Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_cdnmf_fast.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_dict_learning.py +2301 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_fastica.py +795 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_kernel_pca.py +572 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_lda.py +929 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_online_lda_fast.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_sparse_pca.py +551 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_truncated_svd.py +319 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__init__.py +47 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_base.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_from_model.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_mutual_info.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_rfe.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_sequential.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_univariate_selection.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_variance_threshold.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_base.py +266 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_from_model.py +522 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_mutual_info.py +514 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_rfe.py +792 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_sequential.py +300 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_univariate_selection.py +1161 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_variance_threshold.py +136 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_base.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_chi2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_feature_select.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_from_model.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_mutual_info.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_rfe.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_sequential.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_variance_threshold.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_base.py +153 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_chi2.py +93 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_feature_select.py +1017 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_from_model.py +684 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_mutual_info.py +254 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_rfe.py +615 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_sequential.py +323 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_variance_threshold.py +72 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/impute/__init__.py +24 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/impute/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/impute/__pycache__/_base.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/impute/__pycache__/_iterative.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/impute/__pycache__/_knn.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/impute/_base.py +1075 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/impute/_iterative.py +906 -0
- llmeval-env/lib/python3.10/site-packages/sklearn/impute/_knn.py +401 -0
llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_cdnmf_fast.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (246 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_dict_learning.py
ADDED
@@ -0,0 +1,2301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Dictionary learning.
|
2 |
+
"""
|
3 |
+
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
|
4 |
+
# License: BSD 3 clause
|
5 |
+
|
6 |
+
import itertools
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
from numbers import Integral, Real
|
10 |
+
from warnings import warn
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from joblib import effective_n_jobs
|
14 |
+
from scipy import linalg
|
15 |
+
|
16 |
+
from ..base import (
|
17 |
+
BaseEstimator,
|
18 |
+
ClassNamePrefixFeaturesOutMixin,
|
19 |
+
TransformerMixin,
|
20 |
+
_fit_context,
|
21 |
+
)
|
22 |
+
from ..linear_model import Lars, Lasso, LassoLars, orthogonal_mp_gram
|
23 |
+
from ..utils import check_array, check_random_state, gen_batches, gen_even_slices
|
24 |
+
from ..utils._param_validation import Hidden, Interval, StrOptions, validate_params
|
25 |
+
from ..utils.extmath import randomized_svd, row_norms, svd_flip
|
26 |
+
from ..utils.parallel import Parallel, delayed
|
27 |
+
from ..utils.validation import check_is_fitted
|
28 |
+
|
29 |
+
|
30 |
+
def _check_positive_coding(method, positive):
|
31 |
+
if positive and method in ["omp", "lars"]:
|
32 |
+
raise ValueError(
|
33 |
+
"Positive constraint not supported for '{}' coding method.".format(method)
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def _sparse_encode_precomputed(
|
38 |
+
X,
|
39 |
+
dictionary,
|
40 |
+
*,
|
41 |
+
gram=None,
|
42 |
+
cov=None,
|
43 |
+
algorithm="lasso_lars",
|
44 |
+
regularization=None,
|
45 |
+
copy_cov=True,
|
46 |
+
init=None,
|
47 |
+
max_iter=1000,
|
48 |
+
verbose=0,
|
49 |
+
positive=False,
|
50 |
+
):
|
51 |
+
"""Generic sparse coding with precomputed Gram and/or covariance matrices.
|
52 |
+
|
53 |
+
Each row of the result is the solution to a Lasso problem.
|
54 |
+
|
55 |
+
Parameters
|
56 |
+
----------
|
57 |
+
X : ndarray of shape (n_samples, n_features)
|
58 |
+
Data matrix.
|
59 |
+
|
60 |
+
dictionary : ndarray of shape (n_components, n_features)
|
61 |
+
The dictionary matrix against which to solve the sparse coding of
|
62 |
+
the data. Some of the algorithms assume normalized rows.
|
63 |
+
|
64 |
+
gram : ndarray of shape (n_components, n_components), default=None
|
65 |
+
Precomputed Gram matrix, `dictionary * dictionary'`
|
66 |
+
gram can be `None` if method is 'threshold'.
|
67 |
+
|
68 |
+
cov : ndarray of shape (n_components, n_samples), default=None
|
69 |
+
Precomputed covariance, `dictionary * X'`.
|
70 |
+
|
71 |
+
algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}, \
|
72 |
+
default='lasso_lars'
|
73 |
+
The algorithm used:
|
74 |
+
|
75 |
+
* `'lars'`: uses the least angle regression method
|
76 |
+
(`linear_model.lars_path`);
|
77 |
+
* `'lasso_lars'`: uses Lars to compute the Lasso solution;
|
78 |
+
* `'lasso_cd'`: uses the coordinate descent method to compute the
|
79 |
+
Lasso solution (`linear_model.Lasso`). lasso_lars will be faster if
|
80 |
+
the estimated components are sparse;
|
81 |
+
* `'omp'`: uses orthogonal matching pursuit to estimate the sparse
|
82 |
+
solution;
|
83 |
+
* `'threshold'`: squashes to zero all coefficients less than
|
84 |
+
regularization from the projection `dictionary * data'`.
|
85 |
+
|
86 |
+
regularization : int or float, default=None
|
87 |
+
The regularization parameter. It corresponds to alpha when
|
88 |
+
algorithm is `'lasso_lars'`, `'lasso_cd'` or `'threshold'`.
|
89 |
+
Otherwise it corresponds to `n_nonzero_coefs`.
|
90 |
+
|
91 |
+
init : ndarray of shape (n_samples, n_components), default=None
|
92 |
+
Initialization value of the sparse code. Only used if
|
93 |
+
`algorithm='lasso_cd'`.
|
94 |
+
|
95 |
+
max_iter : int, default=1000
|
96 |
+
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
|
97 |
+
`'lasso_lars'`.
|
98 |
+
|
99 |
+
copy_cov : bool, default=True
|
100 |
+
Whether to copy the precomputed covariance matrix; if `False`, it may
|
101 |
+
be overwritten.
|
102 |
+
|
103 |
+
verbose : int, default=0
|
104 |
+
Controls the verbosity; the higher, the more messages.
|
105 |
+
|
106 |
+
positive: bool, default=False
|
107 |
+
Whether to enforce a positivity constraint on the sparse code.
|
108 |
+
|
109 |
+
.. versionadded:: 0.20
|
110 |
+
|
111 |
+
Returns
|
112 |
+
-------
|
113 |
+
code : ndarray of shape (n_components, n_features)
|
114 |
+
The sparse codes.
|
115 |
+
"""
|
116 |
+
n_samples, n_features = X.shape
|
117 |
+
n_components = dictionary.shape[0]
|
118 |
+
|
119 |
+
if algorithm == "lasso_lars":
|
120 |
+
alpha = float(regularization) / n_features # account for scaling
|
121 |
+
try:
|
122 |
+
err_mgt = np.seterr(all="ignore")
|
123 |
+
|
124 |
+
# Not passing in verbose=max(0, verbose-1) because Lars.fit already
|
125 |
+
# corrects the verbosity level.
|
126 |
+
lasso_lars = LassoLars(
|
127 |
+
alpha=alpha,
|
128 |
+
fit_intercept=False,
|
129 |
+
verbose=verbose,
|
130 |
+
precompute=gram,
|
131 |
+
fit_path=False,
|
132 |
+
positive=positive,
|
133 |
+
max_iter=max_iter,
|
134 |
+
)
|
135 |
+
lasso_lars.fit(dictionary.T, X.T, Xy=cov)
|
136 |
+
new_code = lasso_lars.coef_
|
137 |
+
finally:
|
138 |
+
np.seterr(**err_mgt)
|
139 |
+
|
140 |
+
elif algorithm == "lasso_cd":
|
141 |
+
alpha = float(regularization) / n_features # account for scaling
|
142 |
+
|
143 |
+
# TODO: Make verbosity argument for Lasso?
|
144 |
+
# sklearn.linear_model.coordinate_descent.enet_path has a verbosity
|
145 |
+
# argument that we could pass in from Lasso.
|
146 |
+
clf = Lasso(
|
147 |
+
alpha=alpha,
|
148 |
+
fit_intercept=False,
|
149 |
+
precompute=gram,
|
150 |
+
max_iter=max_iter,
|
151 |
+
warm_start=True,
|
152 |
+
positive=positive,
|
153 |
+
)
|
154 |
+
|
155 |
+
if init is not None:
|
156 |
+
# In some workflows using coordinate descent algorithms:
|
157 |
+
# - users might provide NumPy arrays with read-only buffers
|
158 |
+
# - `joblib` might memmap arrays making their buffer read-only
|
159 |
+
# TODO: move this handling (which is currently too broad)
|
160 |
+
# closer to the actual private function which need buffers to be writable.
|
161 |
+
if not init.flags["WRITEABLE"]:
|
162 |
+
init = np.array(init)
|
163 |
+
clf.coef_ = init
|
164 |
+
|
165 |
+
clf.fit(dictionary.T, X.T, check_input=False)
|
166 |
+
new_code = clf.coef_
|
167 |
+
|
168 |
+
elif algorithm == "lars":
|
169 |
+
try:
|
170 |
+
err_mgt = np.seterr(all="ignore")
|
171 |
+
|
172 |
+
# Not passing in verbose=max(0, verbose-1) because Lars.fit already
|
173 |
+
# corrects the verbosity level.
|
174 |
+
lars = Lars(
|
175 |
+
fit_intercept=False,
|
176 |
+
verbose=verbose,
|
177 |
+
precompute=gram,
|
178 |
+
n_nonzero_coefs=int(regularization),
|
179 |
+
fit_path=False,
|
180 |
+
)
|
181 |
+
lars.fit(dictionary.T, X.T, Xy=cov)
|
182 |
+
new_code = lars.coef_
|
183 |
+
finally:
|
184 |
+
np.seterr(**err_mgt)
|
185 |
+
|
186 |
+
elif algorithm == "threshold":
|
187 |
+
new_code = (np.sign(cov) * np.maximum(np.abs(cov) - regularization, 0)).T
|
188 |
+
if positive:
|
189 |
+
np.clip(new_code, 0, None, out=new_code)
|
190 |
+
|
191 |
+
elif algorithm == "omp":
|
192 |
+
new_code = orthogonal_mp_gram(
|
193 |
+
Gram=gram,
|
194 |
+
Xy=cov,
|
195 |
+
n_nonzero_coefs=int(regularization),
|
196 |
+
tol=None,
|
197 |
+
norms_squared=row_norms(X, squared=True),
|
198 |
+
copy_Xy=copy_cov,
|
199 |
+
).T
|
200 |
+
|
201 |
+
return new_code.reshape(n_samples, n_components)
|
202 |
+
|
203 |
+
|
204 |
+
@validate_params(
|
205 |
+
{
|
206 |
+
"X": ["array-like"],
|
207 |
+
"dictionary": ["array-like"],
|
208 |
+
"gram": ["array-like", None],
|
209 |
+
"cov": ["array-like", None],
|
210 |
+
"algorithm": [
|
211 |
+
StrOptions({"lasso_lars", "lasso_cd", "lars", "omp", "threshold"})
|
212 |
+
],
|
213 |
+
"n_nonzero_coefs": [Interval(Integral, 1, None, closed="left"), None],
|
214 |
+
"alpha": [Interval(Real, 0, None, closed="left"), None],
|
215 |
+
"copy_cov": ["boolean"],
|
216 |
+
"init": ["array-like", None],
|
217 |
+
"max_iter": [Interval(Integral, 0, None, closed="left")],
|
218 |
+
"n_jobs": [Integral, None],
|
219 |
+
"check_input": ["boolean"],
|
220 |
+
"verbose": ["verbose"],
|
221 |
+
"positive": ["boolean"],
|
222 |
+
},
|
223 |
+
prefer_skip_nested_validation=True,
|
224 |
+
)
|
225 |
+
# XXX : could be moved to the linear_model module
|
226 |
+
def sparse_encode(
|
227 |
+
X,
|
228 |
+
dictionary,
|
229 |
+
*,
|
230 |
+
gram=None,
|
231 |
+
cov=None,
|
232 |
+
algorithm="lasso_lars",
|
233 |
+
n_nonzero_coefs=None,
|
234 |
+
alpha=None,
|
235 |
+
copy_cov=True,
|
236 |
+
init=None,
|
237 |
+
max_iter=1000,
|
238 |
+
n_jobs=None,
|
239 |
+
check_input=True,
|
240 |
+
verbose=0,
|
241 |
+
positive=False,
|
242 |
+
):
|
243 |
+
"""Sparse coding.
|
244 |
+
|
245 |
+
Each row of the result is the solution to a sparse coding problem.
|
246 |
+
The goal is to find a sparse array `code` such that::
|
247 |
+
|
248 |
+
X ~= code * dictionary
|
249 |
+
|
250 |
+
Read more in the :ref:`User Guide <SparseCoder>`.
|
251 |
+
|
252 |
+
Parameters
|
253 |
+
----------
|
254 |
+
X : array-like of shape (n_samples, n_features)
|
255 |
+
Data matrix.
|
256 |
+
|
257 |
+
dictionary : array-like of shape (n_components, n_features)
|
258 |
+
The dictionary matrix against which to solve the sparse coding of
|
259 |
+
the data. Some of the algorithms assume normalized rows for meaningful
|
260 |
+
output.
|
261 |
+
|
262 |
+
gram : array-like of shape (n_components, n_components), default=None
|
263 |
+
Precomputed Gram matrix, `dictionary * dictionary'`.
|
264 |
+
|
265 |
+
cov : array-like of shape (n_components, n_samples), default=None
|
266 |
+
Precomputed covariance, `dictionary' * X`.
|
267 |
+
|
268 |
+
algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}, \
|
269 |
+
default='lasso_lars'
|
270 |
+
The algorithm used:
|
271 |
+
|
272 |
+
* `'lars'`: uses the least angle regression method
|
273 |
+
(`linear_model.lars_path`);
|
274 |
+
* `'lasso_lars'`: uses Lars to compute the Lasso solution;
|
275 |
+
* `'lasso_cd'`: uses the coordinate descent method to compute the
|
276 |
+
Lasso solution (`linear_model.Lasso`). lasso_lars will be faster if
|
277 |
+
the estimated components are sparse;
|
278 |
+
* `'omp'`: uses orthogonal matching pursuit to estimate the sparse
|
279 |
+
solution;
|
280 |
+
* `'threshold'`: squashes to zero all coefficients less than
|
281 |
+
regularization from the projection `dictionary * data'`.
|
282 |
+
|
283 |
+
n_nonzero_coefs : int, default=None
|
284 |
+
Number of nonzero coefficients to target in each column of the
|
285 |
+
solution. This is only used by `algorithm='lars'` and `algorithm='omp'`
|
286 |
+
and is overridden by `alpha` in the `omp` case. If `None`, then
|
287 |
+
`n_nonzero_coefs=int(n_features / 10)`.
|
288 |
+
|
289 |
+
alpha : float, default=None
|
290 |
+
If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
|
291 |
+
penalty applied to the L1 norm.
|
292 |
+
If `algorithm='threshold'`, `alpha` is the absolute value of the
|
293 |
+
threshold below which coefficients will be squashed to zero.
|
294 |
+
If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of
|
295 |
+
the reconstruction error targeted. In this case, it overrides
|
296 |
+
`n_nonzero_coefs`.
|
297 |
+
If `None`, default to 1.
|
298 |
+
|
299 |
+
copy_cov : bool, default=True
|
300 |
+
Whether to copy the precomputed covariance matrix; if `False`, it may
|
301 |
+
be overwritten.
|
302 |
+
|
303 |
+
init : ndarray of shape (n_samples, n_components), default=None
|
304 |
+
Initialization value of the sparse codes. Only used if
|
305 |
+
`algorithm='lasso_cd'`.
|
306 |
+
|
307 |
+
max_iter : int, default=1000
|
308 |
+
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
|
309 |
+
`'lasso_lars'`.
|
310 |
+
|
311 |
+
n_jobs : int, default=None
|
312 |
+
Number of parallel jobs to run.
|
313 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
314 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
315 |
+
for more details.
|
316 |
+
|
317 |
+
check_input : bool, default=True
|
318 |
+
If `False`, the input arrays X and dictionary will not be checked.
|
319 |
+
|
320 |
+
verbose : int, default=0
|
321 |
+
Controls the verbosity; the higher, the more messages.
|
322 |
+
|
323 |
+
positive : bool, default=False
|
324 |
+
Whether to enforce positivity when finding the encoding.
|
325 |
+
|
326 |
+
.. versionadded:: 0.20
|
327 |
+
|
328 |
+
Returns
|
329 |
+
-------
|
330 |
+
code : ndarray of shape (n_samples, n_components)
|
331 |
+
The sparse codes.
|
332 |
+
|
333 |
+
See Also
|
334 |
+
--------
|
335 |
+
sklearn.linear_model.lars_path : Compute Least Angle Regression or Lasso
|
336 |
+
path using LARS algorithm.
|
337 |
+
sklearn.linear_model.orthogonal_mp : Solves Orthogonal Matching Pursuit problems.
|
338 |
+
sklearn.linear_model.Lasso : Train Linear Model with L1 prior as regularizer.
|
339 |
+
SparseCoder : Find a sparse representation of data from a fixed precomputed
|
340 |
+
dictionary.
|
341 |
+
|
342 |
+
Examples
|
343 |
+
--------
|
344 |
+
>>> import numpy as np
|
345 |
+
>>> from sklearn.decomposition import sparse_encode
|
346 |
+
>>> X = np.array([[-1, -1, -1], [0, 0, 3]])
|
347 |
+
>>> dictionary = np.array(
|
348 |
+
... [[0, 1, 0],
|
349 |
+
... [-1, -1, 2],
|
350 |
+
... [1, 1, 1],
|
351 |
+
... [0, 1, 1],
|
352 |
+
... [0, 2, 1]],
|
353 |
+
... dtype=np.float64
|
354 |
+
... )
|
355 |
+
>>> sparse_encode(X, dictionary, alpha=1e-10)
|
356 |
+
array([[ 0., 0., -1., 0., 0.],
|
357 |
+
[ 0., 1., 1., 0., 0.]])
|
358 |
+
"""
|
359 |
+
if check_input:
|
360 |
+
if algorithm == "lasso_cd":
|
361 |
+
dictionary = check_array(
|
362 |
+
dictionary, order="C", dtype=[np.float64, np.float32]
|
363 |
+
)
|
364 |
+
X = check_array(X, order="C", dtype=[np.float64, np.float32])
|
365 |
+
else:
|
366 |
+
dictionary = check_array(dictionary)
|
367 |
+
X = check_array(X)
|
368 |
+
|
369 |
+
if dictionary.shape[1] != X.shape[1]:
|
370 |
+
raise ValueError(
|
371 |
+
"Dictionary and X have different numbers of features:"
|
372 |
+
"dictionary.shape: {} X.shape{}".format(dictionary.shape, X.shape)
|
373 |
+
)
|
374 |
+
|
375 |
+
_check_positive_coding(algorithm, positive)
|
376 |
+
|
377 |
+
return _sparse_encode(
|
378 |
+
X,
|
379 |
+
dictionary,
|
380 |
+
gram=gram,
|
381 |
+
cov=cov,
|
382 |
+
algorithm=algorithm,
|
383 |
+
n_nonzero_coefs=n_nonzero_coefs,
|
384 |
+
alpha=alpha,
|
385 |
+
copy_cov=copy_cov,
|
386 |
+
init=init,
|
387 |
+
max_iter=max_iter,
|
388 |
+
n_jobs=n_jobs,
|
389 |
+
verbose=verbose,
|
390 |
+
positive=positive,
|
391 |
+
)
|
392 |
+
|
393 |
+
|
394 |
+
def _sparse_encode(
|
395 |
+
X,
|
396 |
+
dictionary,
|
397 |
+
*,
|
398 |
+
gram=None,
|
399 |
+
cov=None,
|
400 |
+
algorithm="lasso_lars",
|
401 |
+
n_nonzero_coefs=None,
|
402 |
+
alpha=None,
|
403 |
+
copy_cov=True,
|
404 |
+
init=None,
|
405 |
+
max_iter=1000,
|
406 |
+
n_jobs=None,
|
407 |
+
verbose=0,
|
408 |
+
positive=False,
|
409 |
+
):
|
410 |
+
"""Sparse coding without input/parameter validation."""
|
411 |
+
|
412 |
+
n_samples, n_features = X.shape
|
413 |
+
n_components = dictionary.shape[0]
|
414 |
+
|
415 |
+
if algorithm in ("lars", "omp"):
|
416 |
+
regularization = n_nonzero_coefs
|
417 |
+
if regularization is None:
|
418 |
+
regularization = min(max(n_features / 10, 1), n_components)
|
419 |
+
else:
|
420 |
+
regularization = alpha
|
421 |
+
if regularization is None:
|
422 |
+
regularization = 1.0
|
423 |
+
|
424 |
+
if gram is None and algorithm != "threshold":
|
425 |
+
gram = np.dot(dictionary, dictionary.T)
|
426 |
+
|
427 |
+
if cov is None and algorithm != "lasso_cd":
|
428 |
+
copy_cov = False
|
429 |
+
cov = np.dot(dictionary, X.T)
|
430 |
+
|
431 |
+
if effective_n_jobs(n_jobs) == 1 or algorithm == "threshold":
|
432 |
+
code = _sparse_encode_precomputed(
|
433 |
+
X,
|
434 |
+
dictionary,
|
435 |
+
gram=gram,
|
436 |
+
cov=cov,
|
437 |
+
algorithm=algorithm,
|
438 |
+
regularization=regularization,
|
439 |
+
copy_cov=copy_cov,
|
440 |
+
init=init,
|
441 |
+
max_iter=max_iter,
|
442 |
+
verbose=verbose,
|
443 |
+
positive=positive,
|
444 |
+
)
|
445 |
+
return code
|
446 |
+
|
447 |
+
# Enter parallel code block
|
448 |
+
n_samples = X.shape[0]
|
449 |
+
n_components = dictionary.shape[0]
|
450 |
+
code = np.empty((n_samples, n_components))
|
451 |
+
slices = list(gen_even_slices(n_samples, effective_n_jobs(n_jobs)))
|
452 |
+
|
453 |
+
code_views = Parallel(n_jobs=n_jobs, verbose=verbose)(
|
454 |
+
delayed(_sparse_encode_precomputed)(
|
455 |
+
X[this_slice],
|
456 |
+
dictionary,
|
457 |
+
gram=gram,
|
458 |
+
cov=cov[:, this_slice] if cov is not None else None,
|
459 |
+
algorithm=algorithm,
|
460 |
+
regularization=regularization,
|
461 |
+
copy_cov=copy_cov,
|
462 |
+
init=init[this_slice] if init is not None else None,
|
463 |
+
max_iter=max_iter,
|
464 |
+
verbose=verbose,
|
465 |
+
positive=positive,
|
466 |
+
)
|
467 |
+
for this_slice in slices
|
468 |
+
)
|
469 |
+
for this_slice, this_view in zip(slices, code_views):
|
470 |
+
code[this_slice] = this_view
|
471 |
+
return code
|
472 |
+
|
473 |
+
|
474 |
+
def _update_dict(
|
475 |
+
dictionary,
|
476 |
+
Y,
|
477 |
+
code,
|
478 |
+
A=None,
|
479 |
+
B=None,
|
480 |
+
verbose=False,
|
481 |
+
random_state=None,
|
482 |
+
positive=False,
|
483 |
+
):
|
484 |
+
"""Update the dense dictionary factor in place.
|
485 |
+
|
486 |
+
Parameters
|
487 |
+
----------
|
488 |
+
dictionary : ndarray of shape (n_components, n_features)
|
489 |
+
Value of the dictionary at the previous iteration.
|
490 |
+
|
491 |
+
Y : ndarray of shape (n_samples, n_features)
|
492 |
+
Data matrix.
|
493 |
+
|
494 |
+
code : ndarray of shape (n_samples, n_components)
|
495 |
+
Sparse coding of the data against which to optimize the dictionary.
|
496 |
+
|
497 |
+
A : ndarray of shape (n_components, n_components), default=None
|
498 |
+
Together with `B`, sufficient stats of the online model to update the
|
499 |
+
dictionary.
|
500 |
+
|
501 |
+
B : ndarray of shape (n_features, n_components), default=None
|
502 |
+
Together with `A`, sufficient stats of the online model to update the
|
503 |
+
dictionary.
|
504 |
+
|
505 |
+
verbose: bool, default=False
|
506 |
+
Degree of output the procedure will print.
|
507 |
+
|
508 |
+
random_state : int, RandomState instance or None, default=None
|
509 |
+
Used for randomly initializing the dictionary. Pass an int for
|
510 |
+
reproducible results across multiple function calls.
|
511 |
+
See :term:`Glossary <random_state>`.
|
512 |
+
|
513 |
+
positive : bool, default=False
|
514 |
+
Whether to enforce positivity when finding the dictionary.
|
515 |
+
|
516 |
+
.. versionadded:: 0.20
|
517 |
+
"""
|
518 |
+
n_samples, n_components = code.shape
|
519 |
+
random_state = check_random_state(random_state)
|
520 |
+
|
521 |
+
if A is None:
|
522 |
+
A = code.T @ code
|
523 |
+
if B is None:
|
524 |
+
B = Y.T @ code
|
525 |
+
|
526 |
+
n_unused = 0
|
527 |
+
|
528 |
+
for k in range(n_components):
|
529 |
+
if A[k, k] > 1e-6:
|
530 |
+
# 1e-6 is arbitrary but consistent with the spams implementation
|
531 |
+
dictionary[k] += (B[:, k] - A[k] @ dictionary) / A[k, k]
|
532 |
+
else:
|
533 |
+
# kth atom is almost never used -> sample a new one from the data
|
534 |
+
newd = Y[random_state.choice(n_samples)]
|
535 |
+
|
536 |
+
# add small noise to avoid making the sparse coding ill conditioned
|
537 |
+
noise_level = 0.01 * (newd.std() or 1) # avoid 0 std
|
538 |
+
noise = random_state.normal(0, noise_level, size=len(newd))
|
539 |
+
|
540 |
+
dictionary[k] = newd + noise
|
541 |
+
code[:, k] = 0
|
542 |
+
n_unused += 1
|
543 |
+
|
544 |
+
if positive:
|
545 |
+
np.clip(dictionary[k], 0, None, out=dictionary[k])
|
546 |
+
|
547 |
+
# Projection on the constraint set ||V_k|| <= 1
|
548 |
+
dictionary[k] /= max(linalg.norm(dictionary[k]), 1)
|
549 |
+
|
550 |
+
if verbose and n_unused > 0:
|
551 |
+
print(f"{n_unused} unused atoms resampled.")
|
552 |
+
|
553 |
+
|
554 |
+
def _dict_learning(
|
555 |
+
X,
|
556 |
+
n_components,
|
557 |
+
*,
|
558 |
+
alpha,
|
559 |
+
max_iter,
|
560 |
+
tol,
|
561 |
+
method,
|
562 |
+
n_jobs,
|
563 |
+
dict_init,
|
564 |
+
code_init,
|
565 |
+
callback,
|
566 |
+
verbose,
|
567 |
+
random_state,
|
568 |
+
return_n_iter,
|
569 |
+
positive_dict,
|
570 |
+
positive_code,
|
571 |
+
method_max_iter,
|
572 |
+
):
|
573 |
+
"""Main dictionary learning algorithm"""
|
574 |
+
t0 = time.time()
|
575 |
+
# Init the code and the dictionary with SVD of Y
|
576 |
+
if code_init is not None and dict_init is not None:
|
577 |
+
code = np.array(code_init, order="F")
|
578 |
+
# Don't copy V, it will happen below
|
579 |
+
dictionary = dict_init
|
580 |
+
else:
|
581 |
+
code, S, dictionary = linalg.svd(X, full_matrices=False)
|
582 |
+
# flip the initial code's sign to enforce deterministic output
|
583 |
+
code, dictionary = svd_flip(code, dictionary)
|
584 |
+
dictionary = S[:, np.newaxis] * dictionary
|
585 |
+
r = len(dictionary)
|
586 |
+
if n_components <= r: # True even if n_components=None
|
587 |
+
code = code[:, :n_components]
|
588 |
+
dictionary = dictionary[:n_components, :]
|
589 |
+
else:
|
590 |
+
code = np.c_[code, np.zeros((len(code), n_components - r))]
|
591 |
+
dictionary = np.r_[
|
592 |
+
dictionary, np.zeros((n_components - r, dictionary.shape[1]))
|
593 |
+
]
|
594 |
+
|
595 |
+
# Fortran-order dict better suited for the sparse coding which is the
|
596 |
+
# bottleneck of this algorithm.
|
597 |
+
dictionary = np.asfortranarray(dictionary)
|
598 |
+
|
599 |
+
errors = []
|
600 |
+
current_cost = np.nan
|
601 |
+
|
602 |
+
if verbose == 1:
|
603 |
+
print("[dict_learning]", end=" ")
|
604 |
+
|
605 |
+
# If max_iter is 0, number of iterations returned should be zero
|
606 |
+
ii = -1
|
607 |
+
|
608 |
+
for ii in range(max_iter):
|
609 |
+
dt = time.time() - t0
|
610 |
+
if verbose == 1:
|
611 |
+
sys.stdout.write(".")
|
612 |
+
sys.stdout.flush()
|
613 |
+
elif verbose:
|
614 |
+
print(
|
615 |
+
"Iteration % 3i (elapsed time: % 3is, % 4.1fmn, current cost % 7.3f)"
|
616 |
+
% (ii, dt, dt / 60, current_cost)
|
617 |
+
)
|
618 |
+
|
619 |
+
# Update code
|
620 |
+
code = sparse_encode(
|
621 |
+
X,
|
622 |
+
dictionary,
|
623 |
+
algorithm=method,
|
624 |
+
alpha=alpha,
|
625 |
+
init=code,
|
626 |
+
n_jobs=n_jobs,
|
627 |
+
positive=positive_code,
|
628 |
+
max_iter=method_max_iter,
|
629 |
+
verbose=verbose,
|
630 |
+
)
|
631 |
+
|
632 |
+
# Update dictionary in place
|
633 |
+
_update_dict(
|
634 |
+
dictionary,
|
635 |
+
X,
|
636 |
+
code,
|
637 |
+
verbose=verbose,
|
638 |
+
random_state=random_state,
|
639 |
+
positive=positive_dict,
|
640 |
+
)
|
641 |
+
|
642 |
+
# Cost function
|
643 |
+
current_cost = 0.5 * np.sum((X - code @ dictionary) ** 2) + alpha * np.sum(
|
644 |
+
np.abs(code)
|
645 |
+
)
|
646 |
+
errors.append(current_cost)
|
647 |
+
|
648 |
+
if ii > 0:
|
649 |
+
dE = errors[-2] - errors[-1]
|
650 |
+
# assert(dE >= -tol * errors[-1])
|
651 |
+
if dE < tol * errors[-1]:
|
652 |
+
if verbose == 1:
|
653 |
+
# A line return
|
654 |
+
print("")
|
655 |
+
elif verbose:
|
656 |
+
print("--- Convergence reached after %d iterations" % ii)
|
657 |
+
break
|
658 |
+
if ii % 5 == 0 and callback is not None:
|
659 |
+
callback(locals())
|
660 |
+
|
661 |
+
if return_n_iter:
|
662 |
+
return code, dictionary, errors, ii + 1
|
663 |
+
else:
|
664 |
+
return code, dictionary, errors
|
665 |
+
|
666 |
+
|
667 |
+
def dict_learning_online(
|
668 |
+
X,
|
669 |
+
n_components=2,
|
670 |
+
*,
|
671 |
+
alpha=1,
|
672 |
+
max_iter=100,
|
673 |
+
return_code=True,
|
674 |
+
dict_init=None,
|
675 |
+
callback=None,
|
676 |
+
batch_size=256,
|
677 |
+
verbose=False,
|
678 |
+
shuffle=True,
|
679 |
+
n_jobs=None,
|
680 |
+
method="lars",
|
681 |
+
random_state=None,
|
682 |
+
positive_dict=False,
|
683 |
+
positive_code=False,
|
684 |
+
method_max_iter=1000,
|
685 |
+
tol=1e-3,
|
686 |
+
max_no_improvement=10,
|
687 |
+
):
|
688 |
+
"""Solve a dictionary learning matrix factorization problem online.
|
689 |
+
|
690 |
+
Finds the best dictionary and the corresponding sparse code for
|
691 |
+
approximating the data matrix X by solving::
|
692 |
+
|
693 |
+
(U^*, V^*) = argmin 0.5 || X - U V ||_Fro^2 + alpha * || U ||_1,1
|
694 |
+
(U,V)
|
695 |
+
with || V_k ||_2 = 1 for all 0 <= k < n_components
|
696 |
+
|
697 |
+
where V is the dictionary and U is the sparse code. ||.||_Fro stands for
|
698 |
+
the Frobenius norm and ||.||_1,1 stands for the entry-wise matrix norm
|
699 |
+
which is the sum of the absolute values of all the entries in the matrix.
|
700 |
+
This is accomplished by repeatedly iterating over mini-batches by slicing
|
701 |
+
the input data.
|
702 |
+
|
703 |
+
Read more in the :ref:`User Guide <DictionaryLearning>`.
|
704 |
+
|
705 |
+
Parameters
|
706 |
+
----------
|
707 |
+
X : ndarray of shape (n_samples, n_features)
|
708 |
+
Data matrix.
|
709 |
+
|
710 |
+
n_components : int or None, default=2
|
711 |
+
Number of dictionary atoms to extract. If None, then ``n_components``
|
712 |
+
is set to ``n_features``.
|
713 |
+
|
714 |
+
alpha : float, default=1
|
715 |
+
Sparsity controlling parameter.
|
716 |
+
|
717 |
+
max_iter : int, default=100
|
718 |
+
Maximum number of iterations over the complete dataset before
|
719 |
+
stopping independently of any early stopping criterion heuristics.
|
720 |
+
|
721 |
+
.. versionadded:: 1.1
|
722 |
+
|
723 |
+
.. deprecated:: 1.4
|
724 |
+
`max_iter=None` is deprecated in 1.4 and will be removed in 1.6.
|
725 |
+
Use the default value (i.e. `100`) instead.
|
726 |
+
|
727 |
+
return_code : bool, default=True
|
728 |
+
Whether to also return the code U or just the dictionary `V`.
|
729 |
+
|
730 |
+
dict_init : ndarray of shape (n_components, n_features), default=None
|
731 |
+
Initial values for the dictionary for warm restart scenarios.
|
732 |
+
If `None`, the initial values for the dictionary are created
|
733 |
+
with an SVD decomposition of the data via
|
734 |
+
:func:`~sklearn.utils.extmath.randomized_svd`.
|
735 |
+
|
736 |
+
callback : callable, default=None
|
737 |
+
A callable that gets invoked at the end of each iteration.
|
738 |
+
|
739 |
+
batch_size : int, default=256
|
740 |
+
The number of samples to take in each batch.
|
741 |
+
|
742 |
+
.. versionchanged:: 1.3
|
743 |
+
The default value of `batch_size` changed from 3 to 256 in version 1.3.
|
744 |
+
|
745 |
+
verbose : bool, default=False
|
746 |
+
To control the verbosity of the procedure.
|
747 |
+
|
748 |
+
shuffle : bool, default=True
|
749 |
+
Whether to shuffle the data before splitting it in batches.
|
750 |
+
|
751 |
+
n_jobs : int, default=None
|
752 |
+
Number of parallel jobs to run.
|
753 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
754 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
755 |
+
for more details.
|
756 |
+
|
757 |
+
method : {'lars', 'cd'}, default='lars'
|
758 |
+
* `'lars'`: uses the least angle regression method to solve the lasso
|
759 |
+
problem (`linear_model.lars_path`);
|
760 |
+
* `'cd'`: uses the coordinate descent method to compute the
|
761 |
+
Lasso solution (`linear_model.Lasso`). Lars will be faster if
|
762 |
+
the estimated components are sparse.
|
763 |
+
|
764 |
+
random_state : int, RandomState instance or None, default=None
|
765 |
+
Used for initializing the dictionary when ``dict_init`` is not
|
766 |
+
specified, randomly shuffling the data when ``shuffle`` is set to
|
767 |
+
``True``, and updating the dictionary. Pass an int for reproducible
|
768 |
+
results across multiple function calls.
|
769 |
+
See :term:`Glossary <random_state>`.
|
770 |
+
|
771 |
+
positive_dict : bool, default=False
|
772 |
+
Whether to enforce positivity when finding the dictionary.
|
773 |
+
|
774 |
+
.. versionadded:: 0.20
|
775 |
+
|
776 |
+
positive_code : bool, default=False
|
777 |
+
Whether to enforce positivity when finding the code.
|
778 |
+
|
779 |
+
.. versionadded:: 0.20
|
780 |
+
|
781 |
+
method_max_iter : int, default=1000
|
782 |
+
Maximum number of iterations to perform when solving the lasso problem.
|
783 |
+
|
784 |
+
.. versionadded:: 0.22
|
785 |
+
|
786 |
+
tol : float, default=1e-3
|
787 |
+
Control early stopping based on the norm of the differences in the
|
788 |
+
dictionary between 2 steps.
|
789 |
+
|
790 |
+
To disable early stopping based on changes in the dictionary, set
|
791 |
+
`tol` to 0.0.
|
792 |
+
|
793 |
+
.. versionadded:: 1.1
|
794 |
+
|
795 |
+
max_no_improvement : int, default=10
|
796 |
+
Control early stopping based on the consecutive number of mini batches
|
797 |
+
that does not yield an improvement on the smoothed cost function.
|
798 |
+
|
799 |
+
To disable convergence detection based on cost function, set
|
800 |
+
`max_no_improvement` to None.
|
801 |
+
|
802 |
+
.. versionadded:: 1.1
|
803 |
+
|
804 |
+
Returns
|
805 |
+
-------
|
806 |
+
code : ndarray of shape (n_samples, n_components),
|
807 |
+
The sparse code (only returned if `return_code=True`).
|
808 |
+
|
809 |
+
dictionary : ndarray of shape (n_components, n_features),
|
810 |
+
The solutions to the dictionary learning problem.
|
811 |
+
|
812 |
+
n_iter : int
|
813 |
+
Number of iterations run. Returned only if `return_n_iter` is
|
814 |
+
set to `True`.
|
815 |
+
|
816 |
+
See Also
|
817 |
+
--------
|
818 |
+
dict_learning : Solve a dictionary learning matrix factorization problem.
|
819 |
+
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
820 |
+
MiniBatchDictionaryLearning : A faster, less accurate, version of the dictionary
|
821 |
+
learning algorithm.
|
822 |
+
SparsePCA : Sparse Principal Components Analysis.
|
823 |
+
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
|
824 |
+
|
825 |
+
Examples
|
826 |
+
--------
|
827 |
+
>>> import numpy as np
|
828 |
+
>>> from sklearn.datasets import make_sparse_coded_signal
|
829 |
+
>>> from sklearn.decomposition import dict_learning_online
|
830 |
+
>>> X, _, _ = make_sparse_coded_signal(
|
831 |
+
... n_samples=30, n_components=15, n_features=20, n_nonzero_coefs=10,
|
832 |
+
... random_state=42,
|
833 |
+
... )
|
834 |
+
>>> U, V = dict_learning_online(
|
835 |
+
... X, n_components=15, alpha=0.2, max_iter=20, batch_size=3, random_state=42
|
836 |
+
... )
|
837 |
+
|
838 |
+
We can check the level of sparsity of `U`:
|
839 |
+
|
840 |
+
>>> np.mean(U == 0)
|
841 |
+
0.53...
|
842 |
+
|
843 |
+
We can compare the average squared euclidean norm of the reconstruction
|
844 |
+
error of the sparse coded signal relative to the squared euclidean norm of
|
845 |
+
the original signal:
|
846 |
+
|
847 |
+
>>> X_hat = U @ V
|
848 |
+
>>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1))
|
849 |
+
0.05...
|
850 |
+
"""
|
851 |
+
# TODO(1.6): remove in 1.6
|
852 |
+
if max_iter is None:
|
853 |
+
warn(
|
854 |
+
(
|
855 |
+
"`max_iter=None` is deprecated in version 1.4 and will be removed in "
|
856 |
+
"version 1.6. Use the default value (i.e. `100`) instead."
|
857 |
+
),
|
858 |
+
FutureWarning,
|
859 |
+
)
|
860 |
+
max_iter = 100
|
861 |
+
|
862 |
+
transform_algorithm = "lasso_" + method
|
863 |
+
|
864 |
+
est = MiniBatchDictionaryLearning(
|
865 |
+
n_components=n_components,
|
866 |
+
alpha=alpha,
|
867 |
+
max_iter=max_iter,
|
868 |
+
n_jobs=n_jobs,
|
869 |
+
fit_algorithm=method,
|
870 |
+
batch_size=batch_size,
|
871 |
+
shuffle=shuffle,
|
872 |
+
dict_init=dict_init,
|
873 |
+
random_state=random_state,
|
874 |
+
transform_algorithm=transform_algorithm,
|
875 |
+
transform_alpha=alpha,
|
876 |
+
positive_code=positive_code,
|
877 |
+
positive_dict=positive_dict,
|
878 |
+
transform_max_iter=method_max_iter,
|
879 |
+
verbose=verbose,
|
880 |
+
callback=callback,
|
881 |
+
tol=tol,
|
882 |
+
max_no_improvement=max_no_improvement,
|
883 |
+
).fit(X)
|
884 |
+
|
885 |
+
if not return_code:
|
886 |
+
return est.components_
|
887 |
+
else:
|
888 |
+
code = est.transform(X)
|
889 |
+
return code, est.components_
|
890 |
+
|
891 |
+
|
892 |
+
@validate_params(
|
893 |
+
{
|
894 |
+
"X": ["array-like"],
|
895 |
+
"method": [StrOptions({"lars", "cd"})],
|
896 |
+
"return_n_iter": ["boolean"],
|
897 |
+
"method_max_iter": [Interval(Integral, 0, None, closed="left")],
|
898 |
+
},
|
899 |
+
prefer_skip_nested_validation=False,
|
900 |
+
)
|
901 |
+
def dict_learning(
|
902 |
+
X,
|
903 |
+
n_components,
|
904 |
+
*,
|
905 |
+
alpha,
|
906 |
+
max_iter=100,
|
907 |
+
tol=1e-8,
|
908 |
+
method="lars",
|
909 |
+
n_jobs=None,
|
910 |
+
dict_init=None,
|
911 |
+
code_init=None,
|
912 |
+
callback=None,
|
913 |
+
verbose=False,
|
914 |
+
random_state=None,
|
915 |
+
return_n_iter=False,
|
916 |
+
positive_dict=False,
|
917 |
+
positive_code=False,
|
918 |
+
method_max_iter=1000,
|
919 |
+
):
|
920 |
+
"""Solve a dictionary learning matrix factorization problem.
|
921 |
+
|
922 |
+
Finds the best dictionary and the corresponding sparse code for
|
923 |
+
approximating the data matrix X by solving::
|
924 |
+
|
925 |
+
(U^*, V^*) = argmin 0.5 || X - U V ||_Fro^2 + alpha * || U ||_1,1
|
926 |
+
(U,V)
|
927 |
+
with || V_k ||_2 = 1 for all 0 <= k < n_components
|
928 |
+
|
929 |
+
where V is the dictionary and U is the sparse code. ||.||_Fro stands for
|
930 |
+
the Frobenius norm and ||.||_1,1 stands for the entry-wise matrix norm
|
931 |
+
which is the sum of the absolute values of all the entries in the matrix.
|
932 |
+
|
933 |
+
Read more in the :ref:`User Guide <DictionaryLearning>`.
|
934 |
+
|
935 |
+
Parameters
|
936 |
+
----------
|
937 |
+
X : array-like of shape (n_samples, n_features)
|
938 |
+
Data matrix.
|
939 |
+
|
940 |
+
n_components : int
|
941 |
+
Number of dictionary atoms to extract.
|
942 |
+
|
943 |
+
alpha : int or float
|
944 |
+
Sparsity controlling parameter.
|
945 |
+
|
946 |
+
max_iter : int, default=100
|
947 |
+
Maximum number of iterations to perform.
|
948 |
+
|
949 |
+
tol : float, default=1e-8
|
950 |
+
Tolerance for the stopping condition.
|
951 |
+
|
952 |
+
method : {'lars', 'cd'}, default='lars'
|
953 |
+
The method used:
|
954 |
+
|
955 |
+
* `'lars'`: uses the least angle regression method to solve the lasso
|
956 |
+
problem (`linear_model.lars_path`);
|
957 |
+
* `'cd'`: uses the coordinate descent method to compute the
|
958 |
+
Lasso solution (`linear_model.Lasso`). Lars will be faster if
|
959 |
+
the estimated components are sparse.
|
960 |
+
|
961 |
+
n_jobs : int, default=None
|
962 |
+
Number of parallel jobs to run.
|
963 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
964 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
965 |
+
for more details.
|
966 |
+
|
967 |
+
dict_init : ndarray of shape (n_components, n_features), default=None
|
968 |
+
Initial value for the dictionary for warm restart scenarios. Only used
|
969 |
+
if `code_init` and `dict_init` are not None.
|
970 |
+
|
971 |
+
code_init : ndarray of shape (n_samples, n_components), default=None
|
972 |
+
Initial value for the sparse code for warm restart scenarios. Only used
|
973 |
+
if `code_init` and `dict_init` are not None.
|
974 |
+
|
975 |
+
callback : callable, default=None
|
976 |
+
Callable that gets invoked every five iterations.
|
977 |
+
|
978 |
+
verbose : bool, default=False
|
979 |
+
To control the verbosity of the procedure.
|
980 |
+
|
981 |
+
random_state : int, RandomState instance or None, default=None
|
982 |
+
Used for randomly initializing the dictionary. Pass an int for
|
983 |
+
reproducible results across multiple function calls.
|
984 |
+
See :term:`Glossary <random_state>`.
|
985 |
+
|
986 |
+
return_n_iter : bool, default=False
|
987 |
+
Whether or not to return the number of iterations.
|
988 |
+
|
989 |
+
positive_dict : bool, default=False
|
990 |
+
Whether to enforce positivity when finding the dictionary.
|
991 |
+
|
992 |
+
.. versionadded:: 0.20
|
993 |
+
|
994 |
+
positive_code : bool, default=False
|
995 |
+
Whether to enforce positivity when finding the code.
|
996 |
+
|
997 |
+
.. versionadded:: 0.20
|
998 |
+
|
999 |
+
method_max_iter : int, default=1000
|
1000 |
+
Maximum number of iterations to perform.
|
1001 |
+
|
1002 |
+
.. versionadded:: 0.22
|
1003 |
+
|
1004 |
+
Returns
|
1005 |
+
-------
|
1006 |
+
code : ndarray of shape (n_samples, n_components)
|
1007 |
+
The sparse code factor in the matrix factorization.
|
1008 |
+
|
1009 |
+
dictionary : ndarray of shape (n_components, n_features),
|
1010 |
+
The dictionary factor in the matrix factorization.
|
1011 |
+
|
1012 |
+
errors : array
|
1013 |
+
Vector of errors at each iteration.
|
1014 |
+
|
1015 |
+
n_iter : int
|
1016 |
+
Number of iterations run. Returned only if `return_n_iter` is
|
1017 |
+
set to True.
|
1018 |
+
|
1019 |
+
See Also
|
1020 |
+
--------
|
1021 |
+
dict_learning_online : Solve a dictionary learning matrix factorization
|
1022 |
+
problem online.
|
1023 |
+
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
1024 |
+
MiniBatchDictionaryLearning : A faster, less accurate version
|
1025 |
+
of the dictionary learning algorithm.
|
1026 |
+
SparsePCA : Sparse Principal Components Analysis.
|
1027 |
+
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
|
1028 |
+
|
1029 |
+
Examples
|
1030 |
+
--------
|
1031 |
+
>>> import numpy as np
|
1032 |
+
>>> from sklearn.datasets import make_sparse_coded_signal
|
1033 |
+
>>> from sklearn.decomposition import dict_learning
|
1034 |
+
>>> X, _, _ = make_sparse_coded_signal(
|
1035 |
+
... n_samples=30, n_components=15, n_features=20, n_nonzero_coefs=10,
|
1036 |
+
... random_state=42,
|
1037 |
+
... )
|
1038 |
+
>>> U, V, errors = dict_learning(X, n_components=15, alpha=0.1, random_state=42)
|
1039 |
+
|
1040 |
+
We can check the level of sparsity of `U`:
|
1041 |
+
|
1042 |
+
>>> np.mean(U == 0)
|
1043 |
+
0.6...
|
1044 |
+
|
1045 |
+
We can compare the average squared euclidean norm of the reconstruction
|
1046 |
+
error of the sparse coded signal relative to the squared euclidean norm of
|
1047 |
+
the original signal:
|
1048 |
+
|
1049 |
+
>>> X_hat = U @ V
|
1050 |
+
>>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1))
|
1051 |
+
0.01...
|
1052 |
+
"""
|
1053 |
+
estimator = DictionaryLearning(
|
1054 |
+
n_components=n_components,
|
1055 |
+
alpha=alpha,
|
1056 |
+
max_iter=max_iter,
|
1057 |
+
tol=tol,
|
1058 |
+
fit_algorithm=method,
|
1059 |
+
n_jobs=n_jobs,
|
1060 |
+
dict_init=dict_init,
|
1061 |
+
callback=callback,
|
1062 |
+
code_init=code_init,
|
1063 |
+
verbose=verbose,
|
1064 |
+
random_state=random_state,
|
1065 |
+
positive_code=positive_code,
|
1066 |
+
positive_dict=positive_dict,
|
1067 |
+
transform_max_iter=method_max_iter,
|
1068 |
+
).set_output(transform="default")
|
1069 |
+
code = estimator.fit_transform(X)
|
1070 |
+
if return_n_iter:
|
1071 |
+
return (
|
1072 |
+
code,
|
1073 |
+
estimator.components_,
|
1074 |
+
estimator.error_,
|
1075 |
+
estimator.n_iter_,
|
1076 |
+
)
|
1077 |
+
return code, estimator.components_, estimator.error_
|
1078 |
+
|
1079 |
+
|
1080 |
+
class _BaseSparseCoding(ClassNamePrefixFeaturesOutMixin, TransformerMixin):
|
1081 |
+
"""Base class from SparseCoder and DictionaryLearning algorithms."""
|
1082 |
+
|
1083 |
+
def __init__(
|
1084 |
+
self,
|
1085 |
+
transform_algorithm,
|
1086 |
+
transform_n_nonzero_coefs,
|
1087 |
+
transform_alpha,
|
1088 |
+
split_sign,
|
1089 |
+
n_jobs,
|
1090 |
+
positive_code,
|
1091 |
+
transform_max_iter,
|
1092 |
+
):
|
1093 |
+
self.transform_algorithm = transform_algorithm
|
1094 |
+
self.transform_n_nonzero_coefs = transform_n_nonzero_coefs
|
1095 |
+
self.transform_alpha = transform_alpha
|
1096 |
+
self.transform_max_iter = transform_max_iter
|
1097 |
+
self.split_sign = split_sign
|
1098 |
+
self.n_jobs = n_jobs
|
1099 |
+
self.positive_code = positive_code
|
1100 |
+
|
1101 |
+
def _transform(self, X, dictionary):
|
1102 |
+
"""Private method allowing to accommodate both DictionaryLearning and
|
1103 |
+
SparseCoder."""
|
1104 |
+
X = self._validate_data(X, reset=False)
|
1105 |
+
|
1106 |
+
if hasattr(self, "alpha") and self.transform_alpha is None:
|
1107 |
+
transform_alpha = self.alpha
|
1108 |
+
else:
|
1109 |
+
transform_alpha = self.transform_alpha
|
1110 |
+
|
1111 |
+
code = sparse_encode(
|
1112 |
+
X,
|
1113 |
+
dictionary,
|
1114 |
+
algorithm=self.transform_algorithm,
|
1115 |
+
n_nonzero_coefs=self.transform_n_nonzero_coefs,
|
1116 |
+
alpha=transform_alpha,
|
1117 |
+
max_iter=self.transform_max_iter,
|
1118 |
+
n_jobs=self.n_jobs,
|
1119 |
+
positive=self.positive_code,
|
1120 |
+
)
|
1121 |
+
|
1122 |
+
if self.split_sign:
|
1123 |
+
# feature vector is split into a positive and negative side
|
1124 |
+
n_samples, n_features = code.shape
|
1125 |
+
split_code = np.empty((n_samples, 2 * n_features))
|
1126 |
+
split_code[:, :n_features] = np.maximum(code, 0)
|
1127 |
+
split_code[:, n_features:] = -np.minimum(code, 0)
|
1128 |
+
code = split_code
|
1129 |
+
|
1130 |
+
return code
|
1131 |
+
|
1132 |
+
def transform(self, X):
|
1133 |
+
"""Encode the data as a sparse combination of the dictionary atoms.
|
1134 |
+
|
1135 |
+
Coding method is determined by the object parameter
|
1136 |
+
`transform_algorithm`.
|
1137 |
+
|
1138 |
+
Parameters
|
1139 |
+
----------
|
1140 |
+
X : ndarray of shape (n_samples, n_features)
|
1141 |
+
Test data to be transformed, must have the same number of
|
1142 |
+
features as the data used to train the model.
|
1143 |
+
|
1144 |
+
Returns
|
1145 |
+
-------
|
1146 |
+
X_new : ndarray of shape (n_samples, n_components)
|
1147 |
+
Transformed data.
|
1148 |
+
"""
|
1149 |
+
check_is_fitted(self)
|
1150 |
+
return self._transform(X, self.components_)
|
1151 |
+
|
1152 |
+
|
1153 |
+
class SparseCoder(_BaseSparseCoding, BaseEstimator):
|
1154 |
+
"""Sparse coding.
|
1155 |
+
|
1156 |
+
Finds a sparse representation of data against a fixed, precomputed
|
1157 |
+
dictionary.
|
1158 |
+
|
1159 |
+
Each row of the result is the solution to a sparse coding problem.
|
1160 |
+
The goal is to find a sparse array `code` such that::
|
1161 |
+
|
1162 |
+
X ~= code * dictionary
|
1163 |
+
|
1164 |
+
Read more in the :ref:`User Guide <SparseCoder>`.
|
1165 |
+
|
1166 |
+
Parameters
|
1167 |
+
----------
|
1168 |
+
dictionary : ndarray of shape (n_components, n_features)
|
1169 |
+
The dictionary atoms used for sparse coding. Lines are assumed to be
|
1170 |
+
normalized to unit norm.
|
1171 |
+
|
1172 |
+
transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \
|
1173 |
+
'threshold'}, default='omp'
|
1174 |
+
Algorithm used to transform the data:
|
1175 |
+
|
1176 |
+
- `'lars'`: uses the least angle regression method
|
1177 |
+
(`linear_model.lars_path`);
|
1178 |
+
- `'lasso_lars'`: uses Lars to compute the Lasso solution;
|
1179 |
+
- `'lasso_cd'`: uses the coordinate descent method to compute the
|
1180 |
+
Lasso solution (linear_model.Lasso). `'lasso_lars'` will be faster if
|
1181 |
+
the estimated components are sparse;
|
1182 |
+
- `'omp'`: uses orthogonal matching pursuit to estimate the sparse
|
1183 |
+
solution;
|
1184 |
+
- `'threshold'`: squashes to zero all coefficients less than alpha from
|
1185 |
+
the projection ``dictionary * X'``.
|
1186 |
+
|
1187 |
+
transform_n_nonzero_coefs : int, default=None
|
1188 |
+
Number of nonzero coefficients to target in each column of the
|
1189 |
+
solution. This is only used by `algorithm='lars'` and `algorithm='omp'`
|
1190 |
+
and is overridden by `alpha` in the `omp` case. If `None`, then
|
1191 |
+
`transform_n_nonzero_coefs=int(n_features / 10)`.
|
1192 |
+
|
1193 |
+
transform_alpha : float, default=None
|
1194 |
+
If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
|
1195 |
+
penalty applied to the L1 norm.
|
1196 |
+
If `algorithm='threshold'`, `alpha` is the absolute value of the
|
1197 |
+
threshold below which coefficients will be squashed to zero.
|
1198 |
+
If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of
|
1199 |
+
the reconstruction error targeted. In this case, it overrides
|
1200 |
+
`n_nonzero_coefs`.
|
1201 |
+
If `None`, default to 1.
|
1202 |
+
|
1203 |
+
split_sign : bool, default=False
|
1204 |
+
Whether to split the sparse feature vector into the concatenation of
|
1205 |
+
its negative part and its positive part. This can improve the
|
1206 |
+
performance of downstream classifiers.
|
1207 |
+
|
1208 |
+
n_jobs : int, default=None
|
1209 |
+
Number of parallel jobs to run.
|
1210 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
1211 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
1212 |
+
for more details.
|
1213 |
+
|
1214 |
+
positive_code : bool, default=False
|
1215 |
+
Whether to enforce positivity when finding the code.
|
1216 |
+
|
1217 |
+
.. versionadded:: 0.20
|
1218 |
+
|
1219 |
+
transform_max_iter : int, default=1000
|
1220 |
+
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
|
1221 |
+
`lasso_lars`.
|
1222 |
+
|
1223 |
+
.. versionadded:: 0.22
|
1224 |
+
|
1225 |
+
Attributes
|
1226 |
+
----------
|
1227 |
+
n_components_ : int
|
1228 |
+
Number of atoms.
|
1229 |
+
|
1230 |
+
n_features_in_ : int
|
1231 |
+
Number of features seen during :term:`fit`.
|
1232 |
+
|
1233 |
+
.. versionadded:: 0.24
|
1234 |
+
|
1235 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1236 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1237 |
+
has feature names that are all strings.
|
1238 |
+
|
1239 |
+
.. versionadded:: 1.0
|
1240 |
+
|
1241 |
+
See Also
|
1242 |
+
--------
|
1243 |
+
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
1244 |
+
MiniBatchDictionaryLearning : A faster, less accurate, version of the
|
1245 |
+
dictionary learning algorithm.
|
1246 |
+
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
|
1247 |
+
SparsePCA : Sparse Principal Components Analysis.
|
1248 |
+
sparse_encode : Sparse coding where each row of the result is the solution
|
1249 |
+
to a sparse coding problem.
|
1250 |
+
|
1251 |
+
Examples
|
1252 |
+
--------
|
1253 |
+
>>> import numpy as np
|
1254 |
+
>>> from sklearn.decomposition import SparseCoder
|
1255 |
+
>>> X = np.array([[-1, -1, -1], [0, 0, 3]])
|
1256 |
+
>>> dictionary = np.array(
|
1257 |
+
... [[0, 1, 0],
|
1258 |
+
... [-1, -1, 2],
|
1259 |
+
... [1, 1, 1],
|
1260 |
+
... [0, 1, 1],
|
1261 |
+
... [0, 2, 1]],
|
1262 |
+
... dtype=np.float64
|
1263 |
+
... )
|
1264 |
+
>>> coder = SparseCoder(
|
1265 |
+
... dictionary=dictionary, transform_algorithm='lasso_lars',
|
1266 |
+
... transform_alpha=1e-10,
|
1267 |
+
... )
|
1268 |
+
>>> coder.transform(X)
|
1269 |
+
array([[ 0., 0., -1., 0., 0.],
|
1270 |
+
[ 0., 1., 1., 0., 0.]])
|
1271 |
+
"""
|
1272 |
+
|
1273 |
+
_required_parameters = ["dictionary"]
|
1274 |
+
|
1275 |
+
def __init__(
|
1276 |
+
self,
|
1277 |
+
dictionary,
|
1278 |
+
*,
|
1279 |
+
transform_algorithm="omp",
|
1280 |
+
transform_n_nonzero_coefs=None,
|
1281 |
+
transform_alpha=None,
|
1282 |
+
split_sign=False,
|
1283 |
+
n_jobs=None,
|
1284 |
+
positive_code=False,
|
1285 |
+
transform_max_iter=1000,
|
1286 |
+
):
|
1287 |
+
super().__init__(
|
1288 |
+
transform_algorithm,
|
1289 |
+
transform_n_nonzero_coefs,
|
1290 |
+
transform_alpha,
|
1291 |
+
split_sign,
|
1292 |
+
n_jobs,
|
1293 |
+
positive_code,
|
1294 |
+
transform_max_iter,
|
1295 |
+
)
|
1296 |
+
self.dictionary = dictionary
|
1297 |
+
|
1298 |
+
def fit(self, X, y=None):
|
1299 |
+
"""Do nothing and return the estimator unchanged.
|
1300 |
+
|
1301 |
+
This method is just there to implement the usual API and hence
|
1302 |
+
work in pipelines.
|
1303 |
+
|
1304 |
+
Parameters
|
1305 |
+
----------
|
1306 |
+
X : Ignored
|
1307 |
+
Not used, present for API consistency by convention.
|
1308 |
+
|
1309 |
+
y : Ignored
|
1310 |
+
Not used, present for API consistency by convention.
|
1311 |
+
|
1312 |
+
Returns
|
1313 |
+
-------
|
1314 |
+
self : object
|
1315 |
+
Returns the instance itself.
|
1316 |
+
"""
|
1317 |
+
return self
|
1318 |
+
|
1319 |
+
def transform(self, X, y=None):
|
1320 |
+
"""Encode the data as a sparse combination of the dictionary atoms.
|
1321 |
+
|
1322 |
+
Coding method is determined by the object parameter
|
1323 |
+
`transform_algorithm`.
|
1324 |
+
|
1325 |
+
Parameters
|
1326 |
+
----------
|
1327 |
+
X : ndarray of shape (n_samples, n_features)
|
1328 |
+
Training vector, where `n_samples` is the number of samples
|
1329 |
+
and `n_features` is the number of features.
|
1330 |
+
|
1331 |
+
y : Ignored
|
1332 |
+
Not used, present for API consistency by convention.
|
1333 |
+
|
1334 |
+
Returns
|
1335 |
+
-------
|
1336 |
+
X_new : ndarray of shape (n_samples, n_components)
|
1337 |
+
Transformed data.
|
1338 |
+
"""
|
1339 |
+
return super()._transform(X, self.dictionary)
|
1340 |
+
|
1341 |
+
def _more_tags(self):
|
1342 |
+
return {
|
1343 |
+
"requires_fit": False,
|
1344 |
+
"preserves_dtype": [np.float64, np.float32],
|
1345 |
+
}
|
1346 |
+
|
1347 |
+
@property
|
1348 |
+
def n_components_(self):
|
1349 |
+
"""Number of atoms."""
|
1350 |
+
return self.dictionary.shape[0]
|
1351 |
+
|
1352 |
+
@property
|
1353 |
+
def n_features_in_(self):
|
1354 |
+
"""Number of features seen during `fit`."""
|
1355 |
+
return self.dictionary.shape[1]
|
1356 |
+
|
1357 |
+
@property
|
1358 |
+
def _n_features_out(self):
|
1359 |
+
"""Number of transformed output features."""
|
1360 |
+
return self.n_components_
|
1361 |
+
|
1362 |
+
|
1363 |
+
class DictionaryLearning(_BaseSparseCoding, BaseEstimator):
|
1364 |
+
"""Dictionary learning.
|
1365 |
+
|
1366 |
+
Finds a dictionary (a set of atoms) that performs well at sparsely
|
1367 |
+
encoding the fitted data.
|
1368 |
+
|
1369 |
+
Solves the optimization problem::
|
1370 |
+
|
1371 |
+
(U^*,V^*) = argmin 0.5 || X - U V ||_Fro^2 + alpha * || U ||_1,1
|
1372 |
+
(U,V)
|
1373 |
+
with || V_k ||_2 <= 1 for all 0 <= k < n_components
|
1374 |
+
|
1375 |
+
||.||_Fro stands for the Frobenius norm and ||.||_1,1 stands for
|
1376 |
+
the entry-wise matrix norm which is the sum of the absolute values
|
1377 |
+
of all the entries in the matrix.
|
1378 |
+
|
1379 |
+
Read more in the :ref:`User Guide <DictionaryLearning>`.
|
1380 |
+
|
1381 |
+
Parameters
|
1382 |
+
----------
|
1383 |
+
n_components : int, default=None
|
1384 |
+
Number of dictionary elements to extract. If None, then ``n_components``
|
1385 |
+
is set to ``n_features``.
|
1386 |
+
|
1387 |
+
alpha : float, default=1.0
|
1388 |
+
Sparsity controlling parameter.
|
1389 |
+
|
1390 |
+
max_iter : int, default=1000
|
1391 |
+
Maximum number of iterations to perform.
|
1392 |
+
|
1393 |
+
tol : float, default=1e-8
|
1394 |
+
Tolerance for numerical error.
|
1395 |
+
|
1396 |
+
fit_algorithm : {'lars', 'cd'}, default='lars'
|
1397 |
+
* `'lars'`: uses the least angle regression method to solve the lasso
|
1398 |
+
problem (:func:`~sklearn.linear_model.lars_path`);
|
1399 |
+
* `'cd'`: uses the coordinate descent method to compute the
|
1400 |
+
Lasso solution (:class:`~sklearn.linear_model.Lasso`). Lars will be
|
1401 |
+
faster if the estimated components are sparse.
|
1402 |
+
|
1403 |
+
.. versionadded:: 0.17
|
1404 |
+
*cd* coordinate descent method to improve speed.
|
1405 |
+
|
1406 |
+
transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \
|
1407 |
+
'threshold'}, default='omp'
|
1408 |
+
Algorithm used to transform the data:
|
1409 |
+
|
1410 |
+
- `'lars'`: uses the least angle regression method
|
1411 |
+
(:func:`~sklearn.linear_model.lars_path`);
|
1412 |
+
- `'lasso_lars'`: uses Lars to compute the Lasso solution.
|
1413 |
+
- `'lasso_cd'`: uses the coordinate descent method to compute the
|
1414 |
+
Lasso solution (:class:`~sklearn.linear_model.Lasso`). `'lasso_lars'`
|
1415 |
+
will be faster if the estimated components are sparse.
|
1416 |
+
- `'omp'`: uses orthogonal matching pursuit to estimate the sparse
|
1417 |
+
solution.
|
1418 |
+
- `'threshold'`: squashes to zero all coefficients less than alpha from
|
1419 |
+
the projection ``dictionary * X'``.
|
1420 |
+
|
1421 |
+
.. versionadded:: 0.17
|
1422 |
+
*lasso_cd* coordinate descent method to improve speed.
|
1423 |
+
|
1424 |
+
transform_n_nonzero_coefs : int, default=None
|
1425 |
+
Number of nonzero coefficients to target in each column of the
|
1426 |
+
solution. This is only used by `algorithm='lars'` and
|
1427 |
+
`algorithm='omp'`. If `None`, then
|
1428 |
+
`transform_n_nonzero_coefs=int(n_features / 10)`.
|
1429 |
+
|
1430 |
+
transform_alpha : float, default=None
|
1431 |
+
If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
|
1432 |
+
penalty applied to the L1 norm.
|
1433 |
+
If `algorithm='threshold'`, `alpha` is the absolute value of the
|
1434 |
+
threshold below which coefficients will be squashed to zero.
|
1435 |
+
If `None`, defaults to `alpha`.
|
1436 |
+
|
1437 |
+
.. versionchanged:: 1.2
|
1438 |
+
When None, default value changed from 1.0 to `alpha`.
|
1439 |
+
|
1440 |
+
n_jobs : int or None, default=None
|
1441 |
+
Number of parallel jobs to run.
|
1442 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
1443 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
1444 |
+
for more details.
|
1445 |
+
|
1446 |
+
code_init : ndarray of shape (n_samples, n_components), default=None
|
1447 |
+
Initial value for the code, for warm restart. Only used if `code_init`
|
1448 |
+
and `dict_init` are not None.
|
1449 |
+
|
1450 |
+
dict_init : ndarray of shape (n_components, n_features), default=None
|
1451 |
+
Initial values for the dictionary, for warm restart. Only used if
|
1452 |
+
`code_init` and `dict_init` are not None.
|
1453 |
+
|
1454 |
+
callback : callable, default=None
|
1455 |
+
Callable that gets invoked every five iterations.
|
1456 |
+
|
1457 |
+
.. versionadded:: 1.3
|
1458 |
+
|
1459 |
+
verbose : bool, default=False
|
1460 |
+
To control the verbosity of the procedure.
|
1461 |
+
|
1462 |
+
split_sign : bool, default=False
|
1463 |
+
Whether to split the sparse feature vector into the concatenation of
|
1464 |
+
its negative part and its positive part. This can improve the
|
1465 |
+
performance of downstream classifiers.
|
1466 |
+
|
1467 |
+
random_state : int, RandomState instance or None, default=None
|
1468 |
+
Used for initializing the dictionary when ``dict_init`` is not
|
1469 |
+
specified, randomly shuffling the data when ``shuffle`` is set to
|
1470 |
+
``True``, and updating the dictionary. Pass an int for reproducible
|
1471 |
+
results across multiple function calls.
|
1472 |
+
See :term:`Glossary <random_state>`.
|
1473 |
+
|
1474 |
+
positive_code : bool, default=False
|
1475 |
+
Whether to enforce positivity when finding the code.
|
1476 |
+
|
1477 |
+
.. versionadded:: 0.20
|
1478 |
+
|
1479 |
+
positive_dict : bool, default=False
|
1480 |
+
Whether to enforce positivity when finding the dictionary.
|
1481 |
+
|
1482 |
+
.. versionadded:: 0.20
|
1483 |
+
|
1484 |
+
transform_max_iter : int, default=1000
|
1485 |
+
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
|
1486 |
+
`'lasso_lars'`.
|
1487 |
+
|
1488 |
+
.. versionadded:: 0.22
|
1489 |
+
|
1490 |
+
Attributes
|
1491 |
+
----------
|
1492 |
+
components_ : ndarray of shape (n_components, n_features)
|
1493 |
+
dictionary atoms extracted from the data
|
1494 |
+
|
1495 |
+
error_ : array
|
1496 |
+
vector of errors at each iteration
|
1497 |
+
|
1498 |
+
n_features_in_ : int
|
1499 |
+
Number of features seen during :term:`fit`.
|
1500 |
+
|
1501 |
+
.. versionadded:: 0.24
|
1502 |
+
|
1503 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1504 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1505 |
+
has feature names that are all strings.
|
1506 |
+
|
1507 |
+
.. versionadded:: 1.0
|
1508 |
+
|
1509 |
+
n_iter_ : int
|
1510 |
+
Number of iterations run.
|
1511 |
+
|
1512 |
+
See Also
|
1513 |
+
--------
|
1514 |
+
MiniBatchDictionaryLearning: A faster, less accurate, version of the
|
1515 |
+
dictionary learning algorithm.
|
1516 |
+
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
|
1517 |
+
SparseCoder : Find a sparse representation of data from a fixed,
|
1518 |
+
precomputed dictionary.
|
1519 |
+
SparsePCA : Sparse Principal Components Analysis.
|
1520 |
+
|
1521 |
+
References
|
1522 |
+
----------
|
1523 |
+
|
1524 |
+
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning
|
1525 |
+
for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf)
|
1526 |
+
|
1527 |
+
Examples
|
1528 |
+
--------
|
1529 |
+
>>> import numpy as np
|
1530 |
+
>>> from sklearn.datasets import make_sparse_coded_signal
|
1531 |
+
>>> from sklearn.decomposition import DictionaryLearning
|
1532 |
+
>>> X, dictionary, code = make_sparse_coded_signal(
|
1533 |
+
... n_samples=30, n_components=15, n_features=20, n_nonzero_coefs=10,
|
1534 |
+
... random_state=42,
|
1535 |
+
... )
|
1536 |
+
>>> dict_learner = DictionaryLearning(
|
1537 |
+
... n_components=15, transform_algorithm='lasso_lars', transform_alpha=0.1,
|
1538 |
+
... random_state=42,
|
1539 |
+
... )
|
1540 |
+
>>> X_transformed = dict_learner.fit(X).transform(X)
|
1541 |
+
|
1542 |
+
We can check the level of sparsity of `X_transformed`:
|
1543 |
+
|
1544 |
+
>>> np.mean(X_transformed == 0)
|
1545 |
+
0.52...
|
1546 |
+
|
1547 |
+
We can compare the average squared euclidean norm of the reconstruction
|
1548 |
+
error of the sparse coded signal relative to the squared euclidean norm of
|
1549 |
+
the original signal:
|
1550 |
+
|
1551 |
+
>>> X_hat = X_transformed @ dict_learner.components_
|
1552 |
+
>>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1))
|
1553 |
+
0.05...
|
1554 |
+
"""
|
1555 |
+
|
1556 |
+
_parameter_constraints: dict = {
|
1557 |
+
"n_components": [Interval(Integral, 1, None, closed="left"), None],
|
1558 |
+
"alpha": [Interval(Real, 0, None, closed="left")],
|
1559 |
+
"max_iter": [Interval(Integral, 0, None, closed="left")],
|
1560 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
1561 |
+
"fit_algorithm": [StrOptions({"lars", "cd"})],
|
1562 |
+
"transform_algorithm": [
|
1563 |
+
StrOptions({"lasso_lars", "lasso_cd", "lars", "omp", "threshold"})
|
1564 |
+
],
|
1565 |
+
"transform_n_nonzero_coefs": [Interval(Integral, 1, None, closed="left"), None],
|
1566 |
+
"transform_alpha": [Interval(Real, 0, None, closed="left"), None],
|
1567 |
+
"n_jobs": [Integral, None],
|
1568 |
+
"code_init": [np.ndarray, None],
|
1569 |
+
"dict_init": [np.ndarray, None],
|
1570 |
+
"callback": [callable, None],
|
1571 |
+
"verbose": ["verbose"],
|
1572 |
+
"split_sign": ["boolean"],
|
1573 |
+
"random_state": ["random_state"],
|
1574 |
+
"positive_code": ["boolean"],
|
1575 |
+
"positive_dict": ["boolean"],
|
1576 |
+
"transform_max_iter": [Interval(Integral, 0, None, closed="left")],
|
1577 |
+
}
|
1578 |
+
|
1579 |
+
def __init__(
|
1580 |
+
self,
|
1581 |
+
n_components=None,
|
1582 |
+
*,
|
1583 |
+
alpha=1,
|
1584 |
+
max_iter=1000,
|
1585 |
+
tol=1e-8,
|
1586 |
+
fit_algorithm="lars",
|
1587 |
+
transform_algorithm="omp",
|
1588 |
+
transform_n_nonzero_coefs=None,
|
1589 |
+
transform_alpha=None,
|
1590 |
+
n_jobs=None,
|
1591 |
+
code_init=None,
|
1592 |
+
dict_init=None,
|
1593 |
+
callback=None,
|
1594 |
+
verbose=False,
|
1595 |
+
split_sign=False,
|
1596 |
+
random_state=None,
|
1597 |
+
positive_code=False,
|
1598 |
+
positive_dict=False,
|
1599 |
+
transform_max_iter=1000,
|
1600 |
+
):
|
1601 |
+
super().__init__(
|
1602 |
+
transform_algorithm,
|
1603 |
+
transform_n_nonzero_coefs,
|
1604 |
+
transform_alpha,
|
1605 |
+
split_sign,
|
1606 |
+
n_jobs,
|
1607 |
+
positive_code,
|
1608 |
+
transform_max_iter,
|
1609 |
+
)
|
1610 |
+
self.n_components = n_components
|
1611 |
+
self.alpha = alpha
|
1612 |
+
self.max_iter = max_iter
|
1613 |
+
self.tol = tol
|
1614 |
+
self.fit_algorithm = fit_algorithm
|
1615 |
+
self.code_init = code_init
|
1616 |
+
self.dict_init = dict_init
|
1617 |
+
self.callback = callback
|
1618 |
+
self.verbose = verbose
|
1619 |
+
self.random_state = random_state
|
1620 |
+
self.positive_dict = positive_dict
|
1621 |
+
|
1622 |
+
def fit(self, X, y=None):
|
1623 |
+
"""Fit the model from data in X.
|
1624 |
+
|
1625 |
+
Parameters
|
1626 |
+
----------
|
1627 |
+
X : array-like of shape (n_samples, n_features)
|
1628 |
+
Training vector, where `n_samples` is the number of samples
|
1629 |
+
and `n_features` is the number of features.
|
1630 |
+
|
1631 |
+
y : Ignored
|
1632 |
+
Not used, present for API consistency by convention.
|
1633 |
+
|
1634 |
+
Returns
|
1635 |
+
-------
|
1636 |
+
self : object
|
1637 |
+
Returns the instance itself.
|
1638 |
+
"""
|
1639 |
+
self.fit_transform(X)
|
1640 |
+
return self
|
1641 |
+
|
1642 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
1643 |
+
def fit_transform(self, X, y=None):
|
1644 |
+
"""Fit the model from data in X and return the transformed data.
|
1645 |
+
|
1646 |
+
Parameters
|
1647 |
+
----------
|
1648 |
+
X : array-like of shape (n_samples, n_features)
|
1649 |
+
Training vector, where `n_samples` is the number of samples
|
1650 |
+
and `n_features` is the number of features.
|
1651 |
+
|
1652 |
+
y : Ignored
|
1653 |
+
Not used, present for API consistency by convention.
|
1654 |
+
|
1655 |
+
Returns
|
1656 |
+
-------
|
1657 |
+
V : ndarray of shape (n_samples, n_components)
|
1658 |
+
Transformed data.
|
1659 |
+
"""
|
1660 |
+
_check_positive_coding(method=self.fit_algorithm, positive=self.positive_code)
|
1661 |
+
|
1662 |
+
method = "lasso_" + self.fit_algorithm
|
1663 |
+
|
1664 |
+
random_state = check_random_state(self.random_state)
|
1665 |
+
X = self._validate_data(X)
|
1666 |
+
|
1667 |
+
if self.n_components is None:
|
1668 |
+
n_components = X.shape[1]
|
1669 |
+
else:
|
1670 |
+
n_components = self.n_components
|
1671 |
+
|
1672 |
+
V, U, E, self.n_iter_ = _dict_learning(
|
1673 |
+
X,
|
1674 |
+
n_components,
|
1675 |
+
alpha=self.alpha,
|
1676 |
+
tol=self.tol,
|
1677 |
+
max_iter=self.max_iter,
|
1678 |
+
method=method,
|
1679 |
+
method_max_iter=self.transform_max_iter,
|
1680 |
+
n_jobs=self.n_jobs,
|
1681 |
+
code_init=self.code_init,
|
1682 |
+
dict_init=self.dict_init,
|
1683 |
+
callback=self.callback,
|
1684 |
+
verbose=self.verbose,
|
1685 |
+
random_state=random_state,
|
1686 |
+
return_n_iter=True,
|
1687 |
+
positive_dict=self.positive_dict,
|
1688 |
+
positive_code=self.positive_code,
|
1689 |
+
)
|
1690 |
+
self.components_ = U
|
1691 |
+
self.error_ = E
|
1692 |
+
|
1693 |
+
return V
|
1694 |
+
|
1695 |
+
@property
|
1696 |
+
def _n_features_out(self):
|
1697 |
+
"""Number of transformed output features."""
|
1698 |
+
return self.components_.shape[0]
|
1699 |
+
|
1700 |
+
def _more_tags(self):
|
1701 |
+
return {
|
1702 |
+
"preserves_dtype": [np.float64, np.float32],
|
1703 |
+
}
|
1704 |
+
|
1705 |
+
|
1706 |
+
class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):
|
1707 |
+
"""Mini-batch dictionary learning.
|
1708 |
+
|
1709 |
+
Finds a dictionary (a set of atoms) that performs well at sparsely
|
1710 |
+
encoding the fitted data.
|
1711 |
+
|
1712 |
+
Solves the optimization problem::
|
1713 |
+
|
1714 |
+
(U^*,V^*) = argmin 0.5 || X - U V ||_Fro^2 + alpha * || U ||_1,1
|
1715 |
+
(U,V)
|
1716 |
+
with || V_k ||_2 <= 1 for all 0 <= k < n_components
|
1717 |
+
|
1718 |
+
||.||_Fro stands for the Frobenius norm and ||.||_1,1 stands for
|
1719 |
+
the entry-wise matrix norm which is the sum of the absolute values
|
1720 |
+
of all the entries in the matrix.
|
1721 |
+
|
1722 |
+
Read more in the :ref:`User Guide <DictionaryLearning>`.
|
1723 |
+
|
1724 |
+
Parameters
|
1725 |
+
----------
|
1726 |
+
n_components : int, default=None
|
1727 |
+
Number of dictionary elements to extract.
|
1728 |
+
|
1729 |
+
alpha : float, default=1
|
1730 |
+
Sparsity controlling parameter.
|
1731 |
+
|
1732 |
+
max_iter : int, default=1_000
|
1733 |
+
Maximum number of iterations over the complete dataset before
|
1734 |
+
stopping independently of any early stopping criterion heuristics.
|
1735 |
+
|
1736 |
+
.. versionadded:: 1.1
|
1737 |
+
|
1738 |
+
.. deprecated:: 1.4
|
1739 |
+
`max_iter=None` is deprecated in 1.4 and will be removed in 1.6.
|
1740 |
+
Use the default value (i.e. `1_000`) instead.
|
1741 |
+
|
1742 |
+
fit_algorithm : {'lars', 'cd'}, default='lars'
|
1743 |
+
The algorithm used:
|
1744 |
+
|
1745 |
+
- `'lars'`: uses the least angle regression method to solve the lasso
|
1746 |
+
problem (`linear_model.lars_path`)
|
1747 |
+
- `'cd'`: uses the coordinate descent method to compute the
|
1748 |
+
Lasso solution (`linear_model.Lasso`). Lars will be faster if
|
1749 |
+
the estimated components are sparse.
|
1750 |
+
|
1751 |
+
n_jobs : int, default=None
|
1752 |
+
Number of parallel jobs to run.
|
1753 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
1754 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
1755 |
+
for more details.
|
1756 |
+
|
1757 |
+
batch_size : int, default=256
|
1758 |
+
Number of samples in each mini-batch.
|
1759 |
+
|
1760 |
+
.. versionchanged:: 1.3
|
1761 |
+
The default value of `batch_size` changed from 3 to 256 in version 1.3.
|
1762 |
+
|
1763 |
+
shuffle : bool, default=True
|
1764 |
+
Whether to shuffle the samples before forming batches.
|
1765 |
+
|
1766 |
+
dict_init : ndarray of shape (n_components, n_features), default=None
|
1767 |
+
Initial value of the dictionary for warm restart scenarios.
|
1768 |
+
|
1769 |
+
transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \
|
1770 |
+
'threshold'}, default='omp'
|
1771 |
+
Algorithm used to transform the data:
|
1772 |
+
|
1773 |
+
- `'lars'`: uses the least angle regression method
|
1774 |
+
(`linear_model.lars_path`);
|
1775 |
+
- `'lasso_lars'`: uses Lars to compute the Lasso solution.
|
1776 |
+
- `'lasso_cd'`: uses the coordinate descent method to compute the
|
1777 |
+
Lasso solution (`linear_model.Lasso`). `'lasso_lars'` will be faster
|
1778 |
+
if the estimated components are sparse.
|
1779 |
+
- `'omp'`: uses orthogonal matching pursuit to estimate the sparse
|
1780 |
+
solution.
|
1781 |
+
- `'threshold'`: squashes to zero all coefficients less than alpha from
|
1782 |
+
the projection ``dictionary * X'``.
|
1783 |
+
|
1784 |
+
transform_n_nonzero_coefs : int, default=None
|
1785 |
+
Number of nonzero coefficients to target in each column of the
|
1786 |
+
solution. This is only used by `algorithm='lars'` and
|
1787 |
+
`algorithm='omp'`. If `None`, then
|
1788 |
+
`transform_n_nonzero_coefs=int(n_features / 10)`.
|
1789 |
+
|
1790 |
+
transform_alpha : float, default=None
|
1791 |
+
If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
|
1792 |
+
penalty applied to the L1 norm.
|
1793 |
+
If `algorithm='threshold'`, `alpha` is the absolute value of the
|
1794 |
+
threshold below which coefficients will be squashed to zero.
|
1795 |
+
If `None`, defaults to `alpha`.
|
1796 |
+
|
1797 |
+
.. versionchanged:: 1.2
|
1798 |
+
When None, default value changed from 1.0 to `alpha`.
|
1799 |
+
|
1800 |
+
verbose : bool or int, default=False
|
1801 |
+
To control the verbosity of the procedure.
|
1802 |
+
|
1803 |
+
split_sign : bool, default=False
|
1804 |
+
Whether to split the sparse feature vector into the concatenation of
|
1805 |
+
its negative part and its positive part. This can improve the
|
1806 |
+
performance of downstream classifiers.
|
1807 |
+
|
1808 |
+
random_state : int, RandomState instance or None, default=None
|
1809 |
+
Used for initializing the dictionary when ``dict_init`` is not
|
1810 |
+
specified, randomly shuffling the data when ``shuffle`` is set to
|
1811 |
+
``True``, and updating the dictionary. Pass an int for reproducible
|
1812 |
+
results across multiple function calls.
|
1813 |
+
See :term:`Glossary <random_state>`.
|
1814 |
+
|
1815 |
+
positive_code : bool, default=False
|
1816 |
+
Whether to enforce positivity when finding the code.
|
1817 |
+
|
1818 |
+
.. versionadded:: 0.20
|
1819 |
+
|
1820 |
+
positive_dict : bool, default=False
|
1821 |
+
Whether to enforce positivity when finding the dictionary.
|
1822 |
+
|
1823 |
+
.. versionadded:: 0.20
|
1824 |
+
|
1825 |
+
transform_max_iter : int, default=1000
|
1826 |
+
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
|
1827 |
+
`'lasso_lars'`.
|
1828 |
+
|
1829 |
+
.. versionadded:: 0.22
|
1830 |
+
|
1831 |
+
callback : callable, default=None
|
1832 |
+
A callable that gets invoked at the end of each iteration.
|
1833 |
+
|
1834 |
+
.. versionadded:: 1.1
|
1835 |
+
|
1836 |
+
tol : float, default=1e-3
|
1837 |
+
Control early stopping based on the norm of the differences in the
|
1838 |
+
dictionary between 2 steps.
|
1839 |
+
|
1840 |
+
To disable early stopping based on changes in the dictionary, set
|
1841 |
+
`tol` to 0.0.
|
1842 |
+
|
1843 |
+
.. versionadded:: 1.1
|
1844 |
+
|
1845 |
+
max_no_improvement : int, default=10
|
1846 |
+
Control early stopping based on the consecutive number of mini batches
|
1847 |
+
that does not yield an improvement on the smoothed cost function.
|
1848 |
+
|
1849 |
+
To disable convergence detection based on cost function, set
|
1850 |
+
`max_no_improvement` to None.
|
1851 |
+
|
1852 |
+
.. versionadded:: 1.1
|
1853 |
+
|
1854 |
+
Attributes
|
1855 |
+
----------
|
1856 |
+
components_ : ndarray of shape (n_components, n_features)
|
1857 |
+
Components extracted from the data.
|
1858 |
+
|
1859 |
+
n_features_in_ : int
|
1860 |
+
Number of features seen during :term:`fit`.
|
1861 |
+
|
1862 |
+
.. versionadded:: 0.24
|
1863 |
+
|
1864 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1865 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1866 |
+
has feature names that are all strings.
|
1867 |
+
|
1868 |
+
.. versionadded:: 1.0
|
1869 |
+
|
1870 |
+
n_iter_ : int
|
1871 |
+
Number of iterations over the full dataset.
|
1872 |
+
|
1873 |
+
n_steps_ : int
|
1874 |
+
Number of mini-batches processed.
|
1875 |
+
|
1876 |
+
.. versionadded:: 1.1
|
1877 |
+
|
1878 |
+
See Also
|
1879 |
+
--------
|
1880 |
+
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
1881 |
+
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
|
1882 |
+
SparseCoder : Find a sparse representation of data from a fixed,
|
1883 |
+
precomputed dictionary.
|
1884 |
+
SparsePCA : Sparse Principal Components Analysis.
|
1885 |
+
|
1886 |
+
References
|
1887 |
+
----------
|
1888 |
+
|
1889 |
+
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning
|
1890 |
+
for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf)
|
1891 |
+
|
1892 |
+
Examples
|
1893 |
+
--------
|
1894 |
+
>>> import numpy as np
|
1895 |
+
>>> from sklearn.datasets import make_sparse_coded_signal
|
1896 |
+
>>> from sklearn.decomposition import MiniBatchDictionaryLearning
|
1897 |
+
>>> X, dictionary, code = make_sparse_coded_signal(
|
1898 |
+
... n_samples=30, n_components=15, n_features=20, n_nonzero_coefs=10,
|
1899 |
+
... random_state=42)
|
1900 |
+
>>> dict_learner = MiniBatchDictionaryLearning(
|
1901 |
+
... n_components=15, batch_size=3, transform_algorithm='lasso_lars',
|
1902 |
+
... transform_alpha=0.1, max_iter=20, random_state=42)
|
1903 |
+
>>> X_transformed = dict_learner.fit_transform(X)
|
1904 |
+
|
1905 |
+
We can check the level of sparsity of `X_transformed`:
|
1906 |
+
|
1907 |
+
>>> np.mean(X_transformed == 0) > 0.5
|
1908 |
+
True
|
1909 |
+
|
1910 |
+
We can compare the average squared euclidean norm of the reconstruction
|
1911 |
+
error of the sparse coded signal relative to the squared euclidean norm of
|
1912 |
+
the original signal:
|
1913 |
+
|
1914 |
+
>>> X_hat = X_transformed @ dict_learner.components_
|
1915 |
+
>>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1))
|
1916 |
+
0.052...
