applied-ai-018 commited on
Commit
8f29813
·
verified ·
1 Parent(s): af6f7de

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_adaptive_avg_pool3d.h +91 -0
  2. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_adaptive_avg_pool3d_backward_compositeexplicitautograd_dispatch.h +24 -0
  3. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_amp_foreach_non_finite_check_and_unscale_native.h +24 -0
  4. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_batch_norm_impl_index_backward_compositeimplicitautograd_dispatch.h +23 -0
  5. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_convolution.h +113 -0
  6. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_convolution_compositeimplicitautograd_dispatch.h +24 -0
  7. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_ctc_loss.h +53 -0
  8. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_ctc_loss_native.h +26 -0
  9. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_dirichlet_grad_cpu_dispatch.h +23 -0
  10. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_compositeexplicitautograd_dispatch.h +26 -0
  11. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_fft_c2r_cuda_dispatch.h +28 -0
  12. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_clamp_max_cuda_dispatch.h +28 -0
  13. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_floor.h +44 -0
  14. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_sub_compositeexplicitautograd_dispatch.h +28 -0
  15. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_functional_assert_async.h +30 -0
  16. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_lazy_clone_compositeexplicitautograd_dispatch.h +23 -0
  17. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_mkldnn_reshape_compositeexplicitautograd_dispatch.h +24 -0
  18. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_jagged_dummy.h +30 -0
  19. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sample_dirichlet_cuda_dispatch.h +23 -0
  20. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_backward.h +91 -0
  21. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/addbmm_cuda_dispatch.h +26 -0
  22. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/addcmul.h +39 -0
  23. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/argmin.h +39 -0
  24. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/avg_pool3d_backward_meta.h +27 -0
  25. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_elemt.h +39 -0
  26. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/broadcast_to_ops.h +28 -0
  27. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/celu_compositeexplicitautograd_dispatch.h +26 -0
  28. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cholesky_inverse_native.h +22 -0
  29. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/conv_tbc_backward_native.h +21 -0
  30. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/copy_sparse_to_sparse_compositeexplicitautograd_dispatch.h +25 -0
  31. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cumsum_meta_dispatch.h +26 -0
  32. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/diag_ops.h +39 -0
  33. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/eq_ops.h +83 -0
  34. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/expand_copy_compositeexplicitautograd_dispatch.h +26 -0
  35. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_ifft2_native.h +22 -0
  36. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_ihfft.h +91 -0
  37. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfft2_compositeimplicitautograd_dispatch.h +28 -0
  38. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fmod_meta_dispatch.h +26 -0
  39. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool3d_backward_cuda_dispatch.h +25 -0
  40. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/histogramdd.h +40 -0
  41. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/inner_compositeimplicitautograd_dispatch.h +25 -0
  42. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/is_leaf_native.h +21 -0
  43. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/isneginf.h +39 -0
  44. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/isposinf_cpu_dispatch.h +25 -0
  45. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/lift.h +39 -0
  46. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eigh_compositeimplicitautograd_dispatch.h +25 -0
  47. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_solve.h +39 -0
  48. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_qr.h +39 -0
  49. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/logit_backward_meta.h +27 -0
  50. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/lt_native.h +30 -0
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_adaptive_avg_pool3d.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_adaptive_avg_pool3d_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_adaptive_avg_pool3d(Tensor self, SymInt[3] output_size) -> Tensor
26
+ inline at::Tensor _adaptive_avg_pool3d(const at::Tensor & self, at::IntArrayRef output_size) {
27
+ return at::_ops::_adaptive_avg_pool3d::call(self, c10::fromIntArrayRefSlow(output_size));
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor _adaptive_avg_pool3d(const at::Tensor & self, at::IntArrayRef output_size) {
32
+ return at::_ops::_adaptive_avg_pool3d::call(self, c10::fromIntArrayRefSlow(output_size));
33
+ }
34
+ }
35
+
36
+ // aten::_adaptive_avg_pool3d(Tensor self, SymInt[3] output_size) -> Tensor
37
+ inline at::Tensor _adaptive_avg_pool3d_symint(const at::Tensor & self, c10::SymIntArrayRef output_size) {
38
+ return at::_ops::_adaptive_avg_pool3d::call(self, output_size);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ at::Tensor _adaptive_avg_pool3d(const at::Tensor & self, c10::SymIntArrayRef output_size) {
43
+ return at::_ops::_adaptive_avg_pool3d::call(self, output_size);
44
+ }
45
+ }
46
+
47
+ // aten::_adaptive_avg_pool3d.out(Tensor self, SymInt[3] output_size, *, Tensor(a!) out) -> Tensor(a!)
