Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/code_template.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/context.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/gen.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/gen_backend_stubs.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/gen_executorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/gen_vmap_plumbing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/model.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/native_function_generation.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/yaml_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/CompositeViewCopyKernels.cpp +73 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/DispatchKeyFunction.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/DispatchKeyFunctions_inl.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/DispatchKeyNativeFunctions.h +19 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/Functions.h +143 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/LazyIr.h +19 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/LazyNonNativeIr.h +11 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/NativeFunction.h +17 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/NativeMetaFunction.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/NativeMetaFunctions.h +19 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/Operators.cpp +19 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RedispatchFunctions.cpp +15 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RedispatchFunctions.h +32 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RegisterDispatchDefinitions.ini +24 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RegisterDispatchKey.cpp +54 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RegisterFunctionalization.cpp +110 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RegisterSchema.cpp +13 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RegistrationDeclarations.h +4 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/TensorBody.h +753 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/TensorMethods.cpp +61 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/UfuncCPU.cpp +19 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/UfuncCPUKernel.cpp +14 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/UnboxingFunctions.h +32 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/enum_tag.h +10 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/BUILD.bazel +4 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/README.md +3 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_annotated_fn_args.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/build.bzl +14 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/context.py +31 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/deprecated.yaml +134 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/derivatives.yaml +0 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_annotated_fn_args.py +129 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_autograd.py +146 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_autograd_functions.py +912 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_inplace_or_view_type.py +675 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_python_functions.py +1396 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_trace_type.py +535 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_variable_factories.py +115 -0
- llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_variable_type.py +2162 -0
llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (537 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/code_template.cpython-310.pyc
ADDED
Binary file (3.06 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/context.cpython-310.pyc
ADDED
Binary file (3.89 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/gen.cpython-310.pyc
ADDED
Binary file (66 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/gen_backend_stubs.cpython-310.pyc
ADDED
Binary file (15.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/gen_executorch.cpython-310.pyc
ADDED
Binary file (27.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/gen_vmap_plumbing.cpython-310.pyc
ADDED
Binary file (8.77 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/model.cpython-310.pyc
ADDED
Binary file (65.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/native_function_generation.cpython-310.pyc
ADDED
Binary file (12.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torchgen/__pycache__/yaml_utils.cpython-310.pyc
ADDED
Binary file (1.04 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/CompositeViewCopyKernels.cpp
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
2 |
+
// ${generated_comment}
|
3 |
+
|
4 |
+
#include <ATen/InferSize.h>
|
5 |
+
#include <ATen/Tensor.h>
|
6 |
+
#include <ATen/native/Resize.h>
|
7 |
+
|
8 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
9 |
+
#include <ATen/Operators.h>
|
10 |
+
#else
|
11 |
+
#include <ATen/ops/clone.h>
|
12 |
+
$ops_headers
|
13 |
+
#endif
|
14 |
+
|
15 |
+
namespace at {
|
16 |
+
namespace native {
|
17 |
+
|
18 |
+
// This file contains a number of kernels for aten functions that are fully code-generated.
|
19 |
+
// TODO: rename this file to something more generic.
|
20 |
+
|
21 |
+
namespace {
|
22 |
+
at::Tensor clone_arg(const at::Tensor& t) {
|
23 |
+
return t.clone();
|
24 |
+
}
|
25 |
+
|
26 |
+
std::vector<at::Tensor> clone_arg(const at::TensorList& t_list) {
|
27 |
+
std::vector<at::Tensor> out(t_list.size());
|
28 |
+
for (const auto& i : c10::irange(t_list.size())) {
|
29 |
+
out[i] = t_list[i].clone();
|
30 |
+
}
|
31 |
+
return out;
|
32 |
+
}
|
33 |
+
|
34 |
+
// duped with gen_resize_out_helper from structured kernels
|
35 |
+
void copy_arg(const at::Tensor& dst, const at::Tensor& src) {
|
36 |
+
TORCH_CHECK(src.dtype() == dst.dtype(),
|
37 |
+
"Expected out tensor to have dtype ", src.dtype(), ", but got ", dst.dtype(), " instead");
|
38 |
+
TORCH_CHECK(src.device() == dst.device(),
|
39 |
+
"Expected out tensor to have device ", src.device(), ", but got ", dst.device(), " instead");
|
40 |
+
dst.copy_(src);
|
41 |
+
}
|
42 |
+
|
43 |
+
void copy_arg(const at::TensorList& dst, const at::TensorList& src) {
|
44 |
+
TORCH_INTERNAL_ASSERT(dst.size() == src.size());
|
45 |
+
for (const auto& i : c10::irange(dst.size())) {
|
46 |
+
copy_arg(dst[i], src[i]);
|
47 |
+
}
|
48 |
+
}
|
49 |
+
|
50 |
+
// TODO: this doesn't handle restriding empty tensors correctly; see
|
51 |
+
// gen_resize_out_helper for the correct algorithm
|
52 |
+
|
53 |
+
void resize_out_helper(const at::Tensor& dst, const at::Tensor& src) {
|
54 |
+
at::native::resize_output(dst, src.sizes());
|
55 |
+
}
|
56 |
+
|
57 |
+
void resize_out_helper(const at::TensorList& dst, const at::TensorList& src) {
|
58 |
+
TORCH_INTERNAL_ASSERT(dst.size() == src.size());
|
59 |
+
for (const auto& i : c10::irange(dst.size())) {
|
60 |
+
at::native::resize_output(dst[i], src[i].sizes());
|
61 |
+
}
|
62 |
+
}
|
63 |
+
}
|
64 |
+
|
65 |
+
|
66 |
+
${CompositeViewCopyKernel_Definitions}
|
67 |
+
|
68 |
+
${GeneratedCompositeFunctional_Definitions}
|
69 |
+
|
70 |
+
${GeneratedCompositeOut_Definitions}
|
71 |
+
|
72 |
+
} // namespace native
|
73 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/DispatchKeyFunction.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// ${generated_comment}
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace ${dispatch_namespace} {
|
19 |
+
|
20 |
+
${dispatch_namespaced_declarations}
|
21 |
+
|
22 |
+
} // namespace ${dispatch_namespace}
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/DispatchKeyFunctions_inl.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// ${generated_comment}
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
#if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
|
12 |
+
#error This change adds a dependency on all pytorch operators, meaning the \
|
13 |
+
file will need to be re-compiled every time an operator is changed or added. \
|
14 |
+
Consider including a specific operator from \
|
15 |
+
<ATen/ops/{my_operator}_${dispatch_namespace}_dispatch.h>. \
|
16 |
+
See NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
|
17 |
+
#endif
|
18 |
+
|
19 |
+
${DispatchKeyFunctions_inl_includes}
|
20 |
+
|
21 |
+
|
22 |
+
${dispatch_namespaced_declarations}
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/DispatchKeyNativeFunctions.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// an external backend might generate file within its code tree
|
4 |
+
// and check all the source files within the tree with clang-format.
|
5 |
+
// so, disable it since the backend might have a different config.
|
6 |
+
// clang-format off
|
7 |
+
|
8 |
+
// ${generated_comment}
|
9 |
+
|
10 |
+
#include <ATen/Tensor.h>
|
11 |
+
|
12 |
+
${namespace_prologue}
|
13 |
+
|
14 |
+
struct ${class_name} {
|
15 |
+
|
16 |
+
${dispatch_declarations}
|
17 |
+
|
18 |
+
};
|
19 |
+
${namespace_epilogue}
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/Functions.h
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// ${generated_comment}
|
4 |
+
|
5 |
+
#ifdef TORCH_ASSERT_NO_OPERATORS
|
6 |
+
#error This change adds a dependency on native_functions.yaml, \
|
7 |
+
meaning the file will need to be re-compiled every time an operator \
|
8 |
+
is changed or added. Consider if your change would be better placed in \
|
9 |
+
another file, or if a more specific header might achieve the same goal. \
|
10 |
+
See NOTE: [Tensor vs. TensorBase]
|
11 |
+
#endif
|
12 |
+
|
13 |
+
#if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
|
14 |
+
#error This change adds a dependency on all pytorch operators, meaning the \
|
15 |
+
file will need to be re-compiled every time an operator is changed or added. \
|
16 |
+
Consider including a specific operator from <ATen/ops/{my_operator}.h> and \
|
17 |
+
see NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
|
18 |
+
#endif
|
19 |
+
|
20 |
+
// NOTE: [TORCH_ASSERT_ONLY_METHOD_OPERATORS]
|
21 |
+
//
|
22 |
+
// In ATen, certain generated headers files include the definitions of
|
23 |
+
// every single operator in PyTorch. Unfortunately this means every
|
24 |
+
// time an operator signature is updated or changed in
|
25 |
+
// native_functions.yaml, you (and every other PyTorch developer) need
|
26 |
+
// to recompile every source file that includes any of these headers.
|
27 |
+
//
|
28 |
+
// To break up these header dependencies, and improve incremental
|
29 |
+
// build times for all PyTorch developers. These headers are split
|
30 |
+
// into per-operator headers in the `ATen/ops` folder. This limits
|
31 |
+
// incremental builds to only changes to methods of `Tensor`, or files
|
32 |
+
// that use the specific operator being changed. With `at::sum` as an
|
33 |
+
// example, you should include
|
34 |
+
//
|
35 |
+
// <ATen/ops/sum.h> // instead of ATen/Functions.h
|
36 |
+
// <ATen/ops/sum_native.h> // instead of ATen/NativeFunctions.h
|
37 |
+
// <ATen/ops/sum_ops.h> // instead of ATen/Operators.h
|
38 |
+
// <ATen/ops/sum_cpu_dispatch.h> // instead of ATen/CPUFunctions.h
|
39 |
+
//
|
40 |
+
// However, even if you're careful to use this in your own code.
|
41 |
+
// `Functions.h` might be included indirectly through another header
|
42 |
+
// without you realising. To avoid this, you can add
|
43 |
+
//
|
44 |
+
// #define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
45 |
+
//
|
46 |
+
// to the top of your source file. This way any time the non-specific
|
47 |
+
// headers are included, the compiler will error out.
|
48 |
+
//
|
49 |
+
// Also, be aware that `ops` are not available in all build
|
50 |
+
// configurations (namely fb-internal) so you must guard these
|
51 |
+
// includes with `#ifdef AT_PER_OPERATOR_HEADERS`. e.g.
|
52 |
+
//
|
53 |
+
// #ifndef AT_PER_OPERATOR_HEADERS
|
54 |
+
// #include <ATen/Functions.h>
|
55 |
+
// #else
|
56 |
+
// #include <ATen/ops/sum.h>
|
57 |
+
// #endif
|
58 |
+
|
59 |
+
#include <ATen/Context.h>
|
60 |
+
#include <ATen/DeviceGuard.h>
|
61 |
+
#include <ATen/TensorUtils.h>
|
62 |
+
#include <ATen/TracerMode.h>
|
63 |
+
#include <ATen/core/Generator.h>
|
64 |
+
#include <ATen/core/Reduction.h>
|
65 |
+
#include <c10/core/SymInt.h>
|
66 |
+
#include <ATen/core/Tensor.h>
|
67 |
+
#include <c10/core/Scalar.h>
|
68 |
+
#include <c10/core/Storage.h>
|
69 |
+
#include <c10/core/TensorOptions.h>
|
70 |
+
#include <c10/util/Deprecated.h>
|
71 |
+
#include <c10/util/Optional.h>
|
72 |
+
#include <c10/util/OptionalArrayRef.h>
|
73 |
+
|
74 |
+
#include <ATen/ops/from_blob.h>
|
75 |
+
#include <ATen/ops/tensor.h>
|
76 |
+
|
77 |
+
${Functions_includes}
|
78 |
+
|
79 |
+
namespace at {
|
80 |
+
|
81 |
+
${Functions_declarations}
|
82 |
+
|
83 |
+
// Special C++ only overloads for std()-like functions (See gh-40287)
|
84 |
+
// These are needed because int -> bool conversion takes precedence over int -> IntArrayRef
|
85 |
+
// So, for example std(0) would select the std(unbiased=False) overload
|
86 |
+
TORCH_API inline Tensor var(const Tensor& self, int dim) {
|
87 |
+
return at::var(self, IntArrayRef{dim});
|
88 |
+
}
|
89 |
+
TORCH_API inline std::tuple<Tensor, Tensor> var_mean(const Tensor& self, int dim) {
|
90 |
+
return at::var_mean(self, IntArrayRef{dim});
|
91 |
+
}
|
92 |
+
TORCH_API inline Tensor std(const Tensor& self, int dim) {
|
93 |
+
return at::std(self, IntArrayRef{dim});
|
94 |
+
}
|
95 |
+
TORCH_API inline std::tuple<Tensor, Tensor> std_mean(const Tensor& self, int dim) {
|
96 |
+
return at::std_mean(self, IntArrayRef{dim});
|
97 |
+
}
|
98 |
+
|
99 |
+
inline int64_t numel(const Tensor& tensor) {
|
100 |
+
return tensor.numel();
|
101 |
+
}
|
102 |
+
|
103 |
+
inline int64_t size(const Tensor& tensor, int64_t dim) {
|
104 |
+
return tensor.size(dim);
|
105 |
+
}
|
106 |
+
|
107 |
+
inline int64_t stride(const Tensor& tensor, int64_t dim) {
|
108 |
+
return tensor.stride(dim);
|
109 |
+
}
|
110 |
+
|
111 |
+
inline bool is_complex(const Tensor& tensor) {
|
112 |
+
return tensor.is_complex();
|
113 |
+
}
|
114 |
+
|
115 |
+
inline bool is_floating_point(const Tensor& tensor) {
|
116 |
+
return tensor.is_floating_point();
|
117 |
+
}
|
118 |
+
|
119 |
+
inline bool is_signed(const Tensor& tensor) {
|
120 |
+
return tensor.is_signed();
|
121 |
+
}
|
122 |
+
|
123 |
+
inline bool is_inference(const Tensor& tensor) {
|
124 |
+
return tensor.is_inference();
|
125 |
+
}
|
126 |
+
|
127 |
+
inline bool _is_zerotensor(const Tensor& tensor) {
|
128 |
+
return tensor._is_zerotensor();
|
129 |
+
}
|
130 |
+
|
131 |
+
inline bool is_conj(const Tensor& tensor) {
|
132 |
+
return tensor.is_conj();
|
133 |
+
}
|
134 |
+
|
135 |
+
inline Tensor conj(const Tensor& tensor) {
|
136 |
+
return tensor.conj();
|
137 |
+
}
|
138 |
+
|
139 |
+
inline bool is_neg(const Tensor& tensor) {
|
140 |
+
return tensor.is_neg();
|
141 |
+
}
|
142 |
+
|
143 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/LazyIr.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// This file contains autogenerated LazyTensor IR nodes
|
4 |
+
${lazy_ir_sysinc}
|
5 |
+
${lazy_ir_inc}
|
6 |
+
|
7 |
+
${namespace_prologue}
|
8 |
+
using at::operator<<;
|
9 |
+
|
10 |
+
// kNullValue is used to contribute a static hash value any time
|
11 |
+
// a node has an Optional<Value> input that is nullopt. It is important
|
12 |
+
// to differentiate between HASH(nullopt, something) and HASH(something, nullopt),
|
13 |
+
// and using kNullValue in the hash function in the order of arguments
|
14 |
+
// serves this purpose.
|
15 |
+
static const torch::lazy::Value kNullValue = torch::lazy::Value();
|
16 |
+
|
17 |
+
${ir_declarations}
|
18 |
+
|
19 |
+
${namespace_epilogue}
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/LazyNonNativeIr.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
${lazy_non_native_ir_inc}
|
4 |
+
|
5 |
+
// This file contains autogenerated LazyTensor Non Native IR nodes
|
6 |
+
|
7 |
+
${namespace_prologue}
|
8 |
+
|
9 |
+
${non_native_ir_nodes}
|
10 |
+
|
11 |
+
${namespace_epilogue}
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/NativeFunction.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// ${generated_comment}
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
${extra_includes}
|
16 |
+
|
17 |
+
${native_function_declarations}
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/NativeMetaFunction.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// ${generated_comment}
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
${meta_function_declarations}
|
21 |
+
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/NativeMetaFunctions.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// ${generated_comment}
|
4 |
+
|
5 |
+
#include <ATen/core/Tensor.h>
|
6 |
+
#include <ATen/core/IListRef.h>
|
7 |
+
#include <ATen/TensorMeta.h>
|
8 |
+
#include <ATen/TensorIterator.h>
|
9 |
+
|
10 |
+
${NativeMetaFunctions_includes}
|
11 |
+
|
12 |
+
namespace at {
|
13 |
+
|
14 |
+
namespace meta {
|
15 |
+
|
16 |
+
${NativeMetaFunctions_declarations}
|
17 |
+
|
18 |
+
} // namespace meta
|
19 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/Operators.cpp
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/Tensor.h>
|
2 |
+
#include <ATen/core/dispatch/Dispatcher.h>
|
3 |
+
|
4 |
+
// ${generated_comment}
|
5 |
+
// NOTE See [Sharded File] comment in VariableType
|
6 |
+
|
7 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
8 |
+
#include <ATen/Operators.h>
|
9 |
+
#else
|
10 |
+
${operator_headers}
|
11 |
+
#endif
|
12 |
+
|
13 |
+
${static_dispatch_extra_headers}
|
14 |
+
|
15 |
+
namespace at { namespace _ops {
|
16 |
+
|
17 |
+
${definitions}
|
18 |
+
|
19 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RedispatchFunctions.cpp
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// ${generated_comment}
|
2 |
+
|
3 |
+
#include <ATen/RedispatchFunctions.h>
|
4 |
+
#include <ATen/Functions.h>
|
5 |
+
|
6 |
+
#include <ATen/core/dispatch/Dispatcher.h>
|
7 |
+
#include <ATen/core/op_registration/adaption.h>
|
8 |
+
|
9 |
+
namespace at {
|
10 |
+
|
11 |
+
namespace redispatch {
|
12 |
+
${function_redispatch_definitions}
|
13 |
+
} // namespace redispatch
|
14 |
+
|
15 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RedispatchFunctions.h
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// ${generated_comment}
|
4 |
+
|
5 |
+
#ifdef TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
6 |
+
#error This change adds a dependency on all pytorch operators, meaning the \
|
7 |
+
file will need to be re-compiled every time an operator is changed or added. \
|
8 |
+
Consider using the at::_ops::{name}::redispatch() interface by including \
|
9 |
+
the specific operator from <ATen/ops/{my_operator}_ops.h>
|
10 |
+
#endif
|
11 |
+
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <ATen/Tensor.h>
|
14 |
+
#include <c10/core/Storage.h>
|
15 |
+
#include <ATen/core/Generator.h>
|
16 |
+
#include <c10/util/Deprecated.h>
|
17 |
+
#include <ATen/DeviceGuard.h>
|
18 |
+
#include <c10/core/TensorOptions.h>
|
19 |
+
#include <ATen/core/Reduction.h>
|
20 |
+
#include <c10/util/Optional.h>
|
21 |
+
#include <ATen/TensorUtils.h>
|
22 |
+
#include <ATen/Context.h>
|
23 |
+
#include <ATen/TracerMode.h>
|
24 |
+
#include <ATen/Operators.h>
|
25 |
+
|
26 |
+
namespace at {
|
27 |
+
|
28 |
+
namespace redispatch {
|
29 |
+
${function_redispatch_definitions}
|
30 |
+
} // namespace redispatch
|
31 |
+
|
32 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RegisterDispatchDefinitions.ini
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
${ns_prologue}
|
2 |
+
|
3 |
+
// NB: TORCH_LIBRARY_IMPL must be in an anonymous namespace to avoid
|
4 |
+
// ambiguity with conflicting identifiers that may have been defined in
|
5 |
+
// at namespace already.
|
6 |
+
namespace {
|
7 |
+
|
8 |
+
${dispatch_helpers}
|
9 |
+
|
10 |
+
${dispatch_anonymous_definitions}
|
11 |
+
|
12 |
+
${static_init_dispatch_registrations}
|
13 |
+
|
14 |
+
} // anonymous namespace
|
15 |
+
|
16 |
+
${deferred_dispatch_registrations}
|
17 |
+
|
18 |
+
namespace ${dispatch_namespace} {
|
19 |
+
|
20 |
+
${dispatch_namespaced_definitions}
|
21 |
+
|
22 |
+
} // namespace ${dispatch_namespace}
|
23 |
+
|
24 |
+
${ns_epilogue}
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RegisterDispatchKey.cpp
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// required for old g++ to compile PRId64 macros, see
|
2 |
+
// https://github.com/pytorch/pytorch/issues/3571
|
3 |
+
// for context
|
4 |
+
#ifndef __STDC_FORMAT_MACROS
|
5 |
+
#define __STDC_FORMAT_MACROS
|
6 |
+
#endif
|
7 |
+
|
8 |
+
// an external backend might generate file within its code tree
|
9 |
+
// and check all the source files within the tree with clang-format.
|
10 |
+
// so, disable it since the backend might have a different config.
|
11 |
+
// clang-format off
|
12 |
+
|
13 |
+
// NOTE: This condition is true for all PyTorch internal libraries, it
|
14 |
+
// just excludes external projects such as torch_xla which
|
15 |
+
// re-use some of the PyTorch codegen machinery.
|
16 |
+
#if defined(CAFFE2_BUILD_MAIN_LIB) || \
|
17 |
+
defined(TORCH_CUDA_BUILD_MAIN_LIB) || \
|
18 |
+
defined(TORCH_HIP_BUILD_MAIN_LIB) || \
|
19 |
+
defined(TORCH_CUDA_CU_BUILD_MAIN_LIB) || \
|
20 |
+
defined(TORCH_CUDA_CPP_BUILD_MAIN_LIB)
|
21 |
+
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
22 |
+
#endif
|
23 |
+
|
24 |
+
// ${generated_comment}
|
25 |
+
|
26 |
+
#include <c10/core/TensorImpl.h>
|
27 |
+
#include <c10/core/Allocator.h>
|
28 |
+
#include <ATen/DeviceGuard.h>
|
29 |
+
#include <ATen/NamedTensorUtils.h>
|
30 |
+
#include <ATen/Utils.h>
|
31 |
+
#include <ATen/WrapDimUtils.h>
|
32 |
+
#include <ATen/Dispatch.h>
|
33 |
+
#include <c10/util/ExclusivelyOwned.h>
|
34 |
+
#include <c10/util/Half.h>
|
35 |
+
#include <c10/core/UndefinedTensorImpl.h>
|
36 |
+
#include <c10/util/Optional.h>
|
37 |
+
#include <ATen/Tensor.h>
|
38 |
+
#include <ATen/native/Resize.h>
|
39 |
+
|
40 |
+
#include <cstddef>
|
41 |
+
#include <functional>
|
42 |
+
#include <memory>
|
43 |
+
#include <utility>
|
44 |
+
|
45 |
+
#include <ATen/Config.h>
|
46 |
+
#include <ATen/core/op_registration/adaption.h>
|
47 |
+
#include <torch/library.h>
|
48 |
+
$extra_cuda_headers
|
49 |
+
$external_backend_headers
|
50 |
+
$dispatch_headers
|
51 |
+
$ops_headers
|
52 |
+
|
53 |
+
// See template file RegisterDispatchDefinitions.ini
|
54 |
+
$dispatch_definitions
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RegisterFunctionalization.cpp
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
2 |
+
// ${generated_comment}
|
3 |
+
|
4 |
+
#include <ATen/core/LegacyTypeDispatch.h>
|
5 |
+
#include <ATen/EmptyTensor.h>
|
6 |
+
#include <ATen/FunctionalTensorWrapper.h>
|
7 |
+
#include <ATen/FunctionalInverses.h>
|
8 |
+
#include <ATen/MemoryOverlap.h>
|
9 |
+
#include <torch/library.h>
|
10 |
+
|
11 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
12 |
+
#include <ATen/Operators.h>
|
13 |
+
#include <ATen/NativeFunctions.h>
|
14 |
+
#else
|
15 |
+
// needed for the meta tensor calls to get stride info in functionalization
|
16 |
+
#include <ATen/ops/empty_strided_native.h>
|
17 |
+
// needed for special handling of copy_().
|
18 |
+
// See Note [functionalizating copy_() and not preserving strides]
|
19 |
+
#include <ATen/ops/to_ops.h>
|
20 |
+
#include <ATen/ops/expand_copy_ops.h>
|
21 |
+
|
22 |
+
$ops_headers
|
23 |
+
#endif
|
24 |
+
|
25 |
+
namespace at {
|
26 |
+
namespace functionalization {
|
27 |
+
|
28 |
+
// This keyset is used by functionalization when it calls into meta kernels
|
29 |
+
// to accurately propagate stride metadata.
|
30 |
+
// Exclude any modes: the purpose of calling into meta kernels is only as an implementation
|
31 |
+
// detail to perform shape inference, and we don't want any modal keys to run.
|
32 |
+
// Specifically, we want to prevent functionalization and Python modes from running.
|
33 |
+
constexpr auto exclude_keys_for_meta_dispatch =
|
34 |
+
c10::functorch_transforms_ks |
|
35 |
+
c10::DispatchKeySet({
|
36 |
+
c10::DispatchKey::FuncTorchDynamicLayerBackMode,
|
37 |
+
c10::DispatchKey::FuncTorchDynamicLayerFrontMode,
|
38 |
+
c10::DispatchKey::Python,
|
39 |
+
c10::DispatchKey::PreDispatch,
|
40 |
+
|
41 |
+
});
|
42 |
+
|
43 |
+
// Helper around at::has_internal_overlap.
|
44 |
+
// The ATen util is used in hot-path eager mode: it's always fast,
|
45 |
+
// but might return TOO_HARD sometimes.
|
46 |
+
// During functionalization, we're ok taking a bit longer
|
47 |
+
// to detect memory overlap.
|
48 |
+
inline bool has_internal_overlap_helper(const at::Tensor t) {
|
49 |
+
auto has_overlap = at::has_internal_overlap(t);
|
50 |
+
if (has_overlap == at::MemOverlap::Yes) return true;
|
51 |
+
if (has_overlap == at::MemOverlap::No) return false;
|
52 |
+
return false;
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
inline Tensor to_meta(const Tensor& t) {
|
57 |
+
if (!t.defined()) return t;
|
58 |
+
return at::native::empty_strided_meta_symint(t.sym_sizes(), t.sym_strides(),
|
59 |
+
/*dtype=*/c10::make_optional(t.scalar_type()), /*layout=*/c10::make_optional(t.layout()),
|
60 |
+
/*device=*/c10::make_optional(c10::Device(kMeta)), /*pin_memory=*/c10::nullopt);
|
61 |
+
}
|
62 |
+
|
63 |
+
inline c10::optional<Tensor> to_meta(const c10::optional<Tensor>& t) {
|
64 |
+
if (t.has_value()) {
|
65 |
+
return c10::make_optional<Tensor>(to_meta(*t));
|
66 |
+
}
|
67 |
+
return c10::nullopt;
|
68 |
+
}
|
69 |
+
|
70 |
+
inline std::vector<Tensor> to_meta(at::ITensorListRef t_list) {
|
71 |
+
std::vector<Tensor> outputs;
|
72 |
+
outputs.reserve(t_list.size());
|
73 |
+
for (const auto& tensor : t_list) {
|
74 |
+
outputs.push_back(to_meta(tensor));
|
75 |
+
}
|
76 |
+
return outputs;
|
77 |
+
}
|
78 |
+
|
79 |
+
inline c10::List<Tensor> to_meta(const c10::List<Tensor>& t_list) {
|
80 |
+
c10::List<Tensor> outputs;
|
81 |
+
outputs.reserve(t_list.size());
|
82 |
+
for (const auto i : c10::irange(t_list.size())) {
|
83 |
+
outputs.push_back(to_meta(t_list[i]));
|
84 |
+
}
|
85 |
+
return outputs;
|
86 |
+
}
|
87 |
+
|
88 |
+
inline c10::List<c10::optional<Tensor>> to_meta(const c10::List<c10::optional<Tensor>>& t_list) {
|
89 |
+
c10::List<c10::optional<Tensor>> outputs;
|
90 |
+
outputs.reserve(t_list.size());
|
91 |
+
for (const auto i : c10::irange(t_list.size())) {
|
92 |
+
outputs.push_back(to_meta(t_list[i]));
|
93 |
+
}
|
94 |
+
return outputs;
|
95 |
+
}
|
96 |
+
|
97 |
+
|
98 |
+
${func_definitions}
|
99 |
+
|
100 |
+
} // namespace functionalization
|
101 |
+
|
102 |
+
namespace {
|
103 |
+
|
104 |
+
TORCH_LIBRARY_IMPL(aten, Functionalize, m) {
|
105 |
+
${func_registrations};
|
106 |
+
}
|
107 |
+
|
108 |
+
} // namespace
|
109 |
+
|
110 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RegisterSchema.cpp
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// ${generated_comment}
|
2 |
+
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
3 |
+
#include <torch/library.h>
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
TORCH_LIBRARY(aten, m) {
|
7 |
+
${aten_schema_registrations};
|
8 |
+
// Distributed Ops
|
9 |
+
// Implementations located in torch/csrc/jit/runtime/register_distributed_ops.cpp
|
10 |
+
m.def("get_gradients(int context_id) -> Dict(Tensor, Tensor)");
|
11 |
+
}
|
12 |
+
${schema_registrations}
|
13 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RegistrationDeclarations.h
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// This file contains all native_functions that can be registered to
|
2 |
+
// and the schema string that they should be registered with
|
3 |
+
|
4 |
+
${registration_declarations}
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/TensorBody.h
ADDED
@@ -0,0 +1,753 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#ifdef TORCH_ASSERT_NO_OPERATORS
|
4 |
+
#error This change adds a dependency on native_functions.yaml, \
|
5 |
+
meaning the file will need to be re-compiled every time an operator \
|
6 |
+
is changed or added. Consider if your change would be better placed in \
|
7 |
+
another file, or if a more specific header might achieve the same goal. \
|
8 |
+
See NOTE: [Tensor vs. TensorBase]
|
9 |
+
#endif
|
10 |
+
|
11 |
+
#include <c10/core/Device.h>
|
12 |
+
#include <c10/core/Layout.h>
|
13 |
+
#include <c10/core/MemoryFormat.h>
|
14 |
+
#include <c10/core/QScheme.h>
|
15 |
+
#include <c10/core/Stream.h>
|
16 |
+
#include <c10/core/Scalar.h>
|
17 |
+
#include <c10/core/ScalarType.h>
|
18 |
+
#include <c10/core/ScalarTypeToTypeMeta.h>
|
19 |
+
#include <c10/core/Storage.h>
|
20 |
+
#include <c10/core/TensorImpl.h>
|
21 |
+
#include <c10/core/UndefinedTensorImpl.h>
|
22 |
+
#include <c10/core/WrapDimMinimal.h>
|
23 |
+
#include <c10/util/Exception.h>
|
24 |
+
#include <c10/util/ExclusivelyOwned.h>
|
25 |
+
#include <c10/util/Deprecated.h>
|
26 |
+
#include <c10/util/MaybeOwned.h>
|
27 |
+
#include <c10/util/Optional.h>
|
28 |
+
#include <c10/util/OptionalArrayRef.h>
|
29 |
+
#include <c10/util/intrusive_ptr.h>
|
30 |
+
#include <c10/macros/Export.h>
|
31 |
+
#include <ATen/core/CheckMemoryFormat.h>
|
32 |
+
#include <ATen/core/DeprecatedTypePropertiesRegistry.h>
|
33 |
+
#include <ATen/core/DeprecatedTypeProperties.h>
|
34 |
+
#include <ATen/core/NamedTensor.h>
|
35 |
+
#include <ATen/core/QuantizerBase.h>
|
36 |
+
#include <c10/core/SymInt.h>
|
37 |
+
#include <ATen/core/TensorAccessor.h>
|
38 |
+
#include <ATen/core/TensorBase.h>
|
39 |
+
|
40 |
+
|
41 |
+
#include <ATen/MethodOperators.h>
|
42 |
+
|
43 |
+
namespace c10{
|
44 |
+
template<class T> class List;
|
45 |
+
template<class T> class IListRef;
|
46 |
+
}
|
47 |
+
namespace at {
|
48 |
+
struct Generator;
|
49 |
+
struct Type;
|
50 |
+
class DeprecatedTypeProperties;
|
51 |
+
class Tensor;
|
52 |
+
} // namespace at
|
53 |
+
namespace at {
|
54 |
+
namespace indexing {
|
55 |
+
struct TensorIndex;
|
56 |
+
} // namespace indexing
|
57 |
+
} // namespace at
|
58 |
+
|
59 |
+
namespace torch { namespace autograd {
|
60 |
+
|
61 |
+
struct Node;
|
62 |
+
|
63 |
+
}} // namespace torch::autograd
|
64 |
+
|
65 |
+
namespace at {
|
66 |
+
|
67 |
+
class OptionalTensorRef;
|
68 |
+
class TensorRef;
|
69 |
+
class Tensor;
|
70 |
+
using TensorList = ArrayRef<Tensor>;
|
71 |
+
using ITensorList = c10::IListRef<Tensor>;
|
72 |
+
|
73 |
+
using Stream = c10::Stream;
|
74 |
+
|
75 |
+
// Tensor is a "generic" object holding a pointer to the underlying TensorImpl object, which
|
76 |
+
// has an embedded reference count. In this way, Tensor is similar to boost::intrusive_ptr.
|
77 |
+
//
|
78 |
+
// For example:
|
79 |
+
//
|
80 |
+
// void func(Tensor a) {
|
81 |
+
// Tensor b = a;
|
82 |
+
// ...
|
83 |
+
// }
|
84 |
+
//
|
85 |
+
// In this example, when we say Tensor b = a, we are creating a new object that points to the
|
86 |
+
// same underlying TensorImpl, and bumps its reference count. When b goes out of scope, the
|
87 |
+
// destructor decrements the reference count by calling release() on the TensorImpl it points to.
|
88 |
+
// The existing constructors, operator overloads, etc. take care to implement the correct semantics.
|
89 |
+
//
|
90 |
+
// Note that Tensor can also be NULL, i.e. it is not associated with any underlying TensorImpl, and
|
91 |
+
// special care must be taken to handle this.
|
92 |
+
class TORCH_API Tensor: public TensorBase {
|
93 |
+
protected:
|
94 |
+
// Create a Tensor with a +0 reference count. Special care must be
|
95 |
+
// taken to avoid decrementing this reference count at destruction
|
96 |
+
// time. Intended to support MaybeOwnedTraits<Tensor>.
|
97 |
+
explicit Tensor(unsafe_borrow_t, const TensorBase& rhs): TensorBase(unsafe_borrow_t{}, rhs) {}
|
98 |
+
friend MaybeOwnedTraits<Tensor>;
|
99 |
+
friend OptionalTensorRef;
|
100 |
+
friend TensorRef;
|
101 |
+
|
102 |
+
public:
|
103 |
+
Tensor() = default;
|
104 |
+
// This constructor should not be used by end users and is an implementation
|
105 |
+
// detail invoked by autogenerated code.
|
106 |
+
explicit Tensor(
|
107 |
+
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl)
|
108 |
+
: TensorBase(std::move(tensor_impl)) {}
|
109 |
+
Tensor(const Tensor &tensor) = default;
|
110 |
+
Tensor(Tensor &&tensor) = default;
|
111 |
+
|
112 |
+
// Implicitly move-constructible from TensorBase, but must be explicit to increase refcount
|
113 |
+
explicit Tensor(const TensorBase &base): TensorBase(base) {}
|
114 |
+
/*implicit*/ Tensor(TensorBase &&base): TensorBase(std::move(base)) {}
|
115 |
+
|
116 |
+
// Creates a new wrapper from TensorImpl. Intentionally a free method because
|
117 |
+
// it should be used with care. Checks necessary invariants
|
118 |
+
static Tensor wrap_tensor_impl(
|
119 |
+
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl) {
|
120 |
+
return TensorBase::wrap_tensor_impl(std::move(tensor_impl));
|
121 |
+
}
|
122 |
+
|
123 |
+
Tensor contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) const {
|
124 |
+
return TensorBase::contiguous(memory_format);
|
125 |
+
}
|
126 |
+
|
127 |
+
Tensor conj() const {
|
128 |
+
if (!this->is_complex()) {
|
129 |
+
return *this;
|
130 |
+
}
|
131 |
+
|
132 |
+
switch (this->layout()) {
|
133 |
+
case at::kSparse:
|
134 |
+
case at::kSparseCsr:
|
135 |
+
case at::kSparseCsc:
|
136 |
+
case at::kSparseBsr:
|
137 |
+
case at::kSparseBsc:
|
138 |
+
return this->conj_physical();
|
139 |
+
default:
|
140 |
+
return this->_conj();
|
141 |
+
}
|
142 |
+
}
|
143 |
+
|
144 |
+
// Aliased by Dimname overloads, so need explicit using
|
145 |
+
using TensorBase::size;
|
146 |
+
using TensorBase::sym_size;
|
147 |
+
using TensorBase::stride;
|
148 |
+
|
149 |
+
/// Should be used if *this can reasonably be expected to be contiguous and
|
150 |
+
/// performance is important.
|
151 |
+
/// Compared to contiguous, it saves a reference count
|
152 |
+
/// increment/decrement if *this is already contiguous, at the cost
|
153 |
+
/// in all cases of an extra pointer of stack usage, an extra branch
|
154 |
+
/// to access, and an extra branch at destruction time.
|
155 |
+
c10::MaybeOwned<Tensor> expect_contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) const &;
|
156 |
+
|
157 |
+
// Use .contiguous() instead. Trying to borrow from a prvalue Tensor
|
158 |
+
// will only lead to trouble and dangling references.
|
159 |
+
c10::MaybeOwned<Tensor> expect_contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) && = delete;
|
160 |
+
|
161 |
+
// The following overloads are very intruiging. Consider the following
|
162 |
+
// program:
|
163 |
+
//
|
164 |
+
// x[1] = 3;
|
165 |
+
//
|
166 |
+
// We would expect that the first entry of x is written to 3. But how can we
|
167 |
+
// actually achieve this? x[1] evaluates to a tensor...
|
168 |
+
//
|
169 |
+
// The answer is, using a ref-qualifier. x[1] is an rvalue, which cannot be
|
170 |
+
// (profitably) assigned to in the traditional sense, so we overload
|
171 |
+
// assignment to mean, "Actually, copy 3 into the tensor data." This is done
|
172 |
+
// with an rvalue-reference ref-qualified overload (the methods with && at the
|
173 |
+
// end of their type.)
|
174 |
+
//
|
175 |
+
// There's one more fly in the ointment: We also want
|
176 |
+
//
|
177 |
+
// Tensor x = y;
|
178 |
+
//
|
179 |
+
// to work, and we want it NOT to copy. So we need a traditional operator=
|
180 |
+
// overload. But we MUST specify a mutable lvalue ref-qualifier, to
|
181 |
+
// disambiguate the traditional overload from the rvalue-reference
|
182 |
+
// ref-qualified overload. Otherwise, it will be ambiguous, because
|
183 |
+
// a non ref-qualified method is eligible for all situations.
|
184 |
+
|
185 |
+
// Unfortunately, we have to write these constructors out manually
|
186 |
+
// to work around an MSVC bug:
|
187 |
+
// error C2580: 'at::Tensor &at::Tensor::operator =(const at::Tensor &) &':
|
188 |
+
// multiple versions of a defaulted special member functions are not allowed
|
189 |
+
// Tensor& operator=(const Tensor&) & = default;
|
190 |
+
// Tensor& operator=(Tensor&&) & = default;
|
191 |
+
|
192 |
+
// Also MSVC will wrongly issue the following warning with the aforementioned fix
|
193 |
+
// warning C4522: 'at::Tensor': multiple assignment operators specified
|
194 |
+
// Let's just skip the warning.
|
195 |
+
//
|
196 |
+
// TODO: temporarily disabled
|
197 |
+
|
198 |
+
Tensor& operator=(const TensorBase& x) & {
|
199 |
+
impl_ = x.getIntrusivePtr();
|
200 |
+
return *this;
|
201 |
+
}
|
202 |
+
Tensor& operator=(TensorBase&& x) & noexcept {
|
203 |
+
impl_ = x.unsafeReleaseIntrusivePtr();
|
204 |
+
return *this;
|
205 |
+
}
|
206 |
+
|
207 |
+
Tensor& operator=(const Tensor &x) & {
|
208 |
+
return operator=(static_cast<const TensorBase&>(x));
|
209 |
+
}
|
210 |
+
Tensor& operator=(Tensor &&x) & noexcept {
|
211 |
+
return operator=(static_cast<TensorBase&&>(x));
|
212 |
+
}
|
213 |
+
|
214 |
+
Tensor& operator=(const Scalar &v) && {
|
215 |
+
return fill_(v);
|
216 |
+
}
|
217 |
+
Tensor& operator=(const Tensor &rhs) && {
|
218 |
+
return copy_(rhs);
|
219 |
+
}
|
220 |
+
Tensor& operator=(Tensor&& rhs) && {
|
221 |
+
return copy_(rhs);
|
222 |
+
}
|
223 |
+
|
224 |
+
C10_DEPRECATED_MESSAGE("Tensor.type() is deprecated. Instead use Tensor.options(), which in many cases (e.g. in a constructor) is a drop-in replacement. If you were using data from type(), that is now available from Tensor itself, so instead of tensor.type().scalar_type(), use tensor.scalar_type() instead and instead of tensor.type().backend() use tensor.device().")
|
225 |
+
DeprecatedTypeProperties & type() const {
|
226 |
+
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
|
227 |
+
dispatchKeyToBackend(legacyExtractDispatchKey(key_set())),
|
228 |
+
scalar_type());
|
229 |
+
}
|
230 |
+
|
231 |
+
Tensor toType(ScalarType t) const {
|
232 |
+
return to(options().dtype(t), /*non_blocking*/ false, /*copy*/ false);
|
233 |
+
}
|
234 |
+
|
235 |
+
// TODO: Deprecate me
|
236 |
+
Tensor toBackend(Backend b) const {
|
237 |
+
return to(options().device(backendToDeviceType(b)).layout(layout_from_backend(b)), /*non_blocking*/ false, /*copy*/ false);
|
238 |
+
}
|
239 |
+
|
240 |
+
C10_DEPRECATED_MESSAGE("Tensor.is_variable() is deprecated; everything is a variable now. (If you want to assert that variable has been appropriately handled already, use at::impl::variable_excluded_from_dispatch())")
|
241 |
+
bool is_variable() const noexcept {
|
242 |
+
return !at::impl::variable_excluded_from_dispatch();
|
243 |
+
}
|
244 |
+
|
245 |
+
template<typename T>
|
246 |
+
C10_DEPRECATED_MESSAGE("Tensor.data<T>() is deprecated. Please use Tensor.data_ptr<T>() instead.")
|
247 |
+
T * data() const {
|
248 |
+
return data_ptr<T>();
|
249 |
+
}
|
250 |
+
|
251 |
+
template <typename T>
|
252 |
+
T item() const;
|
253 |
+
|
254 |
+
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
255 |
+
C10_DEPRECATED_MESSAGE("packed_accessor is deprecated, use packed_accessor32 or packed_accessor64 instead")
|
256 |
+
GenericPackedTensorAccessor<T,N,PtrTraits,index_t> packed_accessor() const & {
|
257 |
+
return generic_packed_accessor<T,N,PtrTraits,index_t>();
|
258 |
+
}
|
259 |
+
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
260 |
+
C10_DEPRECATED_MESSAGE("packed_accessor is deprecated, use packed_accessor32 or packed_accessor64 instead")
|
261 |
+
GenericPackedTensorAccessor<T,N,PtrTraits,index_t> packed_accessor() && = delete;
|
262 |
+
|
263 |
+
Tensor operator~() const {
|
264 |
+
return bitwise_not();
|
265 |
+
}
|
266 |
+
Tensor operator-() const {
|
267 |
+
return neg();
|
268 |
+
}
|
269 |
+
Tensor& operator+=(const Tensor & other) {
|
270 |
+
return add_(other);
|
271 |
+
}
|
272 |
+
Tensor& operator+=(const Scalar & other) {
|
273 |
+
return add_(other);
|
274 |
+
}
|
275 |
+
Tensor& operator-=(const Tensor & other) {
|
276 |
+
return sub_(other);
|
277 |
+
}
|
278 |
+
Tensor& operator-=(const Scalar & other) {
|
279 |
+
return sub_(other);
|
280 |
+
}
|
281 |
+
Tensor& operator*=(const Tensor & other) {
|
282 |
+
return mul_(other);
|
283 |
+
}
|
284 |
+
Tensor& operator*=(const Scalar & other) {
|
285 |
+
return mul_(other);
|
286 |
+
}
|
287 |
+
Tensor& operator/=(const Tensor & other) {
|
288 |
+
return div_(other);
|
289 |
+
}
|
290 |
+
Tensor& operator/=(const Scalar & other) {
|
291 |
+
return div_(other);
|
292 |
+
}
|
293 |
+
Tensor& operator&=(const Tensor & other) {
|
294 |
+
return bitwise_and_(other);
|
295 |
+
}
|
296 |
+
Tensor& operator|=(const Tensor & other) {
|
297 |
+
return bitwise_or_(other);
|
298 |
+
}
|
299 |
+
Tensor& operator^=(const Tensor & other) {
|
300 |
+
return bitwise_xor_(other);
|
301 |
+
}
|
302 |
+
Tensor operator[](const Scalar & index) const {
|
303 |
+
if (!index.isIntegral(false)) {
|
304 |
+
TORCH_CHECK_INDEX(false, "Can only index tensors with integral scalars");
|
305 |
+
}
|
306 |
+
return this->operator[](index.toLong());
|
307 |
+
}
|
308 |
+
Tensor operator[](const Tensor & index) const {
|
309 |
+
// These properties are checked in the Scalar constructor, but we already
|
310 |
+
// check them here to provide more useful diagnostics for the user.
|
311 |
+
if (!index.defined()) {
|
312 |
+
TORCH_CHECK_INDEX(false, "Can only index with tensors that are defined");
|
313 |
+
}
|
314 |
+
if (index.dim() != 0) {
|
315 |
+
TORCH_CHECK_INDEX(false,
|
316 |
+
"Can only index with tensors that are scalars (zero-dim)");
|
317 |
+
}
|
318 |
+
// The Scalar(Tensor) constructor is explicit, so we need to call it.
|
319 |
+
return this->operator[](index.item());
|
320 |
+
}
|
321 |
+
Tensor operator[](int64_t index) const {
|
322 |
+
return select(0, index);
|
323 |
+
}
|
324 |
+
|
325 |
+
Tensor index(ArrayRef<at::indexing::TensorIndex> indices) const;
|
326 |
+
Tensor index(std::initializer_list<at::indexing::TensorIndex> indices) const;
|
327 |
+
|
328 |
+
Tensor & index_put_(ArrayRef<at::indexing::TensorIndex> indices, Tensor const & rhs);
|
329 |
+
Tensor & index_put_(ArrayRef<at::indexing::TensorIndex> indices, const Scalar& v);
|
330 |
+
Tensor & index_put_(std::initializer_list<at::indexing::TensorIndex> indices, Tensor const & rhs);
|
331 |
+
Tensor & index_put_(std::initializer_list<at::indexing::TensorIndex> indices, const Scalar& v);
|
332 |
+
|
333 |
+
Tensor cpu() const {
|
334 |
+
return to(options().device(c10::DeviceType::CPU), /*non_blocking*/ false, /*copy*/ false);
|
335 |
+
}
|
336 |
+
|
337 |
+
// TODO: The Python version also accepts arguments
|
338 |
+
Tensor cuda() const {
|
339 |
+
return to(options().device(c10::DeviceType::CUDA), /*non_blocking*/ false, /*copy*/ false);
|
340 |
+
}
|
341 |
+
|
342 |
+
Tensor hip() const {
|
343 |
+
return to(options().device(c10::DeviceType::HIP), /*non_blocking*/ false, /*copy*/ false);
|
344 |
+
}
|
345 |
+
|
346 |
+
Tensor ve() const {
|
347 |
+
return to(options().device(c10::DeviceType::VE), /*non_blocking*/ false, /*copy*/ false);
|
348 |
+
}
|
349 |
+
|
350 |
+
Tensor vulkan() const {
|
351 |
+
return to(options().device(c10::DeviceType::Vulkan), /*non_blocking*/ false, /*copy*/ false);
|
352 |
+
}
|
353 |
+
|
354 |
+
Tensor metal() const {
|
355 |
+
return to(options().device(c10::DeviceType::Metal), /*non_blocking*/ false, /*copy*/ false);
|
356 |
+
}
|
357 |
+
|
358 |
+
Tensor meta() const {
|
359 |
+
return to(options().device(c10::DeviceType::Meta), /*non_blocking*/ false, /*copy*/ false);
|
360 |
+
}
|
361 |
+
|
362 |
+
// ~~~~~ Autograd API ~~~~~
|
363 |
+
|
364 |
+
/// \fn bool is_leaf() const;
|
365 |
+
///
|
366 |
+
/// All Tensors that have `requires_grad()` which is ``false`` will be leaf Tensors by convention.
|
367 |
+
///
|
368 |
+
/// For Tensors that have `requires_grad()` which is ``true``, they will be leaf Tensors if they were
|
369 |
+
/// created by the user. This means that they are not the result of an operation and so
|
370 |
+
/// `grad_fn()` is `nullptr`.
|
371 |
+
///
|
372 |
+
/// Only leaf Tensors will have their `grad()` populated during a call to `backward()`.
|
373 |
+
/// To get `grad()` populated for non-leaf Tensors, you can use `retain_grad()`.
