Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- env-llmeval/bin/python +3 -0
- env-llmeval/lib/python3.10/site-packages/__editable__.lm_eval-0.4.2.pth +3 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/accelerate_cli.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/env.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/estimate.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/launch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/test.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/tpu.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/cluster.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config_args.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/default.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/sagemaker.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/update.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/config_utils.py +101 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/sagemaker.py +267 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/update.py +63 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/__init__.py +225 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/__pycache__/dataclasses.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/__pycache__/fsdp_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/__pycache__/memory.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/__pycache__/offload.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/bnb.py +467 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/constants.py +72 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/dataclasses.py +1717 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/deepspeed.py +271 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/environment.py +274 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/fsdp_utils.py +209 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/imports.py +385 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/launch.py +624 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/megatron_lm.py +1435 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/memory.py +158 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/modeling.py +1800 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/offload.py +213 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/operations.py +851 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/other.py +366 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/random.py +122 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/rich.py +24 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/torch_xla.py +51 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/tqdm.py +37 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/transformer_engine.py +84 -0
- env-llmeval/lib/python3.10/site-packages/accelerate/utils/versions.py +56 -0
- env-llmeval/lib/python3.10/site-packages/numpy/__config__.py +162 -0
- env-llmeval/lib/python3.10/site-packages/numpy/__init__.cython-30.pxd +1050 -0
.gitattributes
CHANGED
@@ -117,3 +117,6 @@ llmeval-env/lib/python3.10/site-packages/torch/lib/libcusparseLt-f80c68d1.so.0 f
|
|
117 |
llmeval-env/lib/python3.10/site-packages/torch/lib/libtorch_cuda_linalg.so filter=lfs diff=lfs merge=lfs -text
|
118 |
env-llmeval/bin/python3 filter=lfs diff=lfs merge=lfs -text
|
119 |
env-llmeval/bin/python3.10 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
117 |
llmeval-env/lib/python3.10/site-packages/torch/lib/libtorch_cuda_linalg.so filter=lfs diff=lfs merge=lfs -text
|
118 |
env-llmeval/bin/python3 filter=lfs diff=lfs merge=lfs -text
|
119 |
env-llmeval/bin/python3.10 filter=lfs diff=lfs merge=lfs -text
|
120 |
+
env-llmeval/bin/python filter=lfs diff=lfs merge=lfs -text
|
121 |
+
llmeval-env/lib/python3.10/site-packages/torch/bin/protoc-3.13.0.0 filter=lfs diff=lfs merge=lfs -text
|
122 |
+
llmeval-env/lib/python3.10/site-packages/torch/bin/protoc filter=lfs diff=lfs merge=lfs -text
|
env-llmeval/bin/python
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45692c3da2492563eabf0a8f5dc18d20dc9c34ffe3a18202563e00bae684be91
|
3 |
+
size 5904904
|
env-llmeval/lib/python3.10/site-packages/__editable__.lm_eval-0.4.2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b87d24b5f41e9dfa2760bdd38e88bee0db23d5b34659d3ff52d013edad9d5ec
|
3 |
+
size 85
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/accelerate_cli.cpython-310.pyc
ADDED
Binary file (1.22 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/env.cpython-310.pyc
ADDED
Binary file (2.86 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/estimate.cpython-310.pyc
ADDED
Binary file (10.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/launch.cpython-310.pyc
ADDED
Binary file (28.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/test.cpython-310.pyc
ADDED
Binary file (1.65 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/tpu.cpython-310.pyc
ADDED
Binary file (3.85 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (3.71 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.09 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/cluster.cpython-310.pyc
ADDED
Binary file (14.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config.cpython-310.pyc
ADDED
Binary file (2.44 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config_args.cpython-310.pyc
ADDED
Binary file (7.14 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config_utils.cpython-310.pyc
ADDED
Binary file (2.75 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/default.cpython-310.pyc
ADDED
Binary file (3.92 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/sagemaker.cpython-310.pyc
ADDED
Binary file (6.87 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/update.cpython-310.pyc
ADDED
Binary file (1.86 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/config_utils.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
|
19 |
+
from ...utils.dataclasses import (
|
20 |
+
ComputeEnvironment,
|
21 |
+
DistributedType,
|
22 |
+
DynamoBackend,
|
23 |
+
PrecisionType,
|
24 |
+
SageMakerDistributedType,
|
25 |
+
)
|
26 |
+
from ..menu import BulletMenu
|
27 |
+
|
28 |
+
|
29 |
+
DYNAMO_BACKENDS = [
|
30 |
+
"EAGER",
|
31 |
+
"AOT_EAGER",
|
32 |
+
"INDUCTOR",
|
33 |
+
"AOT_TS_NVFUSER",
|
34 |
+
"NVPRIMS_NVFUSER",
|
35 |
+
"CUDAGRAPHS",
|
36 |
+
"OFI",
|
37 |
+
"FX2TRT",
|
38 |
+
"ONNXRT",
|
39 |
+
"TENSORRT",
|
40 |
+
"IPEX",
|
41 |
+
"TVM",
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
def _ask_field(input_text, convert_value=None, default=None, error_message=None):
|
46 |
+
ask_again = True
|
47 |
+
while ask_again:
|
48 |
+
result = input(input_text)
|
49 |
+
try:
|
50 |
+
if default is not None and len(result) == 0:
|
51 |
+
return default
|
52 |
+
return convert_value(result) if convert_value is not None else result
|
53 |
+
except Exception:
|
54 |
+
if error_message is not None:
|
55 |
+
print(error_message)
|
56 |
+
|
57 |
+
|
58 |
+
def _ask_options(input_text, options=[], convert_value=None, default=0):
|
59 |
+
menu = BulletMenu(input_text, options)
|
60 |
+
result = menu.run(default_choice=default)
|
61 |
+
return convert_value(result) if convert_value is not None else result
|
62 |
+
|
63 |
+
|
64 |
+
def _convert_compute_environment(value):
|
65 |
+
value = int(value)
|
66 |
+
return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value])
|
67 |
+
|
68 |
+
|
69 |
+
def _convert_distributed_mode(value):
|
70 |
+
value = int(value)
|
71 |
+
return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "MULTI_MLU", "XLA"][value])
|
72 |
+
|
73 |
+
|
74 |
+
def _convert_dynamo_backend(value):
|
75 |
+
value = int(value)
|
76 |
+
return DynamoBackend(DYNAMO_BACKENDS[value]).value
|
77 |
+
|
78 |
+
|
79 |
+
def _convert_mixed_precision(value):
|
80 |
+
value = int(value)
|
81 |
+
return PrecisionType(["no", "fp16", "bf16", "fp8"][value])
|
82 |
+
|
83 |
+
|
84 |
+
def _convert_sagemaker_distributed_mode(value):
|
85 |
+
value = int(value)
|
86 |
+
return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value])
|
87 |
+
|
88 |
+
|
89 |
+
def _convert_yes_no_to_bool(value):
|
90 |
+
return {"yes": True, "no": False}[value.lower()]
|
91 |
+
|
92 |
+
|
93 |
+
class SubcommandHelpFormatter(argparse.RawDescriptionHelpFormatter):
|
94 |
+
"""
|
95 |
+
A custom formatter that will remove the usage line from the help message for subcommands.
|
96 |
+
"""
|
97 |
+
|
98 |
+
def _format_usage(self, usage, actions, groups, prefix):
|
99 |
+
usage = super()._format_usage(usage, actions, groups, prefix)
|
100 |
+
usage = usage.replace("<command> [<args>] ", "")
|
101 |
+
return usage
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/sagemaker.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
|
19 |
+
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
|
20 |
+
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
|
21 |
+
from ...utils.imports import is_boto3_available
|
22 |
+
from .config_args import SageMakerConfig
|
23 |
+
from .config_utils import (
|
24 |
+
DYNAMO_BACKENDS,
|
25 |
+
_ask_field,
|
26 |
+
_ask_options,
|
27 |
+
_convert_dynamo_backend,
|
28 |
+
_convert_mixed_precision,
|
29 |
+
_convert_sagemaker_distributed_mode,
|
30 |
+
_convert_yes_no_to_bool,
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
if is_boto3_available():
|
35 |
+
import boto3 # noqa: F401
|
36 |
+
|
37 |
+
|
38 |
+
def _create_iam_role_for_sagemaker(role_name):
|
39 |
+
iam_client = boto3.client("iam")
|
40 |
+
|
41 |
+
sagemaker_trust_policy = {
|
42 |
+
"Version": "2012-10-17",
|
43 |
+
"Statement": [
|
44 |
+
{"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"}
|
45 |
+
],
|
46 |
+
}
|
47 |
+
try:
|
48 |
+
# create the role, associated with the chosen trust policy
|
49 |
+
iam_client.create_role(
|
50 |
+
RoleName=role_name, AssumeRolePolicyDocument=json.dumps(sagemaker_trust_policy, indent=2)
|
51 |
+
)
|
52 |
+
policy_document = {
|
53 |
+
"Version": "2012-10-17",
|
54 |
+
"Statement": [
|
55 |
+
{
|
56 |
+
"Effect": "Allow",
|
57 |
+
"Action": [
|
58 |
+
"sagemaker:*",
|
59 |
+
"ecr:GetDownloadUrlForLayer",
|
60 |
+
"ecr:BatchGetImage",
|
61 |
+
"ecr:BatchCheckLayerAvailability",
|
62 |
+
"ecr:GetAuthorizationToken",
|
63 |
+
"cloudwatch:PutMetricData",
|
64 |
+
"cloudwatch:GetMetricData",
|
65 |
+
"cloudwatch:GetMetricStatistics",
|
66 |
+
"cloudwatch:ListMetrics",
|
67 |
+
"logs:CreateLogGroup",
|
68 |
+
"logs:CreateLogStream",
|
69 |
+
"logs:DescribeLogStreams",
|
70 |
+
"logs:PutLogEvents",
|
71 |
+
"logs:GetLogEvents",
|
72 |
+
"s3:CreateBucket",
|
73 |
+
"s3:ListBucket",
|
74 |
+
"s3:GetBucketLocation",
|
75 |
+
"s3:GetObject",
|
76 |
+
"s3:PutObject",
|
77 |
+
],
|
78 |
+
"Resource": "*",
|
79 |
+
}
|
80 |
+
],
|
81 |
+
}
|
82 |
+
# attach policy to role
|
83 |
+
iam_client.put_role_policy(
|
84 |
+
RoleName=role_name,
|
85 |
+
PolicyName=f"{role_name}_policy_permission",
|
86 |
+
PolicyDocument=json.dumps(policy_document, indent=2),
|
87 |
+
)
|
88 |
+
except iam_client.exceptions.EntityAlreadyExistsException:
|
89 |
+
print(f"role {role_name} already exists. Using existing one")
|
90 |
+
|
91 |
+
|
92 |
+
def _get_iam_role_arn(role_name):
|
93 |
+
iam_client = boto3.client("iam")
|
94 |
+
return iam_client.get_role(RoleName=role_name)["Role"]["Arn"]
|
95 |
+
|
96 |
+
|
97 |
+
def get_sagemaker_input():
|
98 |
+
credentials_configuration = _ask_options(
|
99 |
+
"How do you want to authorize?",
|
100 |
+
["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "],
|
101 |
+
int,
|
102 |
+
)
|
103 |
+
aws_profile = None
|
104 |
+
if credentials_configuration == 0:
|
105 |
+
aws_profile = _ask_field("Enter your AWS Profile name: [default] ", default="default")
|
106 |
+
os.environ["AWS_PROFILE"] = aws_profile
|
107 |
+
else:
|
108 |
+
print(
|
109 |
+
"Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"
|
110 |
+
"`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`"
|
111 |
+
)
|
112 |
+
aws_access_key_id = _ask_field("AWS Access Key ID: ")
|
113 |
+
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
|
114 |
+
|
115 |
+
aws_secret_access_key = _ask_field("AWS Secret Access Key: ")
|
116 |
+
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
|
117 |
+
|
118 |
+
aws_region = _ask_field("Enter your AWS Region: [us-east-1]", default="us-east-1")
|
119 |
+
os.environ["AWS_DEFAULT_REGION"] = aws_region
|
120 |
+
|
121 |
+
role_management = _ask_options(
|
122 |
+
"Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?",
|
123 |
+
["Provide IAM Role name", "Create new IAM role using credentials"],
|
124 |
+
int,
|
125 |
+
)
|
126 |
+
if role_management == 0:
|
127 |
+
iam_role_name = _ask_field("Enter your IAM role name: ")
|
128 |
+
else:
|
129 |
+
iam_role_name = "accelerate_sagemaker_execution_role"
|
130 |
+
print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials')
|
131 |
+
_create_iam_role_for_sagemaker(iam_role_name)
|
132 |
+
|
133 |
+
is_custom_docker_image = _ask_field(
|
134 |
+
"Do you want to use custom Docker image? [yes/NO]: ",
|
135 |
+
_convert_yes_no_to_bool,
|
136 |
+
default=False,
|
137 |
+
error_message="Please enter yes or no.",
|
138 |
+
)
|
139 |
+
docker_image = None
|
140 |
+
if is_custom_docker_image:
|
141 |
+
docker_image = _ask_field("Enter your Docker image: ", lambda x: str(x).lower())
|
142 |
+
|
143 |
+
is_sagemaker_inputs_enabled = _ask_field(
|
144 |
+
"Do you want to provide SageMaker input channels with data locations? [yes/NO]: ",
|
145 |
+
_convert_yes_no_to_bool,
|
146 |
+
default=False,
|
147 |
+
error_message="Please enter yes or no.",
|
148 |
+
)
|
149 |
+
sagemaker_inputs_file = None
|
150 |
+
if is_sagemaker_inputs_enabled:
|
151 |
+
sagemaker_inputs_file = _ask_field(
|
152 |
+
"Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ",
|
153 |
+
lambda x: str(x).lower(),
|
154 |
+
)
|
155 |
+
|
156 |
+
is_sagemaker_metrics_enabled = _ask_field(
|
157 |
+
"Do you want to enable SageMaker metrics? [yes/NO]: ",
|
158 |
+
_convert_yes_no_to_bool,
|
159 |
+
default=False,
|
160 |
+
error_message="Please enter yes or no.",
|
161 |
+
)
|
162 |
+
sagemaker_metrics_file = None
|
163 |
+
if is_sagemaker_metrics_enabled:
|
164 |
+
sagemaker_metrics_file = _ask_field(
|
165 |
+
"Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ",
|
166 |
+
lambda x: str(x).lower(),
|
167 |
+
)
|
168 |
+
|
169 |
+
distributed_type = _ask_options(
|
170 |
+
"What is the distributed mode?",
|
171 |
+
["No distributed training", "Data parallelism"],
|
172 |
+
_convert_sagemaker_distributed_mode,
|
173 |
+
)
|
174 |
+
dynamo_config = {}
|
175 |
+
use_dynamo = _ask_field(
|
176 |
+
"Do you wish to optimize your script with torch dynamo?[yes/NO]:",
|
177 |
+
_convert_yes_no_to_bool,
|
178 |
+
default=False,
|
179 |
+
error_message="Please enter yes or no.",
|
180 |
+
)
|
181 |
+
if use_dynamo:
|
182 |
+
prefix = "dynamo_"
|
183 |
+
dynamo_config[prefix + "backend"] = _ask_options(
|
184 |
+
"Which dynamo backend would you like to use?",
|
185 |
+
[x.lower() for x in DYNAMO_BACKENDS],
|
186 |
+
_convert_dynamo_backend,
|
187 |
+
default=2,
|
188 |
+
)
|
189 |
+
use_custom_options = _ask_field(
|
190 |
+
"Do you want to customize the defaults sent to torch.compile? [yes/NO]: ",
|
191 |
+
_convert_yes_no_to_bool,
|
192 |
+
default=False,
|
193 |
+
error_message="Please enter yes or no.",
|
194 |
+
)
|
195 |
+
|
196 |
+
if use_custom_options:
|
197 |
+
dynamo_config[prefix + "mode"] = _ask_options(
|
198 |
+
"Which mode do you want to use?",
|
199 |
+
TORCH_DYNAMO_MODES,
|
200 |
+
lambda x: TORCH_DYNAMO_MODES[int(x)],
|
201 |
+
default="default",
|
202 |
+
)
|
203 |
+
dynamo_config[prefix + "use_fullgraph"] = _ask_field(
|
204 |
+
"Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ",
|
205 |
+
_convert_yes_no_to_bool,
|
206 |
+
default=False,
|
207 |
+
error_message="Please enter yes or no.",
|
208 |
+
)
|
209 |
+
dynamo_config[prefix + "use_dynamic"] = _ask_field(
|
210 |
+
"Do you want to enable dynamic shape tracing? [yes/NO]: ",
|
211 |
+
_convert_yes_no_to_bool,
|
212 |
+
default=False,
|
213 |
+
error_message="Please enter yes or no.",
|
214 |
+
)
|
215 |
+
ec2_instance_query = "Which EC2 instance type you want to use for your training?"
|
216 |
+
if distributed_type != SageMakerDistributedType.NO:
|
217 |
+
ec2_instance_type = _ask_options(
|
218 |
+
ec2_instance_query, SAGEMAKER_PARALLEL_EC2_INSTANCES, lambda x: SAGEMAKER_PARALLEL_EC2_INSTANCES[int(x)]
|
219 |
+
)
|
220 |
+
else:
|
221 |
+
ec2_instance_query += "? [ml.p3.2xlarge]:"
|
222 |
+
ec2_instance_type = _ask_field(ec2_instance_query, lambda x: str(x).lower(), default="ml.p3.2xlarge")
|
223 |
+
|
224 |
+
debug = False
|
225 |
+
if distributed_type != SageMakerDistributedType.NO:
|
226 |
+
debug = _ask_field(
|
227 |
+
"Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: ",
|
228 |
+
_convert_yes_no_to_bool,
|
229 |
+
default=False,
|
230 |
+
error_message="Please enter yes or no.",
|
231 |
+
)
|
232 |
+
|
233 |
+
num_machines = 1
|
234 |
+
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
|
235 |
+
num_machines = _ask_field(
|
236 |
+
"How many machines do you want use? [1]: ",
|
237 |
+
int,
|
238 |
+
default=1,
|
239 |
+
)
|
240 |
+
|
241 |
+
mixed_precision = _ask_options(
|
242 |
+
"Do you wish to use FP16 or BF16 (mixed precision)?",
|
243 |
+
["no", "fp16", "bf16", "fp8"],
|
244 |
+
_convert_mixed_precision,
|
245 |
+
)
|
246 |
+
|
247 |
+
if use_dynamo and mixed_precision == "no":
|
248 |
+
print(
|
249 |
+
"Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts."
|
250 |
+
)
|
251 |
+
|
252 |
+
return SageMakerConfig(
|
253 |
+
image_uri=docker_image,
|
254 |
+
compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER,
|
255 |
+
distributed_type=distributed_type,
|
256 |
+
use_cpu=False,
|
257 |
+
dynamo_config=dynamo_config,
|
258 |
+
ec2_instance_type=ec2_instance_type,
|
259 |
+
profile=aws_profile,
|
260 |
+
region=aws_region,
|
261 |
+
iam_role_name=iam_role_name,
|
262 |
+
mixed_precision=mixed_precision,
|
263 |
+
num_machines=num_machines,
|
264 |
+
sagemaker_inputs_file=sagemaker_inputs_file,
|
265 |
+
sagemaker_metrics_file=sagemaker_metrics_file,
|
266 |
+
debug=debug,
|
267 |
+
)
|
env-llmeval/lib/python3.10/site-packages/accelerate/commands/config/update.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
from pathlib import Path
|
18 |
+
|
19 |
+
from .config_args import default_config_file, load_config_from_file
|
20 |
+
from .config_utils import SubcommandHelpFormatter
|
21 |
+
|
22 |
+
|
23 |
+
description = "Update an existing config file with the latest defaults while maintaining the old configuration."
|
24 |
+
|
25 |
+
|
26 |
+
def update_config(args):
|
27 |
+
"""
|
28 |
+
Update an existing config file with the latest defaults while maintaining the old configuration.
|
29 |
+
"""
|
30 |
+
config_file = args.config_file
|
31 |
+
if config_file is None and Path(default_config_file).exists():
|
32 |
+
config_file = default_config_file
|
33 |
+
elif not Path(config_file).exists():
|
34 |
+
raise ValueError(f"The passed config file located at {config_file} doesn't exist.")
|
35 |
+
config = load_config_from_file(config_file)
|
36 |
+
|
37 |
+
if config_file.endswith(".json"):
|
38 |
+
config.to_json_file(config_file)
|
39 |
+
else:
|
40 |
+
config.to_yaml_file(config_file)
|
41 |
+
return config_file
|
42 |
+
|
43 |
+
|
44 |
+
def update_command_parser(parser, parents):
|
45 |
+
parser = parser.add_parser("update", parents=parents, help=description, formatter_class=SubcommandHelpFormatter)
|
46 |
+
parser.add_argument(
|
47 |
+
"--config_file",
|
48 |
+
default=None,
|
49 |
+
help=(
|
50 |
+
"The path to the config file to update. Will default to a file named default_config.yaml in the cache "
|
51 |
+
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
|
52 |
+
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
|
53 |
+
"with 'huggingface'."
|
54 |
+
),
|
55 |
+
)
|
56 |
+
|
57 |
+
parser.set_defaults(func=update_config_command)
|
58 |
+
return parser
|
59 |
+
|
60 |
+
|
61 |
+
def update_config_command(args):
|
62 |
+
config_file = update_config(args)
|
63 |
+
print(f"Sucessfully updated the configuration file at {config_file}.")
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/__init__.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from .constants import (
|
15 |
+
MODEL_NAME,
|
16 |
+
OPTIMIZER_NAME,
|
17 |
+
RNG_STATE_NAME,
|
18 |
+
SAFE_MODEL_NAME,
|
19 |
+
SAFE_WEIGHTS_INDEX_NAME,
|
20 |
+
SAFE_WEIGHTS_NAME,
|
21 |
+
SAMPLER_NAME,
|
22 |
+
SCALER_NAME,
|
23 |
+
SCHEDULER_NAME,
|
24 |
+
TORCH_DISTRIBUTED_OPERATION_TYPES,
|
25 |
+
TORCH_LAUNCH_PARAMS,
|
26 |
+
WEIGHTS_INDEX_NAME,
|
27 |
+
WEIGHTS_NAME,
|
28 |
+
)
|
29 |
+
from .dataclasses import (
|
30 |
+
AutocastKwargs,
|
31 |
+
BnbQuantizationConfig,
|
32 |
+
ComputeEnvironment,
|
33 |
+
CustomDtype,
|
34 |
+
DataLoaderConfiguration,
|
35 |
+
DeepSpeedPlugin,
|
36 |
+
DistributedDataParallelKwargs,
|
37 |
+
DistributedType,
|
38 |
+
DynamoBackend,
|
39 |
+
FP8RecipeKwargs,
|
40 |
+
FullyShardedDataParallelPlugin,
|
41 |
+
GradientAccumulationPlugin,
|
42 |
+
GradScalerKwargs,
|
43 |
+
InitProcessGroupKwargs,
|
44 |
+
KwargsHandler,
|
45 |
+
LoggerType,
|
46 |
+
MegatronLMPlugin,
|
47 |
+
PrecisionType,
|
48 |
+
ProjectConfiguration,
|
49 |
+
RNGType,
|
50 |
+
SageMakerDistributedType,
|
51 |
+
TensorInformation,
|
52 |
+
TorchDynamoPlugin,
|
53 |
+
)
|
54 |
+
from .environment import (
|
55 |
+
are_libraries_initialized,
|
56 |
+
check_cuda_p2p_ib_support,
|
57 |
+
check_fp8_capability,
|
58 |
+
convert_dict_to_env_variables,
|
59 |
+
get_cpu_distributed_information,
|
60 |
+
get_gpu_info,
|
61 |
+
get_int_from_env,
|
62 |
+
parse_choice_from_env,
|
63 |
+
parse_flag_from_env,
|
64 |
+
set_numa_affinity,
|
65 |
+
str_to_bool,
|
66 |
+
)
|
67 |
+
from .imports import (
|
68 |
+
get_ccl_version,
|
69 |
+
is_4bit_bnb_available,
|
70 |
+
is_8bit_bnb_available,
|
71 |
+
is_aim_available,
|
72 |
+
is_bf16_available,
|
73 |
+
is_bnb_available,
|
74 |
+
is_boto3_available,
|
75 |
+
is_ccl_available,
|
76 |
+
is_clearml_available,
|
77 |
+
is_comet_ml_available,
|
78 |
+
is_cuda_available,
|
79 |
+
is_datasets_available,
|
80 |
+
is_deepspeed_available,
|
81 |
+
is_dvclive_available,
|
82 |
+
is_fp8_available,
|
83 |
+
is_ipex_available,
|
84 |
+
is_megatron_lm_available,
|
85 |
+
is_mlflow_available,
|
86 |
+
is_mlu_available,
|
87 |
+
is_mps_available,
|
88 |
+
is_msamp_available,
|
89 |
+
is_npu_available,
|
90 |
+
is_pandas_available,
|
91 |
+
is_peft_available,
|
92 |
+
is_pippy_available,
|
93 |
+
is_pynvml_available,
|
94 |
+
is_rich_available,
|
95 |
+
is_sagemaker_available,
|
96 |
+
is_tensorboard_available,
|
97 |
+
is_timm_available,
|
98 |
+
is_torch_xla_available,
|
99 |
+
is_transformer_engine_available,
|
100 |
+
is_transformers_available,
|
101 |
+
is_wandb_available,
|
102 |
+
is_xpu_available,
|
103 |
+
)
|
104 |
+
from .modeling import (
|
105 |
+
calculate_maximum_sizes,
|
106 |
+
check_device_map,
|
107 |
+
check_tied_parameters_in_config,
|
108 |
+
check_tied_parameters_on_same_device,
|
109 |
+
compute_module_sizes,
|
110 |
+
convert_file_size_to_int,
|
111 |
+
dtype_byte_size,
|
112 |
+
find_tied_parameters,
|
113 |
+
get_balanced_memory,
|
114 |
+
get_max_layer_size,
|
115 |
+
get_max_memory,
|
116 |
+
get_mixed_precision_context_manager,
|
117 |
+
id_tensor_storage,
|
118 |
+
infer_auto_device_map,
|
119 |
+
is_peft_model,
|
120 |
+
load_checkpoint_in_model,
|
121 |
+
load_offloaded_weights,
|
122 |
+
load_state_dict,
|
123 |
+
named_module_tensors,
|
124 |
+
retie_parameters,
|
125 |
+
set_module_tensor_to_device,
|
126 |
+
shard_checkpoint,
|
127 |
+
)
|
128 |
+
from .offload import (
|
129 |
+
OffloadedWeightsLoader,
|
130 |
+
PrefixedDataset,
|
131 |
+
extract_submodules_state_dict,
|
132 |
+
load_offloaded_weight,
|
133 |
+
offload_state_dict,
|
134 |
+
offload_weight,
|
135 |
+
save_offload_index,
|
136 |
+
)
|
137 |
+
from .operations import (
|
138 |
+
CannotPadNestedTensorWarning,
|
139 |
+
broadcast,
|
140 |
+
broadcast_object_list,
|
141 |
+
concatenate,
|
142 |
+
convert_outputs_to_fp32,
|
143 |
+
convert_to_fp32,
|
144 |
+
copy_tensor_to_devices,
|
145 |
+
find_batch_size,
|
146 |
+
find_device,
|
147 |
+
gather,
|
148 |
+
gather_object,
|
149 |
+
get_data_structure,
|
150 |
+
honor_type,
|
151 |
+
ignorant_find_batch_size,
|
152 |
+
initialize_tensors,
|
153 |
+
is_namedtuple,
|
154 |
+
is_tensor_information,
|
155 |
+
is_torch_tensor,
|
156 |
+
listify,
|
157 |
+
pad_across_processes,
|
158 |
+
pad_input_tensors,
|
159 |
+
recursively_apply,
|
160 |
+
reduce,
|
161 |
+
send_to_device,
|
162 |
+
slice_tensors,
|
163 |
+
)
|
164 |
+
from .versions import compare_versions, is_torch_version
|
165 |
+
|
166 |
+
|
167 |
+
if is_deepspeed_available():
|
168 |
+
from .deepspeed import (
|
169 |
+
DeepSpeedEngineWrapper,
|
170 |
+
DeepSpeedOptimizerWrapper,
|
171 |
+
DeepSpeedSchedulerWrapper,
|
172 |
+
DummyOptim,
|
173 |
+
DummyScheduler,
|
174 |
+
HfDeepSpeedConfig,
|
175 |
+
)
|
176 |
+
|
177 |
+
from .bnb import has_4bit_bnb_layers, load_and_quantize_model
|
178 |
+
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
|
179 |
+
from .launch import (
|
180 |
+
PrepareForLaunch,
|
181 |
+
_filter_args,
|
182 |
+
prepare_deepspeed_cmd_env,
|
183 |
+
prepare_multi_gpu_env,
|
184 |
+
prepare_sagemager_args_inputs,
|
185 |
+
prepare_simple_launcher_cmd_env,
|
186 |
+
prepare_tpu,
|
187 |
+
)
|
188 |
+
from .megatron_lm import (
|
189 |
+
AbstractTrainStep,
|
190 |
+
BertTrainStep,
|
191 |
+
GPTTrainStep,
|
192 |
+
MegatronEngine,
|
193 |
+
MegatronLMDummyDataLoader,
|
194 |
+
MegatronLMDummyScheduler,
|
195 |
+
MegatronLMOptimizerWrapper,
|
196 |
+
MegatronLMSchedulerWrapper,
|
197 |
+
T5TrainStep,
|
198 |
+
avg_losses_across_data_parallel_group,
|
199 |
+
gather_across_data_parallel_groups,
|
200 |
+
)
|
201 |
+
from .megatron_lm import initialize as megatron_lm_initialize
|
202 |
+
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
|
203 |
+
from .megatron_lm import prepare_model as megatron_lm_prepare_model
|
204 |
+
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
|
205 |
+
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
|
206 |
+
from .memory import find_executable_batch_size, release_memory
|
207 |
+
from .other import (
|
208 |
+
check_os_kernel,
|
209 |
+
clean_state_dict_for_safetensors,
|
210 |
+
clear_environment,
|
211 |
+
convert_bytes,
|
212 |
+
extract_model_from_parallel,
|
213 |
+
get_pretty_name,
|
214 |
+
is_port_in_use,
|
215 |
+
merge_dicts,
|
216 |
+
patch_environment,
|
217 |
+
recursive_getattr,
|
218 |
+
save,
|
219 |
+
wait_for_everyone,
|
220 |
+
write_basic_config,
|
221 |
+
)
|
222 |
+
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
|
223 |
+
from .torch_xla import install_xla
|
224 |
+
from .tqdm import tqdm
|
225 |
+
from .transformer_engine import convert_model, has_transformer_engine_layers
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (6.54 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/__pycache__/dataclasses.cpython-310.pyc
ADDED
Binary file (57.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/__pycache__/fsdp_utils.cpython-310.pyc
ADDED
Binary file (5.76 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/__pycache__/memory.cpython-310.pyc
ADDED
Binary file (4.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/__pycache__/offload.cpython-310.pyc
ADDED
Binary file (6.96 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/bnb.py
ADDED
@@ -0,0 +1,467 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import logging
|
17 |
+
import os
|
18 |
+
from copy import deepcopy
|
19 |
+
from typing import Dict, List, Optional, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
|
24 |
+
from accelerate.utils.imports import (
|
25 |
+
is_4bit_bnb_available,
|
26 |
+
is_8bit_bnb_available,
|
27 |
+
)
|
28 |
+
|
29 |
+
from ..big_modeling import dispatch_model, init_empty_weights
|
30 |
+
from .dataclasses import BnbQuantizationConfig
|
31 |
+
from .modeling import (
|
32 |
+
find_tied_parameters,
|
33 |
+
get_balanced_memory,
|
34 |
+
infer_auto_device_map,
|
35 |
+
load_checkpoint_in_model,
|
36 |
+
offload_weight,
|
37 |
+
set_module_tensor_to_device,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.getLogger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
def load_and_quantize_model(
|
45 |
+
model: torch.nn.Module,
|
46 |
+
bnb_quantization_config: BnbQuantizationConfig,
|
47 |
+
weights_location: Union[str, os.PathLike] = None,
|
48 |
+
device_map: Optional[Dict[str, Union[int, str, torch.device]]] = None,
|
49 |
+
no_split_module_classes: Optional[List[str]] = None,
|
50 |
+
max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
|
51 |
+
offload_folder: Optional[Union[str, os.PathLike]] = None,
|
52 |
+
offload_state_dict: bool = False,
|
53 |
+
):
|
54 |
+
"""
|
55 |
+
This function will quantize the input model with the associated config passed in `bnb_quantization_config`. If the
|
56 |
+
model is in the meta device, we will load and dispatch the weights according to the `device_map` passed. If the
|
57 |
+
model is already loaded, we will quantize the model and put the model on the GPU,
|
58 |
+
|
59 |
+
Args:
|
60 |
+
model (`torch.nn.Module`):
|
61 |
+
Input model. The model can be already loaded or on the meta device
|
62 |
+
bnb_quantization_config (`BnbQuantizationConfig`):
|
63 |
+
The bitsandbytes quantization parameters
|
64 |
+
weights_location (`str` or `os.PathLike`):
|
65 |
+
The folder weights_location to load. It can be:
|
66 |
+
- a path to a file containing a whole model state dict
|
67 |
+
- a path to a `.json` file containing the index to a sharded checkpoint
|
68 |
+
- a path to a folder containing a unique `.index.json` file and the shards of a checkpoint.
|
69 |
+
- a path to a folder containing a unique pytorch_model.bin file.
|
70 |
+
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
|
71 |
+
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
|
72 |
+
name, once a given module name is inside, every submodule of it will be sent to the same device.
|
73 |
+
no_split_module_classes (`List[str]`, *optional*):
|
74 |
+
A list of layer class names that should never be split across device (for instance any layer that has a
|
75 |
+
residual connection).
|
76 |
+
max_memory (`Dict`, *optional*):
|
77 |
+
A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset.
|
78 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
79 |
+
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
|
80 |
+
offload_state_dict (`bool`, *optional*, defaults to `False`):
|
81 |
+
If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if
|
82 |
+
the weight of the CPU state dict + the biggest shard does not fit.
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
`torch.nn.Module`: The quantized model
|
86 |
+
"""
|
87 |
+
|
88 |
+
load_in_4bit = bnb_quantization_config.load_in_4bit
|
89 |
+
load_in_8bit = bnb_quantization_config.load_in_8bit
|
90 |
+
|
91 |
+
if load_in_8bit and not is_8bit_bnb_available():
|
92 |
+
raise ImportError(
|
93 |
+
"You have a version of `bitsandbytes` that is not compatible with 8bit quantization,"
|
94 |
+
" make sure you have the latest version of `bitsandbytes` installed."
|
95 |
+
)
|
96 |
+
if load_in_4bit and not is_4bit_bnb_available():
|
97 |
+
raise ValueError(
|
98 |
+
"You have a version of `bitsandbytes` that is not compatible with 4bit quantization,"
|
99 |
+
"make sure you have the latest version of `bitsandbytes` installed."
|
100 |
+
)
|
101 |
+
|
102 |
+
modules_on_cpu = []
|
103 |
+
# custom device map
|
104 |
+
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
|
105 |
+
modules_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
|
106 |
+
|
107 |
+
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
|
108 |
+
if bnb_quantization_config.skip_modules is None:
|
109 |
+
bnb_quantization_config.skip_modules = get_keys_to_not_convert(model)
|
110 |
+
|
111 |
+
# add cpu modules to skip modules only for 4-bit modules
|
112 |
+
if load_in_4bit:
|
113 |
+
bnb_quantization_config.skip_modules.extend(modules_on_cpu)
|
114 |
+
modules_to_not_convert = bnb_quantization_config.skip_modules
|
115 |
+
|
116 |
+
# We add the modules we want to keep in full precision
|
117 |
+
if bnb_quantization_config.keep_in_fp32_modules is None:
|
118 |
+
bnb_quantization_config.keep_in_fp32_modules = []
|
119 |
+
keep_in_fp32_modules = bnb_quantization_config.keep_in_fp32_modules
|
120 |
+
modules_to_not_convert.extend(keep_in_fp32_modules)
|
121 |
+
|
122 |
+
# compatibility with peft
|
123 |
+
model.is_loaded_in_4bit = load_in_4bit
|
124 |
+
model.is_loaded_in_8bit = load_in_8bit
|
125 |
+
|
126 |
+
model_device = get_parameter_device(model)
|
127 |
+
if model_device.type != "meta":
|
128 |
+
# quantization of an already loaded model
|
129 |
+
logger.warning(
|
130 |
+
"It is not recommended to quantize a loaded model. "
|
131 |
+
"The model should be instantiated under the `init_empty_weights` context manager."
|
132 |
+
)
|
133 |
+
model = replace_with_bnb_layers(model, bnb_quantization_config, modules_to_not_convert=modules_to_not_convert)
|
134 |
+
# convert param to the right dtype
|
135 |
+
dtype = bnb_quantization_config.torch_dtype
|
136 |
+
for name, param in model.state_dict().items():
|
137 |
+
if any(module_to_keep_in_fp32 in name for module_to_keep_in_fp32 in keep_in_fp32_modules):
|
138 |
+
param.to(torch.float32)
|
139 |
+
if param.dtype != torch.float32:
|
140 |
+
name = name.replace(".weight", "").replace(".bias", "")
|
141 |
+
param = getattr(model, name, None)
|
142 |
+
if param is not None:
|
143 |
+
param.to(torch.float32)
|
144 |
+
elif torch.is_floating_point(param):
|
145 |
+
param.to(dtype)
|
146 |
+
if model_device.type == "cuda":
|
147 |
+
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
|
148 |
+
model.cuda(torch.cuda.current_device())
|
149 |
+
torch.cuda.empty_cache()
|
150 |
+
elif torch.cuda.is_available():
|
151 |
+
model.to(torch.cuda.current_device())
|
152 |
+
else:
|
153 |
+
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
|
154 |
+
logger.info(
|
155 |
+
f"The model device type is {model_device.type}. However, cuda is needed for quantization."
|
156 |
+
"We move the model to cuda."
|
157 |
+
)
|
158 |
+
return model
|
159 |
+
|
160 |
+
elif weights_location is None:
|
161 |
+
raise RuntimeError(
|
162 |
+
f"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} "
|
163 |
+
)
|
164 |
+
|
165 |
+
else:
|
166 |
+
with init_empty_weights():
|
167 |
+
model = replace_with_bnb_layers(
|
168 |
+
model, bnb_quantization_config, modules_to_not_convert=modules_to_not_convert
|
169 |
+
)
|
170 |
+
|
171 |
+
device_map = get_quantized_model_device_map(
|
172 |
+
model,
|
173 |
+
bnb_quantization_config,
|
174 |
+
device_map,
|
175 |
+
max_memory=max_memory,
|
176 |
+
no_split_module_classes=no_split_module_classes,
|
177 |
+
)
|
178 |
+
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
|
179 |
+
offload_state_dict = True
|
180 |
+
|
181 |
+
offload = any(x in list(device_map.values()) for x in ["cpu", "disk"])
|
182 |
+
|
183 |
+
load_checkpoint_in_model(
|
184 |
+
model,
|
185 |
+
weights_location,
|
186 |
+
device_map,
|
187 |
+
dtype=bnb_quantization_config.torch_dtype,
|
188 |
+
offload_folder=offload_folder,
|
189 |
+
offload_state_dict=offload_state_dict,
|
190 |
+
keep_in_fp32_modules=bnb_quantization_config.keep_in_fp32_modules,
|
191 |
+
offload_8bit_bnb=load_in_8bit and offload,
|
192 |
+
)
|
193 |
+
return dispatch_model(model, device_map=device_map, offload_dir=offload_folder)
|
194 |
+
|
195 |
+
|
196 |
+
def get_quantized_model_device_map(
|
197 |
+
model, bnb_quantization_config, device_map=None, max_memory=None, no_split_module_classes=None
|
198 |
+
):
|
199 |
+
if device_map is None:
|
200 |
+
if torch.cuda.is_available():
|
201 |
+
device_map = {"": torch.cuda.current_device()}
|
202 |
+
else:
|
203 |
+
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
|
204 |
+
logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.")
|
205 |
+
|
206 |
+
if isinstance(device_map, str):
|
207 |
+
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
|
208 |
+
raise ValueError(
|
209 |
+
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
|
210 |
+
"'sequential'."
|
211 |
+
)
|
212 |
+
|
213 |
+
special_dtypes = {}
|
214 |
+
special_dtypes.update(
|
215 |
+
{
|
216 |
+
name: bnb_quantization_config.torch_dtype
|
217 |
+
for name, _ in model.named_parameters()
|
218 |
+
if any(m in name for m in bnb_quantization_config.skip_modules)
|
219 |
+
}
|
220 |
+
)
|
221 |
+
special_dtypes.update(
|
222 |
+
{
|
223 |
+
name: torch.float32
|
224 |
+
for name, _ in model.named_parameters()
|
225 |
+
if any(m in name for m in bnb_quantization_config.keep_in_fp32_modules)
|
226 |
+
}
|
227 |
+
)
|
228 |
+
|
229 |
+
kwargs = {}
|
230 |
+
kwargs["special_dtypes"] = special_dtypes
|
231 |
+
kwargs["no_split_module_classes"] = no_split_module_classes
|
232 |
+
kwargs["dtype"] = bnb_quantization_config.target_dtype
|
233 |
+
|
234 |
+
# get max_memory for each device.
|
235 |
+
if device_map != "sequential":
|
236 |
+
max_memory = get_balanced_memory(
|
237 |
+
model,
|
238 |
+
low_zero=(device_map == "balanced_low_0"),
|
239 |
+
max_memory=max_memory,
|
240 |
+
**kwargs,
|
241 |
+
)
|
242 |
+
|
243 |
+
kwargs["max_memory"] = max_memory
|
244 |
+
device_map = infer_auto_device_map(model, **kwargs)
|
245 |
+
|
246 |
+
if isinstance(device_map, dict):
|
247 |
+
# check if don't have any quantized module on the cpu
|
248 |
+
modules_not_to_convert = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fp32_modules
|
249 |
+
|
250 |
+
device_map_without_some_modules = {
|
251 |
+
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
|
252 |
+
}
|
253 |
+
for device in ["cpu", "disk"]:
|
254 |
+
if device in device_map_without_some_modules.values():
|
255 |
+
if bnb_quantization_config.load_in_4bit:
|
256 |
+
raise ValueError(
|
257 |
+
"""
|
258 |
+
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
|
259 |
+
the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
|
260 |
+
these modules in `torch_dtype`, you need to pass a custom `device_map` to
|
261 |
+
`load_and_quantize_model`. Check
|
262 |
+
https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk
|
263 |
+
for more details.
|
264 |
+
"""
|
265 |
+
)
|
266 |
+
else:
|
267 |
+
logger.info(
|
268 |
+
"Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit"
|
269 |
+
)
|
270 |
+
del device_map_without_some_modules
|
271 |
+
return device_map
|
272 |
+
|
273 |
+
|
274 |
+
def replace_with_bnb_layers(model, bnb_quantization_config, modules_to_not_convert=None, current_key_name=None):
|
275 |
+
"""
|
276 |
+
A helper function to replace all `torch.nn.Linear` modules by `bnb.nn.Linear8bit` modules or by `bnb.nn.Linear4bit`
|
277 |
+
modules from the `bitsandbytes`library. The function will be run recursively and replace `torch.nn.Linear` modules.
|
278 |
+
|
279 |
+
Parameters:
|
280 |
+
model (`torch.nn.Module`):
|
281 |
+
Input model or `torch.nn.Module` as the function is run recursively.
|
282 |
+
modules_to_not_convert (`List[str]`):
|
283 |
+
Names of the modules to not quantize convert. In practice we keep the `lm_head` in full precision for
|
284 |
+
numerical stability reasons.
|
285 |
+
current_key_name (`List[str]`, *optional*):
|
286 |
+
An array to track the current key of the recursion. This is used to check whether the current key (part of
|
287 |
+
it) is not in the list of modules to not convert.
|
288 |
+
"""
|
289 |
+
|
290 |
+
if modules_to_not_convert is None:
|
291 |
+
modules_to_not_convert = []
|
292 |
+
|
293 |
+
model, has_been_replaced = _replace_with_bnb_layers(
|
294 |
+
model, bnb_quantization_config, modules_to_not_convert, current_key_name
|
295 |
+
)
|
296 |
+
if not has_been_replaced:
|
297 |
+
logger.warning(
|
298 |
+
"You are loading your model in 8bit or 4bit but no linear modules were found in your model."
|
299 |
+
" this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers."
|
300 |
+
" Please double check your model architecture, or submit an issue on github if you think this is"
|
301 |
+
" a bug."
|
302 |
+
)
|
303 |
+
return model
|
304 |
+
|
305 |
+
|
306 |
+
def _replace_with_bnb_layers(
|
307 |
+
model,
|
308 |
+
bnb_quantization_config,
|
309 |
+
modules_to_not_convert=None,
|
310 |
+
current_key_name=None,
|
311 |
+
):
|
312 |
+
"""
|
313 |
+
Private method that wraps the recursion for module replacement.
|
314 |
+
|
315 |
+
Returns the converted model and a boolean that indicates if the conversion has been successfull or not.
|
316 |
+
"""
|
317 |
+
# bitsandbytes will initialize CUDA on import, so it needs to be imported lazily
|
318 |
+
import bitsandbytes as bnb
|
319 |
+
|
320 |
+
has_been_replaced = False
|
321 |
+
for name, module in model.named_children():
|
322 |
+
if current_key_name is None:
|
323 |
+
current_key_name = []
|
324 |
+
current_key_name.append(name)
|
325 |
+
if isinstance(module, nn.Linear) and name not in modules_to_not_convert:
|
326 |
+
# Check if the current key is not in the `modules_to_not_convert`
|
327 |
+
current_key_name_str = ".".join(current_key_name)
|
328 |
+
proceed = True
|
329 |
+
for key in modules_to_not_convert:
|
330 |
+
if (
|
331 |
+
(key in current_key_name_str) and (key + "." in current_key_name_str)
|
332 |
+
) or key == current_key_name_str:
|
333 |
+
proceed = False
|
334 |
+
break
|
335 |
+
if proceed:
|
336 |
+
# Load bnb module with empty weight and replace ``nn.Linear` module
|
337 |
+
if bnb_quantization_config.load_in_8bit:
|
338 |
+
bnb_module = bnb.nn.Linear8bitLt(
|
339 |
+
module.in_features,
|
340 |
+
module.out_features,
|
341 |
+
module.bias is not None,
|
342 |
+
has_fp16_weights=False,
|
343 |
+
threshold=bnb_quantization_config.llm_int8_threshold,
|
344 |
+
)
|
345 |
+
elif bnb_quantization_config.load_in_4bit:
|
346 |
+
bnb_module = bnb.nn.Linear4bit(
|
347 |
+
module.in_features,
|
348 |
+
module.out_features,
|
349 |
+
module.bias is not None,
|
350 |
+
bnb_quantization_config.bnb_4bit_compute_dtype,
|
351 |
+
compress_statistics=bnb_quantization_config.bnb_4bit_use_double_quant,
|
352 |
+
quant_type=bnb_quantization_config.bnb_4bit_quant_type,
|
353 |
+
)
|
354 |
+
else:
|
355 |
+
raise ValueError("load_in_8bit and load_in_4bit can't be both False")
|
356 |
+
bnb_module.weight.data = module.weight.data
|
357 |
+
if module.bias is not None:
|
358 |
+
bnb_module.bias.data = module.bias.data
|
359 |
+
bnb_module.requires_grad_(False)
|
360 |
+
setattr(model, name, bnb_module)
|
361 |
+
has_been_replaced = True
|
362 |
+
if len(list(module.children())) > 0:
|
363 |
+
_, _has_been_replaced = _replace_with_bnb_layers(
|
364 |
+
module, bnb_quantization_config, modules_to_not_convert, current_key_name
|
365 |
+
)
|
366 |
+
has_been_replaced = has_been_replaced | _has_been_replaced
|
367 |
+
# Remove the last key for recursion
|
368 |
+
current_key_name.pop(-1)
|
369 |
+
return model, has_been_replaced
|
370 |
+
|
371 |
+
|
372 |
+
def get_keys_to_not_convert(model):
|
373 |
+
r"""
|
374 |
+
An utility function to get the key of the module to keep in full precision if any For example for CausalLM modules
|
375 |
+
we may want to keep the lm_head in full precision for numerical stability reasons. For other architectures, we want
|
376 |
+
to keep the tied weights of the model. The function will return a list of the keys of the modules to not convert in
|
377 |
+
int8.
|
378 |
+
|
379 |
+
Parameters:
|
380 |
+
model (`torch.nn.Module`):
|
381 |
+
Input model
|
382 |
+
"""
|
383 |
+
# Create a copy of the model
|
384 |
+
with init_empty_weights():
|
385 |
+
tied_model = deepcopy(model) # this has 0 cost since it is done inside `init_empty_weights` context manager`
|
386 |
+
|
387 |
+
tied_params = find_tied_parameters(tied_model)
|
388 |
+
# For compatibility with Accelerate < 0.18
|
389 |
+
if isinstance(tied_params, dict):
|
390 |
+
tied_keys = sum(list(tied_params.values()), []) + list(tied_params.keys())
|
391 |
+
else:
|
392 |
+
tied_keys = sum(tied_params, [])
|
393 |
+
has_tied_params = len(tied_keys) > 0
|
394 |
+
|
395 |
+
# Check if it is a base model
|
396 |
+
is_base_model = False
|
397 |
+
if hasattr(model, "base_model_prefix"):
|
398 |
+
is_base_model = not hasattr(model, model.base_model_prefix)
|
399 |
+
|
400 |
+
# Ignore this for base models (BertModel, GPT2Model, etc.)
|
401 |
+
if (not has_tied_params) and is_base_model:
|
402 |
+
return []
|
403 |
+
|
404 |
+
# otherwise they have an attached head
|
405 |
+
list_modules = list(model.named_children())
|
406 |
+
list_last_module = [list_modules[-1][0]]
|
407 |
+
|
408 |
+
# add last module together with tied weights
|
409 |
+
intersection = set(list_last_module) - set(tied_keys)
|
410 |
+
list_untouched = list(set(tied_keys)) + list(intersection)
|
411 |
+
|
412 |
+
# remove ".weight" from the keys
|
413 |
+
names_to_remove = [".weight", ".bias"]
|
414 |
+
filtered_module_names = []
|
415 |
+
for name in list_untouched:
|
416 |
+
for name_to_remove in names_to_remove:
|
417 |
+
if name_to_remove in name:
|
418 |
+
name = name.replace(name_to_remove, "")
|
419 |
+
filtered_module_names.append(name)
|
420 |
+
|
421 |
+
return filtered_module_names
|
422 |
+
|
423 |
+
|
424 |
+
def has_4bit_bnb_layers(model):
|
425 |
+
"""Check if we have `bnb.nn.Linear4bit` or `bnb.nn.Linear8bitLt` layers inside our model"""
|
426 |
+
# bitsandbytes will initialize CUDA on import, so it needs to be imported lazily
|
427 |
+
import bitsandbytes as bnb
|
428 |
+
|
429 |
+
for m in model.modules():
|
430 |
+
if isinstance(m, bnb.nn.Linear4bit):
|
431 |
+
return True
|
432 |
+
return False
|
433 |
+
|
434 |
+
|
435 |
+
def get_parameter_device(parameter: nn.Module):
|
436 |
+
return next(parameter.parameters()).device
|
437 |
+
|
438 |
+
|
439 |
+
def quantize_and_offload_8bit(model, param, param_name, new_dtype, offload_folder, offload_index, fp16_statistics):
|
440 |
+
# if it is not quantized, we quantize and offload the quantized weights and the SCB stats
|
441 |
+
if fp16_statistics is None:
|
442 |
+
set_module_tensor_to_device(model, param_name, 0, dtype=new_dtype, value=param)
|
443 |
+
tensor_name = param_name
|
444 |
+
module = model
|
445 |
+
if "." in tensor_name:
|
446 |
+
splits = tensor_name.split(".")
|
447 |
+
for split in splits[:-1]:
|
448 |
+
new_module = getattr(module, split)
|
449 |
+
if new_module is None:
|
450 |
+
raise ValueError(f"{module} has no attribute {split}.")
|
451 |
+
module = new_module
|
452 |
+
tensor_name = splits[-1]
|
453 |
+
# offload weights
|
454 |
+
module._parameters[tensor_name].requires_grad = False
|
455 |
+
offload_weight(module._parameters[tensor_name], param_name, offload_folder, index=offload_index)
|
456 |
+
if hasattr(module._parameters[tensor_name], "SCB"):
|
457 |
+
offload_weight(
|
458 |
+
module._parameters[tensor_name].SCB,
|
459 |
+
param_name.replace("weight", "SCB"),
|
460 |
+
offload_folder,
|
461 |
+
index=offload_index,
|
462 |
+
)
|
463 |
+
else:
|
464 |
+
offload_weight(param, param_name, offload_folder, index=offload_index)
|
465 |
+
offload_weight(fp16_statistics, param_name.replace("weight", "SCB"), offload_folder, index=offload_index)
|
466 |
+
|
467 |
+
set_module_tensor_to_device(model, param_name, "meta", dtype=new_dtype, value=torch.empty(*param.size()))
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/constants.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import operator as op
|
16 |
+
|
17 |
+
|
18 |
+
SCALER_NAME = "scaler.pt"
|
19 |
+
MODEL_NAME = "pytorch_model"
|
20 |
+
SAFE_MODEL_NAME = "model"
|
21 |
+
RNG_STATE_NAME = "random_states"
|
22 |
+
OPTIMIZER_NAME = "optimizer"
|
23 |
+
SCHEDULER_NAME = "scheduler"
|
24 |
+
SAMPLER_NAME = "sampler"
|
25 |
+
WEIGHTS_NAME = f"{MODEL_NAME}.bin"
|
26 |
+
WEIGHTS_INDEX_NAME = f"{WEIGHTS_NAME}.index.json"
|
27 |
+
SAFE_WEIGHTS_NAME = f"{SAFE_MODEL_NAME}.safetensors"
|
28 |
+
SAFE_WEIGHTS_INDEX_NAME = f"{SAFE_WEIGHTS_NAME}.index.json"
|
29 |
+
SAGEMAKER_PYTORCH_VERSION = "1.10.2"
|
30 |
+
SAGEMAKER_PYTHON_VERSION = "py38"
|
31 |
+
SAGEMAKER_TRANSFORMERS_VERSION = "4.17.0"
|
32 |
+
SAGEMAKER_PARALLEL_EC2_INSTANCES = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"]
|
33 |
+
FSDP_SHARDING_STRATEGY = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"]
|
34 |
+
FSDP_AUTO_WRAP_POLICY = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"]
|
35 |
+
FSDP_BACKWARD_PREFETCH = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"]
|
36 |
+
FSDP_STATE_DICT_TYPE = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"]
|
37 |
+
FSDP_PYTORCH_VERSION = "2.1.0"
|
38 |
+
FSDP_MODEL_NAME = "pytorch_model_fsdp"
|
39 |
+
DEEPSPEED_MULTINODE_LAUNCHERS = ["pdsh", "standard", "openmpi", "mvapich", "mpich"]
|
40 |
+
TORCH_DYNAMO_MODES = ["default", "reduce-overhead", "max-autotune"]
|
41 |
+
|
42 |
+
STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt}
|
43 |
+
|
44 |
+
# These are the args for `torch.distributed.launch` for pytorch < 1.9
|
45 |
+
TORCH_LAUNCH_PARAMS = [
|
46 |
+
"nnodes",
|
47 |
+
"nproc_per_node",
|
48 |
+
"rdzv_backend",
|
49 |
+
"rdzv_endpoint",
|
50 |
+
"rdzv_id",
|
51 |
+
"rdzv_conf",
|
52 |
+
"standalone",
|
53 |
+
"max_restarts",
|
54 |
+
"monitor_interval",
|
55 |
+
"start_method",
|
56 |
+
"role",
|
57 |
+
"module",
|
58 |
+
"m",
|
59 |
+
"no_python",
|
60 |
+
"run_path",
|
61 |
+
"log_dir",
|
62 |
+
"r",
|
63 |
+
"redirects",
|
64 |
+
"t",
|
65 |
+
"tee",
|
66 |
+
"node_rank",
|
67 |
+
"master_addr",
|
68 |
+
"master_port",
|
69 |
+
]
|
70 |
+
|
71 |
+
CUDA_DISTRIBUTED_TYPES = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"]
|
72 |
+
TORCH_DISTRIBUTED_OPERATION_TYPES = CUDA_DISTRIBUTED_TYPES + ["MULTI_NPU", "MULTI_MLU", "MULTI_XPU", "MULTI_CPU"]
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/dataclasses.py
ADDED
@@ -0,0 +1,1717 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
General namespace and dataclass related classes
|
17 |
+
"""
|
18 |
+
|
19 |
+
import argparse
|
20 |
+
import copy
|
21 |
+
import enum
|
22 |
+
import functools
|
23 |
+
import os
|
24 |
+
import typing
|
25 |
+
import warnings
|
26 |
+
from contextlib import contextmanager
|
27 |
+
from dataclasses import dataclass, field
|
28 |
+
from datetime import timedelta
|
29 |
+
from typing import Any, Callable, Dict, Iterable, List, Literal, Optional, Tuple, get_args
|
30 |
+
|
31 |
+
import torch
|
32 |
+
|
33 |
+
from .constants import FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE
|
34 |
+
from .environment import str_to_bool
|
35 |
+
from .imports import is_cuda_available, is_npu_available, is_xpu_available
|
36 |
+
from .versions import compare_versions
|
37 |
+
|
38 |
+
|
39 |
+
class KwargsHandler:
|
40 |
+
"""
|
41 |
+
Internal mixin that implements a `to_kwargs()` method for a dataclass.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def to_dict(self):
|
45 |
+
return copy.deepcopy(self.__dict__)
|
46 |
+
|
47 |
+
def to_kwargs(self):
|
48 |
+
"""
|
49 |
+
Returns a dictionary containing the attributes with values different from the default of this class.
|
50 |
+
"""
|
51 |
+
# import clear_environment here to avoid circular import problem
|
52 |
+
from .other import clear_environment
|
53 |
+
|
54 |
+
with clear_environment():
|
55 |
+
default_dict = self.__class__().to_dict()
|
56 |
+
this_dict = self.to_dict()
|
57 |
+
return {k: v for k, v in this_dict.items() if default_dict[k] != v}
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass
|
61 |
+
class AutocastKwargs(KwargsHandler):
|
62 |
+
"""
|
63 |
+
Use this object in your [`Accelerator`] to customize how `torch.autocast` behaves. Please refer to the
|
64 |
+
documentation of this [context manager](https://pytorch.org/docs/stable/amp.html#torch.autocast) for more
|
65 |
+
information on each argument.
|
66 |
+
|
67 |
+
Example:
|
68 |
+
|
69 |
+
```python
|
70 |
+
from accelerate import Accelerator
|
71 |
+
from accelerate.utils import AutocastKwargs
|
72 |
+
|
73 |
+
kwargs = AutocastKwargs(cache_enabled=True)
|
74 |
+
accelerator = Accelerator(kwargs_handlers=[kwargs])
|
75 |
+
```
|
76 |
+
"""
|
77 |
+
|
78 |
+
enabled: bool = True
|
79 |
+
cache_enabled: bool = None
|
80 |
+
|
81 |
+
|
82 |
+
@dataclass
|
83 |
+
class DistributedDataParallelKwargs(KwargsHandler):
|
84 |
+
"""
|
85 |
+
Use this object in your [`Accelerator`] to customize how your model is wrapped in a
|
86 |
+
`torch.nn.parallel.DistributedDataParallel`. Please refer to the documentation of this
|
87 |
+
[wrapper](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html) for more
|
88 |
+
information on each argument.
|
89 |
+
|
90 |
+
<Tip warning={true}>
|
91 |
+
|
92 |
+
`gradient_as_bucket_view` is only available in PyTorch 1.7.0 and later versions.
|
93 |
+
|
94 |
+
`static_graph` is only available in PyTorch 1.11.0 and later versions.
|
95 |
+
|
96 |
+
</Tip>
|
97 |
+
|
98 |
+
Example:
|
99 |
+
|
100 |
+
```python
|
101 |
+
from accelerate import Accelerator
|
102 |
+
from accelerate.utils import DistributedDataParallelKwargs
|
103 |
+
|
104 |
+
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
105 |
+
accelerator = Accelerator(kwargs_handlers=[kwargs])
|
106 |
+
```
|
107 |
+
"""
|
108 |
+
|
109 |
+
dim: int = 0
|
110 |
+
broadcast_buffers: bool = True
|
111 |
+
bucket_cap_mb: int = 25
|
112 |
+
find_unused_parameters: bool = False
|
113 |
+
check_reduction: bool = False
|
114 |
+
gradient_as_bucket_view: bool = False
|
115 |
+
static_graph: bool = False
|
116 |
+
|
117 |
+
|
118 |
+
@dataclass
|
119 |
+
class GradScalerKwargs(KwargsHandler):
|
120 |
+
"""
|
121 |
+
Use this object in your [`Accelerator`] to customize the behavior of mixed precision, specifically how the
|
122 |
+
`torch.cuda.amp.GradScaler` used is created. Please refer to the documentation of this
|
123 |
+
[scaler](https://pytorch.org/docs/stable/amp.html?highlight=gradscaler) for more information on each argument.
|
124 |
+
|
125 |
+
<Tip warning={true}>
|
126 |
+
|
127 |
+
`GradScaler` is only available in PyTorch 1.5.0 and later versions.
|
128 |
+
|
129 |
+
</Tip>
|
130 |
+
|
131 |
+
Example:
|
132 |
+
|
133 |
+
```python
|
134 |
+
from accelerate import Accelerator
|
135 |
+
from accelerate.utils import GradScalerKwargs
|
136 |
+
|
137 |
+
kwargs = GradScalerKwargs(backoff_filter=0.25)
|
138 |
+
accelerator = Accelerator(kwargs_handlers=[kwargs])
|
139 |
+
```
|
140 |
+
"""
|
141 |
+
|
142 |
+
init_scale: float = 65536.0
|
143 |
+
growth_factor: float = 2.0
|
144 |
+
backoff_factor: float = 0.5
|
145 |
+
growth_interval: int = 2000
|
146 |
+
enabled: bool = True
|
147 |
+
|
148 |
+
|
149 |
+
@dataclass
|
150 |
+
class InitProcessGroupKwargs(KwargsHandler):
|
151 |
+
"""
|
152 |
+
Use this object in your [`Accelerator`] to customize the initialization of the distributed processes. Please refer
|
153 |
+
to the documentation of this
|
154 |
+
[method](https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group) for more
|
155 |
+
information on each argument.
|
156 |
+
|
157 |
+
```python
|
158 |
+
from datetime import timedelta
|
159 |
+
from accelerate import Accelerator
|
160 |
+
from accelerate.utils import InitProcessGroupKwargs
|
161 |
+
|
162 |
+
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=800))
|
163 |
+
accelerator = Accelerator(kwargs_handlers=[kwargs])
|
164 |
+
```
|
165 |
+
"""
|
166 |
+
|
167 |
+
backend: Optional[str] = "nccl"
|
168 |
+
init_method: Optional[str] = None
|
169 |
+
timeout: timedelta = timedelta(seconds=1800)
|
170 |
+
|
171 |
+
|
172 |
+
# Literals
|
173 |
+
Backend = Literal["MSAMP", "TE"]
|
174 |
+
OptLevel = Literal["O1", "O2"]
|
175 |
+
FP8Format = Literal["E4M3", "HYBRID"]
|
176 |
+
AmaxComputeAlgorithm = Literal["max", "most_recent"]
|
177 |
+
|
178 |
+
|
179 |
+
@dataclass
|
180 |
+
class FP8RecipeKwargs(KwargsHandler):
|
181 |
+
"""
|
182 |
+
Use this object in your [`Accelerator`] to customize the initialization of the recipe for FP8 mixed precision
|
183 |
+
training with `transformer-engine` or `ms-amp`.
|
184 |
+
|
185 |
+
<Tip>
|
186 |
+
|
187 |
+
For more information on `transformer-engine` args, please refer to the API
|
188 |
+
[documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html).
|
189 |
+
|
190 |
+
For more information on the `ms-amp` args, please refer to the Optimization Level
|
191 |
+
[documentation](https://azure.github.io/MS-AMP/docs/user-tutorial/optimization-level).
|
192 |
+
|
193 |
+
</Tip>
|
194 |
+
|
195 |
+
```python
|
196 |
+
from accelerate import Accelerator
|
197 |
+
from accelerate.utils import FP8RecipeKwargs
|
198 |
+
|
199 |
+
kwargs = FP8RecipeKwargs(backend="te", fp8_format="HYBRID")
|
200 |
+
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=[kwargs])
|
201 |
+
```
|
202 |
+
|
203 |
+
To use MS-AMP as an engine, pass `backend="msamp"` and the `optimization_level`:
|
204 |
+
|
205 |
+
```python
|
206 |
+
kwargs = FP8RecipeKwargs(backend="msamp", optimization_level="02")
|
207 |
+
```
|
208 |
+
|
209 |
+
Args:
|
210 |
+
backend (`str`, *optional*, defaults to "msamp"):
|
211 |
+
Which FP8 engine to use. Must be one of `"msamp"` (MS-AMP) or `"te"` (TransformerEngine).
|
212 |
+
margin (`int`, *optional*, default to 0):
|
213 |
+
The margin to use for the gradient scaling.
|
214 |
+
interval (`int`, *optional*, default to 1):
|
215 |
+
The interval to use for how often the scaling factor is recomputed.
|
216 |
+
fp8_format (`str`, *optional*, default to "E4M3"):
|
217 |
+
The format to use for the FP8 recipe. Must be one of `E4M3` or `HYBRID`.
|
218 |
+
amax_history_len (`int`, *optional*, default to 1024):
|
219 |
+
The length of the history to use for the scaling factor computation
|
220 |
+
amax_compute_algo (`str`, *optional*, default to "most_recent"):
|
221 |
+
The algorithm to use for the scaling factor computation. Must be one of `max` or `most_recent`.
|
222 |
+
override_linear_precision (`tuple` of three `bool`, *optional*, default to `(False, False, False)`):
|
223 |
+
Whether or not to execute `fprop`, `dgrad`, and `wgrad` GEMMS in higher precision.
|
224 |
+
optimization_level (`str`), one of `O1`, `O2`. (default is `O2`):
|
225 |
+
What level of 8-bit collective communication should be used with MS-AMP. In general:
|
226 |
+
* O1: Weight gradients and `all_reduce` communications are done in fp8, reducing GPU
|
227 |
+
memory usage and communication bandwidth
|
228 |
+
* O2: First-order optimizer states are in 8-bit, and second order states are in FP16.
|
229 |
+
Only available when using Adam or AdamW. This maintains accuracy and can potentially save the
|
230 |
+
highest memory.
|
231 |
+
* 03: Specifically for DeepSpeed, implements capabilities so weights and master weights of models
|
232 |
+
are stored in FP8. If `fp8` is selected and deepspeed is enabled, will be used by default. (Not
|
233 |
+
available currently).
|
234 |
+
"""
|
235 |
+
|
236 |
+
backend: Backend = "MSAMP"
|
237 |
+
opt_level: OptLevel = "O2"
|
238 |
+
margin: int = 0
|
239 |
+
interval: int = 1
|
240 |
+
fp8_format: FP8Format = "E4M3"
|
241 |
+
amax_history_len: int = 1
|
242 |
+
amax_compute_algo: AmaxComputeAlgorithm = "most_recent"
|
243 |
+
override_linear_precision: Tuple[bool, bool, bool] = (False, False, False)
|
244 |
+
|
245 |
+
def __post_init__(self):
|
246 |
+
if self.backend.upper() not in get_args(Backend):
|
247 |
+
raise ValueError("`backend` must be 'MSAMP' or 'TE' (TransformerEngine).")
|
248 |
+
|
249 |
+
self.backend = self.backend.upper()
|
250 |
+
# Check TE args
|
251 |
+
if self.backend == "TE":
|
252 |
+
self.fp8_format = self.fp8_format.upper()
|
253 |
+
if self.fp8_format not in get_args(FP8Format):
|
254 |
+
raise ValueError(f"`fp8_format` must be one of {' or '.join(get_args(FP8Format))}.")
|
255 |
+
if self.amax_compute_algo not in get_args(AmaxComputeAlgorithm):
|
256 |
+
raise ValueError(f"`amax_compute_algo` must be one of {' or '.join(get_args(AmaxComputeAlgorithm))}")
|
257 |
+
elif self.backend == "MSAMP":
|
258 |
+
if self.opt_level not in get_args(OptLevel):
|
259 |
+
raise ValueError(f"`optimization_level` must be one of {' or '.join(get_args(OptLevel))}")
|
260 |
+
|
261 |
+
|
262 |
+
class EnumWithContains(enum.EnumMeta):
|
263 |
+
"A metaclass that adds the ability to check if `self` contains an item with the `in` operator"
|
264 |
+
|
265 |
+
def __contains__(cls, item):
|
266 |
+
try:
|
267 |
+
cls(item)
|
268 |
+
except ValueError:
|
269 |
+
return False
|
270 |
+
return True
|
271 |
+
|
272 |
+
|
273 |
+
class BaseEnum(enum.Enum, metaclass=EnumWithContains):
|
274 |
+
"An enum class that can get the value of an item with `str(Enum.key)`"
|
275 |
+
|
276 |
+
def __str__(self):
|
277 |
+
return self.value
|
278 |
+
|
279 |
+
@classmethod
|
280 |
+
def list(cls):
|
281 |
+
"Method to list all the possible items in `cls`"
|
282 |
+
return list(map(str, cls))
|
283 |
+
|
284 |
+
|
285 |
+
class DeprecatedFieldDescriptor:
|
286 |
+
"""
|
287 |
+
Descriptor for deprecated fields in an enum class.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
field_name (`str`):
|
291 |
+
The name of the deprecated field.
|
292 |
+
replaced_with (`str`):
|
293 |
+
The name of the field that replaces the deprecated one.