|
1917 |
+
"""
|
1918 |
+
|
1919 |
+
_parameter_constraints: dict = {
|
1920 |
+
"n_components": [Interval(Integral, 1, None, closed="left"), None],
|
1921 |
+
"alpha": [Interval(Real, 0, None, closed="left")],
|
1922 |
+
"max_iter": [Interval(Integral, 0, None, closed="left"), Hidden(None)],
|
1923 |
+
"fit_algorithm": [StrOptions({"cd", "lars"})],
|
1924 |
+
"n_jobs": [None, Integral],
|
1925 |
+
"batch_size": [Interval(Integral, 1, None, closed="left")],
|
1926 |
+
"shuffle": ["boolean"],
|
1927 |
+
"dict_init": [None, np.ndarray],
|
1928 |
+
"transform_algorithm": [
|
1929 |
+
StrOptions({"lasso_lars", "lasso_cd", "lars", "omp", "threshold"})
|
1930 |
+
],
|
1931 |
+
"transform_n_nonzero_coefs": [Interval(Integral, 1, None, closed="left"), None],
|
1932 |
+
"transform_alpha": [Interval(Real, 0, None, closed="left"), None],
|
1933 |
+
"verbose": ["verbose"],
|
1934 |
+
"split_sign": ["boolean"],
|
1935 |
+
"random_state": ["random_state"],
|
1936 |
+
"positive_code": ["boolean"],
|
1937 |
+
"positive_dict": ["boolean"],
|
1938 |
+
"transform_max_iter": [Interval(Integral, 0, None, closed="left")],
|
1939 |
+
"callback": [None, callable],
|
1940 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
1941 |
+
"max_no_improvement": [Interval(Integral, 0, None, closed="left"), None],
|
1942 |
+
}
|
1943 |
+
|
1944 |
+
def __init__(
|
1945 |
+
self,
|
1946 |
+
n_components=None,
|
1947 |
+
*,
|
1948 |
+
alpha=1,
|
1949 |
+
max_iter=1_000,
|
1950 |
+
fit_algorithm="lars",
|
1951 |
+
n_jobs=None,
|
1952 |
+
batch_size=256,
|
1953 |
+
shuffle=True,
|
1954 |
+
dict_init=None,
|
1955 |
+
transform_algorithm="omp",
|
1956 |
+
transform_n_nonzero_coefs=None,
|
1957 |
+
transform_alpha=None,
|
1958 |
+
verbose=False,
|
1959 |
+
split_sign=False,
|
1960 |
+
random_state=None,
|
1961 |
+
positive_code=False,
|
1962 |
+
positive_dict=False,
|
1963 |
+
transform_max_iter=1000,
|
1964 |
+
callback=None,
|
1965 |
+
tol=1e-3,
|
1966 |
+
max_no_improvement=10,
|
1967 |
+
):
|
1968 |
+
super().__init__(
|
1969 |
+
transform_algorithm,
|
1970 |
+
transform_n_nonzero_coefs,
|
1971 |
+
transform_alpha,
|
1972 |
+
split_sign,
|
1973 |
+
n_jobs,
|
1974 |
+
positive_code,
|
1975 |
+
transform_max_iter,
|
1976 |
+
)
|
1977 |
+
self.n_components = n_components
|
1978 |
+
self.alpha = alpha
|
1979 |
+
self.max_iter = max_iter
|
1980 |
+
self.fit_algorithm = fit_algorithm
|
1981 |
+
self.dict_init = dict_init
|
1982 |
+
self.verbose = verbose
|
1983 |
+
self.shuffle = shuffle
|
1984 |
+
self.batch_size = batch_size
|
1985 |
+
self.split_sign = split_sign
|
1986 |
+
self.random_state = random_state
|
1987 |
+
self.positive_dict = positive_dict
|
1988 |
+
self.callback = callback
|
1989 |
+
self.max_no_improvement = max_no_improvement
|
1990 |
+
self.tol = tol
|
1991 |
+
|
1992 |
+
def _check_params(self, X):
|
1993 |
+
# n_components
|
1994 |
+
self._n_components = self.n_components
|
1995 |
+
if self._n_components is None:
|
1996 |
+
self._n_components = X.shape[1]
|
1997 |
+
|
1998 |
+
# fit_algorithm
|
1999 |
+
_check_positive_coding(self.fit_algorithm, self.positive_code)
|
2000 |
+
self._fit_algorithm = "lasso_" + self.fit_algorithm
|
2001 |
+
|
2002 |
+
# batch_size
|
2003 |
+
self._batch_size = min(self.batch_size, X.shape[0])
|
2004 |
+
|
2005 |
+
def _initialize_dict(self, X, random_state):
|
2006 |
+
"""Initialization of the dictionary."""
|
2007 |
+
if self.dict_init is not None:
|
2008 |
+
dictionary = self.dict_init
|
2009 |
+
else:
|
2010 |
+
# Init V with SVD of X
|
2011 |
+
_, S, dictionary = randomized_svd(
|
2012 |
+
X, self._n_components, random_state=random_state
|
2013 |
+
)
|
2014 |
+
dictionary = S[:, np.newaxis] * dictionary
|
2015 |
+
|
2016 |
+
if self._n_components <= len(dictionary):
|
2017 |
+
dictionary = dictionary[: self._n_components, :]
|
2018 |
+
else:
|
2019 |
+
dictionary = np.concatenate(
|
2020 |
+
(
|
2021 |
+
dictionary,
|
2022 |
+
np.zeros(
|
2023 |
+
(self._n_components - len(dictionary), dictionary.shape[1]),
|
2024 |
+
dtype=dictionary.dtype,
|
2025 |
+
),
|
2026 |
+
)
|
2027 |
+
)
|
2028 |
+
|
2029 |
+
dictionary = check_array(dictionary, order="F", dtype=X.dtype, copy=False)
|
2030 |
+
dictionary = np.require(dictionary, requirements="W")
|
2031 |
+
|
2032 |
+
return dictionary
|
2033 |
+
|
2034 |
+
def _update_inner_stats(self, X, code, batch_size, step):
|
2035 |
+
"""Update the inner stats inplace."""
|
2036 |
+
if step < batch_size - 1:
|
2037 |
+
theta = (step + 1) * batch_size
|
2038 |
+
else:
|
2039 |
+
theta = batch_size**2 + step + 1 - batch_size
|
2040 |
+
beta = (theta + 1 - batch_size) / (theta + 1)
|
2041 |
+
|
2042 |
+
self._A *= beta
|
2043 |
+
self._A += code.T @ code / batch_size
|
2044 |
+
self._B *= beta
|
2045 |
+
self._B += X.T @ code / batch_size
|
2046 |
+
|
2047 |
+
def _minibatch_step(self, X, dictionary, random_state, step):
|
2048 |
+
"""Perform the update on the dictionary for one minibatch."""
|
2049 |
+
batch_size = X.shape[0]
|
2050 |
+
|
2051 |
+
# Compute code for this batch
|
2052 |
+
code = _sparse_encode(
|
2053 |
+
X,
|
2054 |
+
dictionary,
|
2055 |
+
algorithm=self._fit_algorithm,
|
2056 |
+
alpha=self.alpha,
|
2057 |
+
n_jobs=self.n_jobs,
|
2058 |
+
positive=self.positive_code,
|
2059 |
+
max_iter=self.transform_max_iter,
|
2060 |
+
verbose=self.verbose,
|
2061 |
+
)
|
2062 |
+
|
2063 |
+
batch_cost = (
|
2064 |
+
0.5 * ((X - code @ dictionary) ** 2).sum()
|
2065 |
+
+ self.alpha * np.sum(np.abs(code))
|
2066 |
+
) / batch_size
|
2067 |
+
|
2068 |
+
# Update inner stats
|
2069 |
+
self._update_inner_stats(X, code, batch_size, step)
|
2070 |
+
|
2071 |
+
# Update dictionary
|
2072 |
+
_update_dict(
|
2073 |
+
dictionary,
|
2074 |
+
X,
|
2075 |
+
code,
|
2076 |
+
self._A,
|
2077 |
+
self._B,
|
2078 |
+
verbose=self.verbose,
|
2079 |
+
random_state=random_state,
|
2080 |
+
positive=self.positive_dict,
|
2081 |
+
)
|
2082 |
+
|
2083 |
+
return batch_cost
|
2084 |
+
|
2085 |
+
def _check_convergence(
|
2086 |
+
self, X, batch_cost, new_dict, old_dict, n_samples, step, n_steps
|
2087 |
+
):
|
2088 |
+
"""Helper function to encapsulate the early stopping logic.
|
2089 |
+
|
2090 |
+
Early stopping is based on two factors:
|
2091 |
+
- A small change of the dictionary between two minibatch updates. This is
|
2092 |
+
controlled by the tol parameter.
|
2093 |
+
- No more improvement on a smoothed estimate of the objective function for a
|
2094 |
+
a certain number of consecutive minibatch updates. This is controlled by
|
2095 |
+
the max_no_improvement parameter.
|
2096 |
+
"""
|
2097 |
+
batch_size = X.shape[0]
|
2098 |
+
|
2099 |
+
# counts steps starting from 1 for user friendly verbose mode.
|
2100 |
+
step = step + 1
|
2101 |
+
|
2102 |
+
# Ignore 100 first steps or 1 epoch to avoid initializing the ewa_cost with a
|
2103 |
+
# too bad value
|
2104 |
+
if step <= min(100, n_samples / batch_size):
|
2105 |
+
if self.verbose:
|
2106 |
+
print(f"Minibatch step {step}/{n_steps}: mean batch cost: {batch_cost}")
|
2107 |
+
return False
|
2108 |
+
|
2109 |
+
# Compute an Exponentially Weighted Average of the cost function to
|
2110 |
+
# monitor the convergence while discarding minibatch-local stochastic
|
2111 |
+
# variability: https://en.wikipedia.org/wiki/Moving_average
|
2112 |
+
if self._ewa_cost is None:
|
2113 |
+
self._ewa_cost = batch_cost
|
2114 |
+
else:
|
2115 |
+
alpha = batch_size / (n_samples + 1)
|
2116 |
+
alpha = min(alpha, 1)
|
2117 |
+
self._ewa_cost = self._ewa_cost * (1 - alpha) + batch_cost * alpha
|
2118 |
+
|
2119 |
+
if self.verbose:
|
2120 |
+
print(
|
2121 |
+
f"Minibatch step {step}/{n_steps}: mean batch cost: "
|
2122 |
+
f"{batch_cost}, ewa cost: {self._ewa_cost}"
|
2123 |
+
)
|
2124 |
+
|
2125 |
+
# Early stopping based on change of dictionary
|
2126 |
+
dict_diff = linalg.norm(new_dict - old_dict) / self._n_components
|
2127 |
+
if self.tol > 0 and dict_diff <= self.tol:
|
2128 |
+
if self.verbose:
|
2129 |
+
print(f"Converged (small dictionary change) at step {step}/{n_steps}")
|
2130 |
+
return True
|
2131 |
+
|
2132 |
+
# Early stopping heuristic due to lack of improvement on smoothed
|
2133 |
+
# cost function
|
2134 |
+
if self._ewa_cost_min is None or self._ewa_cost < self._ewa_cost_min:
|
2135 |
+
self._no_improvement = 0
|
2136 |
+
self._ewa_cost_min = self._ewa_cost
|
2137 |
+
else:
|
2138 |
+
self._no_improvement += 1
|
2139 |
+
|
2140 |
+
if (
|
2141 |
+
self.max_no_improvement is not None
|
2142 |
+
and self._no_improvement >= self.max_no_improvement
|
2143 |
+
):
|
2144 |
+
if self.verbose:
|
2145 |
+
print(
|
2146 |
+
"Converged (lack of improvement in objective function) "
|
2147 |
+
f"at step {step}/{n_steps}"
|
2148 |
+
)
|
2149 |
+
return True
|
2150 |
+
|
2151 |
+
return False
|
2152 |
+
|
2153 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
2154 |
+
def fit(self, X, y=None):
|
2155 |
+
"""Fit the model from data in X.
|
2156 |
+
|
2157 |
+
Parameters
|
2158 |
+
----------
|
2159 |
+
X : array-like of shape (n_samples, n_features)
|
2160 |
+
Training vector, where `n_samples` is the number of samples
|
2161 |
+
and `n_features` is the number of features.
|
2162 |
+
|
2163 |
+
y : Ignored
|
2164 |
+
Not used, present for API consistency by convention.
|
2165 |
+
|
2166 |
+
Returns
|
2167 |
+
-------
|
2168 |
+
self : object
|
2169 |
+
Returns the instance itself.
|
2170 |
+
"""
|
2171 |
+
X = self._validate_data(
|
2172 |
+
X, dtype=[np.float64, np.float32], order="C", copy=False
|
2173 |
+
)
|
2174 |
+
|
2175 |
+
self._check_params(X)
|
2176 |
+
self._random_state = check_random_state(self.random_state)
|
2177 |
+
|
2178 |
+
dictionary = self._initialize_dict(X, self._random_state)
|
2179 |
+
old_dict = dictionary.copy()
|
2180 |
+
|
2181 |
+
if self.shuffle:
|
2182 |
+
X_train = X.copy()
|
2183 |
+
self._random_state.shuffle(X_train)
|
2184 |
+
else:
|
2185 |
+
X_train = X
|
2186 |
+
|
2187 |
+
n_samples, n_features = X_train.shape
|
2188 |
+
|
2189 |
+
if self.verbose:
|
2190 |
+
print("[dict_learning]")
|
2191 |
+
|
2192 |
+
# Inner stats
|
2193 |
+
self._A = np.zeros(
|
2194 |
+
(self._n_components, self._n_components), dtype=X_train.dtype
|
2195 |
+
)
|
2196 |
+
self._B = np.zeros((n_features, self._n_components), dtype=X_train.dtype)
|
2197 |
+
|
2198 |
+
# TODO(1.6): remove in 1.6
|
2199 |
+
if self.max_iter is None:
|
2200 |
+
warn(
|
2201 |
+
(
|
2202 |
+
"`max_iter=None` is deprecated in version 1.4 and will be removed"
|
2203 |
+
" in version 1.6. Use the default value (i.e. `1_000`) instead."
|
2204 |
+
),
|
2205 |
+
FutureWarning,
|
2206 |
+
)
|
2207 |
+
max_iter = 1_000
|
2208 |
+
else:
|
2209 |
+
max_iter = self.max_iter
|
2210 |
+
|
2211 |
+
# Attributes to monitor the convergence
|
2212 |
+
self._ewa_cost = None
|
2213 |
+
self._ewa_cost_min = None
|
2214 |
+
self._no_improvement = 0
|
2215 |
+
|
2216 |
+
batches = gen_batches(n_samples, self._batch_size)
|
2217 |
+
batches = itertools.cycle(batches)
|
2218 |
+
n_steps_per_iter = int(np.ceil(n_samples / self._batch_size))
|
2219 |
+
n_steps = max_iter * n_steps_per_iter
|
2220 |
+
|
2221 |
+
i = -1 # to allow max_iter = 0
|
2222 |
+
|
2223 |
+
for i, batch in zip(range(n_steps), batches):
|
2224 |
+
X_batch = X_train[batch]
|
2225 |
+
|
2226 |
+
batch_cost = self._minibatch_step(
|
2227 |
+
X_batch, dictionary, self._random_state, i
|
2228 |
+
)
|
2229 |
+
|
2230 |
+
if self._check_convergence(
|
2231 |
+
X_batch, batch_cost, dictionary, old_dict, n_samples, i, n_steps
|
2232 |
+
):
|
2233 |
+
break
|
2234 |
+
|
2235 |
+
# XXX callback param added for backward compat in #18975 but a common
|
2236 |
+
# unified callback API should be preferred
|
2237 |
+
if self.callback is not None:
|
2238 |
+
self.callback(locals())
|
2239 |
+
|
2240 |
+
old_dict[:] = dictionary
|
2241 |
+
|
2242 |
+
self.n_steps_ = i + 1
|
2243 |
+
self.n_iter_ = np.ceil(self.n_steps_ / n_steps_per_iter)
|
2244 |
+
self.components_ = dictionary
|
2245 |
+
|
2246 |
+
return self
|
2247 |
+
|
2248 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
2249 |
+
def partial_fit(self, X, y=None):
|
2250 |
+
"""Update the model using the data in X as a mini-batch.
|
2251 |
+
|
2252 |
+
Parameters
|
2253 |
+
----------
|
2254 |
+
X : array-like of shape (n_samples, n_features)
|
2255 |
+
Training vector, where `n_samples` is the number of samples
|
2256 |
+
and `n_features` is the number of features.
|
2257 |
+
|
2258 |
+
y : Ignored
|
2259 |
+
Not used, present for API consistency by convention.
|
2260 |
+
|
2261 |
+
Returns
|
2262 |
+
-------
|
2263 |
+
self : object
|
2264 |
+
Return the instance itself.
|
2265 |
+
"""
|
2266 |
+
has_components = hasattr(self, "components_")
|
2267 |
+
|
2268 |
+
X = self._validate_data(
|
2269 |
+
X, dtype=[np.float64, np.float32], order="C", reset=not has_components
|
2270 |
+
)
|
2271 |
+
|
2272 |
+
if not has_components:
|
2273 |
+
# This instance has not been fitted yet (fit or partial_fit)
|
2274 |
+
self._check_params(X)
|
2275 |
+
self._random_state = check_random_state(self.random_state)
|
2276 |
+
|
2277 |
+
dictionary = self._initialize_dict(X, self._random_state)
|
2278 |
+
|
2279 |
+
self.n_steps_ = 0
|
2280 |
+
|
2281 |
+
self._A = np.zeros((self._n_components, self._n_components), dtype=X.dtype)
|
2282 |
+
self._B = np.zeros((X.shape[1], self._n_components), dtype=X.dtype)
|
2283 |
+
else:
|
2284 |
+
dictionary = self.components_
|
2285 |
+
|
2286 |
+
self._minibatch_step(X, dictionary, self._random_state, self.n_steps_)
|
2287 |
+
|
2288 |
+
self.components_ = dictionary
|
2289 |
+
self.n_steps_ += 1
|
2290 |
+
|
2291 |
+
return self
|
2292 |
+
|
2293 |
+
@property
|
2294 |
+
def _n_features_out(self):
|
2295 |
+
"""Number of transformed output features."""
|
2296 |
+
return self.components_.shape[0]
|
2297 |
+
|
2298 |
+
def _more_tags(self):
|
2299 |
+
return {
|
2300 |
+
"preserves_dtype": [np.float64, np.float32],
|
2301 |
+
}
|
llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_fastica.py
ADDED
@@ -0,0 +1,795 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Python implementation of the fast ICA algorithms.
|
3 |
+
|
4 |
+
Reference: Tables 8.3 and 8.4 page 196 in the book:
|
5 |
+
Independent Component Analysis, by Hyvarinen et al.
|
6 |
+
"""
|
7 |
+
|
8 |
+
# Authors: Pierre Lafaye de Micheaux, Stefan van der Walt, Gael Varoquaux,
|
9 |
+
# Bertrand Thirion, Alexandre Gramfort, Denis A. Engemann
|
10 |
+
# License: BSD 3 clause
|
11 |
+
|
12 |
+
import warnings
|
13 |
+
from numbers import Integral, Real
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
from scipy import linalg
|
17 |
+
|
18 |
+
from ..base import (
|
19 |
+
BaseEstimator,
|
20 |
+
ClassNamePrefixFeaturesOutMixin,
|
21 |
+
TransformerMixin,
|
22 |
+
_fit_context,
|
23 |
+
)
|
24 |
+
from ..exceptions import ConvergenceWarning
|
25 |
+
from ..utils import as_float_array, check_array, check_random_state
|
26 |
+
from ..utils._param_validation import Interval, Options, StrOptions, validate_params
|
27 |
+
from ..utils.validation import check_is_fitted
|
28 |
+
|
29 |
+
__all__ = ["fastica", "FastICA"]
|
30 |
+
|
31 |
+
|
32 |
+
def _gs_decorrelation(w, W, j):
|
33 |
+
"""
|
34 |
+
Orthonormalize w wrt the first j rows of W.
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
----------
|
38 |
+
w : ndarray of shape (n,)
|
39 |
+
Array to be orthogonalized
|
40 |
+
|
41 |
+
W : ndarray of shape (p, n)
|
42 |
+
Null space definition
|
43 |
+
|
44 |
+
j : int < p
|
45 |
+
The no of (from the first) rows of Null space W wrt which w is
|
46 |
+
orthogonalized.
|
47 |
+
|
48 |
+
Notes
|
49 |
+
-----
|
50 |
+
Assumes that W is orthogonal
|
51 |
+
w changed in place
|
52 |
+
"""
|
53 |
+
w -= np.linalg.multi_dot([w, W[:j].T, W[:j]])
|
54 |
+
return w
|
55 |
+
|
56 |
+
|
57 |
+
def _sym_decorrelation(W):
|
58 |
+
"""Symmetric decorrelation
|
59 |
+
i.e. W <- (W * W.T) ^{-1/2} * W
|
60 |
+
"""
|
61 |
+
s, u = linalg.eigh(np.dot(W, W.T))
|
62 |
+
# Avoid sqrt of negative values because of rounding errors. Note that
|
63 |
+
# np.sqrt(tiny) is larger than tiny and therefore this clipping also
|
64 |
+
# prevents division by zero in the next step.
|
65 |
+
s = np.clip(s, a_min=np.finfo(W.dtype).tiny, a_max=None)
|
66 |
+
|
67 |
+
# u (resp. s) contains the eigenvectors (resp. square roots of
|
68 |
+
# the eigenvalues) of W * W.T
|
69 |
+
return np.linalg.multi_dot([u * (1.0 / np.sqrt(s)), u.T, W])
|
70 |
+
|
71 |
+
|
72 |
+
def _ica_def(X, tol, g, fun_args, max_iter, w_init):
|
73 |
+
"""Deflationary FastICA using fun approx to neg-entropy function
|
74 |
+
|
75 |
+
Used internally by FastICA.
|
76 |
+
"""
|
77 |
+
|
78 |
+
n_components = w_init.shape[0]
|
79 |
+
W = np.zeros((n_components, n_components), dtype=X.dtype)
|
80 |
+
n_iter = []
|
81 |
+
|
82 |
+
# j is the index of the extracted component
|
83 |
+
for j in range(n_components):
|
84 |
+
w = w_init[j, :].copy()
|
85 |
+
w /= np.sqrt((w**2).sum())
|
86 |
+
|
87 |
+
for i in range(max_iter):
|
88 |
+
gwtx, g_wtx = g(np.dot(w.T, X), fun_args)
|
89 |
+
|
90 |
+
w1 = (X * gwtx).mean(axis=1) - g_wtx.mean() * w
|
91 |
+
|
92 |
+
_gs_decorrelation(w1, W, j)
|
93 |
+
|
94 |
+
w1 /= np.sqrt((w1**2).sum())
|
95 |
+
|
96 |
+
lim = np.abs(np.abs((w1 * w).sum()) - 1)
|
97 |
+
w = w1
|
98 |
+
if lim < tol:
|
99 |
+
break
|
100 |
+
|
101 |
+
n_iter.append(i + 1)
|
102 |
+
W[j, :] = w
|
103 |
+
|
104 |
+
return W, max(n_iter)
|
105 |
+
|
106 |
+
|
107 |
+
def _ica_par(X, tol, g, fun_args, max_iter, w_init):
|
108 |
+
"""Parallel FastICA.
|
109 |
+
|
110 |
+
Used internally by FastICA --main loop
|
111 |
+
|
112 |
+
"""
|
113 |
+
W = _sym_decorrelation(w_init)
|
114 |
+
del w_init
|
115 |
+
p_ = float(X.shape[1])
|
116 |
+
for ii in range(max_iter):
|
117 |
+
gwtx, g_wtx = g(np.dot(W, X), fun_args)
|
118 |
+
W1 = _sym_decorrelation(np.dot(gwtx, X.T) / p_ - g_wtx[:, np.newaxis] * W)
|
119 |
+
del gwtx, g_wtx
|
120 |
+
# builtin max, abs are faster than numpy counter parts.
|
121 |
+
# np.einsum allows having the lowest memory footprint.
|
122 |
+
# It is faster than np.diag(np.dot(W1, W.T)).
|
123 |
+
lim = max(abs(abs(np.einsum("ij,ij->i", W1, W)) - 1))
|
124 |
+
W = W1
|
125 |
+
if lim < tol:
|
126 |
+
break
|
127 |
+
else:
|
128 |
+
warnings.warn(
|
129 |
+
(
|
130 |
+
"FastICA did not converge. Consider increasing "
|
131 |
+
"tolerance or the maximum number of iterations."
|
132 |
+
),
|
133 |
+
ConvergenceWarning,
|
134 |
+
)
|
135 |
+
|
136 |
+
return W, ii + 1
|
137 |
+
|
138 |
+
|
139 |
+
# Some standard non-linear functions.
|
140 |
+
# XXX: these should be optimized, as they can be a bottleneck.
|
141 |
+
def _logcosh(x, fun_args=None):
|
142 |
+
alpha = fun_args.get("alpha", 1.0) # comment it out?
|
143 |
+
|
144 |
+
x *= alpha
|
145 |
+
gx = np.tanh(x, x) # apply the tanh inplace
|
146 |
+
g_x = np.empty(x.shape[0], dtype=x.dtype)
|
147 |
+
# XXX compute in chunks to avoid extra allocation
|
148 |
+
for i, gx_i in enumerate(gx): # please don't vectorize.
|
149 |
+
g_x[i] = (alpha * (1 - gx_i**2)).mean()
|
150 |
+
return gx, g_x
|
151 |
+
|
152 |
+
|
153 |
+
def _exp(x, fun_args):
|
154 |
+
exp = np.exp(-(x**2) / 2)
|
155 |
+
gx = x * exp
|
156 |
+
g_x = (1 - x**2) * exp
|
157 |
+
return gx, g_x.mean(axis=-1)
|
158 |
+
|
159 |
+
|
160 |
+
def _cube(x, fun_args):
|
161 |
+
return x**3, (3 * x**2).mean(axis=-1)
|
162 |
+
|
163 |
+
|
164 |
+
@validate_params(
|
165 |
+
{
|
166 |
+
"X": ["array-like"],
|
167 |
+
"return_X_mean": ["boolean"],
|
168 |
+
"compute_sources": ["boolean"],
|
169 |
+
"return_n_iter": ["boolean"],
|
170 |
+
},
|
171 |
+
prefer_skip_nested_validation=False,
|
172 |
+
)
|
173 |
+
def fastica(
|
174 |
+
X,
|
175 |
+
n_components=None,
|
176 |
+
*,
|
177 |
+
algorithm="parallel",
|
178 |
+
whiten="unit-variance",
|
179 |
+
fun="logcosh",
|
180 |
+
fun_args=None,
|
181 |
+
max_iter=200,
|
182 |
+
tol=1e-04,
|
183 |
+
w_init=None,
|
184 |
+
whiten_solver="svd",
|
185 |
+
random_state=None,
|
186 |
+
return_X_mean=False,
|
187 |
+
compute_sources=True,
|
188 |
+
return_n_iter=False,
|
189 |
+
):
|
190 |
+
"""Perform Fast Independent Component Analysis.
|
191 |
+
|
192 |
+
The implementation is based on [1]_.
|
193 |
+
|
194 |
+
Read more in the :ref:`User Guide <ICA>`.
|
195 |
+
|
196 |
+
Parameters
|
197 |
+
----------
|
198 |
+
X : array-like of shape (n_samples, n_features)
|
199 |
+
Training vector, where `n_samples` is the number of samples and
|
200 |
+
`n_features` is the number of features.
|
201 |
+
|
202 |
+
n_components : int, default=None
|
203 |
+
Number of components to use. If None is passed, all are used.
|
204 |
+
|
205 |
+
algorithm : {'parallel', 'deflation'}, default='parallel'
|
206 |
+
Specify which algorithm to use for FastICA.
|
207 |
+
|
208 |
+
whiten : str or bool, default='unit-variance'
|
209 |
+
Specify the whitening strategy to use.
|
210 |
+
|
211 |
+
- If 'arbitrary-variance', a whitening with variance
|
212 |
+
arbitrary is used.
|
213 |
+
- If 'unit-variance', the whitening matrix is rescaled to ensure that
|
214 |
+
each recovered source has unit variance.
|
215 |
+
- If False, the data is already considered to be whitened, and no
|
216 |
+
whitening is performed.
|
217 |
+
|
218 |
+
.. versionchanged:: 1.3
|
219 |
+
The default value of `whiten` changed to 'unit-variance' in 1.3.
|
220 |
+
|
221 |
+
fun : {'logcosh', 'exp', 'cube'} or callable, default='logcosh'
|
222 |
+
The functional form of the G function used in the
|
223 |
+
approximation to neg-entropy. Could be either 'logcosh', 'exp',
|
224 |
+
or 'cube'.
|
225 |
+
You can also provide your own function. It should return a tuple
|
226 |
+
containing the value of the function, and of its derivative, in the
|
227 |
+
point. The derivative should be averaged along its last dimension.
|
228 |
+
Example::
|
229 |
+
|
230 |
+
def my_g(x):
|
231 |
+
return x ** 3, (3 * x ** 2).mean(axis=-1)
|
232 |
+
|
233 |
+
fun_args : dict, default=None
|
234 |
+
Arguments to send to the functional form.
|
235 |
+
If empty or None and if fun='logcosh', fun_args will take value
|
236 |
+
{'alpha' : 1.0}.
|
237 |
+
|
238 |
+
max_iter : int, default=200
|
239 |
+
Maximum number of iterations to perform.
|
240 |
+
|
241 |
+
tol : float, default=1e-4
|
242 |
+
A positive scalar giving the tolerance at which the
|
243 |
+
un-mixing matrix is considered to have converged.
|
244 |
+
|
245 |
+
w_init : ndarray of shape (n_components, n_components), default=None
|
246 |
+
Initial un-mixing array. If `w_init=None`, then an array of values
|
247 |
+
drawn from a normal distribution is used.
|
248 |
+
|
249 |
+
whiten_solver : {"eigh", "svd"}, default="svd"
|
250 |
+
The solver to use for whitening.
|
251 |
+
|
252 |
+
- "svd" is more stable numerically if the problem is degenerate, and
|
253 |
+
often faster when `n_samples <= n_features`.
|
254 |
+
|
255 |
+
- "eigh" is generally more memory efficient when
|
256 |
+
`n_samples >= n_features`, and can be faster when
|
257 |
+
`n_samples >= 50 * n_features`.
|
258 |
+
|
259 |
+
.. versionadded:: 1.2
|
260 |
+
|
261 |
+
random_state : int, RandomState instance or None, default=None
|
262 |
+
Used to initialize ``w_init`` when not specified, with a
|
263 |
+
normal distribution. Pass an int, for reproducible results
|
264 |
+
across multiple function calls.
|
265 |
+
See :term:`Glossary <random_state>`.
|
266 |
+
|
267 |
+
return_X_mean : bool, default=False
|
268 |
+
If True, X_mean is returned too.
|
269 |
+
|
270 |
+
compute_sources : bool, default=True
|
271 |
+
If False, sources are not computed, but only the rotation matrix.
|
272 |
+
This can save memory when working with big data. Defaults to True.
|
273 |
+
|
274 |
+
return_n_iter : bool, default=False
|
275 |
+
Whether or not to return the number of iterations.
|
276 |
+
|
277 |
+
Returns
|
278 |
+
-------
|
279 |
+
K : ndarray of shape (n_components, n_features) or None
|
280 |
+
If whiten is 'True', K is the pre-whitening matrix that projects data
|
281 |
+
onto the first n_components principal components. If whiten is 'False',
|
282 |
+
K is 'None'.
|
283 |
+
|
284 |
+
W : ndarray of shape (n_components, n_components)
|
285 |
+
The square matrix that unmixes the data after whitening.
|
286 |
+
The mixing matrix is the pseudo-inverse of matrix ``W K``
|
287 |
+
if K is not None, else it is the inverse of W.
|
288 |
+
|
289 |
+
S : ndarray of shape (n_samples, n_components) or None
|
290 |
+
Estimated source matrix.
|
291 |
+
|
292 |
+
X_mean : ndarray of shape (n_features,)
|
293 |
+
The mean over features. Returned only if return_X_mean is True.
|
294 |
+
|
295 |
+
n_iter : int
|
296 |
+
If the algorithm is "deflation", n_iter is the
|
297 |
+
maximum number of iterations run across all components. Else
|
298 |
+
they are just the number of iterations taken to converge. This is
|
299 |
+
returned only when return_n_iter is set to `True`.
|
300 |
+
|
301 |
+
Notes
|
302 |
+
-----
|
303 |
+
The data matrix X is considered to be a linear combination of
|
304 |
+
non-Gaussian (independent) components i.e. X = AS where columns of S
|
305 |
+
contain the independent components and A is a linear mixing
|
306 |
+
matrix. In short ICA attempts to `un-mix' the data by estimating an
|
307 |
+
un-mixing matrix W where ``S = W K X.``
|
308 |
+
While FastICA was proposed to estimate as many sources
|
309 |
+
as features, it is possible to estimate less by setting
|
310 |
+
n_components < n_features. It this case K is not a square matrix
|
311 |
+
and the estimated A is the pseudo-inverse of ``W K``.
|
312 |
+
|
313 |
+
This implementation was originally made for data of shape
|
314 |
+
[n_features, n_samples]. Now the input is transposed
|
315 |
+
before the algorithm is applied. This makes it slightly
|
316 |
+
faster for Fortran-ordered input.
|
317 |
+
|
318 |
+
References
|
319 |
+
----------
|
320 |
+
.. [1] A. Hyvarinen and E. Oja, "Fast Independent Component Analysis",
|
321 |
+
Algorithms and Applications, Neural Networks, 13(4-5), 2000,
|
322 |
+
pp. 411-430.
|
323 |
+
|
324 |
+
Examples
|
325 |
+
--------
|
326 |
+
>>> from sklearn.datasets import load_digits
|
327 |
+
>>> from sklearn.decomposition import fastica
|
328 |
+
>>> X, _ = load_digits(return_X_y=True)
|
329 |
+
>>> K, W, S = fastica(X, n_components=7, random_state=0, whiten='unit-variance')
|
330 |
+
>>> K.shape
|
331 |
+
(7, 64)
|
332 |
+
>>> W.shape
|
333 |
+
(7, 7)
|
334 |
+
>>> S.shape
|
335 |
+
(1797, 7)
|
336 |
+
"""
|
337 |
+
est = FastICA(
|
338 |
+
n_components=n_components,
|
339 |
+
algorithm=algorithm,
|
340 |
+
whiten=whiten,
|
341 |
+
fun=fun,
|
342 |
+
fun_args=fun_args,
|
343 |
+
max_iter=max_iter,
|
344 |
+
tol=tol,
|
345 |
+
w_init=w_init,
|
346 |
+
whiten_solver=whiten_solver,
|
347 |
+
random_state=random_state,
|
348 |
+
)
|
349 |
+
est._validate_params()
|
350 |
+
S = est._fit_transform(X, compute_sources=compute_sources)
|
351 |
+
|
352 |
+
if est.whiten in ["unit-variance", "arbitrary-variance"]:
|
353 |
+
K = est.whitening_
|
354 |
+
X_mean = est.mean_
|
355 |
+
else:
|
356 |
+
K = None
|
357 |
+
X_mean = None
|
358 |
+
|
359 |
+
returned_values = [K, est._unmixing, S]
|
360 |
+
if return_X_mean:
|
361 |
+
returned_values.append(X_mean)
|
362 |
+
if return_n_iter:
|
363 |
+
returned_values.append(est.n_iter_)
|
364 |
+
|
365 |
+
return returned_values
|
366 |
+
|
367 |
+
|
368 |
+
class FastICA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
369 |
+
"""FastICA: a fast algorithm for Independent Component Analysis.
|
370 |
+
|
371 |
+
The implementation is based on [1]_.
|
372 |
+
|
373 |
+
Read more in the :ref:`User Guide <ICA>`.
|
374 |
+
|
375 |
+
Parameters
|
376 |
+
----------
|
377 |
+
n_components : int, default=None
|
378 |
+
Number of components to use. If None is passed, all are used.
|
379 |
+
|
380 |
+
algorithm : {'parallel', 'deflation'}, default='parallel'
|
381 |
+
Specify which algorithm to use for FastICA.
|
382 |
+
|
383 |
+
whiten : str or bool, default='unit-variance'
|
384 |
+
Specify the whitening strategy to use.
|
385 |
+
|
386 |
+
- If 'arbitrary-variance', a whitening with variance
|
387 |
+
arbitrary is used.
|
388 |
+
- If 'unit-variance', the whitening matrix is rescaled to ensure that
|
389 |
+
each recovered source has unit variance.
|
390 |
+
- If False, the data is already considered to be whitened, and no
|
391 |
+
whitening is performed.
|
392 |
+
|
393 |
+
.. versionchanged:: 1.3
|
394 |
+
The default value of `whiten` changed to 'unit-variance' in 1.3.
|
395 |
+
|
396 |
+
fun : {'logcosh', 'exp', 'cube'} or callable, default='logcosh'
|
397 |
+
The functional form of the G function used in the
|
398 |
+
approximation to neg-entropy. Could be either 'logcosh', 'exp',
|
399 |
+
or 'cube'.
|
400 |
+
You can also provide your own function. It should return a tuple
|
401 |
+
containing the value of the function, and of its derivative, in the
|
402 |
+
point. The derivative should be averaged along its last dimension.
|
403 |
+
Example::
|
404 |
+
|
405 |
+
def my_g(x):
|
406 |
+
return x ** 3, (3 * x ** 2).mean(axis=-1)
|
407 |
+
|
408 |
+
fun_args : dict, default=None
|
409 |
+
Arguments to send to the functional form.
|
410 |
+
If empty or None and if fun='logcosh', fun_args will take value
|
411 |
+
{'alpha' : 1.0}.
|
412 |
+
|
413 |
+
max_iter : int, default=200
|
414 |
+
Maximum number of iterations during fit.
|
415 |
+
|
416 |
+
tol : float, default=1e-4
|
417 |
+
A positive scalar giving the tolerance at which the
|
418 |
+
un-mixing matrix is considered to have converged.
|
419 |
+
|
420 |
+
w_init : array-like of shape (n_components, n_components), default=None
|
421 |
+
Initial un-mixing array. If `w_init=None`, then an array of values
|
422 |
+
drawn from a normal distribution is used.
|
423 |
+
|
424 |
+
whiten_solver : {"eigh", "svd"}, default="svd"
|
425 |
+
The solver to use for whitening.
|
426 |
+
|
427 |
+
- "svd" is more stable numerically if the problem is degenerate, and
|
428 |
+
often faster when `n_samples <= n_features`.
|
429 |
+
|
430 |
+
- "eigh" is generally more memory efficient when
|
431 |
+
`n_samples >= n_features`, and can be faster when
|
432 |
+
`n_samples >= 50 * n_features`.
|
433 |
+
|
434 |
+
.. versionadded:: 1.2
|
435 |
+
|
436 |
+
random_state : int, RandomState instance or None, default=None
|
437 |
+
Used to initialize ``w_init`` when not specified, with a
|
438 |
+
normal distribution. Pass an int, for reproducible results
|
439 |
+
across multiple function calls.
|
440 |
+
See :term:`Glossary <random_state>`.
|
441 |
+
|
442 |
+
Attributes
|
443 |
+
----------
|
444 |
+
components_ : ndarray of shape (n_components, n_features)
|
445 |
+
The linear operator to apply to the data to get the independent
|
446 |
+
sources. This is equal to the unmixing matrix when ``whiten`` is
|
447 |
+
False, and equal to ``np.dot(unmixing_matrix, self.whitening_)`` when
|
448 |
+
``whiten`` is True.
|
449 |
+
|
450 |
+
mixing_ : ndarray of shape (n_features, n_components)
|
451 |
+
The pseudo-inverse of ``components_``. It is the linear operator
|
452 |
+
that maps independent sources to the data.
|
453 |
+
|
454 |
+
mean_ : ndarray of shape(n_features,)
|
455 |
+
The mean over features. Only set if `self.whiten` is True.
|
456 |
+
|
457 |
+
n_features_in_ : int
|
458 |
+
Number of features seen during :term:`fit`.
|
459 |
+
|
460 |
+
.. versionadded:: 0.24
|
461 |
+
|
462 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
463 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
464 |
+
has feature names that are all strings.
|
465 |
+
|
466 |
+
.. versionadded:: 1.0
|
467 |
+
|
468 |
+
n_iter_ : int
|
469 |
+
If the algorithm is "deflation", n_iter is the
|
470 |
+
maximum number of iterations run across all components. Else
|
471 |
+
they are just the number of iterations taken to converge.
|
472 |
+
|
473 |
+
whitening_ : ndarray of shape (n_components, n_features)
|
474 |
+
Only set if whiten is 'True'. This is the pre-whitening matrix
|
475 |
+
that projects data onto the first `n_components` principal components.
|
476 |
+
|
477 |
+
See Also
|
478 |
+
--------
|
479 |
+
PCA : Principal component analysis (PCA).
|
480 |
+
IncrementalPCA : Incremental principal components analysis (IPCA).
|
481 |
+
KernelPCA : Kernel Principal component analysis (KPCA).
|
482 |
+
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
|
483 |
+
SparsePCA : Sparse Principal Components Analysis (SparsePCA).
|
484 |
+
|
485 |
+
References
|
486 |
+
----------
|
487 |
+
.. [1] A. Hyvarinen and E. Oja, Independent Component Analysis:
|
488 |
+
Algorithms and Applications, Neural Networks, 13(4-5), 2000,
|
489 |
+
pp. 411-430.
|
490 |
+
|
491 |
+
Examples
|
492 |
+
--------
|
493 |
+
>>> from sklearn.datasets import load_digits
|
494 |
+
>>> from sklearn.decomposition import FastICA
|
495 |
+
>>> X, _ = load_digits(return_X_y=True)
|
496 |
+
>>> transformer = FastICA(n_components=7,
|
497 |
+
... random_state=0,
|
498 |
+
... whiten='unit-variance')
|
499 |
+
>>> X_transformed = transformer.fit_transform(X)
|
500 |
+
>>> X_transformed.shape
|
501 |
+
(1797, 7)
|
502 |
+
"""
|
503 |
+
|
504 |
+
_parameter_constraints: dict = {
|
505 |
+
"n_components": [Interval(Integral, 1, None, closed="left"), None],
|
506 |
+
"algorithm": [StrOptions({"parallel", "deflation"})],
|
507 |
+
"whiten": [
|
508 |
+
StrOptions({"arbitrary-variance", "unit-variance"}),
|
509 |
+
Options(bool, {False}),
|
510 |
+
],
|
511 |
+
"fun": [StrOptions({"logcosh", "exp", "cube"}), callable],
|
512 |
+
"fun_args": [dict, None],
|
513 |
+
"max_iter": [Interval(Integral, 1, None, closed="left")],
|
514 |
+
"tol": [Interval(Real, 0.0, None, closed="left")],
|
515 |
+
"w_init": ["array-like", None],
|
516 |
+
"whiten_solver": [StrOptions({"eigh", "svd"})],
|
517 |
+
"random_state": ["random_state"],
|
518 |
+
}
|
519 |
+
|
520 |
+
def __init__(
|
521 |
+
self,
|
522 |
+
n_components=None,
|
523 |
+
*,
|
524 |
+
algorithm="parallel",
|
525 |
+
whiten="unit-variance",
|
526 |
+
fun="logcosh",
|
527 |
+
fun_args=None,
|
528 |
+
max_iter=200,
|
529 |
+
tol=1e-4,
|
530 |
+
w_init=None,
|
531 |
+
whiten_solver="svd",
|
532 |
+
random_state=None,
|
533 |
+
):
|
534 |
+
super().__init__()
|
535 |
+
self.n_components = n_components
|
536 |
+
self.algorithm = algorithm
|
537 |
+
self.whiten = whiten
|
538 |
+
self.fun = fun
|
539 |
+
self.fun_args = fun_args
|
540 |
+
self.max_iter = max_iter
|
541 |
+
self.tol = tol
|
542 |
+
self.w_init = w_init
|
543 |
+
self.whiten_solver = whiten_solver
|
544 |
+
self.random_state = random_state
|
545 |
+
|
546 |
+
def _fit_transform(self, X, compute_sources=False):
|
547 |
+
"""Fit the model.
|
548 |
+
|
549 |
+
Parameters
|
550 |
+
----------
|
551 |
+
X : array-like of shape (n_samples, n_features)
|
552 |
+
Training data, where `n_samples` is the number of samples
|
553 |
+
and `n_features` is the number of features.
|
554 |
+
|
555 |
+
compute_sources : bool, default=False
|
556 |
+
If False, sources are not computes but only the rotation matrix.
|
557 |
+
This can save memory when working with big data. Defaults to False.
|
558 |
+
|
559 |
+
Returns
|
560 |
+
-------
|
561 |
+
S : ndarray of shape (n_samples, n_components) or None
|
562 |
+
Sources matrix. `None` if `compute_sources` is `False`.
|
563 |
+
"""
|
564 |
+
XT = self._validate_data(
|
565 |
+
X, copy=self.whiten, dtype=[np.float64, np.float32], ensure_min_samples=2
|
566 |
+
).T
|
567 |
+
fun_args = {} if self.fun_args is None else self.fun_args
|
568 |
+
random_state = check_random_state(self.random_state)
|
569 |
+
|
570 |
+
alpha = fun_args.get("alpha", 1.0)
|
571 |
+
if not 1 <= alpha <= 2:
|
572 |
+
raise ValueError("alpha must be in [1,2]")
|
573 |
+
|
574 |
+
if self.fun == "logcosh":
|
575 |
+
g = _logcosh
|
576 |
+
elif self.fun == "exp":
|
577 |
+
g = _exp
|
578 |
+
elif self.fun == "cube":
|
579 |
+
g = _cube
|
580 |
+
elif callable(self.fun):
|
581 |
+
|
582 |
+
def g(x, fun_args):
|
583 |
+
return self.fun(x, **fun_args)
|
584 |
+
|
585 |
+
n_features, n_samples = XT.shape
|
586 |
+
n_components = self.n_components
|
587 |
+
if not self.whiten and n_components is not None:
|
588 |
+
n_components = None
|
589 |
+
warnings.warn("Ignoring n_components with whiten=False.")
|
590 |
+
|
591 |
+
if n_components is None:
|
592 |
+
n_components = min(n_samples, n_features)
|
593 |
+
if n_components > min(n_samples, n_features):
|
594 |
+
n_components = min(n_samples, n_features)
|
595 |
+
warnings.warn(
|
596 |
+
"n_components is too large: it will be set to %s" % n_components
|
597 |
+
)
|
598 |
+
|
599 |
+
if self.whiten:
|
600 |
+
# Centering the features of X
|
601 |
+
X_mean = XT.mean(axis=-1)
|
602 |
+
XT -= X_mean[:, np.newaxis]
|
603 |
+
|
604 |
+
# Whitening and preprocessing by PCA
|
605 |
+
if self.whiten_solver == "eigh":
|
606 |
+
# Faster when num_samples >> n_features
|
607 |
+
d, u = linalg.eigh(XT.dot(X))
|
608 |
+
sort_indices = np.argsort(d)[::-1]
|
609 |
+
eps = np.finfo(d.dtype).eps
|
610 |
+
degenerate_idx = d < eps
|
611 |
+
if np.any(degenerate_idx):
|
612 |
+
warnings.warn(
|
613 |
+
"There are some small singular values, using "
|
614 |
+
"whiten_solver = 'svd' might lead to more "
|
615 |
+
"accurate results."
|
616 |
+
)
|
617 |
+
d[degenerate_idx] = eps # For numerical issues
|
618 |
+
np.sqrt(d, out=d)
|
619 |
+
d, u = d[sort_indices], u[:, sort_indices]
|
620 |
+
elif self.whiten_solver == "svd":
|
621 |
+
u, d = linalg.svd(XT, full_matrices=False, check_finite=False)[:2]
|
622 |
+
|
623 |
+
# Give consistent eigenvectors for both svd solvers
|
624 |
+
u *= np.sign(u[0])
|
625 |
+
|
626 |
+
K = (u / d).T[:n_components] # see (6.33) p.140
|
627 |
+
del u, d
|
628 |
+
X1 = np.dot(K, XT)
|
629 |
+
# see (13.6) p.267 Here X1 is white and data
|
630 |
+
# in X has been projected onto a subspace by PCA
|
631 |
+
X1 *= np.sqrt(n_samples)
|
632 |
+
else:
|
633 |
+
# X must be casted to floats to avoid typing issues with numpy
|
634 |
+
# 2.0 and the line below
|
635 |
+
X1 = as_float_array(XT, copy=False) # copy has been taken care of
|
636 |
+
|
637 |
+
w_init = self.w_init
|
638 |
+
if w_init is None:
|
639 |
+
w_init = np.asarray(
|
640 |
+
random_state.normal(size=(n_components, n_components)), dtype=X1.dtype
|
641 |
+
)
|
642 |
+
|
643 |
+
else:
|
644 |
+
w_init = np.asarray(w_init)
|
645 |
+
if w_init.shape != (n_components, n_components):
|
646 |
+
raise ValueError(
|
647 |
+
"w_init has invalid shape -- should be %(shape)s"
|
648 |
+
% {"shape": (n_components, n_components)}
|
649 |
+
)
|
650 |
+
|
651 |
+
kwargs = {
|
652 |
+
"tol": self.tol,
|
653 |
+
"g": g,
|
654 |
+
"fun_args": fun_args,
|
655 |
+
"max_iter": self.max_iter,
|
656 |
+
"w_init": w_init,
|
657 |
+
}
|
658 |
+
|
659 |
+
if self.algorithm == "parallel":
|
660 |
+
W, n_iter = _ica_par(X1, **kwargs)
|
661 |
+
elif self.algorithm == "deflation":
|
662 |
+
W, n_iter = _ica_def(X1, **kwargs)
|
663 |
+
del X1
|
664 |
+
|
665 |
+
self.n_iter_ = n_iter
|
666 |
+
|
667 |
+
if compute_sources:
|
668 |
+
if self.whiten:
|
669 |
+
S = np.linalg.multi_dot([W, K, XT]).T
|
670 |
+
else:
|
671 |
+
S = np.dot(W, XT).T
|
672 |
+
else:
|
673 |
+
S = None
|
674 |
+
|
675 |
+
if self.whiten:
|
676 |
+
if self.whiten == "unit-variance":
|
677 |
+
if not compute_sources:
|
678 |
+
S = np.linalg.multi_dot([W, K, XT]).T
|
679 |
+
S_std = np.std(S, axis=0, keepdims=True)
|
680 |
+
S /= S_std
|
681 |
+
W /= S_std.T
|
682 |
+
|
683 |
+
self.components_ = np.dot(W, K)
|
684 |
+
self.mean_ = X_mean
|
685 |
+
self.whitening_ = K
|
686 |
+
else:
|
687 |
+
self.components_ = W
|
688 |
+
|
689 |
+
self.mixing_ = linalg.pinv(self.components_, check_finite=False)
|
690 |
+
self._unmixing = W
|
691 |
+
|
692 |
+
return S
|
693 |
+
|
694 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
695 |
+
def fit_transform(self, X, y=None):
|
696 |
+
"""Fit the model and recover the sources from X.
|
697 |
+
|
698 |
+
Parameters
|
699 |
+
----------
|
700 |
+
X : array-like of shape (n_samples, n_features)
|
701 |
+
Training data, where `n_samples` is the number of samples
|
702 |
+
and `n_features` is the number of features.
|
703 |
+
|
704 |
+
y : Ignored
|
705 |
+
Not used, present for API consistency by convention.
|
706 |
+
|
707 |
+
Returns
|
708 |
+
-------
|
709 |
+
X_new : ndarray of shape (n_samples, n_components)
|
710 |
+
Estimated sources obtained by transforming the data with the
|
711 |
+
estimated unmixing matrix.
|
712 |
+
"""
|
713 |
+
return self._fit_transform(X, compute_sources=True)
|
714 |
+
|
715 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
716 |
+
def fit(self, X, y=None):
|
717 |
+
"""Fit the model to X.
|
718 |
+
|
719 |
+
Parameters
|
720 |
+
----------
|
721 |
+
X : array-like of shape (n_samples, n_features)
|
722 |
+
Training data, where `n_samples` is the number of samples
|
723 |
+
and `n_features` is the number of features.
|
724 |
+
|
725 |
+
y : Ignored
|
726 |
+
Not used, present for API consistency by convention.
|
727 |
+
|
728 |
+
Returns
|
729 |
+
-------
|
730 |
+
self : object
|
731 |
+
Returns the instance itself.
|
732 |
+
"""
|
733 |
+
self._fit_transform(X, compute_sources=False)
|
734 |
+
return self
|
735 |
+
|
736 |
+
def transform(self, X, copy=True):
|
737 |
+
"""Recover the sources from X (apply the unmixing matrix).
|
738 |
+
|
739 |
+
Parameters
|
740 |
+
----------
|
741 |
+
X : array-like of shape (n_samples, n_features)
|
742 |
+
Data to transform, where `n_samples` is the number of samples
|
743 |
+
and `n_features` is the number of features.
|
744 |
+
|
745 |
+
copy : bool, default=True
|
746 |
+
If False, data passed to fit can be overwritten. Defaults to True.
|
747 |
+
|
748 |
+
Returns
|
749 |
+
-------
|
750 |
+
X_new : ndarray of shape (n_samples, n_components)
|
751 |
+
Estimated sources obtained by transforming the data with the
|
752 |
+
estimated unmixing matrix.
|
753 |
+
"""
|
754 |
+
check_is_fitted(self)
|
755 |
+
|
756 |
+
X = self._validate_data(
|
757 |
+
X, copy=(copy and self.whiten), dtype=[np.float64, np.float32], reset=False
|
758 |
+
)
|
759 |
+
if self.whiten:
|
760 |
+
X -= self.mean_
|
761 |
+
|
762 |
+
return np.dot(X, self.components_.T)
|
763 |
+
|
764 |
+
def inverse_transform(self, X, copy=True):
|
765 |
+
"""Transform the sources back to the mixed data (apply mixing matrix).
|
766 |
+
|
767 |
+
Parameters
|
768 |
+
----------
|
769 |
+
X : array-like of shape (n_samples, n_components)
|
770 |
+
Sources, where `n_samples` is the number of samples
|
771 |
+
and `n_components` is the number of components.
|
772 |
+
copy : bool, default=True
|
773 |
+
If False, data passed to fit are overwritten. Defaults to True.
|
774 |
+
|
775 |
+
Returns
|
776 |
+
-------
|
777 |
+
X_new : ndarray of shape (n_samples, n_features)
|
778 |
+
Reconstructed data obtained with the mixing matrix.
|
779 |
+
"""
|
780 |
+
check_is_fitted(self)
|
781 |
+
|
782 |
+
X = check_array(X, copy=(copy and self.whiten), dtype=[np.float64, np.float32])
|
783 |
+
X = np.dot(X, self.mixing_.T)
|
784 |
+
if self.whiten:
|
785 |
+
X += self.mean_
|
786 |
+
|
787 |
+
return X
|
788 |
+
|
789 |
+
@property
|
790 |
+
def _n_features_out(self):
|
791 |
+
"""Number of transformed output features."""
|
792 |
+
return self.components_.shape[0]
|
793 |
+
|
794 |
+
def _more_tags(self):
|
795 |
+
return {"preserves_dtype": [np.float32, np.float64]}
|
llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_kernel_pca.py
ADDED
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Kernel Principal Components Analysis."""
|
2 |
+
|
3 |
+
# Author: Mathieu Blondel <[email protected]>
|
4 |
+
# Sylvain Marie <[email protected]>
|
5 |
+
# License: BSD 3 clause
|
6 |
+
|
7 |
+
from numbers import Integral, Real
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from scipy import linalg
|
11 |
+
from scipy.linalg import eigh
|
12 |
+
from scipy.sparse.linalg import eigsh
|
13 |
+
|
14 |
+
from ..base import (
|
15 |
+
BaseEstimator,
|
16 |
+
ClassNamePrefixFeaturesOutMixin,
|
17 |
+
TransformerMixin,
|
18 |
+
_fit_context,
|
19 |
+
)
|
20 |
+
from ..exceptions import NotFittedError
|
21 |
+
from ..metrics.pairwise import pairwise_kernels
|
22 |
+
from ..preprocessing import KernelCenterer
|
23 |
+
from ..utils._arpack import _init_arpack_v0
|
24 |
+
from ..utils._param_validation import Interval, StrOptions
|
25 |
+
from ..utils.extmath import _randomized_eigsh, svd_flip
|
26 |
+
from ..utils.validation import (
|
27 |
+
_check_psd_eigenvalues,
|
28 |
+
check_is_fitted,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
class KernelPCA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
33 |
+
"""Kernel Principal component analysis (KPCA) [1]_.
|
34 |
+
|
35 |
+
Non-linear dimensionality reduction through the use of kernels (see
|
36 |
+
:ref:`metrics`).
|
37 |
+
|
38 |
+
It uses the :func:`scipy.linalg.eigh` LAPACK implementation of the full SVD
|
39 |
+
or the :func:`scipy.sparse.linalg.eigsh` ARPACK implementation of the
|
40 |
+
truncated SVD, depending on the shape of the input data and the number of
|
41 |
+
components to extract. It can also use a randomized truncated SVD by the
|
42 |
+
method proposed in [3]_, see `eigen_solver`.
|
43 |
+
|
44 |
+
For a usage example, see
|
45 |
+
:ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`.
|
46 |
+
|
47 |
+
Read more in the :ref:`User Guide <kernel_PCA>`.
|
48 |
+
|
49 |
+
Parameters
|
50 |
+
----------
|
51 |
+
n_components : int, default=None
|
52 |
+
Number of components. If None, all non-zero components are kept.
|
53 |
+
|
54 |
+
kernel : {'linear', 'poly', 'rbf', 'sigmoid', 'cosine', 'precomputed'} \
|
55 |
+
or callable, default='linear'
|
56 |
+
Kernel used for PCA.
|
57 |
+
|
58 |
+
gamma : float, default=None
|
59 |
+
Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other
|
60 |
+
kernels. If ``gamma`` is ``None``, then it is set to ``1/n_features``.
|
61 |
+
|
62 |
+
degree : float, default=3
|
63 |
+
Degree for poly kernels. Ignored by other kernels.
|
64 |
+
|
65 |
+
coef0 : float, default=1
|
66 |
+
Independent term in poly and sigmoid kernels.
|
67 |
+
Ignored by other kernels.
|
68 |
+
|
69 |
+
kernel_params : dict, default=None
|
70 |
+
Parameters (keyword arguments) and
|
71 |
+
values for kernel passed as callable object.
|
72 |
+
Ignored by other kernels.
|
73 |
+
|
74 |
+
alpha : float, default=1.0
|
75 |
+
Hyperparameter of the ridge regression that learns the
|
76 |
+
inverse transform (when fit_inverse_transform=True).
|
77 |
+
|
78 |
+
fit_inverse_transform : bool, default=False
|
79 |
+
Learn the inverse transform for non-precomputed kernels
|
80 |
+
(i.e. learn to find the pre-image of a point). This method is based
|
81 |
+
on [2]_.
|
82 |
+
|
83 |
+
eigen_solver : {'auto', 'dense', 'arpack', 'randomized'}, \
|
84 |
+
default='auto'
|
85 |
+
Select eigensolver to use. If `n_components` is much
|
86 |
+
less than the number of training samples, randomized (or arpack to a
|
87 |
+
smaller extent) may be more efficient than the dense eigensolver.
|
88 |
+
Randomized SVD is performed according to the method of Halko et al
|
89 |
+
[3]_.
|
90 |
+
|
91 |
+
auto :
|
92 |
+
the solver is selected by a default policy based on n_samples
|
93 |
+
(the number of training samples) and `n_components`:
|
94 |
+
if the number of components to extract is less than 10 (strict) and
|
95 |
+
the number of samples is more than 200 (strict), the 'arpack'
|
96 |
+
method is enabled. Otherwise the exact full eigenvalue
|
97 |
+
decomposition is computed and optionally truncated afterwards
|
98 |
+
('dense' method).
|
99 |
+
dense :
|
100 |
+
run exact full eigenvalue decomposition calling the standard
|
101 |
+
LAPACK solver via `scipy.linalg.eigh`, and select the components
|
102 |
+
by postprocessing
|
103 |
+
arpack :
|
104 |
+
run SVD truncated to n_components calling ARPACK solver using
|
105 |
+
`scipy.sparse.linalg.eigsh`. It requires strictly
|
106 |
+
0 < n_components < n_samples
|
107 |
+
randomized :
|
108 |
+
run randomized SVD by the method of Halko et al. [3]_. The current
|
109 |
+
implementation selects eigenvalues based on their module; therefore
|
110 |
+
using this method can lead to unexpected results if the kernel is
|
111 |
+
not positive semi-definite. See also [4]_.
|
112 |
+
|
113 |
+
.. versionchanged:: 1.0
|
114 |
+
`'randomized'` was added.
|
115 |
+
|
116 |
+
tol : float, default=0
|
117 |
+
Convergence tolerance for arpack.
|
118 |
+
If 0, optimal value will be chosen by arpack.
|
119 |
+
|
120 |
+
max_iter : int, default=None
|
121 |
+
Maximum number of iterations for arpack.
|
122 |
+
If None, optimal value will be chosen by arpack.
|
123 |
+
|
124 |
+
iterated_power : int >= 0, or 'auto', default='auto'
|
125 |
+
Number of iterations for the power method computed by
|
126 |
+
svd_solver == 'randomized'. When 'auto', it is set to 7 when
|
127 |
+
`n_components < 0.1 * min(X.shape)`, other it is set to 4.
|
128 |
+
|
129 |
+
.. versionadded:: 1.0
|
130 |
+
|
131 |
+
remove_zero_eig : bool, default=False
|
132 |
+
If True, then all components with zero eigenvalues are removed, so
|
133 |
+
that the number of components in the output may be < n_components
|
134 |
+
(and sometimes even zero due to numerical instability).
|
135 |
+
When n_components is None, this parameter is ignored and components
|
136 |
+
with zero eigenvalues are removed regardless.
|
137 |
+
|
138 |
+
random_state : int, RandomState instance or None, default=None
|
139 |
+
Used when ``eigen_solver`` == 'arpack' or 'randomized'. Pass an int
|
140 |
+
for reproducible results across multiple function calls.
|
141 |
+
See :term:`Glossary <random_state>`.
|
142 |
+
|
143 |
+
.. versionadded:: 0.18
|
144 |
+
|
145 |
+
copy_X : bool, default=True
|
146 |
+
If True, input X is copied and stored by the model in the `X_fit_`
|
147 |
+
attribute. If no further changes will be done to X, setting
|
148 |
+
`copy_X=False` saves memory by storing a reference.
|
149 |
+
|
150 |
+
.. versionadded:: 0.18
|
151 |
+
|
152 |
+
n_jobs : int, default=None
|
153 |
+
The number of parallel jobs to run.
|
154 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
155 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
156 |
+
for more details.
|
157 |
+
|
158 |
+
.. versionadded:: 0.18
|
159 |
+
|
160 |
+
Attributes
|
161 |
+
----------
|
162 |
+
eigenvalues_ : ndarray of shape (n_components,)
|
163 |
+
Eigenvalues of the centered kernel matrix in decreasing order.
|
164 |
+
If `n_components` and `remove_zero_eig` are not set,
|
165 |
+
then all values are stored.
|
166 |
+
|
167 |
+
eigenvectors_ : ndarray of shape (n_samples, n_components)
|
168 |
+
Eigenvectors of the centered kernel matrix. If `n_components` and
|
169 |
+
`remove_zero_eig` are not set, then all components are stored.
|
170 |
+
|
171 |
+
dual_coef_ : ndarray of shape (n_samples, n_features)
|
172 |
+
Inverse transform matrix. Only available when
|
173 |
+
``fit_inverse_transform`` is True.
|
174 |
+
|
175 |
+
X_transformed_fit_ : ndarray of shape (n_samples, n_components)
|
176 |
+
Projection of the fitted data on the kernel principal components.
|
177 |
+
Only available when ``fit_inverse_transform`` is True.
|
178 |
+
|
179 |
+
X_fit_ : ndarray of shape (n_samples, n_features)
|
180 |
+
The data used to fit the model. If `copy_X=False`, then `X_fit_` is
|
181 |
+
a reference. This attribute is used for the calls to transform.
|
182 |
+
|
183 |
+
n_features_in_ : int
|
184 |
+
Number of features seen during :term:`fit`.
|
185 |
+
|
186 |
+
.. versionadded:: 0.24
|
187 |
+
|
188 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
189 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
190 |
+
has feature names that are all strings.
|
191 |
+
|
192 |
+
.. versionadded:: 1.0
|
193 |
+
|
194 |
+
gamma_ : float
|
195 |
+
Kernel coefficient for rbf, poly and sigmoid kernels. When `gamma`
|
196 |
+
is explicitly provided, this is just the same as `gamma`. When `gamma`
|
197 |
+
is `None`, this is the actual value of kernel coefficient.
|
198 |
+
|
199 |
+
.. versionadded:: 1.3
|
200 |
+
|
201 |
+
See Also
|
202 |
+
--------
|
203 |
+
FastICA : A fast algorithm for Independent Component Analysis.
|
204 |
+
IncrementalPCA : Incremental Principal Component Analysis.
|
205 |
+
NMF : Non-Negative Matrix Factorization.
|
206 |
+
PCA : Principal Component Analysis.
|
207 |
+
SparsePCA : Sparse Principal Component Analysis.
|
208 |
+
TruncatedSVD : Dimensionality reduction using truncated SVD.
|
209 |
+
|
210 |
+
References
|
211 |
+
----------
|
212 |
+
.. [1] `Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller.
|
213 |
+
"Kernel principal component analysis."
|
214 |
+
International conference on artificial neural networks.
|
215 |
+
Springer, Berlin, Heidelberg, 1997.
|
216 |
+
<https://people.eecs.berkeley.edu/~wainwrig/stat241b/scholkopf_kernel.pdf>`_
|
217 |
+
|
218 |
+
.. [2] `Bakır, Gökhan H., Jason Weston, and Bernhard Schölkopf.
|
219 |
+
"Learning to find pre-images."
|
220 |
+
Advances in neural information processing systems 16 (2004): 449-456.
|
221 |
+
<https://papers.nips.cc/paper/2003/file/ac1ad983e08ad3304a97e147f522747e-Paper.pdf>`_
|
222 |
+
|
223 |
+
.. [3] :arxiv:`Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp.
|
224 |
+
"Finding structure with randomness: Probabilistic algorithms for
|
225 |
+
constructing approximate matrix decompositions."
|
226 |
+
SIAM review 53.2 (2011): 217-288. <0909.4061>`
|
227 |
+
|
228 |
+
.. [4] `Martinsson, Per-Gunnar, Vladimir Rokhlin, and Mark Tygert.
|
229 |
+
"A randomized algorithm for the decomposition of matrices."
|
230 |
+
Applied and Computational Harmonic Analysis 30.1 (2011): 47-68.
|
231 |
+
<https://www.sciencedirect.com/science/article/pii/S1063520310000242>`_
|
232 |
+
|
233 |
+
Examples
|
234 |
+
--------
|
235 |
+
>>> from sklearn.datasets import load_digits
|
236 |
+
>>> from sklearn.decomposition import KernelPCA
|
237 |
+
>>> X, _ = load_digits(return_X_y=True)
|
238 |
+
>>> transformer = KernelPCA(n_components=7, kernel='linear')
|
239 |
+
>>> X_transformed = transformer.fit_transform(X)
|
240 |
+
>>> X_transformed.shape
|
241 |
+
(1797, 7)
|
242 |
+
"""
|
243 |
+
|
244 |
+
_parameter_constraints: dict = {
|
245 |
+
"n_components": [
|
246 |
+
Interval(Integral, 1, None, closed="left"),
|
247 |
+
None,
|
248 |
+
],
|
249 |
+
"kernel": [
|
250 |
+
StrOptions({"linear", "poly", "rbf", "sigmoid", "cosine", "precomputed"}),
|
251 |
+
callable,
|
252 |
+
],
|
253 |
+
"gamma": [
|
254 |
+
Interval(Real, 0, None, closed="left"),
|
255 |
+
None,
|
256 |
+
],
|
257 |
+
"degree": [Interval(Real, 0, None, closed="left")],
|
258 |
+
"coef0": [Interval(Real, None, None, closed="neither")],
|
259 |
+
"kernel_params": [dict, None],
|
260 |
+
"alpha": [Interval(Real, 0, None, closed="left")],
|
261 |
+
"fit_inverse_transform": ["boolean"],
|
262 |
+
"eigen_solver": [StrOptions({"auto", "dense", "arpack", "randomized"})],
|
263 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
264 |
+
"max_iter": [
|
265 |
+
Interval(Integral, 1, None, closed="left"),
|
266 |
+
None,
|
267 |
+
],
|
268 |
+
"iterated_power": [
|
269 |
+
Interval(Integral, 0, None, closed="left"),
|
270 |
+
StrOptions({"auto"}),
|
271 |
+
],
|
272 |
+
"remove_zero_eig": ["boolean"],
|
273 |
+
"random_state": ["random_state"],
|
274 |
+
"copy_X": ["boolean"],
|
275 |
+
"n_jobs": [None, Integral],
|
276 |
+
}
|
277 |
+
|
278 |
+
def __init__(
|
279 |
+
self,
|
280 |
+
n_components=None,
|
281 |
+
*,
|
282 |
+
kernel="linear",
|
283 |
+
gamma=None,
|
284 |
+
degree=3,
|
285 |
+
coef0=1,
|
286 |
+
kernel_params=None,
|
287 |
+
alpha=1.0,
|
288 |
+
fit_inverse_transform=False,
|
289 |
+
eigen_solver="auto",
|
290 |
+
tol=0,
|
291 |
+
max_iter=None,
|
292 |
+
iterated_power="auto",
|
293 |
+
remove_zero_eig=False,
|
294 |
+
random_state=None,
|
295 |
+
copy_X=True,
|
296 |
+
n_jobs=None,
|
297 |
+
):
|
298 |
+
self.n_components = n_components
|
299 |
+
self.kernel = kernel
|
300 |
+
self.kernel_params = kernel_params
|
301 |
+
self.gamma = gamma
|
302 |
+
self.degree = degree
|
303 |
+
self.coef0 = coef0
|
304 |
+
self.alpha = alpha
|
305 |
+
self.fit_inverse_transform = fit_inverse_transform
|
306 |
+
self.eigen_solver = eigen_solver
|
307 |
+
self.tol = tol
|
308 |
+
self.max_iter = max_iter
|
309 |
+
self.iterated_power = iterated_power
|
310 |
+
self.remove_zero_eig = remove_zero_eig
|
311 |
+
self.random_state = random_state
|
312 |
+
self.n_jobs = n_jobs
|
313 |
+
self.copy_X = copy_X
|
314 |
+
|
315 |
+
def _get_kernel(self, X, Y=None):
|
316 |
+
if callable(self.kernel):
|
317 |
+
params = self.kernel_params or {}
|
318 |
+
else:
|
319 |
+
params = {"gamma": self.gamma_, "degree": self.degree, "coef0": self.coef0}
|
320 |
+
return pairwise_kernels(
|
321 |
+
X, Y, metric=self.kernel, filter_params=True, n_jobs=self.n_jobs, **params
|
322 |
+
)
|
323 |
+
|
324 |
+
def _fit_transform(self, K):
|
325 |
+
"""Fit's using kernel K"""
|
326 |
+
# center kernel
|
327 |
+
K = self._centerer.fit_transform(K)
|
328 |
+
|
329 |
+
# adjust n_components according to user inputs
|
330 |
+
if self.n_components is None:
|
331 |
+
n_components = K.shape[0] # use all dimensions
|
332 |
+
else:
|
333 |
+
n_components = min(K.shape[0], self.n_components)
|
334 |
+
|
335 |
+
# compute eigenvectors
|
336 |
+
if self.eigen_solver == "auto":
|
337 |
+
if K.shape[0] > 200 and n_components < 10:
|
338 |
+
eigen_solver = "arpack"
|
339 |
+
else:
|
340 |
+
eigen_solver = "dense"
|
341 |
+
else:
|
342 |
+
eigen_solver = self.eigen_solver
|
343 |
+
|
344 |
+
if eigen_solver == "dense":
|
345 |
+
# Note: subset_by_index specifies the indices of smallest/largest to return
|
346 |
+
self.eigenvalues_, self.eigenvectors_ = eigh(
|
347 |
+
K, subset_by_index=(K.shape[0] - n_components, K.shape[0] - 1)
|
348 |
+
)
|
349 |
+
elif eigen_solver == "arpack":
|
350 |
+
v0 = _init_arpack_v0(K.shape[0], self.random_state)
|
351 |
+
self.eigenvalues_, self.eigenvectors_ = eigsh(
|
352 |
+
K, n_components, which="LA", tol=self.tol, maxiter=self.max_iter, v0=v0
|
353 |
+
)
|
354 |
+
elif eigen_solver == "randomized":
|
355 |
+
self.eigenvalues_, self.eigenvectors_ = _randomized_eigsh(
|
356 |
+
K,
|
357 |
+
n_components=n_components,
|
358 |
+
n_iter=self.iterated_power,
|
359 |
+
random_state=self.random_state,
|
360 |
+
selection="module",
|
361 |
+
)
|
362 |
+
|
363 |
+
# make sure that the eigenvalues are ok and fix numerical issues
|
364 |
+
self.eigenvalues_ = _check_psd_eigenvalues(
|
365 |
+
self.eigenvalues_, enable_warnings=False
|
366 |
+
)
|
367 |
+
|
368 |
+
# flip eigenvectors' sign to enforce deterministic output
|
369 |
+
self.eigenvectors_, _ = svd_flip(
|
370 |
+
self.eigenvectors_, np.zeros_like(self.eigenvectors_).T
|
371 |
+
)
|
372 |
+
|
373 |
+
# sort eigenvectors in descending order
|
374 |
+
indices = self.eigenvalues_.argsort()[::-1]
|
375 |
+
self.eigenvalues_ = self.eigenvalues_[indices]
|
376 |
+
self.eigenvectors_ = self.eigenvectors_[:, indices]
|
377 |
+
|
378 |
+
# remove eigenvectors with a zero eigenvalue (null space) if required
|
379 |
+
if self.remove_zero_eig or self.n_components is None:
|
380 |
+
self.eigenvectors_ = self.eigenvectors_[:, self.eigenvalues_ > 0]
|
381 |
+
self.eigenvalues_ = self.eigenvalues_[self.eigenvalues_ > 0]
|
382 |
+
|
383 |
+
# Maintenance note on Eigenvectors normalization
|
384 |
+
# ----------------------------------------------
|
385 |
+
# there is a link between
|
386 |
+
# the eigenvectors of K=Phi(X)'Phi(X) and the ones of Phi(X)Phi(X)'
|
387 |
+
# if v is an eigenvector of K
|
388 |
+
# then Phi(X)v is an eigenvector of Phi(X)Phi(X)'
|
389 |
+
# if u is an eigenvector of Phi(X)Phi(X)'
|
390 |
+
# then Phi(X)'u is an eigenvector of Phi(X)'Phi(X)
|
391 |
+
#
|
392 |
+
# At this stage our self.eigenvectors_ (the v) have norm 1, we need to scale
|
393 |
+
# them so that eigenvectors in kernel feature space (the u) have norm=1
|
394 |
+
# instead
|
395 |
+
#
|
396 |
+
# We COULD scale them here:
|
397 |
+
# self.eigenvectors_ = self.eigenvectors_ / np.sqrt(self.eigenvalues_)
|
398 |
+
#
|
399 |
+
# But choose to perform that LATER when needed, in `fit()` and in
|
400 |
+
# `transform()`.
|
401 |
+
|
402 |
+
return K
|
403 |
+
|
404 |
+
def _fit_inverse_transform(self, X_transformed, X):
|
405 |
+
if hasattr(X, "tocsr"):
|
406 |
+
raise NotImplementedError(
|
407 |
+
"Inverse transform not implemented for sparse matrices!"
|
408 |
+
)
|
409 |
+
|
410 |
+
n_samples = X_transformed.shape[0]
|
411 |
+
K = self._get_kernel(X_transformed)
|
412 |
+
K.flat[:: n_samples + 1] += self.alpha
|
413 |
+
self.dual_coef_ = linalg.solve(K, X, assume_a="pos", overwrite_a=True)
|
414 |
+
self.X_transformed_fit_ = X_transformed
|
415 |
+
|
416 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
417 |
+
def fit(self, X, y=None):
|
418 |
+
"""Fit the model from data in X.
|
419 |
+
|
420 |
+
Parameters
|
421 |
+
----------
|
422 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
423 |
+
Training vector, where `n_samples` is the number of samples
|
424 |
+
and `n_features` is the number of features.
|
425 |
+
|
426 |
+
y : Ignored
|
427 |
+
Not used, present for API consistency by convention.
|
428 |
+
|
429 |
+
Returns
|
430 |
+
-------
|
431 |
+
self : object
|
432 |
+
Returns the instance itself.
|
433 |
+
"""
|
434 |
+
if self.fit_inverse_transform and self.kernel == "precomputed":
|
435 |
+
raise ValueError("Cannot fit_inverse_transform with a precomputed kernel.")
|
436 |
+
X = self._validate_data(X, accept_sparse="csr", copy=self.copy_X)
|
437 |
+
self.gamma_ = 1 / X.shape[1] if self.gamma is None else self.gamma
|
438 |
+
self._centerer = KernelCenterer().set_output(transform="default")
|
439 |
+
K = self._get_kernel(X)
|
440 |
+
self._fit_transform(K)
|
441 |
+
|
442 |
+
if self.fit_inverse_transform:
|
443 |
+
# no need to use the kernel to transform X, use shortcut expression
|
444 |
+
X_transformed = self.eigenvectors_ * np.sqrt(self.eigenvalues_)
|
445 |
+
|
446 |
+
self._fit_inverse_transform(X_transformed, X)
|
447 |
+
|
448 |
+
self.X_fit_ = X
|
449 |
+
return self
|
450 |
+
|
451 |
+
def fit_transform(self, X, y=None, **params):
|
452 |
+
"""Fit the model from data in X and transform X.
|
453 |
+
|
454 |
+
Parameters
|
455 |
+
----------
|
456 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
457 |
+
Training vector, where `n_samples` is the number of samples
|
458 |
+
and `n_features` is the number of features.
|
459 |
+
|
460 |
+
y : Ignored
|
461 |
+
Not used, present for API consistency by convention.
|
462 |
+
|
463 |
+
**params : kwargs
|
464 |
+
Parameters (keyword arguments) and values passed to
|
465 |
+
the fit_transform instance.
|
466 |
+
|
467 |
+
Returns
|
468 |
+
-------
|
469 |
+
X_new : ndarray of shape (n_samples, n_components)
|
470 |
+
Returns the instance itself.
|
471 |
+
"""
|
472 |
+
self.fit(X, **params)
|
473 |
+
|
474 |
+
# no need to use the kernel to transform X, use shortcut expression
|
475 |
+
X_transformed = self.eigenvectors_ * np.sqrt(self.eigenvalues_)
|
476 |
+
|
477 |
+
if self.fit_inverse_transform:
|
478 |
+
self._fit_inverse_transform(X_transformed, X)
|
479 |
+
|
480 |
+
return X_transformed
|
481 |
+
|
482 |
+
def transform(self, X):
|
483 |
+
"""Transform X.
|
484 |
+
|
485 |
+
Parameters
|
486 |
+
----------
|
487 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
488 |
+
Training vector, where `n_samples` is the number of samples
|
489 |
+
and `n_features` is the number of features.
|
490 |
+
|
491 |
+
Returns
|
492 |
+
-------
|
493 |
+
X_new : ndarray of shape (n_samples, n_components)
|
494 |
+
Returns the instance itself.
|
495 |
+
"""
|
496 |
+
check_is_fitted(self)
|
497 |
+
X = self._validate_data(X, accept_sparse="csr", reset=False)
|
498 |
+
|
499 |
+
# Compute centered gram matrix between X and training data X_fit_
|
500 |
+
K = self._centerer.transform(self._get_kernel(X, self.X_fit_))
|
501 |
+
|
502 |
+
# scale eigenvectors (properly account for null-space for dot product)
|
503 |
+
non_zeros = np.flatnonzero(self.eigenvalues_)
|
504 |
+
scaled_alphas = np.zeros_like(self.eigenvectors_)
|
505 |
+
scaled_alphas[:, non_zeros] = self.eigenvectors_[:, non_zeros] / np.sqrt(
|
506 |
+
self.eigenvalues_[non_zeros]
|
507 |
+
)
|
508 |
+
|
509 |
+
# Project with a scalar product between K and the scaled eigenvectors
|
510 |
+
return np.dot(K, scaled_alphas)
|
511 |
+
|
512 |
+
def inverse_transform(self, X):
|
513 |
+
"""Transform X back to original space.
|
514 |
+
|
515 |
+
``inverse_transform`` approximates the inverse transformation using
|
516 |
+
a learned pre-image. The pre-image is learned by kernel ridge
|
517 |
+
regression of the original data on their low-dimensional representation
|
518 |
+
vectors.
|
519 |
+
|
520 |
+
.. note:
|
521 |
+
:meth:`~sklearn.decomposition.fit` internally uses a centered
|
522 |
+
kernel. As the centered kernel no longer contains the information
|
523 |
+
of the mean of kernel features, such information is not taken into
|
524 |
+
account in reconstruction.
|
525 |
+
|
526 |
+
.. note::
|
527 |
+
When users want to compute inverse transformation for 'linear'
|
528 |
+
kernel, it is recommended that they use
|
529 |
+
:class:`~sklearn.decomposition.PCA` instead. Unlike
|
530 |
+
:class:`~sklearn.decomposition.PCA`,
|
531 |
+
:class:`~sklearn.decomposition.KernelPCA`'s ``inverse_transform``
|
532 |
+
does not reconstruct the mean of data when 'linear' kernel is used
|
533 |
+
due to the use of centered kernel.
|
534 |
+
|
535 |
+
Parameters
|
536 |
+
----------
|
537 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_components)
|
538 |
+
Training vector, where `n_samples` is the number of samples
|
539 |
+
and `n_features` is the number of features.
|
540 |
+
|
541 |
+
Returns
|
542 |
+
-------
|
543 |
+
X_new : ndarray of shape (n_samples, n_features)
|
544 |
+
Returns the instance itself.
|
545 |
+
|
546 |
+
References
|
547 |
+
----------
|
548 |
+
`Bakır, Gökhan H., Jason Weston, and Bernhard Schölkopf.
|
549 |
+
"Learning to find pre-images."
|
550 |
+
Advances in neural information processing systems 16 (2004): 449-456.
|
551 |
+
<https://papers.nips.cc/paper/2003/file/ac1ad983e08ad3304a97e147f522747e-Paper.pdf>`_
|
552 |
+
"""
|
553 |
+
if not self.fit_inverse_transform:
|
554 |
+
raise NotFittedError(
|
555 |
+
"The fit_inverse_transform parameter was not"
|
556 |
+
" set to True when instantiating and hence "
|
557 |
+
"the inverse transform is not available."
|
558 |
+
)
|
559 |
+
|
560 |
+
K = self._get_kernel(X, self.X_transformed_fit_)
|
561 |
+
return np.dot(K, self.dual_coef_)
|
562 |
+
|
563 |
+
def _more_tags(self):
|
564 |
+
return {
|
565 |
+
"preserves_dtype": [np.float64, np.float32],
|
566 |
+
"pairwise": self.kernel == "precomputed",
|
567 |
+
}
|
568 |
+
|
569 |
+
@property
|
570 |
+
def _n_features_out(self):
|
571 |
+
"""Number of transformed output features."""
|
572 |
+
return self.eigenvalues_.shape[0]
|
llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_lda.py
ADDED
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
=============================================================
|
4 |
+
Online Latent Dirichlet Allocation with variational inference
|
5 |
+
=============================================================
|
6 |
+
|
7 |
+
This implementation is modified from Matthew D. Hoffman's onlineldavb code
|
8 |
+
Link: https://github.com/blei-lab/onlineldavb
|
9 |
+
"""
|
10 |
+
|
11 |
+
# Author: Chyi-Kwei Yau
|
12 |
+
# Author: Matthew D. Hoffman (original onlineldavb implementation)
|
13 |
+
from numbers import Integral, Real
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import scipy.sparse as sp
|
17 |
+
from joblib import effective_n_jobs
|
18 |
+
from scipy.special import gammaln, logsumexp
|
19 |
+
|
20 |
+
from ..base import (
|
21 |
+
BaseEstimator,
|
22 |
+
ClassNamePrefixFeaturesOutMixin,
|
23 |
+
TransformerMixin,
|
24 |
+
_fit_context,
|
25 |
+
)
|
26 |
+
from ..utils import check_random_state, gen_batches, gen_even_slices
|
27 |
+
from ..utils._param_validation import Interval, StrOptions
|
28 |
+
from ..utils.parallel import Parallel, delayed
|
29 |
+
from ..utils.validation import check_is_fitted, check_non_negative
|
30 |
+
from ._online_lda_fast import (
|
31 |
+
_dirichlet_expectation_1d as cy_dirichlet_expectation_1d,
|
32 |
+
)
|
33 |
+
from ._online_lda_fast import (
|
34 |
+
_dirichlet_expectation_2d,
|
35 |
+
)
|
36 |
+
from ._online_lda_fast import (
|
37 |
+
mean_change as cy_mean_change,
|
38 |
+
)
|
39 |
+
|
40 |
+
EPS = np.finfo(float).eps
|
41 |
+
|
42 |
+
|
43 |
+
def _update_doc_distribution(
|
44 |
+
X,
|
45 |
+
exp_topic_word_distr,
|
46 |
+
doc_topic_prior,
|
47 |
+
max_doc_update_iter,
|
48 |
+
mean_change_tol,
|
49 |
+
cal_sstats,
|
50 |
+
random_state,
|
51 |
+
):
|
52 |
+
"""E-step: update document-topic distribution.
|
53 |
+
|
54 |
+
Parameters
|
55 |
+
----------
|
56 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
57 |
+
Document word matrix.
|
58 |
+
|
59 |
+
exp_topic_word_distr : ndarray of shape (n_topics, n_features)
|
60 |
+
Exponential value of expectation of log topic word distribution.
|
61 |
+
In the literature, this is `exp(E[log(beta)])`.
|
62 |
+
|
63 |
+
doc_topic_prior : float
|
64 |
+
Prior of document topic distribution `theta`.
|
65 |
+
|
66 |
+
max_doc_update_iter : int
|
67 |
+
Max number of iterations for updating document topic distribution in
|
68 |
+
the E-step.
|
69 |
+
|
70 |
+
mean_change_tol : float
|
71 |
+
Stopping tolerance for updating document topic distribution in E-step.
|
72 |
+
|
73 |
+
cal_sstats : bool
|
74 |
+
Parameter that indicate to calculate sufficient statistics or not.
|
75 |
+
Set `cal_sstats` to `True` when we need to run M-step.
|
76 |
+
|
77 |
+
random_state : RandomState instance or None
|
78 |
+
Parameter that indicate how to initialize document topic distribution.
|
79 |
+
Set `random_state` to None will initialize document topic distribution
|
80 |
+
to a constant number.
|
81 |
+
|
82 |
+
Returns
|
83 |
+
-------
|
84 |
+
(doc_topic_distr, suff_stats) :
|
85 |
+
`doc_topic_distr` is unnormalized topic distribution for each document.
|
86 |
+
In the literature, this is `gamma`. we can calculate `E[log(theta)]`
|
87 |
+
from it.
|
88 |
+
`suff_stats` is expected sufficient statistics for the M-step.
|
89 |
+
When `cal_sstats == False`, this will be None.