|
374 |
+
///
|
375 |
+
/// Example:
|
376 |
+
/// @code
|
377 |
+
/// auto a = torch::rand(10, torch::requires_grad());
|
378 |
+
/// std::cout << a.is_leaf() << std::endl; // prints `true`
|
379 |
+
///
|
380 |
+
/// auto b = torch::rand(10, torch::requires_grad()).to(torch::kCUDA);
|
381 |
+
/// std::cout << b.is_leaf() << std::endl; // prints `false`
|
382 |
+
/// // b was created by the operation that cast a cpu Tensor into a cuda Tensor
|
383 |
+
///
|
384 |
+
/// auto c = torch::rand(10, torch::requires_grad()) + 2;
|
385 |
+
/// std::cout << c.is_leaf() << std::endl; // prints `false`
|
386 |
+
/// // c was created by the addition operation
|
387 |
+
///
|
388 |
+
/// auto d = torch::rand(10).cuda();
|
389 |
+
/// std::cout << d.is_leaf() << std::endl; // prints `true`
|
390 |
+
/// // d does not require gradients and so has no operation creating it (that is tracked by the autograd engine)
|
391 |
+
///
|
392 |
+
/// auto e = torch::rand(10).cuda().requires_grad_();
|
393 |
+
/// std::cout << e.is_leaf() << std::endl; // prints `true`
|
394 |
+
/// // e requires gradients and has no operations creating it
|
395 |
+
///
|
396 |
+
/// auto f = torch::rand(10, torch::device(torch::kCUDA).requires_grad(true));
|
397 |
+
/// std::cout << f.is_leaf() << std::endl; // prints `true`
|
398 |
+
/// // f requires grad, has no operation creating it
|
399 |
+
/// @endcode
|
400 |
+
|
401 |
+
/// \fn void backward(const Tensor & gradient={}, c10::optional<bool> retain_graph=c10::nullopt, bool create_graph=false, c10::optional<TensorList> inputs=c10::nullopt) const;
|
402 |
+
///
|
403 |
+
/// Computes the gradient of current tensor with respect to graph leaves.
|
404 |
+
///
|
405 |
+
/// The graph is differentiated using the chain rule. If the tensor is
|
406 |
+
/// non-scalar (i.e. its data has more than one element) and requires
|
407 |
+
/// gradient, the function additionally requires specifying ``gradient``.
|
408 |
+
/// It should be a tensor of matching type and location, that contains
|
409 |
+
/// the gradient of the differentiated function w.r.t. this Tensor.
|
410 |
+
///
|
411 |
+
/// This function accumulates gradients in the leaves - you might need to
|
412 |
+
/// zero them before calling it.
|
413 |
+
///
|
414 |
+
/// \param gradient Gradient w.r.t. the
|
415 |
+
/// tensor. If it is a tensor, it will be automatically converted
|
416 |
+
/// to a Tensor that does not require grad unless ``create_graph`` is True.
|
417 |
+
/// None values can be specified for scalar Tensors or ones that
|
418 |
+
/// don't require grad. If a None value would be acceptable then
|
419 |
+
/// this argument is optional.
|
420 |
+
/// \param retain_graph If ``false``, the graph used to compute
|
421 |
+
/// the grads will be freed. Note that in nearly all cases setting
|
422 |
+
/// this option to True is not needed and often can be worked around
|
423 |
+
/// in a much more efficient way. Defaults to the value of
|
424 |
+
/// ``create_graph``.
|
425 |
+
/// \param create_graph If ``true``, graph of the derivative will
|
426 |
+
/// be constructed, allowing to compute higher order derivative
|
427 |
+
/// products. Defaults to ``false``.
|
428 |
+
/// \param inputs Inputs w.r.t. which the gradient will be accumulated into
|
429 |
+
/// ``at::Tensor::grad``. All other Tensors will be ignored. If not
|
430 |
+
/// provided, the gradient is accumulated into all the leaf Tensors
|
431 |
+
/// that were used to compute the current tensor.
|
432 |
+
/// When inputs are provided and a given input is not a leaf,
|
433 |
+
/// the current implementation will call its grad_fn (even though it is not strictly needed to get this gradients).
|
434 |
+
/// It is an implementation detail on which the user should not rely.
|
435 |
+
/// See https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for more details.
|
436 |
+
void backward(const Tensor & gradient={}, c10::optional<bool> retain_graph=c10::nullopt, bool create_graph=false, c10::optional<TensorList> inputs=c10::nullopt) const {
|
437 |
+
// NB: Adding this wrapper to _backward here because we'd like our
|
438 |
+
// 'backwards' api to accept the 'inputs' argument optionally. Since code gen
|
439 |
+
// currently does not support optional of TensorList our approach is to replace
|
440 |
+
// backward in native_functions.yaml with _backward and call it here instead.
|
441 |
+
if (inputs.has_value()) {
|
442 |
+
TORCH_CHECK(inputs.value().size() > 0, "'inputs' argument to backward cannot be empty")
|
443 |
+
this->_backward(inputs.value(), gradient, retain_graph, create_graph);
|
444 |
+
} else {
|
445 |
+
this->_backward({}, gradient, retain_graph, create_graph);
|
446 |
+
}
|
447 |
+
}
|
448 |
+
|
449 |
+
/// \fn Tensor detach() const;
|
450 |
+
///
|
451 |
+
/// Returns a new Tensor, detached from the current graph.
|
452 |
+
/// The result will never require gradient.
|
453 |
+
|
454 |
+
/// \fn Tensor & detach_() const;
|
455 |
+
///
|
456 |
+
/// Detaches the Tensor from the graph that created it, making it a leaf.
|
457 |
+
/// Views cannot be detached in-place.
|
458 |
+
|
459 |
+
/// \fn void retain_grad() const;
|
460 |
+
///
|
461 |
+
/// Enables this Tensor to have their :attr:`grad` populated during
|
462 |
+
/// :func:`backward`. This is a no-op for leaf tensors.
|
463 |
+
|
464 |
+
/// \fn bool retains_grad() const;
|
465 |
+
///
|
466 |
+
/// Is ``true`` if this Tensor is non-leaf and its :attr:`grad` is enabled to be
|
467 |
+
/// populated during :func:`backward`, ``false`` otherwise.
|
468 |
+
|
469 |
+
const Tensor& set_requires_grad(bool requires_grad) const {
|
470 |
+
TensorBase::set_requires_grad(requires_grad);
|
471 |
+
return *this;
|
472 |
+
}
|
473 |
+
|
474 |
+
/// Return a mutable reference to the gradient. This is conventionally
|
475 |
+
/// used as `t.grad() = x` to set a gradient to a completely new tensor.
|
476 |
+
/// Note that this function work with a non-const Tensor and is not
|
477 |
+
/// thread safe.
|
478 |
+
Tensor& mutable_grad() const {
|
479 |
+
return impl_->mutable_grad();
|
480 |
+
}
|
481 |
+
|
482 |
+
/// This function returns an undefined tensor by default and returns a defined tensor
|
483 |
+
/// the first time a call to `backward()` computes gradients for this Tensor.
|
484 |
+
/// The attribute will then contain the gradients computed and future calls
|
485 |
+
/// to `backward()` will accumulate (add) gradients into it.
|
486 |
+
const Tensor& grad() const {
|
487 |
+
const Tensor& maybe_grad = impl_->grad();
|
488 |
+
if (!is_leaf() && !retains_grad() && !maybe_grad.defined()) {
|
489 |
+
TORCH_WARN(
|
490 |
+
"The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad "
|
491 |
+
"attribute won't be populated during autograd.backward(). If you indeed want the .grad "
|
492 |
+
"field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. "
|
493 |
+
"If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor "
|
494 |
+
"instead. See github.com/pytorch/pytorch/pull/30531 for more informations.");
|
495 |
+
}
|
496 |
+
return maybe_grad;
|
497 |
+
}
|
498 |
+
|
499 |
+
// The Forward AD API functions below are low level and are not to be used by end
|
500 |
+
// users who should use the API provided in torch/csrc/autograd.h
|
501 |
+
|
502 |
+
/// This function returns the forward gradient for this Tensor at the given level.
|
503 |
+
const Tensor& _fw_grad(uint64_t level) const {
|
504 |
+
return impl_->_fw_grad(level, *this);
|
505 |
+
}
|
506 |
+
|
507 |
+
/// This function can be used to set the value of the forward grad.
|
508 |
+
/// Note that the given new_grad might not be used directly if it has different
|
509 |
+
/// metadata (size/stride/storage offset) compared to this Tensor. In that case,
|
510 |
+
/// new_grad content will be copied into a new Tensor
|
511 |
+
void _set_fw_grad(const TensorBase& new_grad, uint64_t level, bool is_inplace_op) const {
|
512 |
+
impl_->_set_fw_grad(new_grad, *this, level, is_inplace_op);
|
513 |
+
}
|
514 |
+
|
515 |
+
|
516 |
+
// STOP. Thinking of adding a method here, which only makes use
|
517 |
+
// of other ATen methods? Define it in native_functions.yaml.
|
518 |
+
|
519 |
+
//example
|
520 |
+
//Tensor * add(Tensor & b);
|
521 |
+
${tensor_method_declarations}
|
522 |
+
|
523 |
+
// Special C++ only overloads for std()-like functions (See gh-40287)
|
524 |
+
// These are needed because int -> bool conversion takes precedence over int -> IntArrayRef
|
525 |
+
// So, for example std(0) would select the std(unbiased=False) overload
|
526 |
+
|
527 |
+
Tensor var(int dim) const {
|
528 |
+
return var(IntArrayRef{dim});
|
529 |
+
}
|
530 |
+
|
531 |
+
Tensor std(int dim) const {
|
532 |
+
return std(IntArrayRef{dim});
|
533 |
+
}
|
534 |
+
|
535 |
+
// We changed .dtype() to return a TypeMeta in #12766. Ideally, we want the
|
536 |
+
// at::kDouble and its friends to be TypeMeta's, but that hasn't happened yet.
|
537 |
+
// Before that change, we make this method to maintain BC for C++ usage like
|
538 |
+
// `x.to(y.dtype)`.
|
539 |
+
// TODO: remove following two after at::kDouble and its friends are TypeMeta's.
|
540 |
+
inline Tensor to(caffe2::TypeMeta type_meta, bool non_blocking=false, bool copy=false) const {
|
541 |
+
return this->to(/*scalar_type=*/typeMetaToScalarType(type_meta), non_blocking, copy);
|
542 |
+
}
|
543 |
+
inline Tensor to(Device device, caffe2::TypeMeta type_meta, bool non_blocking=false, bool copy=false) const {
|
544 |
+
return this->to(device, /*scalar_type=*/typeMetaToScalarType(type_meta), non_blocking, copy);
|
545 |
+
}
|
546 |
+
|
547 |
+
template <typename F, typename... Args>
|
548 |
+
decltype(auto) m(F func, Args&&... params) const {
|
549 |
+
return func(*this, std::forward<Args>(params)...);
|
550 |
+
}
|
551 |
+
|
552 |
+
/// NOTE: This is similar to the legacy `.data()` function on `Variable`, and is intended
|
553 |
+
/// to be used from functions that need to access the `Variable`'s equivalent `Tensor`
|
554 |
+
/// (i.e. `Tensor` that shares the same storage and tensor metadata with the `Variable`).
|
555 |
+
///
|
556 |
+
/// One notable difference with the legacy `.data()` function is that changes to the
|
557 |
+
/// returned `Tensor`'s tensor metadata (e.g. sizes / strides / storage / storage_offset)
|
558 |
+
/// will not update the original `Variable`, due to the fact that this function
|
559 |
+
/// shallow-copies the `Variable`'s underlying TensorImpl.
|
560 |
+
at::Tensor tensor_data() const {
|
561 |
+
return TensorBase::tensor_data();
|
562 |
+
}
|
563 |
+
|
564 |
+
/// NOTE: `var.variable_data()` in C++ has the same semantics as `tensor.data`
|
565 |
+
/// in Python, which create a new `Variable` that shares the same storage and
|
566 |
+
/// tensor metadata with the original `Variable`, but with a completely new
|
567 |
+
/// autograd history.
|
568 |
+
///
|
569 |
+
/// NOTE: If we change the tensor metadata (e.g. sizes / strides /
|
570 |
+
/// storage / storage_offset) of a variable created from `var.variable_data()`, those
|
571 |
+
/// changes will not update the original variable `var`. In `.variable_data()`, we set
|
572 |
+
/// `allow_tensor_metadata_change_` to false to make such changes explicitly illegal,
|
573 |
+
/// in order to prevent users from changing metadata of `var.variable_data()`
|
574 |
+
/// and expecting the original variable `var` to also be updated.
|
575 |
+
at::Tensor variable_data() const {
|
576 |
+
return TensorBase::variable_data();
|
577 |
+
}
|
578 |
+
|
579 |
+
// Hooks
|
580 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
581 |
+
|
582 |
+
template <typename T>
|
583 |
+
using hook_return_void_t = std::enable_if_t<std::is_void<typename c10::invoke_result_t<T&, Tensor>>::value, unsigned>;
|
584 |
+
template <typename T>
|
585 |
+
using hook_return_var_t = std::enable_if_t<std::is_same<typename c10::invoke_result_t<T&, Tensor>, Tensor>::value, unsigned>;
|
586 |
+
|
587 |
+
/// Registers a backward hook.
|
588 |
+
///
|
589 |
+
/// The hook will be called every time a gradient with respect to the Tensor is computed.
|
590 |
+
/// The hook should have one of the following signature:
|
591 |
+
/// ```
|
592 |
+
/// hook(Tensor grad) -> Tensor
|
593 |
+
/// ```
|
594 |
+
/// ```
|
595 |
+
/// hook(Tensor grad) -> void
|
596 |
+
/// ```
|
597 |
+
/// The hook should not modify its argument, but it can optionally return a new gradient
|
598 |
+
/// which will be used in place of `grad`.
|
599 |
+
///
|
600 |
+
/// This function returns the index of the hook in the list which can be used to remove hook.
|
601 |
+
///
|
602 |
+
/// Example:
|
603 |
+
/// @code
|
604 |
+
/// auto v = torch::tensor({0., 0., 0.}, torch::requires_grad());
|
605 |
+
/// auto h = v.register_hook([](torch::Tensor grad){ return grad * 2; }); // double the gradient
|
606 |
+
/// v.backward(torch::tensor({1., 2., 3.}));
|
607 |
+
/// // This prints:
|
608 |
+
/// // ```
|
609 |
+
/// // 2
|
610 |
+
/// // 4
|
611 |
+
/// // 6
|
612 |
+
/// // [ CPUFloatType{3} ]
|
613 |
+
/// // ```
|
614 |
+
/// std::cout << v.grad() << std::endl;
|
615 |
+
/// v.remove_hook(h); // removes the hook
|
616 |
+
/// @endcode
|
617 |
+
template <typename T>
|
618 |
+
hook_return_void_t<T> register_hook(T&& hook) const;
|
619 |
+
template <typename T>
|
620 |
+
hook_return_var_t<T> register_hook(T&& hook) const;
|
621 |
+
|
622 |
+
// Variable methods
|
623 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
624 |
+
|
625 |
+
Tensor data() const {
|
626 |
+
return TensorBase::data();
|
627 |
+
}
|
628 |
+
|
629 |
+
void _backward(TensorList inputs, const c10::optional<Tensor>& gradient, c10::optional<bool> keep_graph, bool create_graph) const;
|
630 |
+
|
631 |
+
const Tensor& requires_grad_(bool _requires_grad=true) const {
|
632 |
+
TensorBase::requires_grad_(_requires_grad);
|
633 |
+
return *this;
|
634 |
+
}
|
635 |
+
};
|
636 |
+
|
637 |
+
namespace detail {
|
638 |
+
// Helper creator for Tensor class which doesn't requires the users to pass
|
639 |
+
// in an intrusive_ptr instead it just converts the argument passed to
|
640 |
+
// requested intrusive_ptr type.
|
641 |
+
template <typename T, typename... Args>
|
642 |
+
Tensor make_tensor(Args&&... args) {
|
643 |
+
return Tensor(c10::make_intrusive<T>(std::forward<Args>(args)...));
|
644 |
+
}
|
645 |
+
|
646 |
+
} // namespace detail
|
647 |
+
|
648 |
+
} // namespace at
|
649 |
+
|
650 |
+
|
651 |
+
namespace at {
|
652 |
+
${tensor_method_definitions}
|
653 |
+
} // namespace at
|
654 |
+
|
655 |
+
|
656 |
+
namespace c10 {
|
657 |
+
template <>
|
658 |
+
struct MaybeOwnedTraits<at::Tensor> {
|
659 |
+
using owned_type = at::Tensor;
|
660 |
+
using borrow_type = at::Tensor;
|
661 |
+
|
662 |
+
static borrow_type createBorrow(const owned_type& from) {
|
663 |
+
// NOTE: this can be implemented without the special
|
664 |
+
// unsafe_borrow_t Tensor constructor as
|
665 |
+
//
|
666 |
+
// return borrow_type(c10::intrusive_ptr<at::TensorImpl, at::UndefinedTensorImpl>::reclaim(from.unsafeGetTensorImpl()));
|
667 |
+
//
|
668 |
+
// but that hurts inlining due to the nullptr check in the
|
669 |
+
// Tensor(c10::intrusive_ptr<...>) constructor. We already know
|
670 |
+
// that from.impl_ isn't null because from is a valid Tensor, so
|
671 |
+
// we needn't do the check again. (using __builtin_assume can
|
672 |
+
// avoid this, but wouldn't be portable to MSVC.)
|
673 |
+
return borrow_type(borrow_type::unsafe_borrow_t{}, from);
|
674 |
+
}
|
675 |
+
|
676 |
+
static void assignBorrow(borrow_type& lhs, const borrow_type& rhs) {
|
677 |
+
lhs.unsafeReleaseTensorImpl();
|
678 |
+
// See above note: this can be implemented with public API
|
679 |
+
// similarly to createBorrow(), but that would hurt inlining.
|
680 |
+
lhs = borrow_type(borrow_type::unsafe_borrow_t{}, rhs);
|
681 |
+
}
|
682 |
+
|
683 |
+
static void destroyBorrow(borrow_type& toDestroy) {
|
684 |
+
toDestroy.unsafeReleaseTensorImpl(); // "leak" it, but it was already +0.
|
685 |
+
}
|
686 |
+
|
687 |
+
static const owned_type& referenceFromBorrow(const borrow_type& borrow) {
|
688 |
+
return borrow;
|
689 |
+
}
|
690 |
+
|
691 |
+
static const owned_type* pointerFromBorrow(const borrow_type& borrow) {
|
692 |
+
return &borrow;
|
693 |
+
}
|
694 |
+
|
695 |
+
static bool debugBorrowIsValid(const borrow_type& /*borrow*/) {
|
696 |
+
return true;
|
697 |
+
}
|
698 |
+
};
|
699 |
+
|
700 |
+
template <>
|
701 |
+
struct ExclusivelyOwnedTraits<at::Tensor> {
|
702 |
+
using repr_type = at::Tensor;
|
703 |
+
using pointer_type = at::Tensor*;
|
704 |
+
using const_pointer_type = const at::Tensor*;
|
705 |
+
|
706 |
+
static repr_type nullRepr() {
|
707 |
+
return at::Tensor();
|
708 |
+
}
|
709 |
+
|
710 |
+
template <class... Args>
|
711 |
+
static repr_type createInPlace(Args&&... args) {
|
712 |
+
return at::Tensor(std::forward<Args>(args)...);
|
713 |
+
}
|
714 |
+
|
715 |
+
static repr_type moveToRepr(at::Tensor&& x) {
|
716 |
+
return std::move(x);
|
717 |
+
}
|
718 |
+
|
719 |
+
static void destroyOwned(at::Tensor& x) {
|
720 |
+
return ExclusivelyOwnedTraits<at::TensorBase>::destroyOwned(x);
|
721 |
+
}
|
722 |
+
|
723 |
+
static at::Tensor take(at::Tensor& x) {
|
724 |
+
return std::move(x);
|
725 |
+
}
|
726 |
+
|
727 |
+
static pointer_type getImpl(repr_type& x) {
|
728 |
+
return &x;
|
729 |
+
}
|
730 |
+
|
731 |
+
static const_pointer_type getImpl(const repr_type& x) {
|
732 |
+
return &x;
|
733 |
+
}
|
734 |
+
};
|
735 |
+
} // namespace c10
|
736 |
+
|
737 |
+
namespace at {
|
738 |
+
|
739 |
+
inline c10::MaybeOwned<Tensor> borrow_from_optional_tensor(
|
740 |
+
const c10::optional<Tensor>& opt) {
|
741 |
+
return opt.has_value()
|
742 |
+
? c10::MaybeOwned<Tensor>::borrowed(*opt)
|
743 |
+
: c10::MaybeOwned<Tensor>::owned(std::in_place);
|
744 |
+
}
|
745 |
+
|
746 |
+
inline c10::MaybeOwned<Tensor> Tensor::expect_contiguous(MemoryFormat memory_format) const & {
|
747 |
+
if (is_contiguous(memory_format)) {
|
748 |
+
return c10::MaybeOwned<Tensor>::borrowed(*this);
|
749 |
+
} else {
|
750 |
+
return c10::MaybeOwned<Tensor>::owned(__dispatch_contiguous(memory_format));
|
751 |
+
}
|
752 |
+
}
|
753 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/TensorMethods.cpp
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <c10/core/Scalar.h>
|
2 |
+
#include <ATen/core/TensorBody.h>
|
3 |
+
|
4 |
+
#include <c10/util/string_view.h>
|
5 |
+
|
6 |
+
namespace at {
|
7 |
+
|
8 |
+
namespace {
|
9 |
+
|
10 |
+
// Verifies the requested type is the same as the Tensor's type.
|
11 |
+
void check_type(const TensorBase& tensor, ScalarType type, c10::string_view type_name) {
|
12 |
+
TORCH_CHECK(
|
13 |
+
tensor.scalar_type() == type
|
14 |
+
|| (isQIntType(tensor.scalar_type())
|
15 |
+
&& toUnderlying(tensor.scalar_type()) == type),
|
16 |
+
"expected scalar type ", type_name, " but found ", tensor.scalar_type());
|
17 |
+
}
|
18 |
+
|
19 |
+
} // namespace
|
20 |
+
|
21 |
+
#define DEFINE_CAST(T, name) \
|
22 |
+
template <> \
|
23 |
+
TORCH_API const T* TensorBase::const_data_ptr() const { \
|
24 |
+
check_type(*this, ScalarType::name, #name); \
|
25 |
+
return this->unsafeGetTensorImpl()->data_ptr_impl<T>(); \
|
26 |
+
} \
|
27 |
+
\
|
28 |
+
template <> \
|
29 |
+
TORCH_API const T* TensorBase::const_data_ptr<const T>() const { \
|
30 |
+
check_type(*this, ScalarType::name, #name); \
|
31 |
+
return this->unsafeGetTensorImpl()->data_ptr_impl<std::remove_const_t<T>>(); \
|
32 |
+
} \
|
33 |
+
\
|
34 |
+
template <> \
|
35 |
+
TORCH_API T* TensorBase::mutable_data_ptr() const { \
|
36 |
+
check_type(*this, ScalarType::name, #name); \
|
37 |
+
return this->unsafeGetTensorImpl()->mutable_data_ptr_impl<T>(); \
|
38 |
+
} \
|
39 |
+
\
|
40 |
+
template <> \
|
41 |
+
TORCH_API T* TensorBase::data_ptr() const { \
|
42 |
+
return mutable_data_ptr<T>(); \
|
43 |
+
} \
|
44 |
+
|
45 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_CAST)
|
46 |
+
AT_FORALL_QINT_TYPES(DEFINE_CAST)
|
47 |
+
DEFINE_CAST(uint16_t, UInt16)
|
48 |
+
DEFINE_CAST(uint32_t, UInt32)
|
49 |
+
DEFINE_CAST(uint64_t, UInt64)
|
50 |
+
#undef DEFINE_CAST
|
51 |
+
|
52 |
+
#define DEFINE_ITEM(T, name) \
|
53 |
+
template <> \
|
54 |
+
TORCH_API T Tensor::item() const { \
|
55 |
+
return item().to##name(); \
|
56 |
+
}
|
57 |
+
|
58 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_ITEM)
|
59 |
+
#undef DEFINE_ITEM
|
60 |
+
|
61 |
+
} //namespace at
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/UfuncCPU.cpp
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#define TORCH_ASSERT_NO_OPERATORS
|
2 |
+
|
3 |
+
#include <ATen/native/DispatchStub.h>
|
4 |
+
#include <ATen/TensorIterator.h>
|
5 |
+
#include <ATen/TensorMeta.h>
|
6 |
+
|
7 |
+
namespace at {
|
8 |
+
|
9 |
+
// NB: this is explicitly copied here (via codegen) rather than
|
10 |
+
// included via NativeFunctions.h to avoid recompiling this file when
|
11 |
+
// NativeFunctions.h changes
|
12 |
+
namespace meta {
|
13 |
+
${meta_declaration}
|
14 |
+
}
|
15 |
+
|
16 |
+
namespace native {
|
17 |
+
${native_declaration}
|
18 |
+
${native_definitions}
|
19 |
+
}} // namespace at::native
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/UfuncCPUKernel.cpp
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#define TORCH_ASSERT_NO_OPERATORS
|
2 |
+
|
3 |
+
#include <ATen/native/ufunc/${name}.h>
|
4 |
+
#include <ATen/native/DispatchStub.h>
|
5 |
+
#include <ATen/TensorIterator.h>
|
6 |
+
#include <ATen/native/cpu/Loops.h>
|
7 |
+
#include <ATen/cpu/vec/vec.h>
|
8 |
+
#include <ATen/Dispatch.h>
|
9 |
+
#include <c10/core/Scalar.h>
|
10 |
+
|
11 |
+
namespace at {
|
12 |
+
namespace native {
|
13 |
+
${native_definitions}
|
14 |
+
}} // namespace at::native
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/UnboxingFunctions.h
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// ${generated_comment}
|
2 |
+
|
3 |
+
// Generated by tools/jit/gen_unboxing.py. This file declares code generated boxed C++ functions for operators,
|
4 |
+
// base off of native_functions.yaml (or similar yaml file with the same syntax). The definition of such a boxed
|
5 |
+
// function will pop out IValues from the stack then convert them into the correct C++ types based on given schema. This
|
6 |
+
// unboxing logic is an alternative to template-based metaprogramming unboxing.
|
7 |
+
|
8 |
+
#pragma once
|
9 |
+
|
10 |
+
#include <ATen/ATen.h>
|
11 |
+
namespace at {
|
12 |
+
namespace unboxing {
|
13 |
+
namespace {
|
14 |
+
|
15 |
+
template<typename T, size_t N>
|
16 |
+
std::array<T, N> as_array(const c10::List<c10::IValue>& list) {
|
17 |
+
std::array<T, N> res;
|
18 |
+
AT_ASSERT(list.size() == N);
|
19 |
+
std::vector<T> vec;
|
20 |
+
for (c10::IValue elem : list) {
|
21 |
+
vec.push_back(elem.to<T>());
|
22 |
+
}
|
23 |
+
std::copy(vec.begin(), vec.end(), res.begin());
|
24 |
+
return res;
|
25 |
+
}
|
26 |
+
} // namespace <anonymous>
|
27 |
+
using Stack = std::vector<c10::IValue>;
|
28 |
+
// Generated function declaration
|
29 |
+
${declarations}
|
30 |
+
|
31 |
+
} // namespace unboxing
|
32 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/enum_tag.h
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// ${generated_comment}
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
// Enum of valid tags obtained from the entries in tags.yaml
|
7 |
+
enum class Tag {
|
8 |
+
${enum_of_valid_tags}
|
9 |
+
};
|
10 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/BUILD.bazel
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
load("//:tools/bazel.bzl", "rules")
|
2 |
+
load(":build.bzl", "define_targets")
|
3 |
+
|
4 |
+
define_targets(rules = rules)
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
If you add a file to this directory, you **MUST** update
|
2 |
+
`torch/CMakeLists.txt` and add the file as a dependency to
|
3 |
+
the `add_custom_command` call.
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_annotated_fn_args.cpython-310.pyc
ADDED
Binary file (4.25 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/build.bzl
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def define_targets(rules):
|
2 |
+
rules.py_library(
|
3 |
+
name = "autograd",
|
4 |
+
srcs = rules.glob(["*.py"]),
|
5 |
+
data = rules.glob([
|
6 |
+
"*.yaml",
|
7 |
+
"templates/*",
|
8 |
+
]),
|
9 |
+
visibility = ["//:__subpackages__"],
|
10 |
+
deps = [
|
11 |
+
rules.requirement("PyYAML"),
|
12 |
+
"//torchgen",
|
13 |
+
],
|
14 |
+
)
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/context.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
from typing import Callable
|
3 |
+
|
4 |
+
from torchgen.api.autograd import NativeFunctionWithDifferentiabilityInfo as NFWDI
|
5 |
+
from torchgen.context import native_function_manager
|
6 |
+
from torchgen.utils import T
|
7 |
+
|
8 |
+
|
9 |
+
# Like tools.api.context.with_native_function, but for
|
10 |
+
# NativeFunctionWithDifferentiabilityInfo.
|
11 |
+
def with_native_function_with_differentiability_info(
|
12 |
+
func: Callable[[NFWDI], T]
|
13 |
+
) -> Callable[[NFWDI], T]:
|
14 |
+
@functools.wraps(func)
|
15 |
+
def wrapper(f: NFWDI) -> T:
|
16 |
+
with native_function_manager(f.func):
|
17 |
+
return func(f)
|
18 |
+
|
19 |
+
return wrapper
|
20 |
+
|
21 |
+
|
22 |
+
# Like the above but with an additional dispatch key string argument
|
23 |
+
def with_native_function_with_differentiability_info_and_key(
|
24 |
+
func: Callable[[NFWDI, str], T]
|
25 |
+
) -> Callable[[NFWDI, str], T]:
|
26 |
+
@functools.wraps(func)
|
27 |
+
def wrapper(f: NFWDI, key: str) -> T:
|
28 |
+
with native_function_manager(f.func):
|
29 |
+
return func(f, key)
|
30 |
+
|
31 |
+
return wrapper
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/deprecated.yaml
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Deprecated function signatures. These are exposed in Python, but not included
|
2 |
+
# in the error message suggestions.
|
3 |
+
|
4 |
+
- name: add(Tensor self, Scalar alpha, Tensor other) -> Tensor
|
5 |
+
aten: add(self, other, alpha)
|
6 |
+
|
7 |
+
- name: add_(Tensor(a!) self, Scalar alpha, Tensor other) -> Tensor(a!)
|
8 |
+
aten: add_(self, other, alpha)
|
9 |
+
|
10 |
+
- name: add(Tensor self, Scalar alpha, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
11 |
+
aten: add_out(out, self, other, alpha)
|
12 |
+
|
13 |
+
- name: addbmm(Scalar beta, Tensor self, Scalar alpha, Tensor batch1, Tensor batch2) -> Tensor
|
14 |
+
aten: addbmm(self, batch1, batch2, beta, alpha)
|
15 |
+
|
16 |
+
- name: addbmm_(Scalar beta, Tensor(a!) self, Scalar alpha, Tensor batch1, Tensor batch2) -> Tensor(a!)
|
17 |
+
aten: addbmm_(self, batch1, batch2, beta, alpha)
|
18 |
+
|
19 |
+
- name: addbmm(Scalar beta, Tensor self, Scalar alpha, Tensor batch1, Tensor batch2, *, Tensor(a!) out) -> Tensor(a!)
|
20 |
+
aten: addbmm_out(out, self, batch1, batch2, beta, alpha)
|
21 |
+
|
22 |
+
- name: addbmm(Scalar beta, Tensor self, Tensor batch1, Tensor batch2) -> Tensor
|
23 |
+
aten: addbmm(self, batch1, batch2, beta, 1)
|
24 |
+
|
25 |
+
- name: addbmm_(Scalar beta, Tensor(a!) self, Tensor batch1, Tensor batch2) -> Tensor(a!)
|
26 |
+
aten: addbmm_(self, batch1, batch2, beta, 1)
|
27 |
+
|
28 |
+
- name: addbmm(Scalar beta, Tensor self, Tensor batch1, Tensor batch2, *, Tensor(a!) out) -> Tensor(a!)
|
29 |
+
aten: addbmm_out(out, self, batch1, batch2, beta, 1)
|
30 |
+
|
31 |
+
- name: addcdiv(Tensor self, Scalar value, Tensor tensor1, Tensor tensor2) -> Tensor
|
32 |
+
aten: addcdiv(self, tensor1, tensor2, value)
|
33 |
+
|
34 |
+
- name: addcdiv_(Tensor(a!) self, Scalar value, Tensor tensor1, Tensor tensor2) -> Tensor(a!)
|
35 |
+
aten: addcdiv_(self, tensor1, tensor2, value)
|
36 |
+
|
37 |
+
- name: addcdiv(Tensor self, Scalar value, Tensor tensor1, Tensor tensor2, *, Tensor(a!) out) -> Tensor(a!)
|
38 |
+
aten: addcdiv_out(out, self, tensor1, tensor2, value)
|
39 |
+
|
40 |
+
- name: addcmul(Tensor self, Scalar value, Tensor tensor1, Tensor tensor2) -> Tensor
|
41 |
+
aten: addcmul(self, tensor1, tensor2, value)
|
42 |
+
|
43 |
+
- name: addcmul_(Tensor(a!) self, Scalar value, Tensor tensor1, Tensor tensor2) -> Tensor(a!)
|
44 |
+
aten: addcmul_(self, tensor1, tensor2, value)
|
45 |
+
|
46 |
+
- name: addcmul(Tensor self, Scalar value, Tensor tensor1, Tensor tensor2, *, Tensor(a!) out) -> Tensor(a!)
|
47 |
+
aten: addcmul_out(out, self, tensor1, tensor2, value)
|
48 |
+
|
49 |
+
- name: addmm(Scalar beta, Tensor self, Scalar alpha, Tensor mat1, Tensor mat2) -> Tensor
|
50 |
+
aten: addmm(self, mat1, mat2, beta, alpha)
|
51 |
+
|
52 |
+
- name: addmm_(Scalar beta, Tensor(a!) self, Scalar alpha, Tensor mat1, Tensor mat2) -> Tensor(a!)
|
53 |
+
aten: addmm_(self, mat1, mat2, beta, alpha)
|
54 |
+
|
55 |
+
- name: addmm(Scalar beta, Tensor self, Scalar alpha, Tensor mat1, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)
|
56 |
+
aten: addmm_out(out, self, mat1, mat2, beta, alpha)
|
57 |
+
|
58 |
+
- name: addmm(Scalar beta, Tensor self, Tensor mat1, Tensor mat2) -> Tensor
|
59 |
+
aten: addmm(self, mat1, mat2, beta, 1)
|
60 |
+
|
61 |
+
- name: addmm_(Scalar beta, Tensor(a!) self, Tensor mat1, Tensor mat2) -> Tensor(a!)
|
62 |
+
aten: addmm_(self, mat1, mat2, beta, 1)
|
63 |
+
|
64 |
+
- name: addmm(Scalar beta, Tensor self, Tensor mat1, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)
|
65 |
+
aten: addmm_out(out, self, mat1, mat2, beta, 1)
|
66 |
+
|
67 |
+
- name: sspaddmm(Scalar beta, Tensor self, Scalar alpha, Tensor mat1, Tensor mat2) -> Tensor
|
68 |
+
aten: sspaddmm(self, mat1, mat2, beta, alpha)
|
69 |
+
|
70 |
+
- name: sspaddmm(Scalar beta, Tensor self, Tensor mat1, Tensor mat2) -> Tensor
|
71 |
+
aten: sspaddmm(self, mat1, mat2, beta, 1)
|
72 |
+
|
73 |
+
- name: addmv(Scalar beta, Tensor self, Scalar alpha, Tensor mat, Tensor vec) -> Tensor
|
74 |
+
aten: addmv(self, mat, vec, beta, alpha)
|
75 |
+
|
76 |
+
- name: addmv_(Scalar beta, Tensor(a!) self, Scalar alpha, Tensor mat, Tensor vec) -> Tensor(a!)
|
77 |
+
aten: addmv_(self, mat, vec, beta, alpha)
|
78 |
+
|
79 |
+
- name: addmv(Scalar beta, Tensor self, Scalar alpha, Tensor mat, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
|
80 |
+
aten: addmv_out(out, self, mat, vec, beta, alpha)
|
81 |
+
|
82 |
+
- name: addmv(Scalar beta, Tensor self, Tensor mat, Tensor vec) -> Tensor
|
83 |
+
aten: addmv(self, mat, vec, beta, 1)
|
84 |
+
|
85 |
+
- name: addmv_(Scalar beta, Tensor(a!) self, Tensor mat, Tensor vec) -> Tensor(a!)
|
86 |
+
aten: addmv_(self, mat, vec, beta, 1)
|
87 |
+
|
88 |
+
- name: addmv(Scalar beta, Tensor self, Tensor mat, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
|
89 |
+
aten: addmv_out(out, self, mat, vec, beta, 1)
|
90 |
+
|
91 |
+
- name: addr(Scalar beta, Tensor self, Scalar alpha, Tensor vec1, Tensor vec2) -> Tensor
|
92 |
+
aten: addr(self, vec1, vec2, beta, alpha)
|
93 |
+
|
94 |
+
- name: addr_(Scalar beta, Tensor(a!) self, Scalar alpha, Tensor vec1, Tensor vec2) -> Tensor(a!)
|
95 |
+
aten: addr_(self, vec1, vec2, beta, alpha)
|
96 |
+
|
97 |
+
- name: addr(Scalar beta, Tensor self, Scalar alpha, Tensor vec1, Tensor vec2, *, Tensor(a!) out) -> Tensor(a!)
|
98 |
+
aten: addr_out(out, self, vec1, vec2, beta, alpha)
|
99 |
+
|
100 |
+
- name: addr(Scalar beta, Tensor self, Tensor vec1, Tensor vec2) -> Tensor
|
101 |
+
aten: addr(self, vec1, vec2, beta, 1)
|
102 |
+
|
103 |
+
- name: addr_(Scalar beta, Tensor(a!) self, Tensor vec1, Tensor vec2) -> Tensor(a!)
|
104 |
+
aten: addr_(self, vec1, vec2, beta, 1)
|
105 |
+
|
106 |
+
- name: addr(Scalar beta, Tensor self, Tensor vec1, Tensor vec2, *, Tensor(a!) out) -> Tensor(a!)
|
107 |
+
aten: addr_out(out, self, vec1, vec2, beta, 1)
|
108 |
+
|
109 |
+
- name: baddbmm(Scalar beta, Tensor self, Scalar alpha, Tensor batch1, Tensor batch2) -> Tensor
|
110 |
+
aten: baddbmm(self, batch1, batch2, beta, alpha)
|
111 |
+
|
112 |
+
- name: baddbmm_(Scalar beta, Tensor(a!) self, Scalar alpha, Tensor batch1, Tensor batch2) -> Tensor(a!)
|
113 |
+
aten: baddbmm_(self, batch1, batch2, beta, alpha)
|
114 |
+
|
115 |
+
- name: baddbmm(Scalar beta, Tensor self, Scalar alpha, Tensor batch1, Tensor batch2, *, Tensor(a!) out) -> Tensor(a!)
|
116 |
+
aten: baddbmm_out(out, self, batch1, batch2, beta, alpha)
|
117 |
+
|
118 |
+
- name: baddbmm(Scalar beta, Tensor self, Tensor batch1, Tensor batch2) -> Tensor
|
119 |
+
aten: baddbmm(self, batch1, batch2, beta, 1)
|
120 |
+
|
121 |
+
- name: baddbmm_(Scalar beta, Tensor(a!) self, Tensor batch1, Tensor batch2) -> Tensor(a!)
|
122 |
+
aten: baddbmm_(self, batch1, batch2, beta, 1)
|
123 |
+
|
124 |
+
- name: baddbmm(Scalar beta, Tensor self, Tensor batch1, Tensor batch2, *, Tensor(a!) out) -> Tensor(a!)
|
125 |
+
aten: baddbmm_out(out, self, batch1, batch2, beta, 1)
|
126 |
+
|
127 |
+
- name: sub(Tensor self, Scalar alpha, Tensor other) -> Tensor
|
128 |
+
aten: sub(self, other, alpha)
|
129 |
+
|
130 |
+
- name: sub_(Tensor(a!) self, Scalar alpha, Tensor other) -> Tensor(a!)
|
131 |
+
aten: sub_(self, other, alpha)
|
132 |
+
|
133 |
+
- name: sub(Tensor self, Scalar alpha, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
134 |
+
aten: sub_out(out, self, other, alpha)
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/derivatives.yaml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_annotated_fn_args.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
For procedural tests needed for __torch_function__, we use this function
|
3 |
+
to export method names and signatures as needed by the tests in
|
4 |
+
test/test_overrides.py.
|
5 |
+
|
6 |
+
python -m tools.autograd.gen_annotated_fn_args \
|
7 |
+
aten/src/ATen/native/native_functions.yaml \
|
8 |
+
aten/src/ATen/native/tags.yaml \
|
9 |
+
$OUTPUT_DIR \
|
10 |
+
tools/autograd
|
11 |
+
|
12 |
+
Where $OUTPUT_DIR is where you would like the files to be
|
13 |
+
generated. In the full build system, OUTPUT_DIR is
|
14 |
+
torch/testing/_internal/generated
|
15 |
+
"""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import os
|
19 |
+
import textwrap
|
20 |
+
from collections import defaultdict
|
21 |
+
|
22 |
+
from typing import Any, Dict, List, Sequence
|
23 |
+
|
24 |
+
import torchgen.api.python as python
|
25 |
+
from torchgen.context import with_native_function
|
26 |
+
|
27 |
+
from torchgen.gen import parse_native_yaml
|
28 |
+
from torchgen.model import Argument, BaseOperatorName, NativeFunction
|
29 |
+
from torchgen.utils import FileManager
|
30 |
+
|
31 |
+
from .gen_python_functions import (
|
32 |
+
is_py_fft_function,
|
33 |
+
is_py_linalg_function,
|
34 |
+
is_py_nn_function,
|
35 |
+
is_py_special_function,
|
36 |
+
is_py_torch_function,
|
37 |
+
is_py_variable_method,
|
38 |
+
should_generate_py_binding,
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
def gen_annotated(
|
43 |
+
native_yaml_path: str, tags_yaml_path: str, out: str, autograd_dir: str
|
44 |
+
) -> None:
|
45 |
+
native_functions = parse_native_yaml(
|
46 |
+
native_yaml_path, tags_yaml_path
|
47 |
+
).native_functions
|
48 |
+
mappings = (
|
49 |
+
(is_py_torch_function, "torch._C._VariableFunctions"),
|
50 |
+
(is_py_nn_function, "torch._C._nn"),
|
51 |
+
(is_py_linalg_function, "torch._C._linalg"),
|
52 |
+
(is_py_special_function, "torch._C._special"),
|
53 |
+
(is_py_fft_function, "torch._C._fft"),
|
54 |
+
(is_py_variable_method, "torch.Tensor"),
|
55 |
+
)
|
56 |
+
annotated_args: List[str] = []
|
57 |
+
for pred, namespace in mappings:
|
58 |
+
groups: Dict[BaseOperatorName, List[NativeFunction]] = defaultdict(list)
|
59 |
+
for f in native_functions:
|
60 |
+
if not should_generate_py_binding(f) or not pred(f):
|
61 |
+
continue
|
62 |
+
groups[f.func.name.name].append(f)
|
63 |
+
for group in groups.values():
|
64 |
+
for f in group:
|
65 |
+
annotated_args.append(f"{namespace}.{gen_annotated_args(f)}")
|
66 |
+
|
67 |
+
template_path = os.path.join(autograd_dir, "templates")
|
68 |
+
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
69 |
+
fm.write_with_template(
|
70 |
+
"annotated_fn_args.py",
|
71 |
+
"annotated_fn_args.py.in",
|
72 |
+
lambda: {
|
73 |
+
"annotated_args": textwrap.indent("\n".join(annotated_args), " "),
|
74 |
+
},
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
@with_native_function
|
79 |
+
def gen_annotated_args(f: NativeFunction) -> str:
|
80 |
+
def _get_kwargs_func_exclusion_list() -> List[str]:
|
81 |
+
# functions that currently don't work with kwargs in test_overrides.py
|
82 |
+
return [
|
83 |
+
"diagonal",
|
84 |
+
"round_",
|
85 |
+
"round",
|
86 |
+
"scatter_",
|
87 |
+
]
|
88 |
+
|
89 |
+
def _add_out_arg(
|
90 |
+
out_args: List[Dict[str, Any]], args: Sequence[Argument], *, is_kwarg_only: bool
|
91 |
+
) -> None:
|
92 |
+
for arg in args:
|
93 |
+
if arg.default is not None:
|
94 |
+
continue
|
95 |
+
out_arg: Dict[str, Any] = {}
|
96 |
+
out_arg["is_kwarg_only"] = str(is_kwarg_only)
|
97 |
+
out_arg["name"] = arg.name
|
98 |
+
out_arg["simple_type"] = python.argument_type_str(
|
99 |
+
arg.type, simple_type=True
|
100 |
+
)
|
101 |
+
size_t = python.argument_type_size(arg.type)
|
102 |
+
if size_t:
|
103 |
+
out_arg["size"] = size_t
|
104 |
+
out_args.append(out_arg)
|
105 |
+
|
106 |
+
out_args: List[Dict[str, Any]] = []
|
107 |
+
_add_out_arg(out_args, f.func.arguments.flat_positional, is_kwarg_only=False)
|
108 |
+
if f"{f.func.name.name}" not in _get_kwargs_func_exclusion_list():
|
109 |
+
_add_out_arg(out_args, f.func.arguments.flat_kwarg_only, is_kwarg_only=True)
|
110 |
+
|
111 |
+
return f"{f.func.name.name}: {repr(out_args)},"
|
112 |
+
|
113 |
+
|
114 |
+
def main() -> None:
|
115 |
+
parser = argparse.ArgumentParser(description="Generate annotated_fn_args script")
|
116 |
+
parser.add_argument(
|
117 |
+
"native_functions", metavar="NATIVE", help="path to native_functions.yaml"
|
118 |
+
)
|
119 |
+
parser.add_argument("tags", metavar="TAGS", help="path to tags.yaml")
|
120 |
+
parser.add_argument("out", metavar="OUT", help="path to output directory")
|
121 |
+
parser.add_argument(
|
122 |
+
"autograd", metavar="AUTOGRAD", help="path to template directory"
|
123 |
+
)
|
124 |
+
args = parser.parse_args()
|
125 |
+
gen_annotated(args.native_functions, args.tags, args.out, args.autograd)
|
126 |
+
|
127 |
+
|
128 |
+
if __name__ == "__main__":
|
129 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_autograd.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
To run this file by hand from the root of the PyTorch
|
3 |
+
repository, run:
|
4 |
+
|
5 |
+
python -m tools.autograd.gen_autograd \
|
6 |
+
aten/src/ATen/native/native_functions.yaml \
|
7 |
+
aten/src/ATen/native/tags.yaml \
|
8 |
+
$OUTPUT_DIR \
|
9 |
+
tools/autograd
|
10 |
+
|
11 |
+
Where $OUTPUT_DIR is where you would like the files to be
|
12 |
+
generated. In the full build system, OUTPUT_DIR is
|
13 |
+
torch/csrc/autograd/generated/
|
14 |
+
"""