|
294 |
+
"""
|
295 |
+
|
296 |
+
def __init__(self, field_name, replaced_with):
|
297 |
+
self.field_name = field_name
|
298 |
+
self.replaced_with = replaced_with
|
299 |
+
|
300 |
+
def __get__(self, instance, owner):
|
301 |
+
warnings.warn(
|
302 |
+
f"The `{self.field_name}` of `{owner}` is deprecated and will be removed in v1.0.0. "
|
303 |
+
f"Please use the `{self.replaced_with}` instead.",
|
304 |
+
FutureWarning,
|
305 |
+
)
|
306 |
+
return getattr(owner, self.replaced_with)
|
307 |
+
|
308 |
+
|
309 |
+
class DistributedType(str, enum.Enum):
|
310 |
+
"""
|
311 |
+
Represents a type of distributed environment.
|
312 |
+
|
313 |
+
Values:
|
314 |
+
|
315 |
+
- **NO** -- Not a distributed environment, just a single process.
|
316 |
+
- **MULTI_CPU** -- Distributed on multiple CPU nodes.
|
317 |
+
- **MULTI_GPU** -- Distributed on multiple GPUs.
|
318 |
+
- **MULTI_MLU** -- Distributed on multiple MLUs.
|
319 |
+
- **MULTI_NPU** -- Distributed on multiple NPUs.
|
320 |
+
- **MULTI_XPU** -- Distributed on multiple XPUs.
|
321 |
+
- **DEEPSPEED** -- Using DeepSpeed.
|
322 |
+
- **XLA** -- Using TorchXLA.
|
323 |
+
- **TPU** -- This field will be deprecated in v0.27.0. Use XLA instead.
|
324 |
+
"""
|
325 |
+
|
326 |
+
# Subclassing str as well as Enum allows the `DistributedType` to be JSON-serializable out of the box.
|
327 |
+
NO = "NO"
|
328 |
+
MULTI_CPU = "MULTI_CPU"
|
329 |
+
MULTI_GPU = "MULTI_GPU"
|
330 |
+
MULTI_NPU = "MULTI_NPU"
|
331 |
+
MULTI_MLU = "MULTI_MLU"
|
332 |
+
MULTI_XPU = "MULTI_XPU"
|
333 |
+
DEEPSPEED = "DEEPSPEED"
|
334 |
+
FSDP = "FSDP"
|
335 |
+
XLA = "XLA"
|
336 |
+
MEGATRON_LM = "MEGATRON_LM"
|
337 |
+
TPU = DeprecatedFieldDescriptor("TPU", "XLA")
|
338 |
+
|
339 |
+
|
340 |
+
class SageMakerDistributedType(str, enum.Enum):
|
341 |
+
"""
|
342 |
+
Represents a type of distributed environment.
|
343 |
+
|
344 |
+
Values:
|
345 |
+
|
346 |
+
- **NO** -- Not a distributed environment, just a single process.
|
347 |
+
- **DATA_PARALLEL** -- using sagemaker distributed data parallelism.
|
348 |
+
- **MODEL_PARALLEL** -- using sagemaker distributed model parallelism.
|
349 |
+
"""
|
350 |
+
|
351 |
+
# Subclassing str as well as Enum allows the `SageMakerDistributedType` to be JSON-serializable out of the box.
|
352 |
+
NO = "NO"
|
353 |
+
DATA_PARALLEL = "DATA_PARALLEL"
|
354 |
+
MODEL_PARALLEL = "MODEL_PARALLEL"
|
355 |
+
|
356 |
+
|
357 |
+
class ComputeEnvironment(str, enum.Enum):
|
358 |
+
"""
|
359 |
+
Represents a type of the compute environment.
|
360 |
+
|
361 |
+
Values:
|
362 |
+
|
363 |
+
- **LOCAL_MACHINE** -- private/custom cluster hardware.
|
364 |
+
- **AMAZON_SAGEMAKER** -- Amazon SageMaker as compute environment.
|
365 |
+
"""
|
366 |
+
|
367 |
+
# Subclassing str as well as Enum allows the `ComputeEnvironment` to be JSON-serializable out of the box.
|
368 |
+
LOCAL_MACHINE = "LOCAL_MACHINE"
|
369 |
+
AMAZON_SAGEMAKER = "AMAZON_SAGEMAKER"
|
370 |
+
|
371 |
+
|
372 |
+
class DynamoBackend(str, BaseEnum):
|
373 |
+
"""
|
374 |
+
Represents a dynamo backend (see https://pytorch.org/docs/stable/torch.compiler.html).
|
375 |
+
|
376 |
+
Values:
|
377 |
+
|
378 |
+
- **NO** -- Do not use torch dynamo.
|
379 |
+
- **EAGER** -- Uses PyTorch to run the extracted GraphModule. This is quite useful in debugging TorchDynamo
|
380 |
+
issues.
|
381 |
+
- **AOT_EAGER** -- Uses AotAutograd with no compiler, i.e, just using PyTorch eager for the AotAutograd's
|
382 |
+
extracted forward and backward graphs. This is useful for debugging, and unlikely to give speedups.
|
383 |
+
- **INDUCTOR** -- Uses TorchInductor backend with AotAutograd and cudagraphs by leveraging codegened Triton
|
384 |
+
kernels. [Read
|
385 |
+
more](https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747)
|
386 |
+
- **AOT_TS_NVFUSER** -- nvFuser with AotAutograd/TorchScript. [Read
|
387 |
+
more](https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-1-nvfuser-and-its-primitives/593)
|
388 |
+
- **NVPRIMS_NVFUSER** -- nvFuser with PrimTorch. [Read
|
389 |
+
more](https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-1-nvfuser-and-its-primitives/593)
|
390 |
+
- **CUDAGRAPHS** -- cudagraphs with AotAutograd. [Read more](https://github.com/pytorch/torchdynamo/pull/757)
|
391 |
+
- **OFI** -- Uses Torchscript optimize_for_inference. Inference only. [Read
|
392 |
+
more](https://pytorch.org/docs/stable/generated/torch.jit.optimize_for_inference.html)
|
393 |
+
- **FX2TRT** -- Uses Nvidia TensorRT for inference optimizations. Inference only. [Read
|
394 |
+
more](https://github.com/pytorch/TensorRT/blob/master/docsrc/tutorials/getting_started_with_fx_path.rst)
|
395 |
+
- **ONNXRT** -- Uses ONNXRT for inference on CPU/GPU. Inference only. [Read more](https://onnxruntime.ai/)
|
396 |
+
- **TENSORRT** -- Uses ONNXRT to run TensorRT for inference optimizations. [Read
|
397 |
+
more](https://github.com/onnx/onnx-tensorrt)
|
398 |
+
- **IPEX** -- Uses IPEX for inference on CPU. Inference only. [Read
|
399 |
+
more](https://github.com/intel/intel-extension-for-pytorch).
|
400 |
+
- **TVM** -- Uses Apach TVM for inference optimizations. [Read more](https://tvm.apache.org/)
|
401 |
+
|
402 |
+
"""
|
403 |
+
|
404 |
+
# Subclassing str as well as Enum allows the `SageMakerDistributedType` to be JSON-serializable out of the box.
|
405 |
+
NO = "NO"
|
406 |
+
EAGER = "EAGER"
|
407 |
+
AOT_EAGER = "AOT_EAGER"
|
408 |
+
INDUCTOR = "INDUCTOR"
|
409 |
+
AOT_TS_NVFUSER = "AOT_TS_NVFUSER"
|
410 |
+
NVPRIMS_NVFUSER = "NVPRIMS_NVFUSER"
|
411 |
+
CUDAGRAPHS = "CUDAGRAPHS"
|
412 |
+
OFI = "OFI"
|
413 |
+
FX2TRT = "FX2TRT"
|
414 |
+
ONNXRT = "ONNXRT"
|
415 |
+
TENSORRT = "TENSORRT"
|
416 |
+
IPEX = "IPEX"
|
417 |
+
TVM = "TVM"
|
418 |
+
|
419 |
+
|
420 |
+
class LoggerType(BaseEnum):
|
421 |
+
"""Represents a type of supported experiment tracker
|
422 |
+
|
423 |
+
Values:
|
424 |
+
|
425 |
+
- **ALL** -- all available trackers in the environment that are supported
|
426 |
+
- **TENSORBOARD** -- TensorBoard as an experiment tracker
|
427 |
+
- **WANDB** -- wandb as an experiment tracker
|
428 |
+
- **COMETML** -- comet_ml as an experiment tracker
|
429 |
+
- **DVCLIVE** -- dvclive as an experiment tracker
|
430 |
+
"""
|
431 |
+
|
432 |
+
ALL = "all"
|
433 |
+
AIM = "aim"
|
434 |
+
TENSORBOARD = "tensorboard"
|
435 |
+
WANDB = "wandb"
|
436 |
+
COMETML = "comet_ml"
|
437 |
+
MLFLOW = "mlflow"
|
438 |
+
CLEARML = "clearml"
|
439 |
+
DVCLIVE = "dvclive"
|
440 |
+
|
441 |
+
|
442 |
+
class PrecisionType(BaseEnum):
|
443 |
+
"""Represents a type of precision used on floating point values
|
444 |
+
|
445 |
+
Values:
|
446 |
+
|
447 |
+
- **NO** -- using full precision (FP32)
|
448 |
+
- **FP16** -- using half precision
|
449 |
+
- **BF16** -- using brain floating point precision
|
450 |
+
"""
|
451 |
+
|
452 |
+
NO = "no"
|
453 |
+
FP8 = "fp8"
|
454 |
+
FP16 = "fp16"
|
455 |
+
BF16 = "bf16"
|
456 |
+
|
457 |
+
|
458 |
+
class RNGType(BaseEnum):
|
459 |
+
TORCH = "torch"
|
460 |
+
CUDA = "cuda"
|
461 |
+
MLU = "mlu"
|
462 |
+
NPU = "npu"
|
463 |
+
XLA = "xla"
|
464 |
+
XPU = "xpu"
|
465 |
+
GENERATOR = "generator"
|
466 |
+
|
467 |
+
|
468 |
+
class CustomDtype(enum.Enum):
|
469 |
+
r"""
|
470 |
+
An enum that contains multiple custom dtypes that can be used for `infer_auto_device_map`.
|
471 |
+
"""
|
472 |
+
|
473 |
+
FP8 = "fp8"
|
474 |
+
INT4 = "int4"
|
475 |
+
INT2 = "int2"
|
476 |
+
|
477 |
+
|
478 |
+
# data classes
|
479 |
+
|
480 |
+
|
481 |
+
@dataclass
|
482 |
+
class TensorInformation:
|
483 |
+
shape: torch.Size
|
484 |
+
dtype: torch.dtype
|
485 |
+
|
486 |
+
|
487 |
+
@dataclass
|
488 |
+
class DataLoaderConfiguration:
|
489 |
+
"""
|
490 |
+
Configuration for dataloader-related items when calling `accelerator.prepare`.
|
491 |
+
"""
|
492 |
+
|
493 |
+
split_batches: bool = field(
|
494 |
+
default=False,
|
495 |
+
metadata={
|
496 |
+
"help": "Whether or not the accelerator should split the batches yielded by the dataloaders across the devices. If"
|
497 |
+
" `True` the actual batch size used will be the same on any kind of distributed processes, but it must be a"
|
498 |
+
" round multiple of the `num_processes` you are using. If `False`, actual batch size used will be the one set"
|
499 |
+
" in your script multiplied by the number of processes."
|
500 |
+
},
|
501 |
+
)
|
502 |
+
dispatch_batches: bool = field(
|
503 |
+
default=None,
|
504 |
+
metadata={
|
505 |
+
"help": "If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process"
|
506 |
+
" and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose"
|
507 |
+
" underlying dataset is an `IterableDataslet`, `False` otherwise."
|
508 |
+
},
|
509 |
+
)
|
510 |
+
even_batches: bool = field(
|
511 |
+
default=True,
|
512 |
+
metadata={
|
513 |
+
"help": "If set to `True`, in cases where the total batch size across all processes does not exactly divide the"
|
514 |
+
" dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among"
|
515 |
+
" all workers."
|
516 |
+
},
|
517 |
+
)
|
518 |
+
use_seedable_sampler: bool = field(
|
519 |
+
default=False,
|
520 |
+
metadata={
|
521 |
+
"help": "Whether or not use a fully seedable random sampler ([`data_loader.SeedableRandomSampler`])."
|
522 |
+
"Ensures training results are fully reproducable using a different sampling technique. "
|
523 |
+
"While seed-to-seed results may differ, on average the differences are neglible when using"
|
524 |
+
"multiple different seeds to compare. Should also be ran with [`~utils.set_seed`] for the best results."
|
525 |
+
},
|
526 |
+
)
|
527 |
+
|
528 |
+
|
529 |
+
@dataclass
|
530 |
+
class ProjectConfiguration:
|
531 |
+
"""
|
532 |
+
Configuration for the Accelerator object based on inner-project needs.
|
533 |
+
"""
|
534 |
+
|
535 |
+
project_dir: str = field(default=None, metadata={"help": "A path to a directory for storing data."})
|
536 |
+
logging_dir: str = field(
|
537 |
+
default=None,
|
538 |
+
metadata={
|
539 |
+
"help": "A path to a directory for storing logs of locally-compatible loggers. If None, defaults to `project_dir`."
|
540 |
+
},
|
541 |
+
)
|
542 |
+
automatic_checkpoint_naming: bool = field(
|
543 |
+
default=False,
|
544 |
+
metadata={"help": "Whether saved states should be automatically iteratively named."},
|
545 |
+
)
|
546 |
+
|
547 |
+
total_limit: int = field(
|
548 |
+
default=None,
|
549 |
+
metadata={"help": "The maximum number of total saved states to keep."},
|
550 |
+
)
|
551 |
+
|
552 |
+
iteration: int = field(
|
553 |
+
default=0,
|
554 |
+
metadata={"help": "The current save iteration."},
|
555 |
+
)
|
556 |
+
|
557 |
+
save_on_each_node: bool = field(
|
558 |
+
default=False,
|
559 |
+
metadata={
|
560 |
+
"help": (
|
561 |
+
"When doing multi-node distributed training, whether to save models and checkpoints on each node, or"
|
562 |
+
" only on the main one"
|
563 |
+
)
|
564 |
+
},
|
565 |
+
)
|
566 |
+
|
567 |
+
def set_directories(self, project_dir: str = None):
|
568 |
+
"Sets `self.project_dir` and `self.logging_dir` to the appropriate values."
|
569 |
+
self.project_dir = project_dir
|
570 |
+
if self.logging_dir is None:
|
571 |
+
self.logging_dir = project_dir
|
572 |
+
|
573 |
+
def __post_init__(self):
|
574 |
+
self.set_directories(self.project_dir)
|
575 |
+
|
576 |
+
|
577 |
+
@dataclass
|
578 |
+
class GradientAccumulationPlugin(KwargsHandler):
|
579 |
+
"""
|
580 |
+
A plugin to configure gradient accumulation behavior. You can only pass one of `gradient_accumulation_plugin` or
|
581 |
+
`gradient_accumulation_steps` to [`Accelerator`]. Passing both raises an error.
|
582 |
+
|
583 |
+
Parameters:
|
584 |
+
num_steps (`int`):
|
585 |
+
The number of steps to accumulate gradients for.
|
586 |
+
adjust_scheduler (`bool`, *optional*, defaults to `True`):
|
587 |
+
Whether to adjust the scheduler steps to account for the number of steps being accumulated. Should be
|
588 |
+
`True` if the used scheduler was not adjusted for gradient accumulation.
|
589 |
+
sync_with_dataloader (`bool`, *optional*, defaults to `True`):
|
590 |
+
Whether to synchronize setting the gradients when at the end of the dataloader.
|
591 |
+
sync_each_batch (`bool`, *optional*):
|
592 |
+
Whether to synchronize setting the gradients at each data batch. Seting to `True` may reduce memory
|
593 |
+
requirements when using gradient accumulation with distributed training, at expense of speed.
|
594 |
+
|
595 |
+
Example:
|
596 |
+
|
597 |
+
```python
|
598 |
+
from accelerate.utils import GradientAccumulationPlugin
|
599 |
+
|
600 |
+
gradient_accumulation_plugin = GradientAccumulationPlugin(num_steps=2)
|
601 |
+
accelerator = Accelerator(gradient_accumulation_plugin=gradient_accumulation_plugin)
|
602 |
+
```
|
603 |
+
"""
|
604 |
+
|
605 |
+
num_steps: int = field(default=None, metadata={"help": "The number of steps to accumulate gradients for."})
|
606 |
+
adjust_scheduler: bool = field(
|
607 |
+
default=True,
|
608 |
+
metadata={
|
609 |
+
"help": "Whether to adjust the scheduler steps to account for the number of steps being accumulated. Should be `True` if the used scheduler was not adjusted for gradient accumulation."
|
610 |
+
},
|
611 |
+
)
|
612 |
+
sync_with_dataloader: bool = field(
|
613 |
+
default=True,
|
614 |
+
metadata={
|
615 |
+
"help": "Whether to synchronize setting the gradients when at the end of the dataloader. Should only be set to `False` if you know what you're doing."
|
616 |
+
},
|
617 |
+
)
|
618 |
+
sync_each_batch: bool = field(
|
619 |
+
default=False,
|
620 |
+
metadata={
|
621 |
+
"help": "Whether to synchronize setting the gradients at each data batch. Setting to `True` may reduce memory requirements when using gradient accumulation with distributed training, at expense of speed."
|
622 |
+
},
|
623 |
+
)
|
624 |
+
|
625 |
+
|
626 |
+
@dataclass
|
627 |
+
class TorchDynamoPlugin(KwargsHandler):
|
628 |
+
"""
|
629 |
+
This plugin is used to compile a model with PyTorch 2.0
|
630 |
+
"""
|
631 |
+
|
632 |
+
backend: DynamoBackend = field(
|
633 |
+
default=None,
|
634 |
+
metadata={"help": f"Possible options are {[b.value.lower() for b in DynamoBackend]}"},
|
635 |
+
)
|
636 |
+
mode: str = field(
|
637 |
+
default=None, metadata={"help": "Possible options are 'default', 'reduce-overhead' or 'max-autotune'"}
|
638 |
+
)
|
639 |
+
fullgraph: bool = field(default=None, metadata={"help": "Whether it is ok to break model into several subgraphs"})
|
640 |
+
dynamic: bool = field(default=None, metadata={"help": "Whether to use dynamic shape for tracing"})
|
641 |
+
options: Any = field(default=None, metadata={"help": "A dictionary of options to pass to the backend."})
|
642 |
+
disable: bool = field(default=False, metadata={"help": "Turn torch.compile() into a no-op for testing"})
|
643 |
+
|
644 |
+
def __post_init__(self):
|
645 |
+
prefix = "ACCELERATE_DYNAMO_"
|
646 |
+
if self.backend is None:
|
647 |
+
self.backend = os.environ.get(prefix + "BACKEND", "no")
|
648 |
+
self.backend = DynamoBackend(self.backend.upper())
|
649 |
+
if self.mode is None:
|
650 |
+
self.mode = os.environ.get(prefix + "MODE", "default")
|
651 |
+
if self.fullgraph is None:
|
652 |
+
self.fullgraph = str_to_bool(os.environ.get(prefix + "USE_FULLGRAPH", "False")) == 1
|
653 |
+
if self.dynamic is None:
|
654 |
+
self.dynamic = str_to_bool(os.environ.get(prefix + "USE_DYNAMIC", "False")) == 1
|
655 |
+
|
656 |
+
def to_dict(self):
|
657 |
+
dynamo_config = copy.deepcopy(self.__dict__)
|
658 |
+
dynamo_config["backend"] = dynamo_config["backend"].value.lower()
|
659 |
+
return dynamo_config
|
660 |
+
|
661 |
+
|
662 |
+
@dataclass
|
663 |
+
class DeepSpeedPlugin:
|
664 |
+
"""
|
665 |
+
This plugin is used to integrate DeepSpeed.
|
666 |
+
"""
|
667 |
+
|
668 |
+
hf_ds_config: Any = field(
|
669 |
+
default=None,
|
670 |
+
metadata={
|
671 |
+
"help": "path to DeepSpeed config file or dict or an object of class `accelerate.utils.deepspeed.HfDeepSpeedConfig`."
|
672 |
+
},
|
673 |
+
)
|
674 |
+
gradient_accumulation_steps: int = field(
|
675 |
+
default=None,
|
676 |
+
metadata={
|
677 |
+
"help": "Number of steps to accumulate gradients before updating optimizer states. If not set, will use the value from the `Accelerator` directly."
|
678 |
+
},
|
679 |
+
)
|
680 |
+
gradient_clipping: float = field(default=None, metadata={"help": "Enable gradient clipping with value"})
|
681 |
+
zero_stage: int = field(
|
682 |
+
default=None,
|
683 |
+
metadata={"help": "Possible options are 0,1,2,3; Default will be taken from environment variable"},
|
684 |
+
)
|
685 |
+
is_train_batch_min: str = field(
|
686 |
+
default=True,
|
687 |
+
metadata={"help": "If both train & eval dataloaders are specified, this will decide the train_batch_size"},
|
688 |
+
)
|
689 |
+
offload_optimizer_device: bool = field(
|
690 |
+
default=None,
|
691 |
+
metadata={"help": "Possible options are none|cpu|nvme. Only applicable with ZeRO Stages 2 and 3."},
|
692 |
+
)
|
693 |
+
offload_param_device: bool = field(
|
694 |
+
default=None,
|
695 |
+
metadata={"help": "Possible options are none|cpu|nvme. Only applicable with ZeRO Stage 3."},
|
696 |
+
)
|
697 |
+
offload_optimizer_nvme_path: str = field(
|
698 |
+
default=None,
|
699 |
+
metadata={"help": "Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3."},
|
700 |
+
)
|
701 |
+
offload_param_nvme_path: str = field(
|
702 |
+
default=None,
|
703 |
+
metadata={"help": "Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3."},
|
704 |
+
)
|
705 |
+
zero3_init_flag: bool = field(
|
706 |
+
default=None,
|
707 |
+
metadata={
|
708 |
+
"help": "Flag to indicate whether to enable `deepspeed.zero.Init` for constructing massive models."
|
709 |
+
"Only applicable with ZeRO Stage-3."
|
710 |
+
},
|
711 |
+
)
|
712 |
+
zero3_save_16bit_model: bool = field(
|
713 |
+
default=None,
|
714 |
+
metadata={"help": "Flag to indicate whether to save 16-bit model. Only applicable with ZeRO Stage-3."},
|
715 |
+
)
|
716 |
+
|
717 |
+
def __post_init__(self):
|
718 |
+
from .deepspeed import HfDeepSpeedConfig
|
719 |
+
|
720 |
+
if self.gradient_accumulation_steps is None:
|
721 |
+
gas = os.environ.get("ACCELERATE_GRADIENT_ACCUMULATION_STEPS", "auto")
|
722 |
+
self.gradient_accumulation_steps = int(gas) if gas.isdigit() else gas
|
723 |
+
|
724 |
+
if self.gradient_clipping is None:
|
725 |
+
gradient_clipping = os.environ.get("ACCELERATE_GRADIENT_CLIPPING", "none")
|
726 |
+
if gradient_clipping != "none":
|
727 |
+
self.gradient_clipping = float(gradient_clipping)
|
728 |
+
|
729 |
+
if self.zero_stage is None:
|
730 |
+
self.zero_stage = int(os.environ.get("ACCELERATE_DEEPSPEED_ZERO_STAGE", 2))
|
731 |
+
|
732 |
+
if self.offload_optimizer_device is None:
|
733 |
+
self.offload_optimizer_device = os.environ.get("ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE", "none")
|
734 |
+
|
735 |
+
if self.offload_param_device is None:
|
736 |
+
self.offload_param_device = os.environ.get("ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_DEVICE", "none")
|
737 |
+
|
738 |
+
if self.offload_optimizer_nvme_path is None:
|
739 |
+
self.offload_optimizer_nvme_path = os.environ.get(
|
740 |
+
"ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_NVME_PATH", "none"
|
741 |
+
)
|
742 |
+
|
743 |
+
if self.offload_param_nvme_path is None:
|
744 |
+
self.offload_param_nvme_path = os.environ.get("ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_NVME_PATH", "none")
|
745 |
+
|
746 |
+
if self.zero3_save_16bit_model is None:
|
747 |
+
self.zero3_save_16bit_model = (
|
748 |
+
os.environ.get("ACCELERATE_DEEPSPEED_ZERO3_SAVE_16BIT_MODEL", "false") == "true"
|
749 |
+
)
|
750 |
+
|
751 |
+
if self.hf_ds_config is None:
|
752 |
+
self.hf_ds_config = os.environ.get("ACCELERATE_DEEPSPEED_CONFIG_FILE", "none")
|
753 |
+
if (
|
754 |
+
isinstance(self.hf_ds_config, dict)
|
755 |
+
or (isinstance(self.hf_ds_config, str) and self.hf_ds_config != "none")
|
756 |
+
or isinstance(self.hf_ds_config, HfDeepSpeedConfig)
|
757 |
+
):
|
758 |
+
if not isinstance(self.hf_ds_config, HfDeepSpeedConfig):
|
759 |
+
self.hf_ds_config = HfDeepSpeedConfig(self.hf_ds_config)
|
760 |
+
if "gradient_accumulation_steps" not in self.hf_ds_config.config:
|
761 |
+
self.hf_ds_config.config["gradient_accumulation_steps"] = 1
|
762 |
+
if "zero_optimization" not in self.hf_ds_config.config:
|
763 |
+
raise ValueError("Please specify the ZeRO optimization config in the DeepSpeed config.")
|
764 |
+
|
765 |
+
self._deepspeed_config_checks()
|
766 |
+
plugin_to_config_mapping = {
|
767 |
+
"gradient_accumulation_steps": "gradient_accumulation_steps",
|
768 |
+
"gradient_clipping": "gradient_clipping",
|
769 |
+
"zero_stage": "zero_optimization.stage",
|
770 |
+
"offload_optimizer_device": "zero_optimization.offload_optimizer.device",
|
771 |
+
"offload_param_device": "zero_optimization.offload_param.device",
|
772 |
+
"offload_param_nvme_path": "zero_optimization.offload_param.nvme_path",
|
773 |
+
"offload_optimizer_nvme_path": "zero_optimization.offload_optimizer.nvme_path",
|
774 |
+
"zero3_save_16bit_model": "zero_optimization.stage3_gather_16bit_weights_on_model_save",
|
775 |
+
}
|
776 |
+
kwargs = {v: getattr(self, k) for k, v in plugin_to_config_mapping.items() if getattr(self, k) is not None}
|
777 |
+
for key in kwargs.keys():
|
778 |
+
self.fill_match(key, **kwargs, must_match=False)
|
779 |
+
self.hf_ds_config.set_stage_and_offload()
|
780 |
+
|
781 |
+
# filling the missing values in the class attributes from the DeepSpeed config
|
782 |
+
# when using the DeepSpeed config file.
|
783 |
+
for key, value in plugin_to_config_mapping.items():
|
784 |
+
config_value = self.hf_ds_config.get_value(value)
|
785 |
+
if config_value is not None and config_value != "auto":
|
786 |
+
setattr(self, key, config_value)
|
787 |
+
else:
|
788 |
+
config = {
|
789 |
+
"train_batch_size": "auto",
|
790 |
+
"train_micro_batch_size_per_gpu": "auto",
|
791 |
+
"gradient_accumulation_steps": self.gradient_accumulation_steps,
|
792 |
+
"zero_optimization": {
|
793 |
+
"stage": self.zero_stage,
|
794 |
+
"offload_optimizer": {
|
795 |
+
"device": self.offload_optimizer_device,
|
796 |
+
"nvme_path": self.offload_optimizer_nvme_path
|
797 |
+
if self.offload_optimizer_device == "nvme"
|
798 |
+
else None,
|
799 |
+
},
|
800 |
+
"offload_param": {
|
801 |
+
"device": self.offload_param_device,
|
802 |
+
"nvme_path": self.offload_param_nvme_path if self.offload_param_device == "nvme" else None,
|
803 |
+
},
|
804 |
+
"stage3_gather_16bit_weights_on_model_save": self.zero3_save_16bit_model,
|
805 |
+
},
|
806 |
+
}
|
807 |
+
if self.gradient_clipping:
|
808 |
+
config["gradient_clipping"] = self.gradient_clipping
|
809 |
+
self.hf_ds_config = HfDeepSpeedConfig(config)
|
810 |
+
|
811 |
+
self.deepspeed_config = self.hf_ds_config.config
|
812 |
+
self.deepspeed_config["steps_per_print"] = float("inf") # this will stop deepspeed from logging @ stdout
|
813 |
+
if self.zero3_init_flag is None:
|
814 |
+
self.zero3_init_flag = (
|
815 |
+
str_to_bool(os.environ.get("ACCELERATE_DEEPSPEED_ZERO3_INIT", str(self.hf_ds_config.is_zero3()))) == 1
|
816 |
+
)
|
817 |
+
if self.zero3_init_flag and not self.hf_ds_config.is_zero3():
|
818 |
+
warnings.warn("DeepSpeed Zero3 Init flag is only applicable for ZeRO Stage 3. Setting it to False.")
|
819 |
+
self.zero3_init_flag = False
|
820 |
+
|
821 |
+
def fill_match(self, ds_key_long, mismatches=None, must_match=True, **kwargs):
|
822 |
+
mismatches = [] if mismatches is None else mismatches
|
823 |
+
config, ds_key = self.hf_ds_config.find_config_node(ds_key_long)
|
824 |
+
if config is None:
|
825 |
+
return
|
826 |
+
|
827 |
+
if config.get(ds_key) == "auto":
|
828 |
+
if ds_key_long in kwargs:
|
829 |
+
config[ds_key] = kwargs[ds_key_long]
|
830 |
+
return
|
831 |
+
else:
|
832 |
+
raise ValueError(
|
833 |
+
f"`{ds_key_long}` not found in kwargs. "
|
834 |
+
f"Please specify `{ds_key_long}` without `auto` (set to correct value) in the DeepSpeed config file or "
|
835 |
+
"pass it in kwargs."
|
836 |
+
)
|
837 |
+
|
838 |
+
if not must_match:
|
839 |
+
return
|
840 |
+
|
841 |
+
ds_val = config.get(ds_key)
|
842 |
+
if ds_val is not None and ds_key_long in kwargs:
|
843 |
+
if ds_val != kwargs[ds_key_long]:
|
844 |
+
mismatches.append(f"- ds {ds_key_long}={ds_val} vs arg {ds_key_long}={kwargs[ds_key_long]}")
|
845 |
+
|
846 |
+
def is_auto(self, ds_key_long):
|
847 |
+
val = self.hf_ds_config.get_value(ds_key_long)
|
848 |
+
if val is None:
|
849 |
+
return False
|
850 |
+
else:
|
851 |
+
return val == "auto"
|
852 |
+
|
853 |
+
def get_value(self, ds_key_long, default=None):
|
854 |
+
return self.hf_ds_config.get_value(ds_key_long, default)
|
855 |
+
|
856 |
+
def deepspeed_config_process(self, prefix="", mismatches=None, config=None, must_match=True, **kwargs):
|
857 |
+
"""Process the DeepSpeed config with the values from the kwargs."""
|
858 |
+
mismatches = [] if mismatches is None else mismatches
|
859 |
+
if config is None:
|
860 |
+
config = self.deepspeed_config
|
861 |
+
for key, value in config.items():
|
862 |
+
if isinstance(value, dict):
|
863 |
+
self.deepspeed_config_process(
|
864 |
+
prefix=prefix + key + ".", mismatches=mismatches, config=value, must_match=must_match, **kwargs
|
865 |
+
)
|
866 |
+
else:
|
867 |
+
self.fill_match(prefix + key, mismatches, must_match=must_match, **kwargs)
|
868 |
+
if len(mismatches) > 0 and prefix == "":
|
869 |
+
mismatches_msg = "\n".join(mismatches)
|
870 |
+
raise ValueError(
|
871 |
+
"Please correct the following DeepSpeed config values that mismatch kwargs "
|
872 |
+
f" values:\n{mismatches_msg}\nThe easiest method is to set these DeepSpeed config values to 'auto'."
|
873 |
+
)
|
874 |
+
|
875 |
+
def set_mixed_precision(self, mixed_precision):
|
876 |
+
ds_config = self.deepspeed_config
|
877 |
+
kwargs = {
|
878 |
+
"fp16.enabled": mixed_precision == "fp16",
|
879 |
+
"bf16.enabled": mixed_precision == "bf16",
|
880 |
+
}
|
881 |
+
if mixed_precision == "fp16":
|
882 |
+
if "fp16" not in ds_config:
|
883 |
+
ds_config["fp16"] = {"enabled": True, "auto_cast": True}
|
884 |
+
elif mixed_precision == "bf16":
|
885 |
+
if "bf16" not in ds_config:
|
886 |
+
ds_config["bf16"] = {"enabled": True}
|
887 |
+
|
888 |
+
if mixed_precision != "no":
|
889 |
+
diff_dtype = "bf16" if mixed_precision == "fp16" else "fp16"
|
890 |
+
if str(ds_config.get(diff_dtype, {}).get("enabled", "False")).lower() == "true":
|
891 |
+
raise ValueError(
|
892 |
+
f"`--mixed_precision` arg cannot be set to `{mixed_precision}` when `{diff_dtype}` is set in the DeepSpeed config file."
|
893 |
+
)
|
894 |
+
for dtype in ["fp16", "bf16"]:
|
895 |
+
if dtype not in ds_config:
|
896 |
+
ds_config[dtype] = {"enabled": False}
|
897 |
+
self.fill_match("fp16.enabled", must_match=False, **kwargs)
|
898 |
+
self.fill_match("bf16.enabled", must_match=False, **kwargs)
|
899 |
+
|
900 |
+
def set_deepspeed_weakref(self):
|
901 |
+
from .imports import is_transformers_available
|
902 |
+
|
903 |
+
if self.zero3_init_flag:
|
904 |
+
if not is_transformers_available():
|
905 |
+
raise Exception(
|
906 |
+
"When `zero3_init_flag` is set, it requires Transformers to be installed. "
|
907 |
+
"Please run `pip install transformers`."
|
908 |
+
)
|
909 |
+
ds_config = copy.deepcopy(self.deepspeed_config)
|
910 |
+
if "gradient_accumulation_steps" not in ds_config or ds_config["gradient_accumulation_steps"] == "auto":
|
911 |
+
ds_config["gradient_accumulation_steps"] = 1
|
912 |
+
if (
|
913 |
+
"train_micro_batch_size_per_gpu" not in ds_config
|
914 |
+
or ds_config["train_micro_batch_size_per_gpu"] == "auto"
|
915 |
+
):
|
916 |
+
ds_config["train_micro_batch_size_per_gpu"] = 1
|
917 |
+
if ds_config.get("train_batch_size", None) == "auto":
|
918 |
+
del ds_config["train_batch_size"]
|
919 |
+
|
920 |
+
if compare_versions("transformers", "<", "4.33"):
|
921 |
+
from transformers.deepspeed import HfDeepSpeedConfig
|
922 |
+
else:
|
923 |
+
from transformers.integrations import HfDeepSpeedConfig
|
924 |
+
|
925 |
+
self.dschf = HfDeepSpeedConfig(ds_config) # keep this object alive # noqa
|
926 |
+
|
927 |
+
def is_zero3_init_enabled(self):
|
928 |
+
return self.zero3_init_flag
|
929 |
+
|
930 |
+
@contextmanager
|
931 |
+
def zero3_init_context_manager(self, enable=False):
|
932 |
+
old = self.zero3_init_flag
|
933 |
+
if old == enable:
|
934 |
+
yield
|
935 |
+
else:
|
936 |
+
self.zero3_init_flag = enable
|
937 |
+
self.dschf = None
|
938 |
+
self.set_deepspeed_weakref()
|
939 |
+
yield
|
940 |
+
self.zero3_init_flag = old
|
941 |
+
self.dschf = None
|
942 |
+
self.set_deepspeed_weakref()
|
943 |
+
|
944 |
+
def _deepspeed_config_checks(self):
|
945 |
+
env_variable_names_to_ignore = [
|
946 |
+
"ACCELERATE_GRADIENT_ACCUMULATION_STEPS",
|
947 |
+
"ACCELERATE_GRADIENT_CLIPPING",
|
948 |
+
"ACCELERATE_DEEPSPEED_ZERO_STAGE",
|
949 |
+
"ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE",
|
950 |
+
"ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_DEVICE",
|
951 |
+
"ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_NVME_PATH",
|
952 |
+
"ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_NVME_PATH",
|
953 |
+
"ACCELERATE_DEEPSPEED_ZERO3_SAVE_16BIT_MODEL",
|
954 |
+
"ACCELERATE_MIXED_PRECISION",
|
955 |
+
]
|
956 |
+
env_variable_names_to_ignore = [
|
957 |
+
name.replace("ACCELERATE_", "").replace("DEEPSPEED_", "").lower() for name in env_variable_names_to_ignore
|
958 |
+
]
|
959 |
+
|
960 |
+
deepspeed_fields_from_accelerate_config = os.environ.get("ACCELERATE_CONFIG_DS_FIELDS", "").split(",")
|
961 |
+
|
962 |
+
if any(name in env_variable_names_to_ignore for name in deepspeed_fields_from_accelerate_config):
|
963 |
+
raise ValueError(
|
964 |
+
f"When using `deepspeed_config_file`, the following accelerate config variables will be ignored: {env_variable_names_to_ignore}.\n"
|
965 |
+
"Please specify them appropriately in the DeepSpeed config file.\n"
|
966 |
+
"If you are using an accelerate config file, remove others config variables mentioned in the above specified list.\n"
|
967 |
+
"The easiest method is to create a new config following the questionnaire via `accelerate config`.\n"
|
968 |
+
"It will only ask for the necessary config variables when using `deepspeed_config_file`."
|
969 |
+
)
|
970 |
+
|
971 |
+
|
972 |
+
@dataclass
|
973 |
+
class FullyShardedDataParallelPlugin:
|
974 |
+
"""
|
975 |
+
This plugin is used to enable fully sharded data parallelism.
|
976 |
+
"""
|
977 |
+
|
978 |
+
sharding_strategy: "typing.Any" = field(
|
979 |
+
default=None,
|
980 |
+
metadata={
|
981 |
+
"help": "FSDP Sharding Strategy of type `torch.distributed.fsdp.fully_sharded_data_parallel.ShardingStrategy`"
|
982 |
+
},
|
983 |
+
)
|
984 |
+
backward_prefetch: "typing.Any" = field(
|
985 |
+
default=None,
|
986 |
+
metadata={
|
987 |
+
"help": "FSDP Backward Prefetch of type `torch.distributed.fsdp.fully_sharded_data_parallel.BackwardPrefetch`"
|
988 |
+
},
|
989 |
+
)
|
990 |
+
mixed_precision_policy: "typing.Any" = field(
|
991 |
+
default=None,
|
992 |
+
metadata={
|
993 |
+
"help": "A config to enable mixed precision training with FullyShardedDataParallel. "
|
994 |
+
"The 3 flags that are set are `param_dtype`, `reduce_dtype`, `buffer_dtype`. "
|
995 |
+
"Each flag expects `torch.dtype` as the value. "
|
996 |
+
"It is of type `torch.distributed.fsdp.fully_sharded_data_parallel.MixedPrecision`."
|
997 |
+
},
|
998 |
+
)
|
999 |
+
auto_wrap_policy: Optional[Callable] = field(
|
1000 |
+
default=None,
|
1001 |
+
metadata={"help": "A callable specifying a policy to recursively wrap layers with FSDP"},
|
1002 |
+
)
|
1003 |
+
cpu_offload: "typing.Any" = field(
|
1004 |
+
default=None,
|
1005 |
+
metadata={
|
1006 |
+
"help": "Decides Whether to offload parameters and gradients to CPU. "
|
1007 |
+
"It is of type `torch.distributed.fsdp.fully_sharded_data_parallel.CPUOffload`."
|
1008 |
+
},
|
1009 |
+
)
|
1010 |
+
ignored_modules: Optional[Iterable[torch.nn.Module]] = field(
|
1011 |
+
default=None,
|
1012 |
+
metadata={"help": "A list of modules to ignore for FSDP."},
|
1013 |
+
)
|
1014 |
+
state_dict_type: "typing.Any" = field(
|
1015 |
+
default=None,
|
1016 |
+
metadata={
|
1017 |
+
"help": "FSDP State Dict Type of type `torch.distributed.fsdp.fully_sharded_data_parallel.StateDictType`"
|
1018 |
+
},
|
1019 |
+
)
|
1020 |
+
state_dict_config: "typing.Any" = field(
|
1021 |
+
default=None,
|
1022 |
+
metadata={
|
1023 |
+
"help": "FSDP State Dict Config of type `torch.distributed.fsdp.fully_sharded_data_parallel.StateDictConfig`"
|
1024 |
+
},
|
1025 |
+
)
|
1026 |
+
optim_state_dict_config: "typing.Any" = field(
|
1027 |
+
default=None,
|
1028 |
+
metadata={
|
1029 |
+
"help": "FSDP Optimizer State Dict Config of type `torch.distributed.fsdp.fully_sharded_data_parallel.OptimStateDictConfig`"
|
1030 |
+
},
|
1031 |
+
)
|
1032 |
+
limit_all_gathers: bool = field(
|
1033 |
+
default=True,
|
1034 |
+
metadata={
|
1035 |
+
"help": "If False, then FSDP allows the CPU thread to schedule all-gathers "
|
1036 |
+
"without any extra synchronization. If True, then FSDP explicitly synchronizes the CPU thread to prevent "
|
1037 |
+
"too many in-flight all-gathers. This bool only affects the sharded strategies that schedule all-gathers. "
|
1038 |
+
"Enabling this can help lower the number of CUDA malloc retries."
|
1039 |
+
},
|
1040 |
+
)
|
1041 |
+
use_orig_params: bool = field(
|
1042 |
+
default=True,
|
1043 |
+
metadata={
|
1044 |
+
"help": "If `True`, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable parameters. "
|
1045 |
+
"Useful in cases such as parameter-efficient fine-tuning. "
|
1046 |
+
"Please refer this [blog](https://dev-discuss.pytorch.org/t/rethinking-pytorch-fully-sharded-data-parallel-fsdp-from-first-principles/1019). "
|
1047 |
+
"This also enables multiple optimizer param groups. This should be `True` when creating an optimizer object before preparing/wrapping the model with FSDP."
|
1048 |
+
},
|
1049 |
+
)
|
1050 |
+
param_init_fn: Optional[Callable[[torch.nn.Module], None]] = field(
|
1051 |
+
default=None,
|
1052 |
+
metadata={
|
1053 |
+
"help": "A Callable[torch.nn.Module] -> None that specifies how modules "
|
1054 |
+
"that are currently on the meta device should be initialized onto an actual device."
|
1055 |
+
},
|
1056 |
+
)
|
1057 |
+
sync_module_states: bool = field(
|
1058 |
+
default=True,
|
1059 |
+
metadata={
|
1060 |
+
"help": "If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0 "
|
1061 |
+
"to ensure they are the same across all ranks after initialization"
|
1062 |
+
},
|
1063 |
+
)
|
1064 |
+
forward_prefetch: bool = field(
|
1065 |
+
default=False,
|
1066 |
+
metadata={
|
1067 |
+
"help": "If True, then FSDP explicitly prefetches the next upcoming "
|
1068 |
+
"all-gather while executing in the forward pass. only use with Static graphs."
|
1069 |
+
},
|
1070 |
+
)
|
1071 |
+
activation_checkpointing: bool = field(
|
1072 |
+
default=False,
|
1073 |
+
metadata={
|
1074 |
+
"help": "If True, activation checkpointing is a technique to reduce memory usage by clearing activations of "
|
1075 |
+
"certain layers and recomputing them during a backward pass. Effectively, this trades extra computation time "
|
1076 |
+
"for reduced memory usage."
|
1077 |
+
},
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
def __post_init__(self):
|
1081 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch, CPUOffload, ShardingStrategy
|
1082 |
+
|
1083 |
+
prefix = "FSDP_"
|
1084 |
+
if self.sharding_strategy is None:
|
1085 |
+
sharding_strategy = os.environ.get(prefix + "SHARDING_STRATEGY", "FULL_SHARD")
|
1086 |
+
sharding_strategy = (
|
1087 |
+
FSDP_SHARDING_STRATEGY.index(sharding_strategy) + 1
|
1088 |
+
if not sharding_strategy.isdigit()
|
1089 |
+
else int(sharding_strategy)
|
1090 |
+
)
|
1091 |
+
self.sharding_strategy = ShardingStrategy(sharding_strategy)
|
1092 |
+
|
1093 |
+
if self.cpu_offload is None:
|
1094 |
+
if str_to_bool(os.environ.get(prefix + "OFFLOAD_PARAMS", "False")) == 1:
|
1095 |
+
self.cpu_offload = CPUOffload(offload_params=True)
|
1096 |
+
else:
|
1097 |
+
self.cpu_offload = CPUOffload(offload_params=False)
|
1098 |
+
|
1099 |
+
if self.backward_prefetch is None:
|
1100 |
+
prefetch_policy = os.environ.get(prefix + "BACKWARD_PREFETCH", "NO_PREFETCH")
|
1101 |
+
if prefetch_policy != FSDP_BACKWARD_PREFETCH[-1]:
|
1102 |
+
self.backward_prefetch = BackwardPrefetch(FSDP_BACKWARD_PREFETCH.index(prefetch_policy) + 1)
|
1103 |
+
|
1104 |
+
if self.state_dict_type is None:
|
1105 |
+
state_dict_type_policy = os.environ.get(prefix + "STATE_DICT_TYPE", "FULL_STATE_DICT")
|
1106 |
+
self.set_state_dict_type(state_dict_type_policy)
|
1107 |
+
self.use_orig_params = str_to_bool(os.environ.get(prefix + "USE_ORIG_PARAMS", "False")) == 1
|
1108 |
+
self.sync_module_states = str_to_bool(os.environ.get(prefix + "SYNC_MODULE_STATES", "True")) == 1
|
1109 |
+
self.forward_prefetch = str_to_bool(os.environ.get(prefix + "FORWARD_PREFETCH", "False")) == 1
|
1110 |
+
self.activation_checkpointing = str_to_bool(os.environ.get(prefix + "ACTIVATION_CHECKPOINTING", "False")) == 1
|
1111 |
+
|
1112 |
+
if self.sync_module_states:
|
1113 |
+
if is_npu_available():
|
1114 |
+
device = torch.npu.current_device()
|
1115 |
+
elif is_cuda_available():
|
1116 |
+
device = torch.cuda.current_device()
|
1117 |
+
elif is_xpu_available():
|
1118 |
+
device = torch.xpu.current_device()
|
1119 |
+
else:
|
1120 |
+
raise RuntimeError(
|
1121 |
+
"There are currently no available devices found, must be one of 'XPU', 'CUDA', or 'NPU'."
|
1122 |
+
)
|
1123 |
+
self.param_init_fn = lambda x: x.to_empty(device=device, recurse=False)
|
1124 |
+
|
1125 |
+
@staticmethod
|
1126 |
+
def get_module_class_from_name(module, name):
|
1127 |
+
"""
|
1128 |
+
Gets a class from a module by its name.
|
1129 |
+
|
1130 |
+
Args:
|
1131 |
+
module (`torch.nn.Module`): The module to get the class from.
|
1132 |
+
name (`str`): The name of the class.
|
1133 |
+
"""
|
1134 |
+
modules_children = list(module.children())
|
1135 |
+
if module.__class__.__name__ == name:
|
1136 |
+
return module.__class__
|
1137 |
+
elif len(modules_children) == 0:
|
1138 |
+
return
|
1139 |
+
else:
|
1140 |
+
for child_module in modules_children:
|
1141 |
+
module_class = FullyShardedDataParallelPlugin.get_module_class_from_name(child_module, name)
|
1142 |
+
if module_class is not None:
|
1143 |
+
return module_class
|
1144 |
+
|
1145 |
+
def set_auto_wrap_policy(self, model):
|
1146 |
+
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy, transformer_auto_wrap_policy
|
1147 |
+
|
1148 |
+
default_transformer_cls_names_to_wrap = (
|
1149 |
+
",".join(model._no_split_modules) if getattr(model, "_no_split_modules", None) is not None else ""
|
1150 |
+
)
|
1151 |
+
if self.auto_wrap_policy is None:
|
1152 |
+
auto_wrap_policy = os.environ.get("FSDP_AUTO_WRAP_POLICY", "NO_WRAP")
|
1153 |
+
if auto_wrap_policy == FSDP_AUTO_WRAP_POLICY[0]:
|
1154 |
+
transformer_cls_names_to_wrap = os.environ.get(
|
1155 |
+
"FSDP_TRANSFORMER_CLS_TO_WRAP", default_transformer_cls_names_to_wrap
|
1156 |
+
).split(",")
|
1157 |
+
transformer_cls_to_wrap = set()
|
1158 |
+
for layer_class in transformer_cls_names_to_wrap:
|
1159 |
+
transformer_cls = FullyShardedDataParallelPlugin.get_module_class_from_name(model, layer_class)
|
1160 |
+
if transformer_cls is None:
|
1161 |
+
raise Exception("Could not find the transformer layer class to wrap in the model.")
|
1162 |
+
else:
|
1163 |
+
transformer_cls_to_wrap.add(transformer_cls)
|
1164 |
+
|
1165 |
+
self.auto_wrap_policy = functools.partial(
|
1166 |
+
transformer_auto_wrap_policy,
|
1167 |
+
# Transformer layer class to wrap
|
1168 |
+
transformer_layer_cls=transformer_cls_to_wrap,
|
1169 |
+
)
|
1170 |
+
elif auto_wrap_policy == FSDP_AUTO_WRAP_POLICY[1]:
|
1171 |
+
min_num_params = int(os.environ.get("FSDP_MIN_NUM_PARAMS", 0))
|
1172 |
+
if min_num_params > 0:
|
1173 |
+
self.auto_wrap_policy = functools.partial(
|
1174 |
+
size_based_auto_wrap_policy, min_num_params=min_num_params
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
def set_mixed_precision(self, mixed_precision, buffer_autocast=False, override=False):
|
1178 |
+
if isinstance(mixed_precision, str):
|
1179 |
+
if mixed_precision == "fp16":
|
1180 |
+
dtype = torch.float16
|
1181 |
+
elif mixed_precision == "bf16":
|
1182 |
+
dtype = torch.bfloat16
|
1183 |
+
elif mixed_precision == "fp32":
|
1184 |
+
dtype = torch.float32
|
1185 |
+
else:
|
1186 |
+
raise ValueError(f"Unknown mixed precision value: {mixed_precision}")
|
1187 |
+
else:
|
1188 |
+
dtype = mixed_precision
|
1189 |
+
|
1190 |
+
buffer_dtype = torch.float32 if buffer_autocast else dtype
|
1191 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
|
1192 |
+
|
1193 |
+
if self.mixed_precision_policy is None or override:
|
1194 |
+
self.mixed_precision_policy = MixedPrecision(
|
1195 |
+
param_dtype=dtype, reduce_dtype=dtype, buffer_dtype=buffer_dtype
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
def set_state_dict_type(self, state_dict_type_policy):
|
1199 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import (
|
1200 |
+
FullOptimStateDictConfig,
|
1201 |
+
FullStateDictConfig,
|
1202 |
+
StateDictType,
|
1203 |
+
)
|
1204 |
+
|
1205 |
+
self.state_dict_type = StateDictType(FSDP_STATE_DICT_TYPE.index(state_dict_type_policy) + 1)
|
1206 |
+
|
1207 |
+
if self.state_dict_type == StateDictType.FULL_STATE_DICT:
|
1208 |
+
if self.state_dict_config is None:
|
1209 |
+
self.state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
|
1210 |
+
if self.optim_state_dict_config is None:
|
1211 |
+
self.optim_state_dict_config = FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True)
|
1212 |
+
|
1213 |
+
|
1214 |
+
@dataclass
|
1215 |
+
class MegatronLMPlugin:
|
1216 |
+
"""
|
1217 |
+
Plugin for Megatron-LM to enable tensor, pipeline, sequence and data parallelism. Also to enable selective
|
1218 |
+
activation recomputation and optimized fused kernels.
|
1219 |
+
"""
|
1220 |
+
|
1221 |
+
tp_degree: int = field(default=None, metadata={"help": "tensor parallelism degree."})
|
1222 |
+
pp_degree: int = field(default=None, metadata={"help": "pipeline parallelism degree."})
|
1223 |
+
num_micro_batches: int = field(default=None, metadata={"help": "number of micro-batches."})
|
1224 |
+
gradient_clipping: float = field(
|
1225 |
+
default=None, metadata={"help": "gradient clipping value based on global L2 Norm (0 to disable)"}
|
1226 |
+
)
|
1227 |
+
sequence_parallelism: bool = field(
|
1228 |
+
default=None,
|
1229 |
+
metadata={"help": "enable sequence parallelism"},
|
1230 |
+
)
|
1231 |
+
recompute_activations: bool = field(
|
1232 |
+
default=None,
|
1233 |
+
metadata={"help": "enable selective activation recomputation"},
|
1234 |
+
)
|
1235 |
+
use_distributed_optimizer: bool = field(
|
1236 |
+
default=None,
|
1237 |
+
metadata={"help": "enable distributed optimizer"},
|
1238 |
+
)
|
1239 |
+
pipeline_model_parallel_split_rank: int = field(
|
1240 |
+
default=None, metadata={"help": "Rank where encoder and decoder should be split."}
|
1241 |
+
)
|
1242 |
+
num_layers_per_virtual_pipeline_stage: int = field(
|
1243 |
+
default=None, metadata={"help": "Number of layers per virtual pipeline stage."}
|
1244 |
+
)
|
1245 |
+
is_train_batch_min: str = field(
|
1246 |
+
default=True,
|
1247 |
+
metadata={"help": "If both train & eval dataloaders are specified, this will decide the micro_batch_size"},
|
1248 |
+
)
|
1249 |
+
train_iters: int = field(
|
1250 |
+
default=None,
|
1251 |
+
metadata={
|
1252 |
+
"help": "Total number of iterations to train over all training runs. "
|
1253 |
+
"Note that either train-iters or train-samples should be provided when using `MegatronLMDummyScheduler`"
|
1254 |
+
},
|
1255 |
+
)
|
1256 |
+
train_samples: int = field(
|
1257 |
+
default=None,
|
1258 |
+
metadata={
|
1259 |
+
"help": "Total number of samples to train over all training runs. "
|
1260 |
+
"Note that either train-iters or train-samples should be provided when using `MegatronLMDummyScheduler`"
|
1261 |
+
},
|
1262 |
+
)
|
1263 |
+
weight_decay_incr_style: str = field(
|
1264 |
+
default="constant",
|
1265 |
+
metadata={"help": 'Weight decay increment function. choices=["constant", "linear", "cosine"]. '},
|
1266 |
+
)
|
1267 |
+
start_weight_decay: float = field(
|
1268 |
+
default=None,
|
1269 |
+
metadata={"help": "Initial weight decay coefficient for L2 regularization."},
|
1270 |
+
)
|
1271 |
+
end_weight_decay: float = field(
|
1272 |
+
default=None,
|
1273 |
+
metadata={"help": "End of run weight decay coefficient for L2 regularization."},
|
1274 |
+
)
|
1275 |
+
lr_decay_style: str = field(
|
1276 |
+
default="linear",
|
1277 |
+
metadata={"help": "Learning rate decay function. choices=['constant', 'linear', 'cosine']."},
|
1278 |
+
)
|
1279 |
+
lr_decay_iters: int = field(
|
1280 |
+
default=None,
|
1281 |
+
metadata={"help": "Number of iterations for learning rate decay. If None defaults to `train_iters`."},
|
1282 |
+
)
|
1283 |
+
lr_decay_samples: int = field(
|
1284 |
+
default=None,
|
1285 |
+
metadata={"help": "Number of samples for learning rate decay. If None defaults to `train_samples`."},
|
1286 |
+
)
|
1287 |
+
lr_warmup_iters: int = field(
|
1288 |
+
default=None,
|
1289 |
+
metadata={"help": "number of iterations to linearly warmup learning rate over."},
|
1290 |
+
)
|
1291 |
+
lr_warmup_samples: int = field(
|
1292 |
+
default=None,
|
1293 |
+
metadata={"help": "number of samples to linearly warmup learning rate over."},
|
1294 |
+
)
|
1295 |
+
lr_warmup_fraction: float = field(
|
1296 |
+
default=None,
|
1297 |
+
metadata={"help": "fraction of lr-warmup-(iters/samples) to linearly warmup learning rate over."},
|
1298 |
+
)
|
1299 |
+
min_lr: float = field(
|
1300 |
+
default=0,
|
1301 |
+
metadata={"help": "Minumum value for learning rate. The scheduler clip values below this threshold."},
|
1302 |
+
)
|
1303 |
+
consumed_samples: List[int] = field(
|
1304 |
+
default=None,
|
1305 |
+
metadata={
|
1306 |
+
"help": "Number of samples consumed in the same order as the dataloaders to `accelerator.prepare` call."
|
1307 |
+
},
|
1308 |
+
)
|
1309 |
+
no_wd_decay_cond: Optional[Callable] = field(default=None, metadata={"help": "Condition to disable weight decay."})
|
1310 |
+
scale_lr_cond: Optional[Callable] = field(default=None, metadata={"help": "Condition to scale learning rate."})
|
1311 |
+
lr_mult: float = field(default=1.0, metadata={"help": "Learning rate multiplier."})
|
1312 |
+
megatron_dataset_flag: bool = field(
|
1313 |
+
default=False,
|
1314 |
+
metadata={"help": "Whether the format of dataset follows Megatron-LM Indexed/Cached/MemoryMapped format."},
|
1315 |
+
)
|
1316 |
+
seq_length: int = field(
|
1317 |
+
default=None,
|
1318 |
+
metadata={"help": "Maximum sequence length to process."},
|
1319 |
+
)
|
1320 |
+
encoder_seq_length: int = field(
|
1321 |
+
default=None,
|
1322 |
+
metadata={"help": "Maximum sequence length to process for the encoder."},
|
1323 |
+
)
|
1324 |
+
decoder_seq_length: int = field(
|
1325 |
+
default=None,
|
1326 |
+
metadata={"help": "Maximum sequence length to process for the decoder."},
|
1327 |
+
)
|
1328 |
+
tensorboard_dir: str = field(
|
1329 |
+
default=None,
|
1330 |
+
metadata={"help": "Path to save tensorboard logs."},
|
1331 |
+
)
|
1332 |
+
set_all_logging_options: bool = field(
|
1333 |
+
default=False,
|
1334 |
+
metadata={"help": "Whether to set all logging options."},
|
1335 |
+
)
|
1336 |
+
eval_iters: int = field(
|
1337 |
+
default=100, metadata={"help": "Number of iterations to run for evaluation validation/test for."}
|
1338 |
+
)
|
1339 |
+
eval_interval: int = field(
|
1340 |
+
default=1000, metadata={"help": "Interval between running evaluation on validation set."}
|
1341 |
+
)
|
1342 |
+
return_logits: bool = field(
|
1343 |
+
default=False,
|
1344 |
+
metadata={"help": "Whether to return logits from the model."},
|
1345 |
+
)
|
1346 |
+
|
1347 |
+
# custom train step args
|
1348 |
+
custom_train_step_class: Optional[Any] = field(
|
1349 |
+
default=None,
|
1350 |
+
metadata={"help": "Custom train step class."},
|
1351 |
+
)
|
1352 |
+
custom_train_step_kwargs: Optional[Dict[str, Any]] = field(
|
1353 |
+
default=None,
|
1354 |
+
metadata={"help": "Custom train step kwargs."},
|
1355 |
+
)
|
1356 |
+
|
1357 |
+
# custom model args
|
1358 |
+
custom_model_provider_function: Optional[Callable] = field(
|
1359 |
+
default=None,
|
1360 |
+
metadata={"help": "Custom model provider function."},
|
1361 |
+
)
|
1362 |
+
custom_prepare_model_function: Optional[Callable] = field(
|
1363 |
+
default=None,
|
1364 |
+
metadata={"help": "Custom prepare model function."},
|
1365 |
+
)
|
1366 |
+
|
1367 |
+
# remaining args such as enabling Alibi/ROPE positional embeddings,
|
1368 |
+
# wandb logging, Multi-Query Attention, etc.
|
1369 |
+
other_megatron_args: Optional[Dict[str, Any]] = field(
|
1370 |
+
default=None,
|
1371 |
+
metadata={"help": "Other Megatron-LM arguments. Please refer Megatron-LM"},
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
def __post_init__(self):
|
1375 |
+
prefix = "MEGATRON_LM_"
|
1376 |
+
if self.tp_degree is None:
|
1377 |
+
self.tp_degree = int(os.environ.get(prefix + "TP_DEGREE", 1))
|
1378 |
+
if self.pp_degree is None:
|
1379 |
+
self.pp_degree = int(os.environ.get(prefix + "PP_DEGREE", 1))
|
1380 |
+
if self.num_micro_batches is None:
|
1381 |
+
self.num_micro_batches = int(os.environ.get(prefix + "NUM_MICRO_BATCHES", 1))
|
1382 |
+
if self.gradient_clipping is None:
|
1383 |
+
self.gradient_clipping = float(os.environ.get(prefix + "GRADIENT_CLIPPING", 1.0))
|
1384 |
+
if self.recompute_activations is None:
|
1385 |
+
self.recompute_activations = str_to_bool(os.environ.get(prefix + "RECOMPUTE_ACTIVATIONS", "False")) == 1
|
1386 |
+
if self.use_distributed_optimizer is None:
|
1387 |
+
self.use_distributed_optimizer = (
|
1388 |
+
str_to_bool(os.environ.get(prefix + "USE_DISTRIBUTED_OPTIMIZER", "False")) == 1
|
1389 |
+
)
|
1390 |
+
if self.sequence_parallelism is None:
|
1391 |
+
self.sequence_parallelism = str_to_bool(os.environ.get(prefix + "SEQUENCE_PARALLELISM", "False")) == 1
|
1392 |
+
|
1393 |
+
if self.pp_degree > 1 or self.use_distributed_optimizer:
|
1394 |
+
self.DDP_impl = "local"
|
1395 |
+
else:
|
1396 |
+
self.DDP_impl = "torch"
|
1397 |
+
|
1398 |
+
if self.consumed_samples is not None:
|
1399 |
+
if len(self.consumed_samples) == 1:
|
1400 |
+
self.consumed_samples.extend([0, 0])
|
1401 |
+
elif len(self.consumed_samples) == 2:
|
1402 |
+
self.consumed_samples.append(0)
|
1403 |
+
|
1404 |
+
self.megatron_lm_default_args = {
|
1405 |
+
"tensor_model_parallel_size": self.tp_degree,
|
1406 |
+
"pipeline_model_parallel_size": self.pp_degree,
|
1407 |
+
"pipeline_model_parallel_split_rank": self.pipeline_model_parallel_split_rank,
|
1408 |
+
"num_layers_per_virtual_pipeline_stage": self.num_layers_per_virtual_pipeline_stage,
|
1409 |
+
"DDP_impl": self.DDP_impl,
|
1410 |
+
"use_distributed_optimizer": self.use_distributed_optimizer,
|
1411 |
+
"sequence_parallel": self.sequence_parallelism,
|
1412 |
+
"clip_grad": self.gradient_clipping,
|
1413 |
+
"num_micro_batches": self.num_micro_batches,
|
1414 |
+
"consumed_samples": self.consumed_samples,
|
1415 |
+
"no_wd_decay_cond": self.no_wd_decay_cond,
|
1416 |
+
"scale_lr_cond": self.scale_lr_cond,
|
1417 |
+
"lr_mult": self.lr_mult,
|
1418 |
+
"megatron_dataset_flag": self.megatron_dataset_flag,
|
1419 |
+
"eval_iters": self.eval_iters,
|
1420 |
+
"eval_interval": self.eval_interval,
|
1421 |
+
}
|
1422 |
+
if self.recompute_activations:
|
1423 |
+
self.megatron_lm_default_args["recompute_granularity"] = "selective"
|
1424 |
+
if self.tensorboard_dir is not None:
|
1425 |
+
self.megatron_lm_default_args["tensorboard_dir"] = self.tensorboard_dir
|
1426 |
+
if self.set_all_logging_options:
|
1427 |
+
self.set_tensorboard_logging_options()
|
1428 |
+
if self.other_megatron_args is not None:
|
1429 |
+
self.megatron_lm_default_args.update(self.other_megatron_args)
|
1430 |
+
|
1431 |
+
def set_network_size_args(self, model, batch_data=None):
|
1432 |
+
# Check if the model is either BERT, GPT or T5 else raise error
|
1433 |
+
# set 'num_layers', 'hidden_size', 'num_attention_heads', 'max_position_embeddings'
|
1434 |
+
if "megatron-bert" in model.config.model_type.lower():
|
1435 |
+
model_type_name = "bert"
|
1436 |
+
num_layers = model.config.num_hidden_layers
|
1437 |
+
hidden_size = model.config.hidden_size
|
1438 |
+
num_attention_heads = model.config.num_attention_heads
|
1439 |
+
max_position_embeddings = model.config.max_position_embeddings
|
1440 |
+
num_labels = model.config.num_labels
|
1441 |
+
orig_vocab_size = model.config.vocab_size
|
1442 |
+
if "maskedlm" in model.__class__.__name__.lower():
|
1443 |
+
pretraining_flag = True
|
1444 |
+
if self.seq_length is not None:
|
1445 |
+
if self.encoder_seq_length is not None:
|
1446 |
+
warnings.warn("Both `seq_length` and `encoder_seq_length` are set. Using `encoder_seq_length`.")
|
1447 |
+
self.seq_length = self.encoder_seq_length
|
1448 |
+
elif self.encoder_seq_length is not None:
|
1449 |
+
self.seq_length = self.encoder_seq_length
|
1450 |
+
elif batch_data is not None:
|
1451 |
+
self.seq_length = batch_data["input_ids"].shape[1]
|
1452 |
+
else:
|
1453 |
+
self.seq_length = max_position_embeddings
|
1454 |
+
self.megatron_lm_default_args["seq_length"] = self.seq_length
|
1455 |
+
elif "gpt2" in model.config.model_type.lower():
|
1456 |
+
model_type_name = "gpt"
|
1457 |
+
num_layers = model.config.n_layer
|
1458 |
+
hidden_size = model.config.n_embd
|
1459 |
+
num_attention_heads = model.config.n_head
|
1460 |
+
max_position_embeddings = model.config.n_positions
|
1461 |
+
orig_vocab_size = model.config.vocab_size
|
1462 |
+
pretraining_flag = True
|
1463 |
+
if self.seq_length is not None:
|
1464 |
+
if self.decoder_seq_length is not None:
|
1465 |
+
warnings.warn("Both `seq_length` and `decoder_seq_length` are set. Using `decoder_seq_length`.")
|
1466 |
+
self.seq_length = self.decoder_seq_length
|
1467 |
+
elif self.decoder_seq_length is not None:
|
1468 |
+
self.seq_length = self.decoder_seq_length
|
1469 |
+
elif batch_data is not None:
|
1470 |
+
self.seq_length = batch_data["input_ids"].shape[1]
|
1471 |
+
else:
|
1472 |
+
self.seq_length = max_position_embeddings
|
1473 |
+
self.megatron_lm_default_args["seq_length"] = self.seq_length
|
1474 |
+
self.megatron_lm_default_args["return_logits"] = self.return_logits
|
1475 |
+
self.megatron_lm_default_args["tokenizer_type"] = "GPT2BPETokenizer"
|
1476 |
+
elif "t5" in model.config.model_type.lower():
|
1477 |
+
model_type_name = "t5"
|
1478 |
+
num_layers = model.config.num_layers
|
1479 |
+
hidden_size = model.config.d_model
|
1480 |
+
num_attention_heads = model.config.num_heads
|
1481 |
+
max_position_embeddings = model.config.n_positions if hasattr(model.config, "n_positions") else 1024
|
1482 |
+
orig_vocab_size = model.config.vocab_size
|
1483 |
+
pretraining_flag = True
|
1484 |
+
if self.encoder_seq_length is None:
|
1485 |
+
if batch_data is not None:
|
1486 |
+
self.encoder_seq_length = batch_data["input_ids"].shape[1]
|
1487 |
+
else:
|
1488 |
+
self.encoder_seq_length = max_position_embeddings
|
1489 |
+
if self.decoder_seq_length is None:
|
1490 |
+
if batch_data is not None:
|
1491 |
+
self.decoder_seq_length = batch_data["labels"].shape[1]
|
1492 |
+
else:
|
1493 |
+
self.decoder_seq_length = max_position_embeddings
|
1494 |
+
|
1495 |
+
self.megatron_lm_default_args["encoder_seq_length"] = self.encoder_seq_length
|
1496 |
+
self.megatron_lm_default_args["decoder_seq_length"] = self.decoder_seq_length
|
1497 |
+
else:
|
1498 |
+
raise ValueError(
|
1499 |
+
"🤗 Accelerate Megatron-LM integration supports only BERT, GPT and T5 model. "
|
1500 |
+
"Please check the model you are using is one of those."