48
+ inline at::Tensor & _adaptive_avg_pool3d_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size) {
49
+ return at::_ops::_adaptive_avg_pool3d_out::call(self, c10::fromIntArrayRefSlow(output_size), out);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ at::Tensor & _adaptive_avg_pool3d_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size) {
54
+ return at::_ops::_adaptive_avg_pool3d_out::call(self, c10::fromIntArrayRefSlow(output_size), out);
55
+ }
56
+ }
57
+
58
+ // aten::_adaptive_avg_pool3d.out(Tensor self, SymInt[3] output_size, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & _adaptive_avg_pool3d_outf(const at::Tensor & self, at::IntArrayRef output_size, at::Tensor & out) {
60
+ return at::_ops::_adaptive_avg_pool3d_out::call(self, c10::fromIntArrayRefSlow(output_size), out);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ at::Tensor & _adaptive_avg_pool3d_outf(const at::Tensor & self, at::IntArrayRef output_size, at::Tensor & out) {
65
+ return at::_ops::_adaptive_avg_pool3d_out::call(self, c10::fromIntArrayRefSlow(output_size), out);
66
+ }
67
+ }
68
+
69
+ // aten::_adaptive_avg_pool3d.out(Tensor self, SymInt[3] output_size, *, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & _adaptive_avg_pool3d_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size) {
71
+ return at::_ops::_adaptive_avg_pool3d_out::call(self, output_size, out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ at::Tensor & _adaptive_avg_pool3d_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size) {
76
+ return at::_ops::_adaptive_avg_pool3d_out::call(self, output_size, out);
77
+ }
78
+ }
79
+
80
+ // aten::_adaptive_avg_pool3d.out(Tensor self, SymInt[3] output_size, *, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & _adaptive_avg_pool3d_symint_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, at::Tensor & out) {
82
+ return at::_ops::_adaptive_avg_pool3d_out::call(self, output_size, out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor & _adaptive_avg_pool3d_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, at::Tensor & out) {
87
+ return at::_ops::_adaptive_avg_pool3d_out::call(self, output_size, out);
88
+ }
89
+ }
90
+
91
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_adaptive_avg_pool3d_backward_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & _adaptive_avg_pool3d_backward_out(at::Tensor & out, const at::Tensor & grad_output, const at::Tensor & self);
21
+ TORCH_API at::Tensor & _adaptive_avg_pool3d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_amp_foreach_non_finite_check_and_unscale_native.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<::std::vector<at::Tensor>,at::Tensor> _amp_foreach_non_finite_check_and_unscale(at::TensorList self, const at::Tensor & found_inf, const at::Tensor & inv_scale);
20
+ TORCH_API void _amp_foreach_non_finite_check_and_unscale_out(at::TensorList self, at::Tensor & found_inf, const at::Tensor & inv_scale, at::TensorList out);
21
+ TORCH_API void _amp_foreach_non_finite_check_and_unscale_cpu_(at::TensorList self, at::Tensor & found_inf, const at::Tensor & inv_scale);
22
+ TORCH_API void _amp_foreach_non_finite_check_and_unscale_cuda_(at::TensorList self, at::Tensor & found_inf, const at::Tensor & inv_scale);
23
+ } // namespace native
24
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_batch_norm_impl_index_backward_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _batch_norm_impl_index_backward(int64_t impl_index, const at::Tensor & input, const at::Tensor & grad_output, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, const c10::optional<at::Tensor> & save_mean, const c10::optional<at::Tensor> & save_var_transform, bool train, double eps, ::std::array<bool,3> output_mask, const at::Tensor & reservedSpace);
21
+
22
+ } // namespace compositeimplicitautograd
23
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_convolution.h ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_convolution_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> Tensor
26
+ inline at::Tensor _convolution(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) {
27
+ return at::_ops::_convolution::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, benchmark, deterministic, cudnn_enabled, allow_tf32);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor _convolution(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) {
32
+ return at::_ops::_convolution::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, benchmark, deterministic, cudnn_enabled, allow_tf32);
33
+ }
34
+ }
35
+
36
+ // aten::_convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> Tensor
37
+ inline at::Tensor _convolution_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) {
38
+ return at::_ops::_convolution::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled, allow_tf32);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ at::Tensor _convolution(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) {
43
+ return at::_ops::_convolution::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled, allow_tf32);
44
+ }
45
+ }
46
+
47
+ // aten::_convolution.deprecated(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, int[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> Tensor
48
+ inline at::Tensor _convolution(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled) {
49
+ return at::_ops::_convolution_deprecated::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ at::Tensor _convolution(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled) {
54
+ return at::_ops::_convolution_deprecated::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled);
55
+ }
56
+ }
57
+
58
+ // aten::_convolution.deprecated(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, int[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> Tensor
59
+ inline at::Tensor _convolution_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, c10::SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled) {
60
+ return at::_ops::_convolution_deprecated::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ at::Tensor _convolution(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, c10::SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled) {
65
+ return at::_ops::_convolution_deprecated::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled);
66
+ }
67
+ }
68
+
69
+ // aten::_convolution.out(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32, *, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & _convolution_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) {
71
+ return at::_ops::_convolution_out::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, benchmark, deterministic, cudnn_enabled, allow_tf32, out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
75
+ at::Tensor & _convolution_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) {
76
+ return at::_ops::_convolution_out::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, benchmark, deterministic, cudnn_enabled, allow_tf32, out);
77
+ }
78
+ }
79
+
80
+ // aten::_convolution.out(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32, *, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & _convolution_outf(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32, at::Tensor & out) {
82
+ return at::_ops::_convolution_out::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, benchmark, deterministic, cudnn_enabled, allow_tf32, out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
86
+ at::Tensor & _convolution_outf(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32, at::Tensor & out) {
87
+ return at::_ops::_convolution_out::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, benchmark, deterministic, cudnn_enabled, allow_tf32, out);
88
+ }
89
+ }
90
+
91
+ // aten::_convolution.out(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32, *, Tensor(a!) out) -> Tensor(a!)
