset_type: str + + # A pretty name for the dataset. + # Example: Common Voice (French) + dataset_name: str + + # The metric identifier + # Example: wer. Use metric id from https://hf.co/metrics + metric_type: str + + # Value of the metric. + # Example: 20.0 or "20.0 ± 1.2" + metric_value: Any + + # Optional + + # A pretty name for the task. + # Example: Speech Recognition + task_name: Optional[str] = None + + # The name of the dataset configuration used in `load_dataset()`. + # Example: fr in `load_dataset("common_voice", "fr")`. + # See the `datasets` docs for more info: + # https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name + dataset_config: Optional[str] = None + + # The split used in `load_dataset()`. + # Example: test + dataset_split: Optional[str] = None + + # The revision (AKA Git Sha) of the dataset used in `load_dataset()`. + # Example: 5503434ddd753f426f4b38109466949a1217c2bb + dataset_revision: Optional[str] = None + + # The arguments passed during `Metric.compute()`. + # Example for `bleu`: max_order: 4 + dataset_args: Optional[Dict[str, Any]] = None + + # A pretty name for the metric. + # Example: Test WER + metric_name: Optional[str] = None + + # The name of the metric configuration used in `load_metric()`. + # Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. + # See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations + metric_config: Optional[str] = None + + # The arguments passed during `Metric.compute()`. + # Example for `bleu`: max_order: 4 + metric_args: Optional[Dict[str, Any]] = None + + # Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set. + verified: Optional[bool] = None + + # A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. + verify_token: Optional[str] = None + + # The name of the source of the evaluation result. + # Example: Open LLM Leaderboard + source_name: Optional[str] = None + + # The URL of the source of the evaluation result. + # Example: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard + source_url: Optional[str] = None + + @property + def unique_identifier(self) -> tuple: + """Returns a tuple that uniquely identifies this evaluation.""" + return ( + self.task_type, + self.dataset_type, + self.dataset_config, + self.dataset_split, + self.dataset_revision, + ) + + def is_equal_except_value(self, other: "EvalResult") -> bool: + """ + Return True if `self` and `other` describe exactly the same metric but with a + different value. + """ + for key, _ in self.__dict__.items(): + if key == "metric_value": + continue + # For metrics computed by Hugging Face's evaluation service, `verify_token` is derived from `metric_value`, + # so we exclude it here in the comparison. + if key != "verify_token" and getattr(self, key) != getattr(other, key): + return False + return True + + def __post_init__(self) -> None: + if self.source_name is not None and self.source_url is None: + raise ValueError("If `source_name` is provided, `source_url` must also be provided.") + + +@dataclass +class CardData: + """Structure containing metadata from a RepoCard. + + [`CardData`] is the parent class of [`ModelCardData`] and [`DatasetCardData`]. + + Metadata can be exported as a dictionary or YAML. Export can be customized to alter the representation of the data + (example: flatten evaluation results). `CardData` behaves as a dictionary (can get, pop, set values) but do not + inherit from `dict` to allow this export step. + """ + + def __init__(self, ignore_metadata_errors: bool = False, **kwargs): + self.__dict__.update(kwargs) + + def to_dict(self) -> Dict[str, Any]: + """Converts CardData to a dict. + + Returns: + `dict`: CardData represented as a dictionary ready to be dumped to a YAML + block for inclusion in a README.md file. + """ + + data_dict = copy.deepcopy(self.__dict__) + self._to_dict(data_dict) + return _remove_none(data_dict) + + def _to_dict(self, data_dict): + """Use this method in child classes to alter the dict representation of the data. Alter the dict in-place. + + Args: + data_dict (`dict`): The raw dict representation of the card data. + """ + pass + + def to_yaml(self, line_break=None) -> str: + """Dumps CardData to a YAML block for inclusion in a README.md file. + + Args: + line_break (str, *optional*): + The line break to use when dumping to yaml. + + Returns: + `str`: CardData represented as a YAML block. + """ + return yaml_dump(self.to_dict(), sort_keys=False, line_break=line_break).strip() + + def __repr__(self): + return repr(self.__dict__) + + def __str__(self): + return self.to_yaml() + + def get(self, key: str, default: Any = None) -> Any: + """Get value for a given metadata key.""" + return self.__dict__.get(key, default) + + def pop(self, key: str, default: Any = None) -> Any: + """Pop value for a given metadata key.""" + return self.__dict__.pop(key, default) + + def __getitem__(self, key: str) -> Any: + """Get value for a given metadata key.""" + return self.__dict__[key] + + def __setitem__(self, key: str, value: Any) -> None: + """Set value for a given metadata key.""" + self.__dict__[key] = value + + def __contains__(self, key: str) -> bool: + """Check if a given metadata key is set.""" + return key in self.__dict__ + + def __len__(self) -> int: + """Return the number of metadata keys set.""" + return len(self.__dict__) + + +class ModelCardData(CardData): + """Model Card Metadata that is used by Hugging Face Hub when included at the top of your README.md + + Args: + language (`Union[str, List[str]]`, *optional*): + Language of model's training data or metadata. It must be an ISO 639-1, 639-2 or + 639-3 code (two/three letters), or a special value like "code", "multilingual". Defaults to `None`. + license (`str`, *optional*): + License of this model. Example: apache-2.0 or any license from + https://huggingface.co/docs/hub/repositories-licenses. Defaults to None. + library_name (`str`, *optional*): + Name of library used by this model. Example: keras or any library from + https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/model-libraries.ts. + Defaults to None. + tags (`List[str]`, *optional*): + List of tags to add to your model that can be used when filtering on the Hugging + Face Hub. Defaults to None. + base_model (`str` or `List[str]`, *optional*): + The identifier of the base model from which the model derives. This is applicable for example if your model is a + fine-tune or adapter of an existing model. The value must be the ID of a model on the Hub (or a list of IDs + if your model derives from multiple models). Defaults to None. + datasets (`List[str]`, *optional*): + List of datasets that were used to train this model. Should be a dataset ID + found on https://hf.co/datasets. Defaults to None. + metrics (`List[str]`, *optional*): + List of metrics used to evaluate this model. Should be a metric name that can be found + at https://hf.co/metrics. Example: 'accuracy'. Defaults to None. + eval_results (`Union[List[EvalResult], EvalResult]`, *optional*): + List of `huggingface_hub.EvalResult` that define evaluation results of the model. If provided, + `model_name` is used to as a name on PapersWithCode's leaderboards. Defaults to `None`. + model_name (`str`, *optional*): + A name for this model. It is used along with + `eval_results` to construct the `model-index` within the card's metadata. The name + you supply here is what will be used on PapersWithCode's leaderboards. If None is provided + then the repo name is used as a default. Defaults to None. + ignore_metadata_errors (`str`): + If True, errors while parsing the metadata section will be ignored. Some information might be lost during + the process. Use it at your own risk. + kwargs (`dict`, *optional*): + Additional metadata that will be added to the model card. Defaults to None. + + Example: + ```python + >>> from huggingface_hub import ModelCardData + >>> card_data = ModelCardData( + ... language="en", + ... license="mit", + ... library_name="timm", + ... tags=['image-classification', 'resnet'], + ... ) + >>> card_data.to_dict() + {'language': 'en', 'license': 'mit', 'library_name': 'timm', 'tags': ['image-classification', 'resnet']} + + ``` + """ + + def __init__( + self, + *, + language: Optional[Union[str, List[str]]] = None, + license: Optional[str] = None, + library_name: Optional[str] = None, + tags: Optional[List[str]] = None, + base_model: Optional[Union[str, List[str]]] = None, + datasets: Optional[List[str]] = None, + metrics: Optional[List[str]] = None, + eval_results: Optional[List[EvalResult]] = None, + model_name: Optional[str] = None, + ignore_metadata_errors: bool = False, + **kwargs, + ): + self.language = language + self.license = license + self.library_name = library_name + self.tags = _to_unique_list(tags) + self.base_model = base_model + self.datasets = datasets + self.metrics = metrics + self.eval_results = eval_results + self.model_name = model_name + + model_index = kwargs.pop("model-index", None) + if model_index: + try: + model_name, eval_results = model_index_to_eval_results(model_index) + self.model_name = model_name + self.eval_results = eval_results + except (KeyError, TypeError) as error: + if ignore_metadata_errors: + logger.warning("Invalid model-index. Not loading eval results into CardData.") + else: + raise ValueError( + f"Invalid `model_index` in metadata cannot be parsed: {error.__class__} {error}. Pass" + " `ignore_metadata_errors=True` to ignore this error while loading a Model Card. Warning:" + " some information will be lost. Use it at your own risk." + ) + + super().