|
90 |
+
|
91 |
+
"""
|
92 |
+
is_sparse_x = sp.issparse(X)
|
93 |
+
n_samples, n_features = X.shape
|
94 |
+
n_topics = exp_topic_word_distr.shape[0]
|
95 |
+
|
96 |
+
if random_state:
|
97 |
+
doc_topic_distr = random_state.gamma(100.0, 0.01, (n_samples, n_topics)).astype(
|
98 |
+
X.dtype, copy=False
|
99 |
+
)
|
100 |
+
else:
|
101 |
+
doc_topic_distr = np.ones((n_samples, n_topics), dtype=X.dtype)
|
102 |
+
|
103 |
+
# In the literature, this is `exp(E[log(theta)])`
|
104 |
+
exp_doc_topic = np.exp(_dirichlet_expectation_2d(doc_topic_distr))
|
105 |
+
|
106 |
+
# diff on `component_` (only calculate it when `cal_diff` is True)
|
107 |
+
suff_stats = (
|
108 |
+
np.zeros(exp_topic_word_distr.shape, dtype=X.dtype) if cal_sstats else None
|
109 |
+
)
|
110 |
+
|
111 |
+
if is_sparse_x:
|
112 |
+
X_data = X.data
|
113 |
+
X_indices = X.indices
|
114 |
+
X_indptr = X.indptr
|
115 |
+
|
116 |
+
# These cython functions are called in a nested loop on usually very small arrays
|
117 |
+
# (length=n_topics). In that case, finding the appropriate signature of the
|
118 |
+
# fused-typed function can be more costly than its execution, hence the dispatch
|
119 |
+
# is done outside of the loop.
|
120 |
+
ctype = "float" if X.dtype == np.float32 else "double"
|
121 |
+
mean_change = cy_mean_change[ctype]
|
122 |
+
dirichlet_expectation_1d = cy_dirichlet_expectation_1d[ctype]
|
123 |
+
eps = np.finfo(X.dtype).eps
|
124 |
+
|
125 |
+
for idx_d in range(n_samples):
|
126 |
+
if is_sparse_x:
|
127 |
+
ids = X_indices[X_indptr[idx_d] : X_indptr[idx_d + 1]]
|
128 |
+
cnts = X_data[X_indptr[idx_d] : X_indptr[idx_d + 1]]
|
129 |
+
else:
|
130 |
+
ids = np.nonzero(X[idx_d, :])[0]
|
131 |
+
cnts = X[idx_d, ids]
|
132 |
+
|
133 |
+
doc_topic_d = doc_topic_distr[idx_d, :]
|
134 |
+
# The next one is a copy, since the inner loop overwrites it.
|
135 |
+
exp_doc_topic_d = exp_doc_topic[idx_d, :].copy()
|
136 |
+
exp_topic_word_d = exp_topic_word_distr[:, ids]
|
137 |
+
|
138 |
+
# Iterate between `doc_topic_d` and `norm_phi` until convergence
|
139 |
+
for _ in range(0, max_doc_update_iter):
|
140 |
+
last_d = doc_topic_d
|
141 |
+
|
142 |
+
# The optimal phi_{dwk} is proportional to
|
143 |
+
# exp(E[log(theta_{dk})]) * exp(E[log(beta_{dw})]).
|
144 |
+
norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + eps
|
145 |
+
|
146 |
+
doc_topic_d = exp_doc_topic_d * np.dot(cnts / norm_phi, exp_topic_word_d.T)
|
147 |
+
# Note: adds doc_topic_prior to doc_topic_d, in-place.
|
148 |
+
dirichlet_expectation_1d(doc_topic_d, doc_topic_prior, exp_doc_topic_d)
|
149 |
+
|
150 |
+
if mean_change(last_d, doc_topic_d) < mean_change_tol:
|
151 |
+
break
|
152 |
+
doc_topic_distr[idx_d, :] = doc_topic_d
|
153 |
+
|
154 |
+
# Contribution of document d to the expected sufficient
|
155 |
+
# statistics for the M step.
|
156 |
+
if cal_sstats:
|
157 |
+
norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + eps
|
158 |
+
suff_stats[:, ids] += np.outer(exp_doc_topic_d, cnts / norm_phi)
|
159 |
+
|
160 |
+
return (doc_topic_distr, suff_stats)
|
161 |
+
|
162 |
+
|
163 |
+
class LatentDirichletAllocation(
|
164 |
+
ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator
|
165 |
+
):
|
166 |
+
"""Latent Dirichlet Allocation with online variational Bayes algorithm.
|
167 |
+
|
168 |
+
The implementation is based on [1]_ and [2]_.
|
169 |
+
|
170 |
+
.. versionadded:: 0.17
|
171 |
+
|
172 |
+
Read more in the :ref:`User Guide <LatentDirichletAllocation>`.
|
173 |
+
|
174 |
+
Parameters
|
175 |
+
----------
|
176 |
+
n_components : int, default=10
|
177 |
+
Number of topics.
|
178 |
+
|
179 |
+
.. versionchanged:: 0.19
|
180 |
+
``n_topics`` was renamed to ``n_components``
|
181 |
+
|
182 |
+
doc_topic_prior : float, default=None
|
183 |
+
Prior of document topic distribution `theta`. If the value is None,
|
184 |
+
defaults to `1 / n_components`.
|
185 |
+
In [1]_, this is called `alpha`.
|
186 |
+
|
187 |
+
topic_word_prior : float, default=None
|
188 |
+
Prior of topic word distribution `beta`. If the value is None, defaults
|
189 |
+
to `1 / n_components`.
|
190 |
+
In [1]_, this is called `eta`.
|
191 |
+
|
192 |
+
learning_method : {'batch', 'online'}, default='batch'
|
193 |
+
Method used to update `_component`. Only used in :meth:`fit` method.
|
194 |
+
In general, if the data size is large, the online update will be much
|
195 |
+
faster than the batch update.
|
196 |
+
|
197 |
+
Valid options::
|
198 |
+
|
199 |
+
'batch': Batch variational Bayes method. Use all training data in
|
200 |
+
each EM update.
|
201 |
+
Old `components_` will be overwritten in each iteration.
|
202 |
+
'online': Online variational Bayes method. In each EM update, use
|
203 |
+
mini-batch of training data to update the ``components_``
|
204 |
+
variable incrementally. The learning rate is controlled by the
|
205 |
+
``learning_decay`` and the ``learning_offset`` parameters.
|
206 |
+
|
207 |
+
.. versionchanged:: 0.20
|
208 |
+
The default learning method is now ``"batch"``.
|
209 |
+
|
210 |
+
learning_decay : float, default=0.7
|
211 |
+
It is a parameter that control learning rate in the online learning
|
212 |
+
method. The value should be set between (0.5, 1.0] to guarantee
|
213 |
+
asymptotic convergence. When the value is 0.0 and batch_size is
|
214 |
+
``n_samples``, the update method is same as batch learning. In the
|
215 |
+
literature, this is called kappa.
|
216 |
+
|
217 |
+
learning_offset : float, default=10.0
|
218 |
+
A (positive) parameter that downweights early iterations in online
|
219 |
+
learning. It should be greater than 1.0. In the literature, this is
|
220 |
+
called tau_0.
|
221 |
+
|
222 |
+
max_iter : int, default=10
|
223 |
+
The maximum number of passes over the training data (aka epochs).
|
224 |
+
It only impacts the behavior in the :meth:`fit` method, and not the
|
225 |
+
:meth:`partial_fit` method.
|
226 |
+
|
227 |
+
batch_size : int, default=128
|
228 |
+
Number of documents to use in each EM iteration. Only used in online
|
229 |
+
learning.
|
230 |
+
|
231 |
+
evaluate_every : int, default=-1
|
232 |
+
How often to evaluate perplexity. Only used in `fit` method.
|
233 |
+
set it to 0 or negative number to not evaluate perplexity in
|
234 |
+
training at all. Evaluating perplexity can help you check convergence
|
235 |
+
in training process, but it will also increase total training time.
|
236 |
+
Evaluating perplexity in every iteration might increase training time
|
237 |
+
up to two-fold.
|
238 |
+
|
239 |
+
total_samples : int, default=1e6
|
240 |
+
Total number of documents. Only used in the :meth:`partial_fit` method.
|
241 |
+
|
242 |
+
perp_tol : float, default=1e-1
|
243 |
+
Perplexity tolerance in batch learning. Only used when
|
244 |
+
``evaluate_every`` is greater than 0.
|
245 |
+
|
246 |
+
mean_change_tol : float, default=1e-3
|
247 |
+
Stopping tolerance for updating document topic distribution in E-step.
|
248 |
+
|
249 |
+
max_doc_update_iter : int, default=100
|
250 |
+
Max number of iterations for updating document topic distribution in
|
251 |
+
the E-step.
|
252 |
+
|
253 |
+
n_jobs : int, default=None
|
254 |
+
The number of jobs to use in the E-step.
|
255 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
256 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
257 |
+
for more details.
|
258 |
+
|
259 |
+
verbose : int, default=0
|
260 |
+
Verbosity level.
|
261 |
+
|
262 |
+
random_state : int, RandomState instance or None, default=None
|
263 |
+
Pass an int for reproducible results across multiple function calls.
|
264 |
+
See :term:`Glossary <random_state>`.
|
265 |
+
|
266 |
+
Attributes
|
267 |
+
----------
|
268 |
+
components_ : ndarray of shape (n_components, n_features)
|
269 |
+
Variational parameters for topic word distribution. Since the complete
|
270 |
+
conditional for topic word distribution is a Dirichlet,
|
271 |
+
``components_[i, j]`` can be viewed as pseudocount that represents the
|
272 |
+
number of times word `j` was assigned to topic `i`.
|
273 |
+
It can also be viewed as distribution over the words for each topic
|
274 |
+
after normalization:
|
275 |
+
``model.components_ / model.components_.sum(axis=1)[:, np.newaxis]``.
|
276 |
+
|
277 |
+
exp_dirichlet_component_ : ndarray of shape (n_components, n_features)
|
278 |
+
Exponential value of expectation of log topic word distribution.
|
279 |
+
In the literature, this is `exp(E[log(beta)])`.
|
280 |
+
|
281 |
+
n_batch_iter_ : int
|
282 |
+
Number of iterations of the EM step.
|
283 |
+
|
284 |
+
n_features_in_ : int
|
285 |
+
Number of features seen during :term:`fit`.
|
286 |
+
|
287 |
+
.. versionadded:: 0.24
|
288 |
+
|
289 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
290 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
291 |
+
has feature names that are all strings.
|
292 |
+
|
293 |
+
.. versionadded:: 1.0
|
294 |
+
|
295 |
+
n_iter_ : int
|
296 |
+
Number of passes over the dataset.
|
297 |
+
|
298 |
+
bound_ : float
|
299 |
+
Final perplexity score on training set.
|
300 |
+
|
301 |
+
doc_topic_prior_ : float
|
302 |
+
Prior of document topic distribution `theta`. If the value is None,
|
303 |
+
it is `1 / n_components`.
|
304 |
+
|
305 |
+
random_state_ : RandomState instance
|
306 |
+
RandomState instance that is generated either from a seed, the random
|
307 |
+
number generator or by `np.random`.
|
308 |
+
|
309 |
+
topic_word_prior_ : float
|
310 |
+
Prior of topic word distribution `beta`. If the value is None, it is
|
311 |
+
`1 / n_components`.
|
312 |
+
|
313 |
+
See Also
|
314 |
+
--------
|
315 |
+
sklearn.discriminant_analysis.LinearDiscriminantAnalysis:
|
316 |
+
A classifier with a linear decision boundary, generated by fitting
|
317 |
+
class conditional densities to the data and using Bayes' rule.
|
318 |
+
|
319 |
+
References
|
320 |
+
----------
|
321 |
+
.. [1] "Online Learning for Latent Dirichlet Allocation", Matthew D.
|
322 |
+
Hoffman, David M. Blei, Francis Bach, 2010
|
323 |
+
https://github.com/blei-lab/onlineldavb
|
324 |
+
|
325 |
+
.. [2] "Stochastic Variational Inference", Matthew D. Hoffman,
|
326 |
+
David M. Blei, Chong Wang, John Paisley, 2013
|
327 |
+
|
328 |
+
Examples
|
329 |
+
--------
|
330 |
+
>>> from sklearn.decomposition import LatentDirichletAllocation
|
331 |
+
>>> from sklearn.datasets import make_multilabel_classification
|
332 |
+
>>> # This produces a feature matrix of token counts, similar to what
|
333 |
+
>>> # CountVectorizer would produce on text.
|
334 |
+
>>> X, _ = make_multilabel_classification(random_state=0)
|
335 |
+
>>> lda = LatentDirichletAllocation(n_components=5,
|
336 |
+
... random_state=0)
|
337 |
+
>>> lda.fit(X)
|
338 |
+
LatentDirichletAllocation(...)
|
339 |
+
>>> # get topics for some given samples:
|
340 |
+
>>> lda.transform(X[-2:])
|
341 |
+
array([[0.00360392, 0.25499205, 0.0036211 , 0.64236448, 0.09541846],
|
342 |
+
[0.15297572, 0.00362644, 0.44412786, 0.39568399, 0.003586 ]])
|
343 |
+
"""
|
344 |
+
|
345 |
+
_parameter_constraints: dict = {
|
346 |
+
"n_components": [Interval(Integral, 0, None, closed="neither")],
|
347 |
+
"doc_topic_prior": [None, Interval(Real, 0, 1, closed="both")],
|
348 |
+
"topic_word_prior": [None, Interval(Real, 0, 1, closed="both")],
|
349 |
+
"learning_method": [StrOptions({"batch", "online"})],
|
350 |
+
"learning_decay": [Interval(Real, 0, 1, closed="both")],
|
351 |
+
"learning_offset": [Interval(Real, 1.0, None, closed="left")],
|
352 |
+
"max_iter": [Interval(Integral, 0, None, closed="left")],
|
353 |
+
"batch_size": [Interval(Integral, 0, None, closed="neither")],
|
354 |
+
"evaluate_every": [Interval(Integral, None, None, closed="neither")],
|
355 |
+
"total_samples": [Interval(Real, 0, None, closed="neither")],
|
356 |
+
"perp_tol": [Interval(Real, 0, None, closed="left")],
|
357 |
+
"mean_change_tol": [Interval(Real, 0, None, closed="left")],
|
358 |
+
"max_doc_update_iter": [Interval(Integral, 0, None, closed="left")],
|
359 |
+
"n_jobs": [None, Integral],
|
360 |
+
"verbose": ["verbose"],
|
361 |
+
"random_state": ["random_state"],
|
362 |
+
}
|
363 |
+
|
364 |
+
def __init__(
|
365 |
+
self,
|
366 |
+
n_components=10,
|
367 |
+
*,
|
368 |
+
doc_topic_prior=None,
|
369 |
+
topic_word_prior=None,
|
370 |
+
learning_method="batch",
|
371 |
+
learning_decay=0.7,
|
372 |
+
learning_offset=10.0,
|
373 |
+
max_iter=10,
|
374 |
+
batch_size=128,
|
375 |
+
evaluate_every=-1,
|
376 |
+
total_samples=1e6,
|
377 |
+
perp_tol=1e-1,
|
378 |
+
mean_change_tol=1e-3,
|
379 |
+
max_doc_update_iter=100,
|
380 |
+
n_jobs=None,
|
381 |
+
verbose=0,
|
382 |
+
random_state=None,
|
383 |
+
):
|
384 |
+
self.n_components = n_components
|
385 |
+
self.doc_topic_prior = doc_topic_prior
|
386 |
+
self.topic_word_prior = topic_word_prior
|
387 |
+
self.learning_method = learning_method
|
388 |
+
self.learning_decay = learning_decay
|
389 |
+
self.learning_offset = learning_offset
|
390 |
+
self.max_iter = max_iter
|
391 |
+
self.batch_size = batch_size
|
392 |
+
self.evaluate_every = evaluate_every
|
393 |
+
self.total_samples = total_samples
|
394 |
+
self.perp_tol = perp_tol
|
395 |
+
self.mean_change_tol = mean_change_tol
|
396 |
+
self.max_doc_update_iter = max_doc_update_iter
|
397 |
+
self.n_jobs = n_jobs
|
398 |
+
self.verbose = verbose
|
399 |
+
self.random_state = random_state
|
400 |
+
|
401 |
+
def _init_latent_vars(self, n_features, dtype=np.float64):
|
402 |
+
"""Initialize latent variables."""
|
403 |
+
|
404 |
+
self.random_state_ = check_random_state(self.random_state)
|
405 |
+
self.n_batch_iter_ = 1
|
406 |
+
self.n_iter_ = 0
|
407 |
+
|
408 |
+
if self.doc_topic_prior is None:
|
409 |
+
self.doc_topic_prior_ = 1.0 / self.n_components
|
410 |
+
else:
|
411 |
+
self.doc_topic_prior_ = self.doc_topic_prior
|
412 |
+
|
413 |
+
if self.topic_word_prior is None:
|
414 |
+
self.topic_word_prior_ = 1.0 / self.n_components
|
415 |
+
else:
|
416 |
+
self.topic_word_prior_ = self.topic_word_prior
|
417 |
+
|
418 |
+
init_gamma = 100.0
|
419 |
+
init_var = 1.0 / init_gamma
|
420 |
+
# In the literature, this is called `lambda`
|
421 |
+
self.components_ = self.random_state_.gamma(
|
422 |
+
init_gamma, init_var, (self.n_components, n_features)
|
423 |
+
).astype(dtype, copy=False)
|
424 |
+
|
425 |
+
# In the literature, this is `exp(E[log(beta)])`
|
426 |
+
self.exp_dirichlet_component_ = np.exp(
|
427 |
+
_dirichlet_expectation_2d(self.components_)
|
428 |
+
)
|
429 |
+
|
430 |
+
def _e_step(self, X, cal_sstats, random_init, parallel=None):
|
431 |
+
"""E-step in EM update.
|
432 |
+
|
433 |
+
Parameters
|
434 |
+
----------
|
435 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
436 |
+
Document word matrix.
|
437 |
+
|
438 |
+
cal_sstats : bool
|
439 |
+
Parameter that indicate whether to calculate sufficient statistics
|
440 |
+
or not. Set ``cal_sstats`` to True when we need to run M-step.
|
441 |
+
|
442 |
+
random_init : bool
|
443 |
+
Parameter that indicate whether to initialize document topic
|
444 |
+
distribution randomly in the E-step. Set it to True in training
|
445 |
+
steps.
|
446 |
+
|
447 |
+
parallel : joblib.Parallel, default=None
|
448 |
+
Pre-initialized instance of joblib.Parallel.
|
449 |
+
|
450 |
+
Returns
|
451 |
+
-------
|
452 |
+
(doc_topic_distr, suff_stats) :
|
453 |
+
`doc_topic_distr` is unnormalized topic distribution for each
|
454 |
+
document. In the literature, this is called `gamma`.
|
455 |
+
`suff_stats` is expected sufficient statistics for the M-step.
|
456 |
+
When `cal_sstats == False`, it will be None.
|
457 |
+
|
458 |
+
"""
|
459 |
+
|
460 |
+
# Run e-step in parallel
|
461 |
+
random_state = self.random_state_ if random_init else None
|
462 |
+
|
463 |
+
# TODO: make Parallel._effective_n_jobs public instead?
|
464 |
+
n_jobs = effective_n_jobs(self.n_jobs)
|
465 |
+
if parallel is None:
|
466 |
+
parallel = Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1))
|
467 |
+
results = parallel(
|
468 |
+
delayed(_update_doc_distribution)(
|
469 |
+
X[idx_slice, :],
|
470 |
+
self.exp_dirichlet_component_,
|
471 |
+
self.doc_topic_prior_,
|
472 |
+
self.max_doc_update_iter,
|
473 |
+
self.mean_change_tol,
|
474 |
+
cal_sstats,
|
475 |
+
random_state,
|
476 |
+
)
|
477 |
+
for idx_slice in gen_even_slices(X.shape[0], n_jobs)
|
478 |
+
)
|
479 |
+
|
480 |
+
# merge result
|
481 |
+
doc_topics, sstats_list = zip(*results)
|
482 |
+
doc_topic_distr = np.vstack(doc_topics)
|
483 |
+
|
484 |
+
if cal_sstats:
|
485 |
+
# This step finishes computing the sufficient statistics for the
|
486 |
+
# M-step.
|
487 |
+
suff_stats = np.zeros(self.components_.shape, dtype=self.components_.dtype)
|
488 |
+
for sstats in sstats_list:
|
489 |
+
suff_stats += sstats
|
490 |
+
suff_stats *= self.exp_dirichlet_component_
|
491 |
+
else:
|
492 |
+
suff_stats = None
|
493 |
+
|
494 |
+
return (doc_topic_distr, suff_stats)
|
495 |
+
|
496 |
+
def _em_step(self, X, total_samples, batch_update, parallel=None):
|
497 |
+
"""EM update for 1 iteration.
|
498 |
+
|
499 |
+
update `_component` by batch VB or online VB.
|
500 |
+
|
501 |
+
Parameters
|
502 |
+
----------
|
503 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
504 |
+
Document word matrix.
|
505 |
+
|
506 |
+
total_samples : int
|
507 |
+
Total number of documents. It is only used when
|
508 |
+
batch_update is `False`.
|
509 |
+
|
510 |
+
batch_update : bool
|
511 |
+
Parameter that controls updating method.
|
512 |
+
`True` for batch learning, `False` for online learning.
|
513 |
+
|
514 |
+
parallel : joblib.Parallel, default=None
|
515 |
+
Pre-initialized instance of joblib.Parallel
|
516 |
+
|
517 |
+
Returns
|
518 |
+
-------
|
519 |
+
doc_topic_distr : ndarray of shape (n_samples, n_components)
|
520 |
+
Unnormalized document topic distribution.
|
521 |
+
"""
|
522 |
+
|
523 |
+
# E-step
|
524 |
+
_, suff_stats = self._e_step(
|
525 |
+
X, cal_sstats=True, random_init=True, parallel=parallel
|
526 |
+
)
|
527 |
+
|
528 |
+
# M-step
|
529 |
+
if batch_update:
|
530 |
+
self.components_ = self.topic_word_prior_ + suff_stats
|
531 |
+
else:
|
532 |
+
# online update
|
533 |
+
# In the literature, the weight is `rho`
|
534 |
+
weight = np.power(
|
535 |
+
self.learning_offset + self.n_batch_iter_, -self.learning_decay
|
536 |
+
)
|
537 |
+
doc_ratio = float(total_samples) / X.shape[0]
|
538 |
+
self.components_ *= 1 - weight
|
539 |
+
self.components_ += weight * (
|
540 |
+
self.topic_word_prior_ + doc_ratio * suff_stats
|
541 |
+
)
|
542 |
+
|
543 |
+
# update `component_` related variables
|
544 |
+
self.exp_dirichlet_component_ = np.exp(
|
545 |
+
_dirichlet_expectation_2d(self.components_)
|
546 |
+
)
|
547 |
+
self.n_batch_iter_ += 1
|
548 |
+
return
|
549 |
+
|
550 |
+
def _more_tags(self):
|
551 |
+
return {
|
552 |
+
"preserves_dtype": [np.float64, np.float32],
|
553 |
+
"requires_positive_X": True,
|
554 |
+
}
|
555 |
+
|
556 |
+
def _check_non_neg_array(self, X, reset_n_features, whom):
|
557 |
+
"""check X format
|
558 |
+
|
559 |
+
check X format and make sure no negative value in X.
|
560 |
+
|
561 |
+
Parameters
|
562 |
+
----------
|
563 |
+
X : array-like or sparse matrix
|
564 |
+
|
565 |
+
"""
|
566 |
+
dtype = [np.float64, np.float32] if reset_n_features else self.components_.dtype
|
567 |
+
|
568 |
+
X = self._validate_data(
|
569 |
+
X,
|
570 |
+
reset=reset_n_features,
|
571 |
+
accept_sparse="csr",
|
572 |
+
dtype=dtype,
|
573 |
+
)
|
574 |
+
check_non_negative(X, whom)
|
575 |
+
|
576 |
+
return X
|
577 |
+
|
578 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
579 |
+
def partial_fit(self, X, y=None):
|
580 |
+
"""Online VB with Mini-Batch update.
|
581 |
+
|
582 |
+
Parameters
|
583 |
+
----------
|
584 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
585 |
+
Document word matrix.
|
586 |
+
|
587 |
+
y : Ignored
|
588 |
+
Not used, present here for API consistency by convention.
|
589 |
+
|
590 |
+
Returns
|
591 |
+
-------
|
592 |
+
self
|
593 |
+
Partially fitted estimator.
|
594 |
+
"""
|
595 |
+
first_time = not hasattr(self, "components_")
|
596 |
+
|
597 |
+
X = self._check_non_neg_array(
|
598 |
+
X, reset_n_features=first_time, whom="LatentDirichletAllocation.partial_fit"
|
599 |
+
)
|
600 |
+
n_samples, n_features = X.shape
|
601 |
+
batch_size = self.batch_size
|
602 |
+
|
603 |
+
# initialize parameters or check
|
604 |
+
if first_time:
|
605 |
+
self._init_latent_vars(n_features, dtype=X.dtype)
|
606 |
+
|
607 |
+
if n_features != self.components_.shape[1]:
|
608 |
+
raise ValueError(
|
609 |
+
"The provided data has %d dimensions while "
|
610 |
+
"the model was trained with feature size %d."
|
611 |
+
% (n_features, self.components_.shape[1])
|
612 |
+
)
|
613 |
+
|
614 |
+
n_jobs = effective_n_jobs(self.n_jobs)
|
615 |
+
with Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) as parallel:
|
616 |
+
for idx_slice in gen_batches(n_samples, batch_size):
|
617 |
+
self._em_step(
|
618 |
+
X[idx_slice, :],
|
619 |
+
total_samples=self.total_samples,
|
620 |
+
batch_update=False,
|
621 |
+
parallel=parallel,
|
622 |
+
)
|
623 |
+
|
624 |
+
return self
|
625 |
+
|
626 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
627 |
+
def fit(self, X, y=None):
|
628 |
+
"""Learn model for the data X with variational Bayes method.
|
629 |
+
|
630 |
+
When `learning_method` is 'online', use mini-batch update.
|
631 |
+
Otherwise, use batch update.
|
632 |
+
|
633 |
+
Parameters
|
634 |
+
----------
|
635 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
636 |
+
Document word matrix.
|
637 |
+
|
638 |
+
y : Ignored
|
639 |
+
Not used, present here for API consistency by convention.
|
640 |
+
|
641 |
+
Returns
|
642 |
+
-------
|
643 |
+
self
|
644 |
+
Fitted estimator.
|
645 |
+
"""
|
646 |
+
X = self._check_non_neg_array(
|
647 |
+
X, reset_n_features=True, whom="LatentDirichletAllocation.fit"
|
648 |
+
)
|
649 |
+
n_samples, n_features = X.shape
|
650 |
+
max_iter = self.max_iter
|
651 |
+
evaluate_every = self.evaluate_every
|
652 |
+
learning_method = self.learning_method
|
653 |
+
|
654 |
+
batch_size = self.batch_size
|
655 |
+
|
656 |
+
# initialize parameters
|
657 |
+
self._init_latent_vars(n_features, dtype=X.dtype)
|
658 |
+
# change to perplexity later
|
659 |
+
last_bound = None
|
660 |
+
n_jobs = effective_n_jobs(self.n_jobs)
|
661 |
+
with Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) as parallel:
|
662 |
+
for i in range(max_iter):
|
663 |
+
if learning_method == "online":
|
664 |
+
for idx_slice in gen_batches(n_samples, batch_size):
|
665 |
+
self._em_step(
|
666 |
+
X[idx_slice, :],
|
667 |
+
total_samples=n_samples,
|
668 |
+
batch_update=False,
|
669 |
+
parallel=parallel,
|
670 |
+
)
|
671 |
+
else:
|
672 |
+
# batch update
|
673 |
+
self._em_step(
|
674 |
+
X, total_samples=n_samples, batch_update=True, parallel=parallel
|
675 |
+
)
|
676 |
+
|
677 |
+
# check perplexity
|
678 |
+
if evaluate_every > 0 and (i + 1) % evaluate_every == 0:
|
679 |
+
doc_topics_distr, _ = self._e_step(
|
680 |
+
X, cal_sstats=False, random_init=False, parallel=parallel
|
681 |
+
)
|
682 |
+
bound = self._perplexity_precomp_distr(
|
683 |
+
X, doc_topics_distr, sub_sampling=False
|
684 |
+
)
|
685 |
+
if self.verbose:
|
686 |
+
print(
|
687 |
+
"iteration: %d of max_iter: %d, perplexity: %.4f"
|
688 |
+
% (i + 1, max_iter, bound)
|
689 |
+
)
|
690 |
+
|
691 |
+
if last_bound and abs(last_bound - bound) < self.perp_tol:
|
692 |
+
break
|
693 |
+
last_bound = bound
|
694 |
+
|
695 |
+
elif self.verbose:
|
696 |
+
print("iteration: %d of max_iter: %d" % (i + 1, max_iter))
|
697 |
+
self.n_iter_ += 1
|
698 |
+
|
699 |
+
# calculate final perplexity value on train set
|
700 |
+
doc_topics_distr, _ = self._e_step(
|
701 |
+
X, cal_sstats=False, random_init=False, parallel=parallel
|
702 |
+
)
|
703 |
+
self.bound_ = self._perplexity_precomp_distr(
|
704 |
+
X, doc_topics_distr, sub_sampling=False
|
705 |
+
)
|
706 |
+
|
707 |
+
return self
|
708 |
+
|
709 |
+
def _unnormalized_transform(self, X):
|
710 |
+
"""Transform data X according to fitted model.
|
711 |
+
|
712 |
+
Parameters
|
713 |
+
----------
|
714 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
715 |
+
Document word matrix.
|
716 |
+
|
717 |
+
Returns
|
718 |
+
-------
|
719 |
+
doc_topic_distr : ndarray of shape (n_samples, n_components)
|
720 |
+
Document topic distribution for X.
|
721 |
+
"""
|
722 |
+
doc_topic_distr, _ = self._e_step(X, cal_sstats=False, random_init=False)
|
723 |
+
|
724 |
+
return doc_topic_distr
|
725 |
+
|
726 |
+
def transform(self, X):
|
727 |
+
"""Transform data X according to the fitted model.
|
728 |
+
|
729 |
+
.. versionchanged:: 0.18
|
730 |
+
*doc_topic_distr* is now normalized
|
731 |
+
|
732 |
+
Parameters
|
733 |
+
----------
|
734 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
735 |
+
Document word matrix.
|
736 |
+
|
737 |
+
Returns
|
738 |
+
-------
|
739 |
+
doc_topic_distr : ndarray of shape (n_samples, n_components)
|
740 |
+
Document topic distribution for X.
|
741 |
+
"""
|
742 |
+
check_is_fitted(self)
|
743 |
+
X = self._check_non_neg_array(
|
744 |
+
X, reset_n_features=False, whom="LatentDirichletAllocation.transform"
|
745 |
+
)
|
746 |
+
doc_topic_distr = self._unnormalized_transform(X)
|
747 |
+
doc_topic_distr /= doc_topic_distr.sum(axis=1)[:, np.newaxis]
|
748 |
+
return doc_topic_distr
|
749 |
+
|
750 |
+
def _approx_bound(self, X, doc_topic_distr, sub_sampling):
|
751 |
+
"""Estimate the variational bound.
|
752 |
+
|
753 |
+
Estimate the variational bound over "all documents" using only the
|
754 |
+
documents passed in as X. Since log-likelihood of each word cannot
|
755 |
+
be computed directly, we use this bound to estimate it.
|
756 |
+
|
757 |
+
Parameters
|
758 |
+
----------
|
759 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
760 |
+
Document word matrix.
|
761 |
+
|
762 |
+
doc_topic_distr : ndarray of shape (n_samples, n_components)
|
763 |
+
Document topic distribution. In the literature, this is called
|
764 |
+
gamma.
|
765 |
+
|
766 |
+
sub_sampling : bool, default=False
|
767 |
+
Compensate for subsampling of documents.
|
768 |
+
It is used in calculate bound in online learning.
|
769 |
+
|
770 |
+
Returns
|
771 |
+
-------
|
772 |
+
score : float
|
773 |
+
|
774 |
+
"""
|
775 |
+
|
776 |
+
def _loglikelihood(prior, distr, dirichlet_distr, size):
|
777 |
+
# calculate log-likelihood
|
778 |
+
score = np.sum((prior - distr) * dirichlet_distr)
|
779 |
+
score += np.sum(gammaln(distr) - gammaln(prior))
|
780 |
+
score += np.sum(gammaln(prior * size) - gammaln(np.sum(distr, 1)))
|
781 |
+
return score
|
782 |
+
|
783 |
+
is_sparse_x = sp.issparse(X)
|
784 |
+
n_samples, n_components = doc_topic_distr.shape
|
785 |
+
n_features = self.components_.shape[1]
|
786 |
+
score = 0
|
787 |
+
|
788 |
+
dirichlet_doc_topic = _dirichlet_expectation_2d(doc_topic_distr)
|
789 |
+
dirichlet_component_ = _dirichlet_expectation_2d(self.components_)
|
790 |
+
doc_topic_prior = self.doc_topic_prior_
|
791 |
+
topic_word_prior = self.topic_word_prior_
|
792 |
+
|
793 |
+
if is_sparse_x:
|
794 |
+
X_data = X.data
|
795 |
+
X_indices = X.indices
|
796 |
+
X_indptr = X.indptr
|
797 |
+
|
798 |
+
# E[log p(docs | theta, beta)]
|
799 |
+
for idx_d in range(0, n_samples):
|
800 |
+
if is_sparse_x:
|
801 |
+
ids = X_indices[X_indptr[idx_d] : X_indptr[idx_d + 1]]
|
802 |
+
cnts = X_data[X_indptr[idx_d] : X_indptr[idx_d + 1]]
|
803 |
+
else:
|
804 |
+
ids = np.nonzero(X[idx_d, :])[0]
|
805 |
+
cnts = X[idx_d, ids]
|
806 |
+
temp = (
|
807 |
+
dirichlet_doc_topic[idx_d, :, np.newaxis] + dirichlet_component_[:, ids]
|
808 |
+
)
|
809 |
+
norm_phi = logsumexp(temp, axis=0)
|
810 |
+
score += np.dot(cnts, norm_phi)
|
811 |
+
|
812 |
+
# compute E[log p(theta | alpha) - log q(theta | gamma)]
|
813 |
+
score += _loglikelihood(
|
814 |
+
doc_topic_prior, doc_topic_distr, dirichlet_doc_topic, self.n_components
|
815 |
+
)
|
816 |
+
|
817 |
+
# Compensate for the subsampling of the population of documents
|
818 |
+
if sub_sampling:
|
819 |
+
doc_ratio = float(self.total_samples) / n_samples
|
820 |
+
score *= doc_ratio
|
821 |
+
|
822 |
+
# E[log p(beta | eta) - log q (beta | lambda)]
|
823 |
+
score += _loglikelihood(
|
824 |
+
topic_word_prior, self.components_, dirichlet_component_, n_features
|
825 |
+
)
|
826 |
+
|
827 |
+
return score
|
828 |
+
|
829 |
+
def score(self, X, y=None):
|
830 |
+
"""Calculate approximate log-likelihood as score.
|
831 |
+
|
832 |
+
Parameters
|
833 |
+
----------
|
834 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
835 |
+
Document word matrix.
|
836 |
+
|
837 |
+
y : Ignored
|
838 |
+
Not used, present here for API consistency by convention.
|
839 |
+
|
840 |
+
Returns
|
841 |
+
-------
|
842 |
+
score : float
|
843 |
+
Use approximate bound as score.
|
844 |
+
"""
|
845 |
+
check_is_fitted(self)
|
846 |
+
X = self._check_non_neg_array(
|
847 |
+
X, reset_n_features=False, whom="LatentDirichletAllocation.score"
|
848 |
+
)
|
849 |
+
|
850 |
+
doc_topic_distr = self._unnormalized_transform(X)
|
851 |
+
score = self._approx_bound(X, doc_topic_distr, sub_sampling=False)
|
852 |
+
return score
|
853 |
+
|
854 |
+
def _perplexity_precomp_distr(self, X, doc_topic_distr=None, sub_sampling=False):
|
855 |
+
"""Calculate approximate perplexity for data X with ability to accept
|
856 |
+
precomputed doc_topic_distr
|
857 |
+
|
858 |
+
Perplexity is defined as exp(-1. * log-likelihood per word)
|
859 |
+
|
860 |
+
Parameters
|
861 |
+
----------
|
862 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
863 |
+
Document word matrix.
|
864 |
+
|
865 |
+
doc_topic_distr : ndarray of shape (n_samples, n_components), \
|
866 |
+
default=None
|
867 |
+
Document topic distribution.
|
868 |
+
If it is None, it will be generated by applying transform on X.
|
869 |
+
|
870 |
+
Returns
|
871 |
+
-------
|
872 |
+
score : float
|
873 |
+
Perplexity score.
|
874 |
+
"""
|
875 |
+
if doc_topic_distr is None:
|
876 |
+
doc_topic_distr = self._unnormalized_transform(X)
|
877 |
+
else:
|
878 |
+
n_samples, n_components = doc_topic_distr.shape
|
879 |
+
if n_samples != X.shape[0]:
|
880 |
+
raise ValueError(
|
881 |
+
"Number of samples in X and doc_topic_distr do not match."
|
882 |
+
)
|
883 |
+
|
884 |
+
if n_components != self.n_components:
|
885 |
+
raise ValueError("Number of topics does not match.")
|
886 |
+
|
887 |
+
current_samples = X.shape[0]
|
888 |
+
bound = self._approx_bound(X, doc_topic_distr, sub_sampling)
|
889 |
+
|
890 |
+
if sub_sampling:
|
891 |
+
word_cnt = X.sum() * (float(self.total_samples) / current_samples)
|
892 |
+
else:
|
893 |
+
word_cnt = X.sum()
|
894 |
+
perword_bound = bound / word_cnt
|
895 |
+
|
896 |
+
return np.exp(-1.0 * perword_bound)
|
897 |
+
|
898 |
+
def perplexity(self, X, sub_sampling=False):
|
899 |
+
"""Calculate approximate perplexity for data X.
|
900 |
+
|
901 |
+
Perplexity is defined as exp(-1. * log-likelihood per word)
|
902 |
+
|
903 |
+
.. versionchanged:: 0.19
|
904 |
+
*doc_topic_distr* argument has been deprecated and is ignored
|
905 |
+
because user no longer has access to unnormalized distribution
|
906 |
+
|
907 |
+
Parameters
|
908 |
+
----------
|
909 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
910 |
+
Document word matrix.
|
911 |
+
|
912 |
+
sub_sampling : bool
|
913 |
+
Do sub-sampling or not.
|
914 |
+
|
915 |
+
Returns
|
916 |
+
-------
|
917 |
+
score : float
|
918 |
+
Perplexity score.
|
919 |
+
"""
|
920 |
+
check_is_fitted(self)
|
921 |
+
X = self._check_non_neg_array(
|
922 |
+
X, reset_n_features=True, whom="LatentDirichletAllocation.perplexity"
|
923 |
+
)
|
924 |
+
return self._perplexity_precomp_distr(X, sub_sampling=sub_sampling)
|
925 |
+
|
926 |
+
@property
|
927 |
+
def _n_features_out(self):
|
928 |
+
"""Number of transformed output features."""
|
929 |
+
return self.components_.shape[0]
|
llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_online_lda_fast.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (307 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_sparse_pca.py
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Matrix factorization with Sparse PCA."""
|
2 |
+
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
|
3 |
+
# License: BSD 3 clause
|
4 |
+
|
5 |
+
from numbers import Integral, Real
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from ..base import (
|
10 |
+
BaseEstimator,
|
11 |
+
ClassNamePrefixFeaturesOutMixin,
|
12 |
+
TransformerMixin,
|
13 |
+
_fit_context,
|
14 |
+
)
|
15 |
+
from ..linear_model import ridge_regression
|
16 |
+
from ..utils import check_random_state
|
17 |
+
from ..utils._param_validation import Hidden, Interval, StrOptions
|
18 |
+
from ..utils.extmath import svd_flip
|
19 |
+
from ..utils.validation import check_array, check_is_fitted
|
20 |
+
from ._dict_learning import MiniBatchDictionaryLearning, dict_learning
|
21 |
+
|
22 |
+
|
23 |
+
class _BaseSparsePCA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
24 |
+
"""Base class for SparsePCA and MiniBatchSparsePCA"""
|
25 |
+
|
26 |
+
_parameter_constraints: dict = {
|
27 |
+
"n_components": [None, Interval(Integral, 1, None, closed="left")],
|
28 |
+
"alpha": [Interval(Real, 0.0, None, closed="left")],
|
29 |
+
"ridge_alpha": [Interval(Real, 0.0, None, closed="left")],
|
30 |
+
"max_iter": [Interval(Integral, 0, None, closed="left")],
|
31 |
+
"tol": [Interval(Real, 0.0, None, closed="left")],
|
32 |
+
"method": [StrOptions({"lars", "cd"})],
|
33 |
+
"n_jobs": [Integral, None],
|
34 |
+
"verbose": ["verbose"],
|
35 |
+
"random_state": ["random_state"],
|
36 |
+
}
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
n_components=None,
|
41 |
+
*,
|
42 |
+
alpha=1,
|
43 |
+
ridge_alpha=0.01,
|
44 |
+
max_iter=1000,
|
45 |
+
tol=1e-8,
|
46 |
+
method="lars",
|
47 |
+
n_jobs=None,
|
48 |
+
verbose=False,
|
49 |
+
random_state=None,
|
50 |
+
):
|
51 |
+
self.n_components = n_components
|
52 |
+
self.alpha = alpha
|
53 |
+
self.ridge_alpha = ridge_alpha
|
54 |
+
self.max_iter = max_iter
|
55 |
+
self.tol = tol
|
56 |
+
self.method = method
|
57 |
+
self.n_jobs = n_jobs
|
58 |
+
self.verbose = verbose
|
59 |
+
self.random_state = random_state
|
60 |
+
|
61 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
62 |
+
def fit(self, X, y=None):
|
63 |
+
"""Fit the model from data in X.
|
64 |
+
|
65 |
+
Parameters
|
66 |
+
----------
|
67 |
+
X : array-like of shape (n_samples, n_features)
|
68 |
+
Training vector, where `n_samples` is the number of samples
|
69 |
+
and `n_features` is the number of features.
|
70 |
+
|
71 |
+
y : Ignored
|
72 |
+
Not used, present here for API consistency by convention.
|
73 |
+
|
74 |
+
Returns
|
75 |
+
-------
|
76 |
+
self : object
|
77 |
+
Returns the instance itself.
|
78 |
+
"""
|
79 |
+
random_state = check_random_state(self.random_state)
|
80 |
+
X = self._validate_data(X)
|
81 |
+
|
82 |
+
self.mean_ = X.mean(axis=0)
|
83 |
+
X = X - self.mean_
|
84 |
+
|
85 |
+
if self.n_components is None:
|
86 |
+
n_components = X.shape[1]
|
87 |
+
else:
|
88 |
+
n_components = self.n_components
|
89 |
+
|
90 |
+
return self._fit(X, n_components, random_state)
|
91 |
+
|
92 |
+
def transform(self, X):
|
93 |
+
"""Least Squares projection of the data onto the sparse components.
|
94 |
+
|
95 |
+
To avoid instability issues in case the system is under-determined,
|
96 |
+
regularization can be applied (Ridge regression) via the
|
97 |
+
`ridge_alpha` parameter.
|
98 |
+
|
99 |
+
Note that Sparse PCA components orthogonality is not enforced as in PCA
|
100 |
+
hence one cannot use a simple linear projection.
|
101 |
+
|
102 |
+
Parameters
|
103 |
+
----------
|
104 |
+
X : ndarray of shape (n_samples, n_features)
|
105 |
+
Test data to be transformed, must have the same number of
|
106 |
+
features as the data used to train the model.
|
107 |
+
|
108 |
+
Returns
|
109 |
+
-------
|
110 |
+
X_new : ndarray of shape (n_samples, n_components)
|
111 |
+
Transformed data.
|
112 |
+
"""
|
113 |
+
check_is_fitted(self)
|
114 |
+
|
115 |
+
X = self._validate_data(X, reset=False)
|
116 |
+
X = X - self.mean_
|
117 |
+
|
118 |
+
U = ridge_regression(
|
119 |
+
self.components_.T, X.T, self.ridge_alpha, solver="cholesky"
|
120 |
+
)
|
121 |
+
|
122 |
+
return U
|
123 |
+
|
124 |
+
def inverse_transform(self, X):
|
125 |
+
"""Transform data from the latent space to the original space.
|
126 |
+
|
127 |
+
This inversion is an approximation due to the loss of information
|
128 |
+
induced by the forward decomposition.
|
129 |
+
|
130 |
+
.. versionadded:: 1.2
|
131 |
+
|
132 |
+
Parameters
|
133 |
+
----------
|
134 |
+
X : ndarray of shape (n_samples, n_components)
|
135 |
+
Data in the latent space.
|
136 |
+
|
137 |
+
Returns
|
138 |
+
-------
|
139 |
+
X_original : ndarray of shape (n_samples, n_features)
|
140 |
+
Reconstructed data in the original space.
|
141 |
+
"""
|
142 |
+
check_is_fitted(self)
|
143 |
+
X = check_array(X)
|
144 |
+
|
145 |
+
return (X @ self.components_) + self.mean_
|
146 |
+
|
147 |
+
@property
|
148 |
+
def _n_features_out(self):
|
149 |
+
"""Number of transformed output features."""
|
150 |
+
return self.components_.shape[0]
|
151 |
+
|
152 |
+
def _more_tags(self):
|
153 |
+
return {
|
154 |
+
"preserves_dtype": [np.float64, np.float32],
|
155 |
+
}
|
156 |
+
|
157 |
+
|
158 |
+
class SparsePCA(_BaseSparsePCA):
|
159 |
+
"""Sparse Principal Components Analysis (SparsePCA).
|
160 |
+
|
161 |
+
Finds the set of sparse components that can optimally reconstruct
|
162 |
+
the data. The amount of sparseness is controllable by the coefficient
|
163 |
+
of the L1 penalty, given by the parameter alpha.
|
164 |
+
|
165 |
+
Read more in the :ref:`User Guide <SparsePCA>`.
|
166 |
+
|
167 |
+
Parameters
|
168 |
+
----------
|
169 |
+
n_components : int, default=None
|
170 |
+
Number of sparse atoms to extract. If None, then ``n_components``
|
171 |
+
is set to ``n_features``.
|
172 |
+
|
173 |
+
alpha : float, default=1
|
174 |
+
Sparsity controlling parameter. Higher values lead to sparser
|
175 |
+
components.
|
176 |
+
|
177 |
+
ridge_alpha : float, default=0.01
|
178 |
+
Amount of ridge shrinkage to apply in order to improve
|
179 |
+
conditioning when calling the transform method.
|
180 |
+
|
181 |
+
max_iter : int, default=1000
|
182 |
+
Maximum number of iterations to perform.
|
183 |
+
|
184 |
+
tol : float, default=1e-8
|
185 |
+
Tolerance for the stopping condition.
|
186 |
+
|
187 |
+
method : {'lars', 'cd'}, default='lars'
|
188 |
+
Method to be used for optimization.
|
189 |
+
lars: uses the least angle regression method to solve the lasso problem
|
190 |
+
(linear_model.lars_path)
|
191 |
+
cd: uses the coordinate descent method to compute the
|
192 |
+
Lasso solution (linear_model.Lasso). Lars will be faster if
|
193 |
+
the estimated components are sparse.
|
194 |
+
|
195 |
+
n_jobs : int, default=None
|
196 |
+
Number of parallel jobs to run.
|
197 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
198 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
199 |
+
for more details.
|
200 |
+
|
201 |
+
U_init : ndarray of shape (n_samples, n_components), default=None
|
202 |
+
Initial values for the loadings for warm restart scenarios. Only used
|
203 |
+
if `U_init` and `V_init` are not None.
|
204 |
+
|
205 |
+
V_init : ndarray of shape (n_components, n_features), default=None
|
206 |
+
Initial values for the components for warm restart scenarios. Only used
|
207 |
+
if `U_init` and `V_init` are not None.
|
208 |
+
|
209 |
+
verbose : int or bool, default=False
|
210 |
+
Controls the verbosity; the higher, the more messages. Defaults to 0.
|
211 |
+
|
212 |
+
random_state : int, RandomState instance or None, default=None
|
213 |
+
Used during dictionary learning. Pass an int for reproducible results
|
214 |
+
across multiple function calls.
|
215 |
+
See :term:`Glossary <random_state>`.
|
216 |
+
|
217 |
+
Attributes
|
218 |
+
----------
|
219 |
+
components_ : ndarray of shape (n_components, n_features)
|
220 |
+
Sparse components extracted from the data.
|
221 |
+
|
222 |
+
error_ : ndarray
|
223 |
+
Vector of errors at each iteration.
|
224 |
+
|
225 |
+
n_components_ : int
|
226 |
+
Estimated number of components.
|
227 |
+
|
228 |
+
.. versionadded:: 0.23
|
229 |
+
|
230 |
+
n_iter_ : int
|
231 |
+
Number of iterations run.
|
232 |
+
|
233 |
+
mean_ : ndarray of shape (n_features,)
|
234 |
+
Per-feature empirical mean, estimated from the training set.
|
235 |
+
Equal to ``X.mean(axis=0)``.
|
236 |
+
|
237 |
+
n_features_in_ : int
|
238 |
+
Number of features seen during :term:`fit`.
|
239 |
+
|
240 |
+
.. versionadded:: 0.24
|
241 |
+
|
242 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
243 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
244 |
+
has feature names that are all strings.
|
245 |
+
|
246 |
+
.. versionadded:: 1.0
|
247 |
+
|
248 |
+
See Also
|
249 |
+
--------
|
250 |
+
PCA : Principal Component Analysis implementation.
|
251 |
+
MiniBatchSparsePCA : Mini batch variant of `SparsePCA` that is faster but less
|
252 |
+
accurate.
|
253 |
+
DictionaryLearning : Generic dictionary learning problem using a sparse code.
|
254 |
+
|
255 |
+
Examples
|
256 |
+
--------
|
257 |
+
>>> import numpy as np
|
258 |
+
>>> from sklearn.datasets import make_friedman1
|
259 |
+
>>> from sklearn.decomposition import SparsePCA
|
260 |
+
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
|
261 |
+
>>> transformer = SparsePCA(n_components=5, random_state=0)
|
262 |
+
>>> transformer.fit(X)
|
263 |
+
SparsePCA(...)
|
264 |
+
>>> X_transformed = transformer.transform(X)
|
265 |
+
>>> X_transformed.shape
|
266 |
+
(200, 5)
|
267 |
+
>>> # most values in the components_ are zero (sparsity)
|
268 |
+
>>> np.mean(transformer.components_ == 0)
|
269 |
+
0.9666...
|
270 |
+
"""
|
271 |
+
|
272 |
+
_parameter_constraints: dict = {
|
273 |
+
**_BaseSparsePCA._parameter_constraints,
|
274 |
+
"U_init": [None, np.ndarray],
|
275 |
+
"V_init": [None, np.ndarray],
|
276 |
+
}
|
277 |
+
|
278 |
+
def __init__(
|
279 |
+
self,
|
280 |
+
n_components=None,
|
281 |
+
*,
|
282 |
+
alpha=1,
|
283 |
+
ridge_alpha=0.01,
|
284 |
+
max_iter=1000,
|
285 |
+
tol=1e-8,
|
286 |
+
method="lars",
|
287 |
+
n_jobs=None,
|
288 |
+
U_init=None,
|
289 |
+
V_init=None,
|
290 |
+
verbose=False,
|
291 |
+
random_state=None,
|
292 |
+
):
|
293 |
+
super().__init__(
|
294 |
+
n_components=n_components,
|
295 |
+
alpha=alpha,
|
296 |
+
ridge_alpha=ridge_alpha,
|
297 |
+
max_iter=max_iter,
|
298 |
+
tol=tol,
|
299 |
+
method=method,
|
300 |
+
n_jobs=n_jobs,
|
301 |
+
verbose=verbose,
|
302 |
+
random_state=random_state,
|
303 |
+
)
|
304 |
+
self.U_init = U_init
|
305 |
+
self.V_init = V_init
|
306 |
+
|
307 |
+
def _fit(self, X, n_components, random_state):
|
308 |
+
"""Specialized `fit` for SparsePCA."""
|
309 |
+
|
310 |
+
code_init = self.V_init.T if self.V_init is not None else None
|
311 |
+
dict_init = self.U_init.T if self.U_init is not None else None
|
312 |
+
code, dictionary, E, self.n_iter_ = dict_learning(
|
313 |
+
X.T,
|
314 |
+
n_components,
|
315 |
+
alpha=self.alpha,
|
316 |
+
tol=self.tol,
|
317 |
+
max_iter=self.max_iter,
|
318 |
+
method=self.method,
|
319 |
+
n_jobs=self.n_jobs,
|
320 |
+
verbose=self.verbose,
|
321 |
+
random_state=random_state,
|
322 |
+
code_init=code_init,
|
323 |
+
dict_init=dict_init,
|
324 |
+
return_n_iter=True,
|
325 |
+
)
|
326 |
+
# flip eigenvectors' sign to enforce deterministic output
|
327 |
+
code, dictionary = svd_flip(code, dictionary, u_based_decision=False)
|
328 |
+
self.components_ = code.T
|
329 |
+
components_norm = np.linalg.norm(self.components_, axis=1)[:, np.newaxis]
|
330 |
+
components_norm[components_norm == 0] = 1
|
331 |
+
self.components_ /= components_norm
|
332 |
+
self.n_components_ = len(self.components_)
|
333 |
+
|
334 |
+
self.error_ = E
|
335 |
+
return self
|
336 |
+
|
337 |
+
|
338 |
+
class MiniBatchSparsePCA(_BaseSparsePCA):
|
339 |
+
"""Mini-batch Sparse Principal Components Analysis.
|
340 |
+
|
341 |
+
Finds the set of sparse components that can optimally reconstruct
|
342 |
+
the data. The amount of sparseness is controllable by the coefficient
|
343 |
+
of the L1 penalty, given by the parameter alpha.
|
344 |
+
|
345 |
+
For an example comparing sparse PCA to PCA, see
|
346 |
+
:ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py`
|
347 |
+
|
348 |
+
Read more in the :ref:`User Guide <SparsePCA>`.
|
349 |
+
|
350 |
+
Parameters
|
351 |
+
----------
|
352 |
+
n_components : int, default=None
|
353 |
+
Number of sparse atoms to extract. If None, then ``n_components``
|
354 |
+
is set to ``n_features``.
|
355 |
+
|
356 |
+
alpha : int, default=1
|
357 |
+
Sparsity controlling parameter. Higher values lead to sparser
|
358 |
+
components.
|
359 |
+
|
360 |
+
ridge_alpha : float, default=0.01
|
361 |
+
Amount of ridge shrinkage to apply in order to improve
|
362 |
+
conditioning when calling the transform method.
|
363 |
+
|
364 |
+
max_iter : int, default=1_000
|
365 |
+
Maximum number of iterations over the complete dataset before
|
366 |
+
stopping independently of any early stopping criterion heuristics.
|
367 |
+
|
368 |
+
.. versionadded:: 1.2
|
369 |
+
|
370 |
+
.. deprecated:: 1.4
|
371 |
+
`max_iter=None` is deprecated in 1.4 and will be removed in 1.6.
|
372 |
+
Use the default value (i.e. `100`) instead.
|
373 |
+
|
374 |
+
callback : callable, default=None
|
375 |
+
Callable that gets invoked every five iterations.
|
376 |
+
|
377 |
+
batch_size : int, default=3
|
378 |
+
The number of features to take in each mini batch.
|
379 |
+
|
380 |
+
verbose : int or bool, default=False
|
381 |
+
Controls the verbosity; the higher, the more messages. Defaults to 0.
|
382 |
+
|
383 |
+
shuffle : bool, default=True
|
384 |
+
Whether to shuffle the data before splitting it in batches.
|
385 |
+
|
386 |
+
n_jobs : int, default=None
|
387 |
+
Number of parallel jobs to run.
|
388 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
389 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
390 |
+
for more details.
|
391 |
+
|
392 |
+
method : {'lars', 'cd'}, default='lars'
|
393 |
+
Method to be used for optimization.
|
394 |
+
lars: uses the least angle regression method to solve the lasso problem
|
395 |
+
(linear_model.lars_path)
|
396 |
+
cd: uses the coordinate descent method to compute the
|
397 |
+
Lasso solution (linear_model.Lasso). Lars will be faster if
|
398 |
+
the estimated components are sparse.
|
399 |
+
|
400 |
+
random_state : int, RandomState instance or None, default=None
|
401 |
+
Used for random shuffling when ``shuffle`` is set to ``True``,
|
402 |
+
during online dictionary learning. Pass an int for reproducible results
|
403 |
+
across multiple function calls.
|
404 |
+
See :term:`Glossary <random_state>`.
|
405 |
+
|
406 |
+
tol : float, default=1e-3
|
407 |
+
Control early stopping based on the norm of the differences in the
|
408 |
+
dictionary between 2 steps.
|
409 |
+
|
410 |
+
To disable early stopping based on changes in the dictionary, set
|
411 |
+
`tol` to 0.0.
|
412 |
+
|
413 |
+
.. versionadded:: 1.1
|
414 |
+
|
415 |
+
max_no_improvement : int or None, default=10
|
416 |
+
Control early stopping based on the consecutive number of mini batches
|
417 |
+
that does not yield an improvement on the smoothed cost function.
|
418 |
+
|
419 |
+
To disable convergence detection based on cost function, set
|
420 |
+
`max_no_improvement` to `None`.
|
421 |
+
|
422 |
+
.. versionadded:: 1.1
|
423 |
+
|
424 |
+
Attributes
|
425 |
+
----------
|
426 |
+
components_ : ndarray of shape (n_components, n_features)
|
427 |
+
Sparse components extracted from the data.
|
428 |
+
|
429 |
+
n_components_ : int
|
430 |
+
Estimated number of components.
|
431 |
+
|
432 |
+
.. versionadded:: 0.23
|
433 |
+
|
434 |
+
n_iter_ : int
|
435 |
+
Number of iterations run.
|
436 |
+
|
437 |
+
mean_ : ndarray of shape (n_features,)
|
438 |
+
Per-feature empirical mean, estimated from the training set.
|
439 |
+
Equal to ``X.mean(axis=0)``.
|
440 |
+
|
441 |
+
n_features_in_ : int
|
442 |
+
Number of features seen during :term:`fit`.
|
443 |
+
|
444 |
+
.. versionadded:: 0.24
|
445 |
+
|
446 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
447 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
448 |
+
has feature names that are all strings.
|
449 |
+
|
450 |
+
.. versionadded:: 1.0
|
451 |
+
|
452 |
+
See Also
|
453 |
+
--------
|
454 |
+
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
455 |
+
IncrementalPCA : Incremental principal components analysis.
|
456 |
+
PCA : Principal component analysis.
|
457 |
+
SparsePCA : Sparse Principal Components Analysis.
|
458 |
+
TruncatedSVD : Dimensionality reduction using truncated SVD.
|
459 |
+
|
460 |
+
Examples
|
461 |
+
--------
|
462 |
+
>>> import numpy as np
|
463 |
+
>>> from sklearn.datasets import make_friedman1
|
464 |
+
>>> from sklearn.decomposition import MiniBatchSparsePCA
|
465 |
+
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
|
466 |
+
>>> transformer = MiniBatchSparsePCA(n_components=5, batch_size=50,
|
467 |
+
... max_iter=10, random_state=0)
|
468 |
+
>>> transformer.fit(X)
|
469 |
+
MiniBatchSparsePCA(...)
|
470 |
+
>>> X_transformed = transformer.transform(X)
|
471 |
+
>>> X_transformed.shape
|
472 |
+
(200, 5)
|
473 |
+
>>> # most values in the components_ are zero (sparsity)
|
474 |
+
>>> np.mean(transformer.components_ == 0)
|
475 |
+
0.9...
|
476 |
+
"""
|
477 |
+
|
478 |
+
_parameter_constraints: dict = {
|
479 |
+
**_BaseSparsePCA._parameter_constraints,
|
480 |
+
"max_iter": [Interval(Integral, 0, None, closed="left"), Hidden(None)],
|
481 |
+
"callback": [None, callable],
|
482 |
+
"batch_size": [Interval(Integral, 1, None, closed="left")],
|
483 |
+
"shuffle": ["boolean"],
|
484 |
+
"max_no_improvement": [Interval(Integral, 0, None, closed="left"), None],
|
485 |
+
}
|
486 |
+
|
487 |
+
def __init__(
|
488 |
+
self,
|
489 |
+
n_components=None,
|
490 |
+
*,
|
491 |
+
alpha=1,
|
492 |
+
ridge_alpha=0.01,
|
493 |
+
max_iter=1_000,
|
494 |
+
callback=None,
|
495 |
+
batch_size=3,
|
496 |
+
verbose=False,
|
497 |
+
shuffle=True,
|
498 |
+
n_jobs=None,
|
499 |
+
method="lars",
|
500 |
+
random_state=None,
|
501 |
+
tol=1e-3,
|
502 |
+
max_no_improvement=10,
|
503 |
+
):
|
504 |
+
super().__init__(
|
505 |
+
n_components=n_components,
|
506 |
+
alpha=alpha,
|
507 |
+
ridge_alpha=ridge_alpha,
|
508 |
+
max_iter=max_iter,
|
509 |
+
tol=tol,
|
510 |
+
method=method,
|
511 |
+
n_jobs=n_jobs,
|
512 |
+
verbose=verbose,
|
513 |
+
random_state=random_state,
|
514 |
+
)
|
515 |
+
self.callback = callback
|
516 |
+
self.batch_size = batch_size
|
517 |
+
self.shuffle = shuffle
|
518 |
+
self.max_no_improvement = max_no_improvement
|
519 |
+
|
520 |
+
def _fit(self, X, n_components, random_state):
|
521 |
+
"""Specialized `fit` for MiniBatchSparsePCA."""
|
522 |
+
|
523 |
+
transform_algorithm = "lasso_" + self.method
|
524 |
+
est = MiniBatchDictionaryLearning(
|
525 |
+
n_components=n_components,
|
526 |
+
alpha=self.alpha,
|
527 |
+
max_iter=self.max_iter,
|
528 |
+
dict_init=None,
|
529 |
+
batch_size=self.batch_size,
|
530 |
+
shuffle=self.shuffle,
|
531 |
+
n_jobs=self.n_jobs,
|
532 |
+
fit_algorithm=self.method,
|
533 |
+
random_state=random_state,
|
534 |
+
transform_algorithm=transform_algorithm,
|
535 |
+
transform_alpha=self.alpha,
|
536 |
+
verbose=self.verbose,
|
537 |
+
callback=self.callback,
|
538 |
+
tol=self.tol,
|
539 |
+
max_no_improvement=self.max_no_improvement,
|
540 |
+
)
|
541 |
+
est.set_output(transform="default")
|
542 |
+
est.fit(X.T)
|
543 |
+
|
544 |
+
self.components_, self.n_iter_ = est.transform(X.T).T, est.n_iter_
|
545 |
+
|
546 |
+
components_norm = np.linalg.norm(self.components_, axis=1)[:, np.newaxis]
|
547 |
+
components_norm[components_norm == 0] = 1
|
548 |
+
self.components_ /= components_norm
|
549 |
+
self.n_components_ = len(self.components_)
|
550 |
+
|
551 |
+
return self
|
llmeval-env/lib/python3.10/site-packages/sklearn/decomposition/_truncated_svd.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA).
|
2 |
+
"""
|
3 |
+
|
4 |
+
# Author: Lars Buitinck
|
5 |
+
# Olivier Grisel <[email protected]>
|
6 |
+
# Michael Becker <[email protected]>
|
7 |
+
# License: 3-clause BSD.
|
8 |
+
|
9 |
+
from numbers import Integral, Real
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import scipy.sparse as sp
|
13 |
+
from scipy.sparse.linalg import svds
|
14 |
+
|
15 |
+
from ..base import (
|
16 |
+
BaseEstimator,
|
17 |
+
ClassNamePrefixFeaturesOutMixin,
|
18 |
+
TransformerMixin,
|
19 |
+
_fit_context,
|
20 |
+
)
|
21 |
+
from ..utils import check_array, check_random_state
|
22 |
+
from ..utils._arpack import _init_arpack_v0
|
23 |
+
from ..utils._param_validation import Interval, StrOptions
|
24 |
+
from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip
|
25 |
+
from ..utils.sparsefuncs import mean_variance_axis
|
26 |
+
from ..utils.validation import check_is_fitted
|
27 |
+
|
28 |
+
__all__ = ["TruncatedSVD"]
|
29 |
+
|
30 |
+
|
31 |
+
class TruncatedSVD(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
32 |
+
"""Dimensionality reduction using truncated SVD (aka LSA).
|
33 |
+
|
34 |
+
This transformer performs linear dimensionality reduction by means of
|
35 |
+
truncated singular value decomposition (SVD). Contrary to PCA, this
|
36 |
+
estimator does not center the data before computing the singular value
|
37 |
+
decomposition. This means it can work with sparse matrices
|
38 |
+
efficiently.
|
39 |
+
|
40 |
+
In particular, truncated SVD works on term count/tf-idf matrices as
|
41 |
+
returned by the vectorizers in :mod:`sklearn.feature_extraction.text`. In
|
42 |
+
that context, it is known as latent semantic analysis (LSA).
|
43 |
+
|
44 |
+
This estimator supports two algorithms: a fast randomized SVD solver, and
|
45 |
+
a "naive" algorithm that uses ARPACK as an eigensolver on `X * X.T` or
|
46 |
+
`X.T * X`, whichever is more efficient.
|
47 |
+
|
48 |
+
Read more in the :ref:`User Guide <LSA>`.
|
49 |
+
|
50 |
+
Parameters
|
51 |
+
----------
|
52 |
+
n_components : int, default=2
|
53 |
+
Desired dimensionality of output data.
|
54 |
+
If algorithm='arpack', must be strictly less than the number of features.
|
55 |
+
If algorithm='randomized', must be less than or equal to the number of features.
|
56 |
+
The default value is useful for visualisation. For LSA, a value of
|
57 |
+
100 is recommended.
|
58 |
+
|
59 |
+
algorithm : {'arpack', 'randomized'}, default='randomized'
|
60 |
+
SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy
|
61 |
+
(scipy.sparse.linalg.svds), or "randomized" for the randomized
|
62 |
+
algorithm due to Halko (2009).
|
63 |
+
|
64 |
+
n_iter : int, default=5
|
65 |
+
Number of iterations for randomized SVD solver. Not used by ARPACK. The
|
66 |
+
default is larger than the default in
|
67 |
+
:func:`~sklearn.utils.extmath.randomized_svd` to handle sparse
|
68 |
+
matrices that may have large slowly decaying spectrum.
|
69 |
+
|
70 |
+
n_oversamples : int, default=10
|
71 |
+
Number of oversamples for randomized SVD solver. Not used by ARPACK.
|
72 |
+
See :func:`~sklearn.utils.extmath.randomized_svd` for a complete
|
73 |
+
description.
|
74 |
+
|
75 |
+
.. versionadded:: 1.1
|
76 |
+
|
77 |
+
power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto'
|
78 |
+
Power iteration normalizer for randomized SVD solver.
|
79 |
+
Not used by ARPACK. See :func:`~sklearn.utils.extmath.randomized_svd`
|
80 |
+
for more details.
|
81 |
+
|
82 |
+
.. versionadded:: 1.1
|
83 |
+
|
84 |
+
random_state : int, RandomState instance or None, default=None
|
85 |
+
Used during randomized svd. Pass an int for reproducible results across
|
86 |
+
multiple function calls.
|
87 |
+
See :term:`Glossary <random_state>`.
|
88 |
+
|
89 |
+
tol : float, default=0.0
|
90 |
+
Tolerance for ARPACK. 0 means machine precision. Ignored by randomized
|
91 |
+
SVD solver.
|
92 |
+
|
93 |
+
Attributes
|
94 |
+
----------
|
95 |
+
components_ : ndarray of shape (n_components, n_features)
|
96 |
+
The right singular vectors of the input data.
|
97 |
+
|
98 |
+
explained_variance_ : ndarray of shape (n_components,)
|
99 |
+
The variance of the training samples transformed by a projection to
|
100 |
+
each component.
|
101 |
+
|
102 |
+
explained_variance_ratio_ : ndarray of shape (n_components,)
|
103 |
+
Percentage of variance explained by each of the selected components.
|
104 |
+
|
105 |
+
singular_values_ : ndarray of shape (n_components,)
|
106 |
+
The singular values corresponding to each of the selected components.
|
107 |
+
The singular values are equal to the 2-norms of the ``n_components``
|
108 |
+
variables in the lower-dimensional space.
|
109 |
+
|
110 |
+
n_features_in_ : int
|
111 |
+
Number of features seen during :term:`fit`.
|
112 |
+
|
113 |
+
.. versionadded:: 0.24
|
114 |
+
|
115 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
116 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
117 |
+
has feature names that are all strings.
|
118 |
+
|
119 |
+
.. versionadded:: 1.0
|
120 |
+
|
121 |
+
See Also
|
122 |
+
--------
|
123 |
+
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
124 |
+
FactorAnalysis : A simple linear generative model with
|
125 |
+
Gaussian latent variables.
|
126 |
+
IncrementalPCA : Incremental principal components analysis.
|
127 |
+
KernelPCA : Kernel Principal component analysis.
|
128 |
+
NMF : Non-Negative Matrix Factorization.
|
129 |
+
PCA : Principal component analysis.
|
130 |
+
|
131 |
+
Notes
|
132 |
+
-----
|
133 |
+
SVD suffers from a problem called "sign indeterminacy", which means the
|
134 |
+
sign of the ``components_`` and the output from transform depend on the
|
135 |
+
algorithm and random state. To work around this, fit instances of this
|
136 |
+
class to data once, then keep the instance around to do transformations.
|
137 |
+
|
138 |
+
References
|
139 |
+
----------
|
140 |
+
:arxiv:`Halko, et al. (2009). "Finding structure with randomness:
|
141 |
+
Stochastic algorithms for constructing approximate matrix decompositions"
|
142 |
+
<0909.4061>`
|
143 |
+
|
144 |
+
Examples
|
145 |
+
--------
|
146 |
+
>>> from sklearn.decomposition import TruncatedSVD
|
147 |
+
>>> from scipy.sparse import csr_matrix
|
148 |
+
>>> import numpy as np
|
149 |
+
>>> np.random.seed(0)
|
150 |
+
>>> X_dense = np.random.rand(100, 100)
|
151 |
+
>>> X_dense[:, 2 * np.arange(50)] = 0
|
152 |
+
>>> X = csr_matrix(X_dense)
|
153 |
+
>>> svd = TruncatedSVD(n_components=5, n_iter=7, random_state=42)
|
154 |
+
>>> svd.fit(X)
|
155 |
+
TruncatedSVD(n_components=5, n_iter=7, random_state=42)
|
156 |
+
>>> print(svd.explained_variance_ratio_)
|
157 |
+
[0.0157... 0.0512... 0.0499... 0.0479... 0.0453...]
|
158 |
+
>>> print(svd.explained_variance_ratio_.sum())
|
159 |
+
0.2102...
|
160 |
+
>>> print(svd.singular_values_)
|
161 |
+
[35.2410... 4.5981... 4.5420... 4.4486... 4.3288...]
|
162 |
+
"""
|
163 |
+
|
164 |
+
_parameter_constraints: dict = {
|
165 |
+
"n_components": [Interval(Integral, 1, None, closed="left")],
|
166 |
+
"algorithm": [StrOptions({"arpack", "randomized"})],
|
167 |
+
"n_iter": [Interval(Integral, 0, None, closed="left")],
|
168 |
+
"n_oversamples": [Interval(Integral, 1, None, closed="left")],
|
169 |
+
"power_iteration_normalizer": [StrOptions({"auto", "OR", "LU", "none"})],
|
170 |
+
"random_state": ["random_state"],
|
171 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
172 |
+
}
|
173 |
+
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
n_components=2,
|
177 |
+
*,
|
178 |
+
algorithm="randomized",
|
179 |
+
n_iter=5,
|
180 |
+
n_oversamples=10,
|
181 |
+
power_iteration_normalizer="auto",
|
182 |
+
random_state=None,
|
183 |
+
tol=0.0,
|
184 |
+
):
|
185 |
+
self.algorithm = algorithm
|
186 |
+
self.n_components = n_components
|
187 |
+
self.n_iter = n_iter
|
188 |
+
self.n_oversamples = n_oversamples
|
189 |
+
self.power_iteration_normalizer = power_iteration_normalizer
|
190 |
+
self.random_state = random_state
|
191 |
+
self.tol = tol
|
192 |
+
|
193 |
+
def fit(self, X, y=None):
|
194 |
+
"""Fit model on training data X.
|
195 |
+
|
196 |
+
Parameters
|
197 |
+
----------
|
198 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
199 |
+
Training data.
|
200 |
+
|
201 |
+
y : Ignored
|
202 |
+
Not used, present here for API consistency by convention.
|
203 |
+
|
204 |
+
Returns
|
205 |
+
-------
|
206 |
+
self : object
|
207 |
+
Returns the transformer object.
|
208 |
+
"""
|
209 |
+
self.fit_transform(X)
|
210 |
+
return self
|
211 |
+
|
212 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
213 |
+
def fit_transform(self, X, y=None):
|
214 |
+
"""Fit model to X and perform dimensionality reduction on X.
|
215 |
+
|
216 |
+
Parameters
|
217 |
+
----------
|
218 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
219 |
+
Training data.
|
220 |
+
|
221 |
+
y : Ignored
|
222 |
+
Not used, present here for API consistency by convention.
|
223 |
+
|
224 |
+
Returns
|
225 |
+
-------
|
226 |
+
X_new : ndarray of shape (n_samples, n_components)
|
227 |
+
Reduced version of X. This will always be a dense array.
|
228 |
+
"""
|
229 |
+
X = self._validate_data(X, accept_sparse=["csr", "csc"], ensure_min_features=2)
|
230 |
+
random_state = check_random_state(self.random_state)
|
231 |
+
|
232 |
+
if self.algorithm == "arpack":
|
233 |
+
v0 = _init_arpack_v0(min(X.shape), random_state)
|
234 |
+
U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol, v0=v0)
|
235 |
+
# svds doesn't abide by scipy.linalg.svd/randomized_svd
|
236 |
+
# conventions, so reverse its outputs.
|
237 |
+
Sigma = Sigma[::-1]
|
238 |
+
U, VT = svd_flip(U[:, ::-1], VT[::-1])
|
239 |
+
|
240 |
+
elif self.algorithm == "randomized":
|
241 |
+
if self.n_components > X.shape[1]:
|
242 |
+
raise ValueError(
|
243 |
+
f"n_components({self.n_components}) must be <="
|
244 |
+
f" n_features({X.shape[1]})."
|
245 |
+
)
|
246 |
+
U, Sigma, VT = randomized_svd(
|
247 |
+
X,
|
248 |
+
self.n_components,
|
249 |
+
n_iter=self.n_iter,
|
250 |
+
n_oversamples=self.n_oversamples,
|
251 |
+
power_iteration_normalizer=self.power_iteration_normalizer,
|
252 |
+
random_state=random_state,
|
253 |
+
)
|
254 |
+
|
255 |
+
self.components_ = VT
|
256 |
+
|
257 |
+
# As a result of the SVD approximation error on X ~ U @ Sigma @ V.T,
|
258 |
+
# X @ V is not the same as U @ Sigma
|
259 |
+
if self.algorithm == "randomized" or (
|
260 |
+
self.algorithm == "arpack" and self.tol > 0
|
261 |
+
):
|
262 |
+
X_transformed = safe_sparse_dot(X, self.components_.T)
|
263 |
+
else:
|
264 |
+
X_transformed = U * Sigma
|
265 |
+
|
266 |
+
# Calculate explained variance & explained variance ratio
|
267 |
+
self.explained_variance_ = exp_var = np.var(X_transformed, axis=0)
|
268 |
+
if sp.issparse(X):
|
269 |
+
_, full_var = mean_variance_axis(X, axis=0)
|
270 |
+
full_var = full_var.sum()
|
271 |
+
else:
|
272 |
+
full_var = np.var(X, axis=0).sum()
|
273 |
+
self.explained_variance_ratio_ = exp_var / full_var
|
274 |
+
self.singular_values_ = Sigma # Store the singular values.
|
275 |
+
|
276 |
+
return X_transformed
|
277 |
+
|
278 |
+
def transform(self, X):
|
279 |
+
"""Perform dimensionality reduction on X.
|
280 |
+
|
281 |
+
Parameters
|
282 |
+
----------
|
283 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
284 |
+
New data.
|
285 |
+
|
286 |
+
Returns
|
287 |
+
-------
|
288 |
+
X_new : ndarray of shape (n_samples, n_components)
|
289 |
+
Reduced version of X. This will always be a dense array.
|
290 |
+
"""
|
291 |
+
check_is_fitted(self)
|
292 |
+
X = self._validate_data(X, accept_sparse=["csr", "csc"], reset=False)
|
293 |
+
return safe_sparse_dot(X, self.components_.T)
|
294 |
+
|
295 |
+
def inverse_transform(self, X):
|
296 |
+
"""Transform X back to its original space.
|
297 |
+
|
298 |
+
Returns an array X_original whose transform would be X.
|
299 |
+
|
300 |
+
Parameters
|
301 |
+
----------
|
302 |
+
X : array-like of shape (n_samples, n_components)
|
303 |
+
New data.
|
304 |
+
|
305 |
+
Returns
|
306 |
+
-------
|
307 |
+
X_original : ndarray of shape (n_samples, n_features)
|
308 |
+
Note that this is always a dense array.
|
309 |
+
"""
|
310 |
+
X = check_array(X)
|
311 |
+
return np.dot(X, self.components_)
|
312 |
+
|
313 |
+
def _more_tags(self):
|
314 |
+
return {"preserves_dtype": [np.float64, np.float32]}
|
315 |
+
|
316 |
+
@property
|
317 |
+
def _n_features_out(self):
|
318 |
+
"""Number of transformed output features."""
|
319 |
+
return self.components_.shape[0]
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__init__.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn.feature_selection` module implements feature selection
|
3 |
+
algorithms. It currently includes univariate filter selection methods and the
|
4 |
+
recursive feature elimination algorithm.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from ._base import SelectorMixin
|
8 |
+
from ._from_model import SelectFromModel
|
9 |
+
from ._mutual_info import mutual_info_classif, mutual_info_regression
|
10 |
+
from ._rfe import RFE, RFECV
|
11 |
+
from ._sequential import SequentialFeatureSelector
|
12 |
+
from ._univariate_selection import (
|
13 |
+
GenericUnivariateSelect,
|
14 |
+
SelectFdr,
|
15 |
+
SelectFpr,
|
16 |
+
SelectFwe,
|
17 |
+
SelectKBest,
|
18 |
+
SelectPercentile,
|
19 |
+
chi2,
|
20 |
+
f_classif,
|
21 |
+
f_oneway,
|
22 |
+
f_regression,
|
23 |
+
r_regression,
|
24 |
+
)
|
25 |
+
from ._variance_threshold import VarianceThreshold
|
26 |
+
|
27 |
+
__all__ = [
|
28 |
+
"GenericUnivariateSelect",
|
29 |
+
"SequentialFeatureSelector",
|
30 |
+
"RFE",
|
31 |
+
"RFECV",
|
32 |
+
"SelectFdr",
|
33 |
+
"SelectFpr",
|
34 |
+
"SelectFwe",
|
35 |
+
"SelectKBest",
|
36 |
+
"SelectFromModel",
|
37 |
+
"SelectPercentile",
|
38 |
+
"VarianceThreshold",
|
39 |
+
"chi2",
|
40 |
+
"f_classif",
|
41 |
+
"f_oneway",
|
42 |
+
"f_regression",
|
43 |
+
"r_regression",
|
44 |
+
"mutual_info_classif",
|
45 |
+
"mutual_info_regression",
|
46 |
+
"SelectorMixin",
|
47 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.16 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_base.cpython-310.pyc
ADDED
Binary file (8.55 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_from_model.cpython-310.pyc
ADDED
Binary file (15.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_mutual_info.cpython-310.pyc
ADDED
Binary file (16.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_rfe.cpython-310.pyc
ADDED
Binary file (24.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_sequential.cpython-310.pyc
ADDED
Binary file (9.82 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_univariate_selection.cpython-310.pyc
ADDED
Binary file (38.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_variance_threshold.cpython-310.pyc
ADDED
Binary file (4.66 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_base.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generic feature selection mixin"""
|
2 |
+
|
3 |
+
# Authors: G. Varoquaux, A. Gramfort, L. Buitinck, J. Nothman
|
4 |
+
# License: BSD 3 clause
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from abc import ABCMeta, abstractmethod
|
8 |
+
from operator import attrgetter
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
from scipy.sparse import csc_matrix, issparse
|
12 |
+
|
13 |
+
from ..base import TransformerMixin
|
14 |
+
from ..utils import (
|
15 |
+
_is_pandas_df,
|
16 |
+
_safe_indexing,
|
17 |
+
check_array,
|
18 |
+
safe_sqr,
|
19 |
+
)
|
20 |
+
from ..utils._set_output import _get_output_config
|
21 |
+
from ..utils._tags import _safe_tags
|
22 |
+
from ..utils.validation import _check_feature_names_in, check_is_fitted
|
23 |
+
|
24 |
+
|
25 |
+
class SelectorMixin(TransformerMixin, metaclass=ABCMeta):
|
26 |
+
"""
|
27 |
+
Transformer mixin that performs feature selection given a support mask
|
28 |
+
|
29 |
+
This mixin provides a feature selector implementation with `transform` and
|
30 |
+
`inverse_transform` functionality given an implementation of
|
31 |
+
`_get_support_mask`.
|
32 |
+
|
33 |
+
Examples
|
34 |
+
--------
|
35 |
+
>>> import numpy as np
|
36 |
+
>>> from sklearn.datasets import load_iris
|
37 |
+
>>> from sklearn.base import BaseEstimator
|
38 |
+
>>> from sklearn.feature_selection import SelectorMixin
|
39 |
+
>>> class FeatureSelector(SelectorMixin, BaseEstimator):
|
40 |
+
... def fit(self, X, y=None):
|
41 |
+
... self.n_features_in_ = X.shape[1]
|
42 |
+
... return self
|
43 |
+
... def _get_support_mask(self):
|
44 |
+
... mask = np.zeros(self.n_features_in_, dtype=bool)
|
45 |
+
... mask[:2] = True # select the first two features
|
46 |
+
... return mask
|
47 |
+
>>> X, y = load_iris(return_X_y=True)
|
48 |
+
>>> FeatureSelector().fit_transform(X, y).shape
|
49 |
+
(150, 2)
|
50 |
+
"""
|
51 |
+
|
52 |
+
def get_support(self, indices=False):
|
53 |
+
"""
|
54 |
+
Get a mask, or integer index, of the features selected.
|
55 |
+
|
56 |
+
Parameters
|
57 |
+
----------
|
58 |
+
indices : bool, default=False
|
59 |
+
If True, the return value will be an array of integers, rather
|
60 |
+
than a boolean mask.
|
61 |
+
|
62 |
+
Returns
|
63 |
+
-------
|
64 |
+
support : array
|
65 |
+
An index that selects the retained features from a feature vector.
|
66 |
+
If `indices` is False, this is a boolean array of shape
|
67 |
+
[# input features], in which an element is True iff its
|
68 |
+
corresponding feature is selected for retention. If `indices` is
|
69 |
+
True, this is an integer array of shape [# output features] whose
|
70 |
+
values are indices into the input feature vector.
|
71 |
+
"""
|
72 |
+
mask = self._get_support_mask()
|
73 |
+
return mask if not indices else np.where(mask)[0]
|
74 |
+
|
75 |
+
@abstractmethod
|
76 |
+
def _get_support_mask(self):
|
77 |
+
"""
|
78 |
+
Get the boolean mask indicating which features are selected
|
79 |
+
|
80 |
+
Returns
|
81 |
+
-------
|
82 |
+
support : boolean array of shape [# input features]
|
83 |
+
An element is True iff its corresponding feature is selected for
|
84 |
+
retention.
|
85 |
+
"""
|
86 |
+
|
87 |
+
def transform(self, X):
|
88 |
+
"""Reduce X to the selected features.
|
89 |
+
|
90 |
+
Parameters
|
91 |
+
----------
|
92 |
+
X : array of shape [n_samples, n_features]
|
93 |
+
The input samples.
|
94 |
+
|
95 |
+
Returns
|
96 |
+
-------
|
97 |
+
X_r : array of shape [n_samples, n_selected_features]
|
98 |
+
The input samples with only the selected features.
|
99 |
+
"""
|
100 |
+
# Preserve X when X is a dataframe and the output is configured to
|
101 |
+
# be pandas.
|
102 |
+
output_config_dense = _get_output_config("transform", estimator=self)["dense"]
|
103 |
+
preserve_X = output_config_dense != "default" and _is_pandas_df(X)
|
104 |
+
|
105 |
+
# note: we use _safe_tags instead of _get_tags because this is a
|
106 |
+
# public Mixin.
|
107 |
+
X = self._validate_data(
|
108 |
+
X,
|
109 |
+
dtype=None,
|
110 |
+
accept_sparse="csr",
|
111 |
+
force_all_finite=not _safe_tags(self, key="allow_nan"),
|
112 |
+
cast_to_ndarray=not preserve_X,
|
113 |
+
reset=False,
|
114 |
+
)
|
115 |
+
return self._transform(X)
|
116 |
+
|
117 |
+
def _transform(self, X):
|
118 |
+
"""Reduce X to the selected features."""
|
119 |
+
mask = self.get_support()
|
120 |
+
if not mask.any():
|
121 |
+
warnings.warn(
|
122 |
+
(
|
123 |
+
"No features were selected: either the data is"
|
124 |
+
" too noisy or the selection test too strict."
|
125 |
+
),
|
126 |
+
UserWarning,
|
127 |
+
)
|
128 |
+
if hasattr(X, "iloc"):
|
129 |
+
return X.iloc[:, :0]
|
130 |
+
return np.empty(0, dtype=X.dtype).reshape((X.shape[0], 0))
|
131 |
+
return _safe_indexing(X, mask, axis=1)
|
132 |
+
|
133 |
+
def inverse_transform(self, X):
|
134 |
+
"""Reverse the transformation operation.
|
135 |
+
|
136 |
+
Parameters
|
137 |
+
----------
|
138 |
+
X : array of shape [n_samples, n_selected_features]
|
139 |
+
The input samples.
|
140 |
+
|
141 |
+
Returns
|
142 |
+
-------
|
143 |
+
X_r : array of shape [n_samples, n_original_features]
|
144 |
+
`X` with columns of zeros inserted where features would have
|
145 |
+
been removed by :meth:`transform`.
|
146 |
+
"""
|
147 |
+
if issparse(X):
|
148 |
+
X = X.tocsc()
|
149 |
+
# insert additional entries in indptr:
|
150 |
+
# e.g. if transform changed indptr from [0 2 6 7] to [0 2 3]
|
151 |
+
# col_nonzeros here will be [2 0 1] so indptr becomes [0 2 2 3]
|
152 |
+
it = self.inverse_transform(np.diff(X.indptr).reshape(1, -1))
|
153 |
+
col_nonzeros = it.ravel()
|
154 |
+
indptr = np.concatenate([[0], np.cumsum(col_nonzeros)])
|
155 |
+
Xt = csc_matrix(
|
156 |
+
(X.data, X.indices, indptr),
|
157 |
+
shape=(X.shape[0], len(indptr) - 1),
|
158 |
+
dtype=X.dtype,
|
159 |
+
)
|
160 |
+
return Xt
|
161 |
+
|
162 |
+
support = self.get_support()
|
163 |
+
X = check_array(X, dtype=None)
|
164 |
+
if support.sum() != X.shape[1]:
|
165 |
+
raise ValueError("X has a different shape than during fitting.")
|
166 |
+
|
167 |
+
if X.ndim == 1:
|
168 |
+
X = X[None, :]
|
169 |
+
Xt = np.zeros((X.shape[0], support.size), dtype=X.dtype)
|
170 |
+
Xt[:, support] = X
|
171 |
+
return Xt
|
172 |
+
|
173 |
+
def get_feature_names_out(self, input_features=None):
|
174 |
+
"""Mask feature names according to selected features.
|
175 |
+
|
176 |
+
Parameters
|
177 |
+
----------
|
178 |
+
input_features : array-like of str or None, default=None
|
179 |
+
Input features.
|
180 |
+
|
181 |
+
- If `input_features` is `None`, then `feature_names_in_` is
|
182 |
+
used as feature names in. If `feature_names_in_` is not defined,
|
183 |
+
then the following input feature names are generated:
|
184 |
+
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
|
185 |
+
- If `input_features` is an array-like, then `input_features` must
|
186 |
+
match `feature_names_in_` if `feature_names_in_` is defined.
|
187 |
+
|
188 |
+
Returns
|
189 |
+
-------
|
190 |
+
feature_names_out : ndarray of str objects
|
191 |
+
Transformed feature names.
|
192 |
+
"""
|
193 |
+
check_is_fitted(self)
|
194 |
+
input_features = _check_feature_names_in(self, input_features)
|
195 |
+
return input_features[self.get_support()]
|
196 |
+
|
197 |
+
|
198 |
+
def _get_feature_importances(estimator, getter, transform_func=None, norm_order=1):
|
199 |
+
"""
|
200 |
+
Retrieve and aggregate (ndim > 1) the feature importances
|
201 |
+
from an estimator. Also optionally applies transformation.
|
202 |
+
|
203 |
+
Parameters
|
204 |
+
----------
|
205 |
+
estimator : estimator
|
206 |
+
A scikit-learn estimator from which we want to get the feature
|
207 |
+
importances.
|
208 |
+
|
209 |
+
getter : "auto", str or callable
|
210 |
+
An attribute or a callable to get the feature importance. If `"auto"`,
|
211 |
+
`estimator` is expected to expose `coef_` or `feature_importances`.
|
212 |
+
|
213 |
+
transform_func : {"norm", "square"}, default=None
|
214 |
+
The transform to apply to the feature importances. By default (`None`)
|
215 |
+
no transformation is applied.
|
216 |
+
|
217 |
+
norm_order : int, default=1
|
218 |
+
The norm order to apply when `transform_func="norm"`. Only applied
|
219 |
+
when `importances.ndim > 1`.
|
220 |
+
|
221 |
+
Returns
|
222 |
+
-------
|
223 |
+
importances : ndarray of shape (n_features,)
|
224 |
+
The features importances, optionally transformed.
|
225 |
+
"""
|
226 |
+
if isinstance(getter, str):
|
227 |
+
if getter == "auto":
|
228 |
+
if hasattr(estimator, "coef_"):
|
229 |
+
getter = attrgetter("coef_")
|
230 |
+
elif hasattr(estimator, "feature_importances_"):
|
231 |
+
getter = attrgetter("feature_importances_")
|
232 |
+
else:
|
233 |
+
raise ValueError(
|
234 |
+
"when `importance_getter=='auto'`, the underlying "
|
235 |
+
f"estimator {estimator.__class__.__name__} should have "
|
236 |
+
"`coef_` or `feature_importances_` attribute. Either "
|
237 |
+
"pass a fitted estimator to feature selector or call fit "
|
238 |
+
"before calling transform."