92
+ inline at::Tensor & _convolution_symint_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) {
93
+ return at::_ops::_convolution_out::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled, allow_tf32, out);
94
+ }
95
+ namespace symint {
96
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
97
+ at::Tensor & _convolution_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) {
98
+ return at::_ops::_convolution_out::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled, allow_tf32, out);
99
+ }
100
+ }
101
+
102
+ // aten::_convolution.out(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32, *, Tensor(a!) out) -> Tensor(a!)
103
+ inline at::Tensor & _convolution_symint_outf(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32, at::Tensor & out) {
104
+ return at::_ops::_convolution_out::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled, allow_tf32, out);
105
+ }
106
+ namespace symint {
107
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
108
+ at::Tensor & _convolution_outf(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32, at::Tensor & out) {
109
+ return at::_ops::_convolution_out::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled, allow_tf32, out);
110
+ }
111
+ }
112
+
113
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_convolution_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor _convolution(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled);
21
+ TORCH_API at::Tensor _convolution_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, c10::SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled);
22
+
23
+ } // namespace compositeimplicitautograd
24
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_ctc_loss.h ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_ctc_loss_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor> _ctc_loss(const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, int64_t blank=0, bool zero_infinity=false) {
27
+ return at::_ops::_ctc_loss::call(log_probs, targets, input_lengths, target_lengths, blank, zero_infinity);
28
+ }
29
+
30
+ // aten::_ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor)
31
+ inline ::std::tuple<at::Tensor,at::Tensor> _ctc_loss(const at::Tensor & log_probs, const at::Tensor & targets, const at::Tensor & input_lengths, const at::Tensor & target_lengths, int64_t blank=0, bool zero_infinity=false) {
32
+ return at::_ops::_ctc_loss_Tensor::call(log_probs, targets, input_lengths, target_lengths, blank, zero_infinity);
33
+ }
34
+
35
+ // aten::_ctc_loss.out(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
36
+ inline ::std::tuple<at::Tensor &,at::Tensor &> _ctc_loss_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, int64_t blank=0, bool zero_infinity=false) {
37
+ return at::_ops::_ctc_loss_out::call(log_probs, targets, input_lengths, target_lengths, blank, zero_infinity, out0, out1);
38
+ }
39
+ // aten::_ctc_loss.out(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
40
+ inline ::std::tuple<at::Tensor &,at::Tensor &> _ctc_loss_outf(const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, int64_t blank, bool zero_infinity, at::Tensor & out0, at::Tensor & out1) {
41
+ return at::_ops::_ctc_loss_out::call(log_probs, targets, input_lengths, target_lengths, blank, zero_infinity, out0, out1);
42
+ }
43
+
44
+ // aten::_ctc_loss.Tensor_out(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, bool zero_infinity=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
45
+ inline ::std::tuple<at::Tensor &,at::Tensor &> _ctc_loss_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & log_probs, const at::Tensor & targets, const at::Tensor & input_lengths, const at::Tensor & target_lengths, int64_t blank=0, bool zero_infinity=false) {
46
+ return at::_ops::_ctc_loss_Tensor_out::call(log_probs, targets, input_lengths, target_lengths, blank, zero_infinity, out0, out1);
47
+ }
48
+ // aten::_ctc_loss.Tensor_out(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, bool zero_infinity=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
49
+ inline ::std::tuple<at::Tensor &,at::Tensor &> _ctc_loss_outf(const at::Tensor & log_probs, const at::Tensor & targets, const at::Tensor & input_lengths, const at::Tensor & target_lengths, int64_t blank, bool zero_infinity, at::Tensor & out0, at::Tensor & out1) {
50
+ return at::_ops::_ctc_loss_Tensor_out::call(log_probs, targets, input_lengths, target_lengths, blank, zero_infinity, out0, out1);
51
+ }
52
+
53
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_ctc_loss_native.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _ctc_loss_out(const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, int64_t blank, bool zero_infinity, at::Tensor & out0, at::Tensor & out1);
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> ctc_loss_cpu(const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, int64_t blank=0, bool zero_infinity=false);
21
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> ctc_loss_gpu(const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, int64_t blank=0, bool zero_infinity=false);
22
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> ctc_loss_meta(const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, int64_t blank=0, bool zero_infinity=false);
23
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _ctc_loss_Tensor_out(const at::Tensor & log_probs, const at::Tensor & targets, const at::Tensor & input_lengths, const at::Tensor & target_lengths, int64_t blank, bool zero_infinity, at::Tensor & out0, at::Tensor & out1);
24
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> ctc_loss_tensor(const at::Tensor & log_probs, const at::Tensor & targets, const at::Tensor & input_lengths, const at::Tensor & target_lengths, int64_t blank=0, bool zero_infinity=false);
25
+ } // namespace native
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_dirichlet_grad_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor _dirichlet_grad(const at::Tensor & x, const at::Tensor & alpha, const at::Tensor & total);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & _efficientzerotensor_out(at::Tensor & out, at::IntArrayRef size);
21
+ TORCH_API at::Tensor & _efficientzerotensor_outf(at::IntArrayRef size, at::Tensor & out);
22
+ TORCH_API at::Tensor & _efficientzerotensor_symint_out(at::Tensor & out, c10::SymIntArrayRef size);
23
+ TORCH_API at::Tensor & _efficientzerotensor_symint_outf(c10::SymIntArrayRef size, at::Tensor & out);
24
+
25
+ } // namespace compositeexplicitautograd
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_fft_c2r_cuda_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor _fft_c2r(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size);
21
+ TORCH_API at::Tensor _fft_c2r_symint(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size);
22
+ TORCH_API at::Tensor & _fft_c2r_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size);
23
+ TORCH_API at::Tensor & _fft_c2r_outf(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size, at::Tensor & out);
24
+ TORCH_API at::Tensor & _fft_c2r_symint_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size);
25
+ TORCH_API at::Tensor & _fft_c2r_symint_outf(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size, at::Tensor & out);
26
+
27
+ } // namespace cuda
28
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_clamp_max_cuda_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::vector<at::Tensor> _foreach_clamp_max(at::TensorList self, const at::Scalar & scalar);