|
1501 |
+
)
|
1502 |
+
|
1503 |
+
self.megatron_lm_default_args["model_type_name"] = model_type_name
|
1504 |
+
self.megatron_lm_default_args["num_layers"] = num_layers
|
1505 |
+
self.megatron_lm_default_args["hidden_size"] = hidden_size
|
1506 |
+
self.megatron_lm_default_args["num_attention_heads"] = num_attention_heads
|
1507 |
+
self.megatron_lm_default_args["max_position_embeddings"] = max_position_embeddings
|
1508 |
+
self.megatron_lm_default_args["pretraining_flag"] = pretraining_flag
|
1509 |
+
self.megatron_lm_default_args["orig_vocab_size"] = orig_vocab_size
|
1510 |
+
self.megatron_lm_default_args["model_return_dict"] = model.config.return_dict
|
1511 |
+
if model_type_name == "bert":
|
1512 |
+
self.megatron_lm_default_args["num_labels"] = num_labels
|
1513 |
+
|
1514 |
+
def set_mixed_precision(self, mixed_precision):
|
1515 |
+
if mixed_precision == "fp16":
|
1516 |
+
self.megatron_lm_default_args["fp16"] = True
|
1517 |
+
elif mixed_precision == "bf16":
|
1518 |
+
self.megatron_lm_default_args["bf16"] = True
|
1519 |
+
self.DDP_impl = "local"
|
1520 |
+
self.megatron_lm_default_args["DDP_impl"] = self.DDP_impl
|
1521 |
+
|
1522 |
+
def set_training_args(self, micro_batch_size, dp_degree):
|
1523 |
+
self.data_parallel_size = dp_degree
|
1524 |
+
self.micro_batch_size = micro_batch_size
|
1525 |
+
self.global_batch_size = dp_degree * micro_batch_size * self.num_micro_batches
|
1526 |
+
self.megatron_lm_default_args["data_parallel_size"] = self.data_parallel_size
|
1527 |
+
self.megatron_lm_default_args["micro_batch_size"] = self.micro_batch_size
|
1528 |
+
self.megatron_lm_default_args["global_batch_size"] = self.global_batch_size
|
1529 |
+
|
1530 |
+
def set_optimizer_type(self, optimizer):
|
1531 |
+
optimizer_name = optimizer.__class__.__name__.lower()
|
1532 |
+
if "adam" in optimizer_name:
|
1533 |
+
self.megatron_lm_default_args["optimizer"] = "adam"
|
1534 |
+
self.megatron_lm_default_args["adam_beta1"] = optimizer.defaults["betas"][0]
|
1535 |
+
self.megatron_lm_default_args["adam_beta2"] = optimizer.defaults["betas"][1]
|
1536 |
+
self.megatron_lm_default_args["adam_eps"] = optimizer.defaults["eps"]
|
1537 |
+
elif "sgd" in optimizer_name:
|
1538 |
+
self.megatron_lm_default_args["optimizer"] = "sgd"
|
1539 |
+
self.megatron_lm_default_args["sgd_momentum"] = optimizer.defaults["momentum"]
|
1540 |
+
else:
|
1541 |
+
raise ValueError(f"Optimizer {optimizer_name} is not supported by Megatron-LM")
|
1542 |
+
|
1543 |
+
self.megatron_lm_default_args["lr"] = optimizer.defaults["lr"]
|
1544 |
+
self.megatron_lm_default_args["weight_decay"] = optimizer.defaults["weight_decay"]
|
1545 |
+
|
1546 |
+
def set_scheduler_args(self, scheduler):
|
1547 |
+
if self.train_iters is None:
|
1548 |
+
self.train_iters = scheduler.total_num_steps // self.megatron_lm_default_args["data_parallel_size"]
|
1549 |
+
if self.train_samples is not None:
|
1550 |
+
self.train_samples = None
|
1551 |
+
warnings.warn(
|
1552 |
+
"Ignoring `train_samples` as `train_iters` based on scheduler is being used for training."
|
1553 |
+
)
|
1554 |
+
if self.lr_warmup_iters is None:
|
1555 |
+
self.lr_warmup_iters = scheduler.warmup_num_steps // self.megatron_lm_default_args["data_parallel_size"]
|
1556 |
+
if self.lr_warmup_samples is not None:
|
1557 |
+
warnings.warn(
|
1558 |
+
"Ignoring `lr_warmup_samples` as `lr_warmup_iters` based on scheduler is being used for training."
|
1559 |
+
)
|
1560 |
+
self.lr_warmup_samples = 0
|
1561 |
+
|
1562 |
+
self.megatron_lm_default_args["train_iters"] = self.train_iters
|
1563 |
+
self.megatron_lm_default_args["lr_warmup_iters"] = self.lr_warmup_iters
|
1564 |
+
self.megatron_lm_default_args["train_samples"] = self.train_samples
|
1565 |
+
self.megatron_lm_default_args["lr_warmup_samples"] = self.lr_warmup_samples
|
1566 |
+
self.megatron_lm_default_args["lr_decay_iters"] = self.lr_decay_iters
|
1567 |
+
self.megatron_lm_default_args["lr_decay_samples"] = self.lr_decay_samples
|
1568 |
+
self.megatron_lm_default_args["lr_warmup_fraction"] = self.lr_warmup_fraction
|
1569 |
+
self.megatron_lm_default_args["lr_decay_style"] = self.lr_decay_style
|
1570 |
+
self.megatron_lm_default_args["weight_decay_incr_style"] = self.weight_decay_incr_style
|
1571 |
+
self.megatron_lm_default_args["start_weight_decay"] = self.start_weight_decay
|
1572 |
+
self.megatron_lm_default_args["end_weight_decay"] = self.end_weight_decay
|
1573 |
+
self.megatron_lm_default_args["min_lr"] = self.min_lr
|
1574 |
+
|
1575 |
+
def set_tensorboard_logging_options(self):
|
1576 |
+
from megatron.arguments import _add_logging_args
|
1577 |
+
|
1578 |
+
parser = argparse.ArgumentParser()
|
1579 |
+
parser = _add_logging_args(parser)
|
1580 |
+
logging_args = parser.parse_known_args()
|
1581 |
+
self.dataset_args = vars(logging_args[0])
|
1582 |
+
for key, value in self.dataset_args.items():
|
1583 |
+
if key.startswith("log_"):
|
1584 |
+
self.megatron_lm_default_args[key] = True
|
1585 |
+
elif key.startswith("no_log_"):
|
1586 |
+
self.megatron_lm_default_args[key.replace("no_", "")] = True
|
1587 |
+
|
1588 |
+
|
1589 |
+
@dataclass
|
1590 |
+
class BnbQuantizationConfig:
|
1591 |
+
"""
|
1592 |
+
A plugin to enable BitsAndBytes 4bit and 8bit quantization
|
1593 |
+
"""
|
1594 |
+
|
1595 |
+
load_in_8bit: bool = field(default=False, metadata={"help": "enable 8bit quantization."})
|
1596 |
+
|
1597 |
+
llm_int8_threshold: float = field(
|
1598 |
+
default=6.0, metadata={"help": "value of the outliner threshold. only relevant when load_in_8bit=True"}
|
1599 |
+
)
|
1600 |
+
|
1601 |
+
load_in_4bit: bool = field(default=False, metadata={"help": "enable 4bit quantization."})
|
1602 |
+
|
1603 |
+
bnb_4bit_quant_type: str = field(
|
1604 |
+
default="fp4",
|
1605 |
+
metadata={
|
1606 |
+
"help": "set the quantization data type in the `bnb.nn.Linear4Bit` layers. Options are {'fp4','np4'}."
|
1607 |
+
},
|
1608 |
+
)
|
1609 |
+
|
1610 |
+
bnb_4bit_use_double_quant: bool = field(
|
1611 |
+
default=False,
|
1612 |
+
metadata={
|
1613 |
+
"help": "enable nested quantization where the quantization constants from the first quantization are quantized again."
|
1614 |
+
},
|
1615 |
+
)
|
1616 |
+
|
1617 |
+
bnb_4bit_compute_dtype: bool = field(
|
1618 |
+
default="fp16",
|
1619 |
+
metadata={
|
1620 |
+
"help": "This sets the computational type which might be different than the input time. For example, inputs might be "
|
1621 |
+
"fp32, but computation can be set to bf16 for speedups. Options are {'fp32','fp16','bf16'}."
|
1622 |
+
},
|
1623 |
+
)
|
1624 |
+
|
1625 |
+
torch_dtype: torch.dtype = field(
|
1626 |
+
default=None,
|
1627 |
+
metadata={
|
1628 |
+
"help": "this sets the dtype of the remaining non quantized layers. `bitsandbytes` library suggests to set the value"
|
1629 |
+
"to `torch.float16` for 8 bit model and use the same dtype as the compute dtype for 4 bit model "
|
1630 |
+
},
|
1631 |
+
)
|
1632 |
+
|
1633 |
+
skip_modules: List[str] = field(
|
1634 |
+
default=None,
|
1635 |
+
metadata={
|
1636 |
+
"help": "an explicit list of the modules that we don't quantize. The dtype of these modules will be `torch_dtype`."
|
1637 |
+
},
|
1638 |
+
)
|
1639 |
+
|
1640 |
+
keep_in_fp32_modules: List[str] = field(
|
1641 |
+
default=None,
|
1642 |
+
metadata={"help": "an explicit list of the modules that we don't quantize. We keep them in `torch.float32`."},
|
1643 |
+
)
|
1644 |
+
|
1645 |
+
def __post_init__(self):
|
1646 |
+
"""
|
1647 |
+
Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
|
1648 |
+
"""
|
1649 |
+
if not isinstance(self.load_in_8bit, bool):
|
1650 |
+
raise ValueError("load_in_8bit must be a boolean")
|
1651 |
+
|
1652 |
+
if not isinstance(self.load_in_4bit, bool):
|
1653 |
+
raise ValueError("load_in_4bit must be a boolean")
|
1654 |
+
|
1655 |
+
if self.load_in_4bit and self.load_in_8bit:
|
1656 |
+
raise ValueError("load_in_4bit and load_in_8 can't be both True")
|
1657 |
+
|
1658 |
+
if not self.load_in_4bit and not self.load_in_8bit:
|
1659 |
+
raise ValueError("load_in_4bit and load_in_8 can't be both False")
|
1660 |
+
|
1661 |
+
if not isinstance(self.llm_int8_threshold, (int, float)):
|
1662 |
+
raise ValueError("llm_int8_threshold must be a float or an int")
|
1663 |
+
|
1664 |
+
if not isinstance(self.bnb_4bit_quant_type, str):
|
1665 |
+
raise ValueError("bnb_4bit_quant_type must be a string")
|
1666 |
+
elif self.bnb_4bit_quant_type not in ["fp4", "nf4"]:
|
1667 |
+
raise ValueError(f"bnb_4bit_quant_type must be in ['fp4','nf4'] but found {self.bnb_4bit_quant_type}")
|
1668 |
+
|
1669 |
+
if not isinstance(self.bnb_4bit_use_double_quant, bool):
|
1670 |
+
raise ValueError("bnb_4bit_use_double_quant must be a boolean")
|
1671 |
+
|
1672 |
+
if isinstance(self.bnb_4bit_compute_dtype, str):
|
1673 |
+
if self.bnb_4bit_compute_dtype == "fp32":
|
1674 |
+
self.bnb_4bit_compute_dtype = torch.float32
|
1675 |
+
elif self.bnb_4bit_compute_dtype == "fp16":
|
1676 |
+
self.bnb_4bit_compute_dtype = torch.float16
|
1677 |
+
elif self.bnb_4bit_compute_dtype == "bf16":
|
1678 |
+
self.bnb_4bit_compute_dtype = torch.bfloat16
|
1679 |
+
else:
|
1680 |
+
raise ValueError(
|
1681 |
+
f"bnb_4bit_compute_dtype must be in ['fp32','fp16','bf16'] but found {self.bnb_4bit_compute_dtype}"
|
1682 |
+
)
|
1683 |
+
elif not isinstance(self.bnb_4bit_compute_dtype, torch.dtype):
|
1684 |
+
raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype")
|
1685 |
+
|
1686 |
+
if self.skip_modules is not None and not isinstance(self.skip_modules, list):
|
1687 |
+
raise ValueError("skip_modules must be a list of strings")
|
1688 |
+
|
1689 |
+
if self.keep_in_fp32_modules is not None and not isinstance(self.keep_in_fp32_modules, list):
|
1690 |
+
raise ValueError("keep_in_fp_32_modules must be a list of strings")
|
1691 |
+
|
1692 |
+
if self.load_in_4bit:
|
1693 |
+
self.target_dtype = CustomDtype.INT4
|
1694 |
+
|
1695 |
+
if self.load_in_8bit:
|
1696 |
+
self.target_dtype = torch.int8
|
1697 |
+
|
1698 |
+
if self.load_in_4bit and self.llm_int8_threshold != 6.0:
|
1699 |
+
warnings.warn("llm_int8_threshold can only be used for model loaded in 8bit")
|
1700 |
+
|
1701 |
+
if isinstance(self.torch_dtype, str):
|
1702 |
+
if self.torch_dtype == "fp32":
|
1703 |
+
self.torch_dtype = torch.float32
|
1704 |
+
elif self.torch_dtype == "fp16":
|
1705 |
+
self.torch_dtype = torch.float16
|
1706 |
+
elif self.torch_dtype == "bf16":
|
1707 |
+
self.torch_dtype = torch.bfloat16
|
1708 |
+
else:
|
1709 |
+
raise ValueError(f"torch_dtype must be in ['fp32','fp16','bf16'] but found {self.torch_dtype}")
|
1710 |
+
if self.load_in_8bit and self.torch_dtype is None:
|
1711 |
+
self.torch_dtype = torch.float16
|
1712 |
+
|
1713 |
+
if self.load_in_4bit and self.torch_dtype is None:
|
1714 |
+
self.torch_dtype = self.bnb_4bit_compute_dtype
|
1715 |
+
|
1716 |
+
if not isinstance(self.torch_dtype, torch.dtype):
|
1717 |
+
raise ValueError("torch_dtype must be a torch.dtype")
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/deepspeed.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import base64
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
from copy import deepcopy
|
19 |
+
|
20 |
+
from ..optimizer import AcceleratedOptimizer
|
21 |
+
from ..scheduler import AcceleratedScheduler
|
22 |
+
|
23 |
+
|
24 |
+
class HfDeepSpeedConfig:
|
25 |
+
"""
|
26 |
+
This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage.
|
27 |
+
|
28 |
+
A `weakref` of this object is stored in the module's globals to be able to access the config from areas where
|
29 |
+
things like the Trainer object is not available (e.g. `from_pretrained` and `_get_resized_embeddings`). Therefore
|
30 |
+
it's important that this object remains alive while the program is still running.
|
31 |
+
|
32 |
+
[`Trainer`] uses the `HfTrainerDeepSpeedConfig` subclass instead. That subclass has logic to sync the configuration
|
33 |
+
with values of [`TrainingArguments`] by replacing special placeholder values: `"auto"`. Without this special logic
|
34 |
+
the DeepSpeed configuration is not modified in any way.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
config_file_or_dict (`Union[str, Dict]`): path to DeepSpeed config file or dict.
|
38 |
+
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, config_file_or_dict):
|
42 |
+
if isinstance(config_file_or_dict, dict):
|
43 |
+
# Don't modify user's data should they want to reuse it (e.g. in tests), because once we
|
44 |
+
# modified it, it will not be accepted here again, since `auto` values would have been overridden
|
45 |
+
config = deepcopy(config_file_or_dict)
|
46 |
+
elif os.path.exists(config_file_or_dict):
|
47 |
+
with open(config_file_or_dict, encoding="utf-8") as f:
|
48 |
+
config = json.load(f)
|
49 |
+
else:
|
50 |
+
try:
|
51 |
+
config_decoded = base64.urlsafe_b64decode(config_file_or_dict).decode("utf-8")
|
52 |
+
config = json.loads(config_decoded)
|
53 |
+
except (UnicodeDecodeError, AttributeError, ValueError):
|
54 |
+
raise ValueError(
|
55 |
+
f"Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}"
|
56 |
+
)
|
57 |
+
|
58 |
+
self.config = config
|
59 |
+
|
60 |
+
self.set_stage_and_offload()
|
61 |
+
|
62 |
+
def set_stage_and_offload(self):
|
63 |
+
# zero stage - this is done as early as possible, before model is created, to allow
|
64 |
+
# ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object
|
65 |
+
# during ``zero.Init()`` which needs to know the dtype, and some other hparams.
|
66 |
+
self._stage = self.get_value("zero_optimization.stage", -1)
|
67 |
+
|
68 |
+
# offload
|
69 |
+
self._offload = False
|
70 |
+
if self.is_zero2() or self.is_zero3():
|
71 |
+
offload_devices_valid = set(["cpu", "nvme"])
|
72 |
+
offload_devices = set(
|
73 |
+
[
|
74 |
+
self.get_value("zero_optimization.offload_optimizer.device"),
|
75 |
+
self.get_value("zero_optimization.offload_param.device"),
|
76 |
+
]
|
77 |
+
)
|
78 |
+
if len(offload_devices & offload_devices_valid) > 0:
|
79 |
+
self._offload = True
|
80 |
+
|
81 |
+
def find_config_node(self, ds_key_long):
|
82 |
+
config = self.config
|
83 |
+
|
84 |
+
# find the config node of interest if it exists
|
85 |
+
nodes = ds_key_long.split(".")
|
86 |
+
ds_key = nodes.pop()
|
87 |
+
for node in nodes:
|
88 |
+
config = config.get(node)
|
89 |
+
if config is None:
|
90 |
+
return None, ds_key
|
91 |
+
|
92 |
+
return config, ds_key
|
93 |
+
|
94 |
+
def get_value(self, ds_key_long, default=None):
|
95 |
+
"""
|
96 |
+
Returns the set value or `default` if no value is set
|
97 |
+
"""
|
98 |
+
config, ds_key = self.find_config_node(ds_key_long)
|
99 |
+
if config is None:
|
100 |
+
return default
|
101 |
+
return config.get(ds_key, default)
|
102 |
+
|
103 |
+
def del_config_sub_tree(self, ds_key_long, must_exist=False):
|
104 |
+
"""
|
105 |
+
Deletes a sub-section of the config file if it's found.
|
106 |
+
|
107 |
+
Unless `must_exist` is `True` the section doesn't have to exist.
|
108 |
+
"""
|
109 |
+
config = self.config
|
110 |
+
|
111 |
+
# find the config node of interest if it exists
|
112 |
+
nodes = ds_key_long.split(".")
|
113 |
+
for node in nodes:
|
114 |
+
parent_config = config
|
115 |
+
config = config.get(node)
|
116 |
+
if config is None:
|
117 |
+
if must_exist:
|
118 |
+
raise ValueError(f"Can't find {ds_key_long} entry in the config: {self.config}")
|
119 |
+
else:
|
120 |
+
return
|
121 |
+
|
122 |
+
# if found remove it
|
123 |
+
if parent_config is not None:
|
124 |
+
parent_config.pop(node)
|
125 |
+
|
126 |
+
def is_true(self, ds_key_long):
|
127 |
+
"""
|
128 |
+
Returns `True`/``False` only if the value is set, always `False` otherwise. So use this method to ask the very
|
129 |
+
specific question of whether the value is set to `True` (and it's not set to `False`` or isn't set).
|
130 |
+
|
131 |
+
"""
|
132 |
+
value = self.get_value(ds_key_long)
|
133 |
+
return False if value is None else bool(value)
|
134 |
+
|
135 |
+
def is_false(self, ds_key_long):
|
136 |
+
"""
|
137 |
+
Returns `True`/``False` only if the value is set, always `False` otherwise. So use this method to ask the very
|
138 |
+
specific question of whether the value is set to `False` (and it's not set to `True`` or isn't set).
|
139 |
+
"""
|
140 |
+
value = self.get_value(ds_key_long)
|
141 |
+
return False if value is None else not bool(value)
|
142 |
+
|
143 |
+
def is_zero2(self):
|
144 |
+
return self._stage == 2
|
145 |
+
|
146 |
+
def is_zero3(self):
|
147 |
+
return self._stage == 3
|
148 |
+
|
149 |
+
def is_offload(self):
|
150 |
+
return self._offload
|
151 |
+
|
152 |
+
|
153 |
+
class DeepSpeedEngineWrapper:
|
154 |
+
"""
|
155 |
+
Internal wrapper for deepspeed.runtime.engine.DeepSpeedEngine. This is used to follow conventional training loop.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
engine (deepspeed.runtime.engine.DeepSpeedEngine): deepspeed engine to wrap
|
159 |
+
"""
|
160 |
+
|
161 |
+
def __init__(self, engine):
|
162 |
+
self.engine = engine
|
163 |
+
|
164 |
+
def backward(self, loss, **kwargs):
|
165 |
+
# runs backpropagation and handles mixed precision
|
166 |
+
self.engine.backward(loss, **kwargs)
|
167 |
+
|
168 |
+
# Deepspeed's `engine.step` performs the following operations:
|
169 |
+
# - gradient accumulation check
|
170 |
+
# - gradient clipping
|
171 |
+
# - optimizer step
|
172 |
+
# - zero grad
|
173 |
+
# - checking overflow
|
174 |
+
# - lr_scheduler step (only if engine.lr_scheduler is not None)
|
175 |
+
self.engine.step()
|
176 |
+
# and this plugin overrides the above calls with no-ops when Accelerate runs under
|
177 |
+
# Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple
|
178 |
+
# training loop that works transparently under many training regimes.
|
179 |
+
|
180 |
+
|
181 |
+
class DeepSpeedOptimizerWrapper(AcceleratedOptimizer):
|
182 |
+
"""
|
183 |
+
Internal wrapper around a deepspeed optimizer.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
optimizer (`torch.optim.optimizer.Optimizer`):
|
187 |
+
The optimizer to wrap.
|
188 |
+
"""
|
189 |
+
|
190 |
+
def __init__(self, optimizer):
|
191 |
+
super().__init__(optimizer, device_placement=False, scaler=None)
|
192 |
+
self.__has_overflow__ = hasattr(self.optimizer, "overflow")
|
193 |
+
|
194 |
+
def zero_grad(self, set_to_none=None):
|
195 |
+
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
|
196 |
+
|
197 |
+
def step(self):
|
198 |
+
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
|
199 |
+
|
200 |
+
@property
|
201 |
+
def step_was_skipped(self):
|
202 |
+
"""Whether or not the optimizer step was done, or skipped because of gradient overflow."""
|
203 |
+
if self.__has_overflow__:
|
204 |
+
return self.optimizer.overflow
|
205 |
+
return False
|
206 |
+
|
207 |
+
|
208 |
+
class DeepSpeedSchedulerWrapper(AcceleratedScheduler):
|
209 |
+
"""
|
210 |
+
Internal wrapper around a deepspeed scheduler.
|
211 |
+
|
212 |
+
Args:
|
213 |
+
scheduler (`torch.optim.lr_scheduler.LambdaLR`):
|
214 |
+
The scheduler to wrap.
|
215 |
+
optimizers (one or a list of `torch.optim.Optimizer`):
|
216 |
+
"""
|
217 |
+
|
218 |
+
def __init__(self, scheduler, optimizers):
|
219 |
+
super().__init__(scheduler, optimizers)
|
220 |
+
|
221 |
+
def step(self):
|
222 |
+
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
|
223 |
+
|
224 |
+
|
225 |
+
class DummyOptim:
|
226 |
+
"""
|
227 |
+
Dummy optimizer presents model parameters or param groups, this is primarily used to follow conventional training
|
228 |
+
loop when optimizer config is specified in the deepspeed config file.
|
229 |
+
|
230 |
+
Args:
|
231 |
+
lr (float):
|
232 |
+
Learning rate.
|
233 |
+
params (iterable): iterable of parameters to optimize or dicts defining
|
234 |
+
parameter groups
|
235 |
+
weight_decay (float):
|
236 |
+
Weight decay.
|
237 |
+
**kwargs (additional keyword arguments, *optional*):
|
238 |
+
Other arguments.
|
239 |
+
"""
|
240 |
+
|
241 |
+
def __init__(self, params, lr=0.001, weight_decay=0, **kwargs):
|
242 |
+
self.params = params
|
243 |
+
self.lr = lr
|
244 |
+
self.weight_decay = weight_decay
|
245 |
+
self.kwargs = kwargs
|
246 |
+
|
247 |
+
|
248 |
+
class DummyScheduler:
|
249 |
+
"""
|
250 |
+
Dummy scheduler presents model parameters or param groups, this is primarily used to follow conventional training
|
251 |
+
loop when scheduler config is specified in the deepspeed config file.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
optimizer (`torch.optim.optimizer.Optimizer`):
|
255 |
+
The optimizer to wrap.
|
256 |
+
total_num_steps (int, *optional*):
|
257 |
+
Total number of steps.
|
258 |
+
warmup_num_steps (int, *optional*):
|
259 |
+
Number of steps for warmup.
|
260 |
+
lr_scheduler_callable (callable, *optional*):
|
261 |
+
A callable function that creates an LR Scheduler. It accepts only one argument `optimizer`.
|
262 |
+
**kwargs (additional keyword arguments, *optional*):
|
263 |
+
Other arguments.
|
264 |
+
"""
|
265 |
+
|
266 |
+
def __init__(self, optimizer, total_num_steps=None, warmup_num_steps=0, lr_scheduler_callable=None, **kwargs):
|
267 |
+
self.optimizer = optimizer
|
268 |
+
self.total_num_steps = total_num_steps
|
269 |
+
self.warmup_num_steps = warmup_num_steps
|
270 |
+
self.lr_scheduler_callable = lr_scheduler_callable
|
271 |
+
self.kwargs = kwargs
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/environment.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import logging
|
16 |
+
import math
|
17 |
+
import os
|
18 |
+
import platform
|
19 |
+
import subprocess
|
20 |
+
import sys
|
21 |
+
from dataclasses import dataclass, field
|
22 |
+
from functools import lru_cache
|
23 |
+
from shutil import which
|
24 |
+
from typing import List, Optional
|
25 |
+
|
26 |
+
import torch
|
27 |
+
from packaging.version import parse
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
def convert_dict_to_env_variables(current_env: dict):
|
34 |
+
"""
|
35 |
+
Verifies that all keys and values in `current_env` do not contain illegal keys or values, and returns a list of
|
36 |
+
strings as the result.
|
37 |
+
|
38 |
+
Example:
|
39 |
+
```python
|
40 |
+
>>> from accelerate.utils.environment import verify_env
|
41 |
+
|
42 |
+
>>> env = {"ACCELERATE_DEBUG_MODE": "1", "BAD_ENV_NAME": "<mything", "OTHER_ENV": "2"}
|
43 |
+
>>> valid_env_items = verify_env(env)
|
44 |
+
>>> print(valid_env_items)
|
45 |
+
["ACCELERATE_DEBUG_MODE=1\n", "OTHER_ENV=2\n"]
|
46 |
+
```
|
47 |
+
"""
|
48 |
+
forbidden_chars = [";", "\n", "<", ">", " "]
|
49 |
+
valid_env_items = []
|
50 |
+
for key, value in current_env.items():
|
51 |
+
if all(char not in (key + value) for char in forbidden_chars) and len(key) >= 1 and len(value) >= 1:
|
52 |
+
valid_env_items.append(f"{key}={value}\n")
|
53 |
+
else:
|
54 |
+
logger.warning(f"WARNING: Skipping {key}={value} as it contains forbidden characters or missing values.")
|
55 |
+
return valid_env_items
|
56 |
+
|
57 |
+
|
58 |
+
def str_to_bool(value) -> int:
|
59 |
+
"""
|
60 |
+
Converts a string representation of truth to `True` (1) or `False` (0).
|
61 |
+
|
62 |
+
True values are `y`, `yes`, `t`, `true`, `on`, and `1`; False value are `n`, `no`, `f`, `false`, `off`, and `0`;
|
63 |
+
"""
|
64 |
+
value = value.lower()
|
65 |
+
if value in ("y", "yes", "t", "true", "on", "1"):
|
66 |
+
return 1
|
67 |
+
elif value in ("n", "no", "f", "false", "off", "0"):
|
68 |
+
return 0
|
69 |
+
else:
|
70 |
+
raise ValueError(f"invalid truth value {value}")
|
71 |
+
|
72 |
+
|
73 |
+
def get_int_from_env(env_keys, default):
|
74 |
+
"""Returns the first positive env value found in the `env_keys` list or the default."""
|
75 |
+
for e in env_keys:
|
76 |
+
val = int(os.environ.get(e, -1))
|
77 |
+
if val >= 0:
|
78 |
+
return val
|
79 |
+
return default
|
80 |
+
|
81 |
+
|
82 |
+
def parse_flag_from_env(key, default=False):
|
83 |
+
"""Returns truthy value for `key` from the env if available else the default."""
|
84 |
+
value = os.environ.get(key, str(default))
|
85 |
+
return str_to_bool(value) == 1 # As its name indicates `str_to_bool` actually returns an int...
|
86 |
+
|
87 |
+
|
88 |
+
def parse_choice_from_env(key, default="no"):
|
89 |
+
value = os.environ.get(key, str(default))
|
90 |
+
return value
|
91 |
+
|
92 |
+
|
93 |
+
def are_libraries_initialized(*library_names: str) -> List[str]:
|
94 |
+
"""
|
95 |
+
Checks if any of `library_names` are imported in the environment. Will return any names that are.
|
96 |
+
"""
|
97 |
+
return [lib_name for lib_name in library_names if lib_name in sys.modules.keys()]
|
98 |
+
|
99 |
+
|
100 |
+
def _nvidia_smi():
|
101 |
+
"""
|
102 |
+
Returns the right nvidia-smi command based on the system.
|
103 |
+
"""
|
104 |
+
if platform.system() == "Windows":
|
105 |
+
# If platform is Windows and nvidia-smi can't be found in path
|
106 |
+
# try from systemd drive with default installation path
|
107 |
+
command = which("nvidia-smi")
|
108 |
+
if command is None:
|
109 |
+
command = "%s\\Program Files\\NVIDIA Corporation\\NVSMI\\nvidia-smi.exe" % os.environ["systemdrive"]
|
110 |
+
else:
|
111 |
+
command = "nvidia-smi"
|
112 |
+
return command
|
113 |
+
|
114 |
+
|
115 |
+
def get_gpu_info():
|
116 |
+
"""
|
117 |
+
Gets GPU count and names using `nvidia-smi` instead of torch to not initialize CUDA.
|
118 |
+
|
119 |
+
Largely based on the `gputil` library.
|
120 |
+
"""
|
121 |
+
# Returns as list of `n` GPUs and their names
|
122 |
+
output = subprocess.check_output(
|
123 |
+
[_nvidia_smi(), "--query-gpu=count,name", "--format=csv,noheader"], universal_newlines=True
|
124 |
+
)
|
125 |
+
output = output.strip()
|
126 |
+
gpus = output.split(os.linesep)
|
127 |
+
# Get names from output
|
128 |
+
gpu_count = len(gpus)
|
129 |
+
gpu_names = [gpu.split(",")[1].strip() for gpu in gpus]
|
130 |
+
return gpu_names, gpu_count
|
131 |
+
|
132 |
+
|
133 |
+
def get_driver_version():
|
134 |
+
"""
|
135 |
+
Returns the driver version
|
136 |
+
|
137 |
+
In the case of multiple GPUs, will return the first.
|
138 |
+
"""
|
139 |
+
output = subprocess.check_output(
|
140 |
+
[_nvidia_smi(), "--query-gpu=driver_version", "--format=csv,noheader"], universal_newlines=True
|
141 |
+
)
|
142 |
+
output = output.strip()
|
143 |
+
return output.split(os.linesep)[0]
|
144 |
+
|
145 |
+
|
146 |
+
def check_cuda_p2p_ib_support():
|
147 |
+
"""
|
148 |
+
Checks if the devices being used have issues with P2P and IB communications, namely any consumer GPU hardware after
|
149 |
+
the 3090.
|
150 |
+
|
151 |
+
Noteably uses `nvidia-smi` instead of torch to not initialize CUDA.
|
152 |
+
"""
|
153 |
+
try:
|
154 |
+
device_names, device_count = get_gpu_info()
|
155 |
+
# As new consumer GPUs get released, add them to `unsupported_devices``
|
156 |
+
unsupported_devices = {"RTX 40"}
|
157 |
+
if device_count > 1:
|
158 |
+
if any(
|
159 |
+
unsupported_device in device_name
|
160 |
+
for device_name in device_names
|
161 |
+
for unsupported_device in unsupported_devices
|
162 |
+
):
|
163 |
+
# Check if they have the right driver version
|
164 |
+
acceptable_driver_version = "550.40.07"
|
165 |
+
current_driver_version = get_driver_version()
|
166 |
+
if parse(current_driver_version) < parse(acceptable_driver_version):
|
167 |
+
return False
|
168 |
+
return True
|
169 |
+
except Exception:
|
170 |
+
pass
|
171 |
+
return True
|
172 |
+
|
173 |
+
|
174 |
+
def check_fp8_capability():
|
175 |
+
"""
|
176 |
+
Checks if all the current GPUs available support FP8.
|
177 |
+
|
178 |
+
Notably must initialize `torch.cuda` to check.
|
179 |
+
"""
|
180 |
+
cuda_device_capacity = torch.cuda.get_device_capability()
|
181 |
+
return cuda_device_capacity >= (8, 9)
|
182 |
+
|
183 |
+
|
184 |
+
@dataclass
|
185 |
+
class CPUInformation:
|
186 |
+
"""
|
187 |
+
Stores information about the CPU in a distributed environment. It contains the following attributes:
|
188 |
+
- rank: The rank of the current process.
|
189 |
+
- world_size: The total number of processes in the world.
|
190 |
+
- local_rank: The rank of the current process on the local node.
|
191 |
+
- local_world_size: The total number of processes on the local node.
|
192 |
+
"""
|
193 |
+
|
194 |
+
rank: int = field(default=0, metadata={"help": "The rank of the current process."})
|
195 |
+
world_size: int = field(default=1, metadata={"help": "The total number of processes in the world."})
|
196 |
+
local_rank: int = field(default=0, metadata={"help": "The rank of the current process on the local node."})
|
197 |
+
local_world_size: int = field(default=1, metadata={"help": "The total number of processes on the local node."})
|
198 |
+
|
199 |
+
|
200 |
+
def get_cpu_distributed_information() -> CPUInformation:
|
201 |
+
"""
|
202 |
+
Returns various information about the environment in relation to CPU distributed training as a `CPUInformation`
|
203 |
+
dataclass.
|
204 |
+
"""
|
205 |
+
information = {}
|
206 |
+
information["rank"] = get_int_from_env(["RANK", "PMI_RANK", "OMPI_COMM_WORLD_RANK", "MV2_COMM_WORLD_RANK"], 0)
|
207 |
+
information["world_size"] = get_int_from_env(
|
208 |
+
["WORLD_SIZE", "PMI_SIZE", "OMPI_COMM_WORLD_SIZE", "MV2_COMM_WORLD_SIZE"], 1
|
209 |
+
)
|
210 |
+
information["local_rank"] = get_int_from_env(
|
211 |
+
["LOCAL_RANK", "MPI_LOCALRANKID", "OMPI_COMM_WORLD_LOCAL_RANK", "MV2_COMM_WORLD_LOCAL_RANK"], 0
|
212 |
+
)
|
213 |
+
information["local_world_size"] = get_int_from_env(
|
214 |
+
["LOCAL_WORLD_SIZE", "MPI_LOCALNRANKS", "OMPI_COMM_WORLD_LOCAL_SIZE", "MV2_COMM_WORLD_LOCAL_SIZE"],
|
215 |
+
1,
|
216 |
+
)
|
217 |
+
return CPUInformation(**information)
|
218 |
+
|
219 |
+
|
220 |
+
def override_numa_affinity(local_process_index: int, verbose: Optional[bool] = None) -> None:
|
221 |
+
"""
|
222 |
+
Overrides whatever NUMA affinity is set for the current process. This is very taxing and requires recalculating the
|
223 |
+
affinity to set, ideally you should use `utils.environment.set_numa_affinity` instead.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
local_process_index (int):
|
227 |
+
The index of the current process on the current server.
|
228 |
+
verbose (bool, *optional*):
|
229 |
+
Whether to log out the assignment of each CPU. If `ACCELERATE_DEBUG_MODE` is enabled, will default to True.
|
230 |
+
"""
|
231 |
+
if verbose is None:
|
232 |
+
verbose = parse_flag_from_env("ACCELERATE_DEBUG_MODE", False)
|
233 |
+
if torch.cuda.is_available():
|
234 |
+
from accelerate.utils import is_pynvml_available
|
235 |
+
|
236 |
+
if not is_pynvml_available():
|
237 |
+
raise ImportError(
|
238 |
+
"To set CPU affinity on CUDA GPUs the `pynvml` package must be available. (`pip install pynvml`)"
|
239 |
+
)
|
240 |
+
import pynvml as nvml
|
241 |
+
|
242 |
+
# The below code is based on https://github.com/NVIDIA/DeepLearningExamples/blob/master/TensorFlow2/LanguageModeling/BERT/gpu_affinity.py
|
243 |
+
nvml.nvmlInit()
|
244 |
+
num_elements = math.ceil(os.cpu_count() / 64)
|
245 |
+
handle = nvml.nvmlDeviceGetHandleByIndex(local_process_index)
|
246 |
+
affinity_string = ""
|
247 |
+
for j in nvml.nvmlDeviceGetCpuAffinity(handle, num_elements):
|
248 |
+
# assume nvml returns list of 64 bit ints
|
249 |
+
affinity_string = f"{j:064b}{affinity_string}"
|
250 |
+
affinity_list = [int(x) for x in affinity_string]
|
251 |
+
affinity_list.reverse() # so core 0 is the 0th element
|
252 |
+
affinity_to_set = [i for i, e in enumerate(affinity_list) if e != 0]
|
253 |
+
os.sched_setaffinity(0, affinity_to_set)
|
254 |
+
if verbose:
|
255 |
+
cpu_cores = os.sched_getaffinity(0)
|
256 |
+
logger.info(f"Assigning {len(cpu_cores)} cpu cores to process {local_process_index}: {cpu_cores}")
|
257 |
+
|
258 |
+
|
259 |
+
@lru_cache
|
260 |
+
def set_numa_affinity(local_process_index: int, verbose: Optional[bool] = None) -> None:
|
261 |
+
"""
|
262 |
+
Assigns the current process to a specific NUMA node. Ideally most efficient when having at least 2 cpus per node.
|
263 |
+
|
264 |
+
This result is cached between calls. If you want to override it, please use
|
265 |
+
`accelerate.utils.environment.override_numa_afifnity`.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
local_process_index (int):
|
269 |
+
The index of the current process on the current server.
|
270 |
+
verbose (bool, *optional*):
|
271 |
+
Whether to print the new cpu cores assignment for each process. If `ACCELERATE_DEBUG_MODE` is enabled, will
|
272 |
+
default to True.
|
273 |
+
"""
|
274 |
+
override_numa_affinity(local_process_index=local_process_index, verbose=verbose)
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/fsdp_utils.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
|
16 |
+
import torch
|
17 |
+
|
18 |
+
from ..logging import get_logger
|
19 |
+
from .constants import FSDP_MODEL_NAME, FSDP_PYTORCH_VERSION, OPTIMIZER_NAME
|
20 |
+
from .imports import is_torch_distributed_available
|
21 |
+
from .modeling import is_peft_model
|
22 |
+
from .versions import is_torch_version
|
23 |
+
|
24 |
+
|
25 |
+
if is_torch_version(">=", FSDP_PYTORCH_VERSION) and is_torch_distributed_available():
|
26 |
+
import torch.distributed.checkpoint as dist_cp
|
27 |
+
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
|
28 |
+
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
|
29 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
|
30 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
|
31 |
+
|
32 |
+
|
33 |
+
logger = get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
def _get_model_state_dict(model, adapter_only=False):
|
37 |
+
if adapter_only and is_peft_model(model):
|
38 |
+
from peft import get_peft_model_state_dict
|
39 |
+
|
40 |
+
return get_peft_model_state_dict(model, adapter_name=model.active_adapter)
|
41 |
+
else:
|
42 |
+
return model.state_dict()
|
43 |
+
|
44 |
+
|
45 |
+
def _set_model_state_dict(model, state_dict, adapter_only=False):
|
46 |
+
if adapter_only and is_peft_model(model):
|
47 |
+
from peft import set_peft_model_state_dict
|
48 |
+
|
49 |
+
return set_peft_model_state_dict(model, state_dict, adapter_name=model.active_adapter)
|
50 |
+
else:
|
51 |
+
return model.load_state_dict(state_dict)
|
52 |
+
|
53 |
+
|
54 |
+
def save_fsdp_model(fsdp_plugin, accelerator, model, output_dir, model_index=0, adapter_only=False):
|
55 |
+
os.makedirs(output_dir, exist_ok=True)
|
56 |
+
|
57 |
+
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
|
58 |
+
# FSDP raises error when single GPU is used with `offload_to_cpu=True` for FULL_STATE_DICT
|
59 |
+
# so, only enable it when num_processes>1
|
60 |
+
is_multi_process = accelerator.num_processes > 1
|
61 |
+
fsdp_plugin.state_dict_config.offload_to_cpu = is_multi_process
|
62 |
+
fsdp_plugin.state_dict_config.rank0_only = is_multi_process
|
63 |
+
|
64 |
+
with FSDP.state_dict_type(
|
65 |
+
model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config
|
66 |
+
):
|
67 |
+
state_dict = _get_model_state_dict(model, adapter_only=adapter_only)
|
68 |
+
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
|
69 |
+
weights_name = f"{FSDP_MODEL_NAME}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}.bin"
|
70 |
+
output_model_file = os.path.join(output_dir, weights_name)
|
71 |
+
if accelerator.process_index == 0:
|
72 |
+
logger.info(f"Saving model to {output_model_file}")
|
73 |
+
torch.save(state_dict, output_model_file)
|
74 |
+
logger.info(f"Model saved to {output_model_file}")
|
75 |
+
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
|
76 |
+
weights_name = (
|
77 |
+
f"{FSDP_MODEL_NAME}_rank{accelerator.process_index}.bin"
|
78 |
+
if model_index == 0
|
79 |
+
else f"{FSDP_MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
|
80 |
+
)
|
81 |
+
output_model_file = os.path.join(output_dir, weights_name)
|
82 |
+
logger.info(f"Saving model to {output_model_file}")
|
83 |
+
torch.save(state_dict, output_model_file)
|
84 |
+
logger.info(f"Model saved to {output_model_file}")
|
85 |
+
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
|
86 |
+
ckpt_dir = os.path.join(output_dir, f"{FSDP_MODEL_NAME}_{model_index}")
|
87 |
+
os.makedirs(ckpt_dir, exist_ok=True)
|
88 |
+
logger.info(f"Saving model to {ckpt_dir}")
|
89 |
+
state_dict = {"model": state_dict}
|
90 |
+
|
91 |
+
dist_cp.save_state_dict(
|
92 |
+
state_dict=state_dict,
|
93 |
+
storage_writer=dist_cp.FileSystemWriter(ckpt_dir),
|
94 |
+
planner=DefaultSavePlanner(),
|
95 |
+
)
|
96 |
+
logger.info(f"Model saved to {ckpt_dir}")
|
97 |
+
|
98 |
+
|
99 |
+
def load_fsdp_model(fsdp_plugin, accelerator, model, input_dir, model_index=0, adapter_only=False):
|
100 |
+
accelerator.wait_for_everyone()
|
101 |
+
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
|
102 |
+
# FSDP raises error when single GPU is used with `offload_to_cpu=True` for FULL_STATE_DICT
|
103 |
+
# so, only enable it when num_processes>1
|
104 |
+
is_multi_process = accelerator.num_processes > 1
|
105 |
+
fsdp_plugin.state_dict_config.offload_to_cpu = is_multi_process
|
106 |
+
fsdp_plugin.state_dict_config.rank0_only = is_multi_process
|
107 |
+
with FSDP.state_dict_type(
|
108 |
+
model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config
|
109 |
+
):
|
110 |
+
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
|
111 |
+
if type(model) != FSDP and accelerator.process_index != 0:
|
112 |
+
if not fsdp_plugin.sync_module_states:
|
113 |
+
raise ValueError(
|
114 |
+
"Set the `sync_module_states` flag to `True` so that model states are synced across processes when "
|
115 |
+
"initializing FSDP object"
|
116 |
+
)
|
117 |
+
return
|
118 |
+
weights_name = f"{FSDP_MODEL_NAME}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}.bin"
|
119 |
+
input_model_file = os.path.join(input_dir, weights_name)
|
120 |
+
logger.info(f"Loading model from {input_model_file}")
|
121 |
+
state_dict = torch.load(input_model_file)
|
122 |
+
logger.info(f"Model loaded from {input_model_file}")
|
123 |
+
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
|
124 |
+
weights_name = (
|
125 |
+
f"{FSDP_MODEL_NAME}_rank{accelerator.process_index}.bin"
|
126 |
+
if model_index == 0
|
127 |
+
else f"{FSDP_MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
|
128 |
+
)
|
129 |
+
input_model_file = os.path.join(input_dir, weights_name)
|
130 |
+
logger.info(f"Loading model from {input_model_file}")
|
131 |
+
state_dict = torch.load(input_model_file)
|
132 |
+
logger.info(f"Model loaded from {input_model_file}")
|
133 |
+
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
|
134 |
+
ckpt_dir = (
|
135 |
+
os.path.join(input_dir, f"{FSDP_MODEL_NAME}_{model_index}")
|
136 |
+
if f"{FSDP_MODEL_NAME}" not in input_dir
|
137 |
+
else input_dir
|
138 |
+
)
|
139 |
+
logger.info(f"Loading model from {ckpt_dir}")
|
140 |
+
state_dict = {"model": _get_model_state_dict(model, adapter_only=adapter_only)}
|
141 |
+
dist_cp.load_state_dict(
|
142 |
+
state_dict=state_dict,
|
143 |
+
storage_reader=dist_cp.FileSystemReader(ckpt_dir),
|
144 |
+
planner=DefaultLoadPlanner(),
|
145 |
+
)
|
146 |
+
state_dict = state_dict["model"]
|
147 |
+
logger.info(f"Model loaded from {ckpt_dir}")
|
148 |
+
load_result = _set_model_state_dict(model, state_dict, adapter_only=adapter_only)
|
149 |
+
return load_result
|
150 |
+
|
151 |
+
|
152 |
+
def save_fsdp_optimizer(fsdp_plugin, accelerator, optimizer, model, output_dir, optimizer_index=0):
|
153 |
+
os.makedirs(output_dir, exist_ok=True)
|
154 |
+
with FSDP.state_dict_type(
|
155 |
+
model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config
|
156 |
+
):
|
157 |
+
optim_state = FSDP.optim_state_dict(model, optimizer)
|
158 |
+
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
|
159 |
+
if accelerator.process_index == 0:
|
160 |
+
optim_state_name = (
|
161 |
+
f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin"
|
162 |
+
)
|
163 |
+
output_optimizer_file = os.path.join(output_dir, optim_state_name)
|
164 |
+
logger.info(f"Saving Optimizer state to {output_optimizer_file}")
|
165 |
+
torch.save(optim_state, output_optimizer_file)
|
166 |
+
logger.info(f"Optimizer state saved in {output_optimizer_file}")
|
167 |
+
else:
|
168 |
+
ckpt_dir = os.path.join(output_dir, f"{OPTIMIZER_NAME}_{optimizer_index}")
|
169 |
+
os.makedirs(ckpt_dir, exist_ok=True)
|
170 |
+
logger.info(f"Saving Optimizer state to {ckpt_dir}")
|
171 |
+
dist_cp.save_state_dict(
|
172 |
+
state_dict={"optimizer": optim_state},
|
173 |
+
storage_writer=dist_cp.FileSystemWriter(ckpt_dir),
|
174 |
+
planner=DefaultSavePlanner(),
|
175 |
+
)
|
176 |
+
logger.info(f"Optimizer state saved in {ckpt_dir}")
|
177 |
+
|
178 |
+
|
179 |
+
def load_fsdp_optimizer(fsdp_plugin, accelerator, optimizer, model, input_dir, optimizer_index=0, adapter_only=False):
|
180 |
+
accelerator.wait_for_everyone()
|
181 |
+
with FSDP.state_dict_type(
|
182 |
+
model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config
|
183 |
+
):
|
184 |
+
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
|
185 |
+
optim_state = None
|
186 |
+
if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
|
187 |
+
optimizer_name = (
|
188 |
+
f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin"
|
189 |
+
)
|
190 |
+
input_optimizer_file = os.path.join(input_dir, optimizer_name)
|
191 |
+
logger.info(f"Loading Optimizer state from {input_optimizer_file}")
|
192 |
+
optim_state = torch.load(input_optimizer_file)
|
193 |
+
logger.info(f"Optimizer state loaded from {input_optimizer_file}")
|
194 |
+
else:
|
195 |
+
ckpt_dir = (
|
196 |
+
os.path.join(input_dir, f"{OPTIMIZER_NAME}_{optimizer_index}")
|
197 |
+
if f"{OPTIMIZER_NAME}" not in input_dir
|
198 |
+
else input_dir
|
199 |
+
)
|
200 |
+
logger.info(f"Loading Optimizer from {ckpt_dir}")
|
201 |
+
optim_state = load_sharded_optimizer_state_dict(
|
202 |
+
model_state_dict=_get_model_state_dict(model, adapter_only=adapter_only),
|
203 |
+
optimizer_key="optimizer",
|
204 |
+
storage_reader=dist_cp.FileSystemReader(ckpt_dir),
|
205 |
+
)
|
206 |
+
optim_state = optim_state["optimizer"]
|
207 |
+
logger.info(f"Optimizer loaded from {ckpt_dir}")
|
208 |
+
flattened_osd = FSDP.optim_state_dict_to_load(model=model, optim=optimizer, optim_state_dict=optim_state)
|
209 |
+
optimizer.load_state_dict(flattened_osd)
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/imports.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import importlib
|
16 |
+
import importlib.metadata
|
17 |
+
import os
|
18 |
+
import warnings
|
19 |
+
from functools import lru_cache
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from packaging import version
|
23 |
+
from packaging.version import parse
|
24 |
+
|
25 |
+
from .environment import parse_flag_from_env, str_to_bool
|
26 |
+
from .versions import compare_versions, is_torch_version
|
27 |
+
|
28 |
+
|
29 |
+
# Try to run Torch native job in an environment with TorchXLA installed by setting this value to 0.
|
30 |
+
USE_TORCH_XLA = parse_flag_from_env("USE_TORCH_XLA", default=True)
|
31 |
+
|
32 |
+
_torch_xla_available = False
|
33 |
+
if USE_TORCH_XLA:
|
34 |
+
try:
|
35 |
+
import torch_xla.core.xla_model as xm # noqa: F401
|
36 |
+
import torch_xla.runtime
|
37 |
+
|
38 |
+
_torch_xla_available = True
|
39 |
+
except ImportError:
|
40 |
+
pass
|
41 |
+
|
42 |
+
# Keep it for is_tpu_available. It will be removed along with is_tpu_available.
|
43 |
+
_tpu_available = _torch_xla_available
|
44 |
+
|
45 |
+
# Cache this result has it's a C FFI call which can be pretty time-consuming
|
46 |
+
_torch_distributed_available = torch.distributed.is_available()
|
47 |
+
|
48 |
+
|
49 |
+
def _is_package_available(pkg_name, metadata_name=None):
|
50 |
+
# Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version
|
51 |
+
package_exists = importlib.util.find_spec(pkg_name) is not None
|
52 |
+
if package_exists:
|
53 |
+
try:
|
54 |
+
# Some libraries have different names in the metadata
|
55 |
+
_ = importlib.metadata.metadata(pkg_name if metadata_name is None else metadata_name)
|
56 |
+
return True
|
57 |
+
except importlib.metadata.PackageNotFoundError:
|
58 |
+
return False
|
59 |
+
|
60 |
+
|
61 |
+
def is_torch_distributed_available() -> bool:
|
62 |
+
return _torch_distributed_available
|
63 |
+
|
64 |
+
|
65 |
+
def is_ccl_available():
|
66 |
+
try:
|
67 |
+
pass
|
68 |
+
except ImportError:
|
69 |
+
print(
|
70 |
+
"Intel(R) oneCCL Bindings for PyTorch* is required to run DDP on Intel(R) GPUs, but it is not"
|
71 |
+
" detected. If you see \"ValueError: Invalid backend: 'ccl'\" error, please install Intel(R) oneCCL"
|
72 |
+
" Bindings for PyTorch*."
|
73 |
+
)
|
74 |
+
return (
|
75 |
+
importlib.util.find_spec("torch_ccl") is not None
|
76 |
+
or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
def get_ccl_version():
|
81 |
+
return importlib.metadata.version("oneccl_bind_pt")
|
82 |
+
|
83 |
+
|
84 |
+
def is_pynvml_available():
|
85 |
+
return _is_package_available("pynvml")
|
86 |
+
|
87 |
+
|
88 |
+
def is_msamp_available():
|
89 |
+
return _is_package_available("msamp", "ms-amp")
|
90 |
+
|
91 |
+
|
92 |
+
def is_transformer_engine_available():
|
93 |
+
return _is_package_available("transformer_engine")
|
94 |
+
|
95 |
+
|
96 |
+
def is_fp8_available():
|
97 |
+
return is_msamp_available() or is_transformer_engine_available()
|
98 |
+
|
99 |
+
|
100 |
+
def is_cuda_available():
|
101 |
+
"""
|
102 |
+
Checks if `cuda` is available via an `nvml-based` check which won't trigger the drivers and leave cuda
|
103 |
+
uninitialized.
|
104 |
+
"""
|
105 |
+
pytorch_nvml_based_cuda_check_previous_value = os.environ.get("PYTORCH_NVML_BASED_CUDA_CHECK")
|
106 |
+
try:
|
107 |
+
os.environ["PYTORCH_NVML_BASED_CUDA_CHECK"] = str(1)
|
108 |
+
available = torch.cuda.is_available()
|
109 |
+
finally:
|
110 |
+
if pytorch_nvml_based_cuda_check_previous_value:
|
111 |
+
os.environ["PYTORCH_NVML_BASED_CUDA_CHECK"] = pytorch_nvml_based_cuda_check_previous_value
|
112 |
+
else:
|
113 |
+
os.environ.pop("PYTORCH_NVML_BASED_CUDA_CHECK", None)
|
114 |
+
|
115 |
+
return available
|
116 |
+
|
117 |
+
|
118 |
+
@lru_cache
|
119 |
+
def is_tpu_available(check_device=True):
|
120 |
+
"Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
|
121 |
+
warnings.warn(
|
122 |
+
"`is_tpu_available` is deprecated and will be removed in v0.27.0. "
|
123 |
+
"Please use the `is_torch_xla_available` instead.",
|
124 |
+
FutureWarning,
|
125 |
+
)
|
126 |
+
# Due to bugs on the amp series GPUs, we disable torch-xla on them
|
127 |
+
if is_cuda_available():
|
128 |
+
return False
|
129 |
+
if check_device:
|
130 |
+
if _tpu_available:
|
131 |
+
try:
|
132 |
+
# Will raise a RuntimeError if no XLA configuration is found
|
133 |
+
_ = xm.xla_device()
|
134 |
+
return True
|
135 |
+
except RuntimeError:
|
136 |
+
return False
|
137 |
+
return _tpu_available
|
138 |
+
|
139 |
+
|
140 |
+
@lru_cache
|
141 |
+
def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False):
|
142 |
+
"""
|
143 |
+
Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set
|
144 |
+
the USE_TORCH_XLA to false.
|
145 |
+
"""
|
146 |
+
assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true."
|
147 |
+
|
148 |
+
if not _torch_xla_available:
|
149 |
+
return False
|
150 |
+
elif check_is_gpu:
|
151 |
+
return torch_xla.runtime.device_type() in ["GPU", "CUDA"]
|
152 |
+
elif check_is_tpu:
|
153 |
+
return torch_xla.runtime.device_type() == "TPU"
|
154 |
+
|
155 |
+
return True
|
156 |
+
|
157 |
+
|
158 |
+
def is_deepspeed_available():
|
159 |
+
if is_mlu_available():
|
160 |
+
return _is_package_available("deepspeed", metadata_name="deepspeed-mlu")
|
161 |
+
return _is_package_available("deepspeed")
|
162 |
+
|
163 |
+
|
164 |
+
def is_pippy_available():
|
165 |
+
package_exists = _is_package_available("pippy", "torchpippy")
|
166 |
+
if package_exists:
|
167 |
+
pippy_version = version.parse(importlib.metadata.version("torchpippy"))
|
168 |
+
return compare_versions(pippy_version, ">", "0.1.1")
|
169 |
+
return False
|
170 |
+
|
171 |
+
|
172 |
+
def is_bf16_available(ignore_tpu=False):
|
173 |
+
"Checks if bf16 is supported, optionally ignoring the TPU"
|
174 |
+
if is_torch_xla_available(check_is_tpu=True):
|
175 |
+
return not ignore_tpu
|
176 |
+
if is_cuda_available():
|
177 |
+
return torch.cuda.is_bf16_supported()
|
178 |
+
return True
|
179 |
+
|
180 |
+
|
181 |
+
def is_4bit_bnb_available():
|
182 |
+
package_exists = _is_package_available("bitsandbytes")
|
183 |
+
if package_exists:
|
184 |
+
bnb_version = version.parse(importlib.metadata.version("bitsandbytes"))
|
185 |
+
return compare_versions(bnb_version, ">=", "0.39.0")
|
186 |
+
return False
|
187 |
+
|
188 |
+
|
189 |
+
def is_8bit_bnb_available():
|
190 |
+
package_exists = _is_package_available("bitsandbytes")
|
191 |
+
if package_exists:
|
192 |
+
bnb_version = version.parse(importlib.metadata.version("bitsandbytes"))
|
193 |
+
return compare_versions(bnb_version, ">=", "0.37.2")
|
194 |
+
return False
|
195 |
+
|
196 |
+
|
197 |
+
def is_bnb_available():
|
198 |
+
return _is_package_available("bitsandbytes")
|
199 |
+
|
200 |
+
|
201 |
+
def is_megatron_lm_available():
|
202 |
+
if str_to_bool(os.environ.get("ACCELERATE_USE_MEGATRON_LM", "False")) == 1:
|
203 |
+
package_exists = importlib.util.find_spec("megatron") is not None
|
204 |
+
if package_exists:
|
205 |
+
try:
|
206 |
+
megatron_version = parse(importlib.metadata.version("megatron-lm"))
|
207 |
+
return compare_versions(megatron_version, ">=", "2.2.0")
|
208 |
+
except Exception as e:
|
209 |
+
warnings.warn(f"Parse Megatron version failed. Exception:{e}")
|
210 |
+
return False
|
211 |
+
|
212 |
+
|
213 |
+
def is_transformers_available():
|
214 |
+
return _is_package_available("transformers")
|
215 |
+
|
216 |
+
|
217 |
+
def is_datasets_available():
|
218 |
+
return _is_package_available("datasets")
|
219 |
+
|
220 |
+
|
221 |
+
def is_peft_available():
|
222 |
+
return _is_package_available("peft")
|
223 |
+
|
224 |
+
|
225 |
+
def is_timm_available():
|
226 |
+
return _is_package_available("timm")
|
227 |
+
|
228 |
+
|
229 |
+
def is_aim_available():
|
230 |
+
package_exists = _is_package_available("aim")
|
231 |
+
if package_exists:
|
232 |
+
aim_version = version.parse(importlib.metadata.version("aim"))
|
233 |
+
return compare_versions(aim_version, "<", "4.0.0")
|
234 |
+
return False
|
235 |
+
|
236 |
+
|
237 |
+
def is_tensorboard_available():
|
238 |
+
return _is_package_available("tensorboard") or _is_package_available("tensorboardX")
|
239 |
+
|
240 |
+
|
241 |
+
def is_wandb_available():
|
242 |
+
return _is_package_available("wandb")
|
243 |
+
|
244 |
+
|
245 |
+
def is_comet_ml_available():
|
246 |
+
return _is_package_available("comet_ml")
|
247 |
+
|
248 |
+
|
249 |
+
def is_boto3_available():
|
250 |
+
return _is_package_available("boto3")
|
251 |
+
|
252 |
+
|
253 |
+
def is_rich_available():
|
254 |
+
if _is_package_available("rich"):
|
255 |
+
if "ACCELERATE_DISABLE_RICH" in os.environ:
|
256 |
+
warnings.warn(
|
257 |
+
"`ACCELERATE_DISABLE_RICH` is deprecated and will be removed in v0.22.0 and deactivated by default. Please use `ACCELERATE_ENABLE_RICH` if you wish to use `rich`."
|
258 |
+
)
|
259 |
+
return not parse_flag_from_env("ACCELERATE_DISABLE_RICH", False)
|
260 |
+
return parse_flag_from_env("ACCELERATE_ENABLE_RICH", False)
|
261 |
+
return False
|
262 |
+
|
263 |
+
|
264 |
+
def is_sagemaker_available():
|
265 |
+
return _is_package_available("sagemaker")
|
266 |
+
|
267 |
+
|
268 |
+
def is_tqdm_available():
|
269 |
+
return _is_package_available("tqdm")
|
270 |
+
|
271 |
+
|
272 |
+
def is_clearml_available():
|
273 |
+
return _is_package_available("clearml")
|
274 |
+
|
275 |
+
|
276 |
+
def is_pandas_available():
|
277 |
+
return _is_package_available("pandas")
|
278 |
+
|
279 |
+
|
280 |
+
def is_mlflow_available():
|
281 |
+
if _is_package_available("mlflow"):
|
282 |
+
return True
|
283 |
+
|
284 |
+
if importlib.util.find_spec("mlflow") is not None:
|
285 |
+
try:
|
286 |
+
_ = importlib.metadata.metadata("mlflow-skinny")
|
287 |
+
return True
|
288 |
+
except importlib.metadata.PackageNotFoundError:
|
289 |
+
return False
|
290 |
+
return False
|
291 |
+
|
292 |
+
|
293 |
+
def is_mps_available():
|
294 |
+
return is_torch_version(">=", "1.12") and torch.backends.mps.is_available() and torch.backends.mps.is_built()
|
295 |
+
|
296 |
+
|
297 |
+
def is_ipex_available():
|
298 |
+
def get_major_and_minor_from_version(full_version):
|
299 |
+
return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)
|
300 |
+
|
301 |
+
_torch_version = importlib.metadata.version("torch")
|
302 |
+
if importlib.util.find_spec("intel_extension_for_pytorch") is None:
|
303 |
+
return False
|
304 |
+
_ipex_version = "N/A"
|
305 |
+
try:
|
306 |
+
_ipex_version = importlib.metadata.version("intel_extension_for_pytorch")
|
307 |
+
except importlib.metadata.PackageNotFoundError:
|
308 |
+
return False
|
309 |
+
torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
|
310 |
+
ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
|
311 |
+
if torch_major_and_minor != ipex_major_and_minor:
|
312 |
+
warnings.warn(
|
313 |
+
f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
|
314 |
+
f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
|
315 |
+
)
|
316 |
+
return False
|
317 |
+
return True
|
318 |
+
|
319 |
+
|
320 |
+
@lru_cache
|
321 |
+
def is_mlu_available(check_device=False):
|
322 |
+
"Checks if `torch_mlu` is installed and potentially if a MLU is in the environment"
|
323 |
+
if importlib.util.find_spec("torch_mlu") is None:
|
324 |
+
return False
|
325 |
+
|
326 |
+
import torch
|
327 |
+
import torch_mlu # noqa: F401
|
328 |
+
|
329 |
+
if check_device:
|
330 |
+
try:
|
331 |
+
# Will raise a RuntimeError if no MLU is found
|
332 |
+
_ = torch.mlu.device_count()
|
333 |
+
return torch.mlu.is_available()
|
334 |
+
except RuntimeError:
|
335 |
+
return False
|
336 |
+
return hasattr(torch, "mlu") and torch.mlu.is_available()
|
337 |
+
|
338 |
+
|
339 |
+
@lru_cache
|
340 |
+
def is_npu_available(check_device=False):
|
341 |
+
"Checks if `torch_npu` is installed and potentially if a NPU is in the environment"
|
342 |
+
if importlib.util.find_spec("torch") is None or importlib.util.find_spec("torch_npu") is None:
|
343 |
+
return False
|
344 |
+
|
345 |
+
import torch
|
346 |
+
import torch_npu # noqa: F401
|
347 |
+
|
348 |
+
if check_device:
|
349 |
+
try:
|
350 |
+
# Will raise a RuntimeError if no NPU is found
|
351 |
+
_ = torch.npu.device_count()
|
352 |
+
return torch.npu.is_available()
|
353 |
+
except RuntimeError:
|
354 |
+
return False
|
355 |
+
return hasattr(torch, "npu") and torch.npu.is_available()
|
356 |
+
|
357 |
+
|
358 |
+
@lru_cache
|
359 |
+
def is_xpu_available(check_device=False):
|
360 |
+
"check if user disables it explicitly"
|
361 |
+
if not parse_flag_from_env("ACCELERATE_USE_XPU", default=True):
|
362 |
+
return False
|
363 |
+
"Checks if `intel_extension_for_pytorch` is installed and potentially if a XPU is in the environment"
|
364 |
+
if is_ipex_available():
|
365 |
+
import torch
|
366 |
+
|
367 |
+
if is_torch_version("<=", "1.12"):
|
368 |
+
return False
|
369 |
+
else:
|
370 |
+
return False
|
371 |
+
|
372 |
+
import intel_extension_for_pytorch # noqa: F401
|
373 |
+
|
374 |
+
if check_device:
|
375 |
+
try:
|
376 |
+
# Will raise a RuntimeError if no XPU is found
|
377 |
+
_ = torch.xpu.device_count()
|
378 |
+
return torch.xpu.is_available()
|
379 |
+
except RuntimeError:
|
380 |
+
return False
|
381 |
+
return hasattr(torch, "xpu") and torch.xpu.is_available()
|
382 |
+
|
383 |
+
|
384 |
+
def is_dvclive_available():
|
385 |
+
return _is_package_available("dvclive")
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/launch.py
ADDED
@@ -0,0 +1,624 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import os
|
17 |
+
import subprocess
|
18 |
+
import sys
|
19 |
+
import warnings
|
20 |
+
from ast import literal_eval
|
21 |
+
from shutil import which
|
22 |
+
from typing import Any, Dict, List, Tuple
|
23 |
+
|
24 |
+
import torch
|
25 |
+
|
26 |
+
from ..commands.config.config_args import SageMakerConfig
|
27 |
+
from ..utils import (
|
28 |
+
DynamoBackend,
|
29 |
+
PrecisionType,
|
30 |
+
is_ipex_available,
|
31 |
+
is_mlu_available,
|
32 |
+
is_npu_available,
|
33 |
+
is_torch_xla_available,
|
34 |
+
is_xpu_available,
|
35 |
+
)
|
36 |
+
from ..utils.constants import DEEPSPEED_MULTINODE_LAUNCHERS
|
37 |
+
from ..utils.other import is_port_in_use, merge_dicts
|
38 |
+
from .dataclasses import DistributedType, SageMakerDistributedType
|
39 |
+
|
40 |
+
|
41 |
+
def _filter_args(args, parser, default_args=[]):
|
42 |
+
"""
|
43 |
+
Filters out all `accelerate` specific args
|
44 |
+
"""
|
45 |
+
new_args, _ = parser.parse_known_args(default_args)
|
46 |
+
for key, value in vars(args).items():
|
47 |
+
if key in vars(new_args).keys():
|
48 |
+
setattr(new_args, key, value)
|
49 |
+
return new_args
|
50 |
+
|
51 |
+
|
52 |
+
def _get_mpirun_args():
|
53 |
+
"""
|
54 |
+
Determines the executable and argument names for mpirun, based on the type of install. The supported MPI programs
|
55 |
+
are: OpenMPI, Intel MPI, or MVAPICH.
|
56 |
+
|
57 |
+
Returns: Program name and arg names for hostfile, num processes, and processes per node
|
58 |
+
"""
|
59 |
+
# Find the MPI program name
|
60 |
+
mpi_apps = [x for x in ["mpirun", "mpiexec"] if which(x)]
|
61 |
+
|
62 |
+
if len(mpi_apps) == 0:
|
63 |
+
raise OSError("mpirun or mpiexec were not found. Ensure that Intel MPI, Open MPI, or MVAPICH are installed.")
|
64 |
+
|
65 |
+
# Call the app with the --version flag to determine which MPI app is installed
|
66 |
+
mpi_app = mpi_apps[0]
|
67 |
+
mpirun_version = subprocess.check_output([mpi_app, "--version"])
|
68 |
+
|
69 |
+
if b"Open MPI" in mpirun_version:
|
70 |
+
return mpi_app, "--hostfile", "-n", "--npernode"
|
71 |
+
else:
|
72 |
+
# Intel MPI and MVAPICH both use the same arg names
|
73 |
+
return mpi_app, "-f", "-n", "-ppn"
|
74 |
+
|
75 |
+
|
76 |
+
def prepare_simple_launcher_cmd_env(args: argparse.Namespace) -> Tuple[List[str], Dict[str, str]]:
|
77 |
+
"""
|
78 |
+
Prepares and returns the command list and an environment with the correct simple launcher environment variables.
|
79 |
+
"""
|
80 |
+
cmd = []
|
81 |
+
if args.no_python and args.module:
|
82 |
+
raise ValueError("--module and --no_python cannot be used together")
|
83 |
+
|
84 |
+
if args.mpirun_hostfile is not None:
|
85 |
+
mpi_app_name, hostfile_arg, num_proc_arg, proc_per_node_arg = _get_mpirun_args()
|
86 |
+
mpirun_ccl = getattr(args, "mpirun_ccl", None)
|
87 |
+
num_machines = args.num_machines
|
88 |
+
num_processes = getattr(args, "num_processes", None)
|
89 |
+
nproc_per_node = str(num_processes // num_machines) if num_processes and num_machines else "1"
|
90 |
+
cmd += [mpi_app_name, hostfile_arg, args.mpirun_hostfile, proc_per_node_arg, nproc_per_node]
|
91 |
+
if num_processes:
|
92 |
+
cmd += [num_proc_arg, str(num_processes)]
|
93 |
+
if not args.no_python:
|
94 |
+
cmd.append(sys.executable)
|
95 |
+
if args.module:
|
96 |
+
cmd.append("-m")
|
97 |
+
cmd.append(args.training_script)
|
98 |
+
cmd.extend(args.training_script_args)
|
99 |
+
|
100 |
+
current_env = os.environ.copy()
|
101 |
+
current_env["ACCELERATE_USE_CPU"] = str(args.cpu or args.use_cpu)
|
102 |
+
if args.debug:
|
103 |
+
current_env["ACCELERATE_DEBUG_MODE"] = "true"
|
104 |
+
if args.gpu_ids != "all" and args.gpu_ids is not None:
|
105 |
+
if is_xpu_available():
|
106 |
+
current_env["ZE_AFFINITY_MASK"] = args.gpu_ids
|
107 |
+
elif is_mlu_available():
|
108 |
+
current_env["MLU_VISIBLE_DEVICES"] = args.gpu_ids
|
109 |
+
elif is_npu_available():
|
110 |
+
current_env["ASCEND_RT_VISIBLE_DEVICES"] = args.gpu_ids
|
111 |
+
else:
|
112 |
+
current_env["CUDA_VISIBLE_DEVICES"] = args.gpu_ids
|
113 |
+
if args.num_machines > 1:
|
114 |
+
current_env["MASTER_ADDR"] = args.main_process_ip
|
115 |
+
current_env["MASTER_PORT"] = str(args.main_process_port)
|
116 |
+
|
117 |
+
if args.mpirun_hostfile is not None:
|
118 |
+
current_env["CCL_WORKER_COUNT"] = mpirun_ccl
|
119 |
+
elif args.num_processes > 1:
|
120 |
+
current_env["MASTER_ADDR"] = args.main_process_ip if args.main_process_ip is not None else "127.0.0.1"
|
121 |
+
current_env["MASTER_PORT"] = str(args.main_process_port) if args.main_process_port is not None else "29500"
|
122 |
+
|
123 |
+
try:
|
124 |
+
mixed_precision = PrecisionType(args.mixed_precision.lower())
|
125 |
+
except ValueError:
|
126 |
+
raise ValueError(
|
127 |
+
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}."