|
15 |
+
|
16 |
+
# gen_autograd.py generates C++ autograd functions and Python bindings.
|
17 |
+
#
|
18 |
+
# It delegates to the following scripts:
|
19 |
+
#
|
20 |
+
# gen_autograd_functions.py: generates subclasses of torch::autograd::Node
|
21 |
+
# gen_variable_type.py: generates VariableType.h which contains all tensor methods
|
22 |
+
# gen_python_functions.py: generates Python bindings to THPVariable
|
23 |
+
#
|
24 |
+
|
25 |
+
import argparse
|
26 |
+
import os
|
27 |
+
from typing import List
|
28 |
+
|
29 |
+
from torchgen.api import cpp
|
30 |
+
from torchgen.api.autograd import (
|
31 |
+
match_differentiability_info,
|
32 |
+
NativeFunctionWithDifferentiabilityInfo,
|
33 |
+
)
|
34 |
+
from torchgen.gen import parse_native_yaml
|
35 |
+
from torchgen.selective_build.selector import SelectiveBuilder
|
36 |
+
|
37 |
+
from . import gen_python_functions
|
38 |
+
from .gen_autograd_functions import (
|
39 |
+
gen_autograd_functions_lib,
|
40 |
+
gen_autograd_functions_python,
|
41 |
+
)
|
42 |
+
from .gen_inplace_or_view_type import gen_inplace_or_view_type
|
43 |
+
from .gen_trace_type import gen_trace_type
|
44 |
+
from .gen_variable_factories import gen_variable_factories
|
45 |
+
from .gen_variable_type import gen_variable_type
|
46 |
+
from .gen_view_funcs import gen_view_funcs
|
47 |
+
from .load_derivatives import load_derivatives
|
48 |
+
|
49 |
+
|
50 |
+
def gen_autograd(
|
51 |
+
native_functions_path: str,
|
52 |
+
tags_path: str,
|
53 |
+
out: str,
|
54 |
+
autograd_dir: str,
|
55 |
+
operator_selector: SelectiveBuilder,
|
56 |
+
disable_autograd: bool = False,
|
57 |
+
) -> None:
|
58 |
+
# Parse and load derivatives.yaml
|
59 |
+
differentiability_infos, used_dispatch_keys = load_derivatives(
|
60 |
+
os.path.join(autograd_dir, "derivatives.yaml"), native_functions_path, tags_path
|
61 |
+
)
|
62 |
+
|
63 |
+
template_path = os.path.join(autograd_dir, "templates")
|
64 |
+
|
65 |
+
native_funcs = parse_native_yaml(native_functions_path, tags_path).native_functions
|
66 |
+
fns = sorted(
|
67 |
+
filter(
|
68 |
+
operator_selector.is_native_function_selected_for_training, native_funcs
|
69 |
+
),
|
70 |
+
key=lambda f: cpp.name(f.func),
|
71 |
+
)
|
72 |
+
fns_with_diff_infos: List[
|
73 |
+
NativeFunctionWithDifferentiabilityInfo
|
74 |
+
] = match_differentiability_info(fns, differentiability_infos)
|
75 |
+
|
76 |
+
# Generate VariableType.h/cpp
|
77 |
+
if not disable_autograd:
|
78 |
+
gen_variable_type(
|
79 |
+
out,
|
80 |
+
native_functions_path,
|
81 |
+
tags_path,
|
82 |
+
fns_with_diff_infos,
|
83 |
+
template_path,
|
84 |
+
used_dispatch_keys,
|
85 |
+
)
|
86 |
+
|
87 |
+
gen_inplace_or_view_type(
|
88 |
+
out, native_functions_path, tags_path, fns_with_diff_infos, template_path
|
89 |
+
)
|
90 |
+
|
91 |
+
# operator filter not applied as tracing sources are excluded in selective build
|
92 |
+
gen_trace_type(out, native_funcs, template_path)
|
93 |
+
# Generate Functions.h/cpp
|
94 |
+
gen_autograd_functions_lib(out, differentiability_infos, template_path)
|
95 |
+
|
96 |
+
# Generate variable_factories.h
|
97 |
+
gen_variable_factories(out, native_functions_path, tags_path, template_path)
|
98 |
+
|
99 |
+
# Generate ViewFuncs.h/cpp
|
100 |
+
gen_view_funcs(out, fns_with_diff_infos, template_path)
|
101 |
+
|
102 |
+
|
103 |
+
def gen_autograd_python(
|
104 |
+
native_functions_path: str,
|
105 |
+
tags_path: str,
|
106 |
+
out: str,
|
107 |
+
autograd_dir: str,
|
108 |
+
) -> None:
|
109 |
+
differentiability_infos, _ = load_derivatives(
|
110 |
+
os.path.join(autograd_dir, "derivatives.yaml"), native_functions_path, tags_path
|
111 |
+
)
|
112 |
+
|
113 |
+
template_path = os.path.join(autograd_dir, "templates")
|
114 |
+
|
115 |
+
# Generate Functions.h/cpp
|
116 |
+
gen_autograd_functions_python(out, differentiability_infos, template_path)
|
117 |
+
|
118 |
+
# Generate Python bindings
|
119 |
+
deprecated_path = os.path.join(autograd_dir, "deprecated.yaml")
|
120 |
+
gen_python_functions.gen(
|
121 |
+
out, native_functions_path, tags_path, deprecated_path, template_path
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
def main() -> None:
|
126 |
+
parser = argparse.ArgumentParser(description="Generate autograd C++ files script")
|
127 |
+
parser.add_argument(
|
128 |
+
"native_functions", metavar="NATIVE", help="path to native_functions.yaml"
|
129 |
+
)
|
130 |
+
parser.add_argument("tags", metavar="NATIVE", help="path to tags.yaml")
|
131 |
+
parser.add_argument("out", metavar="OUT", help="path to output directory")
|
132 |
+
parser.add_argument(
|
133 |
+
"autograd", metavar="AUTOGRAD", help="path to autograd directory"
|
134 |
+
)
|
135 |
+
args = parser.parse_args()
|
136 |
+
gen_autograd(
|
137 |
+
args.native_functions,
|
138 |
+
args.tags,
|
139 |
+
args.out,
|
140 |
+
args.autograd,
|
141 |
+
SelectiveBuilder.get_nop_selector(),
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
if __name__ == "__main__":
|
146 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_autograd_functions.py
ADDED
@@ -0,0 +1,912 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generates C++ autograd functions for the derivatives of ATen operations
|
2 |
+
#
|
3 |
+
# This writes two files:
|
4 |
+
# Functions.h/cpp: subclasses of autograd::Node
|
5 |
+
# python_functions.h/cpp: Python bindings for the above classes
|
6 |
+
#
|
7 |
+
from typing import Dict, List, Sequence, Tuple
|
8 |
+
|
9 |
+
from torchgen.api.autograd import (
|
10 |
+
Derivative,
|
11 |
+
DifferentiabilityInfo,
|
12 |
+
SavedAttribute,
|
13 |
+
uses_retain_variables,
|
14 |
+
uses_single_grad,
|
15 |
+
)
|
16 |
+
from torchgen.api.types import (
|
17 |
+
ArrayRefCType,
|
18 |
+
BaseCppType,
|
19 |
+
BaseCType,
|
20 |
+
Binding,
|
21 |
+
boolT,
|
22 |
+
doubleT,
|
23 |
+
intArrayRefT,
|
24 |
+
iTensorListRefT,
|
25 |
+
ListCType,
|
26 |
+
longT,
|
27 |
+
MutRefCType,
|
28 |
+
OptionalCType,
|
29 |
+
optionalIntArrayRefT,
|
30 |
+
optionalSymIntArrayRefT,
|
31 |
+
scalarT,
|
32 |
+
stringT,
|
33 |
+
symIntArrayRefT,
|
34 |
+
SymIntT,
|
35 |
+
TENSOR_LIST_LIKE_CTYPES,
|
36 |
+
tensorListT,
|
37 |
+
tensorT,
|
38 |
+
VectorCType,
|
39 |
+
)
|
40 |
+
from torchgen.code_template import CodeTemplate
|
41 |
+
from torchgen.model import Argument, FunctionSchema
|
42 |
+
from torchgen.utils import FileManager
|
43 |
+
|
44 |
+
from .gen_inplace_or_view_type import VIEW_FUNCTIONS
|
45 |
+
|
46 |
+
FUNCTION_DECLARATION = CodeTemplate(
|
47 |
+
"""\
|
48 |
+
#ifdef _WIN32
|
49 |
+
struct ${op} : public ${superclass} {
|
50 |
+
TORCH_API ${op}() = default;
|
51 |
+
#else
|
52 |
+
struct TORCH_API ${op} : public ${superclass} {
|
53 |
+
#endif
|
54 |
+
using ${superclass}::${superclass};
|
55 |
+
variable_list apply(variable_list&& grads) override;
|
56 |
+
std::string name() const override { return "${op}"; }
|
57 |
+
void release_variables() override {
|
58 |
+
${thread_lock}
|
59 |
+
${release_variables}
|
60 |
+
}
|
61 |
+
${will_release_variables}
|
62 |
+
void compiled_args(CompiledNodeArgs& args) override;
|
63 |
+
variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override;
|
64 |
+
${saved_variables}
|
65 |
+
${saved_list_sizes}
|
66 |
+
};
|
67 |
+
"""
|
68 |
+
)
|
69 |
+
|
70 |
+
WILL_RELEASE_VARIABLES = CodeTemplate(
|
71 |
+
"""\
|
72 |
+
bool retain_variables = true;
|
73 |
+
void will_release_variables() override {
|
74 |
+
retain_variables = false;
|
75 |
+
}
|
76 |
+
"""
|
77 |
+
)
|
78 |
+
|
79 |
+
FUNCTION_DEFINITION = CodeTemplate(
|
80 |
+
"""\
|
81 |
+
variable_list ${op}::apply(variable_list&& grads) {
|
82 |
+
${thread_lock}
|
83 |
+
${asserts}
|
84 |
+
IndexRangeGenerator gen;
|
85 |
+
${compute_index_ranges}
|
86 |
+
variable_list grad_inputs(gen.size());
|
87 |
+
${body}
|
88 |
+
return grad_inputs;
|
89 |
+
}
|
90 |
+
void ${op}::compiled_args(CompiledNodeArgs& args) {
|
91 |
+
${compiled_args}
|
92 |
+
}
|
93 |
+
variable_list ${op}::apply_with_saved(const variable_list& grads, SwapSavedVariables& saved) {
|
94 |
+
${apply_with_saved_before}
|
95 |
+
variable_list result = apply(variable_list(grads));
|
96 |
+
${apply_with_saved_after}
|
97 |
+
return result;
|
98 |
+
}
|
99 |
+
"""
|
100 |
+
)
|
101 |
+
|
102 |
+
GRAD_INPUT_MASK = CodeTemplate(
|
103 |
+
"""\
|
104 |
+
auto grad_input_mask = std::array<bool, ${n}>{
|
105 |
+
${masks}
|
106 |
+
};\
|
107 |
+
"""
|
108 |
+
)
|
109 |
+
|
110 |
+
DERIVATIVE_SINGLE = CodeTemplate(
|
111 |
+
"""\
|
112 |
+
if (task_should_compute_output({ ${name}_ix })) {
|
113 |
+
auto grad_result = ${derivative};
|
114 |
+
copy_range(grad_inputs, ${name}_ix, grad_result);
|
115 |
+
}
|
116 |
+
"""
|
117 |
+
)
|
118 |
+
|
119 |
+
# note(crcrpar): `self` argument and other optional positional argument
|
120 |
+
# of foreach functions are basically a list of n `Tensor`s thus iterating over
|
121 |
+
# `grads` in order to utilize and apply the existing derivative definitions
|
122 |
+
# to each `Tensor`(s) of `self`, and the others.
|
123 |
+
DERIVATIVE_SINGLE_FOREACH = CodeTemplate(
|
124 |
+
"""\
|
125 |
+
if (task_should_compute_output({ ${name}_ix })) {
|
126 |
+
std::vector<Tensor> grad_result;
|
127 |
+
grad_result.reserve(grads.size());
|
128 |
+
for (const auto & i : c10::irange(grads.size())) {
|
129 |
+
if (grads[i].defined()) {
|
130 |
+
grad_result.emplace_back(${derivative});
|
131 |
+
} else {
|
132 |
+
grad_result.emplace_back(Tensor());
|
133 |
+
}
|
134 |
+
}
|
135 |
+
copy_range(grad_inputs, ${name}_ix, grad_result);
|
136 |
+
}
|
137 |
+
"""
|
138 |
+
)
|
139 |
+
|
140 |
+
DERIVATIVE_MULTI_COPY_RANGE = CodeTemplate(
|
141 |
+
"""\
|
142 |
+
if (task_should_compute_output({ ${name}_ix })) {
|
143 |
+
copy_range(grad_inputs, ${name}_ix, std::get<${i}>(grad_result));
|
144 |
+
}
|
145 |
+
"""
|
146 |
+
)
|
147 |
+
|
148 |
+
DERIVATIVE_MULTI = CodeTemplate(
|
149 |
+
"""\
|
150 |
+
if (task_should_compute_output({ ${idx_ranges} })) {
|
151 |
+
${grad_input_mask}
|
152 |
+
auto grad_result = ${derivative};
|
153 |
+
${copy_ranges}
|
154 |
+
}
|
155 |
+
"""
|
156 |
+
)
|
157 |
+
|
158 |
+
# Generates python bindings
|
159 |
+
#
|
160 |
+
# This generates the definitions for:
|
161 |
+
# (1) The PyTypeObject for each backward grad_fn subclassing Node
|
162 |
+
# (2) The entry for PyTypeObject's tp_getset slot (an array of PyGetSetDef structs)
|
163 |
+
# We generate one PyGetSetDef struct for each of grad_fn's saved inputs and outputs
|
164 |
+
# Each PyGetSetDef has a function ptr to a getter, also defined here (3).
|
165 |
+
# (3) Getters for each of grad_fn's saved inputs and outputs.
|
166 |
+
#
|
167 |
+
PY_FUNCTION_DEFINITION = CodeTemplate(
|
168 |
+
"""\
|
169 |
+
static PyTypeObject ${op}Class;
|
170 |
+
addClass<${op}>(module, ${op}Class, "${op}", ${op}_properties);
|
171 |
+
"""
|
172 |
+
)
|
173 |
+
|
174 |
+
PY_FUNCTION_PROPS_AND_GETTERS = CodeTemplate(
|
175 |
+
"""\
|
176 |
+
${all_getter_definitions}
|
177 |
+
|
178 |
+
static struct PyGetSetDef ${op}_properties[] = {
|
179 |
+
THP_FUNCTION_DEFAULT_PROPERTIES,
|
180 |
+
${all_getsetdef_structs}
|
181 |
+
{nullptr} /* sentinel */
|
182 |
+
};
|
183 |
+
|
184 |
+
"""
|
185 |
+
)
|
186 |
+
|
187 |
+
PY_GETSETDEF_STRUCT = CodeTemplate(
|
188 |
+
"""\
|
189 |
+
{(char*)"_saved_${name}", (getter)THP${op}_${name}_getter, nullptr, nullptr, nullptr}"""
|
190 |
+
)
|
191 |
+
|
192 |
+
PY_RAW_GETSETDEF_STRUCT = CodeTemplate(
|
193 |
+
"""\
|
194 |
+
{(char*)"_raw_saved_${name}", (getter)THP${op}_${name}_raw_getter, nullptr, nullptr, nullptr}"""
|
195 |
+
)
|
196 |
+
|
197 |
+
# Getter templates
|
198 |
+
GETTER_DEFINITION = CodeTemplate(
|
199 |
+
"""\
|
200 |
+
PyObject* THP${op}_${name}_getter(THPCppFunction *self, void *_unused) {
|
201 |
+
HANDLE_TH_ERRORS
|
202 |
+
auto prop = static_cast<${op}*>(self->cdata.get())->${name};
|
203 |
+
${body}
|
204 |
+
END_HANDLE_TH_ERRORS
|
205 |
+
}
|
206 |
+
"""
|
207 |
+
)
|
208 |
+
|
209 |
+
GETTER_DEFINITION_SAVEDVAR = CodeTemplate(
|
210 |
+
"""\
|
211 |
+
PyObject* THP${op}_${name}_getter(THPCppFunction *self, void *_unused) {
|
212 |
+
HANDLE_TH_ERRORS
|
213 |
+
const auto& prop = static_cast<${op}*>(self->cdata.get())->${name}_;
|
214 |
+
${body}
|
215 |
+
END_HANDLE_TH_ERRORS
|
216 |
+
}
|
217 |
+
"""
|
218 |
+
)
|
219 |
+
|
220 |
+
GETTER_DEFINITION_RAW_SAVEDVAR = CodeTemplate(
|
221 |
+
"""\
|
222 |
+
PyObject* THP${op}_${name}_raw_getter(THPCppFunction *self, void *_unused) {
|
223 |
+
HANDLE_TH_ERRORS
|
224 |
+
const auto& prop = static_cast<${op}*>(self->cdata.get())->${name}_;
|
225 |
+
${body}
|
226 |
+
END_HANDLE_TH_ERRORS
|
227 |
+
}
|
228 |
+
"""
|
229 |
+
)
|
230 |
+
|
231 |
+
GETTER_DEFINITION_VEC_SAVEDVAR = CodeTemplate(
|
232 |
+
"""\
|
233 |
+
PyObject* THP${op}_${name}_getter(THPCppFunction *self, void *_unused) {
|
234 |
+
HANDLE_TH_ERRORS
|
235 |
+
const auto *node = static_cast<${op}*>(self->cdata.get());
|
236 |
+
const auto& prop = node->${name}_;
|
237 |
+
if (node->${name}_released_) {
|
238 |
+
PyErr_SetString(PyExc_RuntimeError, ERR_BACKWARD_TWICE);
|
239 |
+
return nullptr;
|
240 |
+
}
|
241 |
+
${body}
|
242 |
+
END_HANDLE_TH_ERRORS
|
243 |
+
}
|
244 |
+
"""
|
245 |
+
)
|
246 |
+
|
247 |
+
GETTER_DEFINITION_RAW_VEC_SAVEDVAR = CodeTemplate(
|
248 |
+
"""\
|
249 |
+
PyObject* THP${op}_${name}_raw_getter(THPCppFunction *self, void *_unused) {
|
250 |
+
HANDLE_TH_ERRORS
|
251 |
+
const auto *node = static_cast<${op}*>(self->cdata.get());
|
252 |
+
const auto& prop = node->${name}_;
|
253 |
+
if (node->${name}_released_) {
|
254 |
+
PyErr_SetString(PyExc_RuntimeError, ERR_BACKWARD_TWICE);
|
255 |
+
return nullptr;
|
256 |
+
}
|
257 |
+
${body}
|
258 |
+
END_HANDLE_TH_ERRORS
|
259 |
+
}
|
260 |
+
"""
|
261 |
+
)
|
262 |
+
|
263 |
+
GETTER_DEFINITION_OPT = CodeTemplate(
|
264 |
+
"""\
|
265 |
+
PyObject* THP${op}_${name}_getter(THPCppFunction *self, void *_unused) {
|
266 |
+
HANDLE_TH_ERRORS
|
267 |
+
auto opt_prop = static_cast<${op}*>(self->cdata.get())->${name};
|
268 |
+
if (!opt_prop.has_value()) {
|
269 |
+
Py_RETURN_NONE;
|
270 |
+
}
|
271 |
+
auto prop = opt_prop.value();
|
272 |
+
${body}
|
273 |
+
END_HANDLE_TH_ERRORS
|
274 |
+
}
|
275 |
+
"""
|
276 |
+
)
|
277 |
+
|
278 |
+
GETTER_DEFINITION_OPT_ARRAYREF = CodeTemplate(
|
279 |
+
"""\
|
280 |
+
PyObject* THP${op}_${name}_getter(THPCppFunction *self, void *_unused) {
|
281 |
+
HANDLE_TH_ERRORS
|
282 |
+
auto opt_prop = static_cast<${op}*>(self->cdata.get())->${name};
|
283 |
+
if (!opt_prop.list.has_value()) {
|
284 |
+
Py_RETURN_NONE;
|
285 |
+
}
|
286 |
+
auto prop = opt_prop.list.value();
|
287 |
+
${body}
|
288 |
+
END_HANDLE_TH_ERRORS
|
289 |
+
}
|
290 |
+
"""
|
291 |
+
)
|
292 |
+
|
293 |
+
# Getter body
|
294 |
+
GETTER_BODY_SAVEDVAR = """\
|
295 |
+
return THPVariable_Wrap(prop.unpack(self->cdata));
|
296 |
+
"""
|
297 |
+
|
298 |
+
GETTER_BODY_RAW_SAVEDVAR = """\
|
299 |
+
pybind11::object obj = pybind11::cast(prop, pybind11::return_value_policy::reference);
|
300 |
+
return obj.release().ptr();
|
301 |
+
"""
|
302 |
+
|
303 |
+
GETTER_BODY_VEC_SAVEDVAR = """\
|
304 |
+
PyObject* tup = PyTuple_New((Py_ssize_t) prop.size());
|
305 |
+
for (auto i: c10::irange(prop.size())) {
|
306 |
+
PyTuple_SetItem(tup, (Py_ssize_t) i, THPVariable_Wrap(prop[i].unpack(self->cdata)));
|
307 |
+
}
|
308 |
+
return tup;
|
309 |
+
"""
|
310 |
+
|
311 |
+
GETTER_BODY_RAW_VEC_SAVEDVAR = """\
|
312 |
+
PyObject* tup = PyTuple_New((Py_ssize_t) prop.size());
|
313 |
+
for (auto i : c10::irange(prop.size())) {
|
314 |
+
pybind11::object obj = pybind11::cast(prop[i], pybind11::return_value_policy::reference);
|
315 |
+
PyTuple_SetItem(tup, (Py_ssize_t) i, obj.release().ptr());
|
316 |
+
}
|
317 |
+
return tup;
|
318 |
+
"""
|
319 |
+
|
320 |
+
GETTER_BODY_ARRAYREF_LONG = """\
|
321 |
+
PyObject* tup = PyTuple_New((Py_ssize_t) prop.size());
|
322 |
+
for (auto i : c10::irange(prop.size())) {
|
323 |
+
PyTuple_SetItem(tup, (Py_ssize_t) i, PyLong_FromUnsignedLong((uint64_t) prop[i]));
|
324 |
+
}
|
325 |
+
return tup;
|
326 |
+
"""
|
327 |
+
|
328 |
+
GETTER_BODY_ARRAYREF_SYMINT = """\
|
329 |
+
PyObject* tup = PyTuple_New((Py_ssize_t) prop.size());
|
330 |
+
for (auto i : c10::irange(prop.size())) {
|
331 |
+
auto si = prop[i];
|
332 |
+
if (auto m = si.maybe_as_int()) {
|
333 |
+
PyTuple_SetItem(tup, (Py_ssize_t) i, PyLong_FromUnsignedLong(*m));
|
334 |
+
} else {
|
335 |
+
auto py_symint = py::cast(si).release().ptr();
|
336 |
+
PyTuple_SetItem(tup, (Py_ssize_t) i, py_symint);
|
337 |
+
}
|
338 |
+
}
|
339 |
+
return tup;
|
340 |
+
"""
|
341 |
+
|
342 |
+
GETTER_BODY_ARRAYREF_DOUBLE = """\
|
343 |
+
PyObject* tup = PyTuple_New((Py_ssize_t) prop.size());
|
344 |
+
for (auto i : c10::irange(prop.size())) {
|
345 |
+
PyTuple_SetItem(tup, (Py_ssize_t) i, PyFloat_FromDouble((double) prop[i]));
|
346 |
+
}
|
347 |
+
return tup;
|
348 |
+
"""
|
349 |
+
|
350 |
+
GETTER_BODY_INT64_T = """\
|
351 |
+
return PyLong_FromUnsignedLong((int64_t) prop);
|
352 |
+
"""
|
353 |
+
|
354 |
+
GETTER_BODY_SYMINT = """\
|
355 |
+
if (auto m = prop.maybe_as_int()) {
|
356 |
+
return PyLong_FromUnsignedLong(*m);
|
357 |
+
} else {
|
358 |
+
return py::cast(prop).release().ptr();
|
359 |
+
}
|
360 |
+
"""
|
361 |
+
|
362 |
+
GETTER_BODY_DOUBLE = """\
|
363 |
+
return PyFloat_FromDouble((double) prop);
|
364 |
+
"""
|
365 |
+
|
366 |
+
GETTER_BODY_BOOL = """\
|
367 |
+
if (prop) {
|
368 |
+
Py_RETURN_TRUE;
|
369 |
+
} else {
|
370 |
+
Py_RETURN_FALSE;
|
371 |
+
}
|
372 |
+
"""
|
373 |
+
|
374 |
+
GETTER_BODY_STRING = """\
|
375 |
+
return PyUnicode_FromStringAndSize(prop.data(), prop.size());
|
376 |
+
"""
|
377 |
+
|
378 |
+
GETTER_BODY_SCALAR = """\
|
379 |
+
if (prop.isComplex()) {
|
380 |
+
auto cprop = prop.to<c10::complex<double>>();
|
381 |
+
return PyComplex_FromDoubles(cprop.real(), cprop.imag());
|
382 |
+
} else if (prop.isFloatingPoint()) {
|
383 |
+
return PyFloat_FromDouble(prop.to<double>());
|
384 |
+
} else if (prop.isIntegral(/*includeBool=*/false)) {
|
385 |
+
return PyLong_FromLong(prop.to<int64_t>());
|
386 |
+
} else if (prop.isBoolean()) {
|
387 |
+
if (prop.to<bool>()) {
|
388 |
+
Py_RETURN_TRUE;
|
389 |
+
} else {
|
390 |
+
Py_RETURN_FALSE;
|
391 |
+
}
|
392 |
+
} else {
|
393 |
+
PyErr_SetString(PyExc_RuntimeError, "Unknown scalar type");
|
394 |
+
return nullptr;
|
395 |
+
}
|
396 |
+
"""
|
397 |
+
|
398 |
+
|
399 |
+
GETTER_BODY_VEC_SCALAR = """\
|
400 |
+
PyObject* tup = PyTuple_New((Py_ssize_t) prop.size());
|
401 |
+
for (auto i: c10::irange(prop.size())) {
|
402 |
+
if (prop[i].isComplex()) {
|
403 |
+
auto cprop = prop[i].to<c10::complex<double>>();
|
404 |
+
PyTuple_SetItem(tup, (Py_ssize_t) i, PyComplex_FromDoubles(cprop.real(), cprop.imag()));
|
405 |
+
} else if (prop[i].isFloatingPoint()) {
|
406 |
+
auto double_prop = prop[i].to<double>();
|
407 |
+
PyTuple_SetItem(tup, (Py_ssize_t) i, PyFloat_FromDouble(double_prop));
|
408 |
+
} else if (prop[i].isIntegral(/*includeBool=*/false)) {
|
409 |
+
auto long_prop = prop[i].to<int64_t>();
|
410 |
+
PyTuple_SetItem(tup, (Py_ssize_t) i, PyLong_FromLong(long_prop));
|
411 |
+
} else if (prop[i].isBoolean()) {
|
412 |
+
if (prop[i].to<bool>()) {
|
413 |
+
PyTuple_SetItem(tup, (Py_ssize_t) i, Py_True);
|
414 |
+
} else {
|
415 |
+
PyTuple_SetItem(tup, (Py_ssize_t) i, Py_False);
|
416 |
+
}
|
417 |
+
} else {
|
418 |
+
PyErr_SetString(PyExc_RuntimeError, "Unknown scalar type");
|
419 |
+
return nullptr;
|
420 |
+
}
|
421 |
+
}
|
422 |
+
return tup;
|
423 |
+
"""
|
424 |
+
|
425 |
+
|
426 |
+
MISC_GETTER_DEFS = {
|
427 |
+
OptionalCType(BaseCType(longT)): (GETTER_DEFINITION_OPT, GETTER_BODY_INT64_T),
|
428 |
+
OptionalCType(BaseCType(SymIntT)): (GETTER_DEFINITION_OPT, GETTER_BODY_SYMINT),
|
429 |
+
BaseCType(doubleT): (GETTER_DEFINITION, GETTER_BODY_DOUBLE),
|
430 |
+
OptionalCType(BaseCType(doubleT)): (GETTER_DEFINITION_OPT, GETTER_BODY_DOUBLE),
|
431 |
+
BaseCType(boolT): (GETTER_DEFINITION, GETTER_BODY_BOOL),
|
432 |
+
BaseCType(scalarT): (GETTER_DEFINITION, GETTER_BODY_SCALAR),
|
433 |
+
OptionalCType(BaseCType(scalarT)): (GETTER_DEFINITION_OPT, GETTER_BODY_SCALAR),
|
434 |
+
}
|
435 |
+
|
436 |
+
# These functions have backwards which cannot be traced, and so must have
|
437 |
+
# their backward functions traced opaquely.
|
438 |
+
# VIEW_FUNCTIONS are not traceable because they use as_strided, which
|
439 |
+
# has an untraceable backwards, see
|
440 |
+
# https://github.com/pytorch/pytorch/issues/4250
|
441 |
+
# TODO: This is probably not exhaustive, but it's a start
|
442 |
+
UNTRACEABLE_FUNCTIONS = VIEW_FUNCTIONS
|
443 |
+
|
444 |
+
|
445 |
+
def get_infos_with_derivatives_list(
|
446 |
+
differentiability_infos: Dict[FunctionSchema, Dict[str, DifferentiabilityInfo]]
|
447 |
+
) -> List[DifferentiabilityInfo]:
|
448 |
+
diff_info_list = [
|
449 |
+
info
|
450 |
+
for diffinfo_dict in differentiability_infos.values()
|
451 |
+
for info in diffinfo_dict.values()
|
452 |
+
]
|
453 |
+
|
454 |
+
return list(filter(lambda info: info.args_with_derivatives, diff_info_list))
|
455 |
+
|
456 |
+
|
457 |
+
def gen_autograd_functions_lib(
|
458 |
+
out: str,
|
459 |
+
differentiability_infos: Dict[FunctionSchema, Dict[str, DifferentiabilityInfo]],
|
460 |
+
template_path: str,
|
461 |
+
) -> None:
|
462 |
+
"""Functions.h and Functions.cpp body
|
463 |
+
|
464 |
+
These contain the auto-generated subclasses of torch::autograd::Node
|
465 |
+
for each every differentiable torch function.
|
466 |
+
"""
|
467 |
+
|
468 |
+
# get a 1D list of diffinfos, we do not need them to be per FunctionSchema/DispatchKey here
|
469 |
+
# infos with the diff dispatchkeys but the same name will still be in the same shard.
|
470 |
+
infos = get_infos_with_derivatives_list(differentiability_infos)
|
471 |
+
declarations = [process_function(f, FUNCTION_DECLARATION) for f in infos]
|
472 |
+
definitions = [process_function(f, FUNCTION_DEFINITION) for f in infos]
|
473 |
+
|
474 |
+
file_basename = "Functions"
|
475 |
+
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
476 |
+
for suffix in [".h", ".cpp"]:
|
477 |
+
fname = file_basename + suffix
|
478 |
+
fm.write_with_template(
|
479 |
+
fname,
|
480 |
+
fname,
|
481 |
+
lambda: {
|
482 |
+
"generated_comment": "@"
|
483 |
+
+ f"generated from {fm.template_dir_for_comments()}/"
|
484 |
+
+ fname,
|
485 |
+
"autograd_function_declarations": declarations,
|
486 |
+
"autograd_function_definitions": definitions,
|
487 |
+
},
|
488 |
+
)
|
489 |
+
|
490 |
+
|
491 |
+
def gen_autograd_functions_python(
|
492 |
+
out: str,
|
493 |
+
differentiability_infos: Dict[FunctionSchema, Dict[str, DifferentiabilityInfo]],
|
494 |
+
template_path: str,
|
495 |
+
) -> None:
|
496 |
+
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
497 |
+
num_shards = 5
|
498 |
+
fm.write(
|
499 |
+
"python_functions.h",
|
500 |
+
lambda: {
|
501 |
+
"generated_comment": "@"
|
502 |
+
+ f"generated from {fm.template_dir_for_comments()}/python_functions.h",
|
503 |
+
"shard_forward_declare": [
|
504 |
+
f"void initialize_autogenerated_functions_{i}(PyObject* module);"
|
505 |
+
for i in range(num_shards)
|
506 |
+
],
|
507 |
+
"shard_call": [
|
508 |
+
f"initialize_autogenerated_functions_{i}(module);"
|
509 |
+
for i in range(num_shards)
|
510 |
+
],
|
511 |
+
},
|
512 |
+
)
|
513 |
+
|
514 |
+
# get a 1D list of diffinfos, we do not need them to be per FunctionSchema/DispatchKey here
|
515 |
+
# infos with the diff dispatchkeys but the same name will still be in the same shard.
|
516 |
+
infos = get_infos_with_derivatives_list(differentiability_infos)
|
517 |
+
fm.write_sharded(
|
518 |
+
"python_functions.cpp",
|
519 |
+
infos,
|
520 |
+
key_fn=lambda info: info.name,
|
521 |
+
base_env={
|
522 |
+
"generated_comment": "@"
|
523 |
+
+ f"generated from {fm.template_dir_for_comments()}/python_functions.cpp",
|
524 |
+
},
|
525 |
+
env_callable=lambda info: {
|
526 |
+
"py_function_initializers": [
|
527 |
+
process_function(info, PY_FUNCTION_DEFINITION)
|
528 |
+
],
|
529 |
+
"py_function_props_and_getters": [
|
530 |
+
process_function(info, PY_FUNCTION_PROPS_AND_GETTERS)
|
531 |
+
],
|
532 |
+
},
|
533 |
+
num_shards=num_shards,
|
534 |
+
sharded_keys={"py_function_initializers", "py_function_props_and_getters"},
|
535 |
+
)
|
536 |
+
|
537 |
+
|
538 |
+
def process_function(info: DifferentiabilityInfo, template: CodeTemplate) -> str:
|
539 |
+
saved_variables: List[str] = []
|
540 |
+
release_variables: List[str] = []
|
541 |
+
saved_list_sizes: List[str] = []
|
542 |
+
unpack: List[str] = []
|
543 |
+
asserts: List[str] = []
|
544 |
+
compute_index_ranges: List[str] = []
|
545 |
+
getter_definitions: List[str] = []
|
546 |
+
py_getsetdef_structs: List[str] = []
|
547 |
+
compiled_args: List[str] = []
|
548 |
+
apply_with_saved_before: List[str] = []
|
549 |
+
apply_with_saved_after: List[str] = []
|
550 |
+
|
551 |
+
for arg in info.args_with_derivatives:
|
552 |
+
if arg.type in TENSOR_LIST_LIKE_CTYPES:
|
553 |
+
size = f"{arg.name}_size_"
|
554 |
+
saved_list_sizes.append(f"size_t {arg.name}_size_;")
|
555 |
+
else:
|
556 |
+
size = "1"
|
557 |
+
compute_index_ranges.append(f"auto {arg.name}_ix = gen.range({size});")
|
558 |
+
|
559 |
+
def save_var(var: SavedAttribute, is_output: bool) -> None:
|
560 |
+
name = var.nctype.name
|
561 |
+
type = var.nctype.type
|
562 |
+
should_append_getsetdef = True
|
563 |
+
should_append_raw_getsetdef = False
|
564 |
+
visit_name = name
|
565 |
+
|
566 |
+
if (
|
567 |
+
type == BaseCType(tensorT)
|
568 |
+
or type == OptionalCType(BaseCType(tensorT))
|
569 |
+
or type == MutRefCType(OptionalCType(BaseCType(tensorT)))
|
570 |
+
or (type == BaseCType(scalarT) and is_output)
|
571 |
+
):
|
572 |
+
saved_variables.append(f"SavedVariable {name}_;")
|
573 |
+
release_variables.append(f"{name}_.reset_data();")
|
574 |
+
ptr = "shared_from_this()" if is_output else ""
|
575 |
+
unpack.append(f"auto {name} = {name}_.unpack({ptr});")
|
576 |
+
getter_definitions.append(
|
577 |
+
GETTER_DEFINITION_SAVEDVAR.substitute(
|
578 |
+
op=info.op, name=name, body=GETTER_BODY_SAVEDVAR
|
579 |
+
)
|
580 |
+
)
|
581 |
+
getter_definitions.append(
|
582 |
+
GETTER_DEFINITION_RAW_SAVEDVAR.substitute(
|
583 |
+
op=info.op, name=name, body=GETTER_BODY_RAW_SAVEDVAR
|
584 |
+
)
|
585 |
+
)
|
586 |
+
should_append_raw_getsetdef = True
|
587 |
+
visit_name = f"{name}_"
|
588 |
+
elif (
|
589 |
+
type == BaseCType(tensorListT)
|
590 |
+
or type == BaseCType(iTensorListRefT)
|
591 |
+
or type == VectorCType(BaseCType(tensorT))
|
592 |
+
):
|
593 |
+
# note(crcrpar): [nuanced return type of out-of-place foreach functions]
|
594 |
+
# When an out-of-place foreach function whose return signature is `Tensor[]`
|
595 |
+
# spells out its backward definitions in `derivatives.yaml`, and some of them depend on
|
596 |
+
# `result`, `result`'s type is interpreted and treated as `std::vector<Tensor>`.
|
597 |
+
# An out-of-place foreach whose backwards rely on their output doesn't suffer from this
|
598 |
+
# difference if the definitions are codegen'ed.
|
599 |
+
# This special case is needed for `_foreach_pow.List` and `_foreach_pow.ScalarAndTensor`
|
600 |
+
# as of https://github.com/pytorch/pytorch/pull/105504.
|
601 |
+
if type == VectorCType(BaseCType(tensorT)):
|
602 |
+
assert (
|
603 |
+
info.func.func.name.name.base.startswith("_foreach") and is_output
|
604 |
+
)
|
605 |
+
saved_variables.append(f"std::vector<SavedVariable> {name}_;")
|
606 |
+
saved_variables.append(f"bool {name}_released_ = false;")
|
607 |
+
# Just clear() is sufficient, we don't need to loop and clear each variable.
|
608 |
+
# Because the SavedVariable owns a tensor and a grad_fn, removing the SavedVariable makes them go away as well.
|
609 |
+
release_variables.append(f"{name}_.clear();")
|
610 |
+
release_variables.append(f"{name}_released_ = true;")
|
611 |
+
ptr = "shared_from_this()" if is_output else "nullptr"
|
612 |
+
unpack.append(f"auto {name} = unpack_list({name}_, {ptr});")
|
613 |
+
asserts.append(f"TORCH_CHECK(!{name}_released_, ERR_BACKWARD_TWICE);")
|
614 |
+
getter_definitions.append(
|
615 |
+
GETTER_DEFINITION_VEC_SAVEDVAR.substitute(
|
616 |
+
op=info.op, name=name, body=GETTER_BODY_VEC_SAVEDVAR
|
617 |
+
)
|
618 |
+
)
|
619 |
+
getter_definitions.append(
|
620 |
+
GETTER_DEFINITION_RAW_VEC_SAVEDVAR.substitute(
|
621 |
+
op=info.op, name=name, body=GETTER_BODY_RAW_VEC_SAVEDVAR
|
622 |
+
)
|
623 |
+
)
|
624 |
+
should_append_raw_getsetdef = True
|
625 |
+
visit_name = f"{name}_"
|
626 |
+
elif type == ListCType(OptionalCType(BaseCType(tensorT))):
|
627 |
+
saved_variables.append(f"std::vector<SavedVariable> {name}_;")
|
628 |
+
saved_variables.append(f"bool {name}_released_ = false;")
|
629 |
+
# Just clear() is sufficient, we don't need to loop and clear each variable.
|
630 |
+
# Because the SavedVariable owns a tensor and a grad_fn, removing the SavedVariable makes them go away as well.
|
631 |
+
release_variables.append(f"{name}_.clear();")
|
632 |
+
release_variables.append(f"{name}_released_ = true;")
|
633 |
+
unpack.append(f"auto {name} = unpack_opt_list({name}_);")
|
634 |
+
asserts.append(f"TORCH_CHECK(!{name}_released_, ERR_BACKWARD_TWICE);")
|
635 |
+
getter_definitions.append(
|
636 |
+
GETTER_DEFINITION_VEC_SAVEDVAR.substitute(
|
637 |
+
op=info.op, name=name, body=GETTER_BODY_VEC_SAVEDVAR
|
638 |
+
)
|
639 |
+
)
|
640 |
+
getter_definitions.append(
|
641 |
+
GETTER_DEFINITION_RAW_VEC_SAVEDVAR.substitute(
|
642 |
+
op=info.op, name=name, body=GETTER_BODY_RAW_VEC_SAVEDVAR
|
643 |
+
)
|
644 |
+
)
|
645 |
+
should_append_raw_getsetdef = True
|
646 |
+
visit_name = f"{name}_"
|
647 |
+
elif type == BaseCType(intArrayRefT):
|
648 |
+
saved_variables.append(f"std::vector<int64_t> {name};")
|
649 |
+
getter_definitions.append(
|
650 |
+
GETTER_DEFINITION.substitute(
|
651 |
+
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_LONG
|
652 |
+
)
|
653 |
+
)
|
654 |
+
elif type == BaseCType(symIntArrayRefT):
|
655 |
+
saved_variables.append(f"std::vector<c10::SymInt> {name};")
|
656 |
+
getter_definitions.append(
|
657 |
+
GETTER_DEFINITION.substitute(
|
658 |
+
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_SYMINT
|
659 |
+
)
|
660 |
+
)
|
661 |
+
elif type == BaseCType(optionalIntArrayRefT):
|
662 |
+
saved_variables.append(f"c10::OptionalArray<int64_t> {name};")
|
663 |
+
getter_definitions.append(
|
664 |
+
GETTER_DEFINITION_OPT_ARRAYREF.substitute(
|
665 |
+
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_LONG
|
666 |
+
)
|
667 |
+
)
|
668 |
+
elif type == BaseCType(optionalSymIntArrayRefT):
|
669 |
+
saved_variables.append(f"c10::OptionalArray<c10::SymInt> {name};")
|
670 |
+
getter_definitions.append(
|
671 |
+
GETTER_DEFINITION_OPT_ARRAYREF.substitute(
|
672 |
+
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_SYMINT
|
673 |
+
)
|
674 |
+
)
|
675 |
+
elif type == OptionalCType(BaseCType(intArrayRefT)):
|
676 |
+
saved_variables.append(f"c10::OptionalArray<int64_t> {name};")
|
677 |
+
getter_definitions.append(
|
678 |
+
GETTER_DEFINITION_OPT_ARRAYREF.substitute(
|
679 |
+
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_LONG
|
680 |
+
)
|
681 |
+
)
|
682 |
+
elif type == OptionalCType(BaseCType(symIntArrayRefT)):
|
683 |
+
saved_variables.append(f"c10::OptionalArray<c10::SymInt> {name};")
|
684 |
+
getter_definitions.append(
|
685 |
+
GETTER_DEFINITION_OPT_ARRAYREF.substitute(
|
686 |
+
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_SYMINT
|
687 |
+
)
|
688 |
+
)
|
689 |
+
elif type == OptionalCType(ArrayRefCType(BaseCType(doubleT))):
|
690 |
+
saved_variables.append(f"c10::OptionalArray<double> {name};")
|
691 |
+
getter_definitions.append(
|
692 |
+
GETTER_DEFINITION_OPT_ARRAYREF.substitute(
|
693 |
+
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_DOUBLE
|
694 |
+
)
|
695 |
+
)
|
696 |
+
elif type == BaseCType(longT):
|
697 |
+
saved_variables.append(f"{type.cpp_type()} {name} = 0;")
|
698 |
+
getter_definitions.append(
|
699 |
+
GETTER_DEFINITION.substitute(
|
700 |
+
op=info.op, name=name, body=GETTER_BODY_INT64_T
|
701 |
+
)
|
702 |
+
)
|
703 |
+
elif type == BaseCType(SymIntT):
|
704 |
+
saved_variables.append(f"c10::SymInt {name};")
|
705 |
+
getter_definitions.append(
|
706 |
+
GETTER_DEFINITION.substitute(
|
707 |
+
op=info.op, name=name, body=GETTER_BODY_SYMINT
|
708 |
+
)
|
709 |
+
)
|
710 |
+
elif type == BaseCType(stringT):
|
711 |
+
saved_variables.append(f"std::string {name};")
|
712 |
+
getter_definitions.append(
|
713 |
+
GETTER_DEFINITION.substitute(
|
714 |
+
op=info.op, name=name, body=GETTER_BODY_STRING
|
715 |
+
)
|
716 |
+
)
|
717 |
+
elif type == OptionalCType(BaseCType(stringT)):
|
718 |
+
saved_variables.append(f"c10::optional<std::string> {name};")
|
719 |
+
getter_definitions.append(
|
720 |
+
GETTER_DEFINITION_OPT.substitute(
|
721 |
+
op=info.op, name=name, body=GETTER_BODY_STRING
|
722 |
+
)
|
723 |
+
)
|
724 |
+
elif type == ArrayRefCType(
|
725 |
+
elem=BaseCType(type=BaseCppType(ns="at", name="Scalar"))
|
726 |
+
):
|
727 |
+
saved_variables.append(f"std::vector<at::Scalar> {name};")
|
728 |
+
saved_variables.append(f"bool {name}_released_ = false;")
|
729 |
+
# Just clear() is sufficient, we don't need to loop and clear each variable.
|
730 |
+
# Because the SavedVariable owns a tensor and a grad_fn, removing the SavedVariable makes them go away as well.
|
731 |
+
release_variables.append(f"{name}.clear();")
|
732 |
+
# release_variables.append(f"{name}_released_ = true;")
|
733 |
+
# unpack.append(f"auto {name} = unpack_list({name}_);")
|
734 |
+
# asserts.append(f"TORCH_CHECK(!{name}_released_, ERR_BACKWARD_TWICE);")
|
735 |
+
getter_definitions.append(
|
736 |
+
CodeTemplate(
|
737 |
+
"""\
|
738 |
+
PyObject* THP${op}_${name}_getter(THPCppFunction *self, void *_unused) {
|
739 |
+
HANDLE_TH_ERRORS
|
740 |
+
const auto *node = static_cast<${op}*>(self->cdata.get());
|
741 |
+
const auto& prop = node->${name};
|
742 |
+
if (node->${name}_released_) {
|
743 |
+
PyErr_SetString(PyExc_RuntimeError, ERR_BACKWARD_TWICE);
|
744 |
+
return nullptr;
|
745 |
+
}
|
746 |
+
${body}
|
747 |
+
END_HANDLE_TH_ERRORS
|
748 |
+
}
|
749 |
+
"""
|
750 |
+
).substitute(
|
751 |
+
op=info.op,
|
752 |
+
name=name,
|
753 |
+
body=GETTER_BODY_VEC_SCALAR,
|
754 |
+
)
|
755 |
+
)
|
756 |
+
else:
|
757 |
+
# Check for indicators that you're putting a non-owning reference
|
758 |
+
# into the saved variable field. If this is spuriously firing,
|
759 |
+
# edit this field. Otherwise, you probably need to add a case
|
760 |
+
# above.
|
761 |
+
assert (
|
762 |
+
"ref" not in type.cpp_type().lower()
|
763 |
+
and "view" not in type.cpp_type().lower()
|
764 |
+
and "*" not in type.cpp_type()
|
765 |
+
and "&" not in type.cpp_type()
|
766 |
+
), f"{type.cpp_type()} looks like it contains a non-owning reference"
|
767 |
+
saved_variables.append(f"{type.cpp_type()} {name};")
|
768 |
+
|
769 |
+
if type in MISC_GETTER_DEFS:
|
770 |
+
getter_def, body = MISC_GETTER_DEFS[type]
|
771 |
+
getter_definitions.append(
|
772 |
+
getter_def.substitute(op=info.op, name=name, body=body)
|
773 |
+
)
|
774 |
+
else:
|
775 |
+
# Types we don't expose python bindings to yet:
|
776 |
+
# TypeAndSize, at::ScalarType, TensorOptions, TensorGeometry,
|
777 |
+
# std::vector<std::vector<int64_t>>, std::vector<at::ScalarType>
|
778 |
+
should_append_getsetdef = False
|
779 |
+
|
780 |
+
if should_append_getsetdef:
|
781 |
+
py_getsetdef_structs.append(
|
782 |
+
PY_GETSETDEF_STRUCT.substitute(op=info.op, name=name)
|
783 |
+
)
|
784 |
+
if should_append_raw_getsetdef:
|
785 |
+
py_getsetdef_structs.append(
|
786 |
+
PY_RAW_GETSETDEF_STRUCT.substitute(op=info.op, name=name)
|
787 |
+
)
|
788 |
+
|
789 |
+
compiled_args.append(f"args.collect({visit_name});")
|
790 |
+
apply_with_saved_before.append(f"saved.before({visit_name});")
|
791 |
+
apply_with_saved_after.append(f"saved.after({visit_name});")
|
792 |
+
|
793 |
+
for var in sorted(info.all_saved_inputs, key=lambda sa: str(sa.nctype.name)):
|
794 |
+
save_var(var, is_output=False)
|
795 |
+
for var in sorted(info.all_saved_outputs, key=lambda sa: str(sa.nctype.name)):
|
796 |
+
save_var(var, is_output=True)
|
797 |
+
|
798 |
+
# lock the mutex when we release variables and in Node::apply to protect thread safety
|
799 |
+
# see Note [Thread Safety on Autograd Node]
|
800 |
+
if len(release_variables) > 0:
|
801 |
+
thread_lock = "std::lock_guard<std::mutex> lock(mutex_);"
|
802 |
+
else:
|
803 |
+
thread_lock = ""
|
804 |
+
|
805 |
+
if uses_retain_variables(info):
|
806 |
+
will_release_variables = WILL_RELEASE_VARIABLES.substitute()
|
807 |
+
else:
|
808 |
+
will_release_variables = ""
|
809 |
+
|
810 |
+
body: List[str] = []
|
811 |
+
|
812 |
+
if uses_single_grad(info):
|
813 |
+
body.append("const auto& grad = grads[0];")
|
814 |
+
else:
|
815 |
+
# Generate aliases for gradients named for returned values.
|
816 |
+
body.extend(
|
817 |
+
f"const auto& {name} = grads[{info.available_named_gradients.index(name)}];"
|
818 |
+
for name in sorted(info.used_named_gradients)
|
819 |
+
)
|
820 |
+
|
821 |
+
def emit_derivative(
|
822 |
+
derivative: Derivative,
|
823 |
+
args_with_derivatives: Sequence[Binding],
|
824 |
+
) -> Tuple[bool, str]:
|
825 |
+
formula = derivative.formula
|
826 |
+
var_names = derivative.var_names
|
827 |
+
if len(var_names) == 1:
|
828 |
+
checks_any_grad_defined = False
|
829 |
+
if "not_implemented" not in formula:
|
830 |
+
matching_args = [
|
831 |
+
arg for arg in args_with_derivatives if arg.name == var_names[0]
|
832 |
+
]
|
833 |
+
if len(matching_args) == 1:
|
834 |
+
# We can add undefined grad support if the input variable is a Tensor
|
835 |
+
arg = matching_args[0]
|
836 |
+
if isinstance(arg.argument, Argument) and str(
|
837 |
+
arg.argument.type
|
838 |
+
) in ("Tensor", "Tensor?"):
|
839 |
+
formula = "any_grad_defined ? (" + formula + ") : Tensor()"
|
840 |
+
checks_any_grad_defined = True
|
841 |
+
if info.name.startswith("_foreach_"):
|
842 |
+
derivative_template = DERIVATIVE_SINGLE_FOREACH
|
843 |
+
else:
|
844 |
+
derivative_template = DERIVATIVE_SINGLE
|
845 |
+
return (
|
846 |
+
checks_any_grad_defined,
|
847 |
+
derivative_template.substitute(name=var_names[0], derivative=formula),
|
848 |
+
)
|
849 |
+
else:
|
850 |
+
if "grad_input_mask" in formula:
|
851 |
+
masks = [
|
852 |
+
f"task_should_compute_output({{ {n}_ix }})," for n in var_names
|
853 |
+
]
|
854 |
+
grad_input_mask = GRAD_INPUT_MASK.substitute(
|
855 |
+
masks=masks, n=len(var_names)
|
856 |
+
)
|
857 |
+
else:
|
858 |
+
grad_input_mask = ""
|
859 |
+
idx_ranges = ", ".join(f"{n}_ix" for n in var_names)
|
860 |
+
copy_ranges: List[str] = []
|
861 |
+
for i, n in enumerate(var_names):
|
862 |
+
copy_ranges.append(DERIVATIVE_MULTI_COPY_RANGE.substitute(name=n, i=i))
|
863 |
+
return False, DERIVATIVE_MULTI.substitute(
|
864 |
+
idx_ranges=idx_ranges,
|
865 |
+
copy_ranges=copy_ranges,
|
866 |
+
derivative=formula,
|
867 |
+
grad_input_mask=grad_input_mask,
|
868 |
+
)
|
869 |
+
|
870 |
+
body.extend(unpack)
|
871 |
+
need_any_grad_defined_var = False
|
872 |
+
for derivative in info.derivatives:
|
873 |
+
checks_any_grad_defined, derivative_text = emit_derivative(
|
874 |
+
derivative, info.args_with_derivatives
|
875 |
+
)
|
876 |
+
body.append(derivative_text)
|
877 |
+
need_any_grad_defined_var |= checks_any_grad_defined
|
878 |
+
# Since single-output derivative formulas need to check if grads are
|
879 |
+
# defined, only perform the check once, before all the formulas
|
880 |
+
if need_any_grad_defined_var:
|
881 |
+
body.insert(
|
882 |
+
-len(info.derivatives),
|
883 |
+
"bool any_grad_defined = any_variable_defined(grads);",
|
884 |
+
)
|
885 |
+
|
886 |
+
if info.name in UNTRACEABLE_FUNCTIONS:
|
887 |
+
superclass = "Node"
|
888 |
+
else:
|
889 |
+
superclass = "TraceableFunction"
|
890 |
+
|
891 |
+
all_getsetdef_structs = (
|
892 |
+
",\n".join(py_getsetdef_structs) + "," if len(py_getsetdef_structs) != 0 else ""
|
893 |
+
)
|
894 |
+
all_getter_definitions = "\n".join(getter_definitions)
|
895 |
+
|
896 |
+
return template.substitute(
|
897 |
+
op=info.op,
|
898 |
+
compute_index_ranges=compute_index_ranges,
|
899 |
+
saved_variables=saved_variables,
|
900 |
+
release_variables=release_variables,
|
901 |
+
saved_list_sizes=saved_list_sizes,
|
902 |
+
asserts=asserts,
|
903 |
+
thread_lock=thread_lock,
|
904 |
+
will_release_variables=will_release_variables,
|
905 |
+
body=body,
|
906 |
+
superclass=superclass,
|
907 |
+
all_getter_definitions=all_getter_definitions,
|
908 |
+
all_getsetdef_structs=all_getsetdef_structs,
|
909 |
+
compiled_args=compiled_args,
|
910 |
+
apply_with_saved_before=apply_with_saved_before,
|
911 |
+
apply_with_saved_after=apply_with_saved_after,
|
912 |
+
)
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_inplace_or_view_type.py
ADDED
@@ -0,0 +1,675 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generates ADInplaceOrViewType.h/cpp