21
+ TORCH_API void _foreach_clamp_max_(at::TensorList self, const at::Scalar & scalar);
22
+ TORCH_API ::std::vector<at::Tensor> _foreach_clamp_max(at::TensorList self, at::TensorList other);
23
+ TORCH_API void _foreach_clamp_max_(at::TensorList self, at::TensorList other);
24
+ TORCH_API ::std::vector<at::Tensor> _foreach_clamp_max(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
25
+ TORCH_API void _foreach_clamp_max_(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
26
+
27
+ } // namespace cuda
28
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_floor.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_foreach_floor_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_foreach_floor(Tensor[] self) -> Tensor[]
26
+ inline ::std::vector<at::Tensor> _foreach_floor(at::TensorList self) {
27
+ return at::_ops::_foreach_floor::call(self);
28
+ }
29
+
30
+ // aten::_foreach_floor_(Tensor(a!)[] self) -> ()
31
+ inline void _foreach_floor_(at::TensorList self) {
32
+ return at::_ops::_foreach_floor_::call(self);
33
+ }
34
+
35
+ // aten::_foreach_floor.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
36
+ inline void _foreach_floor_out(at::TensorList out, at::TensorList self) {
37
+ return at::_ops::_foreach_floor_out::call(self, out);
38
+ }
39
+ // aten::_foreach_floor.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
40
+ inline void _foreach_floor_outf(at::TensorList self, at::TensorList out) {
41
+ return at::_ops::_foreach_floor_out::call(self, out);
42
+ }
43
+
44
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_sub_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API void _foreach_sub_out(at::TensorList out, at::TensorList self, const at::Scalar & scalar);
21
+ TORCH_API void _foreach_sub_outf(at::TensorList self, const at::Scalar & scalar, at::TensorList out);
22
+ TORCH_API void _foreach_sub_out(at::TensorList out, at::TensorList self, at::TensorList other, const at::Scalar & alpha=1);
23
+ TORCH_API void _foreach_sub_outf(at::TensorList self, at::TensorList other, const at::Scalar & alpha, at::TensorList out);
24
+ TORCH_API void _foreach_sub_out(at::TensorList out, at::TensorList self, at::ArrayRef<at::Scalar> scalars);
25
+ TORCH_API void _foreach_sub_outf(at::TensorList self, at::ArrayRef<at::Scalar> scalars, at::TensorList out);
26
+
27
+ } // namespace compositeexplicitautograd
28
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_functional_assert_async.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_functional_assert_async_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_functional_assert_async.msg(Tensor self, str assert_msg, Tensor dep_token) -> Tensor
26
+ inline at::Tensor _functional_assert_async(const at::Tensor & self, c10::string_view assert_msg, const at::Tensor & dep_token) {
27
+ return at::_ops::_functional_assert_async_msg::call(self, assert_msg, dep_token);
28
+ }
29
+
30
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_lazy_clone_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor _lazy_clone(const at::Tensor & self);
21
+
22
+ } // namespace compositeexplicitautograd
23
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_mkldnn_reshape_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & _mkldnn_reshape_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef shape);
21
+ TORCH_API at::Tensor & _mkldnn_reshape_outf(const at::Tensor & self, at::IntArrayRef shape, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_jagged_dummy.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_nested_get_jagged_dummy_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_nested_get_jagged_dummy(Tensor any) -> Tensor
26
+ inline at::Tensor _nested_get_jagged_dummy(const at::Tensor & any) {
27
+ return at::_ops::_nested_get_jagged_dummy::call(any);
28
+ }
29
+
30
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sample_dirichlet_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor _sample_dirichlet(const at::Tensor & self, c10::optional<at::Generator> generator=c10::nullopt);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_backward.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_upsample_bicubic2d_aa_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
26
+ inline at::Tensor & _upsample_bicubic2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
27
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor & _upsample_bicubic2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
32
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
33
+ }
34
+ }
35
+
36
+ // aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
37
+ inline at::Tensor & _upsample_bicubic2d_aa_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
38
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
42
+ at::Tensor & _upsample_bicubic2d_aa_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
43
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
44
+ }
45
+ }
46
+
47
+ // aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
48
+ inline at::Tensor & _upsample_bicubic2d_aa_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
49
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
53
+ at::Tensor & _upsample_bicubic2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
54
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
55
+ }
56
+ }
57
+
58
+ // aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
59
+ inline at::Tensor & _upsample_bicubic2d_aa_backward_symint_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
60
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ at::Tensor & _upsample_bicubic2d_aa_backward_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
65
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
66
+ }
67
+ }
68
+
69
+ // aten::_upsample_bicubic2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
70
+ inline at::Tensor _upsample_bicubic2d_aa_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
71
+ return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
75
+ at::Tensor _upsample_bicubic2d_aa_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
76
+ return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w);
77
+ }
78
+ }
79
+
80
+ // aten::_upsample_bicubic2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
81
+ inline at::Tensor _upsample_bicubic2d_aa_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
82
+ return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor _upsample_bicubic2d_aa_backward(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
87
+ return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w);
88
+ }
89
+ }
90
+
91
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/addbmm_cuda_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor addbmm(const at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta=1, const at::Scalar & alpha=1);
21
+ TORCH_API at::Tensor & addbmm_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta=1, const at::Scalar & alpha=1);
22
+ TORCH_API at::Tensor & addbmm_outf(const at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta, const at::Scalar & alpha, at::Tensor & out);
23
+ TORCH_API at::Tensor & addbmm_(at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta=1, const at::Scalar & alpha=1);
24
+
25
+ } // namespace cuda
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/addcmul.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/addcmul_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::addcmul.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!)