|
128 |
+
)
|
129 |
+
|
130 |
+
current_env["ACCELERATE_MIXED_PRECISION"] = str(mixed_precision)
|
131 |
+
|
132 |
+
try:
|
133 |
+
dynamo_backend = DynamoBackend(args.dynamo_backend.upper())
|
134 |
+
except ValueError:
|
135 |
+
raise ValueError(
|
136 |
+
f"Unknown dynamo backend: {args.dynamo_backend.upper()}. Choose between {DynamoBackend.list()}."
|
137 |
+
)
|
138 |
+
current_env["ACCELERATE_DYNAMO_BACKEND"] = dynamo_backend.value
|
139 |
+
current_env["ACCELERATE_DYNAMO_MODE"] = args.dynamo_mode
|
140 |
+
current_env["ACCELERATE_DYNAMO_USE_FULLGRAPH"] = str(args.dynamo_use_fullgraph)
|
141 |
+
current_env["ACCELERATE_DYNAMO_USE_DYNAMIC"] = str(args.dynamo_use_dynamic)
|
142 |
+
|
143 |
+
current_env["OMP_NUM_THREADS"] = str(args.num_cpu_threads_per_process)
|
144 |
+
if is_ipex_available():
|
145 |
+
current_env["ACCELERATE_USE_IPEX"] = str(args.ipex).lower()
|
146 |
+
current_env["ACCELERATE_USE_XPU"] = str(args.use_xpu).lower()
|
147 |
+
if args.enable_cpu_affinity:
|
148 |
+
current_env["ACCELERATE_CPU_AFFINITY"] = "1"
|
149 |
+
return cmd, current_env
|
150 |
+
|
151 |
+
|
152 |
+
def prepare_multi_gpu_env(args: argparse.Namespace) -> Dict[str, str]:
|
153 |
+
"""
|
154 |
+
Prepares and returns an environment with the correct multi-GPU environment variables.
|
155 |
+
"""
|
156 |
+
num_processes = args.num_processes
|
157 |
+
num_machines = args.num_machines
|
158 |
+
main_process_ip = args.main_process_ip
|
159 |
+
main_process_port = args.main_process_port
|
160 |
+
if num_machines > 1:
|
161 |
+
args.nproc_per_node = str(num_processes // num_machines)
|
162 |
+
args.nnodes = str(num_machines)
|
163 |
+
args.node_rank = int(args.machine_rank)
|
164 |
+
if getattr(args, "same_network", False):
|
165 |
+
args.master_addr = str(main_process_ip)
|
166 |
+
args.master_port = str(main_process_port)
|
167 |
+
else:
|
168 |
+
args.rdzv_endpoint = f"{main_process_ip}:{main_process_port}"
|
169 |
+
else:
|
170 |
+
args.nproc_per_node = str(num_processes)
|
171 |
+
if main_process_port is not None:
|
172 |
+
args.master_port = str(main_process_port)
|
173 |
+
|
174 |
+
if main_process_port is None:
|
175 |
+
main_process_port = 29500
|
176 |
+
|
177 |
+
# only need to check port availability in main process, in case we have to start multiple launchers on the same machine
|
178 |
+
# for some reasons like splitting log files.
|
179 |
+
need_port_check = num_machines <= 1 or int(args.machine_rank) == 0
|
180 |
+
if need_port_check and is_port_in_use(main_process_port):
|
181 |
+
raise ConnectionError(
|
182 |
+
f"Tried to launch distributed communication on port `{main_process_port}`, but another process is utilizing it. "
|
183 |
+
"Please specify a different port (such as using the `--main_process_port` flag or specifying a different `main_process_port` in your config file)"
|
184 |
+
" and rerun your script. To automatically use the next open port (on a single node), you can set this to `0`."
|
185 |
+
)
|
186 |
+
|
187 |
+
if args.module and args.no_python:
|
188 |
+
raise ValueError("--module and --no_python cannot be used together")
|
189 |
+
elif args.module:
|
190 |
+
args.module = True
|
191 |
+
elif args.no_python:
|
192 |
+
args.no_python = True
|
193 |
+
|
194 |
+
current_env = os.environ.copy()
|
195 |
+
if args.debug:
|
196 |
+
current_env["ACCELERATE_DEBUG_MODE"] = "true"
|
197 |
+
gpu_ids = getattr(args, "gpu_ids", "all")
|
198 |
+
if gpu_ids != "all" and args.gpu_ids is not None:
|
199 |
+
if is_xpu_available():
|
200 |
+
current_env["ZE_AFFINITY_MASK"] = gpu_ids
|
201 |
+
elif is_mlu_available():
|
202 |
+
current_env["MLU_VISIBLE_DEVICES"] = gpu_ids
|
203 |
+
elif is_npu_available():
|
204 |
+
current_env["ASCEND_RT_VISIBLE_DEVICES"] = gpu_ids
|
205 |
+
else:
|
206 |
+
current_env["CUDA_VISIBLE_DEVICES"] = gpu_ids
|
207 |
+
mixed_precision = args.mixed_precision.lower()
|
208 |
+
try:
|
209 |
+
mixed_precision = PrecisionType(mixed_precision)
|
210 |
+
except ValueError:
|
211 |
+
raise ValueError(f"Unknown mixed_precision mode: {mixed_precision}. Choose between {PrecisionType.list()}.")
|
212 |
+
|
213 |
+
current_env["ACCELERATE_MIXED_PRECISION"] = str(mixed_precision)
|
214 |
+
|
215 |
+
try:
|
216 |
+
dynamo_backend = DynamoBackend(args.dynamo_backend.upper())
|
217 |
+
except ValueError:
|
218 |
+
raise ValueError(
|
219 |
+
f"Unknown dynamo backend: {args.dynamo_backend.upper()}. Choose between {DynamoBackend.list()}."
|
220 |
+
)
|
221 |
+
current_env["ACCELERATE_DYNAMO_BACKEND"] = dynamo_backend.value
|
222 |
+
current_env["ACCELERATE_DYNAMO_MODE"] = args.dynamo_mode
|
223 |
+
current_env["ACCELERATE_DYNAMO_USE_FULLGRAPH"] = str(args.dynamo_use_fullgraph)
|
224 |
+
current_env["ACCELERATE_DYNAMO_USE_DYNAMIC"] = str(args.dynamo_use_dynamic)
|
225 |
+
|
226 |
+
if args.use_fsdp:
|
227 |
+
current_env["ACCELERATE_USE_FSDP"] = "true"
|
228 |
+
if args.fsdp_cpu_ram_efficient_loading and not args.fsdp_sync_module_states:
|
229 |
+
raise ValueError("When using `--fsdp_cpu_ram_efficient_loading` set `--fsdp_sync_module_states` to `True`")
|
230 |
+
|
231 |
+
current_env["FSDP_SHARDING_STRATEGY"] = str(args.fsdp_sharding_strategy)
|
232 |
+
current_env["FSDP_OFFLOAD_PARAMS"] = str(args.fsdp_offload_params).lower()
|
233 |
+
current_env["FSDP_MIN_NUM_PARAMS"] = str(args.fsdp_min_num_params)
|
234 |
+
if args.fsdp_auto_wrap_policy is not None:
|
235 |
+
current_env["FSDP_AUTO_WRAP_POLICY"] = str(args.fsdp_auto_wrap_policy)
|
236 |
+
if args.fsdp_transformer_layer_cls_to_wrap is not None:
|
237 |
+
current_env["FSDP_TRANSFORMER_CLS_TO_WRAP"] = str(args.fsdp_transformer_layer_cls_to_wrap)
|
238 |
+
if args.fsdp_backward_prefetch_policy is not None:
|
239 |
+
warnings.warn(
|
240 |
+
"`fsdp_backward_prefetch_policy` is deprecated and will be removed in version 0.27.0 of 🤗 Accelerate. Use"
|
241 |
+
" `fsdp_backward_prefetch` instead",
|
242 |
+
FutureWarning,
|
243 |
+
)
|
244 |
+
args.fsdp_backward_prefetch = args.fsdp_backward_prefetch_policy
|
245 |
+
if args.fsdp_backward_prefetch is not None:
|
246 |
+
current_env["FSDP_BACKWARD_PREFETCH"] = str(args.fsdp_backward_prefetch)
|
247 |
+
if args.fsdp_state_dict_type is not None:
|
248 |
+
current_env["FSDP_STATE_DICT_TYPE"] = str(args.fsdp_state_dict_type)
|
249 |
+
current_env["FSDP_FORWARD_PREFETCH"] = str(args.fsdp_forward_prefetch).lower()
|
250 |
+
current_env["FSDP_USE_ORIG_PARAMS"] = str(args.fsdp_use_orig_params).lower()
|
251 |
+
current_env["FSDP_CPU_RAM_EFFICIENT_LOADING"] = str(args.fsdp_cpu_ram_efficient_loading).lower()
|
252 |
+
current_env["FSDP_SYNC_MODULE_STATES"] = str(args.fsdp_sync_module_states).lower()
|
253 |
+
|
254 |
+
if args.use_megatron_lm:
|
255 |
+
prefix = "MEGATRON_LM_"
|
256 |
+
current_env["ACCELERATE_USE_MEGATRON_LM"] = "true"
|
257 |
+
current_env[prefix + "TP_DEGREE"] = str(args.megatron_lm_tp_degree)
|
258 |
+
current_env[prefix + "PP_DEGREE"] = str(args.megatron_lm_pp_degree)
|
259 |
+
current_env[prefix + "GRADIENT_CLIPPING"] = str(args.megatron_lm_gradient_clipping)
|
260 |
+
if args.megatron_lm_num_micro_batches is not None:
|
261 |
+
current_env[prefix + "NUM_MICRO_BATCHES"] = str(args.megatron_lm_num_micro_batches)
|
262 |
+
if args.megatron_lm_sequence_parallelism is not None:
|
263 |
+
current_env[prefix + "SEQUENCE_PARALLELISM"] = str(args.megatron_lm_sequence_parallelism)
|
264 |
+
if args.megatron_lm_recompute_activations is not None:
|
265 |
+
current_env[prefix + "RECOMPUTE_ACTIVATIONS"] = str(args.megatron_lm_recompute_activations)
|
266 |
+
if args.megatron_lm_use_distributed_optimizer is not None:
|
267 |
+
current_env[prefix + "USE_DISTRIBUTED_OPTIMIZER"] = str(args.megatron_lm_use_distributed_optimizer)
|
268 |
+
|
269 |
+
current_env["OMP_NUM_THREADS"] = str(args.num_cpu_threads_per_process)
|
270 |
+
if args.enable_cpu_affinity:
|
271 |
+
current_env["ACCELERATE_CPU_AFFINITY"] = "1"
|
272 |
+
return current_env
|
273 |
+
|
274 |
+
|
275 |
+
def prepare_deepspeed_cmd_env(args: argparse.Namespace) -> Tuple[List[str], Dict[str, str]]:
|
276 |
+
"""
|
277 |
+
Prepares and returns the command list and an environment with the correct DeepSpeed environment variables.
|
278 |
+
"""
|
279 |
+
num_processes = args.num_processes
|
280 |
+
num_machines = args.num_machines
|
281 |
+
main_process_ip = args.main_process_ip
|
282 |
+
main_process_port = args.main_process_port
|
283 |
+
cmd = None
|
284 |
+
|
285 |
+
# make sure launcher is not None
|
286 |
+
if args.deepspeed_multinode_launcher is None:
|
287 |
+
# set to default pdsh
|
288 |
+
args.deepspeed_multinode_launcher = DEEPSPEED_MULTINODE_LAUNCHERS[0]
|
289 |
+
|
290 |
+
if num_machines > 1 and args.deepspeed_multinode_launcher != DEEPSPEED_MULTINODE_LAUNCHERS[1]:
|
291 |
+
cmd = ["deepspeed", "--no_local_rank"]
|
292 |
+
cmd.extend(["--hostfile", str(args.deepspeed_hostfile), "--launcher", str(args.deepspeed_multinode_launcher)])
|
293 |
+
if args.deepspeed_exclusion_filter is not None:
|
294 |
+
cmd.extend(
|
295 |
+
[
|
296 |
+
"--exclude",
|
297 |
+
str(args.deepspeed_exclusion_filter),
|
298 |
+
]
|
299 |
+
)
|
300 |
+
elif args.deepspeed_inclusion_filter is not None:
|
301 |
+
cmd.extend(
|
302 |
+
[
|
303 |
+
"--include",
|
304 |
+
str(args.deepspeed_inclusion_filter),
|
305 |
+
]
|
306 |
+
)
|
307 |
+
else:
|
308 |
+
cmd.extend(["--num_gpus", str(args.num_processes // args.num_machines)])
|
309 |
+
if main_process_ip:
|
310 |
+
cmd.extend(["--master_addr", str(main_process_ip)])
|
311 |
+
cmd.extend(["--master_port", str(main_process_port)])
|
312 |
+
if args.module and args.no_python:
|
313 |
+
raise ValueError("--module and --no_python cannot be used together")
|
314 |
+
elif args.module:
|
315 |
+
cmd.append("--module")
|
316 |
+
elif args.no_python:
|
317 |
+
cmd.append("--no_python")
|
318 |
+
cmd.append(args.training_script)
|
319 |
+
cmd.extend(args.training_script_args)
|
320 |
+
elif num_machines > 1 and args.deepspeed_multinode_launcher == DEEPSPEED_MULTINODE_LAUNCHERS[1]:
|
321 |
+
args.nproc_per_node = str(num_processes // num_machines)
|
322 |
+
args.nnodes = str(num_machines)
|
323 |
+
args.node_rank = int(args.machine_rank)
|
324 |
+
if getattr(args, "same_network", False):
|
325 |
+
args.master_addr = str(main_process_ip)
|
326 |
+
args.master_port = str(main_process_port)
|
327 |
+
else:
|
328 |
+
args.rdzv_endpoint = f"{main_process_ip}:{main_process_port}"
|
329 |
+
else:
|
330 |
+
args.nproc_per_node = str(num_processes)
|
331 |
+
if main_process_port is not None:
|
332 |
+
args.master_port = str(main_process_port)
|
333 |
+
|
334 |
+
if main_process_port is None:
|
335 |
+
main_process_port = 29500
|
336 |
+
|
337 |
+
# only need to check port availability in main process, in case we have to start multiple launchers on the same machine
|
338 |
+
# for some reasons like splitting log files.
|
339 |
+
need_port_check = num_machines <= 1 or int(args.machine_rank) == 0
|
340 |
+
if need_port_check and is_port_in_use(main_process_port):
|
341 |
+
raise ConnectionError(
|
342 |
+
f"Tried to launch distributed communication on port `{main_process_port}`, but another process is utilizing it. "
|
343 |
+
"Please specify a different port (such as using the `--main_process_port` flag or specifying a different `main_process_port` in your config file)"
|
344 |
+
" and rerun your script. To automatically use the next open port (on a single node), you can set this to `0`."
|
345 |
+
)
|
346 |
+
|
347 |
+
if args.module and args.no_python:
|
348 |
+
raise ValueError("--module and --no_python cannot be used together")
|
349 |
+
elif args.module:
|
350 |
+
args.module = True
|
351 |
+
elif args.no_python:
|
352 |
+
args.no_python = True
|
353 |
+
|
354 |
+
current_env = os.environ.copy()
|
355 |
+
if args.debug:
|
356 |
+
current_env["ACCELERATE_DEBUG_MODE"] = "true"
|
357 |
+
gpu_ids = getattr(args, "gpu_ids", "all")
|
358 |
+
if gpu_ids != "all" and args.gpu_ids is not None:
|
359 |
+
if is_xpu_available():
|
360 |
+
current_env["ZE_AFFINITY_MASK"] = gpu_ids
|
361 |
+
elif is_mlu_available():
|
362 |
+
current_env["MLU_VISIBLE_DEVICES"] = gpu_ids
|
363 |
+
elif is_npu_available():
|
364 |
+
current_env["ASCEND_RT_VISIBLE_DEVICES"] = gpu_ids
|
365 |
+
else:
|
366 |
+
current_env["CUDA_VISIBLE_DEVICES"] = gpu_ids
|
367 |
+
try:
|
368 |
+
mixed_precision = PrecisionType(args.mixed_precision.lower())
|
369 |
+
except ValueError:
|
370 |
+
raise ValueError(
|
371 |
+
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}."
|
372 |
+
)
|
373 |
+
|
374 |
+
current_env["PYTHONPATH"] = env_var_path_add("PYTHONPATH", os.path.abspath("."))
|
375 |
+
current_env["ACCELERATE_MIXED_PRECISION"] = str(mixed_precision)
|
376 |
+
current_env["ACCELERATE_CONFIG_DS_FIELDS"] = str(args.deepspeed_fields_from_accelerate_config).lower()
|
377 |
+
current_env["ACCELERATE_USE_DEEPSPEED"] = "true"
|
378 |
+
if args.zero_stage is not None:
|
379 |
+
current_env["ACCELERATE_DEEPSPEED_ZERO_STAGE"] = str(args.zero_stage)
|
380 |
+
if args.gradient_accumulation_steps is not None:
|
381 |
+
current_env["ACCELERATE_GRADIENT_ACCUMULATION_STEPS"] = str(args.gradient_accumulation_steps)
|
382 |
+
if args.gradient_clipping is not None:
|
383 |
+
current_env["ACCELERATE_GRADIENT_CLIPPING"] = str(args.gradient_clipping).lower()
|
384 |
+
if args.offload_optimizer_device is not None:
|
385 |
+
current_env["ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE"] = str(args.offload_optimizer_device).lower()
|
386 |
+
if args.offload_param_device is not None:
|
387 |
+
current_env["ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_DEVICE"] = str(args.offload_param_device).lower()
|
388 |
+
if args.zero3_init_flag is not None:
|
389 |
+
current_env["ACCELERATE_DEEPSPEED_ZERO3_INIT"] = str(args.zero3_init_flag).lower()
|
390 |
+
if args.zero3_save_16bit_model is not None:
|
391 |
+
current_env["ACCELERATE_DEEPSPEED_ZERO3_SAVE_16BIT_MODEL"] = str(args.zero3_save_16bit_model).lower()
|
392 |
+
if args.deepspeed_config_file is not None:
|
393 |
+
current_env["ACCELERATE_DEEPSPEED_CONFIG_FILE"] = str(args.deepspeed_config_file)
|
394 |
+
if args.enable_cpu_affinity:
|
395 |
+
current_env["ACCELERATE_CPU_AFFINITY"] = "1"
|
396 |
+
return cmd, current_env
|
397 |
+
|
398 |
+
|
399 |
+
def prepare_tpu(
|
400 |
+
args: argparse.Namespace, current_env: Dict[str, str], pod: bool = False
|
401 |
+
) -> Tuple[argparse.Namespace, Dict[str, str]]:
|
402 |
+
"""
|
403 |
+
Prepares and returns an environment with the correct TPU environment variables.
|
404 |
+
"""
|
405 |
+
if args.mixed_precision == "bf16" and is_torch_xla_available(check_is_tpu=True):
|
406 |
+
if args.downcast_bf16:
|
407 |
+
current_env["XLA_DOWNCAST_BF16"] = "1"
|
408 |
+
else:
|
409 |
+
current_env["XLA_USE_BF16"] = "1"
|
410 |
+
if args.debug:
|
411 |
+
current_env["ACCELERATE_DEBUG_MODE"] = "true"
|
412 |
+
if pod:
|
413 |
+
# Take explicit args and set them up for XLA
|
414 |
+
args.vm = args.tpu_vm
|
415 |
+
args.tpu = args.tpu_name
|
416 |
+
return args, current_env
|
417 |
+
|
418 |
+
|
419 |
+
def _convert_nargs_to_dict(nargs: List[str]) -> Dict[str, str]:
|
420 |
+
if len(nargs) < 0:
|
421 |
+
return {}
|
422 |
+
# helper function to infer type for argsparser
|
423 |
+
|
424 |
+
def _infer_type(s):
|
425 |
+
try:
|
426 |
+
s = float(s)
|
427 |
+
|
428 |
+
if s // 1 == s:
|
429 |
+
return int(s)
|
430 |
+
return s
|
431 |
+
except ValueError:
|
432 |
+
return s
|
433 |
+
|
434 |
+
parser = argparse.ArgumentParser()
|
435 |
+
_, unknown = parser.parse_known_args(nargs)
|
436 |
+
for index, argument in enumerate(unknown):
|
437 |
+
if argument.startswith(("-", "--")):
|
438 |
+
action = None
|
439 |
+
if index + 1 < len(unknown): # checks if next index would be in list
|
440 |
+
if unknown[index + 1].startswith(("-", "--")): # checks if next element is an key
|
441 |
+
# raise an error if element is store_true or store_false
|
442 |
+
raise ValueError(
|
443 |
+
"SageMaker doesn’t support argparse actions for `store_true` or `store_false`. Please define explicit types"
|
444 |
+
)
|
445 |
+
else: # raise an error if last element is store_true or store_false
|
446 |
+
raise ValueError(
|
447 |
+
"SageMaker doesn’t support argparse actions for `store_true` or `store_false`. Please define explicit types"
|
448 |
+
)
|
449 |
+
# adds argument to parser based on action_store true
|
450 |
+
if action is None:
|
451 |
+
parser.add_argument(argument, type=_infer_type)
|
452 |
+
else:
|
453 |
+
parser.add_argument(argument, action=action)
|
454 |
+
|
455 |
+
return {
|
456 |
+
key: (literal_eval(value) if value in ("True", "False") else value)
|
457 |
+
for key, value in parser.parse_args(nargs).__dict__.items()
|
458 |
+
}
|
459 |
+
|
460 |
+
|
461 |
+
def prepare_sagemager_args_inputs(
|
462 |
+
sagemaker_config: SageMakerConfig, args: argparse.Namespace
|
463 |
+
) -> Tuple[argparse.Namespace, Dict[str, Any]]:
|
464 |
+
# configure environment
|
465 |
+
print("Configuring Amazon SageMaker environment")
|
466 |
+
os.environ["AWS_DEFAULT_REGION"] = sagemaker_config.region
|
467 |
+
|
468 |
+
# configure credentials
|
469 |
+
if sagemaker_config.profile is not None:
|
470 |
+
os.environ["AWS_PROFILE"] = sagemaker_config.profile
|
471 |
+
elif args.aws_access_key_id is not None and args.aws_secret_access_key is not None:
|
472 |
+
os.environ["AWS_ACCESS_KEY_ID"] = args.aws_access_key_id
|
473 |
+
os.environ["AWS_SECRET_ACCESS_KEY"] = args.aws_secret_access_key
|
474 |
+
else:
|
475 |
+
raise OSError("You need to provide an aws_access_key_id and aws_secret_access_key when not using aws_profile")
|
476 |
+
|
477 |
+
# extract needed arguments
|
478 |
+
source_dir = os.path.dirname(args.training_script)
|
479 |
+
if not source_dir: # checks if string is empty
|
480 |
+
source_dir = "."
|
481 |
+
entry_point = os.path.basename(args.training_script)
|
482 |
+
if not entry_point.endswith(".py"):
|
483 |
+
raise ValueError(f'Your training script should be a python script and not "{entry_point}"')
|
484 |
+
|
485 |
+
print("Converting Arguments to Hyperparameters")
|
486 |
+
hyperparameters = _convert_nargs_to_dict(args.training_script_args)
|
487 |
+
|
488 |
+
try:
|
489 |
+
mixed_precision = PrecisionType(args.mixed_precision.lower())
|
490 |
+
except ValueError:
|
491 |
+
raise ValueError(
|
492 |
+
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}."
|
493 |
+
)
|
494 |
+
|
495 |
+
try:
|
496 |
+
dynamo_backend = DynamoBackend(args.dynamo_backend.upper())
|
497 |
+
except ValueError:
|
498 |
+
raise ValueError(
|
499 |
+
f"Unknown dynamo backend: {args.dynamo_backend.upper()}. Choose between {DynamoBackend.list()}."
|
500 |
+
)
|
501 |
+
|
502 |
+
# Environment variables to be set for use during training job
|
503 |
+
environment = {
|
504 |
+
"ACCELERATE_USE_SAGEMAKER": "true",
|
505 |
+
"ACCELERATE_MIXED_PRECISION": str(mixed_precision),
|
506 |
+
"ACCELERATE_DYNAMO_BACKEND": dynamo_backend.value,
|
507 |
+
"ACCELERATE_DYNAMO_MODE": args.dynamo_mode,
|
508 |
+
"ACCELERATE_DYNAMO_USE_FULLGRAPH": str(args.dynamo_use_fullgraph),
|
509 |
+
"ACCELERATE_DYNAMO_USE_DYNAMIC": str(args.dynamo_use_dynamic),
|
510 |
+
"ACCELERATE_SAGEMAKER_DISTRIBUTED_TYPE": sagemaker_config.distributed_type.value,
|
511 |
+
}
|
512 |
+
# configure distribution set up
|
513 |
+
distribution = None
|
514 |
+
if sagemaker_config.distributed_type == SageMakerDistributedType.DATA_PARALLEL:
|
515 |
+
distribution = {"smdistributed": {"dataparallel": {"enabled": True}}}
|
516 |
+
|
517 |
+
# configure sagemaker inputs
|
518 |
+
sagemaker_inputs = None
|
519 |
+
if sagemaker_config.sagemaker_inputs_file is not None:
|
520 |
+
print(f"Loading SageMaker Inputs from {sagemaker_config.sagemaker_inputs_file} file")
|
521 |
+
sagemaker_inputs = {}
|
522 |
+
with open(sagemaker_config.sagemaker_inputs_file) as file:
|
523 |
+
for i, line in enumerate(file):
|
524 |
+
if i == 0:
|
525 |
+
continue
|
526 |
+
l = line.split("\t")
|
527 |
+
sagemaker_inputs[l[0]] = l[1].strip()
|
528 |
+
print(f"Loaded SageMaker Inputs: {sagemaker_inputs}")
|
529 |
+
|
530 |
+
# configure sagemaker metrics
|
531 |
+
sagemaker_metrics = None
|
532 |
+
if sagemaker_config.sagemaker_metrics_file is not None:
|
533 |
+
print(f"Loading SageMaker Metrics from {sagemaker_config.sagemaker_metrics_file} file")
|
534 |
+
sagemaker_metrics = []
|
535 |
+
with open(sagemaker_config.sagemaker_metrics_file) as file:
|
536 |
+
for i, line in enumerate(file):
|
537 |
+
if i == 0:
|
538 |
+
continue
|
539 |
+
l = line.split("\t")
|
540 |
+
metric_dict = {
|
541 |
+
"Name": l[0],
|
542 |
+
"Regex": l[1].strip(),
|
543 |
+
}
|
544 |
+
sagemaker_metrics.append(metric_dict)
|
545 |
+
print(f"Loaded SageMaker Metrics: {sagemaker_metrics}")
|
546 |
+
|
547 |
+
# configure session
|
548 |
+
print("Creating Estimator")
|
549 |
+
args = {
|
550 |
+
"image_uri": sagemaker_config.image_uri,
|
551 |
+
"entry_point": entry_point,
|
552 |
+
"source_dir": source_dir,
|
553 |
+
"role": sagemaker_config.iam_role_name,
|
554 |
+
"transformers_version": sagemaker_config.transformers_version,
|
555 |
+
"pytorch_version": sagemaker_config.pytorch_version,
|
556 |
+
"py_version": sagemaker_config.py_version,
|
557 |
+
"base_job_name": sagemaker_config.base_job_name,
|
558 |
+
"instance_count": sagemaker_config.num_machines,
|
559 |
+
"instance_type": sagemaker_config.ec2_instance_type,
|
560 |
+
"debugger_hook_config": False,
|
561 |
+
"distribution": distribution,
|
562 |
+
"hyperparameters": hyperparameters,
|
563 |
+
"environment": environment,
|
564 |
+
"metric_definitions": sagemaker_metrics,
|
565 |
+
}
|
566 |
+
|
567 |
+
if sagemaker_config.additional_args is not None:
|
568 |
+
args = merge_dicts(sagemaker_config.additional_args, args)
|
569 |
+
return args, sagemaker_inputs
|
570 |
+
|
571 |
+
|
572 |
+
def env_var_path_add(env_var_name, path_to_add):
|
573 |
+
"""
|
574 |
+
Extends a path-based environment variable's value with a new path and returns the updated value. It's up to the
|
575 |
+
caller to set it in os.environ.
|
576 |
+
"""
|
577 |
+
paths = [p for p in os.environ.get(env_var_name, "").split(":") if len(p) > 0]
|
578 |
+
paths.append(str(path_to_add))
|
579 |
+
return ":".join(paths)
|
580 |
+
|
581 |
+
|
582 |
+
class PrepareForLaunch:
|
583 |
+
"""
|
584 |
+
Prepare a function that will launched in a distributed setup.
|
585 |
+
|
586 |
+
Args:
|
587 |
+
launcher (`Callable`):
|
588 |
+
The function to launch.
|
589 |
+
distributed_type ([`~state.DistributedType`]):
|
590 |
+
The distributed type to prepare for.
|
591 |
+
debug (`bool`, *optional*, defaults to `False`):
|
592 |
+
Whether or not this is a debug launch.
|
593 |
+
"""
|
594 |
+
|
595 |
+
def __init__(self, launcher, distributed_type="NO", debug=False):
|
596 |
+
self.launcher = launcher
|
597 |
+
self.distributed_type = DistributedType(distributed_type)
|
598 |
+
self.debug = debug
|
599 |
+
|
600 |
+
def __call__(self, index, *args):
|
601 |
+
if self.debug:
|
602 |
+
world_size = int(os.environ.get("WORLD_SIZE"))
|
603 |
+
rdv_file = os.environ.get("ACCELERATE_DEBUG_RDV_FILE")
|
604 |
+
torch.distributed.init_process_group(
|
605 |
+
"gloo",
|
606 |
+
rank=index,
|
607 |
+
store=torch.distributed.FileStore(rdv_file, world_size),
|
608 |
+
world_size=world_size,
|
609 |
+
)
|
610 |
+
elif self.distributed_type in (
|
611 |
+
DistributedType.MULTI_GPU,
|
612 |
+
DistributedType.MULTI_MLU,
|
613 |
+
DistributedType.MULTI_NPU,
|
614 |
+
DistributedType.MULTI_XPU,
|
615 |
+
DistributedType.MULTI_CPU,
|
616 |
+
):
|
617 |
+
# Prepare the environment for torch.distributed
|
618 |
+
os.environ["LOCAL_RANK"] = str(index)
|
619 |
+
nproc = int(os.environ.get("NPROC", 1))
|
620 |
+
node_rank = int(os.environ.get("NODE_RANK", 0))
|
621 |
+
os.environ["RANK"] = str(nproc * node_rank + index)
|
622 |
+
|
623 |
+
os.environ["FORK_LAUNCHED"] = str(1)
|
624 |
+
self.launcher(*args)
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/megatron_lm.py
ADDED
@@ -0,0 +1,1435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import math
|
17 |
+
from abc import ABC
|
18 |
+
from functools import partial
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
23 |
+
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
|
24 |
+
|
25 |
+
from ..optimizer import AcceleratedOptimizer
|
26 |
+
from ..scheduler import AcceleratedScheduler
|
27 |
+
from .imports import is_megatron_lm_available, is_transformers_available
|
28 |
+
from .operations import recursively_apply, send_to_device
|
29 |
+
|
30 |
+
|
31 |
+
if is_transformers_available():
|
32 |
+
from transformers.modeling_outputs import (
|
33 |
+
CausalLMOutputWithCrossAttentions,
|
34 |
+
Seq2SeqLMOutput,
|
35 |
+
SequenceClassifierOutput,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
if is_megatron_lm_available():
|
40 |
+
from megatron import (
|
41 |
+
get_args,
|
42 |
+
get_num_microbatches,
|
43 |
+
get_tensorboard_writer,
|
44 |
+
get_timers,
|
45 |
+
get_tokenizer,
|
46 |
+
mpu,
|
47 |
+
print_rank_0,
|
48 |
+
print_rank_last,
|
49 |
+
)
|
50 |
+
from megatron.arguments import _add_data_args, _add_validation_args, parse_args, validate_args
|
51 |
+
from megatron.checkpointing import load_args_from_checkpoint, load_checkpoint, save_checkpoint
|
52 |
+
from megatron.data.data_samplers import MegatronPretrainingRandomSampler, MegatronPretrainingSampler
|
53 |
+
from megatron.global_vars import set_global_variables
|
54 |
+
from megatron.initialize import (
|
55 |
+
_compile_dependencies,
|
56 |
+
_init_autoresume,
|
57 |
+
_set_random_seed,
|
58 |
+
set_jit_fusion_options,
|
59 |
+
write_args_to_tensorboard,
|
60 |
+
)
|
61 |
+
from megatron.model import BertModel, Float16Module, GPTModel, ModelType, T5Model
|
62 |
+
from megatron.model import DistributedDataParallel as LocalDDP
|
63 |
+
from megatron.model.classification import Classification
|
64 |
+
from megatron.optimizer import get_megatron_optimizer
|
65 |
+
from megatron.schedules import get_forward_backward_func
|
66 |
+
from megatron.text_generation.communication import broadcast_int_list, broadcast_tensor
|
67 |
+
from megatron.text_generation.generation import (
|
68 |
+
beam_search_and_return_on_first_stage,
|
69 |
+
generate_tokens_probs_and_return_on_first_stage,
|
70 |
+
)
|
71 |
+
from megatron.tokenizer.tokenizer import _vocab_size_with_padding
|
72 |
+
from megatron.training import get_model, get_optimizer_param_scheduler, training_log
|
73 |
+
from megatron.utils import (
|
74 |
+
average_losses_across_data_parallel_group,
|
75 |
+
calc_params_l2_norm,
|
76 |
+
get_ltor_masks_and_position_ids,
|
77 |
+
unwrap_model,
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
# model utilities
|
82 |
+
def model_provider_func(pre_process=True, post_process=True, add_encoder=True, add_decoder=True):
|
83 |
+
"""Build the model."""
|
84 |
+
args = get_args()
|
85 |
+
mode = "pre-training" if args.pretraining_flag else "fine-tuning"
|
86 |
+
if args.rank == 0:
|
87 |
+
print(f"Building {args.model_type_name} model in the {mode} mode.")
|
88 |
+
print(
|
89 |
+
"The Megatron LM model weights are initialized at random in `accelerator.prepare`. "
|
90 |
+
"Please use `accelerator.load_checkpoint` to load a pre-trained checkpoint matching the distributed setup."
|
91 |
+
)
|
92 |
+
if args.model_type_name == "bert":
|
93 |
+
if args.pretraining_flag:
|
94 |
+
num_tokentypes = 2 if args.bert_binary_head else 0
|
95 |
+
model = BertModel(
|
96 |
+
num_tokentypes=num_tokentypes,
|
97 |
+
add_binary_head=args.bert_binary_head,
|
98 |
+
parallel_output=True,
|
99 |
+
pre_process=pre_process,
|
100 |
+
post_process=post_process,
|
101 |
+
)
|
102 |
+
else:
|
103 |
+
model = Classification(
|
104 |
+
num_classes=args.num_labels, num_tokentypes=2, pre_process=pre_process, post_process=post_process
|
105 |
+
)
|
106 |
+
elif args.model_type_name == "gpt":
|
107 |
+
model = GPTModel(num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process)
|
108 |
+
elif args.model_type_name == "t5":
|
109 |
+
model = T5Model(
|
110 |
+
num_tokentypes=0,
|
111 |
+
parallel_output=True,
|
112 |
+
pre_process=pre_process,
|
113 |
+
post_process=post_process,
|
114 |
+
add_encoder=add_encoder,
|
115 |
+
add_decoder=add_decoder,
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
raise ValueError(f"Unsupported model type: {args.model_type_name}")
|
119 |
+
return model
|
120 |
+
|
121 |
+
|
122 |
+
def prepare_model(accelerator):
|
123 |
+
accelerator.print("Preparing model")
|
124 |
+
args = get_args()
|
125 |
+
if accelerator.state.megatron_lm_plugin.custom_prepare_model_function is not None:
|
126 |
+
if accelerator.state.megatron_lm_plugin.custom_model_provider_function is None:
|
127 |
+
raise ValueError(
|
128 |
+
"You must provide a `custom_model_provider_function` when using a `custom_prepare_model_function`."
|
129 |
+
)
|
130 |
+
custom_model_provider_func = accelerator.state.megatron_lm_plugin.custom_model_provider_function
|
131 |
+
model = accelerator.state.megatron_lm_plugin.custom_prepare_model_function(custom_model_provider_func)
|
132 |
+
else:
|
133 |
+
if args.model_type_name in ("bert", "gpt"):
|
134 |
+
model_type = ModelType.encoder_or_decoder
|
135 |
+
elif args.model_type_name == "t5":
|
136 |
+
model_type = ModelType.encoder_and_decoder
|
137 |
+
if args.pipeline_model_parallel_split_rank is None and args.pipeline_model_parallel_size > 1:
|
138 |
+
args.pipeline_model_parallel_split_rank = args.pipeline_model_parallel_size // 2
|
139 |
+
model = get_model(model_provider_func, model_type)
|
140 |
+
return model
|
141 |
+
|
142 |
+
|
143 |
+
# dataloader utilities
|
144 |
+
class MegatronLMDummyDataLoader:
|
145 |
+
"""
|
146 |
+
Dummy dataloader presents model parameters or param groups, this is primarily used to follow conventional training
|
147 |
+
|
148 |
+
Args:
|
149 |
+
**dataset_kwargs: Megatron data arguments.
|
150 |
+
"""
|
151 |
+
|
152 |
+
def __init__(self, **dataset_kwargs):
|
153 |
+
parser = argparse.ArgumentParser()
|
154 |
+
parser = _add_data_args(parser)
|
155 |
+
parser = _add_validation_args(parser)
|
156 |
+
data_args = parser.parse_known_args()
|
157 |
+
self.dataset_args = vars(data_args[0])
|
158 |
+
self.dataset_args.update(dataset_kwargs)
|
159 |
+
self.dataset_args["megatron_dataset_flag"] = True
|
160 |
+
|
161 |
+
def set_megatron_data_args(self):
|
162 |
+
args = get_args()
|
163 |
+
for key, value in self.dataset_args.items():
|
164 |
+
setattr(args, key, value)
|
165 |
+
|
166 |
+
def get_train_valid_test_datasets_provider(self):
|
167 |
+
def train_valid_test_datasets_provider(train_val_test_num_samples):
|
168 |
+
"""Build train, valid, and test datasets."""
|
169 |
+
args = get_args()
|
170 |
+
dataset_args = {
|
171 |
+
"data_prefix": args.data_path,
|
172 |
+
"data_impl": args.data_impl,
|
173 |
+
"splits_string": args.split,
|
174 |
+
"train_valid_test_num_samples": train_val_test_num_samples,
|
175 |
+
"skip_warmup": (not args.mmap_warmup),
|
176 |
+
"seed": args.seed,
|
177 |
+
}
|
178 |
+
if args.model_type_name == "bert":
|
179 |
+
dataset_args.update(
|
180 |
+
{
|
181 |
+
"max_seq_length": args.seq_length,
|
182 |
+
"masked_lm_prob": args.mask_prob,
|
183 |
+
"short_seq_prob": args.short_seq_prob,
|
184 |
+
"binary_head": args.bert_binary_head,
|
185 |
+
}
|
186 |
+
)
|
187 |
+
elif args.model_type_name == "gpt":
|
188 |
+
dataset_args.update(
|
189 |
+
{
|
190 |
+
"seq_length": args.seq_length,
|
191 |
+
}
|
192 |
+
)
|
193 |
+
elif args.model_type_name == "t5":
|
194 |
+
dataset_args.update(
|
195 |
+
{
|
196 |
+
"max_seq_length": args.encoder_seq_length,
|
197 |
+
"max_seq_length_dec": args.decoder_seq_length,
|
198 |
+
"masked_lm_prob": args.mask_prob,
|
199 |
+
"short_seq_prob": args.short_seq_prob,
|
200 |
+
"dataset_type": "t5",
|
201 |
+
}
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
raise ValueError(f"Unsupported model type: {args.model_type_name}")
|
205 |
+
if args.model_type_name == "gpt":
|
206 |
+
from megatron.data.gpt_dataset import build_train_valid_test_datasets
|
207 |
+
else:
|
208 |
+
from megatron.data.dataset_utils import build_train_valid_test_datasets
|
209 |
+
train_ds, valid_ds, test_ds = build_train_valid_test_datasets(**dataset_args)
|
210 |
+
return train_ds, valid_ds, test_ds
|
211 |
+
|
212 |
+
return train_valid_test_datasets_provider
|
213 |
+
|
214 |
+
def build_pretraining_data_loader(self, dataset, consumed_samples):
|
215 |
+
if dataset is None:
|
216 |
+
return None
|
217 |
+
args = get_args()
|
218 |
+
micro_batch_size = args.micro_batch_size * args.num_micro_batches
|
219 |
+
|
220 |
+
# Megatron sampler
|
221 |
+
if args.dataloader_type == "single":
|
222 |
+
batch_sampler = MegatronPretrainingSampler(
|
223 |
+
total_samples=len(dataset),
|
224 |
+
consumed_samples=consumed_samples,
|
225 |
+
micro_batch_size=micro_batch_size,
|
226 |
+
data_parallel_rank=mpu.get_data_parallel_rank(),
|
227 |
+
data_parallel_size=mpu.get_data_parallel_world_size(),
|
228 |
+
)
|
229 |
+
elif args.dataloader_type == "cyclic":
|
230 |
+
batch_sampler = MegatronPretrainingRandomSampler(
|
231 |
+
dataset,
|
232 |
+
total_samples=len(dataset),
|
233 |
+
consumed_samples=consumed_samples,
|
234 |
+
micro_batch_size=micro_batch_size,
|
235 |
+
data_parallel_rank=mpu.get_data_parallel_rank(),
|
236 |
+
data_parallel_size=mpu.get_data_parallel_world_size(),
|
237 |
+
data_sharding=args.data_sharding,
|
238 |
+
)
|
239 |
+
else:
|
240 |
+
raise Exception(f"{args.dataloader_type} dataloader type is not supported.")
|
241 |
+
|
242 |
+
# Torch dataloader.
|
243 |
+
return torch.utils.data.DataLoader(
|
244 |
+
dataset, batch_sampler=batch_sampler, num_workers=args.num_workers, pin_memory=True
|
245 |
+
)
|
246 |
+
|
247 |
+
def build_train_valid_test_data_iterators(self):
|
248 |
+
def cyclic_iter(iter):
|
249 |
+
while True:
|
250 |
+
yield from iter
|
251 |
+
|
252 |
+
args = get_args()
|
253 |
+
|
254 |
+
(train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)
|
255 |
+
|
256 |
+
print_rank_0("> building train, validation, and test datasets ...")
|
257 |
+
|
258 |
+
# Backward compatibility, assume fixed batch size.
|
259 |
+
if args.iteration > 0 and args.consumed_train_samples == 0:
|
260 |
+
assert args.train_samples is None, "only backward compatiblity support for iteration-based training"
|
261 |
+
args.consumed_train_samples = args.iteration * args.global_batch_size
|
262 |
+
if args.iteration > 0 and args.consumed_valid_samples == 0:
|
263 |
+
if args.train_samples is None:
|
264 |
+
args.consumed_valid_samples = (
|
265 |
+
(args.iteration // args.eval_interval) * args.eval_iters * args.global_batch_size
|
266 |
+
)
|
267 |
+
|
268 |
+
# Data loader only on rank 0 of each model parallel group.
|
269 |
+
if mpu.get_tensor_model_parallel_rank() == 0:
|
270 |
+
# Number of train/valid/test samples.
|
271 |
+
if args.train_samples:
|
272 |
+
train_samples = args.train_samples
|
273 |
+
else:
|
274 |
+
train_samples = args.train_iters * args.global_batch_size
|
275 |
+
eval_iters = (args.train_iters // args.eval_interval + 1) * args.eval_iters
|
276 |
+
test_iters = args.eval_iters
|
277 |
+
train_val_test_num_samples = [
|
278 |
+
train_samples,
|
279 |
+
eval_iters * args.global_batch_size,
|
280 |
+
test_iters * args.global_batch_size,
|
281 |
+
]
|
282 |
+
print_rank_0(" > datasets target sizes (minimum size):")
|
283 |
+
print_rank_0(f" train: {train_val_test_num_samples[0]}")
|
284 |
+
print_rank_0(f" validation: {train_val_test_num_samples[1]}")
|
285 |
+
print_rank_0(f" test: {train_val_test_num_samples[2]}")
|
286 |
+
|
287 |
+
# Build the datasets.
|
288 |
+
train_valid_test_datasets_provider = self.get_train_valid_test_datasets_provider()
|
289 |
+
train_ds, valid_ds, test_ds = train_valid_test_datasets_provider(train_val_test_num_samples)
|
290 |
+
|
291 |
+
# Build dataloders.
|
292 |
+
train_dataloader = self.build_pretraining_data_loader(train_ds, args.consumed_train_samples)
|
293 |
+
valid_dataloader = self.build_pretraining_data_loader(valid_ds, args.consumed_valid_samples)
|
294 |
+
test_dataloader = self.build_pretraining_data_loader(test_ds, 0)
|
295 |
+
|
296 |
+
# Flags to know if we need to do training/validation/testing.
|
297 |
+
do_train = train_dataloader is not None and args.train_iters > 0
|
298 |
+
do_valid = valid_dataloader is not None and args.eval_iters > 0
|
299 |
+
do_test = test_dataloader is not None and args.eval_iters > 0
|
300 |
+
# Need to broadcast num_tokens and num_type_tokens.
|
301 |
+
flags = torch.cuda.LongTensor([int(do_train), int(do_valid), int(do_test)])
|
302 |
+
else:
|
303 |
+
flags = torch.cuda.LongTensor([0, 0, 0])
|
304 |
+
|
305 |
+
# Broadcast num tokens.
|
306 |
+
torch.distributed.broadcast(
|
307 |
+
flags, mpu.get_tensor_model_parallel_src_rank(), group=mpu.get_tensor_model_parallel_group()
|
308 |
+
)
|
309 |
+
args.do_train = flags[0].item()
|
310 |
+
args.do_valid = flags[1].item()
|
311 |
+
args.do_test = flags[2].item()
|
312 |
+
|
313 |
+
# Build iterators.
|
314 |
+
dl_type = args.dataloader_type
|
315 |
+
assert dl_type in ["single", "cyclic"]
|
316 |
+
|
317 |
+
if train_dataloader is not None:
|
318 |
+
train_data_iterator = (
|
319 |
+
iter(train_dataloader) if dl_type == "single" else iter(cyclic_iter(train_dataloader))
|
320 |
+
)
|
321 |
+
else:
|
322 |
+
train_data_iterator = None
|
323 |
+
|
324 |
+
if valid_dataloader is not None:
|
325 |
+
valid_data_iterator = (
|
326 |
+
iter(valid_dataloader) if dl_type == "single" else iter(cyclic_iter(valid_dataloader))
|
327 |
+
)
|
328 |
+
else:
|
329 |
+
valid_data_iterator = None
|
330 |
+
|
331 |
+
if test_dataloader is not None:
|
332 |
+
test_data_iterator = iter(test_dataloader) if dl_type == "single" else iter(cyclic_iter(test_dataloader))
|
333 |
+
else:
|
334 |
+
test_data_iterator = None
|
335 |
+
|
336 |
+
return train_data_iterator, valid_data_iterator, test_data_iterator
|
337 |
+
|
338 |
+
|
339 |
+
def prepare_data_loader(accelerator, dataloader):
|
340 |
+
accelerator.print("Preparing dataloader")
|
341 |
+
args = get_args()
|
342 |
+
if not args.megatron_dataset_flag:
|
343 |
+
from ..data_loader import _PYTORCH_DATALOADER_KWARGS, prepare_data_loader
|
344 |
+
|
345 |
+
args = get_args()
|
346 |
+
micro_batch_size = args.micro_batch_size * args.num_micro_batches
|
347 |
+
kwargs = {k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k]) for k in _PYTORCH_DATALOADER_KWARGS}
|
348 |
+
if kwargs["batch_size"] is None:
|
349 |
+
if isinstance(kwargs["sampler"], torch.utils.data.BatchSampler):
|
350 |
+
kwargs["sampler"].batch_size = micro_batch_size
|
351 |
+
else:
|
352 |
+
del kwargs["sampler"]
|
353 |
+
del kwargs["shuffle"]
|
354 |
+
del kwargs["batch_size"]
|
355 |
+
kwargs["batch_sampler"].batch_size = micro_batch_size
|
356 |
+
else:
|
357 |
+
del kwargs["batch_sampler"]
|
358 |
+
kwargs["batch_size"] = micro_batch_size
|
359 |
+
|
360 |
+
dataloader = torch.utils.data.DataLoader(dataloader.dataset, **kwargs)
|
361 |
+
return prepare_data_loader(
|
362 |
+
dataloader,
|
363 |
+
accelerator.device,
|
364 |
+
num_processes=mpu.get_data_parallel_world_size(),
|
365 |
+
process_index=mpu.get_data_parallel_rank(),
|
366 |
+
split_batches=accelerator.split_batches,
|
367 |
+
put_on_device=True,
|
368 |
+
rng_types=accelerator.rng_types.copy(),
|
369 |
+
dispatch_batches=accelerator.dispatch_batches,
|
370 |
+
)
|
371 |
+
else:
|
372 |
+
if args.consumed_samples is not None:
|
373 |
+
(
|
374 |
+
args.consumed_train_samples,
|
375 |
+
args.consumed_valid_samples,
|
376 |
+
args.consumed_test_samples,
|
377 |
+
) = args.consumed_samples
|
378 |
+
else:
|
379 |
+
args.consumed_train_samples, args.consumed_valid_samples, args.consumed_test_samples = 0, 0, 0
|
380 |
+
(
|
381 |
+
train_data_iterator,
|
382 |
+
valid_data_iterator,
|
383 |
+
test_data_iterator,
|
384 |
+
) = dataloader.build_train_valid_test_data_iterators()
|
385 |
+
return train_data_iterator, valid_data_iterator, test_data_iterator
|
386 |
+
|
387 |
+
|
388 |
+
# optimizer utilities
|
389 |
+
class MegatronLMOptimizerWrapper(AcceleratedOptimizer):
|
390 |
+
def __init__(self, optimizer):
|
391 |
+
super().__init__(optimizer, device_placement=False, scaler=None)
|
392 |
+
|
393 |
+
def zero_grad(self, set_to_none=None):
|
394 |
+
pass # `model(**batch)` is doing that automatically. Therefore, it's implementation is not needed
|
395 |
+
|
396 |
+
def step(self):
|
397 |
+
pass # `model(**batch)` is doing that automatically. Therefore, it's implementation is not needed
|
398 |
+
|
399 |
+
@property
|
400 |
+
def step_was_skipped(self):
|
401 |
+
"""Whether or not the optimizer step was done, or skipped because of gradient overflow."""
|
402 |
+
return self.optimizer.skipped_iter
|
403 |
+
|
404 |
+
|
405 |
+
def prepare_optimizer(accelerator, model):
|
406 |
+
accelerator.print("Preparing optimizer")
|
407 |
+
args = get_args()
|
408 |
+
optimizer = get_megatron_optimizer(model, args.no_wd_decay_cond, args.scale_lr_cond, args.lr_mult)
|
409 |
+
return optimizer
|
410 |
+
|
411 |
+
|
412 |
+
# scheduler utilities
|
413 |
+
class MegatronLMDummyScheduler:
|
414 |
+
"""
|
415 |
+
Dummy scheduler presents model parameters or param groups, this is primarily used to follow conventional training
|
416 |
+
loop when scheduler config is specified in the deepspeed config file.
|
417 |
+
|
418 |
+
Args:
|
419 |
+
optimizer (`torch.optim.optimizer.Optimizer`):
|
420 |
+
The optimizer to wrap.
|
421 |
+
total_num_steps (int):
|
422 |
+
Total number of steps.
|
423 |
+
warmup_num_steps (int):
|
424 |
+
Number of steps for warmup.
|
425 |
+
**kwargs (additional keyword arguments, *optional*):
|
426 |
+
Other arguments.
|
427 |
+
"""
|
428 |
+
|
429 |
+
def __init__(self, optimizer, total_num_steps=None, warmup_num_steps=0, **kwargs):
|
430 |
+
self.optimizer = optimizer
|
431 |
+
self.total_num_steps = total_num_steps
|
432 |
+
self.warmup_num_steps = warmup_num_steps
|
433 |
+
self.kwargs = kwargs
|
434 |
+
|
435 |
+
|
436 |
+
class MegatronLMSchedulerWrapper(AcceleratedScheduler):
|
437 |
+
def __init__(self, scheduler, optimizers):
|
438 |
+
super().__init__(scheduler, optimizers)
|
439 |
+
|
440 |
+
def step(self, *args, **kwargs):
|
441 |
+
return # `model(**batch)` is doing that automatically. Therefore, it's implementation is not needed
|
442 |
+
|
443 |
+
|
444 |
+
def prepare_scheduler(accelerator, optimizer, scheduler):
|
445 |
+
accelerator.print("Preparing scheduler")
|
446 |
+
scheduler = get_optimizer_param_scheduler(optimizer)
|
447 |
+
return scheduler
|
448 |
+
|
449 |
+
|
450 |
+
class AbstractTrainStep(ABC):
|
451 |
+
"""Abstract class for batching, forward pass and loss handler."""
|
452 |
+
|
453 |
+
def __init__(self, name):
|
454 |
+
super().__init__()
|
455 |
+
self.name = name
|
456 |
+
|
457 |
+
def get_batch_func(self):
|
458 |
+
pass
|
459 |
+
|
460 |
+
def get_forward_step_func(self):
|
461 |
+
pass
|
462 |
+
|
463 |
+
def get_loss_func(self):
|
464 |
+
pass
|
465 |
+
|
466 |
+
|
467 |
+
class BertTrainStep(AbstractTrainStep):
|
468 |
+
"""
|
469 |
+
Bert train step class.
|
470 |
+
|
471 |
+
Args:
|
472 |
+
args (`argparse.Namespace`): Megatron-LM arguments.
|
473 |
+
"""
|
474 |
+
|
475 |
+
def __init__(self, args):
|
476 |
+
super().__init__("BertTrainStep")
|
477 |
+
self.get_batch = self.get_batch_func(args.megatron_dataset_flag)
|
478 |
+
self.loss_func = self.get_loss_func(args.pretraining_flag, args.num_labels)
|
479 |
+
self.forward_step = self.get_forward_step_func(args.pretraining_flag, args.bert_binary_head)
|
480 |
+
if not args.model_return_dict:
|
481 |
+
self.model_output_class = None
|
482 |
+
else:
|
483 |
+
self.model_output_class = SequenceClassifierOutput
|
484 |
+
|
485 |
+
def get_batch_func(self, megatron_dataset_flag):
|
486 |
+
def get_batch_megatron(data_iterator):
|
487 |
+
"""Build the batch."""
|
488 |
+
|
489 |
+
# Items and their type.
|
490 |
+
keys = ["text", "types", "labels", "is_random", "loss_mask", "padding_mask"]
|
491 |
+
datatype = torch.int64
|
492 |
+
|
493 |
+
# Broadcast data.
|
494 |
+
if data_iterator is not None:
|
495 |
+
data = next(data_iterator)
|
496 |
+
else:
|
497 |
+
data = None
|
498 |
+
data_b = mpu.broadcast_data(keys, data, datatype)
|
499 |
+
|
500 |
+
# Unpack.
|
501 |
+
tokens = data_b["text"].long()
|
502 |
+
types = data_b["types"].long()
|
503 |
+
sentence_order = data_b["is_random"].long()
|
504 |
+
loss_mask = data_b["loss_mask"].float()
|
505 |
+
lm_labels = data_b["labels"].long()
|
506 |
+
padding_mask = data_b["padding_mask"].long()
|
507 |
+
|
508 |
+
return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask
|
509 |
+
|
510 |
+
def get_batch_transformer(data_iterator):
|
511 |
+
"""Build the batch."""
|
512 |
+
data = next(data_iterator)
|
513 |
+
data = send_to_device(data, torch.cuda.current_device())
|
514 |
+
|
515 |
+
# Unpack.
|
516 |
+
tokens = data["input_ids"].long()
|
517 |
+
padding_mask = data["attention_mask"].long()
|
518 |
+
if "token_type_ids" in data:
|
519 |
+
types = data["token_type_ids"].long()
|
520 |
+
else:
|
521 |
+
types = None
|
522 |
+
if "labels" in data:
|
523 |
+
lm_labels = data["labels"].long()
|
524 |
+
loss_mask = (data["labels"] != -100).to(torch.float)
|
525 |
+
else:
|
526 |
+
lm_labels = None
|
527 |
+
loss_mask = None
|
528 |
+
if "next_sentence_label" in data:
|
529 |
+
sentence_order = data["next_sentence_label"].long()
|
530 |
+
else:
|
531 |
+
sentence_order = None
|
532 |
+
|
533 |
+
return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask
|
534 |
+
|
535 |
+
if megatron_dataset_flag:
|
536 |
+
return get_batch_megatron
|
537 |
+
else:
|
538 |
+
return get_batch_transformer
|
539 |
+
|
540 |
+
def get_loss_func(self, pretraining_flag, num_labels):
|
541 |
+
def loss_func_pretrain(loss_mask, sentence_order, output_tensor):
|
542 |
+
lm_loss_, sop_logits = output_tensor
|
543 |
+
|
544 |
+
lm_loss_ = lm_loss_.float()
|
545 |
+
loss_mask = loss_mask.float()
|
546 |
+
lm_loss = torch.sum(lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()
|
547 |
+
|
548 |
+
if sop_logits is not None:
|
549 |
+
sop_loss = F.cross_entropy(sop_logits.view(-1, 2).float(), sentence_order.view(-1), ignore_index=-1)
|
550 |
+
sop_loss = sop_loss.float()
|
551 |
+
loss = lm_loss + sop_loss
|
552 |
+
averaged_losses = average_losses_across_data_parallel_group([lm_loss, sop_loss])
|
553 |
+
return loss, {"lm loss": averaged_losses[0], "sop loss": averaged_losses[1]}
|
554 |
+
|
555 |
+
else:
|
556 |
+
loss = lm_loss
|
557 |
+
averaged_losses = average_losses_across_data_parallel_group([lm_loss])
|
558 |
+
return loss, {"lm loss": averaged_losses[0]}
|
559 |
+
|
560 |
+
def loss_func_finetune(labels, logits):
|
561 |
+
if num_labels == 1:
|
562 |
+
# We are doing regression
|
563 |
+
loss_fct = MSELoss()
|
564 |
+
loss = loss_fct(logits.view(-1), labels.view(-1))
|
565 |
+
elif self.num_labels > 1 and (labels.dtype in (torch.long, torch.int)):
|
566 |
+
loss_fct = CrossEntropyLoss()
|
567 |
+
loss = loss_fct(logits.view(-1, num_labels), labels.view(-1))
|
568 |
+
else:
|
569 |
+
loss_fct = BCEWithLogitsLoss()
|
570 |
+
loss = loss_fct(logits, labels)
|
571 |
+
averaged_losses = average_losses_across_data_parallel_group([loss])
|
572 |
+
return loss, {"loss": averaged_losses[0]}
|
573 |
+
|
574 |
+
if pretraining_flag:
|
575 |
+
return loss_func_pretrain
|
576 |
+
else:
|
577 |
+
return loss_func_finetune
|
578 |
+
|
579 |
+
def get_forward_step_func(self, pretraining_flag, bert_binary_head):
|
580 |
+
def forward_step(data_iterator, model):
|
581 |
+
"""Forward step."""
|
582 |
+
tokens, types, sentence_order, loss_mask, labels, padding_mask = self.get_batch(data_iterator)
|
583 |
+
if not bert_binary_head:
|
584 |
+
types = None
|
585 |
+
# Forward pass through the model.
|
586 |
+
if pretraining_flag:
|
587 |
+
output_tensor = model(tokens, padding_mask, tokentype_ids=types, lm_labels=labels)
|
588 |
+
return output_tensor, partial(self.loss_func, loss_mask, sentence_order)
|
589 |
+
else:
|
590 |
+
logits = model(tokens, padding_mask, tokentype_ids=types)
|
591 |
+
return logits, partial(self.loss_func, labels)
|
592 |
+
|
593 |
+
return forward_step
|
594 |
+
|
595 |
+
|
596 |
+
class GPTTrainStep(AbstractTrainStep):
|
597 |
+
"""
|
598 |
+
GPT train step class.
|
599 |
+
|
600 |
+
Args:
|
601 |
+
args (`argparse.Namespace`): Megatron-LM arguments.
|
602 |
+
"""
|
603 |
+
|
604 |
+
def __init__(self, args):
|
605 |
+
super().__init__("GPTTrainStep")
|
606 |
+
self.get_batch = self.get_batch_func(args.megatron_dataset_flag)
|
607 |
+
self.loss_func = self.get_loss_func()
|
608 |
+
self.forward_step = self.get_forward_step_func()
|
609 |
+
self.eod_token = args.padded_vocab_size - 1
|
610 |
+
if args.vocab_file is not None:
|
611 |
+
tokenizer = get_tokenizer()
|
612 |
+
self.eod_token = tokenizer.eod
|
613 |
+
self.reset_position_ids = args.reset_position_ids
|
614 |
+
self.reset_attention_mask = args.reset_attention_mask
|
615 |
+
self.eod_mask_loss = args.eod_mask_loss
|
616 |
+
if not args.model_return_dict:
|
617 |
+
self.model_output_class = None
|
618 |
+
else:
|
619 |
+
self.model_output_class = CausalLMOutputWithCrossAttentions
|
620 |
+
|
621 |
+
def get_batch_func(self, megatron_dataset_flag):
|
622 |
+
def get_batch_megatron(data_iterator):
|
623 |
+
"""Generate a batch"""
|
624 |
+
# Items and their type.
|
625 |
+
keys = ["text"]
|
626 |
+
datatype = torch.int64
|
627 |
+
|
628 |
+
# Broadcast data.
|
629 |
+
if data_iterator is not None:
|
630 |
+
data = next(data_iterator)
|
631 |
+
else:
|
632 |
+
data = None
|
633 |
+
data_b = mpu.broadcast_data(keys, data, datatype)
|
634 |
+
|
635 |
+
# Unpack.
|
636 |
+
tokens_ = data_b["text"].long()
|
637 |
+
labels = tokens_[:, 1:].contiguous()
|
638 |
+
tokens = tokens_[:, :-1].contiguous()
|
639 |
+
|
640 |
+
# Get the masks and postition ids.
|
641 |
+
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
|
642 |
+
tokens, self.eod_token, self.reset_position_ids, self.reset_attention_mask, self.eod_mask_loss
|
643 |
+
)
|
644 |
+
|
645 |
+
return tokens, labels, loss_mask, attention_mask, position_ids
|
646 |
+
|
647 |
+
def get_batch_transformer(data_iterator):
|
648 |
+
data = next(data_iterator)
|
649 |
+
data = {"input_ids": data["input_ids"]}
|
650 |
+
data = send_to_device(data, torch.cuda.current_device())
|
651 |
+
|
652 |
+
tokens_ = data["input_ids"].long()
|
653 |
+
padding = torch.zeros((tokens_.shape[0], 1), dtype=tokens_.dtype, device=tokens_.device) + self.eod_token
|
654 |
+
tokens_ = torch.concat([tokens_, padding], dim=1)
|
655 |
+
labels = tokens_[:, 1:].contiguous()
|
656 |
+
tokens = tokens_[:, :-1].contiguous()
|
657 |
+
# Get the masks and postition ids.
|
658 |
+
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
|
659 |
+
tokens, self.eod_token, self.reset_position_ids, self.reset_attention_mask, True
|
660 |
+
)
|
661 |
+
return tokens, labels, loss_mask, attention_mask, position_ids
|
662 |
+
|
663 |
+
if megatron_dataset_flag:
|
664 |
+
return get_batch_megatron
|
665 |
+
else:
|
666 |
+
return get_batch_transformer
|
667 |
+
|
668 |
+
def get_loss_func(self):
|
669 |
+
args = get_args()
|
670 |
+
|
671 |
+
def loss_func(loss_mask, output_tensor):
|
672 |
+
if args.return_logits:
|
673 |
+
losses, logits = output_tensor
|
674 |
+
else:
|
675 |
+
losses = output_tensor
|
676 |
+
losses = losses.float()
|
677 |
+
loss_mask = loss_mask.view(-1).float()
|
678 |
+
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
|
679 |
+
|
680 |
+
# Reduce loss for logging.
|
681 |
+
averaged_loss = average_losses_across_data_parallel_group([loss])
|
682 |
+
|
683 |
+
output_dict = {"lm loss": averaged_loss[0]}
|
684 |
+
if args.return_logits:
|
685 |
+
output_dict.update({"logits": logits})
|
686 |
+
return loss, output_dict
|
687 |
+
|
688 |
+
return loss_func
|
689 |
+
|
690 |
+
def get_forward_step_func(self):
|
691 |
+
def forward_step(data_iterator, model):
|
692 |
+
"""Forward step."""
|
693 |
+
# Get the batch.
|
694 |
+
tokens, labels, loss_mask, attention_mask, position_ids = self.get_batch(data_iterator)
|
695 |
+
output_tensor = model(tokens, position_ids, attention_mask, labels=labels)
|
696 |
+
|
697 |
+
return output_tensor, partial(self.loss_func, loss_mask)
|
698 |
+
|
699 |
+
return forward_step
|
700 |
+
|
701 |
+
|
702 |
+
class T5TrainStep(AbstractTrainStep):
|
703 |
+
"""
|
704 |
+
T5 train step class.
|
705 |
+
|
706 |
+
Args:
|
707 |
+
args (`argparse.Namespace`): Megatron-LM arguments.
|
708 |
+
"""
|
709 |
+
|
710 |
+
def __init__(self, args):
|
711 |
+
super().__init__("T5TrainStep")
|
712 |
+
self.get_batch = self.get_batch_func(args.megatron_dataset_flag)
|
713 |
+
self.loss_func = self.get_loss_func()
|
714 |
+
self.forward_step = self.get_forward_step_func()
|
715 |
+
if not args.model_return_dict:
|
716 |
+
self.model_output_class = None
|
717 |
+
else:
|
718 |
+
self.model_output_class = Seq2SeqLMOutput
|
719 |
+
|
720 |
+
@staticmethod
|
721 |
+
def attn_mask_postprocess(attention_mask):
|
722 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
723 |
+
# [b, 1, s]
|
724 |
+
attention_mask_b1s = attention_mask.unsqueeze(1)
|
725 |
+
# [b, s, 1]
|
726 |
+
attention_mask_bs1 = attention_mask.unsqueeze(2)
|
727 |
+
# [b, s, s]
|
728 |
+
attention_mask_bss = attention_mask_b1s * attention_mask_bs1
|
729 |
+
# Convert attention mask to binary:
|
730 |
+
extended_attention_mask = attention_mask_bss < 0.5
|
731 |
+
return extended_attention_mask
|
732 |
+
|
733 |
+
@staticmethod
|
734 |
+
def get_decoder_mask(seq_length, device):
|
735 |
+
attention_mask = torch.tril(torch.ones((1, seq_length, seq_length), device=device))
|
736 |
+
attention_mask = attention_mask < 0.5
|
737 |
+
return attention_mask
|
738 |
+
|
739 |
+
@staticmethod
|
740 |
+
def get_enc_dec_mask(attention_mask, dec_seq_length, device):
|
741 |
+
batch_size, _ = attention_mask.shape
|
742 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
743 |
+
# [b, 1, s]
|
744 |
+
attention_mask_b1s = attention_mask.unsqueeze(1)
|
745 |
+
# [b, s, 1]
|
746 |
+
attention_mask_bs1 = torch.ones((batch_size, dec_seq_length, 1), device=device)
|
747 |
+
attention_mask_bss = attention_mask_bs1 * attention_mask_b1s
|
748 |
+
extended_attention_mask = attention_mask_bss < 0.5
|
749 |
+
return extended_attention_mask
|
750 |
+
|
751 |
+
def get_batch_func(self, megatron_dataset_flag):
|
752 |
+
def get_batch_megatron(data_iterator):
|
753 |
+
"""Build the batch."""
|
754 |
+
|
755 |
+
keys = ["text_enc", "text_dec", "labels", "loss_mask", "enc_mask", "dec_mask", "enc_dec_mask"]
|
756 |
+
datatype = torch.int64
|
757 |
+
|
758 |
+
# Broadcast data.
|
759 |
+
if data_iterator is not None:
|
760 |
+
data = next(data_iterator)
|
761 |
+
else:
|
762 |
+
data = None
|
763 |
+
data_b = mpu.broadcast_data(keys, data, datatype)
|
764 |
+
|
765 |
+
# Unpack.
|
766 |
+
tokens_enc = data_b["text_enc"].long()
|
767 |
+
tokens_dec = data_b["text_dec"].long()
|
768 |
+
labels = data_b["labels"].long()
|
769 |
+
loss_mask = data_b["loss_mask"].float()
|
770 |
+
|
771 |
+
enc_mask = data_b["enc_mask"] < 0.5
|
772 |
+
dec_mask = data_b["dec_mask"] < 0.5
|
773 |
+
enc_dec_mask = data_b["enc_dec_mask"] < 0.5
|
774 |
+
|
775 |
+
return tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask, enc_dec_mask
|
776 |
+
|
777 |
+
def get_batch_transformer(data_iterator):
|
778 |
+
"""Build the batch."""