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
getter = attrgetter(getter)
|
242 |
+
elif not callable(getter):
|
243 |
+
raise ValueError("`importance_getter` has to be a string or `callable`")
|
244 |
+
|
245 |
+
importances = getter(estimator)
|
246 |
+
|
247 |
+
if transform_func is None:
|
248 |
+
return importances
|
249 |
+
elif transform_func == "norm":
|
250 |
+
if importances.ndim == 1:
|
251 |
+
importances = np.abs(importances)
|
252 |
+
else:
|
253 |
+
importances = np.linalg.norm(importances, axis=0, ord=norm_order)
|
254 |
+
elif transform_func == "square":
|
255 |
+
if importances.ndim == 1:
|
256 |
+
importances = safe_sqr(importances)
|
257 |
+
else:
|
258 |
+
importances = safe_sqr(importances).sum(axis=0)
|
259 |
+
else:
|
260 |
+
raise ValueError(
|
261 |
+
"Valid values for `transform_func` are "
|
262 |
+
+ "None, 'norm' and 'square'. Those two "
|
263 |
+
+ "transformation are only supported now"
|
264 |
+
)
|
265 |
+
|
266 |
+
return importances
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_from_model.py
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Authors: Gilles Louppe, Mathieu Blondel, Maheshakya Wijewardena
|
2 |
+
# License: BSD 3 clause
|
3 |
+
|
4 |
+
from copy import deepcopy
|
5 |
+
from numbers import Integral, Real
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from ..base import BaseEstimator, MetaEstimatorMixin, _fit_context, clone
|
10 |
+
from ..exceptions import NotFittedError
|
11 |
+
from ..utils._param_validation import HasMethods, Interval, Options
|
12 |
+
from ..utils._tags import _safe_tags
|
13 |
+
from ..utils.metadata_routing import (
|
14 |
+
MetadataRouter,
|
15 |
+
MethodMapping,
|
16 |
+
_routing_enabled,
|
17 |
+
process_routing,
|
18 |
+
)
|
19 |
+
from ..utils.metaestimators import available_if
|
20 |
+
from ..utils.validation import _num_features, check_is_fitted, check_scalar
|
21 |
+
from ._base import SelectorMixin, _get_feature_importances
|
22 |
+
|
23 |
+
|
24 |
+
def _calculate_threshold(estimator, importances, threshold):
|
25 |
+
"""Interpret the threshold value"""
|
26 |
+
|
27 |
+
if threshold is None:
|
28 |
+
# determine default from estimator
|
29 |
+
est_name = estimator.__class__.__name__
|
30 |
+
is_l1_penalized = hasattr(estimator, "penalty") and estimator.penalty == "l1"
|
31 |
+
is_lasso = "Lasso" in est_name
|
32 |
+
is_elasticnet_l1_penalized = "ElasticNet" in est_name and (
|
33 |
+
(hasattr(estimator, "l1_ratio_") and np.isclose(estimator.l1_ratio_, 1.0))
|
34 |
+
or (hasattr(estimator, "l1_ratio") and np.isclose(estimator.l1_ratio, 1.0))
|
35 |
+
)
|
36 |
+
if is_l1_penalized or is_lasso or is_elasticnet_l1_penalized:
|
37 |
+
# the natural default threshold is 0 when l1 penalty was used
|
38 |
+
threshold = 1e-5
|
39 |
+
else:
|
40 |
+
threshold = "mean"
|
41 |
+
|
42 |
+
if isinstance(threshold, str):
|
43 |
+
if "*" in threshold:
|
44 |
+
scale, reference = threshold.split("*")
|
45 |
+
scale = float(scale.strip())
|
46 |
+
reference = reference.strip()
|
47 |
+
|
48 |
+
if reference == "median":
|
49 |
+
reference = np.median(importances)
|
50 |
+
elif reference == "mean":
|
51 |
+
reference = np.mean(importances)
|
52 |
+
else:
|
53 |
+
raise ValueError("Unknown reference: " + reference)
|
54 |
+
|
55 |
+
threshold = scale * reference
|
56 |
+
|
57 |
+
elif threshold == "median":
|
58 |
+
threshold = np.median(importances)
|
59 |
+
|
60 |
+
elif threshold == "mean":
|
61 |
+
threshold = np.mean(importances)
|
62 |
+
|
63 |
+
else:
|
64 |
+
raise ValueError(
|
65 |
+
"Expected threshold='mean' or threshold='median' got %s" % threshold
|
66 |
+
)
|
67 |
+
|
68 |
+
else:
|
69 |
+
threshold = float(threshold)
|
70 |
+
|
71 |
+
return threshold
|
72 |
+
|
73 |
+
|
74 |
+
def _estimator_has(attr):
|
75 |
+
"""Check if we can delegate a method to the underlying estimator.
|
76 |
+
|
77 |
+
First, we check the fitted `estimator_` if available, otherwise we check the
|
78 |
+
unfitted `estimator`. We raise the original `AttributeError` if `attr` does
|
79 |
+
not exist. This function is used together with `available_if`.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def check(self):
|
83 |
+
if hasattr(self, "estimator_"):
|
84 |
+
getattr(self.estimator_, attr)
|
85 |
+
else:
|
86 |
+
getattr(self.estimator, attr)
|
87 |
+
|
88 |
+
return True
|
89 |
+
|
90 |
+
return check
|
91 |
+
|
92 |
+
|
93 |
+
class SelectFromModel(MetaEstimatorMixin, SelectorMixin, BaseEstimator):
|
94 |
+
"""Meta-transformer for selecting features based on importance weights.
|
95 |
+
|
96 |
+
.. versionadded:: 0.17
|
97 |
+
|
98 |
+
Read more in the :ref:`User Guide <select_from_model>`.
|
99 |
+
|
100 |
+
Parameters
|
101 |
+
----------
|
102 |
+
estimator : object
|
103 |
+
The base estimator from which the transformer is built.
|
104 |
+
This can be both a fitted (if ``prefit`` is set to True)
|
105 |
+
or a non-fitted estimator. The estimator should have a
|
106 |
+
``feature_importances_`` or ``coef_`` attribute after fitting.
|
107 |
+
Otherwise, the ``importance_getter`` parameter should be used.
|
108 |
+
|
109 |
+
threshold : str or float, default=None
|
110 |
+
The threshold value to use for feature selection. Features whose
|
111 |
+
absolute importance value is greater or equal are kept while the others
|
112 |
+
are discarded. If "median" (resp. "mean"), then the ``threshold`` value
|
113 |
+
is the median (resp. the mean) of the feature importances. A scaling
|
114 |
+
factor (e.g., "1.25*mean") may also be used. If None and if the
|
115 |
+
estimator has a parameter penalty set to l1, either explicitly
|
116 |
+
or implicitly (e.g, Lasso), the threshold used is 1e-5.
|
117 |
+
Otherwise, "mean" is used by default.
|
118 |
+
|
119 |
+
prefit : bool, default=False
|
120 |
+
Whether a prefit model is expected to be passed into the constructor
|
121 |
+
directly or not.
|
122 |
+
If `True`, `estimator` must be a fitted estimator.
|
123 |
+
If `False`, `estimator` is fitted and updated by calling
|
124 |
+
`fit` and `partial_fit`, respectively.
|
125 |
+
|
126 |
+
norm_order : non-zero int, inf, -inf, default=1
|
127 |
+
Order of the norm used to filter the vectors of coefficients below
|
128 |
+
``threshold`` in the case where the ``coef_`` attribute of the
|
129 |
+
estimator is of dimension 2.
|
130 |
+
|
131 |
+
max_features : int, callable, default=None
|
132 |
+
The maximum number of features to select.
|
133 |
+
|
134 |
+
- If an integer, then it specifies the maximum number of features to
|
135 |
+
allow.
|
136 |
+
- If a callable, then it specifies how to calculate the maximum number of
|
137 |
+
features allowed by using the output of `max_features(X)`.
|
138 |
+
- If `None`, then all features are kept.
|
139 |
+
|
140 |
+
To only select based on ``max_features``, set ``threshold=-np.inf``.
|
141 |
+
|
142 |
+
.. versionadded:: 0.20
|
143 |
+
.. versionchanged:: 1.1
|
144 |
+
`max_features` accepts a callable.
|
145 |
+
|
146 |
+
importance_getter : str or callable, default='auto'
|
147 |
+
If 'auto', uses the feature importance either through a ``coef_``
|
148 |
+
attribute or ``feature_importances_`` attribute of estimator.
|
149 |
+
|
150 |
+
Also accepts a string that specifies an attribute name/path
|
151 |
+
for extracting feature importance (implemented with `attrgetter`).
|
152 |
+
For example, give `regressor_.coef_` in case of
|
153 |
+
:class:`~sklearn.compose.TransformedTargetRegressor` or
|
154 |
+
`named_steps.clf.feature_importances_` in case of
|
155 |
+
:class:`~sklearn.pipeline.Pipeline` with its last step named `clf`.
|
156 |
+
|
157 |
+
If `callable`, overrides the default feature importance getter.
|
158 |
+
The callable is passed with the fitted estimator and it should
|
159 |
+
return importance for each feature.
|
160 |
+
|
161 |
+
.. versionadded:: 0.24
|
162 |
+
|
163 |
+
Attributes
|
164 |
+
----------
|
165 |
+
estimator_ : estimator
|
166 |
+
The base estimator from which the transformer is built. This attribute
|
167 |
+
exist only when `fit` has been called.
|
168 |
+
|
169 |
+
- If `prefit=True`, it is a deep copy of `estimator`.
|
170 |
+
- If `prefit=False`, it is a clone of `estimator` and fit on the data
|
171 |
+
passed to `fit` or `partial_fit`.
|
172 |
+
|
173 |
+
n_features_in_ : int
|
174 |
+
Number of features seen during :term:`fit`. Only defined if the
|
175 |
+
underlying estimator exposes such an attribute when fit.
|
176 |
+
|
177 |
+
.. versionadded:: 0.24
|
178 |
+
|
179 |
+
max_features_ : int
|
180 |
+
Maximum number of features calculated during :term:`fit`. Only defined
|
181 |
+
if the ``max_features`` is not `None`.
|
182 |
+
|
183 |
+
- If `max_features` is an `int`, then `max_features_ = max_features`.
|
184 |
+
- If `max_features` is a callable, then `max_features_ = max_features(X)`.
|
185 |
+
|
186 |
+
.. versionadded:: 1.1
|
187 |
+
|
188 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
189 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
190 |
+
has feature names that are all strings.
|
191 |
+
|
192 |
+
.. versionadded:: 1.0
|
193 |
+
|
194 |
+
threshold_ : float
|
195 |
+
The threshold value used for feature selection.
|
196 |
+
|
197 |
+
See Also
|
198 |
+
--------
|
199 |
+
RFE : Recursive feature elimination based on importance weights.
|
200 |
+
RFECV : Recursive feature elimination with built-in cross-validated
|
201 |
+
selection of the best number of features.
|
202 |
+
SequentialFeatureSelector : Sequential cross-validation based feature
|
203 |
+
selection. Does not rely on importance weights.
|
204 |
+
|
205 |
+
Notes
|
206 |
+
-----
|
207 |
+
Allows NaN/Inf in the input if the underlying estimator does as well.
|
208 |
+
|
209 |
+
Examples
|
210 |
+
--------
|
211 |
+
>>> from sklearn.feature_selection import SelectFromModel
|
212 |
+
>>> from sklearn.linear_model import LogisticRegression
|
213 |
+
>>> X = [[ 0.87, -1.34, 0.31 ],
|
214 |
+
... [-2.79, -0.02, -0.85 ],
|
215 |
+
... [-1.34, -0.48, -2.55 ],
|
216 |
+
... [ 1.92, 1.48, 0.65 ]]
|
217 |
+
>>> y = [0, 1, 0, 1]
|
218 |
+
>>> selector = SelectFromModel(estimator=LogisticRegression()).fit(X, y)
|
219 |
+
>>> selector.estimator_.coef_
|
220 |
+
array([[-0.3252..., 0.8345..., 0.4976...]])
|
221 |
+
>>> selector.threshold_
|
222 |
+
0.55249...
|
223 |
+
>>> selector.get_support()
|
224 |
+
array([False, True, False])
|
225 |
+
>>> selector.transform(X)
|
226 |
+
array([[-1.34],
|
227 |
+
[-0.02],
|
228 |
+
[-0.48],
|
229 |
+
[ 1.48]])
|
230 |
+
|
231 |
+
Using a callable to create a selector that can use no more than half
|
232 |
+
of the input features.
|
233 |
+
|
234 |
+
>>> def half_callable(X):
|
235 |
+
... return round(len(X[0]) / 2)
|
236 |
+
>>> half_selector = SelectFromModel(estimator=LogisticRegression(),
|
237 |
+
... max_features=half_callable)
|
238 |
+
>>> _ = half_selector.fit(X, y)
|
239 |
+
>>> half_selector.max_features_
|
240 |
+
2
|
241 |
+
"""
|
242 |
+
|
243 |
+
_parameter_constraints: dict = {
|
244 |
+
"estimator": [HasMethods("fit")],
|
245 |
+
"threshold": [Interval(Real, None, None, closed="both"), str, None],
|
246 |
+
"prefit": ["boolean"],
|
247 |
+
"norm_order": [
|
248 |
+
Interval(Integral, None, -1, closed="right"),
|
249 |
+
Interval(Integral, 1, None, closed="left"),
|
250 |
+
Options(Real, {np.inf, -np.inf}),
|
251 |
+
],
|
252 |
+
"max_features": [Interval(Integral, 0, None, closed="left"), callable, None],
|
253 |
+
"importance_getter": [str, callable],
|
254 |
+
}
|
255 |
+
|
256 |
+
def __init__(
|
257 |
+
self,
|
258 |
+
estimator,
|
259 |
+
*,
|
260 |
+
threshold=None,
|
261 |
+
prefit=False,
|
262 |
+
norm_order=1,
|
263 |
+
max_features=None,
|
264 |
+
importance_getter="auto",
|
265 |
+
):
|
266 |
+
self.estimator = estimator
|
267 |
+
self.threshold = threshold
|
268 |
+
self.prefit = prefit
|
269 |
+
self.importance_getter = importance_getter
|
270 |
+
self.norm_order = norm_order
|
271 |
+
self.max_features = max_features
|
272 |
+
|
273 |
+
def _get_support_mask(self):
|
274 |
+
estimator = getattr(self, "estimator_", self.estimator)
|
275 |
+
max_features = getattr(self, "max_features_", self.max_features)
|
276 |
+
|
277 |
+
if self.prefit:
|
278 |
+
try:
|
279 |
+
check_is_fitted(self.estimator)
|
280 |
+
except NotFittedError as exc:
|
281 |
+
raise NotFittedError(
|
282 |
+
"When `prefit=True`, `estimator` is expected to be a fitted "
|
283 |
+
"estimator."
|
284 |
+
) from exc
|
285 |
+
if callable(max_features):
|
286 |
+
# This branch is executed when `transform` is called directly and thus
|
287 |
+
# `max_features_` is not set and we fallback using `self.max_features`
|
288 |
+
# that is not validated
|
289 |
+
raise NotFittedError(
|
290 |
+
"When `prefit=True` and `max_features` is a callable, call `fit` "
|
291 |
+
"before calling `transform`."
|
292 |
+
)
|
293 |
+
elif max_features is not None and not isinstance(max_features, Integral):
|
294 |
+
raise ValueError(
|
295 |
+
f"`max_features` must be an integer. Got `max_features={max_features}` "
|
296 |
+
"instead."
|
297 |
+
)
|
298 |
+
|
299 |
+
scores = _get_feature_importances(
|
300 |
+
estimator=estimator,
|
301 |
+
getter=self.importance_getter,
|
302 |
+
transform_func="norm",
|
303 |
+
norm_order=self.norm_order,
|
304 |
+
)
|
305 |
+
threshold = _calculate_threshold(estimator, scores, self.threshold)
|
306 |
+
if self.max_features is not None:
|
307 |
+
mask = np.zeros_like(scores, dtype=bool)
|
308 |
+
candidate_indices = np.argsort(-scores, kind="mergesort")[:max_features]
|
309 |
+
mask[candidate_indices] = True
|
310 |
+
else:
|
311 |
+
mask = np.ones_like(scores, dtype=bool)
|
312 |
+
mask[scores < threshold] = False
|
313 |
+
return mask
|
314 |
+
|
315 |
+
def _check_max_features(self, X):
|
316 |
+
if self.max_features is not None:
|
317 |
+
n_features = _num_features(X)
|
318 |
+
|
319 |
+
if callable(self.max_features):
|
320 |
+
max_features = self.max_features(X)
|
321 |
+
else: # int
|
322 |
+
max_features = self.max_features
|
323 |
+
|
324 |
+
check_scalar(
|
325 |
+
max_features,
|
326 |
+
"max_features",
|
327 |
+
Integral,
|
328 |
+
min_val=0,
|
329 |
+
max_val=n_features,
|
330 |
+
)
|
331 |
+
self.max_features_ = max_features
|
332 |
+
|
333 |
+
@_fit_context(
|
334 |
+
# SelectFromModel.estimator is not validated yet
|
335 |
+
prefer_skip_nested_validation=False
|
336 |
+
)
|
337 |
+
def fit(self, X, y=None, **fit_params):
|
338 |
+
"""Fit the SelectFromModel meta-transformer.
|
339 |
+
|
340 |
+
Parameters
|
341 |
+
----------
|
342 |
+
X : array-like of shape (n_samples, n_features)
|
343 |
+
The training input samples.
|
344 |
+
|
345 |
+
y : array-like of shape (n_samples,), default=None
|
346 |
+
The target values (integers that correspond to classes in
|
347 |
+
classification, real numbers in regression).
|
348 |
+
|
349 |
+
**fit_params : dict
|
350 |
+
- If `enable_metadata_routing=False` (default):
|
351 |
+
|
352 |
+
Parameters directly passed to the `partial_fit` method of the
|
353 |
+
sub-estimator. They are ignored if `prefit=True`.
|
354 |
+
|
355 |
+
- If `enable_metadata_routing=True`:
|
356 |
+
|
357 |
+
Parameters safely routed to the `partial_fit` method of the
|
358 |
+
sub-estimator. They are ignored if `prefit=True`.
|
359 |
+
|
360 |
+
.. versionchanged:: 1.4
|
361 |
+
See :ref:`Metadata Routing User Guide <metadata_routing>` for
|
362 |
+
more details.
|
363 |
+
|
364 |
+
Returns
|
365 |
+
-------
|
366 |
+
self : object
|
367 |
+
Fitted estimator.
|
368 |
+
"""
|
369 |
+
self._check_max_features(X)
|
370 |
+
|
371 |
+
if self.prefit:
|
372 |
+
try:
|
373 |
+
check_is_fitted(self.estimator)
|
374 |
+
except NotFittedError as exc:
|
375 |
+
raise NotFittedError(
|
376 |
+
"When `prefit=True`, `estimator` is expected to be a fitted "
|
377 |
+
"estimator."
|
378 |
+
) from exc
|
379 |
+
self.estimator_ = deepcopy(self.estimator)
|
380 |
+
else:
|
381 |
+
if _routing_enabled():
|
382 |
+
routed_params = process_routing(self, "fit", **fit_params)
|
383 |
+
self.estimator_ = clone(self.estimator)
|
384 |
+
self.estimator_.fit(X, y, **routed_params.estimator.fit)
|
385 |
+
else:
|
386 |
+
# TODO(SLEP6): remove when metadata routing cannot be disabled.
|
387 |
+
self.estimator_ = clone(self.estimator)
|
388 |
+
self.estimator_.fit(X, y, **fit_params)
|
389 |
+
|
390 |
+
if hasattr(self.estimator_, "feature_names_in_"):
|
391 |
+
self.feature_names_in_ = self.estimator_.feature_names_in_
|
392 |
+
else:
|
393 |
+
self._check_feature_names(X, reset=True)
|
394 |
+
|
395 |
+
return self
|
396 |
+
|
397 |
+
@property
|
398 |
+
def threshold_(self):
|
399 |
+
"""Threshold value used for feature selection."""
|
400 |
+
scores = _get_feature_importances(
|
401 |
+
estimator=self.estimator_,
|
402 |
+
getter=self.importance_getter,
|
403 |
+
transform_func="norm",
|
404 |
+
norm_order=self.norm_order,
|
405 |
+
)
|
406 |
+
return _calculate_threshold(self.estimator, scores, self.threshold)
|
407 |
+
|
408 |
+
@available_if(_estimator_has("partial_fit"))
|
409 |
+
@_fit_context(
|
410 |
+
# SelectFromModel.estimator is not validated yet
|
411 |
+
prefer_skip_nested_validation=False
|
412 |
+
)
|
413 |
+
def partial_fit(self, X, y=None, **partial_fit_params):
|
414 |
+
"""Fit the SelectFromModel meta-transformer only once.
|
415 |
+
|
416 |
+
Parameters
|
417 |
+
----------
|
418 |
+
X : array-like of shape (n_samples, n_features)
|
419 |
+
The training input samples.
|
420 |
+
|
421 |
+
y : array-like of shape (n_samples,), default=None
|
422 |
+
The target values (integers that correspond to classes in
|
423 |
+
classification, real numbers in regression).
|
424 |
+
|
425 |
+
**partial_fit_params : dict
|
426 |
+
- If `enable_metadata_routing=False` (default):
|
427 |
+
|
428 |
+
Parameters directly passed to the `partial_fit` method of the
|
429 |
+
sub-estimator.
|
430 |
+
|
431 |
+
- If `enable_metadata_routing=True`:
|
432 |
+
|
433 |
+
Parameters passed to the `partial_fit` method of the
|
434 |
+
sub-estimator. They are ignored if `prefit=True`.
|
435 |
+
|
436 |
+
.. versionchanged:: 1.4
|
437 |
+
`**partial_fit_params` are routed to the sub-estimator, if
|
438 |
+
`enable_metadata_routing=True` is set via
|
439 |
+
:func:`~sklearn.set_config`, which allows for aliasing.
|
440 |
+
|
441 |
+
See :ref:`Metadata Routing User Guide <metadata_routing>` for
|
442 |
+
more details.
|
443 |
+
|
444 |
+
Returns
|
445 |
+
-------
|
446 |
+
self : object
|
447 |
+
Fitted estimator.
|
448 |
+
"""
|
449 |
+
first_call = not hasattr(self, "estimator_")
|
450 |
+
|
451 |
+
if first_call:
|
452 |
+
self._check_max_features(X)
|
453 |
+
|
454 |
+
if self.prefit:
|
455 |
+
if first_call:
|
456 |
+
try:
|
457 |
+
check_is_fitted(self.estimator)
|
458 |
+
except NotFittedError as exc:
|
459 |
+
raise NotFittedError(
|
460 |
+
"When `prefit=True`, `estimator` is expected to be a fitted "
|
461 |
+
"estimator."
|
462 |
+
) from exc
|
463 |
+
self.estimator_ = deepcopy(self.estimator)
|
464 |
+
return self
|
465 |
+
|
466 |
+
if first_call:
|
467 |
+
self.estimator_ = clone(self.estimator)
|
468 |
+
if _routing_enabled():
|
469 |
+
routed_params = process_routing(self, "partial_fit", **partial_fit_params)
|
470 |
+
self.estimator_ = clone(self.estimator)
|
471 |
+
self.estimator_.partial_fit(X, y, **routed_params.estimator.partial_fit)
|
472 |
+
else:
|
473 |
+
# TODO(SLEP6): remove when metadata routing cannot be disabled.
|
474 |
+
self.estimator_.partial_fit(X, y, **partial_fit_params)
|
475 |
+
|
476 |
+
if hasattr(self.estimator_, "feature_names_in_"):
|
477 |
+
self.feature_names_in_ = self.estimator_.feature_names_in_
|
478 |
+
else:
|
479 |
+
self._check_feature_names(X, reset=first_call)
|
480 |
+
|
481 |
+
return self
|
482 |
+
|
483 |
+
@property
|
484 |
+
def n_features_in_(self):
|
485 |
+
"""Number of features seen during `fit`."""
|
486 |
+
# For consistency with other estimators we raise a AttributeError so
|
487 |
+
# that hasattr() fails if the estimator isn't fitted.
|
488 |
+
try:
|
489 |
+
check_is_fitted(self)
|
490 |
+
except NotFittedError as nfe:
|
491 |
+
raise AttributeError(
|
492 |
+
"{} object has no n_features_in_ attribute.".format(
|
493 |
+
self.__class__.__name__
|
494 |
+
)
|
495 |
+
) from nfe
|
496 |
+
|
497 |
+
return self.estimator_.n_features_in_
|
498 |
+
|
499 |
+
def get_metadata_routing(self):
|
500 |
+
"""Get metadata routing of this object.
|
501 |
+
|
502 |
+
Please check :ref:`User Guide <metadata_routing>` on how the routing
|
503 |
+
mechanism works.
|
504 |
+
|
505 |
+
.. versionadded:: 1.4
|
506 |
+
|
507 |
+
Returns
|
508 |
+
-------
|
509 |
+
routing : MetadataRouter
|
510 |
+
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
|
511 |
+
routing information.
|
512 |
+
"""
|
513 |
+
router = MetadataRouter(owner=self.__class__.__name__).add(
|
514 |
+
estimator=self.estimator,
|
515 |
+
method_mapping=MethodMapping()
|
516 |
+
.add(callee="partial_fit", caller="partial_fit")
|
517 |
+
.add(callee="fit", caller="fit"),
|
518 |
+
)
|
519 |
+
return router
|
520 |
+
|
521 |
+
def _more_tags(self):
|
522 |
+
return {"allow_nan": _safe_tags(self.estimator, key="allow_nan")}
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_mutual_info.py
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Author: Nikolay Mayorov <[email protected]>
|
2 |
+
# License: 3-clause BSD
|
3 |
+
|
4 |
+
from numbers import Integral
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from scipy.sparse import issparse
|
8 |
+
from scipy.special import digamma
|
9 |
+
|
10 |
+
from ..metrics.cluster import mutual_info_score
|
11 |
+
from ..neighbors import KDTree, NearestNeighbors
|
12 |
+
from ..preprocessing import scale
|
13 |
+
from ..utils import check_random_state
|
14 |
+
from ..utils._param_validation import Interval, StrOptions, validate_params
|
15 |
+
from ..utils.multiclass import check_classification_targets
|
16 |
+
from ..utils.validation import check_array, check_X_y
|
17 |
+
|
18 |
+
|
19 |
+
def _compute_mi_cc(x, y, n_neighbors):
|
20 |
+
"""Compute mutual information between two continuous variables.
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
x, y : ndarray, shape (n_samples,)
|
25 |
+
Samples of two continuous random variables, must have an identical
|
26 |
+
shape.
|
27 |
+
|
28 |
+
n_neighbors : int
|
29 |
+
Number of nearest neighbors to search for each point, see [1]_.
|
30 |
+
|
31 |
+
Returns
|
32 |
+
-------
|
33 |
+
mi : float
|
34 |
+
Estimated mutual information in nat units. If it turned out to be
|
35 |
+
negative it is replaced by 0.
|
36 |
+
|
37 |
+
Notes
|
38 |
+
-----
|
39 |
+
True mutual information can't be negative. If its estimate by a numerical
|
40 |
+
method is negative, it means (providing the method is adequate) that the
|
41 |
+
mutual information is close to 0 and replacing it by 0 is a reasonable
|
42 |
+
strategy.
|
43 |
+
|
44 |
+
References
|
45 |
+
----------
|
46 |
+
.. [1] A. Kraskov, H. Stogbauer and P. Grassberger, "Estimating mutual
|
47 |
+
information". Phys. Rev. E 69, 2004.
|
48 |
+
"""
|
49 |
+
n_samples = x.size
|
50 |
+
|
51 |
+
x = x.reshape((-1, 1))
|
52 |
+
y = y.reshape((-1, 1))
|
53 |
+
xy = np.hstack((x, y))
|
54 |
+
|
55 |
+
# Here we rely on NearestNeighbors to select the fastest algorithm.
|
56 |
+
nn = NearestNeighbors(metric="chebyshev", n_neighbors=n_neighbors)
|
57 |
+
|
58 |
+
nn.fit(xy)
|
59 |
+
radius = nn.kneighbors()[0]
|
60 |
+
radius = np.nextafter(radius[:, -1], 0)
|
61 |
+
|
62 |
+
# KDTree is explicitly fit to allow for the querying of number of
|
63 |
+
# neighbors within a specified radius
|
64 |
+
kd = KDTree(x, metric="chebyshev")
|
65 |
+
nx = kd.query_radius(x, radius, count_only=True, return_distance=False)
|
66 |
+
nx = np.array(nx) - 1.0
|
67 |
+
|
68 |
+
kd = KDTree(y, metric="chebyshev")
|
69 |
+
ny = kd.query_radius(y, radius, count_only=True, return_distance=False)
|
70 |
+
ny = np.array(ny) - 1.0
|
71 |
+
|
72 |
+
mi = (
|
73 |
+
digamma(n_samples)
|
74 |
+
+ digamma(n_neighbors)
|
75 |
+
- np.mean(digamma(nx + 1))
|
76 |
+
- np.mean(digamma(ny + 1))
|
77 |
+
)
|
78 |
+
|
79 |
+
return max(0, mi)
|
80 |
+
|
81 |
+
|
82 |
+
def _compute_mi_cd(c, d, n_neighbors):
|
83 |
+
"""Compute mutual information between continuous and discrete variables.
|
84 |
+
|
85 |
+
Parameters
|
86 |
+
----------
|
87 |
+
c : ndarray, shape (n_samples,)
|
88 |
+
Samples of a continuous random variable.
|
89 |
+
|
90 |
+
d : ndarray, shape (n_samples,)
|
91 |
+
Samples of a discrete random variable.
|
92 |
+
|
93 |
+
n_neighbors : int
|
94 |
+
Number of nearest neighbors to search for each point, see [1]_.
|
95 |
+
|
96 |
+
Returns
|
97 |
+
-------
|
98 |
+
mi : float
|
99 |
+
Estimated mutual information in nat units. If it turned out to be
|
100 |
+
negative it is replaced by 0.
|
101 |
+
|
102 |
+
Notes
|
103 |
+
-----
|
104 |
+
True mutual information can't be negative. If its estimate by a numerical
|
105 |
+
method is negative, it means (providing the method is adequate) that the
|
106 |
+
mutual information is close to 0 and replacing it by 0 is a reasonable
|
107 |
+
strategy.
|
108 |
+
|
109 |
+
References
|
110 |
+
----------
|
111 |
+
.. [1] B. C. Ross "Mutual Information between Discrete and Continuous
|
112 |
+
Data Sets". PLoS ONE 9(2), 2014.
|
113 |
+
"""
|
114 |
+
n_samples = c.shape[0]
|
115 |
+
c = c.reshape((-1, 1))
|
116 |
+
|
117 |
+
radius = np.empty(n_samples)
|
118 |
+
label_counts = np.empty(n_samples)
|
119 |
+
k_all = np.empty(n_samples)
|
120 |
+
nn = NearestNeighbors()
|
121 |
+
for label in np.unique(d):
|
122 |
+
mask = d == label
|
123 |
+
count = np.sum(mask)
|
124 |
+
if count > 1:
|
125 |
+
k = min(n_neighbors, count - 1)
|
126 |
+
nn.set_params(n_neighbors=k)
|
127 |
+
nn.fit(c[mask])
|
128 |
+
r = nn.kneighbors()[0]
|
129 |
+
radius[mask] = np.nextafter(r[:, -1], 0)
|
130 |
+
k_all[mask] = k
|
131 |
+
label_counts[mask] = count
|
132 |
+
|
133 |
+
# Ignore points with unique labels.
|
134 |
+
mask = label_counts > 1
|
135 |
+
n_samples = np.sum(mask)
|
136 |
+
label_counts = label_counts[mask]
|
137 |
+
k_all = k_all[mask]
|
138 |
+
c = c[mask]
|
139 |
+
radius = radius[mask]
|
140 |
+
|
141 |
+
kd = KDTree(c)
|
142 |
+
m_all = kd.query_radius(c, radius, count_only=True, return_distance=False)
|
143 |
+
m_all = np.array(m_all)
|
144 |
+
|
145 |
+
mi = (
|
146 |
+
digamma(n_samples)
|
147 |
+
+ np.mean(digamma(k_all))
|
148 |
+
- np.mean(digamma(label_counts))
|
149 |
+
- np.mean(digamma(m_all))
|
150 |
+
)
|
151 |
+
|
152 |
+
return max(0, mi)
|
153 |
+
|
154 |
+
|
155 |
+
def _compute_mi(x, y, x_discrete, y_discrete, n_neighbors=3):
|
156 |
+
"""Compute mutual information between two variables.
|
157 |
+
|
158 |
+
This is a simple wrapper which selects a proper function to call based on
|
159 |
+
whether `x` and `y` are discrete or not.
|
160 |
+
"""
|
161 |
+
if x_discrete and y_discrete:
|
162 |
+
return mutual_info_score(x, y)
|
163 |
+
elif x_discrete and not y_discrete:
|
164 |
+
return _compute_mi_cd(y, x, n_neighbors)
|
165 |
+
elif not x_discrete and y_discrete:
|
166 |
+
return _compute_mi_cd(x, y, n_neighbors)
|
167 |
+
else:
|
168 |
+
return _compute_mi_cc(x, y, n_neighbors)
|
169 |
+
|
170 |
+
|
171 |
+
def _iterate_columns(X, columns=None):
|
172 |
+
"""Iterate over columns of a matrix.
|
173 |
+
|
174 |
+
Parameters
|
175 |
+
----------
|
176 |
+
X : ndarray or csc_matrix, shape (n_samples, n_features)
|
177 |
+
Matrix over which to iterate.
|
178 |
+
|
179 |
+
columns : iterable or None, default=None
|
180 |
+
Indices of columns to iterate over. If None, iterate over all columns.
|
181 |
+
|
182 |
+
Yields
|
183 |
+
------
|
184 |
+
x : ndarray, shape (n_samples,)
|
185 |
+
Columns of `X` in dense format.
|
186 |
+
"""
|
187 |
+
if columns is None:
|
188 |
+
columns = range(X.shape[1])
|
189 |
+
|
190 |
+
if issparse(X):
|
191 |
+
for i in columns:
|
192 |
+
x = np.zeros(X.shape[0])
|
193 |
+
start_ptr, end_ptr = X.indptr[i], X.indptr[i + 1]
|
194 |
+
x[X.indices[start_ptr:end_ptr]] = X.data[start_ptr:end_ptr]
|
195 |
+
yield x
|
196 |
+
else:
|
197 |
+
for i in columns:
|
198 |
+
yield X[:, i]
|
199 |
+
|
200 |
+
|
201 |
+
def _estimate_mi(
|
202 |
+
X,
|
203 |
+
y,
|
204 |
+
discrete_features="auto",
|
205 |
+
discrete_target=False,
|
206 |
+
n_neighbors=3,
|
207 |
+
copy=True,
|
208 |
+
random_state=None,
|
209 |
+
):
|
210 |
+
"""Estimate mutual information between the features and the target.
|
211 |
+
|
212 |
+
Parameters
|
213 |
+
----------
|
214 |
+
X : array-like or sparse matrix, shape (n_samples, n_features)
|
215 |
+
Feature matrix.
|
216 |
+
|
217 |
+
y : array-like of shape (n_samples,)
|
218 |
+
Target vector.
|
219 |
+
|
220 |
+
discrete_features : {'auto', bool, array-like}, default='auto'
|
221 |
+
If bool, then determines whether to consider all features discrete
|
222 |
+
or continuous. If array, then it should be either a boolean mask
|
223 |
+
with shape (n_features,) or array with indices of discrete features.
|
224 |
+
If 'auto', it is assigned to False for dense `X` and to True for
|
225 |
+
sparse `X`.
|
226 |
+
|
227 |
+
discrete_target : bool, default=False
|
228 |
+
Whether to consider `y` as a discrete variable.
|
229 |
+
|
230 |
+
n_neighbors : int, default=3
|
231 |
+
Number of neighbors to use for MI estimation for continuous variables,
|
232 |
+
see [1]_ and [2]_. Higher values reduce variance of the estimation, but
|
233 |
+
could introduce a bias.
|
234 |
+
|
235 |
+
copy : bool, default=True
|
236 |
+
Whether to make a copy of the given data. If set to False, the initial
|
237 |
+
data will be overwritten.
|
238 |
+
|
239 |
+
random_state : int, RandomState instance or None, default=None
|
240 |
+
Determines random number generation for adding small noise to
|
241 |
+
continuous variables in order to remove repeated values.
|
242 |
+
Pass an int for reproducible results across multiple function calls.
|
243 |
+
See :term:`Glossary <random_state>`.
|
244 |
+
|
245 |
+
Returns
|
246 |
+
-------
|
247 |
+
mi : ndarray, shape (n_features,)
|
248 |
+
Estimated mutual information between each feature and the target in
|
249 |
+
nat units. A negative value will be replaced by 0.
|
250 |
+
|
251 |
+
References
|
252 |
+
----------
|
253 |
+
.. [1] A. Kraskov, H. Stogbauer and P. Grassberger, "Estimating mutual
|
254 |
+
information". Phys. Rev. E 69, 2004.
|
255 |
+
.. [2] B. C. Ross "Mutual Information between Discrete and Continuous
|
256 |
+
Data Sets". PLoS ONE 9(2), 2014.
|
257 |
+
"""
|
258 |
+
X, y = check_X_y(X, y, accept_sparse="csc", y_numeric=not discrete_target)
|
259 |
+
n_samples, n_features = X.shape
|
260 |
+
|
261 |
+
if isinstance(discrete_features, (str, bool)):
|
262 |
+
if isinstance(discrete_features, str):
|
263 |
+
if discrete_features == "auto":
|
264 |
+
discrete_features = issparse(X)
|
265 |
+
else:
|
266 |
+
raise ValueError("Invalid string value for discrete_features.")
|
267 |
+
discrete_mask = np.empty(n_features, dtype=bool)
|
268 |
+
discrete_mask.fill(discrete_features)
|
269 |
+
else:
|
270 |
+
discrete_features = check_array(discrete_features, ensure_2d=False)
|
271 |
+
if discrete_features.dtype != "bool":
|
272 |
+
discrete_mask = np.zeros(n_features, dtype=bool)
|
273 |
+
discrete_mask[discrete_features] = True
|
274 |
+
else:
|
275 |
+
discrete_mask = discrete_features
|
276 |
+
|
277 |
+
continuous_mask = ~discrete_mask
|
278 |
+
if np.any(continuous_mask) and issparse(X):
|
279 |
+
raise ValueError("Sparse matrix `X` can't have continuous features.")
|
280 |
+
|
281 |
+
rng = check_random_state(random_state)
|
282 |
+
if np.any(continuous_mask):
|
283 |
+
X = X.astype(np.float64, copy=copy)
|
284 |
+
X[:, continuous_mask] = scale(
|
285 |
+
X[:, continuous_mask], with_mean=False, copy=False
|
286 |
+
)
|
287 |
+
|
288 |
+
# Add small noise to continuous features as advised in Kraskov et. al.
|
289 |
+
means = np.maximum(1, np.mean(np.abs(X[:, continuous_mask]), axis=0))
|
290 |
+
X[:, continuous_mask] += (
|
291 |
+
1e-10
|
292 |
+
* means
|
293 |
+
* rng.standard_normal(size=(n_samples, np.sum(continuous_mask)))
|
294 |
+
)
|
295 |
+
|
296 |
+
if not discrete_target:
|
297 |
+
y = scale(y, with_mean=False)
|
298 |
+
y += (
|
299 |
+
1e-10
|
300 |
+
* np.maximum(1, np.mean(np.abs(y)))
|
301 |
+
* rng.standard_normal(size=n_samples)
|
302 |
+
)
|
303 |
+
|
304 |
+
mi = [
|
305 |
+
_compute_mi(x, y, discrete_feature, discrete_target, n_neighbors)
|
306 |
+
for x, discrete_feature in zip(_iterate_columns(X), discrete_mask)
|
307 |
+
]
|
308 |
+
|
309 |
+
return np.array(mi)
|
310 |
+
|
311 |
+
|
312 |
+
@validate_params(
|
313 |
+
{
|
314 |
+
"X": ["array-like", "sparse matrix"],
|
315 |
+
"y": ["array-like"],
|
316 |
+
"discrete_features": [StrOptions({"auto"}), "boolean", "array-like"],
|
317 |
+
"n_neighbors": [Interval(Integral, 1, None, closed="left")],
|
318 |
+
"copy": ["boolean"],
|
319 |
+
"random_state": ["random_state"],
|
320 |
+
},
|
321 |
+
prefer_skip_nested_validation=True,
|
322 |
+
)
|
323 |
+
def mutual_info_regression(
|
324 |
+
X, y, *, discrete_features="auto", n_neighbors=3, copy=True, random_state=None
|
325 |
+
):
|
326 |
+
"""Estimate mutual information for a continuous target variable.
|
327 |
+
|
328 |
+
Mutual information (MI) [1]_ between two random variables is a non-negative
|
329 |
+
value, which measures the dependency between the variables. It is equal
|
330 |
+
to zero if and only if two random variables are independent, and higher
|
331 |
+
values mean higher dependency.
|
332 |
+
|
333 |
+
The function relies on nonparametric methods based on entropy estimation
|
334 |
+
from k-nearest neighbors distances as described in [2]_ and [3]_. Both
|
335 |
+
methods are based on the idea originally proposed in [4]_.
|
336 |
+
|
337 |
+
It can be used for univariate features selection, read more in the
|
338 |
+
:ref:`User Guide <univariate_feature_selection>`.
|
339 |
+
|
340 |
+
Parameters
|
341 |
+
----------
|
342 |
+
X : array-like or sparse matrix, shape (n_samples, n_features)
|
343 |
+
Feature matrix.
|
344 |
+
|
345 |
+
y : array-like of shape (n_samples,)
|
346 |
+
Target vector.
|
347 |
+
|
348 |
+
discrete_features : {'auto', bool, array-like}, default='auto'
|
349 |
+
If bool, then determines whether to consider all features discrete
|
350 |
+
or continuous. If array, then it should be either a boolean mask
|
351 |
+
with shape (n_features,) or array with indices of discrete features.
|
352 |
+
If 'auto', it is assigned to False for dense `X` and to True for
|
353 |
+
sparse `X`.
|
354 |
+
|
355 |
+
n_neighbors : int, default=3
|
356 |
+
Number of neighbors to use for MI estimation for continuous variables,
|
357 |
+
see [2]_ and [3]_. Higher values reduce variance of the estimation, but
|
358 |
+
could introduce a bias.
|
359 |
+
|
360 |
+
copy : bool, default=True
|
361 |
+
Whether to make a copy of the given data. If set to False, the initial
|
362 |
+
data will be overwritten.
|
363 |
+
|
364 |
+
random_state : int, RandomState instance or None, default=None
|
365 |
+
Determines random number generation for adding small noise to
|
366 |
+
continuous variables in order to remove repeated values.
|
367 |
+
Pass an int for reproducible results across multiple function calls.
|
368 |
+
See :term:`Glossary <random_state>`.
|
369 |
+
|
370 |
+
Returns
|
371 |
+
-------
|
372 |
+
mi : ndarray, shape (n_features,)
|
373 |
+
Estimated mutual information between each feature and the target in
|
374 |
+
nat units.
|
375 |
+
|
376 |
+
Notes
|
377 |
+
-----
|
378 |
+
1. The term "discrete features" is used instead of naming them
|
379 |
+
"categorical", because it describes the essence more accurately.
|
380 |
+
For example, pixel intensities of an image are discrete features
|
381 |
+
(but hardly categorical) and you will get better results if mark them
|
382 |
+
as such. Also note, that treating a continuous variable as discrete and
|
383 |
+
vice versa will usually give incorrect results, so be attentive about
|
384 |
+
that.
|
385 |
+
2. True mutual information can't be negative. If its estimate turns out
|
386 |
+
to be negative, it is replaced by zero.
|
387 |
+
|
388 |
+
References
|
389 |
+
----------
|
390 |
+
.. [1] `Mutual Information
|
391 |
+
<https://en.wikipedia.org/wiki/Mutual_information>`_
|
392 |
+
on Wikipedia.
|
393 |
+
.. [2] A. Kraskov, H. Stogbauer and P. Grassberger, "Estimating mutual
|
394 |
+
information". Phys. Rev. E 69, 2004.
|
395 |
+
.. [3] B. C. Ross "Mutual Information between Discrete and Continuous
|
396 |
+
Data Sets". PLoS ONE 9(2), 2014.
|
397 |
+
.. [4] L. F. Kozachenko, N. N. Leonenko, "Sample Estimate of the Entropy
|
398 |
+
of a Random Vector", Probl. Peredachi Inf., 23:2 (1987), 9-16
|
399 |
+
|
400 |
+
Examples
|
401 |
+
--------
|
402 |
+
>>> from sklearn.datasets import make_regression
|
403 |
+
>>> from sklearn.feature_selection import mutual_info_regression
|
404 |
+
>>> X, y = make_regression(
|
405 |
+
... n_samples=50, n_features=3, n_informative=1, noise=1e-4, random_state=42
|
406 |
+
... )
|
407 |
+
>>> mutual_info_regression(X, y)
|
408 |
+
array([0.1..., 2.6... , 0.0...])
|
409 |
+
"""
|
410 |
+
return _estimate_mi(X, y, discrete_features, False, n_neighbors, copy, random_state)
|
411 |
+
|
412 |
+
|
413 |
+
@validate_params(
|
414 |
+
{
|
415 |
+
"X": ["array-like", "sparse matrix"],
|
416 |
+
"y": ["array-like"],
|
417 |
+
"discrete_features": [StrOptions({"auto"}), "boolean", "array-like"],
|
418 |
+
"n_neighbors": [Interval(Integral, 1, None, closed="left")],
|
419 |
+
"copy": ["boolean"],
|
420 |
+
"random_state": ["random_state"],
|
421 |
+
},
|
422 |
+
prefer_skip_nested_validation=True,
|
423 |
+
)
|
424 |
+
def mutual_info_classif(
|
425 |
+
X, y, *, discrete_features="auto", n_neighbors=3, copy=True, random_state=None
|
426 |
+
):
|
427 |
+
"""Estimate mutual information for a discrete target variable.
|
428 |
+
|
429 |
+
Mutual information (MI) [1]_ between two random variables is a non-negative
|
430 |
+
value, which measures the dependency between the variables. It is equal
|
431 |
+
to zero if and only if two random variables are independent, and higher
|
432 |
+
values mean higher dependency.
|
433 |
+
|
434 |
+
The function relies on nonparametric methods based on entropy estimation
|
435 |
+
from k-nearest neighbors distances as described in [2]_ and [3]_. Both
|
436 |
+
methods are based on the idea originally proposed in [4]_.
|
437 |
+
|
438 |
+
It can be used for univariate features selection, read more in the
|
439 |
+
:ref:`User Guide <univariate_feature_selection>`.
|
440 |
+
|
441 |
+
Parameters
|
442 |
+
----------
|
443 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
444 |
+
Feature matrix.
|
445 |
+
|
446 |
+
y : array-like of shape (n_samples,)
|
447 |
+
Target vector.
|
448 |
+
|
449 |
+
discrete_features : 'auto', bool or array-like, default='auto'
|
450 |
+
If bool, then determines whether to consider all features discrete
|
451 |
+
or continuous. If array, then it should be either a boolean mask
|
452 |
+
with shape (n_features,) or array with indices of discrete features.
|
453 |
+
If 'auto', it is assigned to False for dense `X` and to True for
|
454 |
+
sparse `X`.
|
455 |
+
|
456 |
+
n_neighbors : int, default=3
|
457 |
+
Number of neighbors to use for MI estimation for continuous variables,
|
458 |
+
see [2]_ and [3]_. Higher values reduce variance of the estimation, but
|
459 |
+
could introduce a bias.
|
460 |
+
|
461 |
+
copy : bool, default=True
|
462 |
+
Whether to make a copy of the given data. If set to False, the initial
|
463 |
+
data will be overwritten.
|
464 |
+
|
465 |
+
random_state : int, RandomState instance or None, default=None
|
466 |
+
Determines random number generation for adding small noise to
|
467 |
+
continuous variables in order to remove repeated values.
|
468 |
+
Pass an int for reproducible results across multiple function calls.
|
469 |
+
See :term:`Glossary <random_state>`.
|
470 |
+
|
471 |
+
Returns
|
472 |
+
-------
|
473 |
+
mi : ndarray, shape (n_features,)
|
474 |
+
Estimated mutual information between each feature and the target in
|
475 |
+
nat units.
|
476 |
+
|
477 |
+
Notes
|
478 |
+
-----
|
479 |
+
1. The term "discrete features" is used instead of naming them
|
480 |
+
"categorical", because it describes the essence more accurately.
|
481 |
+
For example, pixel intensities of an image are discrete features
|
482 |
+
(but hardly categorical) and you will get better results if mark them
|
483 |
+
as such. Also note, that treating a continuous variable as discrete and
|
484 |
+
vice versa will usually give incorrect results, so be attentive about
|
485 |
+
that.
|
486 |
+
2. True mutual information can't be negative. If its estimate turns out
|
487 |
+
to be negative, it is replaced by zero.
|
488 |
+
|
489 |
+
References
|
490 |
+
----------
|
491 |
+
.. [1] `Mutual Information
|
492 |
+
<https://en.wikipedia.org/wiki/Mutual_information>`_
|
493 |
+
on Wikipedia.
|
494 |
+
.. [2] A. Kraskov, H. Stogbauer and P. Grassberger, "Estimating mutual
|
495 |
+
information". Phys. Rev. E 69, 2004.
|
496 |
+
.. [3] B. C. Ross "Mutual Information between Discrete and Continuous
|
497 |
+
Data Sets". PLoS ONE 9(2), 2014.
|
498 |
+
.. [4] L. F. Kozachenko, N. N. Leonenko, "Sample Estimate of the Entropy
|
499 |
+
of a Random Vector:, Probl. Peredachi Inf., 23:2 (1987), 9-16
|
500 |
+
|
501 |
+
Examples
|
502 |
+
--------
|
503 |
+
>>> from sklearn.datasets import make_classification
|
504 |
+
>>> from sklearn.feature_selection import mutual_info_classif
|
505 |
+
>>> X, y = make_classification(
|
506 |
+
... n_samples=100, n_features=10, n_informative=2, n_clusters_per_class=1,
|
507 |
+
... shuffle=False, random_state=42
|
508 |
+
... )
|
509 |
+
>>> mutual_info_classif(X, y)
|
510 |
+
array([0.58..., 0.10..., 0.19..., 0.09... , 0. ,
|
511 |
+
0. , 0. , 0. , 0. , 0. ])
|
512 |
+
"""
|
513 |
+
check_classification_targets(y)
|
514 |
+
return _estimate_mi(X, y, discrete_features, True, n_neighbors, copy, random_state)
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_rfe.py
ADDED
@@ -0,0 +1,792 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Authors: Alexandre Gramfort <[email protected]>
|
2 |
+
# Vincent Michel <[email protected]>
|
3 |
+
# Gilles Louppe <[email protected]>
|
4 |
+
#
|
5 |
+
# License: BSD 3 clause
|
6 |
+
|
7 |
+
"""Recursive feature elimination for feature ranking"""
|
8 |
+
|
9 |
+
from numbers import Integral
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
from joblib import effective_n_jobs
|
13 |
+
|
14 |
+
from ..base import BaseEstimator, MetaEstimatorMixin, _fit_context, clone, is_classifier
|
15 |
+
from ..metrics import check_scoring
|
16 |
+
from ..model_selection import check_cv
|
17 |
+
from ..model_selection._validation import _score
|
18 |
+
from ..utils._param_validation import HasMethods, Interval, RealNotInt
|
19 |
+
from ..utils.metadata_routing import (
|
20 |
+
_raise_for_unsupported_routing,
|
21 |
+
_RoutingNotSupportedMixin,
|
22 |
+
)
|
23 |
+
from ..utils.metaestimators import _safe_split, available_if
|
24 |
+
from ..utils.parallel import Parallel, delayed
|
25 |
+
from ..utils.validation import check_is_fitted
|
26 |
+
from ._base import SelectorMixin, _get_feature_importances
|
27 |
+
|
28 |
+
|
29 |
+
def _rfe_single_fit(rfe, estimator, X, y, train, test, scorer):
|
30 |
+
"""
|
31 |
+
Return the score for a fit across one fold.
|
32 |
+
"""
|
33 |
+
X_train, y_train = _safe_split(estimator, X, y, train)
|
34 |
+
X_test, y_test = _safe_split(estimator, X, y, test, train)
|
35 |
+
return rfe._fit(
|
36 |
+
X_train,
|
37 |
+
y_train,
|
38 |
+
lambda estimator, features: _score(
|
39 |
+
# TODO(SLEP6): pass score_params here
|
40 |
+
estimator,
|
41 |
+
X_test[:, features],
|
42 |
+
y_test,
|
43 |
+
scorer,
|
44 |
+
score_params=None,
|
45 |
+
),
|
46 |
+
).scores_
|
47 |
+
|
48 |
+
|
49 |
+
def _estimator_has(attr):
|
50 |
+
"""Check if we can delegate a method to the underlying estimator.
|
51 |
+
|
52 |
+
First, we check the fitted `estimator_` if available, otherwise we check the
|
53 |
+
unfitted `estimator`. We raise the original `AttributeError` if `attr` does
|
54 |
+
not exist. This function is used together with `available_if`.
|
55 |
+
"""
|
56 |
+
|
57 |
+
def check(self):
|
58 |
+
if hasattr(self, "estimator_"):
|
59 |
+
getattr(self.estimator_, attr)
|
60 |
+
else:
|
61 |
+
getattr(self.estimator, attr)
|
62 |
+
|
63 |
+
return True
|
64 |
+
|
65 |
+
return check
|
66 |
+
|
67 |
+
|
68 |
+
class RFE(_RoutingNotSupportedMixin, SelectorMixin, MetaEstimatorMixin, BaseEstimator):
|
69 |
+
"""Feature ranking with recursive feature elimination.
|
70 |
+
|
71 |
+
Given an external estimator that assigns weights to features (e.g., the
|
72 |
+
coefficients of a linear model), the goal of recursive feature elimination
|
73 |
+
(RFE) is to select features by recursively considering smaller and smaller
|
74 |
+
sets of features. First, the estimator is trained on the initial set of
|
75 |
+
features and the importance of each feature is obtained either through
|
76 |
+
any specific attribute or callable.
|
77 |
+
Then, the least important features are pruned from current set of features.
|
78 |
+
That procedure is recursively repeated on the pruned set until the desired
|
79 |
+
number of features to select is eventually reached.
|
80 |
+
|
81 |
+
Read more in the :ref:`User Guide <rfe>`.
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
estimator : ``Estimator`` instance
|
86 |
+
A supervised learning estimator with a ``fit`` method that provides
|
87 |
+
information about feature importance
|
88 |
+
(e.g. `coef_`, `feature_importances_`).
|
89 |
+
|
90 |
+
n_features_to_select : int or float, default=None
|
91 |
+
The number of features to select. If `None`, half of the features are
|
92 |
+
selected. If integer, the parameter is the absolute number of features
|
93 |
+
to select. If float between 0 and 1, it is the fraction of features to
|
94 |
+
select.
|
95 |
+
|
96 |
+
.. versionchanged:: 0.24
|
97 |
+
Added float values for fractions.
|
98 |
+
|
99 |
+
step : int or float, default=1
|
100 |
+
If greater than or equal to 1, then ``step`` corresponds to the
|
101 |
+
(integer) number of features to remove at each iteration.
|
102 |
+
If within (0.0, 1.0), then ``step`` corresponds to the percentage
|
103 |
+
(rounded down) of features to remove at each iteration.
|
104 |
+
|
105 |
+
verbose : int, default=0
|
106 |
+
Controls verbosity of output.
|
107 |
+
|
108 |
+
importance_getter : str or callable, default='auto'
|
109 |
+
If 'auto', uses the feature importance either through a `coef_`
|
110 |
+
or `feature_importances_` attributes of estimator.
|
111 |
+
|
112 |
+
Also accepts a string that specifies an attribute name/path
|
113 |
+
for extracting feature importance (implemented with `attrgetter`).
|
114 |
+
For example, give `regressor_.coef_` in case of
|
115 |
+
:class:`~sklearn.compose.TransformedTargetRegressor` or
|
116 |
+
`named_steps.clf.feature_importances_` in case of
|
117 |
+
class:`~sklearn.pipeline.Pipeline` with its last step named `clf`.
|
118 |
+
|
119 |
+
If `callable`, overrides the default feature importance getter.
|
120 |
+
The callable is passed with the fitted estimator and it should
|
121 |
+
return importance for each feature.
|
122 |
+
|
123 |
+
.. versionadded:: 0.24
|
124 |
+
|
125 |
+
Attributes
|
126 |
+
----------
|
127 |
+
classes_ : ndarray of shape (n_classes,)
|
128 |
+
The classes labels. Only available when `estimator` is a classifier.
|
129 |
+
|
130 |
+
estimator_ : ``Estimator`` instance
|
131 |
+
The fitted estimator used to select features.
|
132 |
+
|
133 |
+
n_features_ : int
|
134 |
+
The number of selected features.
|
135 |
+
|
136 |
+
n_features_in_ : int
|
137 |
+
Number of features seen during :term:`fit`. Only defined if the
|
138 |
+
underlying estimator exposes such an attribute when fit.
|
139 |
+
|
140 |
+
.. versionadded:: 0.24
|
141 |
+
|
142 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
143 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
144 |
+
has feature names that are all strings.
|
145 |
+
|
146 |
+
.. versionadded:: 1.0
|
147 |
+
|
148 |
+
ranking_ : ndarray of shape (n_features,)
|
149 |
+
The feature ranking, such that ``ranking_[i]`` corresponds to the
|
150 |
+
ranking position of the i-th feature. Selected (i.e., estimated
|
151 |
+
best) features are assigned rank 1.
|
152 |
+
|
153 |
+
support_ : ndarray of shape (n_features,)
|
154 |
+
The mask of selected features.
|
155 |
+
|
156 |
+
See Also
|
157 |
+
--------
|
158 |
+
RFECV : Recursive feature elimination with built-in cross-validated
|
159 |
+
selection of the best number of features.
|
160 |
+
SelectFromModel : Feature selection based on thresholds of importance
|
161 |
+
weights.
|
162 |
+
SequentialFeatureSelector : Sequential cross-validation based feature
|
163 |
+
selection. Does not rely on importance weights.
|
164 |
+
|
165 |
+
Notes
|
166 |
+
-----
|
167 |
+
Allows NaN/Inf in the input if the underlying estimator does as well.
|
168 |
+
|
169 |
+
References
|
170 |
+
----------
|
171 |
+
|
172 |
+
.. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection
|
173 |
+
for cancer classification using support vector machines",
|
174 |
+
Mach. Learn., 46(1-3), 389--422, 2002.
|
175 |
+
|
176 |
+
Examples
|
177 |
+
--------
|
178 |
+
The following example shows how to retrieve the 5 most informative
|
179 |
+
features in the Friedman #1 dataset.
|
180 |
+
|
181 |
+
>>> from sklearn.datasets import make_friedman1
|
182 |
+
>>> from sklearn.feature_selection import RFE
|
183 |
+
>>> from sklearn.svm import SVR
|
184 |
+
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
|
185 |
+
>>> estimator = SVR(kernel="linear")
|
186 |
+
>>> selector = RFE(estimator, n_features_to_select=5, step=1)
|
187 |
+
>>> selector = selector.fit(X, y)
|
188 |
+
>>> selector.support_
|
189 |
+
array([ True, True, True, True, True, False, False, False, False,
|
190 |
+
False])
|
191 |
+
>>> selector.ranking_
|
192 |
+
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])
|
193 |
+
"""
|
194 |
+
|
195 |
+
_parameter_constraints: dict = {
|
196 |
+
"estimator": [HasMethods(["fit"])],
|
197 |
+
"n_features_to_select": [
|
198 |
+
None,
|
199 |
+
Interval(RealNotInt, 0, 1, closed="right"),
|
200 |
+
Interval(Integral, 0, None, closed="neither"),
|
201 |
+
],
|
202 |
+
"step": [
|
203 |
+
Interval(Integral, 0, None, closed="neither"),
|
204 |
+
Interval(RealNotInt, 0, 1, closed="neither"),
|
205 |
+
],
|
206 |
+
"verbose": ["verbose"],
|
207 |
+
"importance_getter": [str, callable],
|
208 |
+
}
|
209 |
+
|
210 |
+
def __init__(
|
211 |
+
self,
|
212 |
+
estimator,
|
213 |
+
*,
|
214 |
+
n_features_to_select=None,
|
215 |
+
step=1,
|
216 |
+
verbose=0,
|
217 |
+
importance_getter="auto",
|
218 |
+
):
|
219 |
+
self.estimator = estimator
|
220 |
+
self.n_features_to_select = n_features_to_select
|
221 |
+
self.step = step
|
222 |
+
self.importance_getter = importance_getter
|
223 |
+
self.verbose = verbose
|
224 |
+
|
225 |
+
@property
|
226 |
+
def _estimator_type(self):
|
227 |
+
return self.estimator._estimator_type
|
228 |
+
|
229 |
+
@property
|
230 |
+
def classes_(self):
|
231 |
+
"""Classes labels available when `estimator` is a classifier.
|
232 |
+
|
233 |
+
Returns
|
234 |
+
-------
|
235 |
+
ndarray of shape (n_classes,)
|
236 |
+
"""
|
237 |
+
return self.estimator_.classes_
|
238 |
+
|
239 |
+
@_fit_context(
|
240 |
+
# RFE.estimator is not validated yet
|
241 |
+
prefer_skip_nested_validation=False
|
242 |
+
)
|
243 |
+
def fit(self, X, y, **fit_params):
|
244 |
+
"""Fit the RFE model and then the underlying estimator on the selected features.
|
245 |
+
|
246 |
+
Parameters
|
247 |
+
----------
|
248 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
249 |
+
The training input samples.
|
250 |
+
|
251 |
+
y : array-like of shape (n_samples,)
|
252 |
+
The target values.
|
253 |
+
|
254 |
+
**fit_params : dict
|
255 |
+
Additional parameters passed to the `fit` method of the underlying
|
256 |
+
estimator.
|
257 |
+
|
258 |
+
Returns
|
259 |
+
-------
|
260 |
+
self : object
|
261 |
+
Fitted estimator.
|
262 |
+
"""
|
263 |
+
_raise_for_unsupported_routing(self, "fit", **fit_params)
|
264 |
+
return self._fit(X, y, **fit_params)
|
265 |
+
|
266 |
+
def _fit(self, X, y, step_score=None, **fit_params):
|
267 |
+
# Parameter step_score controls the calculation of self.scores_
|
268 |
+
# step_score is not exposed to users
|
269 |
+
# and is used when implementing RFECV
|
270 |
+
# self.scores_ will not be calculated when calling _fit through fit
|
271 |
+
|
272 |
+
X, y = self._validate_data(
|
273 |
+
X,
|
274 |
+
y,
|
275 |
+
accept_sparse="csc",
|
276 |
+
ensure_min_features=2,
|
277 |
+
force_all_finite=False,
|
278 |
+
multi_output=True,
|
279 |
+
)
|
280 |
+
|
281 |
+
# Initialization
|
282 |
+
n_features = X.shape[1]
|
283 |
+
if self.n_features_to_select is None:
|
284 |
+
n_features_to_select = n_features // 2
|
285 |
+
elif isinstance(self.n_features_to_select, Integral): # int
|
286 |
+
n_features_to_select = self.n_features_to_select
|
287 |
+
else: # float
|
288 |
+
n_features_to_select = int(n_features * self.n_features_to_select)
|
289 |
+
|
290 |
+
if 0.0 < self.step < 1.0:
|
291 |
+
step = int(max(1, self.step * n_features))
|
292 |
+
else:
|
293 |
+
step = int(self.step)
|
294 |
+
|
295 |
+
support_ = np.ones(n_features, dtype=bool)
|
296 |
+
ranking_ = np.ones(n_features, dtype=int)
|
297 |
+
|
298 |
+
if step_score:
|
299 |
+
self.scores_ = []
|
300 |
+
|
301 |
+
# Elimination
|
302 |
+
while np.sum(support_) > n_features_to_select:
|
303 |
+
# Remaining features
|
304 |
+
features = np.arange(n_features)[support_]
|
305 |
+
|
306 |
+
# Rank the remaining features
|
307 |
+
estimator = clone(self.estimator)
|
308 |
+
if self.verbose > 0:
|
309 |
+
print("Fitting estimator with %d features." % np.sum(support_))
|
310 |
+
|
311 |
+
estimator.fit(X[:, features], y, **fit_params)
|
312 |
+
|
313 |
+
# Get importance and rank them
|
314 |
+
importances = _get_feature_importances(
|
315 |
+
estimator,
|
316 |
+
self.importance_getter,
|
317 |
+
transform_func="square",
|
318 |
+
)
|
319 |
+
ranks = np.argsort(importances)
|
320 |
+
|
321 |
+
# for sparse case ranks is matrix
|
322 |
+
ranks = np.ravel(ranks)
|
323 |
+
|
324 |
+
# Eliminate the worse features
|
325 |
+
threshold = min(step, np.sum(support_) - n_features_to_select)
|
326 |
+
|
327 |
+
# Compute step score on the previous selection iteration
|
328 |
+
# because 'estimator' must use features
|
329 |
+
# that have not been eliminated yet
|
330 |
+
if step_score:
|
331 |
+
self.scores_.append(step_score(estimator, features))
|
332 |
+
support_[features[ranks][:threshold]] = False
|
333 |
+
ranking_[np.logical_not(support_)] += 1
|
334 |
+
|
335 |
+
# Set final attributes
|
336 |
+
features = np.arange(n_features)[support_]
|
337 |
+
self.estimator_ = clone(self.estimator)
|
338 |
+
self.estimator_.fit(X[:, features], y, **fit_params)
|
339 |
+
|
340 |
+
# Compute step score when only n_features_to_select features left
|
341 |
+
if step_score:
|
342 |
+
self.scores_.append(step_score(self.estimator_, features))
|
343 |
+
self.n_features_ = support_.sum()
|
344 |
+
self.support_ = support_
|
345 |
+
self.ranking_ = ranking_
|
346 |
+
|
347 |
+
return self
|
348 |
+
|
349 |
+
@available_if(_estimator_has("predict"))
|
350 |
+
def predict(self, X):
|
351 |
+
"""Reduce X to the selected features and predict using the estimator.
|
352 |
+
|
353 |
+
Parameters
|
354 |
+
----------
|
355 |
+
X : array of shape [n_samples, n_features]
|
356 |
+
The input samples.
|
357 |
+
|
358 |
+
Returns
|
359 |
+
-------
|
360 |
+
y : array of shape [n_samples]
|
361 |
+
The predicted target values.
|
362 |
+
"""
|
363 |
+
check_is_fitted(self)
|
364 |
+
return self.estimator_.predict(self.transform(X))
|
365 |
+
|
366 |
+
@available_if(_estimator_has("score"))
|
367 |
+
def score(self, X, y, **fit_params):
|
368 |
+
"""Reduce X to the selected features and return the score of the estimator.
|
369 |
+
|
370 |
+
Parameters
|
371 |
+
----------
|
372 |
+
X : array of shape [n_samples, n_features]
|
373 |
+
The input samples.
|
374 |
+
|
375 |
+
y : array of shape [n_samples]
|
376 |
+
The target values.
|
377 |
+
|
378 |
+
**fit_params : dict
|
379 |
+
Parameters to pass to the `score` method of the underlying
|
380 |
+
estimator.
|
381 |
+
|
382 |
+
.. versionadded:: 1.0
|
383 |
+
|
384 |
+
Returns
|
385 |
+
-------
|
386 |
+
score : float
|
387 |
+
Score of the underlying base estimator computed with the selected
|
388 |
+
features returned by `rfe.transform(X)` and `y`.
|
389 |
+
"""
|
390 |
+
check_is_fitted(self)
|
391 |
+
return self.estimator_.score(self.transform(X), y, **fit_params)
|
392 |
+
|
393 |
+
def _get_support_mask(self):
|
394 |
+
check_is_fitted(self)
|
395 |
+
return self.support_
|
396 |
+
|
397 |
+
@available_if(_estimator_has("decision_function"))
|
398 |
+
def decision_function(self, X):
|
399 |
+
"""Compute the decision function of ``X``.
|
400 |
+
|
401 |
+
Parameters
|
402 |
+
----------
|
403 |
+
X : {array-like or sparse matrix} of shape (n_samples, n_features)
|
404 |
+
The input samples. Internally, it will be converted to
|
405 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
406 |
+
to a sparse ``csr_matrix``.
|
407 |
+
|
408 |
+
Returns
|
409 |
+
-------
|
410 |
+
score : array, shape = [n_samples, n_classes] or [n_samples]
|
411 |
+
The decision function of the input samples. The order of the
|
412 |
+
classes corresponds to that in the attribute :term:`classes_`.
|
413 |
+
Regression and binary classification produce an array of shape
|
414 |
+
[n_samples].
|
415 |
+
"""
|
416 |
+
check_is_fitted(self)
|
417 |
+
return self.estimator_.decision_function(self.transform(X))
|
418 |
+
|
419 |
+
@available_if(_estimator_has("predict_proba"))
|
420 |
+
def predict_proba(self, X):
|
421 |
+
"""Predict class probabilities for X.
|
422 |
+
|
423 |
+
Parameters
|
424 |
+
----------
|
425 |
+
X : {array-like or sparse matrix} of shape (n_samples, n_features)
|
426 |
+
The input samples. Internally, it will be converted to
|
427 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
428 |
+
to a sparse ``csr_matrix``.
|
429 |
+
|
430 |
+
Returns
|
431 |
+
-------
|
432 |
+
p : array of shape (n_samples, n_classes)
|
433 |
+
The class probabilities of the input samples. The order of the
|
434 |
+
classes corresponds to that in the attribute :term:`classes_`.
|
435 |
+
"""
|
436 |
+
check_is_fitted(self)
|
437 |
+
return self.estimator_.predict_proba(self.transform(X))
|
438 |
+
|
439 |
+
@available_if(_estimator_has("predict_log_proba"))
|
440 |
+
def predict_log_proba(self, X):
|
441 |
+
"""Predict class log-probabilities for X.
|
442 |
+
|
443 |
+
Parameters
|
444 |
+
----------
|
445 |
+
X : array of shape [n_samples, n_features]
|
446 |
+
The input samples.
|
447 |
+
|
448 |
+
Returns
|
449 |
+
-------
|
450 |
+
p : array of shape (n_samples, n_classes)
|
451 |
+
The class log-probabilities of the input samples. The order of the
|
452 |
+
classes corresponds to that in the attribute :term:`classes_`.
|
453 |
+
"""
|
454 |
+
check_is_fitted(self)
|
455 |
+
return self.estimator_.predict_log_proba(self.transform(X))
|
456 |
+
|
457 |
+
def _more_tags(self):
|
458 |
+
tags = {
|
459 |
+
"poor_score": True,
|
460 |
+
"requires_y": True,
|
461 |
+
"allow_nan": True,
|
462 |
+
}
|
463 |
+
|
464 |
+
# Adjust allow_nan if estimator explicitly defines `allow_nan`.
|
465 |
+
if hasattr(self.estimator, "_get_tags"):
|
466 |
+
tags["allow_nan"] = self.estimator._get_tags()["allow_nan"]
|
467 |
+
|
468 |
+
return tags
|
469 |
+
|
470 |
+
|
471 |
+
class RFECV(RFE):
|
472 |
+
"""Recursive feature elimination with cross-validation to select features.
|
473 |
+
|
474 |
+
The number of features selected is tuned automatically by fitting an :class:`RFE`
|
475 |
+
selector on the different cross-validation splits (provided by the `cv` parameter).
|
476 |
+
The performance of the :class:`RFE` selector are evaluated using `scorer` for
|
477 |
+
different number of selected features and aggregated together. Finally, the scores
|
478 |
+
are averaged across folds and the number of features selected is set to the number
|
479 |
+
of features that maximize the cross-validation score.
|
480 |
+
See glossary entry for :term:`cross-validation estimator`.
|
481 |
+
|
482 |
+
Read more in the :ref:`User Guide <rfe>`.
|
483 |
+
|
484 |
+
Parameters
|
485 |
+
----------
|
486 |
+
estimator : ``Estimator`` instance
|
487 |
+
A supervised learning estimator with a ``fit`` method that provides
|
488 |
+
information about feature importance either through a ``coef_``
|
489 |
+
attribute or through a ``feature_importances_`` attribute.
|
490 |
+
|
491 |
+
step : int or float, default=1
|
492 |
+
If greater than or equal to 1, then ``step`` corresponds to the
|
493 |
+
(integer) number of features to remove at each iteration.
|
494 |
+
If within (0.0, 1.0), then ``step`` corresponds to the percentage
|
495 |
+
(rounded down) of features to remove at each iteration.
|
496 |
+
Note that the last iteration may remove fewer than ``step`` features in
|
497 |
+
order to reach ``min_features_to_select``.
|
498 |
+
|
499 |
+
min_features_to_select : int, default=1
|
500 |
+
The minimum number of features to be selected. This number of features
|
501 |
+
will always be scored, even if the difference between the original
|
502 |
+
feature count and ``min_features_to_select`` isn't divisible by
|
503 |
+
``step``.
|
504 |
+
|
505 |
+
.. versionadded:: 0.20
|
506 |
+
|
507 |
+
cv : int, cross-validation generator or an iterable, default=None
|
508 |
+
Determines the cross-validation splitting strategy.
|
509 |
+
Possible inputs for cv are:
|
510 |
+
|
511 |
+
- None, to use the default 5-fold cross-validation,
|
512 |
+
- integer, to specify the number of folds.
|
513 |
+
- :term:`CV splitter`,
|
514 |
+
- An iterable yielding (train, test) splits as arrays of indices.
|
515 |
+
|
516 |
+
For integer/None inputs, if ``y`` is binary or multiclass,
|
517 |
+
:class:`~sklearn.model_selection.StratifiedKFold` is used. If the
|
518 |
+
estimator is a classifier or if ``y`` is neither binary nor multiclass,
|
519 |
+
:class:`~sklearn.model_selection.KFold` is used.
|
520 |
+
|
521 |
+
Refer :ref:`User Guide <cross_validation>` for the various
|
522 |
+
cross-validation strategies that can be used here.
|
523 |
+
|
524 |
+
.. versionchanged:: 0.22
|
525 |
+
``cv`` default value of None changed from 3-fold to 5-fold.
|
526 |
+
|
527 |
+
scoring : str, callable or None, default=None
|
528 |
+
A string (see model evaluation documentation) or
|
529 |
+
a scorer callable object / function with signature
|
530 |
+
``scorer(estimator, X, y)``.
|
531 |
+
|
532 |
+
verbose : int, default=0
|
533 |
+
Controls verbosity of output.
|
534 |
+
|
535 |
+
n_jobs : int or None, default=None
|
536 |
+
Number of cores to run in parallel while fitting across folds.
|
537 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
538 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
539 |
+
for more details.
|
540 |
+
|
541 |
+
.. versionadded:: 0.18
|
542 |
+
|
543 |
+
importance_getter : str or callable, default='auto'
|
544 |
+
If 'auto', uses the feature importance either through a `coef_`
|
545 |
+
or `feature_importances_` attributes of estimator.
|
546 |
+
|
547 |
+
Also accepts a string that specifies an attribute name/path
|
548 |
+
for extracting feature importance.
|
549 |
+
For example, give `regressor_.coef_` in case of
|
550 |
+
:class:`~sklearn.compose.TransformedTargetRegressor` or
|
551 |
+
`named_steps.clf.feature_importances_` in case of
|
552 |
+
:class:`~sklearn.pipeline.Pipeline` with its last step named `clf`.
|
553 |
+
|
554 |
+
If `callable`, overrides the default feature importance getter.
|
555 |
+
The callable is passed with the fitted estimator and it should
|
556 |
+
return importance for each feature.
|
557 |
+
|
558 |
+
.. versionadded:: 0.24
|
559 |
+
|
560 |
+
Attributes
|
561 |
+
----------
|
562 |
+
classes_ : ndarray of shape (n_classes,)
|
563 |
+
The classes labels. Only available when `estimator` is a classifier.
|
564 |
+
|
565 |
+
estimator_ : ``Estimator`` instance
|
566 |
+
The fitted estimator used to select features.
|
567 |
+
|
568 |
+
cv_results_ : dict of ndarrays
|
569 |
+
A dict with keys:
|
570 |
+
|
571 |
+
split(k)_test_score : ndarray of shape (n_subsets_of_features,)
|
572 |
+
The cross-validation scores across (k)th fold.
|
573 |
+
|
574 |
+
mean_test_score : ndarray of shape (n_subsets_of_features,)
|
575 |
+
Mean of scores over the folds.
|
576 |
+
|
577 |
+
std_test_score : ndarray of shape (n_subsets_of_features,)
|
578 |
+
Standard deviation of scores over the folds.
|
579 |
+
|
580 |
+
.. versionadded:: 1.0
|
581 |
+
|
582 |
+
n_features_ : int
|
583 |
+
The number of selected features with cross-validation.
|
584 |
+
|
585 |
+
n_features_in_ : int
|
586 |
+
Number of features seen during :term:`fit`. Only defined if the
|
587 |
+
underlying estimator exposes such an attribute when fit.
|
588 |
+
|
589 |
+
.. versionadded:: 0.24
|
590 |
+
|
591 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
592 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
593 |
+
has feature names that are all strings.
|
594 |
+
|
595 |
+
.. versionadded:: 1.0
|
596 |
+
|
597 |
+
ranking_ : narray of shape (n_features,)
|
598 |
+
The feature ranking, such that `ranking_[i]`
|
599 |
+
corresponds to the ranking
|
600 |
+
position of the i-th feature.
|
601 |
+
Selected (i.e., estimated best)
|
602 |
+
features are assigned rank 1.
|
603 |
+
|
604 |
+
support_ : ndarray of shape (n_features,)
|
605 |
+
The mask of selected features.
|
606 |
+
|
607 |
+
See Also
|
608 |
+
--------
|
609 |
+
RFE : Recursive feature elimination.
|
610 |
+
|
611 |
+
Notes
|
612 |
+
-----
|
613 |
+
The size of all values in ``cv_results_`` is equal to
|
614 |
+
``ceil((n_features - min_features_to_select) / step) + 1``,
|
615 |
+
where step is the number of features removed at each iteration.
|
616 |
+
|
617 |
+
Allows NaN/Inf in the input if the underlying estimator does as well.
|
618 |
+
|
619 |
+
References
|
620 |
+
----------
|
621 |
+
|
622 |
+
.. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection
|
623 |
+
for cancer classification using support vector machines",
|
624 |
+
Mach. Learn., 46(1-3), 389--422, 2002.
|
625 |
+
|
626 |
+
Examples
|
627 |
+
--------
|
628 |
+
The following example shows how to retrieve the a-priori not known 5
|
629 |
+
informative features in the Friedman #1 dataset.
|
630 |
+
|
631 |
+
>>> from sklearn.datasets import make_friedman1
|
632 |
+
>>> from sklearn.feature_selection import RFECV
|
633 |
+
>>> from sklearn.svm import SVR
|
634 |
+
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
|
635 |
+
>>> estimator = SVR(kernel="linear")
|
636 |
+
>>> selector = RFECV(estimator, step=1, cv=5)
|
637 |
+
>>> selector = selector.fit(X, y)
|
638 |
+
>>> selector.support_
|
639 |
+
array([ True, True, True, True, True, False, False, False, False,
|
640 |
+
False])
|
641 |
+
>>> selector.ranking_
|
642 |
+
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])
|
643 |
+
"""
|
644 |
+
|
645 |
+
_parameter_constraints: dict = {
|
646 |
+
**RFE._parameter_constraints,
|
647 |
+
"min_features_to_select": [Interval(Integral, 0, None, closed="neither")],
|
648 |
+
"cv": ["cv_object"],
|
649 |
+
"scoring": [None, str, callable],
|
650 |
+
"n_jobs": [None, Integral],
|
651 |
+
}
|
652 |
+
_parameter_constraints.pop("n_features_to_select")
|
653 |
+
|
654 |
+
def __init__(
|
655 |
+
self,
|
656 |
+
estimator,
|
657 |
+
*,
|
658 |
+
step=1,
|
659 |
+
min_features_to_select=1,
|
660 |
+
cv=None,
|
661 |
+
scoring=None,
|
662 |
+
verbose=0,
|
663 |
+
n_jobs=None,
|
664 |
+
importance_getter="auto",
|
665 |
+
):
|
666 |
+
self.estimator = estimator
|
667 |
+
self.step = step
|
668 |
+
self.importance_getter = importance_getter
|
669 |
+
self.cv = cv
|
670 |
+
self.scoring = scoring
|
671 |
+
self.verbose = verbose
|
672 |
+
self.n_jobs = n_jobs
|
673 |
+
self.min_features_to_select = min_features_to_select
|
674 |
+
|
675 |
+
@_fit_context(
|
676 |
+
# RFECV.estimator is not validated yet
|
677 |
+
prefer_skip_nested_validation=False
|
678 |
+
)
|
679 |
+
def fit(self, X, y, groups=None):
|
680 |
+
"""Fit the RFE model and automatically tune the number of selected features.
|
681 |
+
|
682 |
+
Parameters
|
683 |
+
----------
|
684 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
685 |
+
Training vector, where `n_samples` is the number of samples and
|
686 |
+
`n_features` is the total number of features.
|
687 |
+
|
688 |
+
y : array-like of shape (n_samples,)
|
689 |
+
Target values (integers for classification, real numbers for
|
690 |
+
regression).
|
691 |
+
|
692 |
+
groups : array-like of shape (n_samples,) or None, default=None
|
693 |
+
Group labels for the samples used while splitting the dataset into
|
694 |
+
train/test set. Only used in conjunction with a "Group" :term:`cv`
|
695 |
+
instance (e.g., :class:`~sklearn.model_selection.GroupKFold`).
|
696 |
+
|
697 |
+
.. versionadded:: 0.20
|
698 |
+
|
699 |
+
Returns
|
700 |
+
-------
|
701 |
+
self : object
|
702 |
+
Fitted estimator.
|
703 |
+
"""
|
704 |
+
_raise_for_unsupported_routing(self, "fit", groups=groups)
|
705 |
+
X, y = self._validate_data(
|
706 |
+
X,
|
707 |
+
y,
|
708 |
+
accept_sparse="csr",
|
709 |
+
ensure_min_features=2,
|
710 |
+
force_all_finite=False,
|
711 |
+
multi_output=True,
|
712 |
+
)
|
713 |
+
|
714 |
+
# Initialization
|
715 |
+
cv = check_cv(self.cv, y, classifier=is_classifier(self.estimator))
|
716 |
+
scorer = check_scoring(self.estimator, scoring=self.scoring)
|
717 |
+
n_features = X.shape[1]
|
718 |
+
|
719 |
+
if 0.0 < self.step < 1.0:
|
720 |
+
step = int(max(1, self.step * n_features))
|
721 |
+
else:
|
722 |
+
step = int(self.step)
|
723 |
+
|
724 |
+
# Build an RFE object, which will evaluate and score each possible
|
725 |
+
# feature count, down to self.min_features_to_select
|
726 |
+
rfe = RFE(
|
727 |
+
estimator=self.estimator,
|
728 |
+
n_features_to_select=self.min_features_to_select,
|
729 |
+
importance_getter=self.importance_getter,
|
730 |
+
step=self.step,
|
731 |
+
verbose=self.verbose,
|
732 |
+
)
|
733 |
+
|
734 |
+
# Determine the number of subsets of features by fitting across
|
735 |
+
# the train folds and choosing the "features_to_select" parameter
|
736 |
+
# that gives the least averaged error across all folds.
|
737 |
+
|
738 |
+
# Note that joblib raises a non-picklable error for bound methods
|
739 |
+
# even if n_jobs is set to 1 with the default multiprocessing
|
740 |
+
# backend.
|
741 |
+
# This branching is done so that to
|
742 |
+
# make sure that user code that sets n_jobs to 1
|
743 |
+
# and provides bound methods as scorers is not broken with the
|
744 |
+
# addition of n_jobs parameter in version 0.18.
|
745 |
+
|
746 |
+
if effective_n_jobs(self.n_jobs) == 1:
|
747 |
+
parallel, func = list, _rfe_single_fit
|
748 |
+
else:
|
749 |
+
parallel = Parallel(n_jobs=self.n_jobs)
|
750 |
+
func = delayed(_rfe_single_fit)
|
751 |
+
|
752 |
+
scores = parallel(
|
753 |
+
func(rfe, self.estimator, X, y, train, test, scorer)
|
754 |
+
for train, test in cv.split(X, y, groups)
|
755 |
+
)
|
756 |
+
|
757 |
+
scores = np.array(scores)
|
758 |
+
scores_sum = np.sum(scores, axis=0)
|
759 |
+
scores_sum_rev = scores_sum[::-1]
|
760 |
+
argmax_idx = len(scores_sum) - np.argmax(scores_sum_rev) - 1
|
761 |
+
n_features_to_select = max(
|
762 |
+
n_features - (argmax_idx * step), self.min_features_to_select
|
763 |
+
)
|
764 |
+
|
765 |
+
# Re-execute an elimination with best_k over the whole set
|
766 |
+
rfe = RFE(
|
767 |
+
estimator=self.estimator,
|
768 |
+
n_features_to_select=n_features_to_select,
|
769 |
+
step=self.step,
|
770 |
+
importance_getter=self.importance_getter,
|
771 |
+
verbose=self.verbose,
|
772 |
+
)
|
773 |
+
|
774 |
+
rfe.fit(X, y)
|
775 |
+
|
776 |
+
# Set final attributes
|
777 |
+
self.support_ = rfe.support_
|
778 |
+
self.n_features_ = rfe.n_features_
|
779 |
+
self.ranking_ = rfe.ranking_
|
780 |
+
self.estimator_ = clone(self.estimator)
|
781 |
+
self.estimator_.fit(self._transform(X), y)
|
782 |
+
|
783 |
+
# reverse to stay consistent with before
|
784 |
+
scores_rev = scores[:, ::-1]
|
785 |
+
self.cv_results_ = {}
|
786 |
+
self.cv_results_["mean_test_score"] = np.mean(scores_rev, axis=0)
|
787 |
+
self.cv_results_["std_test_score"] = np.std(scores_rev, axis=0)
|
788 |
+
|
789 |
+
for i in range(scores.shape[0]):
|
790 |
+
self.cv_results_[f"split{i}_test_score"] = scores_rev[i]
|
791 |
+
|
792 |
+
return self
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_sequential.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Sequential feature selection
|
3 |
+
"""
|
4 |
+
from numbers import Integral, Real
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from ..base import BaseEstimator, MetaEstimatorMixin, _fit_context, clone, is_classifier
|
9 |
+
from ..metrics import get_scorer_names
|
10 |
+
from ..model_selection import check_cv, cross_val_score
|
11 |
+
from ..utils._param_validation import HasMethods, Interval, RealNotInt, StrOptions
|
12 |
+
from ..utils._tags import _safe_tags
|
13 |
+
from ..utils.metadata_routing import _RoutingNotSupportedMixin
|
14 |
+
from ..utils.validation import check_is_fitted
|
15 |
+
from ._base import SelectorMixin
|
16 |
+
|
17 |
+
|
18 |
+
class SequentialFeatureSelector(
|
19 |
+
_RoutingNotSupportedMixin, SelectorMixin, MetaEstimatorMixin, BaseEstimator
|
20 |
+
):
|
21 |
+
"""Transformer that performs Sequential Feature Selection.