26
+ inline at::Tensor & addcmul_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & tensor1, const at::Tensor & tensor2, const at::Scalar & value=1) {
27
+ return at::_ops::addcmul_out::call(self, tensor1, tensor2, value, out);
28
+ }
29
+ // aten::addcmul.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!)
30
+ inline at::Tensor & addcmul_outf(const at::Tensor & self, const at::Tensor & tensor1, const at::Tensor & tensor2, const at::Scalar & value, at::Tensor & out) {
31
+ return at::_ops::addcmul_out::call(self, tensor1, tensor2, value, out);
32
+ }
33
+
34
+ // aten::addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor
35
+ inline at::Tensor addcmul(const at::Tensor & self, const at::Tensor & tensor1, const at::Tensor & tensor2, const at::Scalar & value=1) {
36
+ return at::_ops::addcmul::call(self, tensor1, tensor2, value);
37
+ }
38
+
39
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/argmin.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/argmin_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::argmin(Tensor self, int? dim=None, bool keepdim=False) -> Tensor
26
+ inline at::Tensor argmin(const at::Tensor & self, c10::optional<int64_t> dim=c10::nullopt, bool keepdim=false) {
27
+ return at::_ops::argmin::call(self, dim, keepdim);
28
+ }
29
+
30
+ // aten::argmin.out(Tensor self, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & argmin_out(at::Tensor & out, const at::Tensor & self, c10::optional<int64_t> dim=c10::nullopt, bool keepdim=false) {
32
+ return at::_ops::argmin_out::call(self, dim, keepdim, out);
33
+ }
34
+ // aten::argmin.out(Tensor self, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & argmin_outf(const at::Tensor & self, c10::optional<int64_t> dim, bool keepdim, at::Tensor & out) {
36
+ return at::_ops::argmin_out::call(self, dim, keepdim, out);
37
+ }
38
+
39
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/avg_pool3d_backward_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_avg_pool3d_backward : public at::impl::MetaBase {
21
+
22
+
23
+ void meta(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_elemt.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/batch_norm_elemt_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::batch_norm_elemt(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps) -> Tensor
26
+ inline at::Tensor batch_norm_elemt(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & mean, const at::Tensor & invstd, double eps) {
27
+ return at::_ops::batch_norm_elemt::call(input, weight, bias, mean, invstd, eps);
28
+ }
29
+
30
+ // aten::batch_norm_elemt.out(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & batch_norm_elemt_out(at::Tensor & out, const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & mean, const at::Tensor & invstd, double eps) {
32
+ return at::_ops::batch_norm_elemt_out::call(input, weight, bias, mean, invstd, eps, out);
33
+ }
34
+ // aten::batch_norm_elemt.out(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & batch_norm_elemt_outf(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & mean, const at::Tensor & invstd, double eps, at::Tensor & out) {
36
+ return at::_ops::batch_norm_elemt_out::call(input, weight, bias, mean, invstd, eps, out);
37
+ }
38
+
39
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/broadcast_to_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API broadcast_to {
18
+ using schema = at::Tensor (const at::Tensor &, c10::SymIntArrayRef);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::broadcast_to")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "broadcast_to(Tensor(a) self, SymInt[] size) -> Tensor(a)")
24
+ static at::Tensor call(const at::Tensor & self, c10::SymIntArrayRef size);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::SymIntArrayRef size);
26
+ };
27
+
28
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/celu_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor celu(const at::Tensor & self, const at::Scalar & alpha=1.0);
21
+ TORCH_API at::Tensor & celu_out(at::Tensor & out, const at::Tensor & self, const at::Scalar & alpha=1.0);
22
+ TORCH_API at::Tensor & celu_outf(const at::Tensor & self, const at::Scalar & alpha, at::Tensor & out);
23
+ TORCH_API at::Tensor & celu_(at::Tensor & self, const at::Scalar & alpha=1.0);
24
+
25
+ } // namespace compositeexplicitautograd
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cholesky_inverse_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor cholesky_inverse(const at::Tensor & self, bool upper=false);
20
+ TORCH_API at::Tensor & cholesky_inverse_out(const at::Tensor & self, bool upper, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/conv_tbc_backward_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> conv_tbc_backward(const at::Tensor & self, const at::Tensor & input, const at::Tensor & weight, const at::Tensor & bias, int64_t pad);
20
+ } // namespace native
21
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/copy_sparse_to_sparse_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor copy_sparse_to_sparse(const at::Tensor & self, const at::Tensor & src, bool non_blocking=false);
21
+ TORCH_API at::Tensor & copy_sparse_to_sparse_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & src, bool non_blocking=false);
22
+ TORCH_API at::Tensor & copy_sparse_to_sparse_outf(const at::Tensor & self, const at::Tensor & src, bool non_blocking, at::Tensor & out);
23
+
24
+ } // namespace compositeexplicitautograd
25
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cumsum_meta_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor cumsum(const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
21
+ TORCH_API at::Tensor & cumsum_out(at::Tensor & out, const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
22
+ TORCH_API at::Tensor & cumsum_outf(const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype, at::Tensor & out);
23
+ TORCH_API at::Tensor & cumsum_(at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
24
+
25
+ } // namespace meta
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/diag_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API diag_out {
18
+ using schema = at::Tensor & (const at::Tensor &, int64_t, at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::diag")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "diag.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!)")