__init__(**kwargs) + + if self.eval_results: + if type(self.eval_results) == EvalResult: + self.eval_results = [self.eval_results] + if self.model_name is None: + raise ValueError("Passing `eval_results` requires `model_name` to be set.") + + def _to_dict(self, data_dict): + """Format the internal data dict. In this case, we convert eval results to a valid model index""" + if self.eval_results is not None: + data_dict["model-index"] = eval_results_to_model_index(self.model_name, self.eval_results) + del data_dict["eval_results"], data_dict["model_name"] + + +class DatasetCardData(CardData): + """Dataset Card Metadata that is used by Hugging Face Hub when included at the top of your README.md + + Args: + language (`List[str]`, *optional*): + Language of dataset's data or metadata. It must be an ISO 639-1, 639-2 or + 639-3 code (two/three letters), or a special value like "code", "multilingual". + license (`Union[str, List[str]]`, *optional*): + License(s) of this dataset. Example: apache-2.0 or any license from + https://huggingface.co/docs/hub/repositories-licenses. + annotations_creators (`Union[str, List[str]]`, *optional*): + How the annotations for the dataset were created. + Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'no-annotation', 'other'. + language_creators (`Union[str, List[str]]`, *optional*): + How the text-based data in the dataset was created. + Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'other' + multilinguality (`Union[str, List[str]]`, *optional*): + Whether the dataset is multilingual. + Options are: 'monolingual', 'multilingual', 'translation', 'other'. + size_categories (`Union[str, List[str]]`, *optional*): + The number of examples in the dataset. Options are: 'n<1K', '1K1T', and 'other'. + source_datasets (`List[str]]`, *optional*): + Indicates whether the dataset is an original dataset or extended from another existing dataset. + Options are: 'original' and 'extended'. + task_categories (`Union[str, List[str]]`, *optional*): + What categories of task does the dataset support? + task_ids (`Union[str, List[str]]`, *optional*): + What specific tasks does the dataset support? + paperswithcode_id (`str`, *optional*): + ID of the dataset on PapersWithCode. + pretty_name (`str`, *optional*): + A more human-readable name for the dataset. (ex. "Cats vs. Dogs") + train_eval_index (`Dict`, *optional*): + A dictionary that describes the necessary spec for doing evaluation on the Hub. + If not provided, it will be gathered from the 'train-eval-index' key of the kwargs. + config_names (`Union[str, List[str]]`, *optional*): + A list of the available dataset configs for the dataset. + """ + + def __init__( + self, + *, + language: Optional[Union[str, List[str]]] = None, + license: Optional[Union[str, List[str]]] = None, + annotations_creators: Optional[Union[str, List[str]]] = None, + language_creators: Optional[Union[str, List[str]]] = None, + multilinguality: Optional[Union[str, List[str]]] = None, + size_categories: Optional[Union[str, List[str]]] = None, + source_datasets: Optional[List[str]] = None, + task_categories: Optional[Union[str, List[str]]] = None, + task_ids: Optional[Union[str, List[str]]] = None, + paperswithcode_id: Optional[str] = None, + pretty_name: Optional[str] = None, + train_eval_index: Optional[Dict] = None, + config_names: Optional[Union[str, List[str]]] = None, + ignore_metadata_errors: bool = False, + **kwargs, + ): + self.annotations_creators = annotations_creators + self.language_creators = language_creators + self.language = language + self.license = license + self.multilinguality = multilinguality + self.size_categories = size_categories + self.source_datasets = source_datasets + self.task_categories = task_categories + self.task_ids = task_ids + self.paperswithcode_id = paperswithcode_id + self.pretty_name = pretty_name + self.config_names = config_names + + # TODO - maybe handle this similarly to EvalResult? + self.train_eval_index = train_eval_index or kwargs.pop("train-eval-index", None) + super().__init__(**kwargs) + + def _to_dict(self, data_dict): + data_dict["train-eval-index"] = data_dict.pop("train_eval_index") + + +class SpaceCardData(CardData): + """Space Card Metadata that is used by Hugging Face Hub when included at the top of your README.md + + To get an exhaustive reference of Spaces configuration, please visit https://huggingface.co/docs/hub/spaces-config-reference#spaces-configuration-reference. + + Args: + title (`str`, *optional*) + Title of the Space. + sdk (`str`, *optional*) + SDK of the Space (one of `gradio`, `streamlit`, `docker`, or `static`). + sdk_version (`str`, *optional*) + Version of the used SDK (if Gradio/Streamlit sdk). + python_version (`str`, *optional*) + Python version used in the Space (if Gradio/Streamlit sdk). + app_file (`str`, *optional*) + Path to your main application file (which contains either gradio or streamlit Python code, or static html code). + Path is relative to the root of the repository. + app_port (`str`, *optional*) + Port on which your application is running. Used only if sdk is `docker`. + license (`str`, *optional*) + License of this model. Example: apache-2.0 or any license from + https://huggingface.co/docs/hub/repositories-licenses. + duplicated_from (`str`, *optional*) + ID of the original Space if this is a duplicated Space. + models (List[`str`], *optional*) + List of models related to this Space. Should be a dataset ID found on https://hf.co/models. + datasets (`List[str]`, *optional*) + List of datasets related to this Space. Should be a dataset ID found on https://hf.co/datasets. + tags (`List[str]`, *optional*) + List of tags to add to your Space that can be used when filtering on the Hub. + ignore_metadata_errors (`str`): + If True, errors while parsing the metadata section will be ignored. Some information might be lost during + the process. Use it at your own risk. + kwargs (`dict`, *optional*): + Additional metadata that will be added to the space card. + + Example: + ```python + >>> from huggingface_hub import SpaceCardData + >>> card_data = SpaceCardData( + ... title="Dreambooth Training", + ... license="mit", + ... sdk="gradio", + ... duplicated_from="multimodalart/dreambooth-training" + ... ) + >>> card_data.to_dict() + {'title': 'Dreambooth Training', 'sdk': 'gradio', 'license': 'mit', 'duplicated_from': 'multimodalart/dreambooth-training'} + ``` + """ + + def __init__( + self, + *, + title: Optional[str] = None, + sdk: Optional[str] = None, + sdk_version: Optional[str] = None, + python_version: Optional[str] = None, + app_file: Optional[str] = None, + app_port: Optional[int] = None, + license: Optional[str] = None, + duplicated_from: Optional[str] = None, + models: Optional[List[str]] = None, + datasets: Optional[List[str]] = None, + tags: Optional[List[str]] = None, + ignore_metadata_errors: bool = False, + **kwargs, + ): + self.title = title + self.sdk = sdk + self.sdk_version = sdk_version + self.python_version = python_version + self.app_file = app_file + self.app_port = app_port + self.license = license + self.duplicated_from = duplicated_from + self.models = models + self.datasets = datasets + self.tags = _to_unique_list(tags) + super().__init__(**kwargs) + + +def model_index_to_eval_results(model_index: List[Dict[str, Any]]) -> Tuple[str, List[EvalResult]]: + """Takes in a model index and returns the model name and a list of `huggingface_hub.EvalResult` objects. + + A detailed spec of the model index can be found here: + https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 + + Args: + model_index (`List[Dict[str, Any]]`): + A model index data structure, likely coming from a README.md file on the + Hugging Face Hub. + + Returns: + model_name (`str`): + The name of the model as found in the model index. This is used as the + identifier for the model on leaderboards like PapersWithCode. + eval_results (`List[EvalResult]`): + A list of `huggingface_hub.EvalResult` objects containing the metrics + reported in the provided model_index. + + Example: + ```python + >>> from huggingface_hub.repocard_data import model_index_to_eval_results + >>> # Define a minimal model index + >>> model_index = [ + ... { + ... "name": "my-cool-model", + ... "results": [ + ... { + ... "task": { + ... "type": "image-classification" + ... }, + ... "dataset": { + ... "type": "beans", + ... "name": "Beans" + ... }, + ... "metrics": [ + ... { + ... "type": "accuracy", + ... "value": 0.9 + ... } + ... ] + ... } + ... ] + ... } + ... ] + >>> model_name, eval_results = model_index_to_eval_results(model_index) + >>> model_name + 'my-cool-model' + >>> eval_results[0].task_type + 'image-classification' + >>> eval_results[0].metric_type + 'accuracy' + + ``` + """ + + eval_results = [] + for elem in model_index: + name = elem["name"] + results = elem["results"] + for result in results: + task_type = result["task"]["type"] + task_name = result["task"].get("name") + dataset_type = result["dataset"]["type"] + dataset_name = result["dataset"]["name"] + dataset_config = result["dataset"].get("config") + dataset_split = result["dataset"].get("split") + dataset_revision = result["dataset"].get("revision") + dataset_args = result["dataset"].get("args") + source_name = result.get("source", {}).get("name") + source_url = result.get("source", {}).get("url") + + for metric in result["metrics"]: + metric_type = metric["type"] + metric_value = metric["value"] + metric_name = metric.get("name") + metric_args = metric.get("args") + metric_config = metric.get("config") + verified = metric.get("verified") + verify_token = metric.get("verifyToken") + + eval_result = EvalResult( + task_type=task_type, # Required + dataset_type=dataset_type, # Required + dataset_name=dataset_name, # Required + metric_type=metric_type, # Required + metric_value=metric_value, # Required + task_name=task_name, + dataset_config=dataset_config, + dataset_split=dataset_split, + dataset_revision=dataset_revision, + dataset_args=dataset_args, + metric_name=metric_name, + metric_args=metric_args, + metric_config=metric_config, + verified=verified, + verify_token=verify_token, + source_name=source_name, + source_url=source_url, + ) + eval_results.append(eval_result) + return name, eval_results + + +def _remove_none(obj): + """ + Recursively remove `None` values from a dict. Borrowed from: https://stackoverflow.com/a/20558778 + """ + if isinstance(obj, (list, tuple, set)): + return type(obj)(_remove_none(x) for x in obj if x is not None) + elif isinstance(obj, dict): + return type(obj)((_remove_none(k), _remove_none(v)) for k, v in obj.items() if k is not None and v is not None) + else: + return obj + + +def eval_results_to_model_index(model_name: str, eval_results: List[EvalResult]) -> List[Dict[str, Any]]: + """Takes in given model name and list of `huggingface_hub.EvalResult` and returns a + valid model-index that will be compatible with the format expected by the + Hugging Face Hub. + + Args: + model_name (`str`): + Name of the model (ex. "my-cool-model"). This is used as the identifier + for the model on leaderboards like PapersWithCode. + eval_results (`List[EvalResult]`): + List of `huggingface_hub.EvalResult` objects containing the metrics to be + reported in the model-index. + + Returns: + model_index (`List[Dict[str, Any]]`): The eval_results converted to a model-index. + + Example: + ```python + >>> from huggingface_hub.repocard_data import eval_results_to_model_index, EvalResult + >>> # Define minimal eval_results + >>> eval_results = [ + ... EvalResult( + ... task_type="image-classification", # Required + ... dataset_type="beans", # Required + ... dataset_name="Beans", # Required + ... metric_type="accuracy", # Required + ... metric_value=0.9, # Required + ... ) + ... ] + >>> eval_results_to_model_index("my-cool-model", eval_results) + [{'name': 'my-cool-model', 'results': [{'task': {'type': 'image-classification'}, 'dataset': {'name': 'Beans', 'type': 'beans'}, 'metrics': [{'type': 'accuracy', 'value': 0.9}]}]}] + + ``` + """ + + # Metrics are reported on a unique task-and-dataset basis. + # Here, we make a map of those pairs and the associated EvalResults. + task_and_ds_types_map: Dict[Any, List[EvalResult]] = defaultdict(list) + for eval_result in eval_results: + task_and_ds_types_map[eval_result.unique_identifier].append(eval_result) + + # Use the map from above to generate the model index data. + model_index_data = [] + for results in task_and_ds_types_map.values(): + # All items from `results` share same metadata + sample_result = results[0] + data = { + "task": { + "type": sample_result.task_type, + "name": sample_result.task_name, + }, + "dataset": { + "name": sample_result.dataset_name, + "type": sample_result.dataset_type, + "config": sample_result.dataset_config, + "split": sample_result.dataset_split, + "revision": sample_result.dataset_revision, + "args": sample_result.dataset_args, + }, + "metrics": [ + { + "type": result.metric_type, + "value": result.metric_value, + "name": result.metric_name, + "config": result.metric_config, + "args": result.metric_args, + "verified": result.verified, + "verifyToken": result.verify_token, + } + for result in results + ], + } + if sample_result.source_url is not None: + source = { + "url": sample_result.source_url, + } + if sample_result.source_name is not None: + source["name"] = sample_result.source_name + data["source"] = source + model_index_data.append(data) + + # TODO - Check if there cases where this list is longer than one? + # Finally, the model index itself is list of dicts. + model_index = [ + { + "name": model_name, + "results": model_index_data, + } + ] + return _remove_none(model_index) + + +def _to_unique_list(tags: Optional[List[str]]) -> Optional[List[str]]: + if tags is None: + return tags + unique_tags = [] # make tags unique + keep order explicitly + for tag in tags: + if tag not in unique_tags: + unique_tags.append(tag) + return unique_tags diff --git a/llmeval-env/lib/python3.10/site-packages/huggingface_hub/repository.py b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/repository.py new file mode 100644 index 0000000000000000000000000000000000000000..3f06fcafaa6f809904a2a065e1c7d2cba33d4d3f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/huggingface_hub/repository.py @@ -0,0 +1,1477 @@ +import atexit +import os +import re +import subprocess +import threading +import time +from contextlib import contextmanager +from pathlib import Path +from typing import Callable, Dict, Iterator, List, Optional, Tuple, TypedDict, Union +from urllib.parse import urlparse + +from huggingface_hub.constants import REPO_TYPES_URL_PREFIXES, REPOCARD_NAME +from huggingface_hub.repocard import metadata_load, metadata_save + +from .hf_api import HfApi, repo_type_and_id_from_hf_id +from .lfs import LFS_MULTIPART_UPLOAD_COMMAND +from .utils import ( + SoftTemporaryDirectory, + get_token, + logging, + run_subprocess, + tqdm, + validate_hf_hub_args, +) +from .utils._deprecation import _deprecate_method + + +logger = logging.get_logger(__name__) + + +class CommandInProgress: + """ + Utility to follow commands launched asynchronously. + """ + + def __init__( + self, + title: str, + is_done_method: Callable, + status_method: Callable, + process: subprocess.Popen, + post_method: Optional[Callable] = None, + ): + self.title = title + self._is_done = is_done_method + self._status = status_method + self._process = process + self._stderr = "" + self._stdout = "" + self._post_method = post_method + + @property + def is_done(self) -> bool: + """ + Whether the process is done. + """ + result = self._is_done() + + if result and self._post_method is not None: + self._post_method() + self._post_method = None + + return result + + @property + def status(self) -> int: + """ + The exit code/status of the current action. Will return `0` if the + command has completed successfully, and a number between 1 and 255 if + the process errored-out. + + Will return -1 if the command is still ongoing. + """ + return self._status() + + @property + def failed(self) -> bool: + """ + Whether the process errored-out. + """ + return self.status > 0 + + @property + def stderr(self) -> str: + """ + The current output message on the standard error. + """ + if self._process.stderr is not None: + self._stderr += self._process.stderr.read() + return self._stderr + + @property + def stdout(self) -> str: + """ + The current output message on the standard output. + """ + if self._process.stdout is not None: + self._stdout += self._process.stdout.read() + return self._stdout + + def __repr__(self): + status = self.status + + if status == -1: + status = "running" + + return ( + f"[{self.title} command, status code: {status}," + f" {'in progress.' if not self.is_done else 'finished.'} PID:" + f" {self._process.pid}]" + ) + + +def is_git_repo(folder: Union[str, Path]) -> bool: + """ + Check if the folder is the root or part of a git repository + + Args: + folder (`str`): + The folder in which to run the command. + + Returns: + `bool`: `True` if the repository is part of a repository, `False` + otherwise. + """ + folder_exists = os.path.exists(os.path.join(folder, ".git")) + git_branch = subprocess.run("git branch".split(), cwd=folder, stdout=subprocess.PIPE, stderr=subprocess.PIPE) + return folder_exists and git_branch.returncode == 0 + + +def is_local_clone(folder: Union[str, Path], remote_url: str) -> bool: + """ + Check if the folder is a local clone of the remote_url + + Args: + folder (`str` or `Path`): + The folder in which to run the command. + remote_url (`str`): + The url of a git repository. + + Returns: + `bool`: `True` if the repository is a local clone of the remote + repository specified, `False` otherwise. + """ + if not is_git_repo(folder): + return False + + remotes = run_subprocess("git remote -v", folder).stdout + + # Remove token for the test with remotes. + remote_url = re.sub(r"https://.*@", "https://", remote_url) + remotes = [re.sub(r"https://.*@", "https://", remote) for remote in remotes.split()] + return remote_url in remotes + + +def is_tracked_with_lfs(filename: Union[str, Path]) -> bool: + """ + Check if the file passed is tracked with git-lfs. + + Args: + filename (`str` or `Path`): + The filename to check. + + Returns: + `bool`: `True` if the file passed is tracked with git-lfs, `False` + otherwise. + """ + folder = Path(filename).parent + filename = Path(filename).name + + try: + p = run_subprocess("git check-attr -a".split() + [filename], folder) + attributes = p.stdout.strip() + except subprocess.CalledProcessError as exc: + if not is_git_repo(folder): + return False + else: + raise OSError(exc.stderr) + + if len(attributes) == 0: + return False + + found_lfs_tag = {"diff": False, "merge": False, "filter": False} + + for attribute in attributes.split("\n"): + for tag in found_lfs_tag.keys(): + if tag in attribute and "lfs" in attribute: + found_lfs_tag[tag] = True + + return all(found_lfs_tag.values()) + + +def is_git_ignored(filename: Union[str, Path]) -> bool: + """ + Check if file is git-ignored. Supports nested .gitignore files. + + Args: + filename (`str` or `Path`): + The filename to check. + + Returns: + `bool`: `True` if the file passed is ignored by `git`, `False` + otherwise. + """ + folder = Path(filename).parent + filename = Path(filename).name + + try: + p = run_subprocess("git check-ignore".split() + [filename], folder, check=False) + # Will return exit code 1 if not gitignored + is_ignored = not bool(p.returncode) + except subprocess.CalledProcessError as exc: + raise OSError(exc.stderr) + + return is_ignored + + +def is_binary_file(filename: Union[str, Path]) -> bool: + """ + Check if file is a binary file. + + Args: + filename (`str` or `Path`): + The filename to check. + + Returns: + `bool`: `True` if the file passed is a binary file, `False` otherwise. + """ + try: + with open(filename, "rb") as f: + content = f.read(10 * (1024**2)) # Read a maximum of 10MB + + # Code sample taken from the following stack overflow thread + # https://stackoverflow.com/questions/898669/how-can-i-detect-if-a-file-is-binary-non-text-in-python/7392391#7392391 + text_chars = bytearray({7, 8, 9, 10, 12, 13, 27} | set(range(0x20, 0x100)) - {0x7F}) + return bool(content.translate(None, text_chars)) + except UnicodeDecodeError: + return True + + +def files_to_be_staged(pattern: str = ".", folder: Union[str, Path, None] = None) -> List[str]: + """ + Returns a list of filenames that are to be staged. + + Args: + pattern (`str` or `Path`): + The pattern of filenames to check. Put `.