|
22 |
+
|
23 |
+
This Sequential Feature Selector adds (forward selection) or
|
24 |
+
removes (backward selection) features to form a feature subset in a
|
25 |
+
greedy fashion. At each stage, this estimator chooses the best feature to
|
26 |
+
add or remove based on the cross-validation score of an estimator. In
|
27 |
+
the case of unsupervised learning, this Sequential Feature Selector
|
28 |
+
looks only at the features (X), not the desired outputs (y).
|
29 |
+
|
30 |
+
Read more in the :ref:`User Guide <sequential_feature_selection>`.
|
31 |
+
|
32 |
+
.. versionadded:: 0.24
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
estimator : estimator instance
|
37 |
+
An unfitted estimator.
|
38 |
+
|
39 |
+
n_features_to_select : "auto", int or float, default="auto"
|
40 |
+
If `"auto"`, the behaviour depends on the `tol` parameter:
|
41 |
+
|
42 |
+
- if `tol` is not `None`, then features are selected while the score
|
43 |
+
change does not exceed `tol`.
|
44 |
+
- otherwise, half of the features are selected.
|
45 |
+
|
46 |
+
If integer, the parameter is the absolute number of features to select.
|
47 |
+
If float between 0 and 1, it is the fraction of features to select.
|
48 |
+
|
49 |
+
.. versionadded:: 1.1
|
50 |
+
The option `"auto"` was added in version 1.1.
|
51 |
+
|
52 |
+
.. versionchanged:: 1.3
|
53 |
+
The default changed from `"warn"` to `"auto"` in 1.3.
|
54 |
+
|
55 |
+
tol : float, default=None
|
56 |
+
If the score is not incremented by at least `tol` between two
|
57 |
+
consecutive feature additions or removals, stop adding or removing.
|
58 |
+
|
59 |
+
`tol` can be negative when removing features using `direction="backward"`.
|
60 |
+
It can be useful to reduce the number of features at the cost of a small
|
61 |
+
decrease in the score.
|
62 |
+
|
63 |
+
`tol` is enabled only when `n_features_to_select` is `"auto"`.
|
64 |
+
|
65 |
+
.. versionadded:: 1.1
|
66 |
+
|
67 |
+
direction : {'forward', 'backward'}, default='forward'
|
68 |
+
Whether to perform forward selection or backward selection.
|
69 |
+
|
70 |
+
scoring : str or callable, default=None
|
71 |
+
A single str (see :ref:`scoring_parameter`) or a callable
|
72 |
+
(see :ref:`scoring`) to evaluate the predictions on the test set.
|
73 |
+
|
74 |
+
NOTE that when using a custom scorer, it should return a single
|
75 |
+
value.
|
76 |
+
|
77 |
+
If None, the estimator's score method is used.
|
78 |
+
|
79 |
+
cv : int, cross-validation generator or an iterable, default=None
|
80 |
+
Determines the cross-validation splitting strategy.
|
81 |
+
Possible inputs for cv are:
|
82 |
+
|
83 |
+
- None, to use the default 5-fold cross validation,
|
84 |
+
- integer, to specify the number of folds in a `(Stratified)KFold`,
|
85 |
+
- :term:`CV splitter`,
|
86 |
+
- An iterable yielding (train, test) splits as arrays of indices.
|
87 |
+
|
88 |
+
For integer/None inputs, if the estimator is a classifier and ``y`` is
|
89 |
+
either binary or multiclass,
|
90 |
+
:class:`~sklearn.model_selection.StratifiedKFold` is used. In all other
|
91 |
+
cases, :class:`~sklearn.model_selection.KFold` is used. These splitters
|
92 |
+
are instantiated with `shuffle=False` so the splits will be the same
|
93 |
+
across calls.
|
94 |
+
|
95 |
+
Refer :ref:`User Guide <cross_validation>` for the various
|
96 |
+
cross-validation strategies that can be used here.
|
97 |
+
|
98 |
+
n_jobs : int, default=None
|
99 |
+
Number of jobs to run in parallel. When evaluating a new feature to
|
100 |
+
add or remove, the cross-validation procedure is parallel over the
|
101 |
+
folds.
|
102 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
103 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
104 |
+
for more details.
|
105 |
+
|
106 |
+
Attributes
|
107 |
+
----------
|
108 |
+
n_features_in_ : int
|
109 |
+
Number of features seen during :term:`fit`. Only defined if the
|
110 |
+
underlying estimator exposes such an attribute when fit.
|
111 |
+
|
112 |
+
.. versionadded:: 0.24
|
113 |
+
|
114 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
115 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
116 |
+
has feature names that are all strings.
|
117 |
+
|
118 |
+
.. versionadded:: 1.0
|
119 |
+
|
120 |
+
n_features_to_select_ : int
|
121 |
+
The number of features that were selected.
|
122 |
+
|
123 |
+
support_ : ndarray of shape (n_features,), dtype=bool
|
124 |
+
The mask of selected features.
|
125 |
+
|
126 |
+
See Also
|
127 |
+
--------
|
128 |
+
GenericUnivariateSelect : Univariate feature selector with configurable
|
129 |
+
strategy.
|
130 |
+
RFE : Recursive feature elimination based on importance weights.
|
131 |
+
RFECV : Recursive feature elimination based on importance weights, with
|
132 |
+
automatic selection of the number of features.
|
133 |
+
SelectFromModel : Feature selection based on thresholds of importance
|
134 |
+
weights.
|
135 |
+
|
136 |
+
Examples
|
137 |
+
--------
|
138 |
+
>>> from sklearn.feature_selection import SequentialFeatureSelector
|
139 |
+
>>> from sklearn.neighbors import KNeighborsClassifier
|
140 |
+
>>> from sklearn.datasets import load_iris
|
141 |
+
>>> X, y = load_iris(return_X_y=True)
|
142 |
+
>>> knn = KNeighborsClassifier(n_neighbors=3)
|
143 |
+
>>> sfs = SequentialFeatureSelector(knn, n_features_to_select=3)
|
144 |
+
>>> sfs.fit(X, y)
|
145 |
+
SequentialFeatureSelector(estimator=KNeighborsClassifier(n_neighbors=3),
|
146 |
+
n_features_to_select=3)
|
147 |
+
>>> sfs.get_support()
|
148 |
+
array([ True, False, True, True])
|
149 |
+
>>> sfs.transform(X).shape
|
150 |
+
(150, 3)
|
151 |
+
"""
|
152 |
+
|
153 |
+
_parameter_constraints: dict = {
|
154 |
+
"estimator": [HasMethods(["fit"])],
|
155 |
+
"n_features_to_select": [
|
156 |
+
StrOptions({"auto"}),
|
157 |
+
Interval(RealNotInt, 0, 1, closed="right"),
|
158 |
+
Interval(Integral, 0, None, closed="neither"),
|
159 |
+
],
|
160 |
+
"tol": [None, Interval(Real, None, None, closed="neither")],
|
161 |
+
"direction": [StrOptions({"forward", "backward"})],
|
162 |
+
"scoring": [None, StrOptions(set(get_scorer_names())), callable],
|
163 |
+
"cv": ["cv_object"],
|
164 |
+
"n_jobs": [None, Integral],
|
165 |
+
}
|
166 |
+
|
167 |
+
def __init__(
|
168 |
+
self,
|
169 |
+
estimator,
|
170 |
+
*,
|
171 |
+
n_features_to_select="auto",
|
172 |
+
tol=None,
|
173 |
+
direction="forward",
|
174 |
+
scoring=None,
|
175 |
+
cv=5,
|
176 |
+
n_jobs=None,
|
177 |
+
):
|
178 |
+
self.estimator = estimator
|
179 |
+
self.n_features_to_select = n_features_to_select
|
180 |
+
self.tol = tol
|
181 |
+
self.direction = direction
|
182 |
+
self.scoring = scoring
|
183 |
+
self.cv = cv
|
184 |
+
self.n_jobs = n_jobs
|
185 |
+
|
186 |
+
@_fit_context(
|
187 |
+
# SequentialFeatureSelector.estimator is not validated yet
|
188 |
+
prefer_skip_nested_validation=False
|
189 |
+
)
|
190 |
+
def fit(self, X, y=None):
|
191 |
+
"""Learn the features to select from X.
|
192 |
+
|
193 |
+
Parameters
|
194 |
+
----------
|
195 |
+
X : array-like of shape (n_samples, n_features)
|
196 |
+
Training vectors, where `n_samples` is the number of samples and
|
197 |
+
`n_features` is the number of predictors.
|
198 |
+
|
199 |
+
y : array-like of shape (n_samples,), default=None
|
200 |
+
Target values. This parameter may be ignored for
|
201 |
+
unsupervised learning.
|
202 |
+
|
203 |
+
Returns
|
204 |
+
-------
|
205 |
+
self : object
|
206 |
+
Returns the instance itself.
|
207 |
+
"""
|
208 |
+
tags = self._get_tags()
|
209 |
+
X = self._validate_data(
|
210 |
+
X,
|
211 |
+
accept_sparse="csc",
|
212 |
+
ensure_min_features=2,
|
213 |
+
force_all_finite=not tags.get("allow_nan", True),
|
214 |
+
)
|
215 |
+
n_features = X.shape[1]
|
216 |
+
|
217 |
+
if self.n_features_to_select == "auto":
|
218 |
+
if self.tol is not None:
|
219 |
+
# With auto feature selection, `n_features_to_select_` will be updated
|
220 |
+
# to `support_.sum()` after features are selected.
|
221 |
+
self.n_features_to_select_ = n_features - 1
|
222 |
+
else:
|
223 |
+
self.n_features_to_select_ = n_features // 2
|
224 |
+
elif isinstance(self.n_features_to_select, Integral):
|
225 |
+
if self.n_features_to_select >= n_features:
|
226 |
+
raise ValueError("n_features_to_select must be < n_features.")
|
227 |
+
self.n_features_to_select_ = self.n_features_to_select
|
228 |
+
elif isinstance(self.n_features_to_select, Real):
|
229 |
+
self.n_features_to_select_ = int(n_features * self.n_features_to_select)
|
230 |
+
|
231 |
+
if self.tol is not None and self.tol < 0 and self.direction == "forward":
|
232 |
+
raise ValueError("tol must be positive when doing forward selection")
|
233 |
+
|
234 |
+
cv = check_cv(self.cv, y, classifier=is_classifier(self.estimator))
|
235 |
+
|
236 |
+
cloned_estimator = clone(self.estimator)
|
237 |
+
|
238 |
+
# the current mask corresponds to the set of features:
|
239 |
+
# - that we have already *selected* if we do forward selection
|
240 |
+
# - that we have already *excluded* if we do backward selection
|
241 |
+
current_mask = np.zeros(shape=n_features, dtype=bool)
|
242 |
+
n_iterations = (
|
243 |
+
self.n_features_to_select_
|
244 |
+
if self.n_features_to_select == "auto" or self.direction == "forward"
|
245 |
+
else n_features - self.n_features_to_select_
|
246 |
+
)
|
247 |
+
|
248 |
+
old_score = -np.inf
|
249 |
+
is_auto_select = self.tol is not None and self.n_features_to_select == "auto"
|
250 |
+
for _ in range(n_iterations):
|
251 |
+
new_feature_idx, new_score = self._get_best_new_feature_score(
|
252 |
+
cloned_estimator, X, y, cv, current_mask
|
253 |
+
)
|
254 |
+
if is_auto_select and ((new_score - old_score) < self.tol):
|
255 |
+
break
|
256 |
+
|
257 |
+
old_score = new_score
|
258 |
+
current_mask[new_feature_idx] = True
|
259 |
+
|
260 |
+
if self.direction == "backward":
|
261 |
+
current_mask = ~current_mask
|
262 |
+
|
263 |
+
self.support_ = current_mask
|
264 |
+
self.n_features_to_select_ = self.support_.sum()
|
265 |
+
|
266 |
+
return self
|
267 |
+
|
268 |
+
def _get_best_new_feature_score(self, estimator, X, y, cv, current_mask):
|
269 |
+
# Return the best new feature and its score to add to the current_mask,
|
270 |
+
# i.e. return the best new feature and its score to add (resp. remove)
|
271 |
+
# when doing forward selection (resp. backward selection).
|
272 |
+
# Feature will be added if the current score and past score are greater
|
273 |
+
# than tol when n_feature is auto,
|
274 |
+
candidate_feature_indices = np.flatnonzero(~current_mask)
|
275 |
+
scores = {}
|
276 |
+
for feature_idx in candidate_feature_indices:
|
277 |
+
candidate_mask = current_mask.copy()
|
278 |
+
candidate_mask[feature_idx] = True
|
279 |
+
if self.direction == "backward":
|
280 |
+
candidate_mask = ~candidate_mask
|
281 |
+
X_new = X[:, candidate_mask]
|
282 |
+
scores[feature_idx] = cross_val_score(
|
283 |
+
estimator,
|
284 |
+
X_new,
|
285 |
+
y,
|
286 |
+
cv=cv,
|
287 |
+
scoring=self.scoring,
|
288 |
+
n_jobs=self.n_jobs,
|
289 |
+
).mean()
|
290 |
+
new_feature_idx = max(scores, key=lambda feature_idx: scores[feature_idx])
|
291 |
+
return new_feature_idx, scores[new_feature_idx]
|
292 |
+
|
293 |
+
def _get_support_mask(self):
|
294 |
+
check_is_fitted(self)
|
295 |
+
return self.support_
|
296 |
+
|
297 |
+
def _more_tags(self):
|
298 |
+
return {
|
299 |
+
"allow_nan": _safe_tags(self.estimator, key="allow_nan"),
|
300 |
+
}
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_univariate_selection.py
ADDED
@@ -0,0 +1,1161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Univariate features selection."""
|
2 |
+
|
3 |
+
# Authors: V. Michel, B. Thirion, G. Varoquaux, A. Gramfort, E. Duchesnay.
|
4 |
+
# L. Buitinck, A. Joly
|
5 |
+
# License: BSD 3 clause
|
6 |
+
|
7 |
+
|
8 |
+
import warnings
|
9 |
+
from numbers import Integral, Real
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
from scipy import special, stats
|
13 |
+
from scipy.sparse import issparse
|
14 |
+
|
15 |
+
from ..base import BaseEstimator, _fit_context
|
16 |
+
from ..preprocessing import LabelBinarizer
|
17 |
+
from ..utils import as_float_array, check_array, check_X_y, safe_mask, safe_sqr
|
18 |
+
from ..utils._param_validation import Interval, StrOptions, validate_params
|
19 |
+
from ..utils.extmath import row_norms, safe_sparse_dot
|
20 |
+
from ..utils.validation import check_is_fitted
|
21 |
+
from ._base import SelectorMixin
|
22 |
+
|
23 |
+
|
24 |
+
def _clean_nans(scores):
|
25 |
+
"""
|
26 |
+
Fixes Issue #1240: NaNs can't be properly compared, so change them to the
|
27 |
+
smallest value of scores's dtype. -inf seems to be unreliable.
|
28 |
+
"""
|
29 |
+
# XXX where should this function be called? fit? scoring functions
|
30 |
+
# themselves?
|
31 |
+
scores = as_float_array(scores, copy=True)
|
32 |
+
scores[np.isnan(scores)] = np.finfo(scores.dtype).min
|
33 |
+
return scores
|
34 |
+
|
35 |
+
|
36 |
+
######################################################################
|
37 |
+
# Scoring functions
|
38 |
+
|
39 |
+
|
40 |
+
# The following function is a rewriting of scipy.stats.f_oneway
|
41 |
+
# Contrary to the scipy.stats.f_oneway implementation it does not
|
42 |
+
# copy the data while keeping the inputs unchanged.
|
43 |
+
def f_oneway(*args):
|
44 |
+
"""Perform a 1-way ANOVA.
|
45 |
+
|
46 |
+
The one-way ANOVA tests the null hypothesis that 2 or more groups have
|
47 |
+
the same population mean. The test is applied to samples from two or
|
48 |
+
more groups, possibly with differing sizes.
|
49 |
+
|
50 |
+
Read more in the :ref:`User Guide <univariate_feature_selection>`.
|
51 |
+
|
52 |
+
Parameters
|
53 |
+
----------
|
54 |
+
*args : {array-like, sparse matrix}
|
55 |
+
Sample1, sample2... The sample measurements should be given as
|
56 |
+
arguments.
|
57 |
+
|
58 |
+
Returns
|
59 |
+
-------
|
60 |
+
f_statistic : float
|
61 |
+
The computed F-value of the test.
|
62 |
+
p_value : float
|
63 |
+
The associated p-value from the F-distribution.
|
64 |
+
|
65 |
+
Notes
|
66 |
+
-----
|
67 |
+
The ANOVA test has important assumptions that must be satisfied in order
|
68 |
+
for the associated p-value to be valid.
|
69 |
+
|
70 |
+
1. The samples are independent
|
71 |
+
2. Each sample is from a normally distributed population
|
72 |
+
3. The population standard deviations of the groups are all equal. This
|
73 |
+
property is known as homoscedasticity.
|
74 |
+
|
75 |
+
If these assumptions are not true for a given set of data, it may still be
|
76 |
+
possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`_) although
|
77 |
+
with some loss of power.
|
78 |
+
|
79 |
+
The algorithm is from Heiman[2], pp.394-7.
|
80 |
+
|
81 |
+
See ``scipy.stats.f_oneway`` that should give the same results while
|
82 |
+
being less efficient.
|
83 |
+
|
84 |
+
References
|
85 |
+
----------
|
86 |
+
.. [1] Lowry, Richard. "Concepts and Applications of Inferential
|
87 |
+
Statistics". Chapter 14.
|
88 |
+
http://vassarstats.net/textbook
|
89 |
+
|
90 |
+
.. [2] Heiman, G.W. Research Methods in Statistics. 2002.
|
91 |
+
"""
|
92 |
+
n_classes = len(args)
|
93 |
+
args = [as_float_array(a) for a in args]
|
94 |
+
n_samples_per_class = np.array([a.shape[0] for a in args])
|
95 |
+
n_samples = np.sum(n_samples_per_class)
|
96 |
+
ss_alldata = sum(safe_sqr(a).sum(axis=0) for a in args)
|
97 |
+
sums_args = [np.asarray(a.sum(axis=0)) for a in args]
|
98 |
+
square_of_sums_alldata = sum(sums_args) ** 2
|
99 |
+
square_of_sums_args = [s**2 for s in sums_args]
|
100 |
+
sstot = ss_alldata - square_of_sums_alldata / float(n_samples)
|
101 |
+
ssbn = 0.0
|
102 |
+
for k, _ in enumerate(args):
|
103 |
+
ssbn += square_of_sums_args[k] / n_samples_per_class[k]
|
104 |
+
ssbn -= square_of_sums_alldata / float(n_samples)
|
105 |
+
sswn = sstot - ssbn
|
106 |
+
dfbn = n_classes - 1
|
107 |
+
dfwn = n_samples - n_classes
|
108 |
+
msb = ssbn / float(dfbn)
|
109 |
+
msw = sswn / float(dfwn)
|
110 |
+
constant_features_idx = np.where(msw == 0.0)[0]
|
111 |
+
if np.nonzero(msb)[0].size != msb.size and constant_features_idx.size:
|
112 |
+
warnings.warn("Features %s are constant." % constant_features_idx, UserWarning)
|
113 |
+
f = msb / msw
|
114 |
+
# flatten matrix to vector in sparse case
|
115 |
+
f = np.asarray(f).ravel()
|
116 |
+
prob = special.fdtrc(dfbn, dfwn, f)
|
117 |
+
return f, prob
|
118 |
+
|
119 |
+
|
120 |
+
@validate_params(
|
121 |
+
{
|
122 |
+
"X": ["array-like", "sparse matrix"],
|
123 |
+
"y": ["array-like"],
|
124 |
+
},
|
125 |
+
prefer_skip_nested_validation=True,
|
126 |
+
)
|
127 |
+
def f_classif(X, y):
|
128 |
+
"""Compute the ANOVA F-value for the provided sample.
|
129 |
+
|
130 |
+
Read more in the :ref:`User Guide <univariate_feature_selection>`.
|
131 |
+
|
132 |
+
Parameters
|
133 |
+
----------
|
134 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
135 |
+
The set of regressors that will be tested sequentially.
|
136 |
+
|
137 |
+
y : array-like of shape (n_samples,)
|
138 |
+
The target vector.
|
139 |
+
|
140 |
+
Returns
|
141 |
+
-------
|
142 |
+
f_statistic : ndarray of shape (n_features,)
|
143 |
+
F-statistic for each feature.
|
144 |
+
|
145 |
+
p_values : ndarray of shape (n_features,)
|
146 |
+
P-values associated with the F-statistic.
|
147 |
+
|
148 |
+
See Also
|
149 |
+
--------
|
150 |
+
chi2 : Chi-squared stats of non-negative features for classification tasks.
|
151 |
+
f_regression : F-value between label/feature for regression tasks.
|
152 |
+
|
153 |
+
Examples
|
154 |
+
--------
|
155 |
+
>>> from sklearn.datasets import make_classification
|
156 |
+
>>> from sklearn.feature_selection import f_classif
|
157 |
+
>>> X, y = make_classification(
|
158 |
+
... n_samples=100, n_features=10, n_informative=2, n_clusters_per_class=1,
|
159 |
+
... shuffle=False, random_state=42
|
160 |
+
... )
|
161 |
+
>>> f_statistic, p_values = f_classif(X, y)
|
162 |
+
>>> f_statistic
|
163 |
+
array([2.2...e+02, 7.0...e-01, 1.6...e+00, 9.3...e-01,
|
164 |
+
5.4...e+00, 3.2...e-01, 4.7...e-02, 5.7...e-01,
|
165 |
+
7.5...e-01, 8.9...e-02])
|
166 |
+
>>> p_values
|
167 |
+
array([7.1...e-27, 4.0...e-01, 1.9...e-01, 3.3...e-01,
|
168 |
+
2.2...e-02, 5.7...e-01, 8.2...e-01, 4.5...e-01,
|
169 |
+
3.8...e-01, 7.6...e-01])
|
170 |
+
"""
|
171 |
+
X, y = check_X_y(X, y, accept_sparse=["csr", "csc", "coo"])
|
172 |
+
args = [X[safe_mask(X, y == k)] for k in np.unique(y)]
|
173 |
+
return f_oneway(*args)
|
174 |
+
|
175 |
+
|
176 |
+
def _chisquare(f_obs, f_exp):
|
177 |
+
"""Fast replacement for scipy.stats.chisquare.
|
178 |
+
|
179 |
+
Version from https://github.com/scipy/scipy/pull/2525 with additional
|
180 |
+
optimizations.
|
181 |
+
"""
|
182 |
+
f_obs = np.asarray(f_obs, dtype=np.float64)
|
183 |
+
|
184 |
+
k = len(f_obs)
|
185 |
+
# Reuse f_obs for chi-squared statistics
|
186 |
+
chisq = f_obs
|
187 |
+
chisq -= f_exp
|
188 |
+
chisq **= 2
|
189 |
+
with np.errstate(invalid="ignore"):
|
190 |
+
chisq /= f_exp
|
191 |
+
chisq = chisq.sum(axis=0)
|
192 |
+
return chisq, special.chdtrc(k - 1, chisq)
|
193 |
+
|
194 |
+
|
195 |
+
@validate_params(
|
196 |
+
{
|
197 |
+
"X": ["array-like", "sparse matrix"],
|
198 |
+
"y": ["array-like"],
|
199 |
+
},
|
200 |
+
prefer_skip_nested_validation=True,
|
201 |
+
)
|
202 |
+
def chi2(X, y):
|
203 |
+
"""Compute chi-squared stats between each non-negative feature and class.
|
204 |
+
|
205 |
+
This score can be used to select the `n_features` features with the
|
206 |
+
highest values for the test chi-squared statistic from X, which must
|
207 |
+
contain only **non-negative features** such as booleans or frequencies
|
208 |
+
(e.g., term counts in document classification), relative to the classes.
|
209 |
+
|
210 |
+
Recall that the chi-square test measures dependence between stochastic
|
211 |
+
variables, so using this function "weeds out" the features that are the
|
212 |
+
most likely to be independent of class and therefore irrelevant for
|
213 |
+
classification.
|
214 |
+
|
215 |
+
Read more in the :ref:`User Guide <univariate_feature_selection>`.
|
216 |
+
|
217 |
+
Parameters
|
218 |
+
----------
|
219 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
220 |
+
Sample vectors.
|
221 |
+
|
222 |
+
y : array-like of shape (n_samples,)
|
223 |
+
Target vector (class labels).
|
224 |
+
|
225 |
+
Returns
|
226 |
+
-------
|
227 |
+
chi2 : ndarray of shape (n_features,)
|
228 |
+
Chi2 statistics for each feature.
|
229 |
+
|
230 |
+
p_values : ndarray of shape (n_features,)
|
231 |
+
P-values for each feature.
|
232 |
+
|
233 |
+
See Also
|
234 |
+
--------
|
235 |
+
f_classif : ANOVA F-value between label/feature for classification tasks.
|
236 |
+
f_regression : F-value between label/feature for regression tasks.
|
237 |
+
|
238 |
+
Notes
|
239 |
+
-----
|
240 |
+
Complexity of this algorithm is O(n_classes * n_features).
|
241 |
+
|
242 |
+
Examples
|
243 |
+
--------
|
244 |
+
>>> import numpy as np
|
245 |
+
>>> from sklearn.feature_selection import chi2
|
246 |
+
>>> X = np.array([[1, 1, 3],
|
247 |
+
... [0, 1, 5],
|
248 |
+
... [5, 4, 1],
|
249 |
+
... [6, 6, 2],
|
250 |
+
... [1, 4, 0],
|
251 |
+
... [0, 0, 0]])
|
252 |
+
>>> y = np.array([1, 1, 0, 0, 2, 2])
|
253 |
+
>>> chi2_stats, p_values = chi2(X, y)
|
254 |
+
>>> chi2_stats
|
255 |
+
array([15.3..., 6.5 , 8.9...])
|
256 |
+
>>> p_values
|
257 |
+
array([0.0004..., 0.0387..., 0.0116... ])
|
258 |
+
"""
|
259 |
+
|
260 |
+
# XXX: we might want to do some of the following in logspace instead for
|
261 |
+
# numerical stability.
|
262 |
+
# Converting X to float allows getting better performance for the
|
263 |
+
# safe_sparse_dot call made below.
|
264 |
+
X = check_array(X, accept_sparse="csr", dtype=(np.float64, np.float32))
|
265 |
+
if np.any((X.data if issparse(X) else X) < 0):
|
266 |
+
raise ValueError("Input X must be non-negative.")
|
267 |
+
|
268 |
+
# Use a sparse representation for Y by default to reduce memory usage when
|
269 |
+
# y has many unique classes.
|
270 |
+
Y = LabelBinarizer(sparse_output=True).fit_transform(y)
|
271 |
+
if Y.shape[1] == 1:
|
272 |
+
Y = Y.toarray()
|
273 |
+
Y = np.append(1 - Y, Y, axis=1)
|
274 |
+
|
275 |
+
observed = safe_sparse_dot(Y.T, X) # n_classes * n_features
|
276 |
+
|
277 |
+
if issparse(observed):
|
278 |
+
# convert back to a dense array before calling _chisquare
|
279 |
+
# XXX: could _chisquare be reimplement to accept sparse matrices for
|
280 |
+
# cases where both n_classes and n_features are large (and X is
|
281 |
+
# sparse)?
|
282 |
+
observed = observed.toarray()
|
283 |
+
|
284 |
+
feature_count = X.sum(axis=0).reshape(1, -1)
|
285 |
+
class_prob = Y.mean(axis=0).reshape(1, -1)
|
286 |
+
expected = np.dot(class_prob.T, feature_count)
|
287 |
+
|
288 |
+
return _chisquare(observed, expected)
|
289 |
+
|
290 |
+
|
291 |
+
@validate_params(
|
292 |
+
{
|
293 |
+
"X": ["array-like", "sparse matrix"],
|
294 |
+
"y": ["array-like"],
|
295 |
+
"center": ["boolean"],
|
296 |
+
"force_finite": ["boolean"],
|
297 |
+
},
|
298 |
+
prefer_skip_nested_validation=True,
|
299 |
+
)
|
300 |
+
def r_regression(X, y, *, center=True, force_finite=True):
|
301 |
+
"""Compute Pearson's r for each features and the target.
|
302 |
+
|
303 |
+
Pearson's r is also known as the Pearson correlation coefficient.
|
304 |
+
|
305 |
+
Linear model for testing the individual effect of each of many regressors.
|
306 |
+
This is a scoring function to be used in a feature selection procedure, not
|
307 |
+
a free standing feature selection procedure.
|
308 |
+
|
309 |
+
The cross correlation between each regressor and the target is computed
|
310 |
+
as::
|
311 |
+
|
312 |
+
E[(X[:, i] - mean(X[:, i])) * (y - mean(y))] / (std(X[:, i]) * std(y))
|
313 |
+
|
314 |
+
For more on usage see the :ref:`User Guide <univariate_feature_selection>`.
|
315 |
+
|
316 |
+
.. versionadded:: 1.0
|
317 |
+
|
318 |
+
Parameters
|
319 |
+
----------
|
320 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
321 |
+
The data matrix.
|
322 |
+
|
323 |
+
y : array-like of shape (n_samples,)
|
324 |
+
The target vector.
|
325 |
+
|
326 |
+
center : bool, default=True
|
327 |
+
Whether or not to center the data matrix `X` and the target vector `y`.
|
328 |
+
By default, `X` and `y` will be centered.
|
329 |
+
|
330 |
+
force_finite : bool, default=True
|
331 |
+
Whether or not to force the Pearson's R correlation to be finite.
|
332 |
+
In the particular case where some features in `X` or the target `y`
|
333 |
+
are constant, the Pearson's R correlation is not defined. When
|
334 |
+
`force_finite=False`, a correlation of `np.nan` is returned to
|
335 |
+
acknowledge this case. When `force_finite=True`, this value will be
|
336 |
+
forced to a minimal correlation of `0.0`.
|
337 |
+
|
338 |
+
.. versionadded:: 1.1
|
339 |
+
|
340 |
+
Returns
|
341 |
+
-------
|
342 |
+
correlation_coefficient : ndarray of shape (n_features,)
|
343 |
+
Pearson's R correlation coefficients of features.
|
344 |
+
|
345 |
+
See Also
|
346 |
+
--------
|
347 |
+
f_regression: Univariate linear regression tests returning f-statistic
|
348 |
+
and p-values.
|
349 |
+
mutual_info_regression: Mutual information for a continuous target.
|
350 |
+
f_classif: ANOVA F-value between label/feature for classification tasks.
|
351 |
+
chi2: Chi-squared stats of non-negative features for classification tasks.
|
352 |
+
|
353 |
+
Examples
|
354 |
+
--------
|
355 |
+
>>> from sklearn.datasets import make_regression
|
356 |
+
>>> from sklearn.feature_selection import r_regression
|
357 |
+
>>> X, y = make_regression(
|
358 |
+
... n_samples=50, n_features=3, n_informative=1, noise=1e-4, random_state=42
|
359 |
+
... )
|
360 |
+
>>> r_regression(X, y)
|
361 |
+
array([-0.15..., 1. , -0.22...])
|
362 |
+
"""
|
363 |
+
X, y = check_X_y(X, y, accept_sparse=["csr", "csc", "coo"], dtype=np.float64)
|
364 |
+
n_samples = X.shape[0]
|
365 |
+
|
366 |
+
# Compute centered values
|
367 |
+
# Note that E[(x - mean(x))*(y - mean(y))] = E[x*(y - mean(y))], so we
|
368 |
+
# need not center X
|
369 |
+
if center:
|
370 |
+
y = y - np.mean(y)
|
371 |
+
# TODO: for Scipy <= 1.10, `isspmatrix(X)` returns `True` for sparse arrays.
|
372 |
+
# Here, we check the output of the `.mean` operation that returns a `np.matrix`
|
373 |
+
# for sparse matrices while a `np.array` for dense and sparse arrays.
|
374 |
+
# We can reconsider using `isspmatrix` when the minimum version is
|
375 |
+
# SciPy >= 1.11
|
376 |
+
X_means = X.mean(axis=0)
|
377 |
+
X_means = X_means.getA1() if isinstance(X_means, np.matrix) else X_means
|
378 |
+
# Compute the scaled standard deviations via moments
|
379 |
+
X_norms = np.sqrt(row_norms(X.T, squared=True) - n_samples * X_means**2)
|
380 |
+
else:
|
381 |
+
X_norms = row_norms(X.T)
|
382 |
+
|
383 |
+
correlation_coefficient = safe_sparse_dot(y, X)
|
384 |
+
with np.errstate(divide="ignore", invalid="ignore"):
|
385 |
+
correlation_coefficient /= X_norms
|
386 |
+
correlation_coefficient /= np.linalg.norm(y)
|
387 |
+
|
388 |
+
if force_finite and not np.isfinite(correlation_coefficient).all():
|
389 |
+
# case where the target or some features are constant
|
390 |
+
# the correlation coefficient(s) is/are set to the minimum (i.e. 0.0)
|
391 |
+
nan_mask = np.isnan(correlation_coefficient)
|
392 |
+
correlation_coefficient[nan_mask] = 0.0
|
393 |
+
return correlation_coefficient
|
394 |
+
|
395 |
+
|
396 |
+
@validate_params(
|
397 |
+
{
|
398 |
+
"X": ["array-like", "sparse matrix"],
|
399 |
+
"y": ["array-like"],
|
400 |
+
"center": ["boolean"],
|
401 |
+
"force_finite": ["boolean"],
|
402 |
+
},
|
403 |
+
prefer_skip_nested_validation=True,
|
404 |
+
)
|
405 |
+
def f_regression(X, y, *, center=True, force_finite=True):
|
406 |
+
"""Univariate linear regression tests returning F-statistic and p-values.
|
407 |
+
|
408 |
+
Quick linear model for testing the effect of a single regressor,
|
409 |
+
sequentially for many regressors.
|
410 |
+
|
411 |
+
This is done in 2 steps:
|
412 |
+
|
413 |
+
1. The cross correlation between each regressor and the target is computed
|
414 |
+
using :func:`r_regression` as::
|
415 |
+
|
416 |
+
E[(X[:, i] - mean(X[:, i])) * (y - mean(y))] / (std(X[:, i]) * std(y))
|
417 |
+
|
418 |
+
2. It is converted to an F score and then to a p-value.
|
419 |
+
|
420 |
+
:func:`f_regression` is derived from :func:`r_regression` and will rank
|
421 |
+
features in the same order if all the features are positively correlated
|
422 |
+
with the target.
|
423 |
+
|
424 |
+
Note however that contrary to :func:`f_regression`, :func:`r_regression`
|
425 |
+
values lie in [-1, 1] and can thus be negative. :func:`f_regression` is
|
426 |
+
therefore recommended as a feature selection criterion to identify
|
427 |
+
potentially predictive feature for a downstream classifier, irrespective of
|
428 |
+
the sign of the association with the target variable.
|
429 |
+
|
430 |
+
Furthermore :func:`f_regression` returns p-values while
|
431 |
+
:func:`r_regression` does not.
|
432 |
+
|
433 |
+
Read more in the :ref:`User Guide <univariate_feature_selection>`.
|
434 |
+
|
435 |
+
Parameters
|
436 |
+
----------
|
437 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
438 |
+
The data matrix.
|
439 |
+
|
440 |
+
y : array-like of shape (n_samples,)
|
441 |
+
The target vector.
|
442 |
+
|
443 |
+
center : bool, default=True
|
444 |
+
Whether or not to center the data matrix `X` and the target vector `y`.
|
445 |
+
By default, `X` and `y` will be centered.
|
446 |
+
|
447 |
+
force_finite : bool, default=True
|
448 |
+
Whether or not to force the F-statistics and associated p-values to
|
449 |
+
be finite. There are two cases where the F-statistic is expected to not
|
450 |
+
be finite:
|
451 |
+
|
452 |
+
- when the target `y` or some features in `X` are constant. In this
|
453 |
+
case, the Pearson's R correlation is not defined leading to obtain
|
454 |
+
`np.nan` values in the F-statistic and p-value. When
|
455 |
+
`force_finite=True`, the F-statistic is set to `0.0` and the
|
456 |
+
associated p-value is set to `1.0`.
|
457 |
+
- when a feature in `X` is perfectly correlated (or
|
458 |
+
anti-correlated) with the target `y`. In this case, the F-statistic
|
459 |
+
is expected to be `np.inf`. When `force_finite=True`, the F-statistic
|
460 |
+
is set to `np.finfo(dtype).max` and the associated p-value is set to
|
461 |
+
`0.0`.
|
462 |
+
|
463 |
+
.. versionadded:: 1.1
|
464 |
+
|
465 |
+
Returns
|
466 |
+
-------
|
467 |
+
f_statistic : ndarray of shape (n_features,)
|
468 |
+
F-statistic for each feature.
|
469 |
+
|
470 |
+
p_values : ndarray of shape (n_features,)
|
471 |
+
P-values associated with the F-statistic.
|
472 |
+
|
473 |
+
See Also
|
474 |
+
--------
|
475 |
+
r_regression: Pearson's R between label/feature for regression tasks.
|
476 |
+
f_classif: ANOVA F-value between label/feature for classification tasks.
|
477 |
+
chi2: Chi-squared stats of non-negative features for classification tasks.
|
478 |
+
SelectKBest: Select features based on the k highest scores.
|
479 |
+
SelectFpr: Select features based on a false positive rate test.
|
480 |
+
SelectFdr: Select features based on an estimated false discovery rate.
|
481 |
+
SelectFwe: Select features based on family-wise error rate.
|
482 |
+
SelectPercentile: Select features based on percentile of the highest
|
483 |
+
scores.
|
484 |
+
|
485 |
+
Examples
|
486 |
+
--------
|
487 |
+
>>> from sklearn.datasets import make_regression
|
488 |
+
>>> from sklearn.feature_selection import f_regression
|
489 |
+
>>> X, y = make_regression(
|
490 |
+
... n_samples=50, n_features=3, n_informative=1, noise=1e-4, random_state=42
|
491 |
+
... )
|
492 |
+
>>> f_statistic, p_values = f_regression(X, y)
|
493 |
+
>>> f_statistic
|
494 |
+
array([1.2...+00, 2.6...+13, 2.6...+00])
|
495 |
+
>>> p_values
|
496 |
+
array([2.7..., 1.5..., 1.0...])
|
497 |
+
"""
|
498 |
+
correlation_coefficient = r_regression(
|
499 |
+
X, y, center=center, force_finite=force_finite
|
500 |
+
)
|
501 |
+
deg_of_freedom = y.size - (2 if center else 1)
|
502 |
+
|
503 |
+
corr_coef_squared = correlation_coefficient**2
|
504 |
+
|
505 |
+
with np.errstate(divide="ignore", invalid="ignore"):
|
506 |
+
f_statistic = corr_coef_squared / (1 - corr_coef_squared) * deg_of_freedom
|
507 |
+
p_values = stats.f.sf(f_statistic, 1, deg_of_freedom)
|
508 |
+
|
509 |
+
if force_finite and not np.isfinite(f_statistic).all():
|
510 |
+
# case where there is a perfect (anti-)correlation
|
511 |
+
# f-statistics can be set to the maximum and p-values to zero
|
512 |
+
mask_inf = np.isinf(f_statistic)
|
513 |
+
f_statistic[mask_inf] = np.finfo(f_statistic.dtype).max
|
514 |
+
# case where the target or some features are constant
|
515 |
+
# f-statistics would be minimum and thus p-values large
|
516 |
+
mask_nan = np.isnan(f_statistic)
|
517 |
+
f_statistic[mask_nan] = 0.0
|
518 |
+
p_values[mask_nan] = 1.0
|
519 |
+
return f_statistic, p_values
|
520 |
+
|
521 |
+
|
522 |
+
######################################################################
|
523 |
+
# Base classes
|
524 |
+
|
525 |
+
|
526 |
+
class _BaseFilter(SelectorMixin, BaseEstimator):
|
527 |
+
"""Initialize the univariate feature selection.
|
528 |
+
|
529 |
+
Parameters
|
530 |
+
----------
|
531 |
+
score_func : callable
|
532 |
+
Function taking two arrays X and y, and returning a pair of arrays
|
533 |
+
(scores, pvalues) or a single array with scores.
|
534 |
+
"""
|
535 |
+
|
536 |
+
_parameter_constraints: dict = {"score_func": [callable]}
|
537 |
+
|
538 |
+
def __init__(self, score_func):
|
539 |
+
self.score_func = score_func
|
540 |
+
|
541 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
542 |
+
def fit(self, X, y=None):
|
543 |
+
"""Run score function on (X, y) and get the appropriate features.
|
544 |
+
|
545 |
+
Parameters
|
546 |
+
----------
|
547 |
+
X : array-like of shape (n_samples, n_features)
|
548 |
+
The training input samples.
|
549 |
+
|
550 |
+
y : array-like of shape (n_samples,) or None
|
551 |
+
The target values (class labels in classification, real numbers in
|
552 |
+
regression). If the selector is unsupervised then `y` can be set to `None`.
|
553 |
+
|
554 |
+
Returns
|
555 |
+
-------
|
556 |
+
self : object
|
557 |
+
Returns the instance itself.
|
558 |
+
"""
|
559 |
+
if y is None:
|
560 |
+
X = self._validate_data(X, accept_sparse=["csr", "csc"])
|
561 |
+
else:
|
562 |
+
X, y = self._validate_data(
|
563 |
+
X, y, accept_sparse=["csr", "csc"], multi_output=True
|
564 |
+
)
|
565 |
+
|
566 |
+
self._check_params(X, y)
|
567 |
+
score_func_ret = self.score_func(X, y)
|
568 |
+
if isinstance(score_func_ret, (list, tuple)):
|
569 |
+
self.scores_, self.pvalues_ = score_func_ret
|
570 |
+
self.pvalues_ = np.asarray(self.pvalues_)
|
571 |
+
else:
|
572 |
+
self.scores_ = score_func_ret
|
573 |
+
self.pvalues_ = None
|
574 |
+
|
575 |
+
self.scores_ = np.asarray(self.scores_)
|
576 |
+
|
577 |
+
return self
|
578 |
+
|
579 |
+
def _check_params(self, X, y):
|
580 |
+
pass
|
581 |
+
|
582 |
+
def _more_tags(self):
|
583 |
+
return {"requires_y": True}
|
584 |
+
|
585 |
+
|
586 |
+
######################################################################
|
587 |
+
# Specific filters
|
588 |
+
######################################################################
|
589 |
+
class SelectPercentile(_BaseFilter):
|
590 |
+
"""Select features according to a percentile of the highest scores.
|
591 |
+
|
592 |
+
Read more in the :ref:`User Guide <univariate_feature_selection>`.
|
593 |
+
|
594 |
+
Parameters
|
595 |
+
----------
|
596 |
+
score_func : callable, default=f_classif
|
597 |
+
Function taking two arrays X and y, and returning a pair of arrays
|
598 |
+
(scores, pvalues) or a single array with scores.
|
599 |
+
Default is f_classif (see below "See Also"). The default function only
|
600 |
+
works with classification tasks.
|
601 |
+
|
602 |
+
.. versionadded:: 0.18
|
603 |
+
|
604 |
+
percentile : int, default=10
|
605 |
+
Percent of features to keep.
|
606 |
+
|
607 |
+
Attributes
|
608 |
+
----------
|
609 |
+
scores_ : array-like of shape (n_features,)
|
610 |
+
Scores of features.
|
611 |
+
|
612 |
+
pvalues_ : array-like of shape (n_features,)
|
613 |
+
p-values of feature scores, None if `score_func` returned only scores.
|
614 |
+
|
615 |
+
n_features_in_ : int
|
616 |
+
Number of features seen during :term:`fit`.
|
617 |
+
|
618 |
+
.. versionadded:: 0.24
|
619 |
+
|
620 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
621 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
622 |
+
has feature names that are all strings.
|
623 |
+
|
624 |
+
.. versionadded:: 1.0
|
625 |
+
|
626 |
+
See Also
|
627 |
+
--------
|
628 |
+
f_classif : ANOVA F-value between label/feature for classification tasks.
|
629 |
+
mutual_info_classif : Mutual information for a discrete target.
|
630 |
+
chi2 : Chi-squared stats of non-negative features for classification tasks.
|
631 |
+
f_regression : F-value between label/feature for regression tasks.
|
632 |
+
mutual_info_regression : Mutual information for a continuous target.
|
633 |
+
SelectKBest : Select features based on the k highest scores.
|
634 |
+
SelectFpr : Select features based on a false positive rate test.
|
635 |
+
SelectFdr : Select features based on an estimated false discovery rate.
|
636 |
+
SelectFwe : Select features based on family-wise error rate.
|
637 |
+
GenericUnivariateSelect : Univariate feature selector with configurable
|
638 |
+
mode.
|
639 |
+
|
640 |
+
Notes
|
641 |
+
-----
|
642 |
+
Ties between features with equal scores will be broken in an unspecified
|
643 |
+
way.
|
644 |
+
|
645 |
+
This filter supports unsupervised feature selection that only requests `X` for
|
646 |
+
computing the scores.
|
647 |
+
|
648 |
+
Examples
|
649 |
+
--------
|
650 |
+
>>> from sklearn.datasets import load_digits
|
651 |
+
>>> from sklearn.feature_selection import SelectPercentile, chi2
|
652 |
+
>>> X, y = load_digits(return_X_y=True)
|
653 |
+
>>> X.shape
|
654 |
+
(1797, 64)
|
655 |
+
>>> X_new = SelectPercentile(chi2, percentile=10).fit_transform(X, y)
|
656 |
+
>>> X_new.shape
|
657 |
+
(1797, 7)
|
658 |
+
"""
|
659 |
+
|
660 |
+
_parameter_constraints: dict = {
|
661 |
+
**_BaseFilter._parameter_constraints,
|
662 |
+
"percentile": [Interval(Real, 0, 100, closed="both")],
|
663 |
+
}
|
664 |
+
|
665 |
+
def __init__(self, score_func=f_classif, *, percentile=10):
|
666 |
+
super().__init__(score_func=score_func)
|
667 |
+
self.percentile = percentile
|
668 |
+
|
669 |
+
def _get_support_mask(self):
|
670 |
+
check_is_fitted(self)
|
671 |
+
|
672 |
+
# Cater for NaNs
|
673 |
+
if self.percentile == 100:
|
674 |
+
return np.ones(len(self.scores_), dtype=bool)
|
675 |
+
elif self.percentile == 0:
|
676 |
+
return np.zeros(len(self.scores_), dtype=bool)
|
677 |
+
|
678 |
+
scores = _clean_nans(self.scores_)
|
679 |
+
threshold = np.percentile(scores, 100 - self.percentile)
|
680 |
+
mask = scores > threshold
|
681 |
+
ties = np.where(scores == threshold)[0]
|
682 |
+
if len(ties):
|
683 |
+
max_feats = int(len(scores) * self.percentile / 100)
|
684 |
+
kept_ties = ties[: max_feats - mask.sum()]
|
685 |
+
mask[kept_ties] = True
|
686 |
+
return mask
|
687 |
+
|
688 |
+
def _more_tags(self):
|
689 |
+
return {"requires_y": False}
|
690 |
+
|
691 |
+
|
692 |
+
class SelectKBest(_BaseFilter):
|
693 |
+
"""Select features according to the k highest scores.
|
694 |
+
|
695 |
+
Read more in the :ref:`User Guide <univariate_feature_selection>`.
|
696 |
+
|
697 |
+
Parameters
|
698 |
+
----------
|
699 |
+
score_func : callable, default=f_classif
|
700 |
+
Function taking two arrays X and y, and returning a pair of arrays
|
701 |
+
(scores, pvalues) or a single array with scores.
|
702 |
+
Default is f_classif (see below "See Also"). The default function only
|
703 |
+
works with classification tasks.
|
704 |
+
|
705 |
+
.. versionadded:: 0.18
|
706 |
+
|
707 |
+
k : int or "all", default=10
|
708 |
+
Number of top features to select.
|
709 |
+
The "all" option bypasses selection, for use in a parameter search.
|
710 |
+
|
711 |
+
Attributes
|
712 |
+
----------
|
713 |
+
scores_ : array-like of shape (n_features,)
|
714 |
+
Scores of features.
|
715 |
+
|
716 |
+
pvalues_ : array-like of shape (n_features,)
|
717 |
+
p-values of feature scores, None if `score_func` returned only scores.
|
718 |
+
|
719 |
+
n_features_in_ : int
|
720 |
+
Number of features seen during :term:`fit`.
|
721 |
+
|
722 |
+
.. versionadded:: 0.24
|
723 |
+
|
724 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
725 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
726 |
+
has feature names that are all strings.
|
727 |
+
|
728 |
+
.. versionadded:: 1.0
|
729 |
+
|
730 |
+
See Also
|
731 |
+
--------
|
732 |
+
f_classif: ANOVA F-value between label/feature for classification tasks.
|
733 |
+
mutual_info_classif: Mutual information for a discrete target.
|
734 |
+
chi2: Chi-squared stats of non-negative features for classification tasks.
|
735 |
+
f_regression: F-value between label/feature for regression tasks.
|
736 |
+
mutual_info_regression: Mutual information for a continuous target.
|
737 |
+
SelectPercentile: Select features based on percentile of the highest
|
738 |
+
scores.
|
739 |
+
SelectFpr : Select features based on a false positive rate test.
|
740 |
+
SelectFdr : Select features based on an estimated false discovery rate.
|
741 |
+
SelectFwe : Select features based on family-wise error rate.
|
742 |
+
GenericUnivariateSelect : Univariate feature selector with configurable
|
743 |
+
mode.
|
744 |
+
|
745 |
+
Notes
|
746 |
+
-----
|
747 |
+
Ties between features with equal scores will be broken in an unspecified
|
748 |
+
way.
|
749 |
+
|
750 |
+
This filter supports unsupervised feature selection that only requests `X` for
|
751 |
+
computing the scores.
|
752 |
+
|
753 |
+
Examples
|
754 |
+
--------
|
755 |
+
>>> from sklearn.datasets import load_digits
|
756 |
+
>>> from sklearn.feature_selection import SelectKBest, chi2
|
757 |
+
>>> X, y = load_digits(return_X_y=True)
|
758 |
+
>>> X.shape
|
759 |
+
(1797, 64)
|
760 |
+
>>> X_new = SelectKBest(chi2, k=20).fit_transform(X, y)
|
761 |
+
>>> X_new.shape
|
762 |
+
(1797, 20)
|
763 |
+
"""
|
764 |
+
|
765 |
+
_parameter_constraints: dict = {
|
766 |
+
**_BaseFilter._parameter_constraints,
|
767 |
+
"k": [StrOptions({"all"}), Interval(Integral, 0, None, closed="left")],
|
768 |
+
}
|
769 |
+
|
770 |
+
def __init__(self, score_func=f_classif, *, k=10):
|
771 |
+
super().__init__(score_func=score_func)
|
772 |
+
self.k = k
|
773 |
+
|
774 |
+
def _check_params(self, X, y):
|
775 |
+
if not isinstance(self.k, str) and self.k > X.shape[1]:
|
776 |
+
warnings.warn(
|
777 |
+
f"k={self.k} is greater than n_features={X.shape[1]}. "
|
778 |
+
"All the features will be returned."
|
779 |
+
)
|
780 |
+
|
781 |
+
def _get_support_mask(self):
|
782 |
+
check_is_fitted(self)
|
783 |
+
|
784 |
+
if self.k == "all":
|
785 |
+
return np.ones(self.scores_.shape, dtype=bool)
|
786 |
+
elif self.k == 0:
|
787 |
+
return np.zeros(self.scores_.shape, dtype=bool)
|
788 |
+
else:
|
789 |
+
scores = _clean_nans(self.scores_)
|
790 |
+
mask = np.zeros(scores.shape, dtype=bool)
|
791 |
+
|
792 |
+
# Request a stable sort. Mergesort takes more memory (~40MB per
|
793 |
+
# megafeature on x86-64).
|
794 |
+
mask[np.argsort(scores, kind="mergesort")[-self.k :]] = 1
|
795 |
+
return mask
|
796 |
+
|
797 |
+
def _more_tags(self):
|
798 |
+
return {"requires_y": False}
|
799 |
+
|
800 |
+
|
801 |
+
class SelectFpr(_BaseFilter):
|
802 |
+
"""Filter: Select the pvalues below alpha based on a FPR test.
|
803 |
+
|
804 |
+
FPR test stands for False Positive Rate test. It controls the total
|
805 |
+
amount of false detections.
|
806 |
+
|
807 |
+
Read more in the :ref:`User Guide <univariate_feature_selection>`.
|
808 |
+
|
809 |
+
Parameters
|
810 |
+
----------
|
811 |
+
score_func : callable, default=f_classif
|
812 |
+
Function taking two arrays X and y, and returning a pair of arrays
|
813 |
+
(scores, pvalues).
|
814 |
+
Default is f_classif (see below "See Also"). The default function only
|
815 |
+
works with classification tasks.
|
816 |
+
|
817 |
+
alpha : float, default=5e-2
|
818 |
+
Features with p-values less than `alpha` are selected.
|
819 |
+
|
820 |
+
Attributes
|
821 |
+
----------
|
822 |
+
scores_ : array-like of shape (n_features,)
|
823 |
+
Scores of features.
|
824 |
+
|
825 |
+
pvalues_ : array-like of shape (n_features,)
|
826 |
+
p-values of feature scores.
|
827 |
+
|
828 |
+
n_features_in_ : int
|
829 |
+
Number of features seen during :term:`fit`.
|
830 |
+
|
831 |
+
.. versionadded:: 0.24
|
832 |
+
|
833 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
834 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
835 |
+
has feature names that are all strings.
|
836 |
+
|
837 |
+
.. versionadded:: 1.0
|
838 |
+
|
839 |
+
See Also
|
840 |
+
--------
|
841 |
+
f_classif : ANOVA F-value between label/feature for classification tasks.
|
842 |
+
chi2 : Chi-squared stats of non-negative features for classification tasks.
|
843 |
+
mutual_info_classif: Mutual information for a discrete target.
|
844 |
+
f_regression : F-value between label/feature for regression tasks.
|
845 |
+
mutual_info_regression : Mutual information for a continuous target.
|
846 |
+
SelectPercentile : Select features based on percentile of the highest
|
847 |
+
scores.
|
848 |
+
SelectKBest : Select features based on the k highest scores.
|
849 |
+
SelectFdr : Select features based on an estimated false discovery rate.
|
850 |
+
SelectFwe : Select features based on family-wise error rate.
|
851 |
+
GenericUnivariateSelect : Univariate feature selector with configurable
|
852 |
+
mode.
|
853 |
+
|
854 |
+
Examples
|
855 |
+
--------
|
856 |
+
>>> from sklearn.datasets import load_breast_cancer
|
857 |
+
>>> from sklearn.feature_selection import SelectFpr, chi2
|
858 |
+
>>> X, y = load_breast_cancer(return_X_y=True)
|
859 |
+
>>> X.shape
|
860 |
+
(569, 30)
|
861 |
+
>>> X_new = SelectFpr(chi2, alpha=0.01).fit_transform(X, y)
|
862 |
+
>>> X_new.shape
|
863 |
+
(569, 16)
|
864 |
+
"""
|
865 |
+
|
866 |
+
_parameter_constraints: dict = {
|
867 |
+
**_BaseFilter._parameter_constraints,
|
868 |
+
"alpha": [Interval(Real, 0, 1, closed="both")],
|
869 |
+
}
|
870 |
+
|
871 |
+
def __init__(self, score_func=f_classif, *, alpha=5e-2):
|
872 |
+
super().__init__(score_func=score_func)
|
873 |
+
self.alpha = alpha
|
874 |
+
|
875 |
+
def _get_support_mask(self):
|
876 |
+
check_is_fitted(self)
|
877 |
+
|
878 |
+
return self.pvalues_ < self.alpha
|
879 |
+
|
880 |
+
|
881 |
+
class SelectFdr(_BaseFilter):
|
882 |
+
"""Filter: Select the p-values for an estimated false discovery rate.
|
883 |
+
|
884 |
+
This uses the Benjamini-Hochberg procedure. ``alpha`` is an upper bound
|
885 |
+
on the expected false discovery rate.
|
886 |
+
|
887 |
+
Read more in the :ref:`User Guide <univariate_feature_selection>`.
|
888 |
+
|
889 |
+
Parameters
|
890 |
+
----------
|
891 |
+
score_func : callable, default=f_classif
|
892 |
+
Function taking two arrays X and y, and returning a pair of arrays
|
893 |
+
(scores, pvalues).
|
894 |
+
Default is f_classif (see below "See Also"). The default function only
|
895 |
+
works with classification tasks.
|
896 |
+
|
897 |
+
alpha : float, default=5e-2
|
898 |
+
The highest uncorrected p-value for features to keep.
|
899 |
+
|
900 |
+
Attributes
|
901 |
+
----------
|
902 |
+
scores_ : array-like of shape (n_features,)
|
903 |
+
Scores of features.
|
904 |
+
|
905 |
+
pvalues_ : array-like of shape (n_features,)
|
906 |
+
p-values of feature scores.
|
907 |
+
|
908 |
+
n_features_in_ : int
|
909 |
+
Number of features seen during :term:`fit`.
|
910 |
+
|
911 |
+
.. versionadded:: 0.24
|
912 |
+
|
913 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
914 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
915 |
+
has feature names that are all strings.
|
916 |
+
|
917 |
+
.. versionadded:: 1.0
|
918 |
+
|
919 |
+
See Also
|
920 |
+
--------
|
921 |
+
f_classif : ANOVA F-value between label/feature for classification tasks.
|
922 |
+
mutual_info_classif : Mutual information for a discrete target.
|
923 |
+
chi2 : Chi-squared stats of non-negative features for classification tasks.
|
924 |
+
f_regression : F-value between label/feature for regression tasks.
|
925 |
+
mutual_info_regression : Mutual information for a continuous target.
|
926 |
+
SelectPercentile : Select features based on percentile of the highest
|
927 |
+
scores.
|
928 |
+
SelectKBest : Select features based on the k highest scores.
|
929 |
+
SelectFpr : Select features based on a false positive rate test.
|
930 |
+
SelectFwe : Select features based on family-wise error rate.
|
931 |
+
GenericUnivariateSelect : Univariate feature selector with configurable
|
932 |
+
mode.
|
933 |
+
|
934 |
+
References
|
935 |
+
----------
|
936 |
+
https://en.wikipedia.org/wiki/False_discovery_rate
|
937 |
+
|
938 |
+
Examples
|
939 |
+
--------
|
940 |
+
>>> from sklearn.datasets import load_breast_cancer
|
941 |
+
>>> from sklearn.feature_selection import SelectFdr, chi2
|
942 |
+
>>> X, y = load_breast_cancer(return_X_y=True)
|
943 |
+
>>> X.shape
|
944 |
+
(569, 30)
|
945 |
+
>>> X_new = SelectFdr(chi2, alpha=0.01).fit_transform(X, y)
|
946 |
+
>>> X_new.shape
|
947 |
+
(569, 16)
|
948 |
+
"""
|
949 |
+
|
950 |
+
_parameter_constraints: dict = {
|
951 |
+
**_BaseFilter._parameter_constraints,
|
952 |
+
"alpha": [Interval(Real, 0, 1, closed="both")],
|
953 |
+
}
|
954 |
+
|
955 |
+
def __init__(self, score_func=f_classif, *, alpha=5e-2):
|
956 |
+
super().__init__(score_func=score_func)
|
957 |
+
self.alpha = alpha
|
958 |
+
|
959 |
+
def _get_support_mask(self):
|
960 |
+
check_is_fitted(self)
|
961 |
+
|
962 |
+
n_features = len(self.pvalues_)
|
963 |
+
sv = np.sort(self.pvalues_)
|
964 |
+
selected = sv[
|
965 |
+
sv <= float(self.alpha) / n_features * np.arange(1, n_features + 1)
|
966 |
+
]
|
967 |
+
if selected.size == 0:
|
968 |
+
return np.zeros_like(self.pvalues_, dtype=bool)
|
969 |
+
return self.pvalues_ <= selected.max()
|
970 |
+
|
971 |
+
|
972 |
+
class SelectFwe(_BaseFilter):
|
973 |
+
"""Filter: Select the p-values corresponding to Family-wise error rate.
|
974 |
+
|
975 |
+
Read more in the :ref:`User Guide <univariate_feature_selection>`.
|
976 |
+
|
977 |
+
Parameters
|
978 |
+
----------
|
979 |
+
score_func : callable, default=f_classif
|
980 |
+
Function taking two arrays X and y, and returning a pair of arrays
|
981 |
+
(scores, pvalues).
|
982 |
+
Default is f_classif (see below "See Also"). The default function only
|
983 |
+
works with classification tasks.
|
984 |
+
|
985 |
+
alpha : float, default=5e-2
|
986 |
+
The highest uncorrected p-value for features to keep.
|
987 |
+
|
988 |
+
Attributes
|
989 |
+
----------
|
990 |
+
scores_ : array-like of shape (n_features,)
|
991 |
+
Scores of features.
|
992 |
+
|
993 |
+
pvalues_ : array-like of shape (n_features,)
|
994 |
+
p-values of feature scores.
|
995 |
+
|
996 |
+
n_features_in_ : int
|
997 |
+
Number of features seen during :term:`fit`.
|
998 |
+
|
999 |
+
.. versionadded:: 0.24
|
1000 |
+
|
1001 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1002 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1003 |
+
has feature names that are all strings.
|
1004 |
+
|
1005 |
+
.. versionadded:: 1.0
|
1006 |
+
|
1007 |
+
See Also
|
1008 |
+
--------
|
1009 |
+
f_classif : ANOVA F-value between label/feature for classification tasks.
|
1010 |
+
chi2 : Chi-squared stats of non-negative features for classification tasks.
|
1011 |
+
f_regression : F-value between label/feature for regression tasks.
|
1012 |
+
SelectPercentile : Select features based on percentile of the highest
|
1013 |
+
scores.
|
1014 |
+
SelectKBest : Select features based on the k highest scores.
|
1015 |
+
SelectFpr : Select features based on a false positive rate test.
|
1016 |
+
SelectFdr : Select features based on an estimated false discovery rate.
|
1017 |
+
GenericUnivariateSelect : Univariate feature selector with configurable
|
1018 |
+
mode.
|
1019 |
+
|
1020 |
+
Examples
|
1021 |
+
--------
|
1022 |
+
>>> from sklearn.datasets import load_breast_cancer
|
1023 |
+
>>> from sklearn.feature_selection import SelectFwe, chi2
|
1024 |
+
>>> X, y = load_breast_cancer(return_X_y=True)
|
1025 |
+
>>> X.shape
|
1026 |
+
(569, 30)
|
1027 |
+
>>> X_new = SelectFwe(chi2, alpha=0.01).fit_transform(X, y)
|
1028 |
+
>>> X_new.shape
|
1029 |
+
(569, 15)
|
1030 |
+
"""
|
1031 |
+
|
1032 |
+
_parameter_constraints: dict = {
|
1033 |
+
**_BaseFilter._parameter_constraints,
|
1034 |
+
"alpha": [Interval(Real, 0, 1, closed="both")],
|
1035 |
+
}
|
1036 |
+
|
1037 |
+
def __init__(self, score_func=f_classif, *, alpha=5e-2):
|
1038 |
+
super().__init__(score_func=score_func)
|
1039 |
+
self.alpha = alpha
|
1040 |
+
|
1041 |
+
def _get_support_mask(self):
|
1042 |
+
check_is_fitted(self)
|
1043 |
+
|
1044 |
+
return self.pvalues_ < self.alpha / len(self.pvalues_)
|
1045 |
+
|
1046 |
+
|
1047 |
+
######################################################################
|
1048 |
+
# Generic filter
|
1049 |
+
######################################################################
|
1050 |
+
|
1051 |
+
|
1052 |
+
# TODO this class should fit on either p-values or scores,
|
1053 |
+
# depending on the mode.
|
1054 |
+
class GenericUnivariateSelect(_BaseFilter):
|
1055 |
+
"""Univariate feature selector with configurable strategy.
|
1056 |
+
|
1057 |
+
Read more in the :ref:`User Guide <univariate_feature_selection>`.
|
1058 |
+
|
1059 |
+
Parameters
|
1060 |
+
----------
|
1061 |
+
score_func : callable, default=f_classif
|
1062 |
+
Function taking two arrays X and y, and returning a pair of arrays
|
1063 |
+
(scores, pvalues). For modes 'percentile' or 'kbest' it can return
|
1064 |
+
a single array scores.
|
1065 |
+
|
1066 |
+
mode : {'percentile', 'k_best', 'fpr', 'fdr', 'fwe'}, default='percentile'
|
1067 |
+
Feature selection mode. Note that the `'percentile'` and `'kbest'`
|
1068 |
+
modes are supporting unsupervised feature selection (when `y` is `None`).
|
1069 |
+
|
1070 |
+
param : "all", float or int, default=1e-5
|
1071 |
+
Parameter of the corresponding mode.
|
1072 |
+
|
1073 |
+
Attributes
|
1074 |
+
----------
|
1075 |
+
scores_ : array-like of shape (n_features,)
|
1076 |
+
Scores of features.
|
1077 |
+
|
1078 |
+
pvalues_ : array-like of shape (n_features,)
|
1079 |
+
p-values of feature scores, None if `score_func` returned scores only.
|
1080 |
+
|
1081 |
+
n_features_in_ : int
|
1082 |
+
Number of features seen during :term:`fit`.
|
1083 |
+
|
1084 |
+
.. versionadded:: 0.24
|
1085 |
+
|
1086 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1087 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1088 |
+
has feature names that are all strings.
|
1089 |
+
|
1090 |
+
.. versionadded:: 1.0
|
1091 |
+
|
1092 |
+
See Also
|
1093 |
+
--------
|
1094 |
+
f_classif : ANOVA F-value between label/feature for classification tasks.
|
1095 |
+
mutual_info_classif : Mutual information for a discrete target.
|
1096 |
+
chi2 : Chi-squared stats of non-negative features for classification tasks.
|
1097 |
+
f_regression : F-value between label/feature for regression tasks.
|
1098 |
+
mutual_info_regression : Mutual information for a continuous target.
|
1099 |
+
SelectPercentile : Select features based on percentile of the highest
|
1100 |
+
scores.
|
1101 |
+
SelectKBest : Select features based on the k highest scores.
|
1102 |
+
SelectFpr : Select features based on a false positive rate test.
|
1103 |
+
SelectFdr : Select features based on an estimated false discovery rate.
|
1104 |
+
SelectFwe : Select features based on family-wise error rate.
|
1105 |
+
|
1106 |
+
Examples
|
1107 |
+
--------
|
1108 |
+
>>> from sklearn.datasets import load_breast_cancer
|
1109 |
+
>>> from sklearn.feature_selection import GenericUnivariateSelect, chi2
|
1110 |
+
>>> X, y = load_breast_cancer(return_X_y=True)
|
1111 |
+
>>> X.shape
|
1112 |
+
(569, 30)
|
1113 |
+
>>> transformer = GenericUnivariateSelect(chi2, mode='k_best', param=20)
|
1114 |
+
>>> X_new = transformer.fit_transform(X, y)
|
1115 |
+
>>> X_new.shape
|
1116 |
+
(569, 20)
|
1117 |
+
"""
|
1118 |
+
|
1119 |
+
_selection_modes: dict = {
|
1120 |
+
"percentile": SelectPercentile,
|
1121 |
+
"k_best": SelectKBest,
|
1122 |
+
"fpr": SelectFpr,
|
1123 |
+
"fdr": SelectFdr,
|
1124 |
+
"fwe": SelectFwe,
|
1125 |
+
}
|
1126 |
+
|
1127 |
+
_parameter_constraints: dict = {
|
1128 |
+
**_BaseFilter._parameter_constraints,
|
1129 |
+
"mode": [StrOptions(set(_selection_modes.keys()))],
|
1130 |
+
"param": [Interval(Real, 0, None, closed="left"), StrOptions({"all"})],
|
1131 |
+
}
|
1132 |
+
|
1133 |
+
def __init__(self, score_func=f_classif, *, mode="percentile", param=1e-5):
|
1134 |
+
super().__init__(score_func=score_func)
|
1135 |
+
self.mode = mode
|
1136 |
+
self.param = param
|
1137 |
+
|
1138 |
+
def _make_selector(self):
|
1139 |
+
selector = self._selection_modes[self.mode](score_func=self.score_func)
|
1140 |
+
|
1141 |
+
# Now perform some acrobatics to set the right named parameter in
|
1142 |
+
# the selector
|
1143 |
+
possible_params = selector._get_param_names()
|
1144 |
+
possible_params.remove("score_func")
|
1145 |
+
selector.set_params(**{possible_params[0]: self.param})
|
1146 |
+
|
1147 |
+
return selector
|
1148 |
+
|
1149 |
+
def _more_tags(self):
|
1150 |
+
return {"preserves_dtype": [np.float64, np.float32]}
|
1151 |
+
|
1152 |
+
def _check_params(self, X, y):
|
1153 |
+
self._make_selector()._check_params(X, y)
|
1154 |
+
|
1155 |
+
def _get_support_mask(self):
|
1156 |
+
check_is_fitted(self)
|
1157 |
+
|
1158 |
+
selector = self._make_selector()
|
1159 |
+
selector.pvalues_ = self.pvalues_
|
1160 |
+
selector.scores_ = self.scores_
|
1161 |
+
return selector._get_support_mask()
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/_variance_threshold.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Author: Lars Buitinck
|
2 |
+
# License: 3-clause BSD
|
3 |
+
from numbers import Real
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from ..base import BaseEstimator, _fit_context
|
8 |
+
from ..utils._param_validation import Interval
|
9 |
+
from ..utils.sparsefuncs import mean_variance_axis, min_max_axis
|
10 |
+
from ..utils.validation import check_is_fitted
|
11 |
+
from ._base import SelectorMixin
|
12 |
+
|
13 |
+
|
14 |
+
class VarianceThreshold(SelectorMixin, BaseEstimator):
|
15 |
+
"""Feature selector that removes all low-variance features.
|
16 |
+
|
17 |
+
This feature selection algorithm looks only at the features (X), not the
|
18 |
+
desired outputs (y), and can thus be used for unsupervised learning.
|
19 |
+
|
20 |
+
Read more in the :ref:`User Guide <variance_threshold>`.
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
threshold : float, default=0
|
25 |
+
Features with a training-set variance lower than this threshold will
|
26 |
+
be removed. The default is to keep all features with non-zero variance,
|
27 |
+
i.e. remove the features that have the same value in all samples.
|
28 |
+
|
29 |
+
Attributes
|
30 |
+
----------
|
31 |
+
variances_ : array, shape (n_features,)
|
32 |
+
Variances of individual features.
|
33 |
+
|
34 |
+
n_features_in_ : int
|
35 |
+
Number of features seen during :term:`fit`.
|
36 |
+
|
37 |
+
.. versionadded:: 0.24
|
38 |
+
|
39 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
40 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
41 |
+
has feature names that are all strings.
|
42 |
+
|
43 |
+
.. versionadded:: 1.0
|
44 |
+
|
45 |
+
See Also
|
46 |
+
--------
|
47 |
+
SelectFromModel: Meta-transformer for selecting features based on
|
48 |
+
importance weights.
|
49 |
+
SelectPercentile : Select features according to a percentile of the highest
|
50 |
+
scores.
|
51 |
+
SequentialFeatureSelector : Transformer that performs Sequential Feature
|
52 |
+
Selection.
|
53 |
+
|
54 |
+
Notes
|
55 |
+
-----
|
56 |
+
Allows NaN in the input.
|
57 |
+
Raises ValueError if no feature in X meets the variance threshold.
|
58 |
+
|
59 |
+
Examples
|
60 |
+
--------
|
61 |
+
The following dataset has integer features, two of which are the same
|
62 |
+
in every sample. These are removed with the default setting for threshold::
|
63 |
+
|
64 |
+
>>> from sklearn.feature_selection import VarianceThreshold
|
65 |
+
>>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]
|
66 |
+
>>> selector = VarianceThreshold()
|
67 |
+
>>> selector.fit_transform(X)
|
68 |
+
array([[2, 0],
|
69 |
+
[1, 4],
|
70 |
+
[1, 1]])
|
71 |
+
"""
|
72 |
+
|
73 |
+
_parameter_constraints: dict = {
|
74 |
+
"threshold": [Interval(Real, 0, None, closed="left")]
|
75 |
+
}
|
76 |
+
|
77 |
+
def __init__(self, threshold=0.0):
|
78 |
+
self.threshold = threshold
|
79 |
+
|
80 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
81 |
+
def fit(self, X, y=None):
|
82 |
+
"""Learn empirical variances from X.
|
83 |
+
|
84 |
+
Parameters
|
85 |
+
----------
|
86 |
+
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
87 |
+
Data from which to compute variances, where `n_samples` is
|
88 |
+
the number of samples and `n_features` is the number of features.
|
89 |
+
|
90 |
+
y : any, default=None
|
91 |
+
Ignored. This parameter exists only for compatibility with
|
92 |
+
sklearn.pipeline.Pipeline.
|
93 |
+
|
94 |
+
Returns
|
95 |
+
-------
|
96 |
+
self : object
|
97 |
+
Returns the instance itself.
|
98 |
+
"""
|
99 |
+
X = self._validate_data(
|
100 |
+
X,
|
101 |
+
accept_sparse=("csr", "csc"),
|
102 |
+
dtype=np.float64,
|
103 |
+
force_all_finite="allow-nan",
|
104 |
+
)
|
105 |
+
|
106 |
+
if hasattr(X, "toarray"): # sparse matrix
|
107 |
+
_, self.variances_ = mean_variance_axis(X, axis=0)
|
108 |
+
if self.threshold == 0:
|
109 |
+
mins, maxes = min_max_axis(X, axis=0)
|
110 |
+
peak_to_peaks = maxes - mins
|
111 |
+
else:
|
112 |
+
self.variances_ = np.nanvar(X, axis=0)
|
113 |
+
if self.threshold == 0:
|
114 |
+
peak_to_peaks = np.ptp(X, axis=0)
|
115 |
+
|
116 |
+
if self.threshold == 0:
|
117 |
+
# Use peak-to-peak to avoid numeric precision issues
|
118 |
+
# for constant features
|
119 |
+
compare_arr = np.array([self.variances_, peak_to_peaks])
|
120 |
+
self.variances_ = np.nanmin(compare_arr, axis=0)
|
121 |
+
|
122 |
+
if np.all(~np.isfinite(self.variances_) | (self.variances_ <= self.threshold)):
|
123 |
+
msg = "No feature in X meets the variance threshold {0:.5f}"
|
124 |
+
if X.shape[0] == 1:
|
125 |
+
msg += " (X contains only one sample)"
|
126 |
+
raise ValueError(msg.format(self.threshold))
|
127 |
+
|
128 |
+
return self
|
129 |
+
|
130 |
+
def _get_support_mask(self):
|
131 |
+
check_is_fitted(self)
|
132 |
+
|
133 |
+
return self.variances_ > self.threshold
|
134 |
+
|
135 |
+
def _more_tags(self):
|
136 |
+
return {"allow_nan": True}
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (204 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_base.cpython-310.pyc
ADDED
Binary file (4.79 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_chi2.cpython-310.pyc
ADDED
Binary file (2.96 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_feature_select.cpython-310.pyc
ADDED
Binary file (21.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_from_model.cpython-310.pyc
ADDED
Binary file (19.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_mutual_info.cpython-310.pyc
ADDED
Binary file (6.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_rfe.cpython-310.pyc
ADDED
Binary file (16.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_sequential.cpython-310.pyc
ADDED
Binary file (8.54 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/__pycache__/test_variance_threshold.cpython-310.pyc
ADDED
Binary file (2.43 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_base.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
from numpy.testing import assert_array_equal
|
4 |
+
|
5 |
+
from sklearn.base import BaseEstimator
|
6 |
+
from sklearn.feature_selection._base import SelectorMixin
|
7 |
+
from sklearn.utils.fixes import CSC_CONTAINERS
|
8 |
+
|
9 |
+
|
10 |
+
class StepSelector(SelectorMixin, BaseEstimator):
|
11 |
+
"""Retain every `step` features (beginning with 0).
|
12 |
+
|
13 |
+
If `step < 1`, then no features are selected.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, step=2):
|
17 |
+
self.step = step
|
18 |
+
|
19 |
+
def fit(self, X, y=None):
|
20 |
+
X = self._validate_data(X, accept_sparse="csc")
|
21 |
+
return self
|
22 |
+
|
23 |
+
def _get_support_mask(self):
|
24 |
+
mask = np.zeros(self.n_features_in_, dtype=bool)
|
25 |
+
if self.step >= 1:
|
26 |
+
mask[:: self.step] = True
|
27 |
+
return mask
|
28 |
+
|
29 |
+
|
30 |
+
support = [True, False] * 5
|
31 |
+
support_inds = [0, 2, 4, 6, 8]
|
32 |
+
X = np.arange(20).reshape(2, 10)
|
33 |
+
Xt = np.arange(0, 20, 2).reshape(2, 5)
|
34 |
+
Xinv = X.copy()
|
35 |
+
Xinv[:, 1::2] = 0
|
36 |
+
y = [0, 1]
|
37 |
+
feature_names = list("ABCDEFGHIJ")
|
38 |
+
feature_names_t = feature_names[::2]
|
39 |
+
feature_names_inv = np.array(feature_names)
|
40 |
+
feature_names_inv[1::2] = ""
|
41 |
+
|
42 |
+
|
43 |
+
def test_transform_dense():
|
44 |
+
sel = StepSelector()
|
45 |
+
Xt_actual = sel.fit(X, y).transform(X)
|
46 |
+
Xt_actual2 = StepSelector().fit_transform(X, y)
|
47 |
+
assert_array_equal(Xt, Xt_actual)
|
48 |
+
assert_array_equal(Xt, Xt_actual2)
|
49 |
+
|
50 |
+
# Check dtype matches
|
51 |
+
assert np.int32 == sel.transform(X.astype(np.int32)).dtype
|
52 |
+
assert np.float32 == sel.transform(X.astype(np.float32)).dtype
|
53 |
+
|
54 |
+
# Check 1d list and other dtype:
|
55 |
+
names_t_actual = sel.transform([feature_names])
|
56 |
+
assert_array_equal(feature_names_t, names_t_actual.ravel())
|
57 |
+
|
58 |
+
# Check wrong shape raises error
|
59 |
+
with pytest.raises(ValueError):
|
60 |
+
sel.transform(np.array([[1], [2]]))
|
61 |
+
|
62 |
+
|
63 |
+
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
|
64 |
+
def test_transform_sparse(csc_container):
|
65 |
+
X_sp = csc_container(X)
|
66 |
+
sel = StepSelector()
|
67 |
+
Xt_actual = sel.fit(X_sp).transform(X_sp)
|
68 |
+
Xt_actual2 = sel.fit_transform(X_sp)
|
69 |
+
assert_array_equal(Xt, Xt_actual.toarray())
|
70 |
+
assert_array_equal(Xt, Xt_actual2.toarray())
|
71 |
+
|
72 |
+
# Check dtype matches
|
73 |
+
assert np.int32 == sel.transform(X_sp.astype(np.int32)).dtype
|
74 |
+
assert np.float32 == sel.transform(X_sp.astype(np.float32)).dtype
|
75 |
+
|
76 |
+
# Check wrong shape raises error
|
77 |
+
with pytest.raises(ValueError):
|
78 |
+
sel.transform(np.array([[1], [2]]))
|
79 |
+
|
80 |
+
|
81 |
+
def test_inverse_transform_dense():
|
82 |
+
sel = StepSelector()
|
83 |
+
Xinv_actual = sel.fit(X, y).inverse_transform(Xt)
|
84 |
+
assert_array_equal(Xinv, Xinv_actual)
|
85 |
+
|
86 |
+
# Check dtype matches
|
87 |
+
assert np.int32 == sel.inverse_transform(Xt.astype(np.int32)).dtype
|
88 |
+
assert np.float32 == sel.inverse_transform(Xt.astype(np.float32)).dtype
|
89 |
+
|
90 |
+
# Check 1d list and other dtype:
|
91 |
+
names_inv_actual = sel.inverse_transform([feature_names_t])
|
92 |
+
assert_array_equal(feature_names_inv, names_inv_actual.ravel())
|
93 |
+
|
94 |
+
# Check wrong shape raises error
|
95 |
+
with pytest.raises(ValueError):
|
96 |
+
sel.inverse_transform(np.array([[1], [2]]))
|
97 |
+
|
98 |
+
|
99 |
+
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
|
100 |
+
def test_inverse_transform_sparse(csc_container):
|
101 |
+
X_sp = csc_container(X)
|
102 |
+
Xt_sp = csc_container(Xt)
|
103 |
+
sel = StepSelector()
|
104 |
+
Xinv_actual = sel.fit(X_sp).inverse_transform(Xt_sp)
|
105 |
+
assert_array_equal(Xinv, Xinv_actual.toarray())
|
106 |
+
|
107 |
+
# Check dtype matches
|
108 |
+
assert np.int32 == sel.inverse_transform(Xt_sp.astype(np.int32)).dtype
|
109 |
+
assert np.float32 == sel.inverse_transform(Xt_sp.astype(np.float32)).dtype
|
110 |
+
|
111 |
+
# Check wrong shape raises error
|
112 |
+
with pytest.raises(ValueError):
|
113 |
+
sel.inverse_transform(np.array([[1], [2]]))
|
114 |
+
|
115 |
+
|
116 |
+
def test_get_support():
|
117 |
+
sel = StepSelector()
|
118 |
+
sel.fit(X, y)
|
119 |
+
assert_array_equal(support, sel.get_support())
|
120 |
+
assert_array_equal(support_inds, sel.get_support(indices=True))
|
121 |
+
|
122 |
+
|
123 |
+
def test_output_dataframe():
|
124 |
+
"""Check output dtypes for dataframes is consistent with the input dtypes."""