24
+ static at::Tensor & call(const at::Tensor & self, int64_t diagonal, at::Tensor & out);
25
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t diagonal, at::Tensor & out);
26
+ };
27
+
28
+ struct TORCH_API diag {
29
+ using schema = at::Tensor (const at::Tensor &, int64_t);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::diag")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "diag(Tensor self, int diagonal=0) -> Tensor")
35
+ static at::Tensor call(const at::Tensor & self, int64_t diagonal);
36
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t diagonal);
37
+ };
38
+
39
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/eq_ops.h ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API eq__Scalar {
18
+ using schema = at::Tensor & (at::Tensor &, const at::Scalar &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::eq_")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "eq_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)")
24
+ static at::Tensor & call(at::Tensor & self, const at::Scalar & other);
25
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Scalar & other);
26
+ };
27
+
28
+ struct TORCH_API eq__Tensor {
29
+ using schema = at::Tensor & (at::Tensor &, const at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::eq_")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "eq_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)")
35
+ static at::Tensor & call(at::Tensor & self, const at::Tensor & other);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Tensor & other);
37
+ };
38
+
39
+ struct TORCH_API eq_Scalar_out {
40
+ using schema = at::Tensor & (const at::Tensor &, const at::Scalar &, at::Tensor &);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::eq")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar_out")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "eq.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)")
46
+ static at::Tensor & call(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
47
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
48
+ };
49
+
50
+ struct TORCH_API eq_Scalar {
51
+ using schema = at::Tensor (const at::Tensor &, const at::Scalar &);
52
+ using ptr_schema = schema*;
53
+ // See Note [static constexpr char* members for windows NVCC]
54
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::eq")
55
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
56
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "eq.Scalar(Tensor self, Scalar other) -> Tensor")
57
+ static at::Tensor call(const at::Tensor & self, const at::Scalar & other);
58
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & other);
59
+ };
60
+
61
+ struct TORCH_API eq_Tensor_out {
62
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, at::Tensor &);
63
+ using ptr_schema = schema*;
64
+ // See Note [static constexpr char* members for windows NVCC]
65
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::eq")
66
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor_out")
67
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "eq.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)")
68
+ static at::Tensor & call(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
69
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
70
+ };
71
+
72
+ struct TORCH_API eq_Tensor {
73
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &);
74
+ using ptr_schema = schema*;
75
+ // See Note [static constexpr char* members for windows NVCC]
76
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::eq")
77
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor")
78
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "eq.Tensor(Tensor self, Tensor other) -> Tensor")
79
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & other);
80
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other);
81
+ };
82
+
83
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/expand_copy_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & expand_copy_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef size, bool implicit=false);
21
+ TORCH_API at::Tensor & expand_copy_outf(const at::Tensor & self, at::IntArrayRef size, bool implicit, at::Tensor & out);
22
+ TORCH_API at::Tensor & expand_copy_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef size, bool implicit=false);
23
+ TORCH_API at::Tensor & expand_copy_symint_outf(const at::Tensor & self, c10::SymIntArrayRef size, bool implicit, at::Tensor & out);
24
+
25
+ } // namespace compositeexplicitautograd
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_ifft2_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor fft_ifft2_symint(const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt);
20
+ TORCH_API at::Tensor & fft_ifft2_symint_out(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::IntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_ihfft.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/fft_ihfft_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::fft_ihfft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor
26
+ inline at::Tensor fft_ihfft(const at::Tensor & self, c10::optional<int64_t> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
27
+ return at::_ops::fft_ihfft::call(self, n.has_value() ? c10::make_optional(c10::SymInt(*n)) : c10::nullopt, dim, norm);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor fft_ihfft(const at::Tensor & self, c10::optional<int64_t> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
32
+ return at::_ops::fft_ihfft::call(self, n.has_value() ? c10::make_optional(c10::SymInt(*n)) : c10::nullopt, dim, norm);
33
+ }
34
+ }
35
+
36
+ // aten::fft_ihfft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor
37
+ inline at::Tensor fft_ihfft_symint(const at::Tensor & self, c10::optional<c10::SymInt> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
38
+ return at::_ops::fft_ihfft::call(self, n, dim, norm);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ at::Tensor fft_ihfft(const at::Tensor & self, c10::optional<c10::SymInt> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
43
+ return at::_ops::fft_ihfft::call(self, n, dim, norm);
44
+ }
45