|
779 |
+
data = next(data_iterator)
|
780 |
+
data = send_to_device(data, torch.cuda.current_device())
|
781 |
+
|
782 |
+
tokens_enc = data["input_ids"].long()
|
783 |
+
labels = data["labels"].long()
|
784 |
+
loss_mask = (labels != -100).to(torch.float)
|
785 |
+
if "decoder_input_ids" in data:
|
786 |
+
tokens_dec = data["decoder_input_ids"].long()
|
787 |
+
else:
|
788 |
+
tokens_dec = labels.new_zeros(labels.shape, device=labels.device, dtype=torch.long)
|
789 |
+
tokens_dec[..., 1:] = labels[..., :-1].clone()
|
790 |
+
tokens_dec[..., 0] = 0
|
791 |
+
tokens_dec.masked_fill_(tokens_dec == -100, 0)
|
792 |
+
enc_mask = T5TrainStep.attn_mask_postprocess(data["attention_mask"].long())
|
793 |
+
dec_mask = T5TrainStep.get_decoder_mask(tokens_dec.shape[1], tokens_dec.device)
|
794 |
+
enc_dec_mask = T5TrainStep.get_enc_dec_mask(
|
795 |
+
data["attention_mask"].long(), tokens_dec.shape[1], tokens_dec.device
|
796 |
+
)
|
797 |
+
|
798 |
+
return tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask, enc_dec_mask
|
799 |
+
|
800 |
+
if megatron_dataset_flag:
|
801 |
+
return get_batch_megatron
|
802 |
+
else:
|
803 |
+
return get_batch_transformer
|
804 |
+
|
805 |
+
def get_loss_func(self):
|
806 |
+
def loss_func(loss_mask, output_tensor):
|
807 |
+
lm_loss_ = output_tensor.float()
|
808 |
+
lm_loss = torch.sum(lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()
|
809 |
+
|
810 |
+
loss = lm_loss
|
811 |
+
averaged_losses = average_losses_across_data_parallel_group([lm_loss])
|
812 |
+
|
813 |
+
return loss, {"lm loss": averaged_losses[0]}
|
814 |
+
|
815 |
+
return loss_func
|
816 |
+
|
817 |
+
def get_forward_step_func(self):
|
818 |
+
def forward_step(data_iterator, model):
|
819 |
+
"""Forward step."""
|
820 |
+
# Get the batch.
|
821 |
+
tokens_enc, tokens_dec, loss_mask, lm_labels, enc_mask, dec_mask, enc_dec_mask = self.get_batch(
|
822 |
+
data_iterator
|
823 |
+
)
|
824 |
+
# Forward model lm_labels
|
825 |
+
output_tensor = model(
|
826 |
+
tokens_enc, tokens_dec, enc_mask, dec_mask, enc_dec_mask, tokentype_ids=None, lm_labels=lm_labels
|
827 |
+
)
|
828 |
+
|
829 |
+
return output_tensor, partial(self.loss_func, loss_mask)
|
830 |
+
|
831 |
+
return forward_step
|
832 |
+
|
833 |
+
|
834 |
+
# intialize megatron setup
|
835 |
+
def initialize(accelerator, extra_args_provider=None, args_defaults={}):
|
836 |
+
accelerator.print("Initializing Megatron-LM")
|
837 |
+
assert torch.cuda.is_available(), "Megatron requires CUDA."
|
838 |
+
|
839 |
+
# Parse arguments
|
840 |
+
args = parse_args(extra_args_provider, ignore_unknown_args=True)
|
841 |
+
|
842 |
+
# Set defaults
|
843 |
+
for key, value in args_defaults.items():
|
844 |
+
if getattr(args, key, None) is not None:
|
845 |
+
if args.rank == 0:
|
846 |
+
print(
|
847 |
+
f"WARNING: overriding default arguments for " f"{key}:{getattr(args, key)} with {key}:{value}",
|
848 |
+
flush=True,
|
849 |
+
)
|
850 |
+
setattr(args, key, value)
|
851 |
+
|
852 |
+
if args.use_checkpoint_args or args_defaults.get("use_checkpoint_args", False):
|
853 |
+
assert args.load is not None, "--use-checkpoints-args requires --load argument"
|
854 |
+
load_args_from_checkpoint(args)
|
855 |
+
|
856 |
+
validate_args(args)
|
857 |
+
|
858 |
+
# set global args, build tokenizer, and set adlr-autoresume,
|
859 |
+
# tensorboard-writer, and timers.
|
860 |
+
set_global_variables(args)
|
861 |
+
|
862 |
+
# torch.distributed initialization
|
863 |
+
def finish_mpu_init():
|
864 |
+
args = get_args()
|
865 |
+
# Pytorch distributed.
|
866 |
+
device_count = torch.cuda.device_count()
|
867 |
+
args.rank = torch.distributed.get_rank()
|
868 |
+
args.world_size = torch.distributed.get_world_size()
|
869 |
+
if device_count > 0:
|
870 |
+
device = args.rank % device_count
|
871 |
+
if args.local_rank is not None:
|
872 |
+
assert args.local_rank == device, "expected local-rank to be the same as rank % device-count."
|
873 |
+
else:
|
874 |
+
args.local_rank = device
|
875 |
+
|
876 |
+
# Set the tensor model-parallel, pipeline model-parallel, and
|
877 |
+
# data-parallel communicators.
|
878 |
+
if mpu.model_parallel_is_initialized():
|
879 |
+
print("model parallel is already initialized")
|
880 |
+
else:
|
881 |
+
mpu.initialize_model_parallel(
|
882 |
+
args.tensor_model_parallel_size,
|
883 |
+
args.pipeline_model_parallel_size,
|
884 |
+
args.virtual_pipeline_model_parallel_size,
|
885 |
+
args.pipeline_model_parallel_split_rank,
|
886 |
+
)
|
887 |
+
|
888 |
+
# Random seeds for reproducibility.
|
889 |
+
if args.rank == 0:
|
890 |
+
print(f"> setting random seeds to {args.seed} ...")
|
891 |
+
_set_random_seed(args.seed, args.data_parallel_random_init)
|
892 |
+
|
893 |
+
args = get_args()
|
894 |
+
|
895 |
+
# Megatron's MPU is the master. Complete initialization right away.
|
896 |
+
finish_mpu_init()
|
897 |
+
|
898 |
+
# Autoresume.
|
899 |
+
_init_autoresume()
|
900 |
+
|
901 |
+
# Compile dependencies.
|
902 |
+
_compile_dependencies()
|
903 |
+
|
904 |
+
# Set pytorch JIT layer fusion options and warmup JIT functions.
|
905 |
+
set_jit_fusion_options()
|
906 |
+
args = get_args()
|
907 |
+
args.padded_vocab_size = _vocab_size_with_padding(args.orig_vocab_size, args)
|
908 |
+
if args.model_type_name == "bert" and args.pretraining_flag and args.num_labels == 2:
|
909 |
+
args.bert_binary_head = True
|
910 |
+
else:
|
911 |
+
args.bert_binary_head = False
|
912 |
+
args.iteration = 0
|
913 |
+
|
914 |
+
|
915 |
+
class MegatronEngine(torch.nn.Module):
|
916 |
+
"""
|
917 |
+
Megatron-LM model wrapper
|
918 |
+
|
919 |
+
Args:
|
920 |
+
accelerator (:class:`~accelerate.Accelerator`): The accelerator object to use.
|
921 |
+
model: Megatron-LM model
|
922 |
+
optimizer: Megatron-LM optimizer
|
923 |
+
lr_scheduler: Megatron-LM lr scheduler
|
924 |
+
"""
|
925 |
+
|
926 |
+
def __init__(self, accelerator, model, optimizer, scheduler):
|
927 |
+
super().__init__()
|
928 |
+
self.module = model
|
929 |
+
self.base_model = model[0]
|
930 |
+
self.optimizer = optimizer
|
931 |
+
self.scheduler = scheduler
|
932 |
+
args = get_args()
|
933 |
+
if accelerator.state.megatron_lm_plugin.custom_train_step_class is not None:
|
934 |
+
self.train_step_handler = accelerator.state.megatron_lm_plugin.custom_train_step_class(
|
935 |
+
args, **accelerator.state.megatron_lm_plugin.custom_train_step_kwargs
|
936 |
+
)
|
937 |
+
elif args.model_type_name == "bert":
|
938 |
+
self.train_step_handler = BertTrainStep(args)
|
939 |
+
elif args.model_type_name == "gpt":
|
940 |
+
self.train_step_handler = GPTTrainStep(args)
|
941 |
+
elif args.model_type_name == "t5":
|
942 |
+
self.train_step_handler = T5TrainStep(args)
|
943 |
+
else:
|
944 |
+
raise ValueError(f"Unsupported model type: {args.model_type_name}")
|
945 |
+
self.optimizer.skipped_iter = False
|
946 |
+
|
947 |
+
# Tracking loss.
|
948 |
+
self.total_loss_dict = {}
|
949 |
+
self.eval_total_loss_dict = {}
|
950 |
+
self.iteration = 0
|
951 |
+
self.report_memory_flag = True
|
952 |
+
if args.tensorboard_dir is not None:
|
953 |
+
write_args_to_tensorboard()
|
954 |
+
|
955 |
+
def train(self):
|
956 |
+
for model_module in self.module:
|
957 |
+
model_module.train()
|
958 |
+
self.log_eval_results()
|
959 |
+
|
960 |
+
def eval(self):
|
961 |
+
for model_module in self.module:
|
962 |
+
model_module.eval()
|
963 |
+
|
964 |
+
def train_step(self, **batch_data):
|
965 |
+
"""
|
966 |
+
Training step for Megatron-LM
|
967 |
+
|
968 |
+
Args:
|
969 |
+
batch_data (:obj:`dict`): The batch data to train on.
|
970 |
+
"""
|
971 |
+
|
972 |
+
args = get_args()
|
973 |
+
timers = get_timers()
|
974 |
+
|
975 |
+
if len(batch_data) > 0:
|
976 |
+
data_chunks = []
|
977 |
+
if args.num_micro_batches > 1:
|
978 |
+
for i in range(0, args.num_micro_batches):
|
979 |
+
data_chunks.append(
|
980 |
+
{
|
981 |
+
k: v[i * args.micro_batch_size : (i + 1) * args.micro_batch_size]
|
982 |
+
for k, v in batch_data.items()
|
983 |
+
}
|
984 |
+
)
|
985 |
+
else:
|
986 |
+
data_chunks = [batch_data]
|
987 |
+
|
988 |
+
if len(self.module) > 1:
|
989 |
+
batch_data_iterator = (
|
990 |
+
[iter(data_chunks) for _ in range(len(self.module))]
|
991 |
+
if len(batch_data) > 0
|
992 |
+
else [None] * len(self.module)
|
993 |
+
)
|
994 |
+
else:
|
995 |
+
batch_data_iterator = iter(data_chunks) if len(batch_data) > 0 else None
|
996 |
+
|
997 |
+
# Set grad to zero.
|
998 |
+
if args.DDP_impl == "local" and args.use_contiguous_buffers_in_local_ddp:
|
999 |
+
for partition in self.module:
|
1000 |
+
partition.zero_grad_buffer()
|
1001 |
+
self.optimizer.zero_grad()
|
1002 |
+
|
1003 |
+
# Forward pass.
|
1004 |
+
forward_backward_func = get_forward_backward_func()
|
1005 |
+
losses_reduced = forward_backward_func(
|
1006 |
+
self.train_step_handler.forward_step,
|
1007 |
+
batch_data_iterator,
|
1008 |
+
self.module,
|
1009 |
+
self.optimizer,
|
1010 |
+
None,
|
1011 |
+
forward_only=False,
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
# Empty unused memory.
|
1015 |
+
if args.empty_unused_memory_level >= 1:
|
1016 |
+
torch.cuda.empty_cache()
|
1017 |
+
|
1018 |
+
# Reduce gradients.
|
1019 |
+
timers("backward-reduce-model-grads").start()
|
1020 |
+
self.optimizer.reduce_model_grads(args, timers)
|
1021 |
+
timers("backward-reduce-model-grads").stop()
|
1022 |
+
|
1023 |
+
# Update parameters.
|
1024 |
+
timers("optimizer").start()
|
1025 |
+
update_successful, grad_norm, num_zeros_in_grad = self.optimizer.step(args, timers)
|
1026 |
+
timers("optimizer").stop()
|
1027 |
+
|
1028 |
+
# Gather params.
|
1029 |
+
if update_successful:
|
1030 |
+
timers("backward-gather-model-params").start()
|
1031 |
+
self.optimizer.gather_model_params(args, timers)
|
1032 |
+
timers("backward-gather-model-params").stop()
|
1033 |
+
|
1034 |
+
# Update learning rate.
|
1035 |
+
if update_successful:
|
1036 |
+
if self.scheduler is not None:
|
1037 |
+
increment = get_num_microbatches() * args.micro_batch_size * args.data_parallel_size
|
1038 |
+
self.scheduler.step(increment=increment)
|
1039 |
+
skipped_iter = 0
|
1040 |
+
else:
|
1041 |
+
skipped_iter = 1
|
1042 |
+
|
1043 |
+
self.optimizer.skipped_iter = not update_successful
|
1044 |
+
|
1045 |
+
# Empty unused memory.
|
1046 |
+
if args.empty_unused_memory_level >= 2:
|
1047 |
+
torch.cuda.empty_cache()
|
1048 |
+
|
1049 |
+
args.consumed_train_samples += (
|
1050 |
+
mpu.get_data_parallel_world_size() * args.micro_batch_size * get_num_microbatches()
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
if mpu.is_pipeline_last_stage(ignore_virtual=True):
|
1054 |
+
# Average loss across microbatches.
|
1055 |
+
loss_reduced = {}
|
1056 |
+
for key in losses_reduced[0]:
|
1057 |
+
losses_reduced_for_key = [x[key] for x in losses_reduced]
|
1058 |
+
if len(losses_reduced_for_key[0].shape) == 0:
|
1059 |
+
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
|
1060 |
+
else:
|
1061 |
+
loss_reduced[key] = torch.concat(losses_reduced_for_key)
|
1062 |
+
return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
|
1063 |
+
return {}, skipped_iter, grad_norm, num_zeros_in_grad
|
1064 |
+
|
1065 |
+
def eval_step(self, **batch_data):
|
1066 |
+
"""
|
1067 |
+
Evaluation step for Megatron-LM
|
1068 |
+
|
1069 |
+
Args:
|
1070 |
+
batch_data (:obj:`dict`): The batch data to evaluate on.
|
1071 |
+
"""
|
1072 |
+
|
1073 |
+
args = get_args()
|
1074 |
+
data_chunks = []
|
1075 |
+
if args.num_micro_batches > 1:
|
1076 |
+
for i in range(0, args.num_micro_batches):
|
1077 |
+
data_chunks.append(
|
1078 |
+
{k: v[i * args.micro_batch_size : (i + 1) * args.micro_batch_size] for k, v in batch_data.items()}
|
1079 |
+
)
|
1080 |
+
else:
|
1081 |
+
data_chunks = [batch_data]
|
1082 |
+
|
1083 |
+
if len(self.module) > 1:
|
1084 |
+
batch_data_iterator = [iter(data_chunks) for _ in range(len(self.module))]
|
1085 |
+
else:
|
1086 |
+
batch_data_iterator = iter(data_chunks)
|
1087 |
+
forward_backward_func = get_forward_backward_func()
|
1088 |
+
loss_dicts = forward_backward_func(
|
1089 |
+
self.train_step_handler.forward_step,
|
1090 |
+
batch_data_iterator,
|
1091 |
+
self.module,
|
1092 |
+
optimizer=None,
|
1093 |
+
timers=None,
|
1094 |
+
forward_only=True,
|
1095 |
+
)
|
1096 |
+
# Empty unused memory
|
1097 |
+
if args.empty_unused_memory_level >= 1:
|
1098 |
+
torch.cuda.empty_cache()
|
1099 |
+
|
1100 |
+
args.consumed_valid_samples += (
|
1101 |
+
mpu.get_data_parallel_world_size() * args.micro_batch_size * get_num_microbatches()
|
1102 |
+
)
|
1103 |
+
|
1104 |
+
if mpu.is_pipeline_last_stage(ignore_virtual=True):
|
1105 |
+
# Average loss across microbatches.
|
1106 |
+
loss_reduced = {}
|
1107 |
+
for key in loss_dicts[0]:
|
1108 |
+
losses_reduced_for_key = [x[key] for x in loss_dicts]
|
1109 |
+
if len(losses_reduced_for_key[0].shape) == 0:
|
1110 |
+
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
|
1111 |
+
else:
|
1112 |
+
loss_reduced[key] = torch.concat(losses_reduced_for_key)
|
1113 |
+
return loss_reduced
|
1114 |
+
else:
|
1115 |
+
return {}
|
1116 |
+
|
1117 |
+
def forward(self, **batch_data):
|
1118 |
+
# During training, we use train_step()
|
1119 |
+
# model(**batch_data) performs following operations by delegating it to `self.train_step`:
|
1120 |
+
# 1. Prepare **batch_data for Tendor, Pipeline and Model Parallelism
|
1121 |
+
# 2. Set grad to zero.
|
1122 |
+
# 3. forward pass and backward pass using Pipeline Parallelism
|
1123 |
+
# 4. Empty unused memory.
|
1124 |
+
# 5. Reduce gradients.
|
1125 |
+
# 6. Update parameters.
|
1126 |
+
# 7. Gather params when using Distributed Optimizer (Data Parallelism).
|
1127 |
+
# 8. Update learning rate if scheduler is specified.
|
1128 |
+
# 9. Empty unused memory.
|
1129 |
+
# 10. Average loss across microbatches and across DP ranks.
|
1130 |
+
#
|
1131 |
+
# During evaluation, we use eval_step()
|
1132 |
+
args = get_args()
|
1133 |
+
if self.module[0].training:
|
1134 |
+
loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = self.train_step(**batch_data)
|
1135 |
+
self.iteration += 1
|
1136 |
+
if args.tensorboard_dir is not None:
|
1137 |
+
# Logging.
|
1138 |
+
loss_scale = self.optimizer.get_loss_scale().item()
|
1139 |
+
params_norm = None
|
1140 |
+
if args.log_params_norm:
|
1141 |
+
params_norm = calc_params_l2_norm(self.model)
|
1142 |
+
self.report_memory_flag = training_log(
|
1143 |
+
loss_dict,
|
1144 |
+
self.total_loss_dict,
|
1145 |
+
self.optimizer.param_groups[0]["lr"],
|
1146 |
+
self.iteration,
|
1147 |
+
loss_scale,
|
1148 |
+
self.report_memory_flag,
|
1149 |
+
skipped_iter,
|
1150 |
+
grad_norm,
|
1151 |
+
params_norm,
|
1152 |
+
num_zeros_in_grad,
|
1153 |
+
)
|
1154 |
+
else:
|
1155 |
+
loss_dict = self.eval_step(**batch_data)
|
1156 |
+
if args.tensorboard_dir is not None:
|
1157 |
+
for key in loss_dict:
|
1158 |
+
self.eval_total_loss_dict[key] = (
|
1159 |
+
self.eval_total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
|
1160 |
+
)
|
1161 |
+
self.eval_total_loss_dict[key + "_num_iters"] = self.eval_total_loss_dict.get(
|
1162 |
+
key + "_num_iters", torch.cuda.FloatTensor([0.0])
|
1163 |
+
) + torch.cuda.FloatTensor([1.0])
|
1164 |
+
|
1165 |
+
loss = torch.tensor(0.0, device=args.local_rank)
|
1166 |
+
for key in loss_dict:
|
1167 |
+
if len(loss_dict[key].shape) == 0:
|
1168 |
+
loss += loss_dict[key]
|
1169 |
+
|
1170 |
+
logits = None
|
1171 |
+
if "logits" in loss_dict:
|
1172 |
+
logits = loss_dict["logits"]
|
1173 |
+
# loss = reduce(loss)
|
1174 |
+
if self.train_step_handler.model_output_class is not None:
|
1175 |
+
return self.train_step_handler.model_output_class(loss=loss, logits=logits)
|
1176 |
+
return loss
|
1177 |
+
|
1178 |
+
def log_eval_results(self):
|
1179 |
+
args = get_args()
|
1180 |
+
if args.tensorboard_dir is None or self.iteration == 0:
|
1181 |
+
return
|
1182 |
+
args = get_args()
|
1183 |
+
writer = get_tensorboard_writer()
|
1184 |
+
string = f"validation loss at iteration {self.iteration} | "
|
1185 |
+
for key in self.eval_total_loss_dict:
|
1186 |
+
if key.endswith("_num_iters"):
|
1187 |
+
continue
|
1188 |
+
value = self.eval_total_loss_dict[key] / self.eval_total_loss_dict[key + "_num_iters"]
|
1189 |
+
string += f"{key} value: {value} | "
|
1190 |
+
ppl = math.exp(min(20, value.item()))
|
1191 |
+
if args.pretraining_flag:
|
1192 |
+
string += f"{key} PPL: {ppl} | "
|
1193 |
+
if writer:
|
1194 |
+
writer.add_scalar(f"{key} validation", value.item(), self.iteration)
|
1195 |
+
if args.pretraining_flag:
|
1196 |
+
writer.add_scalar(f"{key} validation ppl", ppl, self.iteration)
|
1197 |
+
|
1198 |
+
length = len(string) + 1
|
1199 |
+
print_rank_last("-" * length)
|
1200 |
+
print_rank_last(string)
|
1201 |
+
print_rank_last("-" * length)
|
1202 |
+
self.eval_total_loss_dict = {}
|
1203 |
+
|
1204 |
+
def save_checkpoint(self, output_dir):
|
1205 |
+
self.log_eval_results()
|
1206 |
+
args = get_args()
|
1207 |
+
args.save = output_dir
|
1208 |
+
torch.distributed.barrier()
|
1209 |
+
save_checkpoint(self.iteration, self.module, self.optimizer, self.scheduler)
|
1210 |
+
torch.distributed.barrier()
|
1211 |
+
|
1212 |
+
def load_checkpoint(self, input_dir):
|
1213 |
+
args = get_args()
|
1214 |
+
args.load = input_dir
|
1215 |
+
args.consumed_train_samples = 0
|
1216 |
+
args.consumed_valid_samples = 0
|
1217 |
+
torch.distributed.barrier()
|
1218 |
+
iteration = load_checkpoint(self.module, self.optimizer, self.scheduler)
|
1219 |
+
torch.distributed.barrier()
|
1220 |
+
self.iteration = iteration
|
1221 |
+
if args.fp16 and self.iteration == 0:
|
1222 |
+
self.optimizer.reload_model_params()
|
1223 |
+
|
1224 |
+
def megatron_generate(
|
1225 |
+
self,
|
1226 |
+
inputs,
|
1227 |
+
attention_mask=None,
|
1228 |
+
max_length=None,
|
1229 |
+
max_new_tokens=None,
|
1230 |
+
num_beams=None,
|
1231 |
+
temperature=None,
|
1232 |
+
top_k=None,
|
1233 |
+
top_p=None,
|
1234 |
+
length_penalty=None,
|
1235 |
+
**kwargs,
|
1236 |
+
):
|
1237 |
+
"""
|
1238 |
+
Generate method for GPT2 model. This method is used for inference. Supports both greedy and beam search along
|
1239 |
+
with sampling. Refer the Megatron-LM repo for more details
|
1240 |
+
|
1241 |
+
Args:
|
1242 |
+
inputs (torch.Tensor): input ids
|
1243 |
+
attention_mask (torch.Tensor, optional): attention mask. Defaults to None.
|
1244 |
+
max_length (int, optional): max length of the generated sequence. Defaults to None.
|
1245 |
+
Either this or max_new_tokens should be provided.
|
1246 |
+
max_new_tokens (int, optional): max number of tokens to be generated. Defaults to None.
|
1247 |
+
Either this or max_length should be provided.
|
1248 |
+
num_beams (int, optional): number of beams to use for beam search. Defaults to None.
|
1249 |
+
temperature (float, optional): temperature for sampling. Defaults to 1.0.
|
1250 |
+
top_k (int, optional): top k tokens to consider for sampling. Defaults to 0.0.
|
1251 |
+
top_p (float, optional): tokens in top p probability are considered for sampling. Defaults to 0.0.
|
1252 |
+
length_penalty (float, optional): length penalty for beam search. Defaults to None.
|
1253 |
+
kwargs: additional key-value arguments
|
1254 |
+
"""
|
1255 |
+
|
1256 |
+
# checking if required arguments are passed
|
1257 |
+
args = get_args()
|
1258 |
+
if args.model_type_name != "gpt":
|
1259 |
+
raise NotImplementedError("Generate method is not implemented for this model")
|
1260 |
+
|
1261 |
+
if args.data_parallel_size > 1:
|
1262 |
+
raise ValueError("Generate method requires data parallelism to be 1")
|
1263 |
+
|
1264 |
+
if args.sequence_parallel:
|
1265 |
+
raise ValueError("Generate method requires sequence parallelism to be False")
|
1266 |
+
|
1267 |
+
if args.recompute_granularity is not None:
|
1268 |
+
raise ValueError("Checkpoint activations cannot be set for inference")
|
1269 |
+
|
1270 |
+
if args.vocab_file is None:
|
1271 |
+
raise ValueError("Vocab file is required for inference")
|
1272 |
+
|
1273 |
+
# Prepare inputs
|
1274 |
+
if max_length is None and max_new_tokens is None:
|
1275 |
+
raise ValueError("`max_length` or `max_new_tokens` are required for inference")
|
1276 |
+
|
1277 |
+
if temperature is None:
|
1278 |
+
temperature = 1.0
|
1279 |
+
elif not (0.0 < temperature <= 100.0):
|
1280 |
+
raise ValueError("temperature must be a positive number less than or equal to 100.0")
|
1281 |
+
|
1282 |
+
if top_k is None:
|
1283 |
+
top_k = 0
|
1284 |
+
elif not (0 <= top_k <= 1000):
|
1285 |
+
raise ValueError("top_k must be a positive number less than or equal to 1000")
|
1286 |
+
|
1287 |
+
if top_p is None:
|
1288 |
+
top_p = 0.0
|
1289 |
+
elif top_p > 0.0 and top_k > 0.0:
|
1290 |
+
raise ValueError("top_p and top_k sampling cannot be set together")
|
1291 |
+
else:
|
1292 |
+
if not (0.0 <= top_p <= 1.0):
|
1293 |
+
raise ValueError("top_p must be less than or equal to 1.0")
|
1294 |
+
|
1295 |
+
top_p_decay = kwargs.get("top_p_decay", 0.0)
|
1296 |
+
if not (0.0 <= top_p_decay <= 1.0):
|
1297 |
+
raise ValueError("top_p_decay must be less than or equal to 1.0")
|
1298 |
+
|
1299 |
+
top_p_bound = kwargs.get("top_p_bound", 0.0)
|
1300 |
+
if not (0.0 <= top_p_bound <= 1.0):
|
1301 |
+
raise ValueError("top_p_bound must be less than or equal to 1.0")
|
1302 |
+
|
1303 |
+
add_BOS = kwargs.get("add_BOS", False)
|
1304 |
+
if not (isinstance(add_BOS, bool)):
|
1305 |
+
raise ValueError("add_BOS must be a boolean")
|
1306 |
+
|
1307 |
+
beam_width = num_beams
|
1308 |
+
if beam_width is not None:
|
1309 |
+
if not isinstance(beam_width, int):
|
1310 |
+
raise ValueError("beam_width must be an integer")
|
1311 |
+
if beam_width < 1:
|
1312 |
+
raise ValueError("beam_width must be greater than 0")
|
1313 |
+
if inputs.shape[0] > 1:
|
1314 |
+
return "When doing beam_search, batch size must be 1"
|
1315 |
+
|
1316 |
+
tokenizer = get_tokenizer()
|
1317 |
+
|
1318 |
+
stop_token = kwargs.get("stop_token", tokenizer.eod)
|
1319 |
+
if stop_token is not None:
|
1320 |
+
if not isinstance(stop_token, int):
|
1321 |
+
raise ValueError("stop_token must be an integer")
|
1322 |
+
|
1323 |
+
if length_penalty is None:
|
1324 |
+
length_penalty = 1.0
|
1325 |
+
|
1326 |
+
sizes_list = None
|
1327 |
+
prompts_tokens_tensor = None
|
1328 |
+
prompts_length_tensor = None
|
1329 |
+
if torch.distributed.get_rank() == 0:
|
1330 |
+
# Get the prompts length.
|
1331 |
+
if attention_mask is None:
|
1332 |
+
prompts_length_tensor = torch.cuda.LongTensor([inputs.shape[1]] * inputs.shape[0])
|
1333 |
+
else:
|
1334 |
+
prompts_length_tensor = attention_mask.sum(axis=-1).cuda()
|
1335 |
+
|
1336 |
+
if max_new_tokens is None:
|
1337 |
+
max_new_tokens = max_length - inputs.shape[1]
|
1338 |
+
if max_new_tokens <= 0:
|
1339 |
+
raise ValueError("max_new_tokens must be greater than 0")
|
1340 |
+
|
1341 |
+
if add_BOS:
|
1342 |
+
max_length = max_new_tokens + inputs.shape[1] + 1
|
1343 |
+
# making sure that `max_length` is a multiple of 4 to leverage fused kernels
|
1344 |
+
max_length = 4 * math.ceil(max_length / 4)
|
1345 |
+
max_new_tokens = max_length - (inputs.shape[1] + 1)
|
1346 |
+
padding = torch.cuda.LongTensor([[tokenizer.eod] * max_new_tokens] * inputs.shape[0])
|
1347 |
+
prompts_tokens_tensor = torch.concat(
|
1348 |
+
[torch.unsqueeze(padding[:, 0], axis=-1), inputs.cuda(), padding], axis=-1
|
1349 |
+
)
|
1350 |
+
else:
|
1351 |
+
# making sure that `max_length` is a multiple of 4 to leverage fused kernels
|
1352 |
+
max_length = max_new_tokens + inputs.shape[1]
|
1353 |
+
max_length = 4 * math.ceil(max_length / 4)
|
1354 |
+
max_new_tokens = max_length - inputs.shape[1]
|
1355 |
+
padding = torch.cuda.LongTensor([[tokenizer.eod] * max_new_tokens] * inputs.shape[0])
|
1356 |
+
prompts_tokens_tensor = torch.concat([inputs.cuda(), padding], axis=-1)
|
1357 |
+
|
1358 |
+
# We need the sizes of these tensors for the boradcast
|
1359 |
+
sizes_list = [
|
1360 |
+
prompts_tokens_tensor.size(0), # Batch size
|
1361 |
+
prompts_tokens_tensor.size(1),
|
1362 |
+
] # Sequence lenght
|
1363 |
+
|
1364 |
+
# First, broadcast the sizes.
|
1365 |
+
sizes_tensor = broadcast_int_list(2, int_list=sizes_list, rank=0)
|
1366 |
+
|
1367 |
+
# Now that we have the sizes, we can boradcast the tokens
|
1368 |
+
# and length tensors.
|
1369 |
+
sizes = sizes_tensor.tolist()
|
1370 |
+
context_tokens_tensor = broadcast_tensor(sizes, torch.int64, tensor=prompts_tokens_tensor, rank=0)
|
1371 |
+
context_length_tensor = broadcast_tensor(sizes[0], torch.int64, tensor=prompts_length_tensor, rank=0)
|
1372 |
+
|
1373 |
+
# Run the inference
|
1374 |
+
random_seed = kwargs.get("random_seed", 0)
|
1375 |
+
torch.random.manual_seed(random_seed)
|
1376 |
+
unwrapped_model = unwrap_model(self.base_model, (torchDDP, LocalDDP, Float16Module))
|
1377 |
+
if beam_width is not None:
|
1378 |
+
tokens, _ = beam_search_and_return_on_first_stage(
|
1379 |
+
unwrapped_model,
|
1380 |
+
context_tokens_tensor,
|
1381 |
+
context_length_tensor,
|
1382 |
+
beam_width,
|
1383 |
+
stop_token=stop_token,
|
1384 |
+
num_return_gen=1,
|
1385 |
+
length_penalty=length_penalty,
|
1386 |
+
)
|
1387 |
+
else:
|
1388 |
+
tokens, _, _ = generate_tokens_probs_and_return_on_first_stage(
|
1389 |
+
unwrapped_model,
|
1390 |
+
context_tokens_tensor,
|
1391 |
+
context_length_tensor,
|
1392 |
+
return_output_log_probs=False,
|
1393 |
+
top_k=top_k,
|
1394 |
+
top_p=top_p,
|
1395 |
+
top_p_decay=top_p_decay,
|
1396 |
+
top_p_bound=top_p_bound,
|
1397 |
+
temperature=temperature,
|
1398 |
+
use_eod_token_for_early_termination=True,
|
1399 |
+
)
|
1400 |
+
return tokens
|
1401 |
+
|
1402 |
+
|
1403 |
+
# other utilities
|
1404 |
+
def avg_losses_across_data_parallel_group(losses):
|
1405 |
+
"""
|
1406 |
+
Average losses across data parallel group.
|
1407 |
+
|
1408 |
+
Args:
|
1409 |
+
losses (List[Tensor]): List of losses to average across data parallel group.
|
1410 |
+
"""
|
1411 |
+
|
1412 |
+
return average_losses_across_data_parallel_group(losses)
|
1413 |
+
|
1414 |
+
|
1415 |
+
def gather_across_data_parallel_groups(tensor):
|
1416 |
+
"""
|
1417 |
+
Recursively gather tensor in a nested list/tuple/dictionary of tensors from data parallel ranks.
|
1418 |
+
|
1419 |
+
Args:
|
1420 |
+
tensor (nested list/tuple/dictionary of `torch.Tensor`):
|
1421 |
+
The data to gather across data parallel ranks.
|
1422 |
+
|
1423 |
+
"""
|
1424 |
+
|
1425 |
+
def _gpu_gather_one(tensor):
|
1426 |
+
if tensor.ndim == 0:
|
1427 |
+
tensor = tensor.clone()[None]
|
1428 |
+
output_tensors = [
|
1429 |
+
torch.empty_like(tensor)
|
1430 |
+
for _ in range(torch.distributed.get_world_size(group=mpu.get_data_parallel_group()))
|
1431 |
+
]
|
1432 |
+
torch.distributed.all_gather(output_tensors, tensor, group=mpu.get_data_parallel_group())
|
1433 |
+
return torch.cat(output_tensors, dim=0)
|
1434 |
+
|
1435 |
+
return recursively_apply(_gpu_gather_one, tensor, error_on_other_type=True)
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/memory.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
A collection of utilities for ensuring that training can always occur. Heavily influenced by the
|
17 |
+
[toma](https://github.com/BlackHC/toma) library.
|
18 |
+
"""
|
19 |
+
|
20 |
+
import functools
|
21 |
+
import gc
|
22 |
+
import inspect
|
23 |
+
|
24 |
+
import torch
|
25 |
+
|
26 |
+
from .imports import is_mlu_available, is_mps_available, is_npu_available, is_xpu_available
|
27 |
+
|
28 |
+
|
29 |
+
def release_memory(*objects):
|
30 |
+
"""
|
31 |
+
Releases memory from `objects` by setting them to `None` and calls `gc.collect()` and `torch.cuda.empty_cache()`.
|
32 |
+
Returned objects should be reassigned to the same variables.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
objects (`Iterable`):
|
36 |
+
An iterable of objects
|
37 |
+
Returns:
|
38 |
+
A list of `None` objects to replace `objects`
|
39 |
+
|
40 |
+
Example:
|
41 |
+
|
42 |
+
```python
|
43 |
+
>>> import torch
|
44 |
+
>>> from accelerate.utils import release_memory
|
45 |
+
|
46 |
+
>>> a = torch.ones(1000, 1000).cuda()
|
47 |
+
>>> b = torch.ones(1000, 1000).cuda()
|
48 |
+
>>> a, b = release_memory(a, b)
|
49 |
+
```
|
50 |
+
"""
|
51 |
+
if not isinstance(objects, list):
|
52 |
+
objects = list(objects)
|
53 |
+
for i in range(len(objects)):
|
54 |
+
objects[i] = None
|
55 |
+
gc.collect()
|
56 |
+
if is_xpu_available():
|
57 |
+
torch.xpu.empty_cache()
|
58 |
+
elif is_mlu_available():
|
59 |
+
torch.mlu.empty_cache()
|
60 |
+
elif is_npu_available():
|
61 |
+
torch.npu.empty_cache()
|
62 |
+
elif is_mps_available():
|
63 |
+
torch.mps.empty_cache()
|
64 |
+
else:
|
65 |
+
torch.cuda.empty_cache()
|
66 |
+
return objects
|
67 |
+
|
68 |
+
|
69 |
+
def should_reduce_batch_size(exception: Exception) -> bool:
|
70 |
+
"""
|
71 |
+
Checks if `exception` relates to CUDA out-of-memory, CUDNN not supported, or CPU out-of-memory
|
72 |
+
|
73 |
+
Args:
|
74 |
+
exception (`Exception`):
|
75 |
+
An exception
|
76 |
+
"""
|
77 |
+
_statements = [
|
78 |
+
"CUDA out of memory.", # CUDA OOM
|
79 |
+
"cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU
|
80 |
+
"DefaultCPUAllocator: can't allocate memory", # CPU OOM
|
81 |
+
]
|
82 |
+
if isinstance(exception, RuntimeError) and len(exception.args) == 1:
|
83 |
+
return any(err in exception.args[0] for err in _statements)
|
84 |
+
return False
|
85 |
+
|
86 |
+
|
87 |
+
def find_executable_batch_size(function: callable = None, starting_batch_size: int = 128):
|
88 |
+
"""
|
89 |
+
A basic decorator that will try to execute `function`. If it fails from exceptions related to out-of-memory or
|
90 |
+
CUDNN, the batch size is cut in half and passed to `function`
|
91 |
+
|
92 |
+
`function` must take in a `batch_size` parameter as its first argument.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
function (`callable`, *optional*):
|
96 |
+
A function to wrap
|
97 |
+
starting_batch_size (`int`, *optional*):
|
98 |
+
The batch size to try and fit into memory
|
99 |
+
|
100 |
+
Example:
|
101 |
+
|
102 |
+
```python
|
103 |
+
>>> from accelerate.utils import find_executable_batch_size
|
104 |
+
|
105 |
+
|
106 |
+
>>> @find_executable_batch_size(starting_batch_size=128)
|
107 |
+
... def train(batch_size, model, optimizer):
|
108 |
+
... ...
|
109 |
+
|
110 |
+
|
111 |
+
>>> train(model, optimizer)
|
112 |
+
```
|
113 |
+
"""
|
114 |
+
if function is None:
|
115 |
+
return functools.partial(find_executable_batch_size, starting_batch_size=starting_batch_size)
|
116 |
+
|
117 |
+
batch_size = starting_batch_size
|
118 |
+
|
119 |
+
def decorator(*args, **kwargs):
|
120 |
+
nonlocal batch_size
|
121 |
+
gc.collect()
|
122 |
+
if is_xpu_available():
|
123 |
+
torch.xpu.empty_cache()
|
124 |
+
elif is_mlu_available():
|
125 |
+
torch.mlu.empty_cache()
|
126 |
+
elif is_npu_available():
|
127 |
+
torch.npu.empty_cache()
|
128 |
+
else:
|
129 |
+
torch.cuda.empty_cache()
|
130 |
+
params = list(inspect.signature(function).parameters.keys())
|
131 |
+
# Guard against user error
|
132 |
+
if len(params) < (len(args) + 1):
|
133 |
+
arg_str = ", ".join([f"{arg}={value}" for arg, value in zip(params[1:], args[1:])])
|
134 |
+
raise TypeError(
|
135 |
+
f"Batch size was passed into `{function.__name__}` as the first argument when called."
|
136 |
+
f"Remove this as the decorator already does so: `{function.__name__}({arg_str})`"
|
137 |
+
)
|
138 |
+
while True:
|
139 |
+
if batch_size == 0:
|
140 |
+
raise RuntimeError("No executable batch size found, reached zero.")
|
141 |
+
try:
|
142 |
+
return function(batch_size, *args, **kwargs)
|
143 |
+
except Exception as e:
|
144 |
+
if should_reduce_batch_size(e):
|
145 |
+
gc.collect()
|
146 |
+
if is_xpu_available():
|
147 |
+
torch.xpu.empty_cache()
|
148 |
+
elif is_mlu_available():
|
149 |
+
torch.mlu.empty_cache()
|
150 |
+
elif is_npu_available():
|
151 |
+
torch.npu.empty_cache()
|
152 |
+
else:
|
153 |
+
torch.cuda.empty_cache()
|
154 |
+
batch_size //= 2
|
155 |
+
else:
|
156 |
+
raise
|
157 |
+
|
158 |
+
return decorator
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/modeling.py
ADDED
@@ -0,0 +1,1800 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import contextlib
|
16 |
+
import gc
|
17 |
+
import importlib
|
18 |
+
import inspect
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import shutil
|
24 |
+
import tempfile
|
25 |
+
import warnings
|
26 |
+
from collections import OrderedDict, defaultdict
|
27 |
+
from typing import Dict, List, Optional, Tuple, Union
|
28 |
+
|
29 |
+
import packaging
|
30 |
+
import torch
|
31 |
+
import torch.nn as nn
|
32 |
+
|
33 |
+
from ..state import AcceleratorState
|
34 |
+
from .constants import SAFE_WEIGHTS_NAME, WEIGHTS_NAME
|
35 |
+
from .dataclasses import AutocastKwargs, CustomDtype, DistributedType
|
36 |
+
from .imports import (
|
37 |
+
is_mlu_available,
|
38 |
+
is_mps_available,
|
39 |
+
is_npu_available,
|
40 |
+
is_peft_available,
|
41 |
+
is_torch_xla_available,
|
42 |
+
is_xpu_available,
|
43 |
+
)
|
44 |
+
from .offload import load_offloaded_weight, offload_weight, save_offload_index
|
45 |
+
from .tqdm import is_tqdm_available, tqdm
|
46 |
+
from .versions import compare_versions
|
47 |
+
|
48 |
+
|
49 |
+
if is_npu_available(check_device=False):
|
50 |
+
import torch_npu # noqa: F401
|
51 |
+
|
52 |
+
if is_mlu_available(check_device=False):
|
53 |
+
import torch_mlu # noqa: F401
|
54 |
+
|
55 |
+
from safetensors import safe_open
|
56 |
+
from safetensors.torch import load_file as safe_load_file
|
57 |
+
|
58 |
+
|
59 |
+
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"
|
60 |
+
|
61 |
+
logger = logging.getLogger(__name__)
|
62 |
+
|
63 |
+
|
64 |
+
def is_peft_model(model):
|
65 |
+
from .other import extract_model_from_parallel
|
66 |
+
|
67 |
+
if is_peft_available():
|
68 |
+
from peft import PeftModel
|
69 |
+
|
70 |
+
return is_peft_available() and isinstance(extract_model_from_parallel(model), PeftModel)
|
71 |
+
|
72 |
+
|
73 |
+
def check_device_same(first_device, second_device):
|
74 |
+
"""
|
75 |
+
Utility method to check if two `torch` devices are similar. When dealing with CUDA devices, torch throws `False`
|
76 |
+
for `torch.device("cuda") == torch.device("cuda:0")` whereas they should be the same
|
77 |
+
|
78 |
+
Args:
|
79 |
+
first_device (`torch.device`):
|
80 |
+
First device to check
|
81 |
+
second_device (`torch.device`):
|
82 |
+
Second device to check
|
83 |
+
"""
|
84 |
+
if first_device.type != second_device.type:
|
85 |
+
return False
|
86 |
+
|
87 |
+
if first_device.type == "cuda" and first_device.index is None:
|
88 |
+
# In case the first_device is a cuda device and have
|
89 |
+
# the index attribute set to `None`, default it to `0`
|
90 |
+
first_device = torch.device("cuda", index=0)
|
91 |
+
|
92 |
+
if second_device.type == "cuda" and second_device.index is None:
|
93 |
+
# In case the second_device is a cuda device and have
|
94 |
+
# the index attribute set to `None`, default it to `0`
|
95 |
+
second_device = torch.device("cuda", index=0)
|
96 |
+
|
97 |
+
return first_device == second_device
|
98 |
+
|
99 |
+
|
100 |
+
def convert_file_size_to_int(size: Union[int, str]):
|
101 |
+
"""
|
102 |
+
Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes).
|
103 |
+
|
104 |
+
Args:
|
105 |
+
size (`int` or `str`): The size to convert. Will be directly returned if an `int`.
|
106 |
+
|
107 |
+
Example:
|
108 |
+
|
109 |
+
```py
|
110 |
+
>>> convert_file_size_to_int("1MiB")
|
111 |
+
1048576
|
112 |
+
```
|
113 |
+
"""
|
114 |
+
mem_size = -1
|
115 |
+
err_msg = (
|
116 |
+
f"`size` {size} is not in a valid format. Use an integer for bytes, or a string with an unit (like '5.0GB')."
|
117 |
+
)
|
118 |
+
try:
|
119 |
+
if isinstance(size, int):
|
120 |
+
mem_size = size
|
121 |
+
elif size.upper().endswith("GIB"):
|
122 |
+
mem_size = int(float(size[:-3]) * (2**30))
|
123 |
+
elif size.upper().endswith("MIB"):
|
124 |
+
mem_size = int(float(size[:-3]) * (2**20))
|
125 |
+
elif size.upper().endswith("KIB"):
|
126 |
+
mem_size = int(float(size[:-3]) * (2**10))
|
127 |
+
elif size.upper().endswith("GB"):
|
128 |
+
int_size = int(float(size[:-2]) * (10**9))
|
129 |
+
mem_size = int_size // 8 if size.endswith("b") else int_size
|
130 |
+
elif size.upper().endswith("MB"):
|
131 |
+
int_size = int(float(size[:-2]) * (10**6))
|
132 |
+
mem_size = int_size // 8 if size.endswith("b") else int_size
|
133 |
+
elif size.upper().endswith("KB"):
|
134 |
+
int_size = int(float(size[:-2]) * (10**3))
|
135 |
+
mem_size = int_size // 8 if size.endswith("b") else int_size
|
136 |
+
except ValueError:
|
137 |
+
raise ValueError(err_msg)
|
138 |
+
|
139 |
+
if mem_size < 0:
|
140 |
+
raise ValueError(err_msg)
|
141 |
+
return mem_size
|
142 |
+
|
143 |
+
|
144 |
+
def dtype_byte_size(dtype: torch.dtype):
|
145 |
+
"""
|
146 |
+
Returns the size (in bytes) occupied by one parameter of type `dtype`.
|
147 |
+
|
148 |
+
Example:
|
149 |
+
|
150 |
+
```py
|
151 |
+
>>> dtype_byte_size(torch.float32)
|
152 |
+
4
|
153 |
+
```
|
154 |
+
"""
|
155 |
+
if dtype == torch.bool:
|
156 |
+
return 1 / 8
|
157 |
+
elif dtype == CustomDtype.INT2:
|
158 |
+
return 1 / 4
|
159 |
+
elif dtype == CustomDtype.INT4:
|
160 |
+
return 1 / 2
|
161 |
+
elif dtype == CustomDtype.FP8:
|
162 |
+
return 1
|
163 |
+
bit_search = re.search(r"[^\d](\d+)$", str(dtype))
|
164 |
+
if bit_search is None:
|
165 |
+
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
|
166 |
+
bit_size = int(bit_search.groups()[0])
|
167 |
+
return bit_size // 8
|
168 |
+
|
169 |
+
|
170 |
+
def id_tensor_storage(tensor: torch.Tensor) -> Tuple[torch.device, int, int]:
|
171 |
+
"""
|
172 |
+
Unique identifier to a tensor storage. Multiple different tensors can share the same underlying storage. For
|
173 |
+
example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is
|
174 |
+
guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with
|
175 |
+
non-overlapping lifetimes may have the same id.
|
176 |
+
"""
|
177 |
+
_SIZE = {
|
178 |
+
torch.int64: 8,
|
179 |
+
torch.float32: 4,
|
180 |
+
torch.int32: 4,
|
181 |
+
torch.bfloat16: 2,
|
182 |
+
torch.float16: 2,
|
183 |
+
torch.int16: 2,
|
184 |
+
torch.uint8: 1,
|
185 |
+
torch.int8: 1,
|
186 |
+
torch.bool: 1,
|
187 |
+
torch.float64: 8,
|
188 |
+
}
|
189 |
+
try:
|
190 |
+
storage_ptr = tensor.untyped_storage().data_ptr()
|
191 |
+
storage_size = tensor.untyped_storage().nbytes()
|
192 |
+
except Exception:
|
193 |
+
# Fallback for torch==1.10
|
194 |
+
try:
|
195 |
+
storage_ptr = tensor.storage().data_ptr()
|
196 |
+
storage_size = tensor.storage().size() * _SIZE[tensor.dtype]
|
197 |
+
except NotImplementedError:
|
198 |
+
# Fallback for meta storage
|
199 |
+
storage_ptr = 0
|
200 |
+
# On torch >=2.0 this is the tensor size
|
201 |
+
storage_size = tensor.nelement() * _SIZE[tensor.dtype]
|
202 |
+
|
203 |
+
return tensor.device, storage_ptr, storage_size
|
204 |
+
|
205 |
+
|
206 |
+
def shard_checkpoint(
|
207 |
+
state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
|
208 |
+
):
|
209 |
+
"""
|
210 |
+
Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
|
211 |
+
given size.
|
212 |
+
|
213 |
+
The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
|
214 |
+
optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
|
215 |
+
limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
|
216 |
+
[6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].
|
217 |
+
|
218 |
+
<Tip warning={true}>
|
219 |
+
|
220 |
+
If one of the model's weight is bigger that `max_sahrd_size`, it will end up in its own sub-checkpoint which will
|
221 |
+
have a size greater than `max_shard_size`.
|
222 |
+
|
223 |
+
</Tip>
|
224 |
+
|
225 |
+
Args:
|
226 |
+
state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
|
227 |
+
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
|
228 |
+
The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
|
229 |
+
(like `"5MB"`).
|
230 |
+
weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
|
231 |
+
The name of the model save file.
|
232 |
+
"""
|
233 |
+
max_shard_size = convert_file_size_to_int(max_shard_size)
|
234 |
+
|
235 |
+
sharded_state_dicts = [{}]
|
236 |
+
last_block_size = 0
|
237 |
+
total_size = 0
|
238 |
+
storage_id_to_block = {}
|
239 |
+
|
240 |
+
for key, weight in state_dict.items():
|
241 |
+
# when bnb serialization is used the weights in the state dict can be strings
|
242 |
+
# check: https://github.com/huggingface/transformers/pull/24416 for more details
|
243 |
+
if isinstance(weight, str):
|
244 |
+
continue
|
245 |
+
else:
|
246 |
+
storage_id = id_tensor_storage(weight)
|
247 |
+
|
248 |
+
# If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
|
249 |
+
if storage_id in storage_id_to_block:
|
250 |
+
block_id = storage_id_to_block[storage_id]
|
251 |
+
sharded_state_dicts[block_id][key] = weight
|
252 |
+
continue
|
253 |
+
|
254 |
+
weight_size = weight.numel() * dtype_byte_size(weight.dtype)
|
255 |
+
|
256 |
+
# If this weight is going to tip up over the maximal size, we split.
|
257 |
+
if last_block_size + weight_size > max_shard_size:
|
258 |
+
sharded_state_dicts.append({})
|
259 |
+
last_block_size = 0
|
260 |
+
|
261 |
+
sharded_state_dicts[-1][key] = weight
|
262 |
+
last_block_size += weight_size
|
263 |
+
total_size += weight_size
|
264 |
+
storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1
|
265 |
+
|
266 |
+
# If we only have one shard, we return it
|
267 |
+
if len(sharded_state_dicts) == 1:
|
268 |
+
return {weights_name: sharded_state_dicts[0]}, None
|
269 |
+
|
270 |
+
# Otherwise, let's build the index
|
271 |
+
weight_map = {}
|
272 |
+
shards = {}
|
273 |
+
for idx, shard in enumerate(sharded_state_dicts):
|
274 |
+
shard_file = weights_name.replace(".bin", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.bin")
|
275 |
+
shard_file = shard_file.replace(
|
276 |
+
".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
|
277 |
+
)
|
278 |
+
shards[shard_file] = shard
|
279 |
+
for key in shard.keys():
|
280 |
+
weight_map[key] = shard_file
|
281 |
+
|
282 |
+
# Add the metadata
|
283 |
+
metadata = {"total_size": total_size}
|
284 |
+
index = {"metadata": metadata, "weight_map": weight_map}
|
285 |
+
return shards, index
|
286 |
+
|
287 |
+
|
288 |
+
def set_module_tensor_to_device(
|
289 |
+
module: nn.Module,
|
290 |
+
tensor_name: str,
|
291 |
+
device: Union[int, str, torch.device],
|
292 |
+
value: Optional[torch.Tensor] = None,
|
293 |
+
dtype: Optional[Union[str, torch.dtype]] = None,
|
294 |
+
fp16_statistics: Optional[torch.HalfTensor] = None,
|
295 |
+
tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
|
296 |
+
):
|
297 |
+
"""
|
298 |
+
A helper function to set a given tensor (parameter of buffer) of a module on a specific device (note that doing
|
299 |
+
`param.to(device)` creates a new tensor not linked to the parameter, which is why we need this function).
|
300 |
+
|
301 |
+
Args:
|
302 |
+
module (`torch.nn.Module`):
|
303 |
+
The module in which the tensor we want to move lives.
|
304 |
+
tensor_name (`str`):
|
305 |
+
The full name of the parameter/buffer.
|
306 |
+
device (`int`, `str` or `torch.device`):
|
307 |
+
The device on which to set the tensor.
|
308 |
+
value (`torch.Tensor`, *optional*):
|
309 |
+
The value of the tensor (useful when going from the meta device to any other device).
|
310 |
+
dtype (`torch.dtype`, *optional*):
|
311 |
+
If passed along the value of the parameter will be cast to this `dtype`. Otherwise, `value` will be cast to
|
312 |
+
the dtype of the existing parameter in the model.
|
313 |
+
fp16_statistics (`torch.HalfTensor`, *optional*):
|
314 |
+
The list of fp16 statistics to set on the module, used for 8 bit model serialization.
|
315 |
+
tied_params_map (Dict[int, Dict[torch.device, torch.Tensor]], *optional*, defaults to `None`):
|
316 |
+
A map of current data pointers to dictionaries of devices to already dispatched tied weights. For a given
|
317 |
+
execution device, this parameter is useful to reuse the first available pointer of a shared weight on the
|
318 |
+
device for all others, instead of duplicating memory.
|
319 |
+
"""
|
320 |
+
# Recurse if needed
|
321 |
+
if "." in tensor_name:
|
322 |
+
splits = tensor_name.split(".")
|
323 |
+
for split in splits[:-1]:
|
324 |
+
new_module = getattr(module, split)
|
325 |
+
if new_module is None:
|
326 |
+
raise ValueError(f"{module} has no attribute {split}.")
|
327 |
+
module = new_module
|
328 |
+
tensor_name = splits[-1]
|
329 |
+
|
330 |
+
if tensor_name not in module._parameters and tensor_name not in module._buffers:
|
331 |
+
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
|
332 |
+
is_buffer = tensor_name in module._buffers
|
333 |
+
old_value = getattr(module, tensor_name)
|
334 |
+
|
335 |
+
# Treat the case where old_value (or a custom `value`, typically offloaded to RAM/disk) belongs to a tied group, and one of the weight
|
336 |
+
# in the tied group has already been dispatched to the device, by avoiding reallocating memory on the device and just copying the pointer.
|
337 |
+
if (
|
338 |
+
value is not None
|
339 |
+
and tied_params_map is not None
|
340 |
+
and value.data_ptr() in tied_params_map
|
341 |
+
and device in tied_params_map[value.data_ptr()]
|
342 |
+
):
|
343 |
+
module._parameters[tensor_name] = tied_params_map[value.data_ptr()][device]
|
344 |
+
return
|
345 |
+
elif (
|
346 |
+
tied_params_map is not None
|
347 |
+
and old_value.data_ptr() in tied_params_map
|
348 |
+
and device in tied_params_map[old_value.data_ptr()]
|
349 |
+
):
|
350 |
+
module._parameters[tensor_name] = tied_params_map[old_value.data_ptr()][device]
|
351 |
+
return
|
352 |
+
|
353 |
+
if old_value.device == torch.device("meta") and device not in ["meta", torch.device("meta")] and value is None:
|
354 |
+
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}.")
|
355 |
+
|
356 |
+
if value is not None:
|
357 |
+
if old_value.shape != value.shape:
|
358 |
+
raise ValueError(
|
359 |
+
f'Trying to set a tensor of shape {value.shape} in "{tensor_name}" (which has shape {old_value.shape}), this look incorrect.'
|
360 |
+
)
|
361 |
+
|
362 |
+
if dtype is None:
|
363 |
+
# For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model
|
364 |
+
value = value.to(old_value.dtype)
|
365 |
+
elif not str(value.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
|
366 |
+
value = value.to(dtype)
|
367 |
+
|
368 |
+
param = module._parameters[tensor_name] if tensor_name in module._parameters else None
|
369 |
+
param_cls = type(param)
|
370 |
+
|
371 |
+
device_quantization = None
|
372 |
+
with torch.no_grad():
|
373 |
+
# leave it on cpu first before moving them to cuda
|
374 |
+
# # fix the case where the device is meta, we don't want to put it on cpu because there is no data =0
|
375 |
+
if (
|
376 |
+
param is not None
|
377 |
+
and param.device.type != "cuda"
|
378 |
+
and torch.device(device).type == "cuda"
|
379 |
+
and param_cls.__name__ in ["Int8Params", "FP4Params", "Params4bit"]
|
380 |
+
):
|
381 |
+
device_quantization = device
|
382 |
+
device = "cpu"
|
383 |
+
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
|
384 |
+
if is_npu_available() and isinstance(device, int):
|
385 |
+
device = f"npu:{device}"
|
386 |
+
elif is_mlu_available() and isinstance(device, int):
|
387 |
+
device = f"mlu:{device}"
|
388 |
+
if is_xpu_available() and isinstance(device, int):
|
389 |
+
device = f"xpu:{device}"
|
390 |
+
if value is None:
|
391 |
+
new_value = old_value.to(device)
|
392 |
+
if dtype is not None and device in ["meta", torch.device("meta")]:
|
393 |
+
if not str(old_value.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
|
394 |
+
new_value = new_value.to(dtype)
|
395 |
+
|
396 |
+
if not is_buffer:
|
397 |
+
module._parameters[tensor_name] = param_cls(new_value, requires_grad=old_value.requires_grad)
|
398 |
+
elif isinstance(value, torch.Tensor):
|
399 |
+
new_value = value.to(device)
|
400 |
+
else:
|
401 |
+
new_value = torch.tensor(value, device=device)
|
402 |
+
if device_quantization is not None:
|
403 |
+
device = device_quantization
|
404 |
+
if is_buffer:
|
405 |
+
module._buffers[tensor_name] = new_value
|
406 |
+
elif value is not None or not check_device_same(torch.device(device), module._parameters[tensor_name].device):
|
407 |
+
param_cls = type(module._parameters[tensor_name])
|
408 |
+
kwargs = module._parameters[tensor_name].__dict__
|
409 |
+
if param_cls.__name__ in ["Int8Params", "FP4Params"]:
|
410 |
+
if param_cls.__name__ == "Int8Params" and new_value.dtype == torch.float32:
|
411 |
+
# downcast to fp16 if any - needed for 8bit serialization
|
412 |
+
new_value = new_value.to(torch.float16)
|
413 |
+
# quantize module that are going to stay on the cpu so that we offload quantized weights
|
414 |
+
if device == "cpu" and param_cls.__name__ == "Int8Params":
|
415 |
+
new_value = param_cls(new_value, requires_grad=old_value.requires_grad, **kwargs).to(0).to("cpu")
|
416 |
+
new_value.CB = new_value.CB.to("cpu")
|
417 |
+
new_value.SCB = new_value.SCB.to("cpu")
|
418 |
+
else:
|
419 |
+
new_value = param_cls(new_value, requires_grad=old_value.requires_grad, **kwargs).to(device)
|
420 |
+
elif param_cls.__name__ in ["QTensor", "QBitsTensor"]:
|
421 |
+
new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad).to(device)
|
422 |
+
else:
|
423 |
+
new_value = param_cls(new_value, requires_grad=old_value.requires_grad).to(device)
|
424 |
+
|
425 |
+
module._parameters[tensor_name] = new_value
|
426 |
+
if fp16_statistics is not None:
|
427 |
+
module._parameters[tensor_name].SCB = fp16_statistics.to(device)
|
428 |
+
del fp16_statistics
|
429 |
+
# as we put the weight to meta, it doesn't have SCB attr anymore. make sure that it is not a meta weight
|
430 |
+
if (
|
431 |
+
module.__class__.__name__ == "Linear8bitLt"
|
432 |
+
and getattr(module.weight, "SCB", None) is None
|
433 |
+
and str(module.weight.device) != "meta"
|
434 |
+
):
|
435 |
+
# quantize only if necessary
|
436 |
+
device_index = torch.device(device).index if torch.device(device).type == "cuda" else None
|
437 |
+
if not getattr(module.weight, "SCB", None) and device_index is not None:
|
438 |
+
if module.bias is not None and module.bias.device.type != "meta":
|
439 |
+
# if a bias exists, we need to wait until the bias is set on the correct device
|
440 |
+
module = module.cuda(device_index)
|
441 |
+
elif module.bias is None:
|
442 |
+
# if no bias exists, we can quantize right away
|
443 |
+
module = module.cuda(device_index)
|
444 |
+
elif module.__class__.__name__ == "Linear4bit" and getattr(module.weight, "quant_state", None) is None:
|
445 |
+
# quantize only if necessary
|
446 |
+
device_index = torch.device(device).index if torch.device(device).type == "cuda" else None
|
447 |
+
if not getattr(module.weight, "quant_state", None) and device_index is not None:
|
448 |
+
module.weight = module.weight.cuda(device_index)
|
449 |
+
# clean pre and post foward hook
|
450 |
+
if is_npu_available():
|
451 |
+
torch.npu.empty_cache()
|
452 |
+
elif is_mlu_available():
|
453 |
+
torch.mlu.empty_cache()
|
454 |
+
elif is_xpu_available():
|
455 |
+
torch.xpu.empty_cache()
|
456 |
+
else:
|
457 |
+
torch.cuda.empty_cache()
|
458 |
+
|
459 |
+
# When handling tied weights, we update tied_params_map to keep track of the tied weights that have already been allocated on the device in
|
460 |
+
# order to avoid duplicating memory, see above.
|
461 |
+
if (
|
462 |
+
tied_params_map is not None
|
463 |
+
and old_value.data_ptr() in tied_params_map
|
464 |
+
and device not in tied_params_map[old_value.data_ptr()]
|
465 |
+
):
|
466 |
+
tied_params_map[old_value.data_ptr()][device] = new_value
|
467 |
+
elif (
|
468 |
+
value is not None
|
469 |
+
and tied_params_map is not None
|
470 |
+
and value.data_ptr() in tied_params_map
|
471 |
+
and device not in tied_params_map[value.data_ptr()]
|
472 |
+
):
|
473 |
+
tied_params_map[value.data_ptr()][device] = new_value
|
474 |
+
|
475 |
+
|
476 |
+
def named_module_tensors(
|
477 |
+
module: nn.Module, include_buffers: bool = True, recurse: bool = False, remove_non_persistent: bool = False
|
478 |
+
):
|
479 |
+
"""
|
480 |
+
A helper function that gathers all the tensors (parameters + buffers) of a given module. If `include_buffers=True`
|
481 |
+
it's the same as doing `module.named_parameters(recurse=recurse) + module.named_buffers(recurse=recurse)`.
|
482 |
+
|
483 |
+
Args:
|
484 |
+
module (`torch.nn.Module`):
|
485 |
+
The module we want the tensors on.
|
486 |
+
include_buffer (`bool`, *optional*, defaults to `True`):
|
487 |
+
Whether or not to include the buffers in the result.
|
488 |
+
recurse (`bool`, *optional`, defaults to `False`):
|
489 |
+
Whether or not to go look in every submodule or just return the direct parameters and buffers.
|
490 |
+
remove_non_persistent (`bool`, *optional*, defaults to `False`):
|
491 |
+
Whether or not to remove the non persistent buffer from the buffers. Useful only when include_buffers =
|
492 |
+
True
|
493 |
+
"""
|
494 |
+
yield from module.named_parameters(recurse=recurse)
|
495 |
+
|
496 |
+
if include_buffers:
|
497 |
+
non_persistent_buffers = set()
|
498 |
+
if remove_non_persistent:
|
499 |
+
non_persistent_buffers = get_non_persistent_buffers(module, recurse=recurse)
|
500 |
+
for named_buffer in module.named_buffers(recurse=recurse):
|
501 |
+
name, _ = named_buffer
|
502 |
+
if name not in non_persistent_buffers:
|
503 |
+
yield named_buffer
|
504 |
+
|
505 |
+
|
506 |
+
def get_non_persistent_buffers(module: nn.Module, recurse: bool = False):
|
507 |
+
"""
|
508 |
+
Gather all non persistent buffers of a given modules into a set
|
509 |
+
|
510 |
+
Args:
|
511 |
+
module (`nn.Module`):
|
512 |
+
The module we want the non persistent buffers on.
|
513 |
+
recurse (`bool`, *optional*, defaults to `False`):
|
514 |
+
Whether or not to go look in every submodule or just return the direct non persistent buffers.
|
515 |
+
"""
|
516 |
+
|
517 |
+
non_persistent_buffers_set = module._non_persistent_buffers_set
|
518 |
+
if recurse:
|
519 |
+
for _, m in module.named_modules():
|
520 |
+
non_persistent_buffers_set |= m._non_persistent_buffers_set
|
521 |
+
|
522 |
+
return non_persistent_buffers_set
|
523 |
+
|
524 |
+
|
525 |
+
class FindTiedParametersResult(list):
|
526 |
+
"""
|
527 |
+
This is a subclass of a list to handle backward compatibility for Transformers. Do not rely on the fact this is not
|
528 |
+
a list or on the `values` method as in the future this will be removed.
|
529 |
+
"""
|
530 |
+
|
531 |
+
def __init__(self, *args, **kwargs):
|
532 |
+
super().__init__(*args, **kwargs)
|
533 |
+
|
534 |
+
def values(self):
|
535 |
+
# TODO: at the next Transformers release (4.28.0) issue a deprecation warning here.
|
536 |
+
return sum([x[1:] for x in self], [])
|
537 |
+
|
538 |
+
|
539 |
+
def check_tied_parameters_in_config(model: nn.Module):
|
540 |
+
"""
|
541 |
+
Check if there is any indication in the given model that some weights should be tied.
|
542 |
+
|
543 |
+
Args:
|
544 |
+
model (`torch.nn.Module`): The model to inspect
|
545 |
+
|
546 |
+
Returns:
|
547 |
+
bool: True if the model needs to have tied weights
|
548 |
+
"""
|
549 |
+
|
550 |
+
# based on model.tie_weights() method
|
551 |
+
has_tied_word_embedding = False
|
552 |
+
has_tied_encoder_decoder = False
|
553 |
+
has_tied_module = False
|
554 |
+
|
555 |
+
if "PreTrainedModel" in [c.__name__ for c in inspect.getmro(model.__class__)]:
|
556 |
+
has_tied_word_embedding = (
|
557 |
+
hasattr(model, "config")
|
558 |
+
and getattr(model.config, "tie_word_embeddings", False)
|
559 |
+
and model.get_output_embeddings()
|
560 |
+
)
|
561 |
+
has_tied_encoder_decoder = (
|
562 |
+
hasattr(model, "config")
|
563 |
+
and getattr(model.config, "is_encoder_decoder", False)
|
564 |
+
and getattr(model.config, "tie_encoder_decoder", False)
|
565 |
+
)
|
566 |
+
has_tied_module = any(hasattr(module, "_tie_weights") for module in model.modules())
|
567 |
+
|
568 |
+
return any([has_tied_word_embedding, has_tied_encoder_decoder, has_tied_module])
|
569 |
+
|
570 |
+
|
571 |
+
def _get_param_device(param, device_map):
|
572 |
+
if param in device_map:
|
573 |
+
return device_map[param]
|
574 |
+
parent_param = ".".join(param.split(".")[:-1])
|
575 |
+
if parent_param == param:
|
576 |
+
raise ValueError(f"The `device_map` does not contain the module {param}.")
|
577 |
+
else:
|
578 |
+
return _get_param_device(parent_param, device_map)
|
579 |
+
|
580 |
+
|
581 |
+
def check_tied_parameters_on_same_device(tied_params, device_map):
|
582 |
+
"""
|
583 |
+
Check if tied parameters are on the same device
|
584 |
+
|
585 |
+
Args:
|
586 |
+
tied_params (`List[List[str]]`):
|
587 |
+
A list of lists of parameter names being all tied together.
|
588 |
+
|
589 |
+
device_map (`Dict[str, Union[int, str, torch.device]]`):
|
590 |
+
A map that specifies where each submodule should go.
|
591 |
+
|
592 |
+
"""
|
593 |
+
for tie_param in tied_params:
|
594 |
+
tie_param_devices = {}
|
595 |
+
for param in tie_param:
|
596 |
+
tie_param_devices[param] = _get_param_device(param, device_map)
|
597 |
+
if len(set(tie_param_devices.values())) > 1:
|
598 |
+
logger.warn(
|
599 |
+
f"Tied parameters are on different devices: {tie_param_devices}. "
|
600 |
+
"Please modify your custom device map or set `device_map='auto'`. "
|
601 |
+
)
|
602 |
+
|
603 |
+
|
604 |
+
def find_tied_parameters(model: nn.Module, **kwargs):
|
605 |
+
"""
|
606 |
+
Find the tied parameters in a given model.
|
607 |
+
|
608 |
+
<Tip warning={true}>
|
609 |
+
|
610 |
+
The signature accepts keyword arguments, but they are for the recursive part of this function and you should ignore
|
611 |
+
them.
|
612 |
+
|
613 |
+
</Tip>
|
614 |
+
|
615 |
+
Args:
|
616 |
+
model (`torch.nn.Module`): The model to inspect.
|
617 |
+
|
618 |
+
Returns:
|
619 |
+
List[List[str]]: A list of lists of parameter names being all tied together.
|
620 |
+
|
621 |
+
Example:
|
622 |
+
|
623 |
+
```py
|
624 |
+
>>> from collections import OrderedDict
|
625 |
+
>>> import torch.nn as nn
|
626 |
+
|
627 |
+
>>> model = nn.Sequential(OrderedDict([("linear1", nn.Linear(4, 4)), ("linear2", nn.Linear(4, 4))]))
|
628 |
+
>>> model.linear2.weight = model.linear1.weight
|
629 |
+
>>> find_tied_parameters(model)
|
630 |
+
[['linear1.weight', 'linear2.weight']]
|
631 |
+
```
|
632 |
+
"""
|
633 |
+
# Initialize result and named_parameters before recursing.
|
634 |
+
named_parameters = kwargs.get("named_parameters", None)
|
635 |
+
prefix = kwargs.get("prefix", "")
|
636 |
+
result = kwargs.get("result", {})
|
637 |
+
|
638 |
+
if named_parameters is None:
|
639 |
+
named_parameters = {n: p for n, p in model.named_parameters()}
|
640 |
+
else:
|
641 |
+
# A tied parameter will not be in the full `named_parameters` seen above but will be in the `named_parameters`
|
642 |
+
# of the submodule it belongs to. So while recursing we track the names that are not in the initial
|
643 |
+
# `named_parameters`.
|
644 |
+
for name, parameter in model.named_parameters():
|
645 |
+
full_name = name if prefix == "" else f"{prefix}.{name}"
|
646 |
+
if full_name not in named_parameters:
|
647 |
+
# When we find one, it has to be one of the existing parameters.
|
648 |
+
for new_name, new_param in named_parameters.items():
|
649 |
+
if new_param is parameter:
|
650 |
+
if new_name not in result:
|
651 |
+
result[new_name] = []
|
652 |
+
result[new_name].append(full_name)
|
653 |
+
|
654 |
+
# Once we have treated direct parameters, we move to the child modules.
|
655 |
+
for name, child in model.named_children():
|
656 |
+
child_name = name if prefix == "" else f"{prefix}.{name}"
|
657 |
+
find_tied_parameters(child, named_parameters=named_parameters, prefix=child_name, result=result)
|
658 |
+
|
659 |
+
return FindTiedParametersResult([sorted([weight] + list(set(tied))) for weight, tied in result.items()])
|
660 |
+
|
661 |
+
|
662 |
+
def retie_parameters(model, tied_params):
|
663 |
+
"""
|
664 |
+
Reties tied parameters in a given model if the link was broken (for instance when adding hooks).