|
2 |
+
#
|
3 |
+
# NOTE: If any changes are being made to the ADInplaceOrView codegen please also check
|
4 |
+
# if updates are needed in torch/csrc/autograd/autograd_not_implemented_fallback.cpp
|
5 |
+
# The fallback is expected to mimick this codegen, so we should keep the two in sync.
|
6 |
+
|
7 |
+
from typing import Dict, List, Optional, Tuple
|
8 |
+
|
9 |
+
from torchgen.api import cpp
|
10 |
+
from torchgen.api.autograd import (
|
11 |
+
dispatch_strategy,
|
12 |
+
gen_differentiable_outputs,
|
13 |
+
NativeFunctionWithDifferentiabilityInfo,
|
14 |
+
)
|
15 |
+
from torchgen.api.types import (
|
16 |
+
BaseCType,
|
17 |
+
Binding,
|
18 |
+
boolT,
|
19 |
+
ConstRefCType,
|
20 |
+
CType,
|
21 |
+
DispatcherSignature,
|
22 |
+
intArrayRefT,
|
23 |
+
longT,
|
24 |
+
OptionalCType,
|
25 |
+
symIntArrayRefT,
|
26 |
+
SymIntT,
|
27 |
+
# See Note [Nested Arg Types]
|
28 |
+
tensorT,
|
29 |
+
)
|
30 |
+
from torchgen.code_template import CodeTemplate
|
31 |
+
from torchgen.context import with_native_function
|
32 |
+
from torchgen.model import (
|
33 |
+
NativeFunction,
|
34 |
+
SchemaKind,
|
35 |
+
SelfArgument,
|
36 |
+
TensorOptionsArguments,
|
37 |
+
Type,
|
38 |
+
)
|
39 |
+
from torchgen.utils import FileManager
|
40 |
+
|
41 |
+
from .context import with_native_function_with_differentiability_info
|
42 |
+
from .gen_trace_type import (
|
43 |
+
get_return_value,
|
44 |
+
MANUAL_AUTOGRAD,
|
45 |
+
tie_return_values,
|
46 |
+
type_wrapper_name,
|
47 |
+
)
|
48 |
+
|
49 |
+
# See NOTE [ Autograd View Variables ] in variable.h for details.
|
50 |
+
# If you update list VIEW_FUNCTIONS or RETURNS_VIEWS_OF_INPUT,
|
51 |
+
# you **MUST** also update the public list of view ops accordingly in
|
52 |
+
# docs/source/tensor_view.rst. Note not all ATen functions are exposed to public,
|
53 |
+
# e.g alias & sparse_coo_tensor_with_dims_and_tensors.
|
54 |
+
#
|
55 |
+
# A map: function name => name of the argument that all outputs are view of
|
56 |
+
|
57 |
+
VIEW_FUNCTIONS_WITH_METADATA_CHANGE = [
|
58 |
+
"view_as_complex",
|
59 |
+
"view_as_real",
|
60 |
+
"_conj",
|
61 |
+
"_neg_view",
|
62 |
+
"_nested_get_values",
|
63 |
+
"_nested_view_from_buffer",
|
64 |
+
"_nested_view_from_jagged",
|
65 |
+
]
|
66 |
+
|
67 |
+
VIEW_FUNCTIONS = {
|
68 |
+
"numpy_T": "self",
|
69 |
+
"alias": "self",
|
70 |
+
"as_strided": "self",
|
71 |
+
"diagonal": "self",
|
72 |
+
"expand": "self",
|
73 |
+
"permute": "self",
|
74 |
+
"select": "self",
|
75 |
+
"slice": "self",
|
76 |
+
"slice_inverse": "self",
|
77 |
+
"split": "self",
|
78 |
+
"split_with_sizes": "self",
|
79 |
+
"squeeze": "self",
|
80 |
+
"t": "self",
|
81 |
+
"transpose": "self",
|
82 |
+
"unfold": "self",
|
83 |
+
"unsqueeze": "self",
|
84 |
+
"flatten": "self",
|
85 |
+
"view": "self",
|
86 |
+
"unbind": "self",
|
87 |
+
"_indices": "self",
|
88 |
+
"_values": "self",
|
89 |
+
"indices": "self",
|
90 |
+
"values": "self",
|
91 |
+
"crow_indices": "self",
|
92 |
+
"col_indices": "self",
|
93 |
+
"ccol_indices": "self",
|
94 |
+
"row_indices": "self",
|
95 |
+
# sparse_coo ctor output should really be views of both indices and values,
|
96 |
+
# but we only supports making as view of a single variable, and indices is
|
97 |
+
# discrete anyways.
|
98 |
+
# FIXME: clone indices on construction.
|
99 |
+
"sparse_coo_tensor_with_dims_and_tensors": "values",
|
100 |
+
"_reshape_alias": "self",
|
101 |
+
"_test_autograd_multiple_dispatch_view": "self",
|
102 |
+
}
|
103 |
+
|
104 |
+
for key in VIEW_FUNCTIONS_WITH_METADATA_CHANGE:
|
105 |
+
VIEW_FUNCTIONS[key] = "self"
|
106 |
+
|
107 |
+
# note: some VIEW_FUNCTIONS are just compositions of the view functions above
|
108 |
+
# this list contains both the root view functions and any that are purely composed
|
109 |
+
# of viewing functions, and is used by the JIT to determine when an operator
|
110 |
+
# may return a view of its inputs; however they may sometimes return a copy.
|
111 |
+
# (e.g. `contiguous`)
|
112 |
+
RETURNS_VIEWS_OF_INPUT = set(VIEW_FUNCTIONS.keys()).union(
|
113 |
+
{
|
114 |
+
"chunk",
|
115 |
+
"detach",
|
116 |
+
"contiguous",
|
117 |
+
"reshape",
|
118 |
+
"reshape_as",
|
119 |
+
"expand_as",
|
120 |
+
"view_as",
|
121 |
+
"real",
|
122 |
+
"imag",
|
123 |
+
"narrow",
|
124 |
+
"movedim",
|
125 |
+
"tensor_split",
|
126 |
+
"swapdims",
|
127 |
+
"swapaxes",
|
128 |
+
"mT",
|
129 |
+
"mH",
|
130 |
+
"adjoint",
|
131 |
+
"matrix_H",
|
132 |
+
}
|
133 |
+
)
|
134 |
+
|
135 |
+
# These are the functions we consider views for the purposes of validating
|
136 |
+
# StorageImpl and TensorImpl in gen_variable_type.
|
137 |
+
# `_unsafe_view` is not included in VIEW_FUNCTIONS above because it is not a
|
138 |
+
# view for the purposes of ADInplaceOrView kernel, we do not want to call as_view
|
139 |
+
# See NOTE [Unsafe View] for more info.
|
140 |
+
ALL_VIEW_FUNCTIONS = {
|
141 |
+
**VIEW_FUNCTIONS,
|
142 |
+
"_unsafe_view": "self",
|
143 |
+
}
|
144 |
+
|
145 |
+
ARRAYREF_TO_VEC = CodeTemplate(
|
146 |
+
"""\
|
147 |
+
auto ${vec} = ${arg}.vec();
|
148 |
+
"""
|
149 |
+
)
|
150 |
+
|
151 |
+
OPTIONAL_TO_VAL = CodeTemplate(
|
152 |
+
"""\
|
153 |
+
auto ${val} = ${arg}.value_or(${default});
|
154 |
+
"""
|
155 |
+
)
|
156 |
+
|
157 |
+
CALL_DISPATCH = CodeTemplate(
|
158 |
+
"""\
|
159 |
+
at::_ops::${unambiguous_name}::call(${unpacked_args})"""
|
160 |
+
)
|
161 |
+
|
162 |
+
REVERSE_VIEW_DISPATCH = CodeTemplate(
|
163 |
+
"""\
|
164 |
+
${reverse_name}(${unpacked_args})"""
|
165 |
+
)
|
166 |
+
|
167 |
+
MULTI_OUTPUT_VIEW_ITERATION = CodeTemplate(
|
168 |
+
"""\
|
169 |
+
for (auto ${view_idx} : c10::irange(${var}.size())) {
|
170 |
+
${body}
|
171 |
+
}
|
172 |
+
"""
|
173 |
+
)
|
174 |
+
|
175 |
+
SETUP_REPLAY_VIEW_IF_NOT_SUPPORT_AS_STRIDED_OR_VIEW_WITH_METADATA_CHANGE = CodeTemplate(
|
176 |
+
"""\
|
177 |
+
std::unique_ptr<torch::autograd::ViewFunc> func(nullptr);
|
178 |
+
std::function<at::Tensor(const at::Tensor&)> rev_func=nullptr;
|
179 |
+
if (${is_view_with_metadata_change} ||
|
180 |
+
!self.unsafeGetTensorImpl()->support_as_strided() ||
|
181 |
+
self.unsafeGetTensorImpl()->is_python_dispatch() ||
|
182 |
+
c10::AutogradState::get_tls_state().get_view_replay_enabled()) {
|
183 |
+
${replay_view_func}
|
184 |
+
${reverse_replay_view_func}
|
185 |
+
}
|
186 |
+
"""
|
187 |
+
)
|
188 |
+
|
189 |
+
REPLAY_VIEW_FUNC = CodeTemplate(
|
190 |
+
"""\
|
191 |
+
func = std::make_unique<${view_func_name}>(${view_func_args});
|
192 |
+
"""
|
193 |
+
)
|
194 |
+
|
195 |
+
REVERSE_REPLAY_VIEW_LAMBDA_FUNC = CodeTemplate(
|
196 |
+
"""\
|
197 |
+
rev_func = [=](const at::Tensor& ${input_view}) {
|
198 |
+
return ${reverse_replay_view_call};
|
199 |
+
};
|
200 |
+
"""
|
201 |
+
)
|
202 |
+
|
203 |
+
METHOD_DEFINITION = CodeTemplate(
|
204 |
+
"""\
|
205 |
+
${return_type} ${type_wrapper_name}(${formals}) {
|
206 |
+
${type_definition_body}
|
207 |
+
}
|
208 |
+
"""
|
209 |
+
)
|
210 |
+
|
211 |
+
WRAPPER_REGISTRATION = CodeTemplate(
|
212 |
+
"""\
|
213 |
+
m.impl("${unqual_operator_name_with_overload}",
|
214 |
+
TORCH_FN(${class_type}::${type_wrapper_name})
|
215 |
+
);
|
216 |
+
"""
|
217 |
+
)
|
218 |
+
|
219 |
+
AUTOGRAD_NOT_IMPLEMENTED_REGISTRATION = CodeTemplate(
|
220 |
+
"""\
|
221 |
+
m.impl("${unqual_operator_name_with_overload}", torch::autograd::autogradNotImplementedFallback());
|
222 |
+
"""
|
223 |
+
)
|
224 |
+
|
225 |
+
INPLACE_REDISPATCH = CodeTemplate(
|
226 |
+
"""\
|
227 |
+
{
|
228 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
229 |
+
at::_ops::${unambiguous_name}::redispatch(${unpacked_args});
|
230 |
+
}
|
231 |
+
"""
|
232 |
+
)
|
233 |
+
|
234 |
+
ASSIGN_RETURN_VALUE = CodeTemplate(
|
235 |
+
"""\
|
236 |
+
${return_values} = ${rhs_value};
|
237 |
+
"""
|
238 |
+
)
|
239 |
+
|
240 |
+
VIEW_REDISPATCH = CodeTemplate(
|
241 |
+
"""\
|
242 |
+
${assign_return_values} ([&]() {
|
243 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
244 |
+
return at::_ops::${unambiguous_name}::redispatch(${unpacked_args});
|
245 |
+
})();
|
246 |
+
"""
|
247 |
+
)
|
248 |
+
|
249 |
+
TMP_VAR = "_tmp"
|
250 |
+
|
251 |
+
|
252 |
+
# FIXME: Ideally these functions should be methods on Type class, but we have a
|
253 |
+
# comment in codegen/model.py there saying these concepts are not well defined.
|
254 |
+
# Thus we put a version that commonly used by autograd codegen here.
|
255 |
+
def is_tensor_type(t: Type) -> bool:
|
256 |
+
# TODO: Should handle optional here?
|
257 |
+
return t.is_tensor_like() and t.is_list_like() is None
|
258 |
+
|
259 |
+
|
260 |
+
def is_tensor_list_type(t: Type) -> bool:
|
261 |
+
# TODO: Should handle optional here?
|
262 |
+
return t.is_tensor_like() and t.is_list_like() is not None
|
263 |
+
|
264 |
+
|
265 |
+
UNPACK_TENSOR = CodeTemplate(
|
266 |
+
"""\
|
267 |
+
auto${ref} ${arg_name}_ = unpack${suffix}(${arg_name}, "${arg_name}", ${arg_pos});"""
|
268 |
+
)
|
269 |
+
|
270 |
+
|
271 |
+
def unpacked_name(arg_name: str) -> str:
|
272 |
+
return arg_name + "_"
|
273 |
+
|
274 |
+
|
275 |
+
# e.g. select.int -> select_copy_int_inverse()
|
276 |
+
def inverse_view_name(f: NativeFunction) -> str:
|
277 |
+
copy_variant = f"{f.root_name}_copy"
|
278 |
+
overload = f"{f.func.name.overload_name}"
|
279 |
+
if overload != "":
|
280 |
+
overload = "_" + overload
|
281 |
+
return f"{copy_variant}{overload}_inverse"
|
282 |
+
|
283 |
+
|
284 |
+
def extract_bindings(f: NativeFunction) -> List[Binding]:
|
285 |
+
return [
|
286 |
+
r
|
287 |
+
for a in f.func.schema_order_arguments()
|
288 |
+
for r in cpp.argument(
|
289 |
+
a,
|
290 |
+
method=False,
|
291 |
+
symint=True,
|
292 |
+
cpp_no_default_args=set(),
|
293 |
+
faithful=False,
|
294 |
+
has_tensor_options=False,
|
295 |
+
)
|
296 |
+
]
|
297 |
+
|
298 |
+
|
299 |
+
@with_native_function
|
300 |
+
def unpack_args(f: NativeFunction) -> Tuple[List[str], List[Binding]]:
|
301 |
+
body: List[str] = []
|
302 |
+
unpacked_bindings: List[Binding] = []
|
303 |
+
|
304 |
+
for i, binding in enumerate(extract_bindings(f)):
|
305 |
+
assert not isinstance(binding.argument, SelfArgument)
|
306 |
+
if isinstance(binding.argument, TensorOptionsArguments):
|
307 |
+
raise RuntimeError("VariableKernel shouldn't take TensorOptions")
|
308 |
+
|
309 |
+
is_nullable = binding.argument.type.is_nullable()
|
310 |
+
if not binding.argument.type.is_tensor_like() or is_nullable:
|
311 |
+
unpacked_bindings.append(binding)
|
312 |
+
continue
|
313 |
+
|
314 |
+
is_tensor_list = is_tensor_list_type(binding.argument.type)
|
315 |
+
ref = (not is_nullable) and not is_tensor_list
|
316 |
+
suffix = "_opt" if is_nullable and not is_tensor_list else ""
|
317 |
+
body.append(
|
318 |
+
UNPACK_TENSOR.substitute(
|
319 |
+
arg_name=binding.name,
|
320 |
+
arg_pos=i,
|
321 |
+
suffix=suffix,
|
322 |
+
ref="&" if ref else "",
|
323 |
+
)
|
324 |
+
)
|
325 |
+
unpacked_bindings.append(
|
326 |
+
Binding(
|
327 |
+
name=unpacked_name(binding.name),
|
328 |
+
nctype=binding.nctype,
|
329 |
+
argument=binding.argument,
|
330 |
+
default=binding.default,
|
331 |
+
)
|
332 |
+
)
|
333 |
+
|
334 |
+
return body, unpacked_bindings
|
335 |
+
|
336 |
+
|
337 |
+
def get_base_name(f: NativeFunction) -> str:
|
338 |
+
return f.func.name.name.base # TODO: should be str(f.func.name.name)?
|
339 |
+
|
340 |
+
|
341 |
+
def get_view_info(f: NativeFunction) -> Optional[str]:
|
342 |
+
base_name = get_base_name(f)
|
343 |
+
view_info = VIEW_FUNCTIONS.get(base_name, None)
|
344 |
+
if view_info is None and base_name in RETURNS_VIEWS_OF_INPUT:
|
345 |
+
view_info = "self"
|
346 |
+
return view_info
|
347 |
+
|
348 |
+
|
349 |
+
def emit_view_func(
|
350 |
+
f: NativeFunction, bindings: List[Binding], view_idx: Optional[str] = None
|
351 |
+
) -> str:
|
352 |
+
"""Generate an additional lambda function to recover views in backward when as_strided is not supported.
|
353 |
+
See Note [View + Inplace update for base tensor] and [View + Inplace update for view tensor] for more details.
|
354 |
+
"""
|
355 |
+
# TODO: Clean this logic up if we get rid of reverse view funcs or reify them.
|
356 |
+
input_base = "input_base"
|
357 |
+
replay_view_func = ""
|
358 |
+
updated_args: List[str] = []
|
359 |
+
known_view_arg_simple_types: List[CType] = [
|
360 |
+
BaseCType(longT),
|
361 |
+
OptionalCType(BaseCType(longT)),
|
362 |
+
BaseCType(SymIntT),
|
363 |
+
OptionalCType(BaseCType(SymIntT)),
|
364 |
+
BaseCType(boolT),
|
365 |
+
BaseCType(intArrayRefT),
|
366 |
+
BaseCType(symIntArrayRefT),
|
367 |
+
ConstRefCType(BaseCType(tensorT)),
|
368 |
+
ConstRefCType(OptionalCType(BaseCType(tensorT))),
|
369 |
+
]
|
370 |
+
for binding in bindings:
|
371 |
+
arg, arg_type = binding.name, binding.nctype.type
|
372 |
+
if arg == "self":
|
373 |
+
updated_args.append(input_base)
|
374 |
+
continue
|
375 |
+
if arg_type not in known_view_arg_simple_types:
|
376 |
+
known_types_str = ", ".join([str(t) for t in known_view_arg_simple_types])
|
377 |
+
raise TypeError(
|
378 |
+
f"You are adding an {arg_type} {arg} argument to op {cpp.name(f.func)} in addition to known types: "
|
379 |
+
f"{known_types_str}. Please update the list or materialize it so that it can be closed "
|
380 |
+
"over by value, also add a test in pytorch/xla/test/test_operations.py where this code "
|
381 |
+
"is exercised."
|
382 |
+
)
|
383 |
+
if arg_type == BaseCType(intArrayRefT) or arg_type == BaseCType(
|
384 |
+
symIntArrayRefT
|
385 |
+
):
|
386 |
+
# It's not safe to close over IntArrayRef by value, since this is a
|
387 |
+
# reference type, so materialize a vector to close over by value
|
388 |
+
arg_vec = arg + "_vec"
|
389 |
+
replay_view_func += ARRAYREF_TO_VEC.substitute(arg=arg, vec=arg_vec)
|
390 |
+
updated_args.append(arg_vec)
|
391 |
+
elif arg_type == OptionalCType(BaseCType(longT)):
|
392 |
+
# Materialize int64_t? to int64_t
|
393 |
+
arg_value = arg + "_val"
|
394 |
+
replay_view_func += OPTIONAL_TO_VAL.substitute(
|
395 |
+
arg=arg, val=arg_value, default="0"
|
396 |
+
)
|
397 |
+
updated_args.append(arg_value)
|
398 |
+
elif arg_type == ConstRefCType(BaseCType(tensorT)) or arg_type == ConstRefCType(
|
399 |
+
OptionalCType(BaseCType(tensorT))
|
400 |
+
):
|
401 |
+
# NB: Closing over a tensor. If a user modifies this tensor, this will be silently
|
402 |
+
# incorrect. The proper thing to do is to store the version counter and copy on write.
|
403 |
+
updated_args.append(arg)
|
404 |
+
else:
|
405 |
+
updated_args.append(arg)
|
406 |
+
|
407 |
+
from .gen_view_funcs import view_func_name
|
408 |
+
|
409 |
+
view_func_args = [b.name for b in bindings if b.name != "self"]
|
410 |
+
if view_idx is not None:
|
411 |
+
view_func_args.append(f"{view_idx}")
|
412 |
+
replay_view_func += REPLAY_VIEW_FUNC.substitute(
|
413 |
+
view_func_name=view_func_name(f, include_namespace=True),
|
414 |
+
view_func_args=view_func_args,
|
415 |
+
)
|
416 |
+
|
417 |
+
input_view = "input_view"
|
418 |
+
reverse_unpacked_args = [
|
419 |
+
"self",
|
420 |
+
f"{input_view}",
|
421 |
+
# inverse_return_mode=
|
422 |
+
"at::functionalization::InverseReturnMode::AlwaysView",
|
423 |
+
*(() if view_idx is None else (f"{view_idx}",)),
|
424 |
+
# skip input_base arg
|
425 |
+
*updated_args[1:],
|
426 |
+
]
|
427 |
+
|
428 |
+
from torchgen.api.functionalization import reverse_name
|
429 |
+
|
430 |
+
reverse_replay_view_call = REVERSE_VIEW_DISPATCH.substitute(
|
431 |
+
reverse_name=reverse_name(f, include_namespace=True),
|
432 |
+
unpacked_args=reverse_unpacked_args,
|
433 |
+
)
|
434 |
+
reverse_replay_view_func = REVERSE_REPLAY_VIEW_LAMBDA_FUNC.substitute(
|
435 |
+
input_view=input_view, reverse_replay_view_call=reverse_replay_view_call
|
436 |
+
)
|
437 |
+
|
438 |
+
is_view_with_metadata_change = (
|
439 |
+
"true" if cpp.name(f.func) in VIEW_FUNCTIONS_WITH_METADATA_CHANGE else "false"
|
440 |
+
)
|
441 |
+
|
442 |
+
return SETUP_REPLAY_VIEW_IF_NOT_SUPPORT_AS_STRIDED_OR_VIEW_WITH_METADATA_CHANGE.substitute(
|
443 |
+
is_view_with_metadata_change=is_view_with_metadata_change,
|
444 |
+
replay_view_func=replay_view_func,
|
445 |
+
reverse_replay_view_func=reverse_replay_view_func,
|
446 |
+
)
|
447 |
+
|
448 |
+
|
449 |
+
def emit_view_body(
|
450 |
+
fn: NativeFunctionWithDifferentiabilityInfo, var: str
|
451 |
+
) -> Tuple[str, str]:
|
452 |
+
# See NOTE [ Autograd View Variables ] in variable.h for details.
|
453 |
+
f = fn.func
|
454 |
+
base_name = get_base_name(f)
|
455 |
+
view_info = get_view_info(f)
|
456 |
+
call = ""
|
457 |
+
differentiable_outputs = gen_differentiable_outputs(fn)
|
458 |
+
differentiable_output_vars = {r.name for r in differentiable_outputs}
|
459 |
+
if not isinstance(view_info, str):
|
460 |
+
raise TypeError(
|
461 |
+
f"The view info should be a string for {base_name}, but it is: {view_info}"
|
462 |
+
)
|
463 |
+
if len(differentiable_output_vars) == 0:
|
464 |
+
# no output is differentiable (.indices() for SparseTensors for example)
|
465 |
+
rhs_value = (
|
466 |
+
f"as_view({view_info}, {var}, "
|
467 |
+
f"/* is_bw_differentiable */ false, /* is_fw_differentiable */ false)"
|
468 |
+
)
|
469 |
+
elif len(differentiable_output_vars) == 1:
|
470 |
+
# Single differentiable output (Tensor or Tensor[])
|
471 |
+
return_info = differentiable_outputs[0]
|
472 |
+
# We only support simple Tensor or a TensorList for functions that return views
|
473 |
+
if not is_tensor_type(return_info.type) and not is_tensor_list_type(
|
474 |
+
return_info.type
|
475 |
+
):
|
476 |
+
raise RuntimeError(
|
477 |
+
f"{base_name} that return differentiable views can only return Tensor or Tensor[]"
|
478 |
+
)
|
479 |
+
|
480 |
+
# See Note [ View + Inplace detection]
|
481 |
+
def get_creation_meta_in_mode(original: str) -> str:
|
482 |
+
creation_meta_with_grad_mode = f"(at::GradMode::is_enabled() ? {original} : CreationMeta::NO_GRAD_MODE)"
|
483 |
+
return f"InferenceMode::is_enabled() ? CreationMeta::INFERENCE_MODE : {creation_meta_with_grad_mode}"
|
484 |
+
|
485 |
+
# Only allow rebasing of the history if we return a single Tensor
|
486 |
+
# If we are in a no grad block, raise a warning
|
487 |
+
# See NOTE [ View + Inplace detection ] for more details about this logic
|
488 |
+
if is_tensor_list_type(return_info.type):
|
489 |
+
creation_meta = get_creation_meta_in_mode("CreationMeta::MULTI_OUTPUT_NODE")
|
490 |
+
view_idx = "view_idx"
|
491 |
+
view_func = emit_view_func(
|
492 |
+
f, extract_bindings(f), view_idx=view_idx
|
493 |
+
).strip()
|
494 |
+
as_view_call = (
|
495 |
+
f"as_view(/* base */ {view_info}, /* output */ {var}[{view_idx}], "
|
496 |
+
"/* is_bw_differentiable */ true, /* is_fw_differentiable */ true, "
|
497 |
+
"/* view_func */ std::move(func), /* rev_view_func */ rev_func, "
|
498 |
+
f"/* creation_meta */ {creation_meta});"
|
499 |
+
)
|
500 |
+
call += MULTI_OUTPUT_VIEW_ITERATION.substitute(
|
501 |
+
var=var, view_idx=view_idx, body=f"{view_func}\n{as_view_call}"
|
502 |
+
)
|
503 |
+
rhs_value = f"std::move({var})"
|
504 |
+
else:
|
505 |
+
call += emit_view_func(f, extract_bindings(f), view_idx=None)
|
506 |
+
creation_meta = get_creation_meta_in_mode("CreationMeta::DEFAULT")
|
507 |
+
rhs_value = (
|
508 |
+
f"as_view(/* base */ {view_info}, /* output */ {var}, /* is_bw_differentiable */ true, "
|
509 |
+
"/* is_fw_differentiable */ true, "
|
510 |
+
f"/* view_func */ std::move(func), /* rev_view_func */ rev_func, /* creation_meta */ {creation_meta})"
|
511 |
+
)
|
512 |
+
else:
|
513 |
+
# This could be supported but we don't need it at the moment, so keeping things simple.
|
514 |
+
raise RuntimeError(
|
515 |
+
"Function that return multiple differentiable output "
|
516 |
+
"when at least one of them is view is not supported."
|
517 |
+
)
|
518 |
+
return call, rhs_value
|
519 |
+
|
520 |
+
|
521 |
+
def modifies_arguments(f: NativeFunction) -> bool:
|
522 |
+
return f.func.kind() in [SchemaKind.inplace, SchemaKind.out]
|
523 |
+
|
524 |
+
|
525 |
+
@with_native_function_with_differentiability_info
|
526 |
+
def emit_inplace_or_view_body(fn: NativeFunctionWithDifferentiabilityInfo) -> List[str]:
|
527 |
+
f = fn.func
|
528 |
+
inplace_view_body: List[str] = []
|
529 |
+
|
530 |
+
dispatcher_sig = DispatcherSignature.from_schema(f.func)
|
531 |
+
dispatcher_exprs = dispatcher_sig.exprs()
|
532 |
+
|
533 |
+
# code-generated ADInplaceOrView kernels plumb and recompute dispatch keys directly through the kernel for performance.
|
534 |
+
# See Note [Plumbing Keys Through The Dispatcher] for details.
|
535 |
+
dispatch_key_set = "ks & c10::after_ADInplaceOrView_keyset"
|
536 |
+
redispatch_args = ", ".join([dispatch_key_set] + [a.expr for a in dispatcher_exprs])
|
537 |
+
|
538 |
+
# Note that this calls the slow, dispatching variants of manual_cpp_binding ops.
|
539 |
+
# We could probably work harder to ensure that the fast variants are called instead, but the perf benefit would be minimal.
|
540 |
+
if modifies_arguments(f): # inplace op
|
541 |
+
inplace_view_body.append(
|
542 |
+
INPLACE_REDISPATCH.substitute(
|
543 |
+
unambiguous_name=f.func.name.unambiguous_name(),
|
544 |
+
unpacked_args=redispatch_args,
|
545 |
+
)
|
546 |
+
)
|
547 |
+
for r in cpp.return_names(f):
|
548 |
+
inplace_view_body.append(f"increment_version({r});")
|
549 |
+
else:
|
550 |
+
assert get_view_info(f) is not None
|
551 |
+
inplace_view_body.append(
|
552 |
+
VIEW_REDISPATCH.substitute(
|
553 |
+
assign_return_values="auto " + TMP_VAR + " = ",
|
554 |
+
unambiguous_name=f.func.name.unambiguous_name(),
|
555 |
+
unpacked_args=redispatch_args,
|
556 |
+
)
|
557 |
+
)
|
558 |
+
call, rhs_value = emit_view_body(fn, TMP_VAR)
|
559 |
+
inplace_view_body.append(call)
|
560 |
+
assert rhs_value is not None
|
561 |
+
inplace_view_body.append(
|
562 |
+
ASSIGN_RETURN_VALUE.substitute(
|
563 |
+
return_values=tie_return_values(f), rhs_value=rhs_value
|
564 |
+
)
|
565 |
+
)
|
566 |
+
if f.func.returns:
|
567 |
+
inplace_view_body.append(f"return {get_return_value(f)};")
|
568 |
+
return inplace_view_body
|
569 |
+
|
570 |
+
|
571 |
+
@with_native_function
|
572 |
+
def gen_formals(f: NativeFunction) -> str:
|
573 |
+
return ", ".join(
|
574 |
+
# code-generated autograd kernels plumb and recompute dispatch keys directly through the kernel for performance.
|
575 |
+
# See Note [Plumbing Keys Through The Dispatcher] for details.
|
576 |
+
["c10::DispatchKeySet ks"]
|
577 |
+
+ [
|
578 |
+
f'{cpp.argument_type(a, binds="__placeholder__", symint=True).cpp_type()} {a.name}'
|
579 |
+
for a in f.func.schema_order_arguments()
|
580 |
+
]
|
581 |
+
)
|
582 |
+
|
583 |
+
|
584 |
+
@with_native_function_with_differentiability_info
|
585 |
+
def inplace_or_view_method_definition(
|
586 |
+
fn: NativeFunctionWithDifferentiabilityInfo,
|
587 |
+
) -> Optional[str]:
|
588 |
+
f = fn.func
|
589 |
+
if get_view_info(f) is None and (
|
590 |
+
# For functions that modify their inputs but don't return them,
|
591 |
+
# we can't give them autograd support.
|
592 |
+
# See https://github.com/pytorch/pytorch/issues/53796
|
593 |
+
not modifies_arguments(f)
|
594 |
+
or len(f.func.returns) == 0
|
595 |
+
):
|
596 |
+
return None
|
597 |
+
return METHOD_DEFINITION.substitute(
|
598 |
+
return_type=cpp.returns_type(f.func.returns, symint=True).cpp_type(),
|
599 |
+
type_wrapper_name=type_wrapper_name(f),
|
600 |
+
formals=gen_formals(f),
|
601 |
+
type_definition_body=emit_inplace_or_view_body(fn),
|
602 |
+
)
|
603 |
+
|
604 |
+
|
605 |
+
@with_native_function_with_differentiability_info
|
606 |
+
def inplace_or_view_method_registration(
|
607 |
+
fn: NativeFunctionWithDifferentiabilityInfo,
|
608 |
+
) -> Optional[str]:
|
609 |
+
f = fn.func
|
610 |
+
if get_view_info(f) is None and (
|
611 |
+
not modifies_arguments(f) or len(f.func.returns) == 0
|
612 |
+
):
|
613 |
+
return None
|
614 |
+
return WRAPPER_REGISTRATION.substitute(
|
615 |
+
unqual_operator_name_with_overload=f.func.name,
|
616 |
+
type_wrapper_name=type_wrapper_name(f),
|
617 |
+
class_type="ADInplaceOrView",
|
618 |
+
)
|
619 |
+
|
620 |
+
|
621 |
+
def use_derived(fn: NativeFunctionWithDifferentiabilityInfo) -> bool:
|
622 |
+
f = fn.func
|
623 |
+
name = cpp.name(f.func)
|
624 |
+
return name not in MANUAL_AUTOGRAD and dispatch_strategy(fn) == "use_derived"
|
625 |
+
|
626 |
+
|
627 |
+
def gen_inplace_or_view_type_env(
|
628 |
+
fn: NativeFunctionWithDifferentiabilityInfo,
|
629 |
+
) -> Dict[str, List[str]]:
|
630 |
+
definition = inplace_or_view_method_definition(fn)
|
631 |
+
registration = inplace_or_view_method_registration(fn)
|
632 |
+
|
633 |
+
return {
|
634 |
+
"ops_headers": (
|
635 |
+
[f"#include <ATen/ops/{fn.func.root_name}_ops.h>"]
|
636 |
+
if definition is not None
|
637 |
+
else []
|
638 |
+
),
|
639 |
+
"inplace_or_view_method_definitions": [definition]
|
640 |
+
if definition is not None
|
641 |
+
else [],
|
642 |
+
"inplace_or_view_wrapper_registrations": [registration]
|
643 |
+
if registration is not None
|
644 |
+
else [],
|
645 |
+
}
|
646 |
+
|
647 |
+
|
648 |
+
def gen_inplace_or_view_type(
|
649 |
+
out: str,
|
650 |
+
native_yaml_path: str,
|
651 |
+
tags_yaml_path: str,
|
652 |
+
fns_with_infos: List[NativeFunctionWithDifferentiabilityInfo],
|
653 |
+
template_path: str,
|
654 |
+
) -> None:
|
655 |
+
# NOTE: see Note [Sharded File] at the top of the VariableType.cpp
|
656 |
+
# template regarding sharding of the generated files.
|
657 |
+
num_shards = 2
|
658 |
+
|
659 |
+
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
660 |
+
fm.write_sharded(
|
661 |
+
"ADInplaceOrViewType.cpp",
|
662 |
+
[fn for fn in fns_with_infos if use_derived(fn)],
|
663 |
+
key_fn=lambda fn: fn.func.root_name,
|
664 |
+
base_env={
|
665 |
+
"generated_comment": "@"
|
666 |
+
+ f"generated from {fm.template_dir_for_comments()}/ADInplaceOrViewType.cpp",
|
667 |
+
},
|
668 |
+
env_callable=gen_inplace_or_view_type_env,
|
669 |
+
num_shards=2,
|
670 |
+
sharded_keys={
|
671 |
+
"ops_headers",
|
672 |
+
"inplace_or_view_method_definitions",
|
673 |
+
"inplace_or_view_wrapper_registrations",
|
674 |
+
},
|
675 |
+
)
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_python_functions.py
ADDED
@@ -0,0 +1,1396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generates Python bindings for ATen functions
|
2 |
+
#
|
3 |
+
# The bindings are generated as methods on python_variable or functions on the
|
4 |
+
# torch._C._nn. torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._sparse
|
5 |
+
# or torch._C._special objects.
|
6 |
+
#
|
7 |
+
|
8 |
+
# Code tries to stick to the following rules:
|
9 |
+
#
|
10 |
+
# - templates should be colocated with the functions that use them.
|
11 |
+
# no templates are currently shared between functions, but if that
|
12 |
+
# happens, maybe put the template with the first one
|
13 |
+
#
|
14 |
+
# - don't use environment dictionaries when calling template.substitute().
|
15 |
+
# pass named arguments directly for everything, otherwise it's much too
|
16 |
+
# hard to track what's actually being used and by who
|
17 |
+
#
|
18 |
+
# - colocate any new hacks/adjustments with existing ones of the same kind.
|
19 |
+
# ideally in a data structure rather than code if possible. See e.g.
|
20 |
+
# SCHEMA_DEFAULT_CONVERSION_HACKS, etc.
|
21 |
+
#
|
22 |
+
# - similarly, conversions from one format to another should ideally happen
|
23 |
+
# all at once in a single place.
|
24 |
+
#
|
25 |
+
# - no nontrivial nested functions. couple-liners are ok but please no more.
|
26 |
+
# especially avoid functions that read/write outer variables defined far away.
|
27 |
+
#
|
28 |
+
# - raise RuntimeError instead of asserting, and put as much
|
29 |
+
# information as is available into the message. I.e. no need to
|
30 |
+
# plumb in new params whose only purpose is to fill out an error
|
31 |
+
# message, but use what's there
|
32 |
+
#
|
33 |
+
|
34 |
+
import itertools
|
35 |
+
import re
|
36 |
+
from collections import defaultdict
|
37 |
+
|
38 |
+
from typing import Callable, Dict, Iterable, List, Optional, Sequence, Set, Tuple
|
39 |
+
|
40 |
+
import yaml
|
41 |
+
from torchgen.api import cpp
|
42 |
+
from torchgen.api.python import (
|
43 |
+
arg_parser_output_exprs,
|
44 |
+
cpp_dispatch_exprs,
|
45 |
+
cpp_dispatch_target,
|
46 |
+
dispatch_lambda_args,
|
47 |
+
dispatch_lambda_exprs,
|
48 |
+
dispatch_lambda_return_str,
|
49 |
+
has_tensor_options,
|
50 |
+
PythonSignature,
|
51 |
+
PythonSignatureDeprecated,
|
52 |
+
PythonSignatureGroup,
|
53 |
+
PythonSignatureNativeFunctionPair,
|
54 |
+
signature,
|
55 |
+
signature_from_schema,
|
56 |
+
structseq_fieldnames,
|
57 |
+
)
|
58 |
+
|
59 |
+
from torchgen.code_template import CodeTemplate
|
60 |
+
from torchgen.context import with_native_function
|
61 |
+
from torchgen.gen import cpp_string, parse_native_yaml, parse_tags_yaml
|
62 |
+
from torchgen.model import (
|
63 |
+
Argument,
|
64 |
+
BaseOperatorName,
|
65 |
+
FunctionSchema,
|
66 |
+
NativeFunction,
|
67 |
+
SchemaKind,
|
68 |
+
Type,
|
69 |
+
Variant,
|
70 |
+
)
|
71 |
+
from torchgen.utils import FileManager, split_name_params
|
72 |
+
from torchgen.yaml_utils import YamlLoader
|
73 |
+
|
74 |
+
from .gen_inplace_or_view_type import is_tensor_list_type
|
75 |
+
from .gen_trace_type import should_trace
|
76 |
+
|
77 |
+
#
|
78 |
+
# declarations blocklist
|
79 |
+
# We skip codegen for these functions, for various reasons.
|
80 |
+
# Future PRs will categorize this list and eliminate or hoist
|
81 |
+
# them out of eager-only codegen.
|
82 |
+
# See https://github.com/pytorch/pytorch/issues/30788
|
83 |
+
#
|
84 |
+
|
85 |
+
# These functions require manual Python bindings or are not exposed to Python
|
86 |
+
_SKIP_PYTHON_BINDINGS = [
|
87 |
+
"alias",
|
88 |
+
"contiguous",
|
89 |
+
"is_cuda",
|
90 |
+
"is_sparse",
|
91 |
+
"is_sparse_csr",
|
92 |
+
"size",
|
93 |
+
"stride",
|
94 |
+
"sym_size",
|
95 |
+
"sym_stride",
|
96 |
+
"sym_storage_offset",
|
97 |
+
"sym_numel",
|
98 |
+
".*_backward",
|
99 |
+
".*_backward_(out|input|weight|bias)",
|
100 |
+
".*_forward",
|
101 |
+
".*_forward_out",
|
102 |
+
".*_jvp",
|
103 |
+
"_unsafe_view",
|
104 |
+
"tensor",
|
105 |
+
"_?sparse_(coo|compressed|csr|csc|bsr|bsc)_tensor.*",
|
106 |
+
"_range.*",
|
107 |
+
"_sparse_add_out",
|
108 |
+
"_sparse_div.*",
|
109 |
+
"_sparse_mul.*",
|
110 |
+
"_sparse_sub.*",
|
111 |
+
"_sparse_dense_add_out",
|
112 |
+
"index",
|
113 |
+
"index_out",
|
114 |
+
"unique_dim_consecutive",
|
115 |
+
"_cumsum.*",
|
116 |
+
"_cumprod.*",
|
117 |
+
"_sum.*",
|
118 |
+
"_prod.*",
|
119 |
+
"_th_.*",
|
120 |
+
"_thnn_.*",
|
121 |
+
"range.*",
|
122 |
+
"_solve.*",
|
123 |
+
"_inverse.*",
|
124 |
+
"_cholesky.*",
|
125 |
+
"_triangular_solve.*",
|
126 |
+
"_qr.*",
|
127 |
+
"_svd.*",
|
128 |
+
"slice",
|
129 |
+
"item",
|
130 |
+
"_local_scalar_dense",
|
131 |
+
"to",
|
132 |
+
"_to_copy",
|
133 |
+
"_to_copy_out",
|
134 |
+
"_reshape_copy",
|
135 |
+
"_reshape_copy_out",
|
136 |
+
"copy_sparse_to_sparse_",
|
137 |
+
"copy_",
|
138 |
+
"numpy_T",
|
139 |
+
"matrix_H",
|
140 |
+
"mT",
|
141 |
+
"mH", # these need to be an attributes in Python, not functions
|
142 |
+
"nonzero(_(out|numpy))?",
|
143 |
+
"set_data",
|
144 |
+
".*_overrideable", # overrideable functions for backend extension
|
145 |
+
"data",
|
146 |
+
"is_leaf",
|
147 |
+
"output_nr",
|
148 |
+
"_version",
|
149 |
+
"requires_grad_",
|
150 |
+
"retains_grad",
|
151 |
+
"set_",
|
152 |
+
"_fw_primal",
|
153 |
+
"fake_quantize_per_tensor_affine_cachemask",
|
154 |
+
"fake_quantize_per_channel_affine_cachemask",
|
155 |
+
"_new_zeros_with_same_feature_meta",
|
156 |
+
"_has_same_storage_numel", # used for forward AD internals
|
157 |
+
"_reshape_alias",
|
158 |
+
"replace_", # only used by the functionalization pass, doesn't need to be exposed to python
|
159 |
+
"copy", # only used by the functionalization pass
|
160 |
+
"fill.Tensor", # only used by the functionalization pass
|
161 |
+
"fill.Scalar", # only used by the functionalization pass
|
162 |
+
"lift.*",
|
163 |
+
"normal_functional", # only used by the functionalization pas
|
164 |
+
"nbytes",
|
165 |
+
"itemsize",
|
166 |
+
]
|
167 |
+
|
168 |
+
SKIP_PYTHON_BINDINGS = [
|
169 |
+
re.compile(rf"^{pattern}$") for pattern in _SKIP_PYTHON_BINDINGS
|
170 |
+
]
|
171 |
+
|
172 |
+
# These function signatures are not exposed to Python. Note that this signature
|
173 |
+
# list does not support regex.
|
174 |
+
SKIP_PYTHON_BINDINGS_SIGNATURES = [
|
175 |
+
"add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
|
176 |
+
"add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)",
|
177 |
+
"sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
|
178 |
+
"sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)",
|
179 |
+
"mul.Scalar(Tensor self, Scalar other) -> Tensor",
|
180 |
+
"mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)",
|
181 |
+
"div.Scalar(Tensor self, Scalar other) -> Tensor",
|
182 |
+
"div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)",
|
183 |
+
]
|
184 |
+
|
185 |
+
|
186 |
+
@with_native_function
|
187 |
+
def should_generate_py_binding(f: NativeFunction) -> bool:
|
188 |
+
# NativeFunctions that are entirely code-generated should not get python bindings
|
189 |
+
# because these codegen implementations are often inefficient. A handful of
|
190 |
+
# view_copy style ops were exposed accidentally when they were handwritten and now
|
191 |
+
# that we are moving them to codegen for bc reasons we need to keep them exposed in
|
192 |
+
# python.
|
193 |
+
if "generated" in f.tags and "view_copy" not in f.tags:
|
194 |
+
return False
|
195 |
+
|
196 |
+
name = cpp.name(f.func)
|
197 |
+
for skip_regex in SKIP_PYTHON_BINDINGS:
|
198 |
+
if skip_regex.match(name):
|
199 |
+
return False
|
200 |
+
|
201 |
+
signature = str(f.func)
|
202 |
+
for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
|
203 |
+
if pattern == signature:
|
204 |
+
return False
|
205 |
+
return True
|
206 |
+
|
207 |
+
|
208 |
+
def get_pycname(name: BaseOperatorName) -> str:
|
209 |
+
return f"THPVariable_{name}"
|
210 |
+
|
211 |
+
|
212 |
+
def is_noarg(overloads: Sequence[PythonSignatureNativeFunctionPair]) -> bool:
|
213 |
+
return len(overloads) == 1 and overloads[0].signature.arguments_count() == 0
|
214 |
+
|
215 |
+
|
216 |
+
def is_py_variable_method(f: NativeFunction) -> bool:
|
217 |
+
return f.python_module is None and Variant.method in f.variants
|
218 |
+
|
219 |
+
|
220 |
+
def is_py_torch_function(f: NativeFunction) -> bool:
|
221 |
+
return f.python_module is None and Variant.function in f.variants
|
222 |
+
|
223 |
+
|
224 |
+
def is_py_nn_function(f: NativeFunction) -> bool:
|
225 |
+
return f.python_module == "nn"
|
226 |
+
|
227 |
+
|
228 |
+
def is_py_fft_function(f: NativeFunction) -> bool:
|
229 |
+
return f.python_module == "fft"
|
230 |
+
|
231 |
+
|
232 |
+
def is_py_linalg_function(f: NativeFunction) -> bool:
|
233 |
+
return f.python_module == "linalg"
|
234 |
+
|
235 |
+
|
236 |
+
def is_py_nested_function(f: NativeFunction) -> bool:
|
237 |
+
return f.python_module == "nested"
|
238 |
+
|
239 |
+
|
240 |
+
def is_py_sparse_function(f: NativeFunction) -> bool:
|
241 |
+
return f.python_module == "sparse"
|
242 |
+
|
243 |
+
|
244 |
+
def is_py_special_function(f: NativeFunction) -> bool:
|
245 |
+
return f.python_module == "special"
|
246 |
+
|
247 |
+
|
248 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
249 |
+
#
|
250 |
+
# Main Function
|
251 |
+
#
|
252 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
253 |
+
|
254 |
+
|
255 |
+
def gen(
|
256 |
+
out: str,
|
257 |
+
native_yaml_path: str,
|
258 |
+
tags_yaml_path: str,
|
259 |
+
deprecated_yaml_path: str,
|
260 |
+
template_path: str,
|
261 |
+
*,
|
262 |
+
symint: bool = True,
|
263 |
+
) -> None:
|
264 |
+
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
265 |
+
native_functions = parse_native_yaml(
|
266 |
+
native_yaml_path, tags_yaml_path
|
267 |
+
).native_functions
|
268 |
+
native_functions = list(filter(should_generate_py_binding, native_functions))
|
269 |
+
|
270 |
+
methods = load_signatures(native_functions, deprecated_yaml_path, method=True)
|
271 |
+
create_python_bindings(
|
272 |
+
fm,
|
273 |
+
methods,
|
274 |
+
is_py_variable_method,
|
275 |
+
None,
|
276 |
+
"python_variable_methods.cpp",
|
277 |
+
method=True,
|
278 |
+
symint=symint,
|
279 |
+
)
|
280 |
+
|
281 |
+
# NOTE: num_shards here must be synced with gatherTorchFunctions in
|
282 |
+
# torch/csrc/autograd/python_torch_functions_manual.cpp
|
283 |
+
functions = load_signatures(native_functions, deprecated_yaml_path, method=False)
|
284 |
+
create_python_bindings_sharded(
|
285 |
+
fm,
|
286 |
+
functions,
|
287 |
+
is_py_torch_function,
|
288 |
+
"torch",
|
289 |
+
"python_torch_functions.cpp",
|
290 |
+
method=False,
|
291 |
+
num_shards=3,
|
292 |
+
symint=symint,
|
293 |
+
)
|
294 |
+
|
295 |
+
create_python_bindings(
|
296 |
+
fm,
|
297 |
+
functions,
|
298 |
+
is_py_nn_function,
|
299 |
+
"torch.nn",
|
300 |
+
"python_nn_functions.cpp",
|
301 |
+
method=False,
|
302 |
+
symint=symint,
|
303 |
+
)
|
304 |
+
|
305 |
+
create_python_bindings(
|
306 |
+
fm,
|
307 |
+
functions,
|
308 |
+
is_py_fft_function,
|
309 |
+
"torch.fft",
|
310 |
+
"python_fft_functions.cpp",
|
311 |
+
method=False,
|
312 |
+
symint=symint,
|
313 |
+
)
|
314 |
+
|
315 |
+
create_python_bindings(
|
316 |
+
fm,
|
317 |
+
functions,
|
318 |
+
is_py_linalg_function,
|
319 |
+
"torch.linalg",
|
320 |
+
"python_linalg_functions.cpp",
|
321 |
+
method=False,
|
322 |
+
symint=symint,
|
323 |
+
)
|
324 |
+
|
325 |
+
create_python_bindings(
|
326 |
+
fm,
|
327 |
+
functions,
|
328 |
+
is_py_nested_function,
|
329 |
+
"torch.nested",
|
330 |
+
"python_nested_functions.cpp",
|
331 |
+
method=False,
|
332 |
+
)
|
333 |
+
|
334 |
+
create_python_bindings(
|
335 |
+
fm,
|
336 |
+
functions,
|
337 |
+
is_py_sparse_function,
|
338 |
+
"torch.sparse",
|
339 |
+
"python_sparse_functions.cpp",
|
340 |
+
method=False,
|
341 |
+
symint=symint,
|
342 |
+
)
|
343 |
+
|
344 |
+
create_python_bindings(
|
345 |
+
fm,
|
346 |
+
functions,
|
347 |
+
is_py_special_function,
|
348 |
+
"torch.special",
|
349 |
+
"python_special_functions.cpp",
|
350 |
+
method=False,
|
351 |
+
symint=symint,
|
352 |
+
)
|
353 |
+
|
354 |
+
# Currently, we only use `functions` to generate `return_types` bindings.
|
355 |
+
# All methods which return structseq have function variant at this point.
|
356 |
+
# If any method only operator with structseq is added in the future,
|
357 |
+
# we will have to address that.
|
358 |
+
create_python_return_type_bindings(
|
359 |
+
fm, functions, lambda fn: True, "python_return_types.cpp"
|
360 |
+
)
|
361 |
+
create_python_return_type_bindings_header(
|
362 |
+
fm, functions, lambda fn: True, "python_return_types.h"
|
363 |
+
)
|
364 |
+
|
365 |
+
valid_tags = parse_tags_yaml(tags_yaml_path)
|
366 |
+
|
367 |
+
def gen_tags_enum() -> Dict[str, str]:
|
368 |
+
return {
|
369 |
+
"enum_of_valid_tags": (
|
370 |
+
"".join(
|
371 |
+
[f'\n.value("{tag}", at::Tag::{tag})' for tag in sorted(valid_tags)]
|
372 |
+
)
|
373 |
+
)
|
374 |
+
}
|
375 |
+
|
376 |
+
fm.write("python_enum_tag.cpp", gen_tags_enum)
|
377 |
+
|
378 |
+
|
379 |
+
def group_filter_overloads(
|
380 |
+
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
381 |
+
pred: Callable[[NativeFunction], bool],
|
382 |
+
) -> Dict[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]:
|
383 |
+
grouped: Dict[
|
384 |
+
BaseOperatorName, List[PythonSignatureNativeFunctionPair]
|
385 |
+
] = defaultdict(list)
|
386 |
+
for pair in pairs:
|
387 |
+
if pred(pair.function):
|
388 |
+
grouped[pair.function.func.name.name].append(pair)
|
389 |
+
return grouped
|
390 |
+
|
391 |
+
|
392 |
+
def create_python_bindings(
|
393 |
+
fm: FileManager,
|
394 |
+
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
395 |
+
pred: Callable[[NativeFunction], bool],
|
396 |
+
module: Optional[str],
|
397 |
+
filename: str,
|
398 |
+
*,
|
399 |
+
method: bool,
|
400 |
+
symint: bool = True,
|
401 |
+
) -> None:
|
402 |
+
"""Generates Python bindings to ATen functions"""
|
403 |
+
py_methods: List[str] = []
|
404 |
+
ops_headers: List[str] = []
|
405 |
+
py_method_defs: List[str] = []
|
406 |
+
py_forwards: List[str] = []
|
407 |
+
|
408 |
+
grouped = group_filter_overloads(pairs, pred)
|
409 |
+
|
410 |
+
for name in sorted(grouped.keys(), key=str):
|
411 |
+
overloads = grouped[name]
|
412 |
+
py_methods.append(
|
413 |
+
method_impl(name, module, overloads, method=method, symint=symint)
|
414 |
+
)
|
415 |
+
py_method_defs.append(method_def(name, module, overloads, method=method))
|
416 |
+
py_forwards.extend(forward_decls(name, overloads, method=method))
|
417 |
+
ops_headers.append(f"#include <ATen/ops/{name.base}.h>")
|
418 |
+
|
419 |
+
fm.write_with_template(
|
420 |
+
filename,
|
421 |
+
filename,
|
422 |
+
lambda: {
|
423 |
+
"generated_comment": "@"
|
424 |
+
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
|
425 |
+
"ops_headers": ops_headers,
|
426 |
+
"py_forwards": py_forwards,
|
427 |
+
"py_methods": py_methods,
|
428 |
+
"py_method_defs": py_method_defs,
|
429 |
+
},
|
430 |
+
)
|
431 |
+
|
432 |
+
|
433 |
+
def create_python_return_type_bindings(
|
434 |
+
fm: FileManager,
|
435 |
+
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
436 |
+
pred: Callable[[NativeFunction], bool],
|
437 |
+
filename: str,
|
438 |
+
) -> None:
|
439 |
+
"""
|
440 |
+
Generate function to initialize and return named tuple for native functions
|
441 |
+
which returns named tuple and registration invocations in `python_return_types.cpp`.