+ }
46
+
47
+ // aten::fft_ihfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
48
+ inline at::Tensor & fft_ihfft_out(at::Tensor & out, const at::Tensor & self, c10::optional<int64_t> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
49
+ return at::_ops::fft_ihfft_out::call(self, n.has_value() ? c10::make_optional(c10::SymInt(*n)) : c10::nullopt, dim, norm, out);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ at::Tensor & fft_ihfft_out(at::Tensor & out, const at::Tensor & self, c10::optional<int64_t> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
54
+ return at::_ops::fft_ihfft_out::call(self, n.has_value() ? c10::make_optional(c10::SymInt(*n)) : c10::nullopt, dim, norm, out);
55
+ }
56
+ }
57
+
58
+ // aten::fft_ihfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & fft_ihfft_outf(const at::Tensor & self, c10::optional<int64_t> n, int64_t dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
60
+ return at::_ops::fft_ihfft_out::call(self, n.has_value() ? c10::make_optional(c10::SymInt(*n)) : c10::nullopt, dim, norm, out);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ at::Tensor & fft_ihfft_outf(const at::Tensor & self, c10::optional<int64_t> n, int64_t dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
65
+ return at::_ops::fft_ihfft_out::call(self, n.has_value() ? c10::make_optional(c10::SymInt(*n)) : c10::nullopt, dim, norm, out);
66
+ }
67
+ }
68
+
69
+ // aten::fft_ihfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & fft_ihfft_symint_out(at::Tensor & out, const at::Tensor & self, c10::optional<c10::SymInt> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
71
+ return at::_ops::fft_ihfft_out::call(self, n, dim, norm, out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ at::Tensor & fft_ihfft_out(at::Tensor & out, const at::Tensor & self, c10::optional<c10::SymInt> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
76
+ return at::_ops::fft_ihfft_out::call(self, n, dim, norm, out);
77
+ }
78
+ }
79
+
80
+ // aten::fft_ihfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & fft_ihfft_symint_outf(const at::Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
82
+ return at::_ops::fft_ihfft_out::call(self, n, dim, norm, out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor & fft_ihfft_outf(const at::Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
87
+ return at::_ops::fft_ihfft_out::call(self, n, dim, norm, out);
88
+ }
89
+ }
90
+
91
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfft2_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor fft_rfft2(const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt);
21
+ TORCH_API at::Tensor fft_rfft2_symint(const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt);
22
+ TORCH_API at::Tensor & fft_rfft2_out(at::Tensor & out, const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt);
23
+ TORCH_API at::Tensor & fft_rfft2_outf(const at::Tensor & self, at::OptionalIntArrayRef s, at::IntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
24
+ TORCH_API at::Tensor & fft_rfft2_symint_out(at::Tensor & out, const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt);
25
+ TORCH_API at::Tensor & fft_rfft2_symint_outf(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::IntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
26
+
27
+ } // namespace compositeimplicitautograd
28
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fmod_meta_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor fmod(const at::Tensor & self, const at::Tensor & other);
21
+ TORCH_API at::Tensor & fmod_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
22
+ TORCH_API at::Tensor & fmod_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
23
+ TORCH_API at::Tensor & fmod_(at::Tensor & self, const at::Tensor & other);
24
+
25
+ } // namespace meta
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool3d_backward_cuda_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor fractional_max_pool3d_backward(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices);
21
+ TORCH_API at::Tensor & fractional_max_pool3d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices);
22
+ TORCH_API at::Tensor & fractional_max_pool3d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices, at::Tensor & grad_input);
23
+
24
+ } // namespace cuda
25
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/histogramdd.h ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/histogramdd_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::histogramdd(Tensor self, int[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)
26
+ inline ::std::tuple<at::Tensor,::std::vector<at::Tensor>> histogramdd(const at::Tensor & self, at::IntArrayRef bins, c10::optional<at::ArrayRef<double>> range=c10::nullopt, const c10::optional<at::Tensor> & weight={}, bool density=false) {
27
+ return at::_ops::histogramdd::call(self, bins, range, weight, density);
28
+ }
29
+
30
+ // aten::histogramdd.int_bins(Tensor self, int bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)
31
+ inline ::std::tuple<at::Tensor,::std::vector<at::Tensor>> histogramdd(const at::Tensor & self, int64_t bins, c10::optional<at::ArrayRef<double>> range=c10::nullopt, const c10::optional<at::Tensor> & weight={}, bool density=false) {
32
+ return at::_ops::histogramdd_int_bins::call(self, bins, range, weight, density);
33
+ }
34
+
35
+ // aten::histogramdd.TensorList_bins(Tensor self, Tensor[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)
36
+ inline ::std::tuple<at::Tensor,::std::vector<at::Tensor>> histogramdd(const at::Tensor & self, at::TensorList bins, c10::optional<at::ArrayRef<double>> range=c10::nullopt, const c10::optional<at::Tensor> & weight={}, bool density=false) {
37
+ return at::_ops::histogramdd_TensorList_bins::call(self, bins, range, weight, density);
38
+ }
39
+
40
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/inner_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor inner(const at::Tensor & self, const at::Tensor & other);
21
+ TORCH_API at::Tensor & inner_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
22
+ TORCH_API at::Tensor & inner_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