|
665 |
+
|
666 |
+
Args:
|
667 |
+
model (`torch.nn.Module`):
|
668 |
+
The model in which to retie parameters.
|
669 |
+
tied_params (`List[List[str]]`):
|
670 |
+
A mapping parameter name to tied parameter name as obtained by `find_tied_parameters`.
|
671 |
+
"""
|
672 |
+
for tied_group in tied_params:
|
673 |
+
param_to_tie = None
|
674 |
+
# two loops : the first one to set param_to_tie , the second one to change the values of tied_group
|
675 |
+
for param_name in tied_group:
|
676 |
+
module = model
|
677 |
+
splits = param_name.split(".")
|
678 |
+
for split in splits[:-1]:
|
679 |
+
module = getattr(module, split)
|
680 |
+
param = getattr(module, splits[-1])
|
681 |
+
if param_to_tie is None and param.device != torch.device("meta"):
|
682 |
+
param_to_tie = param
|
683 |
+
break
|
684 |
+
if param_to_tie is not None:
|
685 |
+
for param_name in tied_group:
|
686 |
+
module = model
|
687 |
+
splits = param_name.split(".")
|
688 |
+
for split in splits[:-1]:
|
689 |
+
module = getattr(module, split)
|
690 |
+
setattr(module, splits[-1], param_to_tie)
|
691 |
+
|
692 |
+
|
693 |
+
def _get_proper_dtype(dtype: Union[str, torch.device]) -> torch.dtype:
|
694 |
+
"""
|
695 |
+
Just does torch.dtype(dtype) if necessary.
|
696 |
+
"""
|
697 |
+
if isinstance(dtype, str):
|
698 |
+
# We accept "torch.float16" or just "float16"
|
699 |
+
dtype = dtype.replace("torch.", "")
|
700 |
+
dtype = getattr(torch, dtype)
|
701 |
+
return dtype
|
702 |
+
|
703 |
+
|
704 |
+
def compute_module_sizes(
|
705 |
+
model: nn.Module,
|
706 |
+
dtype: Optional[Union[str, torch.device]] = None,
|
707 |
+
special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
|
708 |
+
buffers_only: bool = False,
|
709 |
+
):
|
710 |
+
"""
|
711 |
+
Compute the size of each submodule of a given model.
|
712 |
+
"""
|
713 |
+
if dtype is not None:
|
714 |
+
dtype = _get_proper_dtype(dtype)
|
715 |
+
dtype_size = dtype_byte_size(dtype)
|
716 |
+
if special_dtypes is not None:
|
717 |
+
special_dtypes = {key: _get_proper_dtype(dtyp) for key, dtyp in special_dtypes.items()}
|
718 |
+
special_dtypes_size = {key: dtype_byte_size(dtyp) for key, dtyp in special_dtypes.items()}
|
719 |
+
module_sizes = defaultdict(int)
|
720 |
+
|
721 |
+
module_list = []
|
722 |
+
|
723 |
+
if not buffers_only:
|
724 |
+
module_list = named_module_tensors(model, recurse=True)
|
725 |
+
else:
|
726 |
+
module_list = model.named_buffers(recurse=True)
|
727 |
+
|
728 |
+
for name, tensor in module_list:
|
729 |
+
if special_dtypes is not None and name in special_dtypes:
|
730 |
+
size = tensor.numel() * special_dtypes_size[name]
|
731 |
+
elif dtype is None:
|
732 |
+
size = tensor.numel() * dtype_byte_size(tensor.dtype)
|
733 |
+
elif str(tensor.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
|
734 |
+
# According to the code in set_module_tensor_to_device, these types won't be converted
|
735 |
+
# so use their original size here
|
736 |
+
size = tensor.numel() * dtype_byte_size(tensor.dtype)
|
737 |
+
else:
|
738 |
+
size = tensor.numel() * min(dtype_size, dtype_byte_size(tensor.dtype))
|
739 |
+
name_parts = name.split(".")
|
740 |
+
for idx in range(len(name_parts) + 1):
|
741 |
+
module_sizes[".".join(name_parts[:idx])] += size
|
742 |
+
|
743 |
+
return module_sizes
|
744 |
+
|
745 |
+
|
746 |
+
def compute_module_total_buffer_size(
|
747 |
+
model: nn.Module,
|
748 |
+
dtype: Optional[Union[str, torch.device]] = None,
|
749 |
+
special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
|
750 |
+
):
|
751 |
+
"""
|
752 |
+
Compute the total size of buffers in each submodule of a given model.
|
753 |
+
"""
|
754 |
+
module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes, buffers_only=True)
|
755 |
+
return module_sizes.get("", 0)
|
756 |
+
|
757 |
+
|
758 |
+
def get_max_layer_size(
|
759 |
+
modules: List[Tuple[str, torch.nn.Module]], module_sizes: Dict[str, int], no_split_module_classes: List[str]
|
760 |
+
):
|
761 |
+
"""
|
762 |
+
Utility function that will scan a list of named modules and return the maximum size used by one full layer. The
|
763 |
+
definition of a layer being:
|
764 |
+
- a module with no direct children (just parameters and buffers)
|
765 |
+
- a module whose class name is in the list `no_split_module_classes`
|
766 |
+
|
767 |
+
Args:
|
768 |
+
modules (`List[Tuple[str, torch.nn.Module]]`):
|
769 |
+
The list of named modules where we want to determine the maximum layer size.
|
770 |
+
module_sizes (`Dict[str, int]`):
|
771 |
+
A dictionary mapping each layer name to its size (as generated by `compute_module_sizes`).
|
772 |
+
no_split_module_classes (`List[str]`):
|
773 |
+
A list of class names for layers we don't want to be split.
|
774 |
+
|
775 |
+
Returns:
|
776 |
+
`Tuple[int, List[str]]`: The maximum size of a layer with the list of layer names realizing that maximum size.
|
777 |
+
"""
|
778 |
+
max_size = 0
|
779 |
+
layer_names = []
|
780 |
+
modules_to_treat = modules.copy()
|
781 |
+
while len(modules_to_treat) > 0:
|
782 |
+
module_name, module = modules_to_treat.pop(0)
|
783 |
+
modules_children = list(module.named_children()) if isinstance(module, torch.nn.Module) else []
|
784 |
+
if len(modules_children) == 0 or module.__class__.__name__ in no_split_module_classes:
|
785 |
+
# No splitting this one so we compare to the max_size
|
786 |
+
size = module_sizes[module_name]
|
787 |
+
if size > max_size:
|
788 |
+
max_size = size
|
789 |
+
layer_names = [module_name]
|
790 |
+
elif size == max_size:
|
791 |
+
layer_names.append(module_name)
|
792 |
+
else:
|
793 |
+
modules_to_treat = [(f"{module_name}.{n}", v) for n, v in modules_children] + modules_to_treat
|
794 |
+
return max_size, layer_names
|
795 |
+
|
796 |
+
|
797 |
+
def get_max_memory(max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None):
|
798 |
+
"""
|
799 |
+
Get the maximum memory available if nothing is passed, converts string to int otherwise.
|
800 |
+
"""
|
801 |
+
import psutil
|
802 |
+
|
803 |
+
if max_memory is None:
|
804 |
+
if not (torch.cuda.is_available() or is_npu_available() or is_mlu_available() or is_xpu_available()):
|
805 |
+
max_memory = {}
|
806 |
+
|
807 |
+
else:
|
808 |
+
# Make sure CUDA is initialized on each GPU to have the right memory info.
|
809 |
+
if is_npu_available():
|
810 |
+
for i in range(torch.npu.device_count()):
|
811 |
+
_ = torch.tensor(0, device=torch.device("npu", i))
|
812 |
+
max_memory = {i: torch.npu.mem_get_info(i)[0] for i in range(torch.npu.device_count())}
|
813 |
+
elif is_mlu_available():
|
814 |
+
for i in range(torch.mlu.device_count()):
|
815 |
+
_ = torch.tensor(0, device=torch.device("mlu", i))
|
816 |
+
max_memory = {i: torch.mlu.mem_get_info(i)[0] for i in range(torch.mlu.device_count())}
|
817 |
+
elif is_xpu_available():
|
818 |
+
for i in range(torch.xpu.device_count()):
|
819 |
+
_ = torch.tensor(0, device=torch.device("xpu", i))
|
820 |
+
max_memory = {i: torch.xpu.max_memory_allocated(i) for i in range(torch.xpu.device_count())}
|
821 |
+
else:
|
822 |
+
for i in range(torch.cuda.device_count()):
|
823 |
+
_ = torch.tensor([0], device=i)
|
824 |
+
max_memory = {i: torch.cuda.mem_get_info(i)[0] for i in range(torch.cuda.device_count())}
|
825 |
+
# allocate everything in the mps device as the RAM is shared
|
826 |
+
if is_mps_available():
|
827 |
+
max_memory["mps"] = psutil.virtual_memory().available
|
828 |
+
else:
|
829 |
+
max_memory["cpu"] = psutil.virtual_memory().available
|
830 |
+
return max_memory
|
831 |
+
|
832 |
+
for key in max_memory:
|
833 |
+
if isinstance(max_memory[key], str):
|
834 |
+
max_memory[key] = convert_file_size_to_int(max_memory[key])
|
835 |
+
|
836 |
+
# Need to sort the device by type to make sure that we allocate the gpu first.
|
837 |
+
# As gpu/npu/xpu are represented by int, we need to sort them first.
|
838 |
+
gpu_devices = [k for k in max_memory.keys() if isinstance(k, int)]
|
839 |
+
gpu_devices.sort()
|
840 |
+
# check if gpu/npu/xpu devices are available and if not, throw a warning
|
841 |
+
if is_npu_available():
|
842 |
+
num_devices = torch.npu.device_count()
|
843 |
+
elif is_mlu_available():
|
844 |
+
num_devices = torch.mlu.device_count()
|
845 |
+
elif is_xpu_available():
|
846 |
+
num_devices = torch.xpu.device_count()
|
847 |
+
else:
|
848 |
+
num_devices = torch.cuda.device_count()
|
849 |
+
for device in gpu_devices:
|
850 |
+
if device >= num_devices or device < 0:
|
851 |
+
logger.warning(f"Device {device} is not available, available devices are {list(range(num_devices))}")
|
852 |
+
# Add the other devices in the preset order if they are available
|
853 |
+
all_devices = gpu_devices + [k for k in ["mps", "cpu", "disk"] if k in max_memory.keys()]
|
854 |
+
# Raise an error if a device is not recognized
|
855 |
+
for k in max_memory.keys():
|
856 |
+
if k not in all_devices:
|
857 |
+
raise ValueError(
|
858 |
+
f"Device {k} is not recognized, available devices are integers(for GPU/XPU), 'mps', 'cpu' and 'disk'"
|
859 |
+
)
|
860 |
+
max_memory = {k: max_memory[k] for k in all_devices}
|
861 |
+
|
862 |
+
return max_memory
|
863 |
+
|
864 |
+
|
865 |
+
def clean_device_map(device_map: Dict[str, Union[int, str, torch.device]], module_name: str = ""):
|
866 |
+
"""
|
867 |
+
Cleans a device_map by grouping all submodules that go on the same device together.
|
868 |
+
"""
|
869 |
+
# Get the value of the current module and if there is only one split across several keys, regroup it.
|
870 |
+
prefix = "" if module_name == "" else f"{module_name}."
|
871 |
+
values = [v for k, v in device_map.items() if k.startswith(prefix)]
|
872 |
+
if len(set(values)) == 1 and len(values) > 1:
|
873 |
+
for k in [k for k in device_map if k.startswith(prefix)]:
|
874 |
+
del device_map[k]
|
875 |
+
device_map[module_name] = values[0]
|
876 |
+
|
877 |
+
# Recurse over the children
|
878 |
+
children_modules = [k for k in device_map.keys() if k.startswith(prefix) and len(k) > len(module_name)]
|
879 |
+
idx = len(module_name.split(".")) + 1 if len(module_name) > 0 else 1
|
880 |
+
children_modules = set(".".join(k.split(".")[:idx]) for k in children_modules)
|
881 |
+
for child in children_modules:
|
882 |
+
clean_device_map(device_map, module_name=child)
|
883 |
+
|
884 |
+
return device_map
|
885 |
+
|
886 |
+
|
887 |
+
def load_offloaded_weights(model, index, offload_folder):
|
888 |
+
"""
|
889 |
+
Loads the weights from the offload folder into the model.
|
890 |
+
|
891 |
+
Args:
|
892 |
+
model (`torch.nn.Module`):
|
893 |
+
The model to load the weights into.
|
894 |
+
index (`dict`):
|
895 |
+
A dictionary containing the parameter name and its metadata for each parameter that was offloaded from the
|
896 |
+
model.
|
897 |
+
offload_folder (`str`):
|
898 |
+
The folder where the offloaded weights are stored.
|
899 |
+
"""
|
900 |
+
if index is None or len(index) == 0:
|
901 |
+
# Nothing to do
|
902 |
+
return
|
903 |
+
for param_name, metadata in index.items():
|
904 |
+
if "SCB" in param_name:
|
905 |
+
continue
|
906 |
+
fp16_statistics = None
|
907 |
+
if "weight" in param_name and param_name.replace("weight", "SCB") in index.keys():
|
908 |
+
weight_name = param_name.replace("weight", "SCB")
|
909 |
+
fp16_statistics = load_offloaded_weight(
|
910 |
+
os.path.join(offload_folder, f"{weight_name}.dat"), index[weight_name]
|
911 |
+
)
|
912 |
+
tensor_file = os.path.join(offload_folder, f"{param_name}.dat")
|
913 |
+
weight = load_offloaded_weight(tensor_file, metadata)
|
914 |
+
set_module_tensor_to_device(model, param_name, "cpu", value=weight, fp16_statistics=fp16_statistics)
|
915 |
+
|
916 |
+
|
917 |
+
def get_balanced_memory(
|
918 |
+
model: nn.Module,
|
919 |
+
max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
|
920 |
+
no_split_module_classes: Optional[List[str]] = None,
|
921 |
+
dtype: Optional[Union[str, torch.dtype]] = None,
|
922 |
+
special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
|
923 |
+
low_zero: bool = False,
|
924 |
+
):
|
925 |
+
"""
|
926 |
+
Compute a `max_memory` dictionary for [`infer_auto_device_map`] that will balance the use of each available GPU.
|
927 |
+
|
928 |
+
<Tip>
|
929 |
+
|
930 |
+
All computation is done analyzing sizes and dtypes of the model parameters. As a result, the model can be on the
|
931 |
+
meta device (as it would if initialized within the `init_empty_weights` context manager).
|
932 |
+
|
933 |
+
</Tip>
|
934 |
+
|
935 |
+
Args:
|
936 |
+
model (`torch.nn.Module`):
|
937 |
+
The model to analyze.
|
938 |
+
max_memory (`Dict`, *optional*):
|
939 |
+
A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset.
|
940 |
+
Example: `max_memory={0: "1GB"}`.
|
941 |
+
no_split_module_classes (`List[str]`, *optional*):
|
942 |
+
A list of layer class names that should never be split across device (for instance any layer that has a
|
943 |
+
residual connection).
|
944 |
+
dtype (`str` or `torch.dtype`, *optional*):
|
945 |
+
If provided, the weights will be converted to that type when loaded.
|
946 |
+
special_dtypes (`Dict[str, Union[str, torch.device]]`, *optional*):
|
947 |
+
If provided, special dtypes to consider for some specific weights (will override dtype used as default for
|
948 |
+
all weights).
|
949 |
+
low_zero (`bool`, *optional*):
|
950 |
+
Minimizes the number of weights on GPU 0, which is convenient when it's used for other operations (like the
|
951 |
+
Transformers generate function).
|
952 |
+
"""
|
953 |
+
# Get default / clean up max_memory
|
954 |
+
user_not_set_max_memory = max_memory is None
|
955 |
+
max_memory = get_max_memory(max_memory)
|
956 |
+
|
957 |
+
if is_npu_available():
|
958 |
+
num_devices = len([d for d in max_memory if torch.device(d).type == "npu" and max_memory[d] > 0])
|
959 |
+
elif is_mlu_available():
|
960 |
+
num_devices = len([d for d in max_memory if torch.device(d).type == "mlu" and max_memory[d] > 0])
|
961 |
+
elif is_xpu_available():
|
962 |
+
num_devices = len(
|
963 |
+
[
|
964 |
+
d
|
965 |
+
for d in max_memory
|
966 |
+
if (
|
967 |
+
d != "cpu"
|
968 |
+
and (torch.device(d).type == "xpu" or torch.xpu.get_device_properties(d).dev_type == "gpu")
|
969 |
+
)
|
970 |
+
and max_memory[d] > 0
|
971 |
+
]
|
972 |
+
)
|
973 |
+
else:
|
974 |
+
num_devices = len([d for d in max_memory if torch.device(d).type == "cuda" and max_memory[d] > 0])
|
975 |
+
|
976 |
+
if num_devices == 0:
|
977 |
+
return max_memory
|
978 |
+
|
979 |
+
if num_devices == 1:
|
980 |
+
# We cannot do low_zero on just one GPU, but we will still reserve some memory for the buffer
|
981 |
+
low_zero = False
|
982 |
+
# If user just asked us to handle memory usage, we should avoid OOM
|
983 |
+
if user_not_set_max_memory:
|
984 |
+
for key in max_memory.keys():
|
985 |
+
if isinstance(key, int):
|
986 |
+
max_memory[key] *= 0.9 # 90% is a good compromise
|
987 |
+
logger.info(
|
988 |
+
f"We will use 90% of the memory on device {key} for storing the model, and 10% for the buffer to avoid OOM. "
|
989 |
+
"You can set `max_memory` in to a higher value to use more memory (at your own risk)."
|
990 |
+
)
|
991 |
+
break # only one device
|
992 |
+
|
993 |
+
module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes)
|
994 |
+
per_gpu = module_sizes[""] // (num_devices - 1 if low_zero else num_devices)
|
995 |
+
|
996 |
+
# We can't just set the memory to model_size // num_devices as it will end being too small: each GPU will get
|
997 |
+
# slightly less layers and some layers will end up offload at the end. So this function computes a buffer size to
|
998 |
+
# add which is the biggest of:
|
999 |
+
# - the size of no split block (if applicable)
|
1000 |
+
# - the mean of the layer sizes
|
1001 |
+
if no_split_module_classes is None:
|
1002 |
+
no_split_module_classes = []
|
1003 |
+
elif not isinstance(no_split_module_classes, (list, tuple)):
|
1004 |
+
no_split_module_classes = [no_split_module_classes]
|
1005 |
+
|
1006 |
+
# Identify the size of the no_split_block modules
|
1007 |
+
if len(no_split_module_classes) > 0:
|
1008 |
+
no_split_children = {}
|
1009 |
+
for name, size in module_sizes.items():
|
1010 |
+
if name == "":
|
1011 |
+
continue
|
1012 |
+
submodule = model
|
1013 |
+
for submodule_name in name.split("."):
|
1014 |
+
submodule = getattr(submodule, submodule_name)
|
1015 |
+
class_name = submodule.__class__.__name__
|
1016 |
+
if class_name in no_split_module_classes and class_name not in no_split_children:
|
1017 |
+
no_split_children[class_name] = size
|
1018 |
+
|
1019 |
+
if set(no_split_children.keys()) == set(no_split_module_classes):
|
1020 |
+
break
|
1021 |
+
buffer = max(no_split_children.values()) if len(no_split_children) > 0 else 0
|
1022 |
+
else:
|
1023 |
+
buffer = 0
|
1024 |
+
|
1025 |
+
# Compute mean of final modules. In the first dict of module sizes, leaves are the parameters
|
1026 |
+
leaves = [n for n in module_sizes if len([p for p in module_sizes if n == "" or p.startswith(n + ".")]) == 0]
|
1027 |
+
module_sizes = {n: v for n, v in module_sizes.items() if n not in leaves}
|
1028 |
+
# Once removed, leaves are the final modules.
|
1029 |
+
leaves = [n for n in module_sizes if len([p for p in module_sizes if n == "" or p.startswith(n + ".")]) == 0]
|
1030 |
+
mean_leaves = int(sum([module_sizes[n] for n in leaves]) / max(len(leaves), 1))
|
1031 |
+
buffer = int(1.25 * max(buffer, mean_leaves))
|
1032 |
+
per_gpu += buffer
|
1033 |
+
|
1034 |
+
# Sorted list of GPUs id (we may have some gpu ids not included in the our max_memory list - let's ignore them)
|
1035 |
+
gpus_idx_list = list(
|
1036 |
+
sorted(
|
1037 |
+
device_id for device_id, device_mem in max_memory.items() if isinstance(device_id, int) and device_mem > 0
|
1038 |
+
)
|
1039 |
+
)
|
1040 |
+
# The last device is left with max_memory just in case the buffer is not enough.
|
1041 |
+
for idx in gpus_idx_list[:-1]:
|
1042 |
+
max_memory[idx] = min(max_memory[0] if low_zero and idx == 0 else per_gpu, max_memory[idx])
|
1043 |
+
|
1044 |
+
if low_zero:
|
1045 |
+
min_zero = max(0, module_sizes[""] - sum([max_memory[i] for i in range(1, num_devices)]))
|
1046 |
+
max_memory[0] = min(min_zero, max_memory[0])
|
1047 |
+
|
1048 |
+
return max_memory
|
1049 |
+
|
1050 |
+
|
1051 |
+
def calculate_maximum_sizes(model: torch.nn.Module):
|
1052 |
+
"Computes the total size of the model and its largest layer"
|
1053 |
+
sizes = compute_module_sizes(model)
|
1054 |
+
# `transformers` models store this information for us
|
1055 |
+
no_split_modules = getattr(model, "_no_split_modules", None)
|
1056 |
+
if no_split_modules is None:
|
1057 |
+
no_split_modules = []
|
1058 |
+
|
1059 |
+
modules_to_treat = (
|
1060 |
+
list(model.named_parameters(recurse=False))
|
1061 |
+
+ list(model.named_children())
|
1062 |
+
+ list(model.named_buffers(recurse=False))
|
1063 |
+
)
|
1064 |
+
largest_layer = get_max_layer_size(modules_to_treat, sizes, no_split_modules)
|
1065 |
+
total_size = sizes[""]
|
1066 |
+
return total_size, largest_layer
|
1067 |
+
|
1068 |
+
|
1069 |
+
def infer_auto_device_map(
|
1070 |
+
model: nn.Module,
|
1071 |
+
max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
|
1072 |
+
no_split_module_classes: Optional[List[str]] = None,
|
1073 |
+
dtype: Optional[Union[str, torch.dtype]] = None,
|
1074 |
+
special_dtypes: Optional[Dict[str, Union[str, torch.dtype]]] = None,
|
1075 |
+
verbose: bool = False,
|
1076 |
+
clean_result: bool = True,
|
1077 |
+
offload_buffers: bool = False,
|
1078 |
+
):
|
1079 |
+
"""
|
1080 |
+
Compute a device map for a given model giving priority to GPUs, then offload on CPU and finally offload to disk,
|
1081 |
+
such that:
|
1082 |
+
- we don't exceed the memory available of any of the GPU.
|
1083 |
+
- if offload to the CPU is needed, there is always room left on GPU 0 to put back the layer offloaded on CPU that
|
1084 |
+
has the largest size.
|
1085 |
+
- if offload to the CPU is needed,we don't exceed the RAM available on the CPU.
|
1086 |
+
- if offload to the disk is needed, there is always room left on the CPU to put back the layer offloaded on disk
|
1087 |
+
that has the largest size.
|
1088 |
+
|
1089 |
+
<Tip>
|
1090 |
+
|
1091 |
+
All computation is done analyzing sizes and dtypes of the model parameters. As a result, the model can be on the
|
1092 |
+
meta device (as it would if initialized within the `init_empty_weights` context manager).
|
1093 |
+
|
1094 |
+
</Tip>
|
1095 |
+
|
1096 |
+
Args:
|
1097 |
+
model (`torch.nn.Module`):
|
1098 |
+
The model to analyze.
|
1099 |
+
max_memory (`Dict`, *optional*):
|
1100 |
+
A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset.
|
1101 |
+
Example: `max_memory={0: "1GB"}`.
|
1102 |
+
no_split_module_classes (`List[str]`, *optional*):
|
1103 |
+
A list of layer class names that should never be split across device (for instance any layer that has a
|
1104 |
+
residual connection).
|
1105 |
+
dtype (`str` or `torch.dtype`, *optional*):
|
1106 |
+
If provided, the weights will be converted to that type when loaded.
|
1107 |
+
special_dtypes (`Dict[str, Union[str, torch.device]]`, *optional*):
|
1108 |
+
If provided, special dtypes to consider for some specific weights (will override dtype used as default for
|
1109 |
+
all weights).
|
1110 |
+
verbose (`bool`, *optional*, defaults to `False`):
|
1111 |
+
Whether or not to provide debugging statements as the function builds the device_map.
|
1112 |
+
clean_result (`bool`, *optional*, defaults to `True`):
|
1113 |
+
Clean the resulting device_map by grouping all submodules that go on the same device together.
|
1114 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
1115 |
+
In the layers that are offloaded on the CPU or the hard drive, whether or not to offload the buffers as
|
1116 |
+
well as the parameters.
|
1117 |
+
"""
|
1118 |
+
# Get default / clean up max_memory
|
1119 |
+
max_memory = get_max_memory(max_memory)
|
1120 |
+
if no_split_module_classes is None:
|
1121 |
+
no_split_module_classes = []
|
1122 |
+
elif not isinstance(no_split_module_classes, (list, tuple)):
|
1123 |
+
no_split_module_classes = [no_split_module_classes]
|
1124 |
+
|
1125 |
+
devices = list(max_memory.keys())
|
1126 |
+
if "disk" not in devices:
|
1127 |
+
devices.append("disk")
|
1128 |
+
gpus = [device for device in devices if device not in ["cpu", "disk"]]
|
1129 |
+
|
1130 |
+
# Devices that need to keep space for a potential offloaded layer.
|
1131 |
+
if "mps" in gpus:
|
1132 |
+
main_devices = ["mps"]
|
1133 |
+
elif len(gpus) > 0:
|
1134 |
+
main_devices = [gpus[0], "cpu"]
|
1135 |
+
else:
|
1136 |
+
main_devices = ["cpu"]
|
1137 |
+
|
1138 |
+
module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes)
|
1139 |
+
tied_parameters = find_tied_parameters(model)
|
1140 |
+
|
1141 |
+
if check_tied_parameters_in_config(model) and len(tied_parameters) == 0:
|
1142 |
+
logger.warn(
|
1143 |
+
"The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function."
|
1144 |
+
)
|
1145 |
+
|
1146 |
+
device_map = OrderedDict()
|
1147 |
+
current_device = 0
|
1148 |
+
current_memory_used = 0
|
1149 |
+
device_memory_used = {}
|
1150 |
+
device_buffer_sizes = {}
|
1151 |
+
|
1152 |
+
# Direct submodules and parameters
|
1153 |
+
modules_to_treat = (
|
1154 |
+
list(model.named_parameters(recurse=False))
|
1155 |
+
+ list(model.named_children())
|
1156 |
+
+ list(model.named_buffers(recurse=False))
|
1157 |
+
)
|
1158 |
+
# Initialize maximum largest layer, to know which space to keep in memory
|
1159 |
+
max_layer_size, max_layer_names = get_max_layer_size(modules_to_treat, module_sizes, no_split_module_classes)
|
1160 |
+
|
1161 |
+
# Ready ? This is going to be a bit messy.
|
1162 |
+
while len(modules_to_treat) > 0:
|
1163 |
+
name, module = modules_to_treat.pop(0)
|
1164 |
+
if verbose:
|
1165 |
+
print(f"\nTreating module {name}.")
|
1166 |
+
# Max size in the remaining layers may have changed since we took one, so we maybe update it.
|
1167 |
+
max_layer_names = [n for n in max_layer_names if n != name and not n.startswith(name + ".")]
|
1168 |
+
if len(max_layer_names) == 0:
|
1169 |
+
max_layer_size, max_layer_names = get_max_layer_size(
|
1170 |
+
[(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)],
|
1171 |
+
module_sizes,
|
1172 |
+
no_split_module_classes,
|
1173 |
+
)
|
1174 |
+
# Assess size needed
|
1175 |
+
module_size = module_sizes[name]
|
1176 |
+
|
1177 |
+
# We keep relevant tied parameters only: one of the tied parameters in the group is inside the current module
|
1178 |
+
# and the other is not.
|
1179 |
+
# Note: If we are currently processing the name `compute.weight`, an other parameter named e.g. `compute.weight_submodule.parameter`
|
1180 |
+
# needs to be considered outside the current module, hence the check with additional dots.
|
1181 |
+
tied_param_goups = [
|
1182 |
+
tied_group
|
1183 |
+
for tied_group in tied_parameters
|
1184 |
+
if any(name + "." in k + "." for k in tied_group) and not all(name + "." in k + "." for k in tied_group)
|
1185 |
+
]
|
1186 |
+
|
1187 |
+
if verbose and len(tied_param_goups) > 0:
|
1188 |
+
print(f" Found the relevant tied param groups {tied_param_goups}")
|
1189 |
+
|
1190 |
+
# Then we keep track of all the parameters that are tied to the current module, but not in the current module
|
1191 |
+
tied_params = sum(
|
1192 |
+
[[p for p in tied_group if name + "." not in p + "."] for tied_group in tied_param_goups], []
|
1193 |
+
)
|
1194 |
+
|
1195 |
+
if verbose and len(tied_params) > 0:
|
1196 |
+
print(f" So those parameters need to be taken into account {tied_params}")
|
1197 |
+
|
1198 |
+
device = devices[current_device]
|
1199 |
+
current_max_size = max_memory[device] if device != "disk" else None
|
1200 |
+
current_memory_reserved = 0
|
1201 |
+
# Reduce max size available by the largest layer.
|
1202 |
+
if devices[current_device] in main_devices:
|
1203 |
+
current_max_size = current_max_size - max_layer_size
|
1204 |
+
current_memory_reserved = max_layer_size
|
1205 |
+
# Case 1 -> We're too big!
|
1206 |
+
if current_max_size is not None and current_memory_used + module_size > current_max_size:
|
1207 |
+
# Split or not split?
|
1208 |
+
modules_children = (
|
1209 |
+
[]
|
1210 |
+
if isinstance(module, nn.Parameter) or isinstance(module, torch.Tensor)
|
1211 |
+
else list(module.named_children())
|
1212 |
+
)
|
1213 |
+
if verbose:
|
1214 |
+
print(
|
1215 |
+
f"Not enough space on {devices[current_device]} to put {name} (space available "
|
1216 |
+
f"{current_max_size - current_memory_used}, module size {module_size})."
|
1217 |
+
)
|
1218 |
+
if len(modules_children) == 0 or module.__class__.__name__ in no_split_module_classes:
|
1219 |
+
# -> no split, we go to the next device
|
1220 |
+
if verbose:
|
1221 |
+
print("This module cannot be split, going to the next device.")
|
1222 |
+
|
1223 |
+
device_memory_used[device] = current_memory_used + current_memory_reserved
|
1224 |
+
current_device += 1
|
1225 |
+
modules_to_treat = [(name, module)] + modules_to_treat
|
1226 |
+
current_memory_used = 0
|
1227 |
+
else:
|
1228 |
+
# -> split, we replace the module studied by its children + parameters
|
1229 |
+
if verbose:
|
1230 |
+
print(f"Splitting {name}.")
|
1231 |
+
modules_children = list(module.named_parameters(recurse=False)) + modules_children
|
1232 |
+
modules_to_treat = [(f"{name}.{n}", v) for n, v in modules_children] + modules_to_treat
|
1233 |
+
# Update the max layer size.
|
1234 |
+
max_layer_size, max_layer_names = get_max_layer_size(
|
1235 |
+
[(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)],
|
1236 |
+
module_sizes,
|
1237 |
+
no_split_module_classes,
|
1238 |
+
)
|
1239 |
+
|
1240 |
+
# Case 2, it fits! We're not entirely out of the wood though, because we may have some tied parameters.
|
1241 |
+
elif len(tied_params) > 0:
|
1242 |
+
# First locate all tied modules
|
1243 |
+
tied_module_names = []
|
1244 |
+
tied_modules = []
|
1245 |
+
for tied_param in tied_params:
|
1246 |
+
tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n in tied_param][0]
|
1247 |
+
tied_module_names.append(modules_to_treat[tied_module_index][0])
|
1248 |
+
tied_modules.append(modules_to_treat[tied_module_index][1])
|
1249 |
+
if verbose:
|
1250 |
+
print(
|
1251 |
+
f" It looks like {name} is going to fit on {devices[current_device]} but we have tied "
|
1252 |
+
f"parameters to account for.\n - Names {tied_params}\n - Module names {tied_module_names}"
|
1253 |
+
)
|
1254 |
+
|
1255 |
+
# Let's see if it all fits first
|
1256 |
+
module_size_with_ties = module_size
|
1257 |
+
for tied_param, tied_module_name in zip(tied_params, tied_module_names):
|
1258 |
+
module_size_with_ties += module_sizes[tied_module_name] - module_sizes[tied_param]
|
1259 |
+
|
1260 |
+
if current_max_size is None or current_memory_used + module_size_with_ties <= current_max_size:
|
1261 |
+
# We really really fit!
|
1262 |
+
if verbose:
|
1263 |
+
print(f"Putting {name} and {tied_module_names} on {devices[current_device]}.")
|
1264 |
+
current_memory_used += module_size_with_ties
|
1265 |
+
device_map[name] = devices[current_device]
|
1266 |
+
for tied_module_name in tied_module_names:
|
1267 |
+
if tied_module_name in [m[0] for m in modules_to_treat]:
|
1268 |
+
# The module may have been removed by a previous iteration of this loop.
|
1269 |
+
tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n == tied_module_name][
|
1270 |
+
0
|
1271 |
+
]
|
1272 |
+
modules_to_treat.pop(tied_module_index)
|
1273 |
+
device_map[tied_module_name] = devices[current_device]
|
1274 |
+
|
1275 |
+
if not offload_buffers and isinstance(module, nn.Module):
|
1276 |
+
current_buffer_size = compute_module_total_buffer_size(
|
1277 |
+
module, dtype=dtype, special_dtypes=special_dtypes
|
1278 |
+
)
|
1279 |
+
device_buffer_sizes[device] = device_buffer_sizes.get(device, 0) + current_buffer_size
|
1280 |
+
|
1281 |
+
else:
|
1282 |
+
# We don't fit with the tied modules. Next question is: can we split one of the tied modules to make it
|
1283 |
+
# smaller or do we need to go on the next device?
|
1284 |
+
if verbose:
|
1285 |
+
print(
|
1286 |
+
f"Not enough space on {devices[current_device]} to put {name} and {tied_module_names} (space "
|
1287 |
+
f"available {current_max_size - current_memory_used}, needed size {module_size_with_ties})."
|
1288 |
+
)
|
1289 |
+
split_happened = False
|
1290 |
+
for tied_module_name, tied_module in zip(tied_module_names, tied_modules):
|
1291 |
+
tied_module_children = list(tied_module.named_children())
|
1292 |
+
if len(tied_module_children) == 0 or tied_module.__class__.__name__ in no_split_module_classes:
|
1293 |
+
# can't break this one.
|
1294 |
+
continue
|
1295 |
+
|
1296 |
+
if verbose:
|
1297 |
+
print(f"Splitting {tied_module_name}.")
|
1298 |
+
tied_module_children = list(tied_module.named_parameters(recurse=False)) + tied_module_children
|
1299 |
+
tied_module_children = [(f"{tied_module_name}.{n}", v) for n, v in tied_module_children]
|
1300 |
+
tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n == tied_module_name][0]
|
1301 |
+
|
1302 |
+
modules_to_treat = (
|
1303 |
+
[(name, module)]
|
1304 |
+
+ modules_to_treat[:tied_module_index]
|
1305 |
+
+ tied_module_children
|
1306 |
+
+ modules_to_treat[tied_module_index + 1 :]
|
1307 |
+
)
|
1308 |
+
# Update the max layer size.
|
1309 |
+
max_layer_size, max_layer_names = get_max_layer_size(
|
1310 |
+
[(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)],
|
1311 |
+
module_sizes,
|
1312 |
+
no_split_module_classes,
|
1313 |
+
)
|
1314 |
+
split_happened = True
|
1315 |
+
break
|
1316 |
+
|
1317 |
+
if not split_happened:
|
1318 |
+
# If the tied module is not split, we go to the next device
|
1319 |
+
if verbose:
|
1320 |
+
print("None of the tied module can be split, going to the next device.")
|
1321 |
+
|
1322 |
+
device_memory_used[device] = current_memory_used + current_memory_reserved
|
1323 |
+
current_device += 1
|
1324 |
+
modules_to_treat = [(name, module)] + modules_to_treat
|
1325 |
+
current_memory_used = 0
|
1326 |
+
|
1327 |
+
else:
|
1328 |
+
if verbose:
|
1329 |
+
if current_max_size is None:
|
1330 |
+
print(f"Putting {name} (size={module_size}) on {devices[current_device]}.")
|
1331 |
+
else:
|
1332 |
+
print(
|
1333 |
+
f"Putting {name} (size={module_size}) on {devices[current_device]} "
|
1334 |
+
f"(available={current_max_size - current_memory_used})."
|
1335 |
+
)
|
1336 |
+
current_memory_used += module_size
|
1337 |
+
device_memory_used[device] = current_memory_used + current_memory_reserved
|
1338 |
+
device_map[name] = devices[current_device]
|
1339 |
+
|
1340 |
+
if not offload_buffers and isinstance(module, nn.Module):
|
1341 |
+
current_buffer_size = compute_module_total_buffer_size(
|
1342 |
+
module, dtype=dtype, special_dtypes=special_dtypes
|
1343 |
+
)
|
1344 |
+
device_buffer_sizes[device] = device_buffer_sizes.get(device, 0) + current_buffer_size
|
1345 |
+
|
1346 |
+
if clean_result:
|
1347 |
+
device_map = clean_device_map(device_map)
|
1348 |
+
|
1349 |
+
non_gpu_buffer_size = device_buffer_sizes.get("cpu", 0) + device_buffer_sizes.get("disk", 0)
|
1350 |
+
if non_gpu_buffer_size > 0 and not offload_buffers:
|
1351 |
+
is_buffer_fit_any_gpu = False
|
1352 |
+
for gpu_device, gpu_max_memory in max_memory.items():
|
1353 |
+
if gpu_device == "cpu" or gpu_device == "disk":
|
1354 |
+
continue
|
1355 |
+
|
1356 |
+
if not is_buffer_fit_any_gpu:
|
1357 |
+
gpu_memory_used = device_memory_used.get(gpu_device, 0)
|
1358 |
+
|
1359 |
+
if gpu_max_memory >= non_gpu_buffer_size + gpu_memory_used:
|
1360 |
+
is_buffer_fit_any_gpu = True
|
1361 |
+
|
1362 |
+
if len(gpus) > 0 and not is_buffer_fit_any_gpu:
|
1363 |
+
warnings.warn(
|
1364 |
+
f"Current model requires {non_gpu_buffer_size} bytes of buffer for offloaded layers, which seems does "
|
1365 |
+
f"not fit any GPU's remaining memory. If you are experiencing a OOM later, please consider using "
|
1366 |
+
f"offload_buffers=True."
|
1367 |
+
)
|
1368 |
+
|
1369 |
+
return device_map
|
1370 |
+
|
1371 |
+
|
1372 |
+
def check_device_map(model: nn.Module, device_map: Dict[str, Union[int, str, torch.device]]):
|
1373 |
+
"""
|
1374 |
+
Checks a device map covers everything in a given model.
|
1375 |
+
|
1376 |
+
Args:
|
1377 |
+
model (`torch.nn.Module`): The model to check the device map against.
|
1378 |
+
device_map (`Dict[str, Union[int, str, torch.device]]`): The device map to check.
|
1379 |
+
"""
|
1380 |
+
all_model_tensors = [name for name, _ in model.state_dict().items()]
|
1381 |
+
for module_name in device_map.keys():
|
1382 |
+
if module_name == "":
|
1383 |
+
all_model_tensors.clear()
|
1384 |
+
break
|
1385 |
+
else:
|
1386 |
+
all_model_tensors = [
|
1387 |
+
name
|
1388 |
+
for name in all_model_tensors
|
1389 |
+
if not name == module_name and not name.startswith(module_name + ".")
|
1390 |
+
]
|
1391 |
+
if len(all_model_tensors) > 0:
|
1392 |
+
non_covered_params = ", ".join(all_model_tensors)
|
1393 |
+
raise ValueError(
|
1394 |
+
f"The device_map provided does not give any device for the following parameters: {non_covered_params}"
|
1395 |
+
)
|
1396 |
+
|
1397 |
+
|
1398 |
+
def load_state_dict(checkpoint_file, device_map=None):
|
1399 |
+
"""
|
1400 |
+
Load a checkpoint from a given file. If the checkpoint is in the safetensors format and a device map is passed, the
|
1401 |
+
weights can be fast-loaded directly on the GPU.
|
1402 |
+
|
1403 |
+
Args:
|
1404 |
+
checkpoint_file (`str`): The path to the checkpoint to load.
|
1405 |
+
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
|
1406 |
+
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
|
1407 |
+
name, once a given module name is inside, every submodule of it will be sent to the same device.
|
1408 |
+
"""
|
1409 |
+
if checkpoint_file.endswith(".safetensors"):
|
1410 |
+
with safe_open(checkpoint_file, framework="pt") as f:
|
1411 |
+
metadata = f.metadata()
|
1412 |
+
weight_names = f.keys()
|
1413 |
+
|
1414 |
+
if metadata is None:
|
1415 |
+
logger.warn(
|
1416 |
+
f"The safetensors archive passed at {checkpoint_file} does not contain metadata. "
|
1417 |
+
"Make sure to save your model with the `save_pretrained` method. Defaulting to 'pt' metadata."
|
1418 |
+
)
|
1419 |
+
metadata = {"format": "pt"}
|
1420 |
+
|
1421 |
+
if metadata.get("format") not in ["pt", "tf", "flax"]:
|
1422 |
+
raise OSError(
|
1423 |
+
f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
|
1424 |
+
"you save your model with the `save_pretrained` method."
|
1425 |
+
)
|
1426 |
+
elif metadata["format"] != "pt":
|
1427 |
+
raise ValueError(f"The checkpoint passed was saved with {metadata['format']}, we need a the pt format.")
|
1428 |
+
if device_map is None:
|
1429 |
+
return safe_load_file(checkpoint_file)
|
1430 |
+
else:
|
1431 |
+
# if we only have one device we can load everything directly
|
1432 |
+
if len(set(device_map.values())) == 1:
|
1433 |
+
return safe_load_file(checkpoint_file, device=list(device_map.values())[0])
|
1434 |
+
|
1435 |
+
devices = list(set(device_map.values()) - {"disk"})
|
1436 |
+
# cpu device should always exist as fallback option
|
1437 |
+
if "cpu" not in devices:
|
1438 |
+
devices.append("cpu")
|
1439 |
+
|
1440 |
+
# For each device, get the weights that go there
|
1441 |
+
device_weights = {device: [] for device in devices}
|
1442 |
+
for module_name, device in device_map.items():
|
1443 |
+
if device in devices:
|
1444 |
+
device_weights[device].extend(
|
1445 |
+
[k for k in weight_names if k == module_name or k.startswith(module_name + ".")]
|
1446 |
+
)
|
1447 |
+
|
1448 |
+
# all weights that haven't defined a device should be loaded on CPU
|
1449 |
+
device_weights["cpu"].extend([k for k in weight_names if k not in sum(device_weights.values(), [])])
|
1450 |
+
tensors = {}
|
1451 |
+
if is_tqdm_available():
|
1452 |
+
progress_bar = tqdm(
|
1453 |
+
main_process_only=False,
|
1454 |
+
total=sum([len(device_weights[device]) for device in devices]),
|
1455 |
+
unit="w",
|
1456 |
+
smoothing=0,
|
1457 |
+
leave=False,
|
1458 |
+
)
|
1459 |
+
else:
|
1460 |
+
progress_bar = None
|
1461 |
+
for device in devices:
|
1462 |
+
target_device = device
|
1463 |
+
|
1464 |
+
if is_xpu_available():
|
1465 |
+
current_safetensors_version = packaging.version.parse(importlib.metadata.version("safetensors"))
|
1466 |
+
|
1467 |
+
if compare_versions(current_safetensors_version, "<", "0.4.2"):
|
1468 |
+
raise ModuleNotFoundError(
|
1469 |
+
f"You need at least safetensors 0.4.2 for Intel GPU, while you have {current_safetensors_version}"
|
1470 |
+
)
|
1471 |
+
|
1472 |
+
if isinstance(device, int):
|
1473 |
+
target_device = f"xpu:{device}"
|
1474 |
+
|
1475 |
+
with safe_open(checkpoint_file, framework="pt", device=target_device) as f:
|
1476 |
+
for key in device_weights[device]:
|
1477 |
+
if progress_bar is not None:
|
1478 |
+
progress_bar.set_postfix(dev=device, refresh=False)
|
1479 |
+
progress_bar.set_description(key)
|
1480 |
+
tensors[key] = f.get_tensor(key)
|
1481 |
+
if progress_bar is not None:
|
1482 |
+
progress_bar.update()
|
1483 |
+
if progress_bar is not None:
|
1484 |
+
progress_bar.close()
|
1485 |
+
|
1486 |
+
return tensors
|
1487 |
+
else:
|
1488 |
+
return torch.load(checkpoint_file, map_location=torch.device("cpu"))
|
1489 |
+
|
1490 |
+
|
1491 |
+
def get_state_dict_offloaded_model(model: nn.Module):
|
1492 |
+
"""
|
1493 |
+
Returns the state dictionary for an offloaded model via iterative onloading
|
1494 |
+
|
1495 |
+
Args:
|
1496 |
+
model (`torch.nn.Module`):
|
1497 |
+
The offloaded model we want to save
|
1498 |
+
"""
|
1499 |
+
from ..hooks import AlignDevicesHook
|
1500 |
+
|
1501 |
+
state_dict = {}
|
1502 |
+
placeholders = set()
|
1503 |
+
for name, module in model.named_modules():
|
1504 |
+
if name == "":
|
1505 |
+
continue
|
1506 |
+
if hasattr(module, "_hf_hook") and isinstance(module._hf_hook, AlignDevicesHook) and module._hf_hook.offload:
|
1507 |
+
original_device = module._hf_hook.execution_device
|
1508 |
+
# assign hook execution device to cpu
|
1509 |
+
module._hf_hook.execution_device = "cpu"
|
1510 |
+
# onload meta tensors to execution device
|
1511 |
+
try:
|
1512 |
+
module._hf_hook.pre_forward(module)
|
1513 |
+
except MemoryError:
|
1514 |
+
raise MemoryError("Offloaded module must fit in CPU memory to call save_model!") from None
|
1515 |
+
module_state_dict = module.state_dict()
|
1516 |
+
# offload meta tensors from cpu
|
1517 |
+
module._hf_hook.post_forward(module, torch.tensor([]))
|
1518 |
+
# re-assign hook to original execution device
|
1519 |
+
module._hf_hook.execution_device = original_device
|
1520 |
+
else:
|
1521 |
+
module_state_dict = module.state_dict()
|
1522 |
+
|
1523 |
+
for key in module_state_dict:
|
1524 |
+
# ignore placeholder parameters that are still on the meta device
|
1525 |
+
if module_state_dict[key].device == torch.device("meta"):
|
1526 |
+
placeholders.add(name + f".{key}")
|
1527 |
+
continue
|
1528 |
+
params = module_state_dict[key]
|
1529 |
+
state_dict[name + f".{key}"] = params
|
1530 |
+
for key in placeholders.copy():
|
1531 |
+
if key in state_dict:
|
1532 |
+
placeholders.remove(key)
|
1533 |
+
if placeholders:
|
1534 |
+
logger.warning(f"The following tensors were not saved because they were still on meta device: {placeholders}")
|
1535 |
+
|
1536 |
+
return state_dict
|
1537 |
+
|
1538 |
+
|
1539 |
+
def load_checkpoint_in_model(
|
1540 |
+
model: nn.Module,
|
1541 |
+
checkpoint: Union[str, os.PathLike],
|
1542 |
+
device_map: Optional[Dict[str, Union[int, str, torch.device]]] = None,
|
1543 |
+
offload_folder: Optional[Union[str, os.PathLike]] = None,
|
1544 |
+
dtype: Optional[Union[str, torch.dtype]] = None,
|
1545 |
+
offload_state_dict: bool = False,
|
1546 |
+
offload_buffers: bool = False,
|
1547 |
+
keep_in_fp32_modules: List[str] = None,
|
1548 |
+
offload_8bit_bnb: bool = False,
|
1549 |
+
strict: bool = False,
|
1550 |
+
):
|
1551 |
+
"""
|
1552 |
+
Loads a (potentially sharded) checkpoint inside a model, potentially sending weights to a given device as they are
|
1553 |
+
loaded.
|
1554 |
+
|
1555 |
+
<Tip warning={true}>
|
1556 |
+
|
1557 |
+
Once loaded across devices, you still need to call [`dispatch_model`] on your model to make it able to run. To
|
1558 |
+
group the checkpoint loading and dispatch in one single call, use [`load_checkpoint_and_dispatch`].
|
1559 |
+
|
1560 |
+
</Tip>
|
1561 |
+
|
1562 |
+
Args:
|
1563 |
+
model (`torch.nn.Module`):
|
1564 |
+
The model in which we want to load a checkpoint.
|
1565 |
+
checkpoint (`str` or `os.PathLike`):
|
1566 |
+
The folder checkpoint to load. It can be:
|
1567 |
+
- a path to a file containing a whole model state dict
|
1568 |
+
- a path to a `.json` file containing the index to a sharded checkpoint
|
1569 |
+
- a path to a folder containing a unique `.index.json` file and the shards of a checkpoint.
|
1570 |
+
- a path to a folder containing a unique pytorch_model.bin or a model.safetensors file.
|
1571 |
+
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
|
1572 |
+
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
|
1573 |
+
name, once a given module name is inside, every submodule of it will be sent to the same device.
|
1574 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
1575 |
+
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
|
1576 |
+
dtype (`str` or `torch.dtype`, *optional*):
|
1577 |
+
If provided, the weights will be converted to that type when loaded.
|
1578 |
+
offload_state_dict (`bool`, *optional*, defaults to `False`):
|
1579 |
+
If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if
|
1580 |
+
the weight of the CPU state dict + the biggest shard does not fit.
|
1581 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
1582 |
+
Whether or not to include the buffers in the weights offloaded to disk.
|
1583 |
+
keep_in_fp32_modules(`List[str]`, *optional*):
|
1584 |
+
A list of the modules that we keep in `torch.float32` dtype.
|
1585 |
+
offload_8bit_bnb (`bool`, *optional*):
|
1586 |
+
Whether or not to enable offload of 8-bit modules on cpu/disk.
|
1587 |
+
strict (`bool`, *optional*, defaults to `False`):
|
1588 |
+
Whether to strictly enforce that the keys in the checkpoint state_dict match the keys of the model's
|
1589 |
+
state_dict.
|
1590 |
+
|
1591 |
+
"""
|
1592 |
+
if offload_8bit_bnb:
|
1593 |
+
from .bnb import quantize_and_offload_8bit
|
1594 |
+
|
1595 |
+
tied_params = find_tied_parameters(model)
|
1596 |
+
|
1597 |
+
if check_tied_parameters_in_config(model) and len(tied_params) == 0:
|
1598 |
+
logger.warn(
|
1599 |
+
"The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function."
|
1600 |
+
)
|
1601 |
+
if device_map is not None:
|
1602 |
+
check_tied_parameters_on_same_device(tied_params, device_map)
|
1603 |
+
|
1604 |
+
if offload_folder is None and device_map is not None and "disk" in device_map.values():
|
1605 |
+
raise ValueError(
|
1606 |
+
"At least one of the model submodule will be offloaded to disk, please pass along an `offload_folder`."
|
1607 |
+
)
|
1608 |
+
elif offload_folder is not None and device_map is not None and "disk" in device_map.values():
|
1609 |
+
os.makedirs(offload_folder, exist_ok=True)
|
1610 |
+
|
1611 |
+
if isinstance(dtype, str):
|
1612 |
+
# We accept "torch.float16" or just "float16"
|
1613 |
+
dtype = dtype.replace("torch.", "")
|
1614 |
+
dtype = getattr(torch, dtype)
|
1615 |
+
|
1616 |
+
checkpoint_files = None
|
1617 |
+
index_filename = None
|
1618 |
+
if os.path.isfile(checkpoint):
|
1619 |
+
if str(checkpoint).endswith(".json"):
|
1620 |
+
index_filename = checkpoint
|
1621 |
+
else:
|
1622 |
+
checkpoint_files = [checkpoint]
|
1623 |
+
elif os.path.isdir(checkpoint):
|
1624 |
+
# check if the whole state dict is present
|
1625 |
+
potential_state_bin = [f for f in os.listdir(checkpoint) if f == WEIGHTS_NAME]
|
1626 |
+
potential_state_safetensor = [f for f in os.listdir(checkpoint) if f == SAFE_WEIGHTS_NAME]
|
1627 |
+
if len(potential_state_bin) == 1:
|
1628 |
+
checkpoint_files = [os.path.join(checkpoint, potential_state_bin[0])]
|
1629 |
+
elif len(potential_state_safetensor) == 1:
|
1630 |
+
checkpoint_files = [os.path.join(checkpoint, potential_state_safetensor[0])]
|
1631 |
+
else:
|
1632 |
+
# otherwise check for sharded checkpoints
|
1633 |
+
potential_index = [f for f in os.listdir(checkpoint) if f.endswith(".index.json")]
|
1634 |
+
if len(potential_index) == 0:
|
1635 |
+
raise ValueError(
|
1636 |
+
f"{checkpoint} is not a folder containing a `.index.json` file or a {WEIGHTS_NAME} or a {SAFE_WEIGHTS_NAME} file"
|
1637 |
+
)
|
1638 |
+
elif len(potential_index) == 1:
|
1639 |
+
index_filename = os.path.join(checkpoint, potential_index[0])
|
1640 |
+
else:
|
1641 |
+
raise ValueError(
|
1642 |
+
f"{checkpoint} containing more than one `.index.json` file, delete the irrelevant ones."
|
1643 |
+
)
|
1644 |
+
else:
|
1645 |
+
raise ValueError(
|
1646 |
+
"`checkpoint` should be the path to a file containing a whole state dict, or the index of a sharded "
|
1647 |
+
f"checkpoint, or a folder containing a sharded checkpoint or the whole state dict, but got {checkpoint}."
|
1648 |
+
)
|
1649 |
+
|
1650 |
+
if index_filename is not None:
|
1651 |
+
checkpoint_folder = os.path.split(index_filename)[0]
|
1652 |
+
with open(index_filename) as f:
|
1653 |
+
index = json.loads(f.read())
|
1654 |
+
|
1655 |
+
if "weight_map" in index:
|
1656 |
+
index = index["weight_map"]
|
1657 |
+
checkpoint_files = sorted(list(set(index.values())))
|
1658 |
+
checkpoint_files = [os.path.join(checkpoint_folder, f) for f in checkpoint_files]
|
1659 |
+
|
1660 |
+
# Logic for missing/unexepected keys goes here.
|
1661 |
+
|
1662 |
+
offload_index = {}
|
1663 |
+
if offload_state_dict:
|
1664 |
+
state_dict_folder = tempfile.mkdtemp()
|
1665 |
+
state_dict_index = {}
|
1666 |
+
|
1667 |
+
unexpected_keys = set()
|
1668 |
+
model_keys = set(model.state_dict().keys())
|
1669 |
+
buffer_names = [name for name, _ in model.named_buffers()]
|
1670 |
+
for checkpoint_file in checkpoint_files:
|
1671 |
+
loaded_checkpoint = load_state_dict(checkpoint_file, device_map=device_map)
|
1672 |
+
if device_map is None:
|
1673 |
+
model.load_state_dict(loaded_checkpoint, strict=strict)
|
1674 |
+
unexpected_keys.update(set(loaded_checkpoint.keys()) - model_keys)
|
1675 |
+
else:
|
1676 |
+
for param_name, param in loaded_checkpoint.items():
|
1677 |
+
# skip SCB parameter (for 8-bit serialization)
|
1678 |
+
if "SCB" in param_name:
|
1679 |
+
continue
|
1680 |
+
|
1681 |
+
if param_name not in model_keys:
|
1682 |
+
unexpected_keys.add(param_name)
|
1683 |
+
if not strict:
|
1684 |
+
continue # Skip loading this parameter.
|
1685 |
+
|
1686 |
+
module_name = param_name
|
1687 |
+
|
1688 |
+
while len(module_name) > 0 and module_name not in device_map:
|
1689 |
+
module_name = ".".join(module_name.split(".")[:-1])
|
1690 |
+
if module_name == "" and "" not in device_map:
|
1691 |
+
# TODO: group all errors and raise at the end.
|
1692 |
+
raise ValueError(f"{param_name} doesn't have any device set.")
|
1693 |
+
param_device = device_map[module_name]
|
1694 |
+
new_dtype = dtype
|
1695 |
+
if dtype is not None and torch.is_floating_point(param):
|
1696 |
+
if keep_in_fp32_modules is not None and dtype == torch.float16:
|
1697 |
+
proceed = False
|
1698 |
+
for key in keep_in_fp32_modules:
|
1699 |
+
if ((key in param_name) and (key + "." in param_name)) or key == param_name:
|
1700 |
+
proceed = True
|
1701 |
+
break
|
1702 |
+
if proceed:
|
1703 |
+
new_dtype = torch.float32
|
1704 |
+
|
1705 |
+
if "weight" in param_name and param_name.replace("weight", "SCB") in loaded_checkpoint.keys():
|
1706 |
+
if param.dtype == torch.int8:
|
1707 |
+
fp16_statistics = loaded_checkpoint[param_name.replace("weight", "SCB")]
|
1708 |
+
else:
|
1709 |
+
fp16_statistics = None
|
1710 |
+
|
1711 |
+
if param_device == "disk":
|
1712 |
+
if offload_buffers or param_name not in buffer_names:
|
1713 |
+
if new_dtype is None:
|
1714 |
+
new_dtype = param.dtype
|
1715 |
+
if offload_8bit_bnb:
|
1716 |
+
quantize_and_offload_8bit(
|
1717 |
+
model, param, param_name, new_dtype, offload_folder, offload_index, fp16_statistics
|
1718 |
+
)
|
1719 |
+
continue
|
1720 |
+
else:
|
1721 |
+
set_module_tensor_to_device(model, param_name, "meta", dtype=new_dtype)
|
1722 |
+
offload_weight(param, param_name, offload_folder, index=offload_index)
|
1723 |
+
elif param_device == "cpu" and offload_state_dict:
|
1724 |
+
if new_dtype is None:
|
1725 |
+
new_dtype = param.dtype
|
1726 |
+
if offload_8bit_bnb:
|
1727 |
+
quantize_and_offload_8bit(
|
1728 |
+
model, param, param_name, new_dtype, state_dict_folder, state_dict_index, fp16_statistics
|
1729 |
+
)
|
1730 |
+
else:
|
1731 |
+
set_module_tensor_to_device(model, param_name, "meta", dtype=new_dtype)
|
1732 |
+
offload_weight(param, param_name, state_dict_folder, index=state_dict_index)
|
1733 |
+
else:
|
1734 |
+
set_module_tensor_to_device(
|
1735 |
+
model,
|
1736 |
+
param_name,
|
1737 |
+
param_device,
|
1738 |
+
value=param,
|
1739 |
+
dtype=new_dtype,
|
1740 |
+
fp16_statistics=fp16_statistics,
|
1741 |
+
)
|
1742 |
+
|
1743 |
+
# Force Python to clean up.
|
1744 |
+
del loaded_checkpoint
|
1745 |
+
gc.collect()
|
1746 |
+
|
1747 |
+
if not strict and len(unexpected_keys) > 0:
|
1748 |
+
logger.warning(
|
1749 |
+
f"Some weights of the model checkpoint at {checkpoint} were not used when"
|
1750 |
+
f" initializing {model.__class__.__name__}: {unexpected_keys}. This may or may not be an issue - make sure that the checkpoint does not have unnecessary parameters, or that the model definition correctly corresponds to the checkpoint."
|
1751 |
+
)
|
1752 |
+
|
1753 |
+
save_offload_index(offload_index, offload_folder)
|
1754 |
+
|
1755 |
+
# Load back offloaded state dict on CPU
|
1756 |
+
if offload_state_dict:
|
1757 |
+
load_offloaded_weights(model, state_dict_index, state_dict_folder)
|
1758 |
+
shutil.rmtree(state_dict_folder)
|
1759 |
+
|
1760 |
+
retie_parameters(model, tied_params)
|
1761 |
+
|
1762 |
+
|
1763 |
+
def get_mixed_precision_context_manager(native_amp: bool = False, autocast_kwargs: AutocastKwargs = None):
|
1764 |
+
"""
|
1765 |
+
Return a context manager for autocasting mixed precision
|
1766 |
+
|
1767 |
+
Args:
|
1768 |
+
native_amp (`bool`, *optional*, defaults to False):
|
1769 |
+
Whether mixed precision is actually enabled.
|
1770 |
+
cache_enabled (`bool`, *optional*, defaults to True):
|
1771 |
+
Whether the weight cache inside autocast should be enabled.
|
1772 |
+
"""
|
1773 |
+
state = AcceleratorState()
|
1774 |
+
if autocast_kwargs is None:
|
1775 |
+
autocast_kwargs = {}
|
1776 |
+
else:
|
1777 |
+
autocast_kwargs = autocast_kwargs.to_kwargs()
|
1778 |
+
if native_amp:
|
1779 |
+
device_type = (
|
1780 |
+
"cuda"
|
1781 |
+
if (state.distributed_type == DistributedType.XLA and is_torch_xla_available(check_is_gpu=True))
|
1782 |
+
else state.device.type
|
1783 |
+
)
|
1784 |
+
if state.mixed_precision == "fp16":
|
1785 |
+
return torch.autocast(device_type=device_type, dtype=torch.float16, **autocast_kwargs)
|
1786 |
+
elif state.mixed_precision == "bf16" and state.distributed_type in [
|
1787 |
+
DistributedType.NO,
|
1788 |
+
DistributedType.MULTI_CPU,
|
1789 |
+
DistributedType.MULTI_GPU,
|
1790 |
+
DistributedType.MULTI_MLU,
|
1791 |
+
DistributedType.MULTI_NPU,
|
1792 |
+
DistributedType.MULTI_XPU,
|
1793 |
+
DistributedType.FSDP,
|
1794 |
+
DistributedType.XLA,
|
1795 |
+
]:
|
1796 |
+
return torch.autocast(device_type=device_type, dtype=torch.bfloat16, **autocast_kwargs)
|
1797 |
+
else:
|
1798 |
+
return torch.autocast(device_type=device_type, **autocast_kwargs)
|
1799 |
+
else:
|
1800 |
+
return contextlib.nullcontext()
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/offload.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
from collections.abc import Mapping
|
18 |
+
from typing import Dict, List, Optional, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
from safetensors import safe_open
|
23 |
+
|
24 |
+
|
25 |
+
def offload_weight(weight, weight_name, offload_folder, index=None):
|
26 |
+
dtype = None
|
27 |
+
# Check the string instead of the dtype to be compatible with versions of PyTorch that don't have bfloat16.
|
28 |
+
if str(weight.dtype) == "torch.bfloat16":
|
29 |
+
# Need to reinterpret the underlined data as int16 since NumPy does not handle bfloat16s.
|
30 |
+
weight = weight.view(torch.int16)
|
31 |
+
dtype = "bfloat16"
|
32 |
+
array = weight.cpu().numpy()
|
33 |
+
tensor_file = os.path.join(offload_folder, f"{weight_name}.dat")
|
34 |
+
if index is not None:
|
35 |
+
if dtype is None:
|
36 |
+
dtype = str(array.dtype)
|
37 |
+
index[weight_name] = {"dtype": dtype, "shape": list(array.shape)}
|
38 |
+
if array.ndim == 0:
|
39 |
+
array = array[None]
|
40 |
+
file_array = np.memmap(tensor_file, dtype=array.dtype, mode="w+", shape=array.shape)
|
41 |
+
file_array[:] = array[:]
|
42 |
+
file_array.flush()
|
43 |
+
return index
|
44 |
+
|
45 |
+
|
46 |
+
def load_offloaded_weight(weight_file, weight_info):
|
47 |
+
shape = tuple(weight_info["shape"])
|
48 |
+
if shape == ():
|
49 |
+
# NumPy memory-mapped arrays can't have 0 dims so it was saved as 1d tensor
|
50 |
+
shape = (1,)
|
51 |
+
|
52 |
+
dtype = weight_info["dtype"]
|
53 |
+
if dtype == "bfloat16":
|
54 |
+
# NumPy does not support bfloat16 so this was saved as a int16
|
55 |
+
dtype = "int16"
|
56 |
+
|
57 |
+
weight = np.memmap(weight_file, dtype=dtype, shape=shape, mode="r")
|
58 |
+
|
59 |
+
if len(weight_info["shape"]) == 0:
|
60 |
+
weight = weight[0]
|
61 |
+
weight = torch.tensor(weight)
|
62 |
+
if weight_info["dtype"] == "bfloat16":
|
63 |
+
weight = weight.view(torch.bfloat16)
|
64 |
+
|
65 |
+
return weight
|
66 |
+
|
67 |
+
|
68 |
+
def save_offload_index(index, offload_folder):
|
69 |
+
if index is None or len(index) == 0:
|
70 |
+
# Nothing to save
|
71 |
+
return
|
72 |
+
|
73 |
+
offload_index_file = os.path.join(offload_folder, "index.json")
|
74 |
+
if os.path.isfile(offload_index_file):
|
75 |
+
with open(offload_index_file, encoding="utf-8") as f:
|
76 |
+
current_index = json.load(f)
|
77 |
+
else:
|
78 |
+
current_index = {}
|
79 |
+
current_index.update(index)
|
80 |
+
|
81 |
+
with open(offload_index_file, "w", encoding="utf-8") as f:
|
82 |
+
json.dump(current_index, f, indent=2)
|
83 |
+
|
84 |
+
|
85 |
+
def offload_state_dict(save_dir: Union[str, os.PathLike], state_dict: Dict[str, torch.Tensor]):
|
86 |
+
"""
|
87 |
+
Offload a state dict in a given folder.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
save_dir (`str` or `os.PathLike`):
|
91 |
+
The directory in which to offload the state dict.
|
92 |
+
state_dict (`Dict[str, torch.Tensor]`):
|
93 |
+
The dictionary of tensors to offload.
|
94 |
+
"""
|
95 |
+
os.makedirs(save_dir, exist_ok=True)
|
96 |
+
index = {}
|
97 |
+
for name, parameter in state_dict.items():
|
98 |
+
index = offload_weight(parameter, name, save_dir, index=index)
|
99 |
+
|
100 |
+
# Update index
|
101 |
+
save_offload_index(index, save_dir)
|
102 |
+
|
103 |
+
|
104 |
+
class PrefixedDataset(Mapping):
|
105 |
+
"""
|
106 |
+
Will access keys in a given dataset by adding a prefix.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
dataset (`Mapping`): Any map with string keys.
|
110 |
+
prefix (`str`): A prefix to add when trying to access any element in the underlying dataset.
|
111 |
+
"""
|
112 |
+
|
113 |
+
def __init__(self, dataset: Mapping, prefix: str):
|
114 |
+
self.dataset = dataset
|
115 |
+
self.prefix = prefix
|
116 |
+
|
117 |
+
def __getitem__(self, key):
|
118 |
+
return self.dataset[f"{self.prefix}{key}"]
|
119 |
+
|
120 |
+
def __iter__(self):
|
121 |
+
return iter([key for key in self.dataset if key.startswith(self.prefix)])
|
122 |
+
|
123 |
+
def __len__(self):
|
124 |
+
return len(self.dataset)
|
125 |
+
|
126 |
+
|
127 |
+
class OffloadedWeightsLoader(Mapping):
|
128 |
+
"""
|
129 |
+
A collection that loads weights stored in a given state dict or memory-mapped on disk.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
state_dict (`Dict[str, torch.Tensor]`, *optional*):
|
133 |
+
A dictionary parameter name to tensor.
|
134 |
+
save_folder (`str` or `os.PathLike`, *optional*):
|
135 |
+
The directory in which the weights are stored (by `offload_state_dict` for instance).
|
136 |
+
index (`Dict`, *optional*):
|
137 |
+
A dictionary from weight name to their information (`dtype`/ `shape` or safetensors filename). Will default
|
138 |
+
to the index saved in `save_folder`.
|
139 |
+
"""
|
140 |
+
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
state_dict: Dict[str, torch.Tensor] = None,
|
144 |
+
save_folder: Optional[Union[str, os.PathLike]] = None,
|
145 |
+
index: Mapping = None,
|
146 |
+
device=None,
|
147 |
+
):
|
148 |
+
if state_dict is None and save_folder is None and index is None:
|
149 |
+
raise ValueError("Need either a `state_dict`, a `save_folder` or an `index` containing offloaded weights.")
|
150 |
+
|
151 |
+
self.state_dict = {} if state_dict is None else state_dict
|
152 |
+
self.save_folder = save_folder
|
153 |
+
if index is None and save_folder is not None:
|
154 |
+
with open(os.path.join(save_folder, "index.json")) as f:
|
155 |
+
index = json.load(f)
|
156 |
+
self.index = {} if index is None else index
|
157 |
+
self.all_keys = list(self.state_dict.keys())
|
158 |
+
self.all_keys.extend([key for key in self.index if key not in self.all_keys])
|
159 |
+
self.device = device
|
160 |
+
|
161 |
+
def __getitem__(self, key: str):
|
162 |
+
# State dict gets priority
|
163 |
+
if key in self.state_dict:
|
164 |
+
return self.state_dict[key]
|
165 |
+
weight_info = self.index[key]
|
166 |
+
if weight_info.get("safetensors_file") is not None:
|
167 |
+
device = "cpu" if self.device is None else self.device
|
168 |
+
tensor = None
|
169 |
+
try:
|
170 |
+
with safe_open(weight_info["safetensors_file"], framework="pt", device=device) as f:
|
171 |
+
tensor = f.get_tensor(weight_info.get("weight_name", key))
|
172 |
+
except TypeError:
|
173 |
+
# if failed to get_tensor on the device, such as bf16 on mps, try to load it on CPU first
|
174 |
+
with safe_open(weight_info["safetensors_file"], framework="pt", device="cpu") as f:
|
175 |
+
tensor = f.get_tensor(weight_info.get("weight_name", key))
|
176 |
+
|
177 |
+
if "dtype" in weight_info:
|
178 |
+
tensor = tensor.to(getattr(torch, weight_info["dtype"]))
|
179 |
+
|
180 |
+
if tensor.device != torch.device(device):
|
181 |
+
tensor = tensor.to(device)
|
182 |
+
return tensor
|
183 |
+
|
184 |
+
weight_file = os.path.join(self.save_folder, f"{key}.dat")
|
185 |
+
return load_offloaded_weight(weight_file, weight_info)
|
186 |
+
|
187 |
+
def __iter__(self):
|
188 |
+
return iter(self.all_keys)
|
189 |
+
|
190 |
+
def __len__(self):
|
191 |
+
return len(self.all_keys)
|
192 |
+
|
193 |
+
|
194 |
+
def extract_submodules_state_dict(state_dict: Dict[str, torch.Tensor], submodule_names: List[str]):
|
195 |
+
"""
|
196 |
+
Extract the sub state-dict corresponding to a list of given submodules.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
state_dict (`Dict[str, torch.Tensor]`): The state dict to extract from.
|
200 |
+
submodule_names (`List[str]`): The list of submodule names we want to extract.
|
201 |
+
"""
|
202 |
+
result = {}
|
203 |
+
for module_name in submodule_names:
|
204 |
+
# We want to catch module_name parameter (module_name.xxx) or potentially module_name, but not any of the
|
205 |
+
# submodules that could being like module_name (transformers.h.1 and transformers.h.10 for instance)
|
206 |
+
result.update(
|
207 |
+
{
|
208 |
+
key: param
|
209 |
+
for key, param in state_dict.items()
|
210 |
+
if key == module_name or key.startswith(module_name + ".")
|
211 |
+
}
|
212 |
+
)
|
213 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/operations.py
ADDED
@@ -0,0 +1,851 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
A set of basic tensor ops compatible with tpu, gpu, and multigpu
|
16 |
+
"""
|
17 |
+
|
18 |
+
import pickle
|
19 |
+
import warnings
|
20 |
+
from functools import update_wrapper, wraps
|
21 |
+
from typing import Any, Mapping
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
from ..state import PartialState
|
26 |
+
from .constants import TORCH_DISTRIBUTED_OPERATION_TYPES
|
27 |
+
from .dataclasses import DistributedType, TensorInformation
|
28 |
+
from .imports import (
|
29 |
+
is_npu_available,
|
30 |
+
is_torch_distributed_available,
|
31 |
+
is_torch_version,
|
32 |
+
is_torch_xla_available,
|
33 |
+
is_xpu_available,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
if is_torch_xla_available():
|
38 |
+
import torch_xla.core.xla_model as xm
|
39 |
+
|
40 |
+
if is_torch_distributed_available():
|
41 |
+
from torch.distributed import ReduceOp
|
42 |
+
|
43 |
+
|
44 |
+
def is_torch_tensor(tensor):
|
45 |
+
return isinstance(tensor, torch.Tensor)
|
46 |
+
|
47 |
+
|
48 |
+
def is_torch_xpu_tensor(tensor):
|
49 |
+
return isinstance(
|
50 |
+
tensor,
|
51 |
+
torch.xpu.FloatTensor,
|
52 |
+
torch.xpu.ByteTensor,
|
53 |
+
torch.xpu.IntTensor,
|
54 |
+
torch.xpu.LongTensor,
|
55 |
+
torch.xpu.HalfTensor,
|
56 |
+
torch.xpu.DoubleTensor,
|
57 |
+
torch.xpu.BFloat16Tensor,
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
def is_tensor_information(tensor_info):
|
62 |
+
return isinstance(tensor_info, TensorInformation)
|
63 |
+
|
64 |
+
|
65 |
+
def is_namedtuple(data):
|
66 |
+
"""
|
67 |
+
Checks if `data` is a `namedtuple` or not. Can have false positives, but only if a user is trying to mimic a
|
68 |
+
`namedtuple` perfectly.
|
69 |
+
"""
|
70 |
+
return isinstance(data, tuple) and hasattr(data, "_asdict") and hasattr(data, "_fields")
|
71 |
+
|
72 |
+
|
73 |
+
def honor_type(obj, generator):
|
74 |
+
"""
|
75 |
+
Cast a generator to the same type as obj (list, tuple, or namedtuple)
|
76 |
+
"""
|
77 |
+
# Some objects may not be able to instantiate from a generator directly
|
78 |
+
if is_namedtuple(obj):
|
79 |
+
return type(obj)(*list(generator))
|
80 |
+
else:
|
81 |
+
return type(obj)(generator)
|
82 |
+
|
83 |
+
|
84 |
+
def recursively_apply(func, data, *args, test_type=is_torch_tensor, error_on_other_type=False, **kwargs):
|
85 |
+
"""
|
86 |
+
Recursively apply a function on a data structure that is a nested list/tuple/dictionary of a given base type.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
func (`callable`):
|
90 |
+
The function to recursively apply.
|
91 |
+
data (nested list/tuple/dictionary of `main_type`):
|
92 |
+
The data on which to apply `func`
|
93 |
+
*args:
|
94 |
+
Positional arguments that will be passed to `func` when applied on the unpacked data.
|
95 |
+
main_type (`type`, *optional*, defaults to `torch.Tensor`):
|
96 |
+
The base type of the objects to which apply `func`.
|
97 |
+
error_on_other_type (`bool`, *optional*, defaults to `False`):
|
98 |
+
Whether to return an error or not if after unpacking `data`, we get on an object that is not of type
|
99 |
+
`main_type`. If `False`, the function will leave objects of types different than `main_type` unchanged.
|
100 |
+
**kwargs (additional keyword arguments, *optional*):
|
101 |
+
Keyword arguments that will be passed to `func` when applied on the unpacked data.