|
442 |
+
"""
|
443 |
+
py_return_types_definition: List[str] = []
|
444 |
+
py_return_types_registrations: List[str] = []
|
445 |
+
|
446 |
+
grouped = group_filter_overloads(pairs, pred)
|
447 |
+
|
448 |
+
for name in sorted(grouped.keys(), key=str):
|
449 |
+
overloads = grouped[name]
|
450 |
+
definitions, registrations = generate_return_type_definition_and_registrations(
|
451 |
+
overloads
|
452 |
+
)
|
453 |
+
py_return_types_definition.append(
|
454 |
+
"" if not definitions else "\n".join(definitions)
|
455 |
+
)
|
456 |
+
py_return_types_registrations.append(
|
457 |
+
"" if not registrations else "\n".join(registrations)
|
458 |
+
)
|
459 |
+
|
460 |
+
fm.write_with_template(
|
461 |
+
filename,
|
462 |
+
filename,
|
463 |
+
lambda: {
|
464 |
+
"generated_comment": "@"
|
465 |
+
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
|
466 |
+
"py_return_types": py_return_types_definition,
|
467 |
+
"py_return_types_registrations": py_return_types_registrations,
|
468 |
+
},
|
469 |
+
)
|
470 |
+
|
471 |
+
|
472 |
+
def create_python_return_type_bindings_header(
|
473 |
+
fm: FileManager,
|
474 |
+
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
475 |
+
pred: Callable[[NativeFunction], bool],
|
476 |
+
filename: str,
|
477 |
+
) -> None:
|
478 |
+
"""
|
479 |
+
Generate function to initialize and return named tuple for native functions
|
480 |
+
which returns named tuple and relevant entry for the map in `python_return_types.cpp`.
|
481 |
+
"""
|
482 |
+
py_return_types_declarations: List[str] = []
|
483 |
+
|
484 |
+
grouped = group_filter_overloads(pairs, pred)
|
485 |
+
|
486 |
+
for name in sorted(grouped.keys(), key=str):
|
487 |
+
overloads = grouped[name]
|
488 |
+
declarations = generate_return_type_declarations(overloads)
|
489 |
+
py_return_types_declarations.append(
|
490 |
+
"" if not declarations else "\n".join(declarations)
|
491 |
+
)
|
492 |
+
|
493 |
+
fm.write_with_template(
|
494 |
+
filename,
|
495 |
+
filename,
|
496 |
+
lambda: {
|
497 |
+
"generated_comment": "@"
|
498 |
+
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
|
499 |
+
"py_return_types_declarations": py_return_types_declarations,
|
500 |
+
},
|
501 |
+
)
|
502 |
+
|
503 |
+
|
504 |
+
def create_python_bindings_sharded(
|
505 |
+
fm: FileManager,
|
506 |
+
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
507 |
+
pred: Callable[[NativeFunction], bool],
|
508 |
+
module: Optional[str],
|
509 |
+
filename: str,
|
510 |
+
*,
|
511 |
+
method: bool,
|
512 |
+
num_shards: int,
|
513 |
+
symint: bool = True,
|
514 |
+
) -> None:
|
515 |
+
"""Generates Python bindings to ATen functions"""
|
516 |
+
grouped = group_filter_overloads(pairs, pred)
|
517 |
+
|
518 |
+
def key_func(
|
519 |
+
kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]
|
520 |
+
) -> str:
|
521 |
+
return kv[0].base
|
522 |
+
|
523 |
+
def env_func(
|
524 |
+
kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]
|
525 |
+
) -> Dict[str, List[str]]:
|
526 |
+
name, fn_pairs = kv
|
527 |
+
return {
|
528 |
+
"ops_headers": [f"#include <ATen/ops/{name.base}.h>"],
|
529 |
+
"py_forwards": list(forward_decls(name, fn_pairs, method=method)),
|
530 |
+
"py_methods": [
|
531 |
+
method_impl(name, module, fn_pairs, method=method, symint=symint)
|
532 |
+
],
|
533 |
+
"py_method_defs": [method_def(name, module, fn_pairs, method=method)],
|
534 |
+
}
|
535 |
+
|
536 |
+
fm.write_sharded(
|
537 |
+
filename,
|
538 |
+
grouped.items(),
|
539 |
+
base_env={
|
540 |
+
"generated_comment": "@"
|
541 |
+
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
|
542 |
+
},
|
543 |
+
key_fn=key_func,
|
544 |
+
env_callable=env_func,
|
545 |
+
num_shards=num_shards,
|
546 |
+
sharded_keys={"ops_headers", "py_forwards", "py_methods", "py_method_defs"},
|
547 |
+
)
|
548 |
+
|
549 |
+
|
550 |
+
def load_signatures(
|
551 |
+
native_functions: List[NativeFunction],
|
552 |
+
deprecated_yaml_path: str,
|
553 |
+
*,
|
554 |
+
method: bool,
|
555 |
+
skip_deprecated: bool = False,
|
556 |
+
pyi: bool = False,
|
557 |
+
) -> Sequence[PythonSignatureNativeFunctionPair]:
|
558 |
+
@with_native_function
|
559 |
+
def gen_signature_pairs(f: NativeFunction) -> PythonSignatureNativeFunctionPair:
|
560 |
+
return PythonSignatureNativeFunctionPair(
|
561 |
+
signature=signature(f, method=method, pyi=pyi),
|
562 |
+
function=f,
|
563 |
+
)
|
564 |
+
|
565 |
+
pairs = list(map(gen_signature_pairs, native_functions))
|
566 |
+
deprecated = load_deprecated_signatures(
|
567 |
+
pairs, deprecated_yaml_path, method=method, pyi=pyi
|
568 |
+
)
|
569 |
+
return pairs if skip_deprecated else pairs + deprecated
|
570 |
+
|
571 |
+
|
572 |
+
def load_deprecated_signatures(
|
573 |
+
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
574 |
+
deprecated_yaml_path: str,
|
575 |
+
*,
|
576 |
+
method: bool,
|
577 |
+
pyi: bool,
|
578 |
+
) -> List[PythonSignatureNativeFunctionPair]:
|
579 |
+
# The deprecated.yaml doesn't have complete type information, we need
|
580 |
+
# find and leverage the original ATen signature (to which it delegates
|
581 |
+
# the call) to generate the full python signature.
|
582 |
+
# We join the deprecated and the original signatures using type-only form.
|
583 |
+
|
584 |
+
# group the original ATen signatures by name
|
585 |
+
grouped: Dict[str, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
|
586 |
+
for pair in pairs:
|
587 |
+
grouped[pair.signature.name].append(pair)
|
588 |
+
|
589 |
+
# find matching original signatures for each deprecated signature
|
590 |
+
results: List[PythonSignatureNativeFunctionPair] = []
|
591 |
+
|
592 |
+
with open(deprecated_yaml_path) as f:
|
593 |
+
deprecated_defs = yaml.load(f, Loader=YamlLoader)
|
594 |
+
|
595 |
+
for deprecated in deprecated_defs:
|
596 |
+
schema = FunctionSchema.parse(deprecated["name"])
|
597 |
+
aten_name, call_args = split_name_params(deprecated["aten"])
|
598 |
+
is_out = aten_name.endswith("_out")
|
599 |
+
if is_out:
|
600 |
+
aten_name = aten_name.replace("_out", "")
|
601 |
+
|
602 |
+
# HACK: these are fixed constants used to pass the aten function.
|
603 |
+
# The type must be known ahead of time
|
604 |
+
known_constants = {
|
605 |
+
"1": Type.parse("Scalar"),
|
606 |
+
}
|
607 |
+
schema_args_by_name = {a.name: a for a in schema.arguments.flat_all}
|
608 |
+
for name in call_args:
|
609 |
+
assert (
|
610 |
+
name in schema_args_by_name or name in known_constants
|
611 |
+
), f"deprecation definiton: Unrecognized value {name}"
|
612 |
+
|
613 |
+
# Map deprecated signature arguments to their aten signature and test
|
614 |
+
# if the types and alias annotation match.
|
615 |
+
def is_schema_compatible(
|
616 |
+
aten_schema: FunctionSchema,
|
617 |
+
) -> bool:
|
618 |
+
arguments: Iterable[Argument]
|
619 |
+
if is_out:
|
620 |
+
arguments = itertools.chain(
|
621 |
+
aten_schema.arguments.out, aten_schema.arguments.flat_non_out
|
622 |
+
)
|
623 |
+
else:
|
624 |
+
arguments = aten_schema.arguments.flat_all
|
625 |
+
|
626 |
+
for i, arg in enumerate(arguments):
|
627 |
+
if i < len(call_args):
|
628 |
+
arg_name = call_args[i]
|
629 |
+
if arg_name in known_constants:
|
630 |
+
schema_type = known_constants[arg_name]
|
631 |
+
schema_annotation = None
|
632 |
+
else:
|
633 |
+
schema_arg = schema_args_by_name[arg_name]
|
634 |
+
schema_type = schema_arg.type
|
635 |
+
schema_annotation = schema_arg.annotation
|
636 |
+
|
637 |
+
if schema_type != arg.type or schema_annotation != arg.annotation:
|
638 |
+
return False
|
639 |
+
else:
|
640 |
+
if arg.default is None:
|
641 |
+
return False
|
642 |
+
|
643 |
+
return len(schema.returns) == len(aten_schema.returns) and all(
|
644 |
+
a == b for a, b in zip(schema.returns, aten_schema.returns)
|
645 |
+
)
|
646 |
+
|
647 |
+
any_schema_found = False
|
648 |
+
for pair in grouped[aten_name]:
|
649 |
+
if not is_schema_compatible(pair.function.func):
|
650 |
+
continue
|
651 |
+
any_schema_found = True
|
652 |
+
|
653 |
+
python_sig = signature_from_schema(
|
654 |
+
schema,
|
655 |
+
category_override=pair.function.category_override,
|
656 |
+
method=method,
|
657 |
+
pyi=pyi,
|
658 |
+
)
|
659 |
+
|
660 |
+
results.append(
|
661 |
+
PythonSignatureNativeFunctionPair(
|
662 |
+
signature=PythonSignatureDeprecated(
|
663 |
+
name=python_sig.name,
|
664 |
+
input_args=python_sig.input_args,
|
665 |
+
input_kwargs=python_sig.input_kwargs,
|
666 |
+
output_args=python_sig.output_args,
|
667 |
+
tensor_options_args=python_sig.tensor_options_args,
|
668 |
+
method=python_sig.method,
|
669 |
+
deprecated_schema=schema,
|
670 |
+
deprecated_args_exprs=tuple(call_args),
|
671 |
+
returns=python_sig.returns,
|
672 |
+
),
|
673 |
+
function=pair.function,
|
674 |
+
)
|
675 |
+
)
|
676 |
+
assert (
|
677 |
+
any_schema_found
|
678 |
+
), f"No native function with name {aten_name} matched signature:\n {str(schema)}"
|
679 |
+
|
680 |
+
return results
|
681 |
+
|
682 |
+
|
683 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
684 |
+
#
|
685 |
+
# Named Tuple Codegen
|
686 |
+
#
|
687 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
688 |
+
|
689 |
+
|
690 |
+
@with_native_function
|
691 |
+
def gen_structseq_typename_key(f: NativeFunction) -> str:
|
692 |
+
name = cpp.name(f.func)
|
693 |
+
fieldnames = structseq_fieldnames(f.func.returns)
|
694 |
+
return "_".join([name] + fieldnames)
|
695 |
+
|
696 |
+
|
697 |
+
def emit_structseq_call(
|
698 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
699 |
+
) -> Tuple[List[str], Dict[str, str]]:
|
700 |
+
"""
|
701 |
+
Generate block of named tuple type def inits, and add typeref snippets
|
702 |
+
to declarations that use them
|
703 |
+
"""
|
704 |
+
typenames: Dict[
|
705 |
+
str, str
|
706 |
+
] = {} # map from unique name + field name lists to typedef name
|
707 |
+
typedefs: List[str] = [] # typedef declarations and init code
|
708 |
+
|
709 |
+
for overload in overloads:
|
710 |
+
fieldnames = structseq_fieldnames(overload.function.func.returns)
|
711 |
+
if not fieldnames:
|
712 |
+
continue
|
713 |
+
|
714 |
+
name = cpp.name(overload.function.func) # use @with_native_function?
|
715 |
+
tn_key = gen_structseq_typename_key(overload.function)
|
716 |
+
typename = typenames.get(tn_key)
|
717 |
+
if typename is None:
|
718 |
+
typename = f'NamedTuple{"" if not typedefs else len(typedefs)}'
|
719 |
+
typenames[tn_key] = typename
|
720 |
+
typedefs.append(
|
721 |
+
f"""\
|
722 |
+
static PyTypeObject* {typename} = generated::get_{name}_structseq();"""
|
723 |
+
)
|
724 |
+
|
725 |
+
return typedefs, typenames
|
726 |
+
|
727 |
+
|
728 |
+
def generate_return_type_definition_and_registrations(
|
729 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
730 |
+
) -> Tuple[List[str], List[str]]:
|
731 |
+
"""
|
732 |
+
Generate block of function in `python_return_types.cpp` to initialize
|
733 |
+
and return named tuple for a native function which returns named tuple
|
734 |
+
and registration invocations in same file.
|
735 |
+
"""
|
736 |
+
typenames: Dict[
|
737 |
+
str, str
|
738 |
+
] = {} # map from unique name + field name lists to typedef name
|
739 |
+
definitions: List[str] = [] # function definition to register the typedef
|
740 |
+
registrations: List[str] = [] # register call for the typedef
|
741 |
+
|
742 |
+
for overload in overloads:
|
743 |
+
fieldnames = structseq_fieldnames(overload.function.func.returns)
|
744 |
+
if not fieldnames:
|
745 |
+
continue
|
746 |
+
|
747 |
+
fields = ", ".join(f'{{"{fn}", ""}}' for fn in fieldnames)
|
748 |
+
|
749 |
+
name = cpp.name(overload.function.func) # use @with_native_function?
|
750 |
+
tn_key = gen_structseq_typename_key(overload.function)
|
751 |
+
typename = typenames.get(tn_key)
|
752 |
+
|
753 |
+
if typename is None:
|
754 |
+
typename = f'{name}NamedTuple{"" if not definitions else len(definitions)}'
|
755 |
+
typenames[tn_key] = typename
|
756 |
+
definitions.append(
|
757 |
+
f"""\
|
758 |
+
PyTypeObject* get_{name}_structseq() {{
|
759 |
+
static PyStructSequence_Field NamedTuple_fields[] = {{ {fields}, {{nullptr}} }};
|
760 |
+
static PyTypeObject {typename};
|
761 |
+
static bool is_initialized = false;
|
762 |
+
static PyStructSequence_Desc desc = {{ "torch.return_types.{name}", nullptr, NamedTuple_fields, {len(fieldnames)} }};
|
763 |
+
if (!is_initialized) {{
|
764 |
+
PyStructSequence_InitType(&{typename}, &desc);
|
765 |
+
{typename}.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
|
766 |
+
is_initialized = true;
|
767 |
+
}}
|
768 |
+
return &{typename};
|
769 |
+
}}
|
770 |
+
"""
|
771 |
+
)
|
772 |
+
registrations.append(
|
773 |
+
f'addReturnType(return_types_module, "{name}", generated::get_{name}_structseq());'
|
774 |
+
)
|
775 |
+
|
776 |
+
return definitions, registrations
|
777 |
+
|
778 |
+
|
779 |
+
def generate_return_type_declarations(
|
780 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
781 |
+
) -> List[str]:
|
782 |
+
"""
|
783 |
+
Generate block of function declarations in `python_return_types.h` to initialize
|
784 |
+
and return named tuple for a native function.
|
785 |
+
"""
|
786 |
+
typenames: Dict[
|
787 |
+
str, str
|
788 |
+
] = {} # map from unique name + field name lists to typedef name
|
789 |
+
declarations: List[str] = [] # function declaration to register the typedef
|
790 |
+
|
791 |
+
for overload in overloads:
|
792 |
+
fieldnames = structseq_fieldnames(overload.function.func.returns)
|
793 |
+
if not fieldnames:
|
794 |
+
continue
|
795 |
+
|
796 |
+
name = cpp.name(overload.function.func) # use @with_native_function?
|
797 |
+
tn_key = gen_structseq_typename_key(overload.function)
|
798 |
+
typename = typenames.get(tn_key)
|
799 |
+
|
800 |
+
if typename is None:
|
801 |
+
typename = (
|
802 |
+
f'{name}NamedTuple{"" if not declarations else len(declarations)}'
|
803 |
+
)
|
804 |
+
typenames[tn_key] = typename
|
805 |
+
declarations.append(f"PyTypeObject* get_{name}_structseq();")
|
806 |
+
|
807 |
+
return declarations
|
808 |
+
|
809 |
+
|
810 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
811 |
+
#
|
812 |
+
# Method Impl Codegen
|
813 |
+
#
|
814 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
815 |
+
|
816 |
+
# python binding for all overloads of a particular function/method
|
817 |
+
PY_VARIABLE_METHOD_VARARGS = CodeTemplate(
|
818 |
+
r"""\
|
819 |
+
// ${name}
|
820 |
+
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
|
821 |
+
{
|
822 |
+
${method_header}
|
823 |
+
static PythonArgParser parser({
|
824 |
+
${signatures}
|
825 |
+
}, /*traceable=*/${traceable});
|
826 |
+
|
827 |
+
ParsedArgs<${max_args}> parsed_args;
|
828 |
+
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
|
829 |
+
${check_has_torch_function}
|
830 |
+
switch (_r.idx) {
|
831 |
+
${dispatch}
|
832 |
+
}
|
833 |
+
${method_footer}
|
834 |
+
}
|
835 |
+
|
836 |
+
"""
|
837 |
+
)
|
838 |
+
|
839 |
+
# handler for a single parsed signature - may be a single overload or
|
840 |
+
# a pair of overloads that whose signatures only differ in output params
|
841 |
+
# (plugged into PY_VARIABLE_METHOD_VARARGS as an item in ${dispatch})
|
842 |
+
PY_VARIABLE_CASE = CodeTemplate(
|
843 |
+
"""\
|
844 |
+
case ${overload_index}: {
|
845 |
+
${body}
|
846 |
+
}
|
847 |
+
"""
|
848 |
+
)
|
849 |
+
|
850 |
+
# python binding for single-overload function/method
|
851 |
+
PY_VARIABLE_METHOD_VARARGS_SINGLETON = CodeTemplate(
|
852 |
+
"""\
|
853 |
+
// ${name}
|
854 |
+
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
|
855 |
+
{
|
856 |
+
${method_header}
|
857 |
+
static PythonArgParser parser({
|
858 |
+
${signatures}
|
859 |
+
}, /*traceable=*/${traceable});
|
860 |
+
|
861 |
+
ParsedArgs<${max_args}> parsed_args;
|
862 |
+
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
|
863 |
+
${check_has_torch_function}
|
864 |
+
${dispatch}
|
865 |
+
${method_footer}
|
866 |
+
}
|
867 |
+
|
868 |
+
"""
|
869 |
+
)
|
870 |
+
|
871 |
+
# python binding for a method with no args, shortcuts parsing
|
872 |
+
PY_VARIABLE_METHOD_NOARGS = CodeTemplate(
|
873 |
+
"""\
|
874 |
+
// ${name}
|
875 |
+
static PyObject * ${pycname}(PyObject* self_, PyObject* args)
|
876 |
+
{
|
877 |
+
${method_header}
|
878 |
+
${check_has_torch_function}
|
879 |
+
${dispatch}
|
880 |
+
${method_footer}
|
881 |
+
}
|
882 |
+
|
883 |
+
"""
|
884 |
+
)
|
885 |
+
|
886 |
+
|
887 |
+
def method_impl(
|
888 |
+
name: BaseOperatorName,
|
889 |
+
module: Optional[str],
|
890 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
891 |
+
*,
|
892 |
+
method: bool,
|
893 |
+
symint: bool = True,
|
894 |
+
) -> str:
|
895 |
+
"""
|
896 |
+
Generate a python binding for all overloads of an op.
|
897 |
+
"""
|
898 |
+
pycname = get_pycname(name)
|
899 |
+
noarg = is_noarg(overloads)
|
900 |
+
structseq_inits, structseq_typenames = emit_structseq_call(overloads)
|
901 |
+
|
902 |
+
method_header = ["HANDLE_TH_ERRORS"]
|
903 |
+
method_header += structseq_inits
|
904 |
+
method_header += (
|
905 |
+
["const Tensor& self = THPVariable_Unpack(self_);"] if method else []
|
906 |
+
)
|
907 |
+
|
908 |
+
method_footer = ([] if noarg else ["Py_RETURN_NONE;"]) + ["END_HANDLE_TH_ERRORS"]
|
909 |
+
|
910 |
+
traceable = "true" if all(should_trace(o.function) for o in overloads) else "false"
|
911 |
+
|
912 |
+
grouped_overloads: Sequence[PythonSignatureGroup] = group_overloads(
|
913 |
+
overloads, symint=symint
|
914 |
+
)
|
915 |
+
is_singleton = len(grouped_overloads) == 1
|
916 |
+
signatures: List[str] = []
|
917 |
+
dispatch: List[str] = []
|
918 |
+
for overload_index, overload in enumerate(grouped_overloads):
|
919 |
+
signature = overload.signature.signature_str(symint=symint)
|
920 |
+
signatures.append(f"{cpp_string(str(signature))},")
|
921 |
+
dispatch_body = emit_dispatch_case(overload, structseq_typenames, symint=symint)
|
922 |
+
dispatch.append(
|
923 |
+
PY_VARIABLE_CASE.substitute(
|
924 |
+
overload_index=overload_index, body=dispatch_body
|
925 |
+
)
|
926 |
+
if not is_singleton
|
927 |
+
else dispatch_body
|
928 |
+
)
|
929 |
+
|
930 |
+
if noarg:
|
931 |
+
template = PY_VARIABLE_METHOD_NOARGS
|
932 |
+
elif is_singleton:
|
933 |
+
template = PY_VARIABLE_METHOD_VARARGS_SINGLETON
|
934 |
+
else:
|
935 |
+
template = PY_VARIABLE_METHOD_VARARGS
|
936 |
+
|
937 |
+
return template.substitute(
|
938 |
+
name=name,
|
939 |
+
pycname=pycname,
|
940 |
+
method_header=method_header,
|
941 |
+
max_args=max(o.signature.arguments_count() for o in overloads),
|
942 |
+
signatures=signatures,
|
943 |
+
traceable=traceable,
|
944 |
+
check_has_torch_function=gen_has_torch_function_check(
|
945 |
+
name=name,
|
946 |
+
module=module,
|
947 |
+
noarg=noarg,
|
948 |
+
method=method,
|
949 |
+
),
|
950 |
+
dispatch=dispatch,
|
951 |
+
method_footer=method_footer,
|
952 |
+
self_="self_" if method else "nullptr",
|
953 |
+
)
|
954 |
+
|
955 |
+
|
956 |
+
def gen_has_torch_function_check(
|
957 |
+
name: BaseOperatorName, module: Optional[str], *, noarg: bool, method: bool
|
958 |
+
) -> str:
|
959 |
+
if noarg:
|
960 |
+
if method:
|
961 |
+
return f"""\
|
962 |
+
if(check_has_torch_function(self_)) {{
|
963 |
+
return handle_torch_function(self_, "{name}");
|
964 |
+
}}
|
965 |
+
"""
|
966 |
+
else:
|
967 |
+
return ""
|
968 |
+
|
969 |
+
self_ = "self_" if method else "nullptr"
|
970 |
+
namespace = (
|
971 |
+
{
|
972 |
+
"torch": "THPVariableFunctionsModule",
|
973 |
+
"torch.nn": "THPNNVariableFunctionsModule",
|
974 |
+
"torch.fft": "THPFFTVariableFunctionsModule",
|
975 |
+
"torch.linalg": "THPLinalgVariableFunctionsModule",
|
976 |
+
"torch.nested": "THPNestedVariableFunctionsModule",
|
977 |
+
"torch.sparse": "THPSparseVariableFunctionsModule",
|
978 |
+
"torch.special": "THPSpecialVariableFunctionsModule",
|
979 |
+
}[module]
|
980 |
+
if module
|
981 |
+
else "THPVariableClass"
|
982 |
+
)
|
983 |
+
|
984 |
+
return f"""\
|
985 |
+
if(_r.has_torch_function()) {{
|
986 |
+
return handle_torch_function(_r, {self_}, args, kwargs, {namespace}, "{module or "torch.Tensor"}");
|
987 |
+
}}
|
988 |
+
"""
|
989 |
+
|
990 |
+
|
991 |
+
# handler for output/no-output overload pair
|
992 |
+
PY_VARIABLE_OUT = CodeTemplate(
|
993 |
+
"""\
|
994 |
+
if (_r.isNone(${out_idx})) {
|
995 |
+
${call_dispatch}
|
996 |
+
} else {
|
997 |
+
${call_dispatch_out}
|
998 |
+
}
|
999 |
+
"""
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
|
1003 |
+
def emit_dispatch_case(
|
1004 |
+
overload: PythonSignatureGroup,
|
1005 |
+
structseq_typenames: Dict[str, str],
|
1006 |
+
*,
|
1007 |
+
symint: bool = True,
|
1008 |
+
) -> str:
|
1009 |
+
"""
|
1010 |
+
Emit dispatch code for a single parsed signature. This corresponds to either
|
1011 |
+
a single native function, or a pair that differ only in output params. In the
|
1012 |
+
latter case, a single python signature is used for both and dispatching
|
1013 |
+
switches on the presence/absence of passed output args.
|
1014 |
+
"""
|
1015 |
+
if overload.outplace is not None:
|
1016 |
+
# dispatch output and no-output variants, branch on _r.isNone(<out_idx>)
|
1017 |
+
return PY_VARIABLE_OUT.substitute(
|
1018 |
+
out_idx=overload.signature.output_idx(),
|
1019 |
+
call_dispatch=emit_single_dispatch(
|
1020 |
+
overload.signature, overload.base, structseq_typenames, symint=symint
|
1021 |
+
),
|
1022 |
+
call_dispatch_out=emit_single_dispatch(
|
1023 |
+
overload.signature,
|
1024 |
+
overload.outplace,
|
1025 |
+
structseq_typenames,
|
1026 |
+
symint=symint,
|
1027 |
+
),
|
1028 |
+
)
|
1029 |
+
else:
|
1030 |
+
# no-output version only
|
1031 |
+
return emit_single_dispatch(
|
1032 |
+
overload.signature, overload.base, structseq_typenames, symint=symint
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
|
1036 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1037 |
+
#
|
1038 |
+
# Forward Declarations Codegen
|
1039 |
+
#
|
1040 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1041 |
+
|
1042 |
+
|
1043 |
+
def forward_decls(
|
1044 |
+
name: BaseOperatorName,
|
1045 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
1046 |
+
*,
|
1047 |
+
method: bool,
|
1048 |
+
) -> Tuple[str, ...]:
|
1049 |
+
if method:
|
1050 |
+
return ()
|
1051 |
+
|
1052 |
+
pycname = get_pycname(name)
|
1053 |
+
if is_noarg(overloads):
|
1054 |
+
return (
|
1055 |
+
f"""\
|
1056 |
+
static PyObject * {pycname}(PyObject* self_, PyObject* args);
|
1057 |
+
""",
|
1058 |
+
)
|
1059 |
+
else:
|
1060 |
+
return (
|
1061 |
+
f"""\
|
1062 |
+
static PyObject * {pycname}(PyObject* self_, PyObject* args, PyObject* kwargs);
|
1063 |
+
""",
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
|
1067 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1068 |
+
#
|
1069 |
+
# Method Def (Binding Table Entry) Codegen
|
1070 |
+
#
|
1071 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1072 |
+
|
1073 |
+
|
1074 |
+
def method_def(
|
1075 |
+
name: BaseOperatorName,
|
1076 |
+
module: Optional[str],
|
1077 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
1078 |
+
*,
|
1079 |
+
method: bool,
|
1080 |
+
) -> str:
|
1081 |
+
"""
|
1082 |
+
Generate method def entry.
|
1083 |
+
"""
|
1084 |
+
pycname = get_pycname(name)
|
1085 |
+
|
1086 |
+
if name.dunder_method:
|
1087 |
+
# PyMethodDef entry for binary op, throws not implemented error
|
1088 |
+
pycname = f"TypeError_to_NotImplemented_<{pycname}>"
|
1089 |
+
|
1090 |
+
if is_noarg(overloads):
|
1091 |
+
flags = "METH_NOARGS" if method else "METH_VARARGS | METH_KEYWORDS"
|
1092 |
+
else:
|
1093 |
+
pycname = f"castPyCFunctionWithKeywords({pycname})"
|
1094 |
+
flags = "METH_VARARGS | METH_KEYWORDS"
|
1095 |
+
|
1096 |
+
if module == "torch":
|
1097 |
+
flags += " | METH_STATIC"
|
1098 |
+
|
1099 |
+
return f'{{"{name}", {pycname}, {flags}, NULL}},'
|
1100 |
+
|
1101 |
+
|
1102 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1103 |
+
#
|
1104 |
+
# Overload Sorting and Grouping
|
1105 |
+
#
|
1106 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1107 |
+
|
1108 |
+
|
1109 |
+
def group_overloads(
|
1110 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair], *, symint: bool = True
|
1111 |
+
) -> Sequence[PythonSignatureGroup]:
|
1112 |
+
bases: Dict[str, PythonSignatureNativeFunctionPair] = {}
|
1113 |
+
outplaces: Dict[str, PythonSignatureNativeFunctionPair] = {}
|
1114 |
+
|
1115 |
+
# first group by signature ignoring out arguments
|
1116 |
+
for overload in overloads:
|
1117 |
+
sig = overload.signature.signature_str(skip_outputs=True, symint=symint)
|
1118 |
+
if overload.function.func.is_out_fn():
|
1119 |
+
if sig in outplaces:
|
1120 |
+
raise RuntimeError(
|
1121 |
+
f"Found duplicated function definition:\n- {overload.function.func}.\n"
|
1122 |
+
f"Existing definition:\n- {outplaces[sig].function.func}."
|
1123 |
+
)
|
1124 |
+
outplaces[sig] = overload
|
1125 |
+
else:
|
1126 |
+
if sig in bases:
|
1127 |
+
raise RuntimeError(
|
1128 |
+
f"Found duplicated function definition:\n- {overload.function.func}.\n"
|
1129 |
+
f"Existing definition:\n- {bases[sig].function.func}."
|
1130 |
+
)
|
1131 |
+
bases[sig] = overload
|
1132 |
+
|
1133 |
+
for sig, out in outplaces.items():
|
1134 |
+
if sig not in bases:
|
1135 |
+
candidates: List[str] = []
|
1136 |
+
for overload in overloads:
|
1137 |
+
if (
|
1138 |
+
str(overload.function.func.name.name)
|
1139 |
+
== str(out.function.func.name.name)
|
1140 |
+
and not overload.function.func.is_out_fn()
|
1141 |
+
and not overload.signature.deprecated
|
1142 |
+
):
|
1143 |
+
candidates.append(
|
1144 |
+
overload.signature.signature_str(
|
1145 |
+
skip_outputs=True, symint=symint
|
1146 |
+
)
|
1147 |
+
)
|
1148 |
+
out_sig = out.signature.signature_str(symint=symint)
|
1149 |
+
raise RuntimeError(
|
1150 |
+
f"While identifying overloads, we found an out schema {out_sig} without a corresponding non-out variant. "
|
1151 |
+
f"We expected the non-out variant to have schema: \n- {sig}\nPlease check that you spelled the schema "
|
1152 |
+
"correctly in native_functions.yaml. We discovered the following candidate(s): \n"
|
1153 |
+
+ "\n".join(f"- {candidate}" for candidate in candidates)
|
1154 |
+
)
|
1155 |
+
|
1156 |
+
grouped = [
|
1157 |
+
PythonSignatureGroup.from_pairs(
|
1158 |
+
functional=base,
|
1159 |
+
out=outplaces.get(sig),
|
1160 |
+
)
|
1161 |
+
for sig, base in bases.items()
|
1162 |
+
]
|
1163 |
+
return sort_overloads(grouped, symint=symint)
|
1164 |
+
|
1165 |
+
|
1166 |
+
# This function declares a partial order on declarations, and sorts them according
|
1167 |
+
# to its linear extension. This is necessary, because there's some ambiguity in the
|
1168 |
+
# choice of overload, and we want a different order.
|
1169 |
+
#
|
1170 |
+
# See Note[Order of overloads matters]
|
1171 |
+
#
|
1172 |
+
# A few examples of ambiguous python signature pairs.
|
1173 |
+
#
|
1174 |
+
# All parameters have the same type, except one taking Tensor the other taking
|
1175 |
+
# Scalar. A numeric PyObject can be casted into Tensor, and a zero-dim Tensor
|
1176 |
+
# object can be accepted as Scalar type parameter (see python_arg_parser.cpp).
|
1177 |
+
# Therefore, same input arguments might be accepted by either python signature.
|
1178 |
+
# We want to always parse the one taking Tensor first.
|
1179 |
+
#
|
1180 |
+
# bitwise_and(Tensor input, Tensor other, *, Tensor out=None)
|
1181 |
+
# bitwise_and(Tensor input, Scalar other, *, Tensor out=None)
|
1182 |
+
#
|
1183 |
+
# If they have different number of parameters then they are not ambiguous - but
|
1184 |
+
# the difference on output param can be ignored as it's optional.
|
1185 |
+
#
|
1186 |
+
# multiply(Tensor input, Tensor other, *, Tensor out=None)
|
1187 |
+
# multiply(Tensor input, Scalar other)
|
1188 |
+
#
|
1189 |
+
# Both positional args and keyword-only args are considered together.
|
1190 |
+
#
|
1191 |
+
# subtract(Tensor other, *, Scalar alpha=1)
|
1192 |
+
# subtract(Scalar other, Scalar alpha=1)
|
1193 |
+
#
|
1194 |
+
# A few ambiguous cases which it does NOT handle yet.
|
1195 |
+
#
|
1196 |
+
# If there is any difference in other parameters besides the Tensor/Scalar
|
1197 |
+
# difference, then they are not considered ambiguous by this method anymore.
|
1198 |
+
# However, the difference could be too trivial to disambiguate.
|
1199 |
+
#
|
1200 |
+
# foo(Tensor input, Scalar other, Scalar bar)
|
1201 |
+
# foo(Tensor input, Tensor other, double bar)
|
1202 |
+
#
|
1203 |
+
# If they are taking different number of parameters then they are not considered
|
1204 |
+
# ambiguous anymore, even if the difference is only on optional kwargs.
|
1205 |
+
#
|
1206 |
+
# foo(Scalar other, Scalar alpha=1)
|
1207 |
+
# foo(Tensor other, *, Scalar alpha=1, Scalar beta=1)
|
1208 |
+
#
|
1209 |
+
|
1210 |
+
|
1211 |
+
def sort_overloads(
|
1212 |
+
grouped_overloads: Sequence[PythonSignatureGroup], *, symint: bool = True
|
1213 |
+
) -> Sequence[PythonSignatureGroup]:
|
1214 |
+
# NB: Smaller here means lower priority
|
1215 |
+
|
1216 |
+
def is_arg_smaller(t1: Type, t2: Type) -> bool:
|
1217 |
+
return (
|
1218 |
+
str(t1) == "Scalar"
|
1219 |
+
and str(t2) == "Tensor"
|
1220 |
+
or str(t1) == "Scalar?"
|
1221 |
+
and str(t2) == "Tensor?"
|
1222 |
+
or "Dimname" in str(t1)
|
1223 |
+
and "Dimname" not in str(t2)
|
1224 |
+
or
|
1225 |
+
# In the discussion https://github.com/pytorch/pytorch/issues/54555 it has been
|
1226 |
+
# discussed why it is important to prioritize int/int? over int[]
|
1227 |
+
str(t1) == "int[]"
|
1228 |
+
and (str(t2) == "int" or str(t2) == "int?")
|
1229 |
+
or
|
1230 |
+
# TensorList currently throws an error during argument parsing, that's why it needs to be
|
1231 |
+
# last in signature ordering. See discussion: https://github.com/pytorch/pytorch/issues/58087
|
1232 |
+
str(t1) == "Tensor[]"
|
1233 |
+
and str(t2).find("[]") != -1
|
1234 |
+
or
|
1235 |
+
# Prioritize IntArrayRef overload over SymIntArrayRef
|
1236 |
+
str(t1) == "SymInt[]"
|
1237 |
+
and str(t2) == "int[]"
|
1238 |
+
or
|
1239 |
+
# Make sure both in, SymInt are sorted consistently w.r.t. Tensor since Tensor can be implicitly
|
1240 |
+
# converted to either int or SymInt. Prioritize the Tensor overload since it otherwise gets shadowed.
|
1241 |
+
(str(t1) == "SymInt" or str(t1) == "int")
|
1242 |
+
and str(t2) == "Tensor"
|
1243 |
+
)
|
1244 |
+
|
1245 |
+
def is_smaller(s1: PythonSignature, s2: PythonSignature) -> bool:
|
1246 |
+
"""Returns True if s1 < s2 in the partial order."""
|
1247 |
+
args1, args2 = s1.arguments(skip_outputs=True), s2.arguments(skip_outputs=True)
|
1248 |
+
if len(args1) != len(args2):
|
1249 |
+
return False
|
1250 |
+
# TODO: should use some canonical form instead of 'str(arg.type)' - see comments
|
1251 |
+
# above. The old codegen used the deprecated 'dynamic_type(arg.type)', which
|
1252 |
+
# ignores the optional annotation, i.e. 'Scalar' and 'Scalar?'.
|
1253 |
+
equal = all(arg1.type == arg2.type for arg1, arg2 in zip(args1, args2))
|
1254 |
+
smaller_or_equal = all(
|
1255 |
+
str(arg1.type) == str(arg2.type) or is_arg_smaller(arg1.type, arg2.type)
|
1256 |
+
for arg1, arg2 in zip(args1, args2)
|
1257 |
+
)
|
1258 |
+
return smaller_or_equal and not equal
|
1259 |
+
|
1260 |
+
# First sort by signature
|
1261 |
+
grouped_overloads = sorted(
|
1262 |
+
grouped_overloads, key=lambda x: x.signature.signature_str(symint=symint)
|
1263 |
+
)
|
1264 |
+
|
1265 |
+
# Construct the relation graph
|
1266 |
+
larger_than: Dict[int, Set[int]] = defaultdict(set)
|
1267 |
+
for i1, overload1 in enumerate(grouped_overloads):
|
1268 |
+
for i2, overload2 in enumerate(grouped_overloads):
|
1269 |
+
if is_smaller(overload1.signature, overload2.signature):
|
1270 |
+
larger_than[i1].add(i2)
|
1271 |
+
|
1272 |
+
if not larger_than:
|
1273 |
+
return list(grouped_overloads)
|
1274 |
+
|
1275 |
+
# Use a topological sort to sort overloads according to the partial order.
|
1276 |
+
N = len(grouped_overloads)
|
1277 |
+
sorted_ids: List[int] = list(filter(lambda x: x not in larger_than, range(N)))
|
1278 |
+
|
1279 |
+
for idx in range(N):
|
1280 |
+
# The size of sorted_ids will grow to N eventually.
|
1281 |
+
i = sorted_ids[idx]
|
1282 |
+
for j in sorted(larger_than.keys()):
|
1283 |
+
larger = larger_than[j]
|
1284 |
+
larger.discard(i)
|
1285 |
+
if not larger:
|
1286 |
+
del larger_than[j]
|
1287 |
+
sorted_ids.append(j)
|
1288 |
+
|
1289 |
+
return [grouped_overloads[x] for x in sorted_ids]
|
1290 |
+
|
1291 |
+
|
1292 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1293 |
+
#
|
1294 |
+
# Codegen API Integration
|
1295 |
+
#
|
1296 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1297 |
+
|
1298 |
+
|
1299 |
+
def emit_single_dispatch(
|
1300 |
+
ps: PythonSignature,
|
1301 |
+
f: NativeFunction,
|
1302 |
+
structseq_typenames: Dict[str, str],
|
1303 |
+
*,
|
1304 |
+
symint: bool = True,
|
1305 |
+
) -> str:
|
1306 |
+
"""
|
1307 |
+
Emit dispatch code for a single native function.