|
125 |
+
pd = pytest.importorskip("pandas")
|
126 |
+
|
127 |
+
X = pd.DataFrame(
|
128 |
+
{
|
129 |
+
"a": pd.Series([1.0, 2.4, 4.5], dtype=np.float32),
|
130 |
+
"b": pd.Series(["a", "b", "a"], dtype="category"),
|
131 |
+
"c": pd.Series(["j", "b", "b"], dtype="category"),
|
132 |
+
"d": pd.Series([3.0, 2.4, 1.2], dtype=np.float64),
|
133 |
+
}
|
134 |
+
)
|
135 |
+
|
136 |
+
for step in [2, 3]:
|
137 |
+
sel = StepSelector(step=step).set_output(transform="pandas")
|
138 |
+
sel.fit(X)
|
139 |
+
|
140 |
+
output = sel.transform(X)
|
141 |
+
for name, dtype in output.dtypes.items():
|
142 |
+
assert dtype == X.dtypes[name]
|
143 |
+
|
144 |
+
# step=0 will select nothing
|
145 |
+
sel0 = StepSelector(step=0).set_output(transform="pandas")
|
146 |
+
sel0.fit(X, y)
|
147 |
+
|
148 |
+
msg = "No features were selected"
|
149 |
+
with pytest.warns(UserWarning, match=msg):
|
150 |
+
output0 = sel0.transform(X)
|
151 |
+
|
152 |
+
assert_array_equal(output0.index, X.index)
|
153 |
+
assert output0.shape == (X.shape[0], 0)
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_chi2.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Tests for chi2, currently the only feature selection function designed
|
3 |
+
specifically to work with sparse matrices.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pytest
|
10 |
+
import scipy.stats
|
11 |
+
|
12 |
+
from sklearn.feature_selection import SelectKBest, chi2
|
13 |
+
from sklearn.feature_selection._univariate_selection import _chisquare
|
14 |
+
from sklearn.utils._testing import assert_array_almost_equal, assert_array_equal
|
15 |
+
from sklearn.utils.fixes import COO_CONTAINERS, CSR_CONTAINERS
|
16 |
+
|
17 |
+
# Feature 0 is highly informative for class 1;
|
18 |
+
# feature 1 is the same everywhere;
|
19 |
+
# feature 2 is a bit informative for class 2.
|
20 |
+
X = [[2, 1, 2], [9, 1, 1], [6, 1, 2], [0, 1, 2]]
|
21 |
+
y = [0, 1, 2, 2]
|
22 |
+
|
23 |
+
|
24 |
+
def mkchi2(k):
|
25 |
+
"""Make k-best chi2 selector"""
|
26 |
+
return SelectKBest(chi2, k=k)
|
27 |
+
|
28 |
+
|
29 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
30 |
+
def test_chi2(csr_container):
|
31 |
+
# Test Chi2 feature extraction
|
32 |
+
|
33 |
+
chi2 = mkchi2(k=1).fit(X, y)
|
34 |
+
chi2 = mkchi2(k=1).fit(X, y)
|
35 |
+
assert_array_equal(chi2.get_support(indices=True), [0])
|
36 |
+
assert_array_equal(chi2.transform(X), np.array(X)[:, [0]])
|
37 |
+
|
38 |
+
chi2 = mkchi2(k=2).fit(X, y)
|
39 |
+
assert_array_equal(sorted(chi2.get_support(indices=True)), [0, 2])
|
40 |
+
|
41 |
+
Xsp = csr_container(X, dtype=np.float64)
|
42 |
+
chi2 = mkchi2(k=2).fit(Xsp, y)
|
43 |
+
assert_array_equal(sorted(chi2.get_support(indices=True)), [0, 2])
|
44 |
+
Xtrans = chi2.transform(Xsp)
|
45 |
+
assert_array_equal(Xtrans.shape, [Xsp.shape[0], 2])
|
46 |
+
|
47 |
+
# == doesn't work on scipy.sparse matrices
|
48 |
+
Xtrans = Xtrans.toarray()
|
49 |
+
Xtrans2 = mkchi2(k=2).fit_transform(Xsp, y).toarray()
|
50 |
+
assert_array_almost_equal(Xtrans, Xtrans2)
|
51 |
+
|
52 |
+
|
53 |
+
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
|
54 |
+
def test_chi2_coo(coo_container):
|
55 |
+
# Check that chi2 works with a COO matrix
|
56 |
+
# (as returned by CountVectorizer, DictVectorizer)
|
57 |
+
Xcoo = coo_container(X)
|
58 |
+
mkchi2(k=2).fit_transform(Xcoo, y)
|
59 |
+
# if we got here without an exception, we're safe
|
60 |
+
|
61 |
+
|
62 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
63 |
+
def test_chi2_negative(csr_container):
|
64 |
+
# Check for proper error on negative numbers in the input X.
|
65 |
+
X, y = [[0, 1], [-1e-20, 1]], [0, 1]
|
66 |
+
for X in (X, np.array(X), csr_container(X)):
|
67 |
+
with pytest.raises(ValueError):
|
68 |
+
chi2(X, y)
|
69 |
+
|
70 |
+
|
71 |
+
def test_chi2_unused_feature():
|
72 |
+
# Unused feature should evaluate to NaN
|
73 |
+
# and should issue no runtime warning
|
74 |
+
with warnings.catch_warnings(record=True) as warned:
|
75 |
+
warnings.simplefilter("always")
|
76 |
+
chi, p = chi2([[1, 0], [0, 0]], [1, 0])
|
77 |
+
for w in warned:
|
78 |
+
if "divide by zero" in repr(w):
|
79 |
+
raise AssertionError("Found unexpected warning %s" % w)
|
80 |
+
assert_array_equal(chi, [1, np.nan])
|
81 |
+
assert_array_equal(p[1], np.nan)
|
82 |
+
|
83 |
+
|
84 |
+
def test_chisquare():
|
85 |
+
# Test replacement for scipy.stats.chisquare against the original.
|
86 |
+
obs = np.array([[2.0, 2.0], [1.0, 1.0]])
|
87 |
+
exp = np.array([[1.5, 1.5], [1.5, 1.5]])
|
88 |
+
# call SciPy first because our version overwrites obs
|
89 |
+
chi_scp, p_scp = scipy.stats.chisquare(obs, exp)
|
90 |
+
chi_our, p_our = _chisquare(obs, exp)
|
91 |
+
|
92 |
+
assert_array_almost_equal(chi_scp, chi_our)
|
93 |
+
assert_array_almost_equal(p_scp, p_our)
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_feature_select.py
ADDED
@@ -0,0 +1,1017 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Todo: cross-check the F-value with stats model
|
3 |
+
"""
|
4 |
+
import itertools
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pytest
|
9 |
+
from numpy.testing import assert_allclose
|
10 |
+
from scipy import sparse, stats
|
11 |
+
|
12 |
+
from sklearn.datasets import load_iris, make_classification, make_regression
|
13 |
+
from sklearn.feature_selection import (
|
14 |
+
GenericUnivariateSelect,
|
15 |
+
SelectFdr,
|
16 |
+
SelectFpr,
|
17 |
+
SelectFwe,
|
18 |
+
SelectKBest,
|
19 |
+
SelectPercentile,
|
20 |
+
chi2,
|
21 |
+
f_classif,
|
22 |
+
f_oneway,
|
23 |
+
f_regression,
|
24 |
+
mutual_info_classif,
|
25 |
+
mutual_info_regression,
|
26 |
+
r_regression,
|
27 |
+
)
|
28 |
+
from sklearn.utils import safe_mask
|
29 |
+
from sklearn.utils._testing import (
|
30 |
+
_convert_container,
|
31 |
+
assert_almost_equal,
|
32 |
+
assert_array_almost_equal,
|
33 |
+
assert_array_equal,
|
34 |
+
ignore_warnings,
|
35 |
+
)
|
36 |
+
from sklearn.utils.fixes import CSR_CONTAINERS
|
37 |
+
|
38 |
+
##############################################################################
|
39 |
+
# Test the score functions
|
40 |
+
|
41 |
+
|
42 |
+
def test_f_oneway_vs_scipy_stats():
|
43 |
+
# Test that our f_oneway gives the same result as scipy.stats
|
44 |
+
rng = np.random.RandomState(0)
|
45 |
+
X1 = rng.randn(10, 3)
|
46 |
+
X2 = 1 + rng.randn(10, 3)
|
47 |
+
f, pv = stats.f_oneway(X1, X2)
|
48 |
+
f2, pv2 = f_oneway(X1, X2)
|
49 |
+
assert np.allclose(f, f2)
|
50 |
+
assert np.allclose(pv, pv2)
|
51 |
+
|
52 |
+
|
53 |
+
def test_f_oneway_ints():
|
54 |
+
# Smoke test f_oneway on integers: that it does raise casting errors
|
55 |
+
# with recent numpys
|
56 |
+
rng = np.random.RandomState(0)
|
57 |
+
X = rng.randint(10, size=(10, 10))
|
58 |
+
y = np.arange(10)
|
59 |
+
fint, pint = f_oneway(X, y)
|
60 |
+
|
61 |
+
# test that is gives the same result as with float
|
62 |
+
f, p = f_oneway(X.astype(float), y)
|
63 |
+
assert_array_almost_equal(f, fint, decimal=4)
|
64 |
+
assert_array_almost_equal(p, pint, decimal=4)
|
65 |
+
|
66 |
+
|
67 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
68 |
+
def test_f_classif(csr_container):
|
69 |
+
# Test whether the F test yields meaningful results
|
70 |
+
# on a simple simulated classification problem
|
71 |
+
X, y = make_classification(
|
72 |
+
n_samples=200,
|
73 |
+
n_features=20,
|
74 |
+
n_informative=3,
|
75 |
+
n_redundant=2,
|
76 |
+
n_repeated=0,
|
77 |
+
n_classes=8,
|
78 |
+
n_clusters_per_class=1,
|
79 |
+
flip_y=0.0,
|
80 |
+
class_sep=10,
|
81 |
+
shuffle=False,
|
82 |
+
random_state=0,
|
83 |
+
)
|
84 |
+
|
85 |
+
F, pv = f_classif(X, y)
|
86 |
+
F_sparse, pv_sparse = f_classif(csr_container(X), y)
|
87 |
+
assert (F > 0).all()
|
88 |
+
assert (pv > 0).all()
|
89 |
+
assert (pv < 1).all()
|
90 |
+
assert (pv[:5] < 0.05).all()
|
91 |
+
assert (pv[5:] > 1.0e-4).all()
|
92 |
+
assert_array_almost_equal(F_sparse, F)
|
93 |
+
assert_array_almost_equal(pv_sparse, pv)
|
94 |
+
|
95 |
+
|
96 |
+
@pytest.mark.parametrize("center", [True, False])
|
97 |
+
def test_r_regression(center):
|
98 |
+
X, y = make_regression(
|
99 |
+
n_samples=2000, n_features=20, n_informative=5, shuffle=False, random_state=0
|
100 |
+
)
|
101 |
+
|
102 |
+
corr_coeffs = r_regression(X, y, center=center)
|
103 |
+
assert (-1 < corr_coeffs).all()
|
104 |
+
assert (corr_coeffs < 1).all()
|
105 |
+
|
106 |
+
sparse_X = _convert_container(X, "sparse")
|
107 |
+
|
108 |
+
sparse_corr_coeffs = r_regression(sparse_X, y, center=center)
|
109 |
+
assert_allclose(sparse_corr_coeffs, corr_coeffs)
|
110 |
+
|
111 |
+
# Testing against numpy for reference
|
112 |
+
Z = np.hstack((X, y[:, np.newaxis]))
|
113 |
+
correlation_matrix = np.corrcoef(Z, rowvar=False)
|
114 |
+
np_corr_coeffs = correlation_matrix[:-1, -1]
|
115 |
+
assert_array_almost_equal(np_corr_coeffs, corr_coeffs, decimal=3)
|
116 |
+
|
117 |
+
|
118 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
119 |
+
def test_f_regression(csr_container):
|
120 |
+
# Test whether the F test yields meaningful results
|
121 |
+
# on a simple simulated regression problem
|
122 |
+
X, y = make_regression(
|
123 |
+
n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0
|
124 |
+
)
|
125 |
+
|
126 |
+
F, pv = f_regression(X, y)
|
127 |
+
assert (F > 0).all()
|
128 |
+
assert (pv > 0).all()
|
129 |
+
assert (pv < 1).all()
|
130 |
+
assert (pv[:5] < 0.05).all()
|
131 |
+
assert (pv[5:] > 1.0e-4).all()
|
132 |
+
|
133 |
+
# with centering, compare with sparse
|
134 |
+
F, pv = f_regression(X, y, center=True)
|
135 |
+
F_sparse, pv_sparse = f_regression(csr_container(X), y, center=True)
|
136 |
+
assert_allclose(F_sparse, F)
|
137 |
+
assert_allclose(pv_sparse, pv)
|
138 |
+
|
139 |
+
# again without centering, compare with sparse
|
140 |
+
F, pv = f_regression(X, y, center=False)
|
141 |
+
F_sparse, pv_sparse = f_regression(csr_container(X), y, center=False)
|
142 |
+
assert_allclose(F_sparse, F)
|
143 |
+
assert_allclose(pv_sparse, pv)
|
144 |
+
|
145 |
+
|
146 |
+
def test_f_regression_input_dtype():
|
147 |
+
# Test whether f_regression returns the same value
|
148 |
+
# for any numeric data_type
|
149 |
+
rng = np.random.RandomState(0)
|
150 |
+
X = rng.rand(10, 20)
|
151 |
+
y = np.arange(10).astype(int)
|
152 |
+
|
153 |
+
F1, pv1 = f_regression(X, y)
|
154 |
+
F2, pv2 = f_regression(X, y.astype(float))
|
155 |
+
assert_allclose(F1, F2, 5)
|
156 |
+
assert_allclose(pv1, pv2, 5)
|
157 |
+
|
158 |
+
|
159 |
+
def test_f_regression_center():
|
160 |
+
# Test whether f_regression preserves dof according to 'center' argument
|
161 |
+
# We use two centered variates so we have a simple relationship between
|
162 |
+
# F-score with variates centering and F-score without variates centering.
|
163 |
+
# Create toy example
|
164 |
+
X = np.arange(-5, 6).reshape(-1, 1) # X has zero mean
|
165 |
+
n_samples = X.size
|
166 |
+
Y = np.ones(n_samples)
|
167 |
+
Y[::2] *= -1.0
|
168 |
+
Y[0] = 0.0 # have Y mean being null
|
169 |
+
|
170 |
+
F1, _ = f_regression(X, Y, center=True)
|
171 |
+
F2, _ = f_regression(X, Y, center=False)
|
172 |
+
assert_allclose(F1 * (n_samples - 1.0) / (n_samples - 2.0), F2)
|
173 |
+
assert_almost_equal(F2[0], 0.232558139) # value from statsmodels OLS
|
174 |
+
|
175 |
+
|
176 |
+
@pytest.mark.parametrize(
|
177 |
+
"X, y, expected_corr_coef, force_finite",
|
178 |
+
[
|
179 |
+
(
|
180 |
+
# A feature in X is constant - forcing finite
|
181 |
+
np.array([[2, 1], [2, 0], [2, 10], [2, 4]]),
|
182 |
+
np.array([0, 1, 1, 0]),
|
183 |
+
np.array([0.0, 0.32075]),
|
184 |
+
True,
|
185 |
+
),
|
186 |
+
(
|
187 |
+
# The target y is constant - forcing finite
|
188 |
+
np.array([[5, 1], [3, 0], [2, 10], [8, 4]]),
|
189 |
+
np.array([0, 0, 0, 0]),
|
190 |
+
np.array([0.0, 0.0]),
|
191 |
+
True,
|
192 |
+
),
|
193 |
+
(
|
194 |
+
# A feature in X is constant - not forcing finite
|
195 |
+
np.array([[2, 1], [2, 0], [2, 10], [2, 4]]),
|
196 |
+
np.array([0, 1, 1, 0]),
|
197 |
+
np.array([np.nan, 0.32075]),
|
198 |
+
False,
|
199 |
+
),
|
200 |
+
(
|
201 |
+
# The target y is constant - not forcing finite
|
202 |
+
np.array([[5, 1], [3, 0], [2, 10], [8, 4]]),
|
203 |
+
np.array([0, 0, 0, 0]),
|
204 |
+
np.array([np.nan, np.nan]),
|
205 |
+
False,
|
206 |
+
),
|
207 |
+
],
|
208 |
+
)
|
209 |
+
def test_r_regression_force_finite(X, y, expected_corr_coef, force_finite):
|
210 |
+
"""Check the behaviour of `force_finite` for some corner cases with `r_regression`.
|
211 |
+
|
212 |
+
Non-regression test for:
|
213 |
+
https://github.com/scikit-learn/scikit-learn/issues/15672
|
214 |
+
"""
|
215 |
+
with warnings.catch_warnings():
|
216 |
+
warnings.simplefilter("error", RuntimeWarning)
|
217 |
+
corr_coef = r_regression(X, y, force_finite=force_finite)
|
218 |
+
np.testing.assert_array_almost_equal(corr_coef, expected_corr_coef)
|
219 |
+
|
220 |
+
|
221 |
+
@pytest.mark.parametrize(
|
222 |
+
"X, y, expected_f_statistic, expected_p_values, force_finite",
|
223 |
+
[
|
224 |
+
(
|
225 |
+
# A feature in X is constant - forcing finite
|
226 |
+
np.array([[2, 1], [2, 0], [2, 10], [2, 4]]),
|
227 |
+
np.array([0, 1, 1, 0]),
|
228 |
+
np.array([0.0, 0.2293578]),
|
229 |
+
np.array([1.0, 0.67924985]),
|
230 |
+
True,
|
231 |
+
),
|
232 |
+
(
|
233 |
+
# The target y is constant - forcing finite
|
234 |
+
np.array([[5, 1], [3, 0], [2, 10], [8, 4]]),
|
235 |
+
np.array([0, 0, 0, 0]),
|
236 |
+
np.array([0.0, 0.0]),
|
237 |
+
np.array([1.0, 1.0]),
|
238 |
+
True,
|
239 |
+
),
|
240 |
+
(
|
241 |
+
# Feature in X correlated with y - forcing finite
|
242 |
+
np.array([[0, 1], [1, 0], [2, 10], [3, 4]]),
|
243 |
+
np.array([0, 1, 2, 3]),
|
244 |
+
np.array([np.finfo(np.float64).max, 0.845433]),
|
245 |
+
np.array([0.0, 0.454913]),
|
246 |
+
True,
|
247 |
+
),
|
248 |
+
(
|
249 |
+
# Feature in X anti-correlated with y - forcing finite
|
250 |
+
np.array([[3, 1], [2, 0], [1, 10], [0, 4]]),
|
251 |
+
np.array([0, 1, 2, 3]),
|
252 |
+
np.array([np.finfo(np.float64).max, 0.845433]),
|
253 |
+
np.array([0.0, 0.454913]),
|
254 |
+
True,
|
255 |
+
),
|
256 |
+
(
|
257 |
+
# A feature in X is constant - not forcing finite
|
258 |
+
np.array([[2, 1], [2, 0], [2, 10], [2, 4]]),
|
259 |
+
np.array([0, 1, 1, 0]),
|
260 |
+
np.array([np.nan, 0.2293578]),
|
261 |
+
np.array([np.nan, 0.67924985]),
|
262 |
+
False,
|
263 |
+
),
|
264 |
+
(
|
265 |
+
# The target y is constant - not forcing finite
|
266 |
+
np.array([[5, 1], [3, 0], [2, 10], [8, 4]]),
|
267 |
+
np.array([0, 0, 0, 0]),
|
268 |
+
np.array([np.nan, np.nan]),
|
269 |
+
np.array([np.nan, np.nan]),
|
270 |
+
False,
|
271 |
+
),
|
272 |
+
(
|
273 |
+
# Feature in X correlated with y - not forcing finite
|
274 |
+
np.array([[0, 1], [1, 0], [2, 10], [3, 4]]),
|
275 |
+
np.array([0, 1, 2, 3]),
|
276 |
+
np.array([np.inf, 0.845433]),
|
277 |
+
np.array([0.0, 0.454913]),
|
278 |
+
False,
|
279 |
+
),
|
280 |
+
(
|
281 |
+
# Feature in X anti-correlated with y - not forcing finite
|
282 |
+
np.array([[3, 1], [2, 0], [1, 10], [0, 4]]),
|
283 |
+
np.array([0, 1, 2, 3]),
|
284 |
+
np.array([np.inf, 0.845433]),
|
285 |
+
np.array([0.0, 0.454913]),
|
286 |
+
False,
|
287 |
+
),
|
288 |
+
],
|
289 |
+
)
|
290 |
+
def test_f_regression_corner_case(
|
291 |
+
X, y, expected_f_statistic, expected_p_values, force_finite
|
292 |
+
):
|
293 |
+
"""Check the behaviour of `force_finite` for some corner cases with `f_regression`.
|
294 |
+
|
295 |
+
Non-regression test for:
|
296 |
+
https://github.com/scikit-learn/scikit-learn/issues/15672
|
297 |
+
"""
|
298 |
+
with warnings.catch_warnings():
|
299 |
+
warnings.simplefilter("error", RuntimeWarning)
|
300 |
+
f_statistic, p_values = f_regression(X, y, force_finite=force_finite)
|
301 |
+
np.testing.assert_array_almost_equal(f_statistic, expected_f_statistic)
|
302 |
+
np.testing.assert_array_almost_equal(p_values, expected_p_values)
|
303 |
+
|
304 |
+
|
305 |
+
def test_f_classif_multi_class():
|
306 |
+
# Test whether the F test yields meaningful results
|
307 |
+
# on a simple simulated classification problem
|
308 |
+
X, y = make_classification(
|
309 |
+
n_samples=200,
|
310 |
+
n_features=20,
|
311 |
+
n_informative=3,
|
312 |
+
n_redundant=2,
|
313 |
+
n_repeated=0,
|
314 |
+
n_classes=8,
|
315 |
+
n_clusters_per_class=1,
|
316 |
+
flip_y=0.0,
|
317 |
+
class_sep=10,
|
318 |
+
shuffle=False,
|
319 |
+
random_state=0,
|
320 |
+
)
|
321 |
+
|
322 |
+
F, pv = f_classif(X, y)
|
323 |
+
assert (F > 0).all()
|
324 |
+
assert (pv > 0).all()
|
325 |
+
assert (pv < 1).all()
|
326 |
+
assert (pv[:5] < 0.05).all()
|
327 |
+
assert (pv[5:] > 1.0e-4).all()
|
328 |
+
|
329 |
+
|
330 |
+
def test_select_percentile_classif():
|
331 |
+
# Test whether the relative univariate feature selection
|
332 |
+
# gets the correct items in a simple classification problem
|
333 |
+
# with the percentile heuristic
|
334 |
+
X, y = make_classification(
|
335 |
+
n_samples=200,
|
336 |
+
n_features=20,
|
337 |
+
n_informative=3,
|
338 |
+
n_redundant=2,
|
339 |
+
n_repeated=0,
|
340 |
+
n_classes=8,
|
341 |
+
n_clusters_per_class=1,
|
342 |
+
flip_y=0.0,
|
343 |
+
class_sep=10,
|
344 |
+
shuffle=False,
|
345 |
+
random_state=0,
|
346 |
+
)
|
347 |
+
|
348 |
+
univariate_filter = SelectPercentile(f_classif, percentile=25)
|
349 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
350 |
+
X_r2 = (
|
351 |
+
GenericUnivariateSelect(f_classif, mode="percentile", param=25)
|
352 |
+
.fit(X, y)
|
353 |
+
.transform(X)
|
354 |
+
)
|
355 |
+
assert_array_equal(X_r, X_r2)
|
356 |
+
support = univariate_filter.get_support()
|
357 |
+
gtruth = np.zeros(20)
|
358 |
+
gtruth[:5] = 1
|
359 |
+
assert_array_equal(support, gtruth)
|
360 |
+
|
361 |
+
|
362 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
363 |
+
def test_select_percentile_classif_sparse(csr_container):
|
364 |
+
# Test whether the relative univariate feature selection
|
365 |
+
# gets the correct items in a simple classification problem
|
366 |
+
# with the percentile heuristic
|
367 |
+
X, y = make_classification(
|
368 |
+
n_samples=200,
|
369 |
+
n_features=20,
|
370 |
+
n_informative=3,
|
371 |
+
n_redundant=2,
|
372 |
+
n_repeated=0,
|
373 |
+
n_classes=8,
|
374 |
+
n_clusters_per_class=1,
|
375 |
+
flip_y=0.0,
|
376 |
+
class_sep=10,
|
377 |
+
shuffle=False,
|
378 |
+
random_state=0,
|
379 |
+
)
|
380 |
+
X = csr_container(X)
|
381 |
+
univariate_filter = SelectPercentile(f_classif, percentile=25)
|
382 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
383 |
+
X_r2 = (
|
384 |
+
GenericUnivariateSelect(f_classif, mode="percentile", param=25)
|
385 |
+
.fit(X, y)
|
386 |
+
.transform(X)
|
387 |
+
)
|
388 |
+
assert_array_equal(X_r.toarray(), X_r2.toarray())
|
389 |
+
support = univariate_filter.get_support()
|
390 |
+
gtruth = np.zeros(20)
|
391 |
+
gtruth[:5] = 1
|
392 |
+
assert_array_equal(support, gtruth)
|
393 |
+
|
394 |
+
X_r2inv = univariate_filter.inverse_transform(X_r2)
|
395 |
+
assert sparse.issparse(X_r2inv)
|
396 |
+
support_mask = safe_mask(X_r2inv, support)
|
397 |
+
assert X_r2inv.shape == X.shape
|
398 |
+
assert_array_equal(X_r2inv[:, support_mask].toarray(), X_r.toarray())
|
399 |
+
# Check other columns are empty
|
400 |
+
assert X_r2inv.nnz == X_r.nnz
|
401 |
+
|
402 |
+
|
403 |
+
##############################################################################
|
404 |
+
# Test univariate selection in classification settings
|
405 |
+
|
406 |
+
|
407 |
+
def test_select_kbest_classif():
|
408 |
+
# Test whether the relative univariate feature selection
|
409 |
+
# gets the correct items in a simple classification problem
|
410 |
+
# with the k best heuristic
|
411 |
+
X, y = make_classification(
|
412 |
+
n_samples=200,
|
413 |
+
n_features=20,
|
414 |
+
n_informative=3,
|
415 |
+
n_redundant=2,
|
416 |
+
n_repeated=0,
|
417 |
+
n_classes=8,
|
418 |
+
n_clusters_per_class=1,
|
419 |
+
flip_y=0.0,
|
420 |
+
class_sep=10,
|
421 |
+
shuffle=False,
|
422 |
+
random_state=0,
|
423 |
+
)
|
424 |
+
|
425 |
+
univariate_filter = SelectKBest(f_classif, k=5)
|
426 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
427 |
+
X_r2 = (
|
428 |
+
GenericUnivariateSelect(f_classif, mode="k_best", param=5)
|
429 |
+
.fit(X, y)
|
430 |
+
.transform(X)
|
431 |
+
)
|
432 |
+
assert_array_equal(X_r, X_r2)
|
433 |
+
support = univariate_filter.get_support()
|
434 |
+
gtruth = np.zeros(20)
|
435 |
+
gtruth[:5] = 1
|
436 |
+
assert_array_equal(support, gtruth)
|
437 |
+
|
438 |
+
|
439 |
+
def test_select_kbest_all():
|
440 |
+
# Test whether k="all" correctly returns all features.
|
441 |
+
X, y = make_classification(
|
442 |
+
n_samples=20, n_features=10, shuffle=False, random_state=0
|
443 |
+
)
|
444 |
+
|
445 |
+
univariate_filter = SelectKBest(f_classif, k="all")
|
446 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
447 |
+
assert_array_equal(X, X_r)
|
448 |
+
# Non-regression test for:
|
449 |
+
# https://github.com/scikit-learn/scikit-learn/issues/24949
|
450 |
+
X_r2 = (
|
451 |
+
GenericUnivariateSelect(f_classif, mode="k_best", param="all")
|
452 |
+
.fit(X, y)
|
453 |
+
.transform(X)
|
454 |
+
)
|
455 |
+
assert_array_equal(X_r, X_r2)
|
456 |
+
|
457 |
+
|
458 |
+
@pytest.mark.parametrize("dtype_in", [np.float32, np.float64])
|
459 |
+
def test_select_kbest_zero(dtype_in):
|
460 |
+
# Test whether k=0 correctly returns no features.
|
461 |
+
X, y = make_classification(
|
462 |
+
n_samples=20, n_features=10, shuffle=False, random_state=0
|
463 |
+
)
|
464 |
+
X = X.astype(dtype_in)
|
465 |
+
|
466 |
+
univariate_filter = SelectKBest(f_classif, k=0)
|
467 |
+
univariate_filter.fit(X, y)
|
468 |
+
support = univariate_filter.get_support()
|
469 |
+
gtruth = np.zeros(10, dtype=bool)
|
470 |
+
assert_array_equal(support, gtruth)
|
471 |
+
with pytest.warns(UserWarning, match="No features were selected"):
|
472 |
+
X_selected = univariate_filter.transform(X)
|
473 |
+
assert X_selected.shape == (20, 0)
|
474 |
+
assert X_selected.dtype == dtype_in
|
475 |
+
|
476 |
+
|
477 |
+
def test_select_heuristics_classif():
|
478 |
+
# Test whether the relative univariate feature selection
|
479 |
+
# gets the correct items in a simple classification problem
|
480 |
+
# with the fdr, fwe and fpr heuristics
|
481 |
+
X, y = make_classification(
|
482 |
+
n_samples=200,
|
483 |
+
n_features=20,
|
484 |
+
n_informative=3,
|
485 |
+
n_redundant=2,
|
486 |
+
n_repeated=0,
|
487 |
+
n_classes=8,
|
488 |
+
n_clusters_per_class=1,
|
489 |
+
flip_y=0.0,
|
490 |
+
class_sep=10,
|
491 |
+
shuffle=False,
|
492 |
+
random_state=0,
|
493 |
+
)
|
494 |
+
|
495 |
+
univariate_filter = SelectFwe(f_classif, alpha=0.01)
|
496 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
497 |
+
gtruth = np.zeros(20)
|
498 |
+
gtruth[:5] = 1
|
499 |
+
for mode in ["fdr", "fpr", "fwe"]:
|
500 |
+
X_r2 = (
|
501 |
+
GenericUnivariateSelect(f_classif, mode=mode, param=0.01)
|
502 |
+
.fit(X, y)
|
503 |
+
.transform(X)
|
504 |
+
)
|
505 |
+
assert_array_equal(X_r, X_r2)
|
506 |
+
support = univariate_filter.get_support()
|
507 |
+
assert_allclose(support, gtruth)
|
508 |
+
|
509 |
+
|
510 |
+
##############################################################################
|
511 |
+
# Test univariate selection in regression settings
|
512 |
+
|
513 |
+
|
514 |
+
def assert_best_scores_kept(score_filter):
|
515 |
+
scores = score_filter.scores_
|
516 |
+
support = score_filter.get_support()
|
517 |
+
assert_allclose(np.sort(scores[support]), np.sort(scores)[-support.sum() :])
|
518 |
+
|
519 |
+
|
520 |
+
def test_select_percentile_regression():
|
521 |
+
# Test whether the relative univariate feature selection
|
522 |
+
# gets the correct items in a simple regression problem
|
523 |
+
# with the percentile heuristic
|
524 |
+
X, y = make_regression(
|
525 |
+
n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0
|
526 |
+
)
|
527 |
+
|
528 |
+
univariate_filter = SelectPercentile(f_regression, percentile=25)
|
529 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
530 |
+
assert_best_scores_kept(univariate_filter)
|
531 |
+
X_r2 = (
|
532 |
+
GenericUnivariateSelect(f_regression, mode="percentile", param=25)
|
533 |
+
.fit(X, y)
|
534 |
+
.transform(X)
|
535 |
+
)
|
536 |
+
assert_array_equal(X_r, X_r2)
|
537 |
+
support = univariate_filter.get_support()
|
538 |
+
gtruth = np.zeros(20)
|
539 |
+
gtruth[:5] = 1
|
540 |
+
assert_array_equal(support, gtruth)
|
541 |
+
X_2 = X.copy()
|
542 |
+
X_2[:, np.logical_not(support)] = 0
|
543 |
+
assert_array_equal(X_2, univariate_filter.inverse_transform(X_r))
|
544 |
+
# Check inverse_transform respects dtype
|
545 |
+
assert_array_equal(
|
546 |
+
X_2.astype(bool), univariate_filter.inverse_transform(X_r.astype(bool))
|
547 |
+
)
|
548 |
+
|
549 |
+
|
550 |
+
def test_select_percentile_regression_full():
|
551 |
+
# Test whether the relative univariate feature selection
|
552 |
+
# selects all features when '100%' is asked.
|
553 |
+
X, y = make_regression(
|
554 |
+
n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0
|
555 |
+
)
|
556 |
+
|
557 |
+
univariate_filter = SelectPercentile(f_regression, percentile=100)
|
558 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
559 |
+
assert_best_scores_kept(univariate_filter)
|
560 |
+
X_r2 = (
|
561 |
+
GenericUnivariateSelect(f_regression, mode="percentile", param=100)
|
562 |
+
.fit(X, y)
|
563 |
+
.transform(X)
|
564 |
+
)
|
565 |
+
assert_array_equal(X_r, X_r2)
|
566 |
+
support = univariate_filter.get_support()
|
567 |
+
gtruth = np.ones(20)
|
568 |
+
assert_array_equal(support, gtruth)
|
569 |
+
|
570 |
+
|
571 |
+
def test_select_kbest_regression():
|
572 |
+
# Test whether the relative univariate feature selection
|
573 |
+
# gets the correct items in a simple regression problem
|
574 |
+
# with the k best heuristic
|
575 |
+
X, y = make_regression(
|
576 |
+
n_samples=200,
|
577 |
+
n_features=20,
|
578 |
+
n_informative=5,
|
579 |
+
shuffle=False,
|
580 |
+
random_state=0,
|
581 |
+
noise=10,
|
582 |
+
)
|
583 |
+
|
584 |
+
univariate_filter = SelectKBest(f_regression, k=5)
|
585 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
586 |
+
assert_best_scores_kept(univariate_filter)
|
587 |
+
X_r2 = (
|
588 |
+
GenericUnivariateSelect(f_regression, mode="k_best", param=5)
|
589 |
+
.fit(X, y)
|
590 |
+
.transform(X)
|
591 |
+
)
|
592 |
+
assert_array_equal(X_r, X_r2)
|
593 |
+
support = univariate_filter.get_support()
|
594 |
+
gtruth = np.zeros(20)
|
595 |
+
gtruth[:5] = 1
|
596 |
+
assert_array_equal(support, gtruth)
|
597 |
+
|
598 |
+
|
599 |
+
def test_select_heuristics_regression():
|
600 |
+
# Test whether the relative univariate feature selection
|
601 |
+
# gets the correct items in a simple regression problem
|
602 |
+
# with the fpr, fdr or fwe heuristics
|
603 |
+
X, y = make_regression(
|
604 |
+
n_samples=200,
|
605 |
+
n_features=20,
|
606 |
+
n_informative=5,
|
607 |
+
shuffle=False,
|
608 |
+
random_state=0,
|
609 |
+
noise=10,
|
610 |
+
)
|
611 |
+
|
612 |
+
univariate_filter = SelectFpr(f_regression, alpha=0.01)
|
613 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
614 |
+
gtruth = np.zeros(20)
|
615 |
+
gtruth[:5] = 1
|
616 |
+
for mode in ["fdr", "fpr", "fwe"]:
|
617 |
+
X_r2 = (
|
618 |
+
GenericUnivariateSelect(f_regression, mode=mode, param=0.01)
|
619 |
+
.fit(X, y)
|
620 |
+
.transform(X)
|
621 |
+
)
|
622 |
+
assert_array_equal(X_r, X_r2)
|
623 |
+
support = univariate_filter.get_support()
|
624 |
+
assert_array_equal(support[:5], np.ones((5,), dtype=bool))
|
625 |
+
assert np.sum(support[5:] == 1) < 3
|
626 |
+
|
627 |
+
|
628 |
+
def test_boundary_case_ch2():
|
629 |
+
# Test boundary case, and always aim to select 1 feature.
|
630 |
+
X = np.array([[10, 20], [20, 20], [20, 30]])
|
631 |
+
y = np.array([[1], [0], [0]])
|
632 |
+
scores, pvalues = chi2(X, y)
|
633 |
+
assert_array_almost_equal(scores, np.array([4.0, 0.71428571]))
|
634 |
+
assert_array_almost_equal(pvalues, np.array([0.04550026, 0.39802472]))
|
635 |
+
|
636 |
+
filter_fdr = SelectFdr(chi2, alpha=0.1)
|
637 |
+
filter_fdr.fit(X, y)
|
638 |
+
support_fdr = filter_fdr.get_support()
|
639 |
+
assert_array_equal(support_fdr, np.array([True, False]))
|
640 |
+
|
641 |
+
filter_kbest = SelectKBest(chi2, k=1)
|
642 |
+
filter_kbest.fit(X, y)
|
643 |
+
support_kbest = filter_kbest.get_support()
|
644 |
+
assert_array_equal(support_kbest, np.array([True, False]))
|
645 |
+
|
646 |
+
filter_percentile = SelectPercentile(chi2, percentile=50)
|
647 |
+
filter_percentile.fit(X, y)
|
648 |
+
support_percentile = filter_percentile.get_support()
|
649 |
+
assert_array_equal(support_percentile, np.array([True, False]))
|
650 |
+
|
651 |
+
filter_fpr = SelectFpr(chi2, alpha=0.1)
|
652 |
+
filter_fpr.fit(X, y)
|
653 |
+
support_fpr = filter_fpr.get_support()
|
654 |
+
assert_array_equal(support_fpr, np.array([True, False]))
|
655 |
+
|
656 |
+
filter_fwe = SelectFwe(chi2, alpha=0.1)
|
657 |
+
filter_fwe.fit(X, y)
|
658 |
+
support_fwe = filter_fwe.get_support()
|
659 |
+
assert_array_equal(support_fwe, np.array([True, False]))
|
660 |
+
|
661 |
+
|
662 |
+
@pytest.mark.parametrize("alpha", [0.001, 0.01, 0.1])
|
663 |
+
@pytest.mark.parametrize("n_informative", [1, 5, 10])
|
664 |
+
def test_select_fdr_regression(alpha, n_informative):
|
665 |
+
# Test that fdr heuristic actually has low FDR.
|
666 |
+
def single_fdr(alpha, n_informative, random_state):
|
667 |
+
X, y = make_regression(
|
668 |
+
n_samples=150,
|
669 |
+
n_features=20,
|
670 |
+
n_informative=n_informative,
|
671 |
+
shuffle=False,
|
672 |
+
random_state=random_state,
|
673 |
+
noise=10,
|
674 |
+
)
|
675 |
+
|
676 |
+
with warnings.catch_warnings(record=True):
|
677 |
+
# Warnings can be raised when no features are selected
|
678 |
+
# (low alpha or very noisy data)
|
679 |
+
univariate_filter = SelectFdr(f_regression, alpha=alpha)
|
680 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
681 |
+
X_r2 = (
|
682 |
+
GenericUnivariateSelect(f_regression, mode="fdr", param=alpha)
|
683 |
+
.fit(X, y)
|
684 |
+
.transform(X)
|
685 |
+
)
|
686 |
+
|
687 |
+
assert_array_equal(X_r, X_r2)
|
688 |
+
support = univariate_filter.get_support()
|
689 |
+
num_false_positives = np.sum(support[n_informative:] == 1)
|
690 |
+
num_true_positives = np.sum(support[:n_informative] == 1)
|
691 |
+
|
692 |
+
if num_false_positives == 0:
|
693 |
+
return 0.0
|
694 |
+
false_discovery_rate = num_false_positives / (
|
695 |
+
num_true_positives + num_false_positives
|
696 |
+
)
|
697 |
+
return false_discovery_rate
|
698 |
+
|
699 |
+
# As per Benjamini-Hochberg, the expected false discovery rate
|
700 |
+
# should be lower than alpha:
|
701 |
+
# FDR = E(FP / (TP + FP)) <= alpha
|
702 |
+
false_discovery_rate = np.mean(
|
703 |
+
[single_fdr(alpha, n_informative, random_state) for random_state in range(100)]
|
704 |
+
)
|
705 |
+
assert alpha >= false_discovery_rate
|
706 |
+
|
707 |
+
# Make sure that the empirical false discovery rate increases
|
708 |
+
# with alpha:
|
709 |
+
if false_discovery_rate != 0:
|
710 |
+
assert false_discovery_rate > alpha / 10
|
711 |
+
|
712 |
+
|
713 |
+
def test_select_fwe_regression():
|
714 |
+
# Test whether the relative univariate feature selection
|
715 |
+
# gets the correct items in a simple regression problem
|
716 |
+
# with the fwe heuristic
|
717 |
+
X, y = make_regression(
|
718 |
+
n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0
|
719 |
+
)
|
720 |
+
|
721 |
+
univariate_filter = SelectFwe(f_regression, alpha=0.01)
|
722 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
723 |
+
X_r2 = (
|
724 |
+
GenericUnivariateSelect(f_regression, mode="fwe", param=0.01)
|
725 |
+
.fit(X, y)
|
726 |
+
.transform(X)
|
727 |
+
)
|
728 |
+
assert_array_equal(X_r, X_r2)
|
729 |
+
support = univariate_filter.get_support()
|
730 |
+
gtruth = np.zeros(20)
|
731 |
+
gtruth[:5] = 1
|
732 |
+
assert_array_equal(support[:5], np.ones((5,), dtype=bool))
|
733 |
+
assert np.sum(support[5:] == 1) < 2
|
734 |
+
|
735 |
+
|
736 |
+
def test_selectkbest_tiebreaking():
|
737 |
+
# Test whether SelectKBest actually selects k features in case of ties.
|
738 |
+
# Prior to 0.11, SelectKBest would return more features than requested.
|
739 |
+
Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]]
|
740 |
+
y = [1]
|
741 |
+
dummy_score = lambda X, y: (X[0], X[0])
|
742 |
+
for X in Xs:
|
743 |
+
sel = SelectKBest(dummy_score, k=1)
|
744 |
+
X1 = ignore_warnings(sel.fit_transform)([X], y)
|
745 |
+
assert X1.shape[1] == 1
|
746 |
+
assert_best_scores_kept(sel)
|
747 |
+
|
748 |
+
sel = SelectKBest(dummy_score, k=2)
|
749 |
+
X2 = ignore_warnings(sel.fit_transform)([X], y)
|
750 |
+
assert X2.shape[1] == 2
|
751 |
+
assert_best_scores_kept(sel)
|
752 |
+
|
753 |
+
|
754 |
+
def test_selectpercentile_tiebreaking():
|
755 |
+
# Test if SelectPercentile selects the right n_features in case of ties.
|
756 |
+
Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]]
|
757 |
+
y = [1]
|
758 |
+
dummy_score = lambda X, y: (X[0], X[0])
|
759 |
+
for X in Xs:
|
760 |
+
sel = SelectPercentile(dummy_score, percentile=34)
|
761 |
+
X1 = ignore_warnings(sel.fit_transform)([X], y)
|
762 |
+
assert X1.shape[1] == 1
|
763 |
+
assert_best_scores_kept(sel)
|
764 |
+
|
765 |
+
sel = SelectPercentile(dummy_score, percentile=67)
|
766 |
+
X2 = ignore_warnings(sel.fit_transform)([X], y)
|
767 |
+
assert X2.shape[1] == 2
|
768 |
+
assert_best_scores_kept(sel)
|
769 |
+
|
770 |
+
|
771 |
+
def test_tied_pvalues():
|
772 |
+
# Test whether k-best and percentiles work with tied pvalues from chi2.
|
773 |
+
# chi2 will return the same p-values for the following features, but it
|
774 |
+
# will return different scores.
|
775 |
+
X0 = np.array([[10000, 9999, 9998], [1, 1, 1]])
|
776 |
+
y = [0, 1]
|
777 |
+
|
778 |
+
for perm in itertools.permutations((0, 1, 2)):
|
779 |
+
X = X0[:, perm]
|
780 |
+
Xt = SelectKBest(chi2, k=2).fit_transform(X, y)
|
781 |
+
assert Xt.shape == (2, 2)
|
782 |
+
assert 9998 not in Xt
|
783 |
+
|
784 |
+
Xt = SelectPercentile(chi2, percentile=67).fit_transform(X, y)
|
785 |
+
assert Xt.shape == (2, 2)
|
786 |
+
assert 9998 not in Xt
|
787 |
+
|
788 |
+
|
789 |
+
def test_scorefunc_multilabel():
|
790 |
+
# Test whether k-best and percentiles works with multilabels with chi2.
|
791 |
+
|
792 |
+
X = np.array([[10000, 9999, 0], [100, 9999, 0], [1000, 99, 0]])
|
793 |
+
y = [[1, 1], [0, 1], [1, 0]]
|
794 |
+
|
795 |
+
Xt = SelectKBest(chi2, k=2).fit_transform(X, y)
|
796 |
+
assert Xt.shape == (3, 2)
|
797 |
+
assert 0 not in Xt
|
798 |
+
|
799 |
+
Xt = SelectPercentile(chi2, percentile=67).fit_transform(X, y)
|
800 |
+
assert Xt.shape == (3, 2)
|
801 |
+
assert 0 not in Xt
|
802 |
+
|
803 |
+
|
804 |
+
def test_tied_scores():
|
805 |
+
# Test for stable sorting in k-best with tied scores.
|
806 |
+
X_train = np.array([[0, 0, 0], [1, 1, 1]])
|
807 |
+
y_train = [0, 1]
|
808 |
+
|
809 |
+
for n_features in [1, 2, 3]:
|
810 |
+
sel = SelectKBest(chi2, k=n_features).fit(X_train, y_train)
|
811 |
+
X_test = sel.transform([[0, 1, 2]])
|
812 |
+
assert_array_equal(X_test[0], np.arange(3)[-n_features:])
|
813 |
+
|
814 |
+
|
815 |
+
def test_nans():
|
816 |
+
# Assert that SelectKBest and SelectPercentile can handle NaNs.
|
817 |
+
# First feature has zero variance to confuse f_classif (ANOVA) and
|
818 |
+
# make it return a NaN.
|
819 |
+
X = [[0, 1, 0], [0, -1, -1], [0, 0.5, 0.5]]
|
820 |
+
y = [1, 0, 1]
|
821 |
+
|
822 |
+
for select in (
|
823 |
+
SelectKBest(f_classif, k=2),
|
824 |
+
SelectPercentile(f_classif, percentile=67),
|
825 |
+
):
|
826 |
+
ignore_warnings(select.fit)(X, y)
|
827 |
+
assert_array_equal(select.get_support(indices=True), np.array([1, 2]))
|
828 |
+
|
829 |
+
|
830 |
+
def test_invalid_k():
|
831 |
+
X = [[0, 1, 0], [0, -1, -1], [0, 0.5, 0.5]]
|
832 |
+
y = [1, 0, 1]
|
833 |
+
|
834 |
+
msg = "k=4 is greater than n_features=3. All the features will be returned."
|
835 |
+
with pytest.warns(UserWarning, match=msg):
|
836 |
+
SelectKBest(k=4).fit(X, y)
|
837 |
+
with pytest.warns(UserWarning, match=msg):
|
838 |
+
GenericUnivariateSelect(mode="k_best", param=4).fit(X, y)
|
839 |
+
|
840 |
+
|
841 |
+
def test_f_classif_constant_feature():
|
842 |
+
# Test that f_classif warns if a feature is constant throughout.
|
843 |
+
|
844 |
+
X, y = make_classification(n_samples=10, n_features=5)
|
845 |
+
X[:, 0] = 2.0
|
846 |
+
with pytest.warns(UserWarning):
|
847 |
+
f_classif(X, y)
|
848 |
+
|
849 |
+
|
850 |
+
def test_no_feature_selected():
|
851 |
+
rng = np.random.RandomState(0)
|
852 |
+
|
853 |
+
# Generate random uncorrelated data: a strict univariate test should
|
854 |
+
# rejects all the features
|
855 |
+
X = rng.rand(40, 10)
|
856 |
+
y = rng.randint(0, 4, size=40)
|
857 |
+
strict_selectors = [
|
858 |
+
SelectFwe(alpha=0.01).fit(X, y),
|
859 |
+
SelectFdr(alpha=0.01).fit(X, y),
|
860 |
+
SelectFpr(alpha=0.01).fit(X, y),
|
861 |
+
SelectPercentile(percentile=0).fit(X, y),
|
862 |
+
SelectKBest(k=0).fit(X, y),
|
863 |
+
]
|
864 |
+
for selector in strict_selectors:
|
865 |
+
assert_array_equal(selector.get_support(), np.zeros(10))
|
866 |
+
with pytest.warns(UserWarning, match="No features were selected"):
|
867 |
+
X_selected = selector.transform(X)
|
868 |
+
assert X_selected.shape == (40, 0)
|
869 |
+
|
870 |
+
|
871 |
+
def test_mutual_info_classif():
|
872 |
+
X, y = make_classification(
|
873 |
+
n_samples=100,
|
874 |
+
n_features=5,
|
875 |
+
n_informative=1,
|
876 |
+
n_redundant=1,
|
877 |
+
n_repeated=0,
|
878 |
+
n_classes=2,
|
879 |
+
n_clusters_per_class=1,
|
880 |
+
flip_y=0.0,
|
881 |
+
class_sep=10,
|
882 |
+
shuffle=False,
|
883 |
+
random_state=0,
|
884 |
+
)
|
885 |
+
|
886 |
+
# Test in KBest mode.
|
887 |
+
univariate_filter = SelectKBest(mutual_info_classif, k=2)
|
888 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
889 |
+
X_r2 = (
|
890 |
+
GenericUnivariateSelect(mutual_info_classif, mode="k_best", param=2)
|
891 |
+
.fit(X, y)
|
892 |
+
.transform(X)
|
893 |
+
)
|
894 |
+
assert_array_equal(X_r, X_r2)
|
895 |
+
support = univariate_filter.get_support()
|
896 |
+
gtruth = np.zeros(5)
|
897 |
+
gtruth[:2] = 1
|
898 |
+
assert_array_equal(support, gtruth)
|
899 |
+
|
900 |
+
# Test in Percentile mode.
|
901 |
+
univariate_filter = SelectPercentile(mutual_info_classif, percentile=40)
|
902 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
903 |
+
X_r2 = (
|
904 |
+
GenericUnivariateSelect(mutual_info_classif, mode="percentile", param=40)
|
905 |
+
.fit(X, y)
|
906 |
+
.transform(X)
|
907 |
+
)
|
908 |
+
assert_array_equal(X_r, X_r2)
|
909 |
+
support = univariate_filter.get_support()
|
910 |
+
gtruth = np.zeros(5)
|
911 |
+
gtruth[:2] = 1
|
912 |
+
assert_array_equal(support, gtruth)
|
913 |
+
|
914 |
+
|
915 |
+
def test_mutual_info_regression():
|
916 |
+
X, y = make_regression(
|
917 |
+
n_samples=100,
|
918 |
+
n_features=10,
|
919 |
+
n_informative=2,
|
920 |
+
shuffle=False,
|
921 |
+
random_state=0,
|
922 |
+
noise=10,
|
923 |
+
)
|
924 |
+
|
925 |
+
# Test in KBest mode.
|
926 |
+
univariate_filter = SelectKBest(mutual_info_regression, k=2)
|
927 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
928 |
+
assert_best_scores_kept(univariate_filter)
|
929 |
+
X_r2 = (
|
930 |
+
GenericUnivariateSelect(mutual_info_regression, mode="k_best", param=2)
|
931 |
+
.fit(X, y)
|
932 |
+
.transform(X)
|
933 |
+
)
|
934 |
+
assert_array_equal(X_r, X_r2)
|
935 |
+
support = univariate_filter.get_support()
|
936 |
+
gtruth = np.zeros(10)
|
937 |
+
gtruth[:2] = 1
|
938 |
+
assert_array_equal(support, gtruth)
|
939 |
+
|
940 |
+
# Test in Percentile mode.
|
941 |
+
univariate_filter = SelectPercentile(mutual_info_regression, percentile=20)
|
942 |
+
X_r = univariate_filter.fit(X, y).transform(X)
|
943 |
+
X_r2 = (
|
944 |
+
GenericUnivariateSelect(mutual_info_regression, mode="percentile", param=20)
|
945 |
+
.fit(X, y)
|
946 |
+
.transform(X)
|
947 |
+
)
|
948 |
+
assert_array_equal(X_r, X_r2)
|
949 |
+
support = univariate_filter.get_support()
|
950 |
+
gtruth = np.zeros(10)
|
951 |
+
gtruth[:2] = 1
|
952 |
+
assert_array_equal(support, gtruth)
|
953 |
+
|
954 |
+
|
955 |
+
def test_dataframe_output_dtypes():
|
956 |
+
"""Check that the output datafarme dtypes are the same as the input.
|
957 |
+
|
958 |
+
Non-regression test for gh-24860.
|
959 |
+
"""
|
960 |
+
pd = pytest.importorskip("pandas")
|
961 |
+
|
962 |
+
X, y = load_iris(return_X_y=True, as_frame=True)
|
963 |
+
X = X.astype(
|
964 |
+
{
|
965 |
+
"petal length (cm)": np.float32,
|
966 |
+
"petal width (cm)": np.float64,
|
967 |
+
}
|
968 |
+
)
|
969 |
+
X["petal_width_binned"] = pd.cut(X["petal width (cm)"], bins=10)
|
970 |
+
|
971 |
+
column_order = X.columns
|
972 |
+
|
973 |
+
def selector(X, y):
|
974 |
+
ranking = {
|
975 |
+
"sepal length (cm)": 1,
|
976 |
+
"sepal width (cm)": 2,
|
977 |
+
"petal length (cm)": 3,
|
978 |
+
"petal width (cm)": 4,
|
979 |
+
"petal_width_binned": 5,
|
980 |
+
}
|
981 |
+
return np.asarray([ranking[name] for name in column_order])
|
982 |
+
|
983 |
+
univariate_filter = SelectKBest(selector, k=3).set_output(transform="pandas")
|
984 |
+
output = univariate_filter.fit_transform(X, y)
|
985 |
+
|
986 |
+
assert_array_equal(
|
987 |
+
output.columns, ["petal length (cm)", "petal width (cm)", "petal_width_binned"]
|
988 |
+
)
|
989 |
+
for name, dtype in output.dtypes.items():
|
990 |
+
assert dtype == X.dtypes[name]
|
991 |
+
|
992 |
+
|
993 |
+
@pytest.mark.parametrize(
|
994 |
+
"selector",
|
995 |
+
[
|
996 |
+
SelectKBest(k=4),
|
997 |
+
SelectPercentile(percentile=80),
|
998 |
+
GenericUnivariateSelect(mode="k_best", param=4),
|
999 |
+
GenericUnivariateSelect(mode="percentile", param=80),
|
1000 |
+
],
|
1001 |
+
)
|
1002 |
+
def test_unsupervised_filter(selector):
|
1003 |
+
"""Check support for unsupervised feature selection for the filter that could
|
1004 |
+
require only `X`.
|
1005 |
+
"""
|
1006 |
+
rng = np.random.RandomState(0)
|
1007 |
+
X = rng.randn(10, 5)
|
1008 |
+
|
1009 |
+
def score_func(X, y=None):
|
1010 |
+
return np.array([1, 1, 1, 1, 0])
|
1011 |
+
|
1012 |
+
selector.set_params(score_func=score_func)
|
1013 |
+
selector.fit(X)
|
1014 |
+
X_trans = selector.transform(X)
|
1015 |
+
assert_allclose(X_trans, X[:, :4])
|
1016 |
+
X_trans = selector.fit_transform(X)
|
1017 |
+
assert_allclose(X_trans, X[:, :4])
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_from_model.py
ADDED
@@ -0,0 +1,684 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import warnings
|
3 |
+
from unittest.mock import Mock
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pytest
|
7 |
+
|
8 |
+
from sklearn import datasets
|
9 |
+
from sklearn.base import BaseEstimator
|
10 |
+
from sklearn.cross_decomposition import CCA, PLSCanonical, PLSRegression
|
11 |
+
from sklearn.datasets import make_friedman1
|
12 |
+
from sklearn.decomposition import PCA
|
13 |
+
from sklearn.ensemble import HistGradientBoostingClassifier, RandomForestClassifier
|
14 |
+
from sklearn.exceptions import NotFittedError
|
15 |
+
from sklearn.feature_selection import SelectFromModel
|
16 |
+
from sklearn.linear_model import (
|
17 |
+
ElasticNet,
|
18 |
+
ElasticNetCV,
|
19 |
+
Lasso,
|
20 |
+
LassoCV,
|
21 |
+
LinearRegression,
|
22 |
+
LogisticRegression,
|
23 |
+
PassiveAggressiveClassifier,
|
24 |
+
SGDClassifier,
|
25 |
+
)
|
26 |
+
from sklearn.pipeline import make_pipeline
|
27 |
+
from sklearn.svm import LinearSVC
|
28 |
+
from sklearn.utils._testing import (
|
29 |
+
MinimalClassifier,
|
30 |
+
assert_allclose,
|
31 |
+
assert_array_almost_equal,
|
32 |
+
assert_array_equal,
|
33 |
+
skip_if_32bit,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
class NaNTag(BaseEstimator):
|
38 |
+
def _more_tags(self):
|
39 |
+
return {"allow_nan": True}
|
40 |
+
|
41 |
+
|
42 |
+
class NoNaNTag(BaseEstimator):
|
43 |
+
def _more_tags(self):
|
44 |
+
return {"allow_nan": False}
|
45 |
+
|
46 |
+
|
47 |
+
class NaNTagRandomForest(RandomForestClassifier):
|
48 |
+
def _more_tags(self):
|
49 |
+
return {"allow_nan": True}
|
50 |
+
|
51 |
+
|
52 |
+
iris = datasets.load_iris()
|
53 |
+
data, y = iris.data, iris.target
|
54 |
+
rng = np.random.RandomState(0)
|
55 |
+
|
56 |
+
|
57 |
+
def test_invalid_input():
|
58 |
+
clf = SGDClassifier(
|
59 |
+
alpha=0.1, max_iter=10, shuffle=True, random_state=None, tol=None
|
60 |
+
)
|
61 |
+
for threshold in ["gobbledigook", ".5 * gobbledigook"]:
|
62 |
+
model = SelectFromModel(clf, threshold=threshold)
|
63 |
+
model.fit(data, y)
|
64 |
+
with pytest.raises(ValueError):
|
65 |
+
model.transform(data)
|
66 |
+
|
67 |
+
|
68 |
+
def test_input_estimator_unchanged():
|
69 |
+
# Test that SelectFromModel fits on a clone of the estimator.
|
70 |
+
est = RandomForestClassifier()
|
71 |
+
transformer = SelectFromModel(estimator=est)
|
72 |
+
transformer.fit(data, y)
|
73 |
+
assert transformer.estimator is est
|
74 |
+
|
75 |
+
|
76 |
+
@pytest.mark.parametrize(
|
77 |
+
"max_features, err_type, err_msg",
|
78 |
+
[
|
79 |
+
(
|
80 |
+
data.shape[1] + 1,
|
81 |
+
ValueError,
|
82 |
+
"max_features ==",
|
83 |
+
),
|
84 |
+
(
|
85 |
+
lambda X: 1.5,
|
86 |
+
TypeError,
|
87 |
+
"max_features must be an instance of int, not float.",
|
88 |
+
),
|
89 |
+
(
|
90 |
+
lambda X: data.shape[1] + 1,
|
91 |
+
ValueError,
|
92 |
+
"max_features ==",
|
93 |
+
),
|
94 |
+
(
|
95 |
+
lambda X: -1,
|
96 |
+
ValueError,
|
97 |
+
"max_features ==",
|
98 |
+
),
|
99 |
+
],
|
100 |
+
)
|
101 |
+
def test_max_features_error(max_features, err_type, err_msg):
|
102 |
+
err_msg = re.escape(err_msg)
|
103 |
+
clf = RandomForestClassifier(n_estimators=5, random_state=0)
|
104 |
+
|
105 |
+
transformer = SelectFromModel(
|
106 |
+
estimator=clf, max_features=max_features, threshold=-np.inf
|
107 |
+
)
|
108 |
+
with pytest.raises(err_type, match=err_msg):
|
109 |
+
transformer.fit(data, y)
|
110 |
+
|
111 |
+
|
112 |
+
@pytest.mark.parametrize("max_features", [0, 2, data.shape[1], None])
|
113 |
+
def test_inferred_max_features_integer(max_features):
|
114 |
+
"""Check max_features_ and output shape for integer max_features."""
|
115 |
+
clf = RandomForestClassifier(n_estimators=5, random_state=0)
|
116 |
+
transformer = SelectFromModel(
|
117 |
+
estimator=clf, max_features=max_features, threshold=-np.inf
|
118 |
+
)
|
119 |
+
X_trans = transformer.fit_transform(data, y)
|
120 |
+
if max_features is not None:
|
121 |
+
assert transformer.max_features_ == max_features
|
122 |
+
assert X_trans.shape[1] == transformer.max_features_
|
123 |
+
else:
|
124 |
+
assert not hasattr(transformer, "max_features_")
|
125 |
+
assert X_trans.shape[1] == data.shape[1]
|
126 |
+
|
127 |
+
|
128 |
+
@pytest.mark.parametrize(
|
129 |
+
"max_features",
|
130 |
+
[lambda X: 1, lambda X: X.shape[1], lambda X: min(X.shape[1], 10000)],
|
131 |
+
)
|
132 |
+
def test_inferred_max_features_callable(max_features):
|
133 |
+
"""Check max_features_ and output shape for callable max_features."""
|
134 |
+
clf = RandomForestClassifier(n_estimators=5, random_state=0)
|
135 |
+
transformer = SelectFromModel(
|
136 |
+
estimator=clf, max_features=max_features, threshold=-np.inf
|
137 |
+
)
|
138 |
+
X_trans = transformer.fit_transform(data, y)
|
139 |
+
assert transformer.max_features_ == max_features(data)
|
140 |
+
assert X_trans.shape[1] == transformer.max_features_
|
141 |
+
|
142 |
+
|
143 |
+
@pytest.mark.parametrize("max_features", [lambda X: round(len(X[0]) / 2), 2])
|
144 |
+
def test_max_features_array_like(max_features):
|
145 |
+
X = [
|
146 |
+
[0.87, -1.34, 0.31],
|
147 |
+
[-2.79, -0.02, -0.85],
|
148 |
+
[-1.34, -0.48, -2.55],
|
149 |
+
[1.92, 1.48, 0.65],
|
150 |
+
]
|
151 |
+
y = [0, 1, 0, 1]
|
152 |
+
|
153 |
+
clf = RandomForestClassifier(n_estimators=5, random_state=0)
|
154 |
+
transformer = SelectFromModel(
|
155 |
+
estimator=clf, max_features=max_features, threshold=-np.inf
|
156 |
+
)
|
157 |
+
X_trans = transformer.fit_transform(X, y)
|
158 |
+
assert X_trans.shape[1] == transformer.max_features_
|
159 |
+
|
160 |
+
|
161 |
+
@pytest.mark.parametrize(
|
162 |
+
"max_features",
|
163 |
+
[lambda X: min(X.shape[1], 10000), lambda X: X.shape[1], lambda X: 1],
|
164 |
+
)
|
165 |
+
def test_max_features_callable_data(max_features):
|
166 |
+
"""Tests that the callable passed to `fit` is called on X."""
|
167 |
+
clf = RandomForestClassifier(n_estimators=50, random_state=0)
|
168 |
+
m = Mock(side_effect=max_features)
|
169 |
+
transformer = SelectFromModel(estimator=clf, max_features=m, threshold=-np.inf)
|
170 |
+
transformer.fit_transform(data, y)
|
171 |
+
m.assert_called_with(data)
|
172 |
+
|
173 |
+
|
174 |
+
class FixedImportanceEstimator(BaseEstimator):
|
175 |
+
def __init__(self, importances):
|
176 |
+
self.importances = importances
|
177 |
+
|
178 |
+
def fit(self, X, y=None):
|
179 |
+
self.feature_importances_ = np.array(self.importances)
|
180 |
+
|
181 |
+
|
182 |
+
def test_max_features():
|
183 |
+
# Test max_features parameter using various values
|
184 |
+
X, y = datasets.make_classification(
|
185 |
+
n_samples=1000,
|
186 |
+
n_features=10,
|
187 |
+
n_informative=3,
|
188 |
+
n_redundant=0,
|
189 |
+
n_repeated=0,
|
190 |
+
shuffle=False,
|
191 |
+
random_state=0,
|
192 |
+
)
|
193 |
+
max_features = X.shape[1]
|
194 |
+
est = RandomForestClassifier(n_estimators=50, random_state=0)
|
195 |
+
|
196 |
+
transformer1 = SelectFromModel(estimator=est, threshold=-np.inf)
|
197 |
+
transformer2 = SelectFromModel(
|
198 |
+
estimator=est, max_features=max_features, threshold=-np.inf
|
199 |
+
)
|
200 |
+
X_new1 = transformer1.fit_transform(X, y)
|
201 |
+
X_new2 = transformer2.fit_transform(X, y)
|
202 |
+
assert_allclose(X_new1, X_new2)
|
203 |
+
|
204 |
+
# Test max_features against actual model.
|
205 |
+
transformer1 = SelectFromModel(estimator=Lasso(alpha=0.025, random_state=42))
|
206 |
+
X_new1 = transformer1.fit_transform(X, y)
|
207 |
+
scores1 = np.abs(transformer1.estimator_.coef_)
|
208 |
+
candidate_indices1 = np.argsort(-scores1, kind="mergesort")
|
209 |
+
|
210 |
+
for n_features in range(1, X_new1.shape[1] + 1):
|
211 |
+
transformer2 = SelectFromModel(
|
212 |
+
estimator=Lasso(alpha=0.025, random_state=42),
|
213 |
+
max_features=n_features,
|
214 |
+
threshold=-np.inf,
|
215 |
+
)
|
216 |
+
X_new2 = transformer2.fit_transform(X, y)
|
217 |
+
scores2 = np.abs(transformer2.estimator_.coef_)
|
218 |
+
candidate_indices2 = np.argsort(-scores2, kind="mergesort")
|
219 |
+
assert_allclose(
|
220 |
+
X[:, candidate_indices1[:n_features]], X[:, candidate_indices2[:n_features]]
|
221 |
+
)
|
222 |
+
assert_allclose(transformer1.estimator_.coef_, transformer2.estimator_.coef_)
|
223 |
+
|
224 |
+
|
225 |
+
def test_max_features_tiebreak():
|
226 |
+
# Test if max_features can break tie among feature importance
|
227 |
+
X, y = datasets.make_classification(
|
228 |
+
n_samples=1000,
|
229 |
+
n_features=10,
|
230 |
+
n_informative=3,
|
231 |
+
n_redundant=0,
|
232 |
+
n_repeated=0,
|
233 |
+
shuffle=False,
|
234 |
+
random_state=0,
|
235 |
+
)
|
236 |
+
max_features = X.shape[1]
|
237 |
+
|
238 |
+
feature_importances = np.array([4, 4, 4, 4, 3, 3, 3, 2, 2, 1])
|
239 |
+
for n_features in range(1, max_features + 1):
|
240 |
+
transformer = SelectFromModel(
|
241 |
+
FixedImportanceEstimator(feature_importances),
|
242 |
+
max_features=n_features,
|
243 |
+
threshold=-np.inf,
|
244 |
+
)
|
245 |
+
X_new = transformer.fit_transform(X, y)
|
246 |
+
selected_feature_indices = np.where(transformer._get_support_mask())[0]
|
247 |
+
assert_array_equal(selected_feature_indices, np.arange(n_features))
|
248 |
+
assert X_new.shape[1] == n_features
|
249 |
+
|
250 |
+
|
251 |
+
def test_threshold_and_max_features():
|
252 |
+
X, y = datasets.make_classification(
|
253 |
+
n_samples=1000,
|
254 |
+
n_features=10,
|
255 |
+
n_informative=3,
|
256 |
+
n_redundant=0,
|
257 |
+
n_repeated=0,
|
258 |
+
shuffle=False,
|
259 |
+
random_state=0,
|
260 |
+
)
|
261 |
+
est = RandomForestClassifier(n_estimators=50, random_state=0)
|
262 |
+
|
263 |
+
transformer1 = SelectFromModel(estimator=est, max_features=3, threshold=-np.inf)
|
264 |
+
X_new1 = transformer1.fit_transform(X, y)
|
265 |
+
|
266 |
+
transformer2 = SelectFromModel(estimator=est, threshold=0.04)
|
267 |
+
X_new2 = transformer2.fit_transform(X, y)
|
268 |
+
|
269 |
+
transformer3 = SelectFromModel(estimator=est, max_features=3, threshold=0.04)
|
270 |
+
X_new3 = transformer3.fit_transform(X, y)
|
271 |
+
assert X_new3.shape[1] == min(X_new1.shape[1], X_new2.shape[1])
|
272 |
+
selected_indices = transformer3.transform(np.arange(X.shape[1])[np.newaxis, :])
|
273 |
+
assert_allclose(X_new3, X[:, selected_indices[0]])
|
274 |
+
|
275 |
+
|
276 |
+
@skip_if_32bit
|
277 |
+
def test_feature_importances():
|
278 |
+
X, y = datasets.make_classification(
|
279 |
+
n_samples=1000,
|
280 |
+
n_features=10,
|
281 |
+
n_informative=3,
|
282 |
+
n_redundant=0,
|
283 |
+
n_repeated=0,
|
284 |
+
shuffle=False,
|
285 |
+
random_state=0,
|
286 |
+
)
|
287 |
+
|
288 |
+
est = RandomForestClassifier(n_estimators=50, random_state=0)
|
289 |
+
for threshold, func in zip(["mean", "median"], [np.mean, np.median]):
|
290 |
+
transformer = SelectFromModel(estimator=est, threshold=threshold)
|
291 |
+
transformer.fit(X, y)
|
292 |
+
assert hasattr(transformer.estimator_, "feature_importances_")
|
293 |
+
|
294 |
+
X_new = transformer.transform(X)
|
295 |
+
assert X_new.shape[1] < X.shape[1]
|
296 |
+
importances = transformer.estimator_.feature_importances_
|
297 |
+
|
298 |
+
feature_mask = np.abs(importances) > func(importances)
|
299 |
+
assert_array_almost_equal(X_new, X[:, feature_mask])
|
300 |
+
|
301 |
+
|
302 |
+
def test_sample_weight():
|
303 |
+
# Ensure sample weights are passed to underlying estimator
|
304 |
+
X, y = datasets.make_classification(
|
305 |
+
n_samples=100,
|
306 |
+
n_features=10,
|
307 |
+
n_informative=3,
|
308 |
+
n_redundant=0,
|
309 |
+
n_repeated=0,
|
310 |
+
shuffle=False,
|
311 |
+
random_state=0,
|
312 |
+
)
|
313 |
+
|
314 |
+
# Check with sample weights
|
315 |
+
sample_weight = np.ones(y.shape)
|
316 |
+
sample_weight[y == 1] *= 100
|
317 |
+
|
318 |
+
est = LogisticRegression(random_state=0, fit_intercept=False)
|
319 |
+
transformer = SelectFromModel(estimator=est)
|
320 |
+
transformer.fit(X, y, sample_weight=None)
|
321 |
+
mask = transformer._get_support_mask()
|
322 |
+
transformer.fit(X, y, sample_weight=sample_weight)
|
323 |
+
weighted_mask = transformer._get_support_mask()
|
324 |
+
assert not np.all(weighted_mask == mask)
|
325 |
+
transformer.fit(X, y, sample_weight=3 * sample_weight)
|
326 |
+
reweighted_mask = transformer._get_support_mask()
|
327 |
+
assert np.all(weighted_mask == reweighted_mask)
|
328 |
+
|
329 |
+
|
330 |
+
@pytest.mark.parametrize(
|
331 |
+
"estimator",
|
332 |
+
[
|
333 |
+
Lasso(alpha=0.1, random_state=42),
|
334 |
+
LassoCV(random_state=42),
|
335 |
+
ElasticNet(l1_ratio=1, random_state=42),
|
336 |
+
ElasticNetCV(l1_ratio=[1], random_state=42),
|
337 |
+
],
|
338 |
+
)
|
339 |
+
def test_coef_default_threshold(estimator):
|
340 |
+
X, y = datasets.make_classification(
|
341 |
+
n_samples=100,
|
342 |
+
n_features=10,
|
343 |
+
n_informative=3,
|
344 |
+
n_redundant=0,
|
345 |
+
n_repeated=0,
|
346 |
+
shuffle=False,
|
347 |
+
random_state=0,
|
348 |
+
)
|
349 |
+
|
350 |
+
# For the Lasso and related models, the threshold defaults to 1e-5
|
351 |
+
transformer = SelectFromModel(estimator=estimator)
|
352 |
+
transformer.fit(X, y)
|
353 |
+
X_new = transformer.transform(X)
|
354 |
+
mask = np.abs(transformer.estimator_.coef_) > 1e-5
|
355 |
+
assert_array_almost_equal(X_new, X[:, mask])
|
356 |
+
|
357 |
+
|
358 |
+
@skip_if_32bit
|
359 |
+
def test_2d_coef():
|
360 |
+
X, y = datasets.make_classification(
|
361 |
+
n_samples=1000,
|
362 |
+
n_features=10,
|
363 |
+
n_informative=3,
|
364 |
+
n_redundant=0,
|
365 |
+
n_repeated=0,
|
366 |
+
shuffle=False,
|
367 |
+
random_state=0,
|
368 |
+
n_classes=4,
|
369 |
+
)
|
370 |
+
|
371 |
+
est = LogisticRegression()
|
372 |
+
for threshold, func in zip(["mean", "median"], [np.mean, np.median]):
|
373 |
+
for order in [1, 2, np.inf]:
|
374 |
+
# Fit SelectFromModel a multi-class problem
|
375 |
+
transformer = SelectFromModel(
|
376 |
+
estimator=LogisticRegression(), threshold=threshold, norm_order=order
|
377 |
+
)
|
378 |
+
transformer.fit(X, y)
|
379 |
+
assert hasattr(transformer.estimator_, "coef_")
|
380 |
+
X_new = transformer.transform(X)
|
381 |
+
assert X_new.shape[1] < X.shape[1]
|
382 |
+
|
383 |
+
# Manually check that the norm is correctly performed
|
384 |
+
est.fit(X, y)
|
385 |
+
importances = np.linalg.norm(est.coef_, axis=0, ord=order)
|
386 |
+
feature_mask = importances > func(importances)
|
387 |
+
assert_array_almost_equal(X_new, X[:, feature_mask])
|
388 |
+
|
389 |
+
|
390 |
+
def test_partial_fit():
|
391 |
+
est = PassiveAggressiveClassifier(
|
392 |
+
random_state=0, shuffle=False, max_iter=5, tol=None
|
393 |
+
)
|
394 |
+
transformer = SelectFromModel(estimator=est)
|
395 |
+
transformer.partial_fit(data, y, classes=np.unique(y))
|
396 |
+
old_model = transformer.estimator_
|
397 |
+
transformer.partial_fit(data, y, classes=np.unique(y))
|
398 |
+
new_model = transformer.estimator_
|
399 |
+
assert old_model is new_model
|
400 |
+
|
401 |
+
X_transform = transformer.transform(data)
|
402 |
+
transformer.fit(np.vstack((data, data)), np.concatenate((y, y)))
|
403 |
+
assert_array_almost_equal(X_transform, transformer.transform(data))
|
404 |
+
|
405 |
+
# check that if est doesn't have partial_fit, neither does SelectFromModel
|
406 |
+
transformer = SelectFromModel(estimator=RandomForestClassifier())
|
407 |
+
assert not hasattr(transformer, "partial_fit")
|
408 |
+
|
409 |
+
|
410 |
+
def test_calling_fit_reinitializes():
|
411 |
+
est = LinearSVC(dual="auto", random_state=0)
|
412 |
+
transformer = SelectFromModel(estimator=est)
|
413 |
+
transformer.fit(data, y)
|
414 |
+
transformer.set_params(estimator__C=100)
|
415 |
+
transformer.fit(data, y)
|
416 |
+
assert transformer.estimator_.C == 100
|
417 |
+
|
418 |
+
|
419 |
+
def test_prefit():
|
420 |
+
# Test all possible combinations of the prefit parameter.
|
421 |
+
|
422 |
+
# Passing a prefit parameter with the selected model
|
423 |
+
# and fitting a unfit model with prefit=False should give same results.
|
424 |
+
clf = SGDClassifier(alpha=0.1, max_iter=10, shuffle=True, random_state=0, tol=None)
|
425 |
+
model = SelectFromModel(clf)
|
426 |
+
model.fit(data, y)
|
427 |
+
X_transform = model.transform(data)
|
428 |
+
clf.fit(data, y)
|
429 |
+
model = SelectFromModel(clf, prefit=True)
|
430 |
+
assert_array_almost_equal(model.transform(data), X_transform)
|
431 |
+
model.fit(data, y)
|
432 |
+
assert model.estimator_ is not clf
|
433 |
+
|
434 |
+
# Check that the model is rewritten if prefit=False and a fitted model is
|
435 |
+
# passed
|
436 |
+
model = SelectFromModel(clf, prefit=False)
|
437 |
+
model.fit(data, y)
|
438 |
+
assert_array_almost_equal(model.transform(data), X_transform)
|
439 |
+
|
440 |
+
# Check that passing an unfitted estimator with `prefit=True` raises a
|
441 |
+
# `ValueError`
|
442 |
+
clf = SGDClassifier(alpha=0.1, max_iter=10, shuffle=True, random_state=0, tol=None)
|
443 |
+
model = SelectFromModel(clf, prefit=True)
|
444 |
+
err_msg = "When `prefit=True`, `estimator` is expected to be a fitted estimator."
|
445 |
+
with pytest.raises(NotFittedError, match=err_msg):
|
446 |
+
model.fit(data, y)
|
447 |
+
with pytest.raises(NotFittedError, match=err_msg):
|
448 |
+
model.partial_fit(data, y)
|
449 |
+
with pytest.raises(NotFittedError, match=err_msg):
|
450 |
+
model.transform(data)
|
451 |
+
|
452 |
+
# Check that the internal parameters of prefitted model are not changed
|
453 |
+
# when calling `fit` or `partial_fit` with `prefit=True`
|
454 |
+
clf = SGDClassifier(alpha=0.1, max_iter=10, shuffle=True, tol=None).fit(data, y)
|
455 |
+
model = SelectFromModel(clf, prefit=True)
|
456 |
+
model.fit(data, y)
|
457 |
+
assert_allclose(model.estimator_.coef_, clf.coef_)
|
458 |
+
model.partial_fit(data, y)
|
459 |
+
assert_allclose(model.estimator_.coef_, clf.coef_)
|
460 |
+
|
461 |
+
|
462 |
+
def test_prefit_max_features():
|
463 |
+
"""Check the interaction between `prefit` and `max_features`."""
|
464 |
+
# case 1: an error should be raised at `transform` if `fit` was not called to
|
465 |
+
# validate the attributes
|
466 |
+
estimator = RandomForestClassifier(n_estimators=5, random_state=0)
|
467 |
+
estimator.fit(data, y)
|
468 |
+
model = SelectFromModel(estimator, prefit=True, max_features=lambda X: X.shape[1])
|
469 |
+
|
470 |
+
err_msg = (
|
471 |
+
"When `prefit=True` and `max_features` is a callable, call `fit` "
|
472 |
+
"before calling `transform`."
|
473 |
+
)
|
474 |
+
with pytest.raises(NotFittedError, match=err_msg):
|
475 |
+
model.transform(data)
|
476 |
+
|
477 |
+
# case 2: `max_features` is not validated and different from an integer
|
478 |
+
# FIXME: we cannot validate the upper bound of the attribute at transform
|
479 |
+
# and we should force calling `fit` if we intend to force the attribute
|
480 |
+
# to have such an upper bound.
|
481 |
+
max_features = 2.5
|
482 |
+
model.set_params(max_features=max_features)
|
483 |
+
with pytest.raises(ValueError, match="`max_features` must be an integer"):
|
484 |
+
model.transform(data)
|
485 |
+
|
486 |
+
|
487 |
+
def test_prefit_get_feature_names_out():
|
488 |
+
"""Check the interaction between prefit and the feature names."""
|
489 |
+
clf = RandomForestClassifier(n_estimators=2, random_state=0)
|
490 |
+
clf.fit(data, y)
|
491 |
+
model = SelectFromModel(clf, prefit=True, max_features=1)
|
492 |
+
|
493 |
+
name = type(model).__name__
|
494 |
+
err_msg = (
|
495 |
+
f"This {name} instance is not fitted yet. Call 'fit' with "
|
496 |
+
"appropriate arguments before using this estimator."
|
497 |
+
)
|
498 |
+
with pytest.raises(NotFittedError, match=err_msg):
|
499 |
+
model.get_feature_names_out()
|
500 |
+
|
501 |
+
model.fit(data, y)
|
502 |
+
feature_names = model.get_feature_names_out()
|
503 |
+
assert feature_names == ["x3"]
|
504 |
+
|
505 |
+
|
506 |
+
def test_threshold_string():
|
507 |
+
est = RandomForestClassifier(n_estimators=50, random_state=0)
|
508 |
+
model = SelectFromModel(est, threshold="0.5*mean")
|
509 |
+
model.fit(data, y)
|
510 |
+
X_transform = model.transform(data)
|
511 |
+
|
512 |
+
# Calculate the threshold from the estimator directly.
|
513 |
+
est.fit(data, y)
|
514 |
+
threshold = 0.5 * np.mean(est.feature_importances_)
|
515 |
+
mask = est.feature_importances_ > threshold
|
516 |
+
assert_array_almost_equal(X_transform, data[:, mask])
|
517 |
+
|
518 |
+
|
519 |
+
def test_threshold_without_refitting():
|
520 |
+
# Test that the threshold can be set without refitting the model.
|
521 |
+
clf = SGDClassifier(alpha=0.1, max_iter=10, shuffle=True, random_state=0, tol=None)
|
522 |
+
model = SelectFromModel(clf, threshold="0.1 * mean")
|
523 |
+
model.fit(data, y)
|
524 |
+
X_transform = model.transform(data)
|
525 |
+
|
526 |
+
# Set a higher threshold to filter out more features.
|
527 |
+
model.threshold = "1.0 * mean"
|
528 |
+
assert X_transform.shape[1] > model.transform(data).shape[1]
|
529 |
+
|
530 |
+
|
531 |
+
def test_fit_accepts_nan_inf():
|
532 |
+
# Test that fit doesn't check for np.inf and np.nan values.
|
533 |
+
clf = HistGradientBoostingClassifier(random_state=0)
|
534 |
+
|
535 |
+
model = SelectFromModel(estimator=clf)
|
536 |
+
|
537 |
+
nan_data = data.copy()
|
538 |
+
nan_data[0] = np.nan
|
539 |
+
nan_data[1] = np.inf
|
540 |
+
|
541 |
+
model.fit(data, y)
|
542 |
+
|
543 |
+
|
544 |
+
def test_transform_accepts_nan_inf():
|
545 |
+
# Test that transform doesn't check for np.inf and np.nan values.
|
546 |
+
clf = NaNTagRandomForest(n_estimators=100, random_state=0)
|
547 |
+
nan_data = data.copy()
|
548 |
+
|
549 |
+
model = SelectFromModel(estimator=clf)
|
550 |
+
model.fit(nan_data, y)
|
551 |
+
|
552 |
+
nan_data[0] = np.nan
|
553 |
+
nan_data[1] = np.inf
|
554 |
+
|
555 |
+
model.transform(nan_data)
|
556 |
+
|
557 |
+
|
558 |
+
def test_allow_nan_tag_comes_from_estimator():
|
559 |
+
allow_nan_est = NaNTag()
|
560 |
+
model = SelectFromModel(estimator=allow_nan_est)
|
561 |
+
assert model._get_tags()["allow_nan"] is True
|
562 |
+
|
563 |
+
no_nan_est = NoNaNTag()
|
564 |
+
model = SelectFromModel(estimator=no_nan_est)
|
565 |
+
assert model._get_tags()["allow_nan"] is False
|
566 |
+
|
567 |
+
|
568 |
+
def _pca_importances(pca_estimator):
|
569 |
+
return np.abs(pca_estimator.explained_variance_)
|
570 |
+
|
571 |
+
|
572 |
+
@pytest.mark.parametrize(
|
573 |
+
"estimator, importance_getter",
|
574 |
+
[
|
575 |
+
(
|
576 |
+
make_pipeline(PCA(random_state=0), LogisticRegression()),
|
577 |
+
"named_steps.logisticregression.coef_",
|
578 |
+
),
|
579 |
+
(PCA(random_state=0), _pca_importances),
|
580 |
+
],
|
581 |
+
)
|
582 |
+
def test_importance_getter(estimator, importance_getter):
|
583 |
+
selector = SelectFromModel(
|
584 |
+
estimator, threshold="mean", importance_getter=importance_getter
|
585 |
+
)
|
586 |
+
selector.fit(data, y)
|
587 |
+
assert selector.transform(data).shape[1] == 1
|
588 |
+
|
589 |
+
|
590 |
+
@pytest.mark.parametrize("PLSEstimator", [CCA, PLSCanonical, PLSRegression])
|
591 |
+
def test_select_from_model_pls(PLSEstimator):
|
592 |
+
"""Check the behaviour of SelectFromModel with PLS estimators.
|
593 |
+
|
594 |
+
Non-regression test for:
|
595 |
+
https://github.com/scikit-learn/scikit-learn/issues/12410
|
596 |
+
"""
|
597 |
+
X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
|
598 |
+
estimator = PLSEstimator(n_components=1)
|
599 |
+
model = make_pipeline(SelectFromModel(estimator), estimator).fit(X, y)
|
600 |
+
assert model.score(X, y) > 0.5
|
601 |
+
|
602 |
+
|
603 |
+
def test_estimator_does_not_support_feature_names():
|
604 |
+
"""SelectFromModel works with estimators that do not support feature_names_in_.
|
605 |
+
|
606 |
+
Non-regression test for #21949.
|
607 |
+
"""
|
608 |
+
pytest.importorskip("pandas")
|
609 |
+
X, y = datasets.load_iris(as_frame=True, return_X_y=True)
|
610 |
+
all_feature_names = set(X.columns)
|
611 |
+
|
612 |
+
def importance_getter(estimator):
|
613 |
+
return np.arange(X.shape[1])
|
614 |
+
|
615 |
+
selector = SelectFromModel(
|
616 |
+
MinimalClassifier(), importance_getter=importance_getter
|
617 |
+
).fit(X, y)
|
618 |
+
|
619 |
+
# selector learns the feature names itself
|
620 |
+
assert_array_equal(selector.feature_names_in_, X.columns)
|
621 |
+
|
622 |
+
feature_names_out = set(selector.get_feature_names_out())
|
623 |
+
assert feature_names_out < all_feature_names
|
624 |
+
|
625 |
+
with warnings.catch_warnings():
|
626 |
+
warnings.simplefilter("error", UserWarning)
|
627 |
+
|
628 |
+
selector.transform(X.iloc[1:3])
|
629 |
+
|
630 |
+
|
631 |
+
@pytest.mark.parametrize(
|
632 |
+
"error, err_msg, max_features",
|
633 |
+
(
|
634 |
+
[ValueError, "max_features == 10, must be <= 4", 10],
|
635 |
+
[ValueError, "max_features == 5, must be <= 4", lambda x: x.shape[1] + 1],
|
636 |
+
),
|
637 |
+
)
|
638 |
+
def test_partial_fit_validate_max_features(error, err_msg, max_features):
|
639 |
+
"""Test that partial_fit from SelectFromModel validates `max_features`."""
|
640 |
+
X, y = datasets.make_classification(
|
641 |
+
n_samples=100,
|
642 |
+
n_features=4,
|
643 |
+
random_state=0,
|
644 |
+
)
|
645 |
+
|
646 |
+
with pytest.raises(error, match=err_msg):
|
647 |
+
SelectFromModel(
|
648 |
+
estimator=SGDClassifier(), max_features=max_features
|
649 |
+
).partial_fit(X, y, classes=[0, 1])
|
650 |
+
|
651 |
+
|
652 |
+
@pytest.mark.parametrize("as_frame", [True, False])
|
653 |
+
def test_partial_fit_validate_feature_names(as_frame):
|
654 |
+
"""Test that partial_fit from SelectFromModel validates `feature_names_in_`."""
|
655 |
+
pytest.importorskip("pandas")
|
656 |
+
X, y = datasets.load_iris(as_frame=as_frame, return_X_y=True)
|
657 |
+
|
658 |
+
selector = SelectFromModel(estimator=SGDClassifier(), max_features=4).partial_fit(
|
659 |
+
X, y, classes=[0, 1, 2]
|
660 |
+
)
|
661 |
+
if as_frame:
|
662 |
+
assert_array_equal(selector.feature_names_in_, X.columns)
|
663 |
+
else:
|
664 |
+
assert not hasattr(selector, "feature_names_in_")
|
665 |
+
|
666 |
+
|
667 |
+
def test_from_model_estimator_attribute_error():
|
668 |
+
"""Check that we raise the proper AttributeError when the estimator
|
669 |
+
does not implement the `partial_fit` method, which is decorated with
|
670 |
+
`available_if`.