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
The same data structure as `data` with `func` applied to every object of type `main_type`.
|
105 |
+
"""
|
106 |
+
if isinstance(data, (tuple, list)):
|
107 |
+
return honor_type(
|
108 |
+
data,
|
109 |
+
(
|
110 |
+
recursively_apply(
|
111 |
+
func, o, *args, test_type=test_type, error_on_other_type=error_on_other_type, **kwargs
|
112 |
+
)
|
113 |
+
for o in data
|
114 |
+
),
|
115 |
+
)
|
116 |
+
elif isinstance(data, Mapping):
|
117 |
+
return type(data)(
|
118 |
+
{
|
119 |
+
k: recursively_apply(
|
120 |
+
func, v, *args, test_type=test_type, error_on_other_type=error_on_other_type, **kwargs
|
121 |
+
)
|
122 |
+
for k, v in data.items()
|
123 |
+
}
|
124 |
+
)
|
125 |
+
elif test_type(data):
|
126 |
+
return func(data, *args, **kwargs)
|
127 |
+
elif error_on_other_type:
|
128 |
+
raise TypeError(
|
129 |
+
f"Unsupported types ({type(data)}) passed to `{func.__name__}`. Only nested list/tuple/dicts of "
|
130 |
+
f"objects that are valid for `{test_type.__name__}` should be passed."
|
131 |
+
)
|
132 |
+
return data
|
133 |
+
|
134 |
+
|
135 |
+
def send_to_device(tensor, device, non_blocking=False, skip_keys=None):
|
136 |
+
"""
|
137 |
+
Recursively sends the elements in a nested list/tuple/dictionary of tensors to a given device.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
tensor (nested list/tuple/dictionary of `torch.Tensor`):
|
141 |
+
The data to send to a given device.
|
142 |
+
device (`torch.device`):
|
143 |
+
The device to send the data to.
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
The same data structure as `tensor` with all tensors sent to the proper device.
|
147 |
+
"""
|
148 |
+
if is_torch_tensor(tensor) or hasattr(tensor, "to"):
|
149 |
+
# `torch.Tensor.to("npu")` could not find context when called for the first time (see this [issue](https://gitee.com/ascend/pytorch/issues/I8KECW?from=project-issue)).
|
150 |
+
if device == "npu":
|
151 |
+
device = "npu:0"
|
152 |
+
if device == "xpu":
|
153 |
+
device = "xpu:0"
|
154 |
+
# TODO: torch_mlu LongTensor.to(<int num>) has bugs, we will fix this later.
|
155 |
+
if is_torch_tensor(tensor) and tensor.device.type in ["mlu"] and tensor.dtype in [torch.int64]:
|
156 |
+
tensor = tensor.cpu()
|
157 |
+
try:
|
158 |
+
return tensor.to(device, non_blocking=non_blocking)
|
159 |
+
except TypeError: # .to() doesn't accept non_blocking as kwarg
|
160 |
+
return tensor.to(device)
|
161 |
+
except AssertionError as error:
|
162 |
+
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
|
163 |
+
# This call is inside the try-block since is_npu_available is not supported by torch.compile.
|
164 |
+
if is_npu_available():
|
165 |
+
if isinstance(device, int):
|
166 |
+
device = f"npu:{device}"
|
167 |
+
else:
|
168 |
+
raise error
|
169 |
+
except Exception as error:
|
170 |
+
if is_xpu_available():
|
171 |
+
if isinstance(device, int):
|
172 |
+
device = f"xpu:{device}"
|
173 |
+
else:
|
174 |
+
raise error
|
175 |
+
try:
|
176 |
+
return tensor.to(device, non_blocking=non_blocking)
|
177 |
+
except TypeError: # .to() doesn't accept non_blocking as kwarg
|
178 |
+
return tensor.to(device)
|
179 |
+
elif isinstance(tensor, (tuple, list)):
|
180 |
+
return honor_type(
|
181 |
+
tensor, (send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys) for t in tensor)
|
182 |
+
)
|
183 |
+
elif isinstance(tensor, Mapping):
|
184 |
+
if isinstance(skip_keys, str):
|
185 |
+
skip_keys = [skip_keys]
|
186 |
+
elif skip_keys is None:
|
187 |
+
skip_keys = []
|
188 |
+
return type(tensor)(
|
189 |
+
{
|
190 |
+
k: t if k in skip_keys else send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys)
|
191 |
+
for k, t in tensor.items()
|
192 |
+
}
|
193 |
+
)
|
194 |
+
else:
|
195 |
+
return tensor
|
196 |
+
|
197 |
+
|
198 |
+
def get_data_structure(data):
|
199 |
+
"""
|
200 |
+
Recursively gathers the information needed to rebuild a nested list/tuple/dictionary of tensors.
|
201 |
+
|
202 |
+
Args:
|
203 |
+
data (nested list/tuple/dictionary of `torch.Tensor`):
|
204 |
+
The data to send to analyze.
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
The same data structure as `data` with [`~utils.TensorInformation`] instead of tensors.
|
208 |
+
"""
|
209 |
+
|
210 |
+
def _get_data_structure(tensor):
|
211 |
+
return TensorInformation(shape=tensor.shape, dtype=tensor.dtype)
|
212 |
+
|
213 |
+
return recursively_apply(_get_data_structure, data)
|
214 |
+
|
215 |
+
|
216 |
+
def get_shape(data):
|
217 |
+
"""
|
218 |
+
Recursively gathers the shape of a nested list/tuple/dictionary of tensors as a list.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
data (nested list/tuple/dictionary of `torch.Tensor`):
|
222 |
+
The data to send to analyze.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
The same data structure as `data` with lists of tensor shapes instead of tensors.
|
226 |
+
"""
|
227 |
+
|
228 |
+
def _get_shape(tensor):
|
229 |
+
return list(tensor.shape)
|
230 |
+
|
231 |
+
return recursively_apply(_get_shape, data)
|
232 |
+
|
233 |
+
|
234 |
+
def initialize_tensors(data_structure):
|
235 |
+
"""
|
236 |
+
Recursively initializes tensors from a nested list/tuple/dictionary of [`~utils.TensorInformation`].
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
The same data structure as `data` with tensors instead of [`~utils.TensorInformation`].
|
240 |
+
"""
|
241 |
+
|
242 |
+
def _initialize_tensor(tensor_info):
|
243 |
+
return torch.empty(*tensor_info.shape, dtype=tensor_info.dtype)
|
244 |
+
|
245 |
+
return recursively_apply(_initialize_tensor, data_structure, test_type=is_tensor_information)
|
246 |
+
|
247 |
+
|
248 |
+
def find_batch_size(data):
|
249 |
+
"""
|
250 |
+
Recursively finds the batch size in a nested list/tuple/dictionary of lists of tensors.
|
251 |
+
|
252 |
+
Args:
|
253 |
+
data (nested list/tuple/dictionary of `torch.Tensor`): The data from which to find the batch size.
|
254 |
+
|
255 |
+
Returns:
|
256 |
+
`int`: The batch size.
|
257 |
+
"""
|
258 |
+
if isinstance(data, (tuple, list, Mapping)) and (len(data) == 0):
|
259 |
+
raise ValueError(f"Cannot find the batch size from empty {type(data)}.")
|
260 |
+
|
261 |
+
if isinstance(data, (tuple, list)):
|
262 |
+
return find_batch_size(data[0])
|
263 |
+
elif isinstance(data, Mapping):
|
264 |
+
for k in data.keys():
|
265 |
+
return find_batch_size(data[k])
|
266 |
+
elif not isinstance(data, torch.Tensor):
|
267 |
+
raise TypeError(f"Can only find the batch size of tensors but got {type(data)}.")
|
268 |
+
return data.shape[0]
|
269 |
+
|
270 |
+
|
271 |
+
def ignorant_find_batch_size(data):
|
272 |
+
"""
|
273 |
+
Same as [`utils.operations.find_batch_size`] except will ignore if `ValueError` and `TypeErrors` are raised
|
274 |
+
|
275 |
+
Args:
|
276 |
+
data (nested list/tuple/dictionary of `torch.Tensor`): The data from which to find the batch size.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
`int`: The batch size.
|
280 |
+
"""
|
281 |
+
try:
|
282 |
+
return find_batch_size(data)
|
283 |
+
except (ValueError, TypeError):
|
284 |
+
pass
|
285 |
+
return None
|
286 |
+
|
287 |
+
|
288 |
+
def listify(data):
|
289 |
+
"""
|
290 |
+
Recursively finds tensors in a nested list/tuple/dictionary and converts them to a list of numbers.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
data (nested list/tuple/dictionary of `torch.Tensor`): The data from which to convert to regular numbers.
|
294 |
+
|
295 |
+
Returns:
|
296 |
+
The same data structure as `data` with lists of numbers instead of `torch.Tensor`.
|
297 |
+
"""
|
298 |
+
|
299 |
+
def _convert_to_list(tensor):
|
300 |
+
tensor = tensor.detach().cpu()
|
301 |
+
if tensor.dtype == torch.bfloat16:
|
302 |
+
# As of Numpy 1.21.4, NumPy does not support bfloat16 (see
|
303 |
+
# https://github.com/numpy/numpy/blob/a47ecdea856986cd60eabbd53265c2ca5916ad5d/doc/source/user/basics.types.rst ).
|
304 |
+
# Until Numpy adds bfloat16, we must convert float32.
|
305 |
+
tensor = tensor.to(torch.float32)
|
306 |
+
return tensor.tolist()
|
307 |
+
|
308 |
+
return recursively_apply(_convert_to_list, data)
|
309 |
+
|
310 |
+
|
311 |
+
def _tpu_gather(tensor):
|
312 |
+
def _tpu_gather_one(tensor):
|
313 |
+
if tensor.ndim == 0:
|
314 |
+
tensor = tensor.clone()[None]
|
315 |
+
|
316 |
+
# Can only gather contiguous tensors
|
317 |
+
if not tensor.is_contiguous():
|
318 |
+
tensor = tensor.contiguous()
|
319 |
+
return xm.all_gather(tensor)
|
320 |
+
|
321 |
+
res = recursively_apply(_tpu_gather_one, tensor, error_on_other_type=True)
|
322 |
+
xm.mark_step()
|
323 |
+
return res
|
324 |
+
|
325 |
+
|
326 |
+
def _gpu_gather(tensor):
|
327 |
+
state = PartialState()
|
328 |
+
if is_torch_version(">=", "1.13"):
|
329 |
+
gather_op = torch.distributed.all_gather_into_tensor
|
330 |
+
else:
|
331 |
+
gather_op = torch.distributed._all_gather_base
|
332 |
+
|
333 |
+
def _gpu_gather_one(tensor):
|
334 |
+
if tensor.ndim == 0:
|
335 |
+
tensor = tensor.clone()[None]
|
336 |
+
|
337 |
+
# Can only gather contiguous tensors
|
338 |
+
if not tensor.is_contiguous():
|
339 |
+
tensor = tensor.contiguous()
|
340 |
+
|
341 |
+
if state.backend is not None and state.backend != "gloo":
|
342 |
+
# We use `empty` as `all_gather_into_tensor` slightly
|
343 |
+
# differs from `all_gather` for better efficiency,
|
344 |
+
# and we rely on the number of items in the tensor
|
345 |
+
# rather than its direct shape
|
346 |
+
output_tensors = torch.empty(
|
347 |
+
state.num_processes * tensor.numel(),
|
348 |
+
dtype=tensor.dtype,
|
349 |
+
device=state.device,
|
350 |
+
)
|
351 |
+
gather_op(output_tensors, tensor)
|
352 |
+
return output_tensors.view(-1, *tensor.size()[1:])
|
353 |
+
else:
|
354 |
+
# a backend of `None` is always CPU
|
355 |
+
# also gloo does not support `all_gather_into_tensor`,
|
356 |
+
# which will result in a larger memory overhead for the op
|
357 |
+
output_tensors = [torch.empty_like(tensor) for _ in range(state.num_processes)]
|
358 |
+
torch.distributed.all_gather(output_tensors, tensor)
|
359 |
+
return torch.cat(output_tensors, dim=0)
|
360 |
+
|
361 |
+
return recursively_apply(_gpu_gather_one, tensor, error_on_other_type=True)
|
362 |
+
|
363 |
+
|
364 |
+
class DistributedOperationException(Exception):
|
365 |
+
"""
|
366 |
+
An exception class for distributed operations. Raised if the operation cannot be performed due to the shape of the
|
367 |
+
tensors.
|
368 |
+
"""
|
369 |
+
|
370 |
+
pass
|
371 |
+
|
372 |
+
|
373 |
+
def verify_operation(function):
|
374 |
+
"""
|
375 |
+
Verifies that `tensor` is the same shape across all processes. Only ran if `PartialState().debug` is `True`.
|
376 |
+
"""
|
377 |
+
|
378 |
+
@wraps(function)
|
379 |
+
def wrapper(*args, **kwargs):
|
380 |
+
if PartialState().distributed_type == DistributedType.NO or not PartialState().debug:
|
381 |
+
return function(*args, **kwargs)
|
382 |
+
operation = f"{function.__module__}.{function.__name__}"
|
383 |
+
if "tensor" in kwargs:
|
384 |
+
tensor = kwargs["tensor"]
|
385 |
+
else:
|
386 |
+
tensor = args[0]
|
387 |
+
if PartialState().device.type != find_device(tensor).type:
|
388 |
+
raise DistributedOperationException(
|
389 |
+
f"One or more of the tensors passed to {operation} were not on the {tensor.device.type} while the `Accelerator` is configured for {PartialState().device.type}. "
|
390 |
+
f"Please move it to the {PartialState().device.type} before calling {operation}."
|
391 |
+
)
|
392 |
+
shapes = get_shape(tensor)
|
393 |
+
output = gather_object([shapes])
|
394 |
+
if output[0] is not None:
|
395 |
+
are_same = output.count(output[0]) == len(output)
|
396 |
+
if not are_same:
|
397 |
+
process_shape_str = "\n - ".join([f"Process {i}: {shape}" for i, shape in enumerate(output)])
|
398 |
+
raise DistributedOperationException(
|
399 |
+
f"Cannot apply desired operation due to shape mismatches. "
|
400 |
+
"All shapes across devices must be valid."
|
401 |
+
f"\n\nOperation: `{operation}`\nInput shapes:\n - {process_shape_str}"
|
402 |
+
)
|
403 |
+
return function(*args, **kwargs)
|
404 |
+
|
405 |
+
return wrapper
|
406 |
+
|
407 |
+
|
408 |
+
def chained_operation(function):
|
409 |
+
"""
|
410 |
+
Checks that `verify_operation` failed and if so reports a more helpful error chaining the existing
|
411 |
+
`DistributedOperationException`.
|
412 |
+
"""
|
413 |
+
|
414 |
+
@wraps(function)
|
415 |
+
def wrapper(*args, **kwargs):
|
416 |
+
try:
|
417 |
+
return function(*args, **kwargs)
|
418 |
+
except DistributedOperationException as e:
|
419 |
+
operation = f"{function.__module__}.{function.__name__}"
|
420 |
+
raise DistributedOperationException(
|
421 |
+
f"Error found while calling `{operation}`. Please see the earlier error for more details."
|
422 |
+
) from e
|
423 |
+
|
424 |
+
return wrapper
|
425 |
+
|
426 |
+
|
427 |
+
@verify_operation
|
428 |
+
def gather(tensor):
|
429 |
+
"""
|
430 |
+
Recursively gather tensor in a nested list/tuple/dictionary of tensors from all devices.
|
431 |
+
|
432 |
+
Args:
|
433 |
+
tensor (nested list/tuple/dictionary of `torch.Tensor`):
|
434 |
+
The data to gather.
|
435 |
+
|
436 |
+
Returns:
|
437 |
+
The same data structure as `tensor` with all tensors sent to the proper device.
|
438 |
+
"""
|
439 |
+
if PartialState().distributed_type == DistributedType.XLA:
|
440 |
+
return _tpu_gather(tensor)
|
441 |
+
elif PartialState().distributed_type in TORCH_DISTRIBUTED_OPERATION_TYPES:
|
442 |
+
return _gpu_gather(tensor)
|
443 |
+
else:
|
444 |
+
return tensor
|
445 |
+
|
446 |
+
|
447 |
+
def _gpu_gather_object(object: Any):
|
448 |
+
output_objects = [None for _ in range(PartialState().num_processes)]
|
449 |
+
torch.distributed.all_gather_object(output_objects, object)
|
450 |
+
# all_gather_object returns a list of lists, so we need to flatten it
|
451 |
+
return [x for y in output_objects for x in y]
|
452 |
+
|
453 |
+
|
454 |
+
def gather_object(object: Any):
|
455 |
+
"""
|
456 |
+
Recursively gather object in a nested list/tuple/dictionary of objects from all devices.
|
457 |
+
|
458 |
+
Args:
|
459 |
+
object (nested list/tuple/dictionary of picklable object):
|
460 |
+
The data to gather.
|
461 |
+
|
462 |
+
Returns:
|
463 |
+
The same data structure as `object` with all the objects sent to every device.
|
464 |
+
"""
|
465 |
+
if PartialState().distributed_type == DistributedType.XLA:
|
466 |
+
raise NotImplementedError("gather objects in TPU is not supported")
|
467 |
+
elif PartialState().distributed_type in TORCH_DISTRIBUTED_OPERATION_TYPES:
|
468 |
+
return _gpu_gather_object(object)
|
469 |
+
else:
|
470 |
+
return object
|
471 |
+
|
472 |
+
|
473 |
+
def _gpu_broadcast(data, src=0):
|
474 |
+
def _gpu_broadcast_one(tensor, src=0):
|
475 |
+
torch.distributed.broadcast(tensor, src=src)
|
476 |
+
return tensor
|
477 |
+
|
478 |
+
return recursively_apply(_gpu_broadcast_one, data, error_on_other_type=True, src=src)
|
479 |
+
|
480 |
+
|
481 |
+
def _tpu_broadcast(tensor, src=0, name="broadcast tensor"):
|
482 |
+
if isinstance(tensor, (list, tuple)):
|
483 |
+
return honor_type(tensor, (_tpu_broadcast(t, name=f"{name}_{i}") for i, t in enumerate(tensor)))
|
484 |
+
elif isinstance(tensor, Mapping):
|
485 |
+
return type(tensor)({k: _tpu_broadcast(v, name=f"{name}_{k}") for k, v in tensor.items()})
|
486 |
+
return xm.mesh_reduce(name, tensor, lambda x: x[src])
|
487 |
+
|
488 |
+
|
489 |
+
TENSOR_TYPE_TO_INT = {
|
490 |
+
torch.float: 1,
|
491 |
+
torch.double: 2,
|
492 |
+
torch.half: 3,
|
493 |
+
torch.bfloat16: 4,
|
494 |
+
torch.uint8: 5,
|
495 |
+
torch.int8: 6,
|
496 |
+
torch.int16: 7,
|
497 |
+
torch.int32: 8,
|
498 |
+
torch.int64: 9,
|
499 |
+
torch.bool: 10,
|
500 |
+
}
|
501 |
+
|
502 |
+
TENSOR_INT_TO_DTYPE = {v: k for k, v in TENSOR_TYPE_TO_INT.items()}
|
503 |
+
|
504 |
+
|
505 |
+
def gather_tensor_shape(tensor):
|
506 |
+
"""
|
507 |
+
Grabs the shape of `tensor` only available on one process and returns a tensor of its shape
|
508 |
+
"""
|
509 |
+
# Allocate 80 bytes to store the shape
|
510 |
+
max_tensor_dimension = 2**20
|
511 |
+
state = PartialState()
|
512 |
+
base_tensor = torch.empty(max_tensor_dimension, dtype=torch.int, device=state.device)
|
513 |
+
|
514 |
+
# Since PyTorch can't just send a tensor to another GPU without
|
515 |
+
# knowing its size, we store the size of the tensor with data
|
516 |
+
# in an allocation
|
517 |
+
if tensor is not None:
|
518 |
+
shape = tensor.shape
|
519 |
+
tensor_dtype = TENSOR_TYPE_TO_INT[tensor.dtype]
|
520 |
+
base_tensor[: len(shape) + 1] = torch.tensor(list(shape) + [tensor_dtype], dtype=int)
|
521 |
+
# Perform a reduction to copy the size data onto all GPUs
|
522 |
+
base_tensor = reduce(base_tensor, reduction="sum")
|
523 |
+
base_tensor = base_tensor[base_tensor.nonzero()]
|
524 |
+
# The last non-zero data contains the coded dtype the source tensor is
|
525 |
+
dtype = int(base_tensor[-1:][0])
|
526 |
+
base_tensor = base_tensor[:-1]
|
527 |
+
return base_tensor, dtype
|
528 |
+
|
529 |
+
|
530 |
+
def copy_tensor_to_devices(tensor=None) -> torch.Tensor:
|
531 |
+
"""
|
532 |
+
Copys a tensor that only exists on a single device and broadcasts it to other devices. Differs from `broadcast` as
|
533 |
+
each worker doesn't need to know its shape when used (and tensor can be `None`)
|
534 |
+
|
535 |
+
Args:
|
536 |
+
tensor (`torch.tensor`):
|
537 |
+
The tensor that should be sent to all devices. Must only have it be defined on a single device, the rest
|
538 |
+
should be `None`.
|
539 |
+
"""
|
540 |
+
state = PartialState()
|
541 |
+
shape, dtype = gather_tensor_shape(tensor)
|
542 |
+
if tensor is None:
|
543 |
+
tensor = torch.zeros(shape, dtype=TENSOR_INT_TO_DTYPE[dtype]).to(state.device)
|
544 |
+
return reduce(tensor, reduction="sum")
|
545 |
+
|
546 |
+
|
547 |
+
@verify_operation
|
548 |
+
def broadcast(tensor, from_process: int = 0):
|
549 |
+
"""
|
550 |
+
Recursively broadcast tensor in a nested list/tuple/dictionary of tensors to all devices.
|
551 |
+
|
552 |
+
Args:
|
553 |
+
tensor (nested list/tuple/dictionary of `torch.Tensor`):
|
554 |
+
The data to gather.
|
555 |
+
from_process (`int`, *optional*, defaults to 0):
|
556 |
+
The process from which to send the data
|
557 |
+
|
558 |
+
Returns:
|
559 |
+
The same data structure as `tensor` with all tensors broadcasted to the proper device.
|
560 |
+
"""
|
561 |
+
if PartialState().distributed_type == DistributedType.XLA:
|
562 |
+
return _tpu_broadcast(tensor, src=from_process, name="accelerate.utils.broadcast")
|
563 |
+
elif PartialState().distributed_type in TORCH_DISTRIBUTED_OPERATION_TYPES:
|
564 |
+
return _gpu_broadcast(tensor, src=from_process)
|
565 |
+
else:
|
566 |
+
return tensor
|
567 |
+
|
568 |
+
|
569 |
+
def broadcast_object_list(object_list, from_process: int = 0):
|
570 |
+
"""
|
571 |
+
Broadcast a list of picklable objects form one process to the others.
|
572 |
+
|
573 |
+
Args:
|
574 |
+
object_list (list of picklable objects):
|
575 |
+
The list of objects to broadcast. This list will be modified inplace.
|
576 |
+
from_process (`int`, *optional*, defaults to 0):
|
577 |
+
The process from which to send the data.
|
578 |
+
|
579 |
+
Returns:
|
580 |
+
The same list containing the objects from process 0.
|
581 |
+
"""
|
582 |
+
if PartialState().distributed_type == DistributedType.XLA:
|
583 |
+
for i, obj in enumerate(object_list):
|
584 |
+
object_list[i] = xm.mesh_reduce("accelerate.utils.broadcast_object_list", obj, lambda x: x[from_process])
|
585 |
+
elif PartialState().distributed_type in TORCH_DISTRIBUTED_OPERATION_TYPES:
|
586 |
+
torch.distributed.broadcast_object_list(object_list, src=from_process)
|
587 |
+
return object_list
|
588 |
+
|
589 |
+
|
590 |
+
def slice_tensors(data, tensor_slice, process_index=None, num_processes=None):
|
591 |
+
"""
|
592 |
+
Recursively takes a slice in a nested list/tuple/dictionary of tensors.
|
593 |
+
|
594 |
+
Args:
|
595 |
+
data (nested list/tuple/dictionary of `torch.Tensor`):
|
596 |
+
The data to slice.
|
597 |
+
tensor_slice (`slice`):
|
598 |
+
The slice to take.
|
599 |
+
|
600 |
+
Returns:
|
601 |
+
The same data structure as `data` with all the tensors slices.
|
602 |
+
"""
|
603 |
+
|
604 |
+
def _slice_tensor(tensor, tensor_slice):
|
605 |
+
return tensor[tensor_slice]
|
606 |
+
|
607 |
+
return recursively_apply(_slice_tensor, data, tensor_slice)
|
608 |
+
|
609 |
+
|
610 |
+
def concatenate(data, dim=0):
|
611 |
+
"""
|
612 |
+
Recursively concatenate the tensors in a nested list/tuple/dictionary of lists of tensors with the same shape.
|
613 |
+
|
614 |
+
Args:
|
615 |
+
data (nested list/tuple/dictionary of lists of tensors `torch.Tensor`):
|
616 |
+
The data to concatenate.
|
617 |
+
dim (`int`, *optional*, defaults to 0):
|
618 |
+
The dimension on which to concatenate.
|
619 |
+
|
620 |
+
Returns:
|
621 |
+
The same data structure as `data` with all the tensors concatenated.
|
622 |
+
"""
|
623 |
+
if isinstance(data[0], (tuple, list)):
|
624 |
+
return honor_type(data[0], (concatenate([d[i] for d in data], dim=dim) for i in range(len(data[0]))))
|
625 |
+
elif isinstance(data[0], Mapping):
|
626 |
+
return type(data[0])({k: concatenate([d[k] for d in data], dim=dim) for k in data[0].keys()})
|
627 |
+
elif not isinstance(data[0], torch.Tensor):
|
628 |
+
raise TypeError(f"Can only concatenate tensors but got {type(data[0])}")
|
629 |
+
return torch.cat(data, dim=dim)
|
630 |
+
|
631 |
+
|
632 |
+
class CannotPadNestedTensorWarning(UserWarning):
|
633 |
+
pass
|
634 |
+
|
635 |
+
|
636 |
+
@chained_operation
|
637 |
+
def pad_across_processes(tensor, dim=0, pad_index=0, pad_first=False):
|
638 |
+
"""
|
639 |
+
Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so they
|
640 |
+
can safely be gathered.
|
641 |
+
|
642 |
+
Args:
|
643 |
+
tensor (nested list/tuple/dictionary of `torch.Tensor`):
|
644 |
+
The data to gather.
|
645 |
+
dim (`int`, *optional*, defaults to 0):
|
646 |
+
The dimension on which to pad.
|
647 |
+
pad_index (`int`, *optional*, defaults to 0):
|
648 |
+
The value with which to pad.
|
649 |
+
pad_first (`bool`, *optional*, defaults to `False`):
|
650 |
+
Whether to pad at the beginning or the end.
|
651 |
+
"""
|
652 |
+
|
653 |
+
def _pad_across_processes(tensor, dim=0, pad_index=0, pad_first=False):
|
654 |
+
if getattr(tensor, "is_nested", False):
|
655 |
+
warnings.warn(
|
656 |
+
"Cannot pad nested tensors without more information. Leaving unprocessed.",
|
657 |
+
CannotPadNestedTensorWarning,
|
658 |
+
)
|
659 |
+
return tensor
|
660 |
+
if dim >= len(tensor.shape):
|
661 |
+
return tensor
|
662 |
+
|
663 |
+
# Gather all sizes
|
664 |
+
size = torch.tensor(tensor.shape, device=tensor.device)[None]
|
665 |
+
sizes = gather(size).cpu()
|
666 |
+
# Then pad to the maximum size
|
667 |
+
max_size = max(s[dim] for s in sizes)
|
668 |
+
if max_size == tensor.shape[dim]:
|
669 |
+
return tensor
|
670 |
+
|
671 |
+
old_size = tensor.shape
|
672 |
+
new_size = list(old_size)
|
673 |
+
new_size[dim] = max_size
|
674 |
+
new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index
|
675 |
+
if pad_first:
|
676 |
+
indices = tuple(
|
677 |
+
slice(max_size - old_size[dim], max_size) if i == dim else slice(None) for i in range(len(new_size))
|
678 |
+
)
|
679 |
+
else:
|
680 |
+
indices = tuple(slice(0, old_size[dim]) if i == dim else slice(None) for i in range(len(new_size)))
|
681 |
+
new_tensor[indices] = tensor
|
682 |
+
return new_tensor
|
683 |
+
|
684 |
+
return recursively_apply(
|
685 |
+
_pad_across_processes, tensor, error_on_other_type=True, dim=dim, pad_index=pad_index, pad_first=pad_first
|
686 |
+
)
|
687 |
+
|
688 |
+
|
689 |
+
def pad_input_tensors(tensor, batch_size, num_processes, dim=0):
|
690 |
+
"""
|
691 |
+
Takes a `tensor` of arbitrary size and pads it so that it can work given `num_processes` needed dimensions.
|
692 |
+
|
693 |
+
New tensors are just the last input repeated.
|
694 |
+
|
695 |
+
E.g.:
|
696 |
+
Tensor: ([3,4,4]) Num processes: 4 Expected result shape: ([4,4,4])
|
697 |
+
|
698 |
+
"""
|
699 |
+
|
700 |
+
def _pad_input_tensors(tensor, batch_size, num_processes, dim=0):
|
701 |
+
remainder = batch_size // num_processes
|
702 |
+
last_inputs = batch_size - (remainder * num_processes)
|
703 |
+
if batch_size // num_processes == 0:
|
704 |
+
to_pad = num_processes - batch_size
|
705 |
+
else:
|
706 |
+
to_pad = num_processes - (batch_size // num_processes)
|
707 |
+
# In the rare case that `to_pad` is negative,
|
708 |
+
# we need to pad the last inputs - the found `to_pad`
|
709 |
+
if last_inputs > to_pad & to_pad < 1:
|
710 |
+
to_pad = last_inputs - to_pad
|
711 |
+
old_size = tensor.shape
|
712 |
+
new_size = list(old_size)
|
713 |
+
new_size[0] = batch_size + to_pad
|
714 |
+
new_tensor = tensor.new_zeros(tuple(new_size))
|
715 |
+
indices = tuple(slice(0, old_size[dim]) if i == dim else slice(None) for i in range(len(new_size)))
|
716 |
+
new_tensor[indices] = tensor
|
717 |
+
return new_tensor
|
718 |
+
|
719 |
+
return recursively_apply(
|
720 |
+
_pad_input_tensors,
|
721 |
+
tensor,
|
722 |
+
error_on_other_type=True,
|
723 |
+
batch_size=batch_size,
|
724 |
+
num_processes=num_processes,
|
725 |
+
dim=dim,
|
726 |
+
)
|
727 |
+
|
728 |
+
|
729 |
+
@verify_operation
|
730 |
+
def reduce(tensor, reduction="mean", scale=1.0):
|
731 |
+
"""
|
732 |
+
Recursively reduce the tensors in a nested list/tuple/dictionary of lists of tensors across all processes by the
|
733 |
+
mean of a given operation.
|
734 |
+
|
735 |
+
Args:
|
736 |
+
tensor (nested list/tuple/dictionary of `torch.Tensor`):
|
737 |
+
The data to reduce.
|
738 |
+
reduction (`str`, *optional*, defaults to `"mean"`):
|
739 |
+
A reduction method. Can be of "mean", "sum", or "none"
|
740 |
+
scale (`float`, *optional*):
|
741 |
+
A default scaling value to be applied after the reduce, only valied on XLA.
|
742 |
+
|
743 |
+
Returns:
|
744 |
+
The same data structure as `data` with all the tensors reduced.
|
745 |
+
"""
|
746 |
+
|
747 |
+
def _reduce_across_processes(tensor, reduction="mean", scale=1.0):
|
748 |
+
state = PartialState()
|
749 |
+
cloned_tensor = tensor.clone()
|
750 |
+
if state.distributed_type == DistributedType.NO:
|
751 |
+
return cloned_tensor
|
752 |
+
if state.distributed_type == DistributedType.XLA:
|
753 |
+
# Some processes may have different HLO graphs than other
|
754 |
+
# processes, for example in the breakpoint API
|
755 |
+
# accelerator.set_trigger(). Use mark_step to make HLOs
|
756 |
+
# the same on all processes.
|
757 |
+
xm.mark_step()
|
758 |
+
xm.all_reduce(xm.REDUCE_SUM, [cloned_tensor], scale)
|
759 |
+
xm.mark_step()
|
760 |
+
elif state.distributed_type.value in TORCH_DISTRIBUTED_OPERATION_TYPES:
|
761 |
+
torch.distributed.all_reduce(cloned_tensor, ReduceOp.SUM)
|
762 |
+
if reduction == "mean":
|
763 |
+
cloned_tensor /= state.num_processes
|
764 |
+
return cloned_tensor
|
765 |
+
|
766 |
+
return recursively_apply(
|
767 |
+
_reduce_across_processes, tensor, error_on_other_type=True, reduction=reduction, scale=scale
|
768 |
+
)
|
769 |
+
|
770 |
+
|
771 |
+
def convert_to_fp32(tensor):
|
772 |
+
"""
|
773 |
+
Recursively converts the elements nested list/tuple/dictionary of tensors in FP16/BF16 precision to FP32.
|
774 |
+
|
775 |
+
Args:
|
776 |
+
tensor (nested list/tuple/dictionary of `torch.Tensor`):
|
777 |
+
The data to convert from FP16/BF16 to FP32.
|
778 |
+
|
779 |
+
Returns:
|
780 |
+
The same data structure as `tensor` with all tensors that were in FP16/BF16 precision converted to FP32.
|
781 |
+
"""
|
782 |
+
|
783 |
+
def _convert_to_fp32(tensor):
|
784 |
+
return tensor.float()
|
785 |
+
|
786 |
+
def _is_fp16_bf16_tensor(tensor):
|
787 |
+
return (is_torch_tensor(tensor) or hasattr(tensor, "dtype")) and tensor.dtype in (
|
788 |
+
torch.float16,
|
789 |
+
torch.bfloat16,
|
790 |
+
)
|
791 |
+
|
792 |
+
return recursively_apply(_convert_to_fp32, tensor, test_type=_is_fp16_bf16_tensor)
|
793 |
+
|
794 |
+
|
795 |
+
class ConvertOutputsToFp32:
|
796 |
+
"""
|
797 |
+
Decorator to apply to a function outputing tensors (like a model forward pass) that ensures the outputs in FP16
|
798 |
+
precision will be convert back to FP32.
|
799 |
+
|
800 |
+
Args:
|
801 |
+
model_forward (`Callable`):
|
802 |
+
The function which outputs we want to treat.
|
803 |
+
|
804 |
+
Returns:
|
805 |
+
The same function as `model_forward` but with converted outputs.
|
806 |
+
"""
|
807 |
+
|
808 |
+
def __init__(self, model_forward):
|
809 |
+
self.model_forward = model_forward
|
810 |
+
update_wrapper(self, model_forward)
|
811 |
+
|
812 |
+
def __call__(self, *args, **kwargs):
|
813 |
+
return convert_to_fp32(self.model_forward(*args, **kwargs))
|
814 |
+
|
815 |
+
def __getstate__(self):
|
816 |
+
raise pickle.PicklingError(
|
817 |
+
"Cannot pickle a prepared model with automatic mixed precision, please unwrap the model with `Accelerator.unwrap_model(model)` before pickling it."
|
818 |
+
)
|
819 |
+
|
820 |
+
|
821 |
+
def convert_outputs_to_fp32(model_forward):
|
822 |
+
model_forward = ConvertOutputsToFp32(model_forward)
|
823 |
+
|
824 |
+
def forward(*args, **kwargs):
|
825 |
+
return model_forward(*args, **kwargs)
|
826 |
+
|
827 |
+
# To act like a decorator so that it can be popped when doing `extract_model_from_parallel`
|
828 |
+
forward.__wrapped__ = model_forward
|
829 |
+
|
830 |
+
return forward
|
831 |
+
|
832 |
+
|
833 |
+
def find_device(data):
|
834 |
+
"""
|
835 |
+
Finds the device on which a nested dict/list/tuple of tensors lies (assuming they are all on the same device).
|
836 |
+
|
837 |
+
Args:
|
838 |
+
(nested list/tuple/dictionary of `torch.Tensor`): The data we want to know the device of.
|
839 |
+
"""
|
840 |
+
if isinstance(data, Mapping):
|
841 |
+
for obj in data.values():
|
842 |
+
device = find_device(obj)
|
843 |
+
if device is not None:
|
844 |
+
return device
|
845 |
+
elif isinstance(data, (tuple, list)):
|
846 |
+
for obj in data:
|
847 |
+
device = find_device(obj)
|
848 |
+
if device is not None:
|
849 |
+
return device
|
850 |
+
elif isinstance(data, torch.Tensor):
|
851 |
+
return data.device
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/other.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import collections
|
16 |
+
import os
|
17 |
+
import platform
|
18 |
+
import re
|
19 |
+
import socket
|
20 |
+
from contextlib import contextmanager
|
21 |
+
from functools import partial, reduce
|
22 |
+
from types import MethodType
|
23 |
+
from typing import OrderedDict
|
24 |
+
|
25 |
+
import torch
|
26 |
+
from packaging.version import Version
|
27 |
+
from safetensors.torch import save_file as safe_save_file
|
28 |
+
|
29 |
+
from ..commands.config.default import write_basic_config # noqa: F401
|
30 |
+
from ..logging import get_logger
|
31 |
+
from ..state import PartialState
|
32 |
+
from .constants import FSDP_PYTORCH_VERSION
|
33 |
+
from .dataclasses import DistributedType
|
34 |
+
from .imports import is_deepspeed_available, is_torch_distributed_available, is_torch_xla_available
|
35 |
+
from .modeling import id_tensor_storage
|
36 |
+
from .transformer_engine import convert_model
|
37 |
+
from .versions import is_torch_version
|
38 |
+
|
39 |
+
|
40 |
+
logger = get_logger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
if is_torch_xla_available():
|
44 |
+
import torch_xla.core.xla_model as xm
|
45 |
+
|
46 |
+
|
47 |
+
def is_compiled_module(module):
|
48 |
+
"""
|
49 |
+
Check whether the module was compiled with torch.compile()
|
50 |
+
"""
|
51 |
+
if is_torch_version("<", "2.0.0") or not hasattr(torch, "_dynamo"):
|
52 |
+
return False
|
53 |
+
return isinstance(module, torch._dynamo.eval_frame.OptimizedModule)
|
54 |
+
|
55 |
+
|
56 |
+
def extract_model_from_parallel(model, keep_fp32_wrapper: bool = True, recursive: bool = False):
|
57 |
+
"""
|
58 |
+
Extract a model from its distributed containers.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
model (`torch.nn.Module`):
|
62 |
+
The model to extract.
|
63 |
+
keep_fp32_wrapper (`bool`, *optional*):
|
64 |
+
Whether to remove mixed precision hooks from the model.
|
65 |
+
recursive (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether to recursively extract all cases of `module.module` from `model` as well as unwrap child sublayers
|
67 |
+
recursively, not just the top-level distributed containers.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
`torch.nn.Module`: The extracted model.
|
71 |
+
"""
|
72 |
+
options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
|
73 |
+
|
74 |
+
is_compiled = is_compiled_module(model)
|
75 |
+
if is_compiled:
|
76 |
+
compiled_model = model
|
77 |
+
model = model._orig_mod
|
78 |
+
|
79 |
+
if is_deepspeed_available():
|
80 |
+
from deepspeed import DeepSpeedEngine
|
81 |
+
|
82 |
+
options += (DeepSpeedEngine,)
|
83 |
+
|
84 |
+
if is_torch_version(">=", FSDP_PYTORCH_VERSION) and is_torch_distributed_available():
|
85 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
|
86 |
+
|
87 |
+
options += (FSDP,)
|
88 |
+
|
89 |
+
while isinstance(model, options):
|
90 |
+
model = model.module
|
91 |
+
|
92 |
+
if recursive:
|
93 |
+
# This is needed in cases such as using FSDPv2 on XLA
|
94 |
+
def _recursive_unwrap(module):
|
95 |
+
# Wrapped modules are standardly wrapped as `module`, similar to the cases earlier
|
96 |
+
# with DDP, DataParallel, DeepSpeed, and FSDP
|
97 |
+
if hasattr(module, "module"):
|
98 |
+
unwrapped_module = _recursive_unwrap(module.module)
|
99 |
+
else:
|
100 |
+
unwrapped_module = module
|
101 |
+
# Next unwrap child sublayers recursively
|
102 |
+
for name, child in unwrapped_module.named_children():
|
103 |
+
setattr(unwrapped_module, name, _recursive_unwrap(child))
|
104 |
+
return unwrapped_module
|
105 |
+
|
106 |
+
# Start with top-level
|
107 |
+
model = _recursive_unwrap(model)
|
108 |
+
|
109 |
+
if not keep_fp32_wrapper:
|
110 |
+
forward = model.forward
|
111 |
+
original_forward = model.__dict__.pop("_original_forward", None)
|
112 |
+
if original_forward is not None:
|
113 |
+
while hasattr(forward, "__wrapped__"):
|
114 |
+
forward = forward.__wrapped__
|
115 |
+
if forward == original_forward:
|
116 |
+
break
|
117 |
+
model.forward = MethodType(forward, model)
|
118 |
+
if getattr(model, "_converted_to_transformer_engine", False):
|
119 |
+
convert_model(model, to_transformer_engine=False)
|
120 |
+
|
121 |
+
if is_compiled:
|
122 |
+
compiled_model._orig_mod = model
|
123 |
+
model = compiled_model
|
124 |
+
|
125 |
+
return model
|
126 |
+
|
127 |
+
|
128 |
+
def wait_for_everyone():
|
129 |
+
"""
|
130 |
+
Introduces a blocking point in the script, making sure all processes have reached this point before continuing.
|
131 |
+
|
132 |
+
<Tip warning={true}>
|
133 |
+
|
134 |
+
Make sure all processes will reach this instruction otherwise one of your processes will hang forever.
|
135 |
+
|
136 |
+
</Tip>
|
137 |
+
"""
|
138 |
+
PartialState().wait_for_everyone()
|
139 |
+
|
140 |
+
|
141 |
+
def clean_state_dict_for_safetensors(state_dict: dict):
|
142 |
+
"""
|
143 |
+
Cleans the state dictionary from a model and removes tensor aliasing if present.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
state_dict (`dict`):
|
147 |
+
The state dictionary from a model
|
148 |
+
"""
|
149 |
+
ptrs = collections.defaultdict(list)
|
150 |
+
# When bnb serialization is used, weights in state dict can be strings
|
151 |
+
for name, tensor in state_dict.items():
|
152 |
+
if not isinstance(tensor, str):
|
153 |
+
ptrs[id_tensor_storage(tensor)].append(name)
|
154 |
+
|
155 |
+
# These are all pointers of tensors with shared memory
|
156 |
+
shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
|
157 |
+
warn_names = set()
|
158 |
+
for names in shared_ptrs.values():
|
159 |
+
# When not all duplicates have been cleaned, we still remove those keys but put a clear warning.
|
160 |
+
# If the link between tensors was done at runtime then `from_pretrained` will not get
|
161 |
+
# the key back leading to random tensor. A proper warning will be shown
|
162 |
+
# during reload (if applicable), but since the file is not necessarily compatible with
|
163 |
+
# the config, better show a proper warning.
|
164 |
+
found_names = [name for name in names if name in state_dict]
|
165 |
+
warn_names.update(found_names[1:])
|
166 |
+
for name in found_names[1:]:
|
167 |
+
del state_dict[name]
|
168 |
+
if len(warn_names) > 0:
|
169 |
+
logger.warning(
|
170 |
+
f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
|
171 |
+
)
|
172 |
+
state_dict = {k: v.contiguous() if isinstance(v, torch.Tensor) else v for k, v in state_dict.items()}
|
173 |
+
return state_dict
|
174 |
+
|
175 |
+
|
176 |
+
def save(obj, f, save_on_each_node: bool = False, safe_serialization: bool = False):
|
177 |
+
"""
|
178 |
+
Save the data to disk. Use in place of `torch.save()`.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
obj:
|
182 |
+
The data to save
|
183 |
+
f:
|
184 |
+
The file (or file-like object) to use to save the data
|
185 |
+
save_on_each_node (`bool`, *optional*, defaults to `False`):
|
186 |
+
Whether to only save on the global main process
|
187 |
+
safe_serialization (`bool`, *optional*, defaults to `False`):
|
188 |
+
Whether to save `obj` using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
189 |
+
"""
|
190 |
+
# When TorchXLA is enabled, it's necessary to transfer all data to the CPU before saving.
|
191 |
+
# Another issue arises with `id_tensor_storage`, which treats all XLA tensors as identical.
|
192 |
+
# If tensors remain on XLA, calling `clean_state_dict_for_safetensors` will result in only
|
193 |
+
# one XLA tensor remaining.
|
194 |
+
if PartialState().distributed_type == DistributedType.XLA:
|
195 |
+
obj = xm._maybe_convert_to_cpu(obj)
|
196 |
+
# Check if it's a model and remove duplicates
|
197 |
+
if safe_serialization:
|
198 |
+
save_func = partial(safe_save_file, metadata={"format": "pt"})
|
199 |
+
if isinstance(obj, OrderedDict):
|
200 |
+
obj = clean_state_dict_for_safetensors(obj)
|
201 |
+
else:
|
202 |
+
save_func = torch.save
|
203 |
+
|
204 |
+
if PartialState().is_main_process and not save_on_each_node:
|
205 |
+
save_func(obj, f)
|
206 |
+
elif PartialState().is_local_main_process and save_on_each_node:
|
207 |
+
save_func(obj, f)
|
208 |
+
|
209 |
+
|
210 |
+
@contextmanager
|
211 |
+
def clear_environment():
|
212 |
+
"""
|
213 |
+
A context manager that will temporarily clear environment variables.
|
214 |
+
|
215 |
+
When this context exits, the previous environment variables will be back.
|
216 |
+
|
217 |
+
Example:
|
218 |
+
|
219 |
+
```python
|
220 |
+
>>> import os
|
221 |
+
>>> from accelerate.utils import clear_environment
|
222 |
+
|
223 |
+
>>> os.environ["FOO"] = "bar"
|
224 |
+
>>> with clear_environment():
|
225 |
+
... print(os.environ)
|
226 |
+
... os.environ["FOO"] = "new_bar"
|
227 |
+
... print(os.environ["FOO"])
|
228 |
+
{}
|
229 |
+
new_bar
|
230 |
+
|
231 |
+
>>> print(os.environ["FOO"])
|
232 |
+
bar
|
233 |
+
```
|
234 |
+
"""
|
235 |
+
_old_os_environ = os.environ.copy()
|
236 |
+
os.environ.clear()
|
237 |
+
|
238 |
+
try:
|
239 |
+
yield
|
240 |
+
finally:
|
241 |
+
os.environ.clear() # clear any added keys,
|
242 |
+
os.environ.update(_old_os_environ) # then restore previous environment
|
243 |
+
|
244 |
+
|
245 |
+
@contextmanager
|
246 |
+
def patch_environment(**kwargs):
|
247 |
+
"""
|
248 |
+
A context manager that will add each keyword argument passed to `os.environ` and remove them when exiting.
|
249 |
+
|
250 |
+
Will convert the values in `kwargs` to strings and upper-case all the keys.
|
251 |
+
|
252 |
+
Example:
|
253 |
+
|
254 |
+
```python
|
255 |
+
>>> import os
|
256 |
+
>>> from accelerate.utils import patch_environment
|
257 |
+
|
258 |
+
>>> with patch_environment(FOO="bar"):
|
259 |
+
... print(os.environ["FOO"]) # prints "bar"
|
260 |
+
>>> print(os.environ["FOO"]) # raises KeyError
|
261 |
+
```
|
262 |
+
"""
|
263 |
+
existing_vars = {}
|
264 |
+
for key, value in kwargs.items():
|
265 |
+
key = key.upper()
|
266 |
+
if key in os.environ:
|
267 |
+
existing_vars[key] = os.environ[key]
|
268 |
+
os.environ[key] = str(value)
|
269 |
+
|
270 |
+
try:
|
271 |
+
yield
|
272 |
+
finally:
|
273 |
+
for key in kwargs:
|
274 |
+
key = key.upper()
|
275 |
+
if key in existing_vars:
|
276 |
+
# restore previous value
|
277 |
+
os.environ[key] = existing_vars[key]
|
278 |
+
else:
|
279 |
+
os.environ.pop(key, None)
|
280 |
+
|
281 |
+
|
282 |
+
def get_pretty_name(obj):
|
283 |
+
"""
|
284 |
+
Gets a pretty name from `obj`.
|
285 |
+
"""
|
286 |
+
if not hasattr(obj, "__qualname__") and not hasattr(obj, "__name__"):
|
287 |
+
obj = getattr(obj, "__class__", obj)
|
288 |
+
if hasattr(obj, "__qualname__"):
|
289 |
+
return obj.__qualname__
|
290 |
+
if hasattr(obj, "__name__"):
|
291 |
+
return obj.__name__
|
292 |
+
return str(obj)
|
293 |
+
|
294 |
+
|
295 |
+
def merge_dicts(source, destination):
|
296 |
+
"""
|
297 |
+
Recursively merges two dictionaries.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
source (`dict`): The dictionary to merge into `destination`.
|
301 |
+
destination (`dict`): The dictionary to merge `source` into.
|
302 |
+
"""
|
303 |
+
for key, value in source.items():
|
304 |
+
if isinstance(value, dict):
|
305 |
+
node = destination.setdefault(key, {})
|
306 |
+
merge_dicts(value, node)
|
307 |
+
else:
|
308 |
+
destination[key] = value
|
309 |
+
|
310 |
+
return destination
|
311 |
+
|
312 |
+
|
313 |
+
def is_port_in_use(port: int = None) -> bool:
|
314 |
+
"""
|
315 |
+
Checks if a port is in use on `localhost`. Useful for checking if multiple `accelerate launch` commands have been
|
316 |
+
run and need to see if the port is already in use.
|
317 |
+
"""
|
318 |
+
if port is None:
|
319 |
+
port = 29500
|
320 |
+
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
321 |
+
return s.connect_ex(("localhost", port)) == 0
|
322 |
+
|
323 |
+
|
324 |
+
def convert_bytes(size):
|
325 |
+
"Converts `size` from bytes to the largest possible unit"
|
326 |
+
for x in ["bytes", "KB", "MB", "GB", "TB"]:
|
327 |
+
if size < 1024.0:
|
328 |
+
return f"{round(size, 2)} {x}"
|
329 |
+
size /= 1024.0
|
330 |
+
|
331 |
+
return f"{round(size, 2)} PB"
|
332 |
+
|
333 |
+
|
334 |
+
def check_os_kernel():
|
335 |
+
"""Warns if the kernel version is below the recommended minimum on Linux."""
|
336 |
+
# see issue #1929
|
337 |
+
info = platform.uname()
|
338 |
+
system = info.system
|
339 |
+
if system != "Linux":
|
340 |
+
return
|
341 |
+
|
342 |
+
_, version, *_ = re.split(r"(\d+\.\d+\.\d+)", info.release)
|
343 |
+
min_version = "5.5.0"
|
344 |
+
if Version(version) < Version(min_version):
|
345 |
+
msg = (
|
346 |
+
f"Detected kernel version {version}, which is below the recommended minimum of {min_version}; this can "
|
347 |
+
"cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher."
|
348 |
+
)
|
349 |
+
logger.warning(msg, main_process_only=True)
|
350 |
+
|
351 |
+
|
352 |
+
def recursive_getattr(obj, attr: str):
|
353 |
+
"""
|
354 |
+
Recursive `getattr`.
|
355 |
+
|
356 |
+
Args:
|
357 |
+
obj:
|
358 |
+
A class instance holding the attribute.
|
359 |
+
attr (`str`):
|
360 |
+
The attribute that is to be retrieved, e.g. 'attribute1.attribute2'.
|
361 |
+
"""
|
362 |
+
|
363 |
+
def _getattr(obj, attr):
|
364 |
+
return getattr(obj, attr)
|
365 |
+
|
366 |
+
return reduce(_getattr, [obj] + attr.split("."))
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/random.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import random
|
16 |
+
from typing import List, Optional, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from ..state import AcceleratorState
|
22 |
+
from .constants import CUDA_DISTRIBUTED_TYPES
|
23 |
+
from .dataclasses import DistributedType, RNGType
|
24 |
+
from .imports import is_mlu_available, is_npu_available, is_torch_xla_available, is_xpu_available
|
25 |
+
|
26 |
+
|
27 |
+
if is_torch_xla_available():
|
28 |
+
import torch_xla.core.xla_model as xm
|
29 |
+
|
30 |
+
|
31 |
+
def set_seed(seed: int, device_specific: bool = False, deterministic: bool = False):
|
32 |
+
"""
|
33 |
+
Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
seed (`int`):
|
37 |
+
The seed to set.
|
38 |
+
device_specific (`bool`, *optional*, defaults to `False`):
|
39 |
+
Whether to differ the seed on each device slightly with `self.process_index`.
|
40 |
+
deterministic (`bool`, *optional*, defaults to `False`):
|
41 |
+
Whether to use deterministic algorithms where available. Can slow down training.
|
42 |
+
"""
|
43 |
+
if device_specific:
|
44 |
+
seed += AcceleratorState().process_index
|
45 |
+
random.seed(seed)
|
46 |
+
np.random.seed(seed)
|
47 |
+
torch.manual_seed(seed)
|
48 |
+
if is_xpu_available():
|
49 |
+
torch.xpu.manual_seed_all(seed)
|
50 |
+
elif is_npu_available():
|
51 |
+
torch.npu.manual_seed_all(seed)
|
52 |
+
elif is_mlu_available():
|
53 |
+
torch.mlu.manual_seed_all(seed)
|
54 |
+
else:
|
55 |
+
torch.cuda.manual_seed_all(seed)
|
56 |
+
# ^^ safe to call this function even if cuda is not available
|
57 |
+
if is_torch_xla_available():
|
58 |
+
xm.set_rng_state(seed)
|
59 |
+
|
60 |
+
if deterministic:
|
61 |
+
torch.use_deterministic_algorithms(True)
|
62 |
+
|
63 |
+
|
64 |
+
def synchronize_rng_state(rng_type: Optional[RNGType] = None, generator: Optional[torch.Generator] = None):
|
65 |
+
# Get the proper rng state
|
66 |
+
if rng_type == RNGType.TORCH:
|
67 |
+
rng_state = torch.get_rng_state()
|
68 |
+
elif rng_type == RNGType.CUDA:
|
69 |
+
rng_state = torch.cuda.get_rng_state()
|
70 |
+
elif rng_type == RNGType.XLA:
|
71 |
+
assert is_torch_xla_available(), "Can't synchronize XLA seeds as torch_xla is unavailable."
|
72 |
+
rng_state = torch.tensor(xm.get_rng_state())
|
73 |
+
elif rng_type == RNGType.NPU:
|
74 |
+
assert is_npu_available(), "Can't synchronize NPU seeds on an environment without NPUs."
|
75 |
+
rng_state = torch.npu.get_rng_state()
|
76 |
+
elif rng_type == RNGType.MLU:
|
77 |
+
assert is_mlu_available(), "Can't synchronize MLU seeds on an environment without MLUs."
|
78 |
+
rng_state = torch.mlu.get_rng_state()
|
79 |
+
elif rng_type == RNGType.XPU:
|
80 |
+
assert is_xpu_available(), "Can't synchronize XPU seeds on an environment without XPUs."
|
81 |
+
rng_state = torch.xpu.get_rng_state()
|
82 |
+
elif rng_type == RNGType.GENERATOR:
|
83 |
+
assert generator is not None, "Need a generator to synchronize its seed."
|
84 |
+
rng_state = generator.get_state()
|
85 |
+
|
86 |
+
# Broadcast the rng state from device 0 to other devices
|
87 |
+
state = AcceleratorState()
|
88 |
+
if state.distributed_type == DistributedType.XLA:
|
89 |
+
rng_state = rng_state.to(xm.xla_device())
|
90 |
+
xm.collective_broadcast([rng_state])
|
91 |
+
xm.mark_step()
|
92 |
+
rng_state = rng_state.cpu()
|
93 |
+
elif (
|
94 |
+
state.distributed_type in CUDA_DISTRIBUTED_TYPES
|
95 |
+
or state.distributed_type == DistributedType.MULTI_MLU
|
96 |
+
or state.distributed_type == DistributedType.MULTI_NPU
|
97 |
+
or state.distributed_type == DistributedType.MULTI_XPU
|
98 |
+
):
|
99 |
+
rng_state = rng_state.to(state.device)
|
100 |
+
torch.distributed.broadcast(rng_state, 0)
|
101 |
+
rng_state = rng_state.cpu()
|
102 |
+
elif state.distributed_type == DistributedType.MULTI_CPU:
|
103 |
+
torch.distributed.broadcast(rng_state, 0)
|
104 |
+
|
105 |
+
# Set the broadcast rng state
|
106 |
+
if rng_type == RNGType.TORCH:
|
107 |
+
torch.set_rng_state(rng_state)
|
108 |
+
elif rng_type == RNGType.CUDA:
|
109 |
+
torch.cuda.set_rng_state(rng_state)
|
110 |
+
elif rng_type == RNGType.NPU:
|
111 |
+
torch.npu.set_rng_state(rng_state)
|
112 |
+
elif rng_type == RNGType.XPU:
|
113 |
+
torch.xpu.set_rng_state(rng_state)
|
114 |
+
elif rng_type == RNGType.XLA:
|
115 |
+
xm.set_rng_state(rng_state.item())
|
116 |
+
elif rng_type == RNGType.GENERATOR:
|
117 |
+
generator.set_state(rng_state)
|
118 |
+
|
119 |
+
|
120 |
+
def synchronize_rng_states(rng_types: List[Union[str, RNGType]], generator: Optional[torch.Generator] = None):
|
121 |
+
for rng_type in rng_types:
|
122 |
+
synchronize_rng_state(RNGType(rng_type), generator=generator)
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/rich.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .imports import is_rich_available
|
16 |
+
|
17 |
+
|
18 |
+
if is_rich_available():
|
19 |
+
from rich.traceback import install
|
20 |
+
|
21 |
+
install(show_locals=False)
|
22 |
+
|
23 |
+
else:
|
24 |
+
raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/torch_xla.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import importlib.metadata
|
16 |
+
import subprocess
|
17 |
+
import sys
|
18 |
+
|
19 |
+
|
20 |
+
def install_xla(upgrade: bool = False):
|
21 |
+
"""
|
22 |
+
Helper function to install appropriate xla wheels based on the `torch` version in Google Colaboratory.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
upgrade (`bool`, *optional*, defaults to `False`):
|
26 |
+
Whether to upgrade `torch` and install the latest `torch_xla` wheels.
|
27 |
+
|
28 |
+
Example:
|
29 |
+
|
30 |
+
```python
|
31 |
+
>>> from accelerate.utils import install_xla
|
32 |
+
|
33 |
+
>>> install_xla(upgrade=True)
|
34 |
+
```
|
35 |
+
"""
|
36 |
+
in_colab = False
|
37 |
+
if "IPython" in sys.modules:
|
38 |
+
in_colab = "google.colab" in str(sys.modules["IPython"].get_ipython())
|
39 |
+
|
40 |
+
if in_colab:
|
41 |
+
if upgrade:
|
42 |
+
torch_install_cmd = ["pip", "install", "-U", "torch"]
|
43 |
+
subprocess.run(torch_install_cmd, check=True)
|
44 |
+
# get the current version of torch
|
45 |
+
torch_version = importlib.metadata.version("torch")
|
46 |
+
torch_version_trunc = torch_version[: torch_version.rindex(".")]
|
47 |
+
xla_wheel = f"https://storage.googleapis.com/tpu-pytorch/wheels/colab/torch_xla-{torch_version_trunc}-cp37-cp37m-linux_x86_64.whl"
|
48 |
+
xla_install_cmd = ["pip", "install", xla_wheel]
|
49 |
+
subprocess.run(xla_install_cmd, check=True)
|
50 |
+
else:
|
51 |
+
raise RuntimeError("`install_xla` utility works only on google colab.")