|
1308 |
+
"""
|
1309 |
+
|
1310 |
+
@with_native_function
|
1311 |
+
def go(f: NativeFunction) -> str:
|
1312 |
+
# header comments
|
1313 |
+
if isinstance(ps, PythonSignatureDeprecated):
|
1314 |
+
schema_comment = f"// [deprecated] aten::{ps.deprecated_schema}"
|
1315 |
+
else:
|
1316 |
+
schema_comment = f"// aten::{f.func}"
|
1317 |
+
|
1318 |
+
deprecated = "[deprecated] " if ps.deprecated else ""
|
1319 |
+
|
1320 |
+
# dispatch lambda signature
|
1321 |
+
name = cpp.name(f.func)
|
1322 |
+
lambda_formals = ", ".join(
|
1323 |
+
f"{a.type_str} {a.name}" for a in dispatch_lambda_args(ps, f, symint=symint)
|
1324 |
+
)
|
1325 |
+
lambda_return = dispatch_lambda_return_str(f)
|
1326 |
+
|
1327 |
+
# dispatch lambda body
|
1328 |
+
dispatch_callee = cpp_dispatch_target(f)
|
1329 |
+
dispatch_args = ", ".join(cpp_dispatch_exprs(f, python_signature=ps))
|
1330 |
+
|
1331 |
+
# from arg parser outputs to dispatch lambda arguments
|
1332 |
+
parser_outputs = arg_parser_output_exprs(ps, f, symint=symint)
|
1333 |
+
lambda_arg_exprs = dispatch_lambda_exprs(ps, f, symint=symint)
|
1334 |
+
inits = "\n".join(lambda_arg_exprs.inits)
|
1335 |
+
lambda_args = ", ".join(lambda_arg_exprs.exprs)
|
1336 |
+
|
1337 |
+
# scatter fields
|
1338 |
+
# TODO: Checking `ps.method and ('requires_grad' in parser_outputs)` is a hacky
|
1339 |
+
# solution for enabling the 'requires_grad' argument for tensor methods
|
1340 |
+
# new_full, new_empty, and new_zeros. A much better but more difficult to
|
1341 |
+
# implement solution involves refactoring according to Ed's description here:
|
1342 |
+
# https://github.com/pytorch/pytorch/issues/36455#issuecomment-614767589
|
1343 |
+
need_set_requires_grad = ps.tensor_options_args and (
|
1344 |
+
not has_tensor_options(f)
|
1345 |
+
or (ps.method and ("requires_grad" in parser_outputs))
|
1346 |
+
)
|
1347 |
+
set_requires_grad = (
|
1348 |
+
f'.set_requires_grad({parser_outputs["requires_grad"].expr})'
|
1349 |
+
if need_set_requires_grad
|
1350 |
+
else ""
|
1351 |
+
)
|
1352 |
+
|
1353 |
+
if lambda_return == "void":
|
1354 |
+
# Make in-place foreach return `self` at python-binding level.
|
1355 |
+
# ref: https://github.com/pytorch/pytorch/pull/118622#pullrequestreview-1904804954
|
1356 |
+
self_arg = f.func.arguments.self_arg
|
1357 |
+
return_stmt: str
|
1358 |
+
if (
|
1359 |
+
str(f.func.name).startswith("_foreach_")
|
1360 |
+
and f.func.kind() == SchemaKind.inplace
|
1361 |
+
):
|
1362 |
+
# note(crcrpar): `_foreach_pow.ScalarAndTensor` does NOT have its in-place
|
1363 |
+
# variant and it unlikely to have it in the future. Thus it's safe to have the following assert.
|
1364 |
+
assert self_arg is not None and is_tensor_list_type(
|
1365 |
+
self_arg.argument.type
|
1366 |
+
)
|
1367 |
+
return_stmt = """PyObject* self_tensorlist = _r.args[0];
|
1368 |
+
Py_INCREF(self_tensorlist);
|
1369 |
+
return self_tensorlist;
|
1370 |
+
"""
|
1371 |
+
else:
|
1372 |
+
return_stmt = "Py_RETURN_NONE;"
|
1373 |
+
return f"""\
|
1374 |
+
{schema_comment}
|
1375 |
+
{inits}
|
1376 |
+
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
|
1377 |
+
pybind11::gil_scoped_release no_gil;
|
1378 |
+
{dispatch_callee}({dispatch_args});
|
1379 |
+
}};
|
1380 |
+
dispatch_{name}({lambda_args}){set_requires_grad};
|
1381 |
+
{return_stmt}
|
1382 |
+
"""
|
1383 |
+
else:
|
1384 |
+
typename = structseq_typenames.get(gen_structseq_typename_key(f))
|
1385 |
+
structseq_typeref = f"{typename}, " if typename is not None else ""
|
1386 |
+
return f"""\
|
1387 |
+
{schema_comment}
|
1388 |
+
{inits}
|
1389 |
+
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
|
1390 |
+
pybind11::gil_scoped_release no_gil;
|
1391 |
+
return {dispatch_callee}({dispatch_args});
|
1392 |
+
}};
|
1393 |
+
return wrap({structseq_typeref}dispatch_{name}({lambda_args}){set_requires_grad});
|
1394 |
+
"""
|
1395 |
+
|
1396 |
+
return go(f)
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_trace_type.py
ADDED
@@ -0,0 +1,535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
from typing import Dict, List, Sequence, Union
|
3 |
+
|
4 |
+
from torchgen.api import cpp
|
5 |
+
from torchgen.api.types import DispatcherSignature
|
6 |
+
from torchgen.code_template import CodeTemplate
|
7 |
+
from torchgen.context import with_native_function
|
8 |
+
from torchgen.model import Argument, NativeFunction, SchemaKind, TensorOptionsArguments
|
9 |
+
from torchgen.utils import FileManager
|
10 |
+
|
11 |
+
# Note [Manual Backend kernels]
|
12 |
+
# For these ops, we want to manually register to dispatch key Backend and
|
13 |
+
# skip codegen-ed registeration to all keys before Backend.
|
14 |
+
# For codegen this means:
|
15 |
+
# - op set below must match ops with manual_kernel_registration=True in native_functions.yaml
|
16 |
+
# where we skip codegen backend kernels
|
17 |
+
# - all ops below are part of MANUAL_AUTOGRAD to skip codegen Autograd kernel registration
|
18 |
+
# - all ops below are part of MANUAL_TRACER to skip codegen Tracer kernel registration
|
19 |
+
# Note: we still register to dispatch key Profiler for these ops, keeping it untouched for now.
|
20 |
+
# You can find the manual registration in torch/csrc/autograd/VariableTypeManual.cpp
|
21 |
+
MANUAL_BACKEND = {
|
22 |
+
"options",
|
23 |
+
"data",
|
24 |
+
"set_data",
|
25 |
+
"is_leaf",
|
26 |
+
"output_nr",
|
27 |
+
"_version",
|
28 |
+
"retain_grad",
|
29 |
+
"_backward",
|
30 |
+
"requires_grad_",
|
31 |
+
}
|
32 |
+
|
33 |
+
# For these ops we want to skip the codegen-ed registration to both Autograd and Tracer keys.
|
34 |
+
# You can find the manual registration in torch/csrc/autograd/VariableTypeManual.cpp
|
35 |
+
MANUAL_AUTOGRAD_AND_TRACER = {
|
36 |
+
"resize_",
|
37 |
+
"resize_as_",
|
38 |
+
"detach",
|
39 |
+
"detach_",
|
40 |
+
"copy_",
|
41 |
+
"_fw_primal",
|
42 |
+
"_make_dual",
|
43 |
+
}
|
44 |
+
|
45 |
+
# Currently MANUAL_AUTOGRAD and MANUAL_TRACER share the same set of ops:
|
46 |
+
# union(MANUAL_BACKEND, MANUAL_AUTOGRAD_AND_TRACER)
|
47 |
+
# You can find the manual registration in torch/csrc/autograd/VariableTypeManual.cpp
|
48 |
+
MANUAL_AUTOGRAD = MANUAL_TRACER = MANUAL_BACKEND | MANUAL_AUTOGRAD_AND_TRACER
|
49 |
+
|
50 |
+
# These functions we don't want to record for tracing, because we always want
|
51 |
+
# to trace their constituent parts. This is a temporary hack in lieue
|
52 |
+
# of proper scopes, where subsequent compilation passes can ask for the unfolding
|
53 |
+
# on demand. Only concrete ATen methods can be disabled this way; it will have
|
54 |
+
# NO EFFECT otherwise.
|
55 |
+
DONT_RECORD_TRACE = {
|
56 |
+
"convolution",
|
57 |
+
"conv1d",
|
58 |
+
"conv2d",
|
59 |
+
"conv3d",
|
60 |
+
"conv_transpose1d",
|
61 |
+
"conv_transpose2d",
|
62 |
+
"conv_transpose3d",
|
63 |
+
"lstm_cell",
|
64 |
+
"gru_cell",
|
65 |
+
"rnn_tanh_cell",
|
66 |
+
"rnn_relu_cell",
|
67 |
+
# FIXME: figure out a better way when we support sparse tensors in jit
|
68 |
+
"_coalesced",
|
69 |
+
}
|
70 |
+
|
71 |
+
|
72 |
+
def should_trace(f: NativeFunction) -> bool:
|
73 |
+
# Operations involving Storage or Type are not traceable at the moment
|
74 |
+
if any(
|
75 |
+
str(arg.type) in {"Storage", "Type", "ConstQuantizerPtr"}
|
76 |
+
for arg in f.func.schema_order_arguments()
|
77 |
+
):
|
78 |
+
return False
|
79 |
+
# We can't trace functions which don't have any Tensor or TensorList returns
|
80 |
+
if not any(r.type.is_tensor_like() for r in f.func.returns):
|
81 |
+
return False
|
82 |
+
return f.func.name.name.base not in DONT_RECORD_TRACE
|
83 |
+
|
84 |
+
|
85 |
+
SELECT = CodeTemplate(
|
86 |
+
"""\
|
87 |
+
|
88 |
+
if (${cond}) {
|
89 |
+
${true}
|
90 |
+
} else {
|
91 |
+
${false}
|
92 |
+
}
|
93 |
+
"""
|
94 |
+
)
|
95 |
+
|
96 |
+
OP_NAME = CodeTemplate(
|
97 |
+
"""\
|
98 |
+
op_name = c10::Symbol::fromQualString("aten::${trace_name}");
|
99 |
+
"""
|
100 |
+
)
|
101 |
+
|
102 |
+
# These functions have their names recorded under trace renamed,
|
103 |
+
RENAME_TRACE = {
|
104 |
+
"zero": "zeros_like", # replacing aten::zero_ with aten::zeros_like
|
105 |
+
"fill": "full_like", # replacing aten::fill_ with aten::full_like
|
106 |
+
}
|
107 |
+
|
108 |
+
|
109 |
+
def format_trace_op_name(f: NativeFunction) -> str:
|
110 |
+
# TODO: byte-for-byte compatible with old codegen behavior - should clean up
|
111 |
+
if (
|
112 |
+
f.func.kind() in (SchemaKind.functional, SchemaKind.out)
|
113 |
+
or f.func.name.name.dunder_method
|
114 |
+
):
|
115 |
+
# special case for *_out functions: the in-place and out-of-place ops
|
116 |
+
# are overloaded with the same name in the JIT
|
117 |
+
trace_name = str(f.func.name.name)
|
118 |
+
trace_name = RENAME_TRACE.get(trace_name, trace_name)
|
119 |
+
return OP_NAME.substitute(trace_name=trace_name)
|
120 |
+
|
121 |
+
# otherwise, this is an in-place op and we need to emit both in- and
|
122 |
+
# out-of-place versions
|
123 |
+
outplace_trace_name = f.func.name.name.base
|
124 |
+
inplace_trace_name = cpp.name(f.func)
|
125 |
+
outplace_trace_name = RENAME_TRACE.get(outplace_trace_name, outplace_trace_name)
|
126 |
+
inplace_trace_name = RENAME_TRACE.get(inplace_trace_name, inplace_trace_name)
|
127 |
+
|
128 |
+
return SELECT.substitute(
|
129 |
+
cond="tracer_state->force_outplace",
|
130 |
+
true=OP_NAME.substitute(trace_name=outplace_trace_name),
|
131 |
+
false=OP_NAME.substitute(trace_name=inplace_trace_name),
|
132 |
+
)
|
133 |
+
|
134 |
+
|
135 |
+
ADD_TRACE_INPUT = CodeTemplate("""jit::tracer::addInputs(node, "${name}", ${input});""")
|
136 |
+
|
137 |
+
|
138 |
+
def format_trace_inputs(f: NativeFunction) -> str:
|
139 |
+
def dispatch_trace_input(
|
140 |
+
arg: Union[Argument, TensorOptionsArguments]
|
141 |
+
) -> Sequence[str]:
|
142 |
+
if isinstance(arg, TensorOptionsArguments):
|
143 |
+
name = "options"
|
144 |
+
return [
|
145 |
+
ADD_TRACE_INPUT.substitute(
|
146 |
+
name=name, input="c10::optTypeMetaToScalarType(options.dtype_opt())"
|
147 |
+
),
|
148 |
+
ADD_TRACE_INPUT.substitute(name=name, input="options.layout()"),
|
149 |
+
ADD_TRACE_INPUT.substitute(name=name, input="options.device()"),
|
150 |
+
ADD_TRACE_INPUT.substitute(name=name, input="options.pinned_memory()"),
|
151 |
+
]
|
152 |
+
else:
|
153 |
+
name = arg.name
|
154 |
+
if str(arg.type) == "Tensor?[]":
|
155 |
+
return [f'jit::tracer::addInputs(node, "{name}", {name});']
|
156 |
+
else:
|
157 |
+
return [ADD_TRACE_INPUT.substitute(name=name, input=name)]
|
158 |
+
|
159 |
+
args: List[Union[Argument, TensorOptionsArguments]] = list(
|
160 |
+
f.func.schema_order_arguments()
|
161 |
+
)
|
162 |
+
|
163 |
+
if f.func.is_out_fn():
|
164 |
+
# *_out functions take the result as a separate argument, but we don't want to
|
165 |
+
# trace that argument directly. Instead, we trace its TensorOptions.
|
166 |
+
# So first, we need to remove the out argument from the list of arguments to trace.
|
167 |
+
num_out_args = len(f.func.arguments.out)
|
168 |
+
args = args[:-num_out_args]
|
169 |
+
|
170 |
+
trace_inputs = itertools.chain.from_iterable(
|
171 |
+
dispatch_trace_input(arg) for arg in args
|
172 |
+
)
|
173 |
+
|
174 |
+
if f.func.is_out_fn():
|
175 |
+
# for *_out functions, handle the result argument differently for inplace/outplace.
|
176 |
+
# For inplace: just add the input to the end to confirm with the JIT schema
|
177 |
+
inplace = [
|
178 |
+
ADD_TRACE_INPUT.substitute(
|
179 |
+
name=f.func.arguments.out[i].name, input=f.func.arguments.out[i].name
|
180 |
+
)
|
181 |
+
for i in range(num_out_args)
|
182 |
+
]
|
183 |
+
|
184 |
+
# for outplace: do nothing, except if the function is a factory.
|
185 |
+
# Factories are a bit special because their out-of-place overloads
|
186 |
+
# take an extra TensorOptions argument, which is missing in the _out function
|
187 |
+
has_tensor_return = any(r.type.is_tensor_like() for r in f.func.returns)
|
188 |
+
has_tensor_input_arg = any(
|
189 |
+
a.type.is_tensor_like() for a in f.func.arguments.flat_non_out
|
190 |
+
)
|
191 |
+
is_factory_method = f.category_override == "factory" or (
|
192 |
+
has_tensor_return and not has_tensor_input_arg
|
193 |
+
)
|
194 |
+
|
195 |
+
# HACK: preserve old codegen behavior - the old codegen set the `is_factory_method`
|
196 |
+
# flag for the whole family of ops with the same basename if any of them is a
|
197 |
+
# factory method. For most cases the whole family of ops are indeed all factory
|
198 |
+
# method - 'normal' is the only exception. So we handle it specially here to avoid
|
199 |
+
# cloning the old logic.
|
200 |
+
if f.func.name.name.base == "normal":
|
201 |
+
is_factory_method = True
|
202 |
+
|
203 |
+
if is_factory_method:
|
204 |
+
outplace = [
|
205 |
+
ADD_TRACE_INPUT.substitute(
|
206 |
+
name="out",
|
207 |
+
input="c10::optTypeMetaToScalarType(out.options().dtype_opt())",
|
208 |
+
),
|
209 |
+
ADD_TRACE_INPUT.substitute(name="out", input="out.options().layout()"),
|
210 |
+
ADD_TRACE_INPUT.substitute(name="out", input="out.options().device()"),
|
211 |
+
ADD_TRACE_INPUT.substitute(
|
212 |
+
name="out", input="out.options().pinned_memory()"
|
213 |
+
),
|
214 |
+
]
|
215 |
+
else:
|
216 |
+
outplace = []
|
217 |
+
|
218 |
+
trace_inputs = itertools.chain(
|
219 |
+
trace_inputs,
|
220 |
+
[
|
221 |
+
SELECT.substitute(
|
222 |
+
cond="tracer_state->force_outplace",
|
223 |
+
true="\n".join(outplace),
|
224 |
+
false="\n".join(inplace),
|
225 |
+
)
|
226 |
+
],
|
227 |
+
)
|
228 |
+
|
229 |
+
return "\n".join(trace_inputs)
|
230 |
+
|
231 |
+
|
232 |
+
# `torch.jit.trace` have undocumented keyword argument `_force_outplace`,
|
233 |
+
# which force jit to replace functions with outplace variants (for
|
234 |
+
# example `aten::add_` becomes `aten::add`).
|
235 |
+
#
|
236 |
+
# This replacement implemented in-place with minimum modifications of
|
237 |
+
# arguments stack (as it assumes that outplace call has the same arguments
|
238 |
+
# as inplace version).
|
239 |
+
#
|
240 |
+
# However there are no such substitutions available for `aten::fill_`
|
241 |
+
# and `aten::zero_` operators, as we never implemented `aten::fill`
|
242 |
+
# and `aten::zero`. So jit tracing hack replacing `aten::zero_` with
|
243 |
+
# `aten::zeros_like` and replacing `aten::fill_` with `aten::full_like`.
|
244 |
+
#
|
245 |
+
# But as they potentially can have different arguments, we also have
|
246 |
+
# to hack into the stack and add missing ones.
|
247 |
+
#
|
248 |
+
# A possible alternative would be:
|
249 |
+
#
|
250 |
+
# - Add `aten::fill` and `aten::zero`
|
251 |
+
#
|
252 |
+
# - Or keep `aten::zeros_like` arguments aligned with `aten::zero_`
|
253 |
+
# arguments (inside of the `native_functions.yaml`)
|
254 |
+
RENAME_TRACE_ADD_ARGS = {
|
255 |
+
"fill": """\
|
256 |
+
jit::tracer::addInputs(node, "options", c10::optional<ScalarType>());
|
257 |
+
jit::tracer::addInputs(node, "options", layout_or_default(c10::nullopt));
|
258 |
+
jit::tracer::addInputs(node, "options", device_or_default(c10::nullopt));
|
259 |
+
jit::tracer::addInputs(node, "options", pinned_memory_or_default(c10::nullopt));
|
260 |
+
c10::optional<MemoryFormat> memory_format = c10::MemoryFormat::Preserve;
|
261 |
+
jit::tracer::addInputs(node, "memory_format", memory_format);
|
262 |
+
""",
|
263 |
+
"zero": """\
|
264 |
+
jit::tracer::addInputs(node, "options", c10::optional<ScalarType>());
|
265 |
+
jit::tracer::addInputs(node, "options", layout_or_default(c10::nullopt));
|
266 |
+
jit::tracer::addInputs(node, "options", device_or_default(c10::nullopt));
|
267 |
+
jit::tracer::addInputs(node, "options", pinned_memory_or_default(c10::nullopt));
|
268 |
+
c10::optional<MemoryFormat> memory_format = c10::MemoryFormat::Preserve;
|
269 |
+
jit::tracer::addInputs(node, "memory_format", memory_format);
|
270 |
+
""",
|
271 |
+
}
|
272 |
+
|
273 |
+
INPLACE_GUARD = CodeTemplate(
|
274 |
+
"""\
|
275 |
+
jit::tracer::ensureUniqueIfOutOfPlaced("${name}", ${mutable_input});
|
276 |
+
"""
|
277 |
+
)
|
278 |
+
|
279 |
+
PRE_RECORD_TRACE = CodeTemplate(
|
280 |
+
"""\
|
281 |
+
torch::jit::Node* node = nullptr;
|
282 |
+
std::shared_ptr<jit::tracer::TracingState> tracer_state;
|
283 |
+
if (jit::tracer::isTracing()) {
|
284 |
+
tracer_state = jit::tracer::getTracingState();
|
285 |
+
at::Symbol op_name;
|
286 |
+
${set_op_name}
|
287 |
+
node = tracer_state->createNode(op_name, /*num_outputs=*/0);
|
288 |
+
jit::tracer::recordSourceLocation(node);
|
289 |
+
${add_trace_inputs}
|
290 |
+
tracer_state->insertNode(node);
|
291 |
+
${inplace_guard}
|
292 |
+
jit::tracer::setTracingState(nullptr);
|
293 |
+
}
|
294 |
+
"""
|
295 |
+
)
|
296 |
+
|
297 |
+
|
298 |
+
def format_prerecord_trace(f: NativeFunction) -> str:
|
299 |
+
if not should_trace(f):
|
300 |
+
return ""
|
301 |
+
|
302 |
+
# TODO: clean up old codegen behavior
|
303 |
+
is_inplace = (
|
304 |
+
f.func.kind() in (SchemaKind.inplace, SchemaKind.out)
|
305 |
+
and not f.func.name.name.dunder_method
|
306 |
+
)
|
307 |
+
add_args = (
|
308 |
+
RENAME_TRACE_ADD_ARGS.get(f.func.name.name.base, "") if is_inplace else ""
|
309 |
+
)
|
310 |
+
additional_inputs = (
|
311 |
+
SELECT.substitute(
|
312 |
+
cond="tracer_state->force_outplace",
|
313 |
+
true=add_args,
|
314 |
+
false="",
|
315 |
+
)
|
316 |
+
if add_args
|
317 |
+
else ""
|
318 |
+
)
|
319 |
+
|
320 |
+
return PRE_RECORD_TRACE.substitute(
|
321 |
+
set_op_name=format_trace_op_name(f),
|
322 |
+
add_trace_inputs=format_trace_inputs(f) + additional_inputs,
|
323 |
+
inplace_guard=INPLACE_GUARD.substitute(
|
324 |
+
name=cpp.name(f.func),
|
325 |
+
mutable_input=f.func.arguments.out[0].name
|
326 |
+
if f.func.arguments.out
|
327 |
+
else "self",
|
328 |
+
)
|
329 |
+
if is_inplace
|
330 |
+
else "",
|
331 |
+
)
|
332 |
+
|
333 |
+
|
334 |
+
POST_RECORD_TRACE = CodeTemplate(
|
335 |
+
"""\
|
336 |
+
if (tracer_state) {
|
337 |
+
jit::tracer::setTracingState(std::move(tracer_state));
|
338 |
+
${add_trace_outputs}
|
339 |
+
}
|
340 |
+
"""
|
341 |
+
)
|
342 |
+
|
343 |
+
|
344 |
+
def format_postrecord_trace(f: NativeFunction) -> str:
|
345 |
+
if not should_trace(f):
|
346 |
+
return ""
|
347 |
+
|
348 |
+
# For outplacing ops, *_out overloads require special handling to move the
|
349 |
+
# output *argument* to a return value
|
350 |
+
if f.func.is_out_fn():
|
351 |
+
output_names_outplace = [arg.name for arg in f.func.arguments.out]
|
352 |
+
output_names_inplace = cpp.return_names(f)
|
353 |
+
|
354 |
+
# Code size optimization: the common case is that the return value is
|
355 |
+
# the same for both variants
|
356 |
+
if output_names_outplace == output_names_inplace:
|
357 |
+
outputs = [
|
358 |
+
f"jit::tracer::addOutput(node, {n});" for n in output_names_outplace
|
359 |
+
]
|
360 |
+
return POST_RECORD_TRACE.substitute(add_trace_outputs=outputs)
|
361 |
+
|
362 |
+
selection = SELECT.substitute(
|
363 |
+
cond="force_outplace",
|
364 |
+
true="\n".join(
|
365 |
+
f"jit::tracer::addOutput(node, {n});" for n in output_names_outplace
|
366 |
+
),
|
367 |
+
false="\n".join(
|
368 |
+
f"jit::tracer::addOutput(node, {n});" for n in output_names_inplace
|
369 |
+
),
|
370 |
+
)
|
371 |
+
return POST_RECORD_TRACE.substitute(add_trace_outputs=selection)
|
372 |
+
else:
|
373 |
+
output_names = cpp.return_names(f)
|
374 |
+
outputs = [f"jit::tracer::addOutput(node, {n});" for n in output_names]
|
375 |
+
return POST_RECORD_TRACE.substitute(add_trace_outputs=outputs)
|
376 |
+
|
377 |
+
|
378 |
+
def tie_return_values(f: NativeFunction) -> str:
|
379 |
+
if len(f.func.returns) == 1:
|
380 |
+
return f'auto {f.func.returns[0].name or "result"}'
|
381 |
+
names = cpp.return_names(f)
|
382 |
+
return f'auto [{", ".join(names)}]'
|
383 |
+
|
384 |
+
|
385 |
+
def get_return_value(f: NativeFunction) -> str:
|
386 |
+
names = cpp.return_names(f)
|
387 |
+
if len(f.func.returns) == 1:
|
388 |
+
return names[0]
|
389 |
+
if f.func.kind() == SchemaKind.out:
|
390 |
+
return f'std::forward_as_tuple({", ".join(names)})'
|
391 |
+
else:
|
392 |
+
moved = ", ".join(f"std::move({name})" for name in names)
|
393 |
+
return f"std::make_tuple({moved})"
|
394 |
+
|
395 |
+
|
396 |
+
TRACE_DISPATCH = CodeTemplate(
|
397 |
+
"""\
|
398 |
+
${assign_return_values}at::_ops::${unambiguous_name}::redispatch(${unpacked_args});"""
|
399 |
+
)
|
400 |
+
|
401 |
+
|
402 |
+
def emit_trace_body(f: NativeFunction) -> List[str]:
|
403 |
+
trace_body: List[str] = []
|
404 |
+
|
405 |
+
trace_body.append(format_prerecord_trace(f))
|
406 |
+
|
407 |
+
dispatcher_sig = DispatcherSignature.from_schema(f.func)
|
408 |
+
dispatcher_exprs = dispatcher_sig.exprs()
|
409 |
+
|
410 |
+
# code-generated tracing kernels plumb and recompute dispatch keys directly through the kernel for performance.
|
411 |
+
# See Note [Plumbing Keys Through The Dispatcher] for details.
|
412 |
+
dispatch_key_set = "ks & c10::DispatchKeySet(c10::DispatchKeySet::FULL_AFTER, c10::DispatchKey::Tracer)"
|
413 |
+
redispatch_args = ", ".join([dispatch_key_set] + [a.expr for a in dispatcher_exprs])
|
414 |
+
|
415 |
+
assign_return_values = (
|
416 |
+
f"{tie_return_values(f)} = "
|
417 |
+
if f.func.kind() in [SchemaKind.functional, SchemaKind.mutable]
|
418 |
+
and f.func.returns
|
419 |
+
else ""
|
420 |
+
)
|
421 |
+
|
422 |
+
# Note that this calls the slow, dispatching variants of manual_cpp_binding ops.
|
423 |
+
# We could probably work harder to ensure that the fast variants are
|
424 |
+
# called instead, but the perf benefit would be minimal.
|
425 |
+
trace_body.append(
|
426 |
+
TRACE_DISPATCH.substitute(
|
427 |
+
assign_return_values=assign_return_values,
|
428 |
+
unambiguous_name=f.func.name.unambiguous_name(),
|
429 |
+
unpacked_args=redispatch_args,
|
430 |
+
)
|
431 |
+
)
|
432 |
+
|
433 |
+
trace_body.append(format_postrecord_trace(f))
|
434 |
+
if f.func.returns:
|
435 |
+
trace_body.append(f"return {get_return_value(f)};")
|
436 |
+
return trace_body
|
437 |
+
|
438 |
+
|
439 |
+
METHOD_DEFINITION = CodeTemplate(
|
440 |
+
"""\
|
441 |
+
${return_type} ${type_wrapper_name}(${formals}) {
|
442 |
+
${type_definition_body}
|
443 |
+
}
|
444 |
+
"""
|
445 |
+
)
|
446 |
+
|
447 |
+
|
448 |
+
def type_wrapper_name(f: NativeFunction, key: str = "Default") -> str:
|
449 |
+
if f.func.name.overload_name:
|
450 |
+
name = f"{cpp.name(f.func)}_{f.func.name.overload_name}"
|
451 |
+
else:
|
452 |
+
name = cpp.name(f.func)
|
453 |
+
|
454 |
+
# The key argument is only used in gen_variable_type where we need fns per autograd dispatch key.
|
455 |
+
# In gen_trace_type and gen_inplace_view_type where only one fn per native_fn must be generated,
|
456 |
+
# the key argument should not be passed.
|
457 |
+
# We do not append key if it is Default so that generated functions from
|
458 |
+
# before per-dispatch-key derivatives were added retain the same names.
|
459 |
+
if key != "Default":
|
460 |
+
name = name + f"_{key}"
|
461 |
+
return name
|
462 |
+
|
463 |
+
|
464 |
+
@with_native_function
|
465 |
+
def method_definition(f: NativeFunction) -> str:
|
466 |
+
assert cpp.name(f.func) not in MANUAL_TRACER
|
467 |
+
|
468 |
+
formals = ", ".join(
|
469 |
+
# code-generated tracing kernels plumb and recompute dispatch keys directly through the kernel for performance.
|
470 |
+
# See Note [Plumbing Keys Through The Dispatcher] for details.
|
471 |
+
["c10::DispatchKeySet ks"]
|
472 |
+
+ [
|
473 |
+
f'{cpp.argument_type(a, binds="__placeholder__", symint=True).cpp_type()} {a.name}'
|
474 |
+
for a in f.func.schema_order_arguments()
|
475 |
+
]
|
476 |
+
)
|
477 |
+
|
478 |
+
return METHOD_DEFINITION.substitute(
|
479 |
+
return_type=cpp.returns_type(f.func.returns, symint=True).cpp_type(),
|
480 |
+
type_wrapper_name=type_wrapper_name(f),
|
481 |
+
formals=formals,
|
482 |
+
type_definition_body=emit_trace_body(f),
|
483 |
+
)
|
484 |
+
|
485 |
+
|
486 |
+
WRAPPER_REGISTRATION = CodeTemplate(
|
487 |
+
"""\
|
488 |
+
m.impl("${name}",
|
489 |
+
TORCH_FN(${class_type}::${type_wrapper_name})
|
490 |
+
);
|
491 |
+
"""
|
492 |
+
)
|
493 |
+
|
494 |
+
|
495 |
+
@with_native_function
|
496 |
+
def method_registration(f: NativeFunction) -> str:
|
497 |
+
assert cpp.name(f.func) not in MANUAL_TRACER
|
498 |
+
|
499 |
+
return WRAPPER_REGISTRATION.substitute(
|
500 |
+
name=f.func.name,
|
501 |
+
type_wrapper_name=type_wrapper_name(f),
|
502 |
+
class_type="TraceType",
|
503 |
+
)
|
504 |
+
|
505 |
+
|
506 |
+
def gen_trace_type_func(fn: NativeFunction) -> Dict[str, List[str]]:
|
507 |
+
return {
|
508 |
+
"ops_headers": [f"#include <ATen/ops/{fn.root_name}_ops.h>"],
|
509 |
+
"trace_method_definitions": [method_definition(fn)],
|
510 |
+
"trace_wrapper_registrations": [method_registration(fn)],
|
511 |
+
}
|
512 |
+
|
513 |
+
|
514 |
+
def gen_trace_type(
|
515 |
+
out: str, native_functions: List[NativeFunction], template_path: str
|
516 |
+
) -> None:
|
517 |
+
# NOTE: see Note [Sharded File] at the top of the VariableType.cpp
|
518 |
+
# template regarding sharding of the generated files.
|
519 |
+
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
520 |
+
fm.write_sharded(
|
521 |
+
"TraceType.cpp",
|
522 |
+
[fn for fn in native_functions if cpp.name(fn.func) not in MANUAL_TRACER],
|
523 |
+
key_fn=lambda fn: fn.root_name,
|
524 |
+
base_env={
|
525 |
+
"generated_comment": "@"
|
526 |
+
+ f"generated from {fm.template_dir_for_comments()}/TraceType.cpp",
|
527 |
+
},
|
528 |
+
env_callable=gen_trace_type_func,
|
529 |
+
num_shards=5,
|
530 |
+
sharded_keys={
|
531 |
+
"ops_headers",
|
532 |
+
"trace_method_definitions",
|
533 |
+
"trace_wrapper_registrations",
|
534 |
+
},
|
535 |
+
)
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_variable_factories.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generates C++ functions that wrap ATen tensor factory methods to turn them into Variables.
|
2 |
+
#
|
3 |
+
# This writes one file: variable_factories.h
|
4 |
+
|
5 |
+
import re
|
6 |
+
from typing import List, Optional
|
7 |
+
|
8 |
+
import torchgen.api.python as python
|
9 |
+
from torchgen.api import cpp
|
10 |
+
|
11 |
+
from torchgen.api.types import CppSignatureGroup
|
12 |
+
from torchgen.context import with_native_function
|
13 |
+
from torchgen.gen import parse_native_yaml
|
14 |
+
from torchgen.model import NativeFunction, TensorOptionsArguments, Variant
|
15 |
+
from torchgen.utils import FileManager, mapMaybe
|
16 |
+
|
17 |
+
OPTIONAL_TYPE_PATTERN = re.compile(r"c10::optional<(.+)>")
|
18 |
+
TYPE_PATTERN = re.compile(r"(?:const\s+)?([A-Z]\w+)")
|
19 |
+
|
20 |
+
|
21 |
+
# Add 'at::' to types defined in ATen namespace, e.g. Tensor, TensorList, IntArrayRef and etc.
|
22 |
+
# TODO: maybe update the cpp argument API to take optional namespace argument?
|
23 |
+
def fully_qualified_type(argument_type: str) -> str:
|
24 |
+
def maybe_optional_type(type: str, is_opt: bool) -> str:
|
25 |
+
return f"c10::optional<{type}>" if is_opt else type
|
26 |
+
|
27 |
+
opt_match = OPTIONAL_TYPE_PATTERN.match(argument_type)
|
28 |
+
is_opt = opt_match is not None
|
29 |
+
if opt_match:
|
30 |
+
argument_type = argument_type[opt_match.start(1) : opt_match.end(1)]
|
31 |
+
match = TYPE_PATTERN.match(argument_type)
|
32 |
+
if match is None:
|
33 |
+
return maybe_optional_type(argument_type, is_opt)
|
34 |
+
index = match.start(1)
|
35 |
+
qualified_type = f"{argument_type[:index]}at::{argument_type[index:]}"
|
36 |
+
return maybe_optional_type(qualified_type, is_opt)
|
37 |
+
|
38 |
+
|
39 |
+
def gen_variable_factories(
|
40 |
+
out: str, native_yaml_path: str, tags_yaml_path: str, template_path: str
|
41 |
+
) -> None:
|
42 |
+
native_functions = parse_native_yaml(
|
43 |
+
native_yaml_path, tags_yaml_path
|
44 |
+
).native_functions
|
45 |
+
factory_functions = [fn for fn in native_functions if is_factory_function(fn)]
|
46 |
+
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
47 |
+
fm.write_with_template(
|
48 |
+
"variable_factories.h",
|
49 |
+
"variable_factories.h",
|
50 |
+
lambda: {
|
51 |
+
"generated_comment": "@"
|
52 |
+
+ f"generated from {fm.template_dir_for_comments()}/variable_factories.h",
|
53 |
+
"ops_headers": [
|
54 |
+
f"#include <ATen/ops/{fn.root_name}.h>" for fn in factory_functions
|
55 |
+
],
|
56 |
+
"function_definitions": list(mapMaybe(process_function, factory_functions)),
|
57 |
+
},
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
@with_native_function
|
62 |
+
def is_factory_function(f: NativeFunction) -> bool:
|
63 |
+
if Variant.function not in f.variants:
|
64 |
+
return False
|
65 |
+
|
66 |
+
name = cpp.name(f.func)
|
67 |
+
has_tensor_options = python.has_tensor_options(f)
|
68 |
+
return has_tensor_options or name.endswith("_like")
|
69 |
+
|
70 |
+
|
71 |
+
@with_native_function
|
72 |
+
def process_function(f: NativeFunction) -> Optional[str]:
|
73 |
+
name = cpp.name(f.func)
|
74 |
+
has_tensor_options = python.has_tensor_options(f)
|
75 |
+
is_factory = has_tensor_options or name.endswith("_like")
|
76 |
+
|
77 |
+
if Variant.function not in f.variants or not is_factory:
|
78 |
+
return None
|
79 |
+
|
80 |
+
cpp_sigs = CppSignatureGroup.from_native_function(f, method=False)
|
81 |
+
sigs = [cpp_sigs.signature]
|
82 |
+
if cpp_sigs.symint_signature is not None:
|
83 |
+
sigs.append(cpp_sigs.symint_signature)
|
84 |
+
r = ""
|
85 |
+
for sig in sigs:
|
86 |
+
formals: List[str] = []
|
87 |
+
exprs: List[str] = []
|
88 |
+
requires_grad = "false"
|
89 |
+
for arg in sig.arguments():
|
90 |
+
qualified_type = fully_qualified_type(arg.type)
|
91 |
+
if arg.default:
|
92 |
+
formals.append(f"{qualified_type} {arg.name} = {arg.default}")
|
93 |
+
else:
|
94 |
+
formals.append(f"{qualified_type} {arg.name}")
|
95 |
+
|
96 |
+
if isinstance(arg.argument, TensorOptionsArguments):
|
97 |
+
# note: we remove the requires_grad setting from the TensorOptions because
|
98 |
+
# it is ignored anyways (and we actually have an assertion that it isn't set
|
99 |
+
# which would fail otherwise). We handle requires_grad explicitly here
|
100 |
+
# instead of passing it through to the kernel.
|
101 |
+
exprs.append(
|
102 |
+
f"at::TensorOptions({arg.name}).requires_grad(c10::nullopt)"
|
103 |
+
)
|
104 |
+
# Manually set the requires_grad bit on the result tensor.
|
105 |
+
requires_grad = f"{arg.name}.requires_grad()"
|
106 |
+
else:
|
107 |
+
exprs.append(arg.name)
|
108 |
+
|
109 |
+
r += f"""\
|
110 |
+
inline at::Tensor {sig.name()}({', '.join(formals)}) {{
|
111 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
112 |
+
return autograd::make_variable(at::{sig.name()}({', '.join(exprs)}), /*requires_grad=*/{requires_grad});
|
113 |
+
}}
|
114 |
+
"""
|
115 |
+
return r
|
llmeval-env/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_variable_type.py
ADDED
@@ -0,0 +1,2162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generates VariableType.h/cpp
|
2 |
+
#
|
3 |
+
# **If any changes are being made to the VariableType codegen please also check
|
4 |
+
# if updates are needed in torch/csrc/autograd/autograd_not_implemented_fallback.cpp
|
5 |
+
#
|
6 |
+
# VariableType is a subclass of at::Type that provides the binding code
|
7 |
+
# necessary to provide a differentiable version of ATen operators. There are a
|
8 |
+
# number of different things we could mean:
|
9 |
+
#
|
10 |
+
# - Given a non-differentiable forward implementation, we might
|
11 |
+
# directly associate it with a backward implementation to make
|
12 |
+
# it differentiable. This is the common case.
|
13 |
+
#
|
14 |
+
# - Some functions don't need a backwards implementation, because
|
15 |
+
# backpropagation will never propagate beyond them. There are a
|
16 |
+
# number of different reasons why this may be the case:
|
17 |
+
#
|
18 |
+
# - The function has no differentiable inputs
|
19 |
+
# - The function's output is not differentiable
|
20 |
+
# - The function has no data dependency on its input
|
21 |
+
#
|
22 |
+
# - Some function don't need a backwards implementation because they
|
23 |
+
# are implemented as a composition of other (differentiable) ATen
|
24 |
+
# functions. These are dispatched directly to the Type superclass,
|
25 |
+
# which will in turn dispatch back to VariableType for its
|
26 |
+
# differentiable subcomponents.
|
27 |
+
#
|
28 |
+
import re
|
29 |
+
from typing import Callable, Dict, List, Optional, Sequence, Set, Tuple, Union
|
30 |
+
|
31 |
+
from torchgen.api import cpp
|
32 |
+
from torchgen.api.autograd import (
|
33 |
+
DifferentiableInput,
|
34 |
+
dispatch_strategy,
|
35 |
+
ForwardDerivative,
|
36 |
+
gen_differentiable_outputs,
|
37 |
+
is_differentiable,
|
38 |
+
NativeFunctionWithDifferentiabilityInfo,
|
39 |
+
SavedAttribute,
|
40 |
+
)
|
41 |
+
|
42 |
+
from torchgen.api.types import (
|
43 |
+
ArrayRefCType,
|
44 |
+
BaseCppType,
|
45 |
+
BaseCType,
|
46 |
+
Binding,
|
47 |
+
DispatcherSignature,
|
48 |
+
intArrayRefT,
|
49 |
+
iTensorListRefT,
|
50 |
+
ListCType,
|
51 |
+
MutRefCType,
|
52 |
+
OptionalCType,
|
53 |
+
scalarT,
|
54 |
+
SpecialArgName,
|
55 |
+
stringT,
|
56 |
+
symIntArrayRefT,
|
57 |
+
TENSOR_LIST_LIKE_CTYPES,
|
58 |
+
tensorListT,
|
59 |
+
tensorT,
|
60 |
+
TupleCType,
|
61 |
+
VectorCType,
|
62 |
+
)
|
63 |
+
from torchgen.code_template import CodeTemplate
|
64 |
+
from torchgen.context import (
|
65 |
+
native_function_manager,
|
66 |
+
with_native_function,
|
67 |
+
with_native_function_and,
|
68 |
+
)
|
69 |
+
from torchgen.model import (
|
70 |
+
Argument,
|
71 |
+
BaseType,
|
72 |
+
ListType,
|
73 |
+
NativeFunction,
|
74 |
+
SchemaKind,
|
75 |
+
SelfArgument,
|
76 |
+
TensorOptionsArguments,
|
77 |
+
)
|
78 |
+
from torchgen.utils import FileManager, mapMaybe
|
79 |
+
|
80 |
+
from .context import with_native_function_with_differentiability_info_and_key
|
81 |
+
from .gen_inplace_or_view_type import (
|
82 |
+
ALL_VIEW_FUNCTIONS,
|
83 |
+
ASSIGN_RETURN_VALUE,
|
84 |
+
AUTOGRAD_NOT_IMPLEMENTED_REGISTRATION,
|
85 |
+
gen_formals,
|
86 |
+
get_base_name,
|
87 |
+
get_view_info,
|
88 |
+
is_tensor_list_type,
|
89 |
+
is_tensor_type,
|
90 |
+
METHOD_DEFINITION,
|
91 |
+
modifies_arguments,
|
92 |
+
TMP_VAR,
|
93 |
+
unpack_args,
|
94 |
+
unpacked_name,
|
95 |
+
use_derived,
|
96 |
+
WRAPPER_REGISTRATION,
|
97 |
+
)
|
98 |
+
from .gen_trace_type import (
|
99 |
+
get_return_value,
|
100 |
+
MANUAL_AUTOGRAD_AND_TRACER,
|
101 |
+
MANUAL_BACKEND,
|
102 |
+
tie_return_values,
|
103 |
+
type_wrapper_name,
|
104 |
+
)
|
105 |
+
|
106 |
+
# We don't set or modify grad_fn on these methods. Generally, they return
|
107 |
+
# tensors that have requires_grad=False. In-place functions listed here will
|
108 |
+
# not examine or modify requires_grad or grad_fn.
|
109 |
+
# NB: this does NOT include overload name
|
110 |
+
DONT_REQUIRE_DERIVATIVE = {
|
111 |
+
# These only depend on the input Tensor's shape and device, not the data
|
112 |
+
"empty_like",
|
113 |
+
"ones_like",
|
114 |
+
"full_like",
|
115 |
+
"zeros_like",
|
116 |
+
"rand_like",
|
117 |
+
"randn_like",
|
118 |
+
"new_empty",
|
119 |
+
"new_empty_strided",
|
120 |
+
"new_full",
|
121 |
+
"new_zeros",
|
122 |
+
"new_ones",
|
123 |
+
# These are only implemented on integral types
|
124 |
+
"__and__",
|
125 |
+
"__iand__",
|
126 |
+
"__ilshift__",
|
127 |
+
"__ior__",
|
128 |
+
"__irshift__",
|
129 |
+
"__ixor__",
|
130 |
+
"__lshift__",
|
131 |
+
"__or__",
|
132 |
+
"__rshift__",
|
133 |
+
"__xor__",
|
134 |
+
# These work on integral data types, and hence don't require derivative
|
135 |
+
"_sobol_engine_draw",
|
136 |
+
"_sobol_engine_ff",
|
137 |
+
"_sobol_engine_scramble_",
|
138 |
+
"_sobol_engine_initialize_state_",
|
139 |
+
# This is an unsafe method that is meant to be out of reach of autograd.
|
140 |
+
"_coalesced_",
|
141 |
+
# Quantize functions should not record gradients
|
142 |
+
"quantize_per_tensor",
|
143 |
+
"quantize_per_channel",
|
144 |
+
# Functions that return integers should not have output that require gradients
|
145 |
+
"argmax",
|
146 |
+
"argmin",
|
147 |
+
"argsort",
|
148 |
+
"searchsorted",
|
149 |
+
"bucketize",
|
150 |
+
# Functions that return booleans are not differentiable
|
151 |
+
"isnan",
|
152 |
+
"isposinf",
|
153 |
+
"isneginf",
|
154 |
+
"isinf",
|
155 |
+
"signbit",
|
156 |
+
"isin",
|
157 |
+
"allclose",
|
158 |
+
# Functions return none are not differentiable
|
159 |
+
"record_stream",
|
160 |
+
# These functions are not differentiable
|
161 |
+
"logical_and",
|
162 |
+
"logical_xor",
|
163 |
+
"logical_not",
|
164 |
+
"logical_or",
|
165 |
+
# This function returns nested_tensor shape as a tensor that is non-differentiable
|
166 |
+
"_nested_tensor_size",
|
167 |
+
"_nested_tensor_strides",
|
168 |
+
"_nested_tensor_storage_offsets",
|
169 |
+
}
|
170 |
+
|
171 |
+
# The C -> R functions at the time of adding this are still being audited and tested
|
172 |
+
# but will not error out.
|
173 |
+
# C -> C, R -> C functions for which backward is correctly implemented and tested
|
174 |
+
GRADIENT_IMPLEMENTED_FOR_COMPLEX = {
|
175 |
+
"fill",
|
176 |
+
"t",
|
177 |
+
"view",
|
178 |
+
"reshape",
|
179 |
+
"reshape_as",
|
180 |
+
"view_as",
|
181 |
+
"roll",
|
182 |
+
"clone",
|
183 |
+
"block_diag",
|
184 |
+
"diag_embed",
|
185 |
+
"repeat",
|
186 |
+
"expand",
|
187 |
+
"flip",
|
188 |
+
"fliplr",
|
189 |
+
"flipud",
|
190 |
+
"rot90",
|
191 |
+
"nanmean",
|
192 |
+
"nansum",
|
193 |
+
"transpose",
|
194 |
+
"permute",
|
195 |
+
"squeeze",
|
196 |
+
"unsqueeze",
|
197 |
+
"resize",
|
198 |
+
"resize_as",
|
199 |
+
"tril",
|
200 |
+
"triu",
|
201 |
+
"chunk",
|
202 |
+
"zero_",
|
203 |
+
"eq_",
|
204 |
+
"ne_",
|
205 |
+
"add",
|
206 |
+
"__radd__",
|
207 |
+
"sum",
|
208 |
+
"_conj",
|
209 |
+
"sin",
|
210 |
+
"cos",
|
211 |
+
"mul",
|
212 |
+
"sinc",
|
213 |
+
"sinh",
|
214 |
+
"cosh",
|
215 |
+
"__rmul__",
|
216 |
+
"sgn",
|
217 |
+
"asin",
|
218 |
+
"acos",
|
219 |
+
"sub",
|
220 |
+
"div",
|
221 |
+
"cat",
|
222 |
+
"view_as_complex",
|
223 |
+
"index_put",
|
224 |
+
"neg",
|
225 |
+
"complex",
|
226 |
+
"select",
|
227 |
+
"where",
|
228 |
+
"as_strided",
|
229 |
+
"as_strided_scatter",
|
230 |
+
"slice",
|
231 |
+
"constant_pad_nd",
|
232 |
+
"unbind",
|
233 |
+
"split",
|
234 |
+
"split_with_sizes",
|
235 |
+
"unsafe_split",
|
236 |
+
"split_with_sizes_backward",
|
237 |
+
"dot",
|
238 |
+
"vdot",
|
239 |
+
"cholesky",
|
240 |
+
"triangular_solve",
|
241 |
+
"mm",
|
242 |
+
"_unsafe_view",
|
243 |
+
"mv",
|
244 |
+
"outer",
|
245 |
+
"bmm",
|
246 |
+
"diagonal",
|
247 |
+
"alias",
|
248 |
+
"atan",
|
249 |
+
"log",
|
250 |
+
"log10",
|
251 |
+
"log1p",
|
252 |
+
"log2",
|
253 |
+
"logaddexp",
|
254 |
+
"logcumsumexp",
|
255 |
+
"reciprocal",
|
256 |
+
"tan",
|
257 |
+
"pow",
|
258 |
+
"rsqrt",
|
259 |
+
"tanh",
|
260 |
+
"tanh_backward",
|
261 |
+
"asinh",
|
262 |
+
"acosh",
|
263 |
+
"atanh",
|
264 |
+
"take",
|
265 |
+
"fill_",
|
266 |
+
"exp",
|
267 |
+
"exp2",
|
268 |
+
"expm1",
|
269 |
+
"nonzero",
|
270 |
+
"mean",
|
271 |
+
"std_mean",
|
272 |
+
"var_mean",
|
273 |
+
"inverse",
|
274 |
+
"solve",
|
275 |
+
"linalg_cholesky",
|
276 |
+
"addcmul",
|
277 |
+
"addcdiv",
|
278 |
+
"matrix_exp",
|
279 |
+
"linalg_matrix_exp",
|
280 |
+
"_linalg_eigh",
|
281 |
+
"cholesky_solve",
|
282 |
+
"linalg_qr",
|
283 |
+
"_linalg_svd",
|
284 |
+
"_fft_c2c",
|
285 |
+
"_fft_r2c",
|
286 |
+
"linalg_solve",
|
287 |
+
"sqrt",
|
288 |
+
"stack",
|
289 |
+
"gather",
|
290 |
+
"index_select",
|
291 |
+
"index_add_",
|
292 |
+
"linalg_inv",
|
293 |
+
"linalg_inv_ex",
|
294 |
+
"baddbmm",
|
295 |
+
"addbmm",
|
296 |
+
"addmm",
|
297 |
+
"addmv",
|
298 |
+
"addr",
|
299 |
+
"linalg_householder_product",
|
300 |
+
"ormqr",
|
301 |
+
"reflection_pad1d",
|
302 |
+
"reflection_pad2d",
|
303 |
+
"reflection_pad3d",
|
304 |
+
"linalg_cholesky_ex",
|
305 |
+
"linalg_eig",
|
306 |
+
"diagonal_copy",
|
307 |
+
"diagonal_scatter",
|
308 |
+
"select_backward",
|
309 |
+
"diagonal_backward",
|
310 |
+
"slice_backward",
|
311 |
+
"reflection_pad1d_backward",
|
312 |
+
"reflection_pad2d_backward",
|
313 |
+
"reflection_pad3d_backward",
|
314 |
+
"_sparse_sparse_matmul",
|
315 |
+
"replication_pad1d",
|
316 |
+
"replication_pad2d",
|
317 |
+
"replication_pad3d",
|
318 |
+
"put",
|
319 |
+
"put_",
|
320 |
+
"_to_copy",
|
321 |
+
"replication_pad1d_backward",
|
322 |
+
"replication_pad2d_backward",
|
323 |
+
"replication_pad3d_backward",
|
324 |
+
"diag",
|
325 |
+
"masked_scatter",
|
326 |
+
"masked_select",
|
327 |
+
"index_add",
|
328 |
+
"index_fill",
|
329 |
+
"trace",
|
330 |
+
"polar",
|
331 |
+
"cumsum",
|
332 |
+
"rsub",
|
333 |
+
"eig",
|
334 |
+
"lerp",
|
335 |
+
"linalg_vector_norm",
|
336 |
+
"cumprod",
|
337 |
+
"prod",
|
338 |
+
"index_copy",
|
339 |
+
"lu",
|
340 |
+
"unfold",
|
341 |
+
"unfold_backward",
|
342 |
+
"index",
|
343 |
+
"masked_fill",
|
344 |
+
"masked_scatter_backward",
|
345 |
+
"linalg_cross",
|
346 |
+
"lu_unpack",
|
347 |
+
"renorm",
|
348 |
+
"_conj_physical",
|
349 |
+
"linalg_lu_factor_ex",
|
350 |
+
"scatter",
|
351 |
+
"scatter_add",
|
352 |
+
"sigmoid",
|
353 |
+
"sigmoid_backward",
|
354 |
+
"sparse_mask",
|
355 |
+
"trapezoid",
|
356 |
+
"cumulative_trapezoid",
|
357 |
+
"conj_physical_",
|
358 |
+
"_neg_view",
|
359 |
+
"_reshape_alias",
|
360 |
+
"_reshape_copy",
|
361 |
+
"_linalg_det",
|
362 |
+
"lu_solve",
|
363 |
+
"linalg_solve_triangular",
|
364 |
+
"linalg_pinv",
|
365 |
+
"linalg_lstsq",
|
366 |
+
"unfold_copy",
|
367 |
+
"col2im",
|
368 |
+
"im2col",
|
369 |
+
"cholesky_inverse",
|
370 |
+
"to_sparse",
|
371 |
+
"sparse_sampled_addmm",
|
372 |
+
"linalg_lu",
|
373 |
+
"pixel_shuffle",
|
374 |
+
"pixel_unshuffle",
|
375 |
+
"linalg_lu_solve",
|
376 |
+
"_linalg_slogdet",
|
377 |
+
"_linalg_solve_ex",
|
378 |
+
}
|
379 |
+
|
380 |
+
GRADIENT_IMPLEMENTED_FOR_SPARSE_COMPLEX = {
|
381 |
+
"_to_dense",
|
382 |
+
"_coalesce",
|
383 |
+
"coalesce",
|
384 |
+
"values",
|
385 |
+
"_sparse_coo_tensor_with_dims_and_tensors",
|
386 |
+
"_sparse_addmm",
|
387 |
+
}
|
388 |
+
|
389 |
+
GRADIENT_IMPLEMENTED_FOR_COMPLEX.update(GRADIENT_IMPLEMENTED_FOR_SPARSE_COMPLEX)