|
671 |
+
|
672 |
+
Non-regression test for:
|
673 |
+
https://github.com/scikit-learn/scikit-learn/issues/28108
|
674 |
+
"""
|
675 |
+
# `LinearRegression` does not implement 'partial_fit' and should raise an
|
676 |
+
# AttributeError
|
677 |
+
from_model = SelectFromModel(estimator=LinearRegression())
|
678 |
+
|
679 |
+
outer_msg = "This 'SelectFromModel' has no attribute 'partial_fit'"
|
680 |
+
inner_msg = "'LinearRegression' object has no attribute 'partial_fit'"
|
681 |
+
with pytest.raises(AttributeError, match=outer_msg) as exec_info:
|
682 |
+
from_model.fit(data, y).partial_fit(data)
|
683 |
+
assert isinstance(exec_info.value.__cause__, AttributeError)
|
684 |
+
assert inner_msg in str(exec_info.value.__cause__)
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_mutual_info.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from sklearn.feature_selection import mutual_info_classif, mutual_info_regression
|
5 |
+
from sklearn.feature_selection._mutual_info import _compute_mi
|
6 |
+
from sklearn.utils import check_random_state
|
7 |
+
from sklearn.utils._testing import (
|
8 |
+
assert_allclose,
|
9 |
+
assert_array_equal,
|
10 |
+
)
|
11 |
+
from sklearn.utils.fixes import CSR_CONTAINERS
|
12 |
+
|
13 |
+
|
14 |
+
def test_compute_mi_dd():
|
15 |
+
# In discrete case computations are straightforward and can be done
|
16 |
+
# by hand on given vectors.
|
17 |
+
x = np.array([0, 1, 1, 0, 0])
|
18 |
+
y = np.array([1, 0, 0, 0, 1])
|
19 |
+
|
20 |
+
H_x = H_y = -(3 / 5) * np.log(3 / 5) - (2 / 5) * np.log(2 / 5)
|
21 |
+
H_xy = -1 / 5 * np.log(1 / 5) - 2 / 5 * np.log(2 / 5) - 2 / 5 * np.log(2 / 5)
|
22 |
+
I_xy = H_x + H_y - H_xy
|
23 |
+
|
24 |
+
assert_allclose(_compute_mi(x, y, x_discrete=True, y_discrete=True), I_xy)
|
25 |
+
|
26 |
+
|
27 |
+
def test_compute_mi_cc(global_dtype):
|
28 |
+
# For two continuous variables a good approach is to test on bivariate
|
29 |
+
# normal distribution, where mutual information is known.
|
30 |
+
|
31 |
+
# Mean of the distribution, irrelevant for mutual information.
|
32 |
+
mean = np.zeros(2)
|
33 |
+
|
34 |
+
# Setup covariance matrix with correlation coeff. equal 0.5.
|
35 |
+
sigma_1 = 1
|
36 |
+
sigma_2 = 10
|
37 |
+
corr = 0.5
|
38 |
+
cov = np.array(
|
39 |
+
[
|
40 |
+
[sigma_1**2, corr * sigma_1 * sigma_2],
|
41 |
+
[corr * sigma_1 * sigma_2, sigma_2**2],
|
42 |
+
]
|
43 |
+
)
|
44 |
+
|
45 |
+
# True theoretical mutual information.
|
46 |
+
I_theory = np.log(sigma_1) + np.log(sigma_2) - 0.5 * np.log(np.linalg.det(cov))
|
47 |
+
|
48 |
+
rng = check_random_state(0)
|
49 |
+
Z = rng.multivariate_normal(mean, cov, size=1000).astype(global_dtype, copy=False)
|
50 |
+
|
51 |
+
x, y = Z[:, 0], Z[:, 1]
|
52 |
+
|
53 |
+
# Theory and computed values won't be very close
|
54 |
+
# We here check with a large relative tolerance
|
55 |
+
for n_neighbors in [3, 5, 7]:
|
56 |
+
I_computed = _compute_mi(
|
57 |
+
x, y, x_discrete=False, y_discrete=False, n_neighbors=n_neighbors
|
58 |
+
)
|
59 |
+
assert_allclose(I_computed, I_theory, rtol=1e-1)
|
60 |
+
|
61 |
+
|
62 |
+
def test_compute_mi_cd(global_dtype):
|
63 |
+
# To test define a joint distribution as follows:
|
64 |
+
# p(x, y) = p(x) p(y | x)
|
65 |
+
# X ~ Bernoulli(p)
|
66 |
+
# (Y | x = 0) ~ Uniform(-1, 1)
|
67 |
+
# (Y | x = 1) ~ Uniform(0, 2)
|
68 |
+
|
69 |
+
# Use the following formula for mutual information:
|
70 |
+
# I(X; Y) = H(Y) - H(Y | X)
|
71 |
+
# Two entropies can be computed by hand:
|
72 |
+
# H(Y) = -(1-p)/2 * ln((1-p)/2) - p/2*log(p/2) - 1/2*log(1/2)
|
73 |
+
# H(Y | X) = ln(2)
|
74 |
+
|
75 |
+
# Now we need to implement sampling from out distribution, which is
|
76 |
+
# done easily using conditional distribution logic.
|
77 |
+
|
78 |
+
n_samples = 1000
|
79 |
+
rng = check_random_state(0)
|
80 |
+
|
81 |
+
for p in [0.3, 0.5, 0.7]:
|
82 |
+
x = rng.uniform(size=n_samples) > p
|
83 |
+
|
84 |
+
y = np.empty(n_samples, global_dtype)
|
85 |
+
mask = x == 0
|
86 |
+
y[mask] = rng.uniform(-1, 1, size=np.sum(mask))
|
87 |
+
y[~mask] = rng.uniform(0, 2, size=np.sum(~mask))
|
88 |
+
|
89 |
+
I_theory = -0.5 * (
|
90 |
+
(1 - p) * np.log(0.5 * (1 - p)) + p * np.log(0.5 * p) + np.log(0.5)
|
91 |
+
) - np.log(2)
|
92 |
+
|
93 |
+
# Assert the same tolerance.
|
94 |
+
for n_neighbors in [3, 5, 7]:
|
95 |
+
I_computed = _compute_mi(
|
96 |
+
x, y, x_discrete=True, y_discrete=False, n_neighbors=n_neighbors
|
97 |
+
)
|
98 |
+
assert_allclose(I_computed, I_theory, rtol=1e-1)
|
99 |
+
|
100 |
+
|
101 |
+
def test_compute_mi_cd_unique_label(global_dtype):
|
102 |
+
# Test that adding unique label doesn't change MI.
|
103 |
+
n_samples = 100
|
104 |
+
x = np.random.uniform(size=n_samples) > 0.5
|
105 |
+
|
106 |
+
y = np.empty(n_samples, global_dtype)
|
107 |
+
mask = x == 0
|
108 |
+
y[mask] = np.random.uniform(-1, 1, size=np.sum(mask))
|
109 |
+
y[~mask] = np.random.uniform(0, 2, size=np.sum(~mask))
|
110 |
+
|
111 |
+
mi_1 = _compute_mi(x, y, x_discrete=True, y_discrete=False)
|
112 |
+
|
113 |
+
x = np.hstack((x, 2))
|
114 |
+
y = np.hstack((y, 10))
|
115 |
+
mi_2 = _compute_mi(x, y, x_discrete=True, y_discrete=False)
|
116 |
+
|
117 |
+
assert_allclose(mi_1, mi_2)
|
118 |
+
|
119 |
+
|
120 |
+
# We are going test that feature ordering by MI matches our expectations.
|
121 |
+
def test_mutual_info_classif_discrete(global_dtype):
|
122 |
+
X = np.array(
|
123 |
+
[[0, 0, 0], [1, 1, 0], [2, 0, 1], [2, 0, 1], [2, 0, 1]], dtype=global_dtype
|
124 |
+
)
|
125 |
+
y = np.array([0, 1, 2, 2, 1])
|
126 |
+
|
127 |
+
# Here X[:, 0] is the most informative feature, and X[:, 1] is weakly
|
128 |
+
# informative.
|
129 |
+
mi = mutual_info_classif(X, y, discrete_features=True)
|
130 |
+
assert_array_equal(np.argsort(-mi), np.array([0, 2, 1]))
|
131 |
+
|
132 |
+
|
133 |
+
def test_mutual_info_regression(global_dtype):
|
134 |
+
# We generate sample from multivariate normal distribution, using
|
135 |
+
# transformation from initially uncorrelated variables. The zero
|
136 |
+
# variables after transformation is selected as the target vector,
|
137 |
+
# it has the strongest correlation with the variable 2, and
|
138 |
+
# the weakest correlation with the variable 1.
|
139 |
+
T = np.array([[1, 0.5, 2, 1], [0, 1, 0.1, 0.0], [0, 0.1, 1, 0.1], [0, 0.1, 0.1, 1]])
|
140 |
+
cov = T.dot(T.T)
|
141 |
+
mean = np.zeros(4)
|
142 |
+
|
143 |
+
rng = check_random_state(0)
|
144 |
+
Z = rng.multivariate_normal(mean, cov, size=1000).astype(global_dtype, copy=False)
|
145 |
+
X = Z[:, 1:]
|
146 |
+
y = Z[:, 0]
|
147 |
+
|
148 |
+
mi = mutual_info_regression(X, y, random_state=0)
|
149 |
+
assert_array_equal(np.argsort(-mi), np.array([1, 2, 0]))
|
150 |
+
# XXX: should mutual_info_regression be fixed to avoid
|
151 |
+
# up-casting float32 inputs to float64?
|
152 |
+
assert mi.dtype == np.float64
|
153 |
+
|
154 |
+
|
155 |
+
def test_mutual_info_classif_mixed(global_dtype):
|
156 |
+
# Here the target is discrete and there are two continuous and one
|
157 |
+
# discrete feature. The idea of this test is clear from the code.
|
158 |
+
rng = check_random_state(0)
|
159 |
+
X = rng.rand(1000, 3).astype(global_dtype, copy=False)
|
160 |
+
X[:, 1] += X[:, 0]
|
161 |
+
y = ((0.5 * X[:, 0] + X[:, 2]) > 0.5).astype(int)
|
162 |
+
X[:, 2] = X[:, 2] > 0.5
|
163 |
+
|
164 |
+
mi = mutual_info_classif(X, y, discrete_features=[2], n_neighbors=3, random_state=0)
|
165 |
+
assert_array_equal(np.argsort(-mi), [2, 0, 1])
|
166 |
+
for n_neighbors in [5, 7, 9]:
|
167 |
+
mi_nn = mutual_info_classif(
|
168 |
+
X, y, discrete_features=[2], n_neighbors=n_neighbors, random_state=0
|
169 |
+
)
|
170 |
+
# Check that the continuous values have an higher MI with greater
|
171 |
+
# n_neighbors
|
172 |
+
assert mi_nn[0] > mi[0]
|
173 |
+
assert mi_nn[1] > mi[1]
|
174 |
+
# The n_neighbors should not have any effect on the discrete value
|
175 |
+
# The MI should be the same
|
176 |
+
assert mi_nn[2] == mi[2]
|
177 |
+
|
178 |
+
|
179 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
180 |
+
def test_mutual_info_options(global_dtype, csr_container):
|
181 |
+
X = np.array(
|
182 |
+
[[0, 0, 0], [1, 1, 0], [2, 0, 1], [2, 0, 1], [2, 0, 1]], dtype=global_dtype
|
183 |
+
)
|
184 |
+
y = np.array([0, 1, 2, 2, 1], dtype=global_dtype)
|
185 |
+
X_csr = csr_container(X)
|
186 |
+
|
187 |
+
for mutual_info in (mutual_info_regression, mutual_info_classif):
|
188 |
+
with pytest.raises(ValueError):
|
189 |
+
mutual_info(X_csr, y, discrete_features=False)
|
190 |
+
with pytest.raises(ValueError):
|
191 |
+
mutual_info(X, y, discrete_features="manual")
|
192 |
+
with pytest.raises(ValueError):
|
193 |
+
mutual_info(X_csr, y, discrete_features=[True, False, True])
|
194 |
+
with pytest.raises(IndexError):
|
195 |
+
mutual_info(X, y, discrete_features=[True, False, True, False])
|
196 |
+
with pytest.raises(IndexError):
|
197 |
+
mutual_info(X, y, discrete_features=[1, 4])
|
198 |
+
|
199 |
+
mi_1 = mutual_info(X, y, discrete_features="auto", random_state=0)
|
200 |
+
mi_2 = mutual_info(X, y, discrete_features=False, random_state=0)
|
201 |
+
mi_3 = mutual_info(X_csr, y, discrete_features="auto", random_state=0)
|
202 |
+
mi_4 = mutual_info(X_csr, y, discrete_features=True, random_state=0)
|
203 |
+
mi_5 = mutual_info(X, y, discrete_features=[True, False, True], random_state=0)
|
204 |
+
mi_6 = mutual_info(X, y, discrete_features=[0, 2], random_state=0)
|
205 |
+
|
206 |
+
assert_allclose(mi_1, mi_2)
|
207 |
+
assert_allclose(mi_3, mi_4)
|
208 |
+
assert_allclose(mi_5, mi_6)
|
209 |
+
|
210 |
+
assert not np.allclose(mi_1, mi_3)
|
211 |
+
|
212 |
+
|
213 |
+
@pytest.mark.parametrize("correlated", [True, False])
|
214 |
+
def test_mutual_information_symmetry_classif_regression(correlated, global_random_seed):
|
215 |
+
"""Check that `mutual_info_classif` and `mutual_info_regression` are
|
216 |
+
symmetric by switching the target `y` as `feature` in `X` and vice
|
217 |
+
versa.
|
218 |
+
|
219 |
+
Non-regression test for:
|
220 |
+
https://github.com/scikit-learn/scikit-learn/issues/23720
|
221 |
+
"""
|
222 |
+
rng = np.random.RandomState(global_random_seed)
|
223 |
+
n = 100
|
224 |
+
d = rng.randint(10, size=n)
|
225 |
+
|
226 |
+
if correlated:
|
227 |
+
c = d.astype(np.float64)
|
228 |
+
else:
|
229 |
+
c = rng.normal(0, 1, size=n)
|
230 |
+
|
231 |
+
mi_classif = mutual_info_classif(
|
232 |
+
c[:, None], d, discrete_features=[False], random_state=global_random_seed
|
233 |
+
)
|
234 |
+
|
235 |
+
mi_regression = mutual_info_regression(
|
236 |
+
d[:, None], c, discrete_features=[True], random_state=global_random_seed
|
237 |
+
)
|
238 |
+
|
239 |
+
assert mi_classif == pytest.approx(mi_regression)
|
240 |
+
|
241 |
+
|
242 |
+
def test_mutual_info_regression_X_int_dtype(global_random_seed):
|
243 |
+
"""Check that results agree when X is integer dtype and float dtype.
|
244 |
+
|
245 |
+
Non-regression test for Issue #26696.
|
246 |
+
"""
|
247 |
+
rng = np.random.RandomState(global_random_seed)
|
248 |
+
X = rng.randint(100, size=(100, 10))
|
249 |
+
X_float = X.astype(np.float64, copy=True)
|
250 |
+
y = rng.randint(100, size=100)
|
251 |
+
|
252 |
+
expected = mutual_info_regression(X_float, y, random_state=global_random_seed)
|
253 |
+
result = mutual_info_regression(X, y, random_state=global_random_seed)
|
254 |
+
assert_allclose(result, expected)
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_rfe.py
ADDED
@@ -0,0 +1,615 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Testing Recursive feature elimination
|
3 |
+
"""
|
4 |
+
|
5 |
+
from operator import attrgetter
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pytest
|
9 |
+
from numpy.testing import assert_allclose, assert_array_almost_equal, assert_array_equal
|
10 |
+
|
11 |
+
from sklearn.base import BaseEstimator, ClassifierMixin
|
12 |
+
from sklearn.compose import TransformedTargetRegressor
|
13 |
+
from sklearn.cross_decomposition import CCA, PLSCanonical, PLSRegression
|
14 |
+
from sklearn.datasets import load_iris, make_friedman1
|
15 |
+
from sklearn.ensemble import RandomForestClassifier
|
16 |
+
from sklearn.feature_selection import RFE, RFECV
|
17 |
+
from sklearn.impute import SimpleImputer
|
18 |
+
from sklearn.linear_model import LinearRegression, LogisticRegression
|
19 |
+
from sklearn.metrics import get_scorer, make_scorer, zero_one_loss
|
20 |
+
from sklearn.model_selection import GroupKFold, cross_val_score
|
21 |
+
from sklearn.pipeline import make_pipeline
|
22 |
+
from sklearn.preprocessing import StandardScaler
|
23 |
+
from sklearn.svm import SVC, SVR, LinearSVR
|
24 |
+
from sklearn.utils import check_random_state
|
25 |
+
from sklearn.utils._testing import ignore_warnings
|
26 |
+
from sklearn.utils.fixes import CSR_CONTAINERS
|
27 |
+
|
28 |
+
|
29 |
+
class MockClassifier:
|
30 |
+
"""
|
31 |
+
Dummy classifier to test recursive feature elimination
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(self, foo_param=0):
|
35 |
+
self.foo_param = foo_param
|
36 |
+
|
37 |
+
def fit(self, X, y):
|
38 |
+
assert len(X) == len(y)
|
39 |
+
self.coef_ = np.ones(X.shape[1], dtype=np.float64)
|
40 |
+
return self
|
41 |
+
|
42 |
+
def predict(self, T):
|
43 |
+
return T.shape[0]
|
44 |
+
|
45 |
+
predict_proba = predict
|
46 |
+
decision_function = predict
|
47 |
+
transform = predict
|
48 |
+
|
49 |
+
def score(self, X=None, y=None):
|
50 |
+
return 0.0
|
51 |
+
|
52 |
+
def get_params(self, deep=True):
|
53 |
+
return {"foo_param": self.foo_param}
|
54 |
+
|
55 |
+
def set_params(self, **params):
|
56 |
+
return self
|
57 |
+
|
58 |
+
def _more_tags(self):
|
59 |
+
return {"allow_nan": True}
|
60 |
+
|
61 |
+
|
62 |
+
def test_rfe_features_importance():
|
63 |
+
generator = check_random_state(0)
|
64 |
+
iris = load_iris()
|
65 |
+
# Add some irrelevant features. Random seed is set to make sure that
|
66 |
+
# irrelevant features are always irrelevant.
|
67 |
+
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
|
68 |
+
y = iris.target
|
69 |
+
|
70 |
+
clf = RandomForestClassifier(n_estimators=20, random_state=generator, max_depth=2)
|
71 |
+
rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1)
|
72 |
+
rfe.fit(X, y)
|
73 |
+
assert len(rfe.ranking_) == X.shape[1]
|
74 |
+
|
75 |
+
clf_svc = SVC(kernel="linear")
|
76 |
+
rfe_svc = RFE(estimator=clf_svc, n_features_to_select=4, step=0.1)
|
77 |
+
rfe_svc.fit(X, y)
|
78 |
+
|
79 |
+
# Check if the supports are equal
|
80 |
+
assert_array_equal(rfe.get_support(), rfe_svc.get_support())
|
81 |
+
|
82 |
+
|
83 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
84 |
+
def test_rfe(csr_container):
|
85 |
+
generator = check_random_state(0)
|
86 |
+
iris = load_iris()
|
87 |
+
# Add some irrelevant features. Random seed is set to make sure that
|
88 |
+
# irrelevant features are always irrelevant.
|
89 |
+
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
|
90 |
+
X_sparse = csr_container(X)
|
91 |
+
y = iris.target
|
92 |
+
|
93 |
+
# dense model
|
94 |
+
clf = SVC(kernel="linear")
|
95 |
+
rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1)
|
96 |
+
rfe.fit(X, y)
|
97 |
+
X_r = rfe.transform(X)
|
98 |
+
clf.fit(X_r, y)
|
99 |
+
assert len(rfe.ranking_) == X.shape[1]
|
100 |
+
|
101 |
+
# sparse model
|
102 |
+
clf_sparse = SVC(kernel="linear")
|
103 |
+
rfe_sparse = RFE(estimator=clf_sparse, n_features_to_select=4, step=0.1)
|
104 |
+
rfe_sparse.fit(X_sparse, y)
|
105 |
+
X_r_sparse = rfe_sparse.transform(X_sparse)
|
106 |
+
|
107 |
+
assert X_r.shape == iris.data.shape
|
108 |
+
assert_array_almost_equal(X_r[:10], iris.data[:10])
|
109 |
+
|
110 |
+
assert_array_almost_equal(rfe.predict(X), clf.predict(iris.data))
|
111 |
+
assert rfe.score(X, y) == clf.score(iris.data, iris.target)
|
112 |
+
assert_array_almost_equal(X_r, X_r_sparse.toarray())
|
113 |
+
|
114 |
+
|
115 |
+
def test_RFE_fit_score_params():
|
116 |
+
# Make sure RFE passes the metadata down to fit and score methods of the
|
117 |
+
# underlying estimator
|
118 |
+
class TestEstimator(BaseEstimator, ClassifierMixin):
|
119 |
+
def fit(self, X, y, prop=None):
|
120 |
+
if prop is None:
|
121 |
+
raise ValueError("fit: prop cannot be None")
|
122 |
+
self.svc_ = SVC(kernel="linear").fit(X, y)
|
123 |
+
self.coef_ = self.svc_.coef_
|
124 |
+
return self
|
125 |
+
|
126 |
+
def score(self, X, y, prop=None):
|
127 |
+
if prop is None:
|
128 |
+
raise ValueError("score: prop cannot be None")
|
129 |
+
return self.svc_.score(X, y)
|
130 |
+
|
131 |
+
X, y = load_iris(return_X_y=True)
|
132 |
+
with pytest.raises(ValueError, match="fit: prop cannot be None"):
|
133 |
+
RFE(estimator=TestEstimator()).fit(X, y)
|
134 |
+
with pytest.raises(ValueError, match="score: prop cannot be None"):
|
135 |
+
RFE(estimator=TestEstimator()).fit(X, y, prop="foo").score(X, y)
|
136 |
+
|
137 |
+
RFE(estimator=TestEstimator()).fit(X, y, prop="foo").score(X, y, prop="foo")
|
138 |
+
|
139 |
+
|
140 |
+
def test_rfe_percent_n_features():
|
141 |
+
# test that the results are the same
|
142 |
+
generator = check_random_state(0)
|
143 |
+
iris = load_iris()
|
144 |
+
# Add some irrelevant features. Random seed is set to make sure that
|
145 |
+
# irrelevant features are always irrelevant.
|
146 |
+
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
|
147 |
+
y = iris.target
|
148 |
+
# there are 10 features in the data. We select 40%.
|
149 |
+
clf = SVC(kernel="linear")
|
150 |
+
rfe_num = RFE(estimator=clf, n_features_to_select=4, step=0.1)
|
151 |
+
rfe_num.fit(X, y)
|
152 |
+
|
153 |
+
rfe_perc = RFE(estimator=clf, n_features_to_select=0.4, step=0.1)
|
154 |
+
rfe_perc.fit(X, y)
|
155 |
+
|
156 |
+
assert_array_equal(rfe_perc.ranking_, rfe_num.ranking_)
|
157 |
+
assert_array_equal(rfe_perc.support_, rfe_num.support_)
|
158 |
+
|
159 |
+
|
160 |
+
def test_rfe_mockclassifier():
|
161 |
+
generator = check_random_state(0)
|
162 |
+
iris = load_iris()
|
163 |
+
# Add some irrelevant features. Random seed is set to make sure that
|
164 |
+
# irrelevant features are always irrelevant.
|
165 |
+
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
|
166 |
+
y = iris.target
|
167 |
+
|
168 |
+
# dense model
|
169 |
+
clf = MockClassifier()
|
170 |
+
rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1)
|
171 |
+
rfe.fit(X, y)
|
172 |
+
X_r = rfe.transform(X)
|
173 |
+
clf.fit(X_r, y)
|
174 |
+
assert len(rfe.ranking_) == X.shape[1]
|
175 |
+
assert X_r.shape == iris.data.shape
|
176 |
+
|
177 |
+
|
178 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
179 |
+
def test_rfecv(csr_container):
|
180 |
+
generator = check_random_state(0)
|
181 |
+
iris = load_iris()
|
182 |
+
# Add some irrelevant features. Random seed is set to make sure that
|
183 |
+
# irrelevant features are always irrelevant.
|
184 |
+
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
|
185 |
+
y = list(iris.target) # regression test: list should be supported
|
186 |
+
|
187 |
+
# Test using the score function
|
188 |
+
rfecv = RFECV(estimator=SVC(kernel="linear"), step=1)
|
189 |
+
rfecv.fit(X, y)
|
190 |
+
# non-regression test for missing worst feature:
|
191 |
+
|
192 |
+
for key in rfecv.cv_results_.keys():
|
193 |
+
assert len(rfecv.cv_results_[key]) == X.shape[1]
|
194 |
+
|
195 |
+
assert len(rfecv.ranking_) == X.shape[1]
|
196 |
+
X_r = rfecv.transform(X)
|
197 |
+
|
198 |
+
# All the noisy variable were filtered out
|
199 |
+
assert_array_equal(X_r, iris.data)
|
200 |
+
|
201 |
+
# same in sparse
|
202 |
+
rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=1)
|
203 |
+
X_sparse = csr_container(X)
|
204 |
+
rfecv_sparse.fit(X_sparse, y)
|
205 |
+
X_r_sparse = rfecv_sparse.transform(X_sparse)
|
206 |
+
assert_array_equal(X_r_sparse.toarray(), iris.data)
|
207 |
+
|
208 |
+
# Test using a customized loss function
|
209 |
+
scoring = make_scorer(zero_one_loss, greater_is_better=False)
|
210 |
+
rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=scoring)
|
211 |
+
ignore_warnings(rfecv.fit)(X, y)
|
212 |
+
X_r = rfecv.transform(X)
|
213 |
+
assert_array_equal(X_r, iris.data)
|
214 |
+
|
215 |
+
# Test using a scorer
|
216 |
+
scorer = get_scorer("accuracy")
|
217 |
+
rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=scorer)
|
218 |
+
rfecv.fit(X, y)
|
219 |
+
X_r = rfecv.transform(X)
|
220 |
+
assert_array_equal(X_r, iris.data)
|
221 |
+
|
222 |
+
# Test fix on cv_results_
|
223 |
+
def test_scorer(estimator, X, y):
|
224 |
+
return 1.0
|
225 |
+
|
226 |
+
rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=test_scorer)
|
227 |
+
rfecv.fit(X, y)
|
228 |
+
|
229 |
+
# In the event of cross validation score ties, the expected behavior of
|
230 |
+
# RFECV is to return the FEWEST features that maximize the CV score.
|
231 |
+
# Because test_scorer always returns 1.0 in this example, RFECV should
|
232 |
+
# reduce the dimensionality to a single feature (i.e. n_features_ = 1)
|
233 |
+
assert rfecv.n_features_ == 1
|
234 |
+
|
235 |
+
# Same as the first two tests, but with step=2
|
236 |
+
rfecv = RFECV(estimator=SVC(kernel="linear"), step=2)
|
237 |
+
rfecv.fit(X, y)
|
238 |
+
|
239 |
+
for key in rfecv.cv_results_.keys():
|
240 |
+
assert len(rfecv.cv_results_[key]) == 6
|
241 |
+
|
242 |
+
assert len(rfecv.ranking_) == X.shape[1]
|
243 |
+
X_r = rfecv.transform(X)
|
244 |
+
assert_array_equal(X_r, iris.data)
|
245 |
+
|
246 |
+
rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=2)
|
247 |
+
X_sparse = csr_container(X)
|
248 |
+
rfecv_sparse.fit(X_sparse, y)
|
249 |
+
X_r_sparse = rfecv_sparse.transform(X_sparse)
|
250 |
+
assert_array_equal(X_r_sparse.toarray(), iris.data)
|
251 |
+
|
252 |
+
# Verifying that steps < 1 don't blow up.
|
253 |
+
rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=0.2)
|
254 |
+
X_sparse = csr_container(X)
|
255 |
+
rfecv_sparse.fit(X_sparse, y)
|
256 |
+
X_r_sparse = rfecv_sparse.transform(X_sparse)
|
257 |
+
assert_array_equal(X_r_sparse.toarray(), iris.data)
|
258 |
+
|
259 |
+
|
260 |
+
def test_rfecv_mockclassifier():
|
261 |
+
generator = check_random_state(0)
|
262 |
+
iris = load_iris()
|
263 |
+
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
|
264 |
+
y = list(iris.target) # regression test: list should be supported
|
265 |
+
|
266 |
+
# Test using the score function
|
267 |
+
rfecv = RFECV(estimator=MockClassifier(), step=1)
|
268 |
+
rfecv.fit(X, y)
|
269 |
+
# non-regression test for missing worst feature:
|
270 |
+
|
271 |
+
for key in rfecv.cv_results_.keys():
|
272 |
+
assert len(rfecv.cv_results_[key]) == X.shape[1]
|
273 |
+
|
274 |
+
assert len(rfecv.ranking_) == X.shape[1]
|
275 |
+
|
276 |
+
|
277 |
+
def test_rfecv_verbose_output():
|
278 |
+
# Check verbose=1 is producing an output.
|
279 |
+
import sys
|
280 |
+
from io import StringIO
|
281 |
+
|
282 |
+
sys.stdout = StringIO()
|
283 |
+
|
284 |
+
generator = check_random_state(0)
|
285 |
+
iris = load_iris()
|
286 |
+
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
|
287 |
+
y = list(iris.target)
|
288 |
+
|
289 |
+
rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, verbose=1)
|
290 |
+
rfecv.fit(X, y)
|
291 |
+
|
292 |
+
verbose_output = sys.stdout
|
293 |
+
verbose_output.seek(0)
|
294 |
+
assert len(verbose_output.readline()) > 0
|
295 |
+
|
296 |
+
|
297 |
+
def test_rfecv_cv_results_size(global_random_seed):
|
298 |
+
generator = check_random_state(global_random_seed)
|
299 |
+
iris = load_iris()
|
300 |
+
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
|
301 |
+
y = list(iris.target) # regression test: list should be supported
|
302 |
+
|
303 |
+
# Non-regression test for varying combinations of step and
|
304 |
+
# min_features_to_select.
|
305 |
+
for step, min_features_to_select in [[2, 1], [2, 2], [3, 3]]:
|
306 |
+
rfecv = RFECV(
|
307 |
+
estimator=MockClassifier(),
|
308 |
+
step=step,
|
309 |
+
min_features_to_select=min_features_to_select,
|
310 |
+
)
|
311 |
+
rfecv.fit(X, y)
|
312 |
+
|
313 |
+
score_len = np.ceil((X.shape[1] - min_features_to_select) / step) + 1
|
314 |
+
|
315 |
+
for key in rfecv.cv_results_.keys():
|
316 |
+
assert len(rfecv.cv_results_[key]) == score_len
|
317 |
+
|
318 |
+
assert len(rfecv.ranking_) == X.shape[1]
|
319 |
+
assert rfecv.n_features_ >= min_features_to_select
|
320 |
+
|
321 |
+
|
322 |
+
def test_rfe_estimator_tags():
|
323 |
+
rfe = RFE(SVC(kernel="linear"))
|
324 |
+
assert rfe._estimator_type == "classifier"
|
325 |
+
# make sure that cross-validation is stratified
|
326 |
+
iris = load_iris()
|
327 |
+
score = cross_val_score(rfe, iris.data, iris.target)
|
328 |
+
assert score.min() > 0.7
|
329 |
+
|
330 |
+
|
331 |
+
def test_rfe_min_step(global_random_seed):
|
332 |
+
n_features = 10
|
333 |
+
X, y = make_friedman1(
|
334 |
+
n_samples=50, n_features=n_features, random_state=global_random_seed
|
335 |
+
)
|
336 |
+
n_samples, n_features = X.shape
|
337 |
+
estimator = SVR(kernel="linear")
|
338 |
+
|
339 |
+
# Test when floor(step * n_features) <= 0
|
340 |
+
selector = RFE(estimator, step=0.01)
|
341 |
+
sel = selector.fit(X, y)
|
342 |
+
assert sel.support_.sum() == n_features // 2
|
343 |
+
|
344 |
+
# Test when step is between (0,1) and floor(step * n_features) > 0
|
345 |
+
selector = RFE(estimator, step=0.20)
|
346 |
+
sel = selector.fit(X, y)
|
347 |
+
assert sel.support_.sum() == n_features // 2
|
348 |
+
|
349 |
+
# Test when step is an integer
|
350 |
+
selector = RFE(estimator, step=5)
|
351 |
+
sel = selector.fit(X, y)
|
352 |
+
assert sel.support_.sum() == n_features // 2
|
353 |
+
|
354 |
+
|
355 |
+
def test_number_of_subsets_of_features(global_random_seed):
|
356 |
+
# In RFE, 'number_of_subsets_of_features'
|
357 |
+
# = the number of iterations in '_fit'
|
358 |
+
# = max(ranking_)
|
359 |
+
# = 1 + (n_features + step - n_features_to_select - 1) // step
|
360 |
+
# After optimization #4534, this number
|
361 |
+
# = 1 + np.ceil((n_features - n_features_to_select) / float(step))
|
362 |
+
# This test case is to test their equivalence, refer to #4534 and #3824
|
363 |
+
|
364 |
+
def formula1(n_features, n_features_to_select, step):
|
365 |
+
return 1 + ((n_features + step - n_features_to_select - 1) // step)
|
366 |
+
|
367 |
+
def formula2(n_features, n_features_to_select, step):
|
368 |
+
return 1 + np.ceil((n_features - n_features_to_select) / float(step))
|
369 |
+
|
370 |
+
# RFE
|
371 |
+
# Case 1, n_features - n_features_to_select is divisible by step
|
372 |
+
# Case 2, n_features - n_features_to_select is not divisible by step
|
373 |
+
n_features_list = [11, 11]
|
374 |
+
n_features_to_select_list = [3, 3]
|
375 |
+
step_list = [2, 3]
|
376 |
+
for n_features, n_features_to_select, step in zip(
|
377 |
+
n_features_list, n_features_to_select_list, step_list
|
378 |
+
):
|
379 |
+
generator = check_random_state(global_random_seed)
|
380 |
+
X = generator.normal(size=(100, n_features))
|
381 |
+
y = generator.rand(100).round()
|
382 |
+
rfe = RFE(
|
383 |
+
estimator=SVC(kernel="linear"),
|
384 |
+
n_features_to_select=n_features_to_select,
|
385 |
+
step=step,
|
386 |
+
)
|
387 |
+
rfe.fit(X, y)
|
388 |
+
# this number also equals to the maximum of ranking_
|
389 |
+
assert np.max(rfe.ranking_) == formula1(n_features, n_features_to_select, step)
|
390 |
+
assert np.max(rfe.ranking_) == formula2(n_features, n_features_to_select, step)
|
391 |
+
|
392 |
+
# In RFECV, 'fit' calls 'RFE._fit'
|
393 |
+
# 'number_of_subsets_of_features' of RFE
|
394 |
+
# = the size of each score in 'cv_results_' of RFECV
|
395 |
+
# = the number of iterations of the for loop before optimization #4534
|
396 |
+
|
397 |
+
# RFECV, n_features_to_select = 1
|
398 |
+
# Case 1, n_features - 1 is divisible by step
|
399 |
+
# Case 2, n_features - 1 is not divisible by step
|
400 |
+
|
401 |
+
n_features_to_select = 1
|
402 |
+
n_features_list = [11, 10]
|
403 |
+
step_list = [2, 2]
|
404 |
+
for n_features, step in zip(n_features_list, step_list):
|
405 |
+
generator = check_random_state(global_random_seed)
|
406 |
+
X = generator.normal(size=(100, n_features))
|
407 |
+
y = generator.rand(100).round()
|
408 |
+
rfecv = RFECV(estimator=SVC(kernel="linear"), step=step)
|
409 |
+
rfecv.fit(X, y)
|
410 |
+
|
411 |
+
for key in rfecv.cv_results_.keys():
|
412 |
+
assert len(rfecv.cv_results_[key]) == formula1(
|
413 |
+
n_features, n_features_to_select, step
|
414 |
+
)
|
415 |
+
assert len(rfecv.cv_results_[key]) == formula2(
|
416 |
+
n_features, n_features_to_select, step
|
417 |
+
)
|
418 |
+
|
419 |
+
|
420 |
+
def test_rfe_cv_n_jobs(global_random_seed):
|
421 |
+
generator = check_random_state(global_random_seed)
|
422 |
+
iris = load_iris()
|
423 |
+
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
|
424 |
+
y = iris.target
|
425 |
+
|
426 |
+
rfecv = RFECV(estimator=SVC(kernel="linear"))
|
427 |
+
rfecv.fit(X, y)
|
428 |
+
rfecv_ranking = rfecv.ranking_
|
429 |
+
|
430 |
+
rfecv_cv_results_ = rfecv.cv_results_
|
431 |
+
|
432 |
+
rfecv.set_params(n_jobs=2)
|
433 |
+
rfecv.fit(X, y)
|
434 |
+
assert_array_almost_equal(rfecv.ranking_, rfecv_ranking)
|
435 |
+
|
436 |
+
assert rfecv_cv_results_.keys() == rfecv.cv_results_.keys()
|
437 |
+
for key in rfecv_cv_results_.keys():
|
438 |
+
assert rfecv_cv_results_[key] == pytest.approx(rfecv.cv_results_[key])
|
439 |
+
|
440 |
+
|
441 |
+
def test_rfe_cv_groups():
|
442 |
+
generator = check_random_state(0)
|
443 |
+
iris = load_iris()
|
444 |
+
number_groups = 4
|
445 |
+
groups = np.floor(np.linspace(0, number_groups, len(iris.target)))
|
446 |
+
X = iris.data
|
447 |
+
y = (iris.target > 0).astype(int)
|
448 |
+
|
449 |
+
est_groups = RFECV(
|
450 |
+
estimator=RandomForestClassifier(random_state=generator),
|
451 |
+
step=1,
|
452 |
+
scoring="accuracy",
|
453 |
+
cv=GroupKFold(n_splits=2),
|
454 |
+
)
|
455 |
+
est_groups.fit(X, y, groups=groups)
|
456 |
+
assert est_groups.n_features_ > 0
|
457 |
+
|
458 |
+
|
459 |
+
@pytest.mark.parametrize(
|
460 |
+
"importance_getter", [attrgetter("regressor_.coef_"), "regressor_.coef_"]
|
461 |
+
)
|
462 |
+
@pytest.mark.parametrize("selector, expected_n_features", [(RFE, 5), (RFECV, 4)])
|
463 |
+
def test_rfe_wrapped_estimator(importance_getter, selector, expected_n_features):
|
464 |
+
# Non-regression test for
|
465 |
+
# https://github.com/scikit-learn/scikit-learn/issues/15312
|
466 |
+
X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
|
467 |
+
estimator = LinearSVR(dual="auto", random_state=0)
|
468 |
+
|
469 |
+
log_estimator = TransformedTargetRegressor(
|
470 |
+
regressor=estimator, func=np.log, inverse_func=np.exp
|
471 |
+
)
|
472 |
+
|
473 |
+
selector = selector(log_estimator, importance_getter=importance_getter)
|
474 |
+
sel = selector.fit(X, y)
|
475 |
+
assert sel.support_.sum() == expected_n_features
|
476 |
+
|
477 |
+
|
478 |
+
@pytest.mark.parametrize(
|
479 |
+
"importance_getter, err_type",
|
480 |
+
[
|
481 |
+
("auto", ValueError),
|
482 |
+
("random", AttributeError),
|
483 |
+
(lambda x: x.importance, AttributeError),
|
484 |
+
],
|
485 |
+
)
|
486 |
+
@pytest.mark.parametrize("Selector", [RFE, RFECV])
|
487 |
+
def test_rfe_importance_getter_validation(importance_getter, err_type, Selector):
|
488 |
+
X, y = make_friedman1(n_samples=50, n_features=10, random_state=42)
|
489 |
+
estimator = LinearSVR(dual="auto")
|
490 |
+
log_estimator = TransformedTargetRegressor(
|
491 |
+
regressor=estimator, func=np.log, inverse_func=np.exp
|
492 |
+
)
|
493 |
+
|
494 |
+
with pytest.raises(err_type):
|
495 |
+
model = Selector(log_estimator, importance_getter=importance_getter)
|
496 |
+
model.fit(X, y)
|
497 |
+
|
498 |
+
|
499 |
+
@pytest.mark.parametrize("cv", [None, 5])
|
500 |
+
def test_rfe_allow_nan_inf_in_x(cv):
|
501 |
+
iris = load_iris()
|
502 |
+
X = iris.data
|
503 |
+
y = iris.target
|
504 |
+
|
505 |
+
# add nan and inf value to X
|
506 |
+
X[0][0] = np.nan
|
507 |
+
X[0][1] = np.inf
|
508 |
+
|
509 |
+
clf = MockClassifier()
|
510 |
+
if cv is not None:
|
511 |
+
rfe = RFECV(estimator=clf, cv=cv)
|
512 |
+
else:
|
513 |
+
rfe = RFE(estimator=clf)
|
514 |
+
rfe.fit(X, y)
|
515 |
+
rfe.transform(X)
|
516 |
+
|
517 |
+
|
518 |
+
def test_w_pipeline_2d_coef_():
|
519 |
+
pipeline = make_pipeline(StandardScaler(), LogisticRegression())
|
520 |
+
|
521 |
+
data, y = load_iris(return_X_y=True)
|
522 |
+
sfm = RFE(
|
523 |
+
pipeline,
|
524 |
+
n_features_to_select=2,
|
525 |
+
importance_getter="named_steps.logisticregression.coef_",
|
526 |
+
)
|
527 |
+
|
528 |
+
sfm.fit(data, y)
|
529 |
+
assert sfm.transform(data).shape[1] == 2
|
530 |
+
|
531 |
+
|
532 |
+
def test_rfecv_std_and_mean(global_random_seed):
|
533 |
+
generator = check_random_state(global_random_seed)
|
534 |
+
iris = load_iris()
|
535 |
+
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
|
536 |
+
y = iris.target
|
537 |
+
|
538 |
+
rfecv = RFECV(estimator=SVC(kernel="linear"))
|
539 |
+
rfecv.fit(X, y)
|
540 |
+
n_split_keys = len(rfecv.cv_results_) - 2
|
541 |
+
split_keys = [f"split{i}_test_score" for i in range(n_split_keys)]
|
542 |
+
|
543 |
+
cv_scores = np.asarray([rfecv.cv_results_[key] for key in split_keys])
|
544 |
+
expected_mean = np.mean(cv_scores, axis=0)
|
545 |
+
expected_std = np.std(cv_scores, axis=0)
|
546 |
+
|
547 |
+
assert_allclose(rfecv.cv_results_["mean_test_score"], expected_mean)
|
548 |
+
assert_allclose(rfecv.cv_results_["std_test_score"], expected_std)
|
549 |
+
|
550 |
+
|
551 |
+
@pytest.mark.parametrize("ClsRFE", [RFE, RFECV])
|
552 |
+
def test_multioutput(ClsRFE):
|
553 |
+
X = np.random.normal(size=(10, 3))
|
554 |
+
y = np.random.randint(2, size=(10, 2))
|
555 |
+
clf = RandomForestClassifier(n_estimators=5)
|
556 |
+
rfe_test = ClsRFE(clf)
|
557 |
+
rfe_test.fit(X, y)
|
558 |
+
|
559 |
+
|
560 |
+
@pytest.mark.parametrize("ClsRFE", [RFE, RFECV])
|
561 |
+
def test_pipeline_with_nans(ClsRFE):
|
562 |
+
"""Check that RFE works with pipeline that accept nans.
|
563 |
+
|
564 |
+
Non-regression test for gh-21743.
|
565 |
+
"""
|
566 |
+
X, y = load_iris(return_X_y=True)
|
567 |
+
X[0, 0] = np.nan
|
568 |
+
|
569 |
+
pipe = make_pipeline(
|
570 |
+
SimpleImputer(),
|
571 |
+
StandardScaler(),
|
572 |
+
LogisticRegression(),
|
573 |
+
)
|
574 |
+
|
575 |
+
fs = ClsRFE(
|
576 |
+
estimator=pipe,
|
577 |
+
importance_getter="named_steps.logisticregression.coef_",
|
578 |
+
)
|
579 |
+
fs.fit(X, y)
|
580 |
+
|
581 |
+
|
582 |
+
@pytest.mark.parametrize("ClsRFE", [RFE, RFECV])
|
583 |
+
@pytest.mark.parametrize("PLSEstimator", [CCA, PLSCanonical, PLSRegression])
|
584 |
+
def test_rfe_pls(ClsRFE, PLSEstimator):
|
585 |
+
"""Check the behaviour of RFE with PLS estimators.
|
586 |
+
|
587 |
+
Non-regression test for:
|
588 |
+
https://github.com/scikit-learn/scikit-learn/issues/12410
|
589 |
+
"""
|
590 |
+
X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
|
591 |
+
estimator = PLSEstimator(n_components=1)
|
592 |
+
selector = ClsRFE(estimator, step=1).fit(X, y)
|
593 |
+
assert selector.score(X, y) > 0.5
|
594 |
+
|
595 |
+
|
596 |
+
def test_rfe_estimator_attribute_error():
|
597 |
+
"""Check that we raise the proper AttributeError when the estimator
|
598 |
+
does not implement the `decision_function` method, which is decorated with
|
599 |
+
`available_if`.
|
600 |
+
|
601 |
+
Non-regression test for:
|
602 |
+
https://github.com/scikit-learn/scikit-learn/issues/28108
|
603 |
+
"""
|
604 |
+
iris = load_iris()
|
605 |
+
|
606 |
+
# `LinearRegression` does not implement 'decision_function' and should raise an
|
607 |
+
# AttributeError
|
608 |
+
rfe = RFE(estimator=LinearRegression())
|
609 |
+
|
610 |
+
outer_msg = "This 'RFE' has no attribute 'decision_function'"
|
611 |
+
inner_msg = "'LinearRegression' object has no attribute 'decision_function'"
|
612 |
+
with pytest.raises(AttributeError, match=outer_msg) as exec_info:
|
613 |
+
rfe.fit(iris.data, iris.target).decision_function(iris.data)
|
614 |
+
assert isinstance(exec_info.value.__cause__, AttributeError)
|
615 |
+
assert inner_msg in str(exec_info.value.__cause__)
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_sequential.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
from numpy.testing import assert_array_equal
|
4 |
+
|
5 |
+
from sklearn.cluster import KMeans
|
6 |
+
from sklearn.datasets import make_blobs, make_classification, make_regression
|
7 |
+
from sklearn.ensemble import HistGradientBoostingRegressor
|
8 |
+
from sklearn.feature_selection import SequentialFeatureSelector
|
9 |
+
from sklearn.linear_model import LinearRegression
|
10 |
+
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
|
11 |
+
from sklearn.neighbors import KNeighborsClassifier
|
12 |
+
from sklearn.pipeline import make_pipeline
|
13 |
+
from sklearn.preprocessing import StandardScaler
|
14 |
+
from sklearn.utils.fixes import CSR_CONTAINERS
|
15 |
+
|
16 |
+
|
17 |
+
def test_bad_n_features_to_select():
|
18 |
+
n_features = 5
|
19 |
+
X, y = make_regression(n_features=n_features)
|
20 |
+
sfs = SequentialFeatureSelector(LinearRegression(), n_features_to_select=n_features)
|
21 |
+
with pytest.raises(ValueError, match="n_features_to_select must be < n_features"):
|
22 |
+
sfs.fit(X, y)
|
23 |
+
|
24 |
+
|
25 |
+
@pytest.mark.parametrize("direction", ("forward", "backward"))
|
26 |
+
@pytest.mark.parametrize("n_features_to_select", (1, 5, 9, "auto"))
|
27 |
+
def test_n_features_to_select(direction, n_features_to_select):
|
28 |
+
# Make sure n_features_to_select is respected
|
29 |
+
|
30 |
+
n_features = 10
|
31 |
+
X, y = make_regression(n_features=n_features, random_state=0)
|
32 |
+
sfs = SequentialFeatureSelector(
|
33 |
+
LinearRegression(),
|
34 |
+
n_features_to_select=n_features_to_select,
|
35 |
+
direction=direction,
|
36 |
+
cv=2,
|
37 |
+
)
|
38 |
+
sfs.fit(X, y)
|
39 |
+
|
40 |
+
if n_features_to_select == "auto":
|
41 |
+
n_features_to_select = n_features // 2
|
42 |
+
|
43 |
+
assert sfs.get_support(indices=True).shape[0] == n_features_to_select
|
44 |
+
assert sfs.n_features_to_select_ == n_features_to_select
|
45 |
+
assert sfs.transform(X).shape[1] == n_features_to_select
|
46 |
+
|
47 |
+
|
48 |
+
@pytest.mark.parametrize("direction", ("forward", "backward"))
|
49 |
+
def test_n_features_to_select_auto(direction):
|
50 |
+
"""Check the behaviour of `n_features_to_select="auto"` with different
|
51 |
+
values for the parameter `tol`.
|
52 |
+
"""
|
53 |
+
|
54 |
+
n_features = 10
|
55 |
+
tol = 1e-3
|
56 |
+
X, y = make_regression(n_features=n_features, random_state=0)
|
57 |
+
sfs = SequentialFeatureSelector(
|
58 |
+
LinearRegression(),
|
59 |
+
n_features_to_select="auto",
|
60 |
+
tol=tol,
|
61 |
+
direction=direction,
|
62 |
+
cv=2,
|
63 |
+
)
|
64 |
+
sfs.fit(X, y)
|
65 |
+
|
66 |
+
max_features_to_select = n_features - 1
|
67 |
+
|
68 |
+
assert sfs.get_support(indices=True).shape[0] <= max_features_to_select
|
69 |
+
assert sfs.n_features_to_select_ <= max_features_to_select
|
70 |
+
assert sfs.transform(X).shape[1] <= max_features_to_select
|
71 |
+
assert sfs.get_support(indices=True).shape[0] == sfs.n_features_to_select_
|
72 |
+
|
73 |
+
|
74 |
+
@pytest.mark.parametrize("direction", ("forward", "backward"))
|
75 |
+
def test_n_features_to_select_stopping_criterion(direction):
|
76 |
+
"""Check the behaviour stopping criterion for feature selection
|
77 |
+
depending on the values of `n_features_to_select` and `tol`.
|
78 |
+
|
79 |
+
When `direction` is `'forward'`, select a new features at random
|
80 |
+
among those not currently selected in selector.support_,
|
81 |
+
build a new version of the data that includes all the features
|
82 |
+
in selector.support_ + this newly selected feature.
|
83 |
+
And check that the cross-validation score of the model trained on
|
84 |
+
this new dataset variant is lower than the model with
|
85 |
+
the selected forward selected features or at least does not improve
|
86 |
+
by more than the tol margin.
|
87 |
+
|
88 |
+
When `direction` is `'backward'`, instead of adding a new feature
|
89 |
+
to selector.support_, try to remove one of those selected features at random
|
90 |
+
And check that the cross-validation score is either decreasing or
|
91 |
+
not improving by more than the tol margin.
|
92 |
+
"""
|
93 |
+
|
94 |
+
X, y = make_regression(n_features=50, n_informative=10, random_state=0)
|
95 |
+
|
96 |
+
tol = 1e-3
|
97 |
+
|
98 |
+
sfs = SequentialFeatureSelector(
|
99 |
+
LinearRegression(),
|
100 |
+
n_features_to_select="auto",
|
101 |
+
tol=tol,
|
102 |
+
direction=direction,
|
103 |
+
cv=2,
|
104 |
+
)
|
105 |
+
sfs.fit(X, y)
|
106 |
+
selected_X = sfs.transform(X)
|
107 |
+
|
108 |
+
rng = np.random.RandomState(0)
|
109 |
+
|
110 |
+
added_candidates = list(set(range(X.shape[1])) - set(sfs.get_support(indices=True)))
|
111 |
+
added_X = np.hstack(
|
112 |
+
[
|
113 |
+
selected_X,
|
114 |
+
(X[:, rng.choice(added_candidates)])[:, np.newaxis],
|
115 |
+
]
|
116 |
+
)
|
117 |
+
|
118 |
+
removed_candidate = rng.choice(list(range(sfs.n_features_to_select_)))
|
119 |
+
removed_X = np.delete(selected_X, removed_candidate, axis=1)
|
120 |
+
|
121 |
+
plain_cv_score = cross_val_score(LinearRegression(), X, y, cv=2).mean()
|
122 |
+
sfs_cv_score = cross_val_score(LinearRegression(), selected_X, y, cv=2).mean()
|
123 |
+
added_cv_score = cross_val_score(LinearRegression(), added_X, y, cv=2).mean()
|
124 |
+
removed_cv_score = cross_val_score(LinearRegression(), removed_X, y, cv=2).mean()
|
125 |
+
|
126 |
+
assert sfs_cv_score >= plain_cv_score
|
127 |
+
|
128 |
+
if direction == "forward":
|
129 |
+
assert (sfs_cv_score - added_cv_score) <= tol
|
130 |
+
assert (sfs_cv_score - removed_cv_score) >= tol
|
131 |
+
else:
|
132 |
+
assert (added_cv_score - sfs_cv_score) <= tol
|
133 |
+
assert (removed_cv_score - sfs_cv_score) <= tol
|
134 |
+
|
135 |
+
|
136 |
+
@pytest.mark.parametrize("direction", ("forward", "backward"))
|
137 |
+
@pytest.mark.parametrize(
|
138 |
+
"n_features_to_select, expected",
|
139 |
+
(
|
140 |
+
(0.1, 1),
|
141 |
+
(1.0, 10),
|
142 |
+
(0.5, 5),
|
143 |
+
),
|
144 |
+
)
|
145 |
+
def test_n_features_to_select_float(direction, n_features_to_select, expected):
|
146 |
+
# Test passing a float as n_features_to_select
|
147 |
+
X, y = make_regression(n_features=10)
|
148 |
+
sfs = SequentialFeatureSelector(
|
149 |
+
LinearRegression(),
|
150 |
+
n_features_to_select=n_features_to_select,
|
151 |
+
direction=direction,
|
152 |
+
cv=2,
|
153 |
+
)
|
154 |
+
sfs.fit(X, y)
|
155 |
+
assert sfs.n_features_to_select_ == expected
|
156 |
+
|
157 |
+
|
158 |
+
@pytest.mark.parametrize("seed", range(10))
|
159 |
+
@pytest.mark.parametrize("direction", ("forward", "backward"))
|
160 |
+
@pytest.mark.parametrize(
|
161 |
+
"n_features_to_select, expected_selected_features",
|
162 |
+
[
|
163 |
+
(2, [0, 2]), # f1 is dropped since it has no predictive power
|
164 |
+
(1, [2]), # f2 is more predictive than f0 so it's kept
|
165 |
+
],
|
166 |
+
)
|
167 |
+
def test_sanity(seed, direction, n_features_to_select, expected_selected_features):
|
168 |
+
# Basic sanity check: 3 features, only f0 and f2 are correlated with the
|
169 |
+
# target, f2 having a stronger correlation than f0. We expect f1 to be
|
170 |
+
# dropped, and f2 to always be selected.
|
171 |
+
|
172 |
+
rng = np.random.RandomState(seed)
|
173 |
+
n_samples = 100
|
174 |
+
X = rng.randn(n_samples, 3)
|
175 |
+
y = 3 * X[:, 0] - 10 * X[:, 2]
|
176 |
+
|
177 |
+
sfs = SequentialFeatureSelector(
|
178 |
+
LinearRegression(),
|
179 |
+
n_features_to_select=n_features_to_select,
|
180 |
+
direction=direction,
|
181 |
+
cv=2,
|
182 |
+
)
|
183 |
+
sfs.fit(X, y)
|
184 |
+
assert_array_equal(sfs.get_support(indices=True), expected_selected_features)
|
185 |
+
|
186 |
+
|
187 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
188 |
+
def test_sparse_support(csr_container):
|
189 |
+
# Make sure sparse data is supported
|
190 |
+
|
191 |
+
X, y = make_regression(n_features=10)
|
192 |
+
X = csr_container(X)
|
193 |
+
sfs = SequentialFeatureSelector(
|
194 |
+
LinearRegression(), n_features_to_select="auto", cv=2
|
195 |
+
)
|
196 |
+
sfs.fit(X, y)
|
197 |
+
sfs.transform(X)
|
198 |
+
|
199 |
+
|
200 |
+
def test_nan_support():
|
201 |
+
# Make sure nans are OK if the underlying estimator supports nans
|
202 |
+
|
203 |
+
rng = np.random.RandomState(0)
|
204 |
+
n_samples, n_features = 40, 4
|
205 |
+
X, y = make_regression(n_samples, n_features, random_state=0)
|
206 |
+
nan_mask = rng.randint(0, 2, size=(n_samples, n_features), dtype=bool)
|
207 |
+
X[nan_mask] = np.nan
|
208 |
+
sfs = SequentialFeatureSelector(
|
209 |
+
HistGradientBoostingRegressor(), n_features_to_select="auto", cv=2
|
210 |
+
)
|
211 |
+
sfs.fit(X, y)
|
212 |
+
sfs.transform(X)
|
213 |
+
|
214 |
+
with pytest.raises(ValueError, match="Input X contains NaN"):
|
215 |
+
# LinearRegression does not support nans
|
216 |
+
SequentialFeatureSelector(
|
217 |
+
LinearRegression(), n_features_to_select="auto", cv=2
|
218 |
+
).fit(X, y)
|
219 |
+
|
220 |
+
|
221 |
+
def test_pipeline_support():
|
222 |
+
# Make sure that pipelines can be passed into SFS and that SFS can be
|
223 |
+
# passed into a pipeline
|
224 |
+
|
225 |
+
n_samples, n_features = 50, 3
|
226 |
+
X, y = make_regression(n_samples, n_features, random_state=0)
|
227 |
+
|
228 |
+
# pipeline in SFS
|
229 |
+
pipe = make_pipeline(StandardScaler(), LinearRegression())
|
230 |
+
sfs = SequentialFeatureSelector(pipe, n_features_to_select="auto", cv=2)
|
231 |
+
sfs.fit(X, y)
|
232 |
+
sfs.transform(X)
|
233 |
+
|
234 |
+
# SFS in pipeline
|
235 |
+
sfs = SequentialFeatureSelector(
|
236 |
+
LinearRegression(), n_features_to_select="auto", cv=2
|
237 |
+
)
|
238 |
+
pipe = make_pipeline(StandardScaler(), sfs)
|
239 |
+
pipe.fit(X, y)
|
240 |
+
pipe.transform(X)
|
241 |
+
|
242 |
+
|
243 |
+
@pytest.mark.parametrize("n_features_to_select", (2, 3))
|
244 |
+
def test_unsupervised_model_fit(n_features_to_select):
|
245 |
+
# Make sure that models without classification labels are not being
|
246 |
+
# validated
|
247 |
+
|
248 |
+
X, y = make_blobs(n_features=4)
|
249 |
+
sfs = SequentialFeatureSelector(
|
250 |
+
KMeans(n_init=1),
|
251 |
+
n_features_to_select=n_features_to_select,
|
252 |
+
)
|
253 |
+
sfs.fit(X)
|
254 |
+
assert sfs.transform(X).shape[1] == n_features_to_select
|
255 |
+
|
256 |
+
|
257 |
+
@pytest.mark.parametrize("y", ("no_validation", 1j, 99.9, np.nan, 3))
|
258 |
+
def test_no_y_validation_model_fit(y):
|
259 |
+
# Make sure that other non-conventional y labels are not accepted
|
260 |
+
|
261 |
+
X, clusters = make_blobs(n_features=6)
|
262 |
+
sfs = SequentialFeatureSelector(
|
263 |
+
KMeans(),
|
264 |
+
n_features_to_select=3,
|
265 |
+
)
|
266 |
+
|
267 |
+
with pytest.raises((TypeError, ValueError)):
|
268 |
+
sfs.fit(X, y)
|
269 |
+
|
270 |
+
|
271 |
+
def test_forward_neg_tol_error():
|
272 |
+
"""Check that we raise an error when tol<0 and direction='forward'"""
|
273 |
+
X, y = make_regression(n_features=10, random_state=0)
|
274 |
+
sfs = SequentialFeatureSelector(
|
275 |
+
LinearRegression(),
|
276 |
+
n_features_to_select="auto",
|
277 |
+
direction="forward",
|
278 |
+
tol=-1e-3,
|
279 |
+
)
|
280 |
+
|
281 |
+
with pytest.raises(ValueError, match="tol must be positive"):
|
282 |
+
sfs.fit(X, y)
|
283 |
+
|
284 |
+
|
285 |
+
def test_backward_neg_tol():
|
286 |
+
"""Check that SequentialFeatureSelector works negative tol
|
287 |
+
|
288 |
+
non-regression test for #25525
|
289 |
+
"""
|
290 |
+
X, y = make_regression(n_features=10, random_state=0)
|
291 |
+
lr = LinearRegression()
|
292 |
+
initial_score = lr.fit(X, y).score(X, y)
|
293 |
+
|
294 |
+
sfs = SequentialFeatureSelector(
|
295 |
+
lr,
|
296 |
+
n_features_to_select="auto",
|
297 |
+
direction="backward",
|
298 |
+
tol=-1e-3,
|
299 |
+
)
|
300 |
+
Xr = sfs.fit_transform(X, y)
|
301 |
+
new_score = lr.fit(Xr, y).score(Xr, y)
|
302 |
+
|
303 |
+
assert 0 < sfs.get_support().sum() < X.shape[1]
|
304 |
+
assert new_score < initial_score
|
305 |
+
|
306 |
+
|
307 |
+
def test_cv_generator_support():
|
308 |
+
"""Check that no exception raised when cv is generator
|
309 |
+
|
310 |
+
non-regression test for #25957
|
311 |
+
"""
|
312 |
+
X, y = make_classification(random_state=0)
|
313 |
+
|
314 |
+
groups = np.zeros_like(y, dtype=int)
|
315 |
+
groups[y.size // 2 :] = 1
|
316 |
+
|
317 |
+
cv = LeaveOneGroupOut()
|
318 |
+
splits = cv.split(X, y, groups=groups)
|
319 |
+
|
320 |
+
knc = KNeighborsClassifier(n_neighbors=5)
|
321 |
+
|
322 |
+
sfs = SequentialFeatureSelector(knc, n_features_to_select=5, cv=splits)
|
323 |
+
sfs.fit(X, y)
|
llmeval-env/lib/python3.10/site-packages/sklearn/feature_selection/tests/test_variance_threshold.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from sklearn.feature_selection import VarianceThreshold
|
5 |
+
from sklearn.utils._testing import assert_array_equal
|
6 |
+
from sklearn.utils.fixes import BSR_CONTAINERS, CSC_CONTAINERS, CSR_CONTAINERS
|
7 |
+
|
8 |
+
data = [[0, 1, 2, 3, 4], [0, 2, 2, 3, 5], [1, 1, 2, 4, 0]]
|
9 |
+
|
10 |
+
data2 = [[-0.13725701]] * 10
|
11 |
+
|
12 |
+
|
13 |
+
@pytest.mark.parametrize(
|
14 |
+
"sparse_container", [None] + BSR_CONTAINERS + CSC_CONTAINERS + CSR_CONTAINERS
|
15 |
+
)
|
16 |
+
def test_zero_variance(sparse_container):
|
17 |
+
# Test VarianceThreshold with default setting, zero variance.
|
18 |
+
X = data if sparse_container is None else sparse_container(data)
|
19 |
+
sel = VarianceThreshold().fit(X)
|
20 |
+
assert_array_equal([0, 1, 3, 4], sel.get_support(indices=True))
|
21 |
+
|
22 |
+
|
23 |
+
def test_zero_variance_value_error():
|
24 |
+
# Test VarianceThreshold with default setting, zero variance, error cases.
|
25 |
+
with pytest.raises(ValueError):
|
26 |
+
VarianceThreshold().fit([[0, 1, 2, 3]])
|
27 |
+
with pytest.raises(ValueError):
|
28 |
+
VarianceThreshold().fit([[0, 1], [0, 1]])
|
29 |
+
|
30 |
+
|
31 |
+
@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
|
32 |
+
def test_variance_threshold(sparse_container):
|
33 |
+
# Test VarianceThreshold with custom variance.
|
34 |
+
X = data if sparse_container is None else sparse_container(data)
|
35 |
+
X = VarianceThreshold(threshold=0.4).fit_transform(X)
|
36 |
+
assert (len(data), 1) == X.shape
|
37 |
+
|
38 |
+
|
39 |
+
@pytest.mark.skipif(
|
40 |
+
np.var(data2) == 0,
|
41 |
+
reason=(
|
42 |
+
"This test is not valid for this platform, "
|
43 |
+
"as it relies on numerical instabilities."
|
44 |
+
),
|
45 |
+
)
|
46 |
+
@pytest.mark.parametrize(
|
47 |
+
"sparse_container", [None] + BSR_CONTAINERS + CSC_CONTAINERS + CSR_CONTAINERS
|
48 |
+
)
|
49 |
+
def test_zero_variance_floating_point_error(sparse_container):
|
50 |
+
# Test that VarianceThreshold(0.0).fit eliminates features that have
|
51 |
+
# the same value in every sample, even when floating point errors
|
52 |
+
# cause np.var not to be 0 for the feature.
|
53 |
+
# See #13691
|
54 |
+
X = data2 if sparse_container is None else sparse_container(data2)
|
55 |
+
msg = "No feature in X meets the variance threshold 0.00000"
|
56 |
+
with pytest.raises(ValueError, match=msg):
|
57 |
+
VarianceThreshold().fit(X)
|
58 |
+
|
59 |
+
|
60 |
+
@pytest.mark.parametrize(
|
61 |
+
"sparse_container", [None] + BSR_CONTAINERS + CSC_CONTAINERS + CSR_CONTAINERS
|
62 |
+
)
|
63 |
+
def test_variance_nan(sparse_container):
|
64 |
+
arr = np.array(data, dtype=np.float64)
|
65 |
+
# add single NaN and feature should still be included
|
66 |
+
arr[0, 0] = np.nan
|
67 |
+
# make all values in feature NaN and feature should be rejected
|
68 |
+
arr[:, 1] = np.nan
|
69 |
+
|
70 |
+
X = arr if sparse_container is None else sparse_container(arr)
|
71 |
+
sel = VarianceThreshold().fit(X)
|
72 |
+
assert_array_equal([0, 3, 4], sel.get_support(indices=True))
|
llmeval-env/lib/python3.10/site-packages/sklearn/impute/__init__.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Transformers for missing value imputation"""
|
2 |
+
import typing
|
3 |
+
|
4 |
+
from ._base import MissingIndicator, SimpleImputer
|
5 |
+
from ._knn import KNNImputer
|
6 |
+
|
7 |
+
if typing.TYPE_CHECKING:
|
8 |
+
# Avoid errors in type checkers (e.g. mypy) for experimental estimators.
|
9 |
+
# TODO: remove this check once the estimator is no longer experimental.
|
10 |
+
from ._iterative import IterativeImputer # noqa
|
11 |
+
|
12 |
+
__all__ = ["MissingIndicator", "SimpleImputer", "KNNImputer"]
|
13 |
+
|
14 |
+
|
15 |
+
# TODO: remove this check once the estimator is no longer experimental.
|
16 |
+
def __getattr__(name):
|
17 |
+
if name == "IterativeImputer":
|
18 |
+
raise ImportError(
|
19 |
+
f"{name} is experimental and the API might change without any "
|
20 |
+
"deprecation cycle. To use it, you need to explicitly import "
|
21 |
+
"enable_iterative_imputer:\n"
|
22 |
+
"from sklearn.experimental import enable_iterative_imputer"
|
23 |
+
)
|
24 |
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
llmeval-env/lib/python3.10/site-packages/sklearn/impute/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (911 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/impute/__pycache__/_base.cpython-310.pyc
ADDED
Binary file (29.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/impute/__pycache__/_iterative.cpython-310.pyc
ADDED
Binary file (28.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/impute/__pycache__/_knn.cpython-310.pyc
ADDED
Binary file (11.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sklearn/impute/_base.py
ADDED
@@ -0,0 +1,1075 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Authors: Nicolas Tresegnie <[email protected]>
|
2 |
+
# Sergey Feldman <[email protected]>
|
3 |
+
# License: BSD 3 clause
|
4 |
+
|
5 |
+
import numbers
|
6 |
+
import warnings
|
7 |
+
from collections import Counter
|
8 |
+
from functools import partial
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import numpy.ma as ma
|
12 |
+
from scipy import sparse as sp
|
13 |
+
|
14 |
+
from ..base import BaseEstimator, TransformerMixin, _fit_context
|
15 |
+
from ..utils import _is_pandas_na, is_scalar_nan
|
16 |
+
from ..utils._mask import _get_mask
|
17 |
+
from ..utils._param_validation import MissingValues, StrOptions
|
18 |
+
from ..utils.fixes import _mode
|
19 |
+
from ..utils.sparsefuncs import _get_median
|
20 |
+
from ..utils.validation import FLOAT_DTYPES, _check_feature_names_in, check_is_fitted
|
21 |
+
|
22 |
+
|
23 |
+
def _check_inputs_dtype(X, missing_values):
|
24 |
+
if _is_pandas_na(missing_values):
|
25 |
+
# Allow using `pd.NA` as missing values to impute numerical arrays.
|
26 |
+
return
|
27 |
+
if X.dtype.kind in ("f", "i", "u") and not isinstance(missing_values, numbers.Real):
|
28 |
+
raise ValueError(
|
29 |
+
"'X' and 'missing_values' types are expected to be"
|
30 |
+
" both numerical. Got X.dtype={} and "
|
31 |
+
" type(missing_values)={}.".format(X.dtype, type(missing_values))
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
def _most_frequent(array, extra_value, n_repeat):
|
36 |
+
"""Compute the most frequent value in a 1d array extended with
|
37 |
+
[extra_value] * n_repeat, where extra_value is assumed to be not part
|
38 |
+
of the array."""
|
39 |
+
# Compute the most frequent value in array only
|
40 |
+
if array.size > 0:
|
41 |
+
if array.dtype == object:
|
42 |
+
# scipy.stats.mode is slow with object dtype array.
|
43 |
+
# Python Counter is more efficient
|
44 |
+
counter = Counter(array)
|
45 |
+
most_frequent_count = counter.most_common(1)[0][1]
|
46 |
+
# tie breaking similarly to scipy.stats.mode
|
47 |
+
most_frequent_value = min(
|
48 |
+
value
|
49 |
+
for value, count in counter.items()
|
50 |
+
if count == most_frequent_count
|
51 |
+
)
|
52 |
+
else:
|
53 |
+
mode = _mode(array)
|
54 |
+
most_frequent_value = mode[0][0]
|
55 |
+
most_frequent_count = mode[1][0]
|
56 |
+
else:
|
57 |
+
most_frequent_value = 0
|
58 |
+
most_frequent_count = 0
|
59 |
+
|
60 |
+
# Compare to array + [extra_value] * n_repeat
|
61 |
+
if most_frequent_count == 0 and n_repeat == 0:
|
62 |
+
return np.nan
|
63 |
+
elif most_frequent_count < n_repeat:
|
64 |
+
return extra_value
|
65 |
+
elif most_frequent_count > n_repeat:
|
66 |
+
return most_frequent_value
|
67 |
+
elif most_frequent_count == n_repeat:
|
68 |
+
# tie breaking similarly to scipy.stats.mode
|
69 |
+
return min(most_frequent_value, extra_value)
|
70 |
+
|
71 |
+
|
72 |
+
class _BaseImputer(TransformerMixin, BaseEstimator):
|
73 |
+
"""Base class for all imputers.
|
74 |
+
|
75 |
+
It adds automatically support for `add_indicator`.
|
76 |
+
"""
|
77 |
+
|
78 |
+
_parameter_constraints: dict = {
|
79 |
+
"missing_values": [MissingValues()],
|
80 |
+
"add_indicator": ["boolean"],
|
81 |
+
"keep_empty_features": ["boolean"],
|
82 |
+
}
|
83 |
+
|
84 |
+
def __init__(
|
85 |
+
self, *, missing_values=np.nan, add_indicator=False, keep_empty_features=False
|
86 |
+
):
|
87 |
+
self.missing_values = missing_values
|
88 |
+
self.add_indicator = add_indicator
|
89 |
+
self.keep_empty_features = keep_empty_features
|
90 |
+
|
91 |
+
def _fit_indicator(self, X):
|
92 |
+
"""Fit a MissingIndicator."""
|
93 |
+
if self.add_indicator:
|
94 |
+
self.indicator_ = MissingIndicator(
|
95 |
+
missing_values=self.missing_values, error_on_new=False
|
96 |
+
)
|
97 |
+
self.indicator_._fit(X, precomputed=True)
|
98 |
+
else:
|
99 |
+
self.indicator_ = None
|
100 |
+
|
101 |
+
def _transform_indicator(self, X):
|
102 |
+
"""Compute the indicator mask.'
|
103 |
+
|
104 |
+
Note that X must be the original data as passed to the imputer before
|
105 |
+
any imputation, since imputation may be done inplace in some cases.
|
106 |
+
"""
|
107 |
+
if self.add_indicator:
|
108 |
+
if not hasattr(self, "indicator_"):
|
109 |
+
raise ValueError(
|
110 |
+
"Make sure to call _fit_indicator before _transform_indicator"
|
111 |
+
)
|
112 |
+
return self.indicator_.transform(X)
|
113 |
+
|
114 |
+
def _concatenate_indicator(self, X_imputed, X_indicator):
|
115 |
+
"""Concatenate indicator mask with the imputed data."""
|
116 |
+
if not self.add_indicator:
|
117 |
+
return X_imputed
|
118 |
+
|
119 |
+
if sp.issparse(X_imputed):
|
120 |
+
# sp.hstack may result in different formats between sparse arrays and
|
121 |
+
# matrices; specify the format to keep consistent behavior
|
122 |
+
hstack = partial(sp.hstack, format=X_imputed.format)
|
123 |
+
else:
|
124 |
+
hstack = np.hstack
|
125 |
+
|
126 |
+
if X_indicator is None:
|
127 |
+
raise ValueError(
|
128 |
+
"Data from the missing indicator are not provided. Call "
|
129 |
+
"_fit_indicator and _transform_indicator in the imputer "
|
130 |
+
"implementation."
|
131 |
+
)
|
132 |
+
|
133 |
+
return hstack((X_imputed, X_indicator))
|
134 |
+
|
135 |
+
def _concatenate_indicator_feature_names_out(self, names, input_features):
|
136 |
+
if not self.add_indicator:
|
137 |
+
return names
|
138 |
+
|
139 |
+
indicator_names = self.indicator_.get_feature_names_out(input_features)
|
140 |
+
return np.concatenate([names, indicator_names])
|
141 |
+
|
142 |
+
def _more_tags(self):
|
143 |
+
return {"allow_nan": is_scalar_nan(self.missing_values)}
|
144 |
+
|
145 |
+
|
146 |
+
class SimpleImputer(_BaseImputer):
|
147 |
+
"""Univariate imputer for completing missing values with simple strategies.
|
148 |
+
|
149 |
+
Replace missing values using a descriptive statistic (e.g. mean, median, or
|
150 |
+
most frequent) along each column, or using a constant value.
|
151 |
+
|
152 |
+
Read more in the :ref:`User Guide <impute>`.
|
153 |
+
|
154 |
+
.. versionadded:: 0.20
|
155 |
+
`SimpleImputer` replaces the previous `sklearn.preprocessing.Imputer`
|
156 |
+
estimator which is now removed.
|
157 |
+
|
158 |
+
Parameters
|
159 |
+
----------
|
160 |
+
missing_values : int, float, str, np.nan, None or pandas.NA, default=np.nan
|
161 |
+
The placeholder for the missing values. All occurrences of
|
162 |
+
`missing_values` will be imputed. For pandas' dataframes with
|
163 |
+
nullable integer dtypes with missing values, `missing_values`
|
164 |
+
can be set to either `np.nan` or `pd.NA`.
|
165 |
+
|
166 |
+
strategy : str, default='mean'
|
167 |
+
The imputation strategy.
|
168 |
+
|
169 |
+
- If "mean", then replace missing values using the mean along
|
170 |
+
each column. Can only be used with numeric data.
|
171 |
+
- If "median", then replace missing values using the median along
|
172 |
+
each column. Can only be used with numeric data.
|
173 |
+
- If "most_frequent", then replace missing using the most frequent
|
174 |
+
value along each column. Can be used with strings or numeric data.
|
175 |
+
If there is more than one such value, only the smallest is returned.
|
176 |
+
- If "constant", then replace missing values with fill_value. Can be
|
177 |
+
used with strings or numeric data.
|
178 |
+
|
179 |
+
.. versionadded:: 0.20
|
180 |
+
strategy="constant" for fixed value imputation.
|
181 |
+
|
182 |
+
fill_value : str or numerical value, default=None
|
183 |
+
When strategy == "constant", `fill_value` is used to replace all
|
184 |
+
occurrences of missing_values. For string or object data types,
|
185 |
+
`fill_value` must be a string.
|
186 |
+
If `None`, `fill_value` will be 0 when imputing numerical
|
187 |
+
data and "missing_value" for strings or object data types.
|
188 |
+
|
189 |
+
copy : bool, default=True
|
190 |
+
If True, a copy of X will be created. If False, imputation will
|
191 |
+
be done in-place whenever possible. Note that, in the following cases,
|
192 |
+
a new copy will always be made, even if `copy=False`:
|
193 |
+
|
194 |
+
- If `X` is not an array of floating values;
|
195 |
+
- If `X` is encoded as a CSR matrix;
|
196 |
+
- If `add_indicator=True`.
|
197 |
+
|
198 |
+
add_indicator : bool, default=False
|
199 |
+
If True, a :class:`MissingIndicator` transform will stack onto output
|
200 |
+
of the imputer's transform. This allows a predictive estimator
|
201 |
+
to account for missingness despite imputation. If a feature has no
|
202 |
+
missing values at fit/train time, the feature won't appear on
|
203 |
+
the missing indicator even if there are missing values at
|
204 |
+
transform/test time.
|
205 |
+
|
206 |
+
keep_empty_features : bool, default=False
|
207 |
+
If True, features that consist exclusively of missing values when
|
208 |
+
`fit` is called are returned in results when `transform` is called.
|
209 |
+
The imputed value is always `0` except when `strategy="constant"`
|
210 |
+
in which case `fill_value` will be used instead.
|
211 |
+
|
212 |
+
.. versionadded:: 1.2
|
213 |
+
|
214 |
+
Attributes
|
215 |
+
----------
|
216 |
+
statistics_ : array of shape (n_features,)
|
217 |
+
The imputation fill value for each feature.
|
218 |
+
Computing statistics can result in `np.nan` values.
|
219 |
+
During :meth:`transform`, features corresponding to `np.nan`
|
220 |
+
statistics will be discarded.
|
221 |
+
|
222 |
+
indicator_ : :class:`~sklearn.impute.MissingIndicator`
|
223 |
+
Indicator used to add binary indicators for missing values.
|
224 |
+
`None` if `add_indicator=False`.
|
225 |
+
|
226 |
+
n_features_in_ : int
|
227 |
+
Number of features seen during :term:`fit`.
|
228 |
+
|
229 |
+
.. versionadded:: 0.24
|
230 |
+
|
231 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
232 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
233 |
+
has feature names that are all strings.
|
234 |
+
|
235 |
+
.. versionadded:: 1.0
|
236 |
+
|
237 |
+
See Also
|
238 |
+
--------
|
239 |
+
IterativeImputer : Multivariate imputer that estimates values to impute for
|
240 |
+
each feature with missing values from all the others.
|
241 |
+
KNNImputer : Multivariate imputer that estimates missing features using
|
242 |
+
nearest samples.
|
243 |
+
|
244 |
+
Notes
|
245 |
+
-----
|
246 |
+
Columns which only contained missing values at :meth:`fit` are discarded
|
247 |
+
upon :meth:`transform` if strategy is not `"constant"`.
|
248 |
+
|
249 |
+
In a prediction context, simple imputation usually performs poorly when
|
250 |
+
associated with a weak learner. However, with a powerful learner, it can
|
251 |
+
lead to as good or better performance than complex imputation such as
|
252 |
+
:class:`~sklearn.impute.IterativeImputer` or :class:`~sklearn.impute.KNNImputer`.
|
253 |
+
|
254 |
+
Examples
|
255 |
+
--------
|
256 |
+
>>> import numpy as np
|
257 |
+
>>> from sklearn.impute import SimpleImputer
|
258 |
+
>>> imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
|
259 |
+
>>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])
|
260 |
+
SimpleImputer()
|
261 |
+
>>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]
|
262 |
+
>>> print(imp_mean.transform(X))
|
263 |
+
[[ 7. 2. 3. ]
|
264 |
+
[ 4. 3.5 6. ]
|
265 |
+
[10. 3.5 9. ]]
|
266 |
+
|
267 |
+
For a more detailed example see
|
268 |
+
:ref:`sphx_glr_auto_examples_impute_plot_missing_values.py`.
|
269 |
+
"""
|
270 |
+
|
271 |
+
_parameter_constraints: dict = {
|
272 |
+
**_BaseImputer._parameter_constraints,
|
273 |
+
"strategy": [StrOptions({"mean", "median", "most_frequent", "constant"})],
|
274 |
+
"fill_value": "no_validation", # any object is valid
|
275 |
+
"copy": ["boolean"],
|
276 |
+
}
|
277 |
+
|
278 |
+
def __init__(
|
279 |
+
self,
|
280 |
+
*,
|
281 |
+
missing_values=np.nan,
|
282 |
+
strategy="mean",
|
283 |
+
fill_value=None,
|
284 |
+
copy=True,
|
285 |
+
add_indicator=False,
|
286 |
+
keep_empty_features=False,
|
287 |
+
):
|
288 |
+
super().__init__(
|
289 |
+
missing_values=missing_values,
|
290 |
+
add_indicator=add_indicator,
|
291 |
+
keep_empty_features=keep_empty_features,
|
292 |
+
)
|
293 |
+
self.strategy = strategy
|
294 |
+
self.fill_value = fill_value
|
295 |
+
self.copy = copy
|
296 |
+
|
297 |
+
def _validate_input(self, X, in_fit):
|
298 |
+
if self.strategy in ("most_frequent", "constant"):
|
299 |
+
# If input is a list of strings, dtype = object.
|
300 |
+
# Otherwise ValueError is raised in SimpleImputer
|
301 |
+
# with strategy='most_frequent' or 'constant'
|
302 |
+
# because the list is converted to Unicode numpy array
|
303 |
+
if isinstance(X, list) and any(
|
304 |
+
isinstance(elem, str) for row in X for elem in row
|
305 |
+
):
|
306 |
+
dtype = object
|
307 |
+
else:
|
308 |
+
dtype = None
|
309 |
+
else:
|
310 |
+
dtype = FLOAT_DTYPES
|
311 |
+
|
312 |
+
if not in_fit and self._fit_dtype.kind == "O":
|
313 |
+
# Use object dtype if fitted on object dtypes
|
314 |
+
dtype = self._fit_dtype
|
315 |
+
|
316 |
+
if _is_pandas_na(self.missing_values) or is_scalar_nan(self.missing_values):
|
317 |
+
force_all_finite = "allow-nan"
|
318 |
+
else:
|
319 |
+
force_all_finite = True
|
320 |
+
|
321 |
+
try:
|
322 |
+
X = self._validate_data(
|
323 |
+
X,
|
324 |
+
reset=in_fit,
|
325 |
+
accept_sparse="csc",
|
326 |
+
dtype=dtype,
|
327 |
+
force_all_finite=force_all_finite,
|
328 |
+
copy=self.copy,
|
329 |
+
)
|
330 |
+
except ValueError as ve:
|
331 |
+
if "could not convert" in str(ve):
|
332 |
+
new_ve = ValueError(
|
333 |
+
"Cannot use {} strategy with non-numeric data:\n{}".format(
|
334 |
+
self.strategy, ve
|
335 |
+
)
|
336 |
+
)
|
337 |
+
raise new_ve from None
|
338 |
+
else:
|
339 |
+
raise ve
|
340 |
+
|
341 |
+
if in_fit:
|
342 |
+
# Use the dtype seen in `fit` for non-`fit` conversion
|
343 |
+
self._fit_dtype = X.dtype
|
344 |
+
|
345 |
+
_check_inputs_dtype(X, self.missing_values)
|
346 |
+
if X.dtype.kind not in ("i", "u", "f", "O"):
|
347 |
+
raise ValueError(
|
348 |
+
"SimpleImputer does not support data with dtype "
|
349 |
+
"{0}. Please provide either a numeric array (with"
|
350 |
+
" a floating point or integer dtype) or "
|
351 |
+
"categorical data represented either as an array "
|
352 |
+
"with integer dtype or an array of string values "
|
353 |
+
"with an object dtype.".format(X.dtype)
|
354 |
+
)
|
355 |
+
|
356 |
+
if sp.issparse(X) and self.missing_values == 0:
|
357 |
+
# missing_values = 0 not allowed with sparse data as it would
|
358 |
+
# force densification
|
359 |
+
raise ValueError(
|
360 |
+
"Imputation not possible when missing_values "
|
361 |
+
"== 0 and input is sparse. Provide a dense "
|
362 |
+
"array instead."
|
363 |
+
)
|
364 |
+
|
365 |
+
if self.strategy == "constant":
|
366 |
+
if in_fit and self.fill_value is not None:
|
367 |
+
fill_value_dtype = type(self.fill_value)
|
368 |
+
err_msg = (
|
369 |
+
f"fill_value={self.fill_value!r} (of type {fill_value_dtype!r}) "
|
370 |
+
f"cannot be cast to the input data that is {X.dtype!r}. Make sure "
|
371 |
+
"that both dtypes are of the same kind."
|
372 |
+
)
|
373 |
+
elif not in_fit:
|
374 |
+
fill_value_dtype = self.statistics_.dtype
|
375 |
+
err_msg = (
|
376 |
+
f"The dtype of the filling value (i.e. {fill_value_dtype!r}) "
|
377 |
+
f"cannot be cast to the input data that is {X.dtype!r}. Make sure "
|
378 |
+
"that the dtypes of the input data is of the same kind between "
|
379 |
+
"fit and transform."
|
380 |
+
)
|
381 |
+
else:
|
382 |
+
# By default, fill_value=None, and the replacement is always
|
383 |
+
# compatible with the input data
|
384 |
+
fill_value_dtype = X.dtype
|
385 |
+
|
386 |
+
# Make sure we can safely cast fill_value dtype to the input data dtype
|
387 |
+
if not np.can_cast(fill_value_dtype, X.dtype, casting="same_kind"):
|
388 |
+
raise ValueError(err_msg)
|
389 |
+
|
390 |
+
return X
|
391 |
+
|
392 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
393 |
+
def fit(self, X, y=None):
|
394 |
+
"""Fit the imputer on `X`.
|
395 |
+
|
396 |
+
Parameters
|
397 |
+
----------
|
398 |
+
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
399 |
+
Input data, where `n_samples` is the number of samples and
|
400 |
+
`n_features` is the number of features.
|
401 |
+
|
402 |
+
y : Ignored
|
403 |
+
Not used, present here for API consistency by convention.
|
404 |
+
|
405 |
+
Returns
|
406 |
+
-------
|
407 |
+
self : object
|
408 |
+
Fitted estimator.
|
409 |
+
"""
|
410 |
+
X = self._validate_input(X, in_fit=True)
|
411 |
+
|
412 |
+
# default fill_value is 0 for numerical input and "missing_value"
|
413 |
+
# otherwise
|
414 |
+
if self.fill_value is None:
|
415 |
+
if X.dtype.kind in ("i", "u", "f"):
|
416 |
+
fill_value = 0
|
417 |
+
else:
|
418 |
+
fill_value = "missing_value"
|
419 |
+
else:
|
420 |
+
fill_value = self.fill_value
|
421 |
+
|
422 |
+
if sp.issparse(X):
|
423 |
+
self.statistics_ = self._sparse_fit(
|
424 |
+
X, self.strategy, self.missing_values, fill_value
|
425 |
+
)
|
426 |
+
else:
|
427 |
+
self.statistics_ = self._dense_fit(
|
428 |
+
X, self.strategy, self.missing_values, fill_value
|
429 |
+
)
|
430 |
+
|
431 |
+
return self
|
432 |
+
|
433 |
+
def _sparse_fit(self, X, strategy, missing_values, fill_value):
|
434 |
+
"""Fit the transformer on sparse data."""
|
435 |
+
missing_mask = _get_mask(X, missing_values)
|
436 |
+
mask_data = missing_mask.data
|
437 |
+
n_implicit_zeros = X.shape[0] - np.diff(X.indptr)
|
438 |
+
|
439 |
+
statistics = np.empty(X.shape[1])
|
440 |
+
|
441 |
+
if strategy == "constant":
|
442 |
+
# for constant strategy, self.statistics_ is used to store
|
443 |
+
# fill_value in each column
|
444 |
+
statistics.fill(fill_value)
|
445 |
+
else:
|
446 |
+
for i in range(X.shape[1]):
|
447 |
+
column = X.data[X.indptr[i] : X.indptr[i + 1]]
|
448 |
+
mask_column = mask_data[X.indptr[i] : X.indptr[i + 1]]
|
449 |
+
column = column[~mask_column]
|
450 |
+
|
451 |
+
# combine explicit and implicit zeros
|
452 |
+
mask_zeros = _get_mask(column, 0)
|
453 |
+
column = column[~mask_zeros]
|
454 |
+
n_explicit_zeros = mask_zeros.sum()
|
455 |
+
n_zeros = n_implicit_zeros[i] + n_explicit_zeros
|
456 |
+
|
457 |
+
if len(column) == 0 and self.keep_empty_features:
|
458 |
+
# in case we want to keep columns with only missing values.
|
459 |
+
statistics[i] = 0
|
460 |
+
else:
|
461 |
+
if strategy == "mean":
|
462 |
+
s = column.size + n_zeros
|
463 |
+
statistics[i] = np.nan if s == 0 else column.sum() / s
|
464 |
+
|
465 |
+
elif strategy == "median":
|
466 |
+
statistics[i] = _get_median(column, n_zeros)
|
467 |
+
|
468 |
+
elif strategy == "most_frequent":
|
469 |
+
statistics[i] = _most_frequent(column, 0, n_zeros)
|
470 |
+
|
471 |
+
super()._fit_indicator(missing_mask)
|
472 |
+
|
473 |
+
return statistics
|
474 |
+
|
475 |
+
def _dense_fit(self, X, strategy, missing_values, fill_value):
|
476 |
+
"""Fit the transformer on dense data."""
|
477 |
+
missing_mask = _get_mask(X, missing_values)
|
478 |
+
masked_X = ma.masked_array(X, mask=missing_mask)
|
479 |
+
|
480 |
+
super()._fit_indicator(missing_mask)
|
481 |
+
|
482 |
+
# Mean
|
483 |
+
if strategy == "mean":
|
484 |
+
mean_masked = np.ma.mean(masked_X, axis=0)
|
485 |
+
# Avoid the warning "Warning: converting a masked element to nan."
|
486 |
+
mean = np.ma.getdata(mean_masked)
|
487 |
+
mean[np.ma.getmask(mean_masked)] = 0 if self.keep_empty_features else np.nan
|
488 |
+
|
489 |
+
return mean
|
490 |
+
|
491 |
+
# Median
|
492 |
+
elif strategy == "median":
|
493 |
+
median_masked = np.ma.median(masked_X, axis=0)
|
494 |
+
# Avoid the warning "Warning: converting a masked element to nan."
|
495 |
+
median = np.ma.getdata(median_masked)
|
496 |
+
median[np.ma.getmaskarray(median_masked)] = (
|
497 |
+
0 if self.keep_empty_features else np.nan
|
498 |
+
)
|
499 |
+
|
500 |
+
return median
|
501 |
+
|
502 |
+
# Most frequent
|
503 |
+
elif strategy == "most_frequent":
|
504 |
+
# Avoid use of scipy.stats.mstats.mode due to the required
|
505 |
+
# additional overhead and slow benchmarking performance.
|
506 |
+
# See Issue 14325 and PR 14399 for full discussion.
|
507 |
+
|
508 |
+
# To be able access the elements by columns
|
509 |
+
X = X.transpose()
|
510 |
+
mask = missing_mask.transpose()
|
511 |
+
|
512 |
+
if X.dtype.kind == "O":
|
513 |
+
most_frequent = np.empty(X.shape[0], dtype=object)
|
514 |
+
else:
|
515 |
+
most_frequent = np.empty(X.shape[0])
|
516 |
+
|
517 |
+
for i, (row, row_mask) in enumerate(zip(X[:], mask[:])):
|
518 |
+
row_mask = np.logical_not(row_mask).astype(bool)
|
519 |
+
row = row[row_mask]
|
520 |
+
if len(row) == 0 and self.keep_empty_features:
|
521 |
+
most_frequent[i] = 0
|
522 |
+
else:
|
523 |
+
most_frequent[i] = _most_frequent(row, np.nan, 0)
|
524 |
+
|
525 |
+
return most_frequent
|
526 |
+
|
527 |
+
# Constant
|
528 |
+
elif strategy == "constant":
|
529 |
+
# for constant strategy, self.statistcs_ is used to store
|
530 |
+
# fill_value in each column
|
531 |
+
return np.full(X.shape[1], fill_value, dtype=X.dtype)
|
532 |
+
|
533 |
+
def transform(self, X):
|
534 |
+
"""Impute all missing values in `X`.
|
535 |
+
|
536 |
+
Parameters
|
537 |
+
----------
|
538 |
+
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
539 |
+
The input data to complete.