` to get all files. + folder (`str` or `Path`): + The folder in which to run the command. + + Returns: + `List[str]`: List of files that are to be staged. + """ + try: + p = run_subprocess("git ls-files --exclude-standard -mo".split() + [pattern], folder) + if len(p.stdout.strip()): + files = p.stdout.strip().split("\n") + else: + files = [] + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + return files + + +def is_tracked_upstream(folder: Union[str, Path]) -> bool: + """ + Check if the current checked-out branch is tracked upstream. + + Args: + folder (`str` or `Path`): + The folder in which to run the command. + + Returns: + `bool`: `True` if the current checked-out branch is tracked upstream, + `False` otherwise. + """ + try: + run_subprocess("git rev-parse --symbolic-full-name --abbrev-ref @{u}", folder) + return True + except subprocess.CalledProcessError as exc: + if "HEAD" in exc.stderr: + raise OSError("No branch checked out") + + return False + + +def commits_to_push(folder: Union[str, Path], upstream: Optional[str] = None) -> int: + """ + Check the number of commits that would be pushed upstream + + Args: + folder (`str` or `Path`): + The folder in which to run the command. + upstream (`str`, *optional*): + The name of the upstream repository with which the comparison should be + made. + + Returns: + `int`: Number of commits that would be pushed upstream were a `git + push` to proceed. + """ + try: + result = run_subprocess(f"git cherry -v {upstream or ''}", folder) + return len(result.stdout.split("\n")) - 1 + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + +class PbarT(TypedDict): + # Used to store an opened progress bar in `_lfs_log_progress` + bar: tqdm + past_bytes: int + + +@contextmanager +def _lfs_log_progress(): + """ + This is a context manager that will log the Git LFS progress of cleaning, + smudging, pulling and pushing. + """ + + if logger.getEffectiveLevel() >= logging.ERROR: + try: + yield + except Exception: + pass + return + + def output_progress(stopping_event: threading.Event): + """ + To be launched as a separate thread with an event meaning it should stop + the tail. + """ + # Key is tuple(state, filename), value is a dict(tqdm bar and a previous value) + pbars: Dict[Tuple[str, str], PbarT] = {} + + def close_pbars(): + for pbar in pbars.values(): + pbar["bar"].update(pbar["bar"].total - pbar["past_bytes"]) + pbar["bar"].refresh() + pbar["bar"].close() + + def tail_file(filename) -> Iterator[str]: + """ + Creates a generator to be iterated through, which will return each + line one by one. Will stop tailing the file if the stopping_event is + set. + """ + with open(filename, "r") as file: + current_line = "" + while True: + if stopping_event.is_set(): + close_pbars() + break + + line_bit = file.readline() + if line_bit is not None and not len(line_bit.strip()) == 0: + current_line += line_bit + if current_line.endswith("\n"): + yield current_line + current_line = "" + else: + time.sleep(1) + + # If the file isn't created yet, wait for a few seconds before trying again. + # Can be interrupted with the stopping_event. + while not os.path.exists(os.environ["GIT_LFS_PROGRESS"]): + if stopping_event.is_set(): + close_pbars() + return + + time.sleep(2) + + for line in tail_file(os.environ["GIT_LFS_PROGRESS"]): + try: + state, file_progress, byte_progress, filename = line.split() + except ValueError as error: + # Try/except to ease debugging. See https://github.com/huggingface/huggingface_hub/issues/1373. + raise ValueError(f"Cannot unpack LFS progress line:\n{line}") from error + description = f"{state.capitalize()} file {filename}" + + current_bytes, total_bytes = byte_progress.split("/") + current_bytes_int = int(current_bytes) + total_bytes_int = int(total_bytes) + + pbar = pbars.get((state, filename)) + if pbar is None: + # Initialize progress bar + pbars[(state, filename)] = { + "bar": tqdm( + desc=description, + initial=current_bytes_int, + total=total_bytes_int, + unit="B", + unit_scale=True, + unit_divisor=1024, + name="huggingface_hub.lfs_upload", + ), + "past_bytes": int(current_bytes), + } + else: + # Update progress bar + pbar["bar"].update(current_bytes_int - pbar["past_bytes"]) + pbar["past_bytes"] = current_bytes_int + + current_lfs_progress_value = os.environ.get("GIT_LFS_PROGRESS", "") + + with SoftTemporaryDirectory() as tmpdir: + os.environ["GIT_LFS_PROGRESS"] = os.path.join(tmpdir, "lfs_progress") + logger.debug(f"Following progress in {os.environ['GIT_LFS_PROGRESS']}") + + exit_event = threading.Event() + x = threading.Thread(target=output_progress, args=(exit_event,), daemon=True) + x.start() + + try: + yield + finally: + exit_event.set() + x.join() + + os.environ["GIT_LFS_PROGRESS"] = current_lfs_progress_value + + +class Repository: + """ + Helper class to wrap the git and git-lfs commands. + + The aim is to facilitate interacting with huggingface.co hosted model or + dataset repos, though not a lot here (if any) is actually specific to + huggingface.co. + + + + [`Repository`] is deprecated in favor of the http-based alternatives implemented in + [`HfApi`]. Given its large adoption in legacy code, the complete removal of + [`Repository`] will only happen in release `v1.0`. For more details, please read + https://huggingface.co/docs/huggingface_hub/concepts/git_vs_http. + + + """ + + command_queue: List[CommandInProgress] + + @validate_hf_hub_args + @_deprecate_method( + version="1.0", + message=( + "Please prefer the http-based alternatives instead. Given its large adoption in legacy code, the complete" + " removal is only planned on next major release.\nFor more details, please read" + " https://huggingface.co/docs/huggingface_hub/concepts/git_vs_http." + ), + ) + def __init__( + self, + local_dir: Union[str, Path], + clone_from: Optional[str] = None, + repo_type: Optional[str] = None, + token: Union[bool, str] = True, + git_user: Optional[str] = None, + git_email: Optional[str] = None, + revision: Optional[str] = None, + skip_lfs_files: bool = False, + client: Optional[HfApi] = None, + ): + """ + Instantiate a local clone of a git repo. + + If `clone_from` is set, the repo will be cloned from an existing remote repository. + If the remote repo does not exist, a `EnvironmentError` exception will be thrown. + Please create the remote repo first using [`create_repo`]. + + `Repository` uses the local git credentials by default. If explicitly set, the `token` + or the `git_user`/`git_email` pair will be used instead. + + Args: + local_dir (`str` or `Path`): + path (e.g. `'my_trained_model/'`) to the local directory, where + the `Repository` will be initialized. + clone_from (`str`, *optional*): + Either a repository url or `repo_id`. + Example: + - `"https://huggingface.co/philschmid/playground-tests"` + - `"philschmid/playground-tests"` + repo_type (`str`, *optional*): + To set when cloning a repo from a repo_id. Default is model. + token (`bool` or `str`, *optional*): + A valid authentication token (see https://huggingface.co/settings/token). + If `None` or `True` and machine is logged in (through `huggingface-cli login` + or [`~huggingface_hub.login`]), token will be retrieved from the cache. + If `False`, token is not sent in the request header. + git_user (`str`, *optional*): + will override the `git config user.name` for committing and + pushing files to the hub. + git_email (`str`, *optional*): + will override the `git config user.email` for committing and + pushing files to the hub. + revision (`str`, *optional*): + Revision to checkout after initializing the repository. If the + revision doesn't exist, a branch will be created with that + revision name from the default branch's current HEAD. + skip_lfs_files (`bool`, *optional*, defaults to `False`): + whether to skip git-LFS files or not. + client (`HfApi`, *optional*): + Instance of [`HfApi`] to use when calling the HF Hub API. A new + instance will be created if this is left to `None`. + + Raises: + - [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + if the remote repository set in `clone_from` does not exist. + """ + if isinstance(local_dir, Path): + local_dir = str(local_dir) + os.makedirs(local_dir, exist_ok=True) + self.local_dir = os.path.join(os.getcwd(), local_dir) + self._repo_type = repo_type + self.command_queue = [] + self.skip_lfs_files = skip_lfs_files + self.client = client if client is not None else HfApi() + + self.check_git_versions() + + if isinstance(token, str): + self.huggingface_token: Optional[str] = token + elif token is False: + self.huggingface_token = None + else: + # if `True` -> explicit use of the cached token + # if `None` -> implicit use of the cached token + self.huggingface_token = get_token() + + if clone_from is not None: + self.clone_from(repo_url=clone_from) + else: + if is_git_repo(self.local_dir): + logger.debug("[Repository] is a valid git repo") + else: + raise ValueError("If not specifying `clone_from`, you need to pass Repository a valid git clone.") + + if self.huggingface_token is not None and (git_email is None or git_user is None): + user = self.client.whoami(self.huggingface_token) + + if git_email is None: + git_email = user["email"] + + if git_user is None: + git_user = user["fullname"] + + if git_user is not None or git_email is not None: + self.git_config_username_and_email(git_user, git_email) + + self.lfs_enable_largefiles() + self.git_credential_helper_store() + + if revision is not None: + self.git_checkout(revision, create_branch_ok=True) + + # This ensures that all commands exit before exiting the Python runtime. + # This will ensure all pushes register on the hub, even if other errors happen in subsequent operations. + atexit.register(self.wait_for_commands) + + @property + def current_branch(self) -> str: + """ + Returns the current checked out branch. + + Returns: + `str`: Current checked out branch. + """ + try: + result = run_subprocess("git rev-parse --abbrev-ref HEAD", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + return result + + def check_git_versions(self): + """ + Checks that `git` and `git-lfs` can be run. + + Raises: + - [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + if `git` or `git-lfs` are not installed. + """ + try: + git_version = run_subprocess("git --version", self.local_dir).stdout.strip() + except FileNotFoundError: + raise EnvironmentError("Looks like you do not have git installed, please install.") + + try: + lfs_version = run_subprocess("git-lfs --version", self.local_dir).stdout.strip() + except FileNotFoundError: + raise EnvironmentError( + "Looks like you do not have git-lfs installed, please install." + " You can install from https://git-lfs.github.com/." + " Then run `git lfs install` (you only have to do this once)." + ) + logger.info(git_version + "\n" + lfs_version) + + @validate_hf_hub_args + def clone_from(self, repo_url: str, token: Union[bool, str, None] = None): + """ + Clone from a remote. If the folder already exists, will try to clone the + repository within it. + + If this folder is a git repository with linked history, will try to + update the repository. + + Args: + repo_url (`str`): + The URL from which to clone the repository + token (`Union[str, bool]`, *optional*): + Whether to use the authentication token. It can be: + - a string which is the token itself + - `False`, which would not use the authentication token + - `True`, which would fetch the authentication token from the + local folder and use it (you should be logged in for this to + work). + - `None`, which would retrieve the value of + `self.huggingface_token`. + + + + Raises the following error: + + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if an organization token (starts with "api_org") is passed. Use must use + your own personal access token (see https://hf.co/settings/tokens). + + - [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + if you are trying to clone the repository in a non-empty folder, or if the + `git` operations raise errors. + + + """ + token = ( + token # str -> use it + if isinstance(token, str) + else ( + None # `False` -> explicit no token + if token is False + else self.huggingface_token # `None` or `True` -> use default + ) + ) + if token is not None and token.startswith("api_org"): + raise ValueError( + "You must use your personal access token, not an Organization token" + " (see https://hf.co/settings/tokens)." + ) + + hub_url = self.client.endpoint + if hub_url in repo_url or ("http" not in repo_url and len(repo_url.split("/")) <= 2): + repo_type, namespace, repo_name = repo_type_and_id_from_hf_id(repo_url, hub_url=hub_url) + repo_id = f"{namespace}/{repo_name}" if namespace is not None else repo_name + + if repo_type is not None: + self._repo_type = repo_type + + repo_url = hub_url + "/" + + if self._repo_type in REPO_TYPES_URL_PREFIXES: + repo_url += REPO_TYPES_URL_PREFIXES[self._repo_type] + + if token is not None: + # Add token in git url when provided + scheme = urlparse(repo_url).scheme + repo_url = repo_url.replace(f"{scheme}://", f"{scheme}://user:{token}@") + + repo_url += repo_id + + # For error messages, it's cleaner to show the repo url without the token. + clean_repo_url = re.sub(r"(https?)://.*@", r"\1://", repo_url) + try: + run_subprocess("git lfs install", self.local_dir) + + # checks if repository is initialized in a empty repository or in one with files + if len(os.listdir(self.local_dir)) == 0: + logger.warning(f"Cloning {clean_repo_url} into local empty directory.") + + with _lfs_log_progress(): + env = os.environ.copy() + + if self.skip_lfs_files: + env.update({"GIT_LFS_SKIP_SMUDGE": "1"}) + + run_subprocess( + # 'git lfs clone' is deprecated (will display a warning in the terminal) + # but we still use it as it provides a nicer UX when downloading large + # files (shows progress). + f"{'git clone' if self.skip_lfs_files else 'git lfs clone'} {repo_url} .", + self.local_dir, + env=env, + ) + else: + # Check if the folder is the root of a git repository + if not is_git_repo(self.local_dir): + raise EnvironmentError( + "Tried to clone a repository in a non-empty folder that isn't" + f" a git repository ('{self.local_dir}'). If you really want to" + f" do this, do it manually:\n cd {self.local_dir} && git init" + " && git remote add origin && git pull origin main\n or clone" + " repo to a new folder and move your existing files there" + " afterwards." + ) + + if is_local_clone(self.local_dir, repo_url): + logger.warning( + f"{self.local_dir} is already a clone of {clean_repo_url}." + " Make sure you pull the latest changes with" + " `repo.git_pull()`." + ) + else: + output = run_subprocess("git remote get-url origin", self.local_dir, check=False) + + error_msg = ( + f"Tried to clone {clean_repo_url} in an unrelated git" + " repository.\nIf you believe this is an error, please add" + f" a remote with the following URL: {clean_repo_url}." + ) + if output.returncode == 0: + clean_local_remote_url = re.sub(r"https://.*@", "https://", output.stdout) + error_msg += f"\nLocal path has its origin defined as: {clean_local_remote_url}" + raise EnvironmentError(error_msg) + + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_config_username_and_email(self, git_user: Optional[str] = None, git_email: Optional[str] = None): + """ + Sets git username and email (only in the current repo). + + Args: + git_user (`str`, *optional*): + The username to register through `git`. + git_email (`str`, *optional*): + The email to register through `git`. + """ + try: + if git_user is not None: + run_subprocess("git config user.name".split() + [git_user], self.local_dir) + + if git_email is not None: + run_subprocess(f"git config user.email {git_email}".split(), self.local_dir) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_credential_helper_store(self): + """ + Sets the git credential helper to `store` + """ + try: + run_subprocess("git config credential.helper store", self.local_dir) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_head_hash(self) -> str: + """ + Get commit sha on top of HEAD. + + Returns: + `str`: The current checked out commit SHA. + """ + try: + p = run_subprocess("git rev-parse HEAD", self.local_dir) + return p.stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_remote_url(self) -> str: + """ + Get URL to origin remote. + + Returns: + `str`: The URL of the `origin` remote. + """ + try: + p = run_subprocess("git config --get remote.origin.url", self.local_dir) + url = p.stdout.strip() + # Strip basic auth info. + return re.sub(r"https://.*@", "https://", url) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_head_commit_url(self) -> str: + """ + Get URL to last commit on HEAD. We assume it's been pushed, and the url + scheme is the same one as for GitHub or HuggingFace. + + Returns: + `str`: The URL to the current checked-out commit. + """ + sha = self.git_head_hash() + url = self.git_remote_url() + if url.endswith("/"): + url = url[:-1] + return f"{url}/commit/{sha}" + + def list_deleted_files(self) -> List[str]: + """ + Returns a list of the files that are deleted in the working directory or + index. + + Returns: + `List[str]`: A list of files that have been deleted in the working + directory or index. + """ + try: + git_status = run_subprocess("git status -s", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + if len(git_status) == 0: + return [] + + # Receives a status like the following + # D .gitignore + # D new_file.json + # AD new_file1.json + # ?? new_file2.json + # ?? new_file4.json + + # Strip each line of whitespaces + modified_files_statuses = [status.strip() for status in git_status.split("\n")] + + # Only keep files that are deleted using the D prefix + deleted_files_statuses = [status for status in modified_files_statuses if "D" in status.split()[0]] + + # Remove the D prefix and strip to keep only the relevant filename + deleted_files = [status.split()[-1].strip() for status in deleted_files_statuses] + + return deleted_files + + def lfs_track(self, patterns: Union[str, List[str]], filename: bool = False): + """ + Tell git-lfs to track files according to a pattern. + + Setting the `filename` argument to `True` will treat the arguments as + literal filenames, not as patterns. Any special glob characters in the + filename will be escaped when writing to the `.gitattributes` file. + + Args: + patterns (`Union[str, List[str]]`): + The pattern, or list of patterns, to track with git-lfs. + filename (`bool`, *optional*, defaults to `False`): + Whether to use the patterns as literal filenames. + """ + if isinstance(patterns, str): + patterns = [patterns] + try: + for pattern in patterns: + run_subprocess( + f"git lfs track {'--filename' if filename else ''} {pattern}", + self.local_dir, + ) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def lfs_untrack(self, patterns: Union[str, List[str]]): + """ + Tell git-lfs to untrack those files. + + Args: + patterns (`Union[str, List[str]]`): + The pattern, or list of patterns, to untrack with git-lfs. + """ + if isinstance(patterns, str): + patterns = [patterns] + try: + for pattern in patterns: + run_subprocess("git lfs untrack".split() + [pattern], self.local_dir) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def lfs_enable_largefiles(self): + """ + HF-specific. This enables upload support of files >5GB. + """ + try: + lfs_config = "git config lfs.customtransfer.multipart" + run_subprocess(f"{lfs_config}.path huggingface-cli", self.local_dir) + run_subprocess( + f"{lfs_config}.args {LFS_MULTIPART_UPLOAD_COMMAND}", + self.local_dir, + ) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def auto_track_binary_files(self, pattern: str = ".") -> List[str]: + """ + Automatically track binary files with git-lfs. + + Args: + pattern (`str`, *optional*, defaults to "."): + The pattern with which to track files that are binary. + + Returns: + `List[str]`: List of filenames that are now tracked due to being + binary files + """ + files_to_be_tracked_with_lfs = [] + + deleted_files = self.list_deleted_files() + + for filename in files_to_be_staged(pattern, folder=self.local_dir): + if filename in deleted_files: + continue + + path_to_file = os.path.join(os.getcwd(), self.local_dir, filename) + + if not (is_tracked_with_lfs(path_to_file) or is_git_ignored(path_to_file)): + size_in_mb = os.path.getsize(path_to_file) / (1024 * 1024) + + if size_in_mb >= 10: + logger.warning( + "Parsing a large file to check if binary or not. Tracking large" + " files using `repository.auto_track_large_files` is" + " recommended so as to not load the full file in memory." + ) + + is_binary = is_binary_file(path_to_file) + + if