|
390 |
+
|
391 |
+
# Some operators invalidate the grad_accumulator. Let's reset it.
|
392 |
+
RESET_GRAD_ACCUMULATOR = {"set_", "resize_"}
|
393 |
+
|
394 |
+
# NOTE [ TensorImpl and Storage Pointer Sanity Checks ]
|
395 |
+
#
|
396 |
+
# We check the following properties:
|
397 |
+
# 1) A function should never change the input tensors' underlying c10::TensorImpl
|
398 |
+
# pointers or c10::Storage pointers, even if it modifies its input tensors (via
|
399 |
+
# inplace or out-variants)
|
400 |
+
# If the function does not modify its arguments, we also check the following properties
|
401 |
+
# pertaining to its output:
|
402 |
+
# 2) Its TensorImpl has use_count of 1
|
403 |
+
# 3) If the function is a view function, it has the same StorageImpl as that of
|
404 |
+
# the input it is aliased with. Otherwise, its StorageImpl has use_count of 1
|
405 |
+
#
|
406 |
+
# The following code templates implement the checks for this invariant:
|
407 |
+
SAVE_TENSOR_STORAGE = CodeTemplate(
|
408 |
+
"""\
|
409 |
+
c10::optional<Storage> ${tensor_name}_storage_saved =
|
410 |
+
${tensor_name}.has_storage() ? c10::optional<Storage>(${tensor_name}.storage()) : c10::nullopt;
|
411 |
+
"""
|
412 |
+
)
|
413 |
+
|
414 |
+
|
415 |
+
# If tensor_name == out_tensor_name, used to enforce (1), otherwise used for (2)
|
416 |
+
ENFORCE_SAME_TENSOR_STORAGE = CodeTemplate(
|
417 |
+
"""\
|
418 |
+
if (${tensor_name}_storage_saved.has_value() &&
|
419 |
+
!at::impl::dispatch_mode_enabled() &&
|
420 |
+
!at::impl::tensor_has_dispatch(${tensor_name}))
|
421 |
+
TORCH_INTERNAL_ASSERT(${tensor_name}_storage_saved.value().is_alias_of(${out_tensor_name}.storage()));
|
422 |
+
"""
|
423 |
+
)
|
424 |
+
|
425 |
+
SAVE_TENSORLIST_STORAGE = CodeTemplate(
|
426 |
+
"""\
|
427 |
+
std::vector<c10::optional<Storage>> ${tensorlist_name}_storage_saved(${tensorlist_name}.size());
|
428 |
+
for (const Tensor& tensor : ${tensorlist_name})
|
429 |
+
${tensorlist_name}_storage_saved.push_back(
|
430 |
+
tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
|
431 |
+
"""
|
432 |
+
)
|
433 |
+
|
434 |
+
ENFORCE_SAME_TENSORLIST_STORAGE = CodeTemplate(
|
435 |
+
"""\
|
436 |
+
for (size_t i=0; i<${tensorlist_name}.size() && !at::impl::dispatch_mode_enabled(); i++) {
|
437 |
+
if (${tensorlist_name}_storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(${tensorlist_name}))
|
438 |
+
TORCH_INTERNAL_ASSERT(${tensorlist_name}_storage_saved[i].value().is_alias_of(${tensorlist_name}[i].storage()));
|
439 |
+
}
|
440 |
+
"""
|
441 |
+
)
|
442 |
+
|
443 |
+
SAVE_OPTIONALTENSORLIST_STORAGE = CodeTemplate(
|
444 |
+
"""\
|
445 |
+
std::vector<c10::optional<Storage>> ${tensorlist_name}_storage_saved(${tensorlist_name}.size());
|
446 |
+
for (const c10::optional<Tensor>& tensor : ${tensorlist_name})
|
447 |
+
${tensorlist_name}_storage_saved.push_back(
|
448 |
+
tensor.has_value() && tensor->has_storage() ? c10::optional<Storage>(tensor->storage()) : c10::nullopt);
|
449 |
+
"""
|
450 |
+
)
|
451 |
+
|
452 |
+
ENFORCE_SAME_OPTIONALTENSORLIST_STORAGE = CodeTemplate(
|
453 |
+
"""\
|
454 |
+
for (size_t i=0; i<${tensorlist_name}.size() && !at::impl::dispatch_mode_enabled(); i++) {
|
455 |
+
if (${tensorlist_name}_storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(${tensorlist_name}))
|
456 |
+
TORCH_INTERNAL_ASSERT(${tensorlist_name}_storage_saved[i].value().is_alias_of(
|
457 |
+
static_cast<c10::optional<Tensor>>(${tensorlist_name}[i])->storage()));
|
458 |
+
}
|
459 |
+
"""
|
460 |
+
)
|
461 |
+
|
462 |
+
SAVE_TENSOR_IMPL = CodeTemplate(
|
463 |
+
"""\
|
464 |
+
c10::intrusive_ptr<TensorImpl> ${tensor_name}_impl_saved;
|
465 |
+
if (${tensor_name}.defined()) ${tensor_name}_impl_saved = ${tensor_name}.getIntrusivePtr();
|
466 |
+
"""
|
467 |
+
)
|
468 |
+
|
469 |
+
ENFORCE_SAME_TENSOR_IMPL = CodeTemplate(
|
470 |
+
"""\
|
471 |
+
if (${tensor_name}_impl_saved && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(${tensor_name}))
|
472 |
+
TORCH_INTERNAL_ASSERT(${tensor_name}_impl_saved == ${tensor_name}.getIntrusivePtr());
|
473 |
+
"""
|
474 |
+
)
|
475 |
+
|
476 |
+
ENFORCE_TENSOR_IMPL_USE_COUNT_LT_OR_EQ_ONE = CodeTemplate(
|
477 |
+
"""\
|
478 |
+
if (!at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(${tensor_name}))
|
479 |
+
TORCH_INTERNAL_ASSERT(${tensor_name}.use_count() <= 1, "function: ${fn_name}");
|
480 |
+
"""
|
481 |
+
)
|
482 |
+
|
483 |
+
ENFORCE_TENSOR_STORAGE_USE_COUNT_EQUALS_ONE = CodeTemplate(
|
484 |
+
"""\
|
485 |
+
if (${tensor_name}.has_storage() && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(${tensor_name})) {
|
486 |
+
TORCH_INTERNAL_ASSERT(${tensor_name}.storage().use_count() == 1, "function: ${fn_name}");
|
487 |
+
}
|
488 |
+
"""
|
489 |
+
)
|
490 |
+
|
491 |
+
SAVE_TENSORLIST_IMPL = CodeTemplate(
|
492 |
+
"""\
|
493 |
+
std::vector<c10::intrusive_ptr<TensorImpl>> ${tensorlist_name}_impl_saved(${tensorlist_name}.size());
|
494 |
+
for (size_t i=0; i<${tensorlist_name}.size(); i++)
|
495 |
+
if (${tensorlist_name}[i].defined()) ${tensorlist_name}_impl_saved[i] = ${tensorlist_name}[i].getIntrusivePtr();
|
496 |
+
"""
|
497 |
+
)
|
498 |
+
|
499 |
+
ENFORCE_SAME_TENSORLIST_IMPL = CodeTemplate(
|
500 |
+
"""\
|
501 |
+
for (size_t i=0; i<${tensorlist_name}.size() && !at::impl::dispatch_mode_enabled(); i++) {
|
502 |
+
if (${tensorlist_name}_impl_saved[i] && !at::impl::tensorlist_has_dispatch(${tensorlist_name}))
|
503 |
+
TORCH_INTERNAL_ASSERT(${tensorlist_name}_impl_saved[i] == ${tensorlist_name}[i].getIntrusivePtr());
|
504 |
+
}
|
505 |
+
"""
|
506 |
+
)
|
507 |
+
|
508 |
+
SAVE_OPTIONALTENSORLIST_IMPL = CodeTemplate(
|
509 |
+
"""\
|
510 |
+
std::vector<c10::intrusive_ptr<TensorImpl>> ${tensorlist_name}_impl_saved(${tensorlist_name}.size());
|
511 |
+
for (size_t i=0; i<${tensorlist_name}.size(); i++) {
|
512 |
+
c10::optional<Tensor> t = ${tensorlist_name}[i];
|
513 |
+
if (t.has_value() && t->defined()) ${tensorlist_name}_impl_saved[i] = t->getIntrusivePtr();
|
514 |
+
}
|
515 |
+
"""
|
516 |
+
)
|
517 |
+
|
518 |
+
ENFORCE_SAME_OPTIONALTENSORLIST_IMPL = CodeTemplate(
|
519 |
+
"""\
|
520 |
+
for (size_t i=0; i<${tensorlist_name}.size() && !at::impl::dispatch_mode_enabled(); i++) {
|
521 |
+
if (${tensorlist_name}_impl_saved[i])
|
522 |
+
TORCH_INTERNAL_ASSERT(
|
523 |
+
${tensorlist_name}_impl_saved[i] == static_cast<c10::optional<Tensor>>(${tensorlist_name}[i])->getIntrusivePtr());
|
524 |
+
}
|
525 |
+
"""
|
526 |
+
)
|
527 |
+
|
528 |
+
# The following list contains functions that we don't enforce the invariant on.
|
529 |
+
DONT_ENFORCE_SAME_TENSOR_IMPL_OR_STORAGE = {
|
530 |
+
# These functions are expected to change impl or storage of input tensors
|
531 |
+
"set_",
|
532 |
+
"_cudnn_rnn_flatten_weight",
|
533 |
+
}
|
534 |
+
DONT_ENFORCE_TENSOR_IMPL_USE_COUNT = {
|
535 |
+
# These non-inplace, non-out functions return tensors with use_count > 1
|
536 |
+
# Therefore, they MAY (but not necessarily) return one of its inputs as-is
|
537 |
+
# See https://github.com/pytorch/pytorch/issues/60426 for more information
|
538 |
+
"_embedding_bag",
|
539 |
+
"_embedding_bag_forward_only",
|
540 |
+
"q_per_channel_scales",
|
541 |
+
"q_per_channel_zero_points",
|
542 |
+
"lu_unpack",
|
543 |
+
"_cudnn_rnn_backward",
|
544 |
+
# The below failed StorageImpl use_count check but we skip tensor_impl check
|
545 |
+
# just in case
|
546 |
+
"_cudnn_rnn",
|
547 |
+
"dequantize_self",
|
548 |
+
# lift() should never actually be called with a requires_grad=True tensor,
|
549 |
+
"lift",
|
550 |
+
"lift_fresh",
|
551 |
+
"lift_fresh_copy",
|
552 |
+
# Nested Tensors related functions
|
553 |
+
# _nested_tensor_size() should never actually be called with requires_grad=True tensor
|
554 |
+
"_nested_tensor_size",
|
555 |
+
"_nested_tensor_strides",
|
556 |
+
"_nested_tensor_storage_offsets",
|
557 |
+
}
|
558 |
+
|
559 |
+
DONT_ENFORCE_STORAGE_IMPL_USE_COUNT = {
|
560 |
+
# These non-view functions return tensors with storage use_count != 1
|
561 |
+
"_slow_conv2d_forward",
|
562 |
+
"slow_conv3d_forward",
|
563 |
+
"channel_shuffle",
|
564 |
+
# If an input is returned as-is in output, we cannot guarantee its storage_impl
|
565 |
+
# use count to be 1 either.
|
566 |
+
*DONT_ENFORCE_TENSOR_IMPL_USE_COUNT,
|
567 |
+
}
|
568 |
+
# END CHECKS FOR [ TensorImpl and Storage Pointer Sanity Checks ]
|
569 |
+
|
570 |
+
DECLARE_GRAD_FN = CodeTemplate(
|
571 |
+
"""\
|
572 |
+
std::shared_ptr<${op}> grad_fn;
|
573 |
+
"""
|
574 |
+
)
|
575 |
+
|
576 |
+
DECLARE_VECTOR_OF_GRAD_FN = CodeTemplate(
|
577 |
+
"""\
|
578 |
+
std::vector<std::shared_ptr<${op}>> grad_fns;
|
579 |
+
"""
|
580 |
+
)
|
581 |
+
|
582 |
+
SETUP_ANY_REQUIRES_GRAD = CodeTemplate(
|
583 |
+
"""\
|
584 |
+
[[maybe_unused]] auto _any_requires_grad = compute_requires_grad( ${args_with_derivatives} );
|
585 |
+
${extra_differentiability_conditions}
|
586 |
+
"""
|
587 |
+
)
|
588 |
+
|
589 |
+
SETUP_DERIVATIVE = CodeTemplate(
|
590 |
+
"""\
|
591 |
+
if (_any_requires_grad) {
|
592 |
+
${setup}
|
593 |
+
}
|
594 |
+
"""
|
595 |
+
)
|
596 |
+
|
597 |
+
SETUP_NONE_REQUIRES_GRAD = CodeTemplate(
|
598 |
+
"""\
|
599 |
+
if (compute_requires_grad( ${args_to_check} )) {
|
600 |
+
throw_error_out_requires_grad("${base_name}");
|
601 |
+
}
|
602 |
+
"""
|
603 |
+
)
|
604 |
+
|
605 |
+
ASSIGN_GRAD_FN = CodeTemplate(
|
606 |
+
"""\
|
607 |
+
grad_fn = std::shared_ptr<${op}>(new ${op}(${op_ctor}), deleteNode);
|
608 |
+
grad_fn->set_next_edges(collect_next_edges( ${args_with_derivatives} ));
|
609 |
+
"""
|
610 |
+
)
|
611 |
+
|
612 |
+
# note(crcrpar): `compute_requires_grad` in the template below is supplied with arguments indexed with `i`
|
613 |
+
# while the `SETUP_ANY_REQUIRES_GRAD` above takes whole tensors and scalars.
|
614 |
+
ASSIGN_VECTOR_OF_GRAD_FN = CodeTemplate(
|
615 |
+
"""\
|
616 |
+
for (const auto& i : c10::irange( ${irange} )) {
|
617 |
+
const auto ith_requires_grad = compute_requires_grad(${args_with_derivatives});
|
618 |
+
check_inplace(self[i], ith_requires_grad);
|
619 |
+
grad_fns.push_back([&]() -> std::shared_ptr<${op}> {
|
620 |
+
if (!ith_requires_grad) {
|
621 |
+
return nullptr;
|
622 |
+
} else {
|
623 |
+
auto grad_fn = std::shared_ptr<${op}>(new ${op}(${op_ctor}), deleteNode);
|
624 |
+
grad_fn->set_next_edges(collect_next_edges( ${args_with_derivatives} ));
|
625 |
+
return grad_fn;
|
626 |
+
}
|
627 |
+
}());
|
628 |
+
}
|
629 |
+
"""
|
630 |
+
)
|
631 |
+
|
632 |
+
CALL_REDISPATCH = CodeTemplate(
|
633 |
+
"""\
|
634 |
+
at::redispatch::${api_name}(${unpacked_args})"""
|
635 |
+
)
|
636 |
+
# If the non-variable operation has return values, we use the `tmp` variable to hold the
|
637 |
+
# values temporarily and pass the values to the return variables outside of the
|
638 |
+
# `at::AutoDispatchBelowAutograd` guard block.
|
639 |
+
DISPATCH_TO_NON_VAR_TYPE_WITH_TMP_RETURN_VALUES_JVP_DECOMP = CodeTemplate(
|
640 |
+
"""\
|
641 |
+
auto ${tmp_var} = ([&]() {
|
642 |
+
if (${any_has_forward_grad}) {
|
643 |
+
static c10::OperatorName full_name("aten::${op_name}", "${op_overload}");
|
644 |
+
static c10::optional<c10::OperatorHandle> opt_op = c10::Dispatcher::singleton().findSchema(full_name);
|
645 |
+
return impl::run_jit_decomposition_with_args_for_jvp<${return_types}>("${op_name}", *opt_op, ks, ${arg_names});
|
646 |
+
} else {
|
647 |
+
${guard}
|
648 |
+
return ${base_type_call};
|
649 |
+
}
|
650 |
+
})();
|
651 |
+
"""
|
652 |
+
)
|
653 |
+
|
654 |
+
DISPATCH_TO_NON_VAR_TYPE_WITH_TMP_RETURN_VALUES = CodeTemplate(
|
655 |
+
"""\
|
656 |
+
auto ${tmp_var} = ([&]() {
|
657 |
+
${guard}
|
658 |
+
return ${base_type_call};
|
659 |
+
})();
|
660 |
+
"""
|
661 |
+
)
|
662 |
+
|
663 |
+
DISPATCH_TO_NON_VAR_TYPE_WITHOUT_RETURN_VALUES = CodeTemplate(
|
664 |
+
"""\
|
665 |
+
{
|
666 |
+
${guard}
|
667 |
+
${base_type_call};
|
668 |
+
}
|
669 |
+
"""
|
670 |
+
)
|
671 |
+
|
672 |
+
SET_HISTORY = CodeTemplate(
|
673 |
+
"""\
|
674 |
+
if (grad_fn) {
|
675 |
+
${fn}_history(${differentiable_outputs}, grad_fn);
|
676 |
+
}
|
677 |
+
"""
|
678 |
+
)
|
679 |
+
|
680 |
+
LOOP_OVER_VECTOR_OF_GRAD_FNS = CodeTemplate(
|
681 |
+
"""\
|
682 |
+
if (!grad_fns.empty()) {
|
683 |
+
${preamble}
|
684 |
+
for (const auto& i : c10::irange(grad_fns.size())) {
|
685 |
+
auto grad_fn = grad_fns[i];
|
686 |
+
if (grad_fn != nullptr) {
|
687 |
+
${statements}
|
688 |
+
}
|
689 |
+
}
|
690 |
+
}
|
691 |
+
"""
|
692 |
+
)
|
693 |
+
|
694 |
+
CONDITIONAL = CodeTemplate(
|
695 |
+
"""\
|
696 |
+
if (${cond}) {
|
697 |
+
${statements}
|
698 |
+
}
|
699 |
+
"""
|
700 |
+
)
|
701 |
+
|
702 |
+
RUN_ONLY_IN_DEBUG_MODE = CodeTemplate(
|
703 |
+
"""\
|
704 |
+
#ifndef NDEBUG
|
705 |
+
${statements}
|
706 |
+
#endif
|
707 |
+
"""
|
708 |
+
)
|
709 |
+
|
710 |
+
FW_DERIVATIVE_CHECK_TEMPLATE = CodeTemplate(
|
711 |
+
"""\
|
712 |
+
isFwGradDefined(${req_inp})\
|
713 |
+
"""
|
714 |
+
)
|
715 |
+
FW_DERIVATIVE_SIZE_CHECK_TEMPLATE = CodeTemplate(
|
716 |
+
"""\
|
717 |
+
TORCH_CHECK(
|
718 |
+
self.size() == ${inp_name}.size(),
|
719 |
+
"Tensor lists must have the same number of tensors, got ",
|
720 |
+
self.size(),
|
721 |
+
" and ",
|
722 |
+
${inp_name}.size());
|
723 |
+
"""
|
724 |
+
)
|
725 |
+
|
726 |
+
FW_DERIVATIVE_TENSORLIST_CHECK_TEMPLATE = CodeTemplate(
|
727 |
+
"""\
|
728 |
+
isFwGradDefinedTensorList(${req_inp})\
|
729 |
+
"""
|
730 |
+
)
|
731 |
+
|
732 |
+
FW_DERIVATIVE_DEFINED_GRAD_TEMPLATE = CodeTemplate(
|
733 |
+
"""\
|
734 |
+
auto ${inp_name}_t_raw = toNonOptFwGrad(${inp});
|
735 |
+
auto ${inp_name}_tensor = toNonOptTensor(${inp});
|
736 |
+
auto ${inp_name}_t = (${inp_name}_t_raw.defined() || !${inp_name}_tensor.defined())
|
737 |
+
? ${inp_name}_t_raw : at::${zeros_fn}(${inp_name}_tensor.sizes(), ${inp_name}_tensor.options());
|
738 |
+
"""
|
739 |
+
)
|
740 |
+
|
741 |
+
FW_DERIVATIVE_DEFINED_PRIMAL_TEMPLATE = CodeTemplate(
|
742 |
+
"""\
|
743 |
+
auto ${inp_name}_p = toNonOptPrimal(${inp});
|
744 |
+
"""
|
745 |
+
)
|
746 |
+
|
747 |
+
FW_DERIVATIVE_SETTER_TENSOR = CodeTemplate(
|
748 |
+
"""\
|
749 |
+
if (${out_arg}_new_fw_grad_opt.has_value() && ${out_arg}_new_fw_grad_opt.value().defined() && ${out_arg}.defined()) {
|
750 |
+
// The hardcoded 0 here will need to be updated once we support multiple levels.
|
751 |
+
${out_arg}._set_fw_grad(${out_arg}_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ ${is_inplace});
|
752 |
+
}
|
753 |
+
"""
|
754 |
+
)
|
755 |
+
|
756 |
+
FW_DERIVATIVE_SETTER_TENSOR_FOREACH = CodeTemplate(
|
757 |
+
"""\
|
758 |
+
for (const auto& i : c10::irange(${out_arg}_new_fw_grad_opts.size())) {
|
759 |
+
auto& ${out_arg}_new_fw_grad_opt = ${out_arg}_new_fw_grad_opts[i];
|
760 |
+
if (${out_arg}_new_fw_grad_opt.has_value() && ${out_arg}_new_fw_grad_opt.value().defined() && ${out_arg}[i].defined()) {
|
761 |
+
// The hardcoded 0 here will need to be updated once we support multiple levels.
|
762 |
+
${out_arg}[i]._set_fw_grad(${out_arg}_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ ${is_inplace});
|
763 |
+
}
|
764 |
+
}
|
765 |
+
"""
|
766 |
+
)
|
767 |
+
|
768 |
+
FW_DERIVATIVE_SETTER_MULTI_OUTPUT = CodeTemplate(
|
769 |
+
"""\
|
770 |
+
if (${all_res}_new_fw_grad_opt.has_value() && std::get<${idx}>(${all_res}_new_fw_grad_opt.value()).defined()
|
771 |
+
&& ${out_arg}.defined()) {
|
772 |
+
${out_arg}._set_fw_grad(std::get<${idx}>(${all_res}_new_fw_grad_opt.value()), /* level */ 0, /* is_inplace_op */ false);
|
773 |
+
}
|
774 |
+
"""
|
775 |
+
)
|
776 |
+
|
777 |
+
FW_DERIVATIVE_SETTER_TENSOR_LIST = CodeTemplate(
|
778 |
+
"""\
|
779 |
+
if (${out_arg}_new_fw_grad_opt.has_value()) {
|
780 |
+
auto ${out_arg}_new_fw_grad = ${out_arg}_new_fw_grad_opt.value();
|
781 |
+
TORCH_INTERNAL_ASSERT(${out_arg}.size() == ${out_arg}_new_fw_grad.size());
|
782 |
+
for (const auto i : c10::irange(${out_arg}.size())) {
|
783 |
+
if (${out_arg}_new_fw_grad[i].defined() && ${out_arg}[i].defined()) {
|
784 |
+
// The hardcoded 0 here will need to be updated once we support multiple levels.
|
785 |
+
${out_arg}[i]._set_fw_grad(${out_arg}_new_fw_grad[i], /* level */ 0, /* is_inplace_op */ ${is_inplace});
|
786 |
+
}
|
787 |
+
}
|
788 |
+
}
|
789 |
+
"""
|
790 |
+
)
|
791 |
+
|
792 |
+
FW_DERIVATIVE_TEMPLATE = CodeTemplate(
|
793 |
+
"""\
|
794 |
+
${fw_grad_opt_definition}
|
795 |
+
if (${requires_fw_grad}) {
|
796 |
+
${unpacked_arguments}
|
797 |
+
${out_arg}_new_fw_grad_opt = ${formula};
|
798 |
+
}
|
799 |
+
"""
|
800 |
+
)
|
801 |
+
|
802 |
+
FW_DERIVATIVE_FOREACH_TEMPLATE = CodeTemplate(
|
803 |
+
"""\
|
804 |
+
${fw_grad_opt_definition}
|
805 |
+
for (const auto& i : c10::irange(${vector_of_optional_tensor}.size())) {
|
806 |
+
if (${any_has_forward_grad_for_current_index}) {
|
807 |
+
${unpacked_arguments}
|
808 |
+
${vector_of_optional_tensor}[i] = ${formula};
|
809 |
+
}
|
810 |
+
}
|
811 |
+
"""
|
812 |
+
)
|
813 |
+
|
814 |
+
FW_DERIVATIVE_FORBID_TEMPLATE = CodeTemplate(
|
815 |
+
"""\
|
816 |
+
TORCH_CHECK_NOT_IMPLEMENTED(!(${cond}), "Trying to use forward AD with ${name} that does not support it ${msg}");
|
817 |
+
"""
|
818 |
+
)
|
819 |
+
|
820 |
+
FW_DERIVATIVE_FORBID_LIST_TEMPLATE = CodeTemplate(
|
821 |
+
"""\
|
822 |
+
for (const auto& _t: ${arg}) {
|
823 |
+
TORCH_CHECK_NOT_IMPLEMENTED(!(${cond}), "Trying to use forward AD with ${name} that does not support it ${msg}");
|
824 |
+
}
|
825 |
+
"""
|
826 |
+
)
|
827 |
+
|
828 |
+
|
829 |
+
def gen_variable_type(
|
830 |
+
out: str,
|
831 |
+
native_yaml_path: str,
|
832 |
+
tags_yaml_path: str,
|
833 |
+
fns_with_diff_infos: List[NativeFunctionWithDifferentiabilityInfo],
|
834 |
+
template_path: str,
|
835 |
+
used_keys: Set[str],
|
836 |
+
) -> None:
|
837 |
+
"""VariableType.h and VariableType.cpp body
|
838 |
+
|
839 |
+
This is the at::Type subclass for differentiable tensors. The
|
840 |
+
implementation of each function dispatches to the base tensor type to
|
841 |
+
compute the output. The grad_fn is attached to differentiable functions.
|
842 |
+
"""
|
843 |
+
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
844 |
+
fm.write(
|
845 |
+
"VariableType.h",
|
846 |
+
lambda: {
|
847 |
+
"generated_comment": "@"
|
848 |
+
+ f"generated from {fm.template_dir_for_comments()}/VariableType.h"
|
849 |
+
},
|
850 |
+
)
|
851 |
+
|
852 |
+
# helper that generates a TORCH_LIBRARY_IMPL macro for each
|
853 |
+
# dispatch key that appears in derivatives.yaml
|
854 |
+
def wrapper_registrations(used_keys: Set[str]) -> str:
|
855 |
+
library_impl_macro_list: List[str] = []
|
856 |
+
for key in sorted(used_keys):
|
857 |
+
dispatch_key = key
|
858 |
+
if key == "Default":
|
859 |
+
dispatch_key = "Autograd"
|
860 |
+
library_impl_macro = (
|
861 |
+
f"TORCH_LIBRARY_IMPL(aten, {dispatch_key}, m) "
|
862 |
+
+ "{\n"
|
863 |
+
+ "${"
|
864 |
+
+ f"wrapper_registrations_{key}"
|
865 |
+
+ "}\n}"
|
866 |
+
)
|
867 |
+
library_impl_macro_list += [library_impl_macro]
|
868 |
+
return "\n\n".join(library_impl_macro_list)
|
869 |
+
|
870 |
+
# Generate a new template from VariableType.cpp which replaces ${wrapper_registrations}
|
871 |
+
# with per key TORCH_LIBRARY_IMPL macros for each key that appears in derivatives.yaml
|
872 |
+
fm1 = FileManager(
|
873 |
+
install_dir=out + "/templates", template_dir=template_path, dry_run=False
|
874 |
+
)
|
875 |
+
fm1.write(
|
876 |
+
"VariableType.cpp",
|
877 |
+
lambda: {
|
878 |
+
"type_derived_method_definitions": "\n\n".join(
|
879 |
+
[
|
880 |
+
"${" + f"type_derived_method_definitions_{key}" + "}"
|
881 |
+
for key in sorted(used_keys)
|
882 |
+
]
|
883 |
+
),
|
884 |
+
"wrapper_registrations": wrapper_registrations(used_keys),
|
885 |
+
},
|
886 |
+
)
|
887 |
+
|
888 |
+
# Generate final VariableType_*.cpp files from the generated template
|
889 |
+
fm2 = FileManager(install_dir=out, template_dir=out + "/templates", dry_run=False)
|
890 |
+
|
891 |
+
sharded_keys = set(
|
892 |
+
[f"type_derived_method_definitions_{key}" for key in sorted(used_keys)]
|
893 |
+
+ [f"wrapper_registrations_{key}" for key in sorted(used_keys)]
|
894 |
+
)
|
895 |
+
# NOTE: see Note [Sharded File] at the top of the VariableType.cpp
|
896 |
+
# template regarding sharding of the generated files.
|
897 |
+
fm2.write_sharded(
|
898 |
+
"VariableType.cpp",
|
899 |
+
[fn for fn in fns_with_diff_infos if use_derived(fn)],
|
900 |
+
key_fn=lambda fn: cpp.name(fn.func.func),
|
901 |
+
base_env={
|
902 |
+
"generated_comment": "@"
|
903 |
+
+ f"generated from {fm.template_dir_for_comments()}/VariableType.cpp",
|
904 |
+
},
|
905 |
+
env_callable=gen_variable_type_func,
|
906 |
+
num_shards=5,
|
907 |
+
sharded_keys=sharded_keys,
|
908 |
+
)
|
909 |
+
|
910 |
+
|
911 |
+
@with_native_function_and
|
912 |
+
def gen_wrapper_registration(f: NativeFunction, key: str = "Default") -> str:
|
913 |
+
return WRAPPER_REGISTRATION.substitute(
|
914 |
+
unqual_operator_name_with_overload=f.func.name,
|
915 |
+
type_wrapper_name=type_wrapper_name(f, key),
|
916 |
+
class_type="VariableType",
|
917 |
+
)
|
918 |
+
|
919 |
+
|
920 |
+
def gen_variable_type_func(
|
921 |
+
fn: NativeFunctionWithDifferentiabilityInfo,
|
922 |
+
) -> Dict[str, List[str]]:
|
923 |
+
f = fn.func
|
924 |
+
result = {}
|
925 |
+
with native_function_manager(f):
|
926 |
+
name = cpp.name(f.func)
|
927 |
+
formals = gen_formals(f)
|
928 |
+
|
929 |
+
if (
|
930 |
+
fn.info is None
|
931 |
+
and str(f.func.name.name) not in RESET_GRAD_ACCUMULATOR
|
932 |
+
and get_base_name(f) not in DONT_REQUIRE_DERIVATIVE
|
933 |
+
and len(gen_differentiable_outputs(fn)) > 0
|
934 |
+
and cpp.name(f.func) not in DONT_ENFORCE_SAME_TENSOR_IMPL_OR_STORAGE
|
935 |
+
and type_wrapper_name(f) not in DONT_ENFORCE_STORAGE_IMPL_USE_COUNT
|
936 |
+
and type_wrapper_name(f) not in DONT_ENFORCE_TENSOR_IMPL_USE_COUNT
|
937 |
+
):
|
938 |
+
# NOTE: [ Registering AutogradNotImplemented boxed kernel ]
|
939 |
+
#
|
940 |
+
# When there is no derivatives.yaml entry, we register a generic boxed
|
941 |
+
# NotImplemented kernel to set grad_fn to be NotImplemented, so that forward
|
942 |
+
# proceeds as usual but an error is properly produced on backward.
|
943 |
+
# TODO: it would be nice to not have these special cases
|
944 |
+
#
|
945 |
+
# There are several cases where still let codegen handle it:
|
946 |
+
# 1) ops that need to reset grad accumulator (we let codegen handle this case
|
947 |
+
# because) the list is (currently) only accessible in Python.
|
948 |
+
# 2) User explicitly specifies DONT_REQUIRE_DERIVATIVE. This basically makes
|
949 |
+
# autograd a fallthrough with NDEBUG checks. This can be useful for when all
|
950 |
+
# outputs are integral.
|
951 |
+
# 3) When there are no differentiable outputs. This is similar to (2).
|
952 |
+
# 4) There are certain ops where we skip certain NDEBUG checks. this is similar
|
953 |
+
# to (1).
|
954 |
+
type_definition = ""
|
955 |
+
wrapper_registration = AUTOGRAD_NOT_IMPLEMENTED_REGISTRATION.substitute(
|
956 |
+
unqual_operator_name_with_overload=f.func.name
|
957 |
+
)
|
958 |
+
result["type_derived_method_definitions_Default"] = [type_definition]
|
959 |
+
result["wrapper_registrations_Default"] = [wrapper_registration]
|
960 |
+
else:
|
961 |
+
if not fn.info:
|
962 |
+
key = "Default"
|
963 |
+
type_definition = METHOD_DEFINITION.substitute(
|
964 |
+
return_type=cpp.returns_type(
|
965 |
+
f.func.returns, symint=True
|
966 |
+
).cpp_type(),
|
967 |
+
type_wrapper_name=type_wrapper_name(f, key),
|
968 |
+
type_definition_body=emit_body(fn, key),
|
969 |
+
formals=formals,
|
970 |
+
)
|
971 |
+
wrapper_registration = gen_wrapper_registration(f, key)
|
972 |
+
result[f"type_derived_method_definitions_{key}"] = [type_definition]
|
973 |
+
result[f"wrapper_registrations_{key}"] = [wrapper_registration]
|
974 |
+
else:
|
975 |
+
for key in fn.info.keys():
|
976 |
+
type_definition = METHOD_DEFINITION.substitute(
|
977 |
+
return_type=cpp.returns_type(
|
978 |
+
f.func.returns, symint=True
|
979 |
+
).cpp_type(),
|
980 |
+
type_wrapper_name=type_wrapper_name(f, key),
|
981 |
+
type_definition_body=emit_body(fn, key),
|
982 |
+
formals=formals,
|
983 |
+
)
|
984 |
+
wrapper_registration = gen_wrapper_registration(f, key)
|
985 |
+
result[f"type_derived_method_definitions_{key}"] = [type_definition]
|
986 |
+
result[f"wrapper_registrations_{key}"] = [wrapper_registration]
|
987 |
+
# See Note [Manual Backend kernels]
|
988 |
+
assert (name in MANUAL_BACKEND) == f.manual_kernel_registration
|
989 |
+
# If you want to register a kernel to Autograd, you must make the op abstract.
|
990 |
+
# In other words, this op must have dispatch section in native_functions.yaml.
|
991 |
+
if name in MANUAL_AUTOGRAD_AND_TRACER or (
|
992 |
+
fn.info and any(info.has_derivatives for info in fn.info.values())
|
993 |
+
):
|
994 |
+
msg = (
|
995 |
+
f"There's a formula for {name}(or its functional variant) in derivatives.yaml. "
|
996 |
+
f"It's required to add a dispatch section for it with explicit supported backends e.g CPU/CUDA "
|
997 |
+
f"or CompositeExplicitAutograd in native_functions.yaml. Please see "
|
998 |
+
f"https://github.com/pytorch/pytorch/tree/master/aten/src/ATen/native#choosing-the-right-dispatch-keyword "
|
999 |
+
f"for instructions to choose the right dispatch keyword."
|
1000 |
+
)
|
1001 |
+
assert f.is_abstract, msg
|
1002 |
+
|
1003 |
+
return result
|
1004 |
+
|
1005 |
+
|
1006 |
+
_foreach_ops_without_differentiability_info = {
|
1007 |
+
# No reference backward available due to the lack of `{maximum, minimum}(tensor, scalar)`.
|
1008 |
+
("_foreach_maximum", "Scalar"),
|
1009 |
+
("_foreach_maximum", "ScalarList"),
|
1010 |
+
("_foreach_minimum", "Scalar"),
|
1011 |
+
("_foreach_minimum", "ScalarList"),
|
1012 |
+
# No reference backward available as addcdiv/addcmul don't support Tensor as scaling factor.
|
1013 |
+
("_foreach_addcdiv", "Tensor"),
|
1014 |
+
("_foreach_addcmul", "Tensor"),
|
1015 |
+
("_foreach_copy", ""),
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
_foreach_ops_with_different_arity = {
|
1019 |
+
# These ops lack `alpha` of scaling factor to applied to the right hand side argument.
|
1020 |
+
("_foreach_add", "Scalar"),
|
1021 |
+
("_foreach_add", "ScalarList"),
|
1022 |
+
("_foreach_sub", "Scalar"),
|
1023 |
+
("_foreach_sub", "ScalarList"),
|
1024 |
+
}
|
1025 |
+
|
1026 |
+
|
1027 |
+
@with_native_function_with_differentiability_info_and_key
|
1028 |
+
def emit_body(
|
1029 |
+
fn: NativeFunctionWithDifferentiabilityInfo, key: str = "Default"
|
1030 |
+
) -> List[str]:
|
1031 |
+
assert dispatch_strategy(fn) == "use_derived"
|
1032 |
+
f = fn.func
|
1033 |
+
info = fn.info[key] if fn.info else None
|
1034 |
+
fw_derivatives = fn.fw_derivatives.get(key, []) if fn.fw_derivatives else []
|
1035 |
+
|
1036 |
+
name = cpp.name(f.func)
|
1037 |
+
inplace = f.func.kind() == SchemaKind.inplace
|
1038 |
+
is_out_fn = f.func.kind() == SchemaKind.out
|
1039 |
+
returns_void = len(f.func.returns) == 0
|
1040 |
+
base_name = get_base_name(f)
|
1041 |
+
view_info = get_view_info(f)
|
1042 |
+
|
1043 |
+
is_foreach = name.startswith("_foreach")
|
1044 |
+
is_inplace_foreach = is_foreach and inplace
|
1045 |
+
if is_inplace_foreach:
|
1046 |
+
inplace_foreacharg2refarg: Dict[Argument, Argument] = {}
|
1047 |
+
refargname2inplace_foreacharg: Dict[str, Argument] = {}
|
1048 |
+
base_name_and_overload_name = (f.func.name.name.base, f.func.name.overload_name)
|
1049 |
+
if info is None:
|
1050 |
+
assert (
|
1051 |
+
base_name_and_overload_name
|
1052 |
+
in _foreach_ops_without_differentiability_info
|
1053 |
+
), f"{'.'.join(base_name_and_overload_name)} should have a differentiability info"
|
1054 |
+
else:
|
1055 |
+
assert (
|
1056 |
+
len(f.func.arguments.flat_non_out)
|
1057 |
+
== len(info.func.func.arguments.flat_non_out)
|
1058 |
+
) or (base_name_and_overload_name in _foreach_ops_with_different_arity), (
|
1059 |
+
f"{'.'.join(base_name_and_overload_name)} has {len(f.func.arguments.flat_non_out)} args "
|
1060 |
+
f"but the reference has {len(info.func.func.arguments.flat_non_out)}"
|
1061 |
+
)
|
1062 |
+
for foreach_arg, ref_arg in zip(
|
1063 |
+
f.func.arguments.flat_non_out, info.func.func.arguments.flat_non_out
|
1064 |
+
):
|
1065 |
+
foreach_arg_type = foreach_arg.type
|
1066 |
+
if isinstance(foreach_arg_type, ListType):
|
1067 |
+
foreach_arg_type = foreach_arg_type.elem
|
1068 |
+
assert foreach_arg_type == ref_arg.type
|
1069 |
+
inplace_foreacharg2refarg[foreach_arg] = ref_arg
|
1070 |
+
refargname2inplace_foreacharg[ref_arg.name] = foreach_arg
|
1071 |
+
|
1072 |
+
def gen_differentiable_input(
|
1073 |
+
arg: Union[Argument, SelfArgument, TensorOptionsArguments]
|
1074 |
+
) -> Optional[DifferentiableInput]:
|
1075 |
+
if isinstance(arg, TensorOptionsArguments):
|
1076 |
+
return None
|
1077 |
+
a: Argument = arg.argument if isinstance(arg, SelfArgument) else arg
|
1078 |
+
|
1079 |
+
# TODO: `cpp_type` is only to keep it byte-for-byte compatible with the old codegen, should remove.
|
1080 |
+
# NB: This is not a clone of cpp.argument() - TensorOptionsArguments / faithful / binds are
|
1081 |
+
# not handled properly as they are irrelevant for this codegen.
|
1082 |
+
cpp_type = cpp.argument_type(a, binds=a.name, symint=True).cpp_type()
|
1083 |
+
|
1084 |
+
if not is_differentiable(a.name, a.type, info):
|
1085 |
+
return None
|
1086 |
+
return DifferentiableInput(
|
1087 |
+
name=a.name,
|
1088 |
+
type=a.type,
|
1089 |
+
cpp_type=cpp_type,
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
@with_native_function
|
1093 |
+
def gen_differentiable_inputs(f: NativeFunction) -> List[DifferentiableInput]:
|
1094 |
+
arguments = list(f.func.arguments.non_out)
|
1095 |
+
if is_inplace_foreach and info is not None:
|
1096 |
+
for i, arg in enumerate(f.func.arguments.flat_non_out):
|
1097 |
+
if arg in inplace_foreacharg2refarg:
|
1098 |
+
# note(crcrpar): From what I understand, what matters is only the name.
|
1099 |
+
# Thus originally I only replace argument only when the names are different.
|
1100 |
+
# TODO(crcrpar): Make it simpler.
|
1101 |
+
mapped_arg = inplace_foreacharg2refarg[arg]
|
1102 |
+
arguments[i] = Argument(
|
1103 |
+
mapped_arg.name,
|
1104 |
+
mapped_arg.type,
|
1105 |
+
mapped_arg.default,
|
1106 |
+
mapped_arg.annotation,
|
1107 |
+
)
|
1108 |
+
return list(mapMaybe(gen_differentiable_input, arguments))
|
1109 |
+
|
1110 |
+
def find_args_with_derivatives(
|
1111 |
+
differentiable_inputs: List[DifferentiableInput],
|
1112 |
+
) -> List[DifferentiableInput]:
|
1113 |
+
"""Find arguments that have derivative definitions"""
|
1114 |
+
if info is None or not info.has_derivatives:
|
1115 |
+
return differentiable_inputs
|
1116 |
+
names = {name for d in info.derivatives for name in d.var_names}
|
1117 |
+
differentiable = [arg for arg in differentiable_inputs if arg.name in names]
|
1118 |
+
if len(differentiable) != len(names):
|
1119 |
+
missing = names - {arg.name for arg in differentiable}
|
1120 |
+
raise RuntimeError(
|
1121 |
+
f"Missing arguments for derivatives: {missing} in {info.name}"
|
1122 |
+
)
|
1123 |
+
return differentiable
|
1124 |
+
|
1125 |
+
differentiable_inputs = gen_differentiable_inputs(f)
|
1126 |
+
args_with_derivatives = find_args_with_derivatives(differentiable_inputs)
|
1127 |
+
differentiable_outputs = gen_differentiable_outputs(fn, key)
|
1128 |
+
|
1129 |
+
undifferentiable = (base_name in DONT_REQUIRE_DERIVATIVE) or (
|
1130 |
+
name in DONT_REQUIRE_DERIVATIVE
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
requires_derivative = (
|
1134 |
+
(not undifferentiable)
|
1135 |
+
and (len(differentiable_inputs) > 0)
|
1136 |
+
and (
|
1137 |
+
(len(differentiable_outputs) > 0)
|
1138 |
+
# note(crcrpar): In-place foreach functions are a void function.
|
1139 |
+
or is_inplace_foreach
|
1140 |
+
)
|
1141 |
+
)
|
1142 |
+
|
1143 |
+
if (
|
1144 |
+
info is not None
|
1145 |
+
and info.has_derivatives
|
1146 |
+
and not requires_derivative
|
1147 |
+
# out= ops are allowed to have zero returns which cause requires_derivative to be False
|
1148 |
+
# we shouldn't error out though (out= ops for autograd just redispatch)
|
1149 |
+
and len(f.func.returns) > 0
|
1150 |
+
):
|
1151 |
+
raise RuntimeError(
|
1152 |
+
f"ERROR: derivative ignored for {name} -- specified an autograd function without derivative"
|
1153 |
+
)
|
1154 |
+
|
1155 |
+
# note(crcrpar): In-place foreach functions do not support forward AD
|
1156 |
+
if requires_derivative and len(fw_derivatives) > 0 and not is_inplace_foreach:
|
1157 |
+
assert sum(len(derivative.var_names) for derivative in fw_derivatives) == len(
|
1158 |
+
differentiable_outputs
|
1159 |
+
), (
|
1160 |
+
"Expected the number of forward derivatives implemented to match the "
|
1161 |
+
"number of differentiable outputs. NB: This only applies when at least "
|
1162 |
+
"one forward derivative is implemented. Not implementing any forward "
|
1163 |
+
"derivatives is also okay, and we would require inputs to the op to "
|
1164 |
+
"not have associated tangents in that case."