23
+
24
+ } // namespace compositeimplicitautograd
25
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/is_leaf_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API bool is_leaf(const at::Tensor & self);
20
+ } // namespace native
21
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/isneginf.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/isneginf_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::isneginf(Tensor self) -> Tensor
26
+ inline at::Tensor isneginf(const at::Tensor & self) {
27
+ return at::_ops::isneginf::call(self);
28
+ }
29
+
30
+ // aten::isneginf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & isneginf_out(at::Tensor & out, const at::Tensor & self) {
32
+ return at::_ops::isneginf_out::call(self, out);
33
+ }
34
+ // aten::isneginf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & isneginf_outf(const at::Tensor & self, at::Tensor & out) {
36
+ return at::_ops::isneginf_out::call(self, out);
37
+ }
38
+
39
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/isposinf_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor isposinf(const at::Tensor & self);
21
+ TORCH_API at::Tensor & isposinf_out(at::Tensor & out, const at::Tensor & self);
22
+ TORCH_API at::Tensor & isposinf_outf(const at::Tensor & self, at::Tensor & out);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/lift.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/lift_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::lift(Tensor self) -> Tensor
26
+ inline at::Tensor lift(const at::Tensor & self) {
27
+ return at::_ops::lift::call(self);
28
+ }
29
+
30
+ // aten::lift.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & lift_out(at::Tensor & out, const at::Tensor & self) {
32
+ return at::_ops::lift_out::call(self, out);
33
+ }
34
+ // aten::lift.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & lift_outf(const at::Tensor & self, at::Tensor & out) {
36
+ return at::_ops::lift_out::call(self, out);
37
+ }
38
+
39
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eigh_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> linalg_eigh(const at::Tensor & self, c10::string_view UPLO="L");
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> linalg_eigh_out(at::Tensor & eigvals, at::Tensor & eigvecs, const at::Tensor & self, c10::string_view UPLO="L");
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> linalg_eigh_outf(const at::Tensor & self, c10::string_view UPLO, at::Tensor & eigvals, at::Tensor & eigvecs);
23
+
24
+ } // namespace compositeimplicitautograd
25
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_solve.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/linalg_ldl_solve_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::linalg_ldl_solve(Tensor LD, Tensor pivots, Tensor B, *, bool hermitian=False) -> Tensor
26
+ inline at::Tensor linalg_ldl_solve(const at::Tensor & LD, const at::Tensor & pivots, const at::Tensor & B, bool hermitian=false) {
27
+ return at::_ops::linalg_ldl_solve::call(LD, pivots, B, hermitian);
28
+ }
29
+
30
+ // aten::linalg_ldl_solve.out(Tensor LD, Tensor pivots, Tensor B, *, bool hermitian=False, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & linalg_ldl_solve_out(at::Tensor & out, const at::Tensor & LD, const at::Tensor & pivots, const at::Tensor & B, bool hermitian=false) {
32
+ return at::_ops::linalg_ldl_solve_out::call(LD, pivots, B, hermitian, out);
33
+ }
34
+ // aten::linalg_ldl_solve.out(Tensor LD, Tensor pivots, Tensor B, *, bool hermitian=False, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & linalg_ldl_solve_outf(const at::Tensor & LD, const at::Tensor & pivots, const at::Tensor & B, bool hermitian, at::Tensor & out) {
36
+ return at::_ops::linalg_ldl_solve_out::call(LD, pivots, B, hermitian, out);
37
+ }
38
+
39
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_qr.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/linalg_qr_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::linalg_qr(Tensor A, str mode='reduced') -> (Tensor Q, Tensor R)
26
+ inline ::std::tuple<at::Tensor,at::Tensor> linalg_qr(const at::Tensor & A, c10::string_view mode="reduced") {
27
+ return at::_ops::linalg_qr::call(A, mode);
28
+ }
29
+
30
+ // aten::linalg_qr.out(Tensor A, str mode='reduced', *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R)
31
+ inline ::std::tuple<at::Tensor &,at::Tensor &> linalg_qr_out(at::Tensor & Q, at::Tensor & R, const at::Tensor & A, c10::string_view mode="reduced") {
32
+ return at::_ops::linalg_qr_out::call(A, mode, Q, R);
33
+ }
34
+ // aten::linalg_qr.out(Tensor A, str mode='reduced', *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R)
35
+ inline ::std::tuple<at::Tensor &,at::Tensor &> linalg_qr_outf(const at::Tensor & A, c10::string_view mode, at::Tensor & Q, at::Tensor & R) {
36
+ return at::_ops::linalg_qr_out::call(A, mode, Q, R);
37
+ }
38
+
39
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/logit_backward_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_logit_backward : public TensorIteratorBase {
21
+
22
+
23
+ void meta(const at::Tensor & grad_output, const at::Tensor & self, c10::optional<double> eps);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/lt_native.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/lt_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_lt_Scalar_out : public at::meta::structured_lt_Scalar {
20
+ void impl(const at::Tensor & self, const at::Scalar & other, const at::Tensor & out);
21
+ };
22
+ TORCH_API at::Tensor lt_quantized_cpu(const at::Tensor & self, const at::Scalar & other);
23
+ TORCH_API at::Tensor & lt_out_quantized_cpu(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
24
+ struct TORCH_API structured_lt_Tensor_out : public at::meta::structured_lt_Tensor {
25
+ void impl(const at::Tensor & self, const at::Tensor & other, const at::Tensor & out);
26
+ };
27
+ TORCH_API at::Tensor lt_quantized_cpu(const at::Tensor & self, const at::Tensor & other);
28
+ TORCH_API at::Tensor & lt_out_quantized_cpu(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
29
+ } // namespace native
30
+ } // namespace at