is_binary: + self.lfs_track(filename) + files_to_be_tracked_with_lfs.append(filename) + + # Cleanup the .gitattributes if files were deleted + self.lfs_untrack(deleted_files) + + return files_to_be_tracked_with_lfs + + def auto_track_large_files(self, pattern: str = ".") -> List[str]: + """ + Automatically track large files (files that weigh more than 10MBs) with + git-lfs. + + Args: + pattern (`str`, *optional*, defaults to "."): + The pattern with which to track files that are above 10MBs. + + Returns: + `List[str]`: List of filenames that are now tracked due to their + size. + """ + files_to_be_tracked_with_lfs = [] + + deleted_files = self.list_deleted_files() + + for filename in files_to_be_staged(pattern, folder=self.local_dir): + if filename in deleted_files: + continue + + path_to_file = os.path.join(os.getcwd(), self.local_dir, filename) + size_in_mb = os.path.getsize(path_to_file) / (1024 * 1024) + + if size_in_mb >= 10 and not is_tracked_with_lfs(path_to_file) and not is_git_ignored(path_to_file): + self.lfs_track(filename) + files_to_be_tracked_with_lfs.append(filename) + + # Cleanup the .gitattributes if files were deleted + self.lfs_untrack(deleted_files) + + return files_to_be_tracked_with_lfs + + def lfs_prune(self, recent=False): + """ + git lfs prune + + Args: + recent (`bool`, *optional*, defaults to `False`): + Whether to prune files even if they were referenced by recent + commits. See the following + [link](https://github.com/git-lfs/git-lfs/blob/f3d43f0428a84fc4f1e5405b76b5a73ec2437e65/docs/man/git-lfs-prune.1.ronn#recent-files) + for more information. + """ + try: + with _lfs_log_progress(): + result = run_subprocess(f"git lfs prune {'--recent' if recent else ''}", self.local_dir) + logger.info(result.stdout) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_pull(self, rebase: bool = False, lfs: bool = False): + """ + git pull + + Args: + rebase (`bool`, *optional*, defaults to `False`): + Whether to rebase the current branch on top of the upstream + branch after fetching. + lfs (`bool`, *optional*, defaults to `False`): + Whether to fetch the LFS files too. This option only changes the + behavior when a repository was cloned without fetching the LFS + files; calling `repo.git_pull(lfs=True)` will then fetch the LFS + file from the remote repository. + """ + command = "git pull" if not lfs else "git lfs pull" + if rebase: + command += " --rebase" + try: + with _lfs_log_progress(): + result = run_subprocess(command, self.local_dir) + logger.info(result.stdout) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_add(self, pattern: str = ".", auto_lfs_track: bool = False): + """ + git add + + Setting the `auto_lfs_track` parameter to `True` will automatically + track files that are larger than 10MB with `git-lfs`. + + Args: + pattern (`str`, *optional*, defaults to "."): + The pattern with which to add files to staging. + auto_lfs_track (`bool`, *optional*, defaults to `False`): + Whether to automatically track large and binary files with + git-lfs. Any file over 10MB in size, or in binary format, will + be automatically tracked. + """ + if auto_lfs_track: + # Track files according to their size (>=10MB) + tracked_files = self.auto_track_large_files(pattern) + + # Read the remaining files and track them if they're binary + tracked_files.extend(self.auto_track_binary_files(pattern)) + + if tracked_files: + logger.warning( + f"Adding files tracked by Git LFS: {tracked_files}. This may take a" + " bit of time if the files are large." + ) + + try: + result = run_subprocess("git add -v".split() + [pattern], self.local_dir) + logger.info(f"Adding to index:\n{result.stdout}\n") + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_commit(self, commit_message: str = "commit files to HF hub"): + """ + git commit + + Args: + commit_message (`str`, *optional*, defaults to "commit files to HF hub"): + The message attributed to the commit. + """ + try: + result = run_subprocess("git commit -v -m".split() + [commit_message], self.local_dir) + logger.info(f"Committed:\n{result.stdout}\n") + except subprocess.CalledProcessError as exc: + if len(exc.stderr) > 0: + raise EnvironmentError(exc.stderr) + else: + raise EnvironmentError(exc.stdout) + + def git_push( + self, + upstream: Optional[str] = None, + blocking: bool = True, + auto_lfs_prune: bool = False, + ) -> Union[str, Tuple[str, CommandInProgress]]: + """ + git push + + If used without setting `blocking`, will return url to commit on remote + repo. If used with `blocking=True`, will return a tuple containing the + url to commit and the command object to follow for information about the + process. + + Args: + upstream (`str`, *optional*): + Upstream to which this should push. If not specified, will push + to the lastly defined upstream or to the default one (`origin + main`). + blocking (`bool`, *optional*, defaults to `True`): + Whether the function should return only when the push has + finished. Setting this to `False` will return an + `CommandInProgress` object which has an `is_done` property. This + property will be set to `True` when the push is finished. + auto_lfs_prune (`bool`, *optional*, defaults to `False`): + Whether to automatically prune files once they have been pushed + to the remote. + """ + command = "git push" + + if upstream: + command += f" --set-upstream {upstream}" + + number_of_commits = commits_to_push(self.local_dir, upstream) + + if number_of_commits > 1: + logger.warning(f"Several commits ({number_of_commits}) will be pushed upstream.") + if blocking: + logger.warning("The progress bars may be unreliable.") + + try: + with _lfs_log_progress(): + process = subprocess.Popen( + command.split(), + stderr=subprocess.PIPE, + stdout=subprocess.PIPE, + encoding="utf-8", + cwd=self.local_dir, + ) + + if blocking: + stdout, stderr = process.communicate() + return_code = process.poll() + process.kill() + + if len(stderr): + logger.warning(stderr) + + if return_code: + raise subprocess.CalledProcessError(return_code, process.args, output=stdout, stderr=stderr) + + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + if not blocking: + + def status_method(): + status = process.poll() + if status is None: + return -1 + else: + return status + + command_in_progress = CommandInProgress( + "push", + is_done_method=lambda: process.poll() is not None, + status_method=status_method, + process=process, + post_method=self.lfs_prune if auto_lfs_prune else None, + ) + + self.command_queue.append(command_in_progress) + + return self.git_head_commit_url(), command_in_progress + + if auto_lfs_prune: + self.lfs_prune() + + return self.git_head_commit_url() + + def git_checkout(self, revision: str, create_branch_ok: bool = False): + """ + git checkout a given revision + + Specifying `create_branch_ok` to `True` will create the branch to the + given revision if that revision doesn't exist. + + Args: + revision (`str`): + The revision to checkout. + create_branch_ok (`str`, *optional*, defaults to `False`): + Whether creating a branch named with the `revision` passed at + the current checked-out reference if `revision` isn't an + existing revision is allowed. + """ + try: + result = run_subprocess(f"git checkout {revision}", self.local_dir) + logger.warning(f"Checked out {revision} from {self.current_branch}.") + logger.warning(result.stdout) + except subprocess.CalledProcessError as exc: + if not create_branch_ok: + raise EnvironmentError(exc.stderr) + else: + try: + result = run_subprocess(f"git checkout -b {revision}", self.local_dir) + logger.warning( + f"Revision `{revision}` does not exist. Created and checked out branch `{revision}`." + ) + logger.warning(result.stdout) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def tag_exists(self, tag_name: str, remote: Optional[str] = None) -> bool: + """ + Check if a tag exists or not. + + Args: + tag_name (`str`): + The name of the tag to check. + remote (`str`, *optional*): + Whether to check if the tag exists on a remote. This parameter + should be the identifier of the remote. + + Returns: + `bool`: Whether the tag exists. + """ + if remote: + try: + result = run_subprocess(f"git ls-remote origin refs/tags/{tag_name}", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + return len(result) != 0 + else: + try: + git_tags = run_subprocess("git tag", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + git_tags = git_tags.split("\n") + return tag_name in git_tags + + def delete_tag(self, tag_name: str, remote: Optional[str] = None) -> bool: + """ + Delete a tag, both local and remote, if it exists + + Args: + tag_name (`str`): + The tag name to delete. + remote (`str`, *optional*): + The remote on which to delete the tag. + + Returns: + `bool`: `True` if deleted, `False` if the tag didn't exist. + If remote is not passed, will just be updated locally + """ + delete_locally = True + delete_remotely = True + + if not self.tag_exists(tag_name): + delete_locally = False + + if not self.tag_exists(tag_name, remote=remote): + delete_remotely = False + + if delete_locally: + try: + run_subprocess(["git", "tag", "-d", tag_name], self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + if remote and delete_remotely: + try: + run_subprocess(f"git push {remote} --delete {tag_name}", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + return True + + def add_tag(self, tag_name: str, message: Optional[str] = None, remote: Optional[str] = None): + """ + Add a tag at the current head and push it + + If remote is None, will just be updated locally + + If no message is provided, the tag will be lightweight. if a message is + provided, the tag will be annotated. + + Args: + tag_name (`str`): + The name of the tag to be added. + message (`str`, *optional*): + The message that accompanies the tag. The tag will turn into an + annotated tag if a message is passed. + remote (`str`, *optional*): + The remote on which to add the tag. + """ + if message: + tag_args = ["git", "tag", "-a", tag_name, "-m", message] + else: + tag_args = ["git", "tag", tag_name] + + try: + run_subprocess(tag_args, self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + if remote: + try: + run_subprocess(f"git push {remote} {tag_name}", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def is_repo_clean(self) -> bool: + """ + Return whether or not the git status is clean or not + + Returns: + `bool`: `True` if the git status is clean, `False` otherwise. + """ + try: + git_status = run_subprocess("git status --porcelain", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + return len(git_status) == 0 + + def push_to_hub( + self, + commit_message: str = "commit files to HF hub", + blocking: bool = True, + clean_ok: bool = True, + auto_lfs_prune: bool = False, + ) -> Union[None, str, Tuple[str, CommandInProgress]]: + """ + Helper to add, commit, and push files to remote repository on the + HuggingFace Hub. Will automatically track large files (>10MB). + + Args: + commit_message (`str`): + Message to use for the commit. + blocking (`bool`, *optional*, defaults to `True`): + Whether the function should return only when the `git push` has + finished. + clean_ok (`bool`, *optional*, defaults to `True`): + If True, this function will return None if the repo is + untouched. Default behavior is to fail because the git command + fails. + auto_lfs_prune (`bool`, *optional*, defaults to `False`): + Whether to automatically prune files once they have been pushed + to the remote. + """ + if clean_ok and self.is_repo_clean(): + logger.info("Repo currently clean. Ignoring push_to_hub") + return None + self.git_add(auto_lfs_track=True) + self.git_commit(commit_message) + return self.git_push( + upstream=f"origin {self.current_branch}", + blocking=blocking, + auto_lfs_prune=auto_lfs_prune, + ) + + @contextmanager + def commit( + self, + commit_message: str, + branch: Optional[str] = None, + track_large_files: bool = True, + blocking: bool = True, + auto_lfs_prune: bool = False, + ): + """ + Context manager utility to handle committing to a repository. This + automatically tracks large files (>10Mb) with git-lfs. Set the + `track_large_files` argument to `False` if you wish to ignore that + behavior. + + Args: + commit_message (`str`): + Message to use for the commit. + branch (`str`, *optional*): + The branch on which the commit will appear. This branch will be + checked-out before any operation. + track_large_files (`bool`, *optional*, defaults to `True`): + Whether to automatically track large files or not. Will do so by + default. + blocking (`bool`, *optional*, defaults to `True`): + Whether the function should return only when the `git push` has + finished. + auto_lfs_prune (`bool`, defaults to `True`): + Whether to automatically prune files once they have been pushed + to the remote. + + Examples: + + ```python + >>> with Repository( + ... "text-files", + ... clone_from="/text-files", + ... token=True, + >>> ).commit("My first file :)"): + ... with open("file.txt", "w+") as f: + ... f.write(json.dumps({"hey": 8})) + + >>> import torch + + >>> model = torch.nn.Transformer() + >>> with Repository( + ... "torch-model", + ... clone_from="/torch-model", + ... token=True, + >>> ).commit("My cool model :)"): + ... torch.save(model.state_dict(), "model.pt") + ``` + + """ + + files_to_stage = files_to_be_staged(".", folder=self.local_dir) + + if len(files_to_stage): + files_in_msg = str(files_to_stage[:5])[:-1] + ", ...]" if len(files_to_stage) > 5 else str(files_to_stage) + logger.error( + "There exists some updated files in the local repository that are not" + f" committed: {files_in_msg}. This may lead to errors if checking out" + " a branch. These files and their modifications will be added to the" + " current commit." + ) + + if branch is not None: + self.git_checkout(branch, create_branch_ok=True) + + if is_tracked_upstream(self.local_dir): + logger.warning("Pulling changes ...") + self.git_pull(rebase=True) + else: + logger.warning(f"The current branch has no upstream branch. Will push to 'origin {self.current_branch}'") + + current_working_directory = os.getcwd() + os.chdir(os.path.join(current_working_directory, self.local_dir)) + + try: + yield self + finally: + self.git_add(auto_lfs_track=track_large_files) + + try: + self.git_commit(commit_message) + except OSError as e: + # If no changes are detected, there is nothing to commit. + if "nothing to commit" not in str(e): + raise e + + try: + self.git_push( + upstream=f"origin {self.current_branch}", + blocking=blocking, + auto_lfs_prune=auto_lfs_prune, + ) + except OSError as e: + # If no changes are detected, there is nothing to commit. + if "could not read Username" in str(e): + raise OSError("Couldn't authenticate user for push. Did you set `token` to `True`?") from e + else: + raise e + + os.chdir(current_working_directory) + + def repocard_metadata_load(self) -> Optional[Dict]: + filepath = os.path.join(self.local_dir, REPOCARD_NAME) + if os.path.isfile(filepath): + return metadata_load(filepath) + return None + + def repocard_metadata_save(self, data: Dict) -> None: + return metadata_save(os.path.join(self.local_dir, REPOCARD_NAME), data) + + @property + def commands_failed(self): + """ + Returns the asynchronous commands that failed. + """ + return [c for c in self.command_queue if c.status > 0] + + @property + def commands_in_progress(self): + """ + Returns the asynchronous commands that are currently in progress. + """ + return [c for c in self.command_queue if not c.is_done] + + def wait_for_commands(self): + """ + Blocking method: blocks all subsequent execution until all commands have + been processed. + """ + index = 0 + for command_failed in self.commands_failed: + logger.error(f"The {command_failed.title} command with PID {command_failed._process.pid} failed.") + logger.error(command_failed.stderr) + + while self.commands_in_progress: + if index % 10 == 0: + logger.warning( + f"Waiting for the following commands to finish before shutting down: {self.commands_in_progress}." + ) + + index += 1 + + time.sleep(1) diff --git a/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/INSTALLER b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/INSTALLER new file mode 100644 index 0000000000000000000000000000000000000000..a1b589e38a32041e49332e5e81c2d363dc418d68 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/INSTALLER @@ -0,0 +1 @@ +pip diff --git a/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/LICENSE b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..1e65815cf0b3132689485874a93034ede7206bf4 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/LICENSE @@ -0,0 +1,54 @@ +Copyright 2017- Paul Ganssle +Copyright 2017- dateutil contributors (see AUTHORS file) + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + +The above license applies to all contributions after 2017-12-01, as well as +all contributions that have been re-licensed (see AUTHORS file for the list of +contributors who have re-licensed their code). +-------------------------------------------------------------------------------- +dateutil - Extensions to the standard Python datetime module. + +Copyright (c) 2003-2011 - Gustavo Niemeyer +Copyright (c) 2012-2014 - Tomi Pieviläinen +Copyright (c) 2014-2016 - Yaron de Leeuw +Copyright (c) 2015- - Paul Ganssle +Copyright (c) 2015- - dateutil contributors (see AUTHORS file) + +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR +CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +The above BSD License Applies to all code, even that also covered by Apache 2.0. \ No newline at end of file diff --git a/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/METADATA b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/METADATA new file mode 100644 index 0000000000000000000000000000000000000000..577f2bf2b7749e1b123b8225d610b1b257e430cc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/METADATA @@ -0,0 +1,204 @@ +Metadata-Version: 2.1 +Name: python-dateutil +Version: 2.9.0.post0 +Summary: Extensions to the standard Python datetime module +Home-page: https://github.com/dateutil/dateutil +Author: Gustavo Niemeyer +Author-email: gustavo@niemeyer.net +Maintainer: Paul Ganssle +Maintainer-email: dateutil@python.org +License: Dual License +Project-URL: Documentation, https://dateutil.readthedocs.io/en/stable/ +Project-URL: Source, https://github.com/dateutil/dateutil +Classifier: Development Status :: 5 - Production/Stable +Classifier: Intended Audience :: Developers +Classifier: License :: OSI Approved :: BSD License +Classifier: License :: OSI Approved :: Apache Software License +Classifier: Programming Language :: Python +Classifier: Programming Language :: Python :: 2 +Classifier: Programming Language :: Python :: 2.7 +Classifier: Programming Language :: Python :: 3 +Classifier: Programming Language :: Python :: 3.3 +Classifier: Programming Language :: Python :: 3.4 +Classifier: Programming Language :: Python :: 3.5 +Classifier: Programming Language :: Python :: 3.6 +Classifier: Programming Language :: Python :: 3.7 +Classifier: Programming Language :: Python :: 3.8 +Classifier: Programming Language :: Python :: 3.9 +Classifier: Programming Language :: Python :: 3.10 +Classifier: Programming Language :: Python :: 3.11 +Classifier: Programming Language :: Python :: 3.12 +Classifier: Topic :: Software Development :: Libraries +Requires-Python: !=3.0.*,!=3.1.*,!=3.2.