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/tqdm.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .imports import is_tqdm_available
|
16 |
+
|
17 |
+
|
18 |
+
if is_tqdm_available():
|
19 |
+
from tqdm.auto import tqdm as _tqdm
|
20 |
+
|
21 |
+
from ..state import PartialState
|
22 |
+
|
23 |
+
|
24 |
+
def tqdm(main_process_only: bool = True, *args, **kwargs):
|
25 |
+
"""
|
26 |
+
Wrapper around `tqdm.tqdm` that optionally displays only on the main process.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
main_process_only (`bool`, *optional*):
|
30 |
+
Whether to display the progress bar only on the main process
|
31 |
+
"""
|
32 |
+
if not is_tqdm_available():
|
33 |
+
raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.")
|
34 |
+
disable = False
|
35 |
+
if main_process_only:
|
36 |
+
disable = PartialState().local_process_index != 0
|
37 |
+
return _tqdm(*args, **kwargs, disable=disable)
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/transformer_engine.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import torch.nn as nn
|
16 |
+
|
17 |
+
from .imports import is_fp8_available
|
18 |
+
|
19 |
+
|
20 |
+
if is_fp8_available():
|
21 |
+
import transformer_engine.pytorch as te
|
22 |
+
|
23 |
+
|
24 |
+
def convert_model(model, to_transformer_engine=True, _convert_linear=True, _convert_ln=True):
|
25 |
+
"""
|
26 |
+
Recursively converts the linear and layernorm layers of a model to their `transformers_engine` counterpart.
|
27 |
+
"""
|
28 |
+
if not is_fp8_available():
|
29 |
+
raise ImportError("Using `convert_model` requires transformer_engine to be installed.")
|
30 |
+
for name, module in model.named_children():
|
31 |
+
if isinstance(module, nn.Linear) and to_transformer_engine and _convert_linear:
|
32 |
+
# Return early if the linear layer weights are not multiples of 16
|
33 |
+
if any(p % 16 != 0 for p in module.weight.shape):
|
34 |
+
return
|
35 |
+
has_bias = module.bias is not None
|
36 |
+
te_module = te.Linear(
|
37 |
+
module.in_features, module.out_features, bias=has_bias, params_dtype=module.weight.dtype
|
38 |
+
)
|
39 |
+
te_module.weight.copy_(module.weight)
|
40 |
+
if has_bias:
|
41 |
+
te_module.bias.copy_(module.bias)
|
42 |
+
|
43 |
+
setattr(model, name, te_module)
|
44 |
+
elif isinstance(module, nn.LayerNorm) and to_transformer_engine and _convert_ln:
|
45 |
+
te_module = te.LayerNorm(module.normalized_shape[0], eps=module.eps, params_dtype=module.weight.dtype)
|
46 |
+
te_module.weight.copy_(module.weight)
|
47 |
+
te_module.bias.copy_(module.bias)
|
48 |
+
|
49 |
+
setattr(model, name, te_module)
|
50 |
+
elif isinstance(module, te.Linear) and not to_transformer_engine and _convert_linear:
|
51 |
+
has_bias = module.bias is not None
|
52 |
+
new_module = nn.Linear(
|
53 |
+
module.in_features, module.out_features, bias=has_bias, params_dtype=module.weight.dtype
|
54 |
+
)
|
55 |
+
new_module.weight.copy_(module.weight)
|
56 |
+
if has_bias:
|
57 |
+
new_module.bias.copy_(module.bias)
|
58 |
+
|
59 |
+
setattr(model, name, new_module)
|
60 |
+
elif isinstance(module, te.LayerNorm) and not to_transformer_engine and _convert_ln:
|
61 |
+
new_module = nn.LayerNorm(module.normalized_shape[0], eps=module.eps, params_dtype=module.weight.dtype)
|
62 |
+
new_module.weight.copy_(module.weight)
|
63 |
+
new_module.bias.copy_(module.bias)
|
64 |
+
|
65 |
+
setattr(model, name, new_module)
|
66 |
+
else:
|
67 |
+
convert_model(
|
68 |
+
module,
|
69 |
+
to_transformer_engine=to_transformer_engine,
|
70 |
+
_convert_linear=_convert_linear,
|
71 |
+
_convert_ln=_convert_ln,
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
def has_transformer_engine_layers(model):
|
76 |
+
"""
|
77 |
+
Returns whether a given model has some `transformer_engine` layer or not.
|
78 |
+
"""
|
79 |
+
if not is_fp8_available():
|
80 |
+
raise ImportError("Using `has_transformer_engine_layers` requires transformer_engine to be installed.")
|
81 |
+
for m in model.modules():
|
82 |
+
if isinstance(m, (te.LayerNorm, te.Linear, te.TransformerLayer)):
|
83 |
+
return True
|
84 |
+
return False
|
env-llmeval/lib/python3.10/site-packages/accelerate/utils/versions.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import importlib.metadata
|
16 |
+
from typing import Union
|
17 |
+
|
18 |
+
from packaging.version import Version, parse
|
19 |
+
|
20 |
+
from .constants import STR_OPERATION_TO_FUNC
|
21 |
+
|
22 |
+
|
23 |
+
torch_version = parse(importlib.metadata.version("torch"))
|
24 |
+
|
25 |
+
|
26 |
+
def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str):
|
27 |
+
"""
|
28 |
+
Compares a library version to some requirement using a given operation.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
library_or_version (`str` or `packaging.version.Version`):
|
32 |
+
A library name or a version to check.
|
33 |
+
operation (`str`):
|
34 |
+
A string representation of an operator, such as `">"` or `"<="`.
|
35 |
+
requirement_version (`str`):
|
36 |
+
The version to compare the library version against
|
37 |
+
"""
|
38 |
+
if operation not in STR_OPERATION_TO_FUNC.keys():
|
39 |
+
raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}")
|
40 |
+
operation = STR_OPERATION_TO_FUNC[operation]
|
41 |
+
if isinstance(library_or_version, str):
|
42 |
+
library_or_version = parse(importlib.metadata.version(library_or_version))
|
43 |
+
return operation(library_or_version, parse(requirement_version))
|
44 |
+
|
45 |
+
|
46 |
+
def is_torch_version(operation: str, version: str):
|
47 |
+
"""
|
48 |
+
Compares the current PyTorch version to a given reference with an operation.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
operation (`str`):
|
52 |
+
A string representation of an operator, such as `">"` or `"<="`
|
53 |
+
version (`str`):
|
54 |
+
A string version of PyTorch
|
55 |
+
"""
|
56 |
+
return compare_versions(torch_version, operation, version)
|
env-llmeval/lib/python3.10/site-packages/numpy/__config__.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is generated by numpy's build process
|
2 |
+
# It contains system_info results at the time of building this package.
|
3 |
+
from enum import Enum
|
4 |
+
from numpy.core._multiarray_umath import (
|
5 |
+
__cpu_features__,
|
6 |
+
__cpu_baseline__,
|
7 |
+
__cpu_dispatch__,
|
8 |
+
)
|
9 |
+
|
10 |
+
__all__ = ["show"]
|
11 |
+
_built_with_meson = True
|
12 |
+
|
13 |
+
|
14 |
+
class DisplayModes(Enum):
|
15 |
+
stdout = "stdout"
|
16 |
+
dicts = "dicts"
|
17 |
+
|
18 |
+
|
19 |
+
def _cleanup(d):
|
20 |
+
"""
|
21 |
+
Removes empty values in a `dict` recursively
|
22 |
+
This ensures we remove values that Meson could not provide to CONFIG
|
23 |
+
"""
|
24 |
+
if isinstance(d, dict):
|
25 |
+
return {k: _cleanup(v) for k, v in d.items() if v and _cleanup(v)}
|
26 |
+
else:
|
27 |
+
return d
|
28 |
+
|
29 |
+
|
30 |
+
CONFIG = _cleanup(
|
31 |
+
{
|
32 |
+
"Compilers": {
|
33 |
+
"c": {
|
34 |
+
"name": "gcc",
|
35 |
+
"linker": r"ld.bfd",
|
36 |
+
"version": "10.2.1",
|
37 |
+
"commands": r"cc",
|
38 |
+
"args": r"-fno-strict-aliasing",
|
39 |
+
"linker args": r"-Wl,--strip-debug, -fno-strict-aliasing",
|
40 |
+
},
|
41 |
+
"cython": {
|
42 |
+
"name": "cython",
|
43 |
+
"linker": r"cython",
|
44 |
+
"version": "3.0.8",
|
45 |
+
"commands": r"cython",
|
46 |
+
"args": r"",
|
47 |
+
"linker args": r"",
|
48 |
+
},
|
49 |
+
"c++": {
|
50 |
+
"name": "gcc",
|
51 |
+
"linker": r"ld.bfd",
|
52 |
+
"version": "10.2.1",
|
53 |
+
"commands": r"c++",
|
54 |
+
"args": r"",
|
55 |
+
"linker args": r"-Wl,--strip-debug",
|
56 |
+
},
|
57 |
+
},
|
58 |
+
"Machine Information": {
|
59 |
+
"host": {
|
60 |
+
"cpu": "x86_64",
|
61 |
+
"family": "x86_64",
|
62 |
+
"endian": "little",
|
63 |
+
"system": "linux",
|
64 |
+
},
|
65 |
+
"build": {
|
66 |
+
"cpu": "x86_64",
|
67 |
+
"family": "x86_64",
|
68 |
+
"endian": "little",
|
69 |
+
"system": "linux",
|
70 |
+
},
|
71 |
+
"cross-compiled": bool("False".lower().replace("false", "")),
|
72 |
+
},
|
73 |
+
"Build Dependencies": {
|
74 |
+
"blas": {
|
75 |
+
"name": "openblas64",
|
76 |
+
"found": bool("True".lower().replace("false", "")),
|
77 |
+
"version": "0.3.23.dev",
|
78 |
+
"detection method": "pkgconfig",
|
79 |
+
"include directory": r"/usr/local/include",
|
80 |
+
"lib directory": r"/usr/local/lib",
|
81 |
+
"openblas configuration": r"USE_64BITINT=1 DYNAMIC_ARCH=1 DYNAMIC_OLDER= NO_CBLAS= NO_LAPACK= NO_LAPACKE= NO_AFFINITY=1 USE_OPENMP= HASWELL MAX_THREADS=2",
|
82 |
+
"pc file directory": r"/usr/local/lib/pkgconfig",
|
83 |
+
},
|
84 |
+
"lapack": {
|
85 |
+
"name": "dep139863411681952",
|
86 |
+
"found": bool("True".lower().replace("false", "")),
|
87 |
+
"version": "1.26.4",
|
88 |
+
"detection method": "internal",
|
89 |
+
"include directory": r"unknown",
|
90 |
+
"lib directory": r"unknown",
|
91 |
+
"openblas configuration": r"unknown",
|
92 |
+
"pc file directory": r"unknown",
|
93 |
+
},
|
94 |
+
},
|
95 |
+
"Python Information": {
|
96 |
+
"path": r"/opt/python/cp310-cp310/bin/python",
|
97 |
+
"version": "3.10",
|
98 |
+
},
|
99 |
+
"SIMD Extensions": {
|
100 |
+
"baseline": __cpu_baseline__,
|
101 |
+
"found": [
|
102 |
+
feature for feature in __cpu_dispatch__ if __cpu_features__[feature]
|
103 |
+
],
|
104 |
+
"not found": [
|
105 |
+
feature for feature in __cpu_dispatch__ if not __cpu_features__[feature]
|
106 |
+
],
|
107 |
+
},
|
108 |
+
}
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
def _check_pyyaml():
|
113 |
+
import yaml
|
114 |
+
|
115 |
+
return yaml
|
116 |
+
|
117 |
+
|
118 |
+
def show(mode=DisplayModes.stdout.value):
|
119 |
+
"""
|
120 |
+
Show libraries and system information on which NumPy was built
|
121 |
+
and is being used
|
122 |
+
|
123 |
+
Parameters
|
124 |
+
----------
|
125 |
+
mode : {`'stdout'`, `'dicts'`}, optional.
|
126 |
+
Indicates how to display the config information.
|
127 |
+
`'stdout'` prints to console, `'dicts'` returns a dictionary
|
128 |
+
of the configuration.
|
129 |
+
|
130 |
+
Returns
|
131 |
+
-------
|
132 |
+
out : {`dict`, `None`}
|
133 |
+
If mode is `'dicts'`, a dict is returned, else None
|
134 |
+
|
135 |
+
See Also
|
136 |
+
--------
|
137 |
+
get_include : Returns the directory containing NumPy C
|
138 |
+
header files.
|
139 |
+
|
140 |
+
Notes
|
141 |
+
-----
|
142 |
+
1. The `'stdout'` mode will give more readable
|
143 |
+
output if ``pyyaml`` is installed
|
144 |
+
|
145 |
+
"""
|
146 |
+
if mode == DisplayModes.stdout.value:
|
147 |
+
try: # Non-standard library, check import
|
148 |
+
yaml = _check_pyyaml()
|
149 |
+
|
150 |
+
print(yaml.dump(CONFIG))
|
151 |
+
except ModuleNotFoundError:
|
152 |
+
import warnings
|
153 |
+
import json
|
154 |
+
|
155 |
+
warnings.warn("Install `pyyaml` for better output", stacklevel=1)
|
156 |
+
print(json.dumps(CONFIG, indent=2))
|
157 |
+
elif mode == DisplayModes.dicts.value:
|
158 |
+
return CONFIG
|
159 |
+
else:
|
160 |
+
raise AttributeError(
|
161 |
+
f"Invalid `mode`, use one of: {', '.join([e.value for e in DisplayModes])}"
|
162 |
+
)
|
env-llmeval/lib/python3.10/site-packages/numpy/__init__.cython-30.pxd
ADDED
@@ -0,0 +1,1050 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# NumPy static imports for Cython >= 3.0
|
2 |
+
#
|
3 |
+
# If any of the PyArray_* functions are called, import_array must be
|
4 |
+
# called first. This is done automatically by Cython 3.0+ if a call
|
5 |
+
# is not detected inside of the module.
|
6 |
+
#
|
7 |
+
# Author: Dag Sverre Seljebotn
|
8 |
+
#
|
9 |
+
|
10 |
+
from cpython.ref cimport Py_INCREF
|
11 |
+
from cpython.object cimport PyObject, PyTypeObject, PyObject_TypeCheck
|
12 |
+
cimport libc.stdio as stdio
|
13 |
+
|
14 |
+
|
15 |
+
cdef extern from *:
|
16 |
+
# Leave a marker that the NumPy declarations came from NumPy itself and not from Cython.
|
17 |
+
# See https://github.com/cython/cython/issues/3573
|
18 |
+
"""
|
19 |
+
/* Using NumPy API declarations from "numpy/__init__.cython-30.pxd" */
|
20 |
+
"""
|
21 |
+
|
22 |
+
|
23 |
+
cdef extern from "Python.h":
|
24 |
+
ctypedef int Py_intptr_t
|
25 |
+
|
26 |
+
cdef extern from "numpy/arrayobject.h":
|
27 |
+
ctypedef Py_intptr_t npy_intp
|
28 |
+
ctypedef size_t npy_uintp
|
29 |
+
|
30 |
+
cdef enum NPY_TYPES:
|
31 |
+
NPY_BOOL
|
32 |
+
NPY_BYTE
|
33 |
+
NPY_UBYTE
|
34 |
+
NPY_SHORT
|
35 |
+
NPY_USHORT
|
36 |
+
NPY_INT
|
37 |
+
NPY_UINT
|
38 |
+
NPY_LONG
|
39 |
+
NPY_ULONG
|
40 |
+
NPY_LONGLONG
|
41 |
+
NPY_ULONGLONG
|
42 |
+
NPY_FLOAT
|
43 |
+
NPY_DOUBLE
|
44 |
+
NPY_LONGDOUBLE
|
45 |
+
NPY_CFLOAT
|
46 |
+
NPY_CDOUBLE
|
47 |
+
NPY_CLONGDOUBLE
|
48 |
+
NPY_OBJECT
|
49 |
+
NPY_STRING
|
50 |
+
NPY_UNICODE
|
51 |
+
NPY_VOID
|
52 |
+
NPY_DATETIME
|
53 |
+
NPY_TIMEDELTA
|
54 |
+
NPY_NTYPES
|
55 |
+
NPY_NOTYPE
|
56 |
+
|
57 |
+
NPY_INT8
|
58 |
+
NPY_INT16
|
59 |
+
NPY_INT32
|
60 |
+
NPY_INT64
|
61 |
+
NPY_INT128
|
62 |
+
NPY_INT256
|
63 |
+
NPY_UINT8
|
64 |
+
NPY_UINT16
|
65 |
+
NPY_UINT32
|
66 |
+
NPY_UINT64
|
67 |
+
NPY_UINT128
|
68 |
+
NPY_UINT256
|
69 |
+
NPY_FLOAT16
|
70 |
+
NPY_FLOAT32
|
71 |
+
NPY_FLOAT64
|
72 |
+
NPY_FLOAT80
|
73 |
+
NPY_FLOAT96
|
74 |
+
NPY_FLOAT128
|
75 |
+
NPY_FLOAT256
|
76 |
+
NPY_COMPLEX32
|
77 |
+
NPY_COMPLEX64
|
78 |
+
NPY_COMPLEX128
|
79 |
+
NPY_COMPLEX160
|
80 |
+
NPY_COMPLEX192
|
81 |
+
NPY_COMPLEX256
|
82 |
+
NPY_COMPLEX512
|
83 |
+
|
84 |
+
NPY_INTP
|
85 |
+
|
86 |
+
ctypedef enum NPY_ORDER:
|
87 |
+
NPY_ANYORDER
|
88 |
+
NPY_CORDER
|
89 |
+
NPY_FORTRANORDER
|
90 |
+
NPY_KEEPORDER
|
91 |
+
|
92 |
+
ctypedef enum NPY_CASTING:
|
93 |
+
NPY_NO_CASTING
|
94 |
+
NPY_EQUIV_CASTING
|
95 |
+
NPY_SAFE_CASTING
|
96 |
+
NPY_SAME_KIND_CASTING
|
97 |
+
NPY_UNSAFE_CASTING
|
98 |
+
|
99 |
+
ctypedef enum NPY_CLIPMODE:
|
100 |
+
NPY_CLIP
|
101 |
+
NPY_WRAP
|
102 |
+
NPY_RAISE
|
103 |
+
|
104 |
+
ctypedef enum NPY_SCALARKIND:
|
105 |
+
NPY_NOSCALAR,
|
106 |
+
NPY_BOOL_SCALAR,
|
107 |
+
NPY_INTPOS_SCALAR,
|
108 |
+
NPY_INTNEG_SCALAR,
|
109 |
+
NPY_FLOAT_SCALAR,
|
110 |
+
NPY_COMPLEX_SCALAR,
|
111 |
+
NPY_OBJECT_SCALAR
|
112 |
+
|
113 |
+
ctypedef enum NPY_SORTKIND:
|
114 |
+
NPY_QUICKSORT
|
115 |
+
NPY_HEAPSORT
|
116 |
+
NPY_MERGESORT
|
117 |
+
|
118 |
+
ctypedef enum NPY_SEARCHSIDE:
|
119 |
+
NPY_SEARCHLEFT
|
120 |
+
NPY_SEARCHRIGHT
|
121 |
+
|
122 |
+
enum:
|
123 |
+
# DEPRECATED since NumPy 1.7 ! Do not use in new code!
|
124 |
+
NPY_C_CONTIGUOUS
|
125 |
+
NPY_F_CONTIGUOUS
|
126 |
+
NPY_CONTIGUOUS
|
127 |
+
NPY_FORTRAN
|
128 |
+
NPY_OWNDATA
|
129 |
+
NPY_FORCECAST
|
130 |
+
NPY_ENSURECOPY
|
131 |
+
NPY_ENSUREARRAY
|
132 |
+
NPY_ELEMENTSTRIDES
|
133 |
+
NPY_ALIGNED
|
134 |
+
NPY_NOTSWAPPED
|
135 |
+
NPY_WRITEABLE
|
136 |
+
NPY_ARR_HAS_DESCR
|
137 |
+
|
138 |
+
NPY_BEHAVED
|
139 |
+
NPY_BEHAVED_NS
|
140 |
+
NPY_CARRAY
|
141 |
+
NPY_CARRAY_RO
|
142 |
+
NPY_FARRAY
|
143 |
+
NPY_FARRAY_RO
|
144 |
+
NPY_DEFAULT
|
145 |
+
|
146 |
+
NPY_IN_ARRAY
|
147 |
+
NPY_OUT_ARRAY
|
148 |
+
NPY_INOUT_ARRAY
|
149 |
+
NPY_IN_FARRAY
|
150 |
+
NPY_OUT_FARRAY
|
151 |
+
NPY_INOUT_FARRAY
|
152 |
+
|
153 |
+
NPY_UPDATE_ALL
|
154 |
+
|
155 |
+
enum:
|
156 |
+
# Added in NumPy 1.7 to replace the deprecated enums above.
|
157 |
+
NPY_ARRAY_C_CONTIGUOUS
|
158 |
+
NPY_ARRAY_F_CONTIGUOUS
|
159 |
+
NPY_ARRAY_OWNDATA
|
160 |
+
NPY_ARRAY_FORCECAST
|
161 |
+
NPY_ARRAY_ENSURECOPY
|
162 |
+
NPY_ARRAY_ENSUREARRAY
|
163 |
+
NPY_ARRAY_ELEMENTSTRIDES
|
164 |
+
NPY_ARRAY_ALIGNED
|
165 |
+
NPY_ARRAY_NOTSWAPPED
|
166 |
+
NPY_ARRAY_WRITEABLE
|
167 |
+
NPY_ARRAY_WRITEBACKIFCOPY
|
168 |
+
|
169 |
+
NPY_ARRAY_BEHAVED
|
170 |
+
NPY_ARRAY_BEHAVED_NS
|
171 |
+
NPY_ARRAY_CARRAY
|
172 |
+
NPY_ARRAY_CARRAY_RO
|
173 |
+
NPY_ARRAY_FARRAY
|
174 |
+
NPY_ARRAY_FARRAY_RO
|
175 |
+
NPY_ARRAY_DEFAULT
|
176 |
+
|
177 |
+
NPY_ARRAY_IN_ARRAY
|
178 |
+
NPY_ARRAY_OUT_ARRAY
|
179 |
+
NPY_ARRAY_INOUT_ARRAY
|
180 |
+
NPY_ARRAY_IN_FARRAY
|
181 |
+
NPY_ARRAY_OUT_FARRAY
|
182 |
+
NPY_ARRAY_INOUT_FARRAY
|
183 |
+
|
184 |
+
NPY_ARRAY_UPDATE_ALL
|
185 |
+
|
186 |
+
cdef enum:
|
187 |
+
NPY_MAXDIMS
|
188 |
+
|
189 |
+
npy_intp NPY_MAX_ELSIZE
|
190 |
+
|
191 |
+
ctypedef void (*PyArray_VectorUnaryFunc)(void *, void *, npy_intp, void *, void *)
|
192 |
+
|
193 |
+
ctypedef struct PyArray_ArrayDescr:
|
194 |
+
# shape is a tuple, but Cython doesn't support "tuple shape"
|
195 |
+
# inside a non-PyObject declaration, so we have to declare it
|
196 |
+
# as just a PyObject*.
|
197 |
+
PyObject* shape
|
198 |
+
|
199 |
+
ctypedef struct PyArray_Descr:
|
200 |
+
pass
|
201 |
+
|
202 |
+
ctypedef class numpy.dtype [object PyArray_Descr, check_size ignore]:
|
203 |
+
# Use PyDataType_* macros when possible, however there are no macros
|
204 |
+
# for accessing some of the fields, so some are defined.
|
205 |
+
cdef PyTypeObject* typeobj
|
206 |
+
cdef char kind
|
207 |
+
cdef char type
|
208 |
+
# Numpy sometimes mutates this without warning (e.g. it'll
|
209 |
+
# sometimes change "|" to "<" in shared dtype objects on
|
210 |
+
# little-endian machines). If this matters to you, use
|
211 |
+
# PyArray_IsNativeByteOrder(dtype.byteorder) instead of
|
212 |
+
# directly accessing this field.
|
213 |
+
cdef char byteorder
|
214 |
+
cdef char flags
|
215 |
+
cdef int type_num
|
216 |
+
cdef int itemsize "elsize"
|
217 |
+
cdef int alignment
|
218 |
+
cdef object fields
|
219 |
+
cdef tuple names
|
220 |
+
# Use PyDataType_HASSUBARRAY to test whether this field is
|
221 |
+
# valid (the pointer can be NULL). Most users should access
|
222 |
+
# this field via the inline helper method PyDataType_SHAPE.
|
223 |
+
cdef PyArray_ArrayDescr* subarray
|
224 |
+
|
225 |
+
ctypedef class numpy.flatiter [object PyArrayIterObject, check_size ignore]:
|
226 |
+
# Use through macros
|
227 |
+
pass
|
228 |
+
|
229 |
+
ctypedef class numpy.broadcast [object PyArrayMultiIterObject, check_size ignore]:
|
230 |
+
# Use through macros
|
231 |
+
pass
|
232 |
+
|
233 |
+
ctypedef struct PyArrayObject:
|
234 |
+
# For use in situations where ndarray can't replace PyArrayObject*,
|
235 |
+
# like PyArrayObject**.
|
236 |
+
pass
|
237 |
+
|
238 |
+
ctypedef class numpy.ndarray [object PyArrayObject, check_size ignore]:
|
239 |
+
cdef __cythonbufferdefaults__ = {"mode": "strided"}
|
240 |
+
|
241 |
+
# NOTE: no field declarations since direct access is deprecated since NumPy 1.7
|
242 |
+
# Instead, we use properties that map to the corresponding C-API functions.
|
243 |
+
|
244 |
+
@property
|
245 |
+
cdef inline PyObject* base(self) nogil:
|
246 |
+
"""Returns a borrowed reference to the object owning the data/memory.
|
247 |
+
"""
|
248 |
+
return PyArray_BASE(self)
|
249 |
+
|
250 |
+
@property
|
251 |
+
cdef inline dtype descr(self):
|
252 |
+
"""Returns an owned reference to the dtype of the array.
|
253 |
+
"""
|
254 |
+
return <dtype>PyArray_DESCR(self)
|
255 |
+
|
256 |
+
@property
|
257 |
+
cdef inline int ndim(self) nogil:
|
258 |
+
"""Returns the number of dimensions in the array.
|
259 |
+
"""
|
260 |
+
return PyArray_NDIM(self)
|
261 |
+
|
262 |
+
@property
|
263 |
+
cdef inline npy_intp *shape(self) nogil:
|
264 |
+
"""Returns a pointer to the dimensions/shape of the array.
|
265 |
+
The number of elements matches the number of dimensions of the array (ndim).
|
266 |
+
Can return NULL for 0-dimensional arrays.
|
267 |
+
"""
|
268 |
+
return PyArray_DIMS(self)
|
269 |
+
|
270 |
+
@property
|
271 |
+
cdef inline npy_intp *strides(self) nogil:
|
272 |
+
"""Returns a pointer to the strides of the array.
|
273 |
+
The number of elements matches the number of dimensions of the array (ndim).
|
274 |
+
"""
|
275 |
+
return PyArray_STRIDES(self)
|
276 |
+
|
277 |
+
@property
|
278 |
+
cdef inline npy_intp size(self) nogil:
|
279 |
+
"""Returns the total size (in number of elements) of the array.
|
280 |
+
"""
|
281 |
+
return PyArray_SIZE(self)
|
282 |
+
|
283 |
+
@property
|
284 |
+
cdef inline char* data(self) nogil:
|
285 |
+
"""The pointer to the data buffer as a char*.
|
286 |
+
This is provided for legacy reasons to avoid direct struct field access.
|
287 |
+
For new code that needs this access, you probably want to cast the result
|
288 |
+
of `PyArray_DATA()` instead, which returns a 'void*'.
|
289 |
+
"""
|
290 |
+
return PyArray_BYTES(self)
|
291 |
+
|
292 |
+
ctypedef unsigned char npy_bool
|
293 |
+
|
294 |
+
ctypedef signed char npy_byte
|
295 |
+
ctypedef signed short npy_short
|
296 |
+
ctypedef signed int npy_int
|
297 |
+
ctypedef signed long npy_long
|
298 |
+
ctypedef signed long long npy_longlong
|
299 |
+
|
300 |
+
ctypedef unsigned char npy_ubyte
|
301 |
+
ctypedef unsigned short npy_ushort
|
302 |
+
ctypedef unsigned int npy_uint
|
303 |
+
ctypedef unsigned long npy_ulong
|
304 |
+
ctypedef unsigned long long npy_ulonglong
|
305 |
+
|
306 |
+
ctypedef float npy_float
|
307 |
+
ctypedef double npy_double
|
308 |
+
ctypedef long double npy_longdouble
|
309 |
+
|
310 |
+
ctypedef signed char npy_int8
|
311 |
+
ctypedef signed short npy_int16
|
312 |
+
ctypedef signed int npy_int32
|
313 |
+
ctypedef signed long long npy_int64
|
314 |
+
ctypedef signed long long npy_int96
|
315 |
+
ctypedef signed long long npy_int128
|
316 |
+
|
317 |
+
ctypedef unsigned char npy_uint8
|
318 |
+
ctypedef unsigned short npy_uint16
|
319 |
+
ctypedef unsigned int npy_uint32
|
320 |
+
ctypedef unsigned long long npy_uint64
|
321 |
+
ctypedef unsigned long long npy_uint96
|
322 |
+
ctypedef unsigned long long npy_uint128
|
323 |
+
|
324 |
+
ctypedef float npy_float32
|
325 |
+
ctypedef double npy_float64
|
326 |
+
ctypedef long double npy_float80
|
327 |
+
ctypedef long double npy_float96
|
328 |
+
ctypedef long double npy_float128
|
329 |
+
|
330 |
+
ctypedef struct npy_cfloat:
|
331 |
+
float real
|
332 |
+
float imag
|
333 |
+
|
334 |
+
ctypedef struct npy_cdouble:
|
335 |
+
double real
|
336 |
+
double imag
|
337 |
+
|
338 |
+
ctypedef struct npy_clongdouble:
|
339 |
+
long double real
|
340 |
+
long double imag
|
341 |
+
|
342 |
+
ctypedef struct npy_complex64:
|
343 |
+
float real
|
344 |
+
float imag
|
345 |
+
|
346 |
+
ctypedef struct npy_complex128:
|
347 |
+
double real
|
348 |
+
double imag
|
349 |
+
|
350 |
+
ctypedef struct npy_complex160:
|
351 |
+
long double real
|
352 |
+
long double imag
|
353 |
+
|
354 |
+
ctypedef struct npy_complex192:
|
355 |
+
long double real
|
356 |
+
long double imag
|
357 |
+
|
358 |
+
ctypedef struct npy_complex256:
|
359 |
+
long double real
|
360 |
+
long double imag
|
361 |
+
|
362 |
+
ctypedef struct PyArray_Dims:
|
363 |
+
npy_intp *ptr
|
364 |
+
int len
|
365 |
+
|
366 |
+
int _import_array() except -1
|
367 |
+
# A second definition so _import_array isn't marked as used when we use it here.
|
368 |
+
# Do not use - subject to change any time.
|
369 |
+
int __pyx_import_array "_import_array"() except -1
|
370 |
+
|
371 |
+
#
|
372 |
+
# Macros from ndarrayobject.h
|
373 |
+
#
|
374 |
+
bint PyArray_CHKFLAGS(ndarray m, int flags) nogil
|
375 |
+
bint PyArray_IS_C_CONTIGUOUS(ndarray arr) nogil
|
376 |
+
bint PyArray_IS_F_CONTIGUOUS(ndarray arr) nogil
|
377 |
+
bint PyArray_ISCONTIGUOUS(ndarray m) nogil
|
378 |
+
bint PyArray_ISWRITEABLE(ndarray m) nogil
|
379 |
+
bint PyArray_ISALIGNED(ndarray m) nogil
|
380 |
+
|
381 |
+
int PyArray_NDIM(ndarray) nogil
|
382 |
+
bint PyArray_ISONESEGMENT(ndarray) nogil
|
383 |
+
bint PyArray_ISFORTRAN(ndarray) nogil
|
384 |
+
int PyArray_FORTRANIF(ndarray) nogil
|
385 |
+
|
386 |
+
void* PyArray_DATA(ndarray) nogil
|
387 |
+
char* PyArray_BYTES(ndarray) nogil
|
388 |
+
|
389 |
+
npy_intp* PyArray_DIMS(ndarray) nogil
|
390 |
+
npy_intp* PyArray_STRIDES(ndarray) nogil
|
391 |
+
npy_intp PyArray_DIM(ndarray, size_t) nogil
|
392 |
+
npy_intp PyArray_STRIDE(ndarray, size_t) nogil
|
393 |
+
|
394 |
+
PyObject *PyArray_BASE(ndarray) nogil # returns borrowed reference!
|
395 |
+
PyArray_Descr *PyArray_DESCR(ndarray) nogil # returns borrowed reference to dtype!
|
396 |
+
PyArray_Descr *PyArray_DTYPE(ndarray) nogil # returns borrowed reference to dtype! NP 1.7+ alias for descr.
|
397 |
+
int PyArray_FLAGS(ndarray) nogil
|
398 |
+
void PyArray_CLEARFLAGS(ndarray, int flags) nogil # Added in NumPy 1.7
|
399 |
+
void PyArray_ENABLEFLAGS(ndarray, int flags) nogil # Added in NumPy 1.7
|
400 |
+
npy_intp PyArray_ITEMSIZE(ndarray) nogil
|
401 |
+
int PyArray_TYPE(ndarray arr) nogil
|
402 |
+
|
403 |
+
object PyArray_GETITEM(ndarray arr, void *itemptr)
|
404 |
+
int PyArray_SETITEM(ndarray arr, void *itemptr, object obj) except -1
|
405 |
+
|
406 |
+
bint PyTypeNum_ISBOOL(int) nogil
|
407 |
+
bint PyTypeNum_ISUNSIGNED(int) nogil
|
408 |
+
bint PyTypeNum_ISSIGNED(int) nogil
|
409 |
+
bint PyTypeNum_ISINTEGER(int) nogil
|
410 |
+
bint PyTypeNum_ISFLOAT(int) nogil
|
411 |
+
bint PyTypeNum_ISNUMBER(int) nogil
|
412 |
+
bint PyTypeNum_ISSTRING(int) nogil
|
413 |
+
bint PyTypeNum_ISCOMPLEX(int) nogil
|
414 |
+
bint PyTypeNum_ISPYTHON(int) nogil
|
415 |
+
bint PyTypeNum_ISFLEXIBLE(int) nogil
|
416 |
+
bint PyTypeNum_ISUSERDEF(int) nogil
|
417 |
+
bint PyTypeNum_ISEXTENDED(int) nogil
|
418 |
+
bint PyTypeNum_ISOBJECT(int) nogil
|
419 |
+
|
420 |
+
bint PyDataType_ISBOOL(dtype) nogil
|
421 |
+
bint PyDataType_ISUNSIGNED(dtype) nogil
|
422 |
+
bint PyDataType_ISSIGNED(dtype) nogil
|
423 |
+
bint PyDataType_ISINTEGER(dtype) nogil
|
424 |
+
bint PyDataType_ISFLOAT(dtype) nogil
|
425 |
+
bint PyDataType_ISNUMBER(dtype) nogil
|
426 |
+
bint PyDataType_ISSTRING(dtype) nogil
|
427 |
+
bint PyDataType_ISCOMPLEX(dtype) nogil
|
428 |
+
bint PyDataType_ISPYTHON(dtype) nogil
|
429 |
+
bint PyDataType_ISFLEXIBLE(dtype) nogil
|
430 |
+
bint PyDataType_ISUSERDEF(dtype) nogil
|
431 |
+
bint PyDataType_ISEXTENDED(dtype) nogil
|
432 |
+
bint PyDataType_ISOBJECT(dtype) nogil
|
433 |
+
bint PyDataType_HASFIELDS(dtype) nogil
|
434 |
+
bint PyDataType_HASSUBARRAY(dtype) nogil
|
435 |
+
|
436 |
+
bint PyArray_ISBOOL(ndarray) nogil
|
437 |
+
bint PyArray_ISUNSIGNED(ndarray) nogil
|
438 |
+
bint PyArray_ISSIGNED(ndarray) nogil
|
439 |
+
bint PyArray_ISINTEGER(ndarray) nogil
|
440 |
+
bint PyArray_ISFLOAT(ndarray) nogil
|
441 |
+
bint PyArray_ISNUMBER(ndarray) nogil
|
442 |
+
bint PyArray_ISSTRING(ndarray) nogil
|
443 |
+
bint PyArray_ISCOMPLEX(ndarray) nogil
|
444 |
+
bint PyArray_ISPYTHON(ndarray) nogil
|
445 |
+
bint PyArray_ISFLEXIBLE(ndarray) nogil
|
446 |
+
bint PyArray_ISUSERDEF(ndarray) nogil
|
447 |
+
bint PyArray_ISEXTENDED(ndarray) nogil
|
448 |
+
bint PyArray_ISOBJECT(ndarray) nogil
|
449 |
+
bint PyArray_HASFIELDS(ndarray) nogil
|
450 |
+
|
451 |
+
bint PyArray_ISVARIABLE(ndarray) nogil
|
452 |
+
|
453 |
+
bint PyArray_SAFEALIGNEDCOPY(ndarray) nogil
|
454 |
+
bint PyArray_ISNBO(char) nogil # works on ndarray.byteorder
|
455 |
+
bint PyArray_IsNativeByteOrder(char) nogil # works on ndarray.byteorder
|
456 |
+
bint PyArray_ISNOTSWAPPED(ndarray) nogil
|
457 |
+
bint PyArray_ISBYTESWAPPED(ndarray) nogil
|
458 |
+
|
459 |
+
bint PyArray_FLAGSWAP(ndarray, int) nogil
|
460 |
+
|
461 |
+
bint PyArray_ISCARRAY(ndarray) nogil
|
462 |
+
bint PyArray_ISCARRAY_RO(ndarray) nogil
|
463 |
+
bint PyArray_ISFARRAY(ndarray) nogil
|
464 |
+
bint PyArray_ISFARRAY_RO(ndarray) nogil
|
465 |
+
bint PyArray_ISBEHAVED(ndarray) nogil
|
466 |
+
bint PyArray_ISBEHAVED_RO(ndarray) nogil
|
467 |
+
|
468 |
+
|
469 |
+
bint PyDataType_ISNOTSWAPPED(dtype) nogil
|
470 |
+
bint PyDataType_ISBYTESWAPPED(dtype) nogil
|
471 |
+
|
472 |
+
bint PyArray_DescrCheck(object)
|
473 |
+
|
474 |
+
bint PyArray_Check(object)
|
475 |
+
bint PyArray_CheckExact(object)
|
476 |
+
|
477 |
+
# Cannot be supported due to out arg:
|
478 |
+
# bint PyArray_HasArrayInterfaceType(object, dtype, object, object&)
|
479 |
+
# bint PyArray_HasArrayInterface(op, out)
|
480 |
+
|
481 |
+
|
482 |
+
bint PyArray_IsZeroDim(object)
|
483 |
+
# Cannot be supported due to ## ## in macro:
|
484 |
+
# bint PyArray_IsScalar(object, verbatim work)
|
485 |
+
bint PyArray_CheckScalar(object)
|
486 |
+
bint PyArray_IsPythonNumber(object)
|
487 |
+
bint PyArray_IsPythonScalar(object)
|
488 |
+
bint PyArray_IsAnyScalar(object)
|
489 |
+
bint PyArray_CheckAnyScalar(object)
|
490 |
+
|
491 |
+
ndarray PyArray_GETCONTIGUOUS(ndarray)
|
492 |
+
bint PyArray_SAMESHAPE(ndarray, ndarray) nogil
|
493 |
+
npy_intp PyArray_SIZE(ndarray) nogil
|
494 |
+
npy_intp PyArray_NBYTES(ndarray) nogil
|
495 |
+
|
496 |
+
object PyArray_FROM_O(object)
|
497 |
+
object PyArray_FROM_OF(object m, int flags)
|
498 |
+
object PyArray_FROM_OT(object m, int type)
|
499 |
+
object PyArray_FROM_OTF(object m, int type, int flags)
|
500 |
+
object PyArray_FROMANY(object m, int type, int min, int max, int flags)
|
501 |
+
object PyArray_ZEROS(int nd, npy_intp* dims, int type, int fortran)
|
502 |
+
object PyArray_EMPTY(int nd, npy_intp* dims, int type, int fortran)
|
503 |
+
void PyArray_FILLWBYTE(object, int val)
|
504 |
+
npy_intp PyArray_REFCOUNT(object)
|
505 |
+
object PyArray_ContiguousFromAny(op, int, int min_depth, int max_depth)
|
506 |
+
unsigned char PyArray_EquivArrTypes(ndarray a1, ndarray a2)
|
507 |
+
bint PyArray_EquivByteorders(int b1, int b2) nogil
|
508 |
+
object PyArray_SimpleNew(int nd, npy_intp* dims, int typenum)
|
509 |
+
object PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void* data)
|
510 |
+
#object PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, dtype descr)
|
511 |
+
object PyArray_ToScalar(void* data, ndarray arr)
|
512 |
+
|
513 |
+
void* PyArray_GETPTR1(ndarray m, npy_intp i) nogil
|
514 |
+
void* PyArray_GETPTR2(ndarray m, npy_intp i, npy_intp j) nogil
|
515 |
+
void* PyArray_GETPTR3(ndarray m, npy_intp i, npy_intp j, npy_intp k) nogil
|
516 |
+
void* PyArray_GETPTR4(ndarray m, npy_intp i, npy_intp j, npy_intp k, npy_intp l) nogil
|
517 |
+
|
518 |
+
# Cannot be supported due to out arg
|
519 |
+
# void PyArray_DESCR_REPLACE(descr)
|
520 |
+
|
521 |
+
|
522 |
+
object PyArray_Copy(ndarray)
|
523 |
+
object PyArray_FromObject(object op, int type, int min_depth, int max_depth)
|
524 |
+
object PyArray_ContiguousFromObject(object op, int type, int min_depth, int max_depth)
|
525 |
+
object PyArray_CopyFromObject(object op, int type, int min_depth, int max_depth)
|
526 |
+
|
527 |
+
object PyArray_Cast(ndarray mp, int type_num)
|
528 |
+
object PyArray_Take(ndarray ap, object items, int axis)
|
529 |
+
object PyArray_Put(ndarray ap, object items, object values)
|
530 |
+
|
531 |
+
void PyArray_ITER_RESET(flatiter it) nogil
|
532 |
+
void PyArray_ITER_NEXT(flatiter it) nogil
|
533 |
+
void PyArray_ITER_GOTO(flatiter it, npy_intp* destination) nogil
|
534 |
+
void PyArray_ITER_GOTO1D(flatiter it, npy_intp ind) nogil
|
535 |
+
void* PyArray_ITER_DATA(flatiter it) nogil
|
536 |
+
bint PyArray_ITER_NOTDONE(flatiter it) nogil
|
537 |
+
|
538 |
+
void PyArray_MultiIter_RESET(broadcast multi) nogil
|
539 |
+
void PyArray_MultiIter_NEXT(broadcast multi) nogil
|
540 |
+
void PyArray_MultiIter_GOTO(broadcast multi, npy_intp dest) nogil
|
541 |
+
void PyArray_MultiIter_GOTO1D(broadcast multi, npy_intp ind) nogil
|
542 |
+
void* PyArray_MultiIter_DATA(broadcast multi, npy_intp i) nogil
|
543 |
+
void PyArray_MultiIter_NEXTi(broadcast multi, npy_intp i) nogil
|
544 |
+
bint PyArray_MultiIter_NOTDONE(broadcast multi) nogil
|
545 |
+
|
546 |
+
# Functions from __multiarray_api.h
|
547 |
+
|
548 |
+
# Functions taking dtype and returning object/ndarray are disabled
|
549 |
+
# for now as they steal dtype references. I'm conservative and disable
|
550 |
+
# more than is probably needed until it can be checked further.
|
551 |
+
int PyArray_SetNumericOps (object) except -1
|
552 |
+
object PyArray_GetNumericOps ()
|
553 |
+
int PyArray_INCREF (ndarray) except * # uses PyArray_Item_INCREF...
|
554 |
+
int PyArray_XDECREF (ndarray) except * # uses PyArray_Item_DECREF...
|
555 |
+
void PyArray_SetStringFunction (object, int)
|
556 |
+
dtype PyArray_DescrFromType (int)
|
557 |
+
object PyArray_TypeObjectFromType (int)
|
558 |
+
char * PyArray_Zero (ndarray)
|
559 |
+
char * PyArray_One (ndarray)
|
560 |
+
#object PyArray_CastToType (ndarray, dtype, int)
|
561 |
+
int PyArray_CastTo (ndarray, ndarray) except -1
|
562 |
+
int PyArray_CastAnyTo (ndarray, ndarray) except -1
|
563 |
+
int PyArray_CanCastSafely (int, int) # writes errors
|
564 |
+
npy_bool PyArray_CanCastTo (dtype, dtype) # writes errors
|
565 |
+
int PyArray_ObjectType (object, int) except 0
|
566 |
+
dtype PyArray_DescrFromObject (object, dtype)
|
567 |
+
#ndarray* PyArray_ConvertToCommonType (object, int *)
|
568 |
+
dtype PyArray_DescrFromScalar (object)
|
569 |
+
dtype PyArray_DescrFromTypeObject (object)
|
570 |
+
npy_intp PyArray_Size (object)
|
571 |
+
#object PyArray_Scalar (void *, dtype, object)
|
572 |
+
#object PyArray_FromScalar (object, dtype)
|
573 |
+
void PyArray_ScalarAsCtype (object, void *)
|
574 |
+
#int PyArray_CastScalarToCtype (object, void *, dtype)
|
575 |
+
#int PyArray_CastScalarDirect (object, dtype, void *, int)
|
576 |
+
object PyArray_ScalarFromObject (object)
|
577 |
+
#PyArray_VectorUnaryFunc * PyArray_GetCastFunc (dtype, int)
|
578 |
+
object PyArray_FromDims (int, int *, int)
|
579 |
+
#object PyArray_FromDimsAndDataAndDescr (int, int *, dtype, char *)
|
580 |
+
#object PyArray_FromAny (object, dtype, int, int, int, object)
|
581 |
+
object PyArray_EnsureArray (object)
|
582 |
+
object PyArray_EnsureAnyArray (object)
|
583 |
+
#object PyArray_FromFile (stdio.FILE *, dtype, npy_intp, char *)
|
584 |
+
#object PyArray_FromString (char *, npy_intp, dtype, npy_intp, char *)
|
585 |
+
#object PyArray_FromBuffer (object, dtype, npy_intp, npy_intp)
|
586 |
+
#object PyArray_FromIter (object, dtype, npy_intp)
|
587 |
+
object PyArray_Return (ndarray)
|
588 |
+
#object PyArray_GetField (ndarray, dtype, int)
|
589 |
+
#int PyArray_SetField (ndarray, dtype, int, object) except -1
|
590 |
+
object PyArray_Byteswap (ndarray, npy_bool)
|
591 |
+
object PyArray_Resize (ndarray, PyArray_Dims *, int, NPY_ORDER)
|
592 |
+
int PyArray_MoveInto (ndarray, ndarray) except -1
|
593 |
+
int PyArray_CopyInto (ndarray, ndarray) except -1
|
594 |
+
int PyArray_CopyAnyInto (ndarray, ndarray) except -1
|
595 |
+
int PyArray_CopyObject (ndarray, object) except -1
|
596 |
+
object PyArray_NewCopy (ndarray, NPY_ORDER)
|
597 |
+
object PyArray_ToList (ndarray)
|
598 |
+
object PyArray_ToString (ndarray, NPY_ORDER)
|
599 |
+
int PyArray_ToFile (ndarray, stdio.FILE *, char *, char *) except -1
|
600 |
+
int PyArray_Dump (object, object, int) except -1
|
601 |
+
object PyArray_Dumps (object, int)
|
602 |
+
int PyArray_ValidType (int) # Cannot error
|
603 |
+
void PyArray_UpdateFlags (ndarray, int)
|
604 |
+
object PyArray_New (type, int, npy_intp *, int, npy_intp *, void *, int, int, object)
|
605 |
+
#object PyArray_NewFromDescr (type, dtype, int, npy_intp *, npy_intp *, void *, int, object)
|
606 |
+
#dtype PyArray_DescrNew (dtype)
|
607 |
+
dtype PyArray_DescrNewFromType (int)
|
608 |
+
double PyArray_GetPriority (object, double) # clears errors as of 1.25
|
609 |
+
object PyArray_IterNew (object)
|
610 |
+
object PyArray_MultiIterNew (int, ...)
|
611 |
+
|
612 |
+
int PyArray_PyIntAsInt (object) except? -1
|
613 |
+
npy_intp PyArray_PyIntAsIntp (object)
|
614 |
+
int PyArray_Broadcast (broadcast) except -1
|
615 |
+
void PyArray_FillObjectArray (ndarray, object) except *
|
616 |
+
int PyArray_FillWithScalar (ndarray, object) except -1
|
617 |
+
npy_bool PyArray_CheckStrides (int, int, npy_intp, npy_intp, npy_intp *, npy_intp *)
|
618 |
+
dtype PyArray_DescrNewByteorder (dtype, char)
|
619 |
+
object PyArray_IterAllButAxis (object, int *)
|
620 |
+
#object PyArray_CheckFromAny (object, dtype, int, int, int, object)
|
621 |
+
#object PyArray_FromArray (ndarray, dtype, int)
|
622 |
+
object PyArray_FromInterface (object)
|
623 |
+
object PyArray_FromStructInterface (object)
|
624 |
+
#object PyArray_FromArrayAttr (object, dtype, object)
|
625 |
+
#NPY_SCALARKIND PyArray_ScalarKind (int, ndarray*)
|
626 |
+
int PyArray_CanCoerceScalar (int, int, NPY_SCALARKIND)
|
627 |
+
object PyArray_NewFlagsObject (object)
|
628 |
+
npy_bool PyArray_CanCastScalar (type, type)
|
629 |
+
#int PyArray_CompareUCS4 (npy_ucs4 *, npy_ucs4 *, register size_t)
|
630 |
+
int PyArray_RemoveSmallest (broadcast) except -1
|
631 |
+
int PyArray_ElementStrides (object)
|
632 |
+
void PyArray_Item_INCREF (char *, dtype) except *
|
633 |
+
void PyArray_Item_XDECREF (char *, dtype) except *
|
634 |
+
object PyArray_FieldNames (object)
|
635 |
+
object PyArray_Transpose (ndarray, PyArray_Dims *)
|
636 |
+
object PyArray_TakeFrom (ndarray, object, int, ndarray, NPY_CLIPMODE)
|
637 |
+
object PyArray_PutTo (ndarray, object, object, NPY_CLIPMODE)
|
638 |
+
object PyArray_PutMask (ndarray, object, object)
|
639 |
+
object PyArray_Repeat (ndarray, object, int)
|
640 |
+
object PyArray_Choose (ndarray, object, ndarray, NPY_CLIPMODE)
|
641 |
+
int PyArray_Sort (ndarray, int, NPY_SORTKIND) except -1
|
642 |
+
object PyArray_ArgSort (ndarray, int, NPY_SORTKIND)
|
643 |
+
object PyArray_SearchSorted (ndarray, object, NPY_SEARCHSIDE, PyObject *)
|
644 |
+
object PyArray_ArgMax (ndarray, int, ndarray)
|
645 |
+
object PyArray_ArgMin (ndarray, int, ndarray)
|
646 |
+
object PyArray_Reshape (ndarray, object)
|
647 |
+
object PyArray_Newshape (ndarray, PyArray_Dims *, NPY_ORDER)
|
648 |
+
object PyArray_Squeeze (ndarray)
|
649 |
+
#object PyArray_View (ndarray, dtype, type)
|
650 |
+
object PyArray_SwapAxes (ndarray, int, int)
|
651 |
+
object PyArray_Max (ndarray, int, ndarray)
|
652 |
+
object PyArray_Min (ndarray, int, ndarray)
|
653 |
+
object PyArray_Ptp (ndarray, int, ndarray)
|
654 |
+
object PyArray_Mean (ndarray, int, int, ndarray)
|
655 |
+
object PyArray_Trace (ndarray, int, int, int, int, ndarray)
|
656 |
+
object PyArray_Diagonal (ndarray, int, int, int)
|
657 |
+
object PyArray_Clip (ndarray, object, object, ndarray)
|
658 |
+
object PyArray_Conjugate (ndarray, ndarray)
|
659 |
+
object PyArray_Nonzero (ndarray)
|
660 |
+
object PyArray_Std (ndarray, int, int, ndarray, int)
|
661 |
+
object PyArray_Sum (ndarray, int, int, ndarray)
|
662 |
+
object PyArray_CumSum (ndarray, int, int, ndarray)
|
663 |
+
object PyArray_Prod (ndarray, int, int, ndarray)
|
664 |
+
object PyArray_CumProd (ndarray, int, int, ndarray)
|
665 |
+
object PyArray_All (ndarray, int, ndarray)
|
666 |
+
object PyArray_Any (ndarray, int, ndarray)
|
667 |
+
object PyArray_Compress (ndarray, object, int, ndarray)
|
668 |
+
object PyArray_Flatten (ndarray, NPY_ORDER)
|
669 |
+
object PyArray_Ravel (ndarray, NPY_ORDER)
|
670 |
+
npy_intp PyArray_MultiplyList (npy_intp *, int)
|
671 |
+
int PyArray_MultiplyIntList (int *, int)
|
672 |
+
void * PyArray_GetPtr (ndarray, npy_intp*)
|
673 |
+
int PyArray_CompareLists (npy_intp *, npy_intp *, int)
|
674 |
+
#int PyArray_AsCArray (object*, void *, npy_intp *, int, dtype)
|
675 |
+
#int PyArray_As1D (object*, char **, int *, int)
|
676 |
+
#int PyArray_As2D (object*, char ***, int *, int *, int)
|
677 |
+
int PyArray_Free (object, void *)
|
678 |
+
#int PyArray_Converter (object, object*)
|
679 |
+
int PyArray_IntpFromSequence (object, npy_intp *, int) except -1
|
680 |
+
object PyArray_Concatenate (object, int)
|
681 |
+
object PyArray_InnerProduct (object, object)
|
682 |
+
object PyArray_MatrixProduct (object, object)
|
683 |
+
object PyArray_CopyAndTranspose (object)
|
684 |
+
object PyArray_Correlate (object, object, int)
|
685 |
+
int PyArray_TypestrConvert (int, int)
|
686 |
+
#int PyArray_DescrConverter (object, dtype*) except 0
|
687 |
+
#int PyArray_DescrConverter2 (object, dtype*) except 0
|
688 |
+
int PyArray_IntpConverter (object, PyArray_Dims *) except 0
|
689 |
+
#int PyArray_BufferConverter (object, chunk) except 0
|
690 |
+
int PyArray_AxisConverter (object, int *) except 0
|
691 |
+
int PyArray_BoolConverter (object, npy_bool *) except 0
|
692 |
+
int PyArray_ByteorderConverter (object, char *) except 0
|
693 |
+
int PyArray_OrderConverter (object, NPY_ORDER *) except 0
|
694 |
+
unsigned char PyArray_EquivTypes (dtype, dtype) # clears errors
|
695 |
+
#object PyArray_Zeros (int, npy_intp *, dtype, int)
|
696 |
+
#object PyArray_Empty (int, npy_intp *, dtype, int)
|
697 |
+
object PyArray_Where (object, object, object)
|
698 |
+
object PyArray_Arange (double, double, double, int)
|
699 |
+
#object PyArray_ArangeObj (object, object, object, dtype)
|
700 |
+
int PyArray_SortkindConverter (object, NPY_SORTKIND *) except 0
|
701 |
+
object PyArray_LexSort (object, int)
|
702 |
+
object PyArray_Round (ndarray, int, ndarray)
|
703 |
+
unsigned char PyArray_EquivTypenums (int, int)
|
704 |
+
int PyArray_RegisterDataType (dtype) except -1
|
705 |
+
int PyArray_RegisterCastFunc (dtype, int, PyArray_VectorUnaryFunc *) except -1
|
706 |
+
int PyArray_RegisterCanCast (dtype, int, NPY_SCALARKIND) except -1
|
707 |
+
#void PyArray_InitArrFuncs (PyArray_ArrFuncs *)
|
708 |
+
object PyArray_IntTupleFromIntp (int, npy_intp *)
|
709 |
+
int PyArray_TypeNumFromName (char *)
|
710 |
+
int PyArray_ClipmodeConverter (object, NPY_CLIPMODE *) except 0
|
711 |
+
#int PyArray_OutputConverter (object, ndarray*) except 0
|
712 |
+
object PyArray_BroadcastToShape (object, npy_intp *, int)
|
713 |
+
void _PyArray_SigintHandler (int)
|
714 |
+
void* _PyArray_GetSigintBuf ()
|
715 |
+
#int PyArray_DescrAlignConverter (object, dtype*) except 0
|
716 |
+
#int PyArray_DescrAlignConverter2 (object, dtype*) except 0
|
717 |
+
int PyArray_SearchsideConverter (object, void *) except 0
|
718 |
+
object PyArray_CheckAxis (ndarray, int *, int)
|
719 |
+
npy_intp PyArray_OverflowMultiplyList (npy_intp *, int)
|
720 |
+
int PyArray_CompareString (char *, char *, size_t)
|
721 |
+
int PyArray_SetBaseObject(ndarray, base) except -1 # NOTE: steals a reference to base! Use "set_array_base()" instead.
|
722 |
+
|
723 |
+
|
724 |
+
# Typedefs that matches the runtime dtype objects in
|
725 |
+
# the numpy module.
|
726 |
+
|
727 |
+
# The ones that are commented out needs an IFDEF function
|
728 |
+
# in Cython to enable them only on the right systems.
|
729 |
+
|
730 |
+
ctypedef npy_int8 int8_t
|
731 |
+
ctypedef npy_int16 int16_t
|
732 |
+
ctypedef npy_int32 int32_t
|
733 |
+
ctypedef npy_int64 int64_t
|
734 |
+
#ctypedef npy_int96 int96_t
|
735 |
+
#ctypedef npy_int128 int128_t
|
736 |
+
|
737 |
+
ctypedef npy_uint8 uint8_t
|
738 |
+
ctypedef npy_uint16 uint16_t
|
739 |
+
ctypedef npy_uint32 uint32_t
|
740 |
+
ctypedef npy_uint64 uint64_t
|
741 |
+
#ctypedef npy_uint96 uint96_t
|
742 |
+
#ctypedef npy_uint128 uint128_t
|
743 |
+
|
744 |
+
ctypedef npy_float32 float32_t
|
745 |
+
ctypedef npy_float64 float64_t
|
746 |
+
#ctypedef npy_float80 float80_t
|
747 |
+
#ctypedef npy_float128 float128_t
|
748 |
+
|
749 |
+
ctypedef float complex complex64_t
|
750 |
+
ctypedef double complex complex128_t
|
751 |
+
|
752 |
+
# The int types are mapped a bit surprising --
|
753 |
+
# numpy.int corresponds to 'l' and numpy.long to 'q'
|
754 |
+
ctypedef npy_long int_t
|
755 |
+
ctypedef npy_longlong longlong_t
|
756 |
+
|
757 |
+
ctypedef npy_ulong uint_t
|
758 |
+
ctypedef npy_ulonglong ulonglong_t
|
759 |
+
|
760 |
+
ctypedef npy_intp intp_t
|
761 |
+
ctypedef npy_uintp uintp_t
|
762 |
+
|
763 |
+
ctypedef npy_double float_t
|
764 |
+
ctypedef npy_double double_t
|
765 |
+
ctypedef npy_longdouble longdouble_t
|
766 |
+
|
767 |
+
ctypedef npy_cfloat cfloat_t
|
768 |
+
ctypedef npy_cdouble cdouble_t
|
769 |
+
ctypedef npy_clongdouble clongdouble_t
|
770 |
+
|
771 |
+
ctypedef npy_cdouble complex_t
|
772 |
+
|
773 |
+
cdef inline object PyArray_MultiIterNew1(a):
|
774 |
+
return PyArray_MultiIterNew(1, <void*>a)
|
775 |
+
|
776 |
+
cdef inline object PyArray_MultiIterNew2(a, b):
|
777 |
+
return PyArray_MultiIterNew(2, <void*>a, <void*>b)
|
778 |
+
|
779 |
+
cdef inline object PyArray_MultiIterNew3(a, b, c):
|
780 |
+
return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)
|
781 |
+
|
782 |
+
cdef inline object PyArray_MultiIterNew4(a, b, c, d):
|
783 |
+
return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)
|
784 |
+
|
785 |
+
cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
|
786 |
+
return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e)
|
787 |
+
|
788 |
+
cdef inline tuple PyDataType_SHAPE(dtype d):
|
789 |
+
if PyDataType_HASSUBARRAY(d):
|
790 |
+
return <tuple>d.subarray.shape
|
791 |
+
else:
|
792 |
+
return ()
|
793 |
+
|
794 |
+
|
795 |
+
cdef extern from "numpy/ndarrayobject.h":
|
796 |
+
PyTypeObject PyTimedeltaArrType_Type
|
797 |
+
PyTypeObject PyDatetimeArrType_Type
|
798 |
+
ctypedef int64_t npy_timedelta
|
799 |
+
ctypedef int64_t npy_datetime
|
800 |
+
|
801 |
+
cdef extern from "numpy/ndarraytypes.h":
|
802 |
+
ctypedef struct PyArray_DatetimeMetaData:
|
803 |
+
NPY_DATETIMEUNIT base
|
804 |
+
int64_t num
|
805 |
+
|
806 |
+
cdef extern from "numpy/arrayscalars.h":
|
807 |
+
|
808 |
+
# abstract types
|
809 |
+
ctypedef class numpy.generic [object PyObject]:
|
810 |
+
pass
|
811 |
+
ctypedef class numpy.number [object PyObject]:
|
812 |
+
pass
|
813 |
+
ctypedef class numpy.integer [object PyObject]:
|
814 |
+
pass
|
815 |
+
ctypedef class numpy.signedinteger [object PyObject]:
|
816 |
+
pass
|
817 |
+
ctypedef class numpy.unsignedinteger [object PyObject]:
|
818 |
+
pass
|
819 |
+
ctypedef class numpy.inexact [object PyObject]:
|
820 |
+
pass
|
821 |
+
ctypedef class numpy.floating [object PyObject]:
|
822 |
+
pass
|
823 |
+
ctypedef class numpy.complexfloating [object PyObject]:
|
824 |
+
pass
|
825 |
+
ctypedef class numpy.flexible [object PyObject]:
|
826 |
+
pass
|
827 |
+
ctypedef class numpy.character [object PyObject]:
|
828 |
+
pass
|
829 |
+
|
830 |
+
ctypedef struct PyDatetimeScalarObject:
|
831 |
+
# PyObject_HEAD
|
832 |
+
npy_datetime obval
|
833 |
+
PyArray_DatetimeMetaData obmeta
|
834 |
+
|
835 |
+
ctypedef struct PyTimedeltaScalarObject:
|
836 |
+
# PyObject_HEAD
|
837 |
+
npy_timedelta obval
|
838 |
+
PyArray_DatetimeMetaData obmeta
|
839 |
+
|
840 |
+
ctypedef enum NPY_DATETIMEUNIT:
|
841 |
+
NPY_FR_Y
|
842 |
+
NPY_FR_M
|
843 |
+
NPY_FR_W
|
844 |
+
NPY_FR_D
|
845 |
+
NPY_FR_B
|
846 |
+
NPY_FR_h
|
847 |
+
NPY_FR_m
|
848 |
+
NPY_FR_s
|
849 |
+
NPY_FR_ms
|
850 |
+
NPY_FR_us
|
851 |
+
NPY_FR_ns
|
852 |
+
NPY_FR_ps
|
853 |
+
NPY_FR_fs
|
854 |
+
NPY_FR_as
|
855 |
+
NPY_FR_GENERIC
|
856 |
+
|
857 |
+
|
858 |
+
#
|
859 |
+
# ufunc API
|
860 |
+
#
|
861 |
+
|
862 |
+
cdef extern from "numpy/ufuncobject.h":
|
863 |
+
|
864 |
+
ctypedef void (*PyUFuncGenericFunction) (char **, npy_intp *, npy_intp *, void *)
|
865 |
+
|
866 |
+
ctypedef class numpy.ufunc [object PyUFuncObject, check_size ignore]:
|
867 |
+
cdef:
|
868 |
+
int nin, nout, nargs
|
869 |
+
int identity
|
870 |
+
PyUFuncGenericFunction *functions
|
871 |
+
void **data
|
872 |
+
int ntypes
|
873 |
+
int check_return
|
874 |
+
char *name
|
875 |
+
char *types
|
876 |
+
char *doc
|
877 |
+
void *ptr
|
878 |
+
PyObject *obj
|
879 |
+
PyObject *userloops
|
880 |
+
|
881 |
+
cdef enum:
|
882 |
+
PyUFunc_Zero
|
883 |
+
PyUFunc_One
|
884 |
+
PyUFunc_None
|
885 |
+
UFUNC_ERR_IGNORE
|
886 |
+
UFUNC_ERR_WARN
|
887 |
+
UFUNC_ERR_RAISE
|
888 |
+
UFUNC_ERR_CALL
|
889 |
+
UFUNC_ERR_PRINT
|
890 |
+
UFUNC_ERR_LOG
|
891 |
+
UFUNC_MASK_DIVIDEBYZERO
|
892 |
+
UFUNC_MASK_OVERFLOW
|
893 |
+
UFUNC_MASK_UNDERFLOW
|
894 |
+
UFUNC_MASK_INVALID
|
895 |
+
UFUNC_SHIFT_DIVIDEBYZERO
|
896 |
+
UFUNC_SHIFT_OVERFLOW
|
897 |
+
UFUNC_SHIFT_UNDERFLOW
|
898 |
+
UFUNC_SHIFT_INVALID
|
899 |
+
UFUNC_FPE_DIVIDEBYZERO
|
900 |
+
UFUNC_FPE_OVERFLOW
|
901 |
+
UFUNC_FPE_UNDERFLOW
|
902 |
+
UFUNC_FPE_INVALID
|
903 |
+
UFUNC_ERR_DEFAULT
|
904 |
+
UFUNC_ERR_DEFAULT2
|
905 |
+
|
906 |
+
object PyUFunc_FromFuncAndData(PyUFuncGenericFunction *,
|
907 |
+
void **, char *, int, int, int, int, char *, char *, int)
|
908 |
+
int PyUFunc_RegisterLoopForType(ufunc, int,
|
909 |
+
PyUFuncGenericFunction, int *, void *) except -1
|
910 |
+
void PyUFunc_f_f_As_d_d \
|
911 |
+
(char **, npy_intp *, npy_intp *, void *)
|
912 |
+
void PyUFunc_d_d \
|
913 |
+
(char **, npy_intp *, npy_intp *, void *)
|
914 |
+
void PyUFunc_f_f \
|
915 |
+
(char **, npy_intp *, npy_intp *, void *)
|
916 |
+
void PyUFunc_g_g \
|
917 |
+
(char **, npy_intp *, npy_intp *, void *)
|
918 |
+
void PyUFunc_F_F_As_D_D \
|
919 |
+
(char **, npy_intp *, npy_intp *, void *)
|
920 |
+
void PyUFunc_F_F \
|
921 |
+
(char **, npy_intp *, npy_intp *, void *)
|
922 |
+
void PyUFunc_D_D \
|
923 |
+
(char **, npy_intp *, npy_intp *, void *)
|
924 |
+
void PyUFunc_G_G \
|
925 |
+
(char **, npy_intp *, npy_intp *, void *)
|
926 |
+
void PyUFunc_O_O \
|
927 |
+
(char **, npy_intp *, npy_intp *, void *)
|
928 |
+
void PyUFunc_ff_f_As_dd_d \
|
929 |
+
(char **, npy_intp *, npy_intp *, void *)
|
930 |
+
void PyUFunc_ff_f \
|
931 |
+
(char **, npy_intp *, npy_intp *, void *)
|
932 |
+
void PyUFunc_dd_d \
|
933 |
+
(char **, npy_intp *, npy_intp *, void *)
|
934 |
+
void PyUFunc_gg_g \
|
935 |
+
(char **, npy_intp *, npy_intp *, void *)
|
936 |
+
void PyUFunc_FF_F_As_DD_D \
|
937 |
+
(char **, npy_intp *, npy_intp *, void *)
|
938 |
+
void PyUFunc_DD_D \
|
939 |
+
(char **, npy_intp *, npy_intp *, void *)
|
940 |
+
void PyUFunc_FF_F \
|
941 |
+
(char **, npy_intp *, npy_intp *, void *)
|
942 |
+
void PyUFunc_GG_G \
|
943 |
+
(char **, npy_intp *, npy_intp *, void *)
|
944 |
+
void PyUFunc_OO_O \
|
945 |
+
(char **, npy_intp *, npy_intp *, void *)
|
946 |
+
void PyUFunc_O_O_method \
|
947 |
+
(char **, npy_intp *, npy_intp *, void *)
|
948 |
+
void PyUFunc_OO_O_method \
|
949 |
+
(char **, npy_intp *, npy_intp *, void *)
|
950 |
+
void PyUFunc_On_Om \
|
951 |
+
(char **, npy_intp *, npy_intp *, void *)
|
952 |
+
int PyUFunc_GetPyValues \
|
953 |
+
(char *, int *, int *, PyObject **)
|
954 |
+
int PyUFunc_checkfperr \
|
955 |
+
(int, PyObject *, int *)
|
956 |
+
void PyUFunc_clearfperr()
|
957 |
+
int PyUFunc_getfperr()
|
958 |
+
int PyUFunc_handlefperr \
|
959 |
+
(int, PyObject *, int, int *) except -1
|
960 |
+
int PyUFunc_ReplaceLoopBySignature \
|
961 |
+
(ufunc, PyUFuncGenericFunction, int *, PyUFuncGenericFunction *)
|
962 |
+
object PyUFunc_FromFuncAndDataAndSignature \
|
963 |
+
(PyUFuncGenericFunction *, void **, char *, int, int, int,
|
964 |
+
int, char *, char *, int, char *)
|
965 |
+
|
966 |
+
int _import_umath() except -1
|
967 |
+
|
968 |
+
cdef inline void set_array_base(ndarray arr, object base):
|
969 |
+
Py_INCREF(base) # important to do this before stealing the reference below!
|
970 |
+
PyArray_SetBaseObject(arr, base)
|
971 |
+
|
972 |
+
cdef inline object get_array_base(ndarray arr):
|
973 |
+
base = PyArray_BASE(arr)
|
974 |
+
if base is NULL:
|
975 |
+
return None
|
976 |
+
return <object>base
|
977 |
+
|
978 |
+
# Versions of the import_* functions which are more suitable for
|
979 |
+
# Cython code.
|
980 |
+
cdef inline int import_array() except -1:
|
981 |
+
try:
|
982 |
+
__pyx_import_array()
|
983 |
+
except Exception:
|
984 |
+
raise ImportError("numpy.core.multiarray failed to import")
|
985 |
+
|
986 |
+
cdef inline int import_umath() except -1:
|
987 |
+
try:
|
988 |
+
_import_umath()
|
989 |
+
except Exception:
|
990 |
+
raise ImportError("numpy.core.umath failed to import")
|
991 |
+
|
992 |
+
cdef inline int import_ufunc() except -1:
|
993 |
+
try:
|
994 |
+
_import_umath()
|
995 |
+
except Exception:
|
996 |
+
raise ImportError("numpy.core.umath failed to import")
|
997 |
+
|
998 |
+
|
999 |
+
cdef inline bint is_timedelta64_object(object obj):
|
1000 |
+
"""
|
1001 |
+
Cython equivalent of `isinstance(obj, np.timedelta64)`
|
1002 |
+
|
1003 |
+
Parameters
|
1004 |
+
----------
|
1005 |
+
obj : object
|
1006 |
+
|
1007 |
+
Returns
|
1008 |
+
-------
|
1009 |
+
bool
|
1010 |
+
"""
|
1011 |
+
return PyObject_TypeCheck(obj, &PyTimedeltaArrType_Type)
|
1012 |
+
|
1013 |
+
|
1014 |
+
cdef inline bint is_datetime64_object(object obj):
|
1015 |
+
"""
|
1016 |
+
Cython equivalent of `isinstance(obj, np.datetime64)`
|
1017 |
+
|
1018 |
+
Parameters
|
1019 |
+
----------
|
1020 |
+
obj : object
|
1021 |
+
|
1022 |
+
Returns
|
1023 |
+
-------
|
1024 |
+
bool
|
1025 |
+
"""
|
1026 |
+
return PyObject_TypeCheck(obj, &PyDatetimeArrType_Type)
|
1027 |
+
|
1028 |
+
|
1029 |
+
cdef inline npy_datetime get_datetime64_value(object obj) nogil:
|
1030 |
+
"""
|
1031 |
+
returns the int64 value underlying scalar numpy datetime64 object
|
1032 |
+
|
1033 |
+
Note that to interpret this as a datetime, the corresponding unit is
|
1034 |
+
also needed. That can be found using `get_datetime64_unit`.
|
1035 |
+
"""
|
1036 |
+
return (<PyDatetimeScalarObject*>obj).obval
|
1037 |
+
|
1038 |
+
|
1039 |
+
cdef inline npy_timedelta get_timedelta64_value(object obj) nogil:
|
1040 |
+
"""
|
1041 |
+
returns the int64 value underlying scalar numpy timedelta64 object
|
1042 |
+
"""
|
1043 |
+
return (<PyTimedeltaScalarObject*>obj).obval
|
1044 |
+
|
1045 |
+
|
1046 |
+
cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil:
|
1047 |
+
"""
|
1048 |
+
returns the unit part of the dtype for a numpy datetime64 object.
|
1049 |
+
"""
|
1050 |
+
return <NPY_DATETIMEUNIT>(<PyDatetimeScalarObject*>obj).obmeta.base
|