|
1165 |
+
)
|
1166 |
+
|
1167 |
+
try_jit_decomposition = (
|
1168 |
+
requires_derivative
|
1169 |
+
and len(fw_derivatives) == 0
|
1170 |
+
and (not modifies_arguments(f))
|
1171 |
+
and (not returns_void)
|
1172 |
+
)
|
1173 |
+
|
1174 |
+
def emit_save_inputs() -> List[str]:
|
1175 |
+
setup: List[str] = []
|
1176 |
+
if info is None or not info.has_derivatives:
|
1177 |
+
return setup
|
1178 |
+
|
1179 |
+
has_tensorlist_arg = any(
|
1180 |
+
is_tensor_list_type(arg.type) for arg in args_with_derivatives
|
1181 |
+
)
|
1182 |
+
|
1183 |
+
# We don't want to save tensors if we know that they will never be used
|
1184 |
+
# when computing the derivative, so we add guards to those statements
|
1185 |
+
def guard_for(arg: SavedAttribute) -> Optional[str]:
|
1186 |
+
assert info is not None
|
1187 |
+
|
1188 |
+
# It's hard to determine the edge offset if we have TensorLists
|
1189 |
+
# NOTE(crcrpar): in-place foreach functions' arguments include tensorlist
|
1190 |
+
# but their derivatives don't use it, so let them bypass this check.
|
1191 |
+
if has_tensorlist_arg and (not is_inplace_foreach):
|
1192 |
+
return None
|
1193 |
+
|
1194 |
+
# Empirical evaluation of the cases where we insert those guards in
|
1195 |
+
# backward show that they are somewhat useless. E.g. there's no need
|
1196 |
+
# to guard on some values captured from forward, because they had to
|
1197 |
+
# require_grad if the backward function even gets executed. I don't
|
1198 |
+
# have any good ideas for detecting those cases, so I simply disabled the
|
1199 |
+
# checks.
|
1200 |
+
if "backward" in info.name:
|
1201 |
+
return None
|
1202 |
+
|
1203 |
+
# If there's a single derivative we could compute, we already have
|
1204 |
+
# a requires_grad check that is sufficient
|
1205 |
+
if len(args_with_derivatives) <= 1:
|
1206 |
+
return None
|
1207 |
+
|
1208 |
+
# We really only care about trimming down the amount of tensors we save
|
1209 |
+
if arg.nctype.type != BaseCType(tensorT):
|
1210 |
+
return None
|
1211 |
+
|
1212 |
+
# We want to emit simple guards, so we only allow that if checking one
|
1213 |
+
# input is enough to determine whether we need that value
|
1214 |
+
used_in = [d for d in info.derivatives if arg in d.saved_inputs]
|
1215 |
+
assert len(used_in) > 0
|
1216 |
+
if len(used_in) != 1:
|
1217 |
+
return None
|
1218 |
+
derivative = used_in[0]
|
1219 |
+
|
1220 |
+
# Case with multioutput formulas
|
1221 |
+
# TODO: process all derivative formulas!!!
|
1222 |
+
if len(derivative.var_names) != 1:
|
1223 |
+
wrap_opt_if_start = derivative.formula.find(
|
1224 |
+
f"wrap_opt_if({arg.nctype.name}"
|
1225 |
+
)
|
1226 |
+
if wrap_opt_if_start == -1:
|
1227 |
+
return None
|
1228 |
+
|
1229 |
+
wrap_opt_if_match = re.match(
|
1230 |
+
rf"wrap_opt_if\({arg.nctype.name},(.*?)\)",
|
1231 |
+
derivative.formula[wrap_opt_if_start:],
|
1232 |
+
)
|
1233 |
+
assert wrap_opt_if_match is not None
|
1234 |
+
|
1235 |
+
# Condition is between 'wrap_opt_if(var_name,' and ')'.
|
1236 |
+
condition_slice = slice(len(rf"wrap_opt_if\({arg.nctype.name},"), -1)
|
1237 |
+
wrap_opt_if_condition = wrap_opt_if_match.group(0)[
|
1238 |
+
condition_slice
|
1239 |
+
].strip()
|
1240 |
+
# replace 'grad_input_mask[num]' with 'grad_fn->should_compute_output(num)'
|
1241 |
+
wrap_opt_if_condition = re.sub(
|
1242 |
+
r"grad_input_mask\[(\d+)\]",
|
1243 |
+
r"grad_fn->should_compute_output(\1)",
|
1244 |
+
wrap_opt_if_condition,
|
1245 |
+
)
|
1246 |
+
return f"{wrap_opt_if_condition}"
|
1247 |
+
|
1248 |
+
# Figure out the offset of the edge that uses this variable
|
1249 |
+
derivative_var_name = derivative.var_names[0]
|
1250 |
+
for edge_off, a in enumerate(args_with_derivatives):
|
1251 |
+
if a.name == derivative_var_name:
|
1252 |
+
break
|
1253 |
+
else:
|
1254 |
+
raise AssertionError()
|
1255 |
+
return f"grad_fn->should_compute_output({edge_off})"
|
1256 |
+
|
1257 |
+
if is_inplace_foreach:
|
1258 |
+
save_input_stmts = save_variables(info.all_saved_inputs, False, guard_for)
|
1259 |
+
if save_input_stmts:
|
1260 |
+
setup.append(
|
1261 |
+
LOOP_OVER_VECTOR_OF_GRAD_FNS.substitute(
|
1262 |
+
preamble="", statements=save_input_stmts
|
1263 |
+
)
|
1264 |
+
)
|
1265 |
+
else:
|
1266 |
+
setup.extend(save_variables(info.all_saved_inputs, False, guard_for))
|
1267 |
+
for arg in args_with_derivatives:
|
1268 |
+
if is_tensor_list_type(arg.type):
|
1269 |
+
setup.append(f"grad_fn->{arg.name}_size_ = {arg.name}.size();")
|
1270 |
+
return setup
|
1271 |
+
|
1272 |
+
def setup_derivative(differentiable_inputs: List[DifferentiableInput]) -> List[str]:
|
1273 |
+
body: List[str] = []
|
1274 |
+
if is_out_fn:
|
1275 |
+
# For out functions, ensure that no input or output requires grad
|
1276 |
+
body.append(DECLARE_GRAD_FN.substitute(op="Node"))
|
1277 |
+
body.append(
|
1278 |
+
SETUP_NONE_REQUIRES_GRAD.substitute(
|
1279 |
+
base_name=base_name,
|
1280 |
+
args_to_check=[arg.name for arg in differentiable_inputs],
|
1281 |
+
)
|
1282 |
+
)
|
1283 |
+
body.append(
|
1284 |
+
SETUP_NONE_REQUIRES_GRAD.substitute(
|
1285 |
+
base_name=base_name,
|
1286 |
+
args_to_check=[arg.name for arg in differentiable_outputs],
|
1287 |
+
)
|
1288 |
+
)
|
1289 |
+
return body
|
1290 |
+
|
1291 |
+
op = info.op if info is not None and info.has_derivatives else "NotImplemented"
|
1292 |
+
setup = []
|
1293 |
+
if not is_inplace_foreach:
|
1294 |
+
setup.extend(
|
1295 |
+
ASSIGN_GRAD_FN.substitute(
|
1296 |
+
op=op,
|
1297 |
+
op_ctor=""
|
1298 |
+
if info is not None and info.has_derivatives
|
1299 |
+
else f'"{cpp.name(f.func)}"',
|
1300 |
+
args_with_derivatives=[arg.name for arg in args_with_derivatives],
|
1301 |
+
).split("\n")
|
1302 |
+
)
|
1303 |
+
else:
|
1304 |
+
# note(crcrpar): Assuming in-place foreach function's self_arg is always TensorList.
|
1305 |
+
list_like_arg = "self"
|
1306 |
+
args = [arg.name for arg in args_with_derivatives]
|
1307 |
+
for i, arg in enumerate(args):
|
1308 |
+
if is_inplace_foreach and info is not None:
|
1309 |
+
if arg in refargname2inplace_foreacharg:
|
1310 |
+
foreach_arg = refargname2inplace_foreacharg[arg]
|
1311 |
+
args[i] = foreach_arg.name + (
|
1312 |
+
"[i]" if isinstance(foreach_arg.type, ListType) else ""
|
1313 |
+
)
|
1314 |
+
else:
|
1315 |
+
if arg == list_like_arg:
|
1316 |
+
args[i] = arg + "[i]"
|
1317 |
+
setup.extend(
|
1318 |
+
ASSIGN_VECTOR_OF_GRAD_FN.substitute(
|
1319 |
+
op=op,
|
1320 |
+
op_ctor=""
|
1321 |
+
if info is not None and info.has_derivatives
|
1322 |
+
else f'"{cpp.name(f.func)}"',
|
1323 |
+
args_with_derivatives=args,
|
1324 |
+
irange=f"{list_like_arg}.size()",
|
1325 |
+
).split("\n")
|
1326 |
+
)
|
1327 |
+
setup.extend(emit_save_inputs())
|
1328 |
+
|
1329 |
+
body.extend(
|
1330 |
+
emit_check_no_requires_grad(differentiable_inputs, args_with_derivatives)
|
1331 |
+
)
|
1332 |
+
declare_grad_fn_template = (
|
1333 |
+
DECLARE_GRAD_FN if not is_inplace_foreach else DECLARE_VECTOR_OF_GRAD_FN
|
1334 |
+
)
|
1335 |
+
body.append(declare_grad_fn_template.substitute(op=op))
|
1336 |
+
body.append(SETUP_DERIVATIVE.substitute(setup=setup))
|
1337 |
+
return body
|
1338 |
+
|
1339 |
+
def emit_check_if_in_complex_autograd_allowlist() -> List[str]:
|
1340 |
+
body: List[str] = []
|
1341 |
+
if base_name in GRADIENT_IMPLEMENTED_FOR_COMPLEX:
|
1342 |
+
return body
|
1343 |
+
for arg in differentiable_outputs:
|
1344 |
+
name = arg.name
|
1345 |
+
# TODO: should be `arg.type.is_tensor_like()`?
|
1346 |
+
if arg.cpp_type == "at::Tensor" or arg.cpp_type in TENSOR_LIST_LIKE_CTYPES:
|
1347 |
+
body.append(f'throw_error_for_complex_autograd({name}, "{base_name}");')
|
1348 |
+
return body
|
1349 |
+
|
1350 |
+
def emit_check_no_requires_grad(
|
1351 |
+
tensor_args: List[DifferentiableInput],
|
1352 |
+
args_with_derivatives: List[DifferentiableInput],
|
1353 |
+
) -> List[str]:
|
1354 |
+
"""Checks that arguments without derivatives don't require grad"""
|
1355 |
+
body: List[str] = []
|
1356 |
+
for arg in tensor_args:
|
1357 |
+
if arg in args_with_derivatives:
|
1358 |
+
continue
|
1359 |
+
arg_name = arg.name
|
1360 |
+
if info and arg_name in info.non_differentiable_arg_names:
|
1361 |
+
continue
|
1362 |
+
if arg_name == "output":
|
1363 |
+
# Double-backwards definitions sometimes take in 'input' and
|
1364 |
+
# 'output', but only define the derivative for input.
|
1365 |
+
continue
|
1366 |
+
body.append(f'check_no_requires_grad({arg_name}, "{arg_name}", "{name}");')
|
1367 |
+
return body
|
1368 |
+
|
1369 |
+
def emit_original_self_definition() -> List[str]:
|
1370 |
+
body: List[str] = []
|
1371 |
+
if inplace:
|
1372 |
+
if is_inplace_foreach:
|
1373 |
+
body.append(
|
1374 |
+
"std::vector<c10::optional<at::Tensor>> original_selfs(self.size());"
|
1375 |
+
)
|
1376 |
+
else:
|
1377 |
+
body.append("c10::optional<at::Tensor> original_self;")
|
1378 |
+
|
1379 |
+
all_forward_grad_cond = []
|
1380 |
+
for derivative in fw_derivatives:
|
1381 |
+
if derivative.required_original_self_value:
|
1382 |
+
all_forward_grad_cond.append(
|
1383 |
+
get_any_has_forward_grad_name(derivative.var_names)
|
1384 |
+
)
|
1385 |
+
|
1386 |
+
if all_forward_grad_cond:
|
1387 |
+
if not is_inplace_foreach:
|
1388 |
+
body.append(f'if ({" || ".join(all_forward_grad_cond)}) {{')
|
1389 |
+
body.append(" original_self = self.clone();")
|
1390 |
+
body.append("}")
|
1391 |
+
else:
|
1392 |
+
current_all_forward_grad_cond = [
|
1393 |
+
f"{cond}[i]" for cond in all_forward_grad_cond
|
1394 |
+
]
|
1395 |
+
body.append("for (const auto& i : c10::irange(self.size())) {")
|
1396 |
+
body.append(
|
1397 |
+
f" if ({' || '.join(current_all_forward_grad_cond)}) {{"
|
1398 |
+
)
|
1399 |
+
body.append(" original_selfs[i] = self[i].clone();")
|
1400 |
+
body.append(" }")
|
1401 |
+
body.append("}")
|
1402 |
+
|
1403 |
+
return body
|
1404 |
+
|
1405 |
+
def save_variables(
|
1406 |
+
saved_variables: Sequence[SavedAttribute],
|
1407 |
+
is_output: bool,
|
1408 |
+
guard_for: Callable[[SavedAttribute], Optional[str]] = lambda name: None,
|
1409 |
+
) -> Sequence[str]:
|
1410 |
+
# assign the saved variables to the generated grad_fn
|
1411 |
+
stmts: List[str] = []
|
1412 |
+
for arg in sorted(saved_variables, key=lambda sa: str(sa.nctype.name)):
|
1413 |
+
name = (
|
1414 |
+
arg.nctype.name.name
|
1415 |
+
if isinstance(arg.nctype.name, SpecialArgName)
|
1416 |
+
else arg.nctype.name
|
1417 |
+
)
|
1418 |
+
foreacharg: Optional[Argument] = None
|
1419 |
+
is_foreacharg_list_type: bool = False
|
1420 |
+
type = arg.nctype.type
|
1421 |
+
expr = arg.expr
|
1422 |
+
stmts_prepend = None
|
1423 |
+
if is_inplace_foreach and info is not None:
|
1424 |
+
# todo(crcrpar): See if we can add some check e.g. `assert foreacharg is not None`.
|
1425 |
+
# for now the example assert would fail.
|
1426 |
+
name_to_query = name.split("_scalar_type")[0]
|
1427 |
+
if name_to_query in refargname2inplace_foreacharg:
|
1428 |
+
foreacharg = refargname2inplace_foreacharg[name_to_query]
|
1429 |
+
is_foreacharg_list_type = isinstance(foreacharg.type, ListType)
|
1430 |
+
if foreacharg is not None:
|
1431 |
+
name_in_expr = (
|
1432 |
+
f"{foreacharg.name}{'[i]' if is_foreacharg_list_type else ''}"
|
1433 |
+
)
|
1434 |
+
src_name = name
|
1435 |
+
if "_scalar_type" in src_name:
|
1436 |
+
split_src_name = src_name.split("_scalar_type")
|
1437 |
+
assert len(split_src_name) == 2
|
1438 |
+
src_name = split_src_name[0]
|
1439 |
+
expr = expr.replace(src_name, name_in_expr)
|
1440 |
+
if (
|
1441 |
+
type == BaseCType(tensorT)
|
1442 |
+
or type == OptionalCType(BaseCType(tensorT))
|
1443 |
+
or type == MutRefCType(OptionalCType(BaseCType(tensorT)))
|
1444 |
+
or (is_output and type == BaseCType(scalarT))
|
1445 |
+
):
|
1446 |
+
# note(crcrpar): Here `expr` is generated from scratch, `arg.expr` is ignored.
|
1447 |
+
var = name
|
1448 |
+
name += "_"
|
1449 |
+
if var == "self" and inplace:
|
1450 |
+
original_self_var = (
|
1451 |
+
"original_self"
|
1452 |
+
if not is_inplace_foreach
|
1453 |
+
else "original_selfs[i]"
|
1454 |
+
)
|
1455 |
+
self_var = var if not is_inplace_foreach else var + "[i]"
|
1456 |
+
stmts_prepend = f"if (!{original_self_var}.has_value()) {original_self_var} = {self_var}.clone()"
|
1457 |
+
var = f"{original_self_var}.value()"
|
1458 |
+
assert not is_output
|
1459 |
+
if inplace and is_output:
|
1460 |
+
assert name == "result_"
|
1461 |
+
var = (
|
1462 |
+
"self[i]"
|
1463 |
+
if is_inplace_foreach or is_foreacharg_list_type
|
1464 |
+
else "self"
|
1465 |
+
)
|
1466 |
+
is_inplace_view = f"{var}.is_view()"
|
1467 |
+
expr = f"SavedVariable({var}, {str(is_output).lower()}, {is_inplace_view})"
|
1468 |
+
else:
|
1469 |
+
expr = f"SavedVariable({var}, {str(is_output).lower()})"
|
1470 |
+
if foreacharg is not None and "original_selfs" not in expr:
|
1471 |
+
expr = expr.replace(src_name, name_in_expr)
|
1472 |
+
elif (
|
1473 |
+
type == BaseCType(tensorListT)
|
1474 |
+
or type == ListCType(OptionalCType(BaseCType(tensorT)))
|
1475 |
+
or type == BaseCType(iTensorListRefT)
|
1476 |
+
or type == VectorCType(BaseCType(tensorT))
|
1477 |
+
):
|
1478 |
+
# See Note [nuanced return type of out-of-place foreach functions]
|
1479 |
+
if type == VectorCType(BaseCType(tensorT)):
|
1480 |
+
assert is_foreach and is_output
|
1481 |
+
expr = f"make_saved_variable_list({name}, {str(is_foreach and is_output).lower()})"
|
1482 |
+
name += "_"
|
1483 |
+
elif type == BaseCType(intArrayRefT):
|
1484 |
+
expr = expr + ".vec()"
|
1485 |
+
elif type == BaseCType(symIntArrayRefT):
|
1486 |
+
expr = expr + ".vec()"
|
1487 |
+
elif type == BaseCType(stringT):
|
1488 |
+
expr = f"std::string({expr})"
|
1489 |
+
elif type == OptionalCType(BaseCType(stringT)):
|
1490 |
+
expr = f"{expr}.has_value() ? c10::optional<std::string>(std::string({expr}.value())) : c10::nullopt"
|
1491 |
+
elif type == ArrayRefCType(
|
1492 |
+
elem=BaseCType(type=BaseCppType(ns="at", name="Scalar"))
|
1493 |
+
):
|
1494 |
+
expr = expr + ".vec()"
|
1495 |
+
|
1496 |
+
guard = guard_for(arg)
|
1497 |
+
if guard is None:
|
1498 |
+
if stmts_prepend:
|
1499 |
+
stmts.append(f"{stmts_prepend};")
|
1500 |
+
stmts.append(f"grad_fn->{name} = {expr};")
|
1501 |
+
else:
|
1502 |
+
stmts.append(f"if ({guard}) {{")
|
1503 |
+
if stmts_prepend:
|
1504 |
+
stmts.append(f" {stmts_prepend};")
|
1505 |
+
stmts.append(f" grad_fn->{name} = {expr};")
|
1506 |
+
stmts.append("}")
|
1507 |
+
return stmts
|
1508 |
+
|
1509 |
+
# Generates a Dispatcher::redispatch() call into the dispatcher. We do this mainly for performance reasons:
|
1510 |
+
# - Pre-compute the full DispatchKeySet. This saves the dispatcher from having to read from TLS.
|
1511 |
+
# - redispatch() avoids a redundant call to RecordFunction, which was already called right before
|
1512 |
+
# we entered this autograd kernel.
|
1513 |
+
def emit_dispatch_call(
|
1514 |
+
f: NativeFunction, input_base: str, unpacked_args: Sequence[str]
|
1515 |
+
) -> str:
|
1516 |
+
"""Dispatch call via function in a namespace or method on Tensor."""
|
1517 |
+
dispatcher_sig = DispatcherSignature.from_schema(f.func)
|
1518 |
+
dispatcher_exprs = dispatcher_sig.exprs()
|
1519 |
+
|
1520 |
+
# code-generated autograd kernels plumb and recompute dispatch keys directly through the kernel for performance.
|
1521 |
+
# Ops also always have a function variant of the redispatch API.
|
1522 |
+
# See Note [Plumbing Keys Through The Dispatcher] for details.
|
1523 |
+
dispatch_key_set = "ks & c10::after_autograd_keyset"
|
1524 |
+
call = CALL_REDISPATCH.substitute(
|
1525 |
+
api_name=cpp.name(
|
1526 |
+
f.func,
|
1527 |
+
faithful_name_for_out_overloads=True,
|
1528 |
+
symint_overload=f.func.has_symint(),
|
1529 |
+
),
|
1530 |
+
unpacked_args=[dispatch_key_set] + list(unpacked_args),
|
1531 |
+
)
|
1532 |
+
return call
|
1533 |
+
|
1534 |
+
def wrap_output(
|
1535 |
+
f: NativeFunction, unpacked_bindings: List[Binding], var: str
|
1536 |
+
) -> str:
|
1537 |
+
call = ""
|
1538 |
+
rhs_value: Optional[str] = None
|
1539 |
+
if not any(r.type.is_tensor_like() for r in f.func.returns):
|
1540 |
+
rhs_value = var
|
1541 |
+
else:
|
1542 |
+
rhs_value = f"std::move({var})"
|
1543 |
+
assert rhs_value is not None
|
1544 |
+
call += ASSIGN_RETURN_VALUE.substitute(
|
1545 |
+
return_values=tie_return_values(f), rhs_value=rhs_value
|
1546 |
+
)
|
1547 |
+
return call
|
1548 |
+
|
1549 |
+
def check_tensorimpl_and_storage(
|
1550 |
+
call: str, unpacked_bindings: List[Binding]
|
1551 |
+
) -> str:
|
1552 |
+
# See NOTE [ TensorImpl and Storage Pointer Sanity Checks ]
|
1553 |
+
stmts_before_call: List[str] = []
|
1554 |
+
stmts_after_call: List[str] = []
|
1555 |
+
|
1556 |
+
if cpp.name(f.func) in DONT_ENFORCE_SAME_TENSOR_IMPL_OR_STORAGE:
|
1557 |
+
return call
|
1558 |
+
|
1559 |
+
# Check properties of inputs (enforce (1))
|
1560 |
+
for unpacked_binding in unpacked_bindings:
|
1561 |
+
arg = unpacked_binding.name
|
1562 |
+
noref_cpp_type = unpacked_binding.nctype.type.remove_const_ref()
|
1563 |
+
if noref_cpp_type == BaseCType(tensorListT) or noref_cpp_type == BaseCType(
|
1564 |
+
iTensorListRefT
|
1565 |
+
):
|
1566 |
+
stmts_before_call += [
|
1567 |
+
SAVE_TENSORLIST_STORAGE.substitute(tensorlist_name=arg),
|
1568 |
+
SAVE_TENSORLIST_IMPL.substitute(tensorlist_name=arg),
|
1569 |
+
]
|
1570 |
+
stmts_after_call += [
|
1571 |
+
ENFORCE_SAME_TENSORLIST_STORAGE.substitute(tensorlist_name=arg),
|
1572 |
+
ENFORCE_SAME_TENSORLIST_IMPL.substitute(tensorlist_name=arg),
|
1573 |
+
]
|
1574 |
+
elif noref_cpp_type == ListCType(OptionalCType(BaseCType(tensorT))):
|
1575 |
+
stmts_before_call += [
|
1576 |
+
SAVE_OPTIONALTENSORLIST_STORAGE.substitute(tensorlist_name=arg),
|
1577 |
+
SAVE_OPTIONALTENSORLIST_IMPL.substitute(tensorlist_name=arg),
|
1578 |
+
]
|
1579 |
+
stmts_after_call += [
|
1580 |
+
ENFORCE_SAME_OPTIONALTENSORLIST_STORAGE.substitute(
|
1581 |
+
tensorlist_name=arg
|
1582 |
+
),
|
1583 |
+
ENFORCE_SAME_OPTIONALTENSORLIST_IMPL.substitute(
|
1584 |
+
tensorlist_name=arg
|
1585 |
+
),
|
1586 |
+
]
|
1587 |
+
elif noref_cpp_type == BaseCType(tensorT):
|
1588 |
+
stmts_before_call += [
|
1589 |
+
SAVE_TENSOR_STORAGE.substitute(tensor_name=arg),
|
1590 |
+
SAVE_TENSOR_IMPL.substitute(tensor_name=arg),
|
1591 |
+
]
|
1592 |
+
stmts_after_call += [
|
1593 |
+
ENFORCE_SAME_TENSOR_STORAGE.substitute(
|
1594 |
+
tensor_name=arg, out_tensor_name=arg
|
1595 |
+
),
|
1596 |
+
ENFORCE_SAME_TENSOR_IMPL.substitute(tensor_name=arg),
|
1597 |
+
]
|
1598 |
+
|
1599 |
+
assert (stmts_before_call and stmts_after_call) or (
|
1600 |
+
not stmts_before_call and not stmts_after_call
|
1601 |
+
)
|
1602 |
+
|
1603 |
+
# Check properties of outputs (enforce (2), (3))
|
1604 |
+
if f.func.kind() not in (SchemaKind.inplace, SchemaKind.out):
|
1605 |
+
base_name = f.func.name.name.base # TODO: should be str(f.func.name.name)?
|
1606 |
+
aliased_arg_name = ALL_VIEW_FUNCTIONS.get(base_name, None)
|
1607 |
+
if aliased_arg_name is not None:
|
1608 |
+
aliased_arg_name = unpacked_name(aliased_arg_name)
|
1609 |
+
for i, (ret, ret_name) in enumerate(
|
1610 |
+
zip(f.func.returns, cpp.return_names(f))
|
1611 |
+
):
|
1612 |
+
noref_cpp_type = cpp.return_type(ret, symint=True).remove_const_ref()
|
1613 |
+
if noref_cpp_type == BaseCType(tensorT):
|
1614 |
+
if aliased_arg_name is not None:
|
1615 |
+
assert (
|
1616 |
+
i == 0
|
1617 |
+
), "Expect non-CompositeImplicitAutograd view function {base} to return single output"
|
1618 |
+
stmts_after_call += [
|
1619 |
+
ENFORCE_SAME_TENSOR_STORAGE.substitute(
|
1620 |
+
tensor_name=aliased_arg_name, out_tensor_name=ret_name
|
1621 |
+
)
|
1622 |
+
]
|
1623 |
+
else:
|
1624 |
+
if (
|
1625 |
+
type_wrapper_name(f)
|
1626 |
+
not in DONT_ENFORCE_STORAGE_IMPL_USE_COUNT
|
1627 |
+
):
|
1628 |
+
stmts_after_call += [
|
1629 |
+
ENFORCE_TENSOR_STORAGE_USE_COUNT_EQUALS_ONE.substitute(
|
1630 |
+
tensor_name=ret_name, fn_name=type_wrapper_name(f)
|
1631 |
+
)
|
1632 |
+
]
|
1633 |
+
|
1634 |
+
if type_wrapper_name(f) not in DONT_ENFORCE_TENSOR_IMPL_USE_COUNT:
|
1635 |
+
stmts_after_call += [
|
1636 |
+
ENFORCE_TENSOR_IMPL_USE_COUNT_LT_OR_EQ_ONE.substitute(
|
1637 |
+
tensor_name=ret_name, fn_name=type_wrapper_name(f)
|
1638 |
+
)
|
1639 |
+
]
|
1640 |
+
|
1641 |
+
# Currently we don't have any functions that return the following types, but
|
1642 |
+
# we should update the checks once we do
|
1643 |
+
elif noref_cpp_type == ListCType(OptionalCType(BaseCType(tensorT))):
|
1644 |
+
raise AssertionError(
|
1645 |
+
f"Please add use_count checks for {noref_cpp_type}"
|
1646 |
+
)
|
1647 |
+
elif noref_cpp_type == BaseCType(tensorListT):
|
1648 |
+
raise AssertionError(
|
1649 |
+
f"Please add use_count checks for {noref_cpp_type}"
|
1650 |
+
)
|
1651 |
+
|
1652 |
+
if stmts_before_call and stmts_after_call:
|
1653 |
+
call = (
|
1654 |
+
RUN_ONLY_IN_DEBUG_MODE.substitute(statements=stmts_before_call)
|
1655 |
+
+ call
|
1656 |
+
+ RUN_ONLY_IN_DEBUG_MODE.substitute(statements=stmts_after_call)
|
1657 |
+
)
|
1658 |
+
return call
|
1659 |
+
|
1660 |
+
def emit_call(
|
1661 |
+
f: NativeFunction, unpacked_bindings: List[Binding], try_jit_decomposition: bool
|
1662 |
+
) -> str:
|
1663 |
+
# We only care about adding `at::AutoDispatchBelowAutograd` guard for non-variable dispatch
|
1664 |
+
# (which corresponds to 'use_derived' strategy). The purpose of this guard is to make sure
|
1665 |
+
# the baseType operations still dispatch to non-Variable type, even if the arguments passed
|
1666 |
+
# in are now Variables.
|
1667 |
+
# See NOTE [ Treating Variables as non-Variables in type dispatch ] for details.
|
1668 |
+
unpacked_args = [b.name for b in unpacked_bindings]
|
1669 |
+
base_type_call = emit_dispatch_call(f, "self_", unpacked_args)
|
1670 |
+
|
1671 |
+
if get_view_info(f) is not None or modifies_arguments(f):
|
1672 |
+
guard = "at::AutoDispatchBelowAutograd guard;"
|
1673 |
+
else:
|
1674 |
+
guard = "at::AutoDispatchBelowADInplaceOrView guard;"
|
1675 |
+
|
1676 |
+
any_has_forward_grad = (
|
1677 |
+
get_any_has_fw_grad_cond(derivative=None)
|
1678 |
+
if requires_derivative
|
1679 |
+
else "false"
|
1680 |
+
)
|
1681 |
+
return_types = ", ".join(
|
1682 |
+
[cpp.return_type(a, symint=True).cpp_type() for a in f.func.returns]
|
1683 |
+
)
|
1684 |
+
if len(f.func.returns) > 1:
|
1685 |
+
return_types = f"std::tuple<{return_types}>"
|
1686 |
+
|
1687 |
+
arg_names = [
|
1688 |
+
a.name
|
1689 |
+
for a in cpp.arguments(
|
1690 |
+
f.func.arguments,
|
1691 |
+
faithful=True,
|
1692 |
+
symint=True,
|
1693 |
+
method=False,
|
1694 |
+
cpp_no_default_args=set(),
|
1695 |
+
)
|
1696 |
+
]
|
1697 |
+
|
1698 |
+
if not modifies_arguments(f) and not returns_void:
|
1699 |
+
if try_jit_decomposition:
|
1700 |
+
call = DISPATCH_TO_NON_VAR_TYPE_WITH_TMP_RETURN_VALUES_JVP_DECOMP.substitute(
|
1701 |
+
base_type_call=base_type_call,
|
1702 |
+
tmp_var=TMP_VAR,
|
1703 |
+
guard=guard,
|
1704 |
+
any_has_forward_grad=any_has_forward_grad,
|
1705 |
+
op_name=cpp.name(f.func),
|
1706 |
+
op_overload=f.func.name.overload_name,
|
1707 |
+
return_types=return_types,
|
1708 |
+
arg_names=arg_names,
|
1709 |
+
)
|
1710 |
+
else:
|
1711 |
+
call = DISPATCH_TO_NON_VAR_TYPE_WITH_TMP_RETURN_VALUES.substitute(
|
1712 |
+
base_type_call=base_type_call,
|
1713 |
+
tmp_var=TMP_VAR,
|
1714 |
+
guard=guard,
|
1715 |
+
)
|
1716 |
+
|
1717 |
+
call += wrap_output(f, unpacked_bindings, TMP_VAR)
|
1718 |
+
else:
|
1719 |
+
assert not try_jit_decomposition
|
1720 |
+
call = DISPATCH_TO_NON_VAR_TYPE_WITHOUT_RETURN_VALUES.substitute(
|
1721 |
+
base_type_call=base_type_call, guard=guard
|
1722 |
+
)
|
1723 |
+
call = check_tensorimpl_and_storage(call, unpacked_bindings)
|
1724 |
+
return call
|
1725 |
+
|
1726 |
+
def emit_history() -> str:
|
1727 |
+
fn = "rebase" if modifies_arguments(f) and view_info is None else "set"
|
1728 |
+
output_names = [r.name for r in differentiable_outputs]
|
1729 |
+
# TODO: flatten allocates a std::vector, which could be expensive
|
1730 |
+
outs = CodeTemplate("flatten_tensor_args( ${outs} )").substitute(
|
1731 |
+
outs=output_names if not is_inplace_foreach else "self"
|
1732 |
+
)
|
1733 |
+
if not is_inplace_foreach:
|
1734 |
+
return SET_HISTORY.substitute(fn=fn, differentiable_outputs=outs)
|
1735 |
+
else:
|
1736 |
+
return LOOP_OVER_VECTOR_OF_GRAD_FNS.substitute(
|
1737 |
+
preamble=(
|
1738 |
+
f"auto differentiable_outputs = {outs};\n"
|
1739 |
+
f"TORCH_INTERNAL_ASSERT(differentiable_outputs.size() == grad_fns.size());"
|
1740 |
+
),
|
1741 |
+
statements=f"{fn}_history(differentiable_outputs[i], grad_fns[i]);",
|
1742 |
+
)
|
1743 |
+
|
1744 |
+
def emit_save_outputs() -> str:
|
1745 |
+
if is_out_fn:
|
1746 |
+
# out functions don't currently support differentiation
|
1747 |
+
return ""
|
1748 |
+
if info is not None and info.has_derivatives:
|
1749 |
+
stmts = save_variables(info.all_saved_outputs, True)
|
1750 |
+
if len(stmts) == 0:
|
1751 |
+
return ""
|
1752 |
+
if not is_inplace_foreach:
|
1753 |
+
return CONDITIONAL.substitute(cond="grad_fn", statements=stmts)
|
1754 |
+
else:
|
1755 |
+
return LOOP_OVER_VECTOR_OF_GRAD_FNS.substitute(
|
1756 |
+
preamble="", statements=stmts
|
1757 |
+
)
|
1758 |
+
return ""
|
1759 |
+
|
1760 |
+
def emit_any_requires_grad() -> List[str]:
|
1761 |
+
extra_condition = ""
|
1762 |
+
if info and info.output_differentiability_conditions:
|
1763 |
+
assert len(info.output_differentiability_conditions) == 1
|
1764 |
+
extra_condition = f"_any_requires_grad &= ({info.output_differentiability_conditions[0]});"
|
1765 |
+
names_of_args_with_derivatives = [arg.name for arg in args_with_derivatives]
|
1766 |
+
if is_inplace_foreach and info is not None:
|
1767 |
+
for i, arg in enumerate(names_of_args_with_derivatives):
|
1768 |
+
for f_arg, r_arg in inplace_foreacharg2refarg.items():
|
1769 |
+
if arg == r_arg.name:
|
1770 |
+
names_of_args_with_derivatives[i] = f_arg.name
|
1771 |
+
return [
|
1772 |
+
SETUP_ANY_REQUIRES_GRAD.substitute(
|
1773 |
+
args_with_derivatives=names_of_args_with_derivatives,
|
1774 |
+
extra_differentiability_conditions=extra_condition,
|
1775 |
+
)
|
1776 |
+
]
|
1777 |
+
|
1778 |
+
def get_any_has_forward_grad_name(var_names: Tuple[str, ...]) -> str:
|
1779 |
+
if len(var_names) == 1:
|
1780 |
+
return f"_any_has_forward_grad_{var_names[0]}"
|
1781 |
+
else:
|
1782 |
+
return f'_any_has_forward_grad_{"_".join(var_names)}'
|
1783 |
+
|
1784 |
+
def emit_any_has_forward_grad() -> List[str]:
|
1785 |
+
content: List[str] = []
|
1786 |
+
if not is_foreach:
|
1787 |
+
for derivative in fw_derivatives:
|
1788 |
+
requires_fw_grad = get_any_has_fw_grad_cond(derivative=derivative)
|
1789 |
+
if info and info.output_differentiability_conditions:
|
1790 |
+
assert len(info.output_differentiability_conditions) == 1
|
1791 |
+
requires_fw_grad = f"({info.output_differentiability_conditions[0]}) && {requires_fw_grad}"
|
1792 |
+
content.append(
|
1793 |
+
f"[[maybe_unused]] auto {get_any_has_forward_grad_name(derivative.var_names)} = {requires_fw_grad};"
|
1794 |
+
)
|
1795 |
+
else:
|
1796 |
+
for derivative in fw_derivatives:
|
1797 |
+
bool_vector_name = get_any_has_forward_grad_name(derivative.var_names)
|
1798 |
+
cur_derivative_conditions = []
|
1799 |
+
for inp in differentiable_inputs:
|
1800 |
+
if derivative.required_inputs_fw_grad is None:
|
1801 |
+
continue
|
1802 |
+
if inp.name not in derivative.required_inputs_fw_grad:
|
1803 |
+
continue
|
1804 |
+
inp_name = (
|
1805 |
+
inp.name
|
1806 |
+
if not inplace
|
1807 |
+
else refargname2inplace_foreacharg[inp.name].name
|
1808 |
+
)
|
1809 |
+
inp_type = (
|
1810 |
+
inp.type
|
1811 |
+
if not inplace
|
1812 |
+
else refargname2inplace_foreacharg[inp.name].type
|
1813 |
+
)
|
1814 |
+
is_list_type = is_tensor_list_type(inp_type)
|
1815 |
+
if is_list_type:
|
1816 |
+
if inp_name != "self":
|
1817 |
+
content.append(
|
1818 |
+
FW_DERIVATIVE_SIZE_CHECK_TEMPLATE.substitute(
|
1819 |
+
inp_name=inp_name
|
1820 |
+
)
|
1821 |
+
)
|
1822 |
+
cur_derivative_conditions.append(
|
1823 |
+
FW_DERIVATIVE_CHECK_TEMPLATE.substitute(
|
1824 |
+
req_inp=inp_name + "[i]"
|
1825 |
+
)
|
1826 |
+
)
|
1827 |
+
else:
|
1828 |
+
cur_derivative_conditions.append(
|
1829 |
+
FW_DERIVATIVE_CHECK_TEMPLATE.substitute(req_inp=inp_name)
|
1830 |
+
)
|
1831 |
+
|
1832 |
+
content.append(f"std::vector<bool> {bool_vector_name}(self.size());")
|
1833 |
+
content.append("for (const auto& i : c10::irange(self.size())) {")
|
1834 |
+
content.append(
|
1835 |
+
f" {bool_vector_name}[i] = {' || '.join(cur_derivative_conditions)};"
|
1836 |
+
)
|
1837 |
+
content.append("}")
|
1838 |
+
return content
|
1839 |
+
|
1840 |
+
def emit_check_inplace() -> List[str]:
|
1841 |
+
if not inplace:
|
1842 |
+
return []
|
1843 |
+
return [
|
1844 |
+
f"check_inplace({arg.name}, _any_requires_grad);"
|
1845 |
+
for arg in differentiable_outputs
|
1846 |
+
]
|
1847 |
+
|
1848 |
+
def emit_fw_derivatives() -> List[str]:
|
1849 |
+
content: List[str] = []
|
1850 |
+
fw_grad_setters: List[str] = []
|
1851 |
+
for derivative in fw_derivatives:
|
1852 |
+
res = derivative.var_names
|
1853 |
+
if f.func.name.name.inplace:
|
1854 |
+
assert (
|
1855 |
+
len(res) == 1
|
1856 |
+
), "Expected number of outputs to be 1 if function is inplace"
|
1857 |
+
# TODO update this when inplace namings are unified
|
1858 |
+
res = ("self",)
|
1859 |
+
|
1860 |
+
assert derivative.required_inputs_fw_grad is not None
|
1861 |
+
|
1862 |
+
unpacked_arguments = ""
|
1863 |
+
for inp in differentiable_inputs:
|
1864 |
+
inp_name = inp.name
|
1865 |
+
is_input_tensorlist = is_foreach and is_tensor_list_type(
|
1866 |
+
inp.type
|
1867 |
+
if not inplace
|
1868 |
+
else refargname2inplace_foreacharg[inp.name].type
|
1869 |
+
)
|
1870 |
+
input_suffix = "[i]" if is_input_tensorlist else ""
|
1871 |
+
if is_inplace_foreach:
|
1872 |
+
if inp.name in refargname2inplace_foreacharg:
|
1873 |
+
inp_name = refargname2inplace_foreacharg[inp.name].name
|
1874 |
+
zeros_fn = (
|
1875 |
+
"zeros"
|
1876 |
+
if inplace and inp.name == "self"
|
1877 |
+
else "_efficientzerotensor"
|
1878 |
+
)
|
1879 |
+
if inp.name in derivative.required_inputs_fw_grad:
|
1880 |
+
unpacked_arguments += (
|
1881 |
+
FW_DERIVATIVE_DEFINED_GRAD_TEMPLATE.substitute(
|
1882 |
+
inp_name=inp.name,
|
1883 |
+
inp=inp_name + input_suffix,
|
1884 |
+
zeros_fn=zeros_fn,
|
1885 |
+
)
|
1886 |
+
)
|
1887 |
+
if inp.name in (derivative.required_inputs_primal or []):
|
1888 |
+
unpacked_arguments += (
|
1889 |
+
FW_DERIVATIVE_DEFINED_PRIMAL_TEMPLATE.substitute(
|
1890 |
+
inp_name=inp.name,
|
1891 |
+
inp=inp_name + input_suffix,
|
1892 |
+
)
|
1893 |
+
)
|
1894 |
+
if derivative.required_original_self_value:
|
1895 |
+
input_suffix = "s[i]" if is_inplace_foreach else ""
|
1896 |
+
unpacked_arguments += FW_DERIVATIVE_DEFINED_GRAD_TEMPLATE.substitute(
|
1897 |
+
inp_name="original_self",
|
1898 |
+
inp="original_self" + input_suffix,
|
1899 |
+
zeros_fn=zeros_fn,
|
1900 |
+
)
|
1901 |
+
unpacked_arguments += FW_DERIVATIVE_DEFINED_PRIMAL_TEMPLATE.substitute(
|
1902 |
+
inp_name="original_self",
|
1903 |
+
inp="original_self" + input_suffix,
|
1904 |
+
)
|
1905 |
+
elif inplace and derivative.is_reusing_outplace_formula:
|
1906 |
+
# The gradient wasn't already cloned, do it if grad mode is enabled
|
1907 |
+
unpacked_arguments += (
|
1908 |
+
"self_t = GradMode::is_enabled() ? self_t.clone() : self_t;"
|
1909 |
+
)
|
1910 |
+
|
1911 |
+
if inplace:
|
1912 |
+
is_inplace_str = "true"
|
1913 |
+
else:
|
1914 |
+
is_inplace_str = "false"
|
1915 |
+
|
1916 |
+
requires_fw_grad = get_any_has_forward_grad_name(derivative.var_names)
|
1917 |
+
|
1918 |
+
if all(
|
1919 |
+
(isinstance(var_type, BaseType) and var_type.is_tensor_like())
|
1920 |
+
for var_type in derivative.var_types
|
1921 |
+
):
|
1922 |
+
# Is there a way to get from BaseType to BaseCType
|
1923 |
+
if len(derivative.var_types) == 1:
|
1924 |
+
opt_res_grad_type = OptionalCType(BaseCType(tensorT)).cpp_type()
|
1925 |
+
if not is_foreach:
|
1926 |
+
fw_grad_setters.append(
|
1927 |
+
FW_DERIVATIVE_SETTER_TENSOR.substitute(
|
1928 |
+
out_arg=res[0], is_inplace=is_inplace_str
|
1929 |
+
)
|
1930 |
+
)
|
1931 |
+
else:
|
1932 |
+
assert res[0] == ("result" if not inplace else "self")
|
1933 |
+
fw_grad_setters.append(
|
1934 |
+
FW_DERIVATIVE_SETTER_TENSOR_FOREACH.substitute(
|
1935 |
+
out_arg=res[0], is_inplace=is_inplace_str
|
1936 |
+
)
|
1937 |
+
)
|
1938 |
+
requires_fw_grad += f" && ({derivative.var_names[0]}.defined())"
|
1939 |
+
else:
|
1940 |
+
tuple_type = TupleCType(
|
1941 |
+
[BaseCType(tensorT)] * len(derivative.var_types)
|
1942 |
+
)
|
1943 |
+
opt_res_grad_type = OptionalCType(tuple_type).cpp_type()
|
1944 |
+
for idx, single_res in enumerate(res):
|
1945 |
+
fw_grad_setters.append(
|
1946 |
+
FW_DERIVATIVE_SETTER_MULTI_OUTPUT.substitute(
|
1947 |
+
idx=idx, all_res="_".join(res), out_arg=single_res
|
1948 |
+
)
|
1949 |
+
)
|
1950 |
+
elif (
|
1951 |
+
isinstance(derivative.var_types[0], ListType)
|
1952 |
+
and derivative.var_types[0].is_tensor_like()
|
1953 |
+
):
|
1954 |
+
assert (
|
1955 |
+
len(derivative.var_types) == 1
|
1956 |
+
), "Expected number of outputs to be 1 if function returns ListType"
|
1957 |
+
if not is_foreach:
|
1958 |
+
opt_res_grad_type = OptionalCType(
|
1959 |
+
VectorCType(BaseCType(tensorT))
|
1960 |
+
).cpp_type()
|
1961 |
+
fw_grad_setters.append(
|
1962 |
+
FW_DERIVATIVE_SETTER_TENSOR_LIST.substitute(
|
1963 |
+
out_arg=res[0], is_inplace=is_inplace_str
|
1964 |
+
)
|
1965 |
+
)
|
1966 |
+
else:
|
1967 |
+
# TODO(crcrpar): Should this (= the foreach specific logic) be refactored somehow?
|
1968 |
+
# Only out-place foreach functions that have entries in `tools/autograd/derivatives.yaml`
|
1969 |
+
# can reach here.
|
1970 |
+
opt_res_grad_type = OptionalCType(BaseCType(tensorT)).cpp_type()
|
1971 |
+
fw_grad_setters.append(
|
1972 |
+
FW_DERIVATIVE_SETTER_TENSOR_FOREACH.substitute(
|
1973 |
+
out_arg=res[0], is_inplace=is_inplace_str
|
1974 |
+
)
|
1975 |
+
)
|
1976 |
+
else:
|
1977 |
+
raise RuntimeError("Unsupported output type for forward derivative")
|
1978 |
+
|
1979 |
+
if not is_foreach:
|
1980 |
+
fw_grad_opt_definition = f"{opt_res_grad_type} {'_'.join(res)}_new_fw_grad_opt = c10::nullopt;"
|
1981 |
+
# View ops create fw_grad that already is a view of the base's fw_grad so just use that
|
1982 |
+
content.append(
|
1983 |
+
FW_DERIVATIVE_TEMPLATE.substitute(
|
1984 |
+
fw_grad_opt_definition=fw_grad_opt_definition,
|
1985 |
+
requires_fw_grad=requires_fw_grad,
|
1986 |
+
formula=derivative.formula,
|
1987 |
+
out_arg="_".join(res),
|
1988 |
+
unpacked_arguments=unpacked_arguments,
|
1989 |
+
)
|
1990 |
+
)
|
1991 |
+
else:
|
1992 |
+
# note(crcrpar): Assuming `self` is TensorList.
|
1993 |
+
fw_grad_opt_definition = (
|
1994 |
+
f"std::vector<{opt_res_grad_type}> {'_'.join(res)}_new_fw_grad_opts"
|
1995 |
+
"(self.size(), c10::nullopt);"
|
1996 |
+
)
|
1997 |
+
foreach_forward_grad_formula = derivative.formula
|
1998 |
+
_foreach_arg: Union[Argument, DifferentiableInput]
|
1999 |
+
if inplace:
|
2000 |
+
for _foreach_arg, _ref_arg in inplace_foreacharg2refarg.items():
|
2001 |
+
# note(crcrpar): Massage only Scalar and ArrayRef<Scalar> here.
|
2002 |
+
if not (
|
2003 |
+
is_tensor_type(_foreach_arg.type)
|
2004 |
+
or is_tensor_list_type(_foreach_arg.type)
|
2005 |
+
):
|
2006 |
+
pattern = _foreach_arg.name
|
2007 |
+
if isinstance(_foreach_arg.type, ListType):
|
2008 |
+
pattern += "[i]"
|
2009 |
+
foreach_forward_grad_formula = (
|
2010 |
+
foreach_forward_grad_formula.replace(
|
2011 |
+
_ref_arg.name, pattern
|
2012 |
+
)
|
2013 |
+
)
|
2014 |
+
else:
|
2015 |
+
if (
|
2016 |
+
"result" in foreach_forward_grad_formula
|
2017 |
+
and "result[i]" not in foreach_forward_grad_formula
|
2018 |
+
):
|
2019 |
+
foreach_forward_grad_formula = (
|
2020 |
+
foreach_forward_grad_formula.replace("result", "result[i]")
|
2021 |
+
)
|
2022 |
+
|
2023 |
+
content.append(
|
2024 |
+
FW_DERIVATIVE_FOREACH_TEMPLATE.substitute(
|
2025 |
+
fw_grad_opt_definition=fw_grad_opt_definition,
|
2026 |
+
vector_of_optional_tensor=f"{'_'.join(res)}_new_fw_grad_opts",
|
2027 |
+
any_has_forward_grad_for_current_index=" || ".join(
|
2028 |
+
get_any_has_forward_grad_name(derivative.var_names) + "[i]"
|
2029 |
+
for derivative in fw_derivatives
|
2030 |
+
),
|
2031 |
+
formula=foreach_forward_grad_formula,
|
2032 |
+
unpacked_arguments=unpacked_arguments,
|
2033 |
+
)
|
2034 |
+
)
|
2035 |
+
|
2036 |
+
# Set all the grads at the end to avoid: https://github.com/pytorch/pytorch/issues/67367
|
2037 |
+
content.append("\n".join(fw_grad_setters))
|
2038 |
+
return content
|
2039 |
+
|
2040 |
+
def get_any_has_fw_grad_cond(derivative: Optional[ForwardDerivative]) -> str:
|
2041 |
+
#
|
2042 |
+
# Produces a condition string (e.g, "isFwGradDefined(grad_output) || isFwGradDefined(output)")
|
2043 |
+
#
|
2044 |
+
if derivative is None:
|
2045 |
+
# (1) If a derivative is NOT provided, cond will check fw_grad of ALL differentiable inputs
|
2046 |
+
# - Used in the out_fn case when we want to forbid fw derivatives
|
2047 |
+
# - Used in the case where the fw_derivative is not defined, but we want
|
2048 |
+
# To check if there is a decomposition registered for jvp
|
2049 |
+
to_check: List[str] = []
|
2050 |
+
for inp in list(
|
2051 |
+
mapMaybe(
|
2052 |
+
gen_differentiable_input,
|
2053 |
+
f.func.arguments.non_out + list(f.func.arguments.out), # type: ignore[operator]
|
2054 |
+
)
|
2055 |
+
):
|
2056 |
+
if is_tensor_type(inp.type):
|
2057 |
+
to_check.append(
|
2058 |
+
FW_DERIVATIVE_CHECK_TEMPLATE.substitute(req_inp=inp.name)
|
2059 |
+
)
|
2060 |
+
elif is_tensor_list_type(inp.type):
|
2061 |
+
to_check.append(
|
2062 |
+
FW_DERIVATIVE_TENSORLIST_CHECK_TEMPLATE.substitute(
|
2063 |
+
req_inp=inp.name
|
2064 |
+
)
|
2065 |
+
)
|
2066 |
+
else:
|
2067 |
+
raise RuntimeError(
|
2068 |
+
f'Unsupported input type for "{name}" when forbidding forward AD usage.'
|
2069 |
+
)
|
2070 |
+
return f'({" || ".join(to_check)})'
|
2071 |
+
else:
|
2072 |
+
# (2) If derivative is provided, use that information to determine which inputs
|
2073 |
+
# to check fw_grad for
|
2074 |
+
assert derivative.required_inputs_fw_grad is not None
|
2075 |
+
|
2076 |
+
if len(derivative.required_inputs_fw_grad) == 0:
|
2077 |
+
# Handle functions like stack
|
2078 |
+
# For these, we don't unpack anything and always call the user function
|
2079 |
+
if not (
|
2080 |
+
len(differentiable_inputs) == 1
|
2081 |
+
and is_tensor_list_type(differentiable_inputs[0].type)
|
2082 |
+
):
|
2083 |
+
raise RuntimeError(
|
2084 |
+
f'No differentiable input to "{name}" is a differentiable Tensor (as the provided '
|
2085 |
+
"forward AD formula does not use any input tangent) even though a forward gradient "
|
2086 |
+
"formula has been defined for it. This case should only happen for function that "
|
2087 |
+
"take a single TensorList as input. All other cases are not supported right now."
|
2088 |
+
)
|
2089 |
+
any_has_fw_grad = "true"
|
2090 |
+
else:
|
2091 |
+
any_has_fw_grad = " || ".join(
|
2092 |
+
[
|
2093 |
+
(
|
2094 |
+
FW_DERIVATIVE_TENSORLIST_CHECK_TEMPLATE
|
2095 |
+
if is_tensor_list_type(inp.type)
|
2096 |
+
else FW_DERIVATIVE_CHECK_TEMPLATE
|
2097 |
+
).substitute(req_inp=inp.name)
|
2098 |
+
for inp in differentiable_inputs
|
2099 |
+
if inp.name in derivative.required_inputs_fw_grad
|
2100 |
+
]
|
2101 |
+
)
|
2102 |
+
any_has_fw_grad = f"({any_has_fw_grad})"
|
2103 |
+
|
2104 |
+
return any_has_fw_grad
|
2105 |
+
|
2106 |
+
def emit_forbid_fw_derivatives(is_out_fn: bool = False) -> str:
|
2107 |
+
if is_out_fn:
|
2108 |
+
msg = "because it is an out= function"
|
2109 |
+
else:
|
2110 |
+
msg = (
|
2111 |
+
"because it has not been implemented yet.\\nPlease file an issue "
|
2112 |
+
"to PyTorch at https://github.com/pytorch/pytorch/issues/new?template=feature-request.yml "
|
2113 |
+
"so that we can prioritize its implementation."
|
2114 |
+
)
|
2115 |
+
cond = get_any_has_fw_grad_cond(derivative=None)
|
2116 |
+
return (
|
2117 |
+
FW_DERIVATIVE_FORBID_TEMPLATE.substitute(cond=cond, name=name, msg=msg)
|
2118 |
+
if cond != ""
|
2119 |
+
else ""
|
2120 |
+
)
|
2121 |
+
|
2122 |
+
body: List[str] = []
|
2123 |
+
unpack_args_stats, unpacked_bindings = unpack_args(f)
|
2124 |
+
|
2125 |
+
body.extend(unpack_args_stats)
|
2126 |
+
if requires_derivative:
|
2127 |
+
body.extend(emit_any_requires_grad())
|
2128 |
+
body.extend(emit_any_has_forward_grad())
|
2129 |
+
body.extend(emit_check_inplace())
|
2130 |
+
body.extend(emit_original_self_definition())
|
2131 |
+
body.extend(setup_derivative(differentiable_inputs))
|
2132 |
+
|
2133 |
+
body.append(emit_call(f, unpacked_bindings, try_jit_decomposition))
|
2134 |
+
if requires_derivative:
|
2135 |
+
# set_flags has to appear after version_counter, because rebase_history
|
2136 |
+
# requires that the counter is incremented before it is called
|
2137 |
+
body.append(emit_history())
|
2138 |
+
body.extend(emit_check_if_in_complex_autograd_allowlist())
|
2139 |
+
|
2140 |
+
if is_out_fn:
|
2141 |
+
body.append(emit_forbid_fw_derivatives(is_out_fn=True))
|
2142 |
+
else:
|
2143 |
+
if requires_derivative and not try_jit_decomposition:
|
2144 |
+
if len(fw_derivatives) > 0:
|
2145 |
+
body.extend(emit_fw_derivatives())
|
2146 |
+
else:
|
2147 |
+
body.append(emit_forbid_fw_derivatives())
|
2148 |
+
|
2149 |
+
if requires_derivative:
|
2150 |
+
# Save only after the forward AD has been set up
|
2151 |
+
body.append(emit_save_outputs())
|
2152 |
+
|
2153 |
+
if str(f.func.name.name) in RESET_GRAD_ACCUMULATOR:
|
2154 |
+
# `inplace` implies that there is exactly one output named `self`,
|
2155 |
+
# so we can keep the generated code easy. If you need to
|
2156 |
+
# `reset_grad_accumulator` in an operator that's not `inplace`, you can
|
2157 |
+
# remove this assert but the code generation will get more elaborate
|
2158 |
+
assert inplace
|
2159 |
+
body.append("reset_grad_accumulator(self);")
|
2160 |
+
if not returns_void:
|
2161 |
+
body.append(f"return {get_return_value(f)};")
|
2162 |
+
return body
|