*,>=2.7 +Description-Content-Type: text/x-rst +License-File: LICENSE +Requires-Dist: six >=1.5 + +dateutil - powerful extensions to datetime +========================================== + +|pypi| |support| |licence| + +|gitter| |readthedocs| + +|travis| |appveyor| |pipelines| |coverage| + +.. |pypi| image:: https://img.shields.io/pypi/v/python-dateutil.svg?style=flat-square + :target: https://pypi.org/project/python-dateutil/ + :alt: pypi version + +.. |support| image:: https://img.shields.io/pypi/pyversions/python-dateutil.svg?style=flat-square + :target: https://pypi.org/project/python-dateutil/ + :alt: supported Python version + +.. |travis| image:: https://img.shields.io/travis/dateutil/dateutil/master.svg?style=flat-square&label=Travis%20Build + :target: https://travis-ci.org/dateutil/dateutil + :alt: travis build status + +.. |appveyor| image:: https://img.shields.io/appveyor/ci/dateutil/dateutil/master.svg?style=flat-square&logo=appveyor + :target: https://ci.appveyor.com/project/dateutil/dateutil + :alt: appveyor build status + +.. |pipelines| image:: https://dev.azure.com/pythondateutilazure/dateutil/_apis/build/status/dateutil.dateutil?branchName=master + :target: https://dev.azure.com/pythondateutilazure/dateutil/_build/latest?definitionId=1&branchName=master + :alt: azure pipelines build status + +.. |coverage| image:: https://codecov.io/gh/dateutil/dateutil/branch/master/graphs/badge.svg?branch=master + :target: https://codecov.io/gh/dateutil/dateutil?branch=master + :alt: Code coverage + +.. |gitter| image:: https://badges.gitter.im/dateutil/dateutil.svg + :alt: Join the chat at https://gitter.im/dateutil/dateutil + :target: https://gitter.im/dateutil/dateutil + +.. |licence| image:: https://img.shields.io/pypi/l/python-dateutil.svg?style=flat-square + :target: https://pypi.org/project/python-dateutil/ + :alt: licence + +.. |readthedocs| image:: https://img.shields.io/readthedocs/dateutil/latest.svg?style=flat-square&label=Read%20the%20Docs + :alt: Read the documentation at https://dateutil.readthedocs.io/en/latest/ + :target: https://dateutil.readthedocs.io/en/latest/ + +The `dateutil` module provides powerful extensions to +the standard `datetime` module, available in Python. + +Installation +============ +`dateutil` can be installed from PyPI using `pip` (note that the package name is +different from the importable name):: + + pip install python-dateutil + +Download +======== +dateutil is available on PyPI +https://pypi.org/project/python-dateutil/ + +The documentation is hosted at: +https://dateutil.readthedocs.io/en/stable/ + +Code +==== +The code and issue tracker are hosted on GitHub: +https://github.com/dateutil/dateutil/ + +Features +======== + +* Computing of relative deltas (next month, next year, + next Monday, last week of month, etc); +* Computing of relative deltas between two given + date and/or datetime objects; +* Computing of dates based on very flexible recurrence rules, + using a superset of the `iCalendar `_ + specification. Parsing of RFC strings is supported as well. +* Generic parsing of dates in almost any string format; +* Timezone (tzinfo) implementations for tzfile(5) format + files (/etc/localtime, /usr/share/zoneinfo, etc), TZ + environment string (in all known formats), iCalendar + format files, given ranges (with help from relative deltas), + local machine timezone, fixed offset timezone, UTC timezone, + and Windows registry-based time zones. +* Internal up-to-date world timezone information based on + Olson's database. +* Computing of Easter Sunday dates for any given year, + using Western, Orthodox or Julian algorithms; +* A comprehensive test suite. + +Quick example +============= +Here's a snapshot, just to give an idea about the power of the +package. For more examples, look at the documentation. + +Suppose you want to know how much time is left, in +years/months/days/etc, before the next easter happening on a +year with a Friday 13th in August, and you want to get today's +date out of the "date" unix system command. Here is the code: + +.. code-block:: python3 + + >>> from dateutil.relativedelta import * + >>> from dateutil.easter import * + >>> from dateutil.rrule import * + >>> from dateutil.parser import * + >>> from datetime import * + >>> now = parse("Sat Oct 11 17:13:46 UTC 2003") + >>> today = now.date() + >>> year = rrule(YEARLY,dtstart=now,bymonth=8,bymonthday=13,byweekday=FR)[0].year + >>> rdelta = relativedelta(easter(year), today) + >>> print("Today is: %s" % today) + Today is: 2003-10-11 + >>> print("Year with next Aug 13th on a Friday is: %s" % year) + Year with next Aug 13th on a Friday is: 2004 + >>> print("How far is the Easter of that year: %s" % rdelta) + How far is the Easter of that year: relativedelta(months=+6) + >>> print("And the Easter of that year is: %s" % (today+rdelta)) + And the Easter of that year is: 2004-04-11 + +Being exactly 6 months ahead was **really** a coincidence :) + +Contributing +============ + +We welcome many types of contributions - bug reports, pull requests (code, infrastructure or documentation fixes). For more information about how to contribute to the project, see the ``CONTRIBUTING.md`` file in the repository. + + +Author +====== +The dateutil module was written by Gustavo Niemeyer +in 2003. + +It is maintained by: + +* Gustavo Niemeyer 2003-2011 +* Tomi Pieviläinen 2012-2014 +* Yaron de Leeuw 2014-2016 +* Paul Ganssle 2015- + +Starting with version 2.4.1 and running until 2.8.2, all source and binary +distributions will be signed by a PGP key that has, at the very least, been +signed by the key which made the previous release. A table of release signing +keys can be found below: + +=========== ============================ +Releases Signing key fingerprint +=========== ============================ +2.4.1-2.8.2 `6B49 ACBA DCF6 BD1C A206 67AB CD54 FCE3 D964 BEFB`_ +=========== ============================ + +New releases *may* have signed tags, but binary and source distributions +uploaded to PyPI will no longer have GPG signatures attached. + +Contact +======= +Our mailing list is available at `dateutil@python.org `_. As it is hosted by the PSF, it is subject to the `PSF code of +conduct `_. + +License +======= + +All contributions after December 1, 2017 released under dual license - either `Apache 2.0 License `_ or the `BSD 3-Clause License `_. Contributions before December 1, 2017 - except those those explicitly relicensed - are released only under the BSD 3-Clause License. + + +.. _6B49 ACBA DCF6 BD1C A206 67AB CD54 FCE3 D964 BEFB: + https://pgp.mit.edu/pks/lookup?op=vindex&search=0xCD54FCE3D964BEFB diff --git a/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/RECORD b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/RECORD new file mode 100644 index 0000000000000000000000000000000000000000..176502e4e04b23de8580d433f4ee9101ac917a93 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/RECORD @@ -0,0 +1,44 @@ +dateutil/__init__.py,sha256=Mqam67WO9IkTmUFyI66vS6IoSXTp9G388DadH2LCMLY,620 +dateutil/__pycache__/__init__.cpython-310.pyc,, +dateutil/__pycache__/_common.cpython-310.pyc,, +dateutil/__pycache__/_version.cpython-310.pyc,, +dateutil/__pycache__/easter.cpython-310.pyc,, +dateutil/__pycache__/relativedelta.cpython-310.pyc,, +dateutil/__pycache__/rrule.cpython-310.pyc,, +dateutil/__pycache__/tzwin.cpython-310.pyc,, +dateutil/__pycache__/utils.cpython-310.pyc,, +dateutil/_common.py,sha256=77w0yytkrxlYbSn--lDVPUMabUXRR9I3lBv_vQRUqUY,932 +dateutil/_version.py,sha256=BV031OxDDAmy58neUg5yyqLkLaqIw7ibK9As3jiMib0,166 +dateutil/easter.py,sha256=dyBi-lKvimH1u_k6p7Z0JJK72QhqVtVBsqByvpEPKvc,2678 +dateutil/parser/__init__.py,sha256=wWk6GFuxTpjoggCGtgkceJoti4pVjl4_fHQXpNOaSYg,1766 +dateutil/parser/__pycache__/__init__.cpython-310.pyc,, +dateutil/parser/__pycache__/_parser.cpython-310.pyc,, +dateutil/parser/__pycache__/isoparser.cpython-310.pyc,, +dateutil/parser/_parser.py,sha256=7klDdyicksQB_Xgl-3UAmBwzCYor1AIZqklIcT6dH_8,58796 +dateutil/parser/isoparser.py,sha256=8Fy999bnCd1frSdOYuOraWfJTtd5W7qQ51NwNuH_hXM,13233 +dateutil/relativedelta.py,sha256=IY_mglMjoZbYfrvloTY2ce02aiVjPIkiZfqgNTZRfuA,24903 +dateutil/rrule.py,sha256=KJzKlaCd1jEbu4A38ZltslaoAUh9nSbdbOFdjp70Kew,66557 +dateutil/tz/__init__.py,sha256=F-Mz13v6jYseklQf9Te9J6nzcLDmq47gORa61K35_FA,444 +dateutil/tz/__pycache__/__init__.cpython-310.pyc,, +dateutil/tz/__pycache__/_common.cpython-310.pyc,, +dateutil/tz/__pycache__/_factories.cpython-310.pyc,, +dateutil/tz/__pycache__/tz.cpython-310.pyc,, +dateutil/tz/__pycache__/win.cpython-310.pyc,, +dateutil/tz/_common.py,sha256=cgzDTANsOXvEc86cYF77EsliuSab8Puwpsl5-bX3_S4,12977 +dateutil/tz/_factories.py,sha256=unb6XQNXrPMveksTCU-Ag8jmVZs4SojoPUcAHpWnrvU,2569 +dateutil/tz/tz.py,sha256=EUnEdMfeThXiY6l4sh9yBabZ63_POzy01zSsh9thn1o,62855 +dateutil/tz/win.py,sha256=xJszWgSwE1xPx_HJj4ZkepyukC_hNy016WMcXhbRaB8,12935 +dateutil/tzwin.py,sha256=7Ar4vdQCnnM0mKR3MUjbIKsZrBVfHgdwsJZc_mGYRew,59 +dateutil/utils.py,sha256=dKCchEw8eObi0loGTx91unBxm_7UGlU3v_FjFMdqwYM,1965 +dateutil/zoneinfo/__init__.py,sha256=KYg0pthCMjcp5MXSEiBJn3nMjZeNZav7rlJw5-tz1S4,5889 +dateutil/zoneinfo/__pycache__/__init__.cpython-310.pyc,, +dateutil/zoneinfo/__pycache__/rebuild.cpython-310.pyc,, +dateutil/zoneinfo/dateutil-zoneinfo.tar.gz,sha256=0-pS57bpaN4NiE3xKIGTWW-pW4A9tPkqGCeac5gARHU,156400 +dateutil/zoneinfo/rebuild.py,sha256=MiqYzCIHvNbMH-LdRYLv-4T0EIA7hDKt5GLR0IRTLdI,2392 +python_dateutil-2.9.0.post0.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4 +python_dateutil-2.9.0.post0.dist-info/LICENSE,sha256=ugD1Gg2SgjtaHN4n2LW50jIeZ-2NqbwWPv-W1eF-V34,2889 +python_dateutil-2.9.0.post0.dist-info/METADATA,sha256=qdQ22jIr6AgzL5jYgyWZjofLaTpniplp_rTPrXKabpM,8354 +python_dateutil-2.9.0.post0.dist-info/RECORD,, +python_dateutil-2.9.0.post0.dist-info/WHEEL,sha256=-G_t0oGuE7UD0DrSpVZnq1hHMBV9DD2XkS5v7XpmTnk,110 +python_dateutil-2.9.0.post0.dist-info/top_level.txt,sha256=4tjdWkhRZvF7LA_BYe_L9gB2w_p2a-z5y6ArjaRkot8,9 +python_dateutil-2.9.0.post0.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1 diff --git a/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/WHEEL b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/WHEEL new file mode 100644 index 0000000000000000000000000000000000000000..4724c45738f6ac125bb3a21787855562e6870440 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/WHEEL @@ -0,0 +1,6 @@ +Wheel-Version: 1.0 +Generator: bdist_wheel (0.42.0) +Root-Is-Purelib: true +Tag: py2-none-any +Tag: py3-none-any + diff --git a/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/top_level.txt b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/top_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..66501480ba5b63f98ee9a59c1f99e5e6917da6d9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/top_level.txt @@ -0,0 +1 @@ +dateutil diff --git a/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/zip-safe b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/zip-safe new file mode 100644 index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/zip-safe @@ -0,0 +1 @@ +