|
540 |
+
|
541 |
+
Returns
|
542 |
+
-------
|
543 |
+
X_imputed : {ndarray, sparse matrix} of shape \
|
544 |
+
(n_samples, n_features_out)
|
545 |
+
`X` with imputed values.
|
546 |
+
"""
|
547 |
+
check_is_fitted(self)
|
548 |
+
|
549 |
+
X = self._validate_input(X, in_fit=False)
|
550 |
+
statistics = self.statistics_
|
551 |
+
|
552 |
+
if X.shape[1] != statistics.shape[0]:
|
553 |
+
raise ValueError(
|
554 |
+
"X has %d features per sample, expected %d"
|
555 |
+
% (X.shape[1], self.statistics_.shape[0])
|
556 |
+
)
|
557 |
+
|
558 |
+
# compute mask before eliminating invalid features
|
559 |
+
missing_mask = _get_mask(X, self.missing_values)
|
560 |
+
|
561 |
+
# Decide whether to keep missing features
|
562 |
+
if self.strategy == "constant" or self.keep_empty_features:
|
563 |
+
valid_statistics = statistics
|
564 |
+
valid_statistics_indexes = None
|
565 |
+
else:
|
566 |
+
# same as np.isnan but also works for object dtypes
|
567 |
+
invalid_mask = _get_mask(statistics, np.nan)
|
568 |
+
valid_mask = np.logical_not(invalid_mask)
|
569 |
+
valid_statistics = statistics[valid_mask]
|
570 |
+
valid_statistics_indexes = np.flatnonzero(valid_mask)
|
571 |
+
|
572 |
+
if invalid_mask.any():
|
573 |
+
invalid_features = np.arange(X.shape[1])[invalid_mask]
|
574 |
+
# use feature names warning if features are provided
|
575 |
+
if hasattr(self, "feature_names_in_"):
|
576 |
+
invalid_features = self.feature_names_in_[invalid_features]
|
577 |
+
warnings.warn(
|
578 |
+
"Skipping features without any observed values:"
|
579 |
+
f" {invalid_features}. At least one non-missing value is needed"
|
580 |
+
f" for imputation with strategy='{self.strategy}'."
|
581 |
+
)
|
582 |
+
X = X[:, valid_statistics_indexes]
|
583 |
+
|
584 |
+
# Do actual imputation
|
585 |
+
if sp.issparse(X):
|
586 |
+
if self.missing_values == 0:
|
587 |
+
raise ValueError(
|
588 |
+
"Imputation not possible when missing_values "
|
589 |
+
"== 0 and input is sparse. Provide a dense "
|
590 |
+
"array instead."
|
591 |
+
)
|
592 |
+
else:
|
593 |
+
# if no invalid statistics are found, use the mask computed
|
594 |
+
# before, else recompute mask
|
595 |
+
if valid_statistics_indexes is None:
|
596 |
+
mask = missing_mask.data
|
597 |
+
else:
|
598 |
+
mask = _get_mask(X.data, self.missing_values)
|
599 |
+
indexes = np.repeat(
|
600 |
+
np.arange(len(X.indptr) - 1, dtype=int), np.diff(X.indptr)
|
601 |
+
)[mask]
|
602 |
+
|
603 |
+
X.data[mask] = valid_statistics[indexes].astype(X.dtype, copy=False)
|
604 |
+
else:
|
605 |
+
# use mask computed before eliminating invalid mask
|
606 |
+
if valid_statistics_indexes is None:
|
607 |
+
mask_valid_features = missing_mask
|
608 |
+
else:
|
609 |
+
mask_valid_features = missing_mask[:, valid_statistics_indexes]
|
610 |
+
n_missing = np.sum(mask_valid_features, axis=0)
|
611 |
+
values = np.repeat(valid_statistics, n_missing)
|
612 |
+
coordinates = np.where(mask_valid_features.transpose())[::-1]
|
613 |
+
|
614 |
+
X[coordinates] = values
|
615 |
+
|
616 |
+
X_indicator = super()._transform_indicator(missing_mask)
|
617 |
+
|
618 |
+
return super()._concatenate_indicator(X, X_indicator)
|
619 |
+
|
620 |
+
def inverse_transform(self, X):
|
621 |
+
"""Convert the data back to the original representation.
|
622 |
+
|
623 |
+
Inverts the `transform` operation performed on an array.
|
624 |
+
This operation can only be performed after :class:`SimpleImputer` is
|
625 |
+
instantiated with `add_indicator=True`.
|
626 |
+
|
627 |
+
Note that `inverse_transform` can only invert the transform in
|
628 |
+
features that have binary indicators for missing values. If a feature
|
629 |
+
has no missing values at `fit` time, the feature won't have a binary
|
630 |
+
indicator, and the imputation done at `transform` time won't be
|
631 |
+
inverted.
|
632 |
+
|
633 |
+
.. versionadded:: 0.24
|
634 |
+
|
635 |
+
Parameters
|
636 |
+
----------
|
637 |
+
X : array-like of shape \
|
638 |
+
(n_samples, n_features + n_features_missing_indicator)
|
639 |
+
The imputed data to be reverted to original data. It has to be
|
640 |
+
an augmented array of imputed data and the missing indicator mask.
|
641 |
+
|
642 |
+
Returns
|
643 |
+
-------
|
644 |
+
X_original : ndarray of shape (n_samples, n_features)
|
645 |
+
The original `X` with missing values as it was prior
|
646 |
+
to imputation.
|
647 |
+
"""
|
648 |
+
check_is_fitted(self)
|
649 |
+
|
650 |
+
if not self.add_indicator:
|
651 |
+
raise ValueError(
|
652 |
+
"'inverse_transform' works only when "
|
653 |
+
"'SimpleImputer' is instantiated with "
|
654 |
+
"'add_indicator=True'. "
|
655 |
+
f"Got 'add_indicator={self.add_indicator}' "
|
656 |
+
"instead."
|
657 |
+
)
|
658 |
+
|
659 |
+
n_features_missing = len(self.indicator_.features_)
|
660 |
+
non_empty_feature_count = X.shape[1] - n_features_missing
|
661 |
+
array_imputed = X[:, :non_empty_feature_count].copy()
|
662 |
+
missing_mask = X[:, non_empty_feature_count:].astype(bool)
|
663 |
+
|
664 |
+
n_features_original = len(self.statistics_)
|
665 |
+
shape_original = (X.shape[0], n_features_original)
|
666 |
+
X_original = np.zeros(shape_original)
|
667 |
+
X_original[:, self.indicator_.features_] = missing_mask
|
668 |
+
full_mask = X_original.astype(bool)
|
669 |
+
|
670 |
+
imputed_idx, original_idx = 0, 0
|
671 |
+
while imputed_idx < len(array_imputed.T):
|
672 |
+
if not np.all(X_original[:, original_idx]):
|
673 |
+
X_original[:, original_idx] = array_imputed.T[imputed_idx]
|
674 |
+
imputed_idx += 1
|
675 |
+
original_idx += 1
|
676 |
+
else:
|
677 |
+
original_idx += 1
|
678 |
+
|
679 |
+
X_original[full_mask] = self.missing_values
|
680 |
+
return X_original
|
681 |
+
|
682 |
+
def _more_tags(self):
|
683 |
+
return {
|
684 |
+
"allow_nan": _is_pandas_na(self.missing_values) or is_scalar_nan(
|
685 |
+
self.missing_values
|
686 |
+
)
|
687 |
+
}
|
688 |
+
|
689 |
+
def get_feature_names_out(self, input_features=None):
|
690 |
+
"""Get output feature names for transformation.
|
691 |
+
|
692 |
+
Parameters
|
693 |
+
----------
|
694 |
+
input_features : array-like of str or None, default=None
|
695 |
+
Input features.
|
696 |
+
|
697 |
+
- If `input_features` is `None`, then `feature_names_in_` is
|
698 |
+
used as feature names in. If `feature_names_in_` is not defined,
|
699 |
+
then the following input feature names are generated:
|
700 |
+
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
|
701 |
+
- If `input_features` is an array-like, then `input_features` must
|
702 |
+
match `feature_names_in_` if `feature_names_in_` is defined.
|
703 |
+
|
704 |
+
Returns
|
705 |
+
-------
|
706 |
+
feature_names_out : ndarray of str objects
|
707 |
+
Transformed feature names.
|
708 |
+
"""
|
709 |
+
check_is_fitted(self, "n_features_in_")
|
710 |
+
input_features = _check_feature_names_in(self, input_features)
|
711 |
+
non_missing_mask = np.logical_not(_get_mask(self.statistics_, np.nan))
|
712 |
+
names = input_features[non_missing_mask]
|
713 |
+
return self._concatenate_indicator_feature_names_out(names, input_features)
|
714 |
+
|
715 |
+
|
716 |
+
class MissingIndicator(TransformerMixin, BaseEstimator):
|
717 |
+
"""Binary indicators for missing values.
|
718 |
+
|
719 |
+
Note that this component typically should not be used in a vanilla
|
720 |
+
:class:`~sklearn.pipeline.Pipeline` consisting of transformers and a
|
721 |
+
classifier, but rather could be added using a
|
722 |
+
:class:`~sklearn.pipeline.FeatureUnion` or
|
723 |
+
:class:`~sklearn.compose.ColumnTransformer`.
|
724 |
+
|
725 |
+
Read more in the :ref:`User Guide <impute>`.
|
726 |
+
|
727 |
+
.. versionadded:: 0.20
|
728 |
+
|
729 |
+
Parameters
|
730 |
+
----------
|
731 |
+
missing_values : int, float, str, np.nan or None, default=np.nan
|
732 |
+
The placeholder for the missing values. All occurrences of
|
733 |
+
`missing_values` will be imputed. For pandas' dataframes with
|
734 |
+
nullable integer dtypes with missing values, `missing_values`
|
735 |
+
should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`.
|
736 |
+
|
737 |
+
features : {'missing-only', 'all'}, default='missing-only'
|
738 |
+
Whether the imputer mask should represent all or a subset of
|
739 |
+
features.
|
740 |
+
|
741 |
+
- If `'missing-only'` (default), the imputer mask will only represent
|
742 |
+
features containing missing values during fit time.
|
743 |
+
- If `'all'`, the imputer mask will represent all features.
|
744 |
+
|
745 |
+
sparse : bool or 'auto', default='auto'
|
746 |
+
Whether the imputer mask format should be sparse or dense.
|
747 |
+
|
748 |
+
- If `'auto'` (default), the imputer mask will be of same type as
|
749 |
+
input.
|
750 |
+
- If `True`, the imputer mask will be a sparse matrix.
|
751 |
+
- If `False`, the imputer mask will be a numpy array.
|
752 |
+
|
753 |
+
error_on_new : bool, default=True
|
754 |
+
If `True`, :meth:`transform` will raise an error when there are
|
755 |
+
features with missing values that have no missing values in
|
756 |
+
:meth:`fit`. This is applicable only when `features='missing-only'`.
|
757 |
+
|
758 |
+
Attributes
|
759 |
+
----------
|
760 |
+
features_ : ndarray of shape (n_missing_features,) or (n_features,)
|
761 |
+
The features indices which will be returned when calling
|
762 |
+
:meth:`transform`. They are computed during :meth:`fit`. If
|
763 |
+
`features='all'`, `features_` is equal to `range(n_features)`.
|
764 |
+
|
765 |
+
n_features_in_ : int
|
766 |
+
Number of features seen during :term:`fit`.
|
767 |
+
|
768 |
+
.. versionadded:: 0.24
|
769 |
+
|
770 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
771 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
772 |
+
has feature names that are all strings.
|
773 |
+
|
774 |
+
.. versionadded:: 1.0
|
775 |
+
|
776 |
+
See Also
|
777 |
+
--------
|
778 |
+
SimpleImputer : Univariate imputation of missing values.
|
779 |
+
IterativeImputer : Multivariate imputation of missing values.
|
780 |
+
|
781 |
+
Examples
|
782 |
+
--------
|
783 |
+
>>> import numpy as np
|
784 |
+
>>> from sklearn.impute import MissingIndicator
|
785 |
+
>>> X1 = np.array([[np.nan, 1, 3],
|
786 |
+
... [4, 0, np.nan],
|
787 |
+
... [8, 1, 0]])
|
788 |
+
>>> X2 = np.array([[5, 1, np.nan],
|
789 |
+
... [np.nan, 2, 3],
|
790 |
+
... [2, 4, 0]])
|
791 |
+
>>> indicator = MissingIndicator()
|
792 |
+
>>> indicator.fit(X1)
|
793 |
+
MissingIndicator()
|
794 |
+
>>> X2_tr = indicator.transform(X2)
|
795 |
+
>>> X2_tr
|
796 |
+
array([[False, True],
|
797 |
+
[ True, False],
|
798 |
+
[False, False]])
|
799 |
+
"""
|
800 |
+
|
801 |
+
_parameter_constraints: dict = {
|
802 |
+
"missing_values": [MissingValues()],
|
803 |
+
"features": [StrOptions({"missing-only", "all"})],
|
804 |
+
"sparse": ["boolean", StrOptions({"auto"})],
|
805 |
+
"error_on_new": ["boolean"],
|
806 |
+
}
|
807 |
+
|
808 |
+
def __init__(
|
809 |
+
self,
|
810 |
+
*,
|
811 |
+
missing_values=np.nan,
|
812 |
+
features="missing-only",
|
813 |
+
sparse="auto",
|
814 |
+
error_on_new=True,
|
815 |
+
):
|
816 |
+
self.missing_values = missing_values
|
817 |
+
self.features = features
|
818 |
+
self.sparse = sparse
|
819 |
+
self.error_on_new = error_on_new
|
820 |
+
|
821 |
+
def _get_missing_features_info(self, X):
|
822 |
+
"""Compute the imputer mask and the indices of the features
|
823 |
+
containing missing values.
|
824 |
+
|
825 |
+
Parameters
|
826 |
+
----------
|
827 |
+
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
828 |
+
The input data with missing values. Note that `X` has been
|
829 |
+
checked in :meth:`fit` and :meth:`transform` before to call this
|
830 |
+
function.
|
831 |
+
|
832 |
+
Returns
|
833 |
+
-------
|
834 |
+
imputer_mask : {ndarray, sparse matrix} of shape \
|
835 |
+
(n_samples, n_features)
|
836 |
+
The imputer mask of the original data.
|
837 |
+
|
838 |
+
features_with_missing : ndarray of shape (n_features_with_missing)
|
839 |
+
The features containing missing values.
|
840 |
+
"""
|
841 |
+
if not self._precomputed:
|
842 |
+
imputer_mask = _get_mask(X, self.missing_values)
|
843 |
+
else:
|
844 |
+
imputer_mask = X
|
845 |
+
|
846 |
+
if sp.issparse(X):
|
847 |
+
imputer_mask.eliminate_zeros()
|
848 |
+
|
849 |
+
if self.features == "missing-only":
|
850 |
+
n_missing = imputer_mask.getnnz(axis=0)
|
851 |
+
|
852 |
+
if self.sparse is False:
|
853 |
+
imputer_mask = imputer_mask.toarray()
|
854 |
+
elif imputer_mask.format == "csr":
|
855 |
+
imputer_mask = imputer_mask.tocsc()
|
856 |
+
else:
|
857 |
+
if not self._precomputed:
|
858 |
+
imputer_mask = _get_mask(X, self.missing_values)
|
859 |
+
else:
|
860 |
+
imputer_mask = X
|
861 |
+
|
862 |
+
if self.features == "missing-only":
|
863 |
+
n_missing = imputer_mask.sum(axis=0)
|
864 |
+
|
865 |
+
if self.sparse is True:
|
866 |
+
imputer_mask = sp.csc_matrix(imputer_mask)
|
867 |
+
|
868 |
+
if self.features == "all":
|
869 |
+
features_indices = np.arange(X.shape[1])
|
870 |
+
else:
|
871 |
+
features_indices = np.flatnonzero(n_missing)
|
872 |
+
|
873 |
+
return imputer_mask, features_indices
|
874 |
+
|
875 |
+
def _validate_input(self, X, in_fit):
|
876 |
+
if not is_scalar_nan(self.missing_values):
|
877 |
+
force_all_finite = True
|
878 |
+
else:
|
879 |
+
force_all_finite = "allow-nan"
|
880 |
+
X = self._validate_data(
|
881 |
+
X,
|
882 |
+
reset=in_fit,
|
883 |
+
accept_sparse=("csc", "csr"),
|
884 |
+
dtype=None,
|
885 |
+
force_all_finite=force_all_finite,
|
886 |
+
)
|
887 |
+
_check_inputs_dtype(X, self.missing_values)
|
888 |
+
if X.dtype.kind not in ("i", "u", "f", "O"):
|
889 |
+
raise ValueError(
|
890 |
+
"MissingIndicator does not support data with "
|
891 |
+
"dtype {0}. Please provide either a numeric array"
|
892 |
+
" (with a floating point or integer dtype) or "
|
893 |
+
"categorical data represented either as an array "
|
894 |
+
"with integer dtype or an array of string values "
|
895 |
+
"with an object dtype.".format(X.dtype)
|
896 |
+
)
|
897 |
+
|
898 |
+
if sp.issparse(X) and self.missing_values == 0:
|
899 |
+
# missing_values = 0 not allowed with sparse data as it would
|
900 |
+
# force densification
|
901 |
+
raise ValueError(
|
902 |
+
"Sparse input with missing_values=0 is "
|
903 |
+
"not supported. Provide a dense "
|
904 |
+
"array instead."
|
905 |
+
)
|
906 |
+
|
907 |
+
return X
|
908 |
+
|
909 |
+
def _fit(self, X, y=None, precomputed=False):
|
910 |
+
"""Fit the transformer on `X`.
|
911 |
+
|
912 |
+
Parameters
|
913 |
+
----------
|
914 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
915 |
+
Input data, where `n_samples` is the number of samples and
|
916 |
+
`n_features` is the number of features.
|
917 |
+
If `precomputed=True`, then `X` is a mask of the input data.
|
918 |
+
|
919 |
+
precomputed : bool
|
920 |
+
Whether the input data is a mask.
|
921 |
+
|
922 |
+
Returns
|
923 |
+
-------
|
924 |
+
imputer_mask : {ndarray, sparse matrix} of shape (n_samples, \
|
925 |
+
n_features)
|
926 |
+
The imputer mask of the original data.
|
927 |
+
"""
|
928 |
+
if precomputed:
|
929 |
+
if not (hasattr(X, "dtype") and X.dtype.kind == "b"):
|
930 |
+
raise ValueError("precomputed is True but the input data is not a mask")
|
931 |
+
self._precomputed = True
|
932 |
+
else:
|
933 |
+
self._precomputed = False
|
934 |
+
|
935 |
+
# Need not validate X again as it would have already been validated
|
936 |
+
# in the Imputer calling MissingIndicator
|
937 |
+
if not self._precomputed:
|
938 |
+
X = self._validate_input(X, in_fit=True)
|
939 |
+
else:
|
940 |
+
# only create `n_features_in_` in the precomputed case
|
941 |
+
self._check_n_features(X, reset=True)
|
942 |
+
|
943 |
+
self._n_features = X.shape[1]
|
944 |
+
|
945 |
+
missing_features_info = self._get_missing_features_info(X)
|
946 |
+
self.features_ = missing_features_info[1]
|
947 |
+
|
948 |
+
return missing_features_info[0]
|
949 |
+
|
950 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
951 |
+
def fit(self, X, y=None):
|
952 |
+
"""Fit the transformer on `X`.
|
953 |
+
|
954 |
+
Parameters
|
955 |
+
----------
|
956 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
957 |
+
Input data, where `n_samples` is the number of samples and
|
958 |
+
`n_features` is the number of features.
|
959 |
+
|
960 |
+
y : Ignored
|
961 |
+
Not used, present for API consistency by convention.
|
962 |
+
|
963 |
+
Returns
|
964 |
+
-------
|
965 |
+
self : object
|
966 |
+
Fitted estimator.
|
967 |
+
"""
|
968 |
+
self._fit(X, y)
|
969 |
+
|
970 |
+
return self
|
971 |
+
|
972 |
+
def transform(self, X):
|
973 |
+
"""Generate missing values indicator for `X`.
|
974 |
+
|
975 |
+
Parameters
|
976 |
+
----------
|
977 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
978 |
+
The input data to complete.
|
979 |
+
|
980 |
+
Returns
|
981 |
+
-------
|
982 |
+
Xt : {ndarray, sparse matrix} of shape (n_samples, n_features) \
|
983 |
+
or (n_samples, n_features_with_missing)
|
984 |
+
The missing indicator for input data. The data type of `Xt`
|
985 |
+
will be boolean.
|
986 |
+
"""
|
987 |
+
check_is_fitted(self)
|
988 |
+
|
989 |
+
# Need not validate X again as it would have already been validated
|
990 |
+
# in the Imputer calling MissingIndicator
|
991 |
+
if not self._precomputed:
|
992 |
+
X = self._validate_input(X, in_fit=False)
|
993 |
+
else:
|
994 |
+
if not (hasattr(X, "dtype") and X.dtype.kind == "b"):
|
995 |
+
raise ValueError("precomputed is True but the input data is not a mask")
|
996 |
+
|
997 |
+
imputer_mask, features = self._get_missing_features_info(X)
|
998 |
+
|
999 |
+
if self.features == "missing-only":
|
1000 |
+
features_diff_fit_trans = np.setdiff1d(features, self.features_)
|
1001 |
+
if self.error_on_new and features_diff_fit_trans.size > 0:
|
1002 |
+
raise ValueError(
|
1003 |
+
"The features {} have missing values "
|
1004 |
+
"in transform but have no missing values "
|
1005 |
+
"in fit.".format(features_diff_fit_trans)
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
if self.features_.size < self._n_features:
|
1009 |
+
imputer_mask = imputer_mask[:, self.features_]
|
1010 |
+
|
1011 |
+
return imputer_mask
|
1012 |
+
|
1013 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
1014 |
+
def fit_transform(self, X, y=None):
|
1015 |
+
"""Generate missing values indicator for `X`.
|
1016 |
+
|
1017 |
+
Parameters
|
1018 |
+
----------
|
1019 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1020 |
+
The input data to complete.
|
1021 |
+
|
1022 |
+
y : Ignored
|
1023 |
+
Not used, present for API consistency by convention.
|
1024 |
+
|
1025 |
+
Returns
|
1026 |
+
-------
|
1027 |
+
Xt : {ndarray, sparse matrix} of shape (n_samples, n_features) \
|
1028 |
+
or (n_samples, n_features_with_missing)
|
1029 |
+
The missing indicator for input data. The data type of `Xt`
|
1030 |
+
will be boolean.
|
1031 |
+
"""
|
1032 |
+
imputer_mask = self._fit(X, y)
|
1033 |
+
|
1034 |
+
if self.features_.size < self._n_features:
|
1035 |
+
imputer_mask = imputer_mask[:, self.features_]
|
1036 |
+
|
1037 |
+
return imputer_mask
|
1038 |
+
|
1039 |
+
def get_feature_names_out(self, input_features=None):
|
1040 |
+
"""Get output feature names for transformation.
|
1041 |
+
|
1042 |
+
Parameters
|
1043 |
+
----------
|
1044 |
+
input_features : array-like of str or None, default=None
|
1045 |
+
Input features.
|
1046 |
+
|
1047 |
+
- If `input_features` is `None`, then `feature_names_in_` is
|
1048 |
+
used as feature names in. If `feature_names_in_` is not defined,
|
1049 |
+
then the following input feature names are generated:
|
1050 |
+
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
|
1051 |
+
- If `input_features` is an array-like, then `input_features` must
|
1052 |
+
match `feature_names_in_` if `feature_names_in_` is defined.
|
1053 |
+
|
1054 |
+
Returns
|
1055 |
+
-------
|
1056 |
+
feature_names_out : ndarray of str objects
|
1057 |
+
Transformed feature names.
|
1058 |
+
"""
|
1059 |
+
check_is_fitted(self, "n_features_in_")
|
1060 |
+
input_features = _check_feature_names_in(self, input_features)
|
1061 |
+
prefix = self.__class__.__name__.lower()
|
1062 |
+
return np.asarray(
|
1063 |
+
[
|
1064 |
+
f"{prefix}_{feature_name}"
|
1065 |
+
for feature_name in input_features[self.features_]
|
1066 |
+
],
|
1067 |
+
dtype=object,
|
1068 |
+
)
|
1069 |
+
|
1070 |
+
def _more_tags(self):
|
1071 |
+
return {
|
1072 |
+
"allow_nan": True,
|
1073 |
+
"X_types": ["2darray", "string"],
|
1074 |
+
"preserves_dtype": [],
|
1075 |
+
}
|
llmeval-env/lib/python3.10/site-packages/sklearn/impute/_iterative.py
ADDED
@@ -0,0 +1,906 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from collections import namedtuple
|
3 |
+
from numbers import Integral, Real
|
4 |
+
from time import time
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from scipy import stats
|
8 |
+
|
9 |
+
from ..base import _fit_context, clone
|
10 |
+
from ..exceptions import ConvergenceWarning
|
11 |
+
from ..preprocessing import normalize
|
12 |
+
from ..utils import (
|
13 |
+
_safe_assign,
|
14 |
+
_safe_indexing,
|
15 |
+
check_array,
|
16 |
+
check_random_state,
|
17 |
+
is_scalar_nan,
|
18 |
+
)
|
19 |
+
from ..utils._mask import _get_mask
|
20 |
+
from ..utils._param_validation import HasMethods, Interval, StrOptions
|
21 |
+
from ..utils.metadata_routing import _RoutingNotSupportedMixin
|
22 |
+
from ..utils.validation import FLOAT_DTYPES, _check_feature_names_in, check_is_fitted
|
23 |
+
from ._base import SimpleImputer, _BaseImputer, _check_inputs_dtype
|
24 |
+
|
25 |
+
_ImputerTriplet = namedtuple(
|
26 |
+
"_ImputerTriplet", ["feat_idx", "neighbor_feat_idx", "estimator"]
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
def _assign_where(X1, X2, cond):
|
31 |
+
"""Assign X2 to X1 where cond is True.
|
32 |
+
|
33 |
+
Parameters
|
34 |
+
----------
|
35 |
+
X1 : ndarray or dataframe of shape (n_samples, n_features)
|
36 |
+
Data.
|
37 |
+
|
38 |
+
X2 : ndarray of shape (n_samples, n_features)
|
39 |
+
Data to be assigned.
|
40 |
+
|
41 |
+
cond : ndarray of shape (n_samples, n_features)
|
42 |
+
Boolean mask to assign data.
|
43 |
+
"""
|
44 |
+
if hasattr(X1, "mask"): # pandas dataframes
|
45 |
+
X1.mask(cond=cond, other=X2, inplace=True)
|
46 |
+
else: # ndarrays
|
47 |
+
X1[cond] = X2[cond]
|
48 |
+
|
49 |
+
|
50 |
+
class IterativeImputer(_RoutingNotSupportedMixin, _BaseImputer):
|
51 |
+
"""Multivariate imputer that estimates each feature from all the others.
|
52 |
+
|
53 |
+
A strategy for imputing missing values by modeling each feature with
|
54 |
+
missing values as a function of other features in a round-robin fashion.
|
55 |
+
|
56 |
+
Read more in the :ref:`User Guide <iterative_imputer>`.
|
57 |
+
|
58 |
+
.. versionadded:: 0.21
|
59 |
+
|
60 |
+
.. note::
|
61 |
+
|
62 |
+
This estimator is still **experimental** for now: the predictions
|
63 |
+
and the API might change without any deprecation cycle. To use it,
|
64 |
+
you need to explicitly import `enable_iterative_imputer`::
|
65 |
+
|
66 |
+
>>> # explicitly require this experimental feature
|
67 |
+
>>> from sklearn.experimental import enable_iterative_imputer # noqa
|
68 |
+
>>> # now you can import normally from sklearn.impute
|
69 |
+
>>> from sklearn.impute import IterativeImputer
|
70 |
+
|
71 |
+
Parameters
|
72 |
+
----------
|
73 |
+
estimator : estimator object, default=BayesianRidge()
|
74 |
+
The estimator to use at each step of the round-robin imputation.
|
75 |
+
If `sample_posterior=True`, the estimator must support
|
76 |
+
`return_std` in its `predict` method.
|
77 |
+
|
78 |
+
missing_values : int or np.nan, default=np.nan
|
79 |
+
The placeholder for the missing values. All occurrences of
|
80 |
+
`missing_values` will be imputed. For pandas' dataframes with
|
81 |
+
nullable integer dtypes with missing values, `missing_values`
|
82 |
+
should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`.
|
83 |
+
|
84 |
+
sample_posterior : bool, default=False
|
85 |
+
Whether to sample from the (Gaussian) predictive posterior of the
|
86 |
+
fitted estimator for each imputation. Estimator must support
|
87 |
+
`return_std` in its `predict` method if set to `True`. Set to
|
88 |
+
`True` if using `IterativeImputer` for multiple imputations.
|
89 |
+
|
90 |
+
max_iter : int, default=10
|
91 |
+
Maximum number of imputation rounds to perform before returning the
|
92 |
+
imputations computed during the final round. A round is a single
|
93 |
+
imputation of each feature with missing values. The stopping criterion
|
94 |
+
is met once `max(abs(X_t - X_{t-1}))/max(abs(X[known_vals])) < tol`,
|
95 |
+
where `X_t` is `X` at iteration `t`. Note that early stopping is only
|
96 |
+
applied if `sample_posterior=False`.
|
97 |
+
|
98 |
+
tol : float, default=1e-3
|
99 |
+
Tolerance of the stopping condition.
|
100 |
+
|
101 |
+
n_nearest_features : int, default=None
|
102 |
+
Number of other features to use to estimate the missing values of
|
103 |
+
each feature column. Nearness between features is measured using
|
104 |
+
the absolute correlation coefficient between each feature pair (after
|
105 |
+
initial imputation). To ensure coverage of features throughout the
|
106 |
+
imputation process, the neighbor features are not necessarily nearest,
|
107 |
+
but are drawn with probability proportional to correlation for each
|
108 |
+
imputed target feature. Can provide significant speed-up when the
|
109 |
+
number of features is huge. If `None`, all features will be used.
|
110 |
+
|
111 |
+
initial_strategy : {'mean', 'median', 'most_frequent', 'constant'}, \
|
112 |
+
default='mean'
|
113 |
+
Which strategy to use to initialize the missing values. Same as the
|
114 |
+
`strategy` parameter in :class:`~sklearn.impute.SimpleImputer`.
|
115 |
+
|
116 |
+
fill_value : str or numerical value, default=None
|
117 |
+
When `strategy="constant"`, `fill_value` is used to replace all
|
118 |
+
occurrences of missing_values. For string or object data types,
|
119 |
+
`fill_value` must be a string.
|
120 |
+
If `None`, `fill_value` will be 0 when imputing numerical
|
121 |
+
data and "missing_value" for strings or object data types.
|
122 |
+
|
123 |
+
.. versionadded:: 1.3
|
124 |
+
|
125 |
+
imputation_order : {'ascending', 'descending', 'roman', 'arabic', \
|
126 |
+
'random'}, default='ascending'
|
127 |
+
The order in which the features will be imputed. Possible values:
|
128 |
+
|
129 |
+
- `'ascending'`: From features with fewest missing values to most.
|
130 |
+
- `'descending'`: From features with most missing values to fewest.
|
131 |
+
- `'roman'`: Left to right.
|
132 |
+
- `'arabic'`: Right to left.
|
133 |
+
- `'random'`: A random order for each round.
|
134 |
+
|
135 |
+
skip_complete : bool, default=False
|
136 |
+
If `True` then features with missing values during :meth:`transform`
|
137 |
+
which did not have any missing values during :meth:`fit` will be
|
138 |
+
imputed with the initial imputation method only. Set to `True` if you
|
139 |
+
have many features with no missing values at both :meth:`fit` and
|
140 |
+
:meth:`transform` time to save compute.
|
141 |
+
|
142 |
+
min_value : float or array-like of shape (n_features,), default=-np.inf
|
143 |
+
Minimum possible imputed value. Broadcast to shape `(n_features,)` if
|
144 |
+
scalar. If array-like, expects shape `(n_features,)`, one min value for
|
145 |
+
each feature. The default is `-np.inf`.
|
146 |
+
|
147 |
+
.. versionchanged:: 0.23
|
148 |
+
Added support for array-like.
|
149 |
+
|
150 |
+
max_value : float or array-like of shape (n_features,), default=np.inf
|
151 |
+
Maximum possible imputed value. Broadcast to shape `(n_features,)` if
|
152 |
+
scalar. If array-like, expects shape `(n_features,)`, one max value for
|
153 |
+
each feature. The default is `np.inf`.
|
154 |
+
|
155 |
+
.. versionchanged:: 0.23
|
156 |
+
Added support for array-like.
|
157 |
+
|
158 |
+
verbose : int, default=0
|
159 |
+
Verbosity flag, controls the debug messages that are issued
|
160 |
+
as functions are evaluated. The higher, the more verbose. Can be 0, 1,
|
161 |
+
or 2.
|
162 |
+
|
163 |
+
random_state : int, RandomState instance or None, default=None
|
164 |
+
The seed of the pseudo random number generator to use. Randomizes
|
165 |
+
selection of estimator features if `n_nearest_features` is not `None`,
|
166 |
+
the `imputation_order` if `random`, and the sampling from posterior if
|
167 |
+
`sample_posterior=True`. Use an integer for determinism.
|
168 |
+
See :term:`the Glossary <random_state>`.
|
169 |
+
|
170 |
+
add_indicator : bool, default=False
|
171 |
+
If `True`, a :class:`MissingIndicator` transform will stack onto output
|
172 |
+
of the imputer's transform. This allows a predictive estimator
|
173 |
+
to account for missingness despite imputation. If a feature has no
|
174 |
+
missing values at fit/train time, the feature won't appear on
|
175 |
+
the missing indicator even if there are missing values at
|
176 |
+
transform/test time.
|
177 |
+
|
178 |
+
keep_empty_features : bool, default=False
|
179 |
+
If True, features that consist exclusively of missing values when
|
180 |
+
`fit` is called are returned in results when `transform` is called.
|
181 |
+
The imputed value is always `0` except when
|
182 |
+
`initial_strategy="constant"` in which case `fill_value` will be
|
183 |
+
used instead.
|
184 |
+
|
185 |
+
.. versionadded:: 1.2
|
186 |
+
|
187 |
+
Attributes
|
188 |
+
----------
|
189 |
+
initial_imputer_ : object of type :class:`~sklearn.impute.SimpleImputer`
|
190 |
+
Imputer used to initialize the missing values.
|
191 |
+
|
192 |
+
imputation_sequence_ : list of tuples
|
193 |
+
Each tuple has `(feat_idx, neighbor_feat_idx, estimator)`, where
|
194 |
+
`feat_idx` is the current feature to be imputed,
|
195 |
+
`neighbor_feat_idx` is the array of other features used to impute the
|
196 |
+
current feature, and `estimator` is the trained estimator used for
|
197 |
+
the imputation. Length is `self.n_features_with_missing_ *
|
198 |
+
self.n_iter_`.
|
199 |
+
|
200 |
+
n_iter_ : int
|
201 |
+
Number of iteration rounds that occurred. Will be less than
|
202 |
+
`self.max_iter` if early stopping criterion was reached.
|
203 |
+
|
204 |
+
n_features_in_ : int
|
205 |
+
Number of features seen during :term:`fit`.
|
206 |
+
|
207 |
+
.. versionadded:: 0.24
|
208 |
+
|
209 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
210 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
211 |
+
has feature names that are all strings.
|
212 |
+
|
213 |
+
.. versionadded:: 1.0
|
214 |
+
|
215 |
+
n_features_with_missing_ : int
|
216 |
+
Number of features with missing values.
|
217 |
+
|
218 |
+
indicator_ : :class:`~sklearn.impute.MissingIndicator`
|
219 |
+
Indicator used to add binary indicators for missing values.
|
220 |
+
`None` if `add_indicator=False`.
|
221 |
+
|
222 |
+
random_state_ : RandomState instance
|
223 |
+
RandomState instance that is generated either from a seed, the random
|
224 |
+
number generator or by `np.random`.
|
225 |
+
|
226 |
+
See Also
|
227 |
+
--------
|
228 |
+
SimpleImputer : Univariate imputer for completing missing values
|
229 |
+
with simple strategies.
|
230 |
+
KNNImputer : Multivariate imputer that estimates missing features using
|
231 |
+
nearest samples.
|
232 |
+
|
233 |
+
Notes
|
234 |
+
-----
|
235 |
+
To support imputation in inductive mode we store each feature's estimator
|
236 |
+
during the :meth:`fit` phase, and predict without refitting (in order)
|
237 |
+
during the :meth:`transform` phase.
|
238 |
+
|
239 |
+
Features which contain all missing values at :meth:`fit` are discarded upon
|
240 |
+
:meth:`transform`.
|
241 |
+
|
242 |
+
Using defaults, the imputer scales in :math:`\\mathcal{O}(knp^3\\min(n,p))`
|
243 |
+
where :math:`k` = `max_iter`, :math:`n` the number of samples and
|
244 |
+
:math:`p` the number of features. It thus becomes prohibitively costly when
|
245 |
+
the number of features increases. Setting
|
246 |
+
`n_nearest_features << n_features`, `skip_complete=True` or increasing `tol`
|
247 |
+
can help to reduce its computational cost.
|
248 |
+
|
249 |
+
Depending on the nature of missing values, simple imputers can be
|
250 |
+
preferable in a prediction context.
|
251 |
+
|
252 |
+
References
|
253 |
+
----------
|
254 |
+
.. [1] `Stef van Buuren, Karin Groothuis-Oudshoorn (2011). "mice:
|
255 |
+
Multivariate Imputation by Chained Equations in R". Journal of
|
256 |
+
Statistical Software 45: 1-67.
|
257 |
+
<https://www.jstatsoft.org/article/view/v045i03>`_
|
258 |
+
|
259 |
+
.. [2] `S. F. Buck, (1960). "A Method of Estimation of Missing Values in
|
260 |
+
Multivariate Data Suitable for use with an Electronic Computer".
|
261 |
+
Journal of the Royal Statistical Society 22(2): 302-306.
|
262 |
+
<https://www.jstor.org/stable/2984099>`_
|
263 |
+
|
264 |
+
Examples
|
265 |
+
--------
|
266 |
+
>>> import numpy as np
|
267 |
+
>>> from sklearn.experimental import enable_iterative_imputer
|
268 |
+
>>> from sklearn.impute import IterativeImputer
|
269 |
+
>>> imp_mean = IterativeImputer(random_state=0)
|
270 |
+
>>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])
|
271 |
+
IterativeImputer(random_state=0)
|
272 |
+
>>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]
|
273 |
+
>>> imp_mean.transform(X)
|
274 |
+
array([[ 6.9584..., 2. , 3. ],
|
275 |
+
[ 4. , 2.6000..., 6. ],
|
276 |
+
[10. , 4.9999..., 9. ]])
|
277 |
+
|
278 |
+
For a more detailed example see
|
279 |
+
:ref:`sphx_glr_auto_examples_impute_plot_missing_values.py` or
|
280 |
+
:ref:`sphx_glr_auto_examples_impute_plot_iterative_imputer_variants_comparison.py`.
|
281 |
+
"""
|
282 |
+
|
283 |
+
_parameter_constraints: dict = {
|
284 |
+
**_BaseImputer._parameter_constraints,
|
285 |
+
"estimator": [None, HasMethods(["fit", "predict"])],
|
286 |
+
"sample_posterior": ["boolean"],
|
287 |
+
"max_iter": [Interval(Integral, 0, None, closed="left")],
|
288 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
289 |
+
"n_nearest_features": [None, Interval(Integral, 1, None, closed="left")],
|
290 |
+
"initial_strategy": [
|
291 |
+
StrOptions({"mean", "median", "most_frequent", "constant"})
|
292 |
+
],
|
293 |
+
"fill_value": "no_validation", # any object is valid
|
294 |
+
"imputation_order": [
|
295 |
+
StrOptions({"ascending", "descending", "roman", "arabic", "random"})
|
296 |
+
],
|
297 |
+
"skip_complete": ["boolean"],
|
298 |
+
"min_value": [None, Interval(Real, None, None, closed="both"), "array-like"],
|
299 |
+
"max_value": [None, Interval(Real, None, None, closed="both"), "array-like"],
|
300 |
+
"verbose": ["verbose"],
|
301 |
+
"random_state": ["random_state"],
|
302 |
+
}
|
303 |
+
|
304 |
+
def __init__(
|
305 |
+
self,
|
306 |
+
estimator=None,
|
307 |
+
*,
|
308 |
+
missing_values=np.nan,
|
309 |
+
sample_posterior=False,
|
310 |
+
max_iter=10,
|
311 |
+
tol=1e-3,
|
312 |
+
n_nearest_features=None,
|
313 |
+
initial_strategy="mean",
|
314 |
+
fill_value=None,
|
315 |
+
imputation_order="ascending",
|
316 |
+
skip_complete=False,
|
317 |
+
min_value=-np.inf,
|
318 |
+
max_value=np.inf,
|
319 |
+
verbose=0,
|
320 |
+
random_state=None,
|
321 |
+
add_indicator=False,
|
322 |
+
keep_empty_features=False,
|
323 |
+
):
|
324 |
+
super().__init__(
|
325 |
+
missing_values=missing_values,
|
326 |
+
add_indicator=add_indicator,
|
327 |
+
keep_empty_features=keep_empty_features,
|
328 |
+
)
|
329 |
+
|
330 |
+
self.estimator = estimator
|
331 |
+
self.sample_posterior = sample_posterior
|
332 |
+
self.max_iter = max_iter
|
333 |
+
self.tol = tol
|
334 |
+
self.n_nearest_features = n_nearest_features
|
335 |
+
self.initial_strategy = initial_strategy
|
336 |
+
self.fill_value = fill_value
|
337 |
+
self.imputation_order = imputation_order
|
338 |
+
self.skip_complete = skip_complete
|
339 |
+
self.min_value = min_value
|
340 |
+
self.max_value = max_value
|
341 |
+
self.verbose = verbose
|
342 |
+
self.random_state = random_state
|
343 |
+
|
344 |
+
def _impute_one_feature(
|
345 |
+
self,
|
346 |
+
X_filled,
|
347 |
+
mask_missing_values,
|
348 |
+
feat_idx,
|
349 |
+
neighbor_feat_idx,
|
350 |
+
estimator=None,
|
351 |
+
fit_mode=True,
|
352 |
+
):
|
353 |
+
"""Impute a single feature from the others provided.
|
354 |
+
|
355 |
+
This function predicts the missing values of one of the features using
|
356 |
+
the current estimates of all the other features. The `estimator` must
|
357 |
+
support `return_std=True` in its `predict` method for this function
|
358 |
+
to work.
|
359 |
+
|
360 |
+
Parameters
|
361 |
+
----------
|
362 |
+
X_filled : ndarray
|
363 |
+
Input data with the most recent imputations.
|
364 |
+
|
365 |
+
mask_missing_values : ndarray
|
366 |
+
Input data's missing indicator matrix.
|
367 |
+
|
368 |
+
feat_idx : int
|
369 |
+
Index of the feature currently being imputed.
|
370 |
+
|
371 |
+
neighbor_feat_idx : ndarray
|
372 |
+
Indices of the features to be used in imputing `feat_idx`.
|
373 |
+
|
374 |
+
estimator : object
|
375 |
+
The estimator to use at this step of the round-robin imputation.
|
376 |
+
If `sample_posterior=True`, the estimator must support
|
377 |
+
`return_std` in its `predict` method.
|
378 |
+
If None, it will be cloned from self._estimator.
|
379 |
+
|
380 |
+
fit_mode : boolean, default=True
|
381 |
+
Whether to fit and predict with the estimator or just predict.
|
382 |
+
|
383 |
+
Returns
|
384 |
+
-------
|
385 |
+
X_filled : ndarray
|
386 |
+
Input data with `X_filled[missing_row_mask, feat_idx]` updated.
|
387 |
+
|
388 |
+
estimator : estimator with sklearn API
|
389 |
+
The fitted estimator used to impute
|
390 |
+
`X_filled[missing_row_mask, feat_idx]`.
|
391 |
+
"""
|
392 |
+
if estimator is None and fit_mode is False:
|
393 |
+
raise ValueError(
|
394 |
+
"If fit_mode is False, then an already-fitted "
|
395 |
+
"estimator should be passed in."
|
396 |
+
)
|
397 |
+
|
398 |
+
if estimator is None:
|
399 |
+
estimator = clone(self._estimator)
|
400 |
+
|
401 |
+
missing_row_mask = mask_missing_values[:, feat_idx]
|
402 |
+
if fit_mode:
|
403 |
+
X_train = _safe_indexing(
|
404 |
+
_safe_indexing(X_filled, neighbor_feat_idx, axis=1),
|
405 |
+
~missing_row_mask,
|
406 |
+
axis=0,
|
407 |
+
)
|
408 |
+
y_train = _safe_indexing(
|
409 |
+
_safe_indexing(X_filled, feat_idx, axis=1),
|
410 |
+
~missing_row_mask,
|
411 |
+
axis=0,
|
412 |
+
)
|
413 |
+
estimator.fit(X_train, y_train)
|
414 |
+
|
415 |
+
# if no missing values, don't predict
|
416 |
+
if np.sum(missing_row_mask) == 0:
|
417 |
+
return X_filled, estimator
|
418 |
+
|
419 |
+
# get posterior samples if there is at least one missing value
|
420 |
+
X_test = _safe_indexing(
|
421 |
+
_safe_indexing(X_filled, neighbor_feat_idx, axis=1),
|
422 |
+
missing_row_mask,
|
423 |
+
axis=0,
|
424 |
+
)
|
425 |
+
if self.sample_posterior:
|
426 |
+
mus, sigmas = estimator.predict(X_test, return_std=True)
|
427 |
+
imputed_values = np.zeros(mus.shape, dtype=X_filled.dtype)
|
428 |
+
# two types of problems: (1) non-positive sigmas
|
429 |
+
# (2) mus outside legal range of min_value and max_value
|
430 |
+
# (results in inf sample)
|
431 |
+
positive_sigmas = sigmas > 0
|
432 |
+
imputed_values[~positive_sigmas] = mus[~positive_sigmas]
|
433 |
+
mus_too_low = mus < self._min_value[feat_idx]
|
434 |
+
imputed_values[mus_too_low] = self._min_value[feat_idx]
|
435 |
+
mus_too_high = mus > self._max_value[feat_idx]
|
436 |
+
imputed_values[mus_too_high] = self._max_value[feat_idx]
|
437 |
+
# the rest can be sampled without statistical issues
|
438 |
+
inrange_mask = positive_sigmas & ~mus_too_low & ~mus_too_high
|
439 |
+
mus = mus[inrange_mask]
|
440 |
+
sigmas = sigmas[inrange_mask]
|
441 |
+
a = (self._min_value[feat_idx] - mus) / sigmas
|
442 |
+
b = (self._max_value[feat_idx] - mus) / sigmas
|
443 |
+
|
444 |
+
truncated_normal = stats.truncnorm(a=a, b=b, loc=mus, scale=sigmas)
|
445 |
+
imputed_values[inrange_mask] = truncated_normal.rvs(
|
446 |
+
random_state=self.random_state_
|
447 |
+
)
|
448 |
+
else:
|
449 |
+
imputed_values = estimator.predict(X_test)
|
450 |
+
imputed_values = np.clip(
|
451 |
+
imputed_values, self._min_value[feat_idx], self._max_value[feat_idx]
|
452 |
+
)
|
453 |
+
|
454 |
+
# update the feature
|
455 |
+
_safe_assign(
|
456 |
+
X_filled,
|
457 |
+
imputed_values,
|
458 |
+
row_indexer=missing_row_mask,
|
459 |
+
column_indexer=feat_idx,
|
460 |
+
)
|
461 |
+
return X_filled, estimator
|
462 |
+
|
463 |
+
def _get_neighbor_feat_idx(self, n_features, feat_idx, abs_corr_mat):
|
464 |
+
"""Get a list of other features to predict `feat_idx`.
|
465 |
+
|
466 |
+
If `self.n_nearest_features` is less than or equal to the total
|
467 |
+
number of features, then use a probability proportional to the absolute
|
468 |
+
correlation between `feat_idx` and each other feature to randomly
|
469 |
+
choose a subsample of the other features (without replacement).
|
470 |
+
|
471 |
+
Parameters
|
472 |
+
----------
|
473 |
+
n_features : int
|
474 |
+
Number of features in `X`.
|
475 |
+
|
476 |
+
feat_idx : int
|
477 |
+
Index of the feature currently being imputed.
|
478 |
+
|
479 |
+
abs_corr_mat : ndarray, shape (n_features, n_features)
|
480 |
+
Absolute correlation matrix of `X`. The diagonal has been zeroed
|
481 |
+
out and each feature has been normalized to sum to 1. Can be None.
|
482 |
+
|
483 |
+
Returns
|
484 |
+
-------
|
485 |
+
neighbor_feat_idx : array-like
|
486 |
+
The features to use to impute `feat_idx`.
|
487 |
+
"""
|
488 |
+
if self.n_nearest_features is not None and self.n_nearest_features < n_features:
|
489 |
+
p = abs_corr_mat[:, feat_idx]
|
490 |
+
neighbor_feat_idx = self.random_state_.choice(
|
491 |
+
np.arange(n_features), self.n_nearest_features, replace=False, p=p
|
492 |
+
)
|
493 |
+
else:
|
494 |
+
inds_left = np.arange(feat_idx)
|
495 |
+
inds_right = np.arange(feat_idx + 1, n_features)
|
496 |
+
neighbor_feat_idx = np.concatenate((inds_left, inds_right))
|
497 |
+
return neighbor_feat_idx
|
498 |
+
|
499 |
+
def _get_ordered_idx(self, mask_missing_values):
|
500 |
+
"""Decide in what order we will update the features.
|
501 |
+
|
502 |
+
As a homage to the MICE R package, we will have 4 main options of
|
503 |
+
how to order the updates, and use a random order if anything else
|
504 |
+
is specified.
|
505 |
+
|
506 |
+
Also, this function skips features which have no missing values.
|
507 |
+
|
508 |
+
Parameters
|
509 |
+
----------
|
510 |
+
mask_missing_values : array-like, shape (n_samples, n_features)
|
511 |
+
Input data's missing indicator matrix, where `n_samples` is the
|
512 |
+
number of samples and `n_features` is the number of features.
|
513 |
+
|
514 |
+
Returns
|
515 |
+
-------
|
516 |
+
ordered_idx : ndarray, shape (n_features,)
|
517 |
+
The order in which to impute the features.
|
518 |
+
"""
|
519 |
+
frac_of_missing_values = mask_missing_values.mean(axis=0)
|
520 |
+
if self.skip_complete:
|
521 |
+
missing_values_idx = np.flatnonzero(frac_of_missing_values)
|
522 |
+
else:
|
523 |
+
missing_values_idx = np.arange(np.shape(frac_of_missing_values)[0])
|
524 |
+
if self.imputation_order == "roman":
|
525 |
+
ordered_idx = missing_values_idx
|
526 |
+
elif self.imputation_order == "arabic":
|
527 |
+
ordered_idx = missing_values_idx[::-1]
|
528 |
+
elif self.imputation_order == "ascending":
|
529 |
+
n = len(frac_of_missing_values) - len(missing_values_idx)
|
530 |
+
ordered_idx = np.argsort(frac_of_missing_values, kind="mergesort")[n:]
|
531 |
+
elif self.imputation_order == "descending":
|
532 |
+
n = len(frac_of_missing_values) - len(missing_values_idx)
|
533 |
+
ordered_idx = np.argsort(frac_of_missing_values, kind="mergesort")[n:][::-1]
|
534 |
+
elif self.imputation_order == "random":
|
535 |
+
ordered_idx = missing_values_idx
|
536 |
+
self.random_state_.shuffle(ordered_idx)
|
537 |
+
return ordered_idx
|
538 |
+
|
539 |
+
def _get_abs_corr_mat(self, X_filled, tolerance=1e-6):
|
540 |
+
"""Get absolute correlation matrix between features.
|
541 |
+
|
542 |
+
Parameters
|
543 |
+
----------
|
544 |
+
X_filled : ndarray, shape (n_samples, n_features)
|
545 |
+
Input data with the most recent imputations.
|
546 |
+
|
547 |
+
tolerance : float, default=1e-6
|
548 |
+
`abs_corr_mat` can have nans, which will be replaced
|
549 |
+
with `tolerance`.
|
550 |
+
|
551 |
+
Returns
|
552 |
+
-------
|
553 |
+
abs_corr_mat : ndarray, shape (n_features, n_features)
|
554 |
+
Absolute correlation matrix of `X` at the beginning of the
|
555 |
+
current round. The diagonal has been zeroed out and each feature's
|
556 |
+
absolute correlations with all others have been normalized to sum
|
557 |
+
to 1.
|
558 |
+
"""
|
559 |
+
n_features = X_filled.shape[1]
|
560 |
+
if self.n_nearest_features is None or self.n_nearest_features >= n_features:
|
561 |
+
return None
|
562 |
+
with np.errstate(invalid="ignore"):
|
563 |
+
# if a feature in the neighborhood has only a single value
|
564 |
+
# (e.g., categorical feature), the std. dev. will be null and
|
565 |
+
# np.corrcoef will raise a warning due to a division by zero
|
566 |
+
abs_corr_mat = np.abs(np.corrcoef(X_filled.T))
|
567 |
+
# np.corrcoef is not defined for features with zero std
|
568 |
+
abs_corr_mat[np.isnan(abs_corr_mat)] = tolerance
|
569 |
+
# ensures exploration, i.e. at least some probability of sampling
|
570 |
+
np.clip(abs_corr_mat, tolerance, None, out=abs_corr_mat)
|
571 |
+
# features are not their own neighbors
|
572 |
+
np.fill_diagonal(abs_corr_mat, 0)
|
573 |
+
# needs to sum to 1 for np.random.choice sampling
|
574 |
+
abs_corr_mat = normalize(abs_corr_mat, norm="l1", axis=0, copy=False)
|
575 |
+
return abs_corr_mat
|
576 |
+
|
577 |
+
def _initial_imputation(self, X, in_fit=False):
|
578 |
+
"""Perform initial imputation for input `X`.
|
579 |
+
|
580 |
+
Parameters
|
581 |
+
----------
|
582 |
+
X : ndarray of shape (n_samples, n_features)
|
583 |
+
Input data, where `n_samples` is the number of samples and
|
584 |
+
`n_features` is the number of features.
|
585 |
+
|
586 |
+
in_fit : bool, default=False
|
587 |
+
Whether function is called in :meth:`fit`.
|
588 |
+
|
589 |
+
Returns
|
590 |
+
-------
|
591 |
+
Xt : ndarray of shape (n_samples, n_features)
|
592 |
+
Input data, where `n_samples` is the number of samples and
|
593 |
+
`n_features` is the number of features.
|
594 |
+
|
595 |
+
X_filled : ndarray of shape (n_samples, n_features)
|
596 |
+
Input data with the most recent imputations.
|
597 |
+
|
598 |
+
mask_missing_values : ndarray of shape (n_samples, n_features)
|
599 |
+
Input data's missing indicator matrix, where `n_samples` is the
|
600 |
+
number of samples and `n_features` is the number of features,
|
601 |
+
masked by non-missing features.
|
602 |
+
|
603 |
+
X_missing_mask : ndarray, shape (n_samples, n_features)
|
604 |
+
Input data's mask matrix indicating missing datapoints, where
|
605 |
+
`n_samples` is the number of samples and `n_features` is the
|
606 |
+
number of features.
|
607 |
+
"""
|
608 |
+
if is_scalar_nan(self.missing_values):
|
609 |
+
force_all_finite = "allow-nan"
|
610 |
+
else:
|
611 |
+
force_all_finite = True
|
612 |
+
|
613 |
+
X = self._validate_data(
|
614 |
+
X,
|
615 |
+
dtype=FLOAT_DTYPES,
|
616 |
+
order="F",
|
617 |
+
reset=in_fit,
|
618 |
+
force_all_finite=force_all_finite,
|
619 |
+
)
|
620 |
+
_check_inputs_dtype(X, self.missing_values)
|
621 |
+
|
622 |
+
X_missing_mask = _get_mask(X, self.missing_values)
|
623 |
+
mask_missing_values = X_missing_mask.copy()
|
624 |
+
if self.initial_imputer_ is None:
|
625 |
+
self.initial_imputer_ = SimpleImputer(
|
626 |
+
missing_values=self.missing_values,
|
627 |
+
strategy=self.initial_strategy,
|
628 |
+
fill_value=self.fill_value,
|
629 |
+
keep_empty_features=self.keep_empty_features,
|
630 |
+
).set_output(transform="default")
|
631 |
+
X_filled = self.initial_imputer_.fit_transform(X)
|
632 |
+
else:
|
633 |
+
X_filled = self.initial_imputer_.transform(X)
|
634 |
+
|
635 |
+
valid_mask = np.flatnonzero(
|
636 |
+
np.logical_not(np.isnan(self.initial_imputer_.statistics_))
|
637 |
+
)
|
638 |
+
|
639 |
+
if not self.keep_empty_features:
|
640 |
+
# drop empty features
|
641 |
+
Xt = X[:, valid_mask]
|
642 |
+
mask_missing_values = mask_missing_values[:, valid_mask]
|
643 |
+
else:
|
644 |
+
# mark empty features as not missing and keep the original
|
645 |
+
# imputation
|
646 |
+
mask_missing_values[:, valid_mask] = True
|
647 |
+
Xt = X
|
648 |
+
|
649 |
+
return Xt, X_filled, mask_missing_values, X_missing_mask
|
650 |
+
|
651 |
+
@staticmethod
|
652 |
+
def _validate_limit(limit, limit_type, n_features):
|
653 |
+
"""Validate the limits (min/max) of the feature values.
|
654 |
+
|
655 |
+
Converts scalar min/max limits to vectors of shape `(n_features,)`.
|
656 |
+
|
657 |
+
Parameters
|
658 |
+
----------
|
659 |
+
limit: scalar or array-like
|
660 |
+
The user-specified limit (i.e, min_value or max_value).
|
661 |
+
limit_type: {'max', 'min'}
|
662 |
+
Type of limit to validate.
|
663 |
+
n_features: int
|
664 |
+
Number of features in the dataset.
|
665 |
+
|
666 |
+
Returns
|
667 |
+
-------
|
668 |
+
limit: ndarray, shape(n_features,)
|
669 |
+
Array of limits, one for each feature.
|
670 |
+
"""
|
671 |
+
limit_bound = np.inf if limit_type == "max" else -np.inf
|
672 |
+
limit = limit_bound if limit is None else limit
|
673 |
+
if np.isscalar(limit):
|
674 |
+
limit = np.full(n_features, limit)
|
675 |
+
limit = check_array(limit, force_all_finite=False, copy=False, ensure_2d=False)
|
676 |
+
if not limit.shape[0] == n_features:
|
677 |
+
raise ValueError(
|
678 |
+
f"'{limit_type}_value' should be of "
|
679 |
+
f"shape ({n_features},) when an array-like "
|
680 |
+
f"is provided. Got {limit.shape}, instead."
|
681 |
+
)
|
682 |
+
return limit
|
683 |
+
|
684 |
+
@_fit_context(
|
685 |
+
# IterativeImputer.estimator is not validated yet
|
686 |
+
prefer_skip_nested_validation=False
|
687 |
+
)
|
688 |
+
def fit_transform(self, X, y=None):
|
689 |
+
"""Fit the imputer on `X` and return the transformed `X`.
|
690 |
+
|
691 |
+
Parameters
|
692 |
+
----------
|
693 |
+
X : array-like, shape (n_samples, n_features)
|
694 |
+
Input data, where `n_samples` is the number of samples and
|
695 |
+
`n_features` is the number of features.
|
696 |
+
|
697 |
+
y : Ignored
|
698 |
+
Not used, present for API consistency by convention.
|
699 |
+
|
700 |
+
Returns
|
701 |
+
-------
|
702 |
+
Xt : array-like, shape (n_samples, n_features)
|
703 |
+
The imputed input data.
|
704 |
+
"""
|
705 |
+
self.random_state_ = getattr(
|
706 |
+
self, "random_state_", check_random_state(self.random_state)
|
707 |
+
)
|
708 |
+
|
709 |
+
if self.estimator is None:
|
710 |
+
from ..linear_model import BayesianRidge
|
711 |
+
|
712 |
+
self._estimator = BayesianRidge()
|
713 |
+
else:
|
714 |
+
self._estimator = clone(self.estimator)
|
715 |
+
|
716 |
+
self.imputation_sequence_ = []
|
717 |
+
|
718 |
+
self.initial_imputer_ = None
|
719 |
+
|
720 |
+
X, Xt, mask_missing_values, complete_mask = self._initial_imputation(
|
721 |
+
X, in_fit=True
|
722 |
+
)
|
723 |
+
|
724 |
+
super()._fit_indicator(complete_mask)
|
725 |
+
X_indicator = super()._transform_indicator(complete_mask)
|
726 |
+
|
727 |
+
if self.max_iter == 0 or np.all(mask_missing_values):
|
728 |
+
self.n_iter_ = 0
|
729 |
+
return super()._concatenate_indicator(Xt, X_indicator)
|
730 |
+
|
731 |
+
# Edge case: a single feature. We return the initial ...
|
732 |
+
if Xt.shape[1] == 1:
|
733 |
+
self.n_iter_ = 0
|
734 |
+
return super()._concatenate_indicator(Xt, X_indicator)
|
735 |
+
|
736 |
+
self._min_value = self._validate_limit(self.min_value, "min", X.shape[1])
|
737 |
+
self._max_value = self._validate_limit(self.max_value, "max", X.shape[1])
|
738 |
+
|
739 |
+
if not np.all(np.greater(self._max_value, self._min_value)):
|
740 |
+
raise ValueError("One (or more) features have min_value >= max_value.")
|
741 |
+
|
742 |
+
# order in which to impute
|
743 |
+
# note this is probably too slow for large feature data (d > 100000)
|
744 |
+
# and a better way would be good.
|
745 |
+
# see: https://goo.gl/KyCNwj and subsequent comments
|
746 |
+
ordered_idx = self._get_ordered_idx(mask_missing_values)
|
747 |
+
self.n_features_with_missing_ = len(ordered_idx)
|
748 |
+
|
749 |
+
abs_corr_mat = self._get_abs_corr_mat(Xt)
|
750 |
+
|
751 |
+
n_samples, n_features = Xt.shape
|
752 |
+
if self.verbose > 0:
|
753 |
+
print("[IterativeImputer] Completing matrix with shape %s" % (X.shape,))
|
754 |
+
start_t = time()
|
755 |
+
if not self.sample_posterior:
|
756 |
+
Xt_previous = Xt.copy()
|
757 |
+
normalized_tol = self.tol * np.max(np.abs(X[~mask_missing_values]))
|
758 |
+
for self.n_iter_ in range(1, self.max_iter + 1):
|
759 |
+
if self.imputation_order == "random":
|
760 |
+
ordered_idx = self._get_ordered_idx(mask_missing_values)
|
761 |
+
|
762 |
+
for feat_idx in ordered_idx:
|
763 |
+
neighbor_feat_idx = self._get_neighbor_feat_idx(
|
764 |
+
n_features, feat_idx, abs_corr_mat
|
765 |
+
)
|
766 |
+
Xt, estimator = self._impute_one_feature(
|
767 |
+
Xt,
|
768 |
+
mask_missing_values,
|
769 |
+
feat_idx,
|
770 |
+
neighbor_feat_idx,
|
771 |
+
estimator=None,
|
772 |
+
fit_mode=True,
|
773 |
+
)
|
774 |
+
estimator_triplet = _ImputerTriplet(
|
775 |
+
feat_idx, neighbor_feat_idx, estimator
|
776 |
+
)
|
777 |
+
self.imputation_sequence_.append(estimator_triplet)
|
778 |
+
|
779 |
+
if self.verbose > 1:
|
780 |
+
print(
|
781 |
+
"[IterativeImputer] Ending imputation round "
|
782 |
+
"%d/%d, elapsed time %0.2f"
|
783 |
+
% (self.n_iter_, self.max_iter, time() - start_t)
|
784 |
+
)
|
785 |
+
|
786 |
+
if not self.sample_posterior:
|
787 |
+
inf_norm = np.linalg.norm(Xt - Xt_previous, ord=np.inf, axis=None)
|
788 |
+
if self.verbose > 0:
|
789 |
+
print(
|
790 |
+
"[IterativeImputer] Change: {}, scaled tolerance: {} ".format(
|
791 |
+
inf_norm, normalized_tol
|
792 |
+
)
|
793 |
+
)
|
794 |
+
if inf_norm < normalized_tol:
|
795 |
+
if self.verbose > 0:
|
796 |
+
print("[IterativeImputer] Early stopping criterion reached.")
|
797 |
+
break
|
798 |
+
Xt_previous = Xt.copy()
|
799 |
+
else:
|
800 |
+
if not self.sample_posterior:
|
801 |
+
warnings.warn(
|
802 |
+
"[IterativeImputer] Early stopping criterion not reached.",
|
803 |
+
ConvergenceWarning,
|
804 |
+
)
|
805 |
+
_assign_where(Xt, X, cond=~mask_missing_values)
|
806 |
+
|
807 |
+
return super()._concatenate_indicator(Xt, X_indicator)
|
808 |
+
|
809 |
+
def transform(self, X):
|
810 |
+
"""Impute all missing values in `X`.
|
811 |
+
|
812 |
+
Note that this is stochastic, and that if `random_state` is not fixed,
|
813 |
+
repeated calls, or permuted input, results will differ.
|
814 |
+
|
815 |
+
Parameters
|
816 |
+
----------
|
817 |
+
X : array-like of shape (n_samples, n_features)
|
818 |
+
The input data to complete.
|
819 |
+
|
820 |
+
Returns
|
821 |
+
-------
|
822 |
+
Xt : array-like, shape (n_samples, n_features)
|
823 |
+
The imputed input data.
|
824 |
+
"""
|
825 |
+
check_is_fitted(self)
|
826 |
+
|
827 |
+
X, Xt, mask_missing_values, complete_mask = self._initial_imputation(
|
828 |
+
X, in_fit=False
|
829 |
+
)
|
830 |
+
|
831 |
+
X_indicator = super()._transform_indicator(complete_mask)
|
832 |
+
|
833 |
+
if self.n_iter_ == 0 or np.all(mask_missing_values):
|
834 |
+
return super()._concatenate_indicator(Xt, X_indicator)
|
835 |
+
|
836 |
+
imputations_per_round = len(self.imputation_sequence_) // self.n_iter_
|
837 |
+
i_rnd = 0
|
838 |
+
if self.verbose > 0:
|
839 |
+
print("[IterativeImputer] Completing matrix with shape %s" % (X.shape,))
|
840 |
+
start_t = time()
|
841 |
+
for it, estimator_triplet in enumerate(self.imputation_sequence_):
|
842 |
+
Xt, _ = self._impute_one_feature(
|
843 |
+
Xt,
|
844 |
+
mask_missing_values,
|
845 |
+
estimator_triplet.feat_idx,
|
846 |
+
estimator_triplet.neighbor_feat_idx,
|
847 |
+
estimator=estimator_triplet.estimator,
|
848 |
+
fit_mode=False,
|
849 |
+
)
|
850 |
+
if not (it + 1) % imputations_per_round:
|
851 |
+
if self.verbose > 1:
|
852 |
+
print(
|
853 |
+
"[IterativeImputer] Ending imputation round "
|
854 |
+
"%d/%d, elapsed time %0.2f"
|
855 |
+
% (i_rnd + 1, self.n_iter_, time() - start_t)
|
856 |
+
)
|
857 |
+
i_rnd += 1
|
858 |
+
|
859 |
+
_assign_where(Xt, X, cond=~mask_missing_values)
|
860 |
+
|
861 |
+
return super()._concatenate_indicator(Xt, X_indicator)
|
862 |
+
|
863 |
+
def fit(self, X, y=None):
|
864 |
+
"""Fit the imputer on `X` and return self.
|
865 |
+
|
866 |
+
Parameters
|
867 |
+
----------
|
868 |
+
X : array-like, shape (n_samples, n_features)
|
869 |
+
Input data, where `n_samples` is the number of samples and
|
870 |
+
`n_features` is the number of features.
|
871 |
+
|
872 |
+
y : Ignored
|
873 |
+
Not used, present for API consistency by convention.
|
874 |
+
|
875 |
+
Returns
|
876 |
+
-------
|
877 |
+
self : object
|
878 |
+
Fitted estimator.
|
879 |
+
"""
|
880 |
+
self.fit_transform(X)
|
881 |
+
return self
|
882 |
+
|
883 |
+
def get_feature_names_out(self, input_features=None):
|
884 |
+
"""Get output feature names for transformation.
|
885 |
+
|
886 |
+
Parameters
|
887 |
+
----------
|
888 |
+
input_features : array-like of str or None, default=None
|
889 |
+
Input features.
|
890 |
+
|
891 |
+
- If `input_features` is `None`, then `feature_names_in_` is
|
892 |
+
used as feature names in. If `feature_names_in_` is not defined,
|
893 |
+
then the following input feature names are generated:
|
894 |
+
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
|
895 |
+
- If `input_features` is an array-like, then `input_features` must
|
896 |
+
match `feature_names_in_` if `feature_names_in_` is defined.
|
897 |
+
|
898 |
+
Returns
|
899 |
+
-------
|
900 |
+
feature_names_out : ndarray of str objects
|
901 |
+
Transformed feature names.
|
902 |
+
"""
|
903 |
+
check_is_fitted(self, "n_features_in_")
|
904 |
+
input_features = _check_feature_names_in(self, input_features)
|
905 |
+
names = self.initial_imputer_.get_feature_names_out(input_features)
|
906 |
+
return self._concatenate_indicator_feature_names_out(names, input_features)
|
llmeval-env/lib/python3.10/site-packages/sklearn/impute/_knn.py
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Authors: Ashim Bhattarai <[email protected]>
|
2 |
+
# Thomas J Fan <[email protected]>
|
3 |
+
# License: BSD 3 clause
|
4 |
+
|
5 |
+
from numbers import Integral
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from ..base import _fit_context
|
10 |
+
from ..metrics import pairwise_distances_chunked
|
11 |
+
from ..metrics.pairwise import _NAN_METRICS
|
12 |
+
from ..neighbors._base import _get_weights
|
13 |
+
from ..utils import is_scalar_nan
|
14 |
+
from ..utils._mask import _get_mask
|
15 |
+
from ..utils._param_validation import Hidden, Interval, StrOptions
|
16 |
+
from ..utils.validation import FLOAT_DTYPES, _check_feature_names_in, check_is_fitted
|
17 |
+
from ._base import _BaseImputer
|
18 |
+
|
19 |
+
|
20 |
+
class KNNImputer(_BaseImputer):
|
21 |
+
"""Imputation for completing missing values using k-Nearest Neighbors.
|
22 |
+
|
23 |
+
Each sample's missing values are imputed using the mean value from
|
24 |
+
`n_neighbors` nearest neighbors found in the training set. Two samples are
|
25 |
+
close if the features that neither is missing are close.
|
26 |
+
|
27 |
+
Read more in the :ref:`User Guide <knnimpute>`.
|
28 |
+
|
29 |
+
.. versionadded:: 0.22
|
30 |
+
|
31 |
+
Parameters
|
32 |
+
----------
|
33 |
+
missing_values : int, float, str, np.nan or None, default=np.nan
|
34 |
+
The placeholder for the missing values. All occurrences of
|
35 |
+
`missing_values` will be imputed. For pandas' dataframes with
|
36 |
+
nullable integer dtypes with missing values, `missing_values`
|
37 |
+
should be set to np.nan, since `pd.NA` will be converted to np.nan.
|
38 |
+
|
39 |
+
n_neighbors : int, default=5
|
40 |
+
Number of neighboring samples to use for imputation.
|
41 |
+
|
42 |
+
weights : {'uniform', 'distance'} or callable, default='uniform'
|
43 |
+
Weight function used in prediction. Possible values:
|
44 |
+
|
45 |
+
- 'uniform' : uniform weights. All points in each neighborhood are
|
46 |
+
weighted equally.
|
47 |
+
- 'distance' : weight points by the inverse of their distance.
|
48 |
+
in this case, closer neighbors of a query point will have a
|
49 |
+
greater influence than neighbors which are further away.
|
50 |
+
- callable : a user-defined function which accepts an
|
51 |
+
array of distances, and returns an array of the same shape
|
52 |
+
containing the weights.
|
53 |
+
|
54 |
+
metric : {'nan_euclidean'} or callable, default='nan_euclidean'
|
55 |
+
Distance metric for searching neighbors. Possible values:
|
56 |
+
|
57 |
+
- 'nan_euclidean'
|
58 |
+
- callable : a user-defined function which conforms to the definition
|
59 |
+
of ``_pairwise_callable(X, Y, metric, **kwds)``. The function
|
60 |
+
accepts two arrays, X and Y, and a `missing_values` keyword in
|
61 |
+
`kwds` and returns a scalar distance value.
|
62 |
+
|
63 |
+
copy : bool, default=True
|
64 |
+
If True, a copy of X will be created. If False, imputation will
|
65 |
+
be done in-place whenever possible.
|
66 |
+
|
67 |
+
add_indicator : bool, default=False
|
68 |
+
If True, a :class:`MissingIndicator` transform will stack onto the
|
69 |
+
output of the imputer's transform. This allows a predictive estimator
|
70 |
+
to account for missingness despite imputation. If a feature has no
|
71 |
+
missing values at fit/train time, the feature won't appear on the
|
72 |
+
missing indicator even if there are missing values at transform/test
|
73 |
+
time.
|
74 |
+
|
75 |
+
keep_empty_features : bool, default=False
|
76 |
+
If True, features that consist exclusively of missing values when
|
77 |
+
`fit` is called are returned in results when `transform` is called.
|
78 |
+
The imputed value is always `0`.
|
79 |
+
|
80 |
+
.. versionadded:: 1.2
|
81 |
+
|
82 |
+
Attributes
|
83 |
+
----------
|
84 |
+
indicator_ : :class:`~sklearn.impute.MissingIndicator`
|
85 |
+
Indicator used to add binary indicators for missing values.
|
86 |
+
``None`` if add_indicator is False.
|
87 |
+
|
88 |
+
n_features_in_ : int
|
89 |
+
Number of features seen during :term:`fit`.
|
90 |
+
|
91 |
+
.. versionadded:: 0.24
|
92 |
+
|
93 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
94 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
95 |
+
has feature names that are all strings.
|
96 |
+
|
97 |
+
.. versionadded:: 1.0
|
98 |
+
|
99 |
+
See Also
|
100 |
+
--------
|
101 |
+
SimpleImputer : Univariate imputer for completing missing values
|
102 |
+
with simple strategies.
|
103 |
+
IterativeImputer : Multivariate imputer that estimates values to impute for
|
104 |
+
each feature with missing values from all the others.
|
105 |
+
|
106 |
+
References
|
107 |
+
----------
|
108 |
+
* `Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor
|
109 |
+
Hastie, Robert Tibshirani, David Botstein and Russ B. Altman, Missing
|
110 |
+
value estimation methods for DNA microarrays, BIOINFORMATICS Vol. 17
|
111 |
+
no. 6, 2001 Pages 520-525.
|
112 |
+
<https://academic.oup.com/bioinformatics/article/17/6/520/272365>`_
|
113 |
+
|
114 |
+
Examples
|
115 |
+
--------
|
116 |
+
>>> import numpy as np
|
117 |
+
>>> from sklearn.impute import KNNImputer
|
118 |
+
>>> X = [[1, 2, np.nan], [3, 4, 3], [np.nan, 6, 5], [8, 8, 7]]
|
119 |
+
>>> imputer = KNNImputer(n_neighbors=2)
|
120 |
+
>>> imputer.fit_transform(X)
|
121 |
+
array([[1. , 2. , 4. ],
|
122 |
+
[3. , 4. , 3. ],
|
123 |
+
[5.5, 6. , 5. ],
|
124 |
+
[8. , 8. , 7. ]])
|
125 |
+
|
126 |
+
For a more detailed example see
|
127 |
+
:ref:`sphx_glr_auto_examples_impute_plot_missing_values.py`.
|
128 |
+
"""
|
129 |
+
|
130 |
+
_parameter_constraints: dict = {
|
131 |
+
**_BaseImputer._parameter_constraints,
|
132 |
+
"n_neighbors": [Interval(Integral, 1, None, closed="left")],
|
133 |
+
"weights": [StrOptions({"uniform", "distance"}), callable, Hidden(None)],
|
134 |
+
"metric": [StrOptions(set(_NAN_METRICS)), callable],
|
135 |
+
"copy": ["boolean"],
|
136 |
+
}
|
137 |
+
|
138 |
+
def __init__(
|
139 |
+
self,
|
140 |
+
*,
|
141 |
+
missing_values=np.nan,
|
142 |
+
n_neighbors=5,
|
143 |
+
weights="uniform",
|
144 |
+
metric="nan_euclidean",
|
145 |
+
copy=True,
|
146 |
+
add_indicator=False,
|
147 |
+
keep_empty_features=False,
|
148 |
+
):
|
149 |
+
super().__init__(
|
150 |
+
missing_values=missing_values,
|
151 |
+
add_indicator=add_indicator,
|
152 |
+
keep_empty_features=keep_empty_features,
|
153 |
+
)
|
154 |
+
self.n_neighbors = n_neighbors
|
155 |
+
self.weights = weights
|
156 |
+
self.metric = metric
|
157 |
+
self.copy = copy
|
158 |
+
|
159 |
+
def _calc_impute(self, dist_pot_donors, n_neighbors, fit_X_col, mask_fit_X_col):
|
160 |
+
"""Helper function to impute a single column.
|
161 |
+
|
162 |
+
Parameters
|
163 |
+
----------
|
164 |
+
dist_pot_donors : ndarray of shape (n_receivers, n_potential_donors)
|
165 |
+
Distance matrix between the receivers and potential donors from
|
166 |
+
training set. There must be at least one non-nan distance between
|
167 |
+
a receiver and a potential donor.
|
168 |
+
|
169 |
+
n_neighbors : int
|
170 |
+
Number of neighbors to consider.
|
171 |
+
|
172 |
+
fit_X_col : ndarray of shape (n_potential_donors,)
|
173 |
+
Column of potential donors from training set.
|
174 |
+
|
175 |
+
mask_fit_X_col : ndarray of shape (n_potential_donors,)
|
176 |
+
Missing mask for fit_X_col.
|
177 |
+
|
178 |
+
Returns
|
179 |
+
-------
|
180 |
+
imputed_values: ndarray of shape (n_receivers,)
|
181 |
+
Imputed values for receiver.
|
182 |
+
"""
|
183 |
+
# Get donors
|
184 |
+
donors_idx = np.argpartition(dist_pot_donors, n_neighbors - 1, axis=1)[
|
185 |
+
:, :n_neighbors
|
186 |
+
]
|
187 |
+
|
188 |
+
# Get weight matrix from distance matrix
|
189 |
+
donors_dist = dist_pot_donors[
|
190 |
+
np.arange(donors_idx.shape[0])[:, None], donors_idx
|
191 |
+
]
|
192 |
+
|
193 |
+
weight_matrix = _get_weights(donors_dist, self.weights)
|
194 |
+
|
195 |
+
# fill nans with zeros
|
196 |
+
if weight_matrix is not None:
|
197 |
+
weight_matrix[np.isnan(weight_matrix)] = 0.0
|
198 |
+
|
199 |
+
# Retrieve donor values and calculate kNN average
|
200 |
+
donors = fit_X_col.take(donors_idx)
|
201 |
+
donors_mask = mask_fit_X_col.take(donors_idx)
|
202 |
+
donors = np.ma.array(donors, mask=donors_mask)
|
203 |
+
|
204 |
+
return np.ma.average(donors, axis=1, weights=weight_matrix).data
|
205 |
+
|
206 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
207 |
+
def fit(self, X, y=None):
|
208 |
+
"""Fit the imputer on X.
|
209 |
+
|
210 |
+
Parameters
|
211 |
+
----------
|
212 |
+
X : array-like shape of (n_samples, n_features)
|
213 |
+
Input data, where `n_samples` is the number of samples and
|
214 |
+
`n_features` is the number of features.
|
215 |
+
|
216 |
+
y : Ignored
|
217 |
+
Not used, present here for API consistency by convention.
|
218 |
+
|
219 |
+
Returns
|
220 |
+
-------
|
221 |
+
self : object
|
222 |
+
The fitted `KNNImputer` class instance.
|
223 |
+
"""
|
224 |
+
# Check data integrity and calling arguments
|
225 |
+
if not is_scalar_nan(self.missing_values):
|
226 |
+
force_all_finite = True
|
227 |
+
else:
|
228 |
+
force_all_finite = "allow-nan"
|
229 |
+
|
230 |
+
X = self._validate_data(
|
231 |
+
X,
|
232 |
+
accept_sparse=False,
|
233 |
+
dtype=FLOAT_DTYPES,
|
234 |
+
force_all_finite=force_all_finite,
|
235 |
+
copy=self.copy,
|
236 |
+
)
|
237 |
+
|
238 |
+
self._fit_X = X
|
239 |
+
self._mask_fit_X = _get_mask(self._fit_X, self.missing_values)
|
240 |
+
self._valid_mask = ~np.all(self._mask_fit_X, axis=0)
|
241 |
+
|
242 |
+
super()._fit_indicator(self._mask_fit_X)
|
243 |
+
|
244 |
+
return self
|
245 |
+
|
246 |
+
def transform(self, X):
|
247 |
+
"""Impute all missing values in X.
|
248 |
+
|
249 |
+
Parameters
|
250 |
+
----------
|
251 |
+
X : array-like of shape (n_samples, n_features)
|
252 |
+
The input data to complete.
|
253 |
+
|
254 |
+
Returns
|
255 |
+
-------
|
256 |
+
X : array-like of shape (n_samples, n_output_features)
|
257 |
+
The imputed dataset. `n_output_features` is the number of features
|
258 |
+
that is not always missing during `fit`.
|
259 |
+
"""
|
260 |
+
|
261 |
+
check_is_fitted(self)
|
262 |
+
if not is_scalar_nan(self.missing_values):
|
263 |
+
force_all_finite = True
|
264 |
+
else:
|
265 |
+
force_all_finite = "allow-nan"
|
266 |
+
X = self._validate_data(
|
267 |
+
X,
|
268 |
+
accept_sparse=False,
|
269 |
+
dtype=FLOAT_DTYPES,
|
270 |
+
force_all_finite=force_all_finite,
|
271 |
+
copy=self.copy,
|
272 |
+
reset=False,
|
273 |
+
)
|
274 |
+
|
275 |
+
mask = _get_mask(X, self.missing_values)
|
276 |
+
mask_fit_X = self._mask_fit_X
|
277 |
+
valid_mask = self._valid_mask
|
278 |
+
|
279 |
+
X_indicator = super()._transform_indicator(mask)
|
280 |
+
|
281 |
+
# Removes columns where the training data is all nan
|
282 |
+
if not np.any(mask):
|
283 |
+
# No missing values in X
|
284 |
+
if self.keep_empty_features:
|
285 |
+
Xc = X
|
286 |
+
Xc[:, ~valid_mask] = 0
|
287 |
+
else:
|
288 |
+
Xc = X[:, valid_mask]
|
289 |
+
|
290 |
+
# Even if there are no missing values in X, we still concatenate Xc
|
291 |
+
# with the missing value indicator matrix, X_indicator.
|
292 |
+
# This is to ensure that the output maintains consistency in terms
|
293 |
+
# of columns, regardless of whether missing values exist in X or not.
|
294 |
+
return super()._concatenate_indicator(Xc, X_indicator)
|
295 |
+
|
296 |
+
row_missing_idx = np.flatnonzero(mask.any(axis=1))
|
297 |
+
|
298 |
+
non_missing_fix_X = np.logical_not(mask_fit_X)
|
299 |
+
|
300 |
+
# Maps from indices from X to indices in dist matrix
|
301 |
+
dist_idx_map = np.zeros(X.shape[0], dtype=int)
|
302 |
+
dist_idx_map[row_missing_idx] = np.arange(row_missing_idx.shape[0])
|
303 |
+
|
304 |
+
def process_chunk(dist_chunk, start):
|
305 |
+
row_missing_chunk = row_missing_idx[start : start + len(dist_chunk)]
|
306 |
+
|
307 |
+
# Find and impute missing by column
|
308 |
+
for col in range(X.shape[1]):
|
309 |
+
if not valid_mask[col]:
|
310 |
+
# column was all missing during training
|
311 |
+
continue
|
312 |
+
|
313 |
+
col_mask = mask[row_missing_chunk, col]
|
314 |
+
if not np.any(col_mask):
|
315 |
+
# column has no missing values
|
316 |
+
continue
|
317 |
+
|
318 |
+
(potential_donors_idx,) = np.nonzero(non_missing_fix_X[:, col])
|
319 |
+
|
320 |
+
# receivers_idx are indices in X
|
321 |
+
receivers_idx = row_missing_chunk[np.flatnonzero(col_mask)]
|
322 |
+
|
323 |
+
# distances for samples that needed imputation for column
|
324 |
+
dist_subset = dist_chunk[dist_idx_map[receivers_idx] - start][
|
325 |
+
:, potential_donors_idx
|
326 |
+
]
|
327 |
+
|
328 |
+
# receivers with all nan distances impute with mean
|
329 |
+
all_nan_dist_mask = np.isnan(dist_subset).all(axis=1)
|
330 |
+
all_nan_receivers_idx = receivers_idx[all_nan_dist_mask]
|
331 |
+
|
332 |
+
if all_nan_receivers_idx.size:
|
333 |
+
col_mean = np.ma.array(
|
334 |
+
self._fit_X[:, col], mask=mask_fit_X[:, col]
|
335 |
+
).mean()
|
336 |
+
X[all_nan_receivers_idx, col] = col_mean
|
337 |
+
|
338 |
+
if len(all_nan_receivers_idx) == len(receivers_idx):
|
339 |
+
# all receivers imputed with mean
|
340 |
+
continue
|
341 |
+
|
342 |
+
# receivers with at least one defined distance
|
343 |
+
receivers_idx = receivers_idx[~all_nan_dist_mask]
|
344 |
+
dist_subset = dist_chunk[dist_idx_map[receivers_idx] - start][
|
345 |
+
:, potential_donors_idx
|
346 |
+
]
|
347 |
+
|
348 |
+
n_neighbors = min(self.n_neighbors, len(potential_donors_idx))
|
349 |
+
value = self._calc_impute(
|
350 |
+
dist_subset,
|
351 |
+
n_neighbors,
|
352 |
+
self._fit_X[potential_donors_idx, col],
|
353 |
+
mask_fit_X[potential_donors_idx, col],
|
354 |
+
)
|
355 |
+
X[receivers_idx, col] = value
|
356 |
+
|
357 |
+
# process in fixed-memory chunks
|
358 |
+
gen = pairwise_distances_chunked(
|
359 |
+
X[row_missing_idx, :],
|
360 |
+
self._fit_X,
|
361 |
+
metric=self.metric,
|
362 |
+
missing_values=self.missing_values,
|
363 |
+
force_all_finite=force_all_finite,
|
364 |
+
reduce_func=process_chunk,
|
365 |
+
)
|
366 |
+
for chunk in gen:
|
367 |
+
# process_chunk modifies X in place. No return value.
|
368 |
+
pass
|
369 |
+
|
370 |
+
if self.keep_empty_features:
|
371 |
+
Xc = X
|
372 |
+
Xc[:, ~valid_mask] = 0
|
373 |
+
else:
|
374 |
+
Xc = X[:, valid_mask]
|
375 |
+
|
376 |
+
return super()._concatenate_indicator(Xc, X_indicator)
|
377 |
+
|
378 |
+
def get_feature_names_out(self, input_features=None):
|
379 |
+
"""Get output feature names for transformation.
|
380 |
+
|
381 |
+
Parameters
|
382 |
+
----------
|
383 |
+
input_features : array-like of str or None, default=None
|
384 |
+
Input features.
|
385 |
+
|
386 |
+
- If `input_features` is `None`, then `feature_names_in_` is
|
387 |
+
used as feature names in. If `feature_names_in_` is not defined,
|
388 |
+
then the following input feature names are generated:
|
389 |
+
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
|
390 |
+
- If `input_features` is an array-like, then `input_features` must
|
391 |
+
match `feature_names_in_` if `feature_names_in_` is defined.
|
392 |
+
|
393 |
+
Returns
|
394 |
+
-------
|
395 |
+
feature_names_out : ndarray of str objects
|
396 |
+
Transformed feature names.
|
397 |
+
"""
|
398 |
+
check_is_fitted(self, "n_features_in_")
|
399 |
+
input_features = _check_feature_names_in(self, input_features)
|
400 |
+
names = input_features[self._valid_mask]
|
401 |
+
return self._concatenate_indicator_feature_names_out(names, input_features)
|